The Discovery Process and Implementation of midi on the
Music Quest Note/1 Parallel Port Adapter.

Kelly Hirai hirai@cs.fsu.edu Nathan Lay nslay @cs.fsu.edu
For Linux Device Drivers Summer 2006. Instructor: Dr. Ted Baker

The Note/1 itself
The ALSA is a 80C251 CPU based parallel to midi processor running on a 12
MHz clock. The 80C251 is available with up to 4Kb of inboard EPROM and 256
bytes of RAM. A parallel /0 bus and a full duplex serial port are built on chip.
[1] The Note/1 surrounds this chip with some inverters and multiplexers so that it
can share the port with a standard parallel port line printer. For the midi side, the
midi-in is protected by the usual optoisolator, the midi-out has the usual current
limiting resistors.

One would think this overkill for a simple serial to parallel message pass thru
scheme but, Note/1 is reported to implement event filtering and channel
remapping by receiving specially marked midi sysex messages. It is also able to
report its current ROM version, test its internal RAM, and do a checksum on its
ROM through the use of midi sysex messages. [2]

Trees we have barked up..
The Note/1 was designed in 1991 by the Music Quest company under the
leadership of Paul Messick. Messick went on to write the book Maximum Midi
[3], targeting windows 95 C developers writing midi applications. He has since
gone into photography and has not responded to e-mails.

Music Quest was bought out by Opcode Systems, which was subsequently bought
by Gibson (Gibson Guitars). All of whom have been unreachable.

Voyetra's DOS based sequencer, Sequencer Plus, came bundled with a driver for
the Note/1. Voyetra merged with Turtle Beach. When asked about possible
documentation for the Note/1, they responded that all they could offer us was all
ready on the site. From them we obtained all the dos software. [4]

User space tools for midi.
ALSA, Advanced Linux Sound Architecture. provides a standard mechanism for
accessing sound and midi devices. The alsa-utils package provides some basic
command line utilities for reading and writing to raw midi ports. The most useful
to this project being:

® amidi: to monitor a midi port, or to send raw hex to a midi port.

® aplaymidi: to play a midi file through specific midi port, in real time
® aseqdump: records midi messages with time stamps in human readable form

The other important tool to get this project right was to grab a sound card (an
ens1371 it turn out) with an MPU-401 midi port (joystick port) and get the ALSA
drivers for it working. Cabling the midi ports from the Note/1 to the 1371, we
could now send and detect midi messages to and from the Note/1.

First naive attempts.
The first logical thing to do was to send random data to the parallel data register
and see if anything turned up. Using the raw parallel port interface module
parport.h we sent a series of bytes through the Note/1 and listened from the 1371.
By some miracle, we received the hex 0xff from the midi-out port, indicating that
the device was alive. Unfortunately, we were not able to reproduce this, and
considered it a fluke. So we resolved to get the DOS software and make sure the
device worked.

DOS emulation, dosemu/freedos, gemu/dr.dos with the Voyetra drivers and sequencer
Dosemu installed the voyetra sequencer flawlessly. The drivers loaded without a
hitch. Running the voyetra MIDITEST.EXE while monitoring the 1371
produced the following output: FO 00 00 37 01 16 00 F7 from the Note/1's midi-
out port. This is a midi sysex message telling the Note/1 to report its rom version
number. After re-connecting the Note/1's midi-in to its midi-out, MIDITEST.EXE
was unable to succeed under dosemu. We speculated that irgs, and latency ere
contributing to the program being unable to read from the midi-in port of the
Note/1. We resolved to try gemu, another emulator.

Qemu, had difficulty loading the voyetra software. We couldn't change floppies
under it. In order to see if read was working, we built a DOS partition on the hard
drive and booted directly into DOS. Under these conditions the Note/1 passed
MIDITEST.EXE and ran smoothly. Seeing this, we booted back into Linux and
gemu'd the DOS partition. Qemu generated the same signals on the midi-out port
of the Note/1, but was also unable to get MIDITEST.EXE to pass. Nate felt
confident he could hack the sources of gemu to report the contents of the parallel
port activity, so we did that.

Logging parallel port activity with gemu.
The code modifications to gemu are in from the file vl.c They produced a
timestamped log of the transactions of the parallel port. Running the Voyetra
software has the following phases: booting, loading the driver VAPIN1.EXE,
MIDITEST.EXE timer tests, and MIDITEST.EXE i/o tests. The following chunks
were then carefully analyzed by expert an expert in musical analysis. The boot
process was ignored mostly because it's probably part of the power up self test
process. The timer tests we difficult to make heads or tails but may turn out to be

an important part of the read method. The write method turns out to be fairly
straight forward. Here is an annotated excerpt from the log:

8 PPRSTATUS ERROR SELECT PAPEROUT BUSY 0xb8 ---- good to go.

u: 22 --- fO0 when data present
--- or nore likely
--- buffer ful

PPWDATA Oxfc ----- dat al

13
PPWDATA OxfO ----- dat a2

16
PPWCONTROL STROBE INIT Ox05 ----
19 | - signals processor
PPWCONTROL | NI T 0x04 -
12

PPWDATA Oxf 3 --- data3

10

PPWDATA Oxf f --- blank register
27

CoOC 0C 00C 0C 0

8 1is the file descriptor, PPWDATA signifies (W riting the the DATA register of the
parallel port. Oxnn is the actual byte sent or read. u: marks the microseconds
between instructions. if an s: appears before it, it identifies the seconds
component of the delay. The above segment we have identified as the write loop.

This loops with the following data:
dat al dat a2 dat a3
Oxfc 0xf O Oxf 3
Oxcc 0x00 0x33
Oxcc 0x00 0x33
Oxf f 0x37 0x37
Oxcd 0x01 0x33
Oxde 0x16 0x37
Oxcc 0x00 0x33
Oxf f oxf 7 oxf 7

It turns out, dat a1 is dat a2 or'd with Oxcc and that dat a3 is dat a2 or'd with
0x33. Looking at this bitwise, Oxcc is 11001100 and 0x33 is 00110011. This
suggests that there is some timing specific select circuits operating inside the
Note/1. The dat a2 column contains the sysex command, "report rom version".
This paradigm is implemented in the function:

not el put(struct parport *port); infile notel get set.c

Further on down the log we find another loop that appears to contain the data read
back. This part is receiving the byte 0xf 7, the start of a sysex message.

8 PPWCONTROL AUTOFD | NI T 0x06 _-- any data???
8 PI%’BI;STATUS SELECT ACK BUSY 0xd0 --- yes.

8 Pé\g/\o()\rrm_ INIT 0x04 - ok

& PPRSTATUS ERRCR SELECT PAPEROUT ACK BUSY 0x{8

12
PPWDATA Oxf d

13

PPRSTATUS ERROR SELECT PAPEROUT ACK BUSY Oxf8 --- 11
12

PPWDATA Oxf ¢

11

PPRSTATUS ERROR SELECT PAPEROUT ACK BUSY Oxf8 --- 11
14

PPWDATA Oxf e

11

PPRSTATUS ERROR SELECT ACK BUSY 0xd8 --- 01
13

PPWDATA Oxf f

11

PPRSTATUS ERROR SELECT PAPEROUT ACK BUSY Oxf8 --- 11
12

COOC OWMC OC 0C C OC 0O C

The status register appears to be laid out as follows:

bit code neaning. .

-- unused

-- unused

-- unused

do | ow order data bit

-- ? always 1 dunno...

di hi gh order data bit

Rx read ready 1 data on the line, 0 = enpty

TX wite ready 1 ready to transmit, 0 = not ready

~N~No o~ WwWNELO

Writing the following bytes to the data register seems to select which bit pairs are

being read:

byte bits _appearing_in_status_register
oxfd ..10...

Oxfc 10......

oxfe10.

oxff 10

This paradigm is implemented in the function:

u_int8 t notel get(struct parport *port); and
u_int8 t notel get adv(struct parport *port);
in file notel_get set.c

The former returns the get value. The latter performs what we felt would advance
the input buffer to the next byte. It returns the content of the status register, which
is used to signal if there is still data on the line.

Results.
The put() seems to be working as expected. In raw parport module tests, the get
has successfully read up to about 48 bytes but then suddenly quits. Inside the
ALSA reading trigger hook, get() doesn't return any data and keeps the module
from unloading. We have scanned the parport and system logs for clues to as to

TODO

why this is. The lack of a get() function motivates the following strategy toward
developing a complete driver.

Perhaps when you do a get() and there is not data on the line, it puts the system in
a funk that requires some sort of reset. Or possibly, every time you reach the end
of the Note/1's internal read buffer, you have to manually repoint to the beginning
of the buffer again. Figure this out.

Interrupts are being generated by the device, as reported in the system log during
the pre-ALSA tests. Maybe ALSA, not having been given an irq handler can't get
started when its time to read from the device. Or maybe it is polling the device
into a bad state. Perhaps the device is waiting for some handshake before it will
hand over the data that has been signaled present by an interrupt. We don't know.
Figure this out.

The things we write to the control register: 0x00, 0x04 0x06 we have been using
colloquially and it would be nice to know the meaning of the bit patterns.

When there is no data on the line, the data bits in the status register could have
some possible meaning regarding other states of the processor.

Sometimes the routine writes successive 0x00, Oxff to the data port. We'd be
interested in why.

The timing test part of the log begins with a preamble, then iterates some fairly
tight loops of write data, write control, read status. We'd like to know what this is
really doing. Really we should implement this in a function and try calling it
during the ALSA's open, drain, and close functions.

We have yet to really tune the delays between reads and writes.

Cites and Sources:

[1
[2
[3
(4

http://www.datasheetcatalog.com/datasheets_pdf{/I/P/8/0/IP80C521.shtml
file SYSEX.TXT in ftp://ftp.voyetra.com/pub/voy/seqplus/seq_gold.zip
https://secure.manning.com/books/messick
http://support.turtlebeach.com/site/kb_ftp/340.asp

e e

Team blog, https://bugtrack.alsa-project.org/wiki/wikka.php?wakka=MidiQuest

Alsa Documentation,
http://alsa-project.org/~iwai/writing-an-alsa-driver/index.html

Kernel Sources

