SPECIFICATION OF
CONCURRENT EUCLID

(Version 1)

James R. Cordy
Richard C. Holt

Technical Report CSRG-133
August 1981

SPECIFICATION OF
CONCURRENT EUCLID

(Version 1)

James R. Cordy
Richard C. Holt

Technical Report CSRG-133
August 1981

Computer Systems Research Group
University of Toronto
Toronto, Canada
M5S 1Al

The Computer Systems Research Group (CSRG) is an interdisci-
plinary group formed to conduct research and development relevant
to computer systems and their application. It is jointly admin-
- istered by the Department of Electrical Engineering and . the
Department of Computer Science of the University of Toronto, and

is supported in part by the Natural Sciences and Engineering
Research Council of Canada.

ABSTRACT

Concurrent Euclid (CE) is a programming language designed for
implementing software that is efficient, reliable and portable.
It 1is particularly suited for implementing operating systems,
compilers and specialized microprocessor applications. It can
serve as the basis for producing verifiable system software.

CE has been designed to allow its compiler to be small, fast
and portable. Such a compiler exists, with replaceable high-
quality code generators for various target machine architectures
including the PDP-11, MC68000 and MC6809.

Copyright (C) 1980, 1981 by the authors.

CONTENTS

INTRODUCTION 1
I. THE SE LANGUAGE 2
Identifiers and Literals 2
Source Program Format 3
Syntactic Notation 3
Programs 3
Modules 4
Declarations 5
Constant Declarations 5
Variable Declarations 6
Types and Type Declarations 6
Type Equivalence and Assignability 9
Variable Bindings 9
Collections 10
Procedures and Functions 11
Type Converters 13
Statements 14
Variables and Constants 16
Expressions 17
Built-in Functions 18
Standard Components 19
Manifest Expressions 19
Precision of Arithmetic 19
Source Inclusion Facility 20
II. CONCURRENCY FEATURES 21
Processes 21
Monitors 22
Conditions 23
The Busy Statement 25
ITI. SEPARATE COMPILATION . 26
External Declarations 26
Compilations 27
Linking of Compilations 28
APPENDIX 1. COLLECTED SYNTAX OF CONCURRENT ,
EUCLID 29

APPENDIX 2. KEYWORDS AND PREDEFINED IDENTIFIERS 41

APPENDIX 3. INPUT/OUTPUT IN CONCURRENT

EUCLID

I0/1: Terminal Formatted Text I/O

I0/2: Sequential Argument File I/0

I0/3: Temporary and Non-Argument Files

I10/4: Structure Input/Output and
Random Access Files

Interfacing to Unix

APPENDIX 4. PDP-11 IMPLEMENTATION NOTES

Data Representation
Register Usage
Calling Conventions
External Names
Parameter Passing
Run-time Checking

REFERENCES

INDEX

42

42
43
45

46
46

47

47
47
48
49
49
50

51

52

INTRODUCTION

This report defines the programmming language Concurrent Eu-
clid, or CE. CE is designed for implementing software, and is
particularly suited to implementing operating systems, compilers
and specialized microprocessor applications. Because it is based
on Euclid [l1], it can also serve as the basis for implementing
software which is to be formally verified.

CE consists of a subset of the Euclid programming language
called Sequential Euclid or SE and a set of concurrency exten-
sions to Euclid based on monitors [2]. The first section of this
document defines the SE language independently of Euclid. The
second section describes the concurrency features added to form
CE. The last section describes CE features that support separate
compilation of procedures, functions, modules and monitors. A
thorough understanding of the basic concepts of the Pascal family
of programming languages is assumed throughout.

I. THE SE LANGUAGE

This section describes the SE subset of Euclid. SE is defined
independently of Euclid and no previous knowledge of the Euclid
programming language is required. An understanding of the basic
concepts of the Pascal family of programming languages is as-
sumed. -

IDENTIFIERS AND LITERALS

An identifier consists of any string of at most 50 letters,
digits and wunderscores (_) beginning with a letter. Upper and
lower case letters are considered identical 1in identifiers and
keywords, hence aa, aA, Aa and AA all represent the same identi-
fier. Keywords and predefined identifiers of Euclid, SE and CE
must not be redeclared. A list of these is given in Appendix 2.

A string literal is any sequence of one or more characters not
including a quote (') surrounded by gquotes. Within strings, the

characters quote, dollar sign, new line and end of file are
represented as $', $$, SN and $E respectively. As well, ST, $S

and $F may be used for tab, space, and form feed respectively.

A character literal 1is a dollar sign ($) followed by any
single character. The character literals corresponding to quote,
dollar sign, space, tab, form feed, new line and end of file are
S', $$3, $8$5, S$$T, SSF, $SN and S$SSE respectively.

In every implementation, the <character set for string and
character literals will contain at least the upper and lower case
letters A-Z and a-z, the digits 0-9 and the special characters
e 1200 [1{}+=*/<=>"$4"|&¥", space, tab, form feed, new line and
end of file. Character values are ordered such that A<B<KCK...<Z,
a<b<c<...<z and 0<1<2<...<9. Ordering of character wvalues is
implementation dependent otherwise.

An integer literal is a decimal number, an octal number or a
hexadecimal number. A decimal number is any sequence of decimal
digits. An octal number is any sequence of octal digits followed
by #8. A hexadecimal number is any sequence of hexadecimal di-
gits (represented as the decimal digits plus the capital letters
A through F) beginning with a decimal digit and followed by #l6.
Negative values are obtained using the unary - operator; see
"Expressions".

In every implementation, the range of integer 1literals will
include at least 0 through 65535.

SOURCE PROGRAM FORMAT

A comment is any sequence of characters not including comment
brackets surrounded by the comment brackets { and }. Comments
may cross line boundaries.

A separator is a comment, blank, tab, form feed or source line
boundary. Programs are free-format; that is, the identifiers,
keywords, literals, operators and special characters which make
up a program may have any number of separators between them.
Separators cannot be embedded in identifiers, keywords, 1literals
or operators, except that blanks may appear as part of the value
of a string literal. Identifiers, keywords and literals must not

cross line boundaries. At least one separator must appear
between adjacent identifiers, keywords and literals.
SYNTACTIC NOTATION
The following sections define the syntax of SE.

The following notation is used:

{item} means zero or more of the item
[item] means the item is optional

Keywords are given in lower case. Special symbols are enclosed
in double quotes (").

The followinq abbreviations are used:
id for identifier
expn for expression
typeDefn for typeDefinition
Semicolons are not required, but they may optionally appear
following statements, declarations and import, export and checked
clauses.

PROGRAMS

A main program consists of a module declaration.

A program is:

moduleDeclaration

Execution of a program consists of initializing the main module,
see "Modules".

Modules, procedures‘and functions can be compiled separately;
see "Separate Compilation".

MODULES

A moduleDeclaration is:

var id ":"

module
[imports " (" [var] id {"," ([var] id} ")"]
[exports n(n ld {u'u id} Il)ll]
[[not] checked]
{declarationInModule}
[initially

procedureBody]
end. module

Execution of a module declaration consists of executing the
declarations in the module and then the "initially" procedure of
the module. Execution of a program consists of executing the
main module declaration in this way.

Module declarations may be nested inside other modules but
must not be nested inside procedures and functions.

A module defines a.package of wvariables, constants, types,
procedures and functions. The interface of the module to the
rest of the program 1is defined by 1its 1imports and exports
clauses. :

The imports clause lists the global identifiers which are to
be wvisible 1inside the module. Variable, collection and module
identifiers mmay be imported "var" (or not). Imported variables
can be assigned to or passed as var parameters within the module
only if they are imported "var". Elements of an imported collec-
tion can be allocated, freed, assigned to or passed as var
parameters only if the collection is imported "var". Procedures
of an imported module can be called only if the module is impor-
ted "var". Imported identifiers must not be redeclared 1inside
the module.

The exports clause lists those identifiers defined inside the
module which may be accessed outside the module using the "."
operator. Exported variables cannot be assigned to or passed as
var parameters outside the module. Elements of exported collec-
tions cannot be allocated, freed, assigned to or passed as var
parameters outside the module. Unexported identifiers cannot be
referenced outside the module.

Named types declared 1inside a module are opaque outside the
module, that is, they are not considered equivalent to any other
type. Variables and constants whose type is opaque cannot be
subscripted, field selected or compared.

Modules may be "checked"; this causes all assert statements,
subscripts and case statements in the module to be checked for
validity at run-time. 1In addition, a particular implementation
may check other conditions such as ranges in assignments and
overflow in expressions. Modules not already nested inside an

-4 -

unchecked module are checked by default and must be explicitly
declared "not checked" to turn off run-time checking.

Even though declared like variables, modules are not variables
and cannot be assigned, compared, passed as parameters or expor-
ted.

Modules can be separately compiled if desired; see "Separate
Compilation".

DECLARATIONS

A declarationinModule is one of the following:

. constantDeclaration

. variableDeclaration
typeDeclaration
variableBinding

. MmoduleDeclaration

f. collectionDeclaration
g. procedureDeclaration

h. functionDeclaration
i. converterDeclaration
j. assert ["(" expn ")"]

Forms (a) through (i) are declarations for new identifiers as
explained in the following sections. Form (j) is an assert sta-
tement; see "Statements™., An identifier must be declared textu-
ally preceding any references to it.

CONSTANT DECLARATIONS

A constantDeclaration is one of:

a. [pervasive] const id ":=" manifestExpn
b. [pervasive] const id ":" typeDefn ":=" expn
c. [pervasive] const id ":" typeDefn ":="

"(" manifestExpn {"," manifestExpn} ")"
d. [pervasive] const id ":=" stringLiteral

A constantDeclaration gives a name to a value which 1is con-
stant throughout the scope of the declaration. The value of a
scalar constant can be manifest or nonmanifest. A manifest ex-
pression is one whose value is known at compile-time (see "Mani-
fest Expressions"). A nonmanifest expression must be evaluated

at run-time. Non-scalar values are always considered nonmani-
fest.

Form (a) defines a.manifest named constant. The type of the
constant is the type of the value expression, which must be mani-
fest. Manifest named constants are not represented at run time
since their values are always known at compile time.

Form (b) declares a nonmanifest named constant of the

-5 -

specified type. The value of the expression may be manifest or
nonmanifest, and must be assignable to the constant's type.
References to nonmanifest named constants are always considered
nonmanifest even if their value is manifest.

Form (c) declares an array constant. The typeDefn must be an
array type or named array type whose component type is scalar.
The list of expressions gives the values of the elements of the
array constant. The element values must be manifest expressions
assignable to the element type of the array. The number of
element values specified must be exactly the number of elements
in the array.

Form (d) allows declaration of an array constant using a
string literal value. The type of the constant is "packed array
l..n of Char" where n is the length of the string literal.

Constants declared using "pervasive" are automatically impor-

ted into all subscopes of the scope in which they are declared.
Such constants need not be explicitly imported.

.VARIABLE DECLARATIONS

A variableDeclaration is:

[register] var id ["(" at manifestExpn ")"] ":" typeDefn
[":=" expn]

A variableDeclaration declares a variable of the specified
type. The "at" clause declares a variable at an absolute machine
location. Variables may optionally be declared with an initial
value which is assigned to the variable when the declaration is
executed. The initial value expression must be assignable to the
variable's type.

Local wvariables in procedures and functions may optionally be
declared "register". This is a hint to the compiler that it
should attempt to allocate the variable to a register. Register
variables cannot be bound to nor passed to a reference parameter.
A register variable declaration cannot have an "at" clause.

TYPES AND TYPE DECLARATIONS

A typeDeclaration is:

[pervasive] type id "=" typeBody

The typeBody is one of:

a. typeDefn
b. forward

A typeDeclaration gives a name to a type. The type name can
subsequently be wused 1in place of the full type definition. A

-6 -

named type is equivalent to the type that it names (except when
exported, see "Type Equivalence and Assignability").

Named types may optionally be declared "pervasive". Type
names declared using "pervasive" are automatically imported into
all subscopes of the scope in which they are declared. Such
types need not be explicitly imported.

Form (b) declares a forward type. A forward type declares a
type name whose definition will be given in a later type declara-
tion in. the scope. A forward type can be used only as the

element type of a collection until its real type definition is
given., This allows the declaration of collections whose elements

contain pointers to other elements in the collection.
A typeDefn is one of the following:

standardType
manifestConstant ".." manifestExpn

. [packed] array indexType of typeDefn
set of baseType
[packed] recordType

. pointerType
g. namedType

rhOQLQ oo
« o

The standardTypes are:

SignediInt - signed integer, implementation
’ defined range (at least -32768..32767)

UnsignedInt - unsigned integer, implementation
defined range (at least 0..65535)

LongInt - signed integer, implementation
defined range (typically 32 bits)

ShortInt - unsigned integer, implementation
defined range (typically a byte)

Boolean - values are "true" and "false"

Char - single character

StorageUnit - no operations or literals, smallest
addressable memory unit (typically a
byte)

AddressType - implementation defined integer range

The standard types and the constants true and false are impli-
citly declared pervasive in the global scope and need not be
imported.

Form (b) is a subrange type. The leading constant must be a
(possibly negated) 1literal or manifest named constant and gives
the lower bound of the range of values of the type. The expres-
sion, which must be manifest, gives the upper bound of the range.
The bounds must be both. integer values or both character values.
The lower bound must be less than or equal to the upper bound.

A scalar type is a subrange, pointer or one of the standard
types.

Form (c) is an array type. The indexType must be a subrange
type, Char or a named type which is an i1ndexType. The indexType
gives the range of subscripts. The typeDefn gives the type of
the elements of the array.

Elements of an array variable are referenced using subscripts
(see "Variables and Constants”) and themselves used as variables.
Array variables and constants may be assigned (but not compared)
as a whole.

Arrays can be "packed", which allows the compiler to pack the

elements more efficiently. The type of string literals is "pack-
ed array l..n of Char" where n is the length of the string.

Form (d) is a set type. The baseType of the set must be a
subrange of integer with lower bound 0 or a namedType which is a

baseType. An implementation may limit the upper bound of a set
type to insure efficient code; this limit will be at least 15.

A recordType is:

record

var id ":" typeDefn
{var id ":" typeDefn}
end record

Variables declared using a record type have the fields given
by the wvariable declarations 1in the recordType. Fields of a
record variable may be referenced using the "." operator (see
"Variables and Constants”) and themselves used as variables.
Record variables may be assigned (but not compared) as a whole.

The variable declarations in a record type must not have ini-
tial values and cannot be declared using "register" or "at"
clauses.,

Records can be "packed", which allows the compiler to pack the
elements more efficiently.

A pointerType is:

""" collectionId

Variables declared using a pointerType are pointers to dynami-
cally allocated and freed elements of the specified collection;
see "Collections". Pointer variables are used as subscripts of
the specified collection to select the element to which they
point. The selected element can be used as a variable. Pointer
variables may be assigned, compared for equality and passed as
parameters.

A namedType is:
[moduleId "."] typeld
The typeld must be a previously declared type name. Type

- 8 -

names exported from a module are referenced outside the module
using the "." operator.

TYPE EQUIVALENCE AND ASSIGNABILITY

Two types are defined to be equivalent if they are

(a) subranges with equal first and last values

(b) arrays (both packed or both unpacked) with
equivalent index types and equivalent component
types

(c) sets with equivalent base types
(d) pointers to the same collection

A declared type identifier is equivalent to the type it names,
with the following exception. When an exported type identifier
is used outside its module, as "moduleld.typelId", it is a wunique
type, equivalent to no other type.

Each type definition for a record type creates a new type that
is not equivalent to any other record type definition.

An array value can be assigned to an array variable, a record
value assigned to a record variable, a set value assigned to a
set variable and a pointer value assigned to a pointer variable
only if the source and target of the assignment have equivalent
types.

An expression can be assigned to a scalar variable only if (i)
the "root" type of the expression and the "root" type of the
variable are equivalent, and (ii) the value of the expression is
in the range of the variable's type. The "root" type of Char and
character subrange types 1is Char. The root type of SignedInt,
UnsignedInt, LongInt, ShortInt, AddressType and integer subranges
is integer. The root type of any other type is the type itself.

A variable can be passed to a reference parameter only if its
type 1s equivalent to the parameter type. An expression can be
passed to a value parameter only 1if it 1is assignable to the
parameter type; see "Procedures and Functions".

VARIABLE BINDINGS

A variableBinding is one of:

a. bind [register] [var] id to variable
b. bind "(" [register] [var] id to variable
{"," [register] [var] id to variable} ")"

A variableBinding declares a new identifier for an arbitrary
variable reference which may contain subscripts and .

-9 -

operators. The new identifier is subsequently used in place of
the variable reference within the scope in which the binding

appears. If the bound variable is to be assigned to or passed to
a var parameter, the binding must be declared wusing "var". SE
does not allow "aliasing" of variables (i.e., having two names
for the same variable in a scope). Hence the "root" variable
(the first identifier in the variable reference) becomes inacces-
sible for the scope of the binding.

Form (b) allows bindings to different elements or fields of
the same variable or module. Since SE does not allow aliasing of
variables, bindings to the same field, element or variable are

not allowed.

Local binds in procedures and functions may optionally be
declared "register". This is a hint to the compiler to attempt
to allocate the bind to a register.

Elements of packed arrays and fields of packed records cannot
be bound to.

COLLECTIONS

A collectionDeclaration is:

var id ":" collection of typeDefn

A collection is essentially an array whose elements are dynam-
ically allocated and freed at run-time. Elements of a collection
are referenced by subscripting the collection name with a varia-
ble of the collection's pointer type. This subscripting selects
the particular element of the collection located by the pointer
variable.

Elements of a collection are allocated and freed dynamically
by calls to the built-in operations New and Free. "C.New(p)"
allocates a new element in the collection C and sets p to point
at it. If no more space is available then p is set to “C.nil".
"C.Free(p)" frees the element of C pointed at by p and sets p to
"C.nil". 1In each case p is passed as a var parameter and must be
a variable of the pointer type of C. These operations are invok-
ed as statements in procedures, see "Statements". They cannot be
used in functions.

The built-in constant "C.nil" is the null pointer wvalue for
the collection.

Collections themselves cannot be assigned, compared or passed
as parameters.

- 10 -

PROCEDURES AND FUNCTIONS

A procedureDeclaration is:

procedure id ["(" [var] id ":" parameterType
{"," [var] id ":" parameterType} ")"] "="
procedureBody

A functionDeclaration is:

function id ["("™ id ":" parameterType
{"," id ":" parameterType} ")"]
returns id ":" resul tType "="
procedureBody

A procedure is invoked by a procedure <call statement, with
actual parameters 1if required. A function is invoked by using
its name, with actual parameters if required, in an expression.

A procedure may return explicitly by executing a return sta-
tement or implicitly by reaching the end of the procedure body.
A function must return via “return(expn)".

Procedures and functions may optionally take parameters, the
types of which are defined in the header. The parameters can be
referred to inside the procedure or function wusing the names
declared in the header. Parameters to a procedure may be de-
clared using "var", which means the parameter may be assigned to
or further passed as a var parameter inside the procedure.
Parameters declared without using "var" are constants and cannot
be assigned to or passed as var parameters. Functions are not
allowed to have any side-effects and cannot have var parameters.
Only variable references can be passed to var parameters.

A parameter is a reference parameter if it is declared using
"var" or if its type is an array or record. Other parameters are
value parameters. Hence, a value parameter 1is a non-var
parameter whose type is a scalar or set.

A parameterType is one of:

a. typeDefn

b. [packed] array manifestConstant ".." parameter of
typeDe fn

C. universal

The type of a variable, record or array passed to a reference
parameter must be equivalent to the parameter's type with the
following exceptions. (1) The upper bound of the index type of
an array parameter can be declared using the keyword "parameter"
in which case any array whose element type and index type lower
bound are equivalent to the parameter's can be passed to the
parameter. (2) The type of a parameter can be specified as
"universal", in which case a variable or non-manifest named con-
stant of any type <can be passed to the parameter. Inside the
procedure, a universal parameter is equivalent to a parameter of

- 11 -

type "array 1l..parameter of StorageUnit", where the upper bound
is the size of the actual parameter in StorageUnits. Parameters
declared using "parameter" or "universal" do not have the ".size"
standard component and cannot be assigned or compared as a whole.
(Note: Full Euclid does not allow forms (b) and (c).)

The type of an expression passed to a value parameter must be
assignable to the parameter's type.

SE does not allow "aliasing” of variables (i.e., having two
names for a given variable or part of a given variable in the
same scope). Hence a variable or part of a variable which is
imported directly or indirectly into a procedure cannot be passed
to a reference parameter of the procedure. (A wvariable is
directly imported if it appears in the procedure's import list.
It is indirectly imported if an imported module or procedure
directly or indirectly imports it.)

Elements of packed arrays and fields of packed records cannot
be passed to reference parameters.

The returns clause defines the result type of a function. The
return identifier is required for compatibility with full Euclid
but cannot be referenced.

A resul tType is one of:

a. standardType

b. manifestConstant ".." manifestExpn
c. set of baseType

d. pointerType

e. namedType

The result type of a function must be a scalar type or set.
The expression in a function's return statement must be assigna-
ble to the result type.

A procedureBody is:

[imports " (" (var] id {"," ([var] id} ")"]
begin

[[not] checked]

{declarationInRoutine}

{statement}
end [id]

The 1identifier following the "end" must be the procedure or
function identifier. If the procedure is the initially procedure
of a module then the end identifier must not be present.

The imports clause of a procedure or function specifies those
global 1identifiers which are to be visible inside the procedure
or function. Only those variables imported into a procedure
using "var" may be assigned to or passed to a var parameter in-
side the procedure. Functions are not allowed to have side-
effects and cannot import anything "var". This restriction is

- 12 -

transitive; hence a function cannot import a procedure which
imports anything "var". A procedure or function which is recur-
sive must explicitly import itself.

Procedures and functions may be "checked"; this causes assert
statements, subscripts and case statements to be <checked for
validity at run-time. In addition, a particular implementation
may check other conditions, such as ranges 1in assignments and
overflow 1in expressions. Procedures and functions not nested
inside an unchecked module are checked by default and must be

explicitly declared "not checked" to turn off run-time checking.

A procedure returns when it executes a return statement or
reaches the end of the procedure. A function is executed simi-
larly but must return via "return(expn)".

Procedures and functions can be separately compiled; see
"Separate Compilation".

A declarationInRoutine is one of:

a. constantDeclaration
b. wvariableDeclaration
c. typeDeclaration

d. variableBinding

e. collectionDeclaration
f. converterDeclaration
g. assert ["("expn")"]

Modules, procedures and functions cannot be nested inside a
procedure or function. Form (g) allows assert statements to
appear in declaration lists.

TYPE CONVERTERS

A converterDeclaration is:

converter id " (" typeIlId ")" returns typeld

A converterDeclaration declares a type converter. A type con-
verter can be used to convert a variable or nonmanifest named
constant to a type other than 1its declared type. Both the
parameter and result type of a type converter must be named or
standard types. An implementation is not expected to generate
any code for a type conversion.

The type of a converted variable or constant must be
equivalent to the converter's parameter type. Expressions,

literals, manifest values, elements of packed arrays and fields
of packed records cannot be type converted.

If the size of the target type is larger than the size of the

source type, or the alignment of the target type 1is more con-
strained than the alignment of the source type, then the conver-

sion may be meaningless.

- 13 -

STATEMENTS
A statement is one of:

a. variable ":=" expn
b. [moduleId"."] procedureId ["(" expn {"," expn} ")"]
"c. assert ["("expn")"]
d. return ["("expn")"]
e. 1if expn then
{statement}
felseif expn then
{statement}}
[else
{statement}]
end if
f. 1loop
{statement}
end loop
exit [when expn]
case expn of
manifestExpn {"," manifestExpn} "=>"
{statement}
end manifestExpn
{manifestExpn {"," manifestExpn} "=>"
{statement}
end manifestExpn}
[otherwise "=>"
{statement}]
end case
i. begin
{declarationInRoutine}
{statement}
end
j. collectionId "." New " (" variable ")"
k. collectionId "." Free " (" variable ")"

o Y
e o

Form (a) 1is an assignment statement. The expression Iis
evaluated and the value assigned to the variable. The expression
must be assignable to the variable type; see “Type Equivalence
and Assignability".

Form (b) is a procedure call. An exported procedure is called
outside the module in which it was declared using the "." opera-
tor.

The type of an expression passed to a value parameter must be
assignable to the parameter's type. The type of a variable or
value passed to a reference parameter must be equivalent to the
parameter's type. If the upper bound of the type of an array
parameter 1is declared using "parameter", any array whose element
type and index type lower bound are equivalent to the parameter's
can be passed to the parameter.

An actual parameter passed to a var parameter must be a varia-
ble, a bound variable or a var formal parameter. If it is an
imported variable, it must have been imported using "var". Since

- 14 -

SE does not allow aliasing of variables, a variable or part of a
variable which is passed to a reference parameter cannot be
passed to another reference parameter of the same call.

Form (c) is an assert statement. The parenthesized expression
is optional; 1if it is omitted, it can be replaced by a comment.
If present, it must be of type Boolean. The expression |is
evaluated and <checked at run time if it appears in a checked
scope. Assert statements may appear in both statement lists and
declaration lists. They cannot appear inside records.

Form (d) is a return statement. The return statement causes
an immediate return from the procedure or function when executed.
The optional parenthesized expression gives the value to be re-
turned from a function. The return expression must be assignable
to the function's result type. The return expression is required
for function returns. It is forbidden for procedure returns. A
function must return via a return statement and not implicitly by
reaching the end of the function body. A procedure may return
either via a return statement or implicitly by reaching the end
of the procedure body.

Form (e) is an if 'statement., The conditional expression fol-

lowing "if" and each "elseif" is evaluated until one of them is
found to be true, in which case the statements following the
corresponding "then" are executed. If none of the expressions

evaluates to true then the statements following "else" are execu-
ted; 1if no "else" is present then execution continues following
the if statement. The conditional expressions must be of type
Boolean. :

Form (f) is the looping construct. The statements within the

loop are repeated until one of its "exit" statements or a "re-
turn" statement is executed.

Form (g) is a loop exit. When executed, it causes an immedi-
ate exit from the nearest enclosing loop. The optional "when"
expression makes the exit conditional. 1If the expression, which
must be Boolean, evaluates to true then the exit 1is executed,
otherwise execution of the 1loop continues. An exit statement
cannot appear outside a loop.

Form (h) is a case statement. The case expression is evalua-
ted and used to select one of the alternative labels. The sta-
tements which follow the matching label value are executed. If
the case expression value does not match any of the label values
then the statements following "otherwise" are executed. If no

"otherwise" is present, the case expression must match one of the
label wvalues. When execution of the statements following the

selected label is completed, execution continues following the
case statement.

The root type of the case expression must be integer or Char.
All of the label expressions must have the same root type as the
case expression. Label expressions must be manifest, i.e., their
values must be known at compile time. The values of all label

- 15 -

expressions in a given case statement must be distinct. The
value of the manifest expression following the end of an alterna-
tive must be equal to the first label expression of the alterna-

tive.

An implementation may limit the range of case label expression
values to insure efficient code; this range will include at least
the ranges of Char and ShortInt.

Form (i) is a begin block. Begin blocks can be used to group
local declarations within a procedure or function. In particu-
lar, they can be used to make local binds.

Forms (j) and (k) are the built-in collection operations New
and Free (see "Collections").
VARIABLES AND CONSTANTS
A variable is:
[moduleId "."] id {componentSelector}
The syntax for variables includes variable and constant re-
ferences. An exported variable or constant is referenced outside

the module in which it is declared using the "." operator.

A componentSelector is one of:

a. " (" expn |l)]
b. "." id

Form (a) allows subscripting of variable and constant arrays.
The type of the subscript expression must be assignable to the
index type of the array. The value of the subscript expression
must be in the declared range of the index type of the array.
Subscripts which appear in checked scopes are checked for validi-
ty at run-time.

Form (a) also allows references to elements of a collection.
In this case, the subscript expression must be a pointer to an
element of the collection.

Form (b) allows record field selection. Fields of a record
variable are referenced using the "." operator.

Form (b) also allows standard component references (see "Stan-
dard Components").

-16 -

EXPRESSIONS

An expn is one of the following:

variable

literalConstant

setTypeld " (" elementList ")"
collectionId "." nil

{moduleId "."] functionId ["(" expn {"," expn} ")"]
[moduleId "."] converterId "(" expn ")"
" (ll expn ll) n

w_mn expn

expn arithmeticOperator expn

expn comparisonOperator expn

not expn

expn booleanOperator expn

expn setOperator expn

L] L] L] L] . L[] L L .

. L]

HAULFTAQHROQALQD W
.

The arithmeticOperators are +, -, * (multiply), div (trunca-
ting integer divide) . and mod (integer remainder). The mod opera-
tor is defined by "x mod y = x - y*(x div y)". Operands of the
arithmetic operators and unary minus must be integers or expres-
sions having root type integer. The arithmetic operators yield

an integer result. (Note: +, - and * are also set operators; see
below.)
The comparisonOperators are <, >, =, <=, »>= and "not =",

Operands of comparison operators must either have equivalent
types or the same root type; see "Type Equivalence and Assigna-
bility". The comparison operators yield a Boolean result.
Arrays and records cannot be compared. Sets and Boolean expres-
sions can be compared for equality only. (Note: <= and >= are
also set operators; see below.)

The booleanOperators are "and" (intersection), "or" (union)
and -> (implication). The Boolean operators and the "not" opera-
tor take Boolean operands and yield a Boolean result. The
Boolean operators are conditional; that is, if the result of the
operation can be determined from the value of the first operand
then the second operand is not evaluated.

The set operators are + (set union), - (set difference), *
(set intersection), <= and >= (set inclusion), and "in" and "not
in" (element containment). The set operators +, - and * take
operands of equivalent set types and yield a set result. The set
operators <= and >= take operands of equivalent set types and
yield a Boolean result. The operators "in" and "not in" take a

set as right operand and an integer expression as left operand.
They yield a Boolean result.

The order of precedence is among the following classes of
operators (most binding first):

l. wunary -
2, *, div, mod
3' +, -

-17 -

4, <K, >, =, <=, >=, not =, in, not in
5. not

6. and

7. or

8. =>

Expression form (a) includes references to constants and vari-
ables including elements of arrays and collections, £fields of
records, and constants and variables exported from a module.

Form (b) includes integer, character and string 1literal con-
stants.

Form (c) is a set constructor. The setTypeld must be the name
of a set type. The set constructor returns a set containing the
specified elements.

An elementList is one of:

a. [expn {"," expn}]
b. all

The element list is a (possibly empty) list of expressions of
the base type of the set, or "all". If "all" is specified, the
constructor returns the complete set. If no elements are speci-
fied, the constructor returns the empty set.

Expression form (d) is the null pointer value of the specified
collection.

Form (e) is a function call. Functions exported from a module
are referenced outside the module using the "." operator. An
actual parameter to a function must be an expression assignable
to the parameter type.

Form (f) is a type <conversion. The type of the actual
parameter 1s changed to the result type of the type converter.
The actual parameter must be a variable or nonmanifest named con-
stant whose type is equivalent to the source type of the conver-
ter. Type converters exported from a module are referenced out-
side the module using the "." operator.

BUILT-IN FUNCTIONS

SE has three built-in functions, Chr, Ord and Long. "“Chr(i)"
returns the character whose machine representation is the posi-
tive integer value 1i. "Ord(c)" returns the positive integer
machine representation of the character c¢. Chr and Ord are de-
fined such that for all characters "c" in the machine character
set, Chr(Ord(c)) = c. "YLong(i)" forces the integer expression i
to be extended to LongInt precision; see "Precision of Arithmet-
ic". (Note: In full Euclid, the Ord built-in function is called
"Char.Ord".) ,

- 18 -

STANDARD COMPONENTS

SE defines two standard components, size and address.
"T.size" returns the length in StorageUnits (typically bytes) of
the machine representation of the wvariable or type T.
"V.address" returns the AddressType machine address of the varia-
ble V. The size and address standard components are not allowed
for elements of packed arrays and fields of packed records. The

address standard component is not allowed for variables declared
"register". (Note: In full Euclid, the address standard com-

ponent is allowed only for variables of type StorageUnit.)

MANIFEST EXPRESSIONS

A manifest expression is an expression whose value can be com-
puted as a literal constant at compile time. The extent of such
compile-time computation 1is implementation dependent, but every
implementation will consider at least the following to be mani-
fest:

1. 1Integer and Char literal constants

2. The Boolean values "true" and "false"

3. Manifest named constants

4. The arithmetic operations unary -, +, -, *, div
and mod when both operands are manifest and both
the operands and result lie in the range of
SignedInt (at least -32768..32767)

5. The built-in functions Chr and Ord when
the actual parameter is manifest

A manifestExpn is an expression whose value is manifest. A

manifestConstant is a (possibly negated) literal constant or man-
1fest named constant.

PRECISION OF ARITHMETIC

The precision of an arithmetic operation or comparison is
determined by the precision of the operands. Operands have one
of three precisions which correspond to the standard types Sig-
nedInt, UnsignedInt and LonglInt.

The precision of a variable or non-manifest named constant
operand is determined by its declared type. If its type is Sig-
nedInt, ShortInt or any subrange whose bounds both lie in the
range of SignedInt then its operand precision is SignedInt. If

its type is UnsignedInt or any subrange whose bounds. both lie in
the range of UnsignedInt but not in SignedInt then its precision

is UnsignedInt. Otherwise, its precision is LonglInt.

The precision of a literal or manifest named constant operand
is SignedInt if its value lies in the range of SignedInt, Unsig-

nedInt if its value lies in the range of UnsignedInt but not of
SignedInt, and LongInt otherwise.

- 19 -

The precision of an arithmetic operation or comparison is
LongInt if at least one operand has LongInt precision, Unsig-
nedInt if at least one operand has UnsignedInt precision and
neither has LongInt precision, and SignedInt otherwise.

The precision of the result of an arithmetic operation is the
precision of the operation. Every implementation will guarantee
to obtain the arithmetically correct result if the result of an
operation 1lies within the range of the result precision. If the
arithmetically correct result 1lies outside the range of the

result precision then the result may be meaningless.

Note that the precision of an operation or comparison can
always be forced to LongInt by extending the precision of one or
both of the operands wusing the Long built-in function (see
"Built-in Functions").

SOURCE INCLUSION FACILITY

Other source files may be included as part of a program using
the "include" statement.

An includeStatement is:

include stringLiteral

The stringlLiteral gives the name of a source file to be inclu-
ded in the compilation. The include statement is replaced in the
program source by the contents of the specified file.

Include statements can appear anywhere in a program and can

contain any wvalid source fragment. Included source files can
themselves contain include statements.

- 20 -

II. CONCURRENCY FEATURES

. The Concurrent Euclid (CE) language is an extension of SE
designed to allow concurrent programming with monitors. SE is a
subset of Euclid but CE is not, because concurrency and monitors
are not features of Euclid. ' '

The concurrency features of CE will be presented in the fol-
lowing order:

(1) processes, reentrant procedures and modules;

(2) monitors, entry procedures and functions;
(3) conditions, signalling and waiting;
(4) simulation and the busy statement.

PROCESSES

Each CE module (including the main module) can have any number
of concurrent processes in it.

A moduleDeclaration is:

var id ":"
module
[imports " (" (var] id {"," [var] id} ")"]
[exports ||(|| id {n’u ld} n)u]
[[not] checked]
{declarationInModule}
[initially
procedureBody]
{process id ["(" memoryRequirement ")"]
procedureBody}
end module

Each process 1is 1like a parameterless procedure. Concurrent
execution of the processes of the module begins following execu-
tion of the 1initially procedure of the module. A process ter-
minates by executing its last statement or by executing a return
statement in its body. The process identifier is for documenta-
tion only since processes cannot be called.

Processes can communicate with each other by changing and
inspecting variables declared in the module or imported into it.
Generally, however, processes communicate by means of monitors.

Each process requires a certain amount of memory space for its
variables. When the process calls a procedure or function, the
requirement increases to provide space for the new 1local varia-
bles.,. When the procedure or function returns, the requirement
decreases to its former. amount. The programmer can provide his
own estimate of the process's required space as a parenthesized
manifest integer expression following the keyword "process".
This estimate 1is 'in StorageUnits (normally bytes) and can be
based on previous program executions. If this estimate is omit-
ted, the implementation provides a default space allocation.

- 21 -

All procedures and functions declared in a CE program are
reentrant, meaning that they can be executed simultaneously by
more than one process, :

Modules, monitors, procedures and functions cannot be nested
inside a process. '
MONITORS

A monitor is essentially a special kind of module which im-
plements inter-process communication with synchronization.

A declarationInModule is one of the following:

constantDeclaration
variableDeclaration
typeDeclaration
variableBinding
moduleDeclaration
monitorDeclaration
collectionDeclaration
procedureDeclaration
functionDeclaration
converterDeclaration
assert ["(" expn ")"]

AU Q MO Q0 OD

Monitors may only be declared inside modules. Monitors cannot
be nested inside procedures, functions or other monitors.

A monitorDeclaration is:

var id ":"

monitor
[imports " (" [var] id4 {"," ([var] id} ") "]
[exports n(n ld {n,u ld} u)n]
[[not] checked]
{declarationInMonitor}
{initially

procedureBody]
end monitor

The imports list of a monitor specifies the global identifiers
which are accessible inside the monitor, exactly like the imports
list in a module.

The exports 1list of a monitor specifies those identifiers
defined inside the monitor which may be accessed outside the mon-
itor wusing the "." operator. Unlike modules, monitors cannot
export variables.

Procedures and functions which are exported from a monitor are
called monitor entries. Entry procedures and functions of a mon-
itor cannot be invoked inside the monitor. Outside the monitor,
entry procedures and functions can be invoked exactly 1like the
procedures and functions of a module, using the "." operator.

- 22 -

Procedures and functions which are entries of a monitor cannot
be separately compiled except as part of the entire monitor.

It is guaranteed that only one process at a time will be exe-
cuting inside a monitor. As a result, mutually exclusive access
to a monitor's variables is implicitly provided, since a monitor
cannot’ export any variables. If a process calls an entry of a
monitor while another process is executing in the monitor, the
calling process will be blocked and not allowed in the monitor
until no other process is executing in the monitor.

A declarationInMonitor is one of the following:

a. constantDeclaration
b. wvariableDeclaration
c. typeDeclaration

d. variableBinding

e. conditionDeclaration
f. collectionDeclaration
g. procedureDeclaration
h. functionDeclaration
i. converterDeclaration
j. assert ["(" expn ")"]

Modules and monitors cannot be declared inside a monitor. A
monitor cannot contain a nested process.

Monitors can be separately compiled; see "Separate Compila-
tion".
CONDITIONS

A conditionDeclaration is one of:

a. var id ":" [priority] condition
b. wvar id ":" array indexType of [priority] condition

The only place a condition can be declared is as a field of a
monitor. The only allowed use of conditions is in the "wait" and
"signal" statements and in the "empty" built-in function. Condi-
tions cannot be assigned, compared or passed as parameters.
Arrays of conditions are allowed. Conditions may be imported
"var" (or not). An imported condition can be used in a wait or
signal statement only if it is imported "var".

Two new statements are introduced:

wait " (" conditionvar ["," priorityvValue] ")"
signal " (" conditionvar ")"

Where a conditionVar is:

conditionId ["(" expn ")"]
The wait and signal statements each specify a <conditionVar.

- 23 -

Each of these must be a conditionId or a subscripted condition
array. These statements can appear only in monitors, but not in
a monitor's initially procedure.

When a process executes a wait statement for condition C it is
blocked and is removed from the monitor. When a process executes
a signal statement for condition C, one of the processes (if
there are any) waiting for condition C is unblocked and allowed
immediately to continue executing the monitor. The signalling
process 1is temporarily removed from the monitor and is not al-
lowed to continue execution until no processes are in the moni-
tor. If no processes were waiting for condition C, the only
effect of the signal statement is that the signalling process may
be removed from the monitor. The signalling process cannot in
general know whether other processes have entered the monitor
before the signaller continues in the monitor.

If the condition variable 1is declared with the "priority"
option, the wait statement must specify a priority value; oth-
erwise the priority wvalue is not allowed in wait. The
priorityvalue 1is a SignedInt expression that must evaluate to a
nonnegative integer value. The processes waiting for a priority
condition are ranked in order of their specified priority values,
and the process with the smallest priority value is the first to
be unblocked by a signal statement.

In the case of processes waiting for non-priority conditions,
or waiting with 1identical priorities for a priority condition,
the scheduling is "fair", meaning that a particular waiting pro-
cess will eventually be unblocked given enough signals on the
condition.

A predefined function named "empty" accepts a condition as a
parameter. It returns the Boolean value "true" if no processes
are waiting for the condition, otherwise "false". Like wait and
signal, "empty" can appear only inside a monitor, but not in the
initially procedure of a monitor.

The variables in a monitor represent its state. For example,
if a monitor allocates a single resource, only one variable in-
side the monitor is needed and it can be declared as Boolean.
When this variable is true, it represents the state in which the
resource is available, when false it represents the state of
being allocated. When a process enters the monitor and finds
that it does not have the desired state, the process 1leaves the
monitor and becomes blocked by executing a wait statement on a
condition. The condition corresponds to the state that the pro-

cess is waiting for. Suppose a process enters a monitor and
changes its state to a state that may be waited for by other pro-
cesses. The process should execute a signal statement for the

condition corresponding.to the new state. If there are processes
waiting for this state transition, then they will be blocked on
the condition, and one of them will immediately resume execution
in the monitor., Because of this immediate resumption, the sig-
nalled process knows the monitor is in the desired state, without
testing monitor variables. The signalling process is allowed to

- 24 -

continue executing only when no other processes are in the moni-
tor. If no processes were waiting on the condition, the only
effect of the signal statement is to temporarily remove the sig-
naller from the monitor.

As specified by Hoare, monitors and conditions are intended to
be used in the following manner. The programmer should associate
with the monitor's variables a consistency criterion. The con-
sistency criterion 1is a Boolean expression that should be true
between monitor activations, or whenever a process enters or
leaves ‘a monitor. Hence, the programmer should see that it is
made true before each signal or wait statement in the monitor and
before each return from an entry of the monitor. The programmer
should also associate a Boolean expression, call it Ei, with each
condition Ci. The expression Ei should be true whenever a signal
is executed for condition Ci. A process that is unblocked after
waiting for a condition knows that Ei is true because the signal-
led process (not the signalling process) executes first. (The
consistency criterion and each Ei for a condition do not neces-
sarily appear as executable code in the monitor.) 1In general,
when a process <changes the monitor's state so that one of the
awaited relations Ei becomes true, the corresponding condition Ci
should be signalled.

THE BUSY STATEMENT

A statement 1is 1introduced to allow simulation using timing
delays:

busy ll(" time ")ll

The time must be a nonnegative SignedInt expression. The busy
statement can be understood in terms of simulated time recorded
by a system clock. This clock is set to zero at the beginning of
execution of a program. With the exception of the busy statement
(or wait statements causing an indirect delay for a busy sta-
tement), statements take negligible simulated time to execute.
When the programmer wants to specify that a certain action takes
time to <complete, the busy statement is used. The process that
executes the busy statement is delayed until the system clock
ticks (counts off) the specified number of time units.

- 25 -

III. SEPARATE COMPILATION

This section describes the extensions made to CE to allow
separate compilation of procedures, functions, modules and moni-
tors.

EXTERNAL DECLARATIONS

Procedures, functions, modules and monitors may be declared
"external", which means that they are to be separately compiled
and joined with the program at link time. Due to linker restric-
tions, a particular implementation may be forced to place a limit
on the number of significant characters in external module, moni-
tor, procedure and function identifiers.

An externalProcedureDeclaration is:

procedure id ["(" ([var] id ":" parameterType
{"," [var] id ":" parameterTypel} ")"] "="
external

An externalFunctionDeclaration is:

function id ["(" id ":" parameterType
{",* id ":" parameterTypel} ")"]
returns id ":" resul tType "="
external

An externalModuleDeclaration is:

var id ":"
external module
{imports " (" [var] id {"," [var] id} ")"]
[exports ll(ll ld {u'n ld} l!)!l]
{declarationInExternalModule}
end module

A declarationInExternalModule is one of:

manifestConstantDeclaration
typeDeclaration
collectionDeclaration
converterDeclaration
externalProcedureDeclaration
externalFunctionDeclaration

MO QOO
» e e o o o

An externalMonitorDeclaration is:

var id ":"
external monitor
[imports " (" [var] id {"," (var] id} ")"]

- 26 -

[exports ||(|| id {n'u ld} ll)ll]
{declarationInExternalMonitor}
end monitor

A declarationInExternalMonitor is one of:

a. manifestConstantDeclaration
b. typeDeclaration

C. collectionDeclaration

d. converterDeclaration

. externalProcedureDeclaration
. eXxXternalFunctionDeclaration

An external declaration can appear in place of the real de-
claration and specifies that the corresponding procedure, func-
tion, module or monitor is to be compiled separately.

Processes and initially procedures of modules cannot be de-
clared external. Procedures and functions which are entries of a
monitor cannot be declared external except as part of an external

monitor declaration. 'Nonmanifest and array named constants can-
not be declared in an external module or monitor.

COMPILATIONS

A compilation can consist of a main program (see "Programs")
or a separate compilation.

A separateCompilation is:

{separateDeclaration}

Each separateDeclaration is one of the following:

manifestConstantDeclaration
typeDeclaration
collectionDeclaration
converterDeclaration
procedureDeclaration
functionDeclaration
moduleDeclaration
monitorDeclaration

. * o e o o .

SQ M QU O

Each separateDeclaration can be a manifest constant declara-
tion, a type declaration, a collection declaration, a procedure
or function declared as "external" in another compilation, or a
module or monitor declared as "external" in another compilation.

Separately compiled procedures, functions, modules and moni-
tors can be linked to form a complete program. Variables cannot
be separately compiled and are not 1linked across compilations.
Consistency of constants, types and collections is not automati-
cally checked across compilations. Consistency of the type and

- 27 -

number of formal parameters and function results between the
external declaration and the separate compilation of separately
compiled procedures and functions is not automatically checked.

Separately compiled modules and monitors will be initialized
at the point of the corresponding "external" declaration. Note
that since execution of a program consists of initializing the
main module (see "Programs"), only those modules and monitors
which are declared in the main module or a module nested within
it will be initialized.

LINKING OF COMPILATIONS

A complete program will typically consist of a main module
compilation linked together with the separate compilations of any
procedures, functions, modules and monitors declared as "exter-
nal" in it. The compilations must be linked such that the entry
point of the program is the beginning of the main module compila-
tion. (Under many systems, this means simply that the main modu-
le compilation must be the first in the list of object modules to
be linked together.)

- 28 -

APPENDIX 1.
COLLECTED SYNTAX OF CONCURRENT EUCLID

The syntax of SE is given first. Throughdut the following,
{item} means zero or more of the item, and [item] means the item
is optional.

The following abbreviations are used:

id for identifier
expn for expression
typeDefn for typeDefinition

Semicolons are not required, but they may optionally appear

following statements, declarations and import, export and checked
clauses.

A program is:

moduleDeclaration

A moduleDeclaration is:

var id ":"

module
[imports " (" [var] id {"," ([var] id} ") "]
f[exports n(u id {n'u ld} u)n]
[[not] checked]
{declarationInModule}
[initially

procedureBody]
end module

A declarationInModule is one of the following:

constantDeclaration
variableDeclaration
typeDeclaration
variableBinding
moduleDeclaration
collectionDeclaration
procedureDeclaration
functionDeclaration
converterDeclaration
assert ["(" expn ")"]

. ¢« » e o o 3 * o

e 3Q ho O OO

A constantDeclaration is one of:

a. [pervasive] const id ":=" manifestExpn
b. [pervasive] const id ":" typeDefn ":=" expn
c. [pervasive] const id ":" typeDefn ":="

"(" manifestExpn {"," manifestExpn} ")"

- 29 -

d. [pervasive] const id ":=" stringliteral

A manifestExpn is:

expn

A variableDeclaration is:

[register] var id ["(" at manifestExpn ")"] ":" typeDefn
["::“ expn]

A typeDeclaration is:

[pervasive] type id "=" typeBody

The typeBody is one of:

a. typeDefn
b. forward

A typeDefn is one of the following:

standardType

manifestConstant ".." manifestExpn
[packed] array indexType of typeDefn
set of baseType

[packed] recordType

pointerType

namedType

QOO TO
e« o o & o

o o

A standardType is one of:

SignedInt
UnsignedInt
LongInt
Shortint
Boolean
Char
StorageUnit
AddressType

SQUHhOQLOQ OO

A manifestConstant is one of:

a. ["-"] literalConstant
b. ["="] [modulelId] "." manifestConstantId

- 30 -

A manifestConstantld is:

id

An indexnge is one of:

a. Char

b. manifestConstant ".." manifestExpn

C. namedType

A baseType is one of:

a. 0 ".." manifestExpn
b. namedType

A recordType is:

record
var id ":" typeDefn

{var id ":" typeDefn}
end record

A pointerType is:

"4 collectionId

A collectionId is:

id

A namedType is:
[moduleId "."] typeld

A modulelId is:

id

A typeld is:
id

A variableBinding is one of:

bind [register] [var]

a.
b. bind "(" [register] [var]

{"," [register]

id to variable

[var]

- 31 -

id to variable
id to variable}

|l) "

A collectionDeclaration is:

var id ":" collection of typeDefn

A procedureDeclaration is:

procedure id ["(" [var] id ":" parameterType
{"," [var] id ":" parameterType} ")"] "="
procedureBody

A functionDeclaration is:

function id ["(" id ":" parameterType
{",” id ":" parameterType} ")"]
returns id ":" resultType "="
procedureBody

A parameterType is one of:

a. typeDefn

b. [packed] array manifestConstant ".." parameter of
typeDefn

c. universal

A resultType is one of:

a. standardType

b. manifestConstant ".." manifestExpn
c. set of baseType

d. pointerType

e. namedType

A procedureBody is:

[imports " (" [var] id {"," [var] id}l ")"]
begin

{[not] checked]

{declarationInRoutine}

{statement}
end [id]

A declarationInRoutine is one of:

a. constantDeclaration
b. wvariableDeclaration
c. typeDeclaration

d. wvariableBinding

e. collectionDeclaration
f. converterDeclaration
g. assert ["("expn")"]

- 32 -

A converterDeclaration is:

converter id " (" typeId ")" returns typeld

A statement is one of:

a. variable ":=" expn
b. [moduleId"."] procedureId ["(" expn {"," expn} ")"]
C. assert [“(llexpn") ll]
d. return ["("expn")"]
e. 1f expn then
{statement}
{elseif expn then
{statement}}
[else
{statement}]
end if
f. 1loop
{statement}
end loop
exit [when expn]
case expn of
manifestExpn {"," manifestExpn} "=>"
{statement}
end manifestExpn
{manifestExpn {"," manifestExpn} "=>"
{statement}
end manifestExpn}
[otherwise "=>"
{statement}]
end case
i. begin
{declarationInRoutine}
{statement}

> Q

end
j. collectionId "." New " (" variable ")"
k. collectionId "." Free " (" variable ")"

A procedureld is:

id

A variable is:

[moduleId "."] id {componentSelector}

A componentSelector is one of:

a . n (il expn ") "
b, "." id

c. "." size

d. "." address

- 33 -

An expn is one of the following:

variable

literalConstant

setTypelId "(" elementList ")"
collectionId "." nil

[moduleId "."] functionId ["(" expn {"," expn} ")"]
[moduleId "."] converterId "(" expn ")"
1] (l' expn ll) [1]

w_mn expn

expn arithmeticOperator expn

expn comparisonOperator expn

not expn

expn booleanOperator expn

eXpn setOperator expn

L] L] . . L] L] L] .

.

AL DoWQ HOQLQ OO

=

A setTypeld is:
id

A elementList is one of:

a. f[expn {"," expn}]
b. all

A functionId is one of:

a. id

b. Chr
c. Ord
d. Long

A converterId is:

id

An arithmeticOperator is one of:

a. +
b. -
c. *
d. div
e. mod

A comparisonOperator is.one of:

a. <
b. >
c., =
d. <=

- 34 -

>=

f. not =

A booleanOperator is one of:

"a. and
b. or
C. ->

A setOperator is one of:

a' +
bo -
c. *
d. <=
e, >=
£f. in
g. not in
Note: The order of precedence is

operators (most binding first):

unary -

*, div, mod

+, -

<v 20 = <=, 0=,
not

and

or

->

.

0 ~JAU & WK
L[] .

An includeStatement is:

include stringLiteral

Note:

- 35 -

Include statements can appear anywhere in

among the following classes of

in, not in

a program.

The following changes and additions are made to form CE:

A moduleDeclaration is:

var id ":"
module
[imports " (" [var] id {"," ([var] id} ") "]
[eXPOrtS n(u ld {n’n ld} n)n]
[[not] checked]
{declarationInModule}
[initially
procedureBody]
{process id ["(" memoryRequirement ")"]
procedureBody}
end module

A memoryRequirement is:

manifestExpn

A declarationInModule is one of the following:

constantDeclaration
variableDeclaration
typeDeclaration
variableBinding
moduleDeclaration
monitorDeclaration
collectionDeclaration
procedureDeclaration
functionDeclaration
converterDeclaration
assert ["(" expn ")"]

s o ¢ e e o

L . .

AL QMmO Q0T D

A monitorDeclaration is:

var id ":"

monitor
[imports "(ll [var] id {n'u [var] ld} ll)"]
[exports ll(ll ld {ll'll ld} Il)|l]
[[not] checked]
{declarationInMonitor}
[initially

procedureBody]
end monitor

A declarationInMonitor is one of the following:

a. constantDeclaration
b. wvariableDeclaration
c. typeDeclaration

- 36 -

variableBinding
conditionDeclaration
collectionDeclaration
procedureDeclaration
functionDeclaration
converterDeclaration
assert ["(" expn ")"]

U Qo Q
° o

A conditionDeclaration is one of:

a. var id ":" [priority] condition
b. wvar id ":" array indexType of [priority] condition

A statement is one of:

variable ":=" expn
[moduleId"."] procedureId ["(" expn {"," expn}")"]
assert ["("expn")"]
return ["("expn")"]
if expn then
{statement}
{elseif expn then
{statement}}
[else
{statement}]
end if
f. 1loop
{statement}
end loop
g. exit [when expn]
h. case expn of
manifestExpn {"," manifestExpn} "=>"
{statement}
end manifestExpn
{manifestExpn {"," manifestExpn} "=>"
{statement}
end manifestExpn}
[otherwise "=>"
{statement}]
end case
i. begin
{declarationInRoutine}
{statement}
end
collectionId "." New " (" variable ")"
collectionId "." Free " (" variable ")" :
wait " (" conditionvar ["," priorityvValue] ")"
signal " (" conditionvar ")"
bUSY u(n time n)n

® 0009
*

58 HARG

A modulelId is:

moduleOrMonitorld

moduleOrMonitorId is:

id

conditionVar is:

conditionId ["("

conditionId is:

id

priorityvalue is:

expn

time is:

expn

functionlId is one of:

a. 1id

b. Chr
c. Ord
d. Long
e. empty

expn "y"

- 38 -

The following extensions allow separate compilation of
cedures, functions, modules and monitors:

An externalProcedureDeclaration is:

"procedure id ["(" [var] id ":" parameterType
{"," [var] id ":" parameterType} ")"] "="
external

An externalFunctionDeclaration is:

function id ["(" id ":" parameterType
{"," id ":" parameterType} ")"]
returns id ":" resultType "="
external

An externalModuleDeclaration is:

var id ":"
external module
[imports " (" [var] id {"," [var] id} ") "]
[exports ll(" id {ll'll id} ") Il]
{declarationInExternalModule}
end module

A declarationInExternalModule is one of:

manifestConstantDeclaration
typeDeclaration
collectionDeclaration
converterDeclaration
externalProcedureDeclaration
externalFunctionDeclaration

o Q0o

An externalMonitorDeclaration is:

Var id ll:Il
external monitor
[imports " (" ([var] id {"," [var] id} ")"]
[exports ll(u ld {u'u ld} u)u]
{declarationInExternalMonitor}
end monitor

A declarationInExternalMonitor is one of:

a. manifestConstantDeclaration
b. typeDeclaration

¢c. collectionDeclaration

d. converterDeclaration

e. externalProcedureDeclaration

- 39 -

pro-

f. externalFunctionDeclaration

Note: An external declaration can appear in place of the real
declaration anywhere in a program.

A manifestConstantDeclaration is:

[pervasive] const id ":=" manifestExpn

A separateCompilation is:

{separateDeclaration}

Each separateDeclaration is one of the following:

manifestConstantDeclaration
typeDeclaration
collectionDeclaration
converterDeclaration
procedureDeclaration
functionDeclaration
moduleDeclaration
monitorDeclaration

QU MOQLOQUT W
* e

.

- 40 -

The following are reserved words of Euclid.
identifiers in SE and CE programs.

used as

APPENDIX 2.

in the SE subset are marked with an *.

*abstraction
*any

begin

case
collection
*decreasing
else
exports
*from

in
*invariant
not

packed

*pre

return
*thus

var

*aligned
array
bind
*checkable
const
*default
elseif
*finally
function
include
loop

of
parameter
procedure
returns
to

when

all

assert
*bits
checked
converter
*dependent
end

*for

‘if

initially
machine
or
pervasive
*readonly
set

type
*with

The following are additional reserved
These also must not be used as identifiers in SE and CE programs.

busy condition
priority process
universal wait

The following

empty
register

are predefined identifiers of Euclid.

KEYWORDS AND PREDEFINED IDENTIFIERS

These must not be
Those which are not

and

at
*bound
*code
*counted
div

exit
forward
imports
*inline
mod
otherwise
*post
record
then
*unknown
*yor

of SE and CE.

monitor
signal

In gen-

eral, these are pervasive and must not be redeclared in SE and CE

programs. Those

an *,

*Abs address
*BaseType Boolean
*ComponentType false
*Index *IndexType
*ItsType *last

New nil

Ord *Pred

size *sizeInBits
*StringIndex *stringMaxLength
*SystemZone true

AddressType

Char
*first
*Integer
*Max

*ObjectType

*refCount

StorageUnit

UnsignedInt

which are not in the SE subset are marked with

*alignment
Chr

Free
*jitsTag
*Min

*0dd
SignedInt
*String
*Succ

The following are additional predefined identifiers of SE and
CE. These also must not be redeclared in SE and CE programs.

Long

LongInt

- 4

ShortInt

1l -

APPENDIX 3.
INPUT/OUTPUT IN CONCURRENT EUCLID

This paper presents the standard input/output package for SE
and CE. The user can access the I/0 facility by including in his
program the stub input/output module which corresponds to the
level of I/0 which his program requires. 1In this way, the user's
compiled and linked program will include code only for the 1I/0
facilities required.

The package provides four levels of sophistication, which are
called "IO/1" through "I0/4". Each level includes all the facil-
ities of the previous levels plus certain new features. The
levels are as follows:

10/1: Terminal (standard) input and output; Formatted text
input/output of integers, characters and strings (Get and
Put).

I0/2: Program argument sequential files; Open and close on ar-
gument files; Formatted text input/output of integers,
characters and strings to files (FGet and FPut); Internal
representation input/output of integers, characters and
strings to files (Read and Write); End of file detection
(EndFile) .

I0/3: Temporary and non-argument sequential files (Assign, Deas-
sign, Delete); Program arguments (FetchArg); Program error
exit (SysExit).

I0/4: Record, array and storage input/output (Read and Write);
Random access files (Tell and Seek); Error detection
(Error) .

The procedures and functions of the input/output system are
all part of the module "IO" and must be referenced using "IO.".
The types and constants which form the interface to the module
are global. The user can access the level n facilities of the
input/output module by including the statement

include '/usr/lib/coneuc/I0n’
as the first declaration in his main module.

We now describe the input/output facilities in detail.

I0/1: Terminal Formatted Text I/0

pervasive const newLine := $SN
pervasive const endOfFile := $SE
pervasive const maxStringLength :=
{ Implementation defined; >= 128 }
Strings read and written by the input/output routines may be
up to maxStringLength characters in length.

- 42 -

I0.PutChar (c: Char)
Prints the character ¢ on the terminal.

I0.PutInt (i: SignedInt, w: SignedInt)
Prints the 1integer i on the terminal, right justified in a
field of w characters. Leading blanks are supplied to fill

the field. If w is an insufficient width, the value is
printed in the minimum possible width with no 1leading
blanks. In particular, if w is 1 then the exact number of

characters needed is used. The specified width must be
greater than zero and less than maxStringLength.

I0O.Putlong (i: LongInt, w: SignedInt)
Same as IO.PutInt for long integers.

I0.PutString (s: packed array l..parameter of Char)
Prints the string s on the terminal. The string must be
terminated by an endOfFile character ('$E'), which 1is not
output. It can contain embedded newLines ('$N') if desired.
(Note: An endOfFile character ($$E) can be output using
PutChar.)

I0.GetChar (var c:Char)
Gets a the next input character from the terminal. End of
file is indicated by a return of endOfFile (S$SSE).

I0.GetInt (var i: Signedlnt)
Gets an integer from the terminal. The input must consist
of any number of optional blanks, tabs and newlines, fol-
lowed by an optional minus sign, followed by any number of
decimal digits. '

I0.GetLong (var i: LongInt)
Same as IO.GetInt for long integers.

I0.GetString (var s: packed array l..parameter of Char)

Gets a 1line of character input from the terminal. The re-
turned string may be up to maxStringlLength characters in
length. The string returned is ended with the newLine
character ('$N') followed by an endOfFile character ('$SE')
if it 1is a complete line, and by the endOfFile character
only if it is a partial line (i.e., if the 1input 1line ex-
ceeds maxStringLength characters in length). End of file is
indicated by returning a string containing endOfFile ('SE!)
as the first character.

I0/2: Sequential Argument File I/0

pervasive const stdInput := -2
pervasive const stdOutput := -1
pervasive const stdError := 0
pervasive const maxArgs := { Implementation defined; >= 9 }
pervasive const maxFiles := '

{ Implementation defined; >= maxArgs+5 }
type File = stdInput..maxFiles

- 43 -

Concurrent Euclid input/output refers to files using a file
number, Certain file numbers are preassigned as follows: -2
refers to the terminal input; -1 is the terminal output; 0
is the standard diagnostic output. The file numbers
l. . .maxArgs refer to the program arguments. The remaining
file numbers (maxArgs+l..maxFiles) can be dynamically assig-
ned to files using the "IO.Assign" operation; see "IO/3".

pervasive const inFile := 0
pervasive const outFile := 1

pervasive const inOutFile := 2

type FileMode = inFile..inOutFile
Files can be opened for input, output, or input/output using
modes inFile, outFile and inOutFile respectively. (Note:
The input/output mode is not available under Unix V6.)

I0.Open (f: File, m: FileMode)

I0.Close (f: File)
With the exception of terminal input/output and the standard
diagnostic output, files must be opened before they are used
and closed before the program returns. Open opens an exis-
ting file for the operations specified by the mode. 1If the
opened file does - not exist, it is created. The file number
specified must be a preassigned file number or a file number
returned from a call to "IO.Assign"; see "IO/3".

I0.FPutChar (f: File, c: Char)

IO.FPutInt (f: File, i: SignedInt, w: SignedInt)

I0.FPutLlong (f: File, i: LongInt, w: SignedInt)

I0.FPutString (f: File, s: packed array l..parameter of Char)

I0O.FGetChar (f: File, var c: Char)

I0.FGetInt (f£: File, var i: SignedInt)

I0.FGetLong (f: File, var i: LongInt)

I0O.FGetString (f: File, var s: packed array l..parameter of Char)
These operations are identical to the terminal input/output
operations of I0/1 except that the put or get is done on the
specified file.

IO.WriteChar (f: File, c¢: Char)
Writes the internal representation of character c¢ to the
specified file.

I0.WriteInt (f: File, i: SignedInt)
Writes the internal representation of 1integer 1 to the
specified file.

I0.WriteLong (f: File, i: LonglInt)
Writes the internal representation of long integer i to the
specified file.

IO.WriteString (f:File,.s: packed array 1l..parameter of Char)

Writes the internal representations of the characters in the
string s to the specified file.

I0.ReadChar (f: File, var c: Char)
Reads a <character 1in internal representation from the

- 44 -

specified file into c.

I0.ReadInt (£: File, var i: SignedlInt)
Reads an 1nteger in internal representatlon from the speci-
fied file into i.

I0.Readlong (f: File, var i: LongInt)
Reads a 1long 1integer in internal representatlon from the
specified file into i.

I0.ReadsString (f: File, var s: packed array l..parameter of Char)
Reads a string of characters terminated by a newLine charac-
ter ('SN') in internal representation from the specified
file into s. The returned string may be up to max-
StringlLength characters 1in length. The string returned is
ended with the newLine character ('SN') followed by an
endOfFile character ('$E') if it is a complete line, and by
the endOfFile character only if it is a partial line (i. e.,
if the input 1line exceeds maxStringLength characters in
length). End of file is indicated by returning a string
containing endOfFile ('SE') as the first character.

I0.EndFile (f£: File)
A function which returns true if the last operation on the
specified input file encountered end of file and false oth-
erwise.

I0/3: Temporary and Non-argument Files

pervasive const maxArglLength :=
{ Implementation defined; >= 32 }
File names and arguments to a program may be up to maxAr-
glength characters in length.

I0. A551gn (var £: Flle, s: packed array l..parameter of Char)
A file number is a551gned to the file name supplied 1in s.
The file name is given as a string terminated by the endOf-
File character ('SE'), which is not part of the name. Be-
fore the file can be used it must be opened using "IO.Open"

I0.Deassign (f: File)
The specified file number is freed for assignment to another
file name. An open file cannot be deassigned.

I0O.Delete (f: File)
The specified file is destroyed. An open file cannot be

deleted. Note that a program can have temporary files using
"IO.Assign" and "IO.Delete".

I0.FetchArg (n: 1l..maxArgs, var s: packed array 1l..parameter of
Char)
The program argument specified by "n" is returned in string
S. The returned string 1is terminated by the endOfFile
character ('SE') and may be up to maxArgLength characters in
length.

- 45 -

I0.SysExit (n: SignedlInt)
Terminate program execution with the specified return code.
(ConEuc programs return 0 by default.)

10/4: Structure Input/Output and Random Access Files

IO.Write (f£: File, u: universal, n: SignedInt)
The number of StorageUnits specified by "n" are written to
the file from u. Write can be used to write out whole ar-
rays and records using a call of the form "IO.Write (£, v,
v.size)". The value of n must be positive or zero.

I0.Read (f: File, var u: universal, n: SignedInt)
The number of StorageUnits specified by "n" are read from
the file into u. Read can be used to read in whole arrays
and records using a call of the form "IO.Read (£, v,
v.size)". The value of n must be positive or zero.

type FileIndex = Longlnt

I0.Tell (f: File, var x: Filelndex)

I0.Seek (f: File, x: FilelIndex)
These operations.provide random access input/output by al-
lowing the program to sense a file position, represented as
a long integer, and reset the file to a remembered position.
Tell returns the current position of the specified file.
Seek sets the current position of the specified file to the
position specified by the value of x. The representation of
file indices is implementation-dependent. (Note: "IO.Tell"
‘and "I0.Seek" are not supported under Unix V6.)

I0O.Error (f£: File)
A function which returns true if the last operation on the
specified file encountered an error and false otherwise.

Interfacing to Unix*

The input/output package is based on standard Unix
input/output and 1is designed to be interfaced to Unix with a
minimum of overhead. The Unix implementation is written in C and
uses only facilities of the C "stdio" package. This implementa-
tion can be compiled unchanged under both V6 and V7 Unix.

Unix* is a trademark of Bell Laboratories.

- 46 -

APPENDIX 4.
PDP-11 IMPLEMENTATION NOTES

This section gives details of the implementation of CE for the
PDP-11 wunder Unix* and provides information necessary for inter-
facing with CE programs.

DATA REPRESENTATION

The following gives the storage representations of the various
CE data types used by the PDP-11 implementation.

Type Representation

SignedInt and
subranges contained 16-bit signed word
in -32768..32767

UnsignedInt and

subranges contained 16-bit unsigned word
in 0..65535 but

outside -32768..32767

LongInt and 32-bit signed doubleword, word
subranges outside aligned; high order word has
the above the lower address

ShortInt and

packed subranges 8-bit unsigned byte

in 0..255

Boolean 8-bit unsigned byte; true =1,
false = 0

Char 8-bit unsigned byte

StorageUnit 8-bit unsigned byte

AddressType,

pointers and binds 16-bit unsigned word

sets of 0..7 - 8-bit unsigned byte; element O

is low order bit, element 7 is
high order bit

sets of 0..15 16-bit unsigned word; element O

is low order bit, element 15 is
high order bit

REGISTER USAGE

The following register assignments are wused by the PDP-11
implementation.

- 47 -

Register Use

RO, Rl function results, scratch
R2, R3 scratch
R4 line number, register variables

and binds

R5 register variables and binds

Since the CE implementation uses the stack pointer register (SP)
to address local variables in procedures and functions, there 1is
no local base register.

Function results whose data representation is a byte or word
are returned in RO. Doubleword results are returned in RO and
Rl, with the high order word in RO.

In order to attain highly efficient code for non-scalar as-
signments, subscripting and LongInt arithmetic, the CE compiler
uses four scratch registers rather than the two used by the C
compiler. In particular, CE uses R2 and R3 for scratch and hence
does not save and restore them at procedure and function entry
and exit. Since the PDP-11 C compiler uses R2 and R3 for re-
gister variables, C routines which call CE procedures and func-
tions can use at most one register variable. There 1is no such
restriction on C routines called from CE programs.

Register R5 (and R4 when line numbering is turned off, see
below) are used for user variables and binds which are explicitly
declared "register".

When run-time 1line numbering is turned on (which is the de-
fault), the CE compiler generates code to maintain the source
file and line number in the line number register (R4) during exe-
cution. This aids in debugging since the "cedb" program can
obtain the source file name and line number from the core dump
following a run-time program failure (e.g., assertion failure,
subscript or case tag out of range, etc.).

The contents of the line number register is interpreted as a 5
digit unsigned decimal number, the first two digits of which give
the source include file number and the last three of which give
the source 1line number within file. Source file numbers are
assigned sequentially starting with 1 for the main source file.
Source files longer than 999 lines are assigned a new file number
for each 1000 lines of source. ‘

Run time line numbering can be turned off using the "-1" com-
piler toggle.
CALLING CONVENTIONS
CE procedures and functions which are (a) declared "external",

- 48 -

(b) separately compiled, or (c) exported from a separately com-
piled module or monitor, are called using the C calling conven-
tion. A more efficient calling convention is used for calls
between CE routines within a single compilation.

Unlike C routines, CE procedures and functions do not save and
restore all of the caller's registers, but rather save and res-
tore only those registers which they actually use. Note that
since registers RO-R3 are considered scratch registers by the CE
compiler, CE routines never save and restore R0O-R3. This means
that C routines which call CE routines can use at most one re-
gister wvariable. C routines which are called from CE may of
course use as many register variables as they wish. Assembly
routines called from CE can use R0O-R3 as scratch and need not
save and restore them. (Exception: the CE built-in routines are
called using a special calling convention and must save and res-
tore all registers which they use).

EXTERNAL NAMES

CE procedures and functions which are (a) declared "external",
(b) separately compiled, or (c) exported from a separately com-
piled module or monitor, are assigned external names so that they
may be linked with and/or called from other compilations and pro-
grams. On the PDP-11 under Unix, these names consist of the
routine name preceded by an underscore character. Because of
Unix linker restrictions, only the first seven characters of
external names are significant and hence care must be taken to
avoid confilicts. The "initially" routine of an external module
or monitor is given the name of the module/monitor. '

PARAMETER PASSING

Like C, CE passes parameters on the PDP-11 stack. Unlike C,
however, CE pushes parameters onto the stack 1in the order in
which they appear in the call (C reverses this order). Hence C
procedures and functions which are called from CE (and CE pro-
cedures and functions which are called from C) must declare their
formal parameters in reversed order.

Value parameters as defined in the CE language specification
are passed as values on the stack. Byte values are passed in the
low order byte of a 16-bit word. Reference parameters are passed
as 16-bit word addresses.

A parameter passed to array formal parameter declared using
the "parameter" keyword as upper bound is passed with an extra
unsigned word parameter following the array address. This extra
parameter gives the number of elements in the array minus one. A
parameter passed to a "universal" formal parameter is passed as
an address only.

- 49 -

RUN-TIME CHECKING

When run-time checking is turned on (which 1is the default),
the CE compiler will generate code to check assert statements,
subscript ranges and case selector ranges during execution. It
will not generate code to check ranges in assignments and over-
flow in expressions at run-time. The checking code uses an 1il-
legal 1instruction of the form "jsr rO0,rN" to abort the program
when a run—-time check fails. The second register number 1in the
instruction is an abort code indicating the reason for the abort.
The following table gives the abort codes wused by the PDP-11
implementation.

Aborting instruction Reason for abort

jsr r0,r0 assertion failure

jsr r0,rl subscript out of range

jsr r0,r2 case selector out of range

jsr r0,r3 function failed‘to return a value

The "cedb" utility will automatically determine the source
file name, source line number and reason for abort from the core
file produced by a run-time abort.

All run-time checking can be turned off using the "-k" com-
piler toggle.

Unix* is a trademark of Bell Laboratories,

- 50 -

REFERENCES

Lampson, B.W., Horning, J.J., London, R.L., Mitchell, J.G. and
Popek, G.J., Report on the Programming Language Euclid.
SIGPLAN Notices 12,1 (February 1977).

Hoare, C.A.R., Monitors: An Operating System Structuring Con-
cept. Comm. ACM 17,10 (October 1974), 549-557.

- 51 -

absolute address,
variable at 6

actual parameter
address

14

standard component 19
AddressType 7
aliasing 10, 12, 15
all, in set constructor 18

allocate 10
alternative label
and operator 17
arithmetic operation,

precision of 19
arithmetic operator
array constant 6
array type 8
assert statement
assignability 9
Assign file utility 45
assignment statement .14
at clause 6
base type 8
begin block
bind 9

15

17

15

16

blocked process 24
Boolean 7

boolean operator 17
built-in function 18

busy statment 25
calling conventions,
of PDP-11
implementation 48
case alternative label
case statement 15
Char 7
character literal 2
character set 2
checked,
module or monitor 4
procedure or
function

15

13

Chr built-in function 18
Close file utility 44
collection 8, 10
collection declaration 10
collection element 10, 16
comment 3

comparison operator 17.

compilation 27
concurrency 21
concurrent process
condition 23

21

INDEX

- 52 -

23
25

condition declaration
consistency criterion
constant declaration 5
data representation,

PDP-11

implementation 47
Deassign file utility
declaration,

external 26

in external module

in external monitor

in module 5, 22

in monitor 23

in procedure

or function

separate 27
Delete file utility 45
difference, set operator
div operator 17
dynamic allocation,

of collection elements
empty built-in function
empty set 18
entry, monitor
exit statement
exports clause,

of module 4

of monitor
expression 17
external declaration
external names,

PDP-11 implementation
FetchArg,

program argument

utility 45
FGetChar 44
FGetInt 44
FGetLong 44
FGetString 44
field selection,
file input/output
file,
file, sequential
file, temporary
formal parameter
forward type 7
FPutChar 44
FPutInt 44
FPutLong 44
FPutString 44
Free, built-in operation
function call 18

45

26

13

22
15

22

25

record
43

random access 46

43

45

11

27

17

10

24

49

16

10

function declaration 11
GetChar 43
GetInt 43
GetLong 43
GetString 43
hexadecimal number 2
identifier 2
identifier, predefined 2, 41
if statement 15
implication, Boolean 17
imports clause,

of module 4

of monitor 22

of procedure or

function 12

include statement 20
index type 8
initialization,

of modules and monitors
initially procedure,

of modules and monitors
initial value, of variable 6
input/output 42
in, set operator 17
integer literal 2
intersection, Boolean 17
intersection, set 17

I0/1 42
I0/2 43
I0/3 45
I10/4 46

I0 package 42
keyword 3, 41
label, case alternative 15
line numbering,

run-time, PDP-11

implementation 48

linking,

of compilations 27, 28
literal 2
Long built-in function 18
LongInt 7
loop exit 15
loop statement 15
main program 3
manifest 5
manifest constant 19
manifest expression 19
manifest named constant 5
memory requirement,

of process 21
mod operator 17
module 4
module declaration 4

monitor 22
monitor declaration 22
monitor entry 22
mutual exclusion,

in monitor 23
named constant 5
named type 7, 8
New, built-in operation 10
nil, collection component 10
non-aliasing,

in binds 10

in imports 12

in reference actual

parameters 15

nonmanifest 5
nonmanifest named constant 5
notation, syntactic 3
not in, set operator 17
not = operator 17
not operator 17
null pointer 10
octal number 2
opaque type 4
Open file utility 44
operator,

arithmetic 17

Boolean 17

comparison 17

set 17
operator precedence 17
Ord built-in function 18
or operator 17
packed,

array 8

record 8
parameter,

actual 14

formal 11

reference 9, 11

value 9, 11
parameter passing,

PDP-11 implementation 49
parameter type 1l
PDP-11 implementation 47
pervasive,

constant 6

type 7
pointer type, '

of collection 8
precedence, operator 17
precision,

of arithmetic 19
predefined identifier 2, 41
priority condition 24

- 53 -

priority value 24
procedure body 12
procedure call 14
procedure declaration 11
process, concurrent 21
program 3
PutChar 43
PutInt 43
Putlong 43
PutString 43
random access files 46
Read, structure input 46
ReadChar 44
ReadInt 45
ReadLong 45
ReadString 45
record field 8, 16
record type 8
recursive,
procedure or function 13.
reentrant procedure
or function 22
reference parameter 9, 11
register,
bind 10
variable 6
register usage,
PDP-11 implementation 47
reserved word 41
result type 12
return identifier 12
return,
procedure and function 13
returns clause 12
return statement 15
root type 9
run-time checking,
PDP-11 implementation 50
run-time line numbering,
PDP-11l implementation 48
scalar type 7
Seek file utility 46
semicolon 3
separate compilation 27
separate declaration 27
separator 3
set, complete 18
set constructor 18
set difference 17
set element containment 17
set, empty 18
set inclusion 17
set intersection 17
set operator 17

set type 8
set union 17
ShortInt 7
side-effects, function 12
signal statement 23
SignedInt 7
simulation 25
size standard component 19
source file inclusion 20
special symbol 3
standard component 16, 18
standard type 7
statement 14
StorageUnit 7
string constant 6
string literal 2
structured types 8, 16
structure input/output 46
subrange type 7
subscript, array 16
subscript, collection 16
synchronization 22
SysEx it,

program return

code utility 46
Tell file utility 46
temporary files 45
terminal input/output 42
type conversion 18
type converter 13
type declaration 6
type definition 7
type equivalence 9
union, Boolean 17
union, set operator 17
universal 11
UnsignedInt 7
value parameter 9, 11
variable declaration 6
variable reference 16
wait statement 23
Write, structure output 46
WriteChar 44
WriteInt 44
WriteLong 44
WriteString 44

- 54 -

University of Toronto
Computer Systems Research Group

BIELIOGRAPHY OF CSRG TECHNICAL REPORTS+

= CSRG-1 EMPIRICAL COMPARISON OF LR(k) AND PRECEDENCE PARSERS
J.J. Horning and W.R. Lalonde, September 1970
[ACM SIGPLAN Notices, November 1970]

* USRG-2 AN EFFICIENT LALR PARSER GENERATCR
W.R. Lalonde, February 1871
[M.A.Sc. Thesis, EE 1971]

* CSRG-3 A PROCESSOR GENERATOR SYSTEM
J.D. Gorrie, February 1871
[M.A.Sc. Thesis, EE 1971]

* CSRG-4 DYLAN USER'S MANUAL
P.E. BOnzon March 1971

CSRG-5 DIAL - A PROGRAMMING SYSTEM FOR INTERACTIVE ALGEBRAIC MANIPULATION
Alan C.M. Brown and J.J. Horning, March 1971

*CSRG-8 ON DEADLOCK IN COMPUTER SYSTEMS
Richard C. Holt, April 1971
[Ph.D. Thesis, Dept. of Cemputer Science,
Cornell University, 1871}

SEG-7 THEE STAR-RING SYSTEM OF LOOSELY COUPLED DIGITAL DEVICES
John Neill Thomas Potvin, August 1971
[M.A.Sc. Thesis, EE 1971}

* CSRG-8 ¥ILE ORGANIZATION AND STRUCTURE
G.M. Stacey, August 1971

CSRG-¢ DESIGN STUDY FOR A TWO-DIMENSIONAL COMPUTER-ASSISTED
ANIMATION SYSTEM
Kenneth B. Evans, January 1972
{¥.8c. Thesis, DCS, 1972]

“ CSRG-10 HOW A PROGRAMMING LANGUAGE IS USED
Williamn Gregg Alexandsr, February 1872
[M.Sc. Thesis, DCS 1971; Computer, v.#, n.11, November 1975]

* C3RG-11 PROJECT SUE STATUS REPCRT
J.W. Atwood (ed.), April 1872

+ Anbreviations:

Bes - Department of Computer Science, University of Toronto
Lk - Department of mectuca{ Fugineering, University of
Torcnte

* - Qut of print

—— - P -
» - o S gt e e 0

* CSRG-12 THREE DIMENSIONAL DATA DISPLAY WITH HIDDEN LINE REMOVAL
Rupert Bramall, April 1972
[M.Se. Thesis, DCS, 1971]

* CSRG-12 A SYNTAX DIRECTED ERROR RECOVERY METHOQOD
’ Lewis Il James, May 1872
[M.Sc. Thesis, DCS, 1972]

CERG-14 TEE USE OF SERVICE TIME DISTRIBUTIONS IN SCHEDULING
Kenneth C. Seveik, May 1972
{Ph.D. Thesis, Committee on Information Sciences,
University of Chicago, 1971; JACM, January 1974]

CSRG-15 PROCESS STRUCTURING
J.J. Horning and B. Randell, June 1972

[ACM Computing Surveys., March 1872]

*CSRG-16 OPTIMAL PROCESSOR SCHEDULING WHEN SERVICE TIMES ARE
HYPEREXFPONENTIALLY DISTRIBUTED AND PREEMPTION OVERHEAD
IS NOT NEGLIGIBLE
Kennetn C. Seveik, June 1872
[Procesdings of the Symposium cn Computer-Communicaticn,
Networks and Teletraffic, Polytechnic Institute of Brooklyn, 1972]

* CSRG-17 PROGRAMMING LANGUAGE TRANSLATION TECIINIQUES
W.M. McKeeman, July 1872

CSKG-18 A COMPARATIVE ANALYSIS OF SEVERAL DISK SCHEDULING ALGORITHEMS
C.I.M. Turnbull, September 1972 -

C3SRG-19 PRCOJECT SUE AS A LEARNING EXPERIENCE
K.C. Sevcik et al, September 1372
{Proceedings AFIPS Fall Joint Computer Conference,
v. 41, December 1972]

* CSRG-20 A STUDY OF LANGUAGE DIRECTED COMPUTER DESIGN
David B. Wortman, December 1372
[Ph.D. Thesis, Computer Science Department,
Stanferd University, 1972]

CSRG-21 AN APL TERMINAL APPROACHE TO COMPUTER MAPPING
R. Kvaternik, December 1972
[M.Sc. Thesis, DCS, 1972}

* CSRG-22 AN IMPLEMENTATION LANGUAGE FOR MINICOMPUTEES
G.G. Kalmar, January 1973
[M.3c. Thesis, DCS, 1972]

CSRG-23 COMPILER STRUCTURE
W.M. McKeeman, January 1873
[Proceedings of the USA-japan Computer Conference, 1972)

t

* CIRG-27

* CSRG-28

* CSRG-29

* CSRG-30

* CSRG-31

*» CSRG-35

* CSRG-38

* CSRG-37

-3-

AN ANNOTATED BIBLICGRAPHY ON COMPUTER PROGRAM
ENGINEERING
I.D. Gannon (ed.}, March 1973

3 THE INVESTIGATION OF SERVICE TIME DISTRIBUTICNS

Eleanor A. Laster, April 1873
[M.Sc. Thesis, DCS, 1973]

PSYCHOLOGICAL COMPLEXITY OF COMPUTER PROGRAMS:
AN INTTIAL EXPERIMENT '
Larry Weissmamn, August 1873

STRUCTURED SUBSETS OF THE PL/1 LANGUAGE
Richard C. Holt and David B. Wortman, October 1973

ON REDUCED MATRIX REPRESENTATION OF LR(k)
PARSER TABLES
Marc Louis Joliat, October 1873
[Ph.D. Thesis, EE 1973}

A STUDENT PROJECT FOR AN OPERATING SYSTEMS COURSE
B. Czarnik and D. Tsichritzis (eds.), November 1873

A PSEUDO-MACHINE FOR CODE GENERATION
Henry John Paske, December 1373
{M.Sc. Thesis, DCS 1973]

AN ANNOTAED BIBLICGRAPHY ON COMPUTER PROGRAM ENGINEERING

J.D. Gannon (ed.), Second Edition, March 1974

SCHEDULING MULTIPLE RESOURCE COMPUTER SYSTEMS
E.D. Lazowska, May 1974
{M.Sc. Thesis, DCS, 1974]

AN EDUCATICNAL DATA BASE MANAGEMENT SYSTEM
F. Lochovsky and D. Tsichritzis, May 1974
{INFCR, 14 (3), pp.270-278, 1978]

ALLOCATING STORAGE IN HIERARCHICAL DATA BASES
P. Bernstein and D. Tsichritzis, May 1974
[Informalion Systems Journal, v.1, pp.133-140]

CN IMPLEMENTATION CF RELATICHNS
D. Tsichritzis, May 1874

SIX PL/I COMPILERS
113, Wortman, P.J. Khaiat, and D.M. Lasker, August 1874
{Software Fractice and Experience, v.5, n.G, :
July-Sept. 1976]

AMETHODOLCGY FOR STUDYING THE PSYCHCLOGICAL
CF COMPUTER PRCGRAMS
Lavrence M. Welssman. Augusl 1874
{Ph.D. Thesis, DCS, 1574]

COMPLEXITY

. -4

* CSRG-38 AN INVESTIGATION OF A NEW METHOD OF CONSTRUCTING SOFTWARE
David M. Lasker, September 1974
[M.Sc. Thesis, DCS, 1974]

CSRG-39 AN ALGEBRAIC MODEL FOR STRING PATTERNS
Glenn F. Stewart, September 1574
{M.Sc. Thesis, DCS, 1574]

* CSRG-40 EDUCATIONAL DATA BASE SYSTEM USER'S MANUAL
J. Klebanofl, 7. Lochovsky. A. Rozitis, and
D. Tsichritzis, September 1974

* CSRG-41 NOTES FROM A WORKSHOP ON THE ATTAINMENT QF
RELIABLE SOFTWARE
David B. Wortman (ed.}, September 1974

* CSRG-42 TIE PRCJECT SUE SYSTEM LANGUAGE REFERENCE MANUAL
B.L. Clark and F.J.B. Ham, September 1374

* CSRG-43 A DATA RBASE PROCESSOR
B.A. Qekaranan, 3.A. Schuster and K.C. Smith,
November 1374 {Proceedings National Computer
Conference 1875, v.44, pp.379-388]

* CSRG-44 MATCHING PROGRAM AND DATA REPRESENTATION TO A
COMPUTING ENVIRONMENT
Erie C.R. Hehner, Novemver 1874
[Ph.D. Thesis, DCS, 1974]
See Computer, Vol.8, No.8, August 1978, pp.85-70.

= OSRG-45 THREE APPROACHES TO RELIABLE SCFTWARE; LANGUAGE DESIGN,
DYADIC SPECIFICATIONS, COMPLEMENTARY SEMANTICS
J.E. Donahue, J.D. Gannon, J.V. Guttag and
J.J. Horning, December 1574

CSRG-468 THE SYNTEESIS OF OPTIMAL DECISION YRERS FROM
DECISION TABLES
Eelmut Schumacher, December 1974
[M.Sc. Thesis, DCS, 1374; CACM, v.18, n.8, June 1378]

* CSRG-47 LANGUAGE DESIGN TO ENHANCE PROGRAMMING RELIABILITY
John B. Gannon, January 1975
[Ph.D. Thesis, DCS, 1875]

CSRG48 DETERMINISTIC LEFT TC RIGHT PARSING
Christopher J.M. Turnbull, January 1875
{Ph.D. Thesis, EE, 1874

* CSRG-49 ANETWORK FRAMEWORK FOR RELATICNAL IMPLEMENTATION
D. Tsichritzis, February 1975 [in Data Base Deseription,
Dongue and Nijssen {eds.}, North Holland Publishing Co.]

-5-

* CSRG-50 A UNIFIED APPRCACH TO FUNCTIONAL DEPENDENCIES
AND RELATIONS
P.A. Bernstein, I.R. Swenson and D.C. Tsichritzis
February 19875 [Proceedings of the ACM SIGMOD
Conference, 1973]

* CSRG~51 ZETA: A PROTOTYPE RELATIONAL DATA BASE MANAGEMENT SYSTEM
M. Brodie (2d). February 1575 [Proceedings Pacific ACM
Conference, 1975]

CSRG-52 AUTCMATIC GENERATION QOF SYNTAX-REPAIRING AND
PARAGRAPHING PARSERS
David T. Barnard, March 1975
{M.Sc. Thesis, DCS, 1975]

* CSRG-53 QUERY EXECUTION AND INDEX SELECTION FOR RELATICNAL

DATA BASES
J.H. Gilles Farley and Stewart A. Schuster, March 1978

CSRG-34 AN ANNOTATED BIBLIOGRAPHY ON COMPUTER PRCGRAM
ENGINEERING
J.V. Guttag {ed.), Third Editicn, April 1575

CSRG-55 STRUCTURED SUBSETS OF THE PL//1 LANGUAGE
Richard C. Holt and David B. Wortman, May 1375

* CSRG-56 FEATURES OF A CONCEPTUAL SCHEMA
D. Teichritzis, june 1975 [procsﬂdmgs Vary Large
Data Base Conference, 1275]

* CSRG-87 MERLIN: TOWARDS AN IDEAL PROGRAMMING LANGUAGE
Erie C.R. Hehner, July 1975
see Acta Informatica Col.10, No.3, pp.229-243, 1978

CSRG-58 ON THE SEMANTICS OF THE RELATIONAL DATA MODEL
Hans Albrecht Schmid and J. Richard Swenson,
July 1875 [Proceedings of the ACM SIGMOD Conference, 1975]

* CSRG-59 THE SPECIFICATION AND APPLICATION TC PROGRAMMING
OF ABSTRACT DATA TYPES
John V. Guttag, September 1975
[Ph.D. Thesis, DCS, 1975]

k|

*» CSRG-80 NORMALIZATION AND FUNCTIONAL DEPENDENCIES IN THE
RELATIONAL DATA BASE MODEL
Phillip Alan Bernstein, October 1375
[Ph.D. Thesis, DCS, 1575]

* CSRG-61 LSL: A LINK AND SELECTION LANGUAGE
D. Tsichritzis, Novemnber 1275 [Proceedings ACM
SIGMUD Conference, 1978]

-8 -

* CSRG-82 COMPLEMENTARY DEFINITICNS OF PRCGRAMMING LANGUAGE
SEMANTICS }
James E. Donahue, November 1375
[Ph.D. Thesis, DCS, 1975]

CSRG-83 AN EXPERIMENTAL BVATLUATION OF CHFESS PLAYING HEURISTICS
Lazlo Sugar, December 1975
[M.Sc. Thesis, DCS, 1575]

CSRG-84 A VIRTUAL MEMORY SYSTEM FOR A RELATIONAL ASSOQOCIATIVE
PROCESSOR
S.A. Schuster, E.A. Ozkarahan, and K.C. Smith,
February 1976 [Proceedings National Computer
Confcrence 1978, v.43, pp. 855-802]

CSRG-5 PERFORMANCE EVALUATION OF A RELATIONAL ASSOCIATIVE
PROCESSCR
E.A. Ozkarahan, 5.A. Schuster, and K.C. Sevcik,
February 1978 [ACM Transactions on Database
Svstems, v.1, n:4, December 13786]

CSRG-86 EDITING COMPUTER ANIMATED FILM
Michael D. Tilson, February 1978
{M.Sc. Thesis, DCS, 1975]

CSRG-67 A DIAGRAMMATIC APPROACE TC PROGRAMMING LANGUAGE
SEMANTICS
James R. Cordy, March 1976
{M.Sc. Thesis, NCS, 1§78]

CSRG-88 A SYNTHETIC ENGLiSH QUERY LANGUAGE FOR A RELATIONAL
ASSOCIATIVE PROCESSOR
L. Kerschberg, E.A. Ozkarahan, and J.E.S. Pacheco,
April 1976

CSRG-89 AN ANNOTATED BIBLIOGRAPHY ON COMPUTER PROGRAM
ENGINEERING
D. Barnard and D. Thompson {eds.), Fourth Edition,
May 16786

* CSRG-70 A TAXONOMY OF DATA MCDELS
L. Kerschiberg, A. Klug. and D.Tsichritzis, May 19768
[Preceedings Very Large Data Base Conference, 1976]

* CSRG-T1 CPTIMIZATICN FEATURES FOR THE ARCHITECTURE OF A
DATA BASE MACHINE
“E.A. Ozkarahan and X.C. Seveile, May 1978
[ACM Transactions of Database Systems, v.2, n.4, December 1977]

CSRG-72 TEE RELATIONAL DATA BASE SYSTEM OMEGA - PROGRESE REPORT
H.A. Schmid {ed.}, P.A. Bernstein (ed.), B. Ariow,
R. Baker and 3. Pozgaj, July 1376

-7

* CSRG-73 AN ALGORITHMIC APPROACH TO NORMALIZATION QOF
RELATIONAL DATA BASE SCHEMAS
P.A Bernstein and C. Beeri, Septemtbter 1878

CSRG-74 A HIGH-LEVEL MACHINE-ORIENTED ASSEMBLER LANGUAGE
: FOR A DATA BASE MACHINE
E.A. Ozkarahan and S.A. Schuster, October 1876

= CSRG-75 DO CONSIDERED 0OD: A CONTRIBUTION TO THE PROGRAMMING
CALCULUS
Eric C.R. Hehner, November 1578
Acta: Infermatica to appear 1978

CSRG-78 SOFTWARE HUT: A COMPUTER PROGRAM ENGINEERING
PROJECT IN THE FORM OF A GAME
J.J. Horning and B.B. Wortman, November 1976
[IEEE Transactions on Software Engineering, v.3E-3, n.4, July 1877]

CSRG-77 A SHORT STUDY OF PROGRAM AND MEMORY POLICY BEHAVIOUR
G. Scotl Graham, January 1977

* CSRG-78 A PANACHE OF DBMS IDEAS
D. Tsichritzis (ed.), February 1977

CSRG-78 THE DESIGN AND IMPLEMENTATION OF AN ADVANCED LALR
PARSE TABLE CONSTRUCTCR
David H. Thompson, April 1877
[M.Sec. Thesis, BCS, 1576]

CSRG-80 AN ANNOTATED BIBLIOCRAPHY ON COMPUTER PRCGRAM
ENGINEEKRING
D. Barnard {ed.}, Fifth Edition, May 1977

* CSRG-81 PROGRAMMING METHODCLOGY: AN ANNOTATED BIBLIOGRAPHY
FOR IFIP WCRKING GROUP 2.3
Sol J. Greenspan and J.J. Horning (eds.), First Edition. May 1977

CSRG-22 NOTES ON ZUCLID
edited by W. David Eliiott and David T. Barnard, August 1977

CSRG-83 TOPICS IN QUEUEING NETWORK MODELING
edited by G. Scott Graham, July 1877

CSRG-84 TOWARD PROGRAM ILLUSTRATICN
Bdward Yarwood, September 1877
[M.Sc. Thesis, DCS, 1974]

CSRG-85 CHARACTERIZING SERVICE T ’viE AND RE“*PO\T"‘ IME
DESTRZE"“’}“\"‘ IN QUEUEING NETWORK MODELS OF COMPUTER
EMS
d rd.; uazo 'a September 1877
Ph.D. Thesis, D 1 77]

’:"‘ tx1 i'fJ

-8-

CSRG-88 MEASUREMENTS OF COMPUTER SYSTEMS FOR QUEUEING
NETWORX MODELS
Martin G. Kienzie, October 1577
[M.Sc. Thesis, DCS, 1977; Proc. Int. Symp. on Modelling and Performance
Evaluation of Computer Systems, Vienna, 1579]

CSRG-87 'OLGA’ LANGUAGE REFERENCE MANUAL
B. Abourbih, H. Trickey, D.M. Lewis, E.S. Lee,
P.LP. Boulton, November 1977

~ CSRG-88 USING A GRAMMATICAL FORMALISM AS A PROGRAMMING LANGUAGE
Brad A. Silverberg, January 1978
[M.Sc. Thesis, DCS, 1378]

CSRG-85 ON THE IMPLEMENTATION CF RELATIONS: A XEY TO EFFICIENCY
Joachim W. Schmidt, January 1978

CSRG-20 DATA BASE MANAGEMENT SYSTEM USER PERFORMANCE
Fred=rick H. Lochovsky, April 1978
{Ph.D. Thesis, DCS, 1978]

CSRG-21 SPECIFICATION AND VERIFICATICN OF DATA BASE
SEMANTIC INTEGRITY
Michael Lawrence Bredie, April 1978
[Ph.D. Thesis, DCS, 1978]

CSRG-92 STRUCTURED SOUND SYNTEESIS PROJECT (SSSP):
AN INTRCDUCTION
by William Buxton, Guy Fedorkow, with Ronald Baecker,
Gustav Ciamaga, Leslie Mezei and K.C. Smith, June 1878

* CSRG-93 A DEVICE-INDEPENDENT.GENERAL-PURPOSE GRAPHICS SYSTEM
IN A MINICOMPUTER TIME-SHARING ENVIRCNMEN
William T. Reeves, August 1978
[M.Sc. Thesis, DCS, 1878]

* CBRG-94 ON THE AXIOMATIC VERIFICATION OF
CONCURRENT ALCORITHMS
Christian Lengauer, August 1578
[M.Sc. Thesis, DCS, 1978]

CE8RG-85 PISA: A PROGRAMMING SYSTEM FOR INTERACTIVE
PRODUCTICN CF APPLICATION SOFTWARE
Rudolf Marty, August 1978

CSRG-96 ADAPTIVE MICROFPROGRAMMING AND PROCESSOR MODUELING
Walter G. Rosocha
[Ph.D. Thesis, EE, August 1978)]

* CSRG-27 DEST G ISSUES IN TEE ?QUNDATE{)N OF A COMPUTER-BASED
\.u I O ’{;u () {

'\v iilliam Buxton
[M.Sco. Thesis, CYRG, Ontober 1878]

-9-

CSRG-28 THEORY OF DATABASE MAPPINGS
Anthony C. Klug
[Ph.D. Thesis, DCS, December 1978]

CSRG-29 HIERARCHICAL COROUTINES: A MECHANISM FOR IMPROVED
PROGRAM STRUCTURE
Leonard I. Vanek, February 1979

CSRG-100 TOPICS IN PERFORMANCE EVALUATION
G. Scott Graham {(ed.), July 1972

* CSRG-101 A PANACEKE OF DBMS IDEAS I
F.H. Lochovsky (ed.), May 1979

CSRG-102 A SIMPLE SET THEORY FOR COMPUTING SCIENCE
Eric C.R. Hebner, May 1878

CSRG-103 THE CENTRALIZED ALGORITEM IN DISTRIBUTED SYSTEMS
trnest J.H. Chang '
[Ph.D. Thesis, DCS, July 1979]

CSRG-104 ELIMINATING THE VARIABLE FROM DIJKSTRA'S
MINI-LANGUAGE
D. Hugh Redelmeier, July 1879

CSRG-105 A LANGUAGE FACILITY FOR DESIGNING INTERACTIVE
DATABASE-INTENSIVE APPLICATIONS
John Mylopoulos, Philip A. Bernstein, Harry X.T. Wong,
July 1879

2SRG-108 ON APPROXIMATE SOLUTION TECHNIQUES FOR
QUEUEING NETWORK MODELS OF COMPUTER SYSTEMS
Satish Kumar Tripathi, July 1875

CERG-107 A FRAMEWORK FOR VISUAL MOTION UNDERSTANDING
John K. Tsotsos, John Mylopoulos, H. Dominic Covvey
Steven W. Zucker, DCS, June 1979

* CSRG-108 DIALOCUE ORGANIZATION AND STRUCTURE FOR
INTERACTIVE INFORMATICON SYSTEMS
John Leonard Barron
[M.Sc. Thesis, DCS, 1980]

* CSRG-109 A UNIFYING MODEL OF PHYSICAL DATABASES
D.S. Batery, C.C. Gotlieb, April 1980

* CSRG-110 OPTIMAL FILE DESIGNS AND REORGANIZATION POINTS
D.S. Batory, April 1980

* CSRG-111 APANACHE QF UBMZ IDBAS 1T
D. Tsichritzis (ed.}, Apri

)

¢

i

ol

1

Vo]

L —
(o]

-10-

CSRG-112 TOPICS IN PSN - [I: EXCEPTIONAL CCNDITION
HANDLING IN PSN; REPRESENTING FROGRAMS IN PSN;
CONTENTS IN PSN '
Yves Lesperance, Byran M. Kramer, Peter F. Schneider
April, 1880

CSRC-113 SYSTEM-CRIENTED MACRO-SCHEDULING
C.C. Gotlieb and A. Schonbach
May 1980

CSRG-114 A FRAMEWORK FOR VISUAL MOTION UNDERSTANDING
John Konstantine Tsotsos
(Ph.D. Thesis, DCS, June 1980]

CSRG-115 SPECIFICATION OF CONCURRENT EUCLID
James R. Cerdy and Richard C. Holt
July 1980

CSRG-116 THE REPRESENTATICON OF PROGRAMS IN THE
PROCEDURAL SEMANTIC NETWORK FORMALISM
Bryan M. Kramer
LM.Sc. Thesis, DCS, 1380]

CSRG-117 CONTEXT-FREE GRAMMARS AND DERIVATION TREES AS
FROGRAMMING TOOLS
Velker Linnemann
Septernber 1230

CSRG-118 S/SL: SYNTAX/SEMANTIC LANGUAGE
INTRCDUCTION AND SPECIFICATION
R.C. Holt, J.R. Cordy, D.B. Wortman
CSRG, September 1980

CSRG-119 PT: A PASCAL SUBSET
Alan Rosselet
{M.Sc. Thesis, DCS, Octcher 198C]

JSRG-120 PTED: A STANDARD PASCAL TEXT EDRITOR BASED ON
THE KERNIGHAN AND PLAUGER DESIGN
Ken Newman, DCS
Qctober 1280

CSRG-121 TERMINAL CONTEXT GRAMMARS
Howard W. Trickey
{M.Sc. Thesis, EE, September 1580]

CSRG-122 THE APPROXIMATE SOLUTION QF LARGE QUEUEING
NETWORK MODELS
John Zahorian

-11-

CSRG-123 A FORMAL TREATMENT OF IMPERFECT INFCRMATION
IN DATABASE MANAGEMENT
Yannis Vassiliou
[Ph.D. Thesis, DCS, September 1980]

CSRG-124 AN ANALYTIC MODEL OF PHYSICAL DATABASES
Don 8. Baicry
[Ph.D. Thesis, DCS, January 1881]

CSRG-125 MACHINE-INDEPENDENT CODE GENERATION
Richard H. Kozlak
[M.Sc. Thesis, DCS, January 1981]

CSRG-128 COMPUTER MACRQ-SCHEDULING FOR HIGH PRODUCTIVITY
Abraham Schonbach
[Ph.D. Thesis, DCS, March 1981]

CSRG-127 OMEGA ALPHEA
D. Tsichritzis (ed.), March 1931

CSRG-128 DIALCGUE AND PROCESE DESICN FOR INTERACTIVE
INFORMATION SYSTEMS USING TAXIS
Jehn Barron, April 1881

CSRG-129 DESICN AND VERIFICATION OF INTERACTIVE INFORMATION
SYSTEMS USING TAXIS
Harry X.T. Wong
(Ph.D. Thesis, DCS, to be submitted]

CSRG-130 DYNAMIC PROTECTION OF OBJECTS IN A COMPUTER UTILITY
Leslie H. Goldsrnith, April, 1881

CSRG-131 INTEGRITY ANALYSIS: A METHODOLOGY FOR EDP AUDIT
AND DATA QUALITY CONTROL
Maija Irene Svanks
[Ph.D. Thesis, DCS, February 1981]

C3RG-132 A PROTOTYPE KNOWLEDGE-BASED SYSTEM
FOR CCMPUTER-ASSISTED MEDICAL DIAGNGEIS
Stephen A. Ho-Tai
[M.Sc.Thesis, DCS, January 1881}

CSRG-133 SPECIFICATION OF CONCURRENT EUCLID
James R. Cordy, Richard C. Holt
August 1981 {Version 1}

