

Installable File Systems
For OS/2 Version 3.0

OS/2 File Systems Department
PSPC Boca Raton, Florida

February 13, 1998

This document includes a DRAFT description of the Installable File System Driver Interface for IBM OS/2 Standard Edition Version

3.0. PLEASE DO NOT DISTRIBUTE THIS VERSION.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS DOCUMENNT "AS IS" WITHOUT WARRANTY OF

ANY KIND, EITHER EXPRESS OR IMPLED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT WILL IBM BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY LOST PROFITS, LOST

SAVINGS OR ANY INCIDENTAL OR CONSEQUENTAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES, OR FOR ANY CLAIM BY YOU BASED ON A THIRD PARTY CLAIM.

Some or all of the interfaces described in this document are unpublished. IBM reserves the right to change or delete them in future

versions of OS/2, at IBM's sole discretion, without notice to you. IBM does not guarantee that compatability of your applications can

or will be maintained with future versions of OS/2.

This document could include technical inaccuracies or typographical errors. It is possible that this document may contain reference

to, or information about, IBM products, programming or services that are not announced in your country. Such references or infor-

mation must not be construed to mean that IBM intends to announce such IBM products, programming or services in your country.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document

does not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of Commercial

Relations, IBM Corporation, Armonk NY 10504.

 Copyright International Business Machines Corporation 1991. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to

restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Chapter 1. Installable File System Mechanism 1-1

Installable File System Overview . 1-1

System Relationships . 1-1

File I/O API . 1-2

Buffer Management . 1-5

Volume Management . 1-5

Connectivity . 1-5

IPL Mechanism . 1-6

OS/2 Partition Access . 1-6

Permissions . 1-7

File Naming Conventions . 1-7

Meta Character Processing . 1-7

FSD Pseudo-character Device Support . 1-7

Family API Issues . 1-7

FSD Utilities . 1-7

FSD Utility Support . 1-7

FSD Utility Guidelines . 1-8

FSD Utility Interfaces . 1-8

Extended Attributes . 1-8

FEAs . 1-9

GEAs . 1-10

FSD File Image . 1-12

FSD Attribute . 1-12

FSD Initialization . 1-13

OS/2 and DOS Extended Boot Structure and BIOS Parameter Block . . . 1-14

IFS Commands . 1-16

IFS = (CONFIG.SYS Command) . 1-16

File System Function Calls . 1-16

Application File I/O Notes . 1-16

Date/Time Stamps . 1-17

I/O Error Codes . 1-17

FSD System Interfaces . 1-18

Overview . 1-18

Data Structures . 1-19

Time Stamping . 1-22

FSD Calling Conventions and Requirements 1-22

Error Codes . 1-23

Chapter 2. FS Service Routines . 2-1

FS_ALLOCATEPAGESPACE Adjust the size of paging file 2-3

FS_ATTACH Attach to an FSD . 2-4

FS_CANCELLOCKREQUEST Cancel file record lock request 2-6

FS_CHDIR Change/Verify Directory Path . 2-7

FS_CHGFILEPTR Move a file's position pointer 2-10

FS_CLOSE Close a file. 2-12

FS_COMMIT Commit a file's buffers to Disk 2-13

FS_COPY Copy a file . 2-15

FS_DELETE Delete a file . 2-17

FS_DOPAGEIO Perform paging I/O operations 2-18

FS_EXIT End of process . 2-20

 Copyright IBM Corp. 1991 iii

FS_FILEATTRIBUTE Query/Set File Attribute 2-21

FS_FILEINFO Query/Set a File's Information 2-23

FS_FILEIO Multi-function file I/O . 2-26

FS_FILELOCKS Request a file record lock/unlock 2-29

FS_FINDCLOSE Directory Read (Search) Close 2-32

FS_FINDFIRST Find First Matching File Name(s) 2-33

FS_FINDFROMNAME Find matching file name(s) starting from name . . . 2-37

FS_FINDNEXT Find next matching file name. 2-39

FS_FINDNOTIFYCLOSE Close Find-Notify Handle 2-41

FS_FINDNOTIFYFIRST Monitor a directory for changes. 2-42

FS_FINDNOTIFYNEXT Resume reporting directory changes 2-44

FS_FLUSHBUF Commit file buffers . 2-46

FS_FSCTL File System Control . 2-47

FS_FSINFO File System Information . 2-50

FS_INIT File system driver initialization . 2-51

FS_IOCTL I/O Control for Devices . 2-52

FS_MKDIR Make Subdirectory . 2-54

FS_MOUNT Mount/unmount volumes . 2-56

FS_MOVE Move a file or subdirectory . 2-58

FS_NEWSIZE Change File's Logical Size 2-60

FS_NMPIPE Do a remote named pipe operation. 2-61

FS_OPENCREATE Open a file . 2-65

FS_OPENPAGEFILE Create paging file and handle 2-68

FS_PATHINFO Query/Set a File's Information 2-70

FS_PROCESSNAME Allow FSD to modify name after OS/2

canonicalization . 2-72

FS_READ Read from a File . 2-73

FS_RMDIR Remove Subdirectory . 2-75

FS_SETSWAP Notification of swap-file ownership 2-76

FS_SHUTDOWN Shutdown file system . 2-77

FS_VERIFYUNCNAME Verify UNC server ownership 2-79

FS_WRITE Write to a file . 2-80

Chapter 3. FS Helper Functions . 3-1

FSH_ADDSHARE Add a name to the share set 3-3

FSH_CALLDRIVER Call Device Driver's Extended Strategy entry point . . . 3-5

FSH_CANONICALIZE Convert a path name to a canonical form 3-7

FSH_CHECKEANAME Check for valid EA name 3-9

FSH_CRITERROR Signal hard error to daemon 3-10

FSH_DEVIOCTL Send IOCTL request to device driver 3-12

FSH_DOVOLIO Transfer volume-based sector-oriented I/O 3-14

FSH_DOVOLIO2 Send volume-based IOCTL request to device driver . . 3-17

FSH_EXTENDTIMESLICE Notify kernel that temporarily increasing this

thread's time slice is advisable. 3-19

FSH_FINDCHAR Find first occurrence of character in string 3-20

FSH_FINDDUPHVPB Locate equivalent hVPB 3-21

FSH_FORCENOSWAP Force segments permanently into memory 3-22

FSH_GETPRIORITY Get current thread's I/O priority 3-24

FSH_GETVOLPARM Get VPB data from VPB handle 3-25

FSH_INTERR Signal an internal error . 3-26

FSH_IOBOOST Gives the current thread an I/O priority boost 3-27

FSH_IOSEMCLEAR Clear an I/O event semaphore 3-28

FSH_ISCURDIRPREFIX Test for a prefix of a current directory 3-29

FSH_LOADCHAR Load a character from a string 3-30

iv DRAFT: OS/2 Installable File Systems

FSH_NAMEFROMSFN Get the full path name from an SFN. 3-31

FSH_PREVCHAR Decrement a character pointer 3-32

FSH_PROBEBUF Check user address validity 3-33

FSH_QSYSINFO Query system information 3-35

| FSH_QUERYOPLOCK Query if the running thread has an oplock 3-37

| FSH_QUERYSERVERTHREAD Query if the current thread is a server

| thread . 3-38

FSH_REGISTERPERFCTRS Register a FSD with PERFVIEW 3-39

FSH_REMOVESHARE Remove a shared entry 3-40

FSH_SEGALLOC Allocate a GDT or LDT segment 3-41

FSH_SEGFREE Release a GDT or LDT segment 3-43

FSH_SEGREALLOC Change segment size 3-44

FSH_SEMCLEAR Clear a semaphore . 3-45

FSH_SEMREQUEST Request a semaphore 3-46

FSH_SEMSET Set a semaphore . 3-48

FSH_SEMSETWAIT Set a semaphore and wait for clear 3-49

FSH_SEMWAIT Wait for clear . 3-50

FSH_SETVOLUME Force a volume to be mounted on the drive 3-51

FSH_STACKSPACE Determin stack space 3-52

FSH_STORECHAR Store a character in a string 3-53

FSH_UPPERCASE Uppercase asciiz string 3-54

FSH_WILDMATCH Match using OS/2 wildcards 3-55

FSH_YIELD Yield processor to higher-priority thread 3-56

Chapter 4. Remote IPL / Bootable IFS . 4-1

Operational Description . 4-2

FAT Boot Procedure . 4-2

BIFS Boot Procedure . 4-3

Interfaces . 4-4

BlackBox/OS2LDR interface . 4-4

miniFSD/OS2KRNL interface . 4-5

Stage 1 Interfaces . 4-6

Stage 2 Interfaces . 4-7

Stage 3 Interfaces . 4-7

Imbedded Device Driver Helpers . 4-8

Special Considerations . 4-9

mini-FSD Entry Points . 4-10

MFS_CHGFILEPTR Move a file's position pointer 4-11

MFS_CLOSE Close a file . 4-12

MFS_INIT mini-FSD Initialization . 4-13

MFS_OPEN Open a file . 4-15

MFS_READ Read from a file . 4-16

MFS_TERM Terminate the mini-FSD . 4-17

mini-FSD Helper Routines . 4-18

MFSH_CALLRM Put machine in real mode 4-19

MFSH_DOVOLIO Read sectors . 4-20

MFSH_INTERR Internal Error . 4-21

MFSH_LOCK Lock a segment . 4-22

MFSH_PHYSTOVIRT Convert physical to virtual address 4-23

MFSH_SEGALLOC Allocate a segment . 4-24

MFSH_SEGFREE Free a segment . 4-25

MFSH_SEGREALLOC Change segment size 4-26

MFSH_SETBOOTDRIVE Change boot drive number kept by the OS/2

kernel . 4-27

 Contents v

MFSH_UNLOCK Unlock a segment . 4-28

MFSH_UNPHYSTOVIRT Mark completion of use of virtual address 4-29

MFSH_VIRT2PHYS Convert virtual to physical address 4-30

Chapter 5. Index . 5-1

vi DRAFT: OS/2 Installable File Systems

Chapter 1. Installable File System Mechanism

The OS/2 Installable File System (IFS) Mechanism supports the following:

Ÿ Coexistence of multiple, active file systems in a single PC

Ÿ Multiple logical volumes (partititions)

Ÿ Multiple and different storage devices

Ÿ Redirection or connection to remote file systems

Ÿ File system flexibility in managing its data and I/O for optimal performance

Ÿ Transparency at both the user and application level

Ÿ Standard set of File I/O API

Ÿ Existing logical file and directory structure

Ÿ Existing naming conventions

Ÿ File system doing its own buffer management

Ÿ File system doing file I/O without intermediate buffering

Ÿ Extensions to the Standard File I/O API (FSCTL)

Ÿ Extensions to the existing naming conventions

Ÿ IOCTL type of communication between a file system and a device driver

Installable File System Overview

 System Relationships
The Installable File System (IFS) Mechanism defines the relationships among the

operating system, the file systems, and the device drivers. The basic model of the

system is represented in Figure 1-1 on page 1-2.

 Copyright IBM Corp. 1991 1-1

|--|

| |

| File System Request Router |

| |

|-------------------------------------| |

 | |

|--------| |--------| |--------|| |

| File | | File | | File || |

| System | | System | | System || |

| | | | | || |

| LOCAL | | NET | | NET || |

| | | REDIR1 | | REDIR2 || |

|--------| |--------| |--------|| |

|-------------------------------------| |

| |

| FS Helper Routines/ |

| Device Driver Request Router |

| |

|-------------------------------------| |

 | |

|--------| |--------| |--------|| |

| | | | | || |

| Device | | Device | | Device || |

| Driver | | Driver | | Driver || |

| | | | | || |

|--------| |--------| |--------|| |

|-------------------------------------| |

| |

| Device Driver Helper Routines |

| |

|--|

Figure 1-1. System relationships for Installable File Systems

The file system request router directs file system function calls to the appropriate

file system for processing.

The file systems manage file I/O and control the format of information on the

storage media. An installable file system (FS) will be referred to as a file system

driver (FSD).

The FS Helper Routines provide a variety of services to the file systems.

The device drivers manage physical I/O with devices. Device drivers do not under-

stand the format of information on the media.

File I/O API
Standard file I/O is performed through the Standard File I/O API. The application

makes a function call and the file system request router passes the request to the

correct file system for processing. See Figure 1-2 on page 1-3.

1-2 DRAFT: OS/2 Installable File Systems

 |-------------|

| application |

 |------|------|

 V

 |-------------------------| Dynamic

| Standard File I/O API | Link

 |-------------|-----------| Library

 V

|--|

| File System Request Router |

|-------------------------------------| |

 | |

|--------| |--------| |--------|| |

| File | | File | | File || |

| System | | System | | System || |

|--------| |UUUUUUUU| |--------|| |

|-------------------------------------| |

| |

|-------------------------------------| |

 | |

|--------| |--------| |--------|| |

| Device | | Device | | Device || |

| Driver | | Driver | | Driver || |

|--------| |--------| |--------|| |

|-------------------------------------| |

| |

|--|

Figure 1-2. Standard File I/O

 Chapter 1. Installable File System Mechanism 1-3

New API may be provided by a file system to implement functions specific to the

file system or not supplied through the standard file I/O interface. New API are

provided in a dynamic link library that uses the DosFsCtl standard function call to

communicate with the specific file system (FSD). See Figure 1-3.

 |-------------|

| application |

 |------|------|

 V

 |-------------------------|

| Extended File I/O API | Dynamic Link Library

| for File System X |

 |-------------------------|

 |

 --------|

 V

 |-------------------------|

| DosFsCtl | Standard File I/O API

 |------------|------------|

 V

|------------------------|---------------------|

| V-----< |

|------------------|------------------| |

 V | |

|--------| |--------| |--------|| |

| File | | File | | File || |

| System | | System | | System || |

| | | X | | || |

|--------| |--------| |--------|| |

|-------------------------------------| |

| |

|-------------------------------------| |

 | |

|--------| |--------| |--------|| |

| Device | | Device | | Device || |

| Driver | | Driver | | Driver || |

|--------| |--------| |UUUUUUUU|| |

|-------------------------------------| |

| |

|--|

Figure 1-3. Extended File I/O

1-4 DRAFT: OS/2 Installable File Systems

 Buffer Management
In 2.0 the FAT buffer management helpers were removed because of lack of use

by any 1.x FSD. FSDs should handle all buffer/cache management themselves.

The FSD moves all data requiring partial sector I/O between the application’s

buffers and its cache buffers. The FS helper routines initiate the I/O for local file

systems.

 Volume Management
Volume management (that is, detecting when the wrong volume is mounted and

notifying the operator to take corrective action) is handled directly through OS/2 and

the device driver. Each FSD is responsible for generating a volume label and

32-bit volume serial number. These are stored in a reserved location in logical

sector zero at format time. Because an FSD is the only system component to

touch this information, an FSD is not required to store it in a particular format.

OS/2 calls the FSD to perform operations that might involve it. The FSD is

required to update the volume parameter block (VPB) whenever the volume label

or serial number is changed.

When the FSD passes an I/O request to an FS helper routine, the FSD passes the

32-bit volume serial number and the user’s volume label (through the VPB). When

the I/O is performed, OS/2 compares the requested volume serial number with the

current volume serial number it maintains for the device. This is an in-storage test

(no I/O required) performed by checking the drive parameter block’s (DPB) VPB of

the volume mounted on the drive. If unequal, OS/2 signals the critical error handler

to prompt the user to insert the volume having the serial number and label speci-

fied.

When OS/2 detects a media change in a drive, or the first time a volume is

accessed, OS/2 determines which FSD is responsible for managing I/O to that

volume. OS/2 allocates a VPB and polls the installed FSDs (by calling the

FS_MOUNT entry point) until an FSD indicates that it does recognize the media. If

the volume serial number and label returned by the FS_MOUNT call matchs the

serial number and label in an existing VPB, OS/2 will call FS_MOUNT to unmount

the new access and will continue to access the media through the previous VPB.

Note: The FAT FSD is the last in the list of installed FSDs and acts as the default

FSD when no other FSD recognition takes place.

 Connectivity
There are two classes of file system drivers:

Ÿ FSDs that use a block device driver to do I/O to a local or remote device.

These are called local file systems.

Ÿ FSDs that access a remote system without a block device driver. These are

called remote file systems

The connection between a drive letter and a remote file system is achieved through

a command interface provided with the FSD (FS_Attach).

When a local volume is first accessed, OS/2 sequentially asks each installed FSD

to accept the media, by calling each FSD’s FS_MOUNT entry point. If no FSD

accepts the media, it is then assigned to the default FAT file system. Any further

 Chapter 1. Installable File System Mechanism 1-5

attempt that is made to access an unrecognized media, other than by FORMAT,

results in an ’Invalid media format’ message.

When a volume has been recognized, the relationship between drive, FSD, volume

serial number, and volume label is remembered. The volume serial number and

label are stored in the volume parameter block (VPB). The VPB is maintained by

OS/2 for open files (I/O based on file-handles), searches, and buffer references.

The VPB represents the media.

Subsequent requests for a volume that has been removed require polling the

installed FSDs for volume recognition by calling FS_MOUNT. The volume serial

number and volume label of the VPB returned by the recognizing FSD and the

existing VPB are compared. If the test fails, OS/2 signals the critical error handler

to prompt the user for the correct volume.

The connection between media and VPB is remembered until all open files on the

volume are closed and search and cache buffer references are removed. Only

volume changes cause a redetermination of the media at the time of next access.

 IPL Mechanism
 If Boot Manager is not installed, a primary DOS disk partition (type 1, 4, or 6) may

be used to boot the system. If Boot Manager is installed, a logical partition may

contain the code to boot OS/2, but the boot code can not be located beyond cyl-

inder 1024 since BIOS is used to read the disk prior to loading the device driver(s).

The code for FSDs may reside in any partition readable by a previously installed

FSD. An IFS partition must be a type 7 partition.

The OS/2 boot volume will have a Bootrecord at logical sector 0 which will invoke

the basic file system code to start the loading process. The root directory of this

volume will contain a mini-file system in OS2BOOT, a kernel loader in OS2LDR,

the OS/2 kernel in OS2KRNL, and the CONFIG.SYS file.

Device drivers and FSDs are loaded in the order they appear in CONFIG.SYS and

are considered elements of the same ordered set. Therefore, both device drivers

and FSDs may be loaded from installed file systems as long as they are started in

the proper order. For example:

DEVICE = c:\diskdriv.sys

REM Block device D: is now defined. (diskdriv.sys controls this.)

IFS ═ c:\fsd\newfsl.fsd

REM If we assume that D: contains a fixed newfsl type partition,

REM then we’re now ready to use D: to load the device driver and

REM FSD for E:.

DEVICE ═ d:\root\dev\special.dev

REM Block device e: is now defined.

IFS ═ d:\root\fsd\special.fsd

REM E: can now be read.

DEVICE ═ e:\music

OS/2 Partition Access
Access to the OS/2 partition on a bootable, logically partitioned media is through

the full OS/2 function set. See OS/2 Version 3.0 Physical Device Driver Reference

for a detailed description of the disk partitioning design.

1-6 DRAFT: OS/2 Installable File Systems

 Permissions
There are no secure file system clients identified for OS/2 Version 3.0 incorporating

the IFS architecture.

File Naming Conventions
See OS/2 Version 3.0 Programming Guide for a detailed description of OS/2

Version 3.0 file naming conventions.

It is currently a requirement that an FSD supports case insensitive searching if they

are to be completely compatible with OS/2. The large number of DOS, Windows

and OS/2 applications that depend on case insensitive searching make it unlikely

that this requirement will be removed. At this time, problems caused by an FSD

only supporting case sensitive searching are the responsibity of the owners of the

FSD.

Meta Character Processing
See OS/2 Version 3.0 Programming Guide for a detailed description of OS/2

Version 3.0 meta character processing.

FSD Pseudo-character Device Support
A pseudo-character device (single file device) may be redirected to an FSD. The

behavior of this file is very similar to the behavior of a normal OS/2 character

device. It may be read from (DosRead) and written to (DosWrite). The difference

is that the DosChgFilePtr and DosFileLocks functions can also be applied to the

file. The user would perceive this file as a device name for a non-existing device.

This file is seen as a character device because the current drive and directory have

no effect on the name. That is what happens in OS/2 today for character devices.

The format of an OS/2 pseudo-character device name is that of an ASCIIZ string in

the format of an OS/2 file name in a subdirectory called \DEV\. The pseudo device

name XXX is acccessible at the API level (DosQFsAttach) through the path name

’\DEV\XXX’.

Family API Issues
Since the IFS Mechanism is not present in any release of DOS, FAPI will not be

extended to support the new interfaces.

 FSD Utilities

FSD Utility Support
Each FSD is required to provide a single .DLL executable module that supports the

OS/2 FORMAT, CHKDSK, SYS, and RECOVER utilities. The FS-supported exe-

cutable will be invoked by these utilities when performing a FORMAT, CHKDSK,

SYS, or RECOVER function for that file system. The command line that was

passed to the utility will be passed unchanged to the FS-specific executable.

The procedures that support these utilities reside in a file called U<fsdname>.DLL,

where <fsdname> is the name returned by DosQFsAttach. Since in OS/2 Version

3 DLL names are limited to 8.3, <fsdname> should be a maximum of 7 bytes long.

 Chapter 1. Installable File System Mechanism 1-7

FSD Utility Guidelines
The FSD utility procedures are expected to follow these guidelines:

Ÿ No preparation is done by the base utilities before they invoke the FSD utility

procedure. Therefore, base utilities do not lock drives, parse names, open

drives, etc. This allows maximum flexibility for the FSD.

Ÿ The FSD utility procedure is expected to protect the partition from access if

they are doing direct access updates. The category 8 DosIOCTLs

DSK_LOCKDRIVE and DSK_UNLOCKDRIVE should be used to protect the

drive from access. The DSK_REDETERMINEMEDIA call must be made after

FORMAT if the volume label and/or serial number has been modified- it will

allow the VPB and DPB to be updated appropriately.

Ÿ The FSD utility procedures are expected to follow the standard conventions for

the operations that they are performing, for example, /F for CHKDSK implies

”fix” and the /L for FORMAT implies a long or certified format. All functional

levels are not required, but if an equivalent function is supplied, the same

parameter should be used.

Ÿ The FSD procedures may use stdin, stdout, and stderr, but should be aware

that they may have been redirected to a file or device.

Ÿ It is the responsibility of the FSD procedures to worry about volumes being

changed while the operation is in progress. The normal action would be to

stop the operation when such a situation is detected.

Ÿ When the FSD procedures are called, they will be passed argc, argv, and envp,

that they can use to determine the operations.

Ÿ FSD procedures are responsible for displaying relevant prompts and messages.

Ÿ FSD utility procedures must follow the standard convention of entering the

target drive as specified for each utility.

FSD Utility Interfaces
All FSD utility procedures are called with the same arguments:

int far pascal Ufsdname.CHKDSK(int argc, char far \ far \argv,

char far \ far \envp);

int far pascal Ufsdname.FORMAT(int argc, char far \ far \argv,

char far \ far \envp);

int far pascal Ufsdname.RECOVER(int argc, char far \ far \argv,

char far \ far \envp);

int far pascal Ufsdname.SYS(int argc, char far \ far \argv,

char far \ far \envp);

where argc, argv, and envp have the same semantics as the corresponding vari-

ables in C.

 Extended Attributes

Extended attributes (EAs) are a mechanism whereby an application can attach

information to a file system object (directories or files) describing the object to

another application, to the operating system, or to the FSD managing that object.

1-8 DRAFT: OS/2 Installable File Systems

EAs associated with a file object are not part of a file object's data, but are main-

tained separately and managed by the file system that manages that object.

Each extended attribute consists of a name and a value. An EA name consists of

ASCII text, chosen by the application developer, that is used to identify a particular

EA. EA names are restricted to the same character set as a filename. An EA

value consists of arbitrary data, that is, data of any form. Because of this OS/2

does not check data that is associated with an EA.

So that EA data is understandable to other applications, conventions have been

established for:

 Ÿ Naming EAs

Ÿ Indicating the type of data contained in EAs

In addition, a set of standard EAs (SEAs) have been defined. SEAs define a

common set of information that can be associated with most files (for example, file

type and file purpose). Through SEAs, many applications can access the same,

useful information associated with files.

Applications are not limited to using SEAs to associate information with files. They

may define their own application-specific extended attributes. Applications define

and associate extended attributes with a file object through file system function

calls.

See the OS/2 Version 3.0 Programming Guide for a complete description of EA

naming conventions and data types and standard extended attributes. See also the

OS/2 Version 3.0 Control Program Programming Reference for a complete

description of the file system function calls.

EAs may be viewed as a property list attached to file objects. The services for

manipulating EAs are: add/replace a series of name/value pairs, return name/value

pairs given a list of names, and return the total set of EAs.

There are two formats for EAs as passed to OS/2 Version 3.0 API: Full EAs (FEA)

and Get EAs (GEA).

 FEAs
FEAs are complete name/value pairs. In order to simplify and speed up scanning

and processing of these names, they are represented as length-preceded data.

FEAs are defined as follows:

struct FEA {

unsigned char fEA; /\ byte of flags \/

unsigned char cbName; /\ length of name \/

unsigned short cbValue; /\ length of value \/

unsigned char szName[]; /\ asciiz name \/

unsigned char aValue[]; /\ free format value \/

};

There is only one flag defined in fEA at this time. That is 0x80 which is fNeedEA.

Setting the flag marks this EA as needed for the proper operation on the file to

which it is associated. Setting this bit has implications for access to this file by old

applications, so it should not be set arbitrarily.

If a file has one or more NEED EAs, old applications are not allowed to open the

file. For DOS mode applications to access files with NEED EAs, they must have

 Chapter 1. Installable File System Mechanism 1-9

the EA bit set in their exe header. For OS/2 mode, only applications with the

NEWFILES bit set in the exe header may open files with NEED EAs. The OS/2

IFS mechanism supports this restriction using the information in the pfgenflag

returned by the FS_OPENCREATE routine.

The name length does not include the trailing NUL. The maximum EA name length

is 255 bytes. The minimum EA name length is 1 byte. The characters that form

the name are legal filename characters. Wildcard characters are not allowed. EA

names are case-insensitive and should be uppercased. The FSD should call

FSH_CHECKEANAME and FSH_UPPERCASE for each EA name it receives to

check for invalid characters and correct length, and to uppercase it.

The FSD may not modify the flags.

A list of FEAs is a packed set of FEA structures preceded by a length of the list

(including the length itself) as indicated in the following structure:

struct FEAList {

unsigned long cbList; /\ length of list \/

struct FEA list[]; /\ packed set of FEAs \/

};

FEA lists are used for adding, deleting, or changing EAs. A particular FSD may

store the EAs in whatever format it desires. Certain EAs may be stored to optimize

retrieval.

Name lengths of 0 are illegal and are considered in error. A value length of 0 has

special meaning. Setting an EA with a value length of 0 will cause that attribute to

be deleted (if possible). Upon retrieval, a value length of 0 indicates that the attri-

bute is not present.

Setting attributes contained in an FEA list does not treat the entire FEA list as

atomic. If an error occurs before the entire list of EAs has been set, all, some, or

none of them may actually remain set on the file. No program should depend on

an EA set being atomic to force EAs to be consistent with each other. Programs

must be careful not to depend on atomicity, since a given file system is not required

to provide it.

 GEAs
A GEA is an attribute name. Its format is:

struct GEA {

unsigned char cbName; /\ length of name \/

unsigned char szName[]; /\ asciiz name \/

};

The name length does not include the trailing NUL.

Name lengths of 0 are illegal and are considered in error.

A list of GEAs is a packed set of GEA structures preceded by a length of the list

(including the length itself) as indicated in the following structure:

struct GEAList {

unsigned long cbList; /\ length of list \/

struct GEA list[]; /\ packed set of GEAs \/

};

1-10 DRAFT: OS/2 Installable File Systems

GEA lists are used for retrieving the values for a particular set of attributes. A GEA

list is used as input only.

Manipulation of extended attributes is associated with access permission to the

associated file or directory. For querying and setting file EAs, read and write/read

permission, respectively, for the associated file is required. No directory create or

delete will occur while querying EAs for that directory.

For handle-based operations on extended attributes, access permission is con-

trolled by the sharing/access mode of the associated file. If the file is open for

read, querying the extended attributes is allowed. If the file is open for write,

setting the extended attributes is allowed. These operations are supported by the

FSD in FS_FILEINFO. OS/2 will provide the sharing/access checks for the FSD.

For path-based manipulation of extended attributes, the associated file or directory

will be added to the sharing set for the duration of the call. The requested access

permission for setting EAs is write/deny-all and for querying EAs is read/deny-write.

The path-based API are DosQPathInfo, DosSetPathInfo, and DosFindFirst2/Next.

These API map to FS_PATHINFO, FS_FINDFIRST, FS_FINDNEXT and

FS_FINDFROMNAME.

For create-only operations of extended attributes, the extended attributes are set

without examining the sharing/access mode of the associated file/directory. These

operations are performed by APIs DosOpen2 and DosMkDir2 which result in calls

to FS_OPENCREATE and FS_MKDIR respectively.

The routing of EA requests is accomplished by the IFS routing mechanism. EA

requests that apply to names are routed to the FSD attached to the specified drive.

Those requests that apply to a handle (file or directory) are routed to the FSD

attached to the handle. No interpretation of either FEA lists nor GEA lists is per-

formed by the IFS router.

Note: It is the responsibility of each FSD to provide support for EAs.

It is expected that some FSDs will be unable to store EAs; for example, UNIX- and

MVS-compatible file systems. However, the growing use of EAs in applications-

especially the object-oriented applications means there will be reduced functionality

if an FSD does not support EAs.

Note: The FAT FSD implementation will provide for the complete implementation

of EAs. There will be no special EAs for the FAT FSD.

All EA manipulation is performed using the following structure: The relevance of

each field is described within each API.

struct EAOP {

struct GEAList far \ fpGEAList; /\ GEA set \/

struct FEAList far \ fpFEAList; /\ FEA set \/

unsigned long offError; /\ offset of FEA err \/

};

See the descriptions of the file system function calls in OS/2 Version 3.0 Control

Program Programming Reference for the relevance of each field.

In OS/2 Version 3.0, values of cbList greater than (64K-1) are not allowed. This

limitation is caused by the requirement of supporting the FS_FILEINFO and

FS_PATHINFO level 4 call to return all EAs. Until this interface changes or file

systems are converted to 32 bit, this limitation is expected to continue. It is the

 Chapter 1. Installable File System Mechanism 1-11

responsibility of the FSD to not permit extended attributes to be added so that the

entire extended attribute set exceeds 64K. This will prevent the level 4

FS_FILEINFO and FS_PATHINFO query from overflowing..

FSD File Image

An FSD loads from a file which is in the format of a standard OS/2 dynamic link

library file. Exactly one FSD resides in each file. The FSD exports information to

OS/2 using a set of predefined public names.

The FSD is initialized by a call to the exported entry point FS_INIT.

FS entry points for Mount, Read, Write, etc. are exported with known names as

standard far entry points.

The FSD exports its name as a public ASCIIZ character string under the name

’FS_NAME’. All comparisons with user-specified strings are done similar to file

names; case is ignored and embedded blanks are significant. FS_NAMEs,

however, may be input to applications by users. Embedded blanks should be

avoided. The name exported as FS_NAME need NOT be the same as the 1-8

FSD name in the boot sector of formatted media, although it may be. The ONLY

name the kernel pays any attention to, and the only name accessible to user pro-

grams through the API, is the name exported as FS_NAME.

In addition to various entry points, the FSD must export a dword bit vector of attri-

butes. Attributes are exported under the name ’FS_ATTRIBUTE’. FS_ATTRIBUTE

specifies special properties of the FSD and is described in the next section.

 FSD Attribute
The format of the OS/2 FS_ATTRIBUTE is defined in Figure 1-4 and the definition

list that follows it.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

|---|

| E | V | V | V | R | R | R | R | R | R | R | R | R | R | R | R |

| x | e | e | e | e | e | e | e | e | e | e | e | e | e | e | e |

| A | r | r | r | s | s | s | s | s | s | s | s | s | s | s | s |

| t | s | s | s | v | v | v | v | v | v | v | v | v | v | v | v |

|---|

| R | R | R | R | R | R | R | R | R | R | R | P | L | F | U | R |

| e | e | e | e | e | e | e | e | e | e | e | i | v | I | N | e |

| s | s | s | s | s | s | s | s | s | s | s | p | l | / | C | m |

| v | v | v | v | v | v | v | v | v | v | v | e | 7 | O | | t |

|---|

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 1-4. OS/2 FSD Attribute

Bits Description

31 FSD Additional attributes. If 1, FSD has additional attributes.

If 1, FSD has additional attributes. If 0, FS_ATTRIBUTE is the only FSD

attribute information.

1-12 DRAFT: OS/2 Installable File Systems

30-28 VERSION NUMBER - FSD version number.

27-5 RESERVED

4 FSA_PSVR - Remote Pipe bit.

Set if FSD manages remote pipes.

3 FSA_LVL7 - QPathInfo Level 7 bit.

Set if FSD is case-preserving. If this bit is set, the kernel will call the

FS_PATHINFO entry point with a level equal to 7. The output buffer is to

be filled with a case-preserved copy of the path that was passed in by the

user.

2 FSA_LOCK - File I/O bit.

Set if FSD wants to see file locking/unlocking operations and compacted

file I/O operations. If not set, the file I/O calls will be broken up into indi-

vidual lock/unlock/read/write/seek calls and the FSD will not see the

lock/unlock calls. FSDs that do not support file locking can set this bit to

enable compacted file I/O operations. FSDs that do support file locking

will be responsible for all lock checking; OS/2 will not perform any

checking for locks if this bit is set. The FSD will be responsible for han-

dling the contention between multiple processes due to file locking- in

other words, the FSD is responsible for preventing deadlocks. Since DOS

applications use FS_FILEIO and OS/2 applications use FS_FILELOCKS,

the FSD will need to support both entry points if it needs to support file

locking under both DOS and OS/2.

1 FSA_UNC - Universal Naming Convention bit. Set if FSD supports

Set if FSD supports the Universal Naming Convention. OS/2 Version 3.0

supports multiple loaded UNC redirectors.

0 FSA_REMOTE - Remote File System(Redirector).

This bit tells the system whether the FSD uses static or dynamic media

attachment. Local FSDs always use dynamic media attachment. Remote

FSDs always use static media attachment. This bit is clear if it is a

dynamic media attachment and set, if a static attachment. No FSD sup-

ports both static and dynamic media attachment. To support proper file

locking, a remote FSD should also set the FSA_LOCK bit.

 FSD Initialization

FSD initialization occurs at system initialization time. FSDs are loaded through the

IFS= configuration command in CONFIG.SYS. Once the FSD has been loaded,

the FSD’s initialization entry point is called to initialize it.

FSDs are structured the same as dynamic link library modules. Once an FSD is

loaded, the initialization routine FS_INIT is called. This gives the FSD the ability to

process any parameters that may appear on the CONFIG.SYS command line,

which are passed as a parameter to the FS_INIT routine. A LIBINIT routine in an

FSD will be ignored.

OS/2 FSDs initialize in protect mode. Because of the special state of the system,

an FSD may make dynamic link system calls at init-time.

The list of systems calls that an FSD may make are as follows:

 Chapter 1. Installable File System Mechanism 1-13

 Ÿ DosBeep

 Ÿ DosChgFilePtr

 Ÿ DosClose

 Ÿ DosDelete

 Ÿ DosDevConfig

 Ÿ DosDevIoCtl

 Ÿ DosFindClose

 Ÿ DosFindFirst

 Ÿ DosFindNext

 Ÿ DosGetEnv

 Ÿ DosGetInfoSeg

 Ÿ DosGetMessage

 Ÿ DosOpen

 Ÿ DosPutMessage

 Ÿ DosQCurDir

 Ÿ DosQCurDisk

 Ÿ DosQFileInfo

 Ÿ DosQFileMode

 Ÿ DosQSysInfo

 Ÿ DosRead

 Ÿ DosWrite

The FSD may not call ANY FS helper routines at initialization time.

Note that multiple code and data segments are not discarded by the loader as in

the case of device drivers.

The FSD may call DosGetInfoSeg to obtain access to the global and process local

information segments. The local segment may be used in the context of all proc-

esses without further effort to make it accessible and has the same selector. The

local infoseg is not valid in real mode or at interrupt time.

OS/2 and DOS Extended Boot Structure and BIOS Parameter Block
The Extended Boot structure is as follows:

struct Extended_Boot {

unsigned char Boot_jmp[3];

unsigned char Boot_OEM[8];

struct Extended_BPB Boot_BPB;

unsigned char Boot_DriveNumber;

unsigned char Boot_CurrentHead;

unsigned char Boot_Sig = 41; /\ Indicate Extended Boot \/

unsigned char Boot_Serial[4];

unsigned char Boot_Vol_Label[11];

unsigned char Boot_System_ID[8];

};

Where

Serial is the 32-bit binary volume serial number for the media.

System_ID is an 8-byte name written when the media is formatted. It is used by

FSDs to identify their media but need not be the same as the name

the FSD exports via FS_NAME and is NOT the name users employ to

refer to the FSD. (They may, however, be the same names).

However, this name does need to match the FSD name used to

create the U<fsdname>.DLL that contains the utilities.

1-14 DRAFT: OS/2 Installable File Systems

Vol_Label is the 11-byte ASCII label of the disk/diskette volume. FAT file

systems must ALWAYS use the volume label in the root directory for

compatibility reasons. If at all possible, an FSD should use the

volume label field in the boot sector.

The extended BPB structure is a super-set of the conventional BPB structure, as

follows:

struct Extended_BPB {

unsigned short BytePerSector;

unsigned char SectorPerCluster;

unsigned short ReservedSectors;

unsigned char NumberOfFats;

unsigned short RootEntries;

unsigned short TotalSectors;

unsigned char MediaDescriptor;

unsigned short SectorsPerFat;

unsigned short SectorsPerTrack;

unsigned short Heads;

unsigned long HiddenSectors;

unsigned long Ext_TotalSectors;

};

 Chapter 1. Installable File System Mechanism 1-15

 IFS Commands

IFS = (CONFIG.SYS Command)
An FSD is loaded and initialized at system start-up when an IFS= statement is

encountered in CONFIG.SYS. The syntax of this command is as follows:

IFS=drive:path\name.ext parms

where

drive:path\name.ext specifies the FSD to load and initialize.

parms represents an FSD-defined string of initialization param-

eters.

See the OS/2 Version 3.0 Online Command Reference for a detailed description of

this command.

File System Function Calls

The OS/2 Version 3.0 Control Program Programming Reference gives a detailed

description of the 32-bit file system calls new for OS/2 Version 3.0 See the OS/2

Version 3.0 Programming Guide for a description of how to use these calls. For

detailed descriptions of the 16-bit file system calls see the OS/2 Version 1.3 Control

Program Programming Reference, and the OS/2 Version 1.3 Programming Guide

on how to use these calls.

Note: The data structures for some of the file system calls have changed in their

32-bit implementaions. The kernel will handle all remapping between the 32-bit

structures and the 16-bit structures used by individual FSDs.

Application File I/O Notes
File handle values of 0xFFFF do not represent actual file handles but are used

throughout the file system interface to indicate specific actions to be taken by the

file system. Usage of this special file handle where it is not expected by the file

system will result in an error.

A 16 bit pointer is defined to be 000x:0000, where the least significant two bits in x

is the ring number. Consequently, a ring 3 NULL pointer can be passed in as

0003:0000.

File systems that conform to the Standard Application Program Interface (Standard

API) may not necessarily support all the described information kept on a file basis.

When this is the case, FSDs are required to return to the application a null (zero)

value for the unsupported parameter.

An FSD may support version levels of files.

1-16 DRAFT: OS/2 Installable File Systems

 Date/Time Stamps
The format of OS/2 dates are show below in Figure 1-5.

|---|

| Y | Y | Y | Y | Y | Y | Y | M | M | M | M | D | D | D | D | D |

| e | e | e | e | e | e | e | o | o | o | o | a | a | a | a | a |

| a | a | a | a | a | a | a | n | n | n | n | y | y | y | y | y |

| r | r | r | r | r | r | r | t | t | t | t | | | | | |

| | | | | | | | h | h | h | h | | | | | |

|---|

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 1-5. OS/2 Date Format

Bits Description

15-9 YEARS - Number of years since 1980.

8-5 MONTH - is the month of the year (1-12)

4-0 DAY - is the day of the month (1-31)

The format of OS/2 times are show below in Figure 1-6.

|---|

| H | H | H | H | H | M | M | M | M | M | M | 2 | 2 | 2 | 2 | 2 |

| o | o | o | o | o | i | i | i | i | i | i | | | | | | | | | | |

| u | u | u | u | u | n | n | n | n | n | n | S | S | S | S | S |

| r | r | r | r | r | | | | | | | e | e | e | e | e |

| | | | | | | | | | | | c | c | c | c | c |

|---|

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 1-6. OS/2 Time Format

Bits Description

15-9 HOUR - is the hour of the day (0-23)

8-5 MINUTE - is the minute of the hour (0-59)

4-0 2-SECOND - is the second of the minute(in increments of 2) (0-29)

I/O Error Codes
Some file system functions may return device-driver/device-manager generated

errors. These include:

Ÿ ERROR_WRITE_PROTECT - the media in the drive has write-protection

enabled.

Ÿ ERROR_BAD_UNIT - there is a breakdown of internal consistency between

OS/2's mapping between logical drive and device driver. Internal Error.

Ÿ ERROR_NOT_READY - the device driver detected that the device is not ready.

Ÿ ERROR_BAD_COMMAND - there is a breakdown of internal consistency

between OS/2's idea of the capability of a device driver and that of the device

driver.

 Chapter 1. Installable File System Mechanism 1-17

Ÿ ERROR_CRC - the device driver has detected a CRC or ECC error. The data

in the sector read has become corrupted and can not be corrected by the error

correction code.

Ÿ ERROR_BAD_LENGTH - there is a breakdown of internal consistency between

OS/2's idea of the length of a request packet and the device driver's idea of

that length. Internal Error.

Ÿ ERROR_SEEK - the device driver detected an error during a seek operation.

Ÿ ERROR_NOT_DOS_DISK - the disk is not recognized as being OS/2 manage-

able.

Ÿ ERROR_SECTOR_NOT_FOUND - the device is unable to find the specific

sector.

Ÿ ERROR_OUT_OF_PAPER - the device driver has detected that the printer is

out of paper.

Ÿ ERROR_WRITE_FAULT - other write-specific error.

Ÿ ERROR_READ_FAULT - other read-specific error.

Ÿ ERROR_GEN_FAILURE - other error.

There are also errors defined by and specific to the device drivers. These are indi-

cated by either 0xFF or 0xFE in the high byte of the error code.

Note: Error codes listed in the function call descriptions in the OS/2 Version 3.0

Control Program Programming Reference are not complete. They are errors most

likely to be returned by the FS router and the FAT file system. Each FSD may

generate errors based upon its own circumstances. However, applications may be

coded to expect the return codes to be limited to the ones in the documentation

and may consequently fail, so it is wise to attempt to conform when possible. In

addition, the error codes returned to FS_IOCTL are restricted and may be modified

before being returned to the user. For FSD specific requirements FS_FSCTL is

recommended.

FSD System Interfaces

 Overview
Installable file system entry points are called by the kernel as a result of action

taken through the published standard file I/O application programming interface in

OS/2 Version 3.0.

Installable file systems are installed as OS/2 dynamic link library modules. Unlike

device drivers, they may include any number of segments, all of which will remain

after initialization, unless the FSD itself takes some action to free them.

An FSD exports FS entries to the OS/2 kernel using standard PUBLIC

declaractions. Each FS entry is called directly. The OS/2 kernel manages the

association between internal data structures and FSDs.

When a file system service is required, OS/2 assembles an argument list, and calls

the appropriate FS entry for the relevant FSD. If a back-level FSD is loaded, the

OS/2 kernel assures that all arguments passed and all structures passed are

understood by the FSD.

1-18 DRAFT: OS/2 Installable File Systems

Application program interfaces that are unsupported by an FSD receive an UNSUP-

PORTED FUNCTION error from the FSD.

Certain routines, for example, FS_PROCESSNAME, may provide no processing, no

processing is needed, or processing does not make sense. These routines return

no error, not ERROR_NOT_SUPPORTED.

 Data Structures
OS/2 data structures that include a pointer to the file system driver, as well as file

system specific data areas are:

Ÿ the CDS (current directory structure)

Ÿ the SFT (system file table entry),

Ÿ the VPB (volume parameter block)

Ÿ the file search structures.

File system service routines are generally passed pointers to two parameter areas,

in addition to read-only parameters which are specific to each call. The FSD does

not need to verify these pointers. The two parameter areas contain file-system-

independent data which is maintained jointly by OS/2 and the file system driver and

file-system-dependent data which is unused by OS/2 and which may be used by

the file system driver. The file system driver is generally permitted to use the file-

system- dependent information in any way: The file-system-dependent information

may contain all the information needed to describe the current state of the file or

directory, or it may contain a handle which will direct it to other information about

the file maintained within the FSD. Handles must be GDT selectors because any

SFT, CDS, or VPB may be seen by more than one process. File-system-

dependent and file-system-independent parameter areas are defined by data struc-

tures described in the remainder of this section.

Disk media and file system layout

are described by the following structures. The data which is provided to

the file system may depend on the level of file system support provided

by the device driver attached to the block device. These structures are

relevant only for local file systems.

/\ file system independent - volume parameters \/

struct vpfsi {

unsigned long vpi_vid; /\ 32-bit volume ID \/

unsigned long vpi_hDEV; /\ handle to the device driver \/

unsigned short vpi_bsize; /\ sector size in bytes \/

unsigned long vpi_totsec; /\ total number of sectors \/

unsigned short vpi_trksec; /\ sectors per track \/

unsigned short vpi_nhead; /\ number of heads \/

char vpi_text[12]; /\ ASCIIZ volume name \/

void far \ vpi_pDCS; /\ device capability structure \/

void far \ vpi_pVCS; /\ volume characteristics \/

unsigned char vpi_drive; /\ drive (0=A) \/

unsigned char vpi_unit; /\ unit code \/

unsigned short vpi_flags; /\ flags for memory restrictions \/

};

/\ VPI_FLAGS Definitions: \/

#define VPB_NONCONTIG_ALLOWED 0x0002 /\ the FSD for this volume can handle \/

/\ non contig memory for IO requests. \/

 Chapter 1. Installable File System Mechanism 1-19

#define VPB_ABOVE16M_ALLOWED 0x0001 /\ The DD for this volume can access \/

/\ above 16 M. \/

/\ Predefined volume IDs: \/

/\ Unique ID for vpb_ID field for unreadable media. \/

#define UNREAD_ID 0x534E4A52L /\ Stored as (bytes) 0x52,4A,4E,53. \/

/\ Unique ID for vpb_ID field for damaged volume (recognized by IFS but \/

/\ cannot be normally mounted). \/

#define DAMAGED_ID 0x0L /\ Stored as (bytes) 0,0,0,0. \/

/\ file system dependent - volume parameters \/

struct vpfsd {

char vpi_work[36]; /\ work area \/

};

Per-disk current directories

are described by the following structures. These structures can only be

modified by the FSD during FS_ATTACH and FS_CHDIR operations.

/\ file system independent - current directories \/

struct cdfsi {

unsigned short cdi_hVPB; /\ VPB handle for associated device \/

unsigned short cdi_end; /\ offset to root of path \/

char cdi_flags; /\ FS independent flags \/

char cdi_curdir[260]; /\ text of current directory \/

};

/\ bit values for cdi_flags (state of cdfsd structure \/

#define CDI_ISVALID 0x80 /\ format is known \/

#define CDI_ISROOT 0x40 /\ cur dir == root \/

#define CDI_ISCURRENT 0x20

/\ file system dependent - current directories \/

struct cdfsd {

char cdd_work[8]; /\ work area \/

};

Open files

are described by data initialized at file open time and discarded at the

time of last close of all file handles which had been associated with that

open instance of that file. There may be multiple open file references to

the same file at any one time.

All time stamps on files are stamped and propagated to other SFTs by

OS/2 when the file is closed or committed (flushed). For example, if a

file is opened at time 1, written at time 2, and closed at time 3, the last

write time is time 3.

Subdirectories need only have creation time stamps because the last

write and last read time stamps on subdirectories are either very difficult

to implement (propagate up to parent subdirectories), or are not very

useful. An FSD, however, may implement them.

1-20 DRAFT: OS/2 Installable File Systems

FSDs are required to support direct access opens. These are indicated

by a bit set in the sffsi.sfi_mode field.

/\ file system independent - file instance \/

struct sffsi {

unsigned long sfi_mode; /\ access/sharing mode \/

unsigned short sfi_hVPB; /\ volume info \/

unsigned short sfi_ctime; /\ file creation time \/

unsigned short sfi_cdate; /\ file creation date \/

unsigned short sfi_atime; /\ file access time \/

unsigned short sfi_adate; /\ file access date \/

unsigned short sfi_mtime; /\ file modification time \/

unsigned short sfi_mdate; /\ file modification date \/

unsigned long sfi_size; /\ size of file \/

unsigned long sfi_position; /\ read/write pointer \/

/\ the following may be of use in sharing checks \/

unsigned short sfi_UID; /\ user ID of initial opener \/

unsigned short sfi_PID; /\ process ID of initial opener \/

unsigned short sfi_PDB; /\ PDB (in 3x box of initial opener) \/

unsigned short sfi_selfsfn; /\ system file number of file instance \/

unsigned char sfi_tstamp; /\ time stamps flag \/

unsigned short sfi_type; /\ type of object opened \/

unsigned long sfi_pPVDBFil; /\ performance counter data block ptr \/

unsigned char sfi_DOSattr; /\ DOS file attributes D/S/A/H/R \/

};

/\ sfi_tstamps flags \/

#define ST_SCREAT 1 /\ stamp creation time \/

#define ST_PCREAT 2 /\ propagate creation time \/

#define ST_SWRITE 4 /\ stamp last write time \/

#define ST_PWRITE 8 /\ propagate last write time \/

#define ST_SREAD 16 /\ stamp last read time \/

#define ST_PREAD 32 /\ propagate last read time \/

/\ sfi_type flags \/

#define STYPE_FILE 0 /\ file \/

#define STYPE_DEVICE 1 /\ device \/

#define STYPE_NMPIPE 2 /\ named pipe \/

#define STYPE_FCB 4 /\ fcb sft \/

/\ file system dependent - file instance \/

struct sffsd {

char sfd_work[30]; /\ work area \/

};

The Program Data Block, or PDB (sfi_pdb), is the unit of sharing for

DOS mode processes. For OS/2 mode processes, the unit of sharing is

the Process ID, PID (sfi_pid).

FSDs should use the combination PDB, PID, UID as indicating a distinct

process.

File search records

/\ file system independent - file search parameters \/

struct fsfsi

unsigned short fsi_hvpb; /\ volume info \/

/\ file system dependent - file search parameters \/

struct fsfsd

char fsd_work[24] /\ work area \/

 Chapter 1. Installable File System Mechanism 1-21

Note: The pointers to these structures are not guaranteed to be con-

stant throughout their existance. The FSD should not keep internal

pointers to these structures since the data may be moved.

Existing file systems that conform to the Standard Application Program Interface

(Standard API) described in this section, may not necessarily support all the

described information kept on a file basis. When this is the case, file system

drivers are required to return to the application a null (zero) value for the unsup-

ported parameter (when the unsupported data are a subset of the data returned by

the API) or to return a ERROR_NOT_SUPPORTED error (when all of the data

returned by the API is unsupported).

 Time Stamping
All time stamps on files are stamped and propagated to other SFTs when the file is

closed or commited (flushed). If a file is opened at time 1, written to at time 2, and

closed at time 3, the last write time will be time 3. Subdirectories only have cre-

ation time stamps.

The sfi_tstamp field of the file instance structure sffsi contains six flags:

ST_SCREAT EQU 1 ; stamp creation time

ST_PCREAT EQU 2 ; propagate creation time

ST_SWRITE EQU 4 ; stamp last write time

ST_PWRITE EQU 8 ; propagate last write time

ST_SREAD EQU 16 ; stamp last read time

ST_PREAD EQU 32 ; propagate last read time

These flags are cleared when an SFT is created, and some of them may eventually

be set by a file system worker routine. They are examined when the file is closed

or flushed.

For each time stamp, there are three meaningful actions:

ST_Sxxx ST_Pxxx Action

clear clear don't do anything

set set stamp and propagate (to other SFTs and disk)

clear set don't stamp, but propagate existing value

FSD Calling Conventions and Requirements
Calling conventions between FS router, FSD, and FS helpers are:

Ÿ Arguments will be pushed in left-to-right order onto the stack.

Ÿ The callee is responsible for cleaning up the stack.

Ÿ Registers DS, SI, DI, BP, SS, SP are preserved.

Ÿ Return conditions appear in AX with the convention that AX == 0 indicates suc-

cessful completion. AX != 0 indicates an error with the value of AX being the

error code.

Interrupts must ALWAYS be enabled and the direction flag should be presumed to

be undefined. Calls to the FS helpers will change the direction flag at will.

1-22 DRAFT: OS/2 Installable File Systems

In OS/2, file system drivers are always called in kernel protect mode. This has the

advantage of allowing the FSD to execute code without having to account for pre-

emption; no preemption occurs when in kernel mode. While this greatly simplifies

FSD structure, it forces the FSD to yield the CPU when executing long segments of

code. In particular, an FSD must not hold the CPU for more than 2 milliseconds at

a time. The FSD helper FSH_YIELD is provided so that FSDs may relinquish the

CPU.

File system drivers cannot have any interrupt-time activations. Because they

occupy high, movable, and swappable memory, there is no guarantee of address-

ability of the memory at interrupt time.

Each FS service routine may block.

 Error Codes
FSDs should use existing error codes when possible. New error codes must be in

the range reserved for FSDs. The FS_FSCTL interface must support returning

information about new error codes. Unfortunately, no current base applications

support retrieving and displaying new error code information. Consequently, new

error codes should be restricted to situations where they will only be returned to

FSD aware programs. Hopefully in the future the extension of return codes will be

supported by the user interface code.

The set of error codes for errors general to all FSDs is 0xEE00 - 0xEEFF. The

following errors have been defined:

Ÿ ERROR_VOLUME_NOT_MOUNTED = 0xEE00 - the FSD did not recognize the

volume.

The set of error codes which are defined by each FSD is 0xEF00 - 0xFEFF.

 Chapter 1. Installable File System Mechanism 1-23

1-24 DRAFT: OS/2 Installable File Systems

Chapter 2. FS Service Routines

The following table summarizes the entry points that make up the interface between

the kernel and the FSD.

Note: Names must be in all upper case, as required by OS/2 naming conventions.

FS Entry Point Description FSDs Required to export

FS_ALLOCATEPAGESPACE Adjust the size of paging file PAGE I/O

FS_ATTACH Attach to an FSD ALL

FS_CANCELLOCKREQUEST Cancel file record lock request FILE I/O

FS_CHDIR Change/Verify directory path ALL

FS_CHGFILEPTR Move a file's position pointer ALL

FS_CLOSE Release a file handle ALL

FS_COMMIT Flush a file's buffer to disk ALL

FS_COPY Copy a file ALL

FS_DELETE Delete a file ALL

FS_DOPAGEIO Perform paging I/O operations PAGE I/O

FS_EXIT End of a process cleanup ALL

FS_FILEATTRIBUTE Query/Set file's attributes ALL

FS_FILEINFO Query/Set file's information ALL

FS_FILEIO Multi-function file I/O FILE I/O

FS_FILELOCKS Request a file record lock/unlock ALL

FS_FINDCLOSE Directory search close ALL

FS_FINDFIRST Find first matching filename ALL

FS_FINDFROMNAME Find matching filename from name ALL

FS_FINDNEXT Find next matching filename ALL

FS_FINDNOTIFYCLOSE Close FindNotify handle ALL

FS_FINDNOTIFYFIRST Monitor a directory for changes ALL

FS_FINDNOTIFYNEXT Resume reporting directory changes ALL

FS_FLUSHBUF Commit file buffers to disk ALL

FS_FSCTL File system control ALL

FS_FSINFO Query/Set file system information ALL

FS_INIT FSD initialization ALL

FS_IOCTL I/O device control ALL

FS_MKDIR Make a directory ALL

FS_MOUNT Mount/unmount volumes ALL

FS_MOVE Move a file or subdirectory ALL

FS_NEWSIZE Change a file's logical size ALL

FS_NMPIPE Do a named pipe operation ALL

FS_OPENCREATE Open/create/replace files ALL

FS_OPENPAGEFILE Create paging file and handle PAGE I/O

FS_PATHINFO Query/Set a file's information ALL

FS_PROCESSNAME FSD unique name canonicalization ALL

FS_READ Read data from a file ALL

FS_RMDIR Remove a subdirectory ALL

FS_SETSWAP Notification of swapfile ownership ALL

FS_SHUTDOWN Shutdown file system ALL

FS_VERIFYUNCNAME Verify UNC server ownership UNC

FS_WRITE Write data to a file ALL

 Copyright IBM Corp. 1991 2-1

Each FS entry point has a distinct parameter list composed of those parameters

needed by that particular entry. Parameters include:

 Ÿ File pathname

Ÿ Current disk/directory information

Ÿ Open file information

Ÿ Application data buffers

Ÿ Descriptions of file extended attributes

Ÿ Other parameters specific to an individual call

Most of the FS entry points have a level parameter for specifying the level of infor-

mation they are provided or have to supply. FSDs must provide for additional

levels which may be added in future versions of OS/2 by returning

ERROR_NOT_SUPPORTED for any level they do not recognize.

File system drivers which support hierarchical directory structures must use '\' and

'/' as path name component separators. File system drivers which do not support

hierarchical directory structures must reject as illegal any use of '\' or '/' in path

names. The file names '.' and '..' are reserved for use in hierarchical directory

structures for the current directory and the parent of the current directory, respec-

tively.

Unless otherwise specified in the descriptions below, data buffers may be accessed

without concern for the accessibility of the data. OS/2 will either check buffers for

accessability and lock them, or transfer them into locally accessible data areas.

Simple parameters will be verified by the IFS router before the FS service routine is

called.

Note: New with 2.0, some entry points need only be exported and supported by

those FSDs which desire to service the pager(PAGE I/0), UNC servers(UNC)

and/or file locking(FILE I/O). With these new entry point groups, a FSD must

export all or none of the entry points within a particular group.

These optional entry points are:

 FS_AllocatePageSpace (PAGE I/O)

 FS_CancelLockRequest (FILE I/O)

 FS_DoPageIO (PAGE I/O)

 FS_FileLocks (FILE I/O)

 FS_OpenPageFile (PAGE I/O)

 FS_VerifyUNCName (UNC)

2-2 DRAFT: OS/2 Installable File Systems

 FS_ALLOCATEPAGESPACE
Adjust the size of paging file

 Purpose
Changes the size the paging file on disk.

 Calling Sequence
int far pascal FS_ALLOCATEPAGESPACE (psffsi, psffsd, ulsize,

 ulWantContig)

struct sffsi far \ psffsi;

struct sffsd far \ psffsd;

unsigned long ulsize;

unsigned long ulWantContig;

 Where
psffsi

is a pointer to the file-system-independent portion of an open file instance.

psffsd

is a pointer to the file-system-dependent portion of an open file instance.

ulsize

is the desired new size of the paging file. If the new size is smaller than the

current size, the excess space is released. If the new size is larger than the

current size, the requested size is allocated.

ulWantContig

indicates the mimimum contiguity requirement (in bytes).

 Remarks
ulWantContig is a demand for contiguity. If ulWantContig is non-zero(0), the FSD

must allocate any space in the swap file that is not contigous in ulWantContig

chunks on ulWantContig boundaries. If it is not possible to grow the file to ulSize

bytes meeting the ulWantContig requirement, the operation should fail. If the file is

being shrunk ulWantContig is irrelevent and should be ignored.

FSDs that support the paging I/O interface should be expected to be sensible in

allocating page space. In particular, they are expected to always attempt to allocate

space such that ulWantContig sized blocks on ulWantContig boundaries are phys-

ically contigous on disk, and to keep the page file as a whole contigous as pos-

sible.

 Chapter 2. FS Service Routines 2-3

 FS_ATTACH
Attach to an FSD

 Purpose
Attach or detach a remote drive or pseudo-device to an FSD.

 Calling Sequence
int far pascal FS_ATTACH (flag, pDev, pvpfsd, pcdfsd, pParm, pLen)

unsigned short flag;

char far \ pDev;

struct vpfsd far \ pvpfsd;

struct cdfsd far \ pcdfsd;

char far \ pParm;

unsigned short far \ pLen;

 Where
flag

indicates attach or detach:

flag == FSA_ATTACH (0x00) requests an attach. The FSD is being called

to attach a specified driver or character device.

flag == FSA_DETACH (0x01) requests a detach.

flag == FSA_ATTACH_INFO (0x02) requests the FSD to fill in the specified

buffer with attachment information.

pDev

is a pointer to the ASCIIZ text of either the driver (driver letter followed by a

colon) or to the character device (must be \DEV\device) that is being attached,

detached, or queried. The FSD does not need to verify this pointer.

pvpfsd

is a pointer to a data structure containing file-system-dependent volume param-

eter information. When an attach/detach/query of a character device is

requested, this pointer is null. When attaching a drive, this structure contains no

data and is available for the FSD to store information needed to manage the

remote drive. All subsequent FSD calls have access to the hVPB in one of the

structures passed in, so the FSD has access to this structure by using

FSH_GETVOLPARMS. This structure will have its contents as the FSD had left

them. When detaching or querying a drive, this structure contains the data as

the FSD left them.

pcdfsd

is a pointer to a data structure containing file-system dependent working direc-

tory information for drives. When attaching a drive, this structure contains no

data and is available for the FSD to store information needed to manage the

working directory. All subsequent FSD calls generated by API calls that refer-

ence this drive are passed a pointer to this structure with contents left as the

FSD left them. When detaching or querying a drive, this structure contains the

data as the FSD left them. For character devices, pcdfsd points to a DWORD.

When a device is attached, the DWORD contains no data, and can be used by

the FSD to store a reference to identify the device later on during

FS_OPENCREATE, when it is passed in to the FSD. When detaching or que-

rying the device, this DWORD contains the data as the FSD left them.

2-4 DRAFT: OS/2 Installable File Systems

When the FSD is notified of a detach, it should deallocate any resources allo-

cated for this structure.

Note: The FSD should not expect this pointer to remain constant for the dura-

tion of the attach. The contents of the structure will be valid, but the location

may change.

pParm

is the address of the application parameter area.

When an attach is requested, this will point to the API-specified user data block

that contains information regarding the attach operation (for example, pass-

words). For a query, the OS/2 kernel will fill in part of the buffer, adjust the

pointer, and call the FSD to fill in the rest. (See structure returned by

DosQFSAttach; pParm will point to cbFSAData; the FSD should fill in

cbFSAData and rgFSAData.)

Addressing of this data area is not validated by the OS/2 kernel. pParm must

be verified, even in the query case. The FSD verifies this parameter by calling

the FS helper routine FSH_PROBEBUF.

pLen

is the pointer to the length of the application parameter area.

For attach, this points to the length of the application data buffer. For query,

this is the length of the remaining space in the application data buffer. Upon

filling in the buffer, the FSD will set this to the length of the data returned. If the

data returned is longer than the data buffer length, the FSD sets this value to be

the length of the data that query could return. In this case, the FSD should also

return a BUFFER OVERFLOW error.

The FSD does not need to verify this pointer.

 Remarks
Local FSDs will never get called with attempts to attach, detach or query drives.

For remote FSDs called to do a detach, the kernel does not do any checking to see

if there are any open references on the drive (for example, open or search refer-

ences). It is entirely up to the FSD to decide whether it should allow the detach

operation.

 Chapter 2. FS Service Routines 2-5

 FS_CANCELLOCKREQUEST
Cancel file record lock request

 Purpose
Cancels an outstanding FS_FileLocks request on a file.

 Calling Sequence
int far pascal FS_CANCELLOCKREQUEST (psffsi, psffsd, pLockRange)

struct sffsi far \ psffsi;

struct sffsd far \ psffsd;

struct filelock far \ pLockRange;

 Where
psffsi

is a pointer to the file-system-independent portion of an open file instance.

psffsd

is a pointer to the file-system-dependent portion of an open file instance.

pLockRange

is a pointer to a filelock structure. The filelock structure has the following format:

struct FileLock {

unsigned long FileOffset; /\ offset where the lock/unlock begins \/

unsigned long RangeLength; /\ length of region locked/unlocked \/

}

 Remarks
This entry point was added to support the 32-bit DosCancelLockRequest API.

This function provides a simple mechanism for cancelling the lock range request of

an outstanding FS_FILELOCKS call. If two threads in a process are blocked on a

lock range and a cancel request is issued by another thread, both blocked threads

will be released.

2-6 DRAFT: OS/2 Installable File Systems

 FS_CHDIR
Change/Verify Directory Path

 Purpose
Change or verify the directory path for the requesting process

 Calling Sequence
int far pascal FS_CHDIR (flag, pcdfsi, pcdfsd, pDir, iCurDirEnd)

unsigned short flag;

struct cdsfi far \ pcdfsi;

struct cdfsd far \ pcdfsd;

char far \ pDir;

unsigned short iCurDirEnd;

 Where
flag

indicates what action is to be taken on the directory.

flag == CD_EXPLICIT (0x00) indicates that an explicit directory-change

request has been made.

flag == CD_VERIFY (0x01) indicates that the working directory needs to be

verified.

flag == CD_FREE (0x02) indicates that this reference to a directory is being

freed.

The flag passed to the FSD will have a valid value.

pcdfsi

is a pointer to a file-system-independent working directory structure.

For flag == 0, this pointer points to the previous current directory on the

drive.

For flag == 1, this pointer points to the most-recent working directory on the

drive. The cdi_curdir field contains the text of the directory that is to be

verified.

For flag == 2, this pointer is null.

The FSD must never modify the cdfsi. The OS/2 kernel handles all updates.

pcdfsd

is a pointer to a file-system-dependent working directory structure.

This is a place for the FSD to store information about the working directory.

The FSD is expected to update this information if the directory exists. The

cdfsd pointer is always valid upon entry. If the current directory is the root

directory, the contents of this area is undefined. Otherwise, the information is

the information that was left there by the FSD.

pDir

is a pointer to directory text.

For flag == 0, this is the pointer to the directory. For flag == 1 or flag == 2, this

pointer is null. The FSD does not need to verify this pointer.

iCurDirEnd

is the index of the end of the current directory in pDir.

This is used to optimize FSD path processing. If iCurDirEnd == -1, there is no

 Chapter 2. FS Service Routines 2-7

current directory relevant to the directory text, that is, a device. This parameter

only has meaning for flag == 0.

 Remarks
The FSD should cache no information when the directory is the root. Root directo-

ries are a special case. They always exist, and never need validation. The OS/2

kernel does not pass root directory requests to the FSD. An FSD is not allowed to

cache any information in the cdfsd data structure for a root directory. Under normal

conditions, the kernel does not save the CDS for a root directory and builds one

from scratch when it is needed. (One exception is where a validate CDS fails, and

the kernel sets it to the root, and zeroes out the cdfsd data structure. This CDS is

saved and is cleaned up later.)

The following is information about the exact state of the cdfsi and cdfsd data struc-

tures passed to the FSD for each flag value and guidelines about what an FSD

should do upon receiving an FS_CHDIR call:

IF (flag == 0) /\ Set new Current Directory \/

pcdfsi, pcdfsd = copy of CDS we're starting from; may be useful as starting

point for verification.

 cdfsi contents:

hVPB - handle of Volume Parameter Block mapped to this drive

end - end of root portion of CurDir

flags - various flags (indicating state of cdfsd)

IsValid - cdfsd is unknown format (ignore contents)

IsValid == 0x80

IsRoot - cdfsd is meaningless if CurDir = root (not kept)

IsRoot == 0x40

IsCurrent - cdfsd is know format, but may not be current (medium

may have been changed).

IsCurrent == 0x20

text - Current Directory Text

icurdir = if Current Directory is in the path of the new Current Directory,

this is the index to the end of the Current Directory. If not,

this is -1 (Current Directory does not apply).

pDir = path to verify as legal directory

THEN

Validate path named in pDir.

/\ This means both that it exists AND that it is a directory. pcdfsi,

pcdfsd, icurdir give old CDS, which may allow optimization \/

IF (Validate succeeds)

IF (pDir != ROOT)

Store any cache information in area pointed to by pcdfsd.

 ELSE

 Do Nothing.

/\ Area pointed to by pcdfsd will be thrown away, so don't bother

storing into it \/

 Return success.

2-8 DRAFT: OS/2 Installable File Systems

 ELSE

 Return failure.

/\ Kernel will create new CDS using pDir data and pcdfsd data. If the

old CDS is valid, the kernel will take care of cleaning it up. The

FSD must not edit any structure other than the \Pcdfsd area, with

which it may do as it chooses. \/

/\ flag == 0 \/

ELSE

IF (flag == 1) /\ Validate current CDS structure \/

pcdfsi = pointer to copy of cdfsi of interest.

pcdfsd = pointer to copy of cdfsd. Flags in cdfsi indicate the state of

this cdfsd. It may be: (1) completely invalid (unknown

format), (2) known format, but non-current information,

(3) completely valid, or (4) all zero (root).

THEN

Validate that CDS still describes a legal directory (using cdi_text).

 IF (valid)

Update cdfsd if necessary.

 Return success.

/\ kernel will copy cdfsd into real CDS \/

 ELSE

 IF (cdi_isvalid)

Release any resources associated with cdfsd.

/\ kernel will force Current Directory to root, and will zero out

cdfsd in real CDS \/

 Return failure.

/\ The FSD must not modify any structure other than the cdfsd pointed to by

 pcdfsd. \/

ELSE

IF (flag == 2) /\ previous CDS no longer in use; being freed \/

pcdfsd = pointer to copy of cdfsd of CDS being freed.

THEN

Release any resources associated with the CDS.

/\ For example, if cdfsd (where pcdfsd points) contains a pointer to

some FSD private structure associated with the CDS, that structure

should be freed. \/

/\ kernel will not retain the cdfsd \/

 Chapter 2. FS Service Routines 2-9

 FS_CHGFILEPTR
Move a file's position pointer

 Purpose
Move a file's logical read/write position pointer.

 Calling Sequence
int far pascal FS_CHGFILEPTR (psffsi, psffsd, offset, type, IOflag)

struct ssfsi far \ psffsi;

struct ssfsd far \ psffsd;

long offset;

unsigned short type;

unsigned short IOflag;

 Where
psffsi

is a pointer to the file-system-independent portion of an open file instance.

The FSD uses the current file size or sfi_position along with offset and type to

compute a new sfi_position. This is updated by the system.

psffsd

is a pointer to the file-system-dependent portion of an open file instance.

The FSD may store or adjust data as appropriate in this structure.

offset

is the signed offset to be added to the current file size or position to form the

new position within the file.

type

indicates the basis of a seek operation.

type == CFP_RELBEGIN (0x00) indicates seek relative to beginning of file.

type == CFP_RELCUR (0x01) indicates seek relative to current position

within the file.

type == CFP_RELEND (0x02) indicates seek relative to end of file.

The value of type passed to the FSD will be valid.

IOflag

indicates information about the operation on the handle.

IOflag == IOFL_WRITETHRU (0x0010) indicates write-through.

IOflag == IOFL_NOCACHE (0x0020) indicates no-cache.

 Remarks
The file system may want to take the seek operation as a hint that an I/O operation

is about to take place at the new position and initiate a positioning operation on

sequential access media or read-ahead operation on other media.

Some DOS mode programs expect to be able to do a negative seek. OS/2 passes

these requests on to the FSD and returns an error for OS/2 mode negative seek

requests. Because a seek to a negative position is, effectively, a seek to a very

large offset, it is suggested that the FSD return end-of-file for subsequent read

requests.

2-10 DRAFT: OS/2 Installable File Systems

FSDs must allow seeks to positions beyond end-of-file.

The information passed in IOflag is what was set for the handle during a

DosOpen/DosOpen2 operation, or by a DosSetFHandState call.

If an FSD supports file locking, it is responsible for checking if there are any locks

on the file that should prevent the call from being executed. OS/2 will not do any

lock checking if the FSA_LOCK bit is set in the FSD Attributes.

 Chapter 2. FS Service Routines 2-11

 FS_CLOSE
Close a file.

 Purpose
Closes the specified file handle.

 Calling Sequence
int far pascal FS_CLOSE (type, IOflag, psffsi, psffsd)

unsigned short type;

unsigned short IOflag;

struct sffsi far \ psffsi;

struct sffsd far \ psffsd;

 Where
type

indicates what type of a close operation this is.

type == FS_CL_ORDINARY (0x00) indicates that this is not the final close

of the file or device.

type == FS_CL_FORPROC (0x01) indicates that this is the final close of this

file or device for this process.

type == FS_CL_FORSYS (0x02) indicates that this is the final close for this

file or device for the system.

IOflag

indicates information about the operation on the handle.

IOflag == IOFL_WRITETHRU (0x0010) indicates write-through.

IOflag == IOFL_NOCACHE (0x0020) indicates no-cache.

psffsi

is a pointer to the file-system-independent portion of an open file instance.

psffsd

is a pointer to the file-system-dependent portion of an open file instance.

 Remarks
This entry point is called on every close of a file or device.

Any reserved resources for this instance of the open file may be released. It may

be assumed that all open files will be closed at process termination. That is, this

entry point will always be called at process termination for any files or devices open

for the process.

A close operation should be interpreted by the FSD as meaning that the file should

be commited to disk as appropriate.

Of the information passed in IOflag, the write-through bit is a mandatory bit in that

any data written to the block device must be put out on the medium before the FSD

returns. The no-cache bit, on the other hand, is an advisory bit that says whether

the data being transferred is worth caching or not.

2-12 DRAFT: OS/2 Installable File Systems

 FS_COMMIT
Commit a file's buffers to Disk

 Purpose
Flush requesting process's cache buffers and update directory information for the

file handle.

 Calling Sequence
int far pascal FS_COMMIT (type, IOflag, psffsi, psffsd)

unsigned short type;

unsigned short IOflag;

struct sffsi far \ psffsi;

struct sffsd far\ psffsd;

 Where
type

indicates what type of a commit operation this is.

type == FS_COMMIT_ONE (0x01) indicates that this is a commit for a spe-

cific handle. This type is specified if FS_COMMIT is called for a

DosBufReset of a specific handle.

type == FS_COMMIT_ALL (0x02) indicates that this is a commit due to a

DosBufReset (-1).

IOflag

indicates information about the operation on the handle.

IOflag == IOFL_WRITETHRU (0x0010) indicates write-through.

IOflag == IOFL_NOCACHE (0x0020) indicates no-cache.

psffsi

is a pointer to the file-system-independent portion of an open file instance.

psffsd

is a pointer to the file-system-dependent portion of an open file instance.

 Remarks
This entry point is called only as a result of a DosBufReset function call. OS/2

reserves the right to call FS_COMMIT even if no changes have been made to the

file.

For DosBufReset (-1), FS_COMMIT will be called for each open handle on the

FSD.

The FSD should update access and modification times, if appropriate.

Any locally cached information about the file must be output to the media. The

directory entry for the file is to be updated from the sffsi and sffsd data structures.

Since mini-FSDs used to boot IFSs are read-only file systems, they need not

support the FS_COMMIT call.

Of the information passed in IOflag, the write-through bit is a MANDATORY bit in

that any data written to the block device must be put out on the medium before the

 Chapter 2. FS Service Routines 2-13

FSD returns. The no-cache bit, on the other hand, is an advisory bit that says

whether the data being transferred is worth caching or not.

The FSD should copy all supported time stamps from the SFT to the disk. Beware

that the last read time stamp may need to be written to the disk even though the

file is clean. After this is done, the FSD should clear the sfi_tstamp field to avoid

having to write to the disk again if the user calls commit repeatedly without

changing any of the time stamps.

If the disk is not writeable and only the last read time stamp has changed, the FSD

should either issue a warning or ignore the error. This relieves the user from

having to un-protect an FSD floppy disk in order to read the files on it.

2-14 DRAFT: OS/2 Installable File Systems

 FS_COPY
Copy a file

 Purpose
Copy a specified file or subdirectory to a specified target.

 Calling Sequence
int far pascal FS_COPY (flag, pcdfsi, pcdfsd,

 pSrc, iSrcCurDirEnd,

 pDst, iDstCurDirEnd,

 nameType)

unsigned short flag;

struct cdfsi far \ pcdfsi;

struct cdfsd far \ pcdfsd;

char far \ pSrc;

unsigned short iSrcCurDirEnd;

char far \ pDst;

unsigned short iDstCurDirEnd;

unsigned short nameType;

 Where
flag

is a bit mask controlling copy

0x0001 specifies that an existing target file/directory should be replaced

0x0002 specifies that a source file will be appended to the destination file.

All other bits are reserved.

(See the description of the DosCopy function call in the OS/2 Version 3.0

Control Program Programming Reference.)

pcdfsi

is a pointer to the file-system-independent working directory structure.

pcdfsd

is a pointer to the file-system-dependeng working directory structure.

pSrc

is a pointer to the ASCIIZ name of the source file/directory.

iSrcCurDirEnd

is the index of the end of the current directory in pSrc. If = -1, there is no

current directory relevant to the source name.

pDst

is a pointer to the ASCIIZ name of the destination file/directory.

iDstCurDirEnd

is the index of the end of the current directory in pDst. If = -1, there is no

current directory relevant to the destination name.

nameType

indicates the destination name type.

NameType == 0x0040 indicates non-8.3 filename format. All other values are

reserved.

 Chapter 2. FS Service Routines 2-15

 Remarks
The file specified in the source file name should be copied to the target file if pos-

sible.

The files specified may not be currently open. File system drivers must assure

consistency of file allocation information and directory entries.

The file system driver returns the special CANNOT COPY error if it cannot perform

the copy because:

Ÿ it does not know how

Ÿ the source and target are on different volumes

Ÿ of any other reason for which it would make sense for its caller to perform the

copy operation manually.

Returning ERROR_CANNOT_COPY indicates to its caller that it should attempt to

perform the copy operation manually. Any other error will be returned directly to

the caller of DosCopy. Currently, the manual copy is performed in the

DOSCALL1.DLL if ERROR_CANNOT_COPY is returned. Although support of this

functions is not required beyond the return code of ERROR_CANNOT_COPY, it is

encouraged due to the significant performance improvement copying within the

FSD. See the description of the DosCopy function call in the OS/2 Version 3.0

Control Program Programming Reference for other error codes that can be

returned.

FS_COPY needs to check that certain types of illegal copying operations are not

performed. A directory cannot be copied to itself or to one of its subdirectories.

This is especially critical in situations where two different fully-qualified pathnames

can refer to the same file or directory. For example, if X: is redirected to

\\SERVER\SHARE, the X:\PATH and \\SERVER\SHARE\PATH refer to the same

object.

The behavior of FS_COPY should match the behavior of the generic DosCopy

routine.

The non-8.3 filename format attribute in the directory entry for the destination name

should be set according to the value in nameType.

2-16 DRAFT: OS/2 Installable File Systems

 FS_DELETE
Delete a file

 Purpose
Removes a directory entry associated with a filename.

 Calling Sequence
int far pascal FS_DELETE (pcdfsi, pcdfsd, pFile, iCurDirEnd)

struct cdfsi far \ pcdfsi;

struct cdfsd far \ pcdfsd;

char far \ pFile;

unsigned short iCurDirEnd;

 Where
pcdfsi

is a pointer to the file-system-independent working directory structure.

pcdfsd

is a pointer to the file-system-dependent working directory structure.

pFile

is a pointer to the ASCIIZ name of the file or directory. The FSD does not need

to validate this pointer.

iCurDirEnd

is the index of the end of the current directory in pFile.

This is used to optimize FSD path processing. If iCurDirEnd == -1, there is no

current directory relevant to the name text, that is, a device.

 Remarks
The file specified is deleted.

The deletion of a file opened in DOS mode by the same process requesting the

delete is supported. OS/2 calls FS_CLOSE for the file before calling FS_DELETE.

The file name may not contain wildcard characters.

 Chapter 2. FS Service Routines 2-17

 FS_DOPAGEIO
Perform paging I/O operations

 Purpose
Performs all the I/O operations in a PageCmdList.

 Calling Sequence
int far pascal FS_DOPAGIO (psffsi, psffsd, pList)

struct sffsi far \ psffsi;

struct sffsd far \ psffsd;

struct PageCmdHeader far \ pList;

 Where
psffsi

is a pointer to the file-system-independent portion of an open file instance.

psffsd

is a pointer to the file-system-dependent portion of an open file instance.

pList

is a pointer to a PageCmdHeader structure. The PageCmdHeader structure has

the following format:

struct PageCmdHeader {

unsigned char InFlags; /\ Input Flags \/

unsigned char OutFlags; /\ Output Flags - must be 0 on entry \/

unsigned char OpCount; /\ Number of operations \/

unsigned char Pad; /\ Pad for DWORD alignment \/

unsigned long Reserved1; /\ Currently Unused \/

unsigned long Reserved2; /\ Currently Unused \/

unsigned long Reserved3; /\ Currently Unused \/

struct PageCmd PageCmdList; /\ Currently Unused \/

}

/\ FSD_DoPageIO InFlags values \/

#define PGIO_FI_ORDER 0x01 /\ Force Order of operations \/

/\ FSD_DoPageIO OutFlags values \/

#define PGIO_FO_DONE 0x01 /\ Operation done \/

#define PGIO_FO_ERROR 0x02 /\ Operation failed \/

/\ FSD_DoPageIO Status values \/

#define PGIO_ATTEMPTED 0x0f /\ Operation attempted \/

#define PGIO_FAILED 0xf0 /\ Operation failed \/

The PageCmd structure has the following format:

struct PageCmd {

unsigned char Cmd; /\ Cmd Code (Read,Write,Verify) \/

unsigned char Priority; /\ Same values as for req packets \/

unsigned char Status; /\ Status byte \/

unsigned char Error; /\ I24 error code \/

unsigned long Addr; /\ Physical(0:32) or Virtual(16:16) \/

unsigned long FileOffset; /\ Byte Offset in page file \/

}

2-18 DRAFT: OS/2 Installable File Systems

 Remarks
FS_DOPAGEIO performs all the I/O operations specified in the PageCmdList.

If the disk driver supports Extended Strategy requests, a request list will be built

from the PageCmdList and issued to the driver.

If the disk driver does not support Extended Strategy requests, the FSD can either

let the kernel do the emulation(See FS_OPENPAGEFILE to set this state) or has

the option to do the emulation itself.

For a detailed description of the Extended Strategy request interface please see the

OS/2 Version 3.0 Physical Device Driver Reference.

 Chapter 2. FS Service Routines 2-19

 FS_EXIT
End of process

 Purpose
Release FSD resources still held after process termination.

 Calling Sequence
void far pascal FS_EXIT (uid, pid, pdb);

unsigned short uid;

unsigned short pid;

unsigned short pdb;

 Where
uid

is the user ID of the process. This will be a valid value.

pid

is the process ID of the process. This will be a valid value.

pdb

is the DOS mode process ID of the process. This will be a valid value.

 Remarks
Because all files are closed when a process terminates, this call is not needed to

release file resources. It is, however, useful if resources are being held due to

unterminated searches (as in searches initiated from the DOS mode). If an FSD

allocates resources every time an FS_FINDFIRST sequence is entered, resource

shortages can occur under DOS since DOS programs do not have a DosFindClose

API. This entry point provides a way for an FSD to determine that those resources

may be released.

2-20 DRAFT: OS/2 Installable File Systems

 FS_FILEATTRIBUTE
Query/Set File Attribute

 Purpose
Query/Set the attribute of the specified file.

 Calling Sequence
int far pascal FS_FILEATTRIBUTE (flag, pcdfsi, pcdfsd,

pName, iCurDirEnd, pAttr)

unsigned short flag;

struct cdfsi far \ pcdfsi;

struct cdfsd far \ pcdfsd;

char far \ pName;

unsigned short iCurDirEnd;

unsigned short far \ pAttr;

 Where
flag

indicates retrieval or setting of attributes, with:

flag == FA_RETRIEVE (0x00) indicates retrieving the attribute.

flag == FA_SET (0x01) indicates setting the attribute.

flag == all other values, reserved.

The value of flag passed to the FSD will be valid.

pcdfsi

is a pointer to the file-system independent portion of an open file instance.

pcdfsd

is a pointer to the file-system dependent portion of an open file instance.

pName

is a pointer to the ASCIIZ name of the file or directory.

The FSD does not need to validate this pointer.

iCurDirEnd

is the index of the end of the current directory in pName.

This is used to optimize FSD path processing. If iCurDirEnd == -1, there is no

current directory relevant to the name text, that is, a device.

pAttr

is a pointer to the attribute.

For flag == 0 (Query), the FSD should store the attribute in the indicated

location.

For flag == 1 (Set), the FSD should retrieve the attribute from this location

and set it in the file or directory.

The FSD does not need to validate this pointer.

 Chapter 2. FS Service Routines 2-21

 Remarks
None

2-22 DRAFT: OS/2 Installable File Systems

 FS_FILEINFO
Query/Set a File's Information

 Purpose
Returns information for a specific file.

 Calling Sequence
int far pascal FS_FILEINFO (flag, psffsi, psffsd,

level, pData, cbData, IOflag)

unsigned short flag;

struct sffsi far \ psffsi;

struct sffsd far \ psffsd;

unsigned short level;

char far \ pData;

unsigned short cbData;

unsigned short IOflag;

 Where
flag

indicates retrieval or setting of information.

flag == FI_RETRIEVE (0x00) indicates retrieving information.

flag == FI_SET (0x01) indicates setting information.

All other values are reserved.

The value of flag passed to the FSD will be valid.

psffsi

is a pointer to the file-system-independent portion of an open file instance.

psffsd

is a pointer to the file-system-dependent portion of an open file instance.

level

is the information level to be returned.

Level selects among a series of data structures to be returned.

pData

is the address of the application data area.

Addressing of this data area is validated by the kernel (see FSH_PROBEBUF).

When retrieval (flag == 0) is specified, the FSD will place the information

into the buffer.

When outputting information to a file (flag == 1), the FSD will retrieve that

data from the application buffer.

cbData

is the length of the application data area.

For flag == 0, this is the length of the data the application wishes to retrieve.

If there is not enough room for the entire level of data to be returned, the

FSD will return a BUFFER OVERFLOW error.

For flag == 1, this is the length of data to be applied to the file.

 Chapter 2. FS Service Routines 2-23

IOflag

indicates information about the operation on the handle.

IOflag == IOFL_WRITETHRU (0x0010) indicates write-through.

IOflag == IOFL_NOCACHE (0x0020) indicates no-cache.

 Remarks
If setting the time/date/DOS attributes on a file:

Ÿ Copy the new time/date/DOS attributes into the SFT

Ÿ Set ST_PCREAT, ST_PWRITE, and ST_PREAD

Ÿ Clear ST_SCREAT, ST_SWRITE, and ST_SREAD

Ÿ Do not change the file size with this entry point.

Note: ALSO NEW FOR 2.0, it is suggested that the FSD copy the DOS file attri-

butes from the directory entry into the SFT. This allows the FSD and the OS2

kernel to handle FCB opens more efficently.

If querying the date/time/DOS attributes on a file, simply copy the date/time/DOS

attributes from the directory entry into the SFT.

If the attribute value for the date or time is 0 (zero), you should not change the

current value, as per the OS/2 Version 3.0 Control Program Programming Refer-

ence.

Of the information passed in IOflag, the write-through bit is a mandatory bit in that

any data written to the block device must be put out on the medium before the

device driver returns. The no-cache bit, on the other hand, is an advisory bit that

says whether the data being transferred is worth caching or not.

Supported information levels are described in the OS/2 Version 3.0 Control

Program Programming Reference. However, since the IFS architecture is still 16

Bit, the data structures that the FSD returns are the structures GEA, GEALIST,

FEA, FEALIST, and EAOP- not the GEA2, GEA2LIST, etc. (see below). OS/2 will

convert the structure to the appropriate 32 Bit form for 32 Bit applications. In addi-

tion to the information levels described in the OS/2 Version 3.0 Control Program

Programming Reference level 4 support is required in all FSDs. For level 4, ignore

the GEALIST and return all EAs to the caller in the FEALIST. The external publica-

tion of level 4 for 32 bit applications is being considered at this time. This call will

not be officially supported for 16 Bit applications since we are hoping in the future

to permit extended attributes to exceed 64K and that would break those applica-

tions.

2-24 DRAFT: OS/2 Installable File Systems

typedef struct _GEA { /\ gea \/

 BYTE cbName; /\ name length not including NULL \/

 CHAR szName[1]; /\ attribute name \/

} GEA;

typedef struct _GEALIST { /\ geal \/

ULONG cbList; /\ total bytes of structure inc full list \/

 GEA list[1]; /\ variable length GEA structures \/

} GEALIST;

typedef struct _FEA { /\ fea \/

 BYTE fEA; /\ flags \/

 BYTE cbName; /\ name length not including NULL \/

USHORT cbValue; /\ value length \/

} FEA;

typedef FEA FAR \PFEA;

/\ flags for _FEA.fEA \/

#define FEA_NEEDEA 0x80 /\ need EA bit \/

typedef struct _FEALIST { /\ feal \/

ULONG cbList; /\ total bytes of structure inc full list \/

 FEA list[1]; /\ variable length FEA structures \/

} FEALIST;

typedef struct _EAOP { /\ eaop \/

PGEALIST fpGEAList; /\ general EA list \/

PFEALIST fpFEAList; /\ full EA list \/

 ULONG oError;

} EAOP;

Application Note: When an application does a level 3 query, it supplies a list of

EA names in the GEALIST that they want the EA values for. If there are no

extended attributes for that file, it is legal to return an FEALIST with a cbList equal

to 4 and no FEAs. However, there have been applications in the past that have

coded assuming that an FEALIST will be returned with a cbValue of 0 if the EA

does not exist. If those applications try to access the non-initialized information

they will, of course, fail. FSD implementors may avoid future problems by returning

the FEALIST with cbValues set to 0 when there are no EAs, but this is not an

architectural requirement.

 Chapter 2. FS Service Routines 2-25

 FS_FILEIO
Multi-function file I/O

 Purpose
Perform multiple lock, unlock, seek, read, and write I/O.

 Calling Sequence
int far pascal FS_FILEIO (psffsi, psffsd,

pCmdList, cbCmdList, poError, IOflag)

struct sffsi far \ psffsi;

struct sffsd far \ psffsd;

char far \ pCmdList;

unsigned short cbCmdList;

unsigned short far \ poError;

unsigned short IOflag;

 Where
psffsi

is a pointer to the file-system-independent portion of an open file instance.

psffsd

is a pointer to the file-system-dependent portion of an open file instance.

pCmdList

is a pointer to a command list that contains entries indicating what commands

will be performed.

Each individual operation (CmdLock, CmdUnloc, CmdSeek, CmdIO) is per-

formed as atomic operations until all are complete or until one fails. CmdLock

executes a multiple range lock as an atomic operation. CmdUnlock executes a

multiple range unlock as an atomic operation. Unlike CmdLock, CmdUnlock

cannot fail as long as the parameters to it are correct, and the calling application

had done a Lock earlier, so it can be viewed as atomic.

The validity of the user address is not verified (see FSH_PROBEBUF).

For CmdLock, the command format is:

struct CmdLock {

unsigned short Cmd = 0; /\ 0 for lock operations \/

unsigned short LockCnt; /\ number of locks that follow \/

unsigned long TimeOut; /\ ms timeout for lock success \/

}

which is followed by a series of records of the following format:

struct Lock {

unsigned short Share = 0; /\ 0 for exclusive, 1 for read-only \/

long Start; /\ start of lock region \/

long Length; /\ length of lock region \/

}

If a lock within a CmdLock causes a timeout, none of the other locks within

the scope of CmdLock are in force, because the lock operation is viewed as

atomic.

CmdLock.TimeOut is the count in milliseconds, until the requesting process

is to resume execution if the requested locks are not available. If

2-26 DRAFT: OS/2 Installable File Systems

CmdLock.TimeOut == 0, there will be no wait. If CmdLock.TimeOut <

0xFFFFFFFF it is the number of milliseconds to wait until the requested

locks become available. If CmdLock.TimeOut == 0xFFFFFFFF then the

thread will wait indefinitely until the requested locks become available.

Lock.Share defines the type of access other processes may have to the file-

range being locked. If its value == 0, other processes have No-Access to

the locked range. If its value == 1, other process have Read-Only access to

the locked range.

For CmdUnlock, the command format is:

struct CmdUnlock {

unsigned short Cmd = 1; /\ 1 for unlock operations \/

unsigned short UnlockCnt; /\ Number of unlocks that follow \/

}

which is followed by a series of records of the following format:

struct UnLock {

long Start; /\ start of locked region \/

long Length; /\ length of locked region \/

}

For CmdSeek, the command format is:

struct CmdSeek {

unsigned short Cmd = 2; /\ 2 for seek operation \/

unsigned short Method; /\ 0 for absolute \/

/\ 1 for relative to current \/

/\ 2 for relative to EOF \/

long Position; /\ file seek position or delta \/

long Actual; /\ actual position seeked to \/

}

For CmdIO, the command format is:

struct CmdIO {

unsigned short Cmd; /\ 3 for read, 4 for write \/

void far \ Buffer; /\ pointer to the data buffer \/

unsigned short BufferLen; /\ number of bytes requested \/

unsigned short Actual; /\ number of bytes transferred \/

}

cbCmdList

is the length in bytes of the command list.

poError

is the offset within the command list of the command that caused the error.

This field has a value only when an error occurs.

The validity of the user address has not been verified (see FSH_PROBEBUF).

IOflag

indicates information about the operation on the handle.

IOflag == IOFL_WRITETHRU (0x0010) indicates write-through.

IOflag == IOFL_NOCACHE (0x0020) indicates no-cache.

 Chapter 2. FS Service Routines 2-27

 Remarks
This function provides a simple mechanism for combining the file I/O operations

into a single request and providing improved performance, particularly in a net-

working environment.

File systems that do not have the FileIO bit in their attribute field do not see this

call: The command list is parsed by the IFS router. The FSD sees only

FS_CHGFILEPTR, FS_READ, FS_WRITE calls.

File systems that have the FileIO bit in their attribute field see this call in its

entirety. The atomicity guarantee applies only to the commands themselves and

not to the list as a whole.

Of the information passed in IOflag, the write-through bit is a mandatory bit in that

any data written to the block device must be put out on the medium before the

device driver returns. The no-cache bit, on the other hand, is an advisory bit that

says whether the data being transferred is worth caching or not.

2-28 DRAFT: OS/2 Installable File Systems

 FS_FILELOCKS
Request a file record lock/unlock

 Purpose
Locks and/or unlocks a range(record) in a opened file.

 Calling Sequence
int far pascal FS_FILELOCKS (psffsi, psffsd, pUnLockRange,

pLockRange, timeout, flags)

struct sffsi far \ psffsi;

struct sffsd far \ psffsd;

struct filelock far \ pUnLockRange;

struct filelock far \ pLockRange;

unsigned long timeout;

unsigned long flags;

 Where
psffsi

is a pointer to the file-system-independent portion of an open file instance.

psffsd

is a pointer to the file-system-dependent portion of an open file instance.

pUnLockRange

is a pointer to a filelock structure, identifying the range of the file to be unlocked.

The filelock structure has the following format:

struct filelock {

unsigned long FileOffset; /\ offset where the lock/unlock begins \/

unsigned long RangeLength; /\ length of region locked/unlocked \/

}

 If RangeLength is zero, no unlocking is required.

pLockRange

is a pointer to a filelock structure, identifying the range of the file to be locked. If

RangeLength is zero, no locking is required.

timeout

is the maximum time in milliseconds that the requestor wants to wait for the

requested ranges, if they are not immediately available.

flags

specify what actions are to be taken depending on how the flag bits are set.

flags

is the bit mask which specifies what actions are to taken:

SHARE Bit 0 on indicates other processes can share access to this locked

range. Ranges with SHARE bit on can overlap.

SHARE Bit 0 off indicates the current process has exclusive access to the

locked range. An range with the SHARE bit off CANNOT overlap with any

other lock range.

 Chapter 2. FS Service Routines 2-29

ATOMIC Bit 1 on indicates an atomic lock request. If the lock range equals

the unlock range, an atomic lock will occur. If the ranges are not equal, an

error will be returned.

All other bits(2-31) are reserved and must be zero.

 Remarks
This entry point was added to support the 32-bit DosSetFileLocks API.

If the lock and unlock range lengths are both zero, an error,

ERROR_LOCK_VIOLATION will be returned to the caller. If only a lock is desired,

pUnLockRange can be NULL or both FileOffset and RangeLength should be set to

zero when the call is made. The opposite is true for an unlock.

When the atomic bit is not set, the unlock occurs first then the lock is performed. If

an error occurs on the unlock, an error is returned and the lock is not performed. If

an error occurs on the lock, an error is returned and the unlock remains in effect if

one was requested. If the atomic bit is set and the unlock range equals the lock

range and the unlock range has shared access but wants to change the access to

exclusive access, the function is atomic. FSDs may not support atomic lock func-

tions. If error ERROR_ATOMIC_LOCK_NOT_SUPPORTED is returned, the applica-

tion should do an unlock and lock the range using non-atomic operations. The

application should also be sure to refresh its internal buffers prior to making any

modifications.

Closing a file with locks still in force causes the locks to be released in no defined

order.

Terminating a process with a file open and having issued locks on that file causes

the file to be closed and the locks to be released in no defined order.

 The figure below describes the level of access granted when the accessed region

is locked. The locked regions can be anywhere in the logical file. Locking beyond

end-of-file is not an error. It is expected that the time in which regions are locked

will be short. Duplicating the handle duplicates access to the locked regions.

Access to the locked regions is not duplicated across the DosExecPgm system call.

The proper method for using locks is not to rely on being denied read or write

access, but attempting to lock the region desired and examining the error code.

Locked Access Table

 Action Exclusive Lock Shared Lock

 Owner read Success Success

 Non-owner read Return code, not block Success

 Owner write Success Return code, not block

 Non-owner write Return code, not block Return code, not block

The locked access table has the actions on the left as to whether owners or non-

owners of a file do either reads or writes of files that have exclusive or shared locks

2-30 DRAFT: OS/2 Installable File Systems

set. A range to be locked for exclusive access must first be cleared of any locked

subranges or locked any locked subranges or locked overlapping ranges.

 Chapter 2. FS Service Routines 2-31

 FS_FINDCLOSE
Directory Read (Search) Close

 Purpose
Provides the mechanism for an FSD to release resources allocated on behalf of

FS_FINDFIRST and FS_FINDNEXT.

 Calling Sequence
int far pascal FS_FINDCLOSE (pfsfsi, pfsfsd)

struct fsfsi far \ pfsfsi;

struct fsfsd far \ pfsfsd;

 Where
pfsfsi

is a pointer to the file-system-independent file search structure.

The FSD should not update this structure.

pfsfsd

is a pointer to the file-system-dependent file search structure.

The FSD may use this to store information about continuation of its search.

 Remarks
DosFindClose has been called on the handle associated with the search buffer.

Any file system related information may be released.

If FS_FINDFIRST for a particular search returns an error, an FS_FINDCLOSE for

that search will not be issued.

2-32 DRAFT: OS/2 Installable File Systems

 FS_FINDFIRST
Find First Matching File Name(s)

 Purpose
Find first occurrence(s) of matching file name(s) in a directory.

 Calling Sequence
int far pascal FS_FINDFIRST (pcdfsi, pcdfsd, pName, iCurDirEnd,

attr, pfsfsi, pfsfsd,

pData, cbData, pcMatch, level, flags)

struct cdfsi far \ pcdfsi;

struct cdfsd far \ pcdfsd;

char far \ pName;

unsigned short iCurDirEnd;

unsigned short attr;

struct fsfsi far \ pfsfsi;

struct fsfsd far \ pfsfsd;

char far \ pData;

unsigned short cbData;

unsigned short far \ pcMatch;

unsigned short level;

unsigned short flags;

 Where
pcdfsi

is a pointer to the file-system-independent working directory structure.

pcdfsd

is a pointer to the file-system-dependent working directory structure.

pName

is a pointer to the ASCIIZ name of the file or directory.

Wildcard characters are allowed only in the last component. The FSD does not

need to validate this pointer.

iCurDirEnd

is the index of the end of the current directory in pName.

This is provided to allow optimization of FSD path processing. If iCurDirEnd ==

-1 there is no current directory relevant to the name text, that is, a device.

attr

is a bit field that governs the match.

Any directory entry whose attribute bit mask is a subset of attr and whose name

matches that in pName should be returned. The attr field is two byte sized attri-

bute bit masks. The least significant byte contains the "may have" bits. For

example, a "may have" attribute of system and hidden is passed in. A file with

the same name and an attribute of system is found. This file is returned. A file

with the same name and no attributes (a regular file) is also returned. The "may

have" attributes read-only and file-archive will not be passed in and should be

ignored when comparing directory attributes. The most significant byte contains

the "must have" bits. A file with a matching name must also have the attributes

in the "must have" bits to be returned. See the OS/2 Version 3.0 Control

Program Programming Reference for more information about the attribute field

under DosFindFirst.

 Chapter 2. FS Service Routines 2-33

The value of attr passed to the FSD will be valid. The bit 0x0040 indicates a

non-8.3 filename format. It should be treated the same way as system and

hidden attributes are. You should not return a file name that does not conform

to 8.3 filename format if this bit is not set in the "may have" bits.

pfsfsi

is a pointer to the file-system-independent file-search structure.

The FSD should not update this structure.

pfsfsd

is a pointer to the file-system-dependent file-search structure.

The FSD may use this to store information about continuation of the search.

pData

is the address of the application data area.

Addressing of this data area is not validated by the kernel (see

FSH_PROBEBUF). The FSD will fill in this area with a set of packed, variable-

length structures that contain the requested data and matching file name.

cbData

is the length of the application data area in bytes.

pcMatch

is a pointer to the number of matching entries.

The FSD returns, at most, this number of entries; the FSD returns in this

parameter the number of entries actually placed in the data area.

The FSD does not need to validate this pointer.

level

is the information level to be returned.

Level selects among a series of data structures to be returned (see below). The

level passed to the FSD is valid.

flags

indicates whether to return file-position information.

flags == FF_NOPOS (0x00) indicates that file-position information should not be

returned (see below).

flags == FF_GETPOS (0x01) indicates that file-position information should be

returned and the information format described below should be used.

The flag passed to the FSD has a valid value.

 Remarks
Note:

The find structure passed back to the user is the structure defined for the 16 bit

DosFindFirst API with some modification if the flags parameter is set. The basic,

level one FILEFINDBUF structure is

2-34 DRAFT: OS/2 Installable File Systems

struct FileFindBuf {

 unsigned short dateCreate;

 unsigned short timeCreate;

 unsigned short dateAccess;

 unsigned short timeAccess;

 unsigned short dateWrite;

 unsigned short timeWrite;

 long cbEOF;

 long cbAlloc;

 unsigned short attr;

 unsigned char cbName;

 unsigned char szName[];

}

For flags == 1, the FSD must store in the first DWORD of the per-file attributes

structure adequate information that in addition with the file name will allow the

search to be resumed from the file by calling FS_FINDFROMNAME. For example,

an ordinal representing the file's position in the directory could be stored. If the

filename must be used to restart the search, the DWORD may be left blank.

For level 0x0001 and flags == 1, directory information for FS_FINDFIRST is

returned in the following format:

struct FileFromFindBuf {

long position; /\ position given to FSD on following \/

/\ FS_FINDFROMNAME call \/

 unsigned short dateCreate;

 unsigned short timeCreate;

 unsigned short dateAccess;

 unsigned short timeAccess;

 unsigned short dateWrite;

 unsigned short timeWrite;

 long cbEOF;

 long cbAlloc;

 unsigned short attr;

 unsigned char cbName;

 unsigned char szName[];

}

The other information levels have similar format, with the position the first field in

the structure for flags == 1. For level 0x0002 and flags == 1, directory information

for FS_FINDFIRST is returned in the following format:

struct FileFromFindBuf {

long position; /\ this field is not present if flags \/

/\ is 0 \/

 unsigned short dateCreate;

 unsigned short timeCreate;

 unsigned short dateAccess;

 unsigned short timeAccess;

 unsigned short dateWrite;

 unsigned short timeWrite;

 long cbEOF;

 long cbAlloc;

 unsigned short attr;

unsigned long cbList; /\ size of EAs for the file \/

 unsigned char cbName;

 unsigned char szName[];

}

 Chapter 2. FS Service Routines 2-35

For level 0x0003 and flags == 1, the directory information for FS_FINDFIRST is a

bit more complicated. An EAOP struction will be located at the beginning of pData.

You should start filling in the data after the EAOP structure. The data format is:

struct FileFromFindBuf {

long position; /\ this field is not present if flags \/

/\ is 0. \/

 unsigned short dateCreate;

 unsigned short timeCreate;

 unsigned short dateAccess;

 unsigned short timeAccess;

 unsigned short dateWrite;

 unsigned short timeWrite;

 long cbEOF;

 long cbAlloc;

 unsigned short attr;

FEALIST fealist; /\ this is a variable length field \/

 unsigned char cbName;

 unsigned char szName[];

}

For a description of the FEALIST structure, see “FEAs” on page 1-9.

If the non-8.3 filename format bit is set in the attributes of a file found by

FS_FINDFIRST/NEXT/FROMNAME, it must be turned off in the copy of the attri-

butes returned in pData.

If FS_FINDFIRST for a particular search returns an error, an FS_FINDCLOSE for

that search will not be issued.

Sufficient information to find the next matching directory entry must be saved in the

fsfsd data structure.

In the case where directory entry information overflows the pData area, the FSD

should be able to continue the search from the entry which caused the overflow on

the next FS_FINDNEXT or FS_FINDFROMNAME.

In the case of a global search in a directory, the first two entries in that directory as

reported by the FSD should be '.' and '..' (current and the parent directories).

Note: The FSD will be called with the FINDFIRST/FINDFROMNAME interface

when the 32-bit DosFindFirst/DosFindNext APIs are called. THIS IS A CHANGE

FROM 1.X IFS interface for redirector FSDs. The kernel will also be massaging the

find records so that they appear the way the caller expects. Redirectors who have

to resume searches should take this information into account. (i.e. You might want

to reduce the size of the buffer sent to the server, so that the position fields can be

added to the beginning of all the find records).

Application Note: Some applications have been coded to expect behavior

beyond the architectural requirements. For example, there are applications that

require DosFindFirst to return an entry for a file that has been open-created, but

which has never been closed. You can debate whether a file truly exists until it has

been closed, but unless the applications are changed they will still not work. Con-

sequently, it is recommended that FSDs exhibit this behavior.

2-36 DRAFT: OS/2 Installable File Systems

 FS_FINDFROMNAME
Find matching file name(s) starting from name

 Purpose
Find occurrence(s) of file name(s) in a directory starting from a position or name.

 Calling Sequence
int far pascal FS_FINDFROMNAME (psfsfsi, pfsfsd, pData, cbData, pcMatch,

level, position, pName, flags)

struct fsfsi far \ pfsfsi;

struct fsfsd far \ pfsfsd;

char far \ pData;

unsigned short cbData;

unsigned short far \ pcMatch;

unsigned short level;

unsigned long position;

char far \ pName;

unsigned short flags;

 Where
pfsfsi

is a pointer to the file-system-independent file search structure. The FSD

should not update this structure.

pfsfsd

is a pointer to the file-system-dependent file search structure. The FSD may

use this to store information about continuation of the search.

pData

is the address of the application data area.

Addressing of this data area has not been validated by the kernel (see

FSH_PROBEBUF). The FSD will fill in this area with a set of packed, variable-

length structures that contain the requested data and matching file names in the

format required for DosFindFirst/Next.

cbData

is the length of the application data area in bytes.

pcMatch

is a pointer to the number of matching entries. The FSD will return at most this

number of entries. The FSD will store into it the number of entries actually

placed in the data area. The FSD does not need to validate this pointer.

level

is the information level to be returned. Level selects among a series of struc-

tures of data to be returned. The level passed to the FSD is valid.

position

is the file-system-specific information about where to restart the search from.

This information was returned by the FSD in the ResultBuf for a

DosFindFirst2/Next/FromName call.

pName

is the filename from which to continue the search. The FSD does not need to

validate this pointer.

 Chapter 2. FS Service Routines 2-37

flags

indicates whether to return file position information. The flag passed to the FSD

has a valid value.

flags == FF_NOPOS (0x00) indicates that file-position information should not be

returned, see FS_FINDFIRST.

flags == FF_GETPOS (0x01) indicates that file-position information should be

returned in the information format described under FS_FINDFIRST.

 Remarks
The FSD may use the position or filename or both to determine the position from

which to resume the directory search. Support of this entry point requires the

ability to "resynch" or "rewind" a search request. The operating system can request

that you start the search over with the file following the filename in pName. The

information in position is the value that the FSD put in the position field in that

file's FILEFINDBUF structure in a previous search request.

For flags == 1, the FSD must store in the position field adequate information to

allow the search to be resumed from the file by calling FS_FINDFROMNAME. See

FS_FINDFIRST for a description of the data format.

The FSD must ensure that enough information is stored in the fsfsd data structure

to enable it to continue the search.

Note: The FSD will be called with the FINDFIRST/FINDFROMNAME interface

when the 32-bit DosFindFirst/DosFindNext APIs are called. THIS IS A CHANGE

FROM 1.X IFS interface for redirector FSDs. The kernel will also be massaging the

find records so that they appear the way the caller expects. Redirectors who have

to resume searches should take this information into account. (i.e. You might want

to reduce the size of the buffer sent to the server, so that the position fields can be

added to the beginning of all the find records).

2-38 DRAFT: OS/2 Installable File Systems

 FS_FINDNEXT
Find next matching file name.

 Purpose
Find the next occurrence of a file name in a directory.

 Calling Sequence
int far pascal FS_FINDNEXT (pfsfsi, pfsfsd, pData, cbData, pcMatch,

 level, flags)

struct fsfsi far \ pfsfsi;

struct fsfsd far \ pfsfsd;

char far \ pData;

unsigned short cbData;

unsigned short far \ pcMatch;

unsigned short level;

unsigned short flags;

 Where
pfsfsi

is a pointer to the file-system-independent file-search structure. The FSD

should not update this structure.

pfsfsd

is a pointer to the file-system-dependent file-search structure. The FSD may

use this to store information about continuation of the search.

pData

is the address of the application area.

Addressing of this data area is not validated by the kernel (see

FSH_PROBEBUF). The FSD fills in this area with a set of packed, variable-

length structures that contain the requested data and matching file names.

cbData

is the length of the application data area in bytes.

pcMatch

is a pointer to the number of matching entries.

The FSD returns, at most, this number of entries. The FSD returns the the

number of entries actually placed in the data area in this parameter.

The FSD does not need to validate this pointer.

level

is the information level to be returned. Level selects among a series of struc-

tures of data to be returned. The level passed to the FSD is valid.

flags

indicates whether to return file-position information.

flags == FF_NOPOS (0x00) indicates that file-position information should not be

returned, see FS_FINDFIRST.

flags == FF_GETPOS (0x01) indicates that file-position information should be

returned in the information format described under FS_FINDFIRST.

 Chapter 2. FS Service Routines 2-39

 Remarks
For flags == FF_GETPOS, the FSD must store in the position field adequate infor-

mation to allow the search to be resumed from the file by calling

FS_FINDFROMNAME. See FS_FINDFIRST for a description of the data format.

The level passed to FS_FINDNEXT is the same level as that passed to

FS_FINDFIRST to initiate the search.

Sufficient information to find the next matching directory entry must be saved in the

fsfsd data structure.

The FSD should take care of the case where the pData area overflow may occur.

FSDs should be able to start the search from the same entry for the next

FS_FINDNEXT as the one for which the overflow occurred.

2-40 DRAFT: OS/2 Installable File Systems

 FS_FINDNOTIFYCLOSE
Close Find-Notify Handle

 Purpose
This function is now obsolete. The notification of file system changes is now being

supported by the generic IFS mechanism. Removal of the entry point would result

in unmodified FSDs being incompatible, so it was left in. Returning

ERROR_NOT_SUPPORTED is recommended. The original function was to close

the association between a Find-Notify handle and a DosFindNotifyFirst or

DosFindNotifyNext function.

 Calling Sequence
int far pascal FS_FINDNOTIFYCLOSE (handle)

unsigned short handle;

 Where
handle

is the directory handle.

This handle was returned by the FSD on a previous FS_FINDNOTIFYFIRST or

FS_FINDNOTIFYNEXT call.

 Remarks

 Chapter 2. FS Service Routines 2-41

 FS_FINDNOTIFYFIRST
Monitor a directory for changes.

 Purpose
This function is now obsolete. The notification of file system changes is now being

supported by the generic IFS mechanism. Removal of the entry point would result

in unmodified FSDs being incompatible, so it was left in. Returning

ERROR_NOT_SUPPORTED is recommended. The original function was to start

monitoring a directory for changes.

 Calling Sequence
int far pascal FS_FINDNOTIFYFIRST (pcdfsi, pcdfsd, pName, iCurDirEnd,

attr, pHandle, pData, cbData, pcMatch,

 level, timeout)

struct cdfsi far \ pcdfsi;

struct cdfsd far \ pcdfsd;

char far \ pName;

unsigned short iCurDirEnd;

unsigned short attr;

unsigned short far \ pHandle;

char far \ pData;

unsigned short cbData;

unsigned short far \ pMatch;

unsigned short level;

unsigned long timeout;

 Where
pcdfsi

is a pointer to the file-system-independent working directory structure.

pcdfsd

is a pointer to the file-system-dependent working directory structure.

pName

is a pointer to the ASCIIZ name of the file or directory.

Wildcard characters are allowed only in the last component. The FSD does not

need to verify this pointer.

iCurDirEnd

is the index of the end of the current directory in pName.

This is used to optimize FSD path processing. If iCurDirEnd == -1 there is no

current directory relevant to the name text, that is, a device.

attr

is the bit field that governs the match.

Any directory entry whose attribute bit mask is a subset of attr and whose name

matches that in pName should be returned. See FS_FINDFIRST for an expla-

nation.

pHandle

is a pointer to the handle for the find-notify request.

The FSD allocates a handle for the find-notify request, that is, a handle to the

directory monitoring continuation information, and stores it here. This handle is

passed to FS_FINDNOTIFYNEXT to continue directory monitoring.

2-42 DRAFT: OS/2 Installable File Systems

The FSD does not need to verify this pointer.

pData

is the address of the application data area.

Addressing of this data area is not validated by the kernel (see

FSH&PROBEBUF). The FSD fills in this area with a set of packed, variable-

length structures that contain the requested data and matching file names.

cbData

is the length of the application data area in bytes.

pcMatch

is a pointer to the number of matching entries.

The FSD returns, at most, this number of entries. The FSD returns in this

parameter the number of entries actually placed in the data area.

The FSD does not need to verify this pointer.

level

is the information level to be returned.

Level selects among a series of data structures to be returned. See the

description of DosFindNotifyFirst in the OS/2 Version 3.0 Control Program Pro-

gramming Reference for more information.

The level passed to the FSD is valid.

timeout

is the timeout in milliseconds.

The FSD waits until either the timeout has expired, the buffer is full, or the spec-

ified number of entries has been returned before returning to the caller.

 Remarks
None.

 Chapter 2. FS Service Routines 2-43

 FS_FINDNOTIFYNEXT
Resume reporting directory changes

 Purpose
This function is now obsolete. The notification of file system changes is now being

supported by the generic IFS mechanism. Removal of the entry point would result

in unmodified FSDs being incompatible, so it was left in. Returning

ERROR_NOT_SUPPORTED is recommended. The original function was to resume

reporting of changes to a file or directory.

 Calling Sequence
int far pascal FS_FINDNOTIFYNEXT (handle, pData, cbData, pcMatch,

level, timeout)

unsigned short handle;

char far \ pData;

unsigned short cbData;

unsigned short far \ pcMatch;

unsigned short level;

unsigned long timeout;

 Where
handle

is the handle to the find-notify request.

This handle was returned by the FSD and is associated with a previous

FS_FINDNOTIFYFIRST or FS_FINDNOTIFYNEXT call.

pData

is the address of the application data area.

Addressing of this data area is not validated by the kernel (see

FSH_PROBEBUF). The FSD fills in this area with a set of packed, variable-

length structures that contain the requested data and matching file names.

cbData

is the length of the application data area in bytes.

pcMatch

is a pointer to the number of matching entries.

The FSD returns, at most, this number of entries. The FSD returns in this

parameter the number of entries actually placed in the data area.

The FSD does not need to verify this pointer.

level

is the information level to be returned.

Level selects among a series of data structures to be returned. See the

description of DosFindNotifyFirst in the OS/2 Version 3.0 Control Program Pro-

gramming Reference for more information.

The level passed to the FSD is valid.

timeout

is the timeout in milliseconds.

The FSD waits until either the timeout has expired, the buffer is full, or the spec-

ified number of entries has been returned before returning to the caller.

2-44 DRAFT: OS/2 Installable File Systems

 Remarks
pcMatch is the number of changes required to directories or files that match the

pName target and attr specified during a related, previous FS_FINDNOTIFYFIRST.

The file system uses this field to return the number of changes that actually

occurred since the issue of the present FS_FINDNOTIFYNEXT.

The level passed to FS_FINDNOTIFYNEXT is the same level as that passed to

FS_FINDNOTIFYFIRST to initiate the search.

 Chapter 2. FS Service Routines 2-45

 FS_FLUSHBUF
Commit file buffers

 Purpose
Flushes cache buffers for a specific volume.

 Calling Sequence
int far pascal FS_FLUSHBUF (hVPB, flag)

unsigned short hVPB;

unsigned short flag;

 Where
hVPB

is the handle to the volume for flush.

flag

is used to indicate discarding of cached data.

flag == FLUSH_RETAIN (0x00) indicates cached data may be retained.

flag == FLUSH_DISCARD (0x01) indicates the FSD will discard any cached

data after flushing it to the specified volume.

All other values are reserved.

 Remarks
After this call is completed, the volume should be in a consistent state. In other

words, if the media went off line, CHKDSK should not find any discrepancy in your

file system structure if the media was then mounted at a later date. "Dirty" flags

may still be set, but the file system structures should be committed.

2-46 DRAFT: OS/2 Installable File Systems

 FS_FSCTL
File System Control

 Purpose
Allow an extended standard interface between an application and a file system

driver.

This is the official, architected way to implement any functions that are unique to

your file system. The FS_IOCTL is intended for functions that will be primarily ser-

viced by the device driver.

 Calling Sequence
int far pascal FS_FSCTL (pArgdat, iArgType, func,

pParm, lenParm, plenParmIO,

pData, lenData, plenDataIO)

union argdat far \ pArgDat;

unsigned short iArgType;

unsigned short func;

char far \ pParm;

unsigned short lenParm;

unsigned short far \ plenParmIO;

char far \ pData;

unsigned short lenData;

unsigned short far \ plenDataIO;

 Where
pArgDat

is a pointer to the union whose contents depend on iArgType. The union is

defined as follows:

union argdat {

/\ pArgType = 1, FileHandle directed case \/

struct sf {

struct sffsi far \ psfsi;

struct sffsd far \ psfsd;

 };

/\ pArgType = 2, Pathname directed case \/

struct cd {

struct cdfsi far \ pcdfsi;

struct cdfsd far \ pcdfsd;

char far \ pPath;

unsigned short iCurDirEnd;

 };

/\ pArgType = 3, FSD Name directed case \/

/\ pArgDat is Null \/

};

iArgType

indicates the argument type.

Ÿ iArgType = FSCTL_ARG_FILEINSTANCE (0x01)

means that pArgDat->sf.psfsi and pArgDat->sf.psfsd point to an sffsi and

sffsd, respectively.

 Chapter 2. FS Service Routines 2-47

Ÿ iArgType = FSCTL_ARG_CURDIR (0x02)

means that pArgDat->cd.pcdfsi and pArgDat->cd.pcdfsd point to a cdfsi and

cdfsd, pArgDat->cd.pPath points to a canonical pathname, and

pArgDat->cd.iCurDirEnd gives the index of the end of the current directory

in pPath. The FSD does not need to verify the pPath pointer.

Ÿ iArgType = FSCTL_ARG_NULL (0x03)

means that the call was FSD name routed, and pArgDat is a NULL pointer.

func

indicates the function to perform.

Ÿ func == FSCTL_FUNC_NEW_INFO (0x01) indicates a request for new error

code information.

Ÿ func == FSCTL_FUNC_EASIZE (0x02) indicates a request for the maximum

EA size and EA list size supported by the FSD.

pParm

is the address of the application input parameter area.

Addressing of this data area has not been validated by the kernel (see

FSH_PROBEBUF).

lenParm

is the maximum length of the application parameter area (pParm).

plenParmIO

On input, contains the length in bytes of the parameters being passed in to the

FSD in pParm. On return, contains the length in bytes of data returned in

pParm by the FSD. The length of the data returned by the FSD in pParm must

not exceed the length in lenParm. Addressing of this area is not validated by

the kernel (see FSH_PROBEBUF).

pData

is the address of the application output data area.

Addressing of this data area is not validated by the kernel (see

FSH_PROBEBUF).

lenData

is the maximum length of the application output data area (pData).

plenDataIO

On input, contains the length in bytes of the data being passed in to the FSD in

pData. On return, contains the length in bytes of data returned in pData by the

FSD. The length of the data returned by the FSD in pData must not exceed the

length in lenData. Addressing of this area is not validated by the kernel (see

FSH_PROBEBUF).

 Remarks
The accessibility of the parameter and data buffers has not been validated by the

kernel. FS_PROBEBUF must be used.

All FSDs must support func == 1 to return new error code information and func ==

2 to return the limits of the EA sizes.

 For func == 1, the error code is passed to the FSD in the first WORD of the

parameter area. On return, the first word of the data area contains the length of

the asciiz string containing an explanation of the error code. The data area con-

2-48 DRAFT: OS/2 Installable File Systems

tains the asciiz string beginning at the second WORD. Unfortunately, no current

system code or utilities use this function. Consequently, it is recommended that

FSDs try to restrict themselves to the standard return code set. In the future we

may be able to use this as intended.

For func == 2, the maximum EA and EA list sizes supported by the FSD are

returned in the buffer pointed to by pData in the following format:

EASizeBufStruc {

unsigned short easb_MaxEASize; /\ Max size of an individual EA \/

unsigned long easb_MaxEAListSize; /\ Max full EA list size \/

}

 Chapter 2. FS Service Routines 2-49

 FS_FSINFO
File System Information

 Purpose
Returns or sets information for a file system device.

 Calling Sequence
int far pascal FS_FSINFO (flag, hVPB, pData, cbData, level)

unsigned short flag;

unsigned short hVPB;

char far \ pData;

unsigned short cbData;

unsigned short level;

 Where
flag

indicates retrieval or setting of information.

flag == INFO_RETRIEVE (0x00) indicates retrieving information.

flag == INFO_SET (0x01) indicates setting information on the media.

All other values are reserved.

hVPB

is the handle to the volume of interest.

pData

is the address of the application output data area.

Addressing of this data area has not been validated by the kernel (see

(FSH_PROBEBUF).

cbData

is the length of the application data area.

For flag == 0, this is the length of the data the application wishes to retrieve. If

there is not enough room for the entire level of data to be returned, the FSD will

return a BUFFER OVERFLOW error. For flag == 1, this is the length of the

data to be sent to the file system.

level

is the information level to be returned.

Level selects among a series of structures of data to be returned or set. See

DosQFSInfo and DosSetFSInfo for information.

 Remarks
None.

2-50 DRAFT: OS/2 Installable File Systems

 FS_INIT
File system driver initialization

 Purpose
Request file system driver initialization.

 Calling Sequence
int far pascal FS_INIT (szParm, DevHelp, pMiniFSD)

char far \ szParm;

unsigned long DevHelp;

unsigned long far \ pMiniFSD;

 Where
szParm

is a pointer to the ASCIIZ parameters following the CONFIG.SYS IFS=

command that loaded the FSD. If there are no parameters, this pointer will be

NULL. The FSD does not need to verify this pointer.

DevHelp

is the address of the kernel entry point for the DevHelp routines.

This is used exactly as the device driver DevHelp address, and can be used by

an FSD that needs access to some of the device helper services.

pMiniFSD

is a pointer to data passed between the mini-FSD and the FSD, or null.

 Remarks
This call is made during system initialization to allow the FSD to perform actions

necessary for beignning operation. The FSD may successfully initialize by

returning a return code of NO_ERROR or may reject installation (invalid parame-

ters, incompatible hardware, etc.) by returning the appropriate error code. If

rejection is selected, all FSD selectors and segments are released.

pMiniFSD will be null, except when booting from a volume managed by an FSD

and the exported name of the FSD matches the exported name of the mini-FSD.

In this case, pMiniFSD will point to data established by the mini-FSD (See

mFS_INIT).

 Chapter 2. FS Service Routines 2-51

 FS_IOCTL
I/O Control for Devices

 Purpose
Perform control function on the device specified by the opened device handle.

 Calling Sequence
int far pascal FS_IOCTL (psffsi, psffsd, cat, func,

pParm, lenMaxParm, plenInOutParm,

pData, lenMaxData, plenInOutData)

struct sffsi far \ psffsi;

struct sffsd far \ psffsd;

unsigned short cat;

unsigned short func;

char far \ pParm;

unsigned short lenMaxParm;

unsigned short \ plenInOutParm;

char far \ pData;

unsigned short lenMaxData;

unsigned short \ plenInOutData;

 Where
psffsi

is a pointer to the file-system-independent portion of an open file instance.

psffsd

is a pointer to the file-system-dependent portion of an open file instance.

cat

is the category of the function to be performed.

func

is the function within the category to be performed.

pParm

is the address of the application input parameter area.

Addressing of this data area is not validated by the kernel (see

FSH_PROBEBUF). A null value indicates that the parameter is unspecified for

this function.

lenMaxParm

is the byte length of the application input parameter area.

If lenMaxParm is 0, *plenInOutParm is 0, and pParm is not null, it means that

the data buffer length is unknown due to the request being submitted via an old

IOCTL or DosDevIOCtl interface.

plenInOutParm

is the pointer to an unsigned short that contains the length of the parameter

area in use on input and is set by the FSD to be the length of the parameter

area in use on output.

Addressing of this data area is not validated by the kernel (see

FSH_PROBEBUF). A null value indicates that the parameter is unspecified for

this function.

2-52 DRAFT: OS/2 Installable File Systems

pData

is the address of the application output data area.

Addressing of this data area has not been validated by the kernel (see

FSH_PROBEBUF). A null value indicates that the parameter is unspecified for

this function.

lenMaxData

is the byte length of the application output data area.

If lenMaxData is 0, *plenInOutData is 0, and pData is not null, it means that the

data buffer length is unknown due to the request being submitted via an old

IOCTL or DosDevIOCtl interface.

plenInOutData

is the pointer to an unsigned short that contains the length of the data area in

use on input and is set by the FSD to be the length of the data area in use on

output.

Addressing of this data area is not validated by the kernel (see

FSH_PROBEBUF). A null value indicates that the parameter is unspecified for

this function.

 Remarks
Note: This entry point's parameter list defintion has changed from the 1.x IFS doc-

ument. If the parameters plenInOutParm and plenInOutData are null, use the

lenMax parameters as the buffer sizes sent to any file system helper.

 Chapter 2. FS Service Routines 2-53

 FS_MKDIR
Make Subdirectory

 Purpose
Create the specified directory.

 Calling Sequence
int far pascal FS_MKDIR (pcdfsi, pcdfsd, pName, iCurDirEnd, pEABuf, flags)

struct cdfsi far \ pcdfsi;

struct cdfsd far \ pcdfsd;

char far \ pName;

unsigned short iCurDirEnd;

char far \ pEABuf;

unsighed short flags;

 Where
pcdfsi

is a pointer to the file-system-independent working directory structure.

pcdfsd

is a pointer to the file-system-dependent working directory structure.

pName

is a pointer to the ASCIIZ name of the directory to be created.

The FSD does not need to verify this pointer.

iCurDirEnd

is the index of the end of the current directory in pName.

This is used to optimize FSD path processing. If iCurDirEnd == -1, there is no

current directory relevant to the name text, that is, a device.

pEABuf

is a pointer to the extended attribute buffer.

This buffer contains attributes that will be set upon creation of the new directory.

If NULL, no extended attributes are to be set. Addressing of this data area has

not been validated by the kernel (see FSH_PROBEBUF).

flags

indicates the name type.

Flags == 0x0040 indicates a non-8.3 filename format. All other values are

reserved.

 Remarks
The FSD needs to do the time stamping itself. There is no aid in the kernel for

time stamping sub-directories. FAT only supports creation time stamp and sets the

other two fields to zeroes. An FSD should do the same. The FSD can obtain the

current time/date from the infoseg.

A new directory called pName should be created if possible. The standard direc-

tory entries '.' and '..' should be put into the directory.

The non-8.3 filename format attribute in the directory entry should be set according

to the value in flags.

2-54 DRAFT: OS/2 Installable File Systems

 Chapter 2. FS Service Routines 2-55

 FS_MOUNT
Mount/unmount volumes

 Purpose
Examination of a volume by an FSD to see if it recognizes the file system format.

 Calling Sequence
int far pascal FS_MOUNT (flag, pvpfsi, pvpfsd, hVPB, pBoot)

unsigned short flag;

struct vpfsi far \ pvpfsi;

struct vpfsd far \ pvpfsd;

unsigned short hVPB;

char far \ pBoot;

 Where
flag

indicates operation requested.

flag == MOUNT_MOUNT (0x00) indicates that the FSD is requested to

mount or accept a volume.

flag == MOUNT_VOL_REMOVED (0x01) indicates that the FSD is being

advised that the specified volume has been removed.

flag == MOUNT_RELEASE (0x02) indicates that the FSD is requested to

release all internal storage assigned to that volume as it has been removed

from its driver and the last kernel-managed reference to that volume has

been removed.

flag == MOUNT_ACCEPT (0x03) indicates that the FSD is requested to

accept the volume regardless of recognition in preparation for formatting for

use with the FSD.

All other values are reserved.

The value passed to the FSD will be valid.

pvpfsi

is a pointer to the file-system-independent portion of VPB.

If the media contains an OS/2-recognizable boot sector, then the vpi_vid field

contains the 32-bit identifier for that volume. If the media does not contain such

a boot sector, the FSD must generate a unique label for the media and place it

into the vpi_vid field.

pvpfsd

is a pointer to the file-system-dependent portion of VPB.

The FSD may store information as necessary into this area.

hVPB

is the handle to the volume

pBoot

is a pointer to sector 0 read from the media.

This pointer is only valid when flag == 0. The buffer the pointer refers to must

not be modified. The pointer is always valid and does not need to be verified

when flag == 0. If a read error occurred, the buffer will contain zeroes.

2-56 DRAFT: OS/2 Installable File Systems

 Remarks
The FSD examines the volume presented and determine whether it recognizes the

file system. If it does, it returns zero, after having filled in appropriate parts of the

vpfsi and vpfsd data structures. The vpi_vid and vpi_text fields must be filled in by

the FSD. If the FSD has an OS/2 format boot sector, it must convert the label from

the media into ASCIIZ form. The vpi_hDev field is filled in by OS/2. If the volume

is unrecognized, the driver returns non-zero.

The vpi_text and vpi_vid must be updated by the FSD each time these values

change.

The contents of the vpfsd data structure are as follows:

FLAG = 0 The FSD is expected to issue an FSD_FINDDUPHVPB to see if a dupli-

cate VPB exists. If one does exist, the VPB fs dependent area of the

new VPB is invalid and the new VPB will be unmounted after the FSD

returns from the MOUNT. The FSD is expected to update the FS

dependent area of the old duplicate VPB. If no duplicate VPB exists,

the FSD should initialize the FS dependent area.

FLAG = 1 VPB FS dependent part is same as when FSD last modified it.

FLAG = 2 VPB FS dependent part is same as when FSD last modified it.

After media recognition time, the volume parameters may be examined using the

FSH_GETVOLPARM call. The volume parameters should not be changed after

media recognition time.

During a mount request, the FSD may examine other sectors on the media by

using FSH_DOVOLIO to perform the I/O. If an uncertain-media return is detected,

the FSD is expected to clean up and return an UNCERTAIN MEDIA error in order

to allow the volume mount logic to restart on the newly-inserted media. The FSD

must provide the buffer to use for additional I/O.

The OS/2 kernel manages the VPB through a reference count. All volume-specific

objects are labelled with the appropriate volume handle and represent references to

the VPB. When all kernel references to a volume disappear, FS_MOUNT is called

with flag == 2, indicating a dismount request.

When the kernel detects that a volume has been removed from its driver, but there

are still outstanding references to the volume, FS_MOUNT is called with flag == 1

to allow the FSD to drop clean (or other regenerable) data for the volume. Data

which is dirty and cannot be regenerated should be kept so that it may be written to

the volume when it is remounted in the drive.

When a volume is to be formatted for use with an FSD, the kernel calls the FSD's

FS_MOUNT entry point with flag == 3 to allow the FSD to prepare for the format

operation. The FSD should accept the volume even if it is not a volume of the type

that FSD recognizes, since the point of format is to change the file system on the

volume. The operation may fail if formatting does not make sense. (For example,

an FSD which supports only CD-ROM.)

Since the hardware does not allow for kernel-mediated removal of media, it is prob-

able that the unmount request will be issued when the volume is not present in any

drive.

 Chapter 2. FS Service Routines 2-57

 FS_MOVE
Move a file or subdirectory

 Purpose
Moves (renames) the specified file or subdirectory.

 Calling Sequence
int far pascal FS_MOVE (pcdfsi, pcdfsd,

 pSrc, iSrcCurDirEnd,

 pDst, iDstCurDirEnd,

 flags)

struct cdfsi far \ pcdfsi;

struct cdfsd far \ pcdfsd;

char far \ pSrc;

unsigned short iSrcCurDirEnd;

char far \ pDst;

unsigned short iDstCurDirEnd;

unsigned short flags;

 Where
pcsfsi

is a pointer to the file-system-independent working directory structure.

pcdfsd

is a pointer to the file-system-dependent working directory structure.

pSrc

is a pointer to the ASCIIZ name of the source file or directory.

The FSD does not need to verify this pointer.

iSrcCurDirEnd

is the index of the end of the current directory in pSrc.

This is used to optimize FSD path processing. If iSrcCurDirEnd == -1 there is

no current directory relevant to the source name text.

pDst

is a pointer to the ASCIIZ name of the destination file or directory.

The FSD does not need to verify this pointer.

iDstCurDirEnd

is the index of the end of the current directory in pDst.

This is used to optimize FSD path processing. If iDstCurDirEnd == -1 there is

no current directory relevant to the destination name text.

flags

indicates destination name type.

Flags == 0x0040 indicates non-8.3 filename format. All other values are

reserved.

2-58 DRAFT: OS/2 Installable File Systems

 Remarks
The file specified in filename should be moved to or renamed as the destination

filename, if possible.

Neither the source nor the destination filename may contain wildcard characters.

FS_MOVE may be used to change the case in filenames.

The non-8.3 filename format attribute in the directory entry for the destination name

should be set according to the value in flags.

In the case of a subdirectory move, the system does the following checking:

Ÿ No files in this directory or its subdirectories are open.

Ÿ This directory or any of its subdirectories is not the current directory for any

process in the system.

In addition, the system also checks for circularity in source and target directory

names; that is, the source directory is not a prefix of the target directory.

Note: OS/2 does not validate input parameters. Therefore, an FSD should call

FSH_PROBEBUF where appropriate.

 Chapter 2. FS Service Routines 2-59

 FS_NEWSIZE
Change File's Logical Size

 Purpose
Changes a file's logical (EOD) size.

 Calling Sequence
int far pascal FS_NEWSIZE (psffsi, psffsd, len, IOflag)

struct sffsi far \ psffsi;

struct sffsd far \ psffsd;

unsigned long len;

unsigned short IOflag;

 Where
psffsi

is a pointer to the file-system-independent portion of an open file instance.

psffsd

is a pointer to the file-system-dependent portion of an open file instance.

len

is the desired new length of the file.

IOflag

indicates information about the operation on the handle.

IOflag == IOFL_WRITETHRU (0x0010) indicates write-through.

IOflag == IOFL_NOCACHE (0x0020) indicates no-cache.

 Remarks
The FSD should return an error if an attempt is made to write beyond the end of

the volume with a direct access device handle.

The file system driver attempts to set the size (EOD) of the file to newsize and

update sfi_size, if successful. If the new size is larger than the currently allocated

size, the file system driver arranges for for efficient access to the newly-allocated

storage.

Of the information passed in IOflag, the write-through bit is a mandatory bit in that

any data written to the block device must be put out on the medium before the

device driver returns. The no-cache bit, on the other hand, is an advisory bit that

says whether the data being transferred is worth caching or not.

It is legal for the user to attempt to read an area of a file that has been allocated

but not written to. Architecturally, that area is undefined and can be whatever data

is in that area. However, returning a zero-filled buffer for uninitialized file data is

recommended.

2-60 DRAFT: OS/2 Installable File Systems

 FS_NMPIPE
Do a remote named pipe operation.

 Purpose
Perform a special purpose named pipe operation remotely.

 Calling Sequence
int far pascal FS_NMPIPE (psffsi, psffsd, OpType, pOpRec, pData, pName)

struct sffsi far \ psffsi;

struct sffsd far \ psffsd;

unsigned short OpType;

union npoper far \ pOpRec;

char far \ pData;

char far \ pName;

 Where
psffsi

is a pointer to the file-system-independent portion of an open file instance.

psffsd

is a pointer to the file-system-dependent portion of an open file instance.

OpType

is the operation to be performed. This parameter has the following values:

 NMP_GetPHandState 0x21

 NMP_SetPHandState 0x01

 NMP_PipeQInfo 0x22

 NMP_PeekPipe 0x23

 NMP_ConnectPipe 0x24

 NMP_DisconnectPipe 0x25

 NMP_TransactPipe 0x26

 NMP_ReadRaw 0x11

 NMP_WriteRaw 0x31

 NMP_WaitPipe 0x53

 NMP_CallPipe 0x54

 NMP_QNmPipeSemState 0x58

pOpRec

is the data record which varies depending on the value of OpType. The first

parameter in each structure encodes the length of the parameter block. The

second parameter, if non-zero, indicates that the pData parameter is supplied

and gives its length. The following record formats are used:

union npoper {

 struct phs_param phs;

 struct npi_param npi;

 struct npr_param npr;

 struct npw_param npw;

 struct npq_param npq;

 struct npx_param npx;

 struct npp_param npp;

 struct npt_param npt;

 struct qnps_param qnps;

 struct npc_param npc;

 struct npd_param npd;

};

 Chapter 2. FS Service Routines 2-61

/\ Get/SetPhandState parameter block \/

struct phs_param {

 short phs_len;

 short phs_dlen;

 short phs_pmode; /\ pipe mode set or returned \/

};

/\ DosQNmPipeInfo parameter block \/

struct npi_param {

 short npi_len;

 short npi_dlen;

 short npi_level; /\ information level desired \/

};

/\ DosRawReadNmPipe parameters \/

/\ data is buffer addr \/

struct npr_param {

 short npr_len;

 short npr_dlen;

 short npr_nbyt; /\ number of bytes read \/

};

/\ DosRawWriteNmPipe parameters \/

/\ data is buffer addr \/

struct npw_param {

 short npw_len;

 short npw_dlen;

 short npw_nbyt; /\ number of bytes written \/

};

/\ NPipeWait parameters \/

struct npq_param {

 short npq_len;

 short npq_dlen;

long npq_timeo; /\ timeout in milliseconds \/

short npq_prio; /\ priority of caller \/

};

/\ DosCallNmPipe parameters \/

/\ data is in-buffer addr \/

struct npx_param {

 short npx_len;

unsigned short npx_ilen; /\ length of in-buffer \/

char far \ npx_obuf; /\ pointer to out-buffer \/

unsigned short npx_ilen; /\ length of out-buffer \/

unsigned short npx_nbyt; /\ number of bytes read \/

long npx_timeo; /\ timeout in milliseconds \/

};

/\ PeekPipe parameters, data is buffer addr \/

struct npp_param {

2-62 DRAFT: OS/2 Installable File Systems

 short npp_len;

 unsigned short npp_dlen;

unsigned short npp_nbyt; /\ number of bytes read \/

unsigned short npp_av10; /\ bytes left in pipe \/

unsigned short npp_av11; /\ bytes left in current msg \/

unsigned short npp_state; /\ pipe state \/

};

/\ DosTransactNmPipe parameters \/

/\ data is in-buffer addr \/

struct npt_param {

 short npt_len;

unsigned short npt_ilen; /\ length of in-buffer \/

char far \ npt_obuf; /\ pointer to out-buffer \/

unsigned short npt_olen; /\ length of out-buffer \/

unsigned short npt_nbyt; /\ number of bytes read \/

};

/\ QNmPipeSemState parameter block \/

/\ data is user data buffer \/

struct qnps_param {

unsigned short qnps_len; /\ length of parameter block \/

unsigned short qnps_dlen; /\ length of supplied data block \/

long qnps_semh; /\ system semaphore handle \/

unsigned short qnps_nbyt; /\ number of bytes returned \/

};

/\ ConnectPipe parameter block, no data block \/

struct npc_param {

unsigned short npc_len; /\ length of parameter block \/

unsigned short npc_dlen; /\ length of data block \/

};

/\ DisconnectPipe parameter block, no data block \/

struct npd_param {

unsigned short npd_len; /\ length of parameter block \/

unsigned short npd_dlen; /\ length of data block \/

};

pData

is a pointer to a user data for operations which require it. When the pointer is

supplied, its length will be given by the second element of the pOpRec struc-

ture.

pName

is a pointer to a remote pipe name. Supplied only for NMP_WAITPIPE and

NMP_CALLPIPE operations. For these two operations only, the psffsi and

psffsd parameters have no significance.

 Chapter 2. FS Service Routines 2-63

 Remarks
This entry point is for support of special remote named pipe operations. Not all

pointer parameters are used for all operations. In cases where a particular pointer

has no significance, it will be NULL.

This entry point will be called only for the UNC FSD. Non-UNC FSDs are required

to have this entry point, but should return NOT SUPPORTED if called.

2-64 DRAFT: OS/2 Installable File Systems

 FS_OPENCREATE
Open a file

 Purpose
Opens (or creates) the specified file.

 Calling Sequence
int far pascal FS_OPENCREATE (pcdfsi, pcdfsd, pName, iCurDirEnd,

psffsi, psffsd, ulOpenMode, usOpenFlag,

pusAction, usAttr, pcEABuf, pfgenflag)

struct cdfsi far \ pcdfsi;

struct cdfsd far \ pcdfsd;

char far \ pName;

unsigned short iCurDirEnd;

struct sffsi far \ psffsi;

struct sffsd far \ psffsd;

unsigned long ulOpenMode;

unsigned short usOpenFlag;

unsigned short far \ pusAction;

unsigned short usAttr;

char far \ pcEABuf;

unsigned short far \ pfgenflag;

 Where
pcdfsi

is a pointer to the file-system-independent working directory structure.

The contents of this structure are invalid for direct access opens.

pcdfsd

is a pointer to the file-system-dependent working directory structure. The con-

tents of this structure are invalid for direct access opens. For remote character

devices, this field contains a pointer to a DWORD that was obtained from the

remote FSD when the remote device was attached to this FSD. The FSD can

use this DWORD to identify the remote device.

pName

is a pointer to the ASCIIZ name of the file to be opened.

The FSD does not need to verify this pointer.

iCurDirEnd

is the index of the end of the current directory in pName.

This is used to optimize FSD path processing. If iCurDirEnd == -1, there is no

current directory relevant to the name text, that is a device. This value is invalid

for direct access opens.

psffsi

is a pointer to the file-system-independent portion of an open file instance.

psffsd

is a pointer to the file-system-dependent portion of an open file instance.

ulOpenMode

indicates the desired sharing mode and access mode for the file handle.

See OS/2 Version 3.0 Control Program Programming Reference for a

description of the OpenMode parameter for DosOpen.

 Chapter 2. FS Service Routines 2-65

An additional access mode 3 is defined when the file is being opened on behalf

of OS/2, loaded for purposes of executing a file or loading a module. If the file

system does not support an executable attribute, it should treat this access

mode as open for reading. The value of ulOpenMode passed to the FSD will be

valid.

usOpenFlag

indicates the action taken when the file is present or absent.

See OS/2 Version 3.0 Control Program Programming Reference for a

description of the usOpenFlag parameter for DosOpen.

The value of openflag passed to the FSD is valid. This value is invalid for direct

access opens.

pusAction

is the location where the FSD returns a description of the action taken as gov-

erned by openflag.

The FSD does not need to verify this pointer. The contents of Action are invalid

on return for direct access opends.

usAttr

are the OS/2 file attributes.

This value is invalid for direct access opens.

pcEABuf

is a pointer to the extended attribute buffer.

This buffer contains attributes that will be set upon creation of a new file or upon

replacement of an existing file. If NULL, no extended attributes are to be set.

Addressing of this data area has not been validated by the OS/2 kernel (see

FSH_PROBEBUF). The contents of EABuf are invalid on return for direct

access opens.

pfgenflag

is a pointer to an unsigned short of flags returned by the FSD. The only flag

currently defined is 0x0001 fGenNeedEA, which indicates that there are critical

EAs associated with the file. The FSD does not need to verify this pointer.

 Remarks
For the file create operation, if successful, ST_CREAT and ST_PCREAT are set.

This causes the file to have zero as last read and last write time. If the last

read/write time stamps are to be the same as the create time, simply set

ST_SWRITE, ST_PWRITE, ST_SREAD, and ST_PREAD as well.

For the file open operation, the FSD copies all supported time stamps from the

directory entry into the SFT.

Note: ALSO NEW FOR 2.0, it is suggested that the FSD copy the DOS file attri-

butes from the directory entry into the SFT. This allows the FSD and the OS2

kernel to handle FCB opens more efficently.

The sharing mode may be zero if this is a request to open a file from the DOS

mode or for an FCB request.

FCB requests for read-write access to a read-only file are mapped to read-only

access and reflected in the sfi_mode field by the FSD. An FCB request is indicated

by the third bit set in the sfi_type field.

2-66 DRAFT: OS/2 Installable File Systems

The flags defined for the sfi_type field are:

type == 0x0000 indicates file.

type == 0x0001 indicates device.

type == 0x0002 indicates named pipe.

type == 0x0004 indicates FCB open.

All other values are reserved.

FSDs are required to initialize the sfi_type field, preserving the FCB bit.

On entry, the sfi_hvpb field is filled in. If the file's logical size (EOD) is specified, it

is passed in the sfi_size field. To the extent possible, the file system tries to allo-

cate this much storage for efficient access.

Extended attributes are set for:

1. the creation of a new file

2. the truncation of an existing file

3. the replacement of an existing file.

They are not set for a normal open of an existing file.

If the standard OS/2 file creation attributes are specified, they are passed in the attr

field. To the extent possible, the file system interprets the extended attributes and

applies them to the newly-created or existing file. Extended attributes (EAs) that

the file system does not itself use are retained with the file and not discarded or

rejected.

When replacing an existing file, the FSD should not change the case of the existing

file.

FSDs are required to support direct access opens. These are indicated by a bit set

in the sffsi.sfi_mode field. See OS/2 Version 3.0 Control Program Programming

Reference for more information on DosOpen. Some of the parameters passed to

the FSD for direct access opens are invalid, as described above.

On a successful return, the following fields in the sffsi structure must be filled in by

the file system driver: sfi_size and all the time and date fields.

The file-system-dependent portion of an open file instance passed to the FSD for

FS_OPENCREATE is never initialized.

Infinite FCB opens of the same file by the same DOS mode process is supported.

The first open is passed through to the FSD. Subsequent opens are not seen by

the FSD.

Any non-zero value returned by the FSD indicates that the open failed and the file

is not open.

Note: This entry point's parameter list defintion has changed from the 1.x IFS doc-

ument. The OpenMode parameter has been widened from a unsigned short to a

unsigned long. The upper word of the long is relevant only to a special SPOOLER

FSD. For information about the upper word please contact the OS/2 Techinal Inter-

face group for the OEMI document for the 2.0 API

 Chapter 2. FS Service Routines 2-67

 FS_OPENPAGEFILE
Create paging file and handle

 Purpose
Creates/opens the paging file for the Pager.

 Calling Sequence
int far pascal FS_OPENPAGEFILE (pFlags, pcMaxReq, pName, psffsi, psffsd,

usOpenMode, usOpenFlag, usAttr, Reserved)

unsigned long far \ pFlag;

unsigned long far \ pcMaxReq;

char far \ pName;

struct sffsi far \ psffsi;

struct sffsd far \ psffsi;

unsigned short usOpenMode;

unsigned short usOpenFlag;

unsigned short usAttr;

unsigned long Reserved;

 Where
pFlag

is a pointer to a flag double word for passing of information between the pager

and the file system.

pFlag == PGIO_FIRSTOPEN (0x00000001) indicates first open of the page

file.

pFlag == PGIO_PADDR (0x00004000) indicates physical addresses are

required in the page list.

pFlag == PGIO_VADDR (0x00008000) indicates 16:16 virtual addresses are

required in the page list.

All other values are reserved.

pcMaxReq

is a pointer to a unsigned long where the FSD places the maximum request list

length that can be managed by Enchanced strategy device driver.

pName

is a pointer to the ASCIIZ path and filename of the paging file.

psffsi

is a pointer to the file-system-independent portion of an open file instance.

psffsd

is a pointer to the file-system-dependent portion of an open file instance.

usOpenMode

indicates the desired sharing mode and access mode for the file handle.

See OS/2 Version 3.0 Control Program Programming Reference for a

description of the OpenMode parameter for DosOpen.

usOpenFlag

indicates the action taken when the file is present or absent.

See OS/2 Version 3.0 Control Program Programming Reference for a

description of the usOpenFlag parameter for DosOpen.

2-68 DRAFT: OS/2 Installable File Systems

usAttr

are the OS/2 file attributes.

Reserved

is a double word parameter reserved for use in the future.

 Remarks
Enough information is provided for the FSD to perform a "normal" open/create call.

Since a page file has special requirements about contiguity of its allocations,

FS_OpenPageFile must assure that any data sectors allocated are returned (Create

call only). FS_AllocatePageSpace will be called to handle file allocation.

If the FSD cannot support the FS_DoPageIO (usually due to an disk device driver

which does not support the Extended strategy entry point), the FSD can return zero

(0) for *pcMaxReq. This tells the kernel file system that it must emulate

FS_DoPageIO.

The FSD can require either physical or virtual (16:16) addresses for subsequent

calls to FS_DoPageIO. This allows an FSD to emulate FS_DoPageIO without

having to worry about dealing with physical addresses.

For a detailed description of the Extended Strategy request interface please see the

OS/2 Version 3.0 Physical Device Driver Reference.

 Chapter 2. FS Service Routines 2-69

 FS_PATHINFO
Query/Set a File's Information

 Purpose
Returns information for a specific path or file.

 Calling Sequence
int far pascal FS_PATHINFO (flag, pcdfsi, pcdfsd, pName,

iCurDirEnd, level, pData, cbData)

unsigned short flag;

struct cdfsi far \ pcdfsi;

struct cdfsd far \ pcdfsd;

char far \ pName;

unsigned short iCurDirEnd;

unsigned short level;

char far \ pData;

unsigned short cbData;

 Where
flag

indicates retrieval or setting of information.

flag == PI_RETRIEVE (0x0000) indicates retrieving information

flag == PI_SET (0x0001) indicates setting information on the media

flag == 0x0010 indicates that the information being set must be written-

through onto the disk before returning. This bit is never set when retrieving

information.

All other values are reserved.

pcdfsi

is a pointer the file-system-independent working directory structure.

pcdfsd

is a pointer to the file-system-dependent working directory structure.

pName

is a pointer to the ASCIIZ name of the file or directory for which information is to

be retrieved or set.

The FSD does not need to verify this pointer.

iCurDirEnd

is the index of the end of the current directory in pName.

This is used to optimize FSD path processing. If iCurDirEnd == -1, there is no

current directory relevant to the name text, that is a device.

level

is the information level to be returned.

Level selects among a series of data structures to be returned or set.

pData

is the address of the application data area.

Addressing of this data area is not validated by the kernel (see

FSH_PROBEBUF). When retrieval (flag == 0) is specified, the FSD places the

2-70 DRAFT: OS/2 Installable File Systems

information into the buffer. When outputting information to a file (flag == 1), the

FSD retrieves that data from the application buffer.

cbData

is the length of the application data area.

For flag == 0, this is the length of the data the application wishes to retrieve. If

there is not enough room for the entire level of data to be returned, the FSD

returns a BUFFER OVERFLOW error. For flag == 1, this is the length of data

to be applied to the file.

 Remarks
See the descriptions of DosQPathInfo and DosSetPathInfo in the OS/2 Version 3.0

Control Program Programming Reference for details on information levels.

However, since the IFS architecture is still 16 Bit, the data structures that the FSD

returns are the structures GEA, GEALIST, FEA, FEALIST, and EAOP- not the

GEA2, GEA2LIST, etc. OS/2 will convert the structure to the appropriate 32 Bit

form for 32 Bit applications. In addition to the information levels described in the

OS/2 Version 3.0 Control Program Programming Reference level 4 support is

required in all FSDs. For level 4, ignore the GEALIST and return all EAs to the

caller in the FEALIST. The external publication of level 4 for 32 bit applications is

being considered at this time. This call will not be officially supported for 16 Bit

applications since we are hoping in the future to permit extended attributes to

exceed 64K and that would break those applications. Also see the documentation

of the FS_FILEINFO for a description of the 16 bit data structures.

Note: This entry point should not modify the file size.

The FSD will not be called for DosQPathInfo level 5.

FSDs that are case-preserving(like HPFS) can decide to accept level 7 requests. A

level 7 DosQueryPathInfo request asks the FSD to fill the pData buffer with the

case-preserved path and filename of the path/filename passed in pName. Routing

of level 7 requests will be determined by the kernel by checking the LV7 bit in a

FSD's attribute double word.

 Chapter 2. FS Service Routines 2-71

 FS_PROCESSNAME
Allow FSD to modify name after OS/2 canonicalization

 Purpose
Allow an FSD to modify filename to its own specification after the OS/2

canonicalization process has completed.

 Calling Sequence
int far pascal FS_PROCESSNAME (pNameBuf)

char far \ pNameBuf;

 Where
pNameBuf

is a pointer to the ASCIIZ pathname.

The FSD should modify the pathname in place. The buffer is guaranteed to be

the length of the maximum path. The FSD does not need to verify this pointer.

 Remarks
The resulting name must be within the maximum path length returned by

DosQSysInfo.

This routine allows the FSD to enforce a different naming convention than OS/2.

For example, an FSD could remove blanks embedded in component names or

return an error if it found such blanks. It is called after the OS/2 canonicalization

process has succeeded. It is not called for FSH_CANONICALIZE.

This routine is called for all APIs that use pathnames.

This routine must return no error if the function is not supported.

This routine is heavily utilized. The FSD should try to keep its performance

optimal.

2-72 DRAFT: OS/2 Installable File Systems

 FS_READ
Read from a File

 Purpose
Read the specified number of bytes from a file to a buffer location.

 Calling Sequence
int far pascal FS_READ (psffsi, psffsd, pData, pLen, IOflag)

struct sffsi far \ psffsi;

struct sffsd far \ psffsd;

char far \ pData;

unsigned short far \ pLen;

unsigned short IOflag;

 Where
psffsi

is a pointer to the file-system-independent portion of an open file instance.

sfi_position is the location within the file where the data is to be read from. The

FSD should update the sfi_position field.

psffsd

is a pointer to the file-system-dependent portion of an open file instance.

pData

is the address of the application data area.

Addressing of this data area has not been validated by the kernel (see

FSH_PROBEBUF).

pLen

is a pointer to the length of the application data area.

On input, this is the number of bytes to be read. On output, this is the number

of bytes successfully read. If the application data area is smaller than the

length, no transfer is to take place. The FSD will not be called for zero length

reads. The FSD does not need to verify this pointer.

IOflag

indicates information about the operation on the handle.

IOflag == IOFL_WRITETHRU (0x0010) indicates write-through

IOflag == IOFL_NOCACHE (0x0020) indicates no-cache

 Remarks
If read is successful and is a file, the FSD should set ST_SREAD and ST_PREAD

to make the kernel time stamp the last modification time in the SFT.

Of the information passed in IOflag, the write-through bit is a mandatory bit in that

any data written to the block device must be put out on the medium before the

device driver returns. The no-cache bit, on the other hand, is an advisory bit that

says whether the data being transferred is worth caching or not.

It is legal for the user to attempt to read an area of a file that has been allocated

but not written to. Architecturally, that area is undefined and can be whatever data

 Chapter 2. FS Service Routines 2-73

is in that area. However, returning a zero-filled buffer for uninitialized file data is

recommended.

An attempt to read past the end of file should result in a zero return code and the

contents of pLen set to the number of bytes successfully read until the end of file or

zero if the entire read is beyond the end of the file.

If an FSD supports file locking, it is responsible for checking if there are any locks

on the file that should prevent the call from being executed. OS/2 will not do any

lock checking if the FSA_LOCK bit is set in the FSD Attributes.

2-74 DRAFT: OS/2 Installable File Systems

 FS_RMDIR
Remove Subdirectory

 Purpose
Removes a subdirectory from the specified disk.

 Calling Sequence
int far pascal FS_RMDIR (pcdfsi, pcdfsd, pName, iCurDirEnd)

struct cdfsi far \ pcdfsi;

struct cdfsd far \ pcdfsd;

char far \ pName;

unsigned short iCurDirEnd;

 Where
pcdfsi

is a pointer to the file-system-independent working directory structure.

pcdfsd

is a pointer to the file-system-dependent working directory structure.

pName

is a pointer to the ASCIIZ name of the directory to be removed.

The FSD does not need to verify this pointer.

iCurDirEnd

is the index of the end of the current directory in pName.

This is used to optimize FSD path processing. If iCurDirEnd == -1, there is no

directory relevant to the name text, that is a device.

 Remarks
OS/2 assures that the directory being removed is not the current directory nor the

parent of any current directory of any process.

The FSD should not remove any directory that has entries other than '.' and '..' in it.

 Chapter 2. FS Service Routines 2-75

 FS_SETSWAP
Notification of swap-file ownership

 Purpose
Perform whatever actions are necessary to support the swapper.

 Calling Sequence
int far pascal FS_SETSWAP (psffsi, psffsd)

struct sffsi far \ psffsi;

struct sffsd far \ psffsd;

 Where
psffsi

is a pointer to the file-system-independent portion of an open file instance of the

swapper file.

psffsd

is a pointer to the file-system-dependent portion of an open file instance.

 Remarks
Swapping does not begin until this call returns successfully. This call is made

during system initialization.

The FSD makes all segments that are relevant to swap-file I/O non-swappable (see

FSH_FORCENOSWAP). This includes any data and code segments accessed

during a read or write.

Any FSD that manages writeable media may be the swapper file system.

FS_SETSWAP may be called more than once for the same or different volumes or

FSDs.

2-76 DRAFT: OS/2 Installable File Systems

 FS_SHUTDOWN
Shutdown file system

 Purpose
Used to shutdown an FSD in preparation for power-off or IPL.

 Calling Sequence
int far pascal FS_SHUTDOWN (type, reserved)

unsigned short type;

unsigned long reserved;

 Where
type

indicates what type of a shutdown operation to perform.

type == SD_BEGIN (0x00) indicates that the shutdown sequence is begin-

ning. The kernel will not allow any new I/O calls to reach the FSD. The

only exception will be I/O to the swap file by the swap thread through the

FS_READ and FS_WRITE entry points. The kernel will still allow any thread

to call FS_COMMIT, FS_FLUSHBUF and FS_SHUTDOWN. The FSD

should complete all pending calls that might generate disk corruption.

type == SD_COMPLETE (0x01) indicates that the shutdown sequence is

ending. An FS_COMMIT has been called on every SFT open on the FSD

and following that an FS_FLUSHBUF on all volumes has been called. All

final clean up activity must be completed before this call returns.

reserved

reserved for future expansion.

 Remarks
From the perspective of an FSD, the shutdown sequence looks like this:

First, the system will call the FSD's FS_SHUTDOWN entry with type == 0. This

notifies the FSD that the system will begin committing SFTs in preparation for

system power off. The kernel will not allow any new IO calls to the FSD once it

receives this first call, except from the swapper thread. The swapper thread will

continue to call the FS_READ and FS_WRITE entry points to read and write the

swap file. The swapper thread will not attempt to grow or shrink the swap file nor

should the FSD reallocate it. The kernel will continue to allow FS_COMMIT and

FS_FLUSHBUF calls from any thread. This call should not return from the FSD

until disk data modifying calls have completed to insure that a thread already inside

the FSD does not wake and change disk data.

After the first FS_SHUTDOWN call returns, the kernel will start committing SFTs.

The FSD will see a commit for every SFT associated with it. During these

FS_COMMIT calls, the FSD must flush any data associated with these SFTs to

disk. The FSD must not allow any FS_COMMIT or FS_FLUSHBUF call to block

permanently.

Once all of the SFTs associated with the FSD have been committed,

FS_SHUTDOWN will be called with type == 1. This will tell the FSD to flush all

buffers to disk. From this point, the FSD must not buffer any data destined for disk.

Reads and writes to the swap file will continue, but the allocation of the swap file

 Chapter 2. FS Service Routines 2-77

will not change. Once this call has completed, no file system corruption should

occur if power is shut off.

2-78 DRAFT: OS/2 Installable File Systems

 FS_VERIFYUNCNAME
Verify UNC server ownership

 Purpose
Used to poll installed UNC FSDs to determine server ownership.

 Calling Sequence
int far pascal FS_VERIFYUNCNAME (flag, pName)

unsigned short flag;

char far \ pName;

 Where
flag

indicates which "pass" of the poll the FSD is being called.

flag == VUN_PASS1 (0x0000) indicates that this is a pass 1 poll.

flag == VUN_PASS2 (0x0001) indicates that this is a pass 2 poll.

pName

is a pointer to the ASCIIZ name of the server in UNC format.

The FSD does not need to verify this pointer.

 Remarks
What the kernel expects from UNC FSDs for this entry point:

For pass 1, the FSD will be called and passed a pointer to the UNC server name.

It is to respond immediately if it recongnizes(manages) the server with a

NO_ERROR return code. This pass expects the that the FSD will be keeping

tables in memory that contain the UNC names of the servers it is currently ser-

vicing. If the UNC name cannot be validated immediately, the FSD should respond

with an error (non-zero) return code. The FSD SHOULD NOT send messages in

an attempt to validate the server name.

For pass 2, the FSD is permitted to do whatever is reasonable, including sending

LAN "are you there" messages, to determine if they are able to service the request

for UNC server.

 Chapter 2. FS Service Routines 2-79

 FS_WRITE
Write to a file

 Purpose
Write the specified number of bytes to a file from a buffer location.

 Calling Sequence
int far pascal FS_WRITE (psffsi, psffsd, pDat, pLen, IOflag)

struct sffsi far \ psffsi;

struct sffsd far \ psffsd;

char far \ pData;

unsigned short far \ pLen;

unsigned short IOflag;

 Where
psffsi

is a pointer to the file-system-independent portion of an open file instance.

sfi_position is the location within the file where the data is to be written to. The

FSD should update the sfi_position and sfi_size fields.

psffsd

is a pointer to the file-system-dependent portion of an open file instance.

pData

is the address of the application data area.

Addressing of this data area is not validated by the kernel (see

FSH_PROBEBUF).

pLen

is a pointer to the length of the application data area.

On input, this is the number of bytes that are to be written. On output, this is

the number of bytes successfully written. If the application data area is smaller

than the length, no transfer is to take place. The FSD does not need to verify

this pointer.

IOflag

indicates information about the operation on the handle.

IOflag == IOFL_WRITETHRU (0x0010) indicates write-through

IOflag == IOFL_NOCACHE (0x0020) indicates no-cache

 Remarks
If write is successful and is a file, the FSD should set ST_SWRITE and

ST_PWRITE to make the kernel time stamp the last modification time in the SFT.

The FSD should return an error if an attempt is made to write beyond the end of

the volume with a direct access device handle.

Of the information passed in IOflag, the write-through bit is a mandatory bit in that

any data written to the block device must be put out on the medium before the

device driver returns. The no-cache bit, on the other hand, is an advisory bit that

says whether the data being transferred is worth caching or not.

2-80 DRAFT: OS/2 Installable File Systems

If an FSD supports file locking, it is responsible for checking if there are any locks

on the file that should prevent the call from being executed. OS/2 will not do any

lock checking if the FSA_LOCK bit is set in the FSD Attributes.

 Chapter 2. FS Service Routines 2-81

2-82 DRAFT: OS/2 Installable File Systems

Chapter 3. FS Helper Functions

The following table summarizes the routines that make up the File System Helper

interface between FSDs and the kernel.

FS Helper Routine Description

FSH_ADDSHARE Add a name to the sharing set

FSH_BUFSTATE REMOVED in OS/2 Version 2.0

FSH_CALLDRIVER Call Device Driver's Extended Strategy entry point

FSH_CANONICALIZE Convert pathname to canonical form

FSH_CHECKEANAME Check EA name validity

FSH_CRITERROR Signal a hard error to the daemon

FSH_DEVIOCTL Send IOCTL request to device driver

FSH_DOVOLIO Volume-based sector-oriented transfer

FSH_DOVOLIO2 Send volume-based IOCTL request to device driver.

FSH_EXTENDTIMESLICE Request the kernel temporarily increase this thread's time slice

FSH_FINDCHAR Find first occurrence of char in string

FSH_FINDDUPHVPB Locates equivalent hVPBs

FSH_FLUSHBUF REMOVED in OS/2 Version 2.0

FSH_FORCENOSWAP Force segments permanently into memory

FSH_GETBUF REMOVED in OS/2 Version 2.0

FSH_GETFIRSTOVERLAPBUF REMOVED in OS/2 Version 2.0

FSH_GETPRIORITY Get current thread's I/O priority

FSH_GETVOLPARM Get VPB data from VPB handle

FSH_INTERR Signal an internal error

FSH_IOBOOST Gives the current thread an I/O priority boost

FSH_IOSEMCLEAR Clear an I/O-event semaphore

FSH_ISCURDIRPREFIX Test for a prefix of a current directory

FSH_LOADCHAR Load character from a string

FSH_NAMEFROMSFN Get the full path name from an SFN

FSH_PREVCHAR Move backward in string

FSH_PROBEBUF User address validity check

FSH_QSYSINFO Query system information

| FSH_QUERYOPLOCK| Query if thread has oplock

| FSH_QUERYSERVERTHREAD| Query if thread is server thread

FSH_REGISTERPERFCTRS Register a FSD with PERFVIEW

FSH_RELEASEBUF REMOVED in OS/2 Version 2.0

FSH_REMOVESHARE Remove a name from the sharing set

FSH_SEGALLOC Allocate a GDT or LDT segment

FSH_SEGFREE Release a GDT or LDT segment

FSH_SEGREALLOC Change segment size

FSH_SEMCLEAR Clear a semaphore

FSH_SEMREQUEST Request a semaphore

FSH_SEMSET Set a semaphore

FSH_SEMSETWAIT Set a semaphore and wait for clear

FSH_SEMWAIT Wait for clear

FSH_SETVOLUME force a volume to be mounted on the drive

| FSH_STACKSPACE| Query avilable stack space

FSH_STORECHAR Store character into string

FSH_UPPERCASE Uppercase asciiz string

FSH_WILDMATCH Match using OS/2 wildcards

FSH_YIELD Yield CPU to higher priority threads

FSDs are loaded as dynamic link libraries and may import services provided by the

kernel. These services can be called directly by the file system, passing the rele-

vant parameters.

 Copyright IBM Corp. 1991 3-1

No validation of input parameters is done unless otherwise specified. The FSD

calls FSH_PROBEBUF, where appropriate, before calling the FS help routine.

When any service returns an error code, the FSD must return to the caller as soon

as possible and return the specific error code from the helper to the FS router.

There are many deadlocks that may occur as a result of operations issued by

FSDs. OS/2 provides no means whereby deadlocks between file systems and

applications can be detected.

3-2 DRAFT: OS/2 Installable File Systems

 FSH_ADDSHARE
Add a name to the share set

 Purpose
This function adds a name to the currently active sharing set.

 Calling Sequence

int far pascal FSH_ADDSHARE (pName, mode, hVPB, phShare)

char far \ pName;

unsigned short mode;

unsigned short hVPB;

unsigned long far \ phShare;

 Where
pName

is a pointer to the ASCIIZ name to be added into the share set.

The name must be in canonical form: no ’.’ or ’..’ components, uppercase, no

meta characters, and full path name specified.

mode

is the sharing mode and access mode as defined in the DosOpen API.

All other bits (direct open, write-through, etc.) must be zero.

hVPB

is the handle to the volume where the named object is presumed to exist.

phShare

is the pointer to the location where a share handle is stored. This handle may

be passed to FSH_REMOVESHARE.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_SHARING_VIOLATION

the file is open with a conflicting sharing/access mode.

 Ÿ ERROR_TOO_MANY_OPEN_FILES

there are too many files open at the present time.

 Ÿ ERROR_SHARING_BUFFER_EXCEEDED

there is not enough memory to hold sharing information.

 Ÿ ERROR_INVALID_PARAMETER

invalid bits in mode.

 Ÿ ERROR_FILENAME_EXCED_RANGE

path name is too long.

 Chapter 3. FS Helper Functions 3-3

 Remarks
Do not call FSH_ADDSHARE for character devices.

FSH_ADDSHARE may block.

Note: OS/2 does not validate input parameters. Therefore, an FSD should call

FSH_PROBEBUF where appropriate.

3-4 DRAFT: OS/2 Installable File Systems

 FSH_CALLDRIVER
Call Device Driver's Extended Strategy entry point

 Purpose
This routine allows FSDs to call a device driver's Extended Strategy entry point.

 Calling Sequence

int far pascal FSH_CALLDRIVER (pPkt , hVPB , fControl)

void far \ pPkt;

unsigned short hVPB;

unsigned short fControl;

 Where
pPkt

is a pointer to device driver Extended strategy request packet. See OS/2

Version 3.0 Physical Device Driver Reference for the packet format

hVPB

is the volume handle for the source of I/O.

fControl

is the bit mask of pop-up control actions:

Bit 0 off indicates volume change pop-up desired

Bit 0 on indicates no volume change pop-up

All other bits are reserved and must be zero.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_VOLUME_CHANGED

is an indication that removable media volume change has occured.

 Ÿ ERROR_INVALID_PARAMETER

the fControl flag word has reserved bits on.

 Remarks
This routine should be called for any Extended strategy requests going to a drive

that has removable media.

For a detailed description of the Extended Strategy request interface please see the

OS/2 Version 3.0 Physical Device Driver Reference.

FSH_CALLDRIVER may block.

Note: OS/2 does not validate input parameters. Therefore, an FSD should call

FSH_PROBEBUF where appropriate.

All data buffers that are to be accessed by the device driver should be locked by

the FSD prior to using this call. The current way to accomplish this is to call the

Device Driver Helpers VirtToLin followed by VMLock. See OS/2 Version 3.0 Phys-

 Chapter 3. FS Helper Functions 3-5

ical Device Driver Reference for a description of these calls. This helper basically

does a check to see if the volume has not been changed and then calls the device

driver. The file system is responsible for the validity of the request packet. In addi-

tion, if the file system wishes to correctly support the DosSetVerify API, the FSD

should use FSH_QSYSINFO to determine the state of the verify bit and set the

write command accordingly.

3-6 DRAFT: OS/2 Installable File Systems

 FSH_CANONICALIZE
Convert a path name to a canonical form

 Purpose
This function converts a path name to a canonical form by processing ’.’s and ’..’s,

uppercasing, and prepending the current directory to non-absolute paths.

 Calling Sequence

int far pascal FSH_CANONICALIZE (pPathName, cbPathBuf,

 pPathBuf, pFlags)

char far \ pPathName;

unsigned short cbPathBuf;

char far \ pPathBuf;

unsigned short far \ pFlags;

 Where
pPathName

is a pointer to the ASCIIZ path name to be canonicalized.

cbPathBuf

is the length of path name buffer.

pPathBuf

is the pointer to the buffer into which to copy the canonicalized path.

pFlags

is the pointer to flags returned to the FSD.

Flags == 0x0040 indicates a non-8.3 filename format. All other values are

reserved.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_PATH_NOT_FOUND

is an invalid path name—too many ’..’s

 Ÿ ERROR_BUFFER_OVERFLOW

the path name is too long.

 Remarks
This routine processes DBCS characters properly.

The FSD is responsible for verifying the string pointers and checking for segment

boundaries.

FSH_CANONICALIZE should be called for names passed into the FSD raw data

packets. For example, names passed to FS_FSCTL in the parameter area should

be passed to FSH_CANONICALIZE. This routine does not need to be called for

explicit names passed to the FSD, that is, the name passed to FS_OPENCREATE.

If the canonicalized name is being created as a file or directory, the non-8.3 attri-

bute in the directory entry should be set according to the value returned in pFlags.

 Chapter 3. FS Helper Functions 3-7

Note: OS/2 does not validate input parameters. Therefore, an FSD should call

FSH_PROBEBUF where appropriate.

3-8 DRAFT: OS/2 Installable File Systems

 FSH_CHECKEANAME
Check for valid EA name

 Purpose
Check extended attribute name validity.

 Calling Sequence

int far pascal FSH_CHECKEANAME (iLevel, cbEAName, szEAName)

unsigned short iLevel;

unsigned long cbEAName;

char far \ szEAName;

 Where
iLevel

is the extended attributes name checking level.

iLevel = 0x0001 indicates OS/2 Version 3.0 name checking.

cbEAName

is the length of the extended attribute name, not including terminating NUL.

szEAName

is the extended attribute name to check for validity.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_INVALID_NAME

pathname contains invalid or wildcard characters, or is too long.

 Ÿ ERROR_INVALID_PARAMETER

invalid level.

 Remarks
This routine processes DBCS characters properly.

The set of invalid characters for EA names is the same as that for filenames. In

OS/2 Version 3.0, the maximum length of an EA name, not including the termi-

nating NUL, is 255 bytes. The minimum length is 1 byte.

The FSD is responsible for verifying the string pointers and checking for segment

boundaries.

FSH_CHECKEANAME should be called for extended attribute names passed to the

FSD.

Note: OS/2 does not validate input parameters. Therefore, an FSD should call

FSH_PROBEBUF where appropriate.

 Chapter 3. FS Helper Functions 3-9

 FSH_CRITERROR
Signal hard error to daemon

 Purpose
This function signals a hard error to the daemon.

 Calling Sequence

int far pascal FSH_CRITERROR (cbMessage, pMessage, nSubs,

 pSubs, fAllowed)

unsigned short cbMessage;

char far \ pMessage;

unsigned short nSubs;

char far \ pSubs;

unsigned short fAllowed;

 Where
cbMessage

is the length of the message template.

pMessage

is the pointer to the message template.

This may contain replaceable parameters in the format used by the message

retriever.

nSubs

is the number of replaceable parameters.

pSubs

is the pointer to the replacement text.

The replacement text is a packed set of ASCIIZ strings.

fAllowed

is the bit mask of allowed actions:

CE_ALLFAIL, Bit 0x0001 on indicates FAIL allowed

CE_ALLABORT, Bit 0x0002 on indicates ABORT allowed

CE_ALLRETRY, Bit 0x0004 on indicates RETRY allowed

CE_ALLIGNORE, Bit 0x0008 on indicates IGNORE allowed

CE_ALLACK, Bit 0x0010 on indicates ACKNOWLEDGE only allowed.

All other bits are reserved and must be zero. If bit 0x0010 is set, and any or

some of bits 0x0001 to 0x0008 are also set, bit 0x0010 will be ignored.

 Returns
This function returns the action to be taken:

CE_RETIGNORE, 0x0000 - ignore

CE_RETRETRY, 0x0001 - retry

CE_RETFAIL, 0x0003 - fail

CE_RETACK, 0x0004 - continue

3-10 DRAFT: OS/2 Installable File Systems

 Remarks
If the user responds with an action that is not allowed, it is treated as FAIL. If FAIL

is not allowed, it is treated as ABORT. ABORT is always allowed.

When ABORT is the final action, OS/2 does not return this as an indicator; it

returns a FAIL. The actual ABORT operation is generated when this thread of exe-

cution is about to return to user code.

The maximum length of the template is 128 bytes, including the NUL. The

maximum length of the message with text substitutions is 512 bytes. The

maximum number of substitutions is 9.

If any action other than retry is selected for a given hard error popup, then any

subsequent popups (within the same API call) will be automatically failed; a popup

will not be done. This means that (except for retries) there can be at most one

hard error popup per call to the FSD. And, if the kernel generates a popup, then

the FSD cannot create one.

FSH_CRITERROR will fail automatically if the user application has set autofail, or if

a previous hard error has occurred.

FSH_CRITERROR may block.

Note: OS/2 does not validate input parameters. Therefore, an FSD should call

FSH_PROBEBUF where appropriate.

 Chapter 3. FS Helper Functions 3-11

 FSH_DEVIOCTL
Send IOCTL request to device driver

 Purpose
This function sends an IOCTL request to a device driver.

 Calling Sequence

int far pascal FSH_DEVIOCTL (flag, hDev, sfn, cat, func, pParm, cbParm,

pData, cbData)

unsigned short flag;

unsigned long hDev;

unsigned short sfn;

unsigned short cat;

unsigned short func;

char far \ pParm;

unsigned short cbParm;

char far \ pData;

unsigned short cbData;

 Where
flag

indicates whether the FSD initiated the call or not.

IOflag == 0x0000 indicates that the FSD is just passing user pointers on to

the helper.

IOflag == 0x0001 indicates that the FSD initiated the DevIOCtl call as

opposed to passing a DevIOCtl that it had received.

All other bits are reserved.

hDev

is the device handle obtained from VPB

sfn

is the system file number from open instance that caused the FSH_DEVIOCTL

call.

This field should be passed unchanged from the sfi_selfsfn field. If no open

instance corresponds to this call, this field should be set to 0xFFFF.

cat

is the category of IOCTL to perform.

func

is the function within the category of IOCTL.

pParm

is the long address to the parameter area.

cbParm

is the length of the parameter area.

pData

is the long address to the data area.

cbData

is the length of the data area.

3-12 DRAFT: OS/2 Installable File Systems

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_INVALID_FUNCTION

indicates the function supplied is incompatible with the category and device

handle supplied.

 Ÿ ERROR_INVALID_CATEGORY

indicates the category supplied is incompatible with the function and device

handle supplied.

Ÿ Device driver error code

 Remarks
The only category currently supported for this call is 8, which is for the logical disk.

FSDs call FSH_DEVIOCTL to control device driver operation independently from

I/O operations. This is typically in filtering DosDevIOCtl requests when passing the

request on to the device driver.

An FSD needs to be careful of pointers to buffers that are passed to it from

FS_IOCTL, and what it passes to FSH_DEVIOCTL. It is possible that such pointers

may be real mode pointers if the call was made from the DOS mode. In any case,

the FSD must indicate whether it initiated the DevIOCtl call, in which case the

kernel can assume that the pointers are all protect mode pointers, or if it is passing

user pointers on to the FSH_DEVIOCTL call, in which case the mode of the

pointers will depend on whether this is the DOS mode or not. An important thing to

note is that the FSD must not mix user pointers with its own pointers when using

this helper.

FSH_DEVIOCTL may block.

Note: OS/2 does not validate input parameters. Therefore, an FSD should call

FSH_PROBEBUF where appropriate.

 Chapter 3. FS Helper Functions 3-13

 FSH_DOVOLIO
Transfer volume-based sector-oriented I/O

 Purpose
This function performs I/O to the specified volume.

 Calling Sequence

int far pascal FSH_DOVOLIO (operation, fAllowed, hVPB,

 pData, pcSec, iSec)

unsigned short operation;

unsigned short fAllowed;

unsigned short hVPB;

char far \ pData;

unsigned short far \ pcSec;

unsigned long iSec;

 Where
operation

is the bit mask indicating read/read-bypass/write/write-bypass, and verify-after-

write/write-through and no-cache operation to be performed.

DVIO_OPREAD, Bit 0x0001 off indicates read.

DVIO_OPWRITE, Bit 0x0001 on indicates write.

Bit 0x0002 off indicates no cache bypass.

DVIO_OPBYPASS, Bit 0x0002 on indicates cache bypass.

Bit 0x0004 off indicates no verify-after-write operation.

DVIO_OPVERIFY, Bit 0x0004 on indicates verify-after-write operation.

Bit 0x0008 off indicates errors signalled to the hard error daemon.

DVIO_OPHARDERR, Bit 0x0008 on indicates hard errors will be returned

directly.

Bit 0x0010 off indicates I/O is not write-through.

DVIO_OPWRTHRU, Bit 0x0010 on indicates I/O is write-through.

Bit 0x0020 off indicates data for this I/O should probably be cached.

DVIO_OPNCACHE, Bit 0x0020 on indicates data for this I/O should prob-

ably not be cached.

Bit 0x0040 off indicate that memory should be locked.

DVIO_OPRESMEM, Bit 0x0040 on indicates the memory should not be

locked.

All other bits are reserved and must be zero.

The difference between the cache bypass and the no cache bits is in the type of

request packet that the device driver will see. With cache bypass, it will get a

packet with command code 24, 25, or 26. With no cache, it will get the

extended packets for command codes 4, 8, or 9. The advantage of the latter is

that the write-through bit can also be sent to the device driver in the same

packet, improving the functionality at the level of the device driver.

fAllowed

is a bit mask indicating allowed actions:

DVIO_ALLFAIL, Bit 0x0001 on indicates FAIL allowed

DVIO_ALLABORT, Bit 0x0002 on indicates ABORT allowed

DVIO_ALLRETRY, Bit 0x0004 on indicates RETRY allowed

DVIO_ALLIGNORE, Bit 0x0008 on indicates IGNORE allowed

3-14 DRAFT: OS/2 Installable File Systems

DVIO_ALLACK, Bit 0x0010 on indicates ACKNOWLEDGE only allowed

If this bit is set, none of the other bits may be set.

All other bits are reserved and must be set to zero.

hVPB

is the volume handle for the source of I/O.

pData

is the long address of the user transfer area.

pcSec

is the pointer to the number of sectors to be transferred.

On return, this is the number of sectors successfully transferred.

iSec

is the sector number of the first sector of the transfer.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_PROTECTION_VIOLATION

indicates the supplied address/length is invalid.

 Ÿ ERROR_UNCERTAIN_MEDIA

indicates the device driver can no longer reliably tell if the media has been

changed.

This occurs only within the context of an FS_MOUNT call.

 Ÿ ERROR_TRANSFER_TOO_LONG

indicates the transfer is too long for the device.

Ÿ Device-driver/device-manager errors listed /DDERR/

 Remarks
This function formats a device driver request packet for the requested I/O, locks the

data transfer region, calls the device driver, and reports any errors to the hard error

daemon before returning to the FSD. Any retries indicated by the hard error

daemon or actions indicated by DosError are done within the call to

FSH_DOVOLIO.

FSH_DOVOLIO may be used at all times within the FSD. When called within the

scope of a FS_MOUNT call, it applies to the volume in the drive without regard to

which volume it may be. However, since volume recognition is not complete until

the FSD returns to the FS_MOUNT call, the FSD must be careful when an

ERROR_UNCERTAIN_MEDIA is returned. This indicates the media has gone

uncertain while we are trying to identify the media in the drive. This may indicate

the volume that the FSD was trying to recognize was removed. In that case, the

FSD must release any resources attached to the hVPB passed in the FS_MOUNT

call and return ERROR_UNCERTAIN_MEDIA to the FS_MOUNT call. This will

direct the volume tracking logic to restart the mount process.

OS/2 will validate the user transfer area for proper access and size and will lock the

segment.

 Chapter 3. FS Helper Functions 3-15

Verify-after-write specified on a read is ignored.

On 80386 processors, FSH_DOVOLIO will take care of memory contiguity require-

ments of device drivers. It is advisable, therefore, that FSDs use FSH_DOVOLIO

instead of calling device drivers directly. This will improve performance of FSDs

running on 80386 processors.

FSH_DOVOLIO may block.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

3-16 DRAFT: OS/2 Installable File Systems

 FSH_DOVOLIO2
Send volume-based IOCTL request to device driver

 Purpose
This function is an FSD call that controls device driver operation independently from

I/O operations.

 Calling Sequence

int far pascal FSH_DOVOLIO2 (hDev, sfn, cat, func, pParm, cbParm,

 pData, cbData)

unsigned long hDev;

unsigned short sfn;

unsigned short cat;

unsigned short func;

char far \ pParm;

unsigned short cbParm;

char far \ pData;

unsigned short cbData;

 Where
hDev

is the device handle obtained from VPB

sfn

is the system file number from the open instance that caused the

FSD_DEVIOCTL call.

This field should be passed unchanged from the sfi-selfsfn field. It no open

instance corresponds to this call, this field should be set to 0xFFFF.

cat

is the category of IOCTL to perform.

func

is the function within the category of IOCTL.

pParm

is the long address to the parameter area.

cbParm

is the length of the parameter area.

pData

is the long address to the data area.

cbData

is the length of the data area.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_INVALID_FUNCTION

indicates the function supplied is incompatible with the category and the device

handle supplied.

 Ÿ ERROR_INVALID_CATEGORY

 Chapter 3. FS Helper Functions 3-17

indicates the category supplied is incompatible with the function and the device

handle supplied.

Ÿ Device-driver/device-manager errors listed /DDERR/

 Remarks
This routine supports volume management for IOCTL operations. Any errors are

reported to the hard error daemon before returning to the FSD. Any retries indi-

cated by the hard error daemon or actions indicated by DosError are done within

the call to FSH_DOVOLIO2.

The purpose of this routine is to enable volume tracking with IOCTLs. It is not

available at the API level.

FSH_DOVOLIO2 may block.

System does normal volume checking for this request.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

3-18 DRAFT: OS/2 Installable File Systems

 FSH_EXTENDTIMESLICE
Notify kernel that temporarily increasing this thread's time slice is
advisable.

 Purpose
Notify kernel to temporarily increasing this thread's time slice.

This helper is new to OS/2 3.0. It is currently being used internally if a cache hit

occurred to temporarily increase the current thread's time slice because the proba-

bility is high that additional I/O requests will also be in the cache. This resulted in a

performance gain.

This call needs to be used carefully. Improper use can result in performance

degradation in different environments. In addition, OS/2 development believes that

there is a good probability that the function or calling parameters for this helper

may need modification for optimal performance in future releases. Consequently,

use this helper with appropriate care- it may result in otherwise unnecessary level

sensitivity to future releases.

 Calling Sequence

int far pascal FSH_EXTENDTIMESLICE ()

 Where
There are no parameters to this helper.

 Returns
The return code may be ignored.

 Chapter 3. FS Helper Functions 3-19

 FSH_FINDCHAR
Find first occurrence of character in string

 Purpose
This function provides the mechanism to find the first occurrence of any one of a

set of characters in an ASCIIZ string, taking into account DBCS considerations.

 Calling Sequence

int far pascal FSH_FINDCHAR (nChars, pChars, ppStr)

unsigned short nChars;

char far \ pChars;

char far \ far \ ppStr;

 Where
nChars

is the number of characters in the search list.

pChars

is the array of characters to search for. These cannot be DBCS characters.

The NUL character cannot be searched for.

ppSTR

is the pointer to the character pointer where the search is to begin. This pointer

is updated upon return to point to the character found. This must be an ASCIIZ

string.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_CHAR_NOT_FOUND

indicates none of the characters were found.

 Remarks
The search will continue until a matching character is found or the end of the string

is found.

The FSD is responsible for verifying the string pointers and checking for segment

boundaries.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

3-20 DRAFT: OS/2 Installable File Systems

 FSH_FINDDUPHVPB
Locate equivalent hVPB

 Purpose
This function provides the mechanism to identify a previous instance of a volume

during the FS_MOUNT process.

 Calling Sequence

int far pascal FSH_FINDDUPHVPB (hVPB, phVPB)

unsigned short hVPB;

unsigned short far \ phVPB;

 Where
hVPB

is the handle to the volume to be found.

phVPB

is the pointer to where the handle of matching volume will be stored.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_NO_ITEMS

indicates there is no matching hVPB.

 Remarks
When OS/2 is recognizing a volume, it calls the FSD to mount the volume. At this

point, the FSD may elect to allocate storage and buffer data for that volume. The

mount process will allocate a new VPB whenever the media becomes uncertain,

that is, when the device driver recognizes it can no longer be certain the media is

unchanged. This VPB cannot be collapsed with a previously allocated VPB,

because of a reinsertion of media, until the FS_MOUNT call returns. The previous

VPB, however, may have some cached data that must be updated from the media

(the media may have been written while it was removed) FSD_FINDDUPHVPB

allows the FSD to find this previous occurrence of the volume in order to update

the cached information for the old VPB. Remember the newly created VPB will be

unmounted if there is another, older VPB for that volume.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

 Chapter 3. FS Helper Functions 3-21

 FSH_FORCENOSWAP
Force segments permanently into memory

 Purpose
This function permanently forces segments into memory.

 Calling Sequence

int far pascal FSH_FORCENOSWAP (sel)

unsigned short sel;

 Where
sel

is the selector that is to be made non-swappable.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_INVALID_ACCESS

indicates the selector is invalid.

 Ÿ ERROR_INVALID_DENIED

indicates the selector is invalid or the sector belongs to another process.

 Ÿ ERROR_DIRECT_ACCESS_HANDLE

indicates the handle does not refer to a segment.

 Ÿ ERROR_NOT_ENOUGH_MEMORY

indicates there is not enough physical memory to make a segment non-

swappable.

 Ÿ ERROR_SWAP_TABLE_FULL

indicates the attempt to grow the swap file failed.

 Ÿ ERROR_SWAP_FILE_FULL

indicates the attempt to grow the swap file failed.

 Ÿ ERROR_PMM_INSUFFICIENT_MEMORY

indicates the attempt to grow the swap file failed.

 Remarks
An FSD may call FSH_FORCENOSWAP to force segments to be loaded into

memory and marked non-swappable. All segments both in the load image of the

FSD and those allocated via FSH_SEGALLOC are eligible to be marked. There is

no way to undo the effect of FSH_FORCENOSWAP.

If an FSD is notified it is managing the swapping media, it should make this call for

the necessary segments.

An FSD should be prepared to see multiple swapping files on more than one

volume in 80386 processors and in future releases of OS/2.

3-22 DRAFT: OS/2 Installable File Systems

FSH_FORCENOSWAP may block.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

 Chapter 3. FS Helper Functions 3-23

 FSH_GETPRIORITY
Get current thread's I/O priority

 Purpose
This function allows an FSD to retrieve the I/O priority of the current thread.

 Calling Sequence

int far pascal FSH_GETPRIORITY (void)

 Returns
This function returns the I/O priority of the current thread:

0x0000 - background

0x1111 - foreground

 Remarks
FSH_GETPRIORITY will not block.

3-24 DRAFT: OS/2 Installable File Systems

 FSH_GETVOLPARM
Get VPB data from VPB handle

 Purpose
This function allows an FSD to retrieve file-system-independent and file-system-

dependent data from a VPB. Since the FS router passes in a VPB handle, indi-

vidual FSDs need to map the handle into pointers to the relevant portions.

 Calling Sequence

void far pascal FSH_GETVOLPARM (hVPB, ppVPBfsi, ppVPBfsd)

unsigned short hVPB;

struc vpfsi far \ far \ ppVPBfsi;

struc vpfsd far \ far \ ppVPBfsd;

 Where
hVPB

is the volume handle of interest.

ppVPBfsi

indicates the location where the pointer to file-system-independent data is

stored.

ppVPBfsd

indicates the location where the pointer to file-system-dependent data is stored.

 Returns
There are no error returns.

 Remarks
FSH_GETVOLPARM will not block.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

 Chapter 3. FS Helper Functions 3-25

 FSH_INTERR
Signal an internal error

 Purpose
This function signals an internal error.

 Calling Sequence

void far pascal FSH_INTERR (pMsg, cbMsg)

char far \ pMsg;

unsigned short cbMsg;

 Where
pMsg

is a pointer to the message text.

cbMsg

is the length of the message text.

 Returns
There are no error returns.

 Remarks
For reliability, if an FSD detects an internal inconsistency during normal operation,

the FSD shuts down the system as a whole. This is the safest thing to do since it

is not clear if the system as a whole is in a state that allows normal execution to

continue.

When an FSD calls FSH_INTERR, the address of the caller and the supplied

message is displayed on the console. The system then halts.

The code used to display the message is primitive. The message should contain

ASCII characters in the range 0x20-0x7E, optionally with 0x0D and 0x0A to break

the text into multiple lines.

The FSD must preface all such messages with the name of the file system.

The maximum message length is 512 characters. Messages longer than this are

truncated.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

3-26 DRAFT: OS/2 Installable File Systems

 FSH_IOBOOST
Gives the current thread an I/O priority boost

 Purpose
This function allows an FSD to boost the current thread's I/O priority after a I/O

request.

 Calling Sequence

void far pascal FSH_IOBOOST (void)

 Returns
There are no error returns.

 Remarks
FSH_IOBOOST will not block.

 Chapter 3. FS Helper Functions 3-27

 FSH_IOSEMCLEAR
Clear an I/O event semaphore

 Purpose
This function allows an FSD to clear the I/O event semaphore that is a part of the

Extended Strategy request packet.

 Calling Sequence

int far pascal FSH_IOSEMCLEAR (pSem)

 Where
pSem

is the handle to the I/O event semaphore.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_EXCL_ALREADY_OWNED

the exclusive semaphore is already owned.

 Ÿ ERROR_PROTECTION_VIOLATION

the semaphore is inaccessible.

 Remarks
FSH_IOSEMCLEAR may block.

 For a detailed description of the Extended Strategy request interface please see

the OS/2 Version 3.0 Physical Device Driver Reference.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

3-28 DRAFT: OS/2 Installable File Systems

 FSH_ISCURDIRPREFIX
Test for a prefix of a current directory

 Purpose
This function allows FSDs to disallow any modification of any directory that is either

a current directory of some process or the parent of any current directory of some

process. This is necessary because the kernel manages the text of each current

directory for each process.

 Calling Sequence

int far pascal FSH_ISCURDIRPREFIX (pName)

char far \ pMsg;

 Where
pName

is a pointer to the path name.

The name must be in canonical form, that is, no ’.’ or ’..’ components, upper-

case, no meta characters, and full path name specified.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_CURRENT_DIRECTORY

the specified path is a prefix of or is equal to the current directory of some

process.

If the current directory is the root and the path name is “d:\,”

ERROR_CURRENT_DIRECTORY will be returned.

 Remarks
FSH_ISCURDIRPREFIX takes the supplied path name, enumerates all current

directories in use, and tests to see if the specified path name is a prefix or is equal

to some current directory.

FSH_ISCURDIRPREFIX may block.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

 Chapter 3. FS Helper Functions 3-29

 FSH_LOADCHAR
Load a character from a string

 Purpose
This function provides the mechanism for loading a character from a string, taking

into account DBCS considerations.

 Calling Sequence

void far pascal FSH_LOADCHAR (ppStr, pChar)

char far \ far \ ppStr;

unsigned short far \ pChar;

 Where
ppStr

is a pointer to the character pointer of a string.

The character at this location will be retrieved and this pointer will be updated.

pChar

is a pointer to the character returned.

If character is non-DBCS, the first byte will be the character and the second

byte will be zero.

 Returns
There are no error returns.

 Remarks
Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

3-30 DRAFT: OS/2 Installable File Systems

 FSH_NAMEFROMSFN
Get the full path name from an SFN.

 Purpose
This call allows an FSD to retrieve the full path name for an object to which an

SFN refers.

 Calling Sequence

int far pascal FSH_NAMEFROMSFN (sfn, pName, pcbName)

unsigned short sfn;

char far \ pName;

unsigned short far \ pcbName;

 Where
sfn

is the system file number of a file instance, obtained from the sfi_selfsfn field of

the file-system-independent part of the SFT for the object.

pName

is the location of where the returned full path name is to be stored.

pcbName

is the location of where the FSD places the size of the buffer pointed to by

pName. On return, the kernel will fill this in with the length of the path name.

This length does not include the terminating null character. The size of the

buffer should be long enough to hold the full path name, or else an error will be

returned.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_INVALID_HANDLE

the SFN is invalid.

 Ÿ ERROR_BUFFER_OVERFLOW

the buffer is too short for the returned path.

 Remarks
FSH_NAMEFROMSFN will not block.

Note:

OS/2 does not validate input parameters; the FSD should call FSH_PROBEBUFF

where appropriate.

 Chapter 3. FS Helper Functions 3-31

 FSH_PREVCHAR
Decrement a character pointer

 Purpose
This function provides the mechanism for decrementing a character pointer, taking

into account DBCS considerations.

 Calling Sequence

void far pascal FSH_PREVCHAR (pBeg, ppStr)

char far \ pBeg;

char far \ far \ ppStr;

 Where
pBeg

is a pointer to the beginning of a string.

ppStr

is a pointer to the character pointer of a string.

The value is decremented appropriately upon return. If it is at the beginning of

a string, the pointer is not decremented. If it points to the second byte of a

DBCS character, it will be decremented to point to the first byte of the character.

 Returns
There are no error returns.

 Remarks
The FSD is responsible for verifying the string pointer and checking for segment

boundaries.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

3-32 DRAFT: OS/2 Installable File Systems

 FSH_PROBEBUF
Check user address validity

 Purpose
This function provides the mechanism for performing validity checks on arbitrary

pointers to data that users may pass in.

Note: FSDs must check on these pointers before using them.

 Calling Sequence

int far pascal FSH_PROBEBUF (operation, pdata, cbData)

unsigned short operation;

char far \ pData;

unsigned short cbData;

 Where
operation

indicates whether read or write access is desired.

Ÿ operation == PB_OPREAD, (0x00) indicates read access is to be checked.

Ÿ operation == PB_OPWRITE, (0x01) indicates write access is to be checked.

All other values are reserved.

pData

is the starting address of user data.

cbData

is the length of user data. If cbData is 0, a length of 64K is indicated.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_PROTECTION_VIOLATION

indicates access to the indicated memory region is illegal (access to the data is

inappropriate or the user transfer region is partially or completely inaccessible).

 Remarks
Because users may pass in arbitrary pointers to data, FSDs must perform validity

checks on these pointers before using them. Because OS/2 is multi-threaded, the

addressability of data returned by FSH_PROBEBUF is only valid until the FSD

blocks. Blocking, either explicitly or implicitly allows other threads to run, possibly

invalidating a user segment. FSH_PROBEBUF must, therefore, be reapplied after

every block.

FSH_PROBEBUF provides a convenient method to assure a user transfer address

is valid and present in memory. Upon successful return, the user address may be

treated as a far pointer and accessed up to the specified length without either

blocking or faulting. This is guaranteed until the FSD returns or until the next block.

If FSH_PROBEBUF detects a protection violation, the process is terminated as

soon as possible. The OS/2 kernel kills the process once it has exited from the

FSD.

 Chapter 3. FS Helper Functions 3-33

On 80386 processors, FSH_PROBEBUF ensures all touched pages are physically

present in memory so the FSD will not suffer an implicit block due to a page fault.

However, FSH_PROBEBUF does NOT guarantee the pages will be physically con-

tiguous in memory because FSDs are not expected to do DMA.

FSH_PROBEBUF may block.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

3-34 DRAFT: OS/2 Installable File Systems

 FSH_QSYSINFO
Query system information

 Purpose
This function queries the system about dynamic system variables and static system

variables not returned by DosQSysInfo.

 Calling Sequence

int far pascal FSH_QSYSINFO (index, pData, cbData)

unsigned short index;

char far \ pData;

unsigned short cbData;

 Where
index

is the variable to return.

index == QSI_SECSIZE (0x01) indicates maximum sector size. This will be

returned in an unsigned short field.

index == QSI_PROCID (0x02) indicates process identity. The data returned

will be as follows:

struct

 unsigned short PID;

 unsigned short UID;

 unsigned short PDB;

index == QSI_THREADNO (0x03) indicates absolute thread number for the

current thread. This will be returned in an unsigned short field.

index == QSI_VERIFY (0x04) indicates verify on write flag for the process.

This will be returned in an unsigned char (byte) field. Zero means verify is

off, non-zero means it is on.

pData

is the long address to the data area.

cbData

is the length of the data area.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_INVALID_PARAMETER

the index is invalid.

 Ÿ ERROR_BUFFER_OVERFLOW

the specified buffer is too short for the returned data.

 Chapter 3. FS Helper Functions 3-35

 Remarks
Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

3-36 DRAFT: OS/2 Installable File Systems

| FSH_QUERYOPLOCK
| Query if the running thread has an oplock

| Purpose
| This function queries if the running thread has an oplock.

| Calling Sequence

| int far pascal FSH_QUERYOPLOCK (void)

| Returns
| This function returns as status indicator for whether the thread has an oplock or

| not.

| 0xffff - thread has an oplock

| 0x0000 - thread does not have an oplock

 Chapter 3. FS Helper Functions 3-37

| FSH_QUERYSERVERTHREAD
| Query if the current thread is a server thread

| Purpose
| Query if the current thread is a server thread.

| Calling Sequence

| int far pascal FSH_QUERYSERVERTHREAD (void)

| Returns
| This function returns a flag indicating whether the thread is a server thread.

| 0xffff - thread is a server thread

| 0x0000 - thread is not a server thread

3-38 DRAFT: OS/2 Installable File Systems

 FSH_REGISTERPERFCTRS
Register a FSD with PERFVIEW

 Purpose
This function allows the FSD to register with the PERFVIEW product. The FSD

passes pointers to its counter data and text blocks.

 Calling Sequence

int far pascal FSH_REGISTERPERFCTRS (pDataBlk , pTextBlk , fsFlags)

void far \ pDataBlk;

void far \ pTextBlk;

unsigned short fsFlags;

 Where
pDataBlk

is a pointer to the data block where the actual counters reside.

pTextBlk

is a pointer to the block that contains instance and name information about

counters in the associated DataBlk.

fsFlags

indicates what type of addressing is going to be used.

Ÿ RPC_16BIT (0x0000) indicates 16:16 pointers

Ÿ RPC_32BIT (0x0001) indicates 0:32 pointers

All other bits are reserved and must be zero.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_INVALID_PARAMETER

the flag word is invalid.

 Ÿ ERROR_PVW_INVALID_COUNTER_BLK

the specified buffer is not in the correct PERFVIEW data block format

 Ÿ ERROR_PVW_INVALID_TEXT_BLK

the specified buffer is not in the correct PERFVIEW text block format

 Remarks
 For a detailed description of the PERFVIEW interface and its associated data

structures please see the OS/2 Version 3.0 PERFVIEW OEMI Document.

FSH_REGISTERPERFCTRS may block.

Note: OS/2 does not validate input parameters. Therefore, an FSD should call

FSH_PROBEBUF where appropriate.

 Chapter 3. FS Helper Functions 3-39

 FSH_REMOVESHARE
Remove a shared entry

 Purpose
This function removes a previously-entered name from the sharing set.

 Calling Sequence

void far pascal FSH_REMOVESHARE (hShare)

unsigned long hShare;

 Where
hShare

is a share handle returned by a prior call to FSH_ADDSHARE.

 Returns
There are no error returns.

 Remarks
When a call to FSH_REMOVESHARE has been issued, the share handle is no

longer valid.

FSH_REMOVESHARE may block.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

3-40 DRAFT: OS/2 Installable File Systems

 FSH_SEGALLOC
Allocate a GDT or LDT segment

 Purpose
This function allocates a GDT or LDT selector. The selector will have read/write

access. An FSD may call this function.

 Calling Sequence

int far pascal FSH_SEGALLOC (flags, cbSeg, pSel)

unsigned short flags;

unsigned long cbSeg;

unsigned short far \ pSel;

 Where
flags

indicate GDT/LDT, protection ring, swappable/non-swappable.

Ÿ Bit 0x0001 off indicates GDT selector returned.

Ÿ SA_FLDT (0x0001), bit 0x0001 on indicates LDT selector returned.

Ÿ Bit 0x0002 off indicates non-swappable memory.

Ÿ SA_FSWAP (0x0002), bit 0x0002 on indicates swappable memory.

Ÿ Bits 13 and 14 are the desired ring number. SA_FRINGMASK (0x6000)

may be used to isolate it.

All other bits are reserved and must be zero.

cbSeg

is the length of the segment.

pSel

is the far address of the location where the allocated selector will be stored.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_INTERRUPT

the current thread received a signal.

 Ÿ ERROR_INVALID_PARAMETER

the reserved bits in flags are set or requested size is too large.

 Ÿ ERROR_NOT_ENOUGH_MEMORY

too much memory is allocated.

 Remarks
It is strongly suggested that FSDs allocate all their data at protection level 0 for

maximum protection from user programs.

GDT selectors are a scarce resource; the FSD must be prepared to expect an error

for allocation of a GDT segment. The FSD should limit itself to a maximum of 10

GDT segments. It is suggested that a large segment be allocated for each type of

data and divided into per-process records.

 Chapter 3. FS Helper Functions 3-41

FSH_SEGALLOC may block.

Take care to avoid deadlocks between swappable segments and swapper requests.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

3-42 DRAFT: OS/2 Installable File Systems

 FSH_SEGFREE
Release a GDT or LDT segment

 Purpose
This function releases a GDT or LDT segment previously allocated with

FSH_SEGALLOC or loaded as part of the FSD image.

 Calling Sequence

int far pascal FSH_SEGFREE (sel)

unsigned short sel;

 Where
sel

is the selector to be freed.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_INVALID_ACCESS

the selector is invalid.

 Remarks
FSH_SEGFREE may block.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

 Chapter 3. FS Helper Functions 3-43

 FSH_SEGREALLOC
Change segment size

 Purpose
This function changes the size of a segment previously allocated with

FSH_SEGALLOC or loaded as part of the FSD image.

 Calling Sequence

int far pascal FSH_SEGREALLOC (sel, cbSeg)

unsigned short sel;

unsighed long cbSeg;

 Where
sel

is the selector to be changed.

cbSeg

is the new size to set for the segment.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_NOT_ENOUGH_MEMORY

too much memory is allocated.

 Ÿ ERROR_INVALID_ACCESS

the selector is invalid

 Remarks
The segment may be grown or shrunk. The segment may be moved in the

process. When grown, the extra space is uninitialized.

FSH_SEGREALLOC may block.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

3-44 DRAFT: OS/2 Installable File Systems

 FSH_SEMCLEAR
Clear a semaphore

 Purpose
This function allows an FSD to release a semaphore that was previously obtained

on a call to FSH_SEMREQUEST.

 Calling Sequence

int far pascal FSH_SEMCLEAR (pSem)

void far \ pSem;

 Where
pSem

is the handle to the system semaphore or the long address of the ram

semaphore.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_EXCL_ALREADY_OWNED

the exclusive semaphore is already owned.

 Ÿ ERROR_PROTECTION_VIOLATION

the semaphore is inaccessible.

 Remarks
FSH_SEMCLEAR may block.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

 Chapter 3. FS Helper Functions 3-45

 FSH_SEMREQUEST
Request a semaphore

 Purpose
This function allows an FSD to obtain exclusive access to a semaphore.

 Calling Sequence

int far pascal FSH_SEMREQUEST (pSem, cmsTimeout)

void far \ pSem;

unsigned long cmsTimeout;

 Where
pSem

is the handle to the system semaphore or the long address of the ram

semaphore.

cmsTimeout

is the number of milliseconds to wait.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_INTERRUPT

the current thread received a signal.

 Ÿ ERROR_SEM_TIMEOUT

the timeout expired without gaining access to the semaphore.

 Ÿ ERROR_SEM_OWNER_DIED

the owner of the semaphore died.

 Ÿ ERROR_TOO_MANY_SEM_REQUESTS

there are too many semaphore requests in progress.

 Ÿ ERROR_PROTECTION_VIOLATION

the semaphore is inaccessible.

 Remarks
The timeout value of 0xFFFFFFFF indicates an indefinite timeout.

The caller may receive access to the semaphore after the timeout period has

expired without receiving an ERROR_SEM_TIMEOUT. Semaphore timeout values,

therefore, should not be used for exact timing and sequencing.

FSH_SEMREQUEST may block.

Note: The error, ERROR_INTERRUPT, is not usually a critical error. Unless the

FSD needs to do some additional processing if a signal has occurred, it is normal

to just retry the FSH_SEMREQUEST call. It is extremely important to check and

handle the return codes for this call correctly.

3-46 DRAFT: OS/2 Installable File Systems

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

 Chapter 3. FS Helper Functions 3-47

 FSH_SEMSET
Set a semaphore

 Purpose
This function allows an FSD to set a semaphore unconditionally.

 Calling Sequence

int far pascal FSH_SEMSET (pSem)

void far \ pSem;

 Where
pSem

is the handle to the system semaphore or the long address of the ram

semaphore.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_INTERRUPT

the current thread received a signal.

 Ÿ ERROR_EXCL_SEM_ALREADY_OWNED

the exclusive semaphore is already owned.

 Ÿ ERROR_TOO_MANY_SEM_REQUESTS

there are too many semaphore requests in progress.

 Ÿ ERROR_PROTECTION_VIOLATION

the semaphore is inaccessible.

 Remarks
FSH_SEMSET may block.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

3-48 DRAFT: OS/2 Installable File Systems

 FSH_SEMSETWAIT
Set a semaphore and wait for clear

 Purpose
This function allows an FSD to wait for an event. The event is signalled by a call to

FSH_SEMCLEAR.

 Calling Sequence

int far pascal FSH_SEMSETWAIT (pSem, cmsTimeout)

void far \ pSem;

unsigned long cmsTimeout;

 Where
pSem

is the handle to the system semaphore or the long address of the ram

semaphore.

cmsTimeout

is the number of milliseconds to wait.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_SEM_TIMEOUT

the timeout expired without gaining access to the semaphore.

 Ÿ ERROR_INTERRUPT

the current thread received a signal.

 Ÿ ERROR_EXCL_SEM_ALREADY_OWNED

the exclusive semaphore is already owned.

 Ÿ ERROR_PROTECTION_VIOLATION

the semaphore is inaccessible.

 Remarks
The caller may return after the timeout period has expired without receiving an

ERROR_SEM_TIMEOUT. Semaphore timeout values, therefore, should not be

used for exact timing and sequence.

FSH_SEMSETWAIT may block.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

 Chapter 3. FS Helper Functions 3-49

 FSH_SEMWAIT
Wait for clear

 Purpose
This function allows an FSD to wait for an event. The event is signalled by a call to

FSH_SEMCLEAR.

 Calling Sequence

int far pascal FSH_SEMWAIT (pSem, cmsTimeout)

void far \ pSem;

unsigned long cmsTimeout;

 Where
pSem

is the handle to the system semaphore or the long address of the ram

semaphore.

cmsTimeout

is the number of milliseconds to wait.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_SEM_TIMEOUT

the timeout expired without gaining access to the semaphore.

 Ÿ ERROR_INTERRUPT

the current thread received a signal.

 Ÿ ERROR_PROTECTION_VIOLATION

the semaphore is inaccessible.

 Remarks
The caller may return after the timeout period has expired without receiving an

ERROR_SEM_TIMEOUT. Semaphore timeout values, therefore, should not be

used for exact timing and sequence.

FSH_SEMWAIT may block.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

3-50 DRAFT: OS/2 Installable File Systems

 FSH_SETVOLUME
Force a volume to be mounted on the drive

 Purpose
This function provides the mechanism for assuring that a desired volume is in a

removable media drive before I/O is done to the drive.

 Calling Sequence

int far pascal FSH_SETVOLUME (hVPB , fControl)

unsigned short hVPB;

unsigned short fControl;

 Where
hVPB

is the volume handle for the source of I/O.

fControl

is the bit mask of pop-up control actions:

Bit 0 off indicates volume change pop-up desired

Bit 0 on indicates no volume change pop-up

All other bits are reserved and must be zero.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_VOLUME_CHANGED

is an indication that removable media volume change has occured.

 Ÿ ERROR_INVALID_PARAMETER

the fControl flag word has reserved bits on.

 Remarks
This routine is used by the FSH_CALLDRIVER routine to insure that the desired

volume is in a removable media drive. FSDs can use it for the same purpose.

FSH_SETVOLUME may block.

Note: OS/2 does not validate input parameters. Therefore, an FSD should call

FSH_PROBEBUF where appropriate.

 Chapter 3. FS Helper Functions 3-51

 FSH_STACKSPACE
Determin stack space

 Purpose
Query if the current thread is a server thread.

 Calling Sequence

int far pascal FSH_STACESPACE (pstackspace)

unsigned long far pstackspace;

 Where
pstackspace

is a pointer to the available stack space.

 Returns
Return available stack space. There are no error returns.

3-52 DRAFT: OS/2 Installable File Systems

 FSH_STORECHAR
Store a character in a string

 Purpose
This function provides the mechanism for storing a character into a string, taking

into account DBCS considerations.

 Calling Sequence

int far pascal FSH_STORECHAR (chDBCS, ppStr)

unsigned short chDBCS;

char far \ far \ ppStr;

 Where
chDBCS

is the character to be stored. This may be either a single-byte character or a

double-byte character with the first byte occupying the low-order position.

ppStr

is the pointer to the character pointer where the character will be stored. This

pointer is updated upon return.

 Returns
There are no error returns.

 Remarks
The FSD is responsible for verifying the string pointer and checking for segment

boundaries.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

 Chapter 3. FS Helper Functions 3-53

 FSH_UPPERCASE
Uppercase asciiz string

 Purpose
This function is used to uppercase an asciiz string.

 Calling Sequence

int far pascal FSH_UPPERCASE (szPathName, cbPathBuf, pPathBuf)

char far \ szPathName;

unsigned short cbPathBuf;

char far \ pPathBuf;

 Where
szPathName

is a pointer to the asciiz pathname to be uppercased.

cbPathBuf

is the length of the pathname buffer.

pPathBuf

is a pointer to the buffer to copy the uppercased path into

 Returns
If no error is detected, a zero error code is returned. If an error is detected, the

following error code is returned:

 Ÿ ERROR_BUFFER_OVERFLOW

Ÿ uppercased pathname is too long to fit into buffer.

 Remarks
This routine processes DBCS characters properly.

The FSD is responsible for verifying the string pointers and checking for segment

boundaries.

szPathName and pPathBuf may point to the same place in memory.

FSH_UPPERCASE should be called for names passed into the FSD in raw data

packets which are not passed to FSH_CANONICALIZE and should be uppercased,

that is, extended attribute names.

Note: OS/2 does not validate input parameters. Therefore, an FSD should call

FSH_PROBEBUF where appropriate.

3-54 DRAFT: OS/2 Installable File Systems

 FSH_WILDMATCH
Match using OS/2 wildcards

 Purpose
This function provides the mechanism for using OS/2 wildcard semantics to form a

match between an input string and a pattern, taking into account DBCS consider-

ations.

 Calling Sequence

int far pascal FSH_WILDMATCH (pPat, pStr)

char far \ pPat;

char far \ pStr;

 Where
pPat

is the pointer to an ASCIIZ pattern string. Wildcards are present and are inter-

preted as described below.

ppStr

is the pointer to the test string.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, the

following error code is returned:

 Ÿ ERROR_NO_META_MATCH

the wildcard match failed.

 Remarks
Wildcards provide a general mechanism for pattern matching file names. There are

two distinguished characters that are relevant to this matching. The ’?’ character

matches one character (not bytes) except at a ’.’ or at the end of a string, where it

matches zero characters. The ’*’ matches zero or more characters (not bytes) with

no implied boundaries except the end-of-string.

For example, “a*b” matches “ab” and “aCCCCCCCCCb” while “a?b” matches “aCb”

but does not match “aCCCCCCCCCb”

See the section on meta characters in this document for additional information.

The FSD should uppercase the pattern and string before calling FSH_WILDMATCH

to achieve a case-insensitive compare.

Note: OS/2 does not validate input parameters. An FSD, therefore, should call

FSH_PROBEBUF where appropriate.

 Chapter 3. FS Helper Functions 3-55

 FSH_YIELD
Yield processor to higher-priority thread

 Purpose
This function provides the mechanism for relinquishing the processor to higher-

priority threads.

 Calling Sequence

void far pascal FSH_YIELD (void)

 Returns
There are no error returns.

 Remarks
FSDs run under the 2ms dispatch latency imposed on the OS/2 kernel, meaning

that no more than 2ms can be spent in an FSD without an explicit block or yield.

FSH_YIELD will test to see if another thread is runable at the current thread’s pri-

ority or at a higher priority. If one exists, that thread will be given a chance to run.

3-56 DRAFT: OS/2 Installable File Systems

Chapter 4. Remote IPL / Bootable IFS

This chapter describes the OS/2 Version 3.0 boot architecture and extensions to

the installable file system mechanism(IFSM) to enable booting from an

FSD-managed volume, referred to as Bootable IFS(BIFS). If the volume is on a

remote system, it is referred to as Remote IPL(RIPL).

The mini-FSD is similar to the FSD defined in this document. However, it has addi-

tional requirements for to allow reading of the boot drive before the base device

drivers are loaded. These requirements are fully defined in the two interface

sections of this chapter.

To satisfy its I/O requests, the mini-FSD may call the disk device device driver

imbedded in OS2KRNL(BIFS case) or it may provide its own driver(RIPL case).

Along with the mini-FSD, the IFS SYS Utility is required to initialize an

FSD-managed volume with whatever is required to satisfy the requirements of the

mini-FSD and this document.

The IFS mechanism includes some additional calls which the mini-FSD may need

while it is linked into the IFS chain.

 Copyright IBM Corp. 1991 4-1

 Operational Description

FAT Boot Procedure
The following figure represents the major stages of the OS/2 Version 3.0 FAT boot

procedure.

♦UUUUUUUUUU♦UUUUUUUUUU♦UUUUUUUUUU♦UUUUUUUUUU♦UUUUUUUUUU♦UUUUUUUUUU♦UUUUUUUUUU► time
POST BOOT OS2BOOT OS2LDR stage1 stage2 stage3

 SECTOR (OS2LDR OS2KRNL
 loader)

Figure 4-1. OS/2 Version 3.0 FAT boot procedure

Powering-on the machine or pressing CTRL-ALT-DEL causes control to get trans-

ferred to the power-on-self-test (POST) code. This code initializes the interrupt

vectors to get to the BIOS routines. It then scans the I/O adapters looking for and

linking in any code which exists on them. It then executes an interrupt 19h (INT

19) which causes control to be transferred to the disk or diskette boot code.

The INT 19h code reads the boot sector from disk or diskette into memory at

7C00H. Along with code, the boot sector contains a structure called the BIOS

Parameter Block(BPB). The BPB contains information which describes how the

disk is formatted. The boot code uses this information to load in the root directory

and the FAT micro-IFS, which is kept inside the OS2BOOT file. After the micro-IFS

is loaded the boot sector transfer control it via a far jump.

OS2BOOT receives pointers to the RAM copies of the root directory and the BPB.

Using the BPB information, OS2BOOT loads in the FAT table from the disk. Then

using the root directory and the FAT table, the OS2LDR file is loaded into memory

from disk. The inclusion of this micro-IFS in the FAT boot process has removed

the requirement that the OS2LDR file be logically contigous on the FAT drive.

OS2LDR contains the OS/2 loader. It relocates itself to the top of low memory,

then scans the root directory for OS2KRNL and reads it into memory. After the

required fixups are applied, control is transferred to OS2KRNL, along with a pointer

to the BPB and the drive number.

OS2KRNL contains the OS/2 kernel and initialization code. It switches to protected

mode, relocates parts of itself to high memory, then scans the root directory for and

reads in the base device drivers (stage 1). Once again, the BIOS interrupt 13h is

used to read the disk, but mode switching must be done.

OS2KRNL then switches to protection level 3 and loads some of the required

dynamic link libraries (stage 2) followed by the device drivers and FSDs specified in

CONFIG.SYS (stage 3). This is done with standard DOS calls and, therefore, goes

through the regular file system and device drivers.

4-2 DRAFT: OS/2 Installable File Systems

BIFS Boot Procedure
The following figure represents the major stages of the OS/2 Version 3.0 BIFS boot

procedure.

♦UUUUUUUUUU♦UUUUUUUUUU♦UUUUUUUUUU♦UUUUUUUUUU♦UUUUUUUUUU♦UUUUUUUUUU► time
POST BlackBox OS2LDR stage1 stage2 stage3

 (Micro OS2KRNL
 FSD)

Figure 4-2. OS/2 Version 3.0 BIFS boot procedure

The major difference between this boot procedure and the FAT boot procedure is

that there is no assumption of booting off of disk. OS/2 Version 3.0 does not define

what should happen between when the POST code is run and when the OS2LDR

program gains control.

When OS2LDR receives control, it must be passed information about the current

state of memory and pointers to the Open, Read, Close, and Terminate entry points

of the micro-FSD. Included in the memory map information is the positions of the

micro-FSD, mini-FSD, RIPL data, and the OS2LDR file itself.

Note: This interface is defined in a next section of this chapter.

As with the FAT boot procedure, the OS/2 loader relocates itself to the top of low

memory, and with the help of the micro-FSD, scans the root directory for the

OS2KRNL file. After reading OS2KRNL into memory and applying the required

fixups, control is transferred to the kernel.

When OS2KRNL receives control, it goes through the same initialization as before

(stage 1) with a couple of exceptions. The module loader is called to load the

mini-FSD from its memory image stored by OS2LDR in high memory to its final

location at the top of low memory. Also, the mini-FSD is called to read the base

device drivers (one at a time) through the stage 1 interfaces.

Before any of the dynalinks are loaded, the mini-FSD will be linked into the IFS

chain (it will be the only link in the chain) and asked to initialize through FS_INIT.

The FS_INIT call marks the transition from stage 1 to stage 2.

The dynalinks are then loaded using the stage 2 interfaces, followed by the device

drivers and FSDs.

The mini-FSD is required to support only a small number of the FSD system inter-

faces (the FS_xxxx calls). Therefore, the first FSD loaded must be the replacement

for the mini-FSD.

After the replacement FSD has been loaded, it is called at FS_INIT to initialize itself

and take whatever action it needs to effect a smooth transition from the mini-FSD

to the FSD. It then replaces the mini-FSD in the IFS chain, as well as in any kernel

data structures which keep a handle to the FSD (for example, the SFT, VPB). This

replacement marks the transition from stage 2 to stage 3.

From this point on, the system continues normally.

 Chapter 4. Remote IPL / Bootable IFS 4-3

 Interfaces

 BlackBox/OS2LDR interface
When initially transferring control to OS2LDR from a "black box", the following inter-

face is defined:

DH

boot mode flags:

bit 0 (NOVOLIO) on indicates that the mini-FSD does not use

mFSH_DOVOLIO.

bit 1 (RIPL) on indicates that boot volume is not local (RIPL boot)

bit 2 (MINIFSD) on indicates that a mini-FSD is present.

bit 3 (RESERVED)

bit 4 (MICROFSD) on indicates that a micro-FSD is present.

bits 5-7 are reserved and MUST be zero.

DL

drive number for the boot disk. This parameter is ignored if either the NOVOLIO

or MINIFSD bits are zero.

DS:SI

is a pointer to the BOOT Media's BPB. This parameter is ignored if either the

NOVOLIO or MINIFSD bits are zero.

ES:DI

is a pointer to a filetable structure. The filetable structure has the following

format:

struct FileTable {

unsigned short ft_cfiles; /\ # of entries in this table \/

unsigned short ft_ldrseg; /\ paragraph # where OS2LDR is loaded \/

 unsigned long ft_ldrlen; /\ length of OS2LDR in bytes \/

unsigned short ft_museg; /\ paragraph # where microFSD is loaded \/

unsigned long ft_mulen; /\ length of microFSD in bytes \/

unsigned short ft_mfsseg; /\ paragraph # where miniFSD is loaded \/

 unsigned long ft_mfslen; /\ length of miniFSD in bytes \/

unsigned short ft_ripseg; /\ paragraph # where RIPL data is loaded \/

 unsigned long ft_riplen; /\ length of RIPL data in bytes \/

/\ The next four elements are pointers to microFSD entry points \/

unsigned short (far \ft_muOpen)

(char far \pName, unsigned long far \pulFileSize);

 unsigned long (far \ft_muRead)

(long loffseek, char far \pBuf, unsigned long cbBuf);

 unsigned long (far \ft_muClose)(void);

 unsigned long (far \ft_muTerminate)(void);

}

The microFSD entry points interface is defined as follows:

mu_Open - is passed a far pointer to name of file to be opened and

a far pointer to a ULONG to return the file's size. The

returned value(in AX) indicates success(0) or failure(non-0).

mu_Read - is passed a seek offset, a far pointer to a data buffer,

and the size of the data buffer. The returned value(in DX:AX)

4-4 DRAFT: OS/2 Installable File Systems

indicates the number of bytes actually read.

mu_Close - has no parameters and expects no return value. It is a signal

to the micro-FSD that the loader is done reading the current

 file.

mu_Terminate - has no parameters and expects no return value. It is a

signal to the micro-FSD that the loader has finished reading

the boot drive.

The loader will call the micro-FSD in a Open-Read-Read-....-Read-Close sequence

with each file read in from the boot drive.

 miniFSD/OS2KRNL interface
When called from OS2KRNL after being linked into the IFS chain, the interface will

be as described in previous chapters of this document. Note that the FS_INIT inter-

face for a mini-FSD has an additional parameter, as compared to the FS_INIT inter-

face for an FSD.

When called from OS2KRNL, before being linked into the IFS chain, the interface

will be through the MFS_xxxx and MFSH_xxxx entry points. These interfaces are

described in this chapter. Many of these interfaces parallel the interfaces defined

for FSDs, while others are unique to the mini-FSD.

The mini-FSD is built as a dynamic link library. Supplied functions are exported by

making the function names public. Helper functions are imported by declaring the

helper names external:far. It is required only to support reading files and will be

called only in protect mode. The mini-FSD may NOT make dynamic link system

calls at initialization time.

Due to the special state of the system as it boots, the programming model for the

mini-FSD during the state 1 time frame is somewhat different than the model for

stage 2. This difference necessitates 2 different interfaces between OS/2 and the

mini-FSD.

During stage 1, all calls to the mini-FSD are to the MFS_xxxx functions. Only the

MFSH_xxxx helper functions are available. These are the interfaces which are

addressed in this document. Many of these interfaces parallel the interfaces

defined for FSDs while others are unique to the mini-FSD.

During stage 2, the mini-FSD is treated as a normal FSD. Calls are made to the

FS_xxxx functions and all FSH_xxxx helper functions are available.

During stage 3, the mini-FSD is given a chance to release resources (through a call

to MFS_TERM) before being terminated.

Transition from stage 1 to stage 2 is marked by calling the FS_INIT function in the

mini-FSD. Transition from stage 2 to stage 3 is marked by calling FS_INIT in the

FSD.

Figure 4-3 on page 4-6 shows the functions called during a typical boot sequence:

 Chapter 4. Remote IPL / Bootable IFS 4-5

♦UUUUUUUUUUUUUUUUUUUU♦UUUUUUUUUUUUUUUUUUUU♦UUUUUUUUUUUUUUUUUUUU► time
 stage 1 stage 2 stage 3

 MFS_INIT
 MFS_OPEN
 MFS_READ
 MFS_CHGFILEPTR
 MFS_CLOSE

 FS_INIT
 FS_MOUNT/ATTACH
 FS_OPEN
 FS_READ
 FS_CHGFILEPTR

 MFS_TERM

Figure 4-3. Typical boot sequence

No files are open at the transition from stage 1 to stage 2. Also, only a single file

at a time is open during stage 1. Files and volumes are open during the transition

from stage 2 to stage 3 (the mini-FSD to the FSD). The FSD must do whatever is

necessary for it to inherit them. The FSD will not receive mounts/attaches or opens

for volumes and files which were mounted/attached and opened by the mini-FSD.

Also, multiple files may be open simultaneously during stages 2 and 3.

A special set of helper functions are available to the mini-FSD to support an

imbedded device driver. This might be required for situations such as remote IPL

where the boot volume is not readable through DOVOLIO. These special helper

functions (referred to as imbedded device driver helpers) are available during all

stages of the mini-FSD's life. Note that the list of error return codes for the helper

functions is not exhaustive, but rather represents the most common errors returned.

Because the mini-FSD is a new component added to the boot sequence, a new

interface to OS2LDR is required.

The name and attributes of the mini-FSD must match EXACTLY the name and

attributes of the replacement FSD.

Due to the instability of the system during initialization, any non-zero return code

indicates an error has been encountered. The actual return code may not bake

any sense in the context of the function called (for example, having

ERROR_ACCESS_DENIED returned from a call to MFSH_LOCK when in fact an

invalid selector was passed to the helper). It is also possible for the system to

hang or reboot itself as a result of invalid parameters being passed to a helper

function.

Stage 1 Interfaces
The following functions must be made available by the mini-FSD. These functions

will be called only during stage 1.

 Ÿ MFS_CHGFILEPTR

 Ÿ MFS_CLOSE

 Ÿ MFS_INIT

4-6 DRAFT: OS/2 Installable File Systems

 Ÿ MFS_OPEN

 Ÿ MFS_READ

 Ÿ MFS_TERM

The following helper functions are available to the mini-FSD. These functions may

be called only during stage 1.

 Ÿ MFSH_DOVOLIO

 Ÿ MFSH_INTERR

 Ÿ MFSH_SEGALLOC

 Ÿ MFSH_SEGFREE

 Ÿ MFSH_SEGREALLOC

Stage 2 Interfaces
The intent of stage 2 is to use the mini-FSD as an FSD. Therefore, all the guide-

lines and interfaces specified in this document apply with the following exceptions.

The following functions must be fully supported by the mini-FSD:

Ÿ FS_ATTACH (remote mini-FSD only)

 Ÿ FS_ATTRIBUTE

 Ÿ FS_CHGFILEPTR

 Ÿ FS_CLOSE

 Ÿ FS_COMMIT

 Ÿ FS_INIT

 Ÿ FS_IOCTL

Ÿ FS_MOUNT (local mini-FSD only)

 Ÿ FS_NAME

Ÿ FS_OPENCREATE (existing file only)

 Ÿ FS_PROCESSNAME

 Ÿ FS_READ

Note that since the mini-FSD is only required to support reading,

FS_OPENCREATE need only support opening an existing file (not the create or

replace options).

None of the other functions required for FSDs are required for the mini-FSD but

must be defined and should return the ERROR_UNSUPPORTED_FUNCTION

return code.

The full complement of helper functions specified in this document is available to

the mini-FSD. However, the mini-FSD may NOT use any other dynamic link calls.

Stage 3 Interfaces
The intent of stage 3 is to throw away the mini-FSD and use only the FSD.

The following functions must be supported by the mini-FSD:

 Ÿ MFS_TERM

 Chapter 4. Remote IPL / Bootable IFS 4-7

Imbedded Device Driver Helpers
The following helper functions are available to the mini-FSD and may be called

during stage 1, 2, or 3. These helpers are counterparts for some of the device help

functions and are intended for use by a device driver imbedded within the

mini-FSD.

 Ÿ MFSH_CALLRM

 Ÿ MFSH_LOCK

 Ÿ MFSH_PHYSTOVIRT

 Ÿ MFSH_UNLOCK

 Ÿ MFSH_UNPHYSTOVIRT

 Ÿ MFSH_VIRTTOPHYS

4-8 DRAFT: OS/2 Installable File Systems

 Special Considerations

The size of the mini-FSD file image plus the RIPL data area may not exceed 62K.

In addition, the memory requirements of the mini-FSD may not exceed 64K.

The mini-FSD is only required to support reading of a file. Therefore, any call to

DosWrite (or other non-supported functions) which becomes redirected to the

mini-FSD may be rejected. For this reason, it is required that the IFS= command

which loads the FSD which will replace the mini-FSD be the first IFS= command in

CONFIG.SYS. Also, only DEVICE= commands which load device drivers required

by that FSD should appear before the first IFS= command.

If the mini-FSD needs to switch to real mode, it must use the MFSH_CALLRM func-

tion. This is required to keep OS/2 informed of the mode switching.

Each FSD which is bootable is required to provide their "black box" to load

OS2LDR and the mini-FSD into memory before OS2LDR is given control.

Additionally, these FSDs are required to provide a single executable module in

order to support the OS/2 SYS utility. The executable provided will be invoked by

this utility when performing a SYS for that file system. The command line that was

passed to the utility will be passed unchanged to the executable.

The supplied executable must do whatever is required to make the partition

bootable. At the very least, it must install a boot sector. It also needs to install the

"black box", mini-FSD, OS2LDR and OS2KRNL.

 Chapter 4. Remote IPL / Bootable IFS 4-9

mini-FSD Entry Points

The following table is a summary of mini-FSD entry points:

Table 4-1. Summary of mini-FSD entry points

Entry Point Description.

MFS_CHGFILEPTR Move a file's position pointer

MFS_CLOSE Close a file.

MFS_INIT mini-FSD initialization

MFS_OPEN Open a file

MFS_READ Read from a file

MFS_TERM Terminate the mini-FSD

4-10 DRAFT: OS/2 Installable File Systems

 MFS_CHGFILEPTR
Move a file's position pointer

 Purpose
Move the file's logical read position pointer.

 Calling Sequence

int far pascal MFS_CHGFILEPTR (offset, type)

long offset;

unsigned short type;

 Where
offset

is the signed offset which depending on the type parameter is used to determine

the new position within the file.

type

indicates the basis of a seek operation.

type == 0 indicates seek relative to beginning of file.

type == 1 indicates seek relative to current position within the file.

type == 2 indicates seek relative to end of file.

 Remarks
The file system may want to take the seek operation as a hint that an I/O operation

is about to take place at the new position and initiate a positioning operation on

sequential access media or read-ahead operation on other media.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, a

non-zero erro code is returned.

 Remarks
None

 Chapter 4. Remote IPL / Bootable IFS 4-11

 MFS_CLOSE
Close a file

 Purpose
Close a file.

 Calling Sequence

int far pascal MFS_CLOSE (void)

 Returns
If no error is detected, a zero error code is returned. If an error is detected, a

non-zero erro code is returned.

 Remarks
None

4-12 DRAFT: OS/2 Installable File Systems

 MFS_INIT
mini-FSD Initialization

 Purpose
Inform the mini-FSD that it should prepare itself for use.

 Calling Sequence

int far pascal MFS_INIT (pBootData , pucResDrives , pulVectorIPL,

pBPB , pMiniFSD , pDumpAddr)

void far \ pBootData;

char far \ pucResDrives;

long far \ pulVectorIPL;

void far \ pBPB;

unsigned long far \ pMiniFSD;

unsigned long far \ pDumpAddr;

 Where
pBootData

is a pointer to the data passed from the black box to the mini-FSD(null if not

passed).

pucResDrives

is a pointer to a byte which may be filled in by the mini-FSD with the number of

drive letters (beginning with 'C') to skip over before assigning drive letters to

local fixed disk drivers (ignored if not remote IPL). The system will attach the

reserved drives to the mini-FSD through a call to FS_ATTACH just after the call

to FS_INIT.

pulVectorIPL

is a pointer to a double word which may be filled in by the mini-FSD with a

pointer to a data structure which will be available to installable device drivers

through the standard device helper function GetDosVar(variable number 12).

The first eight bytes of the structure MUST be a signature which would allow

unique identification of the data by cooperating device drivers (for example,

IBMPCNET).

BPB

is a pointer to the BPB data structure (see OS2LDR interface).

pMiniFSD

is a pointer to a double word which is filled in by the mini-FSD with data to be

passed on to the FSD.

DumpRoutine

is a pointer to a double word which is filled in by the mini-FSD with the address

of an alternative stand-alone dump procedure.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, a

non-zero erro code is returned.

 Chapter 4. Remote IPL / Bootable IFS 4-13

 Remarks
The mini-FSD should fill in the data pointed to by pMiniFSD with any 32-bit value it

wishes to pass on to the FSD (see FS_INIT). OS/2 makes no assumptions about

the type of data passed. Typically, this will be a pointer to important data struc-

tures within the mini-FSD which the FSD needs to know about.

OS/2 will not free the segment containing BootData. It should be freed by the

mini-FSD if appropriate.

The DumpProcedure is a routine provided by the mini-FSD which replaces the

diskette-based OS/2 stand-alone dump procedure. This routine is given control

after the OS/2 kernel receives a stand-alone dump request. The OS/2 kernel

places the machine in a stable, real mode state in which most interrupt vectors

contain their original power-up value. If this address is left at zero, the OS/2 kernel

will attempt to initiate a storage dump to diskette, if a diskette drive exists. The

provided routine must handle the dumping of storage to an acceptable media.

4-14 DRAFT: OS/2 Installable File Systems

 MFS_OPEN
Open a file

 Purpose
Open the specified file.

 Calling Sequence

int far pascal MFS_OPEN (pszName , pulSize)

char far \ pszName;

unsigned long far \ pulSize;

 Where
pszName

is a pointer to the ASCIIZ name of the file to be opened. It may include a path

but will not include a drive.

pulSize

is a pointer to a double word which is filled in by the mini-FSD with the size of

the file in bytes.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, a

non-zero erro code is returned.

 Remarks
Only one file at a time will be opened by this call. The drive will always be the boot

drive.

The current file position is set to the beginning of the file.

 Chapter 4. Remote IPL / Bootable IFS 4-15

 MFS_READ
Read from a file

 Purpose
Read the specified number of bytes from the file to a buffer location.

 Calling Sequence

int far pascal MFS_READ (pcData , pusLength)

char far \ pcData;

unsigned long far \ pusLength;

 Where
pcData

is a pointer to the data area to be read into. The data area is guaranteed to be

below the 1-Meg boundary.

pusLength

is a pointer to a word which on entry specifies the number of bytes to be read.

On return, it is filled in by the mini-FSD with the number of bytes successfully

read.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, a

non-zero erro code is returned.

 Remarks
The current file position is advanced by the number of bytes read.

4-16 DRAFT: OS/2 Installable File Systems

 MFS_TERM
Terminate the mini-FSD

 Purpose
Inform the mini-FSD that it should prepare itself for termination.

 Calling Sequence

int far pascal MFS_TERM (void)

 Returns
If no error is detected, a zero error code is returned. If an error is detected, a

non-zero erro code is returned.

 Remarks
The system will NOT free any memory explicitly allocated by the mini-FSD through

MFSH_SEGALLOC or FSH_SEGALLOC. It must be explicitly freed by the

mini-FSD. (Memory allocated by the mini-FSD and 'given' to the FSD need not be

freed.) The system will free all of the segments loaded as part of the mini-FSD

image immediately after this call.

 Chapter 4. Remote IPL / Bootable IFS 4-17

mini-FSD Helper Routines

The following table summaries the mini-FSD Helper Routines:

Table 4-2. Summary of mini-FSD Helpers

FSD Helper Description

MFSH_CALLRM Put machine in real mode

MFSH_DOVOLIO Read sectors

MFSH_INTERR Internal error

MFSH_LOCK Lock segment

MFSH_PHYSTOVIRT Convert physical to virtual address

MFSH_SEGALLOC Allocate a segment

MFSH_SEGFREE Free a segment

MFSH_SEGREALLOC Change segment size

MFSH_SETBOOTDRIVE Change boot drive number kept by the OS/2 kernel

MFSH_UNLOCK Unlock a segment

MFSH_UNPHYSTOVIRT Mark completion of use of virtual address

MFSH_VIRT2PHYS Convert virtual to physical address

4-18 DRAFT: OS/2 Installable File Systems

 MFSH_CALLRM
Put machine in real mode

 Purpose
Put the machine into real mode, call the specified routine, put the machine back

into protect mode, and return.

 Calling Sequence

int far pascal MFSH_CALLRM (plRoutine)

unsigned long far \ plRoutine;

 Where
plRoutine

is a pointer to a double word which contains the VIRTUAL address of the

routine to call.

 Returns
There are no error returns.

 Remarks
Only registers DS and SI will be preserved between the caller and the target

routine. The selector in DS will be converted to a segment before calling the target

routine. Arguments may not be passed on the stack since a stack switch may

occur.

This helper allows the mini-FSD to access the ROM BIOS functions which typically

run in real mode only. Great care must be taken in using this function since selec-

tors used throughout the system are meaningless in real mode. While in real

mode, no calls to any helpers may be made.

 Chapter 4. Remote IPL / Bootable IFS 4-19

 MFSH_DOVOLIO
Read sectors

 Purpose
Read the specified sectors.

 Calling Sequence

int far pascal MFSH_DOVOLIO (pcData , pcSec , ulSec)

char far \ pcData;

unsigned short far \ pcSec;

unsigned long ulSec;

 Where
pcData

is a pointer to the data area. The data area must be below the 1-Meg

boundary.

pcSec

is a pointer to the word which specifies the number of sectors to be read. On

return, it is filled in by the helper with the number of sectors successfully read.

ulSec

is the sector number for the beginning of the sector run.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_PROTECTION_VIOLATION

the supplied address or length is invalid.

 Ÿ ERROR_INVALID_FUNCTION

either bit 0 of the boot mode flags was set on entry to OS2LDR or the system

is not in stage 1.

 Remarks
The only media which can be read by this call is the boot volume. The machine's

interrupt 13H BIOS function is used to actually do the disk reads. The data area

will be locked and unlocked by this helper. Soft errors are retried automatically.

Hard errors are reported to the user through a message and the system is stopped.

4-20 DRAFT: OS/2 Installable File Systems

 MFSH_INTERR
Internal Error

 Purpose
Declare an internal error and halt the system.

 Calling Sequence

int far pascal MFSH_INTERR (pcMsg , cbMsg)

char far \ pcMsg;

unsigned short cbMsg;

 Where
pcMsg

is a pointer to the message text.

cbMsg

is the length of the message text.

 Returns
There are no error returns.

 Remarks
This call should be used when an inconsistency is detected within the mini-FSD.

This call does not return. An error message will be displayed and the system will

be stopped. See the description of FSH_INTERR.

 Chapter 4. Remote IPL / Bootable IFS 4-21

 MFSH_LOCK
Lock a segment

 Purpose
Lock a segment in place in physical memory.

 Calling Sequence

int far pascal MFSH_LOCK (usSel , pulHandle)

unsigned short usSel;

unsigned long far \ pulHandle;

 Where
usSel

is the selector of the segment to be locked.

pulHandle

is a pointer to a double word which is filled in by the helper with the lock handle.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_PROTECTION_VIOLATION

the supplied address or selector is invalid.

 Remarks
This helper is for use by a mini-FSD with an imbedded device driver. It is the same

as the standard device driver LOCK helper with the following assumptions: The

lock is defined to be short term and will block until the segment is loaded.

4-22 DRAFT: OS/2 Installable File Systems

 MFSH_PHYSTOVIRT
Convert physical to virtual address

 Purpose
Translate the physical address of a data buffer into a virtual address.

 Calling Sequence

int far pascal MFSH_PHYSTOVIRT (ulAddr , usLen , pusSel)

unsigned long ulAddr;

unsigned short usLen;

unsigned short far \ pusSel;

 Where
ulAddr

is the physical address to be translated.

usLen

is the length of the segment for the physical address.

pusSel

is a pointer to the word in which the selector or segment is returned.

 Returns
If an error is not detected, a zero error code is returned. If an error is detected, the

following error is returned:

 Ÿ ERROR_PROTECTION_VIOLATION

the supplied address is invalid.

 Remarks
This helper is for use by a mini-FSD with an imbedded device driver. It is the same

as the standard device driver helper PHYSTOVIRT. A segment/offset pair is

returned in real mode for addresses below 1 mb. Else a selector/offset pair is

returned.

A caller must issue a corresponding UNPHYSTOVIRT before returning to its caller

or using any other helpers.

 Chapter 4. Remote IPL / Bootable IFS 4-23

 MFSH_SEGALLOC
Allocate a segment

 Purpose
Allocate memory.

 Calling Sequence

int far pascal MFSH_SEGALLOC (usFlag , cbSeg , pusSel)

unsigned short usFlag;

unsigned long cbSeg;

unsigned short far \ pusSel;

 Where
usFlag

is set to 1 if the memory must be below the 1-meg boundary or 0 if its location

does not matter.

cbSeg

contains the length of the segment.

pusSel

is a pointer to a word in which the helper returns the selector of the segment.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, one of

the following error codes is returned:

 Ÿ ERROR_NOT_ENOUGH_MEMORY

too much memory is allocated.

 Ÿ ERROR_PROTECTION_VIOLATION

the supplied address is invalid.

 Ÿ ERROR_INVALID_PARAMETER

either the supplied flag or length is invalid.

 Remarks
This function allocates memory with the following attributes:

Ÿ Allocated from the GDT

 Ÿ Non-swappable

Memory not allocated specifically below the 1-Meg boundary may be given to the

FSD by passing the selectors through pMiniFSD (see MFS_INIT and FS_INIT).

4-24 DRAFT: OS/2 Installable File Systems

 MFSH_SEGFREE
Free a segment

 Purpose
Free a memory segment.

 Calling Sequence

int far pascal MFSH_SEGFREE (usSel)

unsigned short usSel;

 Where
usSel

contains the selector of the segment to be freed.

 Returns
If no error is detected, a zero error error code is returned. If an error is detected,

the following error code is returned:

 Ÿ ERROR_PROTECTION_VIOLATION

the selector is invalid.

 Remarks
This function releases a segment previously allocated with MFSH_SEGALLOC, or

loaded as part of the mini-FSD image.

 Chapter 4. Remote IPL / Bootable IFS 4-25

 MFSH_SEGREALLOC
Change segment size

 Purpose
Change the size of memory.

 Calling Sequence

int far pascal MFSH_SEGREALLOC (usSel , cbSeg)

unsigned short usSel;

unsigned long cbSeg;

 Where
usSel

contains the selector of the segment to be resized.

cbSeg

contains the new length of the segment.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, on of

the following error codes is returned:

 Ÿ ERROR_NOT_ENOUGH_MEMORY

too much memory is allocated.

 Ÿ ERROR_PROTECTION_VIOLATION

the supplied selector is invalid.

 Ÿ ERROR_INVALID_PARAMETER

the supplied length is invalid.

 Remarks
This call changes the size of a segment previously allocated with

MFSH_SEGALLOC, or loaded as part of the mini-FSD image.

The segment may be grown or shrunk. When grown, the extra space is uninitial-

ized. The segment may be moved in the process.

4-26 DRAFT: OS/2 Installable File Systems

 MFSH_SETBOOTDRIVE
Change boot drive number kept by the OS/2 kernel

 Purpose
Change boot drive number kept by the kernel to allow a change in the assignment

of boot drive as seen by later processes.

 Calling Sequence

int far pascal MFSH_SETBOOTDRIVE (usDrive)

unsigned short usDrive;

 Where
usDrive

contains the 0-based drive number that the mini-FSD wants the system to con-

sider as the boot drive.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, on of

the following error codes is returned:

 Ÿ ERROR_INVALID_PARAMETER

the supplied drive number is invalid.

 Remarks
This call changes the boot drive number that is kept in the global info segment of

the system. Valid values range from 2(=C) to 25(=Z). This function must be called

during the call to MFS_INIT to update the info segment correctly. This is routine

should be used by RIPL mini-FSDs.

 Chapter 4. Remote IPL / Bootable IFS 4-27

 MFSH_UNLOCK
Unlock a segment

 Purpose
Unlock a segment which was previous locked by calling MFSH_LOCK.

 Calling Sequence

int far pascal MFSH_SEGREALLOC (ulHandle)

unsigned long ulHandle;

 Where
ulHandle

contains the handle returned from MFSH_LOCK of the segment to unlock.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, the

following error code is returned:

 Ÿ ERROR_PROTECTION_VIOLATION

the supplied address is invalid.

 Remarks
This helper is for use by a mini-FSD with an imbedded device driver. It is the same

as the standard device driver helper UNLOCK.

4-28 DRAFT: OS/2 Installable File Systems

 MFSH_UNPHYSTOVIRT
Mark completion of use of virtual address

 Purpose
Release the selector allocated previously by calling MFSH_PHYSTOVIRT.

 Calling Sequence

int far pascal MFSH_UNPHYSTOVIRT (usSel)

unsigned short usSel;

 Where
usSel

contains the selector to released.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, the

following error code is returned:

 Ÿ ERROR_PROTECTION_VIOLATION

the supplied selector is invalid.

 Remarks
This helper is for use by a mini-FSD with an imbedded device driver. It is the same

as the standard device driver UNPHYSTOVIRT helper.

A caller must issue a corresponding UNPHYSTOVIRT after calling PHYSTOVIRT,

before returning to its caller or using any other helpers.

 Chapter 4. Remote IPL / Bootable IFS 4-29

 MFSH_VIRT2PHYS
Convert virtual to physical address

 Purpose
Translate the address of a data buffer into a physical address.

 Calling Sequence

int far pascal MFSH_VIRT2PHYS (ulVirtAddr , pulPhysAddr)

unsigned long ulVirtAddr;

unsigned long far \ pulPhysAddr;

 Where
ulVirtAddr

contains the virtual address of the data area.

PhysAddr

is a pointer to a double word in which the helper returns the physical address of

the data area.

 Returns
If no error is detected, a zero error code is returned. If an error is detected, the

following error is returned:

 Ÿ ERROR_PROTECTION_VIOLATION

the supplied address is invalid.

 Remarks
This helper is for use by a mini-FSD with an imbedded device driver. It is the same

as the standard device driver helper VIRTTOPHYS.

4-30 DRAFT: OS/2 Installable File Systems

 Chapter 5. Index

A
access to EAs, controlling 1-11

allocate segment 3-41

API, extended file I/O 1-4

API, standard file I/O 1-2

attach to an FSD 2-4

 attributes, FSDs. 1-12

B
BIFS 4-1

BIFS boot procedure 4-3

boot partition 1-6

boot procedure 4-3

boot sector 4-2

bootable IFS 4-1

BPB 4-2

buffer management 1-5

C
caching 1-5

calling conventions, FSDs 1-22

cancel file lock request 2-6

canonicalization 2-72, 3-7

cdfsd, current directory parameters 1-20

cdfsi, current directory parameters 1-20

CDS 1-19

change/verify directory path 2-7

character pointer 3-32

character validation 1-10

CHKDSK 1-7

clear semaphore 3-45

close a file 2-12

commit a file's buffers to disk 2-13

commit file buffers 2-46

CONFIG.SYS statements 1-6

CONFIG.SYS, IFS= 1-13

copy a file 2-15

CPU time 1-22

current directory parameters, cdfsd 1-20

current directory parameters, cdfsi 1-20

current directory prefix 3-29

current directory structure 1-19

current directory, data structures 1-20

current I/O priority, boost 3-27

current I/O priority, determine 3-24

D
Data Structures, FSD

current directory 1-20

disk media and file system layout 1-19

file search records 1-21

open files 1-20

time stamps 1-22

data structures, FSDs 1-19

data, file-system-dependent 1-19

data, file-system-independent 1-19

date, format of 1-17

delete a file 2-17

device I/O control 2-52

directory search, begin 2-33

directory search, continue 2-39

directory search, end 2-32

disk media and file system layout 1-19

disk partitions 1-6

DOS partition 1-6

DosDevIOCtl 2-52

DosFsCtl 1-4

DosOpen 2-65

DosQFsAttach 1-7

DosQFSInfo 2-50

DosQPathInfo 2-71

DosQSysInfo 2-72

DosSetFSInfo 2-50

DosSetPathInfo 2-71

DPB 1-5

drive parameter block 1-5

drives and file systems 1-5

E
EA manipulation 1-11

EA name validity 3-9

EAOP 1-11

end of process 2-20

entry points, FSDs (summary) 2-1

error return codes, file I/O 1-17

extend thread's time slice 3-19

Extended Attributes

EA name validity 3-9

FAT file system 1-11

 Copyright IBM Corp. 1991 5-1

Extended Attributes (continued)

FEAs 1-9

GEAs 1-10

extended boot structure 1-14

extended file API 2-47

extended file I/O API 1-4

Extended strategy call 3-5

F
family API 1-7

FAT file system 1-5

FAT partition 1-6

FEAlist 1-10

FEAs 1-9

features, IFS 1-1

file access, lock 2-29

file access, unlock 2-29

file handles 1-16

File I/O API

extend file I/O API 1-4

standard file I/O API 1-2

File I/O bit, FIO 1-13

file image 1-12

file image, mini-FSD 4-9

file information 2-70

file instance, open files 1-21

file lock request, cancel 2-6

file search parameters, fsfsd 1-21

file search parameters, fsfsi 1-21

file search records, data structures 1-21

file search structures 1-19

file size, change 2-60

file system control 2-47

file system driver, FSD 1-2

file system information 2-50

file system initialization 2-51

file version levels 1-16

file-system-dependent data 1-19

file-system-independent data 1-19

FILEIO, File I/O bit 1-13

find character in string 3-20

find matching file name 2-33, 2-37, 2-39

find-notify handle, close 2-41

find-notify handle, open 2-42

flush cache buffers 2-46

FORMAT 1-7

free segment 3-43

FS Helper Functions

FSH_ADDSHARE 3-3

FSH_CALLDRIVER 3-5

FS Helper Functions (continued)

FSH_CANONICALIZE 3-7

FSH_CHECKEANAME 3-9

FSH_CRITERROR 3-10

FSH_DEVIOCTL 3-12

FSH_DOVOLIO 3-14

FSH_DOVOLIO2 3-17

FSH_EXTENDTIMESLICE 3-19

FSH_FINDCHAR 3-20

FSH_FINDDUPHVPB 3-21

FSH_FORCENOSWAP 3-22

FSH_GETPRIORITY 3-24

FSH_GETVOLPARM 3-25

FSH_INTERR 3-26

FSH_IOBOOST 3-27

FSH_IOSEMCLEAR 3-28

FSH_ISCURDIRPREFIX 3-29

FSH_LOADCHAR 3-30

FSH_NAMEFROMSFN 3-31

FSH_PREVCHAR 3-32

FSH_PROBEBUF 3-33

FSH_QSYSINFO 3-35

FSH_QUERYOPLOCK 3-37

FSH_QUERYSERVERTHREAD 3-38

FSH_REGISTERPERFCTRS 3-39

FSH_REMOVESHARE 3-40

FSH_SEGALLOC 3-41

FSH_SEGFREE 3-43

FSH_SEGREALLOC 3-44

FSH_SEMCLEAR 3-45

FSH_SEMREQUEST 3-46

FSH_SEMSET 3-48

FSH_SEMSETWAIT 3-49

FSH_SEMWAIT 3-50

FSH_SETVOLUME 3-51

FSH_STACKSPACE 3-52

FSH_STORECHAR 3-53

FSH_UPPERCASE 3-54

FSH_WILDMATCH 3-55

FSH_YIELD 3-56

summary 3-1

FS helpers 1-2

FSA_LOCK 1-13

FSA_REMOTE 1-13

FSD entry points

FS_ALLOCATEPAGESPACE 2-3

FS_ATTACH 2-4

FS_CANCELLOCKREQUEST 2-6

FS_CHDIR 2-7

FS_CHGFILEPTR 2-10

5-2 DRAFT: OS/2 Installable File Systems

FSD entry points (continued)

FS_CLOSE 2-12

FS_COMMIT 2-13

FS_COPY 2-15

FS_DELETE 2-17

FS_DOPAGEIO 2-18

FS_EXIT 2-20

FS_FILEATTRIBUTE 2-21

FS_FILEINFO 2-23

FS_FILEIO 2-26

FS_FILELOCKS 2-29

FS_FINDCLOSE 2-32

FS_FINDFIRST 2-33

FS_FINDFROMNAME 2-37

FS_FINDNEXT 2-39

FS_FINDNOTIFYCLOSE 2-41

FS_FINDNOTIFYFIRST 2-42

FS_FINDNOTIFYNEXT 2-44

FS_FLUSHBUF 2-46

FS_FSCTL 2-47

FS_FSINFO 2-50

FS_INIT 2-51

FS_IOCTL 2-52

FS_MKDIR 2-54

FS_MOUNT 2-56

FS_MOVE 2-58

FS_NEWSIZE 2-60

FS_NMPIPE 2-61

FS_OPENCREATE 2-65

FS_OPENPAGEFILE 2-68

FS_PATHINFO 2-70

FS_PROCESSNAME 2-72

FS_READ 2-73

FS_RMDIR 2-75

FS_SETSWAP 2-76

FS_SHUTDOWN 2-77

FS_VERIFYUNCNAME 2-79

FS_WRITE 2-80

summary 2-1

FSD version number 1-13

FSD, file system driver 1-2

fsfsd, file search parameters 1-21

fsfsi, file search parameters 1-21

FSH_CHECKEANAME 1-10

FSH_UPPERCASE 1-10

function calls, file system 1-16

G

GEAList 1-10

GEAs 1-10

H
hard error, signal 3-10

helper callouts, FSDs (summary) 3-1

hVPB 3-21

I
I/O event semaphore, clear 3-28

IFS = statement 1-16

IFS Commands

IFS= statement 1-16

IFS partition 1-6

IFS=, CONFIG.SYS 1-13

initialization, file system 2-51

initialization, FSD 1-13

INT 19H 4-2

internal errors 3-26

interrupts 1-22

IOCTL request to device driver 3-12

ipl mechanism 1-6

IPL, remote 4-1

K
kernel mode 1-22

L
load character 3-30

loading a file system 1-16

loading device drivers and FSDs 1-6

loading FSDs 1-13

M
make subdirectory 2-54

matching wildcards 3-55

meta characters

micro-IFS, FAT 4-2

mini-FSD 4-1

mini-FSD Entry Points

MFS_CHGFILEPTR 4-11

MFS_CLOSE 4-12

MFS_INIT 4-13

MFS_OPEN 4-15

MFS_READ 4-16

MFS_TERM 4-17

summary 4-10

 Chapter 5. Index 5-3

mini-FSD helpers

MFSH_CALLRM 4-19

MFSH_DOVOLIO 4-20

MFSH_INTERR 4-21

MFSH_LOCK 4-22

MFSH_PHYSTOVIRT 4-23

MFSH_SEGALLOC 4-24

MFSH_SEGFREE 4-25

MFSH_SEGREALLOC 4-26

MFSH_SETBOOTDRIVE 4-27

MFSH_UNLOCK 4-28

MFSH_UNPHYSTOVIRT 4-29

MFSH_VIRT2PHYS 4-30

summary 4-18

monitor file/directory changes, begin 2-42

monitor file/directory changes, continue 2-44

monitor file/directory changes, end 2-41

mount volumes 2-56

mount, force 3-51

mounting a volume 1-5

move a file or subdirectory 2-58

move a file's position pointer 2-10

multi-function file I/O 2-26

N
name shared set 3-3, 3-37, 3-38, 3-40, 3-52

named pipe operation, remote 2-61

names, FSDs 1-12

O
open a file 2-65

open file parameters, sffsd 1-21

open file parameters, sffsi 1-21

open files, data structures 1-20

openmode parameter 2-65

OS/2 loader 4-2

OS2BOOT 4-2

OS2KRNL 4-2

OS2KRNL interface 4-5

OS2LDR 4-2

OS2LDR interface 4-4

P
paging file size, change 2-3

paging file, create 2-68

paging file, open 2-68

paging I/O, operations 2-18

path name 3-31

path name, canonical form 3-7

PDB, program data block 1-21

PID, process ID 1-21

POST 4-2

power-on-self-test 4-2

PREFVIEW, registration 3-39

process file name 2-72

process ID, PID 1-21

program data block, PDB 1-21

pseudo-character devices 1-7

Q
query/set a file's information 2-23, 2-70

query/set file attribute 2-21

R
read from a file 2-73

RECOVER 1-7

register usage, FSDs 1-22

remote file system, REMOTE 1-13

remote IPL 4-1

remote named pipe operation 2-61

REMOTE, remote file system 1-13

removable media, volume management 1-5

remove subdirectory 2-75

request router, file system 1-2

request semaphore 3-46

RIPL 4-1

S
segment size 3-44

Semaphore FS helpers

FSH_SEMCLEAR 3-45

FSH_SEMREQUEST 3-46

FSH_SEMSET 3-48

FSH_SEMSETWAIT 3-49

FSH_SEMWAIT 3-50

set and wait for semaphore 3-49

set semaphore 3-48

sffsd, open file parameters 1-21

sffsi, open file parameters 1-21

SFN 3-31

SFT 1-19

shared set, name 3-3, 3-37, 3-38, 3-52

shutdown file system 2-77

special considerations, bootable IFS 4-9

5-4 DRAFT: OS/2 Installable File Systems

ST_CREAT, time stamp flags 1-22

ST_PCREAT, time stamp flags 1-22

ST_PREAD, time stamp flags 1-22

ST_PWRITE, time stamp flags 1-22

ST_SREAD, time stamp flags 1-22

ST_SWRITE, time stamp flags 1-22

stack usage, FSDs 1-22

standard file I/O API 1-2

store character 3-53

subdirectory, make 2-54

swap segments into memory 3-22

swap-file ownership 2-76

SYS 1-7

system file table 1-19

system information 3-35

system interfaces, FSD 1-18

system relationships, ifs 1-1

T
time stamp flags 1-22

time stamping 1-22

time, format of 1-17

U
UNC server, verify 2-79

UNC, Universal Naming Convention bit 1-13

Universal Naming Convention bit, UNC 1-13

uppercase asciiz string 3-54

user address 3-33

Utility Support

CHKDSK 1-7

FORMAT 1-7

RECOVER 1-7

SYS 1-7

V
valid user address 3-33

validation of input parameters 3-1

volume 1-19

volume I/O 3-14

volume IOCTL request to device driver 3-17

volume management, removable media 1-5

volume parameter block 1-5, 1-19

volume parameters, vpfsd 1-19

volume parameters, vpfsi 1-19

volume, force mount 3-51

VPB 1-5, 1-19, 3-25

vpfsd, volume parameters 1-19

vpfsi, volume parameters 1-19

W
wait for semaphore 3-50

wildcards 3-55

write to a file 2-80

Y
yield CPU 3-56

 Chapter 5. Index 5-5

+++EDF074W Revision for REFID=OS24 out of sequence - EREV tag ignored. (Page 3-52 File: IFSH
ELP)
DSMMOM397I '.EDFERVBR' WAS IMBEDDED AT LINE 2036 OF 'IFSHELP'
DSMMOM397I 'IFSHELP' WAS IMBEDDED AT LINE 123 OF 'OS2IFS20'
DSMBEG323I STARTING PASS 2 OF 2.
+++EDF074W Revision for REFID=OS24 out of sequence - EREV tag ignored. (Page 3-52 File: IFSH
ELP)
DSMMOM397I '.EDFERVBR' WAS IMBEDDED AT LINE 2036 OF 'IFSHELP'
DSMMOM397I 'IFSHELP' WAS IMBEDDED AT LINE 123 OF 'OS2IFS20'

