
Mostly Parallel Garbage Collection

Hans-J. Boehm
Alan J. Demers
Scott Shenker

Xerox PARC

Abstract
We present a method for adapting garbage collectors

designed to run sequentially with the client, so that they
may run concurrently with it. We rely on virtual memory
hardware to provide information about pages that have
been updated or ‘‘dirtied’’ during a given period of time.
This method has been used to construct a mostly parallel
trace-and-sweep collector that exhibits very short pause
times. Performance measurements are given.

1. Introduction

Garbage collection is an important feature of many
modern computing environments. There are basically two
styles of garbage collection algorithms: reference-counting
collectors and tracing collectors. In this paper we consider
only tracing collectors. A straightforward implementation
of tracing collection prevents any client action from
occurring while the tracing operation is performed. When
applied to a system with a large heap, such stop-the-world
implementations cause long pauses. One of the primary
arguments against wide adoption of garbage collection is
that these collection-induced pauses are intolerable.

There are two common approaches to reducing the
pause time in tracing collectors: generational collection, and
parallel collection.

Copyright 1991 ACM. Appeared in Proceedings of the
ACM SIGPLAN ’91 Conference on Programming
Language Design and Implementation SIGPLAN Notices
26, 6, pp. 157-164.

Generational garbage collectors concentrate on
reclaiming recently allocated objects. Generational
collectors have been implemented in a wide variety of
systems and have achieved significantly reduced pause
times [Ungar 84]. However, a generational collector still
needs to run full collections occasionally in order to reclaim
older objects. Thus, the problem of long pauses is not
completely eliminated.

Parallel collectors take an orthogonal approach to the
problem of reducing collection pause time. Rather than
decreasing the total amount of work performed during a
particular collection as generational collectors do, parallel
collectors merely mitigate the effect of this work by running
in parallel with the mutator (client). While a parallel
collector still imposes some overhead cost on the system, it
eliminates the long pause times associated with stop-the-
world collection.

This paper discusses a technique called mostly parallel
tracing collection. In a mostly parallel collector, some small
portion of the tracing algorithm must run in a stop-the-
world fashion, but the majority of the work can be done in
parallel.

We had two goals in writing this paper. First was to
present a method for transforming a stop-the-world tracing
collector into a mostly parallel collector. This method is
quite general: it applies to copying as well as non-copying
collectors, and to generational as well as non-generational
ones. Furthermore, its implementation makes few
demands on the operating system beyond the write-protect
facilities that are now widely available. Our second goal
was to describe a particular implementation of a garbage
collector that illustrates this idea. Combining the notion of
mostly parallel tracing collection with our previous work on
conservative [BoehmWeiser 88] and generational
[DemersEtAl 90] collection, we have built a conservative,
generational, mostly parallel collector. This collector is able
to provide sophisticated garbage collection services to
rather primitive languages like C which provide no pointer
information. Collection pauses on a SparcStation II with 15
Megabytes of accessible objects are usually not noticeable.
Unlike pure generational collectors, our collector achieves

this performance even for the periodic full collections
needed to reclaim long-lived objects.

2. Making Tracing Collectors Mostly Parallel

Basic Idea

Every program contains a set of root memory objects
(machine registers, statically-allocated data, etc.) that are
always accessible. A tracing garbage collection starts with
an immune set of memory objects that includes all roots,
follows the pointers contained therein to other memory
objects, and then continues this pointer tracing recursively
until no more objects can be reached. We use the term
marked to denote those objects visited by this tracing
procedure. Any marked memory object is reachable from
the immune set and should be saved. Unmarked, and thus
unreachable, objects are garbage and should be reclaimed.
Tracing collectors can differ in the immune set used
(generational), whether or not objects are moved (copying),
and many other implementation details.

We believe that a wide variety of tracing collectors
designed to run in a stop-the-world fashion can be made to
run mostly in parallel. We first discuss this in rather
general terms and then return in Section 3 to give a more
precise definition for the noncopying case.

Assume we are able to maintain a set of virtual dirty
bits, which are automatically set whenever the
corresponding pages of virtual memory are written to. (An
acceptable implementation of this feature can be obtained
by write-protecting pages and catching the resulting write
faults, with no modifications to the underlying OS kernel;
an implementation in the OS kernel would of course be
more efficient.) For any tracing collector defined for stop-
the-world operation, consider the following collection
algorithm. At the beginning of the collection, clear all
virtual dirty bits. Perform the traditional tracing operation
in parallel with the mutator. The virtual dirty bits will be
updated to reflect mutator writes. After the tracing is
complete, stop the world and trace from all marked objects
that lie on dirty pages. (Registers are considered dirty.) At
this point, all reachable objects are marked, and garbage
can safely be reclaimed.

This requires that the tracing operation not invalidate
the original data structures seen by the mutator. This is
normally automatically true if objects are not moved. In
the case of a copying collector, a possible approach is
presented in the last section.

In this algorithm, the parallel tracing phase provides an
approximation to the true reachable set. The only objects
unmarked by this parallel tracing process which are indeed
reachable must be reachable from marked objects which
have been written since being traced. The stop-the-world
tracing phase traces from all such objects, so that in the end
no truly reachable objects remain unmarked. The
application of this idea to noncopying collectors will be
formalized in the next section.

The resulting mostly parallel collector is a
compromise; it is neither perfectly parallel nor precise. The
severity of these drawbacks depends on the writing
behavior of the mutator. The duration of the final stop-the-
world phase is related to the number of pages written
during the parallel tracing operation. Thus, running this
collector during a period of rapid writing could lead to long
system pauses. In the worst case, pause times would be
comparable to a stop-the-world collection, but this has
never been observed in practice.

Not all unreachable objects are reclaimed. This occurs
when a pointer which has been traced through in the
parallel trace phase is changed or deleted before the stop-
the-world phase. However, such an object will be
reclaimed by a subsequent collection. Thus, the rate at
which pointers are modified will determine the lack of
precision in the collection.

Related Work

Our work is motivated by our search for effective
garbage collection algorithms that can operate without any
special operating system or mutator cooperation. In
particular, we are interested in a collection algorithm usable
by programs written in C on a standard UNIX system.
Thus, algorithms that require reliable pointer identification
and possibly mutator cooperation, such as copying or
reference counting, were not pursued to much depth. Thus
we emphasize noncopying collectors. In the next section we
formalize our mostly parallel technique for this case.

There are a number of related collection algorithms
that rely on copying live data and thus assume reliable
pointer identification. These can generally be made to
tolerate some uncertain pointer identifications using the
technique of [Bartlett 89]. However, this can only
accommodate a small number of uncertain pointers. It
usually performs acceptably only if the uncertainty is
limited to pointers in registers and on the stacks. Even then
it may occasionally be problematic [DeTreville 90]. In our
environment, every pointer identification is uncertain,
including those from the heap, and this approach is not
usable.

The advantages of being able to accommodate
uncertainty in pointer identification are described in
[BoehmWeiser 88] and [DemersEtAl 90]. An analysis of the
limitations of the technique under very adverse
circumstances is given in [Wentworth 90]. [Zorn 90]
demonstrates that noncopying trace-and-sweep collectors
may, at times, outperform copying collectors (though the
details of his trace-and-sweep collector are quite different
from ours).

Parallel noncopying collectors are described by Steele
[Steele 75] and Dikstra et al. [DijkstraEtAl 78], among
others. [Baker 78] presents a copying collection algorithm
that is explicitly interleaved with mutator operations.
Unlike our work, these algorithms rely heavily on mutator
cooperation. Pointer updates, and in most cases read

accesses, require the mutator to update collector data
structures. These algorithms are practical on conventional
hardware only under unusual circumstances. Baker’s
algorithm requires reliable pointer identification.

Appel et al. [AppelEllisLi 88] present a parallel
copying collector intended to run on conventional
machines. Their scheme, like ours, takes advantage of
virtual memory hardware. Unlike our approach, they
require intervention when the page on which an object
resides is first accessed (either written or read), whereas our
scheme requires intervention only when the page is first
written, and then only if the operating system does not
allow use of hardware dirty bits. Since their algorithm also
copies list structures breadth-first, and thus does not
preserve locality in list structures, this may result in a flurry
of such intervention at the beginning of a collection.

[DemersEtAl 90] also describes a parallel collection
algorithm based on virtual checkpoints implemented with a
copy-on-write strategy. The algorithm described here does
not incur the copying overhead, is typically easier to
implement, and requires no additional memory.

Very recently, DeTreville [DeTreville 90] described a
parallel trace-and-sweep collector which, like ours, uses
virtual memory hardware instead of explicit mutator
cooperation. His collector requires that slightly less work
be performed while the mutator is stopped but, like the
[AppelEllisLi 88] collector and unlike ours, it requires that
the collector be notified on initial read accesses by the
mutator. Furthermore, a single page may be protected and
faulted more than once. Based on our experience with
pages accessed versus pages written, we believe that our
strategy would usually outperform this approach, at least in
our environment. Comparable performance measurements
would be useful, but difficult to obtain; they report few
quantitative measurements, and those are on completely
different hardware, with completely different mutators.

An overview of various proposed uses of virtual
memory primitives by user programs is given in [AppelLi
91].

3. Sweeping Doesn’t Matter

The following discussion will center on the mark phase
of the mark-sweep collector, that is on the process of tracing
through and identifying reachable objects. The sweep
phase does not have a significant impact on garbage
collector pause times. There is no reason to sweep the
entire heap while the world is stopped waiting for the
collection to complete; it is easy enough to interleave the
‘‘sweep phase’’ with object allocation.

Our collector splits the heap into blocks. Each block
contains only objects of a particular size. For small objects,
the size of the block is a physical page. The mark phase sets
a bit for each accessible object. We then queue pages for
sweeping, keeping a separate queue for each small object
size.

The allocator also maintains separate free lists for each

(small) object size. Whenever the allocator finds an empty
free list, it sweeps the first page in the queue of
‘‘sweepable’’ pages for that object size, removes it from the
queue, and restores unreachable objects to the free list.

Large object blocks are swept in large increments
during allocations immediately following a collection. This
requires very little cpu time, and does not force the data
pages to become resident in physical memory.

The net effect of this is that garbage collection times
are completely dominated by the time it takes to mark
accessible objects, and are thus, essentially proportional to
the amount of accessible space. Object allocation times
may become rather long if full pages are scanned before an
available object is found, but this effect is not noticeable in
practice.

For the next three sections, we will view garbage
collection as the process of marking reachable objects.

4. Formal Statement
In a previous paper [DemersEtAl 90] we formalized

the notion of a partial collection, i.e. a collection that
reclaims only a subset of all unreachable objects. We will
not review that material here, except to note that these
partial collections are characterized by the set T of
threatened, i.e., potentially collectible, objects. The
complement of that set, the non-collectible or immune
objects I, are the objects to be traced from as discussed in
Section 2. The root set is always a subset of I. Full
collections have I=roots, whereas partial collections have
additional objects in I. Generational collections are a
special case of partial collections where the threatened set
contains only recently allocated objects. A collection is
correct if it does not reclaim any objects that are reachable,
by tracing pointers, from I. A way of guaranteeing
correctness is to reclaim only unmarked objects and ensure
that the following closure condition holds:

C: Every object in I is marked and every object
pointed to by a marked object is also marked.

A stop-the-world collection consists of the following
steps: (1) stop the world, (2) clear all mark bits, (3) perform
the tracing operation TR defined below, and (4) restart the
world.

TR: Mark all objects in I and trace from them.

At the completion of this process, condition C holds
and we can safely reclaim all unmarked objects.

To run such a collector in a mostly parallel fashion, we
(1) clear all mark bits, (2) clear all virtual dirty bits, (3)
perform the tracing operation TR, (4) stop the world, (5)
perform the finishing operation F defined below, and (6)
restart the world.

F: Trace from all marked objects on dirty pages.
Note that here the tracing operation TR is performed

in parallel with the mutator. The closure condition C does

not hold after step 4, since the mutator could have written
new pointers into previously marked objects. However, the
weaker condition C’ does hold at the end of step 4.

C’’: Every object in I is marked and every object
pointed to by a marked object on a clean page is also
marked.

Notice that this weaker closure condition, once
established by the operation TR, remains unchanged by the
actions of the mutator. Applying the process F to any state
that satisfies condition C’’ will produce a state that satisfies
condition C.

This produces a correct mostly parallel collection.
However, if the mutator has dirtied many pages during the
tracing operation the stop-the-world phase can be overly
long. To reduce this delay, the collector process can
"clean" the dirty pages in parallel through the use of the
process M applied to some set of pages P.

M: (1) Atomically retrieve and clear the virtual dirty
bits from the pages P, and (2) trace from the marked
objects on the dirty pages of P.

The previous discussion focused on a general notion of
partial collection. We now turn to defining a particular
generational version of a partial collection, which makes use
of the mark bits for object age information. This collector
is related to Collector I in [DemersEtAl 90]. Consider a
partial collection where the set I is chosen to be the set of
currently marked objects. Then, we know that condition
C’’ already holds and that steps 1-3 are unnecessary. We
then merely need to stop the world and run the finishing
step F to complete the collection. In order to reduce the
length of the delay, we perform the operation M applied to
the entire heap immediately before the stop-the-world
phase. Thus, a mostly parallel version of a generational
collector can be described as (1) perform M on the heap, (2)
stop the world, (3) perform F, and (4) restart the world.
Once an object has been marked, it will never be reclaimed
by this generational collector. Thus, we must occasionally
run full (nongenerational) collections to reclaim once-
marked objects.

An alternate way of cleaning dirty pages is the process
M’

M’ (1) Atomically retrieve and clear the dirty bits from
the pages P, (2) for all unmarked objects pointed to by
marked objects on dirty pages of P, mark them and
dirty the pages on which they reside.

We can substitute repeated applications of M’ for a
single application of M. Usually M is preferable but if the
ratio of virtual to physical memory is extremely large, it
may make sense to run M’ repeatedly in order to improve
locality of the tracing algorithm.

5. Implementation Choices

The preceding section gives us tools to build a variety
of collectors, but it is not obvious how to combine them.
We have not made a systematic comparison of the options,
but we have experimented with a few of them. This section
describes some of those experiences.

 The first choice is when and how to run M or M’
before a partial collection. We chose not to use M’, since
its repeated use is likely to be much more expensive than a
single execution of M in our environment. Our experience
is that it for allocation intensive mutators it occasionally
makes sense to run M more than once before a collection,
since the initial execution of M can take some time, thus
giving the mutator a chance to dirty a significant number of
new pages. However, the cost involved with more than two
iterations appears rarely to be justified.

Further variants of M are possible. It is not essential
for correctness that M mark from roots. We maintain dirty
bits for some roots, in order to reduce the number of roots
that must be examined by F. (In our environment, a
megabyte of potential roots is common.) For reasons of
convenience we clear all dirty bits when M starts. Thus we
must mark from roots on known dirty pages. But marking
from other roots, such as thread stacks, is optional.

We found it to be advantageous to always execute M
once before a partial collection, and to run a second
iteration if there was a significant amount of allocation
during the first. Furthermore, letting the first iteration of
M mark from all roots (other than those known to be clean)
can significantly reduce final pause times.

A more difficult decision is what constitutes a full
collection, and how and when we decide to perform one.
Initially we triggered a full collection when we had
exhausted the currently allocated heap. The heap was not
expanded unless a full collection had been unsuccessful.
The full collection consisted of a partial collection followed
by a parallel trace operation TR. The hope was that the
partial collection would generally reclaim enough memory
to let the mutator threads continue.

This approach has a number of problems. First, the
heap is often exhausted by allocation of large blocks of
storage. These often require completion of the next
collection, and perhaps a heap expansion, before they can
be satisfied. Even if this is not the case, there is no
opportunity to run M before the partial collection without
stalling the allocating thread for its duration. To make
matters worse, the allocating thread may hold a crucial lock,
thus also stalling other threads.

This lead us to a model in which the collector is
triggered solely by a daemon thread, which watches how
much allocation has taken place. Full collections are
triggered if the amount of apparently live memory exceeds
the amount of live memory at the end of the last collection
by a certain amount. If a full collection is needed, a normal
partial collection is started, including up to two iterations of
M. This is followed immediately by a completely
concurrent execution of TR. If the allocator ever exhausts

memory, it tries to immediately expand the heap.
This policy is a bit dangerous, in that the heap may

grow rapidly if the collector falls far behind. To reduce this
danger we exercise control over the scheduling of the
collector and mutator threads, such that the fraction of time
allocated to the mutator drops off rapidly, but smoothly, as
the collector falls behind.

Other policy decisions surround the question of which
pages to use for allocation of small objects. We avoid
allocation on a page that is already 3/4 full, so that we do
not unnecessarily dirty it. It is unknown whether this is a
good choice.

6. Empirical results

The mostly parallel generational collector described in
the previous section has been in routine use on
SPARCStations, as part of the Xerox Portable Common
Runtime (PCR) and PCedar [Weiser 89], for several
months. This paper was edited on a system that uses it.

The collector marking code has been quite heavily
tuned and optimized. However, the same is not true for
some other pieces of code run for our measurements. For
example, allocation time (exclusive of collection) could
have been reduced by about 50% by running a streamlined,
less general, assembly coded allocator. (It could have been
reduced still further if we were operating in a world in
which there is no concurrency aside from the collector.)

We used the PCR preemptive thread-scheduling
facility [Weiser 89] to allow the collector to run
concurrently with the mutator. All measurements were
performed such that all threads were run by a single UNIX
process. A page fault thus stopped all threads. The code is
written to allow more than one UNIX process to run
threads, and has often been run in this mode (with slightly
worse performance). Similarly, no fundamental changes
would be needed if those UNIX processes were scheduled
on more than one physical processor, provided UNIX
shared memory across processors were supported. We did
not address the question of running the collector on more
than one processor simultaneously, though aside from the
unlikely possibility of extremely deep and narrow linked
data structures, this would not be terribly difficult to do.

The collector was implemented so as not to require
modification to the vendor supplied operating system.
Dirty bit information (on virtual memory pages) was thus
not derived from the hardware dirty bits. Instead the entire
heap was write protected. The resulting write faults were
caught as UNIX signals at user level, and recorded.
Various Portable Common Runtime interfaces to SunOS
system calls were modified so as to preclude unrecoverable
write faults in system calls. The primary cost of this is that
the first time a page in the heap is written after a garbage
collection, a signal must be caught and a system call must
be executed to unprotect the page. The cost of this is
variable, but in our environment appears to be somewhat
less than half a millisecond per page written.

The allocator distinguishes between objects containing
pointers and those known never to contain pointers. The
implementation performs partial collections after allocating
approximately one quarter as many bytes as there are in
pointer-containing objects. (This heuristic is an attempt at
bounding the fraction of time spent collecting. In our
environment, collection time is very roughly proportional
to the total size of pointer-containing objects.)

We are really interested in measuring interactive
response in the presence of garbage collection.
Subjectively, this improved substantially with the parallel
generational collector. However, interactive sessions are
difficult to reproduce and measure in different
environments. Thus we resorted to running toy programs.
But, since we are interested in the performance of the
collector in a large single address space system, these toy
programs are run in the same address space with the Cedar
window system, the Tioga editor, a mailer, the
SchemeXerox system [CurtisRauen 90], and a typical
complement of miscellaneous smaller tools. These summed
to roughly 70,000 objects, between 9.5 and 10 megabytes of
pointer-free allocated objects and between 2.5 and 3
megabytes of pointer-containing allocated objects, in a 20
megabyte heap. Much of the pointer-free space is used for
object code and static data for the Cedar/Mesa program
implementing the environment. The static data areas are
treated as roots by the collector.

We attempted to measure comparable stop-the-world
full, generational, and parallel generational collectors.
However, it is unfair to run the full collector more
frequently than when the heap is exhausted. There is
usually little to be gained from more frequent collections.
But the other approaches benefit from more frequent
collections. As a compromise, we fixed the heap size at 20
megabytes, ran the full collector only when the heap was
full, triggered the other two collectors from a daemon
thread, and tuned the parameters of the
parallel/generational collector such that the heap size
would remain at 20 megabytes. (The parallel generational
collector running Boyer on the 10 MB machine did expand
the heap to 21 MB near the end of the run.) This meant
that the nonparallel generational collector ended up
running more frequently than absolutely necessary, since it
did not really need the reserve space for allocation during
collection. Overall, this probably also increased its running
time relative to the other two, but decreased pause times.

The two programs we consider here are five iterations
of the Boyer benchmark, as compiled by SchemeXerox, and
a simple allocator loop, written in C. The former is
described in [Gabriel 85], and is often (ab)used as a garbage
collector benchmark. The version of the SchemeXerox
compiler we used was rather preliminary. Thus the
absolute execution times are considerably longer than they
should be. One cause for this is that cons-cells are 16 bytes
long.

The latter program allocates two and a half million 8
byte objects and does not preserve any references to any of

them. Both programs probably exhibit more local write
behavior then the average interactive session, with the
simple allocator presenting the extreme case. But real
systems tend to be less allocation intensive than both
benchmarks, creating less danger of the allocator falling
behind. In our experience, real behavior tends to be close
to that for the Boyer benchmark.

Each program was measured on a 36 Megabyte
SPARCStation 2, and also on the same machine
reconfigured to use only 10 MB of its memory. The
machine had a local paging disk. The 36 MB machine does
not page significantly, whereas the 10 MB runs of Boyer
were completely disk bound, as can be seen from the time
differences. Note that the thread stacks and PCR are
separate from the heap, that the 10 MB figure also includes
the UNIX kernel, that the Scheme system itself relies on
substantial parts of the Cedar environment, and that a
number of non-Scheme-related daemon threads run
occasionally. All of these no doubt contributed to the
paging behavior.

In each case we report total execution times, number of
garbage collections (number of full collections in
parentheses), and maximum and average pause times for
garbage collections. Total execution times are given in
seconds, while garbage collection pause times are given in
milliseconds. Total execution times were reproducible to
within about 10%. Pause time averages occasionally varied
by up to 20%, but were usually also within 10% of each
other.

10 MB, alloc20meg

 Pause Times
Total time No. of colls. Max. Ave.
secs (full) msecs msecs

full 332.2 3(3) 51350 46323
gen 24.4 20(0) 870 125
gen,par 32.0 11(0) 350 102

10 MB, Boyer

Total time No. of coll. Max. Ave.
full 512.6 4(4) 63380 56548
gen 360.6 22(5) 41840 9291
gen,par 259.6 12(2) 329 169

36 MB, alloc20meg

Total time No. of coll. Max. Ave.
full 16.4 3(3) 1040 1037
gen 15.5 17(0) 200 81
gen,par 17.2 11(0) 100 76

36 MB, Boyer

Total time No. of coll. Max. Ave.
full 51.6 4(4) 1610 1368
gen 60.4 22(5) 1471 528
gen,par 66.1 13(2) 159 134

On a machine configured for 8 MB memory, even the
parallel collector pause times went up to an average of
about 2 seconds, and the heap grew by 2 megabytes,
indicating that some parameters needed to be tuned to keep
the mutator from getting too far ahead during full
collections.

The average pause time for the generational collector
running Boyer on the small memory machine is completely
dominated by the full collection times. The smaller partial
collection times were around 300 milliseconds. This effect
does not arise for the allocator loop, since it requires no full
collections.

Mostly parallel collection significantly reduces average
pause times below those attainable by pure generational
collection, both by avoiding pauses associated with full
collections, and by reducing pause times for partial
collections. (This is of course less true for the allocator
loop, since it touches only the pages it allocates from, and
requires no full collections, thus making the page cleaning
operations less productive. But note again that parallel
collection were effectively less frequent, since a lot of
allocation occurred during each collection. Thus total
pause times were significantly less.) The benefit of hiding
full collections is most noticeable on small memory
machines, where a full collection requires large amounts of
paging. On memory-rich machines, even full stop-the-
world collection times can be sufficiently short that they are
only a minor annoyance.

In our environment collection pauses are usually
unnoticeable (unlike network related pauses). Short pauses
are achieved at moderate additional cost in processor time,
since roots and dirty objects may be scanned repeatedly.

Note that PCedar itself (i.e. the mutator) is barely
usable on a 10 megabyte machine. Nonetheless the parallel
collector keeps collection pauses tolerable. They are
significantly shorter than response time for a command that
has not been run recently, and has thus had some of its code
paged out.

The number of full collections observed during the
experiments indicates that a relatively large number of
short-lived objects are getting marked, and thus surviving to
the next full collection. Since full collections are usually
not disastrous, this problem can be tolerated. However, we
are exploring modifications to the generational collection
scheme similar to those in [DemersEtAl 90] that would
improve this behavior without adding significantly to the
required bookkeeping overhead.

7. Mostly Parallel Copying Collectors

It is possible to apply the same approach to obtain a
mostly parallel copying collector. Unlike the [AppelEllisLi
88] collector, this approach requires only dirty bit
information. Unfortunately, it also appears to require
additional space to maintain explicit forwarding links. We
assume that every object has an additional field called
forward, which is set and examined only by the garbage
collector. The underlying collection algorithm can be either
traditional breadth-first copying (cf. [Cheney 70]) or one
that attempts to preserve better locality of reference (cf.
[Moon 84]).

The copying collector is invoked concurrently with the
mutator. As usual, the collector copies all reachable objects
residing in from-space to a previously unused region of
memory referred to as to-space. Links in to-space are
updated to reflect the new locations of the objects. This
concurrent collector is identical to the sequential version,
except in that

1) It clears the forward pointers in from-space before it
starts. (We assume that the collector can write forward
fields without affecting dirty bits. This may require
allocating forward pointers separately, e.g. in a part of
to-space that will not be immediately needed.)

2) It maintains information about pages dirtied since
the beginning of the collection.

3) It stores the new address of each copied object into
the forwarding link of each object in from-space.

The mutator continues to see only from-space objects.
(In the [AppelEllisLi 88] collector, the mutator sees only to-
space objects.)

This concurrent collection process establishes the
condition that if an object residing on a clean page has been
copied, then every object it points to has also been copied.
Furthermore, if an object resides on a clean page then its
copy has the correct contents. With the world stopped, we
can then run following finishing operation to ensure that all
reachable objects have been copied, and all copies contain
the correct contents:

Fc : For every copied object a whose from-space copy
resides on a dirty page:

1) Copy any objects that the from-space copy of a
points to, that have not yet been copied, i.e. that
have NIL forwarding links.

2) Update pointers in copies to refer to to-space,
recursively copying uncopied objects. (This can
be done without a stack, as with the original
copying collector. Breadth first copying is
probably fine here, since this should be a small
collection of objects that have all been referenced
within a short time interval.)

3) Recopy a to reflect changes in both pointer and

nonpointer fields that occurred since the start of
the collection.

As in the noncopying collector, it is easy to construct a
variant of Fc that can be run concurrently to further reduce
the amount of time expended by the final stop-the-world
collection. Again, the amount of time spent with the world
stopped is proportional to the number of pages dirtied since
the start of the last parallel copying phase, and thus should
be quite short.

We have not built such a collector, since it is not
practical in our environment. An empirical performance
comparison with the [AppelEllisLi 88] collector would be
interesting. Our alternative is most likely to be attractive if
the operating system provides inexpensive dirty bit access,
but relatively expensive trap handling.

Acknowledgements
Bob Hagmann and Barry Hayes suggested some of the

alternatives described in section 5. UNIX is a trademark of
AT&T Bell Laboratories. SPARCStation is a trademark of
Sun Microsystems.

References
[AppelEllisLi 88] Appel, Andrew, John R. Ellis, and

Kai Li, ‘‘Real-time Concurrent Collection on Stock
Multiprocessors’’, Proceedings of the SIGPLAN ’88
Conference on Programming Language Design and
Implementation, SIGPLAN Notices 23, 7 (July 88), pp.
11-20.

[AppelLi 91] Appel, Andrew W., and Kai Li, ‘‘Virtual
Memory Primitives for User Programs’’, Proceedings of the
Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, 1991.

[Bartlett 89] Bartlett, Joel F., ‘‘Mostly-Copying
Garbage Collection Picks Up Generations and C++’’,
DEC WRL Technical Note TN-12, October 1989.

[BoehmWeiser 88] Boehm, Hans-J. and Mark Weiser,
‘‘Garbage Collection in an Uncooperative Environment’’,
Software Practice & Experience 18, 9 (Sept. 1988), pp.
807-820.

[Cheney 70] Cheney, C., J., ‘‘A Nonrecursive List
Compacting Algorithm’’, Communications of the ACM 13,
11 (November 1970), pp. 677-678.

[CurtisRauen 90] Curtis, P. and J. Rauen. A Module
System for Scheme. Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, June
1990, pp. 13-19.

[DemersEtAl 90] Demers. A., M. Weiser, B. Hayes, H.
Boehm, D. Bobrow, S. Shenker, ‘‘Combining Generational
and Conservative Garbage Collection: Framework and
Implementations’’, Proceedings of the Seventeenth Annual
ACM Symposium on Principles of Programming Languages,
January 1990, pp. 261-269.

[DeTreville 90] DeTreville, John, ‘‘Experience with

Concurrent Garbage Collectors for Modula-2+’’, Digital
Equipment Corporation, Systems Research Center, Report
No. 64.

[DikstraEtAl 78] Dijkstra, E. W., L. Lamport, A.
Martin, C. Scholten, and E. Steffens, ‘‘On-the-Fly Garbage
Collection: An Exercise in Cooperation’’, Communications
of the ACM 21, 11 (November 78), pp. 966-975.

[Gabriel 85] Gabriel, Richard P., Performance and
Evaluation of Lisp Systems, MIT Press, 1985.

[Moon 84] Moon, D., ‘‘Garbage Collection in Large
Lisp Systems’’, Proceedings of the 1984 ACM Symposium
on Lisp and Functional Programming, pp. 235-246.

[Rovner 84] Rovner, Paul, ‘‘On Adding Garbage
Collection and Runtime Types to a Strongly-Typed,
Statically Checked, Concurrent Language’’, Report
CSL-84-7, Xerox Palo Alto Research Center.

[Steele 75] Steele, Guy L., ‘‘Multiprocessing
Compactifying Garbage Collection’’, Communications of
the ACM 18, 9 (September 75), pp. 495-508.

[Ungar 84] Ungar, David, ‘‘Generation Scavenging: a
non-disruptive high performance storage reclamation
algorithm’’, Proceedings of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software
Development Environments, SIGPLAN Notices 19, 5 (1984),
pp. 157-167.

[Weiser 89] Weiser, M., A. Demers, and C. Hauser,
‘‘The Portable Common Runtime Approach to
Interoperability’’, Proceedings of the 13th ACM Symposium
on Operating System Principles (December 1989).

[Wentworth 90] Wentworth, E. P., ‘‘Pitfalls of
Conservative Garbage Collection’’, Software Practice &
Experience 20, 7 (July 1990) pp. 719-727.

[Zorn 90] Zorn, Benjamin, ‘‘Comparing Mark-and-
Sweep and Stop-and-Copy Garbage Collection’’,
Proceedings of the 1990 ACM Conference on Lisp and
Functional Programming, June 1990, pp. 87-98.

