
I
20 Tabular Slatlstlcs

20 Tabular Statistics

JUL '90
20-1

INTERVIEW 7000 Ser/es Bas/c Operation: ATLC-107-951-100

•• Tabular Statistics ••

NAME: _____ _ TYPE: COUNTER

MILU-SECS

Nama Current Laat Minimum Mulmum Average Unit

Fl F3 F4 F5 F6 F7 Fa
COUNTER TIMER ACCUM

Figure 20-1 Menu fields, Tabular SlalisUcs screen.

20-2 JUL '90

20 Tabular StatIstics

20 Tabular Statistics

JUL '90

The user of the INTERVIEW can assign tasks easily to an almost unlimited number of
software counters and timers. When these incrementing counters and timers are
sampled-that is, when they are read and cleared-their current totals are factored into a
statistical breakout on the Tabular Statistics screen. This breakout is a real-time reading of
current, last, minimum, maximum, and average values for the counter or timer.

At anyone moment, the Tabular Statistics screen displays a maximum seventy-five values for
fifteen counters, timers, and accumulators. (Accumulators are defined below in Section
20.4). The Graphic Statistics screen, treated in the next section, displays less information
(sixteen values total) at anyone time, but in a graphic format. Both statistics screens can be
scrolled up or down to display additional rows of values.

The role of triggers in creating, operating, sampling, and accumulating various counters and
timers is common to both screens and will be discussed here under Tabular Statistics.

20.1 Counters and Timers

Counters and timers are operated as actions on trigger menus and in Protocol
Spreadsheet tests. In the example below, two different counters are made to
increment as spreadsheet actions.

In this Bisync example, polling address A represents a drop on a multipoint circuit.
The string "'i<A" on the DCE side is the beginning of a text block originating at
remote 'drop A. When the spreadsheet program sees this string, it moves to a state
called drop_a, where the end of every text block (DCE STRING .FF·) increments one
counter (allblk_a) and only blocks that end with a bad BCC increment another counter
(badbco_a) .

LAYER: 1
STATE: olx

CONDITIONS: DCE STRING ''i<A'
NEXT _ST: drop_a

STATE: drop_a
CONDITIONS: DCE BAD_BCC
ACTIONS: COUNTER badbcc_a INC
CONDITIONS: DCE STRING .FF"
ACTIONS: COUNTER allblk_a INC
NEXT_ST: stx

20-3

INTERVIEW 7000 Series Basic Operation: A TLC-1 07-951-100

20-4

The current value of a counter also can be used as a condition either on a trigger
menu or in a Spreadsheet test. Here is an example of a counter performing this
"countdown" function:

CONDITIONS: COUNTER allblk_a EQ 1000
ACTIONS: COUNTER badbco_a SAMPLE

(The SAMPLE action is explained in Section 20.3, below.)

Timers are not used as trigger conditions, since timeouts serve this function.

20.2 Preparing the Tabular Statistics Screen

Current values of counters and timers are read on the Tabular Statistics and Graphic
Statistics screen. Both statistics screens are always accessible by softkey during Run
mode. A counter or timer that is named in a trigger must be identified by name on
the statistics screen. This naming is done in Program mode prior to the run.

Press ~ and then 1m for the Statistics Menu screen. Press Ifj) (or E3) to enter
the Tabular Statistics screen. In Program mode, the screen shows fifteen tabular
rows beneath a single line of menu fields. There are two cursors, one on the menu
line and one in the table. See Figure 20-2. The fields on the menu line (second (
line at the top of the screen) always refer to the row in the results table that has the
lower cursor.

Figure 20-2 In Program mode, IhJs screen has two cursors.

When you enter the Tabular Statistics screen, the upper cursor is in the Name field
on the menu line, while the lower cursor is in Row One of the table.

Press ~ or E3 (or G and B) to move the upper cursor from field to field in the
menu area of the screen. Press ~ and ll!ID to change the selections in
rotating-window fields.

Press I±l and I!l to move the lower cursor from display line to display line. The menu
selections at the top of the screen will change as you cursor down the screen, since
they are always keyed to the display line that has the cursor.

Each time the cursor advances one row down the table, the information that the user
has entered on the menu line is written to the previous row in the table. In the top
half of the sequence in Figure 20-3, the user has entered a name on the menu line

JUL '90

JUL 'SO

20 Tabu/ar Stat/st/cs

above a blank table. The cursor is now in the Type field, where ~1 was the
default selection. The bottom of the figure shows the resulting table after the user
presses m .

Figure 20-3 When lower cursor moves, user data is wrlnen to the vacated display line.

ffI reverses the direction of the lower cursor. The user may name or revise counters,
timers, and accumulators by moving up the table as well as down.

The tabular area of the screen is a scrolling display of variable length that sets a very
high limit (100) on the number of counters, timers, and accumulators that can be
named by the user. To scroll down the directory, position the cursor on the last line
of the listings and press m. This keystroke will display new lines one at a time. Or
press !mD to display fifteen new lines of counters, timers, and accumulators. ~ and
m together move the cursor to the end of the listings.

Position the cursor at the top of the listings and press ffI to expose lines that have
scrolled off the screen at the top. Or press (!lIl] to retrieve an entire previous page of
listings. ~-ff1 will always move you to the top of the listings.

~ and 00 are operative keys on the scrolling statistics tables.

>i<MON(L.INE:;i!· •• ••· •• ·•·•· •••• ··/\··.i.·.········.· .• i·.·• •.• • •• ··? .. ·· .. ··.·· .. ·.i BLK·,,\···········
EBCDICI8INONEISYNCIs"s"i
Name·ii •• Curreo"t;··· ··Last.i·· MinimUm

.···.··~·~·~.·~.8·~~~·.···.···············iL .. · ... %.~.~ ... ~ \.}
Figure 20-4 AU counting and Umlng is performed in the Current column.

20-5

INTERVIEW 7000 Series Basic Operation: ATLC-107-951-100

20-6

When ~ is pressed. a counter or timer that has been named in a trigger action will
show its current value next to its name on the statistics screen. Figure 20-4 is a
Run-mode display of two counters. one that is incrementing with each text block sent
by a particular remote drop. and a second that is incrementing with each bad BCC
from the same source.

If you have named a counter (or timer or accumulator) in a trigger action but
forgotten to identify it on a stadstics screen. the statistics will still be available in
Program mode following the run (provided you have sampled the counter or timer at
some point during the run). To view the statistics. simply identify the counter (timer.
accumulator) by name on the statistics screen and move the lower cursor. The
statistics from the previous run will appear on the screen next to the name.

20.3 Sampling Current Values

In addition to current value. the Tabular Statistics screen has columns for last.
minimum. maximum. and average values. See Figure 20-5. Unit is not a value
column. It applies to timers only. and reflects the unit of time-second. millisecond,
or microsecond-selected by the user for that timer on the menu line during Program
mode.

Last, Minimum. Maximum. and Average are statistical columns. based on previous
samplings of the Current column. Sampling is a trigger action that reads the current
value of the counter or timer and then resets it to zero. The Last column receives
the sampled value. The other columns-Minimum, Maximum, and Average-compare
the sampled value with previous samples.

Figure 20-5 The current count ends when the counler is sampled.

We have already seen a counter that incremented with every bad BCC. A
Spreadsheet trigger that sampled this incrementing counter every 1000 blocks would
maintain a statistical record of errored blocks per thousand:

JUL '90

LAYER: 1
STATE: alx

CONDITIONS: DCE STRING '~A'
NEXT_ST: drop_a
CONDITIONS: COUNTER allblk_a EQ 1000
ACTIONS: COUNTER badboc_a SAMPLE

COUNTER allblk a SET 0
STATE: drop_a -

CONDITIONS: DCE BAD_BCC
ACTIONS: COUNTER badboo_a INC
CONDITIONS: DCE STRING .FF·

ACTIONS: COUNTER allblk_a INC
NEXT_ST: alx

20 Tabulaf Slatlsllcs

In Run mode, zero appears in the Laol column prior to the first sampling of a
counter or timer, and nothing appears in Minimum, Maximum, and Average columns.
See Ihe top of Figure 20-5. The bottom of the same figure illustrates the effect of
the first sampling. The counter named badboo_a is cleared automatically but its
sampled value is retained in the Last column. Since this is a first sampling, the
sampled value is carried over unchanged to the Minimum, Maximum, and Average
columns also. Note that the counter named allblk_a was not sampled, so it had to be
reset manually (COUNTER allblk_a a.1 0).

The next example uses a timer in an X.25 environment. A pair of triggers start and
sample a timer called 12. Each sample is a measurement of the timeout observed by
an X.25 PAD before it responds with an RR to a DeE Info frame. (This timeout is
called T2 in X.25.) INFO and RR are spreadsheet conditions in the protocol
package for X.25 Layer 2 (see Section 36.)

CONDITIONS: DCE INFO GDaCC
ACTIONS: TIMER 12 RESTART
CONDITIONS: DTE RR
ACTIONS: TIMER 12 SAMPLE

Figure 20-6 shows a set of results that might be generated by these two triggers.

Figure 20-6 This timer has been sampled several limes.

20.4 Accumulators

JUL '90

Accumulators look like counters and timers on the statistics screens but they do not
increment or reset counters. nor do they start or stop timers. Rather, they
accumulate selected samplln8s of these counters and timers without interfering with
the counting and timing functions. Thus they enhance the performance of counters
and timers by empowering them to work for several accumulators at the same time.

20-7

INTERVIEW 7000 Series Basic Operation: ATLC-107-951-100

20-8

For example, we have already designed a pair of counters that counted bad BCes per
thousand blocks with respect to one drop on a multipoint circuit. We will enlarge the
program with a pair of counters for each of two additional drops, drop B and drop
C. Then we will add an accumulator to generate error-per-thousand statistics for the
three drops taken together.

Accumulating Is a trigger action found on spreadsheet softkeys but not on trigger
menus. The ACCUMULATE actions In our spreadsheet program might look like this:

LAYER: 1
STATE: six

CONDITIONS: DCE STRING "\A"
NEXT_ST: drop_a
CONDITIONS: COUNTER allblk_a EO 1000
ACTIONS: COUNTER badbco_a SAMPLE

COUNTER allblk_a SET 0
CONDITIONS: DCE STRING "\ B"
NEXT _ST: drop_b
CONDITIONS: COUNTER allblk_b EO 1000
ACTIONS: COUNTER badbcc_b SAMPLE

COUNTER allblk_b SET 0
CONDITIONS: DCE STRING "\C"
NEXT _ST: drop_o
CONDITIONS: COUNTER allblk_o EO 1000
ACTIONS: COUNTER badbco_o SAMPLE

COUNTER allblk_o SET 0
STATE: drop_a

CONDITIONS: DCE BAD_BCC
ACTIONS: COUNTER badbcc_a INC

ACCUMULATE alldrop COUNTER badboo_a CURRENT
CONDITIONS: DCE STRING "',"
ACTIONS: COUNTER allblk_a INC
NEXT_ST: sIX

STATE: drop_b
CONDITIONS: DCE BAD_BCC
ACTIONS: COUNTER badbco_b INC

ACCUMULATE alldrop COUNTER badboo_b CURRENT
CONDITIONS: DCE STRING "',"
ACTIONS: COUNTER allblk_b INC

STATE: drop_c
CONDITIONS: DCE BAD_BCC
ACTIONS: COUNTER badbco_c INC

ACCUMULATE alldrop COUNTER badboc_c CURRENT
CONDITIONS: DCE STRING .',"
ACTIONS: COUNTER allblk_c INC
NEXT _ST: sIx

The statistics table now can show results for six counters and one accumulator
(Figure 20"7). The accumulator gives last, minimum, maximum, and average
error-per-thousand counts based on all the drops on the circuit.

JUL '90

Figure 20·, The accumulator at the hollom of the table Is consolldallng
enors-per-Ihousand values from three separate drops.

20 Tabu/ar Statistics

Not only current values but also last, minimum, and maximum values can be
accumulated and broken out statistically. Values in the Maximum column, for
example, often are significant limit values: time limits, size limits, and so forth. An
accumulator might be assigned to sample only this maximum value for several
counters or timers running concurrently. The resultant tabular row would be a
comparison of these maximum values.

20.5 Keeping a Statistical Log

The sampling action can be used to log statistics at regular time-intervals. In the
example that follows, the program counts data packets on an X.25 link and sends a
line of date- and time-stamped statistical values every hour on the hour to a serial
printer attached to the INTERVIEW. DTE DATA and DCE DATA are packet-level
conditions in the protocol package for X.25 Layer 3 (see Section 37). PRINT

COUNTER (and PRINT TIMER) is a layer-independent action described in Section 30.4.

JUL '90

LAYER: 3
TEST: paksJler_hr

STATE: Six_am
CONDITIONS: TIME 0600
ACTIONS: TIMEOUT slxtysec RESTART 60
NEXT _ST: hourly

ST ATE: hourly
CONDITIONS: TIMEOUT slxtysec
ACTIONS: TIMEOUT slxtysec RESTART 60

COUNTER minutes INC
CONDITIONS: COUNTER minutes EO 60
ACTIONS: COUNTER minutes SET 0

COUNTER datapake SAMPLE
PRINT COUNTER datapaks

CONDITIONS: DTE DATA
ACTIONS: COUNTER datapaks INC
CONDITIONS: DCE DATA
ACTIONS: COUNTER datapaks INC

20-9

INTERVIEW 7000 Series Basic Operation: ATLC-107-951-100

0

0

0

0

0

0

20-10

After several hours, the resulting printout might look like this:

0

Time Name Current Last Minimum Maximum Average Unit
0

09/14 07:00 datapaks 0 0
09/14 08:00 datapaks 0 0 0 0 00.00 HSECS
09/14 09:00 datapaks 0 820 0 820 410.00 MSECS 0
09/14 10:00 datapaks 0 3388 0 3388 1402.67 HSECS

0

0

0

Figure 20-8 A counler Is sampled every bour and its Y8~Ue9 are logged to a serial prinler.

Accumulators might be added to the original program to gather statistics for a certain
hour each day over a period of days or weeks:

TEST: tlme_ol_day
STATE: time.

CONDITIONS: TIME 1105
ACTIONS: ACCUMULATE aml0-ll COUNTER datapak. LAST
CONDITIONS: TIME 1205
ACTIONS: ACCUMULATE amll-12 COUNTER datapaks LAST
CONDITIONS: TIME 1305
ACTIONS: ACCUMULATE pm12-1 COUNTER datapaks LAST
CONDITIONS: TIME 1405
ACTIONS: ACCUMULATE pml-2 COUNTER datapaks LAST
CONDITIONS: TIME 1505
ACTIONS: ACCUMULATE pm2-3 COUNTER datapaks LAST

The resulting tabular screen could tell you, for example, the average number of data
packets traveling over the link between the hours of 11 A.M. and 12 noon for a given
Monday through Friday:

JUL 'SO

JUL '90

20 Tabular Statistics

Figure 2.0-9 Here statisllcs are accumulated for specific bours of the day over a period of
days or weeks.

20.6 The Sampling Action as Divisor

The sampling action can be used to divide the sum of all sampled current values on a
counter by another value. To divide X by Y, count the events that add up to X and
sample the counter Y times. The quotient or proportion will appear in the Average
column of the counter.

Suppose, for example, that you want to divide the number of information frames on
a link by all frames, as an indicator of how efficiently the link is being utilized.
Count all Info frames on a counter called Info. Sample the Info counter whenever
any frame is seen. Reference the Info counter on the Tabular Statistics screen. If
1000 out of 1500 frames are Info frames, your results will look like those in
Figure 20-10.

Figure 20-10 The value in the Average column for Ihls counler is the sum of all sampled
values divided by the number of samples.

20-11

INTERVIEW 7000 SerIes BasIc Operation: ATLC-l07-951-100

20-12 JUL '90

21 Graphic Slatlsllcs

21 Graphic Statistics

JUL '90 21-1

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

21-2

•• Graphical Statistics ••

L: __ -----
(Enter Llna label)

T:C""J N:

L
(Name)

V: '::t:j:;;~W3~::t:~*~:d
(Graph VallHl)

s: I,U!KiH
(Sca'a)

I: WtiI'I,,1 c: [j@j§]j
(Inten,lty) (Color)

U: H?'¥+H
(Timer Units)

SallOt Type at Line: ~

,r-T-.-Xl-:L------.
T!ME~ ~UM'" ~ Tn ..

I
Enter CounterlTlmer/Accum Nama: ___ _

Seleo! Value to Graph: I Enter Max Value: CliQ2 I CURRENT LAST MAX MIN AVERAGE
Enter CounlerlTlmer/Accum Max Value: ~

8elecl Intensltv Of Bar:
100% 50% 33%

Select Color or Bar:
WHITE YELLOW RED GREEN BLUE

Select Timer Unit. (Timer onIV):
SEC MSEC uSEe

Fl I I F2 I I F3 I I F4 I I FS I I F6 I I F7 I I Fe

Figure 21-1 Selup selections on the Graphical Statlslics screen.

JUL '90

21 GraphIc StatIstIcs

21 Graphic Statistics

JUL '90

The operator of the INTERVIEW wiU find It easy to design a bar-graph display on the
Graphical Statistics screen, with color parameters that can be mapped to a color monitor.
Counters, timers, and accumulators that are referenced on the Graphical Statistics screen
display their values on this screen as horizontal bars that are drawn in real time and retained
in Freeze and Program modes. Variously shaded bars for up to sixteen counters, timers, and
accumulators may be displayed.

Any of the sixteen horizontal lines in the graphics display may be reserved for explanatory
text or scale numbers instead of a graphic bar. The bars themselves can represent statistics
chosen from the entire pool of counter and timer values, grouped and renamed on the
graphics display for clarity of overall presentation.

21.1 Enabling the Graphic Display

Both of the statistics screens, tabular and graphics, are enabled at aU times during
Run mode and can be entered via softkey. Both statistics displays are named on the
second bank of softkeys in Run mode. See Figure 21-2. (On the first bank of Run
mode softkeys, (ffi is labeled STATS and will call up whichever screen is the current
or dormant entry-tf>ii@lNi or :p~#-in the Slatiotioo Type field on the Display
Setup menu.)

Figure 21·2 Both statistics displays can be entered via the second bank of softkeys during
Run mode.

No graphic bar is drawn until a counter or timer has been named on the Graphical
Statistics screen in Program mode and then put in motion by the program during Run
mode. Examples of triggers that control counters and timers are given in the
preceding section, Tabular Statistics. After you have created your counters and
timers in the trigger-menu or spreadsheet program, enter the Graphical Statistics
screen by pressing ~, lEI for Stats, and [W for Graphical Statistics.

21-3

INTERVIEW 7000 Series Technical Manual: ATLC-107-951-100

21-4

21.2 Cursor Movement on Graphical Statistics Menu

There are always two cursors in the Graphical Statistics menu in Program mode.
When you enter the screen, one cursor is in the L(abel) field in the menu area at the
top of the screen and the lower cursor is on the top line of the sixteen-line display
area. See Figure 21-3. The menu-field area always applies to the horizontal display
line that has the lower cursor. In Figure 21-3, the display area is blank and the
L(abel) field and the other menu fields are in default condition.

Figure 11-3 Two cursors on deraull graphics setup screen: the nelds In Ihe menu areB
always pertain to the display line that has the lower cursor.

Press e!J or E3 (or 13 and 8) to move the upper cursor from field to field in the
menu area of the screen. Press [mJ and mID to change the selections in
rotating-window fields.

Press rn and I!I to move the lower cursor from display line to display line. The menu
selections at the top of the screen will change as you cursor down the screen, since
they are always keyed to the display line that has the cursor. New menu-area
selections and data entries are written to the display line that has the lower cursor as
soon as that cursor is moved up or down.

The graphics area of the screen is a scrolling display of variable length that sets a
very high limit (48) on the number of bar, scale, and text lines that may be created
by the user. To scroll down the directory, position the cursor on the last line of the
listings and press m. This keystroke will display new bar lines one at a time. Or
press [MJ to display sixteen new lines of bar lines. §3 and rn together move the
cursor to the end of the listings.

Position the cursor at the top of the listings and press I!I to expose lines that have
scrolled off the screen at the top. Or press !Hill to retrieve an entire previous page of
listings. §3-1!1 will always move you to the top of the listings.

21.3 Menu Fields

(A) Label

L is the label field. The horizontal bar lines on the Graphical Statistics screen
have labels at the far left. Referring to Section 21.3(B), below, give each bar a
name that is compatible with the leXI line at the top of the chart and with the
scaling numbers above or below the chart.

JUL 'SO

(

JUL 'SO

21 Graphic Statistics

The label does not have to correspond to the name of the counter or timer (or
accumulator) on the trigger menus or in the Protocol Spreadsheet program. For
example, the label PHILA might be used for a counter named badbcc_a, if the
counter is tracking errored blocks sent from multidropped device A in
Philadelphia.

Figure 2.1·4 The label PH/LA will appear alongside a horizontal bar represenling the
average value of the counter named wbadbee_a."

The L fleld is eight columns wide. Any ASCII entry may be made or the field
may be left blank, as In the line of text ERRORED BLOCKS PER 1000
(AVERAGE): in Figure 21-4. A label in the L field is written to the display llne
that has the lower cursor as soon as that cursor is moved up or down.

(8) Type
T designates the type of horizontal line that will be created at the lower cursor.
Line types are 8mt~nW, Wf~%}, f§9Mflt@,ijt, Mi®.~ffit, and hM~:o.rm.
Counters, timers, and accumulators will be represented in Run mode by
horizontal bars of various shadings that lengthen and shonen as the values for
the counters, timers, and accumulators increase and decrease.

T: ctitillWiW devotes a display line to explanatory text. The text line shown in
Figure 21-4 was created by the T: MBtmW3 entry in Figure 21-5. The text
entry may be 54 characters long. This is the full width of the display area.

Figure 21-5 Explanatory text will be wrillen to the display line thai has the lower
cursor as soon as that cursor is moved up or down.

T: @;~\¥W creates a line with five scaling numbers. Enter a number in the S
field that represents the highest number of units you will want to display on the
graph. The entry may be placed anywhere in the S field. An example of an S
entry and the scale line that results is given in Figure 21-6.

The logic will distribute the other four scaling numbers on the scaling line. It
will scale the value you enter directly; or else it will raise your value to the next
value that fits the scaling algorithm.

21-5

INTERVIEW 7000 Series Basic Operation: ATLC-107-951-100

21-6

To be scaled directly, your s number should be expressible by a single digit of
precision In scientific notation. The number 40, for example, will be applied
directly to the scaling line, since in its scientific expression-4 x 10' -4 is a single
digit. 45 (4.5 x 101) will be raised to 50. Here is the beginning of the series of
valid s numbers: 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400,
500, 600, 700, 800, 900, 1000, 2000, etc., up to and including 90,000. (If you
enter a value between 90,001 and 99,999, the scaling logic will raise the value to
100,000.)

Figure 21-6 The scale line al the bottom of the figure was created by (be menu
selections al the top.

(C) Name
The N field appears when you have selected (i@!jiiff~;, ifNij@INJ{' or ;t~~ij!ii.tP
in the T(ype) field. Enter the name of a counter, timer, or accumulator that
you have created in your program. In Figure 21-6, the labels all pertain to
values called out under the name 12. .

(0) Value
Counters, timers, and accumulators have a set of statistical values associated with
them. Any of these values can be represented by a bar on the graphics display.
Select one of these values in the V field. Selections under V are g#WPL j@!i!iiM,
lJ;jMWi, 'N!!ii@H. and ;:wmr. In Figure 21-6, each label references a different
value of timer t2.

Note that accumulators do not have a current value: see Section 20.4.

(E) Scale
Each bar line is 54 columns wide. The scale field allows you to pick a number
that will display a bar that is fifty columns wide. When the statistical value you
have selected for graphic display attains this number, its bar will almost fill the
width of the line.

The s(cale) entry for a counter or timer value has no direct relation to any scale
line (see Type, above) that may be drawn above or below it. The scale line
merely writes numbers on the screen. The s selection for a counter, timer, or

JUL '90

JUL '90

21 Graphlo Stat/stlcs

accumulator will scale the actual bar to your estimate of what the maximum
value will be. If your estimate is good. the bar will have some magnitude
without overflowing the width of the screen.

If your bar is drawn to too small a scale and it overflows. go back to the
Graphical Statistics screen in Program mode and increase the s value for the
counter or timer. The statistical values are kept during Program mode (untU you
hit 8 again). and the bar will be redrawn to the new scale as soon as you move
the cursor up or down.

(F) Intensity

Three degrees of intensity are selectable for any horizontal I?ar. In the I field.
select j®}@ for full intensity (white against a dark background). jij!ifj for half
intensity (medium gray). and !@wj for low intensity (light gray). All three bar
intensities are shown in the Run-mode graphics display in Figure 21-7.
(Remember that whites and blacks are inverted in the screen illustrations in this
manua!.)

(G) Color

Selections in the e(olor) field are }WBit@. Mm@YL jijijiliiiiH. Wii@iM! and
N1j~~!llil. The selection in this field has no effect on the screen of the
INTERVIEW. but it does affect the signal transmitted on the ROB interface at
the rear of the unit. If a color monitor is attached at this interface. horizontal
bars on the color-graphics display will be white. red. green. blue or yellow.
according to the color selected for each bar (subject to the intensity selected for
that bar).

(H) UnIt

The u(nit) field appears whenever @iti!\l$l/ii is the Type selected. Selections in
this field are llt§#!. di\$~tm;. and @ij{!j¥i. The scale numbers on timing graphs
relate directly to these units.

Do not select a timer unit that is smaller than the tick interval (Tlok Rate)
selected on the Front-End Buffer Setup menu. This rule of thumb is explained
in Section 9.1 (C). Time Ticks in Relation to Timer Units.

21-7

INTERVIEW 7000 SerIes BasIc Operation: ATLC-107-951-100

6-7
7-8
8-9
9-10

10-11
11-12

m 12-1
1-2
2-3
3-4
4-5
5-6
6-7
7-8

21-8

6000 12000 18000 24000 30000 - --A~ Me MM.M M_

Figure 21 .. 7 Three graphics dIsplays.

JUL '90

22 Three-Tiered Programming

22 Three-Tiered Programming

JUL '90

The INTERVIEW 7000 Series is designed to provide programming solutions for problems of
varying complexity and for users with different levels of programming skill (see Figure 22-1).
The simplest programming tool is the Trigger Setup screen. The setup screen guides the user
through a fundamental set of programming selections.

The Protocol Spreadsheet is a more sophisticated and flexible programming method. While
based On the same principles as the Trigger Setup screens, the Protocol Spreadsheet provides
free-form programming options and a more advanced set of conditions and actions. The
spreadsheet allows branching from program routine to program routine as well as simultaneous
testing for different sets of conditions. In addition, the structure of the Protocol Spreadsheet
is modeled after OSI layered architecture described in Section 23.

A third programming method is present in the INTERVIEW 7000 Series: C programming
language, accessible from the spreadsheet, allows the advanced user to write code for test
situations outside the scope of standard spreadsheet test selections.

TEST TOOLS OPERATOR SKILL

TRIGGER MENU:

TRIGGER MENUS ENTRY LEVEL

1----------

SPREADSHEET

SPREADSHEET:

PROTOCOL TECHNICIAN

Q;,

SOFTWARE ENGINEER

Figure 2.2-1 There are three separate, Integrated user-interfaces for programmers
of Ihe INTERVIEW 7000 Series.

22-1

INTERVIEW 7000 SerIes BasIc Operation: ATLC-l07-951-100

22.1 Trigger Setup Screens

ElA:
Timeout:
Flags:
Counter:

Triggers are the basic programming tools behind all of the INTERVIEW's test activity.
The operator creates each trigger in one of two ways: by using a pre-existent Trigger
Setup screen or by keying in trigger conditions and actions on the INTERVIEW's
Protocol Spreadsheet.

A trigger is a distinct set of conditions (input) and actions (output). That Is, a trigger
waits for a specified event or group of events. (These events might include, for
example, receipt of a certain data string or change In an internal counter.) When all
conditions are met, the trigger responds with a specllied action or group of actions.
(Trigger actions might include transmission of a data string, sounding of an alarm, or
setting of an internal flag.)

There are 16 Trigger Setup screens available in the INTERVIEW 7000 Series. A
sample Trigger Setup screen is shown in Figure 22-2. These preconfigured screens
provide a simplified approach to programming. Possible conditions are grouped at
the top of the menu, and actions potentiaUy taken in response to those conditions are
grouped at the bottom of the menu. Trigger conditions contained on the Trigger
Setup screens are described in Section 24; Trigger Setup actions are described in
Section 25.

Xmit Complete:
Buffer Fu 11 :
Ke!:tboard:

-_._--
Prompt:
Xmit:
Flags:
Enhance:
Timeouts:
Counters:
Timers:
Alarm:

22-2

-- A A-.- lAlli_til.

Figure 22-2 There are 16 predeCined Trigger Setup screens in the INTERVIEW 7000
Series.

JUL '90

(

22 Three-Tiered Programming

22.2 The Protocol Spreadsheet

: 2

The Protocol Spreadsheet, while not a prefabricated menu, contains and extends the
set of programming options available on the Trigger Setup screens. As explained in
Section 23, the Protocol Spreadsheet program is divided into layers, which are in turn
subdivided into smaller components. At each layer, a different protocol is applicable.
Depending on the protocol packages which you load, the set of trigger conditions and
actions is enlarged to include automatic selections tailored to the protocol and layer
you are programming. (Protocol packages are loaded from the Layer Setup screen as
described in Section 8.) Figure 22-3 shows the beginning of a spreadsheet test.

Trigger conditions and actions which are always available on the Protocol Spreadsheet
are described in Section 30. Conditions and actions available at Layer 1 are
discussed in Section 31. Primitives used at different layers are discussed in detail in
Section 33.

t **
TEST: link_err

STATE: xmt_wndw

JUL 'SO

CONDITIONS: FRAME_SENT
MORE_TO_RESEND

ACTIONS: RESEND

CONDITIONS: FRAME_SENT
NO_MORE_TO_RESEND

NEXT_ST: info_xfr.

.- ._.w __
FIgure 22~3 The Protocol Spreadsheet conditions and actions shown here are part of the

X.2S personality package loaded in al Layer 2.

(A) Automatic Protocol SelectIons: Personality Packages

Standard data units for a protocol which has been loaded from the Layer Setup
screen are available by name so that it is not necessary to enter long
hexadecimal strings as conditions or transmit actions. You are also spared the
calculation of sequence numbers, poll bits, parity, block checking, and certain
other variables that must be included in a received or transmitted string.

22-3

INTERVIEW 7000 Series Basic Operation: ATLC-107-951-100

22-4

Timeouts, window sizes, calling sequences, transmission paths, and other
protocol-specific parameters can be modified on a sub-menu which accompanies
the personality package.

Protocol-specific conditions and actions are discussed at the end of this manual
in a section devoted to the protocol and layer.

(8) Creating and EdIting Spreadsheet Programs

Protocol Spreadsheet triggers are created by the operator through the use of
indexed softkeys. The entries you make become visible on the screen only after
you have made a selection. You also have the option of typing your program
from the regular keyboard, as long as keyed entries match the text keywords
which are displayed on the screen once you press the function keys. Syntax
errors are indicated by a strike-through as you type or make function-key
entries.

Press §) to invoke an alternate bank of spreadsheet keys which provide
advanced editing functions. All editing functions are described in Section 29.

22.3 C Programming Language

The INTERVIEW version of C is based on the current ANSI recommendations for C
programming language, with extensions to provide multitasking. C is intended as an
aid to users who have advanced programming knowledge.

C statements can be incorporated in the spreadsheet as conditions or actions.
Figure 22-4 shows C included as a trigger action which displays a prompt at the top
of the screen and incorporates a counter value as part of the message. This gives
you the ability to extend existing spreadsheet selections or to construct an entire test
from scratch using C. C allows you the freedom, for example, to create a customized
protocol or program trace display or to manipulate variable data strings anticipated
within a user-specific protocol.

JUL '90

I.

JUL '90

22 Three-Tiered Progremmlng

Figure 22-4 The display! funcllon in a C window allows you 10 write a variable such as a
counter 10 the top of the data screen during RUn mode.

22.4 Integrating Programming Methods

The three tiers of programming, Trigger Setup screens, Protocol Spreadsheet, and C
programming language, can be integrated to match the needs of each user. The 16
preconfigured Trigger Setup screens can, for example, be employed as a simple
line-monitoring test operating at· Layer 1. The Protocol Spreadsheet program can
later add more complex tests to this, so that several tests are operating simultaneously
at a number of layers (see Section 23 for a discussion of layered architecture).
Within the Protocol Spreadsheet program, unique test situations or test problems of
particular complexity can be resolved by including C programming statements.

(A) Variables Shared Between Trigger Menus and the Spreadsheet

Certain internal program controls are shared between spreadsheet and Trigger
Setup screens, in order to allow communication and interdependency between
the two types of testing. Internal counters and program timeouts which have the
same name can be monitored and controlled both from trigger screens and from
the spreadsheet.

There is limited sharing of internal flag bits between Trigger Setup screens and
the Protocol Spreadsheet. Trigger Setup flag bits are shared between all trigger
screens. They can also be monitored or changed on the spreadsheet, where
they are relerenced as a flag named trlg_"ag.

(B) Saving and Loading Program Segments

The INTERVIEW's filing system provides a means for storing entire programs or
portions of programs for later use by operators of any skill level. On the File
Maintenance Screen, you may specify which group of menus you wish to save.
For example, if you specify a .. Setup," only the five setup menus (Line Setup,
Interface Control, BCC Control, Front-End Buffer Setup, and BERT Setup) are
saved. This allows you the freedom to create new trigger or spreadsheet tests
without continually reconfiguring all menus.

22-5

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

22-6

If you save a ·Program" on the File Maintenance screen, you are saving the
configuration of all menus, including Trigger Setup screens, Layer Setup, and the
Protocol Spreadsheet. The one menu that is not saved is the Printer Setup. A
program may be a simple test ready to be enlarged, or it may be a highly
complex group of tests that can be loaded and run by an operator with little or
no programming knowledge.

As a complement to file maintenance options, the Protocol Spreadsheet editor
allows you to save only the spreadsheet portion of a program. An advanced
programmer can create a set of tests on the spreadsheet or text files containing
C code, then use the editor to write his work to a file. Later, a
non-programmer may load a setup or a partial program from the File
Maintenance screen, call up the spreadsheet screen, and use the editor to read
in the advanced programmer's file In order to complete his own program.

NOTE: The File Maintenance Compile command also can be
used to save the contents of the Protocol Spreadsheet. The
linkable-object file which results contains the compiled
object-code version of the program. See Section 27.4.

JUL '90

23 The Layered Program Model

23 The Layered Program Model

JUL '90 23-1

INTERVIEW 7000 Series Basic Operation: ATLC-107-951-100

23-2

Single-state tast
running Independently

STATE A

Trigger Setup 0

Trigger Setup 1

Trigger Setup 2
I
I
I

Trigger Setup F

Trigger Menus

..........

STATE 1

Trigger 1

Trigger 2

Trigger 3

Trigger 4

Trigger 5

Multi-State Tests
STATE 2

Trigger 1

Trigger 2

I
Protocol Spreadsheet

STATE 3

Trigger 1

Trigger 2

Trigger 3

Trigger 4

./'

Figure 23-1 Triggers on the Protocol Spreadsheet are grouped Inl0 Siaies which can be called In
varying order.

JUL 'SO

23 The Layered Program Model

23 The Layered Program Model

The trigger, described at the beginning of the previous section, is the fundamental component
of all INTERVIEW programs. On the Protocol Spreadsheet, the trigger is grouped to form
larger programming blocks, referred to as states. States are grouped to form tests. And tests
are divided into layers. The largest component of the INTERVIEW program, the iayer, is
patterned after the Open Systems Interconnection (OSI) model.

23.1 States

It is a useful programming procedure to group triggers so that some are inactive while
others are active. This is possibie to a limited extent on Trigger Setup screens, using
counters, timeouts, or internal flags to sequence the triggers.

On the Protocoi Spreadsheet, triggers can be more easily grouped by separating them
into States (Figure 23-1). A state is an independent group of simultaneously active
triggers called into piay as required by the test. Within a test, oniy one state is active
at one time. That is, all the triggers in this state are awaiting input. All other triggers
in the test are dormant.

(When Trigger Setup screens are compiled into the Protocol Spreadsheet, they may
be thought of as a single-state test constantly running at the Layer 1 interface.)

When one of its triggers receives the right input. the active state passes control to
another state and itself becomes inactive. Transitions between states are always
controlled by (spreadsheet) triggers. These trigger-controlled transitions between
active and inactive states make branching possible. That is. a more complex set of
conditions can be set up inside of a state and certain actions can ensue. Then, at a
decision point (for example. "Did the receiving party respond to my transmission?"),
the test can choose the correct path from several potential paths. (A: "Yes, he
answered, so transmit next message"; or B: "No, he didn't answer, so resend
previous message. ")

23.2 Tests

JUL '90

Even further flexibility is possibie in INTERVIEW programs, because states can be
grouped into tests. So, not only does the INTERVIEW move back and forth laterally
between the groups of triggers contained in various states, but it can also use different

23-3

INTERVIEW 7000 SerIes BasIc Operation: ATLC-107-951-100

23-4

sets of states to perform several different tests at the same time (Figure 23-2). As an
example, two simultaneous tests might be used to check the different set of exchanges
expected on either side of a full-duplex line.

TEST A

Trigger Menu 1

Trigger Menu 2

Trigger Menu 3

Trigger Menus

Trigger 1

Trigger 2

Trigger 3

Trigger 4

Trigger 5

Trigger 1

Trigger 2

Trigger 3

Trigger 4

TEST 2

Trigger 1

Trigger 2

TEST 1

Trigger 1

Trigger 2

Trigger 3

Trigger 1

Trigger 2

Trigger 3

Trigger 4

Figure 23·2 Distinct sets of stales can be created so that the INTERVIEW can perform
several different tests at the same lime.

JUL '90

I

JUL '90

23 The Layered Program Model

23.3 Layers and the OSI Model

Finally, groups of simultaneous tests can be "layered." In this way, separate tests or
groups of tests can be run at a maximum of seven levels simultaneously
(Figure 23-3).

• • •

a S I MULTILAYER MODEL

(IN-TERMEDIATE LAYERSI

Figure 23-3 Separate tests or groups of tests can be run al a maximum or seven layers
simultaneously. This capabUHy parallels the OS] seven-layer model.

• • • •

This layered structure is specifically designed to handle protocols which conform to
the CCITT Open Systems Interconnection (OSI) model. The OSI model is fully
described in CCITT Recommendation X.200.

23-5

INTERVIEW 7000 Series Basic Operation: ATLC 107-951-100

""""cation

23-6

This is a seven-layer model (see Figure 23-4) in which each layer perfonns a
different data communication function. Conceptually, each layer is independent.
One layer can be modified without other layers being affected, as long as the
modified layer respects prescribed communication with the layer immediately above
and the layer immediately below it.

Fronl-
p;;;;j;;;;;,1 ~~~ rl Pr(~End;:""Il--11

L--.-.l Layer 1

OSI Layer:
7 Application

6 Presentation

5 Session

4 Transport

3 Network

2 Data Link

1 Physical

Figure 2.3-4 The seven OSI layers.

Suppose that the physical link between two nodes in a network were changed from
copper wire to optic fiber. In an OSI configuration, only the physical layer (and
possibly certain aspects of the data link layer) would be modified. The remainder of
the communication process would stay the same.

The separation of programs into discrete layers generally reduces the complexity of
test conditions and actions. This Simplifies programming for the user. The structure
allows you to verify your system-and to debug your own tests-layer-by-Iayer. For

JUL '90

(

JUL '90

23 The" Layered Proaram Model

example, It is not necessary at Layer 3 of a protocol to anticipate variations in
line-level or frame-level events. Searches for strings and protocol elements focus
only on the portion of a frame which pertains to Layer 3. The validity of the frame
which contains the string has already been checked.

23.4 Personality Packages

The layered structure of the OSI model allows you to use different protocols at
different layers-again, provided that the rules of OSI interlayer communication are
observed.

The INTERVIEW provides layer-specific protocol packages, called personality
packages, which you can load from the Layer Setup screen. While certain layer
protocols are more commonly used together (SDLC at Layer 2 and SNA at upper
layers, for instance), It is possible to mix and match them. You could, with the
correct Personality Package, load and run X.25 protocol at Layer 2 and SNA
protocol at higher layers.

Personality packages are not in themselves protocol emulations; rather, they are
high-level interfaces to routines in the given protocol. A package at Layer 2 X.25,
for example, allows the user to design his own application by simple softkey-entry of
a routine such as

or

CONDITIONS: RCV DISC
ACTIONS: SEND SABM

CONDITIONS: T1 EXPIRED
ACTIONS: RESEND

Personality packages are selected and loaded from the Layer Setup screen (shown in
Figure 23-5; see Section 8 for a description of this screen). The contents of each
personality package are described in a section dedicated to the package (refer to the
Table of Contents, Sections 35 and following).

23-7

INTERVIEW 7000 SerIes BasIc OperatIon: ATLC 107-951-100

23-8

Layer 1 Package:
Layer 2 Package:
Layer 3 Package:
Layer 4 Package:
Layer 5 Package:
Layer 6 Package:
Layer 7 Package:

~ Key To Load The Selected Packages

Figure 23-5 Personality packages, which provide the protocol elements In INTERVieW
programming, are loaded from the Layer Setup Screen.

23.5 Primitives

The OSI Layers use limited-range messages called primitives to communicate with
each other. Primitives are defined by the OSI model and are not linked to anyone
protocol. No maUer what personality package is loaded, these generic primitives are
available at each layer. This gives you the freedom to create or modify a protocol.
Primitives available on the Protocol Spreadsheet are discussed in Section 33.

23.6 Constants

To represent a frequently used test value, you may define a constant once in your
program and reference the constant elsewhere in the program as needed. Replacing
the test value with a new value then becomes easy, since you need only change the
constant definition one time.

Constants, which may be used to represent any textual string, can be defined at
several levels in the spreadsheet program. The function key labeled CONSTS: is only
present when it is legal to define constants.

Depending on where they are defined, constants vary in scope. You have the option
of creating constants which can be used globally, throughout a layer, or throughout a
test. Refer to Section 28 for a full description of constants.

. JUL '90

24 Trigger Conditions

24 Trigger Conditions

JUL '90 24-1

I

Trigger Setup (Conditions)
Trigger Number: __ (Enter O-F)

Select Condition

Fl I I F2 I I F3 I I F4 I I F5 I I F6 I I F7 I
RECVR EIA TIMEOUT ENDXMIT FLAGS BUFFULL COUNTER

I I
Monitor Receiver: NO DTE DeE ---r- II Monitor Butt Full: NO YES For T T GO BCC SO BCC PARERR FRMERR ABORT

Enter Character String:
Walt For End Of Frame: NO YES

Monitor Flags: NO YES

T
Enter Bit Mask: Enter Flag Muk: XXXXXXXX
M1:XXXXXXXX M2:XXXXXXXX M3:XXXXXXXX M4: XXXXXXXX

Monitor Counter: NO YES

Enter Counter Name: ___ EJ" 0
Monitor ErA Leads: NO YES ,-

I I
I

Fe

KEY

~

T NE Enta" Count.,. Value GE

I RTS, CO:_ DTR:_ DSR:_RI:_ UA:_I LE
CTS: GT

LT
(Enter 1 For On, 0 For Off, X For Don't Care)

Monitor Timeout: NO 1 2 I
Monitor Keyboard: NO YES r T

Ent .. Key:

Monitor Xmlt Complete: NO YES

FIgure 24-1 Conditions on Trigger Setup menu.

24 Trlager Conditions

24 Trigger Conditions

Triggers can be thought of as "IF, THEN" statements, represented on the screen as
"Conditions" (IF ...) and· Actions" (THEN ...). This section penalns to Trigger Conditions
available on the preconligured Trigger Setup screens, of which there are 16 in the
INTERVIEW 7000 Series. All possible conditions available on the Trigger Setup screen are
shown in Figure 24-1.

Triggers are numbered 0 through F. To access a particular trigger screen, press the TRIGS

function key on the Main Program Menu. This calls up the Trigger Summary screen. Enter
the Trigger Number desired (it will appear highlighted at the top of the screen) to see that
trigger screen.

Each trigger screen is divided in half, with Conditions at the top of the screen and Actions at
the bottom of the screen. A default Trigger Setup screen Is shown in Figure 24-2.

EIA:
Timeout: Xmit Complete:
Flags:
Counter:

Buffer Fu II:
Ke\,lboard:

Prompt:
Xmit:
Flags:
Enhance:
Timeouts:
Counters:
Timers:
Alarm:

we w_.w IW_::.tI.

Figure 24-2 Default trigger menu.

JUL '90 24-3

INTERVIEW 7000 Series Basic Operation: ATLC-107-951-100

24-4

24.1 Active Triggers

Only active triggers are tested. Trigger Setup SCreens are always active. (This is not
true of triggers on the Protocol Spreadsheet. where triggers are configured in
alternately active states as a matter of program design.)

24.2 Combining Conditions on the Same Trigger Setup Screen

A trigger is true and can take action only at the instant that all trigger conditions are
met.

(A) Static VS. Instantaneous Conditions
Internal flag, Counter, EIA lead, and Buffer Full conditions differ from other
conditions on the Trigger Setup screen. When it is used in a trigger by itself,
each of these conditions, like other independent conditions, initiates its trigger
actions only at the instant that it transitions to true. In addition, these four
conditions can retain a status of true for a long period of time.

The static value of these four conditions is tested for true or false when they are
combined in the same trigger with another condition.

All other trigger conditions are true only at the instant that they happen. We
will refer to them as "instantaneous" or "transitional" conditions.

NOTE: It is important to remember that even a "static"
condition is "transitional" when it is used alone in a trigger. An
EIA condition, for example, used by itself in a trigger cannot
come true without a transition.

An exception to this rule is when the test enters Run mode. At
that moment, static conditions-flags, counters, EIA leads, and
buffer full-used alone on a Trigger Setup menu (not on the
Protocol Spreadsheet) are tested once for a status of true. Then
they revert to being true only upon transitions.

(8) Rules for Combining Conditions
These "static" conditions can be combined with other trigger conditions on the
same Trigger Setup screen to form compound "IF" statements. Here are some
rules to remember in combining trigger conditions:

1. When "static" conditions appear on the same trigger menu with an
"instantaneous" condition, the trigger is keyed to the instantaneous
condition. All static conditions must be true when the instantaneous
condition transitions to true. On that transition. trigger actions are taken.

Suppose, for example, that a trigger is looking for a Bad BCC and a counter
value = 20. The counter value must first increment to 20, then the Bad

JUL '90

JUL '90

24 Tripper Conditions

BCC must be detected. As soon as the ·Bad BCC Is detected, the trigger
becomes true and takes action.

2. When static conditions are combined, both (or all) are transitional. When
one of them transitions true, the other(s) becomes a static condition and Is
checked for a status of true. The user does not have to try to anticipate
which of two (or more) conditions will transition first.

NOTE: On the Protocol Spreadsheet, static conditions are
prioritized in the order that the user lists them: only the lirst is
transitional. The Protocol Spreadsheet therefore requires you to
define which static condition will be the controlling, transitional
condition. See Section 30.2.

24.3 Receiver

This condition monitors the data lead specilied (DCE or DTE) for designated data.
When Reoelver: i!&lH or ili!i? is selected, several options become available: String,
10f, Good BCC, Bad BCC, Parity Error, Frame Error, and Abon.

(A) DTE or OCE

In using the Receive condition, you must specify which side of the line you wish
to monitor. Select !!tOO: to denote the TD lead. Select :§\i~i to denote the RD
lead.

(8) String

This selection allows you to enter a string of up to 16 characters in the lield
provided. The entire, exact sequence of characters entered must be received for
the condition to be true.

(C) "One of"

When rmt@iiifWk is selected, the trigger looks for anyone of the characters
entered in the next lield. Up to 16 individual characters can be entered.

(0) Good or Bad BCC

M@!!i@ifS (Good Block Check Calculation) and Kl!!P"JWliiP.l (Bad Block Check
Calculation) cannot be used as conditions unless Rov Blk Chk is on in the unit
(selectable on the Line Setup screen; see Section 5). Select ,/1@lilil$#::t! or
@"i!lt!!§{rr when you want the trigger to take action on receipt of the Block
Check Calculation (referred to as FCS, or Frame Check Sequence in
Bit-Oriented Protocols).

24-5

INTERVIEW 7000 Series Basic Operation: ATLC-107-951-100

24-6

(E) Parity Error

;;I!l'¥i.W looks for a parity error in relation to the Parity selection made on the
Line Setup screen.

(F) Framing Error

M'tilM$!!:\h applies to start-stop formats (ASYNC and ISOC) and locates framing
errors, based on the stop bits anticipated. Both Format and Stop Bit. are
selected on the Line Setup screen.

(G) Abort

This selection applies to all Bit-Oriented Protocols. When i1j)ij!Il1'itNH is selected,
the INTERVIEW triggers off of the seven consecutive 1 bits which constitute an
Abort.)I!!§lj@ should be used as Format on the Line Setup Menu when
m%~;:mtWi! is selected.

NOTE: The trigger condition will not respond to idle-time
aborts, unless Display Abort: 'J;@f has been selected on the Line
Setup screen.

(H) Character Entry Field

This field appears only if :)l\tilii@Hi or n:jj@l%;:q is selected. It is the
data-entry line for a sequential character string, if :gWlfu\iit:M has been selected;
or a non-sequential character list, if'iW'l'f!:lifiHi has been selected. Up to 16
characters may be entered, in either case.

1. SIring entry. The 16 characters allowed in the string may include any of the
following in any order or number:

All upper and lower-case ASCII characters avaiiable on the keyboard.

All control character mnemonics on the keyboard.

Two-digit hexadecimal entries. These are entered by first turning the ~
key on, then using alphanumeric keys (!J through (!J and 0 through IEJ. Two
alphanumeric key strokes are required for each hex character. A hex
character is represented on the screen as a pair of small characters, the first
ascending and the second descending. Compare hex characters to regular
alphanumeric characters in Figure 24-3.

JUL '90

JUL '90

24 Trigger Conditions

Figure 24-3 Both alphanumeric and hexadecimal characters CBn be entered as
part of a condItIon search siring.

Characters entered in hexadecimal are not translated, and parity is not
calculated for them; therefore, you must include the parity bit, whether good
or bad, in your entry.

2. Flags. You must press ~ to enter the T, Flag byte used in Bit-Oriented
Protocols. The INTERVIEW's logic will not read a hexadecimal entry made
with ~ as a flag.

3. Sync. Press 8-~ to enter the sync symbol. The character rID Is displayed
on the Trigger screen.

4. Not equal (~) entry. When a character key is preceded by 1iIiIiJ, ail
characters not equal to that character will satisfy that position in the string.
These characters are represented in the data entry field with a horizontal bar
through them.

5. Don't care. &m permits any character received in that position to satisfy
the condition.

6. Bit masks. Four bit masks can be positioned anywhere in the data-entry
string. To enter a bit mask, use r;:w at the desired location in the string.
Each time you press ~. a new mask field appears below the string-entry
field. To move the cursor to the next pOSition in the string-entry field, press
8. The mask fields are numbered Ml through M4, to denote the order in
which they appear in the string (see Figure 24-4).

Figure 24-4 Four bit masks can be used as pari of the search Siring.

If you have used Bit Masks 1 and 2, for example, at positions 5 and 8 of
the string (as in Figure 24-5), you may decide to change the character at
position 1 to a bit mask. Return the cursor to position 1 of the string and

24-7

INTERVIEW 7000 Se;/es Basic Operation: ATLC-l07-951-100

24-8

press~. The character at position 1 will be overwritten with IBI, the two
prior bit masks will be renumbered to 2 and 3, and their menu location
shifted to make room for the new Bit Mask 1. The cursor will be on the
left-most bit of the new mask. (Compare Figure 24-5 and Figure 24-6.)

Figure 24-5 Bit masks Ml and M2 are entered at posllioDs Sand 8 of this
sIring.

Figure 14-6 A third bit mask has been entered at position I, and the old M 1
and M2 have shilted aUlomalically 10 M2 and M3.

NOTE: When a Bit-Oriented Protocol is being tested, the
INTERVIEW ignores inserted zero bits. You can specify the
search string on the Trigger Setup screen without considering zero
bit insertion.

7. Double parens. A global constant declared on the Protocol Spreadsheet can
be entered as part of a Receiver String. Enter the name of the constant
exactly as it appears on the spreadsheet and enclose it in double
parentheses. as follows: «drop)). The double parentheses are special
characters created by pressing ~-I!l for « , and ~-(!J for)). When
constants are used, the receive string cannot be longer than 32 characters
afler all conslants are expanded.

(I) "1 OF" Character Entry
Up to 16 characters may be entered. The same types of characters valid in
String entry are valid 1 OF characters. The trigger will take action upon receipt
of the first character that matches anyone of the characters anywhere in the list.
If I!il/I is used, only this character should appear in the 1 OF entry field (since
any character is a match for Don't Care). If one or more characters in the field
are entered as ~. only those characters not in the field will satisfy the
condition. Thus, 1""'1 z in the 1 OF field means the same thing as 1"""1"-: all
characters other than p, q, and z will satisfy the condition.

JUL '90

i,

JUL'SO

24 Trigger Conditions

(J) Walt For End of Frame

24.4 EIA

This is a subfield which appears when k~% or IdSUli!lffS is selected. The
default selection is tNR%. When Wall For EOF: !£t~ is selected, the trigger first
tests for the data specified on the trigger. Then it evaluates the block check at
the end of the frame. The trigger will not take action when a Bad Block Check
or an Abort is detected on a received frame.

Select ix~lIi in the EIA field if you want a trigger to monitor status of up to seven
RS-2321V.24 leads (see Figure 24-7).

NOTE: For line data, EIA lead-status is not detected if control
leads are not buffered in the Front-End Buffer. See Section 9.
For recorded data, EIA lead-status is not detected if control
leads were not buffered in the FEB at the time of recording.

Figure 14 .. 7 Each trigger can monilol the status of seven BIA leads.

Enter a 1 in the box under a lead to indicate ON; a 0 for OFF. No entry (X) is
read as Don't Care. Entry fields are provided for six ieads: RTS (Pin 4), CTS (Pin
5), DSR (Pin 6), DTR (Pin 20), CD (Pin 8), and RI (Pin 22). You may monitor a
seventh RS-2321V.24 lead by strapping the desired lead to UA on the Test Interface
Module (see Section 12 for instructions).

In using the EIA condition, you should keep the following points in mind.

• If only EIA conditions are selected, the trigger will wait for all EIA conditions to
be satisfied. It will become true on the last transition necessary to satisfy these
conditions.

• The EIA condition is a static condition. The rules for combining static conditions
with other conditions are explained in Section 24.2.

24-S

INTERVIEW 7000 Series Basic Operation: ATLC-107-951-100

24-10

24.5 Timeout

Two timeout timers can be monitored from the Trigger Setup screen.

The decrementing timeout timer Is set for a specific time as part of a trigger action.
The trigger which sets a monitored timeout may be any of the Trigger Setup screens
or any trigger on the Protocol Spreadsheet.

The default Timeout selection is iN!'!!. Select ;SIP to monitor Timeout timer 1; m~n
to monitor Timeout timer 2. The condition is satisfied at the instant of the timeout.

24.6 Transmission Complete

When Xmlt Complete: iyftil is selected, the INTERVIEW tests for the end of its own
transmissions.

NOTE: The INTERVIEW transmits only when operating in
Emulate DTE or DeE mode (selectable on the Line Setup
screen; see Section 5).

The Xmlt Complete condition is frequently used with an internal flag or counter
condition to control when or how many times it wiil be tested.

24.7 Internal Flag Bits

There are eight internal flag bits reserved for the INTERVIEW's Trigger Setup
screens. The purpose of the flag bits Is to provide a simple way to interconnect
several triggers in order to make one trigger dependent on another or to set up
triggers in sequence. Each bit is a simple switch that one trigger may set as an action
and ail triggers can test later.

Internal flags may ail be monitored and set by any individl1al trigger. (The same flag
bit can be set and sensed by a single trigger.) Since each flag bit can be set and
monitored separately, it can also be shared among the Trigger Setup screens.

The internal flag condition is a static condition and can be used in combination with
other trigger conditions as explained in Section 24.2.

To test internal flags, select Flags: bWW. In the flag mask which then appears, enter
a 1 to test for a flag bit turned ON, a 0 to test for a flag bit turned OFF. Enter X
in the appropriate position of the mask (or press Im() if you do not wish to test a
particular bit. See the example in Figure 24-8.

JUL '90

24 Trigger Conditions

Figure 24-8 The internal flBg condilion Is Crequenlly used In comblna1lon with other trigger
conditions.

NOTES:

All flags are set to 0 as the INTERVIEW enters Run mode.

The eight flag bits on the Trigger Setup screens are the low-order
bits of a flag mask that can be accessed on the Protocol
Spreadsheet by the name trig_flag. See Section 30.3(0).

24.S Buffer Full

This condition checks the screen's 64 Kbyte character buffer and becomes true as
soon as the buffer is full. The condition then remains true throughout the program.
Buffer Full is a static condition which may be used in conjunction with other
conditions. The rules for combining trigger conditions are outlined in Section 24.2.

24.9 Counter

Each Trigger Setup screen can monitor a counter with a range of 0 to 999,999. The
counter which is monitored may be named and controlled either on a Trigger Setup
screen· or on the Protocol Spreadsheet.

JUL '90

The default selection is IN!t'. When counter::Y@! is selected, new menu fields
appear (see Figure 24-9).

Figure 24-9 Any counter named on a trigger can be monitored as a Trigger Setup screen
condlUon.

24-11

INTERVIEW 7000 SerIes BasIc OperatIon: ATLC-107-951-100

24-12

(A) Counter Name

Enter the counter name in the field provided. Names must start with a letter.
Any of the 52 alpha characters (upper and lower) and the 10 numerals in
addition to the underscore (_) character are legal in all other positions. A
counter name may be up to eight characters in length.

(8) Relational Operator

Make the appropriate selection to specify when the COunter condition will be
true. The counter may be tested for a value equal to ($:¢) , not equal to (NID,
greater than or equal to (4l0, less than or equal to (tlO, strictly greater than
(!tt), or strictly less than (Jiit) the entered value on the trigger screen.

(C) Counter Value

Enter the counter value as a whole decimal number in the field provided.

24.10 Keyboard

Select Keyboard: :M1i!1 to display a one character entry field. Then press the key
which you wish to use as the condition. In Run mode when that key is pressed, the
condition will be true and (if this is the only condition) will initiate a trigger action,
such as a transmission. Any key or key-combination that produces a character listed
in the ASCII chart in Appendix 01 is valid input in this field.

JUL '90

25 Trigger Actions

25 Trigger Actions

JUL '90 25-1

Trigger Setup (Actions)
Trigger Number: __ (Enter O-F)

Select Action:

I Fl I I F2 I I F3 I I F4 I I F5 I I F6 I I F7 I I F8 I
PROMPT XMIT FLAGS ENHANCE TIMEOUT COUNTER TIMER MORE

Display Prompt: NO YES I I ~ I I
Enter Prompt:

ALARM CAPTURE --r T Xmlt: NO YES Sound Alarm: NO yES
T Control Capture: NO BOTH OTe DOE

Enter Xmlt Strlng: ___ Bec: GOOD BAD I
NONE ABORT $elect Capture Action: ON OFF

Control Flags: NO SET INC DEC
T

Enter Flag Value: XXXXXXXX

Control Timers?
Enhance Display: NO BOTH OTE DeE NO YES

I T
Rev: _ Blnk:_ Low:_ Hex: - , sl : _ NO REST ART STOP CONT SAMPLE ClEAR

(Enter 1 For On, 0 For Off, X For Don't Care) (Enter Timer Name)

2nd: _ NO RESTART STOP CONT SAMPLE CLEAR

(Enter Timer Name)
Control Tlmeouts: NO YES

T
#1: NO RESTART STOP 112: NO RESTART STOP

~ --r __ Seconds __ Seconds
(Enter Timeout Value\

Control Counters: NO YES
T

1st: NO INC DEC SET SAMPLE CLEAR 2nd: NO INC DEC SET SAMPLE CLEAR

(Enter Counter Name) T (Enter Counter Name) T --
(Enter Counter Value) (Enter Counter Val..-)

Figure 25-1 Actions on Trigger Setup menu.

25 Trigger Actions

25 Trigger Actions

Figure 25-1 shows all actions available on the Trigger Setup screen. Figure 25-2 shows a
default trigger menu. The top half of the menu contains available trigger conditions, discussed
in Section 24. A more complete set of trigger conditions and actions is available on the
Protocol Spreadsheet (see Sections 30 and 31, as well as individual sections on the Protocol
Packages).

All conditions selected on the top half of the Trigger Setup menu must be satisfied for the
trigger to be true. Only then will the actions on the lower half of the menu be taken.

EIA:
Timeout:
Flags:
Counter:

Xmit Complete:
Buffer Fu II:
Ke\:lboard: -------_._-_._--_._--,-_.--_._---------------------------

Prompt:
Xmit:
Flags:
Enhance:
Timeouts:
Counters:
Timers:
Alarm:

we .M.W_A

Figure 25-2 Default trigger menu.

25.1 Displaying a Prompt

JUL '90

Select Prompt: :.ii'@,i to display a data entry field (see Figure 25-3). You may enter a
message of up to 47 characters here. Any ASCII characters are legal entries. When
the trigger is true, the Prompt will be displayed on line 2 of the screen. (The prompt
is NOT transmitted.) It will stay on the screen until it is replaced by another prompt,
or until you clear it by changing the display mode or by pressing the ~ key.

25-3

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

25-4

NOTE: A new prompt does not reinitialize the prompt line on
the screen. Instead it overwrites the old prompt to the extent of
the new one. If the prompt "LINK-UP" is overwritten by the
prompt "CALL," the result will be "CALL-UP."

Figure 25-3 Messages entered In the Prompt field will appear on the second line of the
screen In Run mode.

Prompts can be used to call your attention to certain occurrences, or to help you
follow the course of a test. Prompts are also useful in program development because
you can use a prompt to tell you when a trigger is true. Any alphanumeric or control
character from the keyboard, including spaces, may be part of a prompt.

25,2 Transmitting

INTERVIEW transmissions-with the exception of BERT transmissions, described In
Section ll-are always under trigger control, either from the Trigger Setup screen or
from the Protocol Spreadsheet. (You may, however, control trigger operation
manually by selecting Keyboard trigger conditions;. see Sectio," 24.).

Select }i![if to display a data entry field and a rotating window for Bee (see
Figure 25-4). When the trigger is true, the INTERVIEW will transmit any message
you enter here (up to)7 characters), ending with the block-check selection you
make in the Bee field. ASCII characters, hexadecimal entries, and control
characters are valid in this field.

Any global constant declared on the Protocol Spreadsheet may be referenced as part
of the Xmlt string on a Trigger Setup screen. Enter the name exactly as it was
declared on the Protocol Spreadsheet, and enclose it in double parentheses-for
example, ((drop)). The double parentheses are special characters created by pressing

~-~ for ((, and ~-Iill for)) .

Since the standard fox message, containing the set of upper-case alpha characters
and the ten numerals, is pre-defined, you may reference it as a constant on a Trigger
Setup screen. It need not be declared on the Protocol Spreadsheet. Enter it as
follows: ((FOX)).

JUL '90

JUL '90

25 Trigger Act/ons

Figure 25-4 TransmUted messages may be terminated wl1h good or bad BCC's or an
Abort.

(A) Bee

You have the option of following each text block transmitted from the Trigger
Setup screen with a block-check calculation. Block checks are calculated
according to your selections on the BCC Setup screen (see Section 10).

On the INTERVIEW screen, the final byte of the calculation appears as a
highlighted overlay (lID, III, or II), as long as you have selected Rov Blk Chk: ;i9l{j
on the Line Setup screen (see Section 5). This selection is only available for
synchronous and asynchronous formats. When Rov Blk Chk is @~m for these two
formats, block-check characters appear as they are actually transmitted.

The block-check symbol will always be displayed for Bit-Oriented Protocols.

In the rotating BCC window, you may selectiH!\l'i#!P, iiWlliiii91. l!',WM\/;, or
n*jjljlttl. The default selection is l#ili#i9iH.

1. Good Block Check. Select ii14.R9P';i to terminate your text blocks with a
correct block check. (Remember that not all transmissions are text blocks:
a bisync poll will not receive a block check even if ni#!!Wf~ orU:~~R*:l! is
selected.)

2. Bad Block Check. Select :i:{Il~Ji: to end your transmission with an
erroneous block check. For Bit-Oriented Protocols, the bad BCC is
CRC-16 instead of CCITT; for other formats, the bad BCC is an inverted
good BCC.

3. None. When RNgi*D is selected, no block check is sent at the end of the
transmission. (For BOP transmissions, 'W·Mi$.~::J has the same effect as

M§ll'l': .)

You may cause messages to be sent in succession by different triggers, with
no intervening block checks if you wish; however, at least one full character
of idle (or', fiag, in the case of Bit-Oriented Protocols) will be transmitted
between blocks. When leads are switched (as indicated on the Interface
Setup screen; see Section 12), the interface leads will be controlled between
blocks.

25-5

INTERVIEW 7000 Series BasIc Operation: ATLC-l07-95/-/00

25-6

4. Abort. This selection causes the message to which it is appended to abort
before completion. When selected with Bit-Oriented Protocols, this action
causes the INTERVIEW to transmit seven consecutive l's at the end of the
message. (For non-BOP transmissions, selecting r:M§!('M has the same
effect as selecting nM®ii\%.)

25.3 Internal Flags

Internal flags are bits that can be set on or off and sensed by triggers. Eight internal
flag bits are shared among the Trigger Setup screens. Any combination of flag bits
can be controlled by any trigger or combination of triggers.

NOTE: The flag bits on the Trigger Setup can be controlled and
monitored on the Protocol Spreadsheet, where they are referred
to as trig_flag (see Section 30).

By default the Flags option is ;)i!lli}. Three other selections are available in the
rotating window: W&t1,)N§.:~, and t~t(.

(A) Set

When you select W.¢fL a flag mask appears (see Figure 25-5). Use the arrow
keys (13 and El) to move the cursor to the bits you wish to set.

Enter a 1 or a 0 in any position you wish to set. Enter an X for "Don't Care."
The trigger will not change the existing value of this bit.

Figure 25-5 A set of eight nag bils may be set on any of the trigger menus.

(8) Increment

The internal flags, consisting of Flags 0 through 7, can be thought of as a binary
number. This action increases the value of the flags by one each time the
trigger is true. (Other trigger actions may change the value of the flag bits in the
intervening period.) Incrementing flags is one technique for controlling recursive
routines.

As the flag bits increment past 255, they roll over to zero.

JUL '90

(

JUL '90

25 Trigger Actions

(C) Decrement

This action decreases the value of the flag byte by one each time that the trigger
is true. In the event that the flag decrements below zero, the value of the byte
wraps to 255.

NOTE: The value of the flag bits is always reset to zero when you
enter Run mode.

25.4 Enhancing the Display

Triggers can be used to enhance display data selectively. Data on either or both
sides of the line can be enhanced. Enhanced data is also stored in the character
buffer with the enhancements for later review.

(A) BOTH, DTE, or DCE

Select Enhanca:A§tm, }!!tjl'\.. or Ilgi,lU to enable enhancement options (see
Figure 25-6). LiI§tW indicates that enhancements will. be turned on or off on
both TD and RD data at the same time.

JpijN; pinpoints TD data for enhancement; ,nww:; specifies RD data for
enhancement.

Figure 25·6 Data may be enhanced with respect 10 DTE, DeE, or both.

Four ·options~ Rev, Blnk, Low, and Hex, appear to the right. To turn on an
enhancement, enter a 1 on the line immediately following it. To turn off an
enhancement, enter a 0 on the same line. When an X follows the
enhancement, the trigger takes no action.

1. Reverse image. Reverse-imaged (Rev) characters are presented as dark
letters on a lighter background.

2. Blink. Blnk causes data to blink on and off rapidly. This is the most
conspicuous highlight for small portions of data.

3. Low intensity. Low has no effect on the plasma display. However, if you
have installed a black and white monitor, it provides a low-intensity highlight
for selected data.

25-7

INTERVIEW 7000 Series Basic Operation: ATLC-107-951-100

25-8

4. Hexadecimal. When Hex is turned on, all data affected by the trigger is
displayed in hexadecimal. Once data is stored in the buffer as hexadecimal,
it remains in hexadecimal form.

(8) Color Enhancement

Color enhancement is controlled by the settings of three trigger enhancements:
Reverse, Blink and Low. The three combined settings are mapped to color
enhancements on the Miscellaneous Utilities screen as described in Section 17.

25.5 Controlling Timeouts

Each Trigger Setup screen can restart or stop either or both of the two timeout
timers. These timers decrement from a value set on any of the triggers and, like
flags and counters, serve as useful trigger conditions for internal program control.

When Timeout: !){f.i&J% is selected, identical new fields appear for Timeout #1 and
Timeout #2. Both fields may be filled in on the same trigger.

(A) RESTART

Select 1{~*tilBt to start or reset the timeout timer. The amount of time
remaining on the timeout timer is entered in the data entry field provided (see
Figure 25-7).

FIgure 25w7 Timeout #1 aclivaled to expire in three seconds.

1. Entering timeout values. The duration ·of the timeout is entered in seconds
in the 5-character data-entry field provided. To enter a timeout value that
is less than one second, use a leading zero before the decimal point, as
follows: 0.25. The smallest valid timeout is 1 millisecond (0.001). The
largest valid timeout is 65.535 seconds.

Create a ten-minute timeout as follows: Start a timeout with a value of 60
seconds. When it expires, restart a similar timeout and increment a counter.
When the counter equals ten, ten minutes will have elapsed.

(8) STOP

Select Iti!iti:if{f to halt and clear the timeout timer, without causing the timeout
to occur. If Timeout is selected as a trigger condition, the condition will not
become true in this instance.

JUL '90

(

JUL '90

25 Trigger Actions

NOTE: Timeouts created on a Trigger Setup screen can be
monitored and controlled from the Protocol Spreadsheet. These
timeouts are entered as trlo_"maoul_' and tr1o_"maoul_2 when
referred to on the Protocol Spreadsheet.

25.6 Counters

Each Trigger Setup screen can control two counters. These counters can be unique
to the trigger (controlled only by it), or they may be shared with other triggers, which
can monitor them and change their values. As long as the same counter name is
used, the same counter is invoked.

NOTE: Counter names used on the Protocol Spreadsheet also
refer to these counters, if the names match any counter name on
the Trigger Setup screens. This means that program control can
be shared between these screens and the spreadsheet.

NOTE: Trigger Setup screens monitor counter values from 0 to
999,999. However, Protocol Spreadsheet triggers can monitor
counter values up to 4,294,967,295.

(A) Menu Fields

When counter.: :m:r!!1 is selected, two sets of new menu fields, labeled 1st and
2nd, appear (see Figure 25-8).

1. Counter name. Enter the counter name in the field provided. The name
may be up to eight characters long and must start with a letter. Upper- and
lower-case alpha characters, numerals, and underscore (_) are legal in the
other positions.

When the name field is empty, the trigger takes no action for that counter
field.

1st: Iframes IBr! 2hd:Retries m

Figure 2S-8 One counter is incremented, another decremented in this action.

2. No. The default selection ismMM. It allows you to disregard one or both

counters.

25-9

INTERVIEW 7000 Series Basic Opera/lon: ATLC-107-951-100

25-10

3. Increment. When i!iiili is selected, each trigger occurrence adds 1 to the
counter.

4. Decrement. When ;ii.f4:; is selected, each trigger occurrence subtracts 1 from
the counter. When a counter decrements below zero, it wraps not to
9,999,999, but to the decimal equivalent of 232 - 1, the actual maximum
value of a 32-bit counter. The seven least-significant decimal digits that
appear on the Tabular Statistics screen are 4967295. The complete number
is over 4 billion.

5. Set. Select i1!l!®' in order to specify the value which the counter will take
when the trigger becomes true. Then, enter the decimal value of the
counter in the field provided. The field is six positions long, making it
possible to set counters to a value from 0 to 999999. Any leading positions
not specified in your entry will be set to zero. This action does not cause
statistical samples to be taken, nor does it reset last value, minimum value,
maximum value, or average value for the counter. (Compare to Sample and
Clear.)

6. Sample. This action causes the counter to reset to zero and causes
measurements to be taken for last value, minimum value, maximum value.
and average value. Refer to Section 20 for an explanation of how statistics
are gathered and tabulated.

7. Clear. This action resets the counter to zero and also resets minimum value,
maximum value, and average value for the counter.

25.7 Timers

Two timers are shared among the Trigger Setup screens. While these timers are not
available as trigger conditions, they-can be run and sampled as trigger actions. When
timers are invoked by triggers. their values can be tracked on the statistics screens
(see Sections 20 and 21).

NOTE: Timer names referred to on the Protocol Spreadsheet
may also be used on Trigger Setup screens. Thus, timer control
of programs is shared between these screens and the spreadsheet.

(A) Menu Fields

The default timer selection is . When is selected, two
identical subfields appear, for Timer 1 and Timer 2 (see Figure 25-9).

JUL '90

I

(

25 Trigger Actions

Figure 15-9 One or lwo timers may be controlled by the same trigger (second field
nol shown).

1. No. The default selection for each Timer is also iib')iiiiNtH. This allows
trigger action to disregard both timers or to focus on one timer. If necessary.

2. Restart. When selected. IIWM'M\'1Jj causes the timer to reset to zero and
begin incrementing.;;Ili!i!fMlt:1 does not cause statistical measurements to be
taken. (Compare to 'H~Mil!jWm and W~d.)

3. Stop. The W&~t~Uj action suspends the timer and allows it to retain its
value. The timer may be staned again at this value by a;4Q1i'tillM~jl action
on another trigger.

4. Continue.'&ii.iiiffiilJW. when selected. causes the specified timer to increment.
staning from the value at which it was stopped.

5. Sample. The f:;jj~r\ action resets and stops the timer. Prior to resetting
the timer. its value is read as a "last" value and passed along for other
statistical measurements. Refer to Section 20 for an explanation of how
statistics are gathered and tabulated.

6. Clear. The :;DiiU!i'I!'!Mi action resets the current value. the last value. the
minimum value. the maximum value. and the average value of the timer.
Refer to Section 20 for an explanation of statistical measurements.

25.8 Alarm

The alarm is a shon beep. The alarm is useful for calling your attention to the data
being analyzed, especially when the situation of interest occurs infrequently. When
you select Alarm: ,Wi&, it is sounded each time the trigger becomes true.

25.9 Capture of Data in the Screen Buffer

JUL '90

Capture of character-oriented data to the screen buffer can be stopped and restaned
by triggers. using the Capture action (see Figure 25-10). When capture is turned off,
data is neither presented to the screen nor stored in the buffer.

25-11

INTERVIEW 7000 SerIes Bes/c Operetlon: ATLC-l07-951-100

25-12

Figure 25 .. 10 Data capture 10 the screen buffer can be conlroUed by triggers.

(A) NO, BOTH, DTE, or DeE.

The default Capture selection is fBffi§j'@.This represents no change; that is, the
trigger does not innuence character buffer capture. By default, data is
continuously captured in the character buffer.

Select t""li4W@ to control capture to the character buffer for TO and RO data at
the same time. Select @:i;i;!iMH to control only TO data; fP~;P; to control only
RO data.

1. OFF, ON. Select ;;:OAI'l%!! to suppress data from the screen buffer. Select
kfi:iMX? when another trigger has turned 011 capture and you wish to begin
storing data in the buller again.

JUL '90

(

26 The Trigger Summary Screen

26 The Trigger Summary Screen

JUL '90 26-1

INTERVIEW 7000 SerIes Basic Operation: ATLC 107 951-100

*0

** Trigger Summar~ **
Trigger Number: ~

*1
*2
B
*4
*5
*6
*7
*8
*9
*A
'liB
K
'liD
'liE
*F
Enter Tr ii;r Number (0-F') : 0 - -- •• -- ••. !! • !!!! .. : . I.

Figure 26-1 Defaull Trigger Summary screen.

26-2 JUL '90

26 The Trigger Summary Screen

26 The Trigger Summary Screen

The Trigger Summary screen is the access screen to all Trigger Setup screens. The default
Trigger Summary screen is shown in Figure 26-1. Call up the Trigger Summary screen by
pressing the function key marked TRIGS on the main Program Menu. With the summary
displayed, access any trigger by typing the number of the desired screen (0 through F). To
see a synopsis of configured Trigger Setups, you may return to the summary screen from any
trigger menu by pressing rnm.
Entries you make on any of the 16 Trigger Setup screens appear on the summary in
abbreviated form. Each setup screen is allotted a one-line summary. A summary of
conditions appears on the left-hand side of the line; a summary of actions appears on the
right-hand side of the line. The summary for Trigger Setup screen 0 (Figure 26-2) is shown
in Figure 26-3.

Abbreviations for possible Trigger Setup conditions are listed in Table 26-1. Abbreviations for
Trigger Setup actions are given in Table 26-2.

Ml:~~~~
EIA:
Timeout: Xmit Complete:
Flags:
Counter:

Buffer Fu 11 :
Keyboard:

Prompt:
Xmit:
Flags:
Enhance:
Timeouts:
Counters:
Timers:
Alarm: . - .-.. 1._iiiliiI •

Figure 26-2 Enlries on each Trigger Setup screen are indicated on the Trigger Summary.

JUL '90 26-3

INTERVIEW 7000 Series Basic Operation: ATLC-107-951-100

26-4

NOTES:

Abbreviations displayed on the Trigger Summary screen are not
necessarily keywords and should not be referred to when you are
typing entries on the Protocol Spreadsheet.

When multiple conditions or actions are selected on a single
Trigger Setup screen, the summary screen may not be able to
show all selections; however, as many conditions and actions as
possible will be displayed in the available space.

Figure 26-3 Summary oC enlries made on Trigger Setup screen 0, shown in previous,flgure.

Table 26-1
Abbreviations, Trigger Summary Conditions

RecelvBr (Word does not appear on summary. J

OTE, OCE
STA: String. 10F: One of (Character string also appear. for STA and 10F.),
@]: Good BCe, lID: Bad BCC, PrErr: Parity Error, FrErr: Frame Error,

Ill: Abort, !ill: Bit Mask

EIA:
ATS. CTS. CO. OTA. DSA. AI. UA

TimeOut 1, 2

Xmlt_Cmpl: Transmission Complete

Buffr_Ful: Buffer full

Flag: (Value only appears.)

Counter: (Name and value only appear.)

KeyBd: Keyboard (Key Indicated.)

JUL '90

JUL '90

26 The Trigger Summery Screen

Table 26·2
Abbreviations, Trigger Summary Actions

Pmpt: Prompt (Prompt otrlng also appears. I

Xmll: Transmit (Xmlt string also appear •.)
lID: Good BCC. 00: Bad BCC. Ill: Abort
(Nothing appears If no BCC Is s.lected.)

Flag: INC: Increment, DeC: Decrement (Value only appears If selection Is SET.)

ENH: Enhance Display
BTH: Both DTE and DeE. DTE, DCE

REV.: Revarse, BLN.: Blink, LOW.: Low, HEX.: Hexadecimal

TO #1, TO #2: Timeout #1 or 2
RST: Restart. STP: Stop

Counter: (Only name and value appear.)
INC: Increment, DeC: Decrement, =: Set
SMP: Sample. CLR: Claar

TM: Timer (Nama alao appears.)
RST: Restart. STP: Stop. CNT: Continue, SMP: Sample. CLR: Clear

Alarm: Audible Alarm

Capture: Capture Memory
BTH: Both DTE and DCE. DTE. DCE

ON, OFF

26-5

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

26-6 JUL '90

27 Programming Blocks

27 Programming Blocks

JUL '90 27-1

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

1.

2.

3.

4.

5.

27-2

These keys are at highest level:

I~~~ "'~7~M7 ~Mfr~ .. "_M_".AA __ ~~~~1
t

Press MORE to return to:

+
Press STATE: enter name and press E3 or the spacebar to obtain:

11~~R~~;f;~~.·· .• ;~; •• ·•·· .·~.~;i~;;e .. ;~~~:~11
+

Pr ••• CONDS: (Condition.) to obtain varlabl ••• t of Conditions.· Pr ••• 1m to acc •••
alternate racks of Conditions keys. Complete entrlss, then press ~ to obtain:

+
Press ACTION: to obtain variable set of Actions.' Press (f!) to access
alternate racks of Actions keys. Complete entries. then press 8 to obtain:

. "~'t ••. A A __ ".:_~ _M_ . __ .'. _____ _
LRYER: TEST: STRTE: CONDS:

+
Press NEXTST: I enter name of next state I and press ~ or the spacebar to obtafn rack 3.
(Pressing CONDS: obtains variable sets of conditions.)

'Conditions and Actions available depend on what protocols are loaded and what layer
number you have specified" The following selections are always available:

GENERAL CONDITIONS GENERAL ACTIONS

ENTER STATE TIME FLAG LOAD_PROGRAM
TIMEOUT FLAG ACCUMULATE PROMPT
KEYBOARD ON SIGNAL SIGNAL PRINT
BUFFER FULL - COUNTER TRACE
COUNTER TIMER ALARM

TIMEOUT RECORD

FIgul"e 27-1 Funclion key hierarchy, Protocol Spreadsheel.

JUL '90

27 Programming Blocks

27 Programming Blocks

JUL '90

The Protocol Spreadsheet is a highly nexible programming approach which enhances trigger
conditions and actions provided on the Trigger Setup menus, furnishes new general options,
and incorporates protocol-specific conditions and action. on a Jayer-by-Iayer basis.

27.1 Before You Begin a Spreadsheet Program

Be certain prior to programming that you have loaded the Personality Packages for
the protocols you will be testing. Automatic protocol options are part of each layer's
Personality Package. These packages are loaded from the Layer Setup screen as
described In Section 8.

Check the configuration of the various Test Setup screens before you test or save
your program, since the behavior of the INTERVIEW during testing is innuenced by
setup selections.

27.2 Creating a Spreadsheet Program

Press 1m to access the Protocol Spreadsheet from the Program Menu. Any program
which you have loaded from the File Maintenance screen appears on the
spreadsheet. If no program has been loaded or created, the Protocol Spreadsheet,
since .it Is a free-form menu, will be blank except for a header line, function key
labels, and tildes (-) down the left side of the screen. Tildes always mark the end of
your program file.

(A) Two Sets of Function Keys: Programming and Editing

Two full sets of softkeys are active with the spreadsheet. One set of softkeys
groups available programming options, including keywords (LAYER:, TEST:,

CONDITIONS: etc.). The alternate set groups sophisticated editing functions.

These editing functions, which complement the editing keypad, are accessible
from the spreadsheet at any time. Press El to activate edit softkeys. Press El
again to return to program softkeys. For a discussion of editing options, refer to
Section 29.

(8) Programming Functions
Use the programming softkeys to make program entries, from the highest level of
the program (OBJECT), down to individual trigger conditions and actions and
their sub fields. Softkeys guide you as you create your program by listing

27-3

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

27-4

available options and providing correct synta" wherever possible. (Errors are
indicated by strikeover of incorrect te"t as you make your program entries.) For
each level of function keys, a cue near the bottom of the screen explains
selectable options or prompts you for keyboard entry.

Program softkeys are immediately available when you enter the spreadsheet.
The hierarchy of the program softkeys is shown in Figure 27-1. The conditions
and actions listed, which are always available, are e"plained in Section 30.
Other trigger conditions and actions are added when protocol packages are
loaded. Because protocolsare.layer-specific,- trigger options will vary from layer
to layer. For each LAYER block within your program, different options are likely
to appear when you enter the keyword CONDITIONS or, ACTIONS. For more
information on the specific trigger options enabled by a protocol, consult the
section devoted to that protocol (see Table of Contents, Section 35 and
following.)

You also have the freedom of typing in any program entry, if you prefer, as long
as you enter the block identifiers and conditions and actions keywords as they
would be posted on the screen by softkeys. Syntax errors still are automatically
highlighted by a strike-through.

NOTE: Softkey labels are not necessarily legal spellings on the
spreadsheet. Pressing the function key usually posts an expanded
keyword on the screen. Use these expanded keywords when
typing entries.

1. Successive racks of softkeys. The rack of softkey options at the bottom of
the spreadsheet screen (or the instructional prompt on the third line up from
the bottom, or both the option rack and the prompt) will change
automatically each time you complete a keyword entry. Keyword entries are
complete when you make them via softkey or when you type the keyword
followed by a space or a hard E3. (Pressing the soltkey has the same
effect as typing the keyword and then typing a space to complete the entry.)

Programming movement is generally down the tree of softkey racks, as in
this series of keywords:

CONDITIONS: EIA CTS ON

Each of the four keywords was selected from a rack of options, and each
succeeding rack is a step farther down the "branch." The rack that follows
ON, however-listing RTS, CTS, CD, and other ErA leads-is back up the
tree, since "there is nowhere to go but up." and since a trigger with multiple
ErA conditions (like the following) is valid.

CONDITIONS: EIA CTS ON CD OFF

JUL '90

JUL '90

27 Programming Blocks

2. Additional racks of valid soJtkeys. There may be many more keywords that
are valid to enter at a given point in the program than are· showing on one
rack of softkeys. Additional racks may be accessible via the @ softkey
(MORE); and higher racks are generally available via the ~ key. In this
series. ~ was pressed following the softkey for ON to access the sofikey for
COUNTER:

CONDITIONS: EIA CTS ON
COUNTER xmlt L T 6

In the next series of keywords. ~ was pressed twice following the softkey
for ON. to access the softkey for ACTIONS:

CONDITIONS: EIA CTS ON
ACTIONS: SEND" «FOX))" GOOD_BCC

Note that ~ is not a valid keystroke following CTS above. since the
condition syntax is not udone." Whenever it is not valid to move to a rack
of softkeys higher up the tree. ~ produces an alarm tone.

Note also that it is never necessary to press ~ if you are typing in your
keywords. directly from the keyboard. ~ merely changes the rack that is
showing. not the entire set of keywords that is valid. A keyword does not
have to be showing to be typed in legally.

3. Insert mode versus overstrike mode. Touch-typists in particular should be
aware that the Protocol Spreadsheet has an insert mode as well as an
overstrike mode. The insert mode is Invoked by either of two keys. = or
eiIIf). When the mode is enabled. the word <Insert> appears at the top left
of the screen. In insert mode. the programmer types in a block of data
while succeeding text is pushed forward with every keystroke.

Press = (but not eiIIf) a second time to exit insert mode and return to
overstrike mode.

The remainder of this section is devoted to the fundamentals of program
structure and to programming components available on the Protocol Spreadsheet
which are independent of trigger options.

27-5

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

27-6

Figure 27-1 Discrete siaies inhabit separate tesls al separate layers.

27.3 Program Structure

The components of the INTERVIEW's programming model, introduced in Section
23, are integrated into a spreadsheet program as discrete blocks according to specific
structural rules. Compare the abstract program model in Figure 27-2 to the
spreadsheet program outlined in Figure 27-3.

(A) Block Identifiers

The INTERVIEW's compiler must respect the distinction between one layer and
the next and between one test and the next. Further, it must group triggers into
designated states and track the transition from one active state to another. To
indicate the boundaries of these various blocks, specific keywords are used.
Each block normally begins with an identifier in upper-case letters, (optionally)
followed by a colon. A block ends when a new block identifier is inserted in
the program.

NOTE: The identifier must not be enclosed in quotes (that is,
must not be part of a text string) if it is intended as a block
delimiter.

Available program blocks, from largest to smallest, are described in subsequent
paragraphs. The valid block identifier for each is printed above its description.

JUL '90

Program

JUL '90

27 Programming Blocks

OBJECT: (OBJECT Identlfer,s), If Includod, must precede all other Identifiers,
except IL_BUFFERS)

IL BUFFERS: (IL BUFFERS Identifier, If Included, must precede all other
- Identifiers, excopt OBJECT)

CONSTANTS: (global constants are defined here: they oan be
accessed throughout the test)

LAYER:l
CONSTANTS: f.la~er 1 constants_defined here apply to

th s and following layors)

TEST:
CONSTANTS: (to.t con.tant. are doflnod horo;

thoy apply to all .tato. within the te.t)

STATE:
CONDITIONS:

flL State Block
trigger

ACTIONS: l
Test Block

CONDITIONS: J
second

ACTIONS:
trlgrr

STATE:
CONDITIONS:
NEXT STATE:

TEST:
CONSTANTS: (constants for this test are defined here)

STATE:

COND IT IONS:
ACTIONS:
NEXT_STATE:

LAYER: 2
CONSTANTS: (Later 2 constants defined here apply to

th s and following layers)

Figure 27-3 Program Structure. Component blocks begin with a keyword.

Layer
Block

27-7

INTERVIEW 7000 Series Basic Operation: ATLC'-107-951-100

OBJECT:

1. Referencing linkable-object files. Use the OBJECT block-identifier to access
the compiled code~ina linkable-object file. See Section 27.4 below. The
OBJECT identifier(s) must appear at the top of the Protocol Spreadsheet.
IL_BUFFERS is the only identifier which may precede OBJECT. C regions or
spreadsheet comments may also precede the OBJECT block identifier.

2. Configuring the numberlsize-ofILbuffers-c- Interlayer tIL)~· message buffers
are used to pass data up the layers as it is received and down the layers as it
is transmitted. Press the IL BUFS softkey to set the number and. size of the
IL buffers. The IL_BUFFERS identifier(s) must appear at the top of the
Protocol Spreadsheet. OBJECT is the only identifier which may preced~ IL

BUFS. C regions or spreadsheet comments may also precede the IL_BUFFERS

block identifier.

CONSTANTS:

3. Defining constants. There are three legal locations for the definition of a
constant: in the opening lines of a program. at the beginning of a layer, or
at the beginning of a test. The relative placement of a constant's definition
within a program determines its scope, or active range. For a complete
discussion on constants, refer to Section 28.

LAYER:

4. Layers. The largest block, the layer, corresponds to the OSI model. There
may be up to seven layers in any test.

TEST:

5. Tests. A layer may contain any number of simultaneous tests. Every test
resides inside a layer.

STATE:

6. States. In turn, each test may contain any number of states. A state always
resides inside a test. Only one state in each test is active at one time.

Within each state, there may be a number of triggers. A trigger always
resides inside a state. Each trigger is composed of a conditions portion and
an actions portion.

CONDITIONS:

7. Trigger conditions. A single condition or a group of conditions is normally
listed after the CONDITIONS identifier. Rules for grouping trigger conditions,
as well as the meaning of each trigger condition, are explained in Sections
30 and 31.

27-8 JUL '90

JUL '90

27 ProgrammIng Blocks

ACTIONS:

8. Trigger actions. The ACTIONS identifier precedes the list of trigger actions.
This list may be empty, or it may include one or several trigger actions. The
various trigger actions are described in Sections 30 and 31.

9. Next state. The identifier NEXT_STATE, explained in the following
paragraphs, can replace .the. ACTIONS: identifier . ./n a trigger if there are no
other actions; or it can follow the ACTIONS: identifier to indicate that
branching to another state is one of several actions taken by the trigger.

(B) Run-time Transitions Between States

Run-time transitions between states are controlled by triggers. To indicate a
run-time branch from one state to another, use the NEXT_STATE action, followed
by (a) the name of the state you wish to go to, or (b) the NEXT token,
indicating whatever state happens to follow sequentially in the spreadsheet
program.

You may use a NEXT_STATE action once per trigger and as many times as needed
in one state to allow for multiple branching possibilities.

When two triggers come true at the same time and both potentially result in
branching to another state, the trigger which is checked last (the last trigger
sequentially displayed on the spreadsheet) will cause branching to the state it
names. (The first trigger will not cause branching.)

Look at the two triggers shown in the example which follows. The first searches
for any SDLe Information frame. The second searches for an Info frame with a
particular frame address. By definition, whenever the second trigger is true, the
first trigger is also true. When an Info frame with the correct address is
received, the second trigger causes the test to branch to the State respfrm.
However, if these triggers are reversed as shown in the second example, the test
a/ways branches to the State otherfrm, regardless of the frame address.

correct
order

wrong
order

{

STATE: frmadd
CONDITIONS: DTE INFO
NEXT_STATE: otherfrm
CONDITIONS: DTE INFO ADR=Cl
NEXT_STATE: respfrm

{ STATE: frmadd
CONDITIONS: DTE INFO ADR=Cl
NEXT_STATE: respfrm
CONDITIONS: DTE INFO
NEXT_STATE: otherfrm

27-9

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

27-10

(e) Recommended Format

The format of a Protocol Spreadsheet is entirely flexible. The only rule is that
block identifiers must (with rare exception) be included in the program to
designate boundaries between programming blocks.

The following is a suggested program format. To create a visual distinction, the
keywords which define program blocks are placed at the beginning of a line.
Smaller blocks are indented to show that they reside within a larger block. An
automatic indent feature, described in· Section 29,. Is included as an editing
function and is turned on by default.

LAYER: 1
TEST: echo_msg

STATE: me •• age
CONDITIONS: DTE STRING "hello"
ACTIONS: PROMPT: "Spreadsheet trigger true."
NEXT_STATE: echo

STATE: echo
CONDITIONS: DCE STRING "hello"
ACTIONS: PROMPT" Echoed message received"
NEXT_STATE: message

(D) Omitted Block Identifiers

It is recommended that, for ease of tracking a program, block identifiers be
placed at the beginning of every block. However, in brief programs, certain
block identifiers may be omitted.

It is, in fact, possible for a program to begin with a STATE identifier. The
compiler then assumes that you have begun the first test inside the first layer 01
the program. To start another program block, you must use a STATE, TEST, or
LAYER identifier.

NOTE: Any constant declared in the opening lines 01 a test
which omits the LAYER and lor the TEST keyword is still a global
constant, as long as it precedes a STATE or CONDITIONS identifier.

27.4 Compiled Spreadsheet

Using the Compile command on the File Maintenance screen) you can compile and
save the contents of the Protocol Spreadsheet in a linkable-object file. Later, this
program can be combined with an active spreadsheet program. To do so, simply
reference the file at the top of the Protocol Spreadsheet.

JUL '90

(

27 Programming Blocks

(A) The OBJECT Block-Identifier

Use the OBJECT block-identifier on the Protocol Spreadsheet to access the
compiled spreadsheet code in a linkable-object file.

Note to C Programmers: The OBJECT identifier may also be
used to access definitions for user routines. Refer to Section
59.4(C).

1. Placement. The OBJECT block-identifier(s) must appear at the top of your
spreadsheet program, ahead of any other identifier (except IL BUFS). Access
the OBJECT: softkey by pressing MORE on the initial rack of softkeys. Notice
that the MORE and OBJECT: softkey tokens are not available once any other
programming block-identifier has been selected.

NOTE: Use OBJECT in your active spreadsheet program only.
Do not incorporate it in a spreadsheet that will be compiled and
saved as an LOBJ file. Although the code will compile, the
referenced LOBJ file will not be read.

2. Format. The format for the OBJECT block-identifier is as follows:

OBJECT: "fUenam •. o"

The identifier references only one linkable-object file, but you may include
as many OBJECT identifiers as you wish ..

The relative or absolute pathname of the linkable-object file is enclosed in
quotation marks.

3. Search rules lor linkable-object Iiles. As your spreadsheet program
compiles, the INTERVIEW's filing system is searched for the linkable-object
files referenced in OBJECT identifiers.

• If the referenced LOBJ filename begins with FD1I, FD21, or HRDI, the
INTERVIEW interprets it as the absolute pathname and makes only that
one search.

• Pathnames beginning with a I indicate that the root directory on each
drive should be the beginning point of the search. The drives are
searched in the following order: current drive, FD1, FD2, and HRD.

• Otherwise, the name may be a one-word filename or a relative
pathname which includes the directories leading to the file. The highest
directory in a relative path name must reside in the current directory or
in one of the !lib subdirectories. The following directories-and only the
following directories-are searched, in the order given:

JUL '90 27-11

INTERVIEW 7000 Series Basic Operat/on: ATLC-107-951-100

27-12

1. current directory on the current drive (indicated on the File
Maintenance screen)

2. lusrllib on the current drive
3. Isysllib on the current drive
4. FDlIusrllib
5. FD21usrllib
6. HRDlusrllib
7. FDlIsysllib
8. FD21sys/lib
9. HRDlsysllib

If the pathname is not located in any of these directories, the program will
not compile and an error message will be' returned to the operator.

(8) Complied L08J Code Is Combined with Spreadsheet

During compilation, the compiled spreadsheet in the LOBJ file is combined with
your active spreadsheet program. This means that the LOBJ code must be
compatible with the current menu setups and spreadsheet program-as though
the source code of the LOBJ file were actually present in the spreadsheet buffer.

(C) Counter and Flag Conditions

Special consideration is given to COUNTER and F,LAG conditions during the
Compile "WW!&iiil¥.Itt' operation. The system identifies the condition as either
transitional or status. (See Section 30.2.) If it is used both ways in the same
spreadsheet file, it will always be Identified as transitional.

Within a single spreadsheet program, you may reference more than one LOBJ
file which uses the same COUNTER or FLAG. If one of the files uses the
COUNTER (or FLAG) as a transitional condition, however, all other referenced
files containing the same COUNTER (or FLAG) must also use it as a transitional
condition at least once. This rule ensures that each action on the specified
COUNTER (or FLAG) will consistently trigger the appropriate COUNTER (or FLAG)

conditions.

(D) Advantages of Complied Spreadsheet

Linkable-object files assist the programmer in efficiently using the INTERVIEW's
memory and spreadsheet buffer.

• When commonly utilized conditions and actions are saved in linkable-object
files. space in the spreadsheet buffer otherwise dedicated to this purpose can
be used for additional programming.

• Since the code in LOBJ files has already been compiled. the INTERVIEW
can support a larger program without a corresponding increase in compilation
time.

JUL '90

27 Programming Blocks

• The spreadsheet code in a linkable-object file is transparent to the
configuration of the unit. LOB] files created on one unit can be used on a
unit configured differently, as long as the code is compatible with the various
menu parameters.

27.5 Configuring the Size/Number of IL Buffers

Interlayer (IL) message buffers are used to pass data up the layers as it is received
and down the layers as it is transmitted. (See Section 23 on the
layered-programming model and Sections 33 and 66 for more information on the
uses of IL buffers.) The INTERVIEW allocates IL buffers, as needed, to pass data
between layers. Then, the buffers are automatically erased and used again. In this
way, the INTERVIEW maximizes its use of available memory space. Without these
reusable buffers, data in Run mode would quickly eat up all of the memory in the
unit. (See Section 66.3(A) for information on manipulating IL buffers.)

IL buffers contain the data itself or point to the memory location (outside the buffer)
of the data. It follows, therefore, that the larger the IL buffer, the more data it can
hold. By default there are 16 IL buffers that can be in use at a given time. The
size of each buffer is 4,096 bytes.

When you are performing emulation with windowing, you can quickly use up these
sixteen buffers. Once all buffers are in use, additional data is lost. To prevent this
from happening, you may want to reconfigure the number and size of IL buffers.

Press the IL BUFS softkey to set the number and size of the IL buffers. Figure 27-4

shows the softkey selections. Select one of seven number/size combinations for the
INTERVIEW's IL buICers. The default selection is 16/4K. This means that the
INTERVIEW will have a maximum of 16 IL buffers in use at a given time, each one
4,096 bytes (4 Kbytes). This size, and all others, includes a 32-byte buffer header.

we AIIIIUIIIIl!liII--

leet Number/Size OfIL BJff

Figure 27-4 Soflkcy path 10 the seven number/size combinations for IL buffers.

JUL '90 27-13

INTERVIEW 7000 Series Basic Operation: ATLC-107-951-100

27-14

Note to C Programmers: There are two preprocessor
directives-#pragma ii_buffers and Hpragma ii_buffer jize-which
the C programmer may also use to configure the IL buffers.
These directives provide additional flexibility'. See Section
66.1(A).

Notice that each number/size combination utilizes 65,535 bytes (64 Kbytes) of RAM.
This total represents the maximum amount of RAM that can be allocated for IL
buffers from the Interlayer Buffers menu.

NOTE: Keep the following points about object-file compatibility in
mind when selling the number/size of IL buffers:

• If the number of buffers is less than or equal to 16, the file will
load and operate on a unit with equivalent hardware, yet a
software release earlier than 8.00.

• If the number of buffers is greater than 16, the file cannot be
loaded on a unit with a software release earlier than 8.00.

• An object file generated under a software release earlier than
8.00 will run on software revision 8.00, or higher, with 16
buffers of 4 Kbytes each (the default).

27.6 Comments in a Spreadsheet Program
You may write comments to yourself or to others who may view your spreadsheet
program. Comments begin with /' and end with '/, as in the examples below. Use
comments generously throughout spreadsheet programs. Since comments are ignored
by the compiler, they do not affect the compilation time of the program.

(A) Characteristics

1. Valid characters. When an opening /' is detected by the compiler,
everything that follows is disregarded ,until a closing '/ is encountered. This
means that all hexadecimal, control, and ASCII characters (or character
combinations) are valid in comments. The 1El, m, 18], and not-equal symbols
are also legal entries.

Two entries are not legal in comments. The first is the IHI symbol. It cannot
be used because it is not a valid Protocol Spreadsheet entry. (Bit masks on
the spreadsheet are delimited by ((and))). An alarm will sound if you try
to use the bit-mask symbol. The second invalid entry is the closing
delimiter ('I). An embedded '/ causes the comment to be ended
prematurely. Since the remainder of the comment (and the programmer's
intended closing' /) is a syntax error, the program will not compile.

2. Leng/h. For practical purposes, make comments as long as you wish. They
may span several lines, or they may be empty.

JUL '90

JUL '90

27 Programming Blocks

3. Location on spreadsheet. Comments may be placed within any of the
programming blocks: OBJECT, IL_BUFFERS, CONSTANTS, LAYER, TEST,

STATE, CONDITIONS, ACTIONS, or NEXT_STATE. In CONDITIONS blocks,
however, they must appear with at least one valid condition. The following
CONDITIONS block containing only a comment will cause compilation to be
aborted:

STATE: me •• age
CONDITIONS: /' KEYBOARD" "'/
ACTIONS: SEND "((FOX»" GOOD_BCC

Since the compiler ignores anyihirig in'side the /' '/ delimiters, it can find
nothing in the CONDITIONS block. When you go to the Protocol Spreadsheet
and search for error messages, the following message will be displayed:
"Empty Conditions Section."

Comments may not be embedded within a keyword. This program also will
not compile:

STATE: message
CONDITIONS: KEY" This comment will cause a syntax error'/BOARD •
ACTIONS: SEND "((FOX»" GOOD_BCC

(8) Using Comments

Comments are particularly useful in describing the purpose of a programming
block. Let's return to the two programming examples in which branching to
another state occurs based on DTE Info-frame addresses. The following
comment makes the programmer's intentions clear.

STATE: frmadd

" If a DTE INFO frame has an address of Cl. go to atate "respfrm." For all other
OTE INFO frames, go to state "othsrfrm.· '"

CONDITIONS: DTE INFO
NEXT STATE: otherfrm
CONDITIONS: DTE INFO ADR= Cl
NEXT_STATE: respfrm

Comments can be useful debugging tools. Suppose the same comment appeared
in the programming example with the order of the two triggers reversed.

STATE: frmadd

I' If a DTE INFO frame has an address of Cl, go to state "respfrm." For all other
DTE INFO frames, go to state "otherfrm." "

CONDITIONS: DTE INFO ADR= Cl
NEXT STATE: re.pfrm
CONDiTIONS: DTE INFO
NEXT_STATE: otherfrm

With the comment present, it is easier to identify the discrepancy between the
programmer's expectations and the actual program.

27-15

INTERVIEW 7000 Series Basic Operation: ATLC-107-951-100

27-16 JUL '90

28 Cons/ants

28 Constants

JUL '90 28-1

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

Program

OBJECT: (OBJECT Identlfer(s), If Included, must precede all other Identifiers,
except IL_BUFFERS)

IL_BUFFERS: (lL_BUFFERS Identifier, If Included, must precede all other
Identifiers, except OBJECT)

CONSTANTS: (global constants are defined here; they can be
accessed throughout the test)

LAYER: 1
CONSTANTS: (La~er 1 constants defined here apply to

th 9 and following layers)

TEST:
CONSTANTS: (test constants are defined here;

they apply to all states within the test)

STATE:
CONDITIONS:

flL State Block
trigger

ACTIONS: -.
Test Block

CONDITIONS: T
second

ACTIONS:
trl9rr

STATE:
CONDITIONS:
NEXT_STATE:

TEST:
CONSTANTS: (constants for this test are defIned here)

STATE:

CONDITIONS:
ACTIONS:
NEXT_STATE:

LAYER: 2
CONSTANTS: (Later 2 constants defined here apply to

th s and following layers)

Figure 28-1 Constants may be defined in three different locations: before the first layer, after a
layer identifier, or afler a lest identifier.

Layer
Block

28-2 JUL '90

28 Constants

28 Constants

The Protocol Spreadsheet permits the use of constants as a means of simplifying the creation
and modification of test programs. A constant is merelY'a' symbolic reference to a predefined
string of characters.

28.1 Definition of Constants

JUL '90

There are three legal locations for the definition of a constant: in the opening lines of
a program, at the beginning of a layer, or at the beginning of a test (see
Figure 28-1). Constants must always be defined at the beginning of the programming
block in which they are referenced. A test-level constant may not be preceded by a
lower-level block identifier (STATE, CONDITIONS, or ACTIONS). A constant definition
or definition block must be followed by another keyword.

A constant definition begins with the identifier CONSTANTS. A colon (:) may follow.
The constant name is then entered. Next comes the definition, a text string which
the constant represents. The constant name and text string may be separated by an
equal sign (=). The text string is enclosed in double quotes. Each constant
definition comprises a single logical line. Logical lines wrap as needed to subsequent
lines on the spreadsheet, but they do not contain hard returns. See Section 29.1(A).

More than one constant can be defined following a single CONSTANTS identifier.
Following is the suggested format for a constant definition block. A constant
definition block (whether it contains one or more definitions) must be followed by
another block identifier.

CONSTANTS:

cmd adr
resp-adr
resend
re'trlas

= "03"
= "01"
= "1.5"
= "10"

To include quotation marks or backslashes in the definition string of a constant,
precede each with a backslash escape-character (\). Here, for example, is the
constant definition of a general poll:

CONSTANTS: drop_A=" AA'" ,

The backslash will be deleted by the parser when the constant definition is scanned:

AA"

28-3

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951 100

28-4

If the constant is contained in a search or transmit string. it will not be scanned for
the escape character or for closing quotation marks. The characters shown above
represent the expanded constant. Notice that the enclosing quotation marks of the
definition string are not actually part of the constant. In our example. the following
string will be searched for or transmitted:

AA""'o

28.2 Constant Names

Constant names must begin with a letter or underscore character. They may include
any of the following characters: underscore (_). upper or lowercase letters. and
decimal numbers 0 through 9. Upper and lower case letters are distinguishable in
constant names; for example. constants big. Big, and BIG will not be confused by the
INTERVIEW's compiler.

28.3 Scope

The relative placement of a constant's definition within a program determines its
scope, or active range.

(A) Global Constants

If you want to be able to reference a constant anywhere within a program, you
must define it in the first lines of the program. Only an OBJECT or IL_BUFFERS

block may precede global constants. No other block-whether a block identifier
(LAYER, TEST. STATE, CONDITIONS. or ACTIONS) is entered or implied-may be
placed before a global constant.

(8) Layer Constants

A layer constant must be defined before the first reference to it. The definition
is placed in the lines following the LAYER identifier. (In a single-layer program,
the LAYER identifier may be omitted.)

The definition of a layer constant must fall outside component blocks of the
layer (outside of tests and states).

A layer constant can be referenced within any test, state, or trigger which that
layer contains. It may also be referenced in any other layer which follows on
the spreadsheet. The only exception to this is when the constant is superseded
by a constant of the same name (see the section on precedence which follows).

JUL '90

JUL '90

28 Cons/ants

(C) Test Constants
A test constant must be defined at the beginning of a test block and before the
first reference to the constant. While the TEST identifier may be absent in a
single-layer, single-test program, the scope of a constant can only be limited to
a test if it follows a TEST identifier.

A test constant cannot be defined within a state, but it can be referenced by any
trigger in any state which the test contains.

28.4 Referencing Constants

Whenever you refer to a constant in your spreadsheet program, the constant name
must be enclosed in double parentheses-for example, ((Frmalze)). Use the key

sequence ~-(!J and ~-I!I to create double parentheses. Shown here is the constant
ADDRESS which replaces an SDLC frame address used throughout the test. When the

frame address is modified, only the constant need be changed.

LAYER: 2
TEST: polling

CONSTANTS:
ADDRESS = "C1'

STATE: Inlt
CONDITIONS: ENTER_STATE
ACTIONS: SEND SNRM ADR= ((ADDRESS)) P/F= 1

TIMEOUT rotr.nsm RESTART 3.000
CONDITIONS: RCV UA ADR= ((ADDRESS)) P/F= 1
ACTIONS: TIMEOUT rotr.nsm STOP

RESET NR RESET NS
NEXT STATE: Info xfr
CONDITIONS: TIMEOUT rotr.nsm
NEXT_STATE: Inlt

As long as syntax is observed, a constant may be used to replace a large block of
text which would otherwise be repeated. FollOwing is an example of a long,
repetitive text block given as a constant definition and referenced within the program
as ((LK_SETUP)). Notice that the constant definition is contained in a single logical

line. The highlighted plus symbols, automatically generated by the spreadsheet editor,
indicate the point at which the line wraps on the screen.

LAYER: 2
CONSTANTS:
LK_SETUP =' ACTIONS: SEND DISC PROMPT \ "Disconnect IInk\' CONOID
TIONS: RCV UA ACTIONS: PROMPT \"Dlsconnected\" CONDITIONS: RCvD
DISC ACTIONS: SEND UA CONDITIONS: RCV SABM ACTIONS: SEND UA PRcG
MPT \" Link restarted\""

TEST: link up
STATE: fr_setup

CONDITIONS: ENTER_STATE
((LK_SETUP))

NEXT STATE: fr
STATE: fr

. CONDITIONS: ENTER STATE
ACTIONS: SEND INFO NR= 01
CONDITIONS: RCV FRMR
ACTIONS: PROMPT "FRMR received-test OK."

28-5

INTERVIEW 7000 Series BasIc Operation: ATLC-107-951-100

28-6

NOTE: Global and layer constants declared on the Protocol
Spreadsheet may be referenced on any of the Trigger Setup
screens as part of a receive or transmit string.

28.5 Nested Constants

The definition of a constant may include a reference to another constant. This is
called nesting. An example of nested constants is shown below. On the Protocol
Spreadsheet, it is possible to nest constants eight levels deep.

CONSTANTS:
send len
rcvJcn
send_data
sondykt

= "000'
= '001"
= "data «send_len))"
= "send «send_data))'

NOTE: It is illegal to define two constants circularly. If, for
example, you define CONSTANTS: peat = «repeat)) and
CONSTANTS: repeat = « peaO), you will receive an error message
when you attempt to run the program.

28.6 Precedence

Programming practice usually restricts constants to a single definition. A given name
should remain the same throughout the entire program.

In some special cases a constant name may have definitions that differ in separate
parts of the test. It is not legal to define the same constant name twice at the same
leveJ within the same block; however, the same constant name can be defined
differently inside of distinct blocks. You might, for example, define a global constant
as maxlength = "8" at the beginning of a program. Nothing prevents you from
defining a constant as maxlength = "128" within a layer or test included in the same
program.

NOTE: Use the ability to give different definitions to the same
constant name sparingly and with great caution.

The rule of thumb is this: When the same constant name is defined more than once,
the value of the constant is controlled by the smallest block in which it resides.
When that block ends, its value is controlled by the next larger block, and so on.
So, a constant might have different values within a TEST, within a LAYER, and
throughout the remainder of the program.

JUL '90

28 Cons/ants

Consult the following example. Globally, the constant maxlength has a value of 8.
This value holds until the constant takes on a new value in Layer 2, where it is
defined as maxlength = "'128'·. Inside the Layer 2 test named shortfrm, maxlength is
briefly given a value of 4. In Layer·3, the constant maxlength is not redefined, and
its value returns to 8 (since this is the global definition of the constant).

CONSTANTS:
maxlength = "8"

LAYER: 2
CONSTANTS:

maxlength = "128"
TEST: shortlrm

CONSTANTS:
maxlength = "4"
STATE: suptrm

CONDITIONS:

LAYER: 3
TEST: pktlen

STATE: datapkts
CONDITIONS:

28.7 Expansion

JUL '90

The spreadsheet editor checks constant definitions and references for several types of
errors as you enter your program. In the interest of time, however, it will not
expand a reference to a constant embedded in a text string. This means that nested
constants are not checked for errors as you write your program.

The compiler expands these constants when you run the program, and any obvious
errors will result in an operator message. Be advised, however, that it is possible for
embedded constants, once expanded, to produce a valid, but unintentional, program
variation.

28-7

INTERVIEW 7000 Series 'Basic Operation: ATLC-107-951-100

(

28-8 JUL '90

29 Editor

29 Editor

JUL '90 29-1

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

-- .M .• 1-1I.r..

Figure 29-1 Press the EDIT key 10 access special edHlng Cunclions on the Protocol Spreadsheet.
Press Fl 10 access additional ediling functions.

29-2 JUL '90

29 Editor

29 Editor

As you create a spreadsheet program. you may use any of the keys on the editing keypad to
modify your entries. Sophisticated editing options are added to these basic functions when
you press ~ (see Figure 29-1). ~ is an alternate action key· which returns you to program
function keys if you press it a second time.

29.1 Basic Editing Functions

JUL '90

Use the editing keypad on the right of the keyboard to perform simple editing
functions (see Figure 29-2).

:::'
_. -~

~ .. Mill -- ~

- - --
~ l' -- ,-
~ - ~

::::I -J, -,-
=

Figure 29-2 The ediling keypad.

(A) Insert and Delete Keys

The top three rows of the keypad contain insert and delete functions.
Available functions are insert a character, delete a character, rubout a character
and insert, delete. or clear a line.

Insert Line and Delete Line functions apply to the logical line, not the physical
line. A logical line has segments which end at the end of the screen but are not
terminated with a ~. Instead. the logical line wraps to the next line or lines
on the screen. You can distinguish a logical (wrapped) line by the highlighted
plus symbols (II) at the end of each segment on the screen. When you insert a
line. it appears above the first segment of the wrapped line. When you delete a
logical line. all of its segments are deleted.

29-3

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

1. ~ is an alternate action key. Press it once to enter Insert mode (the label
<Insert> appears at the top left of the screen). Then type a character. The
character is entered at the curSor position. All text moves right. Continue
to insert characters as needed.

Press Il\l!l'J again to leave Insert mode. Any character you type subsequently
will overwrite an existing character at the cursor location.

2. ~ inserts a blank line above the logical line where the cursor is located. It
also puts you into <Insert> character mode. Use ~ as described in the
previous paragraph to exit <Insert> mode.

3. ~ deletes the character under the cursor. The next character to the right
moves under the cursor, and remaining text shifts left.

4. ~ removes the logical line that the cursor is on.

5. §Ul erases the remainder of the logical line from the cursor position and to
the right, leaving the line empty .. §I-§Ul erases the entire logical line which
the cursor is on, but not the space the line occupies.

6. I]!J deletes the character just to the left of the cursor and moves the cursor
left one space. Use I]!J to correct an error in the most recent keystrokes.

(8) Cursor and Movement Keys

1. l!J and I!J move up or down the screen one line at a time. §I-l!J moves the
cursor to the first line of the file. §I-I!J moves the cursor to the last line of
the file.

2. 13 and a move the cursor to the right or left one space at a time. §I-a
moves the cursor forward to the beginning of the next field. §I-13 moves
the cursor back to the beginning of the previous field. ~-a moves the
cursor forward to the end of the current line. ~-13 moves the cursor back
to the beginning of the current line.

3. ~ moves the cursor to the top left-hand corner of the current screen.

4. rml leaves the cursor where it is and moves text down one line at a time.

50 I ~ I moves text up one line at a time, without changing the curSor location.

6. mill recalls the previous screen of text and locates the cursor at the same
relative position on the screen.

7. ~ moves the cursor to the same relative position on the next screen of

text.

29-4 JUL '90

29 Editor

(C) Other Keys on the Pad

1. §3 provides a means for "saying a place" in a program file. With the
cursor at a desired location, press B, then any number from 0 through 9.
This marks the column and row in memory (no mark actually appears). At
any time, you may locate one of ten possible marks in the file. Press
~-§3, then the desired number to moye forward or back through the file
to the desired location.

2. ~ is not currently implemented ..

29.2 Editing Function Keys

The editing keys shown in Figure 29-1 appear when you press 8 with the Protocol
Spreadsheet displayed. Press 8 again to moYe back to the program function keys.
When you press (fj) for BLOCK, a subset of editing options appear. Press ~ to moye
from this subset back to the top leyel of editing functions.

JUL '90

(A) Block FunctIons

With the regular spreadsheet programming selections displayed, press 8, then
BLOCK (1Ell) to display the block commands. Six editing commands (keys rrn
through @) operate on blocks of text. When you are using a Clear, Delete,
Moye, Copy or Write command, you must mark the beginning and end of a
block prior to executing the command.

1. Begin and End. Use BEGIN to mark the first character of a block at the
cursor location. Moye the cursor one position to the right of the last
character you want to include in the block. Then press END. The block,
once defined, is highlighted. Whenever a block is highlighted, you may
clear, delete, move, or copy the block or write it to another file.

NOTE: The block may be defined in the reyerse direction. The
cursor must be located one position to the right of the first
character of the block and located over the last character of the
block.

2. Clear. Press lrn for CLEAR to "unmark" a block. The highlighting
disappears to indicate that there is no longer an active editing block.

3. Delete. Press IEl for DELETE to remove the marked block. Text below the

block fills in the deleted area.

29-5

INTERVIEW 7000 Series Basic Operation: ATLC-107-951-100

29-6

NOTE: You may recover a deleted block using the Undelete
command on the alternate set of editing function keys. Repeated
use of the Undelete command will recover up to ten deleted
blocks. The text is recovered in the reverse order in which it was
deleted-i.e., last deleted, first recovered.

4. Move. To move text, define a block and locate the cursor at the position
where you want the text block to start. Then press MOVE. The text is
removed from its original location and IS inserted at the cursor location.
The moved text remains highlighted as a block.

To retain the original line breaks in the text, insert a blank line at the
position where the new text will be located. Otherwise, insened text will be
placed at the beginning of the line marked by the cursor.

5. Copy. To copy text, mark a block, move the cursor to the desired location,
and press COPY. A duplicate of the text block appears, highlighted. Since
the block is already marked, you may copy it repeatedly without remarking
it.

6. in/Out. To access the four Read/Write options, press the function key
marked IN/OUT. A new rack of function keys appears (see Figure 29-1).

These functions are explained in Section 29.2(B).

(8) Read and Write

The READ and WRITE commands are block commands but are exceptions in that
they allow you to move text into and out of your program file. You can use a
READ command as you would a load command to call in other Protocol
Spreadsheet files. Likewise, you can save a copy of the Protocol Spreadsheet
using a WRITE commjlnd.

The four command options on this rack of function keys are Read Formatted.
Read Unformatted, Write Formatted, and Write Unformatted.

1. Formalled Read and Write commands. Read Formatted and Write
Formatted are intended for use with spreadsheet files and any other files
which contain non-printable (non-ASCII) characters:

• Special characters such as bit masks, lEI, [],I!I,IlI,~, CC, and))

• Any control characters outside the limited subset listed in the following
paragraphs for unformatted Read and Write commands

• "Packed" hex characters; that is, hex characters as they appear on the
screen (for example 7e . 31'", and ·0).

JUL '90

(

(
29 Editor

The Write Formatted command saves these non-printable characters as
expanded ASCII and uses pound signs (#) and backslashes (\) as prefixes to
mark their location for later decoding. Thus, when a file is written, #
becomes ##, \ becomes \\, while '0 becomes #30,1EI becomes \7E, and so
on.

The Read Formatted command decodes the expanded representations
properly and displays them as they previously appeared on the Protocol
Spreadsheet. If by mistake you use the Read Formatted command on a
pure ASCII file which contains backslashes or pound signs, the INTERVIEW
will attempt to decode the characters which immediately follow. For
example, a preprocessor directive from an #include file such as

#define max 5

will be decoded as

°.tine max 5-which obviously cannot be interpreted by the preprocessor.

2. Unformatted Read and Write commands. Read Unformatted and Write
Unformatted are intended for use with #include files and other pure ASCII
files. Any files that contain only ASCII and a limited subset of control
characters may be successfully read in or written .to disk with these
commands. The set of control characters which are recognized and retained
by these commands follows:

• Tab (~)

• Form Feed (',)

• Carriage Return (<;.)

• Bell ('\.)

• Line Feed ('t)

Any other control characters are stripped from the file when one of these
commands is used-as are packed hex characters ('" '0, and so on) and
special characters.

NOTES:

a. If you mistakenly use a Write Unformatted command on a file which
contains non-printable characters, these characters will be stripped from
the file without warning.·

JUL '90 29-7

INTERVIEW 7000 Series Basic Operation: ATLC-/07-951-/00

29-8

b. Since no messages inform you of whether file contents are formatted or
unformatted when you perform a Read or Write, you should keep track
of the file type for later reference. An easy way to do this is to append
a suffix (such as _u for unformatted or J for formatted) to the
filename. Ninc/ude files, which end with the sUffix .h, require the Read
Unformatted and Write Unformatted commands.

3. How to execute a Read command. To copy an existing file into the Protocol
Spreadsheet, place the cursor at the location where you want the file to
start. Press READ/F or READ/U, whichever is appropriate (see previous
paragraphs), and type in the exact filename (full or relative pathname).
Then press §] or E3. The entire file is highlighted and copied at the
cursor location. Any original spreadsheet text beyond the cursor position is
pushed to the end of the file which has been read in.

NOTES:

a. When giving the filename to be read, provide the location of the file by
disk. If the destination disk is omitted, only that one named in the
current directory on the File Maintenance screen will be searched. If
the file is located on the current directory disk, it will be read;
otherwise, an error message will appear at the top of the screen.

b. You may read in an entire spreadsheet file without affecting the
configuration of other menus in the INTERVIEW. A full program,
containing the spreadsheet and the contents of all other menus, must be
loaded from the File Maintenance screen. See Section 14.3(E).

4. How to execute a Write command. You may file a copy of all or part of
your spreadsheet entries using one of the Write commands. First, mark the
beginning and end of the block you wish to save to a file. Then press
WRITE/F or WRITE/U, whichever is appropriate (see previous paragraphs), and
give the full or relative pathname of the file when prompted. Press §] or
8. The file will appear in the directory listings on the File Maintenance
screen. If you type in the name of a file which already exists, your
spreadsheet text block will overwrite the entire file.

NOTE: If you wish to save the configuration of other menus
along with your spreadsheet program, use the Save command on
the File Maintenance screen; see Section 14.3(F).

(C) Other Editing Commands

To return to the main set of edit keys from the bank of Block commands, press
8. The remaining commands in the set are described in subsequent

paragraphs.

JUL '90

I

JUL '90

29 Editor

1. Undelete. You can return the last deleted line or block to the screen. First,
locate the cursor where you want the deleted text to appear, and press
UNDELET. The deleted text will be inserted at the cursor location. Repeated
use of the Undelete command will recover up to ten deleted blocks.

2. Find. Press FIND, and the prompt "Find:", along with the cursor, appear at
the top of the screen. Type in the string you wish to locate, and press §3.
The command performs a forward search to the end of the file. Press
AGAIN to search for another occurrence of the same string. The message
"Text not found" is posted at the top of the screen if the entered text does
not occur between the last cursor location and the end of the file.

3. Replace. To replace a text string (with a maximum of 50 characters), press
REPLACE. The prompt "Find:" appears at the top of the screen. Type in
the string that you want to replace, and press ~ or §3. The prompt
"Replace with:" appears. Type in the new string, and press ~ or §3.
The command searches forward in the file from the cursor position and
replaces the first occurrence of the string. To continue replacing the old
string, press AGAIN, until the message "Text not found" is displayed at the
top of the screen. The search for the text string stops at the end of the file.

NOTES:

a. If you want the entire file to be searched, make sure the cursor is
positioned at the beginning by pressing §!)-I!J.

b. Case does make a difference. If the string "echo" is replaced, "Echo"
will not be replaced.

4. Again. You may repeat Find and Replace commands by executing the
command, then pressing AGAIN.

5. Go-line. To move from one line to any other line in the file, press
GO-LINE. When prompted, enter the sequential number of the line you
want, and press ~ or §3.

6. Auto-indent. <Indent> will appear at the top right of the screen when
Auto-indent is on. Auto-indent is an alternating function key. If the
indent cue does not appear, press the function key once to turn on
Auto-indent. Press the function key again to turn off indentation.
Auto-indent is active both when editing keys and program function keys are
active.

NOTE: To move through the program one line at a time at the
points of indentation, use the E3 key instead of the I!J and 0
keys.

29-9

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

29-10

This feature is an aid in setting up spreadsheet programs. When you use a
function key to enter a keyword, the keyword appears on a new line, and, if
it is a component belonging to a larger block, it is indented. For example, if
you press LAYER:, the keyword is not indented, but if you press TEST, the
keyword TEST: appears on a new line, indented three spaces from the first
letter of its "owner" (LAYER). When you press STATE, the keyword STATE:

is indented another three spaces, to show that it is a component of the test.

NOTE: If you type in your spreadsheet entries, the last level of
indentation is observed; however, other auto-indent features are
not applied to manual entries.

7. Go-error. Most syntax errors made on the Protocol Spreadsheet are
inaicated by strike-through of the text where the error occurs. Press
GO-ERR to move to the first editing error found moving forward (down)
through the file. Press GO-ERR once more to move to the next editing error.
The search for editing errors stops at the end of the file, and the message
"No more errors" is displayed at the top of the screen.

Errors which are detected by the C translator, preprocessor, or compiler are
not indicated by the editor. When you press ~ and the test is compiled,
the errors will be noted. If there are errors in the test, the INTERVIEW
will revert to the Protocol Spreadsheet and display a diagnostic message
about the first error rather than run the test. Press GO-ERR to search for
additional errors until the" No more errors" messages is displayed.

If you leave the Protocol Spreadsheet to go to another screen, but then want
to review the list of the errors again, return to the Main Program menu.
Press 1tlI, 8, 1m (spreadsheet screen, edit, GO-ERR). Repeat (lO-ERR for
the next one. When there are no more errors, a prompt to that effect will
appear at the top of the screen.

Error messages are listed in Appendix A.

JUL '90

30· Layer-Independent Conditions and Act/ons

30 Layer-Independent Conditions
and Actions

Condition-and-action triggers are the basic programming elements on the INTERVIEW
Protocol Spreadsheet. Triggers can be thought of as "If, Then" statements, organized on the
spreadsheet under the headings CONDITIONS and ACTIONS. Each pairing of CONDITIONS and
ACTIONS on the spreadsheet represents one u~igger, si11lilar to but also more comprehensive
than one of the sixteen Trigger Setup screens (see Sections 24 and 25). Any number of
triggers may be created in the spreadsheet program.

During a test, a trigger condition is active (potentially true) whenever the state it belongs to is
active. An action is taken whenever the condition (or set of conditions) preceding it is true.

This section covers those conditions and actions that are not local to a particular protocol at a
particular layer of programming. These are the conditions and actions that are made available
as softkey selections in every state in the program without exception.

30.1 Naming Requirements

JUL '90

Flags, accumulators, signals, counters, timers, and time outs are layer-independent
trigger entities that are created by the user in any number and combination and
cailed out by keyword (FLAG, ACCUMULATE, SIGNAL, COUNTER, TIMER, TIMEOUT) and
by name. The names are assigned by the user and referenced in triggers throughout
the program.

A name on the Protocol Spreadsheet must not exceed sixteen characters nor include
any except the fifty-two alpha characters (upper and lower cases) and the ten
numeric characters in addition to the underscore (_) character. The first character
in each name must be an alpha character.

The practical size limit for the names of counters, timers, and accumulators is eight
characters, since a longer name cannot be cailed out on the tabular and graphic
statistics screens.

For the sake of program readability, we recommend that ail user-assigned names be
entered in lower case. In this way they will be distinguishable from keywords. The
spreadsheet compiler does not insist on lower case for user-assigned names, however.

30-1

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

30-2

The spreadsheet compiler does treat upper- and lower-case names as distinct. A
timer named delay will not be referenced by the name DELAY (or Delay), for
example. Keywords are treated differently: typing timer has the same effect as typing
Timer or TIMER or pressing the softkey that writes TIMER to the screen.

Names of different entities need ~not be kept distinct. The program will have no
trouble keeping a SIGNAL named ready separate from a FLAG of the same name.
(The user may have difficulty keeping them separate, however.)

30.2 Rules for Combining Conditions .

Several layer-independent conditions are "transitional" (or lIinstantaneous")
conditions, in that they are true only for the instant that they transition to true.
These transitional conditions are enter-state, timeout, keyboard, time-of-day, and
signal conditions. Triggers that combine two transitional conditions are illegal and will
not compile, since there is no chance of two transitional events occurring
simultaneously.

The other class of layer-independent conditions, comprised of buffer-full, counter,
and flag conditions, may be thought of as transitional/status. When used alone in a
trigger, these conditions are true only at the moment they transition to true.

For example, the condition COUNTER retries GE 5, used by itself preceding an Actions
block, will be true once when the counter increments from 4 to 5, but not when the
same counter increments to 6. For the condition ever to be true again. the counter
must first transition to a value less than 5.

When used in combination with transitional conditions, these transitional/status
conditions are checked for a current stalus of true at the moment the transitional
condition transitions true. They may retain this status of true indefinitely.

Here is an example of a transitionallstatus condition (counter) used in combination
with a transitional condition (timeout).

CONDITIONS: TIMEOUT response
COUNTER retries GE 5

ACTIONS: ALARM

This set of conditions will be true every time the timeout occurs as long as the
counter retains a slalUS of greater than or equal to 5.

When a transitional/status condition is used in combination with one or more other
transitional/status conditions, the first condition in the user-defined sequence of
conditions will be transitional, while the others will be checked for truth or falsity
only when the first condition transitions to true. Take, for example. a scenario
where a counter increments five times and then a flag increments five times. On the
fifth flag increment, the following set of conditions will be true:

CONDITIONS: FLAG true last 101
COUNTER true_first EQ 5

JUL 'SO

30 Layer-Independent Conditions and Actions

The conditions are satisfied because the flag is transitional while the counter is static:
at the moment the flag transitions to binary 101 (decimal 5), the counter is checked
for a status of 5. Both are true. But given the same scenario, this set of conditions
is false:

CONDITIONS: COUNTER true first EO 5
FLAG true -,ast 101 -

Here, the counter condition is transitional, the flag is static-simply because the
counter condition is listed first. The flag condition is checked only at the moment
the counter attains the count of 5. After that, the nag is not checked again.

The condition logic is streamlined in this manner in order to be economical of
processor time, on the assumption that in a typical application the user knows which
of two conditions will be satisfied first. If the user does not know whether the
counter or the nag in the above example will increment to 5 first, nothing prevents
him from entering two triggers, both having the same conditions but in a different
sequence. Or he may enter the pair of conditions on a Trigger Setup menu, where
combined transitionallstatus conditions generate enough code to cover all
contingencies. See Section 24.2(B)2.

NOTE: Additional rules may apply when the COUNTER or FLAG

transitionallstatus condition is used in a spreadsheet program
compiled and saved as a linkable-object file. See Section
27.4(B).

30.3 Layer-Independent Conditions

JUL '90

The eight softkeys that represent the full set of layer-independent conditions are
shown in Figure 30-1.

(A) Enter State

This condition is true immediately as the current state is entered. Control of the
action in effect reverts to the previous state. In the example below,
ENTER_STATE is used as the condition for an alarm action in second state. The
counter condition in first state effectively controls this alarm.

STATE: first
CONDITIONS: COUNTER frm err EO 10
NEXT STATE: second -

STATE: second
CONDITIONS: ENTER STATE
ACTIONS: ALARM -

30-3

INTERVIEW 7000 Series Basic Opera lion: ATLC-l07-951-100

30-4

Figure 30-1 The eight layer-independent conditions are shown In the bollom two racks of
soflkeys.

(8) Timeout

Any number of decrementing timeout timers may be started as trigger actions
and monitored by trigger conditions. The condition is true when the timeout
timer expires,

Here is an example of a timeout condition:

TIMEOUT response

where response is the name of the timeout timer.

After pressing the TIMEOUT softkey or typing TIMEOUT followed by space, enter a
name. The name can reference a timeout timer that was started either in a
spreadsheet action or a trigger-menu action.

(e) Keyboard

Enter a list of characters produced by keystrokes. Any key or key-combination
that produces a character on the ASCII table in Appendix D 1 is valid input in
this field. Lists in the spreadsheet program can extend to 128 characters.

In Run mode when any key on the list is pressed, the condition will be true and
(if this is the only condition) will initiate a trigger action.

JUL '90

,
(

I.

JUL '90

30 Layer-Independent CondItIons and Actions

An example of a keyboard condition is the following:

CONDITIONS: KEYBOARD "1

Note the space following the 1 entry. Here the ID key or the space bar will
satisfy the trigger condition. Dual quotation marks are required for all lists and
strings on the Protocol Spreadsheet.

(D) Buffer Full

This condition is true at the moment the 64-Kbyte character buffer is full. Use
this condition to trigger a display-freeze (CAPTURE BOTH OFF) whenever the
earliest data in the display buffer is the most important and you do not want it
to be overwritten. Here is an example of a trigger that will retain the first full
buffer of data:

(E) Counter

CONDITIONS: BUFFER FULL
ACTIONS: CAPTURE BOTH OFF

Any counter named and operated as a trigger action may be monitored as a
trigger condition. To create a counter condition, press the COUNTER softkey or
type COUNTER followed by a space.

NOTE: A counter named on a Trigger Menu screen also refers to a
spreadsheet counter as long as the name matches. Timeouts and timers
can also be shared between the Trigger Menu screens and the
spreadsheet.

NOTE ALSO: Trigger Setup screens monitor counter values
from 0 to 999,999. However, Protocol Spreadsheet triggers can
monitor counter values up to 4,294,967,295.

An example of a spreadsheet counter condition is the following:

CONDITIONS: COUNTER byte_no EO 128

where byte_no is the name, EO(ual) is the relational operator, and 128 is the
decimal value.

1. Enter counter name. Name the counter to be monitored. See Section 30.1,
Naming Requirements.

2. Relational operator. As soon as a counter name has been typed and
followed by a space, a rack of softkeys appears with names of relational
operators. See Figure 30-2.

30-5

INTERVIEW 7000 SerIes BasIc Operation: ATLC-107-951-100

30-6

Figure 30-2 A sel of relalioRal operators compares the counler value 10 a
user-entered value.

Make the appropriate selection to specify when the counter condition will be
true. The counter may be tested for a value equal to (EQ) , not equal to
(NE), greater than or equal to (GE), less than or equal to (LE), strictly
greater than (GT), or strictly less than (L T) the value entered on the
spreadsheet.

When a COUNTER condition is used alone, it is a transitional condition. This
means that it is true only when it transitions to true. For example, a
condition that said COUNTER drops NE 5 would be true when COUNTER drops
transitioned from 5 to 6-that is, on the transition from equal 5 to not equal
5; but the condition would not be true when 6 changed to 7.

In combination with another condition (that is, more than one condition per
action or set of actions),' a COUNTER condition normally is a status condition,
not a transitional condition. As a status condition, COUNTER drops NE 5 is
true any time the status of the counter is not 5. Refer to Section 30.2,
Rules for Combining Conditions.

NOTE: Additional rules may apply when the COUNTER

transitional/status condition is used in a spreadsheet program
compiled and saved as a linkable-object file. See Section
27.4(B}.

3. Enter the counter value. Enter the value as a whole decimal number. Each
condition can monitor a 32-bit counter for decimal values ranging from 0 to
4,294,967,295.

NOTE: The Current value for a counter on the Tabular Statistics screen
is maintained to seven decimal places, for a maximum counter display of
9,999,999. The 32-bit binary counter can attain much higher values
than this, however-the decimal display on the statistics screen merely
rolls over to zero and continues counting. Spreadsheet .counter conditions
can monitor for values up to the maximum of over four billion. If a
trigger looks for a counter value higher than this maximum, it will never
be satisfied.

JUL '90

JUL '90

30 Layer-Independent Conditions and Actions

(F) Time

The time of day once a day or once a month can satisfy a trigger condition.
Here, for example, is a trigger condition that comes true at 3 P.M. each day:

CONDITIONS: TIME 1500

1. Enter day of month or time of day. Press the TIME softkey or type TIME

followed by a space. The next entry will signify day of month if it is a
two-digit entry. If it is four digits, it will signify the time of day in
twenty-four hour format.

2. Enter time of day. If the entry following TIME is a two-digit, day-of-month
entry, it must be followed by time of day in a four-digit, twenty-four hour
format.

(G) Flag

Sixteen internal flag bits are reserved for every flag mask that is named in
Protocol Spreadsheet conditions and actions.

NOTE: The eight flag bits on the Trigger Setup screens are the
low-order bits of a flag mask that can be accessed on the Protocol
Spreadsheet by the name trig_flag.

A flag condition still is valid when fewer than sixteen flag bits are specified. The
flag values that are specified are right-justified when the program is compiled,
and leading X's (don't cares) are assumed.

The internal flag normally is a static condition when it is used in combination
with other trigger conditions-that is, more than one condition per action or set
of actions. Refer to Section 30.2, Rules for Combining Conditions. Since flag
bits are completely under program control and can be used in combination with
other conditions, they are useful chiefly to enable or disable entire triggers.

NOTE: Additional rules may apply when the FLAG

transitional/status condition is used in a spreadsheet program
compiled and saved as a linkable-object file. See Section
27.4(B).

For example, a trigger action is taken if a flag bit is 1 and a 't< character is seen.
Setting the flag to zero effectively disables this trigger.

An example of a flag condition is the following:

CONDITIONS: FLAG nak IX

where nak is the name of the flag and XXXXXXXXXXXXXX1X is the flag bit mask.

30-7

INTERVIEW 7000 Series BasIc OperatIon: ATLC-l07-951-100

30-8

1. Enter the flag name. After pressing the FLAG softkey or typing FLAG

followed by space, enter a name not exceeding eight characters, beginning
with an alpha character.

2. Enter the flag condition bit mask. A flag mask follows the flag name. The
mask can include up to sixteen bits (with no spaces between them). Since
the number of flag masks in your program is unlimited, you may want to
restrict your masks to one or two bits. In effect you will be giving each bit
or pair of bits a name.

Legal bit-entries are 1, 0, or X (for "don't care"). Press IE! or ~ to enter
an X. The condition will not test this bit.

(H) On Signal

Signals are communicated between tests and between layers. They are the
simplest way to use an event in one test to start a state or an action in another
test. Here is an example of an on-signal condition:

ON_SIGNAL testlall

After pushing the ONSIGNL softkey or typing ON_SIGNAL followed by space, enter
the name of a signal you have created (or intend to create) in a trigger action.

30,4 Layer-Independent Actions

When a block of conditions has been entered, press 8 to access the ACTIONS

softkey. The actions that are available in all states without exception are shown in
Figure 30-3 as they appear in three successive racks of softkeys.

(A) Counter

The Protocol Spreadsheet screen' can control any number of counters. The
Tabular Statistics screen is an expanding display that can provide statistics for
100 counters. timers. and accumulators.

Here is an example of a counter action:

ACTIONS: COUNTER datapaks INC

1. Enter counter name. A counter can be unique to one trigger action or it
may be shared with other actions and other triggers, which can monitor it
and change its values. As long as the same counter name is used, the same
counter is invoked.

JUL 'SO

30 Layer-Independent Conditions and Actions

Figure 30·3 The twelve layer-independent actions are spread over the bollom
1hree racks of soft keys in Ihis ligure.

NOTE: A counter named on a Trigger Menu screen also refers to a
spreadsheet counter as long as the name matches. Timeouts and timers
can also be shared between the Trigger Menu screens and the
spreadsheet.

NOTE ALSO: Trigger Setup screens monitor counter values
from 0 to 999,999. However, Protocol Spreadsheet triggers can
monitor counter values up to 4,294,967,295.

After naming the counter, select among the actions shown in the rack of
softkeys in Figure 30-4.

.!'-iil!!!l!l!!!ll .M.

Figure 30-4 Counter acllons.

2. Increment. Thirty-two bits are reserved for each counter. Therefore a
counter will roll over after it attains a decimal value of 4,294,967,295.

JUL '90 30-9

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

30-10

Spreadsheet conditions can monitor a counter for any value from zero to the
maximum. (Trigger Menu conditions can monitor up to a count of
999,999.) Note, however, that the counter value will only be displayed up
to seven decimal places on the Tabular Statistics screen. The maximum
displayed value therefore is 9,999,999.

3. Decrement. When this action is selected, each trigger occurrence subtracts 1
from the counter. A counter that decrements below zero wraps to
4,294,967,295. The last seven decimal places of this maximum value will be
displayed in the Curr!>n! column un the Tabular Statistics screen.

4. Set. Select SET in order to specify the value that the counter will take when
the trigger comes true. Enter a decimal value for the counter. To reset a
counter without taking a statistical sample, use the SET action and enter a
value of zero.

5. Sample. This action stores the current value of the counter and then resets
it to zero. The stored value is posted immediately to the statistics display in
the Last column. This value is compared with previous Last values in order
to compute Minimum, Maximum, and Average values for statistical display.
Refer to Section 20 for a discussion of tabular statistics.

6. Clear. This action resets the counter to zero and also resets last, minimum,
maximum, and average values for the counter.

(8) Timer

The Protocol Spreadsheet can control any number of timers. The Tabular
Statistics screen is an expanding display that can provide statistics for 100
counters, timers, and accumulators.

While timers can be run and sampled as trigger actions, they are not available as
trigger conditions. Timeouts, not timers, are the mechanism that allows you to
trigger off of elapsed time.

Timer values may be based on an internal "wall" clock, OT, if time ticks are
enabled on the Front-End Buffer menu screen, on ticks that are stored along
with the data. The "tick" mode of timing is the most accurate, especially when
data is played back and you do not want playback conditions such as speed and
idle-suppression to affect the timers.

Here is an example of a timer action:

ACTIONS: TIMER session SAMPLE

1. Enter timer name. After pressing the TIMER softkey or typing TIMER followed
by a space, enter a name. Like counters and time outs, a timer can be
shared between the spreadsheet program and the Trigger Menu screens. If
the same name is used. the same timer is invoked.

JUL '90

30 Layer-Independent Conditions and Actions

After naming a timer, select among the actions shown on softkeys in
Figure 30-5.

Figure 30-5 Tlmer actions.

2. Restart. Use RESTART to start a timer. This causes the timer to reset to
zero and begin incrementing. A restart does not affect any statistical values
except Current.

3. Stop. A stop action suspends the timer at its present value. The timer may
be started again at this value by a Continue action on another trigger.

4. Continue. This action restarts the timer beginning at the value that was
frozen in the Current column when the timer was stopped. The Continue
action has no effect on a timer that is incrementing already.

5. Sample. Sampling a timer resets it at zero and stops it. Prior to resetting,
the current value is posted as a Last value and passed along for other
statistical tabulation.

6. Clear. Clearing a timer resets and stops the timer and clears the last,
minimum, maximum, and average values.

(C) Timeout

Any number of time outs can be started and stopped in the spreadsheet program.
Timeouts are timers that count down instead of up. Their values are not read
on any statistical display; but when they time down to zero, they satisfy trigger
conditions that monitor them by name. Timeout timers that are named on the
Protocol Spreadsheet also may be monitored and controlled on the Trigger Menu
screens.

Here is an example of a timeout action:

ACTIONS: TIMEOUT t2 RESTART 3

where t2 is the name of the timeout and 3 is its duration in seconds.

1. Enter timeout name. After pressing the TIMEOUT softkey or typing TIMEOUT

followed by space, enter the name of the timeout. As soon as a name has
been entered and followed by a space, a rack of softkeys appears with the
names of two timeout actions, RESTART and STOP.

2. Restart. Select RESTART to start the timer running down.

3. Stop. Select STOP to halt the timer and prevent the timeout.

JUL '90 30-11

INTERVIEW 7000 SerIes BasIc Operation: ATLC-107-9S1-100

30-12

4. Enter timeout value. The duration of the timeout is entered in seconds.
The timeout value is a decimal field in which entries are valid to the
millisecond (0.001). For values under 1 second,you must precede the
decimal with a leading zero, as follows:

TIMEOUT delay RESTART 0.25

The maximum timeout entry in this field is 65.535 seconds.

You may expand the maximum timeout with a program such as the
following, which produces an alarm every twenty minutes.

(D) Prompt

STATE: twenty min alarm
CONDITIONS" ENTER STATE
ACTIONS: TIMEOUT Sixtysee RESTART 60
CONDITIONS: TIMEOUT slxtysee
ACTIONS: COUNTER mlnut •• INC

TIMEOUT slxty •• e RESTART 60
CONDITIONS: COUNTER minute. EQ 20
ACTIONS: COUNTER mlnut •• SET 0

ALARM

Prompts are user-entered ASCII messages that appear o~n the second status line
at the top of the screen in Run mode as a result of a trigger coming true. They
are messages to the operator from the program, alerting him to important
protocol or program events. Prompts are written to the second status line of any
current Run-mode display screen. Switching to Freeze mode or to another
display screen clears the prompt from all screens except the Display Window.

NOTE: The prompt line is not zeroed out with each new prompt, and
prompts are overwritten only to the extent of the new prompt. For
example, the prompt "POLL" does not completely overwrite the prompt
"SELECT"-the result will be "POLLCT." It is a good practice to
establish a uniform prompt length and space-fill shorter prompts to that
length.

Special C functions that position the cursor anywhere on the prompt line
(or elsewhere in the display) and write messages to the cursor position are
discussed in Section 64.

A prompt that has been triggered in Run mode is illustrated in Figure 30-6.
Here is the same prompt as it appears on the Protocol Spreadsheet:

ACTIONS: PROMPT "Echoed message received"

Backslashes and double-quotation marks may be included in prompt messages if
they are preceded by backslashes, in accordance with the rules for entering these
characters in transmit strings. See Table 32-2. Example:

ACTIONS: PROMPT"," hello'" string received"

JUL '90

(

JUL '90

30 Layer-Independent Conditions and Actions

1. Enter prompt message. After pressing the PROMPT softkey or typing PROMPT

followed by a space, enter a message in quotation marks. The message
should not exceed 64 characters, the width of the screen.

t~~~~&T~~g~~~~~~g~16~di:hK.~~001~ prompt lin.

'i-<H'lt,,~h e.\l.o I.it h i ${:i:,:·OlI'1 eC h O·t e :,j;: .•
:.; :-'M '-~':::"::-:A :-i" ~ .. ,'~::·::::-';tr.:'r::'·-~·:;: ·-~'::-..:':·i;/;:--'ri' ~~:: g:'h--~.~\~ -1-; £';.'i ,:r;:i(ri ~::'f.

.("!,H~"ii(t;r:.,EX-a@Li;,~-~if.ri;fl~i,~~J.;{:fi:j;Qf:.-t·Ji4~i~)~1.;:1.:.I"qt-Jt~;;}
'i<$9, "'! DJID;,:",'i<&'l "'he 110,> th i:,ijsOloe
.ru ,,",.i, 'i<'i-<, @l'i-<'t'l"'.! 'i.!at",,1- 'i-<~~'l~"T~~j;5-11@l!,.,.,.!,;
nto5!<;.mL, " "";;~. ". 'i~ H9;@ho.";"ii.""""'l..a'i.lID

Figure 30-6 User-defined prompts are displayed al the top of the RUn screen.

(E) Alarm

The alarm is a tone of less than a second duration. The alarm is sounded each
time the trigger comes true. If the tone lasts longer than a second, the alarm
has been triggered more than once.

The alarm action on the spreadsheet is simply the word ALARM.

(F) Flag

Internal flags are special programming bits. They can be set on or off by triggers
and sensed by triggers. Flags come in masks of up to sixteen bits. Each flag
mask is named and referenced by the spreadsheet program.

Any number of flag masks may be created. Flags are common to all tests and
layers: if a flag name is used in tests in two different layers, it refers to the same
sixteen programming bits.

A flag action still is valid when fewer than sixteen flag bits are specified. The
flag values that are specified are right-justified when program is compiled, and
leading X's (don't cares) are assumed.

NOTE: The eight flag bits on the Trigger Setup screens are the
low-order bits of a flag mask that can be accessed on the Protocol
Spreadsheet by the name trig_flag.

Here is an example of a flag action:

ACTIONS: FLAG nak SET OX

where nak is the name of the flag, SET is the action, and 0 is the only bit in the
mask affected by the set action.

30-13

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

30-14

1. Enter the flag name. After pressing the softkey for FLAG followed by a
space, a rack of softkeys appears with the names of flag actions. See
Figure 30-7.

FJgure 30-7 Flag aclions.

2. Increment. The mask can be used as a sixteen-bit binary counter. The INC

action increases the value of the mask by one each time the trigger is true.

As the mask increments above 65,535, it wraps to zero.

The INC action always toggles the least significant flag bit. If you monitor the
flag for only one bit (for example, FLAG lIagname 1 I, the INC action will toggle
the condition true/false. This can be a useful tool when you want every
second occurrence of an event to trigger an action.

3. Decrement. This action decreases the value of the flag byte by one each
time the trigger is true. When the mask decrements below zero, it wraps to
65,535.

4. Set. This action rewrites the flag bits according to the flag-action bit mask
that you enter following the SET keyword. The bit mask is comprised of up
to sixteen O's, l's, and X's (no change).

When you enter fewer than sixteen bits, you are leaving the leftmost bits in
the mask unspecified. The action will not change the condition of
unspecified bits.

(G) Signal

Use signals to convey instructions to other tests and other layers where
conditions are monitoring these signals by name.

Other internal programming mechanisms, such as flags and counters, are
common to all tests and layers and may perform a signaling function. Signals,
however, are more efficient in that they are reusable: a signal that is sent and
monitored can be sent and monitored again ten seconds later, but an action that
sets a flag to 1 cannot be used again until another action has intervened to reset
the flag to zero.

After pressing the SIGNAL softkey or typing SIGNAL followed by space, enter the
name of the signal. Often the name will be descriptive of the event being
signaled. An example of a signal action is the following:

ACTIONS: SIGNAL test fall

JUL '90

(

30 Layer-Independent Conditions and Actions

(H) Accumulate

The accumulate action reads a specified value for a counter or timer and
presents this value to tabular and graphic statistics screens for statistical breakout.
This action is distinct from the sampling action of a counter or timer in this
important respect: sampling a counter or timer also resets it to zero.
Accumulating a counter or timer has no effect on the ongoing counting or timing
function. Examples of accumulators are given in Section 20. Tabular Statistics.

Values for more than one counter or timer may be brought into a single
accumulator. For example. separate timers might measure response times for a
group of multidropped DTEs. At the end of the test. a value for each timer
could be brought. in separate trigger actions. into one accumulator.

Each accumulate action specifies one value only for a counter or timer. Thus
the accumulalOr might provide meaningful statistical data based. for example. on
maximum values only for a group of timers.

Here is an example of an accumulate action:

ACTIONS: ACCUMULATE alldrop COUNTER badbco_a LAST

where alldrop is the name of the accumulator, badboc_8 is the name of a
counter. and it is the last value of the counter that is being accumulated.

1. Enter the accumulator name. Both the accumulator and one counter or
timer are referenced in the accumulate action. Counters and timers are
referenced. not created. in accumulate actions.

An accumulator is created by being named in an accumulate action. Like
counters and timers. accumulators can be given display lines on either or
both of the statistics screens.

2. Clear. This action clears the last. minimum. maximum. and average values
of the accumulator. (Since accumulators neither count nor time, they never
display a current value.)

3. Counter. This action accumulates a value for the counter named
immediately following the keyword COUNTER. After the counter is named.
one value for that counter is selected from the rack of softkeys in
Figure 30-8.

4. Timer. This action accumulates a value for the timer named immediately
following the keyword TIMER. After the timer is named. one value for that
timer is selected from the rack of softkeys in Figure 30-8.

JUL '90 30-15

INTERVIEW 7000 Series Basic Operation: ATLC-107-951-100

30-16

Figure 30-8 Counters and timers are accumulated wilh respect to one
staUstical value only.

(I) Print

Time-stamped printouts of single lines of data can be commanded by the
spreadsheet program. The data can be a line of tabular statistics for an
accumulator, counter, or timer; or a user-prompt that is sent to the printer after
it has been written to the second line of the screen.

An example of a print action is the following:

ACTIONS: PRINT TIMER achoUma MILLISECONDS

After pressing the softkey for PRINT or typing PRINT followed by a space, select
an option for the type of data to be printed from the new rack of softkeys
shown in Figure 30-9.

Figure 30-9 Four types of data may be printed oul as a trigger acHon.

1. Accumulator. When this action is taken, the line of tabular statistics for the
accumulator that you name will be printed. A line of tabular statistics
includes last. minimum, maximum, and average values for an accumulator.
Since accumulators neither count nor time, they never display a current
value.

2. Counter. When this action is taken, the line of tabular statistics for the
counter that you name will be printed. A line of tabular statistics includes
current, last. minimum, maximum, and average values for a counter.

3. Timer. After the timer is named, a timer rate is selected from a new rack
of softkeys as shown in Figure 30-10 .

.&;1 we • -.M-A

Figure 30·10 Afler a Iimer is named for prinlout display. a new soCtkey rack
allows you 10 specify unit of time.

JUL '90

0

Time

0 09/29
09/29

0
09/29

0

0

0

JUL '90

16:13
16: 13
16: 13

30 Layer-Independent Conditions and Actions

The selected rate will only display values to the smallest place value afforded
by the tick rate selected on the FEB Setup screen. For example, if
milliseconds is selected on the FEB screen, choosing microseconds on the
print-timer softkey selection will simply display three additional zeros as
place holders-it will not calculate a more precise reading. Thus the most
accurate selection for this example would be milliseconds, matching the FEB
selection.

When a timer is controlled by a nondata event such as a keyboard
condition, it will reference a IIwall-tim-e" dock whose smallest resolution is a
millisecond.

When the PRINT TIMER action is taken, the line of tabular statistics for the
timer that you name will be printed. A line of tabular statistics includes
current, last, minimum, maximum, and average values for a timer.
Figure 30-11 is an example of such a printout for the program given below.

Name

STATE: message
CONDITiONS: DTE STRING 'hello"
ACTIONS: PROMPT 'String sent by DTE"

TIMER echotlme RESTART
NEXT STATE: echo

STATE: -echo
CONDITIONS: DCE STRING 'hello"
ACTIONS: PROMPT 'Same string by DCE'

TIMER echotlme STOP
TIMER echotlme SAMPLE
PRINT TIMER echotlme MILLISECONDS

NEXT_STATE: message

Current Last Mi nimum Maximum

echotime 0 452 452 452
echotime 0 341 341 452
echotime 0 428 341 452

0

Average Unit

452.00 MSECS 0

396.50 MSECS
407.00 MSECS

0

0

0

0

FIgure 30-11 In this printout, a PRINT TIMER aclion has been triggered three limes.

30-17

INTERVIEW 7000 Series Basic Operation: ATLC-107-951-100

0

0

0

0

0

0

30-18

Time

4. Prompt. The PRINT PROMPT action is designed to be added to an action
block that already contains a prompt. The example below inserts PRINT

PROMPT actions into the program described in the previous section. The
user does not have to key in a long prompt message twice, once for the
printout and once for the screen. The printout for this program is shown in
Figure 30-12.

Name

STATE: message
CONDITIONS: DTE STRING "hello"
ACTIONS: PROMPT" Siring sent by DTE"

PRINT PROMPT
TIMER echotlme RESTART

NEXT STATE: echo
STATE: -echo

CONDITIONS: DCE STRING "hello"
ACTIONS: PROMPT "Same string by DCE"

TIMER echotlme STOP
PRINT PROMPT
TIMER echotlme SAMPLE
PRINT TIMER echotlme MILLISECONDS

NEXT_STATE: message

Current Last Minimum Maximum

o
Average Unit

09/29 16:13 String sent by DTE o
09/29 16: 13 Same string by DCE
09/2916:13 echotime 0 452 452 452 452.00 MSECS
09/29 16:13 String sent by DTE
09/29 16: 13 Same string by DCE
09/29 16: 13 echotime 0 341 341 452 396.50 MSECS
09/2916:13 String sent by DTE
09/29 16:13 Same string by DCE
09/29 16:13 echotime 0 428 341 452 407.00 MSECS

Figure 30-12 Printout resulting from a combinalion of PRINT PROMPT and PRINT
TIMER actions.

o

o

o

o

NOTE: If you want to print multiple prompts, place each PROMPT and
PRINT PROMPT pair in its own conditionslactions block. (Otherwise, only
one prompt will be printed since prompts overwrite each other.)

(J) Trace
Traces are user-entered ASCII data strings, identical to prompts in all ways
except in their mode of display: traces are posted one to a line in the multiline
Program Trace display (see Section 6.6), while prompts appear on the second
status line in all data-display modes (including the Program Trace).

JUL '90

(

JUL '90

30 Layer Independent Conditions and Actions

Numerous layers and numerous tests per layer can be active concurrently in the
INTERVIEW. The Program Trace can be set up to track state-to-state
movement only in a particular Layer and Tesl identified by the operator on the
Display Setup menu. State names can be included in the Program Trace via the
Display Slales: Wtit selection on the the Display Setup menu. See Figure 30-13.

Figure 30·13 The user may select a particular layer and test for a Program Trace.

Traces are debugging tools. Inside a dead-end state they can inform you
whether a particular condition that you are expecting is coming true. Prompts,
by contrast, have a much fainter "trail": it is hard to be certain that a prompt
was not activated and then overwritten by another prompt.

Traces also allow you to keep a record of selected protocol events-to design
your own protocol analysis. Since they are written to consecutive lines rather
than overwritten by other traces, they are highly useful when you are trying to
track protocol events that occur in quick succession.

An example of a trace action is the following:

ACTIONS: TRACE" Network congestion"

1. Enter trace message. After pressing the TRACE softkey or typing TRACE
followed by a space, enter a message in quotation marks.

(K) Load Program

A program (source code or object code) or setup that is stored in a file on hard
disk or on a disk in either of the microfloppy drives can be loaded in by trigger
action. This Load Program function is a means of chaining tests together.

Program files are a full set of configured menus, including the Layer Setup
screen, Trigger Setup screens, and the Protocol Spreadsheet. Object files are the
precompiled object-code versions of programs. Setup files are a set of configured
menus which excludes trigger setups, the Layer Setup screen, and the
spreadsheet. Remember that loading a program or setup file overwrites the
program or setup file already in memory. Loading an object file overwrites only
the object code of whatever program (if any) was compiled most recently. The
new object file will not affect the data on any setup menu or programming
screen.

30-19

INTERVIEW 7000 SerIes Basla OperatIon: ATLC-l07-951-100

30-20

EIA statuses can be maintained In between programs by a special menu selection
on the Interface Control menu screen. (See Section-12.)

An example of a Load Program action is the following:

ACTIONS: LOAD_PROGRAM "FD1/usrlsna/sna_blnd"

where FDI is microfloppy-diskette drive I, the first slash (I) is the root
directory, usr is the highest level of user-created files, sna is another directory,
and sna_bind is the filename.

1. Enter program name. Enter the absolute pathname of your file. Put the
name in quotation marks.

(L) Record

Use the RECORD action to activate or suspend line-data recording or disk-data
playback. When the Line Setup menu is configured to monitor a disk, RECORD

controls playback; otherwise it applies to recording. There are two selections
under RECORD. Select ON to activate, or OFF to suspend, recording or playback.

During recording, the top status line of Run-mode screens will show
incrementing block numbers and an "R" displayed in the record/playback field.
During playback, a "P" is displayed. Whenever recording or playback has been
suspended, an "S" is displayed.

For data playback, the status field will be blank if a disk is not present in the
selected drive or when the end of the data-acquisition tracks are reached. This
field will also be blank if you enter a starting block number on the Line Setup
menu that a) precedes the block number at which data actually begins, or b)
exceeds the block number at which data actually ends. Change your entry to
zero.

For data recording, the status field will be blank when the end of RAM or the
data-acquisition tracks is reached. It will also be blank if the Capture Memory

field indicates that you will record to disk, but no disk is present in the selected
drive or data-acquisition tracks are not available on the disk.

JUL '90

(

31 Layar 1 Condll/ons and Actions

31 Layer 1 Conditions and Actions

There are seven protocol layers in the OSI (Open Systems Interconnect) model that is
adopted in the INTERVIEW 7000 Series. Each layer reserves a distinctive set of trigger
conditions and actions on the Protocol Spreadsheet.

As a rule, spreadsheet components for a given layer are loaded from disk via the Layer Setup
screen. Layer 1, the Physical Layer, is an exception to this rule. Layer 1 conditions and
actions are enabled on the Protocol Spreadsheet when the unit powers up.

Depending on the Test Interface Module (TIM) installed in the unit, the power-up also
enables an Interface Control Menu screen, different for each module, that controls many
Layer 1 parameters. For this reason, the set of Layer 1 conditions and actions is relatively
small.

31.1 Layer 1 Conditions

JUL '90

To bring up the bank of softkey conditions for Layer 1, first press the CONDITIONS
softkey. This key becomes available when ·the cursor enters a programming block at
the state level.

The first four condition softkeys-DTE, DCE, RECEIVE and EIA-belong to Layer 1.
These are followed by generic conditions discussed in the previous section. The set
of Layer 1 conditions is shown in Figure 31-1. The softkey for a fifth Layer 1
condition-XMIT_COMPLETE-appears on the second rack of condition softkeys shown
at the bottom of the figure.

EIA is a transitional/status condition and may be combined with other conditions.
The other Layer 1 conditions are transitional only. Refer to Section 30.2 for a
discussion of how conditions may be combined.

31-1

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

31-2

Figure 31-1 Layer] conditions.

(A) Data

The first three trigger conditions at Layer 1 can monitor one of the two data
leads for a specific data event. This event can be any of several characters, a
string of characters, a good BCC following the character or string, an error
revealed by a block or parity check, and so on.

Data conditions at Layer 1 monitor the entire data stream. Conditions in other
layers also check the data leads, of course, but conditions at Layer 2 and higher
look for protocol events.

In searching the data stream byte by byte, Layer 1 data conditions behave
similarly to ReceiVer conditions on the Trigger Setup screens. This is another way
of saying that the sixteen trigger menus constitute a Layer 1 test. This test has a
single state that is always current. Trigger menus with selections made on them
are always active.

The three data conditions are DTE, DCE, and RECEIVE. When one of these
conditions is selected, a new rack of softkeys appears. The new options are
shown in Figure 31-2.

JUL 'SO

JUL '90

31 Layer 1 Conditions and Actions

Figure 31-2 A spreadsheet trigger will monitor either data lead looking for these eyents.

(8) OTE

When DTE is selected, data on the TO lead will be monitored.

(C) OCE

This condition monitors the RD lead.

(D) Receive

This condition is intended for use in the emulate modes. It allows you to change
the emulate mode of a program on the Line Setup screen without modifying the
spreadsheet. When RECEIVE is selected, the INTERVIEW will always monitor the
lead opposite its own transmit lead. With Mode:n!~tlmifii;i as the Line Setup
selection, the trigger will monitor RD. In Emulate DCE mode, the trigger will
monitor TO.

(E) String

When a trigger monitors a data lead for a string, it searches for the exact, entire
sequence of characters entered in the condition. Strings have a size limit of 32
characters. If constants are entered in the string, the 32-character limit is
applied after all constants have been expanded.

After pressing the STRING softkey or typing STRING followed by a space, begin the
string. Strings are always enclosed in quotation marks on the spreadsheet.

Here is an example of a Layer 1 data condition:

CONDITIONS: RECEIVE STRING "'i< %R" WAIT _EOF

where WAIT _EOF delays trigger-true until the block of data holding the string has
ended with a good block check.

(F) One-Of Character

When ONE_OF is entered, the trigger looks for anyone of the characters in the
list that follows. A single character in the data is all that is necessary to match a
list. The effect of a "not-equal" character in a one-of list is explained in
Section 24.3(I}.

31-3

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

31-4

After pressing the ONE_OF softkey or typing ONE_OF followed by a space, begin
the list. Lists and strings are always enclosed in quotation marks.

(G) Good or Bad Bee

- BCC is partly a Layer 1 function, in that the calculation normally is a
"hardware" !unction that tests the physical medium. It also is a Layer 2
!unction, in that the frame-check calculation is transmitted as part of the Layer
2 protocol. BCC therefore appears as a set of spreadsheet functions both at
Layer 1 and Layer 2.

GOOD_BCC (good block-check calculation) and BAD_BCC can only be used as
conditions when Rov Blk Chk is turned on. Rov Blk Chk is a menu field on the
Line Setup menu: see Section 5.

NOTE: Rov Blk Chk is on automatically when Format: :?'@!!W is the
Line Setup selection.

Press the soltkey lor GOODBCC or BAD _BCC when when you want the trigger to
take action on receipt of the BCC. The INTERVIEW does the block-check
calculation that the user has defined on the BCC Parameters menu and
compares it with the received block-check characters. See Table 10-1 and
Table 10-2 for the block-check calculations done by the INTERVIEW.

(H) Parity Error

PARITY_ERROR looks for an error in relation to the Parity selection made on the
Line Setup menU.

(I) Framing Error

FRAMING_ERROR applies to start-stop formats (ASYNC and ISOC) and detects
framing errors in relation to the Stop Bit. field on the Line Setup menu.

(J) Abort

When Format: "I::~\j!:ft: has been selected on the Line Setup menu, you can enter
ABORT as a trigger condition. In fE-framed protocols. seven consecutive i-bits in

midframe constitute an abort.

(K) Enter Receive String

Enter strings and lists inside quotation marks. A list is a series of characters that
can be matched by a single data character. (A string must be matched by a data
string.) A one-of condition is an example of a list. Ali ASCII-keyboard,

JUL '90

JUL '90

31 Layer 1 Conditions and Actions

control, and hexadecimal characters are legal in a receive string or list. Of the
special-character keys, ~, 1!!!lJ, §], and 8-§] are valid. 8-§] displays
the sync symbol lID on the screen, and causes a search for the sync pattern.

~ is not valid. Bit masks are entered in receive strings by the keying sequence
illustrated in Table 32-1.

Constants are also legal in any character position in a list or string. See Section
32, Strings, for an explanation of these string-search tools.

(L) Walt for End Of Frame·

After the double-quotation mark is entered to close a string or list, the final
Layer 1 condition appears under IIIl on the rack of softkeys. The condition is
WAIT_EOF, or "wait for the end of the frame" before coming true and taking any
actions. See Figure 31-3.

Figure 31-3 Siring and one-of conditions can be linked 10 a good Bee at the end of
the frame (" BOF").

The WAIT _EOF condition does not occur above Layer I, since data is not passed
up to those layers until the frame is completed.

(M) EIA

Layer 1 conditions can monitor the status of six RS-232/V.24, V.35, or RS-449
control leads plus an additional seventh lead, the user-assigned (UA) input jack
on the RS-2321V.24, V.35, or RS-449 test-interface module (TIM). Leads
available for triggering are RTS, CTS, CD, DTR, DSR and RI.

The EIA condition is a transitional/status condition. This means that when it is
used alone it is true only if it transitions to true; but used in a trigger in
combination with other conditions, it retains its status of on or off without having
to transition to either status. The rules for combining conditions are explained in
Section 30.2.

After pressing the EIA softkey or typing EIA followed by a space, make your lead
selection from the upper rack of softkeys in Figure 31-4. Then select a status of
ON or OFF.

31-5

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

31-6

Figure 31 ~4 BfA leads monilored by the spreadsheet program.

For the standard RS-232/V.24 interface. ON implies that a lead is more positive
than +3 volts with respect to signal ground. OFF implies only that a lead is not at
or above the ON threshold. not necessarily that a minus threshold has been
attained.

This is an example of an EIA condition:

CONDITIONS: EIA DTR OFF

(N) Xmit Complete

II sENDing" a transmission means queueing a transmission to send. The layer
protocol (the RTS-CTS handshake. for example. at Layer 1) may delay the
actual transmission. The XMIT_COMPLETE condition (selectable in the bottom
rack of softkeys in Figure 31-1) will not come true until the transmission actually
has been sent. Use this condition to stan accurate response-time measurements.

31.2 Layer 1 Actions

When a block of Layer 1 conditions has been entered. press ~ to access the
softkeys for ACTIONS. The set of seven Layer 1 actions is shown in the softkeys in
Figure 31-5. The names of these actions are SEND. EIA. OUT_SYNC. IDLE_LINE.

ENHANCE. and CAPTURE. The other. darkened softkeys in the figure are
layer-independent actions present at every layer. discussed in the previous section of
this manual.

JUL '90

JUL '90

31 Layer 1 Conditions and Act/ons

Figure 31-5 Layer 1 aclions.

(A) Send

There is one SEND action-transmit a string. While transmissions occur at all
layers, only Layer 1 allows the user to type in a complete transmission, character
by character. At higher layers, the user types the names of protocol elements'
and the software converts these mnemonics to strings. The user enters character
strings directly at higher layers only into specified user-data fields.

The spreadsheet compiler identifies strings by the quotation marks surrounding
them. Send-strings have no size limit (for practical purposes). All
ASCII-keyboard, control, and hexadecimal characters are legal in a send-string.
Special keys C§!, ~, ~) are not legal.

31-7

INTERVIEW 7000 SerIes BasIc Operation: ATLC-107-951-100

To insert a canned fox message into a transmit string, type FOX inside of double
parens, as follows: ((FOX)) . Remember that the double parens are special
characters produced by the ~-(!) and ~-(!J combinations. Constants, counters,
and nags can also be embedded in a string. See Section 32, Strings.

Press the SEND softkey or type SEND followed by space to begin the entry. The
prompt Enter Transmit String appears as in Figure 31-6. Enter the string inside
of quotation marks.

., '-"'. .

TF;;U?j±Sillfn9" 1-1Il.'!)-. 1-1Il-.·11 --.- II-IIlAIIi.·. e-:"'I]
Figure 31·6 Transmit a string.

After quotation marks are typed in to close the transmit string, a set of softkeys
appears for the error-checking value that will be appended to the transmit string.
One of these must be selected; otherwise, the program will not compile and a
Premature End or File error message is generated .

. --
Figure 31-7 Select a block-check calculation 10 end the transmission.

1. Good Bee. This softkey entry allows you to append a good block-check
sequence to your transmitted message. The INTERVIEW will make the
proper calculation based on the parameters selected on the BCC Setup
screen (see Section 10).

31-8 JUL '90

31 Layer 1 Conditions and Actions

2. Bad BGG. Press the softkey labeled BAD_BCC to append an errorred
block-check to your transmission. Assuming that Rov Blk Chk: tP&.'l is the
selection on the Line Setup menu, a BCC error will be indicated on the
screen of the INTERVIEW by a III symbol. See Figure 31-8.

For BOP format, the bad BCC will be CRC-16 instead of CCITT. For other
formats it will be an inverted good BCC.

>l<EMDTE/LINE>I<BLK=.!36/24/89 '-"'-'>, .'... .•. , .••...•...

~~{~~t~t~g~Y6~$~R()W~FOX>JUMPS.OV~RT8ELAZy DOG cii~§~$g7~9;~·

JUL '90

Figure 31~8 The INTERVIEW's TO monitor has delected a bad Bee
Iransmilled by the unit's own TD driver ..

3. No BGG. The NO_BCC softkey pertains to non-BOP formats only. Instead of
appending a block-check calculation to a text message, the transmitter will
revert directly to idle-line condition.

Please note that receivers that are expecting BCC characters will treat the
idle characters generated by the INTERVIEW as block-check characters.
The INTERVIEW's own receivers (unless they go out of sync first) will
display a bad-BCC. symbol on the screen. (Refer to Figure 10-3.) The
device under test probably will detect a BCC error and reject or ignore the
message.

The user may, of course, enter a good BCC "manually" as part of the text
string that precedes the NO_BCC selection.

4. Abort. Abort is a BOP function only. Instead of appending a proper
frame-check sequence (FCS), the transmitter will hold the lead at mark for
eight bits (or longer if the transmitter is idling FF). Inside of a frame, seven

I-bits in a row are sufficient to signal an abort.

An aborted message is shown in Figure 31-9.

31-9

INTERVIEW 7000 Ser;fis BasIc Operation: ATLC-107-951-100

'l<~9..I1,~ THE QU ICK.BROWN TOX •• JUMPS .' OVER THE LAZY DOl> 0123456 7m

31-10

Figure 31-9 The INTERVIEW aborts a BOP frame by closing 11 with a byte of FF
instead of 7E.

(8) ErA

Press the softkey for EIA or type EIA followed by a space to bring five RS-232
leads and four auxiliary leads under spreadsheet control. The nine softkeys that
represent EIA actions are illustrated in two separate racks of keys in
Figure 31-10.

EIA actions are available only when the unit is in one of the emulate modes. A
maximum three RS-232 leads are controllable at one time. When Mode:
·[l!mnI@i!I is the Line Setup parameter, you control CTS, CD, and DSR. You
may enter RTS ON or OTR ON as a spreadsheet action; but the DTE, not the
INTERVIEW, controls these leads, and the actions will not take effect. To turn
RTS or DTR on, first you must emulate a DTE.

The AUX softkeys allow you to apply off/on voltage to any of the AUX output
jacks (four on the RS-232 Test Interface Module, three on the V.35 and
RS-449 TIMs) seated in the rear of the unit. (Refer to Figure 12-5 and
Figure 47-3.) These AUX outputs are useful for turning on and off a signal that
is not a softkey selection or not under the control of your emulation. Section
12.3 cites the example of an INTERVIEW in Emulate DTE mode that is using
the AUXO pin to control CTS from the "wrong" side of the interface.

NOTE: The AUX actions on the spreadsheet have nothing to do with the
25-pin TTL AUXILIARY connector at the rear of the INTERVIEW.

After selecting a lead to control, select a status of OFF or ON. In the RS-232
specification for drivers, on is defined as +5 V to + 15 V while off means a
range of -5 V to -15 V ..

This is an example of an EIA action:

ACTIONS: EIA OTR ON

JUL '90

JUL '90

31 Layer 1 Conditions and ActIons

Figure 31-10 Five EIA leads and four AUX leads are under program control.

(C) Outsync

When the outsync action is taken, one or both receivers go out of
synchronization from trigger true until the next synchronization pattern is
received. All data that occurs in between outsync and resynchronization is
considered "idle." If Display Idle: @m(is selected on the line setup, a receiver
out of synchronization will prevent data from being presented to the screen and
the character buffer as well as to the test program.

The outsync action also initiates the search for sync. Receivers that are already
in sync do not look for sync. As soon as a receiver goes out of sync, the
formatting logic begins to test for the one- or two-character sync pattern one bit
at a time.

The outsync action may be useful when the information following a header
group, for example, is of no interest. Simply go out of sync until the beginning
of the next frame, when synchronization will restore the data display
automatically. CAPTURE DTE (or DCE) OFF performs a similar function, except
that "capture" must be turned on again by trigger when you want to resume the
display.

31-11

INTERVIEW 7000 Series Basic Operation: ATLC-l07-951-100

~~~ •• ' •• ··~~·~i roffi ... ··:~)=. ·.·.·.i· ••.• ;W .. · _ .... i •. :.·.· •••• • ••• ••• •.•••••. ;J;II. ......;W.: .. ··i •••••• ·.=. ·.·.····•···· •• · .....• ·~·~.~.~Ij 
+ 

31-12 

Figure 31·11 The spreadsheet program can force one or both data leads out of sync. 

After you have pressed the OUT _SYN softkey or typed OUT_SYNC followed by a 
space, select one or both leads from the softkeys illustrated in Figure 31-11. 

RECEIVE and TRANSMT may refer to DTE or DeE, depending on your emulate 
mode at the moment. These selections allow you to change your emulation on 
the Line Setup menu without having to worry about changes to the spreadsheet 
program. 

(D) Idle Line 

IDLE_LINE allows you to use a trigger action to change the idle-line condition 
applied by the INTERVIEW. If you press the sonkey for IDLE_LN (see 
Figure 31-11) or type IDLE_LINE followed by a space, the words Enter Idle 

Character String will appear on the prompt line in the soetkey area at the bottom 
of the screen. Enter a single alphanumeric, control, or hexadecimal character in 
quotation marks. The red LED on the ~ key should be on for hexadecimal 

entry. 

The idle-line action applies only when Format: Wii;\!i!!9¥ has been selected on the 
Line Setup menu. This trigger action is useful for tests in protocols that employ 
different idle characters to signal changes in protocol state. An example is X.21 
or X.21 BIS, which in various states will idle FF, ~J +, and so on. 

Here is an example of an IDLE_LINE action: 

ACTIONS: IDLE_LINE "+-

(E) Enhance 

The spreadsheet program can be used to enhance display data selectively. Data 
on either or both sides of the line may be enhanced. Figure 31-12 shows typical 
reverse-image enhancements. Enhancements are stored in the character buffer 
for later review: see Section 7.3. 

JUL '90 



, 
I 

JUL '90 

J 1 Layer 1 Conditions and Actions 

Enhancements that pertain to the plasma display are reverse-image, blink, and 
hex. In addition to these, a low-intensity enhancement can be applied to data 
that is transmitted to a black-and-white monitor connected at the RS-170 port 
(see Figure 1-6). 

Blink, reverse and low enhancements activated by the trigger-menu or 
spreadsheet program can be mapped to colors on a color monitor attached at 
the INTERVIEW's RGB port (Figure 1-6). See Section 17.2 for an explanation 
of how blink, reverse, and low enhancements relate to character and background 
colors in the RGB output. 

Enhancements are available at every protocol level, but only Layer 1 
enhancements affect the raw-data display. Higher-level enhancements are 
applied to the protocol trace for a given layer. 

FIgure 31-12 Enhancements may be used 10 highlight protocol fields. 

After pressing the ENHANCE softkey or typing ENHANCE followed by a space, 
select one or both leads from the second level of softkeys in Figure 31-13. 

Next, select the type of enhancement from the third tier of softkeys in 
Figure 31-13. Enhancements may be used in combination (such as reverse blink, 
or low-intensity reverse). Then at the final level, turn the enhancement ON or 
OFF. 

1. Reverse image. Reverse-imaged characters are presented as dark letters on a 
lighter background. 

2. Low intensity. This attribute does not affect data on the plasma display, 
which supports one display intensity only. Characters that are given this 
attribute will appear in low intensity on a CRT that is attached to the 
INTERVIEW through the RS-170 port. 

31-13 



INTERVIEW 7000 Series Basic Opera lion: ATLC-107-951-100 

31-14 

Figure 31-13 Layer 1 enhancements must be turned off as well as on by trigger. 

3. Blink. BLINK causes data to be highlighted by a high-intensity area that blinks 
on and off. This is the most conspicuous highlight for small portions of data. 

4. Hexadecimal. When the HEX enhancement is turned on, all data affected by 
the trigger is displayed in hexadecimal. Once data is stored in the buffer as 
hexadecimal, it remains in this format even if the ~ key is toggled. 

Refer to Figure 6-17 for data in which hex translation has been turned on 
for protocol characters and off for user (ASCII) data. 

(F) Capture 

This action turns on and off the presentation of data to the screen-that is, it 
stops or .. freezes" the display-and capture of data to the screen buffer 
(character RAM). Unlike the Manual Freeze mode initiated by the 1 ... ,"1 key, 
however, the "capture off" action does not allow you to scroll through the buffer 
while the test continues. 

JUL '90 



.* 
··OFF 

JUL 'SO 

31 Layer 1 Conditions and Actions 

This action allows you to use the spreadsheet program to find important data 
and then preserve it in the buller when it would otherwise be overwritten and 
lost. 

Here is a sample capture action: 

ACTIONS: CAPTURE BOTH OFF 

where OFF means Ireeze the display and BOTH means with respect to DTE and 
DCE. 

After pressing the CAPTURE soltkey or typing CAPTURE lollowed by a space, 
select DCE, DTE, or BOTH lrom the rack 01 softkeys shown in Figure 31-14. On a 
subsequent set 01 soltkeys, select ON or OFF as the capture action. 

I-•• ~-II-.~ 
_e __ .M··. ·········\································· •• t~:~ij 

Figure 31~14 Screen display ("capture") can be turned on or of( with respect to one 
data lead or both. 

1. DeE. This option disables or enables the buffering and display 01 DCE (RD) 
data. Suppressing one data lead only does not serve the purpose 01 

preserving data indefinitely in the buller, since the other lead eventually will 
overwrite the buller. 

2. DTE. The TD lead by itself can likewise be suppressed or displayed. 

3. BOTH. This option suppresses or displays all data. 

4. ON. This action enables bullering and display 01 the selected data. 

5. OFF. This action suspends bullering and display. 

31-15 



INTERVIEW 7000 Series Basic Operation: ATLC-107-951-100 

( 

31-16 JUL 'SO 



32 Strings 

32 Strings 

A string on the Protocol Spreadsheet is a sequeACe oE t .. XI, characters that the operator 
encloses in quotation marks and enters following cenain keywords. Strings are valid in both 
conditions (at Layer 1) and actions (at any layer). Depending on its use in the program, the 
string may be searched for, transmitted, printed out, or written to the screen while the 
program is running. 

"Lists" are a subset of strings with an imponant distinguishing feature: where a string is a 
sequence of characters, a list is a set of single characters. Examples of lists are one-of 
conditions at Level 1 of the spreadsheet, or keyboard conditions at any level. 

Apan from Layer 1 receive conditions and transmit actions at all layers (discussed below), 
strings are valid also in KEYBOARD conditions, where a list of keys may be entered, anyone of 
which will satisfy the condition; in IDLE_LINE actions, where a single-character "string" entry 
represents the new idle character; in LOAD_PROGRAM actions, where the string must match the 
absolute pathname of the file to be loaded; and in PROMPT and TRACE actions. 

All ASCII-keyboard, control, and hexadecimal characters are legal both in receive and 
transmit strings. 

Two ASCII characters are treated in a special way. If you wish to include a quotation mark 
within a string, you must precede it with a backslash character (\"). If you wish to include a 
backslash character in a string, you must precede it with a second backslash character (\ \). 
A single backslash is never included in the string. 

Control characters are entered into text strings by the action of the ~ key together with the 
key that bears the control-character mnemonic at the top right corner. Note that CR 
("carriage return") is the mnemonic at the top right corner of the ~ key. Press ~-~ to 
enter 'it into a text string. The E3 key does not produce a character entry. 

JUL '90 32-1 



Table 32-1 
Valid Entries in Receive Strings 

Example In This data Data beginning 
Type entry Example Key sequence string or list satisfies string (arbitrarily) wi AB 

(lof) condition satisfies 10f condition 

ASCII 2 III "123" 123 AB2 

" \" lSI §]-D "1'\"3- 1"3 ABII 

\ \\ lSI lSI "1\\3" 1\3 AB\ 

Control " ~-@) "1"3" '''3 AB" 

Hex 0, EJI!lI!l "1°.3- 10.3 AB". 

Not Equal ... ~1lI "1 ... 3" 113 A 

Bit Mask (( XXXXlllll) ~-~~~~~ "H( XXXX1111 l) 3" 1°F' 3 ASO. 

m m m m ~-I!l 
Not equal ;;XXXXllll)) ~~-~~~~~ "I;XXXX1111ll3" 123 A 

to bit mask mmmm~-I!l 

Don't Care I8J ~ "11813" 153 A 

Flag lEI ~ " t!El3" tfi3 AE0 

Sync ~ §]-~ "1~3" 1~3 AElil 

Constant ((All ~-~ §]-~ ~-I!I H( Al) 3 labcdefg3 ABabcdefg 

where A Is 
defined In a 
CONSTANT field as 
A , " abcdefg " 



32 Strings 

32.1 Strings To Be Matched Against Line Data 

String conditions are legal in STRING and ONE_OF conditions at Layer 1 only. 

Receive strings (and DTEiDCE strings) have a size limit of 32 characters. Their size 
cannot be expanded through the use of constants. (Any constants will be expanded 
be/ore the size limit is enforced during compilation of the program.) 

(A) Special Characters 

Of the special-character keys, ~; &ill, ~, and 8-~ (for the ~ character) 
are valid. ~ is not valid. Bit masks are entered in receive strings by the 
keying sequence illustrated in Table 32-1. 

(8) Embedded Strings ("Constants") 

The string represented by a constant may be embedded in a receive string or a 
list. A constant is a textual string that is represented by a symbolic name. This 
name is insened into a string or list inside of double parens. Double parens are 
special non-ASCII characters produced on the keyboard by ~-@] and ~-!!I. 

An example of a constant used in a spreadsheet condition is the following: 

CONDITIONS: 
RECEIVE STRING '«ADDR_All'" 

The data that satisfies this string will depend on the definition of the constant. 
Here is one possible definition: 

CONSTANTS: 
ADDR_A = "AAr

F
7
F· 

The data that satisfies the condition will include the expanded constant along 
with the rest of the string: AA',', ... 

32.2 Strings To Be Transmitted 

JUL 'SO 

Only Layer 1 allows the user to type in a complete transmit string, character by 
character. In the following transmit string, the entire transmission including sync 
characters is inside of quotation marks: 

SEND ''''''1.'0' NO_BCC 

At higher layers, the user types the names of protocol units and values as "keywords" 
and the software convens these elements to strings. Immediately following the 
keyword entries, the user may add a string in quotation marks. Here is an example 
of a string following non-string entries in Layer 2 SDLC: 

SEND FRMR ADR=Cl PIF=l ",',0,_ GDBCC 

32-3 



INTERVIEW 7000 Series Basic Operal/on: ATLC-l07-951-100 

32-4 

All ASCII -keyboard, control, and hexadecimal characters are legal in a transmit 
string. None of Ihe special-character keys (~, I!\'!J, 1mD, §)) is valid. 

(A) Constant 

Constants may be transmitted. Simply place the name of the constant inside of 
double parens and insert the unit into the string. While the test is being 
compiled, the constant is replaced in the string by the text that is assigned to it. 

The canned" fox" message is a built-in constant named FOX that is defined 
internally as follows: FOX = "THE QUICK BROWN FOX JUMPS OVER THE 
LAZY DOG 0123456789." An example of the FOX constant as it appears in a 
transmit string is given in Table 32-2. 

(8) Transmit Variables 

Certain variables may be transmitted also. Any number of counters and flags 
may have their values transmitted at any point. 

If a counter or flag is named inside of double parens in a transmit string, the 
current hexadecimal value of the low-order byte of that counter or flag is 
transmitted with the rest of the string. An example of a counter used in a 
transmit string is given in Table 32-2. 

In order to be referenced in a transmit string, a rOUl'lter or flag must first be 
created in a trigger-menu or spreadsheet condition or action. The counter or 
flag need not be named on a statistics screen. 

Do not name a counter (or flag) in a transmit string if has the same name as 
another flag (or counter). It is unpredictable which one will be transmitted. 

The low-order byte of a counter or flag is the default byte to be transmitted. 
The second byte will be transmitted instead if the name of the counter or flag is 
followed by [II inside of the double parens. Here is an example of a Layer 2 
transmission that includes both bytes of a flag named seq (as well as a fox 
message): 

SEND INFO ADR=Cl NR=AUTO NS=AUTO ",o.o,o.«seq[l )))(seq))0, "o'o5F«FOX))'," 

Flags are two bytes long, counters are four. All four bytes of a 32-bit counter 
may be transmitted. Here is a transmit string that sends a complete counter 
named fourbyte: 

SEND • counter = « !ourbyteI3)) «!ourbyte [2))) «!ourbytell))) «!ourbyte)) " 

JUL '90 

i 
I 

( 



JUL '90 

32 StrIngs 

(C) Data Request 

A transmit string that is created at one protocol layer may be passed down 
transparently to lower layers, one layer at a time, A user-entered message that 
is sent down at Layer 4, for example, is detected at Layer 3 as an N_DATA REO 

primitive and may be handed down to Layer 2 as an "CCN_DATA))" string. 

The string is appended either to a SEND DATA action (or to a DL_DATA REO 

primitive). See the example below. The SEND DATA action will append a packet 
header to the N-data automatically. The DL_DATA REO primitive will not add a 
header to the N-data string; but the user may enter additional data inside of the 
quotation marks (not inside the double parens). 

Layer 2, in turn, detects the data as a DL_DATA REO primitive, and may hand it 
down to Layer 1 in the form of a "CCOL_DATA))" string appended to a SEND INFO 

action (or to a PH_DATA REO primitive). 

LAYER: 4 
STATE: transport 

CONDITIONS: KEYBOARD" " 
ACTIONS: N_DATA REO "CCFOX))" 

LAYER:3 
STATE: network 

CONDITIONS: N_DATA REO 
ACTIONS: SEND DATA PATH= 0 "CCN_DATA))" 

LAYER:2 
STATE: dotollnk 

CONDITIONS: DL CONNECT REO 
ACTIONS: DL CONNECT CONF 
CONDITIONS:-DL_DATA REO 
ACTIONS: SEND INFO "CCDL_DATA))" 

Data is sent up the layers also. The mechanism for passing data upward is the 
GIVE_DATA action included in the protocol personality package at each layer. 
Since the user will not normally wish to add protocol headers to upward-rl,oving 
data, this data is not treated as a separable string inside of quotation marks. It 
is passed upward transparently in the GIVE_DATA action. 

32-5 



Table 32-2 

Valid Entries in Transmit Strings 

Type entry Example Key sequence Example In Data transmitted 
transmit string 

ASCII 2 ~ -123- 123 

" \" ISJ 8-0 "'\113" 1"3 

\ \\ ISJISJ "1\\3" 1\3 

Control " ~-~ "1"3" 1"3 

Hex 0, ~ lID lID ·,°.3" ,°.3 

Constant ((A)) where A Is defined ~-®8-0 "1((A)) 3" labcdelg3 

In a CONSTANTS field 8-1ID 
as A = ~ abcdefg" 

Fox ((FOX)) ~-ffi ~ (EJ IQ] lEI "1((FOX)) 3" lTHE QUICK BROWN FOX JUMPS 

~-IID OVER THE LAZY DOG 01234567893 

Counter or ((addr)) 8-® "1((addrll3" ,oE3 

flag, where addr Is the name o IQ] IQ] lID ~-IID 
(low-order byte) of a counter with a current 

decimal value of 14 

Counter or ((seq [1]l) where seq Is ~-® " 1((seq[1]l)3" ,5",3 

flag, second byte the name of a flag. the 1IDIIDIQ](j](j)(j) 
second (high-order) ~-IID 
byte 01 which has a 
binary value 01 01010100 

Data In a ((DL_DATA)) at Layer 2, ~-® "l((DL_DATA)) 3" 1 '0°,·, THE QUICK BROWN FOX 

data-request where Layer 3 string Is IQJ III 8-EJ IQJ ~ lTI 0 JUMPS OVER THE LAZY DOG 

primitive fox message and Layer 3 ~-I!J 01234567893 

header Is 10°7 6E 


