
link level library (3l) Interface Spedfication

For 3Corn Network Adapter Products

Copyright © 3Com Corporation, 1987, 1988, 1989. All riglm,~.wt
3165 Kifer Road
Santa Clara, California 95052-8145
Printed in the U.S.A.

Manual Part No. 4205-01
Published January, 1989

Copyright Statement
No part of this manual may be reproduced in any form or by any means or used to make any
derivative (such as translation, transfonnation or adaption) without permission from 3C<ml
Corporation, by the United States Copyright Act of 1976, as amended.

Disclaimer
3Com makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. 3Com shall not be liable
for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Link Level Library - ii

Contents

Chapter 1: Introduction

Chapter 2: Architecture
Synchronous vs. Asynchronous Operation 2-2

Chapter 3: Interface Routine Specifications
Listing by Category 3-1

Initialization Routines 3-1
Control Routines· 3-1
Receive Packet Routines 3-2
Transmit Packet Routines 3-2

Routine Descriptions 3-3
InitAdapters - Initialize Network Adapters 3-3
InitParameters - Initialize Parameters 3-4
ResetAdapter - Reset Adapter 3-5
WhoAml - Who Am I Hardware Self Identification/Status Report 3-6
RdRxFilter - Read Receive Filter 3-8
WrRxFilter - Write Receive Filter 3-9
ExitRcvlnt - Protocol Time Critical Receive Processing 3-10
GetRxData - Get Received Data 3-11
RxProcess - Post the Received Packet for Protocol Side 3-12
SetLookAhead - Set Packet Header Length 3-14
PutTxData - Put Transmission Data 3-15
TxProcess - Transmit Complete Processor 3-17

Chapter 4: Error Handling
Error Handling Notes 4-1
Completion Code Assignment 4-2

Appendix A: Hardware Implementation Specifics
EtherLink (3C501) A-1

Package Contents A-1
Transmission Capabilities A-1
Initialization Parameters A-1
WhoAml Statistics A-2
Other A-2

Link Level Library - iii

EtherLink II (3CS03) A-2
Package Contents A-2
Transmission Capabilities A-2
Initialization Parameters A-3
WhoAml Statistics A-3

EtherLinklMC (3CS23) A-4
Package Contents A-4
Transmission Capabilities A-4
Initialization Parameters A-4
WhoAml Statistics A-4
Other A-4

Tokenlink (3C603) A-S
Package Contents A-5
Transmission Capabilities A-5
Initialization Parameters A-5
WhoAml Statistics A-5
Other A-5

3Station (3C1100) A-6
Package Contents A-6
Transmission Capabilities A-6
Initialization Parameters A-6
WhoAml Statistics A-6
Other A-6

Appendix B: Implementation Syntax a,nd Naming

Appendix C: Example

Figures

2-1. Transmit Processing 2-3
2-2. Receive Processing 2-4

Link Level library - iv

Link Level Library: 1
Introduction

1-1

Chapter 1: Introduction
This document describes the 3eom Link Level Library (3L) Interface. It is intended to assist
engineers developing or modifying network software to run on 3eom network adapters that have a
3L implementation available.

3L consists of a set of generic routines that provide the protocols with a flexible means of
transmitting and receiving packets over the network, while at the same time isolating the protocols
from the specific network adapter hardware in use. Each 3L implementation for 3Com' s various
adapters interface to any protocols that network 3L to "talk" to the network. 3L implementations
allow both Ethernet and token ring physical layers to support the same network operating system.

Chapter 2 describes the concepts and facilities of 3L, and outlines the architecture by identifying
general usage of interface routines.

Chapter 3 specifies each routine that is to reside on either side of the 3L interface. For each routine,
the input parameters, output parameters, and function are defined, and special notes regarding usage
are included, as appropriate.

Chapter 4 describes the error handling conventions to be used by all routines defined in the
specification.

Appendix A describes the specific issues for the several 3eom 3L implementations. The appendix
has a single section for each 3eom network adapter for which the interface has been implemented.

Appendix B discusses the specifics of linking the routines using the Microsoft OBJ format
conventions.

Appendix C provides an example of interfacing protocol side routines with 3L routines.

Link Level Library: 2
Architecture

2-1

Chapter 2: Architecture
The following specification is technical in nature, and is intended for experienced 8086 programmers
with specific understanding of the architecture of 808x-based and 80x86-based microcomputers, and
of programming interrupt driven device drivers. An assembler should be used that generates object
modules that are MicrosoftlIntel compatible.

The 3L routines are intended to allow protocols to communicate with one or more network adapters.
The routines are designed to be directly linked to protocol software. These routines provide four
areas of service for the protocols running "above" the 3L-based driver. These are:

• Network adapter initialization

• Delivery of received packets to higher level protocols

• Transmission of packets onto the network

• Control functions

The 3L interface is specified in a manner so as to support the range of network hardware interface
architectures in use and under development today. In particular this architecture allows for the
synchronous/asynchronous operation of the transmission process. Each implementation of 3L
supports one or both of these approaches. Protocol software interfacing to 3L routines may select
either one, if both approaches are implemented. Protocol software may determine which
transmission approach is available through the WhoAmI function call at initialization time.
Availability and selections will be based on the following:

• Network controller hardware design

• Specific 3L implementation design

• Performance requirements

• Capabilities built into the protocol software

2 Link Level Library:
Architecture

2-2

Synchronous vs. Asynchronous Operation
To provide the most flexibility and perfonnance, the 3L interface presented to the protocols appears
to be asynchronous. "Appears to be" is appropriate because a specific 3L implementati<tft mayor
may not implement an asynchronous interface. Asynchronous drivers will either start the requested
operation, or queue up the operation for starting later, as appropriate for the current state of the
driver. In either case, an asynchronous driver will return immediately to the routine requesting the
operation. At a later time, the asynchronous driver interrupts and informs the requesting routine that
the operation previously requested has been completed. This method allows the 3L routines and the
protocols to continue simultaneously, improving overall performance. To ease implementation, a
synchronous hardware driver may be used in place of a true asynchronous hardware driver.
Synchronous 3L routines start the requested operation, wait for it to complete, and infonn the
requesting routine that the operation has completed before returning to the protocols. The net result
is that the synchronous driver appears to be a very fast asynchronous driver to the routine requesting
the service, since the requested operation is completed before the called routine returns. Truly
asynchronous operation of receive and transmit functions mayor may not be able to be provided in a
given 3L implementation for a specific network hardware interface. Also, protocols linking to and
using the 3L implementation mayor may not choose to implement the logic required to use this
asynchronous operation capability. Two design features are provided for protocol developers
wanting to use this capability. These are the Request Identifier and the NO-WAIT mode post
routine use.

Since the interface may support asynchronous operations, a Request Identifier (I-byte long) is
provided by the 3L routines to keep track of which request is being referred to in a given routine call.
A unique request identifier is generated by the 3L routines at the beginning of each transmit or
receive function sequence. The protocols must keep this identifier and pass it to the 3L routines on ·
any subsequent routine call during the processing of that particular transmit or receive packeL

Most of the routines defined in this document comprise the 3L. There are two additional routines
defined, RxProcess and TxProcess, which may be provided by the protocols. Of these,RxProcess
is required and TxProcess provides a capability of executing transmit operations in a no-wait mode.
This two-way interface greatly simplifies the interaction of the 3L routines and the protocol routines.

The general flow of control between the 3L routines and the protocols is charted in the following
diagrams. The diagrams are split into two halves: protocols and 3L routines. The connections
between the two halves of the code are through a small number of well-defined interface routines.

Protocols

decision to transmit
made within higher
protocol layers

repeat
as
needed

link Level library: 2
Architecture

3L
Interface

Call PutTX Data

2-3

3L Routines

" PutTXData called as
many times as needed
to transfer all of the
packet contents

L..-_____ Return

may proceed or wait
for transmit complete

Return

~Ir

PutTXData initiates
transmission and any
retries. If in 'WAIT'
mode I the transmission
complete routine is
invoked. If 'NOWAIT'
return after starting
or queuing transmit.

transmission
complete routine
(interrupt if NOWAIT) ,r----- Call TxProcess ___ ---.JI

TxProcess does any
final cleanup and
transmit error reporting

L..-_____ Return ------,

Figure 2-1. Transmit Processing

return from TxProcess
indicates that transmit
processing is complete

if packet
is not
needed

2 Link Level Library:
Architecture

2-4

3L
Interface

Protocols 3L Routines

receive interrupt
service routine

Call RxProcess I

RxProcess Protocol Level
receive processing. Examine
the look-ahead data and
determine if packet is needed.

Call GetRxData ----.

repeat
as
needed

send packet data to
or queue packet for
the proper client

...

Return

GetRxData
Called to get all or a
portion of packet.

Return ~ Finish up Int Service
restore environment,
jump to upper protocols.

Near Jmp to ExltRcvlnt

critical protocol
processing and IRET

Figure 2-2. Receive Processing

Link Level Library: 3
Interface Routine Specifications

3-1

Chapter 3: Interface Routine
Specifications
This chapter contains two sections. The first section consists of a list of the interface routines by
category. The second section contains detailed descriptions of the routines.

Listing by Category

Initialization Routines

Routine Name Locus

. InitAdapters 3L

InitParameters 3L

ResetAda pter 3L

WhoAmI 3L

Control Routines

Routine Name Locus

RdRxFiIter 3L

WrRxFilter 3L

Descri ption

Initializes the adapter hardware into a fully configured, but not
yet enabled, state.

Sets up data structures for the 3L code with configuration
infonnation connecting the adapter with the host computer.

Resets an adapter to its configured, but not yet enabled, state.

Returns identification and current status infonnation about the
adapter and the 3L software to the upper protocols.

Descri ption .

Infonns upper protocols of the types of packets.

Enables/disables the adapter and specifies thepacket type.

3 Link Level Library:
Interface Routine Specifications

3-2

Receive Packet Routines

Routine Name Locus Description

ExitRcvlnt protocol Accomplishes final protocol side time-critical processing and
performs the IRET that exits the interrupt context

NOTE: ExitRcvlnt is defined as a near label, rather than as a
PROe.

GetRxData 3L Allows data from the received packet to be read by the
protocols. Also allows buffers to be released for use in storing
packets upon reception.

RxProcess protocol Posts the receipt of the packet or accomplishes the receive
processing at the protocol level itself.

SetLookAhead 3L Specifies an initial portion of all packet headers that are to be
presented to the protocol side when the call to RxProcess is
made from the 3L receive handler.

Transmit Packet Routines

Routine Name Locus Description

PutTxData 3L Transfers data to be transmitted from the protocol.

TxProcess protocol Posts the completion of a transmission or accomplishes the
transmit processing at the protocol level itself.

Link Level Library: 3
Interface Routine Specifications .

3-3

Routine Descriptions

Note Regarding General Use of Registers
In the following routine descriptions, registers DI, SI, BP, and DS are presumed to be preserved by
each function, unless otherwise noted. Contents of other registers are not guaranteed, except as
specifically noted. Many routines require DL=O. This was intended as the adapter number but only
one adapter (adapter 0) is supported in this version. Each routine specified here is to be coded as a
near procedure (PROC NEAR routine name).

InitAdapters - Initialize Network Adapters

Procedure type: Near.

Locus: Hardware.

Call with: DI = Offset address of the RxProcess routine within CS.

Return with: AX = Completion code.
CX = Number of adapters of this type found.

This function initializes the adapter hardware, runs any diagnostics on the adapter hardware,
initializes any interrupt vector(s) to be used by the adapter(s), sets up any DMA channel(s) to be
used by the adapter(s), reads the network address of the board, writes the network address to the
controller (as appropriate), initializes the transmit data counter to zero, and initializes the receive
packet filter to no packets.

At this point, the adapter is fully initialized and prepared for use, but has its receiver disabled. See
the routines RdRxFilter and WrRxFilter for information about setting the packet filter to enable
and disable reception on the adapters.

3 Link Level Library:
Interface Routine Specifications

3-4

InitParameters - Initialize Parameters

Procedure type:

Locus:

Call with:

Return with:

Near.

Hardware.

ES:BX= Address of the DOS device driver INIT call request header.

AX = Completion code.
ES:BX = Unchanged.

This is the lowest level init function and should be called first during initialization. This function
sets up internal data structures that are needed to interact with the adapter. This involves defining
values specific to this board and this host computer environment, and may include intetrupt
channel(s) to use, DMA channel(s), DMA modes for input and for output, type of host, 110 memory
addresses, etc. Also, various special hardware mode condition variables may be set.

This routine may also perform certain adapter checking and initialization functions. The parameter
in ES:BX is the request header provided by DOS. The command line parameters fromdle line in
CONFIG.SYS are at offset 18 decimal from ES:BX. If routines are not being used in a DOS device
driver, a DOS INIT header must be simulated.

Link Level Library: 3
Interface Routine Specifications

3-5

ResetAdapter - Reset Adapter

Procedure type: Near.

Locus: Hardware.

Call with: DL=O

Return with: AX = Completion code.

This function resets and reinitializes the adapter. The routine is used to get an adapter back into a
known good state after a catastrophic error. The state of the adapter is the same as it was after a call
to InitAdapters. No other adapters are affected.

3 Link Level Library:
Interface Routine Specifications

3-6

WhoAml - Who Am I Hardware Self Identification/Statu.s~eport

Procedure type: Near.

Locus: Hardware.

Call with: DL=Q

Return with: AX = Completion code.
ES:DI = Pointer to N byte structure holding the interesting infonnation.

Offset

[ptr + 0]

[ptr + 6]
[ptr + 7]
[ptr + 8]
[ptr + 9]

[ptr + 10]

[ptr+ 11]
[ptr + 12]
[ptr + 13]
[ptr + 14]
[ptr + 16]

Descri ption • Size

Adapter Network Address/
Extended Structure Indicator.
Software major version number.
Software minor version number.
Software sub version.
Software type d or s

(development or ship).
Adapter type.

Bits 0-5: adapter type ID (0 - 63)
1 = EtherLink (IEl)
2 = EtherLink (IEI, IE2, or IE4)
3 = EtherLink Plus
4 = EtherLink/MC
5 = TokenLink Plus
6 = EtherLink II
7 = TokenLink
8 = Reserved
9 = Reserved

10 = IBM Token Ring
11 = 3Station, 3Station/2E

12 - 63 = reserved
Bit 6: hardware interface code location

o = host processor based
1 = adapter processor based

Bit 7: network type - not used in extended structure form
o = Ethernet
1 = Token Ring

Initial status of hardware.
Reserved
Number of transmit buffers.
Size of transmit buffers.
Number of transmissions since reset.

6 bytes
I byte BCD
1 byte BCD
1 byte ASCII char
1 byte ASCII char

1 byte

1 byte
1 byte
1 byte
1 word
2 words

Offset

[ptr + 20]
[ptr + 24]
[ptr + 28]
[ptr + 32]
[ptr + 36]
[ptr + 40]
[ptr + 44]

[ptr + 45]

[ptr + 46]

Link Level Library: 3
Interface Routine Specifications

3-7

Description

N umber of transmit errors since reset.
Number of transmit timeouts since reset.
Number of receptions since reset.
N umber of broadcasts received since reset.
Number of receive errors since reset.
Number of retries since reset.
Data transfer mode control.

Bit 0 = 0 gather pieces must start on bytes.
Bit 0 = 1 gather pieces must start on word address.
Bit 1 = 0 gather piece length is any number of bytes.
Bit 1 = 1 gather piece length is even number of bytes.

WAIT/ NOWAIT transmission capability.
o = only WAIT option is available in calls to PutTxData.
1 = both WAIT and NOWAIT options are available.

Start of hardware specific data.

Size

2 words
2 words
2 words
2 words
2 words
2 words
1 byte

This function returns infonnation about the current state of the hardware and software for a specific
adapter.

The routine returns an address of a data structure that may be shared by the hardware and the
protocols. Several statistics may be maintained from within the hardware portion and the protocol
side may at any time read and/or reset these data items. For perfonnance reasons, these statistics
may be maintained only by versions of hardware side implementations that have been created for
this purpose. (The fastest driver may not take time to count up things such as received packets.)

Note that two types of structures are defined. The standard structure contains 46 bytes of
infonnation and may be followed by hardware specific data. This structure is used for Ethernet and
token ring networks. The extended structure allows for other network types. It is indicated by the
Adapter Network Address field ([ptr + 0], 6 bytes in length) having all bits set: address = 255-255-
255-255-255-255. In this case, location [ptr + 46] contains the 2-byte offset of an extension to this
structure, allowing for network addresses of lengths other than 6, and network types other than
Etherne~ and token ring.

See Appendix A for further infonnation.

3 Link Level Library:
Interface Routine Specifications

3-8

RdRxFilter - Read Receive Filter

Procedure type:

Locus:

Call with:

Return with:

See related routines:

Near.

Hardware.

DL=O

AX = Completion code.
BX = Filter setting.

WrRxFilter.

This function retrieves the current filter setting from the LAN hardware controller for the specified
adapter.

Note Regarding Packet Filter Settings:
The receive filter setting referred to in this routine is used to set the receive mode of the network
adapter. There are four basic parts to the filter setting, each one represented by one bit in the filter
setting word. Combinations of settings 1, 2, and 4, may be used as appropriate.

Receive no packets (receiver disabled).
Receive packets for the adapter address.
Receive multicast or group packets.
Receive broadcast packets.
Receive all packets. *

OOOOh
OOOlh
0002h
0004h
0008h

* Promiscuous mode: all physically addressed packets are received.

Specific handling of these settings may vary somewhat from implementation to implementation:
i.e., not all settings may be available on any particular network adapter controller. Token ring
implementations define these differently from Ethernet implementations. For token ring, certain
control functions provide analogous capability regarding multicast and/or group addresses.

Link Level Library: 3
Interface Routine Specifications

WrRxFilter - Write Receive Filter

Procedure type:

Locus:

Call with:

Return with:

See related routines:

Near.

Hardware.

AX = Filter setting.
DL=O

AX = Completion code.

RdRxFilter.

3-9

This function sets a new filter setting and enables or disables the adapter. It is the responsibility of
the protocol software to keep track of the old filter (if it is needed later) by using RdRxFilter. If the
filter setting is zero, no packets are to be received, and this function call will disable packet reception
on the adapter. If the filter setting is a valid non-zero value, the receiver will be enabled, and the
filter setting will be provided to hardware to accomplish the filtering, or will filter in software, per
specific hardware capabilities.

Note Regarding Packet Filter Settings:
The receive filter setting referred to in this routine is used to set the receive mode of the network
adapter. There are four basic parts to the filter setting, each one represented by one bit in the filter
setting word. Combinations of the first three settings may be used as appropriate. (See Rd Rx
Filter.)

Receive no packets (receiver disabled).
Receive packets for the adapter address.
Receive multicast or group packets.
Receive broadcast packets.
Receive all packets. *

OOOOh
OOOlh
0002h
0004h
0008h

* Promiscuous mode: all physically addressed packets are received.

Specific handling of these settings may vary somewhat from implementation to implementation, i.e.,
not all settings may be available on any particular network adapter controller. Token ring
implementations define these differently from Ethernet implementations. For token ring, certain
control functions provide analogous capability regarding multicast andlor group addresses.

3 Link Level Library:
Interface Routine Specifications

3-10

ExitRcvlnt - Protocol Time Critical Receive Processing

Label type:

Locus:

Jump to with:

Return:

Near.

Protocol.

Machine context exactly as established at the time the receive intm-upt from
the adapter occurred. (In other words, all registers, excepting CS, IP, and
Flags, contain the values of the interrupted process. CS, IP, and rae Flags
register contents are on the interrupted process stack as in standard 80x86
interrupt context.)

Return is made to the interrupted process directly via an IRET. Daes not
return to the 3L routine that jumped to this label.

This label is reached via ajump made by the interrupt service routine (which exists in the 3L code).
The hardware side has restored the context in which the interrupt was received, and is ready for
return to it. The jump to the protocol side is made to allow the protocols to accomplish any
additional time-critical processing prior to returning to the interrupted process.

Example Usage:
In the 3Com XNS environment, ExitRcvInt performs certain critical functions that would otherwise
be done the next time the XNS process manager got control. In this case, the process manager gets
control via the next timer tick, and this interface allows the initiation of its tasks immediately upon
completion of the link layer receive functions, avoiding a potential average latency of 5et percent of
the timer tick period.

In the absence of critical functions to be executed, this label may address a single IRET instruction.

Link Level Library: 3
Interface Routine Specifications

3-11

GetRxData - Get Received Data

Procedure type:

Locus:

Call with:

Near.

Hardware.

CX = Count of bytes to transfer or size of buffer to release.
DL = Adapter number and flags.

Bit 0, 1 = 0
Bit 6 (Buffer Release)

= 1 if buffer may be released.
= 0 to retain the packet in the hardware

buffer.
Bit 7 = 0

DH = Request identifier
ES :DI = Address of buffer to place packet data.

Return with:
AX = Completion code.
ex = Actual count of bytes transferred.
ES:DI = Preserved.

See related routine: RxProcess.

This function obtains the requested amount of data from the packet indicated by the request
identifier and also serves the function of releasing buffers for use by the hardware in storing packets
received from the network medium. The Request Identifier is supplied when Rx Process is called.

ES:DI contains an address to which data is to be copied, with the amount to be copied specified in
CX. The first call to GetRxData for a packet will obtain data from the start of the packet.
Subsequent calls to GetRxData will return data that immediately follows the portion of the packet
that was previously obtained. The buffer release bit operates independent of any request to copy
data, and CX may be 0, indicating release only.

Buffer Release
The release bit is to be specified on ·or following the last call to GetRxData obtaining data from the
given packet. Release of the buffer allows new packets coming in from the network medium to be
stored in this hardware, or 3L, side buffer. Until the buffer is explicitly released via a GetRxData
call with buffer release bit set, the buffer is considered in use.

3 link Level library:
Interface Routine Specifications

3-12

RxProcess - Post the Received Packet for Protocol Side

Procedure type:

Locus:

Call with:

Near.

Protocol.

AX
AH
AH
AL

ex
DL
DH

ES:DI

=
=
=
=

=
=

=

Receive status.
o success.
1 failure
Reserved for future use expanding receive status.

Size of received packet.
o
Request identifier.

Address of virtual packet header (see below).

Return with: DS, SI, DI destroyed.

See related routines: SetLookAhead
GetRxData.

This is a protocol-level receive packet processing routine. The routine is called by a hardware side
receive routine, which is either an interrupt handler responding to a packet received interrupt or a
subroutine of a polling control module which has noted a received packet. The basic receive packet
processing sequence is outlined in the introduction section to this document. The main task for
RxProcess is to obtain information about what to do with the packet, and what additional processing
by protocol software is required to either complete that processing, or to enqueue the task for
protocol software to complete it when it is no longer in the system interrupt context. The Request
Identifier that is provided is used in subsequent calls to GetRxData.

Note Regarding Time Within Interrupt Context:
It is anticipated that overall system performance will be best enhanced by remaining in the interrupt
context for a minimum period of time and, as such, protocols will generally attempt minimum
functions in this routine to get the packet and set it up for later processing. When the processing of
the received packet is finished, RxProcess simply returns to the receive interrupt service routine that
called it.

Note Regarding Buffer Usage:
The return of RxProcess signifies to the interrupt service routine that all processing of the hardware
buffer copy of the received packet is complete. Therefore, the hardware packet buffer may be freed,
and the network adapter should be rearmed for reception, if needed.

Link Level Library: 3
Interface Routine Specifications

3-13

Note Regarding Virtual Header:
ES:DI points to a copy of packet header data. This structure provides protocol software a "look
ahead" at bytes from among the first 64 bytes of the received packet. It is provided to allow
RXProcess greater intelligence in the selection of a buffer into which GetRxData will copy the
packet data. The contents of the virtual header are defined by one or more calls to SetLookAhead
prior to the receipt of the packet in question. Each such call specifies the number of bytes from
among the first 64 in each packet header which RxProcess will have available for use in its initial
processing. The virtual header itself contains a copy of the beginning of the packet, of a length equal
to the largest number ever requested in a call to SetLookAhead, up to a maximum of 64 bytes.

Example Usage:
XNS protocols can detennine whether or not it needs the packet by the IDP socket number and the
packet type. These two words can be specified by a single call to SetLookAhead, by specifying a
virtual header length which includes both of these words. In this case, the second of the two
"interesting" words occurs at byte offsets 30 and 31; therefore calling SetLookAhead with a
parameter of 32 (or greater) will guarantee that virtual headers passed to RxProcess will contain
these two words. Thereafter, whenever a packet is received, a call to RxProcess is generated and
ES:DI will address a string of 32 bytes at the beginning of the packet.

3 Link Level Library:
Interface Routine Specifications

3-14

SetLookAhead - Set Packet Header Length

Procedure type: Near.

Locus: Hardware.

Call with: CX = Number of bytes in list.
DL=O

Return with: AX = Completion code.

See related routine: RxProcess.

This function allows protocol software to specify the number of bytes within received packet headers
that will be provided by the hardware side receive routine (either interrupt handler or subroutine of
polling control module) for inspection by the protocol side RxProcess routine. This is information
which the protocol routine RxProcess may use to "look ahead" into the packet to determine where to
route the packet among its own clients. Use of this mechanism (to specify "look ahead" data that is
provided to RxProcess in the form of the "virtual header") is to allow a performance gain in
RxProcess. RxProcess is able to use look ahead data to determine which client the packet is
intended for, and can make its calls to GetRxData using addresses of protocol buffers most
appropriate for the particular packet. An example is the MINDSIXNS protocol using the packet type
and IDP socket number to determine which client's buffer to have the packet transferred into,
directly from the hardware buffer.

Link Level Library: 3
Interface Routine Specifications

3-15

PutTxData - Put Transmission Data

Procedure type: Near.

Locus: Hardware.

Call with: BX = Total length of packet (first call only).
CX = Count of bytes to transfer.
DL = Flags:

Bit 0-1 = 0
Bit 4 NOW AIT transmit:

= 1 to start transmission after this data transfer and return to
caller as soon as transmit is initiated.

= 0 to just transfer data.
Bit 5 WAIT transmit

= 1 to start transmit after this data transfer and await transmit
completion before returning.

= 0 to just transfer data.
Bit 6 First data transfer call

= 1 if first data transfer call for this packet.
= 0 if subsequent data transfer call for this packet.

Bit 7 = 0
DH = Request identifier (unused if first data transfer).
DS:SI = Address of data to transmit.
DI = Address of TxProcess post routine (fust call only).

Return with: AX = Completion code.
DH = Request identifier (if first call).

See related routine: TxProcess.

This function transfers a block of data that is to be transmitted. This function uses the transmit
packet data counter to determine how far into the transmit packet to place the new data and adjusts
the transmit packet data counter appropriately to account for the data just transferred. This ensures
that subsequent calls to PutTxData will continue building the packet to transmit where the previous
call left off. The transmit packet data counter is reset only when a packet transmit is started.

TxProcess Address
The address of the TxProcess routine received in register DI is used to notify the protocol side when
the transmit is completed. If the appropriate flag bit is set, start transmitting the packet just set up.
If the 3L is asynchronous, this call might only queue the packet for later transmission and not
actually start a transmission immediately. IfDI is -1 (= FFFFh), the hardware side assumes no
protocol side completion post routine call is necessary.

3 Link Level Library:
Interface Routine Specifications

3-16

W AITINOW AIT
When a transmission is initiated by a call to PutTxData, the caller may specify either WAIT or
NOW AIT. In the case of WAIT, this hardware side routine initiates the transmission, and waits
(probably via a loop while polling hardware) until indication of completion of the transmission is
available from the network adapter. (Note: For Ethernet, in cases of collision, the standard 16 retries
is attempted.) The return from PutTxData indicates final status of the transmission attempt. In the
case of NOWAIT, a minimum of actions to initiate transmission or simply to queue the packet for
transmission, is done in PutTxData, and control is returned to the caller. Actual completion of the
transmission later results in notification to the protocol side via a call to the TxProcess routine
address (if one has been provided). Use of NOW AIT and of the TxProcess interface are
complementary, but independent, since either can be done without using the other.

link Level library: 3
Interface Routine Specifications

3-17

TxProcess - Transmit Complete Processor

Procedure type:

Locus:

Call with:

Near.

Protocol.

AX = Transmit status:
AH = 0 success.
AH = 1 failure.
AL = Reserved.

DL=O
DH = Request identifier.

Return with: AX, BX, ex, DX, ES destroyed.
BP, SI, DI, DS preserved.

See related routine: PutTxData.

This function is a completion processing routine existing on the protocol side of the interface. It is
called when hardware has completed a transmission initiated by a call to PutTxData. The address
of this routine was passed by the protocol side when the call to PutTxData was made. Thus, several
distinct TxProcess routines may exist in the protocol software for different control requests or for
other distinct purposes. The hardware side may queue transmission requests, distinguishing them
via request identifiers.

This is the protocol-level transmit complete processing routine and is called by the transmit packet
complete interrupt service routine. TxProcess does any final cleanup necessary to infonn the upper
protocol levels that the requested transmission has finished. The protocol-level drivers should be
able to handle a call to TxProcess from the hardware level at any time immediately following the
call to PutTxData. In fact, a synchronous transmit routine calls TxProcess before the hardware
level driver returns from PutTxData. In this case, request identifiers will not be required or be in
use, as only a single transmission may be in progress at any time in such a synchronous driver.

Link Level Library: 4
Error Handling

4-1

Chapter 4: Error Handling

Error Handling Notes

A. All of the hardware dependent routines defined here return a completion or error code in
register AX upon exiting. The value of this return code signifies that either the routine
completed its appointed duties successfully, or that a problem of some sort was encountered.

The method used here to assign completion codes provides a simple means of checking for and
processing errors on three different levels of detail:

• The code may be checked simply for successful or unsuccessful completion of the request.

• The code may be checked to detennine the general type of error encountered, such as a bad
parameter or transmission failure.

• The code may be checked to detennine the specific error encountered, such as an expired
retry counter.

B. The method used to provide this flexibility in error handling is simple. The total range of
completion codes is first split into several subranges. Each subrange is then associated with a
specific category of error. Finally, individual codes within each subrange or category of codes
are assigned to specific error conditions, as required.

c. By using this method, and by choosing an error subrange size of 256, the three types of error
checking discussed above may be implemented by the following methods:

• The simple success/failure test is done by testing AX for a zero or nonzero value.

• The general error category test is done by testing the value in AH. Since an error subrange
size of 256 was chosen, each subrange will provide a unique value in AH. For example, an
incorrect parameter passed to a routine would return a completion code in the lOOh-IFFh
range, giving a value ofOIh in register AH.

• The specific error test is done by comparing the value in AX to a specific completion code.
If the test for the general error category has already been done, only the value in register
AL need be tested.

4 Link Level Library:
Error Handling

4-2

• Since the completion code is returned in a 16-bit register, the total number of completion
codes is rather large (65000+), allowing a generous initial allocation of completion code
subranges. The allocation of completion codes and categories is defined in the
"Completion Code Assignment" section of this document.

D. For consistency and convenience, the first completion code in each range is defined as a
general failure of the given category. In this way, a routine need not allocate specific
completion codes for generic errors.

Completion Code Assignment
•

The allocation of completion code ranges to error categories follows:

Code range Error category

0 No error
OlOOh-OIFFh Parameter errors
0200h-02FFh Miscellaneous host errors
0300h-03FFh Adapter initialization errors
0400h-04FFh Adapter transmission errors
OSOOh-OSFFh Adapter receive errors
0600h-06FFh Miscellaneous adapter errors
0700h-07FFh Reserved
0800h-08FFh Reserved

Specific completion code definitions follow:

No error encountered

No error. Request completed successfully.

Parameter errors

OIOOh
OIOlh
Ol02h

General parameter error
Reserved
Invalid data transfer method

Miscellaneous host errors

0200h General host error

Link Level Library: 4
Error Handling

Adapter initialization errors

0300h
0301h
0302h
0303h
0304h
0305h
0306h
0307h
0308h

General adapter initialization error
Problem while locating adapters
Unable to initialize adapter
Adapter diagnostic failure
Unable to read network address from adapter
Unable to write network address to adapter
Invalid network address
Invalid receive filter setting
Unable to read receive fliter setting

Adapter transmission errors

0400h
0401h
0402h
0403h
0404h
0405h

General adapter transmission error
All transmit buffers in use, try again later
Maximum packet length exceeded
Unable to load packet data to adapter
Unable to start transmission
Transmission retry count exceeded

Adapter receive errors

0500h
0502h
0503h
0504h
0505h
0506h
0507h
0508h

General adapter receive error
Receive interrupts already enabled
Unable to disable receive interrupts
Receive interrupts already disabled
End of packet data reached
Unable to read packet information
Unable to read packet data
Unable to reann adapter for reception

Miscellaneous adapter errors

0600h
0601h
0603h
0604h
0605h
0606h

General adapter error
Shared buffers not available
Command rejected
Command timed out with no response
Unable to initiate data transfer
Unable to complete data transfer

4-3

Link Level Library: A
Hardware Implementation

Specifics

A-1

Appendix A: Hardware Implementation
Specifics

EtherLink (3C501)

Package Contents
The package for this adapter consists of the source code and a "lib'd" version of the 3L library. The
source files are:

501 CfRL.ASM
501DATA.ASM
501INIT.ASM
501INTR.ASM
501RECV.ASM
501UTIL.ASM
501XMIT.ASM
501VER.ASM

- RdRxFilter and WrRxFilter
- Data declarations
- ResetAdapter, WhoAmI, InitAdapters and InitParameters
- Interrupt service routine
- GetRxData
- Various hardware utility routines

PutTxData
- Version string data declaration

Transmission Capabilities
Only WAIT mode transmits are supported.

Initialization Parameters
InitParameters interprets the DOS device driver INIT request header pointed to by ES:BX. At
offset 18 from the start of this structure is a pointer to an ASCII string which is the parameter list
after the 'device=' statement in the CONFIG.SYS file. The parameter list must have the following
format:

<filename> <i> <bbb> <d> <t>

where:

<filename>
<i>
<bbb>
<d>
<t>

A
A-2

Link Level Library:
Hardware Implementation
Specifics

is the name of the device driver file
is the interrupt level
is the I/O base address (in hex)
is the DMA channel
is the DMA transfer mode:

t = 1 DMA single byte mode
t = 2 Programmed I/O loop
t = 3 DMA block or demand mode as supported by the adapter
t = 4 Programmed I/O "rep"

All of the parameters are position dependent.

WhoAml Statistics
No statistics in the WhoAmI data structure are maintained.

Other
The only valid RxFilter settings are:

o Receive no packets
5 Receive station address and broadcast packets
7 Receive station address, multicast and broadcast packets
8 Receive all packets (promiscious mode)

EtherLink II (3C503)

Package Contents
The package for this adapter consists'of the source code and a "lib'd" version of the 3L library. The
source files are:

EHWINIT.ASM
EHWRECV.ASM
EHWXFER.ASM
EHWRTN.ASM
EHWDATA.ASM
EHWXMIT.ASM
TIMER.ASM

- InitParameters
- GetRxData and the interrupt service routine
- SetLookAhead
- ResetAdapter, RdRxFilter,WrRxFilter, WhoAmI, and InitAdapters
- Data declarations
- PutTxData
- Optional timer routines

Transmission Capabilities
Both WAIT and NOW AIT transmissions are supported.

Link Level Library: A
Hardware Implementation

Specifics

A-3

Initialization Parameters
InitParameters interprets the DOS device driver INIT request header pointed to by ES:BX. At
offset 18 from the start of this structure is a pointer to an ASCn string which contains the driver
name, optionally followed by one or more of the following parameters:

Use interrupt level 'x' lI:x
/A:xxx Use 'xxx' for the I/O base address of the adapter, where 'xxx' is a

three-digit hex number.
/D:x
{f:x

/M:x

Use DMA channel 'x'
Use transceiver 'x':

x = 1 BNC/Onboard
x = 2 DIX/Extemal

Use data transfer mode 'x':
x = 1 DMA single byte mode
x = 2 Programmed I/O loop
x = 3 DMA block or demand mode as supported by the adapter
x = 4 Programmed I/O "rep" (default for 286-based machines)

WhoAml Statistics
Four of the statistics counters in the WhoAmI data structure are implemented. The other statistics
counters have not been implen1ented for performance reasons and will remain at zero. The counters
which are kept are:

[ptr+ 16] Number of transmissions
[ptr+24] Number of transmit timeouts
[ptr+28] Number of receptions
[ptr+ 36] N umber of receive errors

These statistics are not cleared during a reset. The hardware specific portion of the WhoAmI
structure is defined as follows:

[ptr+46] N umber of jams
[ptr+50] Number of receive overflows
[ptr+54] Number of short packet~ (runts) received

2 words
2 words
2 words

Although all three of these counters are defined, only the third one (Number of short packets
received) is actually implemented.

A
A-4

Link Level Library:
Hardware Implementation
Specifics

EtherLinklMC (3C523)

Package Contents
The package for this adapter consists of the source code and a "lib' d" version of the 3L library. The
source files are:

523CfRL.ASM
523UTIL.ASM
523DATA.ASM
523INIT.ASM
523INTR.ASM
523RECV.ASM
523XMIT.ASM

- RdRxFilter and WrRxFilter
- Various hardware dependent routines
- Data declarations
- ResetAdapter, WhoAmI, InitAdapters and InitParameters
- Interrupt service routine
- GetRxData and SetLookAhead
- PutTxData

Transmission Capabilities
Only WAIT mode transmits are supported.

Initialization Parameters
There are no initialization parameters.

WhoAml Statistics
Statistics are kept in the WhoAmI data structure if the DEV compiler flag is turned on.

Other
The only valid RxFiIter settings are:

o Receive no packets
1 Receive station address packets
3 Receive station address and multicast packets
5 Receive station address and broadcast packets
7 Receive station address, multicast and broadcast packets
8 Receive all packets (promiscious mode)

Link Level Library: A
Hardware Implementation

Specifics

TokenLink (3C603)

Package Contents

A-5

The package for this adapter consists of the source code and a "lib' d" version of the 3L library. The
source files are:

TOKENS.ASM
TIMER.ASM

- All 3L source code
- Optional timer interface routines

Transmission Capabilities
Both WAIT and NOWAIT transmissions are supported. If more than eight NOWAIT transmits are
queued up, awaiting transmission, PutTxData will return an error indicating that no more buffers
are available.

Initialization Parameters
InitParameters interprets the DOS device driver INIT request header pointed to by ES:BX. At
offset 18 from the start of this structure is a pointer to an ASCII string which may be composed of
the following position dependent parameters:

<filename>.sys <i> <bbb> <d> <w>

where:

<filename> .sys
<i>
<bbb>
<d>
<w>

is the name of the device driver. This must end with the letters uSYS".
is the interrupt level '
is the I/O base address
is the DMA channel
is the number of wait states

WhoAml Statistics
The WhoAmI data structure is only partially implemented. The network address, transmit counts
and receive counts are the only fields that are maintained in the entire structure.

Other
The only valid RxFilter settings are:

o No packet are received
5 Receive station address and broadcast packets

A
A-6

Link Level Library:
Hardware Implementation
Specifics

3Station (3C11 00)

Package Contents
The package for this adapter consists of the source code and a "lib'd" version of the 3L library. The
source files are:

110OCTRL.ASM
ll00DATA.ASM
ll00INIT.ASM
ll00INTR.ASM
ll00RECV.ASM
ll00UTIL.ASM
ll00VER.ASM
ll00XMIT.ASM

- RdRxFilter, WrRxFilter and SetControl
- Data and structure declarations
- InitAdapter, ResetAdapter, WhoAmI and InitParameters
- Receive interrupt service routine
- GetRxData and SetLookAhead
- Utility routine used by other modules
- Version number string
- PutTxData

Transmission Capabilities
Only WAIT mode transmits are supported. If NOW AIT request are made to PutTxData, they will
be handled as WAIT mode transmits. Due to the nature of the hardware, when the receiver is
enabled/disabled the transmission is also enabled/disabled.

Initialization Parameters
InitParameters receives in ES:BX the address of the DOS device driver INIT call request header,
but does not use any run-time parameters. The routine does verify that the code is running on a
3Station. It also checks the hardware version number of the machine. The hardware version number
is used to differentiate between the 3Station version released in April 1987 and future vensions.
There are hardware bugs in the 3Station version released in April which should not be present in
future versions of the 3Station. The variable "lite_flag" is set to 1 to allow the "xfer" routine (see
1100util.asm) to take advantage of the improved performance possible due to the hardware fixes.

WhoAml Statistics
No statistics are maintained in the WhoAmI data structure.

Other
A special note is needed here to explain how the selection of the internaVexternal transceiver in the
hardware is made. To boot a 3Station, the PROM code runs the hardware up until the device driver
version takes control. Since the PROM code has made the selection in order to make the hardware
work (in order to boot), the code in "InitGA" (part of InitAdapters) does not alter the current setting
of the transceiver and it does not reset the gate array since this also resets the transceiver selection.

Link Level Library: B
Implementation Syntax

and Naming

8-1

Appendix B: Implementation Syntax and
Naming
3Com currently implements both hardware and protocol side routines in 8086/80286 assembler
source compatible with the Microsoft macro assembler, version 4.0. Hardware and protocol routines
are maintained in separate modules, and linked with Microsoft's LINK, version 3.05.

Define each hardware side procedure as a public near procedure in source files where procedure
code is included, and declare each as external near procedures in your source files where calls are
made.

Implementation as a configurable DOS device driver allows specification of an end address for the
code to DOS at the time configuration initialization completes. In the current MINDS
implementations, this driver is run at configuration initialization time, and then cut off by specifying
a code end address to DOS which is just prior to this "use one time and throwaway" type code. In
this MINDS implementation, the module ethdr.obj must be linked first (as it contains the DOS
device driver header). Three SEGMENTS are defined to the linker, and are all grouped together so
that all data and entry points are relative to the same start location for the driver.

The statements to declare statement in a module are:

;align all 3 segments
CODE GROUP RCODE, DATA, ICODE

;specify default label
;and variable registers

ASSUME cs:CODE,ds:CODE,ss:NOTHING, es:NOTHING

RCODE SEGMENT WORD PUBLIC
;DOS device driver header structure
;all executable code which is to be retained after configuration initialization time

RCODEENDS

DATA SEGMENT WORD PUBLIC
;define data items which are to be retained

DATA ENDS

ICODE SEGMENT WORD PUBLIC
near label CUTOFFPOINT: ;address to pass DOS for throwaway after init

;all executable code which is top be discarded after configuration initialization time
;all data items which are to be inserted

ICODEENDS

Link Level Library: C
Interfacing to a 3L Compliant

Driver Example

C-1

Appendix C: Interfacing to a 3L Compliant
Driver Example
This chapter contains listings providing example use of the 3L Interface. These listings are for
illustration only and are not intended for direct inclusion in a developer's program.

This module, whose source file is named cr03L.ASM, consists of a set of assembly language _
interface modules used to provide linkage between C language code and the assembly language­
based Link Level Libraries. It is expected that in most applications, the 3L routines will be linked
directly into installable MS-DOS@ drivers.

c
C-2

Link Level Library:
Interfacing to a 3L Compliant
Driver Example

title cto3l. asm

.** ,
,
;File: CT03L.ASM
;
;Description: This file contains subroutines which provide a
; C program with an interface to the 3L 1.0 routines.
;
.** ,

PUBLIC

PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC

extrn
extrn
extrn

PUBLIC
PUBLIC
PUBLIC

extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn

CODE

TEXT
DGROUP

TEXT

DATA
DATA

ICODE
ICODE

_getds

cInitParameters
=cInitAdapters
_cResetAdapter

cWhoAmI
cRdRxFilter
cWrRxFilter

-cPutTxData
-cGetRxData

cSetLookAhead
-etext

_myExitRcvInt :near
_myRxProcess :near
_myTxProcess :near

ExitRcvInt
RxProcess
TxProcess

InitParameters :near
Ini tAdapters - :near
ResetAdapter :near
WhoAmI :near
RdRxFilter :near
WrRxFilter :near
putTxData :near
GetRxData :near
SetLookAhead :near

GROUP _TEXT, DATA, ICODE

segment byte public 'CODE'
group DATA, BSS
assume cs:_TEXT, ds:DGROUP, ss:DGROUP
ends

segment word public 'CODE'
ends

segment word public 'CODE'
ends

Link Level Library: C
Interfacing to a 3L Compliant

Driver Example

C-3

DATA segment
his ds dw ?
etext db ?

DATA ends

DATA segment word public 'DATA'
-d@ label byte
-DATA ends
-BSS segment word public 'BSS'
-b@ label byte
-BSS ends
-DATA segment word public 'DATA'

s@ label byte
-DATA ends

TEXT SEGMENT
ASSUME CS: _TEXT, DS:DGROUP, SS:DGROUP

_getds proc near
mov aX,ds
mov cS:his _ds, ax
ret

_getds endp

i---
i
i _cInitAdapters: This procedure provides the glue between a C

program and the 3L 1.0 InitAdapters function.

Calling Sequence:
int clnitAdapters(&nAdapters

Input Parameters:
None

Output Parameters:
int nAdapters

Returns:
; The return value of the InitAdapters function

;--~-----------------------------

cInitAdapters
- push

mov
push
push
push

proc
bp
bp,sp
si
di
ds

mov ax,cs
mov ds,ax

near

c
C-4

Link Level Library:
Interfacing to a 3L Compliant
Driver Example

mov di,offset CODE:RxProcess

call InitAdapters

pop ds
mov di,word ptr[bp+4]
mov word ptr[di],cx

pop di
pop si
pop bp
ret

_cInitAdapters endp

; cInitParameters: This procedure provides the glue between a C
; program and the 3L 1.0 InitParameters function.

Calling Sequence:
int cInitParameters(Parms)

Input Parameters:
char *Parms - Pointer to a structure with overrides of default

; parameters.

Output Parameters:
; None

; Returns:
The return value of the InitParameters function

;--
cInitParameters proc-near

- push bp
mov bp,sp
push si
push di
push ds

mov bx, [bp+4]

mov ax,ds
mov es,ax
mov ax,cs
mov ds,ax

;

;

Link Level Library: C
Interfacing to a 3L Compliant

Driver Example

C-5

call InitParameters

pop ds
pop di
pop si
pop bp

ret
cInitParameters endp

_cResetAdapter: This procedure provides the glue between a C
program and the 3L 1.0 ResetAdapter function.

Calling Sequence:
int cResetAdapter(

Input Parameters:
None

Output Parameters:
None

Returns:
The return value of the ResetAdapter function

_cResetAdapter proc near
push bp
mov bp,sp
push si
push di
push ds

mov dx,O
mov ax,cs
mov ds,ax

call ResetAdapter

pop ds
pop di
pop si
pop bp
ret

_cResetAdapter endp

c
C-6

Link Level Library:
Interfacing to a 3L Compliant
Driver Example

;---
;
;

cWhoAmI: This procedure provides the glue between a C
program and the 3L 1.0 WhoAmI function. . ,

; Calling Sequence:
; int cWhoAmI (& WhoPt r
;

Input Parameters:
; None
;
; Output Parameters:

struct WhoStruct far *WhoPtr - Far pointer to the WhoAmI
; structure.
;
; Returns:

The return value of the WhoAmI function
;

;---
cWhoAmI proc near

push bp
mov bp,sp
push si
push di
push ds

mov dx,O
mov ax,cs
mov ds,ax

call WhoAmI

pop ds
mov si, [bp+4]
mov word ptr [si] ,di
mov word ptr [si+2],es

pop , di
pop si
pop bp

ret
cWhoAmI endp

Link Level Library: C
Interfacing to a 3L Compliant

Driver Example

C-7

;---
;

;
;

cRdRxFilter: This procedure provides the glue between a C
program and the 3L 1.0 RdRxFilter function.

; Calling Sequence:
; int cRdRxFilter(&RxFilter

; Input Parameters:
None

;
; Output Parameters:
; int RxFilter - The receive filter value

Returns:
The return value of the RdRxFilter function

;

cRdRxFilter proc near
push bp
mov bp,sp
push si
push di
push ds

mov ax,cs
mov ds,ax

mov dx,O
call RdRxFilter

pop ds
mov di, [bp+4]
mov [di],bx

pop di
pop si
pop bp
ret

cRdRxFilter endp

;
;

;

cWrRxFilter:

c
C-8

Link Level Library:
Interfacing to a 3L Compliant
Driver Example

This procedure provides the glue between a C
program and the 3L 1.0 WrRxFilter function.

; Calling Sequence:
; int cWrRxFilter(RxFilter
;

Input Parameters:
int RxFilter - The new receive filter value

Output Parameters:
; None
;
;
;
;

Returns:
The return value of the' WrRxFilter function

cWrRxFilter proc near
push bp
mov bp,sp
push ds
push si
push di

mov aX,es
mov ds,ax

mov dx,O
mov ax, [bp+4]
call WrRxFilter

pop di
pop si
pop ds
pop bp
ret

cWrRxFilter endp

i

cSetLookAhead:

Calling Sequence:

Link Level Library: C
Interfacing to a 3L Compliant

Driver Example

C-9

This procedure-provides the glue between a C
program and the 3L 1.0 SetLookAhead function.

int cSetLookAhead(NumBytes)

Input Parameters:
int NumBytes - The number of bytes of look ahead data

Output Parameters:
None

Returns:
The return value of the SetLookAhead function

cSetLookAhead proc near
push bp
mov bp,sp
push si
push di

push ds

mov ax,cs
mov ds,ax

mov dx,O
mov cx, [bp+4]
call SetLookAhead

pop ds
pop di
pop si
pop bp
ret

cSetLookAhead endp

;

c
C-10

Link Level Library:
Interfacing to a 3L Compliant
Driver Example

cPutTxData: This procedure provides the glue between a C
; program and the 3L 1.0 PutTxData function.
;
; Calling Sequence:
; int cPutTxData(TotalPacketLen, NumBytes, Flags, RequestID,

PacketAddr, &NewRequestID)

Input Parameters:
int TotalPacketLen - The total packet length (first call only)

; int NumBytes - The number of bytes to transfer this call
int Flags - The DL flags
int RequestID - Used if not the first call

; char far *PacketAddr - A far pointer to the packet
;
; Output Parameters:
; int NewRequestID - Returned after first call
;

Returns:
The return value of the PutTxData function

;
;---
cPutTxData

- push
mov
push
push
push

mov
mov

mov
mov
mov
mov
mov
mov
call

pop
xchg
xor
mov
mov

pop
pop
pop
ret

cPutTxData

proc
bp
bp,sp
si
di
ds

ax,ds
es,ax

near

bx, [bp+4]
cx, [bp+6]
dl,byte ptr[bp+8]
dh,byte ptr[bp+10]
si, [bp+12]
di,offset CODE:TxProcess
PutTxData

ds
dh,dl
dh,dh
di, [bp+16]
[di], dx

di
si
bp

endp

Link Level Library: C
Interfacing to a 3L Compliant

Driver Example

C-11

cGetRxData: This procedure provides the glue between a C
; - program and the 3L 1.0 GetRxData function.
;

Calling Sequence:
; int cGetRxData(&NumBytes, Flags, RequestID, PacketAddr)

Input Parameters:
int NumBytes - The number of bytes to transfer this call
int Flags - The DL flags
int RequestID - The request identifier
char far *PacketAddr - A far pointer to the packet to copy

the data

Output Parameters:
int Numbytes - The actual number of bytes transferred

Returns:
The return value of the GetRxData function

cGetRxData proc near
push bp
mov bp,sp
push si
push di
push ds

mov di, [bp+4]
mov cx, ss: [di]
mov dl,byte ptr[bp+6]
mov dh,byte ptr[bp+8]
mov di, [bp+10]
mov es, [bp+12]
call GetRxData

pop ds
mov di, [bp+4)
mov ss:[di),cx

pop di
pop si
pop bp
ret

_cGetRxData endp

;

c
C-12

Link Level Library:
Interfacing to a 3L Compliant
Driver Example

TxProcess: This procedure is the protocol-side routine
; which is called when a packet has finished
; transmitting (see cPutTxData). It provides the

glue between the 3L 1.0 routines and a C routine
called myTxProcess.

;
myTxProcess Calling Sequence:

void myTxProcess(Status, RequestID
;
; myTxProcess Input Parameters:

int Status - Transmit status
int RequestID - The request identifier

;
; myTxProcess Returns:

Nothing

;

TxProcess proc near
push bp
push si
push di
push ds
push es

push ax
mov ax,cs:his ds -mov ds,ax
mov es,ax
pop ax

xor cx,cx
mov cl,dh
xor dh,dh

push cx
push ax
call _myTxProcess

add sp,4

pop es
pop ds
pop di
pop si
pop bp
ret

TxProcess endp

Link Level Library: C
Interfacing to a 3L Compliant

Driver Example

C-13

i ExitRcvInt: This procedure is the protocol-side routine
which is called when the 3L has completed a
receive interrupt. It provides the
glue between the 3L 1.0 routines and a C routine
called myExitRcvInt.

myExitRcvInt Calling Sequence:
void myExitRcvInt()

myExitRcvInt Input Parameters:
None

myExitRcvInt Returns:
Nothing

ExitRcvInt:
push bp
push ds
push es
push si
push di

push ax
mov ax,cs:his ds -mov ds,ax
mov es,ax
pop ax

call _myExitRcvInt

pop di
pop si
pop es
pop ds
pop bp
iret

c
C-14

Link Level Library:
Interfacing to a 3L Compliant
Driver Example

;---
;
; RxProcess: This procedure is the protocol-side routine
; which is called when a packet has been received
; (see cInitAdapters). It provides the
; glue between the 3L 1.0 routines and a C routine
; called myRxProcess.
;

myRxProcess Calling Sequence:
; void myRxProcess(Status, PacketSize, RequestID, PacketHeader

myRxProcess Input Parameters:
int Status - Receive status
int PacketSize - Size of the received packet
int RequestID - The request identifier

; char far *PacketHeader - Address of the virtual packet
; header

myRxProcess Returns:
; Nothing
;

RxProcess
push
push
push
push
push
push
push
push
pushf

push
push

push
rnov
rnov
rnov
pop

xor
rnov
xor

push
push
push

call
add

proc
bx
cx
dx
si
di
bp
ds
es

es
di

ax

near

push FAR ptr to Virtual pckt hdr

ax,cs:his ds
ds,ax -
es,ax
ax

bx,bx
bl,dh
cih,dh

bx
ex
ax

myRxProcess
sp,10

popf
pop es
pop ds
pop bp
pop di
pop si
pop dx
pop ex
pop bx

ret
RxProeess endp

TEXT ends
end

Link Level Library: C
Interfacing to a 3L Compliant

Driver Example

C-15

	001
	002
	003
	004
	1-01
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	4-01
	4-02
	4-03
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15

