
54 Data Flow

54 Data Flow

JUL '90 54-1

HlONT LED'S ..

L ____ _

t I f II i I US ~:l f-~

r-----------------
,

I ,

I
•

I ,

I

00'
CLOCK

""

C"IIII.US

"-

. ..

, I YTTL:::..J" L ___ ---==-t ____ -.1
...... us

GlOM&. ""S

Figure 54-1 Block diagram of INTERVIEW
7000 Series hardware architecture.

54 Data Flow

54 Data Flow

JUL '90

Figure 54-1 is a block diagram showing the components on each of the six types of logic
board in the INTERVIEW 7000 Series. The components on the TIM (Test Interface Module)
also are shown. Figure 54-2 indicates the flow of data among the various functional
components of the unit.

54.1 Two Types of CPU

The brain of the INTERVIEW is the Motorola 68010 processor on the CPM (Central
Processing Module). See Figure 54-1. The 68010 processor controls operations in
the unit not directly under control of the user program. 68010 operations include
fetching power-up software and initialization routines from the EPROM, controlling
disk I/O, and maintaining setup and statistics screens. The operating system in the
68010 is pSOS.

An Intel 80286 processor controls the operation of the MPM (Multiple Processor
Module). The MPM does all higher level processing of receive data. The board
also generates the transmit data to be sent out in emulate mode. The 80286 uses a
basic, multitasking real-time executive operating system.

An INTERVIEW 7000 and 7200 TURBO has one MPM with its own 80286 CPU.
The INTERVIEW 7500 and 7700 TURBO always have three MPMs, each with its
own 80286 CPU.

54-3

INTERVIEW 7000 Series Advanced Programming: ATLC 107-951-108

DTEIDCE

i
TIM

--. f....

"'.
I LEDs t Data

and
control
leads

Bil-image
data playback

FEB

RAM '1- Record-
hit-Image Dala, control

datB, conlrol leads (if
Transfer leads (II buffered) ,

burrered), and time ticks
and time (II enabled)

DISK
licks (II

L- .'- enabled)_

I
Character-data

playback

"--l TRIGGER LOGIC
80286 processor(s)

MPM boards) i
Program

.,
0

and
setup

OPERATOR
C haracler INTERFACE

data,
control 68010 processor

Ie ads, and CPM board
time

ticks: [I cord or
transfer

re

4- Display Keyboard Printer Remote

Figure 54-2 INTERVIEW 7000 Series functional diagram.

54-4

Tr ansmilled
18 and
nlrol

da
eo
Ie ad.

(

JUL '90

JUL '90

54 Dala Flow

The 80286 operates on software located in the DRAM on the MPM. See
Figure 54-1. This software is the user program-setups, trigger menus, protocol
spreadsheet, and protocol state machines (layer packages)-translated and compiled
by the CPM and loaded into the MPM. The program will tell the MPM how to
process the data, what trigger conditions to look for in the data stream, etc.

The CPM polls the MPM continuously to see if data is available to be output to the
printer or the plasma display. This data includes character data, trace data, prompts,
and values to be posted to the statistics screens.

While the CPM accesses the MPM on a regular basis, there is no access in the
reverse direction. That is, the user program running on the MPM has no direct
access 10 the CPM. The user cannot write to one of the menu screens, for example.

54.2 Front-End Buffer

Note in Figure 54-2 that the front~end buffer (FEB) lies squarely between the line
interface and (1) the recording medium and (2) the program logic on the MPM.
This means that control leads mayor may not be recorded and mayor may not be
seen by the trigger-menu and spreadsheet conditions-depending on .the FEB setup
(see Section 9).

Once control leads and time ticks (that is, the original timing values) are recorded
alongside character data, they are locked in. Since the FEB is not on the playback
path for character data, FEB selections do not apply.

Bit-image data, however, does pass through the FEB during playback. Except for
the Idle Suppress field, FEB selections apply. This means that control leads and time
ticks, if recorded with the data, must be enabled in order for the program logic to
detect them.

Not only characters but also leads and time ticks, if enabled in the FEB setup, are
captured automatically in the display buffer (that is, the screen buffer or character
RAM).

Data, time ticks, and control leads are encoded in a special storage format by a
data-encoder chip on the FEB board. See Figure 54-1. The encoded data is
buffered to be sent to the PCM (Peripheral Control Module) for recording and to the
MPM for processing.

The encoding process is driven by clock pulses on the line interface. This means that
in the absence of external clock (or, if the INTERVIEW is emulating DCE, in the
absence of internal clock), neither line data, time ticks nor EIA leads will be
recorded or presented to the receivers and to the program logic.

54-5

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-108

(

54-6 JUL '90

55 Program Main

55 Program Main

JUL 'SO

Softkey-selectable programming "tokens" entered by the user on the Protocol Spreadsheet are
translated automatically into C during the initial compiler phases after 8 is pressed. Trigger
Menu setups also are translated into C. When the translation Is complete, the compiler takes
over and converts the C code into object code. The C variables and routines used by the
translator are documented throughout this volume.

Briefly, the translator makes the following conversions: it turns TESTs into tasks; STATE names
into labels; STATEs Into walt/or clauses; CONDITIONS into wail/or expressions that include
event variables; and ACTIONS into statements and routines, also inside of walt/or clauses.

Then the translator creates a program main function that calls every task in the program.

55.1 Translating a Simple Test into C

Suppose that the following simple program, intended to sound the INTERVIEW's
alarm at 1 P.M., has been entered on the Protocol Spreadsheet.

STATE: sample 1
CONDITIONS: TIME 1300
ACTIONS: ALARM

When the user presses 8, roughly the following C coding (with some extraneous
code removed for clarity) is generated and then compiled:

extern fasl_event jeva, _time_oJ_day;
extern volatile unsigned short crnt_tlme_of_day;
task
{

main ()
{

}

state sample/:
waitTor
{

} dles/_O;
main ()
{

55-1

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

55-2

Note that the translator has assigned statejample] to a default TEST named dtes/_O.
It converted the TEST into a task and placed state_sample] inside of the task. Then
it created a program main function and used the program main to call every testltask
in the program. The tasks appear in the task list in the same order in which they
appear in the spreadsheet program. In this instance there was only one task to call.

If you try to enter the program above on the spreadsheet entirely in C, in the first
place you will have to surround it with a pair of curly braces. Then it will not
compile. The translator does not look inside of curly braces (except to expand
constants). It simply lifts up the braced C regions and places them Intact into its
translation of the softkey portion of the program,. before adding a program
main-even when, as in this instance, a program main already is included in a C
region. The two main functions conflict here, and the compiler issues the error
message, !lError J09: Function main redefined."

If we were to remove the main function from our C version, the program would
compile but it still would not work. Here's why. When the translator looks at a
program made up entirely of C code, it doesn't see anything. So it creates a
program main with a task-list that ·is empty. The task that is declared in the program
above (dlest_O) is never called.

The rule, then, is that a Protocol Spreadsheet program containing tasks written in C
must always have at least one softkey STATE (with its implied task) that calls all the (
tasks.

55.2 A Minimum of One Softkey State

Here is a Protocol Spreadsheet test that works and yet has the minimum number of
softkey tokens-one. Note that we have given the task dtesl_O a new name, since
the translator will declare the task-name dtest_O as the default test for our new
softkey state, task_list.

extern fQst_e~enl Jevo'_'lmt_of_day;
extern lIolalile unsigned shor, crnl_tlmt_of_day;
task
{

main ()
{

state_sample) :
woUlo,
{

STATE: task list
{ -

<_"51 ();

JUL '90

JUL '90

55 Program Main

And here is the program as it is actually compiled. Note that the translator has
added a program main that calls dtest_O (which in turn calls c_test).

extern fast_event Jevar_time_of_daYi
extern volatUe unsigned short crnt_tlmt_of_daYi
lask
{

main ()
{

}

SIale_sample}:
wait/or
{

feva,_time_o/_day. && (crnt_limt_oJ_day == /300):
{

}

} c tesl,'
task
{

main ()
{

state lask list:
{ - -

<_'es' ();
wail/or ,. This empty wailfor is automatically generated in any slate

thai does not contain a wailfor .• ,

}
} dies, 0;
main {j
{

dies' 0 ();
} -

55.3 Writing the Test Entirely in C

The INTERVIEW is equipped with tools-namely, the #pragma hook 0 preprocessor
directive and linkable-object (LOBJ) files-that make it possible to write a version of
the test completely in C.

NOTE: For more information on #pragma hook directives, see
Section 59.4. Refer also to Section 14.3(P) on linkable-object
files.

Write the following C code to an ASCII file (hookJtest.s) using the Protocol
Spreadsheet editor's WRITEIU command. Then delete the code from the spreadsheet.
Go to the File Maintenance screen and and create a linkable-object file
(hook_ctest.o) using the Compile command.

55-3

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-107-951-10B

55-4

#pragma hook 0 "c_,est();"
extern faSI_tllent /tllof_fimt_of_day:
extern volatile unsigned shor' crnt_tlmt_ol_day;
task

{
main()

{
state_samplel:
walt!or

{
/ello'_timt_of_day && (crnt_tlmt_of_day == 1100):
{

}
}

} c_tesl_tasJr.;
c_/es/()

{

Notice that the "hook" is a call to the routine c_test. This routine's only purpose is
to start the task, c_test_task. A task name is always local to a linkable-object file
and never directly copied from it. If you try to call the task directly in the #pragma
hook 0 directive, therefore, the spreadsheet program (shown below) will not compile.
Since the task name is local to the file, the following error message will be displayed:
"Error 140: Unresolved reference c_test_task." The rule for including tasks in a
linkable-object file, then, is to let the #pragma hook 0 directive call a routine which
starts the task(s).

NOTE: Since task names are local to a file, the definition of
c_test_task also cannot be located in a referenced LOBJ file
different from the one in which it is called.

The Protocol Spreadsheet program required to execute the test consists of a single
line:

OBJECT: "hook_ct •• t.o·

When translated, the program looks like this:

#pragmo object "hook_ctesI,o"
main ()

{

Notice that the routine c_test is located within the top-level program main. The
hook text from a #pragma hook 0 directive is always put at the end of main's task
list. At this point, since c _test has not been previously declared, it is assumed to be
an extern function (not a task) that returns an int. The linkable-object file(s)
referenced in the spreadsheet program will be searched for the routine's definition.

JUL '90

56 . Regions In Spreadsheet

56 Regions in Spreadsheet

JUL '90

C language can be embedded In a Protocol Spreadsheet program at several access points. A
C region can be opened at the top of the program, or in an OBJECT, IL_BUFFERS,

CONSTANTS, LAYER, TEST, STATE, CONDITIONS, or ACTIONS block.

At these points, simply begin the C region with an opening curly brace. Make your entry and
terminate it with a closing curly brace.

The remainder of this section describes C code blocks related to the spreadsheet components,
from largest to smallest.

56.1 Layer and Test

The main function of a task is the highest level function that may be programmed by
the user of the INTERVIEW 7000 Series. The keyword task in a C region
corresponds to the TEST: softkey token on the Protocol Spreadsheet. Typing TEST:

keyboard_alarm on the spreadsheet is the equivalent of the following C coding:

task
{

#pragma layer 1
main ()
{

I' declarations, stale-labels, and statements go here "

The INTERVIEW is multitasking, so more than one taskltest may be defined. All
tasksltests run concurrently if they are included in the task list created by the
translator when it generates the program main function. See Section 55, Program
Main, for an explanation of how this automatic program main is created.

Layers have no existence in C independent of the tasks that they contain. When a
user enters the LAYER: token on the spreadsheet followed by a layer number, the C
translator prefixes that number to the name of each task that follows. Note in the
example above that the test name keyboard_alarm was given a layer _I_test prefix.

The C translator also issued the preprocessor directive #pragma layer 1. The compiler
uses this layer declaration to distribute tasks efficiently among 80286 processors. This
pragma is an optimizing feature and is not strictly required in the body of the task.

The C translator does nothing else with the layer number other than convert it into a
prefix to the task name and construct the #pragma directive.

56-1

I

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-l07-9S1-108

56-2

The layer number does, of course, determine many of the branching soltkey
selections that will be available to the user who is not programming in C. The C
programmer will lind that none of the variables or routines mentioned in this manual
is specific to a particular layer. A variable or routine that is supplied, for example, by
the X.2S Layer 3 personality package (at the time that the package is loaded in via
the Layer Setup screen) will still be available inside of a task that nominally belongs
to Layer 1 or Layer 2.

Test -----l~... task

{
main ()
{

static label current_state;
States declared here _

}

} layer n test name - - -

Figure 56·1 C equivalent of a spreadsheet test.

56.2 State, Enter State, and Next State

A STATE on the Protocol Spreadsheet Is a label in C, used as a target of a goto
statement. Typing STATE: alarm_on on the spreadsheet is the equivalent of this C
coding, placed inside of the braces that follow the task main:

static label current state;
state alarm on: -
current_state = stote_olorm_on_'oop;
{

I' statements go here "
gOlD (current_state):
sta Ie_alarm_on _loop:
waitfor
{

"condition clauses go here, each comprised of expression, colon(:), and statements"

goto (current_state);

Note that the C translator has taken STATE: alarm_on on the Protocol Spreadsheet
and produced two state labels, state_alarm_on and state_a'arm_on_'oop. The first
state label is followed by statements that will be executed immediately upon entering
the state. The "Ioop"-state label always introduces a waitlor construction. Both states
end in a statement to goto (current_state).

JUL '90

(

(

JUL 'SO

56 RegIons In Spreadsheet

The translator's version of a state includes overhead to cover all cases, including
special cases, The loop state is not strictly required, and a streamlined version of the
basic state coding that eliminates the extra state will work inmost instances:

.Italic label current statt;
slate alarm on: -
{- -

,- declarations and statements go hue .,
wait/or
{

,. con dillon clauses go here, each comprised o/expression, colon(:}, and statement(s) -,

gOlD (current_stale)i

Note these points about states created entirely by the programmer:

A gala statement cannot be used inside of a wail/or construction,

You must use a break statement to exit the wail/or construction.

You may dispense with the currentjlale variable and gala a state label, in which
case the opening and closing parens may be omitted.

(A) Declaring States
The state name followed by the colon (:) is itself a label declaration and does
not require an additional declaration.

(8) Enter State
The C translator puts a wail/or construction into every "loop" state. If you want
a statement to be executed immediately without waiting for an event, you may
place that statement in the nonloop state, outside of the wail/or statement. The
following is an example of a state in which the sound_alarm routine is executed
immediately.

static label current_stale;
slale alorm on:
current slate = slale alarm on loop;
{- - --

sound_alarm ();
gOlo (current_stale);
sio Ie_alarm_on _'oop:
wall/or
{
}
gOlo (current_stale);

The example above is the equivalent of this spreadsheet entry:

STATE: alarm on
CONDITIONS: ENTER STATE
ACTIONS: ALARM -

A hybrid version also may be created:

STATE: alarm on
{ -

sound_olarm();

56-3

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

56-4

The sound_alarm function is executed immediately, since the translator places it
above the wait/or. When you enter a CONDITIONS: block on the spreadsheet, you
move inside a wail/or-unless you place your C region immediately following an
ENTER_STATE.

An ENTER_STATE condition may cause the translator to generate an i/ statement
in the nonloop state (above the wail/or state). Here is a spreadsheet example:

STATE: alarm on
CONDITIONS: ENTER STATE

COUNTER anvname EQ· 3
ACTIONS: ALARM

This is the eversion:

stalic label current slale:
stale alarm on: -
current_stati = state_olorm_o"_loOp;
{

if (counte,_anynome.current == 3) sound_olarm():
goto (current_slale):
sto Ie_alarm_on _loop:
wail/or
{
)
gOIO (current_state):

And here is a hybrid version:

STATE: alarm on
{ -

if (counte,_onyname.currenl == 3) sound_alarm():

(e) Next State

The C translator supplies the statement "golO (currenl_slate)" at the bottom of
every state that it codes. 11 currenljlale has been redefined and if the program
reaches the bottom of the state, the golO statement will redirect the program
toward a new state label. That is how the program is redirected into
slale_alarm_on_loop in this translator's version of STATE: alarm_on:

static label current_slale;
slale_alarm_on;
current_slale = state_olarm_on_looPi
{

gOlD (current_stale):
slate _alarm_on_loop:
walt/or
{
)
goto (currem_state);

JUL 'SO

(

JUL 'SO

56 Regions In Soreadsheet

State a -

nonloop
state 8

loop
state 8

------:J~~ state a:

current_state = state_aJoop;
{

Declare variables
& functions here _

Enter-State •
Condition
and Action

If (expression) statement;

goto (current state);

state a loop:

wailfor

Event-related {
Condition --.. expression:

{

Action • statement;

current state = state z;
break; - -

Next State -
}

}

}
goto (current state);

Figure 56-2 Basic C structure of a spreadsheet slale.

If the user wants to redefine currentjtate, he may do so in the nonloop state,
in which case the loop (wait/or) state will be bypassed:

stalic label current_slate,
slate alarm on:
current stQte = state a/arm on loop;
{- - --

)

current_stale = state_alarm_off;
gOIO (current_state);
slale _alarm _on_loop:
wall/or
{
)
gOlD (current_state);

state_alarm_of!:
,. etc . • ,

56-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

56-6

The example above is the equivalent of this spreadsheet entry:

STATE: alarm on
CONDITIONS: ENTER STATE
NEXT STATE: alarm off

STATE: alarm_oil -

The following hybrid code also will produce the same result. No break is
necessary. since the translator will place the C region above the wait/or.

STATE: alarm on
{ -

}
STATE: alarm_Oil

Or the user may redefine currenljlate in the wail/or statement itself. inside the
loop state. The only way out of a wait/or statement is a break. so the translator
must furnish a break whenever it converts a NEXT_STATE action into C (unless.
as in the example above. the condition that triggered the NEXT_STATE action was
ENTER_STATE. and consequently the program never entered the wait/or loop).
The following example uses NEXT_STATE:

STATE: alarm on
CONDITIONS: KEYBOARD'
ACTIONS: ALARM

PROMPT ~press space bar--alarm now disabled"
NEXT STATE: alarm off

STATE: alarm 011 -
CONDITIONS: KEYBOARD' •
ACTIONS: PROMPT 'press space bar--alarm Is activated"
NEXT_STATE: alarm_on

Here is the eversion:

stalic labe' current slate:
state alarm ·071: -

current slate = state alarm on loop;
{- - --

gOIO (current_state);
state _alarm_on_'oop:
wait/or
{

}

keyboard_new_ony_key && (keyboord_ony_key == • '):
{

sound alarm ();
displaYJrompt (flpress space bar--a/arm now disabled"),
current_state = state_alarm_off;
break,

golo (current_state);

JUL '90

JUL '90

56 Regions In Spreadsheet

SIale_alarm_ofl:
current_slale = sIal,_olarm_off_'oOPi
{

gala (current state):
state_olarm_off_'oop:
walt/or
{

}

keyboard_new_ony_lcey &:& (keyboard_any_lcey == • 'J:
{

dlsployyrompt ("press space bor--alarm Is activated");
current sial' = stale alarm on:
breale: - --

gOlo (current_state):

Various hybrid versions are possible. Here is one:

STATE: alarm on
CONDITIONS:
{

lceyboard_new_Qny_key && (keyboard_any_key == • 'J
)
ACTIONS:
{

}

sound_alarm ();
display yrompt (" press space baf--alarm now disabled") ..
current_state = stal,_olarm_off;
break;

STATE: alarm off
CONDITIONS:
{

}
ACTIONS:
{

display -prompt ("press space bar--alarm Is activated") j
current slate = slate· alarm on;
break; - --

56.3 Conditions and Actions

When a condition is translated into C code by the INTERVIEW, the resulting
expression is enclosed in braces at the top of a wait/or statement. The only exception
to this rule is the ENTER_STATE condition-see Section 56.2(B), above.

The conditional expression is followed by a colon and then by the statement that
constitutes the action to be taken when the condition is true. If more than one action
is coded, braces must be used to form a statement block. See Figure 56-3.

Typing CONDITIONS: KEYBOARD' • on the spreadsheet is the equivalent of this C
coding, placed inside of the braces that follow the reserved word wail/or:

keyboard_new_any_key && (keyboard_any_key == ' '):
{

,. aclion-statements or routines go here .,

56-7

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-108

56-8

CONDITIONS: .. expression:

{

ACTIONS: .. statement a; condition
statement b; clause

}

Figure 56-3 The Iranslalor converls the Condllion-and-Aellon "Irlgger" inlO a
condilion clause Inside of a walt/or stalemenl.

(A) Multiple Condition Clauses
Following the semicolon that terminates the statement (or following the statement
block), you may enter another condition clause. These clauses correspond to
triggers on the Trigger menus or conditions-and-actions blocks inside a state on
the Protocol Spreadsheet. Multiple condition clauses may be placed inside of one
wait/or construction. (There is only one wait/or statement per state.)

Here is an example of a state with two Utriggers":

STATE: k.yboardJ>rompl
CONDITIONS: KEYBOARD "I"
ACTIONS: ALARM

PROMPT "You have pr •• s.d the 1 k.y.·
CONDITIONS: KEYBOARD "2"
ACTIONS: ALARM

PROMPT "You have pr •••• d the 2 k.y."

A version in C would have two condition clauses:

slate _keyboardyrompt:
wait/or
{

keyboard_new _any_key && (keyboard_any_key == 'J'):
{

sound_Qlarm();
dlsplay....prompt ("You hove pressed the J key,");

)
keyboQrd_lIew_ony_key && (keyboQrd_ony_key == 'Z'):
{

sound_olarm()j
disploY....PTompt t'You have pressed the 2 key,");

If you are mixing spreadsheet tokens with C, place condition clauses inside of
STATE: blocks. Any C region at the top of a Stale block is placed above the
automatic wait/or statement. You must therefore supply your own wait/or word,
since a condition clause is syntactically valid only inside of a wait/or. An
example follows.

JUL '90

JUL '90

56 RegIons In Spreadsheet

STATE: keyboardyrompl
{

wail/or
{

keyboard_new_any_key &:& (keyboard_any_lcty == 'I'):
{

sound alarm ();
dlsplayyrompt ("You ha..., pressed the / key."):

}
keyboard_new_ony_key &:&: (keyboard_ony_key == '2'):
{

sound alarm ();
dlsplaY....prompt ("You ha~e pressed the 2 key."):

A word of warning is in order. When your program executes this code, it will
find itself stuck in a wait/or statement beneath the label state_keyboard...prompt.
If you want to exit this wait/or, you must execute a break in a statement block
in one of the condition clauses. Once you have broken outside of the wait/or,
you may gota another state.

If you add softkey CONDITIONS, ACTIONS, or NEXT_STATE blocks to the state
above, they will be placed Inside a different wait/or statement, the one that is
created automatically inside a state called state_keyboard"'prompt_loop. See
Section 56.2 (panicularly Figure 56-2). What may look like a single state on the
spreadsheet really will be two different states which never are active at the same
time.

(8) Multiple ExpreSSions

Expressions may be logically anded (&&) or ared (Ill together inside a condition
clause. Here is the spreadsheet version of a CONDITIONS block with two
expressions:

CONDITIONS: KEYBOARD "2"
FLAG keyboard disabled 0

ACTIONS: PROMPT "You have pressed the 2 key."

Inside the condition clause in C, the translator supplies a double ampersand
(&&) to connect the keyboard expressions with the flag expression:

keyboard_l1ew_ony_key &:&: (keyboard_any_key == '2')
&& (jlag_keyboard_disabled.current == 0):
{

dlsplaYJTompt ("You hO\le pressed the 2 key. ")j

56-9

INTERVIEW 7000 Series Advanced Programming: ATLC 107 951 108

56-10

Inside a CONDITIONS block, the translator is able to and a softkey condition
correctly with a C expression. Note that the user types the C expression without
a terminating colon. The translator will supply one later:

CONDITIONS: KEYBOARD "2"
(

jlo&_keyboord_disabled. current == 0
)
ACTIONS: PROMPT 'You have pre •• ed the 2 key."

The anding is also successful when the C expression is placed above the softkey
condition inside the CONDITIONS· block:

CONDITIONS:
{

jlag_keyboard_disabled. current == 0

KEYBOARD "2"
ACTIONS: PROMPT 'You have pr •••• d tho 2 k.y."

If you want to insert a comment into a Conditions block, remember that the
translator does not look inside of C regions (except to expand constants). It will
take the comment and and it with the rest of the expressions in the Conditions
block. Since a comment is not a C expression, the program will not compile: see
Section 56.3(D). Note in the following example that a 1 has been inserted inside (
the C region along with the comment in order to make the code compile and in
order to make the expression fl true . II

CONDITIONS:
{

" This comment will be anded with the keyboard expression. " 1

KEYBOARD "2'
ACTIONS: PROMPT 'You have pr •••• d tho 2 k.y."

(e) Event Variables
The translator converts most Conditions blocks on the Protocol Spreadsheet into
two or more expressions linked by the logical and operator (&&). The keyboard
condition in the examples above was typical: KEYBOARD' 2" on the spreadsheet
became a pair of expressions logically anded in C.

The first expression, keyboard_new_any_key, is an event variable. Event
variables are very important in the INTERVI EW implementation of C, and the
programmer should observe the following rules of thumb:

1. An event variable usually is paired with a nonevent variable. At the
moment an event variable comes true in a wait/or construction, all nonevent
(or "status") variables attached to that event variable are evaluated for truth
or falsity. Whenever any keyboard key is struck, the event variable
keyboard_new_any_key comes true. At that moment, the nonevent
expression keyboard_a ny_key == '2' is evaluated to determine whether it is
true or false.

JUL 'SO

56 Regions In Spreadsheet

2. A waitfor statement must include at least one event expression. A wait/or
statement without an event variable will not compile. There must be some
event that might transpire to cause the nonevent expressions to be evaluated.

3. An event variable may appear alone in an expression. It is possible (though
unusual) to have an event expression that is not anded with a nonevent
expression. When the translator converts CONDITIONS: DTE GOOD_BCC into C,
for example, the resulting expression is this simple event variable:

jevar.....ad_bcc_td:

4. A nonevent variable also may appear alone. It also is possible (though the
translator does not do this inside of wait/or statements) to have a nonevent
expression that is not anded with an event expression-as long as there is an
event expression somewhere in the wait/or construction. The following
program will compile and work:

{
extern fast_event keyboQrd_new _any_keyj
extern lJo/atile unsigned short keyboard_ony_keYj

STATE: keyboard Jlrompt
CONDITIONS:
{

keyboard_new _any_key && (k.eyboard_any_key == '}')
}
ACTIONS: PROMPT "You have pressed the 1 key.'
CONDITIONS:
{

}
ACTIONS: PROMPT "You have pressed the 2 key.'

In this example, keyboard_any_key == '2' is not anded with an event
variable. As a result, It is attached automatically to the event variable
keyboard_new_any_key in the Conditions block above. If there had
happened to be other event variables in the state, it would have been
attached to them as well; so that when any event in the state came true,
keyboard_any_key == '2' would be evaluated.

NOTE: Other event variables in the state would cause
keyboard_anyJey to be evaluated, but would not necessarily
cause it to be updated. Event variables are guaranteed to update
only their associated nonevent variables. In the example above,
keyboard_any_key is an associated nonevent variable for the event
variable keyboard_new _any_key.

5. Two event variables may not be combined. Two event variables may never
be combined in a condition clause, since two events never are simultaneous.
Since all spreadsheet conditions have event variables associated with
them-counter conditions have the counter _name_change event variable, for
example-it might seem impossible to combine a counter with another

JUL '90 56-11

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-107-951-10B

56-12

condition in a single CONDITIONS block. In fact, in the case of a few special
combinable conditions-buffer-full, counter, flag, and EIA are examples-the
translator will sometimes omit the event variable. When two or more
combinable conditions are combined, the translator uses a first come, first
served rule that is explained in Section 57.3, Programming Considerations.

(0) Evaluating Nonevent Expressions

Nonevent expressions are true if they have a nonzero value. In the following
program, the "trigger" will sound the alarm when any keyboard key is struck
because all of the nonevent· expressions ·arenonzero:

STATE: boolean
CONDITIONS:
{

keyboard_new _any_key &:& 1 &:& 99 &:& 10003
}
ACTIONS: ALARM

This version never will sound the alarm, because one of the anded components
is zero:

STATE: boolean
CONDITIONS:
{

}
ACTIONS: ALARM

Relational expressions like keyboard_any_key == '2' and logical expressions
connected by && (like those above) and II are defined automatically to have the
value 1 if true and 0 if false.

(E) Multiple Statements

Statements may be blocked together inside a condition clause. Here is the
spreadsheet version of an ACTIONS block with two statements:

CONDITIONS: KEYBOARD "2"
ACTIONS: PROMPT "You have pressed the 2 key."

ALARM

The C version is a condition clause with two routines, displayyromp/ and
sound_alarm, inside a block or compound statement:

keyboard_new_ofJy_key && (keyboard_any_key == 12'):
{

display yrompt (" You have pressed the 2 key.");
sound_alarm()j

JUL '90

(

56 Regions In Spreadsheet

A hybrid version, part spreadsheet language and part C language, will work:

CONDITIONS: KEYBOARD '2'
ACTIONS: PROMPT 'You have pressed the 2 key.'
{

The hybrid example as it stands will not allow you to declare routines and
variables, because the translator will place these declarations in a statement block
beneath the display"'prompt routine. For declarations, move the C region to the
top of the Action~ block; or-use double braces to open a new statement block
lower down, since declarations are legal following the left brace that introduces
any compound statement.

56,4 Example of Complete C Program

Some of the examples in the previous pages of this section were incomplete, in that
they included variables that were not declared, or they lacked a softkey STATE that
could generate a proper program main. The following is an extended example that
compiles and runs. It includes many of the pieces that formed the shorter examples
in this section. It is written for the Protocol Spreadsheet as completely as possible in

(C. (See Section 55.3 on how to write a program completely in C.)

JUL '90

extern fast event keyboard new any key:
extern volatile unsigned shor, keyboard_any_key;
task
{

rna;" ()
{

static label current_state:
state_alarm _on:
current_slate = slatt_olarm_oll_'oopj
{

gOlo (current_state):
state _alarm_on_'oop:

woUJor

)

{

}

keyboard_new_any_key && (keyboQrd_onY_key == ' '):
{

}

sound alarm():
dtsplaY""prompl ("press space bOT--alarm now disabled");
current_state = state_alarm_off:
break;

gOlD (current_state);

stale_alarm_off:
current_state = state_'alarm_o/f_loopj
{

gOlD (current_state);
state_alarm_off _loop:
waltfor
{

56-13

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

56-14

}

}

dlsplaYJTompt ("press space bar--a{arm ;s activated");
current state = stale alarm on;
breakj - --

gOlo (current_state):

layer _I _'est _keyboard_alarm;

56.5 Summary of C Regions

The translator removes the outer braces from a C region and place. it Into one of the
six basic levels of source code shown in Figure 56·4.

(A) Declarations

Declare your variables and routines in a C region. delimited by curly braces {

and}, at the top of your program or at the top of a Constants, Layer, Test,
State, or Actions block. Declare a variable preceded by its type descriptors and (
followed by a semicolon, as in these examples:

extern fasl_event keyboard_new _key:
exlern jast_event keyboQrd_new_ony_key:
extern last_event je!Jo'_tlmt_of_dayj
short minutes;

We have not bothered to declare routines in most of the examples in the
manual, since it is not necessary. In the absence of a declaration, the compiler
assumes that the routine is external and that it returns an integer. In nearly all
cases, this assumption works. In the few cases where a routine returns a long
(get_68kyhys_addr is an example), it must be declared.

1. Automatic declaration. In cases where the translator declares a variable
automatically, the user does not have to declare the variable himself. For
example, a KEYBOARD condition, when entered via softkey, will declare the
variable keyboard_new _key automatically for the entire program. When a
variable has been declared twice in a program block, the program may not
run. Instead, the compiler will put up a message such as the following: Error
110: keyboard_new_key redeclared. In software version 5.00 and in earlier
software, the compiler flagged double declarations and aborted the
compilation.

Sometimes it is difficult to keep track of the exact version of a variable that
the translator is declaring. Some external variables have been improved for
the use of C programmers, and we have documented the newer version in

JUL '90

JUL '90

56 Regions In Spreadsheet

our tables and in many of our examples. The translator may still use an
older version of the variable.

In an earlier software release, for example, the variable extern event
keyboard_new _key was speeded up and renamed extern fast_event
keyboard_newjey. The translator still uses the older name to declare the
variable.

The variable keyboard_new_any_key is a still more recent improved version
of keyboard_new_key-improved in that it detects the striking of non-ASCII
keys as well as the ASCII set. The translator never declares
keyboard_new _any_key automatically.

Similarly, the translator uses an older version of extern fast_event
fevar _eia_changed. The older version is extern event evar _eia_changed. In
the earlier software, compiler error messages such as "keyboard_new_key
redeclared" and "Variable fevar _eia_changed undeclared" will inform you
what the translator is doing in each instance.

2. Legal declaration. Declarations are legal following the left brace that
introduces any compound statement. Figure 56-4 shows that'when the user
opens a braced C regiori following a TEST:, STATE:, or ACTIONS: keyword,
the translator removes the outer braces from the C region and plants the C
code just inside the left brace at Level 2, 4, and 6 of the source code.
Declarations therefore are valid at the top of these regions.

Declarations should be grouped at the top of any region, since they are not
allowed in a statement block below an executable statement. This program
will not compile, because the sound_alarm routine precedes a declaration:

STATE: lead change.
CONDITIONS:
{

}
ACTIONS:
{

sound alarm () i
int lead_changes;
lead_changes tti

Declarations never are legal at Level 5 (Figure 56-4)-that is, preceding the
colon in a condition clause inside a waitfor statement. Declarations always
are legal at Levell, since there are no executable statements at that level.

The set of variables listed as extern cannot be declared below Level 1.
Extern has a specialized meaning at the task level or lower: it is used to
"forward-declare" a variable without actually reserving storage space. The
variable must be declared again (but not as extern) in the body of the task.

56-15

Level 1

Braced C region at top of
spreadsheet. fol/owlng an
OBJECT or IL BUFFERS
block, following-program
CONSTANTS: , following flrst
LAYER:number, or following
first layer CONSTANTS:
Inserted here

task.

layer 1 test name;
Braced C region following
subsequent LAYER:number
or subsequent layer
CONSTANTS: Inserted here

main()

}

Level 2

Braced C region
following TEST: name
Inserted here

#pragma layer 1
main()

{ layer_l_test_"ame();
}

Level 3

J static label current_stare;
state name:

)

current_statt =
state_nome_'oop;

Level 4

Braced C region
following STATE:name
Inserted here

T goto (current_Slate);
state_name_'oop;
wait/or

)
goto (current_state);

Level 5 Level 6

Braced C Braced C
region following region followfng
CONDITIONS: ACTIONS:
Inserted here Inserted here

£ { ,
Braced C

Braced C

region following j region following

spreadsheet-
spreadsheet-

condition token
action token

lnserted here
Inserted here

)

with connect-
Ing and (&&)
~erator i

Figure 56-4 The translator removes the outer braces from a C region and places it into one of six basic levels
of source code. The "telescoping" of the braces indicates the scope of declarations. A variable or routine

declared for Levell is declared for the remainder of Levelland across aU levels to the right.

~

JUL '90

56 RegIons In Spreadsheet

3. Scope. The "telescoping" of the braces in Figure 56·4 indicates the scope
of declarations. A variable or routine declared for Level 1 is declared for
the remainder of Levelland across all levels to the right. This means that a
variable or routine declared at the top of Level 1 will be global throughout
the program. You can force a declaration to the top of Level 1 by placing it
in braces (1) at the top of the Protocol Spreadsheet; (2) before or after an
OBJECT or IL_BUFFERS block; (3) inside a CONSTANTS block above the Layer
level; (4) inside the first LAYER block on the spreadsheet; or (5) Inside the
CONSTANTS block in the first LAYER block.

Here is an example of a global declaration:

}
LAYER: 1

TEST: loads
STATE: Inlt

CONDITIONS:
{

}
ACTIONS: PROMPT ·Status of a load has changed.·

A variable or routine declared at Level 1 (Figure 56·4) is declared for
subsequent layers and tests, whether the subsequent layer is higher or lower.
The concept of higher and lower layers is relevant to softkey entry on the
Protocol Spreadsheet, but is not carried over into the source code. To the
compiler, a TEST in Layer 2 and a TEST in Layer 3 are simply concurrent
tasks. The task that is first in the program is compiled first. That is the only
meaning of II higher" and IIlower" to the compiler.

A variable or routine may have its scope limited to a particular Test, State,
or Actions block. A variable or routine also may be redeclared at different
levels. Given more than one valid declaration, the lower or nearer one
applies.

4. Initialization. A variable must be of the static storage class to pass its value
into a wait/or statement. Declarations at Level 1 of the source code
(Figure 56·4) are always static, whether or not they are declared so. A
variable that is initialized at Level 4 (Figure 56·4) must be declared as static
by the programmer if the initialized value is to be used inside await/or.

(8) Statements

Executable statements may occur at four levels (Figure 56·4) in the source code:
at Level 2 of the program main function, where the function is defined; at
Levels 3 and 4, where the task main function is defined; and at Level 6, inside
a wait/or statement. The programmer has no access to Level 3. To access Level

56-17

INTERVIEW 7000 Series Advanced Progremmlng: ATLC-l07-951-10B

56-18

4, the programmer may open a C region just beneath the STATE: name identifier.
He may access Level 6 by opening a braced C region below the ACTIONS:
keyword.

Levels 1 and 2 are reserved for declarations. The program main function
executes statements at Level 2 (see the bottom of Figure 56-4), but this function
is accessible only to the translator.

JUL '90

57 Events

57 Events

JUL '90

In Run mode, the user program in the INTERVIEW moves from program STATE to program
STATE. In each state a set of conditions·ls·tested, with one·or more actions the result of a
particular condition coming true.

In the INTERVIEW's implementation of C, a "state" is a special control structure caUed a
wail/or clause that is placed in the program directly foUowing a label named for the state.
Program movement is controUed by gOlo statements that reference these labels.

Each wail/or clause defines a set of interrupts ("events") that it is waiting for. When a wail/or
clause is active and an interruptlevent occurs that is defined in that clause, the entire clause is
processed. AU of the conditions in the clause are tested and appropriate actions (statements,
operations, routines) are executed.

The wail/or clause is a mechanism designed specificaUy for the data-communications testing
environment, in which the program must interact at high speed with a variety of unpredictable
inputs.

In the wail/or clause in an earlier example (Section 55 of this volume), the condition
was this:

Once every minute, the CPM sends an interrupt to the MPM. This interrupt takes
the form of a /evar _lime_o/_day event.

If the program includes a /evar _lime_o/_day condition, the interrupt each minute wiU
cause the variable crnl_lime_o/_day to be updated.

If the current state includes a /evar _Iime_o/_day condition, the interrupt each minute
wiU satisfy that condition. At the same time aU other conditions in the clause,
including non-event (that is, non-interrupt-driven) conditions such as
crnl_lime_o/_day == 1300, will be tested.

The relationship between an event variable such as /evar _lime_o/_day and its
associated nonevent variable (in this case, crnl_lime_o/_day) can be summarized as
foUows: the event variable anywhere in the program causes the nonevent variable to
be updated each time the event occurs. The event variable in the currently active
wail/or loop causes the nonevent condition to be tested each time the event occurs.

57-1

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

57-2

Figure 57-1 illustrates this relationship, as well as the relationship between an event
and a nonassoeiated variable. The figure shows, for example, how an EIA event
might cause the time-of-day variable to be checked but not updated; and how a
time-of-day event might cause the EIA-status variable to be checked but not
updated. UEvent" in the figure means event variable, while "variable" means
nonevent variable.

events A & B
used In
program

events A & B
used In

currently active
state

-event A
occurs.

variable A
updated;

variable B
not updated

all
conditions

tested
IIIIIIIIIII

-event B
occurs

variable B
updated;

variable A
not updated

all
conditions

tested
IIIIIIIIIII

T
Figure 57-1 This figure is meant 10 show the effect of event A on lis associated variable (variable

A) as well as Us effect on a nonassocialed variable (variable B).

57.2 Various Origins of waitfor Events

Interrupts sent to the MPM from the CPM include levar _Iime_ol_day and
keyboard""new _key. Interrupts sent to the MPM by the SCC (Serial Communications
Controller) chip in the FEB include levar Jcvd_char _Id, levar ..J:d_bccJd, and
levar _eiaJhanged. Some interrupts are sent to the user program by the protocol state
machines in the layer packages. Examples are dceJrame and dle...packel.

Interrupts also can be generated by the program itself. The program sends an
interrupt in the form of a "signal." counler _name_change and flag_name_change are
events that are signaled by the program itself, since the program is in charge of all
counter and flag increments, decrements, and sets.

JUL '90

JUL '90

57 Events

57.3 Programming Considerations

By itself in a waitJor clause, crnt_time_oJ_day == 1300 never can be true, since only
interruptslevents cause the nonevent conditions in the clause to be processed. On the
other hand, counter _name_change && Jlag_name_change never can return true, since
two events cannot occur simultaneously.

Because two events never are simultaneous, the programmer (and the built-In
translator) has a decision to make whenever two nonevent conditions, such as
counter _name.current == 3 and Jlag_nome.current == 5, are anded together. If the
programmer writes counter _name_change && (counter _name. current == 3) &&
(flag_name. current == 5), the condition may be true when counter _name.current
transitions to 3 but it never will be true when flaL name. current transitions to 5,
since there is no interrupt to cause the condition to be checked at that moment. If
an interrupt (Jlag_name_change) is tied to flag_name. current, then
counter _name. current transitioning to 3 will not be detected.

When the user combines a flag condition with a counter condition on a single Trigger
Setup menu, the translator solves the dilemma of which event to .. wait for" by
generating a two-pronged waitJor .condition that is approximately the following:

(counter_nome_change lid: (counter_name. current == 3) &:&:
(flag_name. currenl == S» II (flag_name_change &t&:
(counter_name. current == 3) &:& (flag_name,current == 5)):

On the Protocol Spreadsheet, the translator simply attaches the appropriate event
variable to the first softkey condition listed. If the user enters

CONDITIONS: COUNTER name EQ 3
FLAG name 101

the translator converts this to (counter _name_change && (counter _name. current ==
3) && (flag_name. current == 5). The user is then free to repeat the combined
condition, reversing the order of the elements (and therefore invoking the
Jlag_name_change interrupt) the second time around.

NOTE: The examples in Section 57.3 above are somewhat
simplified. The actual translator versions are made more
complicated by the inclusion of counter _name.old and
flag_name. old variables that are explained in Section 65.

57-3

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

57-4 JUL '90

58 Receiving and Transmltllng Data

58 Receiving and Transmitting Data

JUL '90

As the INTERVIEW monitors the data source (line or disk), it signals the arrival of each
character by an event variable (levar Jcvd_char Jd or leva, Jcvd_char _td) and it stores each
character momentarily in a variable (rcvd char rd or rcvd char td) accessible by the user. - - --
Data can be taken from the line in this form and copied into memory or into an interlayer
message buffer. BOP-framed data is copied automatically into an interlayer ("IL") buffer.

The user transmits data from the INTERVIEW by creating a transmit-data structure and then
referencing the structure in an ll_transmit routine. Or the user may copy the data into an
interlayer buffer (or simply reference the data in the buffer) and then call out the buffer in
an ll_il_transmit routine.

The IL buffers have several advantages as a storage medium for data. First, they are
reusable. They are allocated dynamically and erased automatically unless the user takes steps
to maintain them. Without these reusable buffers, data in Run mode would quickly eat up all
of the memory in the unit.

Second, IL buffers support linked lists. There are routines that will start a list, insert data at
the top of a list, and append data to the bottom of a list. Linked lists are well suited to
layered-protocol transmissions, where the transmit string is built incrementally as the
transmission moves down the layers.

58.1 Locating Data in an IL Buffer

When a BOP frame is placed automatically in an IL buffer, a data primitive is
created automatically and the event variable m_loyhyrmtv is signaled. The segment
number of the IL buffer is recorded in the variable m _10 yh _il_bulf. The offset
from the start of the buffer to the start of the data is recorded in the variable
m_lo yhjdu_ollset. This offset is always 32 bytes. What is considered data at
higher layers may have a larger offset, since each layer's data begins farther into the
frame. See Figure 58-1 for an illustration of a gradually shrinking "service data unit"
(SOU) and a gradually expanding SOU offset.

By default, there are sixteen IL buffers. (See Sections 27.5 and 66 for information
on changing the number/size of IL buffers.) The address of each memory location in
these buffers is 32 bits. The high-order 16 bits is the 80286 segment number. This
is the number that the software passes around when it wants to identify an IL buffer,

58-1

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-107-951-108

58-2

simply because 16 bits are easier and faster to pass around than 32 bits. the
low-order 16 of which are always zero when we are discussing the starting location of
each buffer.

When we want to look at data in the buffer. we need to reference not a 16-bit
segment number but a 32-bit address. So we cast the segment number (always a
short. 16 bits) into a long and moye the number oyer to its high-order position.
sixteen bits to the left. We add 32 to the number to bypass the header information
for the buffer. Then we cast the new long as a character pointer. Here. for example.
is m_'oyh_il_buf! conyerted into a pointer to the first byte in a frame:

char· mJramtylr;
mJrame...p" = (void')(((/ong)m_to"'ph_il_buff« /6) t 32);

PDU

ii_buffer _number
Data-Character

-------.... IL BUFFER

"\ data _ start_offset -------- -data_length

SDU Size
Layer 2

(
~
"

1
1 SDU Size {

Layer 3

HEADER

\
\ \

'"1-.. ..:.\----1.-==-=-1 .. -- at Layer 2

DATA

.... .,.....-..,.-... Il Layer 2prQlocCl fo)

< ~~~~~~~~~~~~4--al Layer 3

•. · .•.. i··· .••. ·•·

Figure 58-1 When an IL buffer is passed upward, the data offset changes and the data length
changes, but the buffer ilself does not change.

JUL '90

JUL '90

58 ReceIvIng and TransmittIng Data

58.2 Monitor Path vs. Receive Path

The variables m_loyhyrmtv. m_loyh_lI_bull. and m_loyhjdu_ollset are pan of a
set of monitor services that handle IL buffers in both monitor and emulate modes.
These variables are updated for data on either data lead. The layer packages use
these variables to generate the protocol traces. The translator uses them to Implement
spreadsheet condition-tokens such as PH_TD_DATA IND and DTE INFO.

Another set of variables are maintained In emulate mode and are updated for data
on the receive side only. These variables have names that reveal their obvious
relationship to the monitor set: loyhyrmtv. loyh_il_bull. loyh_sdu. etc. These
receive-side variables are used by the translator to implement spreadsheet
condition-tokens such as PH_DATA IND and Rev INFO.

Whenever a BOP frame is placed automatically in an IL buffer during an emulate
run. events m_loyhyrmtv and loyhyrmtv both are signaled. The segment number
of the same IL buffer is recorded in two variables. m_loyh_lI_bulI and
10 yh_il_bull.

58.3 Passing a Buffer Upwards

Layer 1 stores data in IL buffers and passes these buffers to Layer 2 automatically.
as we have seen. If a Layer 2 personality package is loaded in from the Layer Setup
screen. the second data byte in the buffer (the 34th byte overall) is checked to
determine the frame type. If the contents of the buffer is an Info frame. a data
primitive is created automatically and the event variable m_lo_dlyrmtv is signaled.
The segment number of the IL buffer is recorded in the variable m_lo _dl_il_bull.
This is the same segment number that was stored previously in m_loYh_il_bull.

The offset from the stan of the buffer to the stan of the data-Layer 2 or data link
(DL) data-is recorded in the variable m_lo_dl_sdu_ollset. This offset is always 34 in
MOD 8. This number represents the 32-byte buffer header plus a 2-byte frame
header that is of no interest to Layer 3. which will use m_lo_dl_il_bulI and
m_lo _dl_sdu_ollset to construct its packet trace.

The size of the data component in the buffer is stored in the variable
m_lo_dl_sdu_size. This number will be 2 bytes smaller than the variable
m_loyh_sdujize.

If no layer packages are loaded. none of the buffer-handling services are provided
automatically at Layer 2 or higher. The programmer can provide the services
41 manually " as indicated above.

If layer packages are loaded. monitor-path variables (those variables whose names
begin with m.J are updated automatically in order to drive the protocol traces.
Receive-path variables such as lo_dlyrmlv. 10_dl_il_bull. and lo_dljdu are

58-3

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-108

58-4

generated as needed by GIVE_DATA actions entered by the user on the Protocol
Spreadsheet. Otherwise it is up to the C programmer to maintain these variables. For
example. the user passing an IL buffer up to Layer 3 might write this code:

lo_dUI_buff = IO...Ph_il_buff;
lo_dl_sdu = (lo"'ph_sdu t 2);
pduJ,,->dala_lenglh = (pduJ,r->dalo_'ength - 2),
signal (lo_dlJ1Tmtl));

The same updates of variables and the same signal would be generated if the user
called a send_dl"'prmlv_above routine. as follows:

_",_maln,_bufLblt (lo"'ph_il_buff. &12-,elay_ba'on);
send_dlyrmtv_above (loJ1h_i1_bufl. 12Jelay_baton, IOJ1h_sdu t 2, pduJ,r->dala_'englh - 2,
Ox45);

The send_dl"'prmlv_above routine requires an SDU size value. There is no
receive-path variable (equivalent to m_lo...Phjdujize on the monitor path) that
maintains this value. Determine the SDU size from the dala_length variable located
in the pdu-structure. In the examples above. pdu...Ptr is a structure pointer. The
SDU size. therefore. is referenced as pdu...Ptr->datQ_length. Refer to Section 66.1
for more information on the pdu structure.

NOTE: Do not use m_lo"'ph_sdujize for receive-path routines such
as send_dl"'prmtv_above. It is not updated reliably at the same
moment that other receive-path variables are updated.

Ox45 is the code for a DL_DATA IND primitive.

58.4 Layer 1 Transmit

Line transmissions are accomplished through Ll transmit routines. Shown below is a
program that ends in an Il_il_transmit routine. This routine puts the data contents
(the service data unit or .. SDU." not the buffer header) of an IL buffer out onto the
line.

Note that there is a set of routines leading up to the transmit routine. This set of
routines is necessary to get a buffer. to start a linked list inside the buffer. and finally
to insert several chunks of data into the list before it is transmitted.

j

unsigned shor' bUfnum;
unsigned short balon;
unsigned short Iisl_hd_offsel;
static unsigned char dataf} = "((FOX)) ",
static unsigned char pk,_hdrf3] = {OxIO,Ox07,O},
sla,ic unsigned char frm_hdr[2/ = {Ox03. OJ;

in' leng/h;
unsigned short transmit_tag = J;

JUL 'SO

JUL '90

58 Receiving and Transmitting Data

STATE: fox
CONDITIONS: KEYBOARD' "
ACTIONS:
(

}

..Jlel_lI_ m'Lbujl(J.bujnum. J.balon);
_start_il_buJI_lIsl(bujnum, &.lIs,_hd _offset) ..
length = slzeo/(data} -1;
_In''rl_lI_bujj_II'' _cnl (bujnum • Ii" _ hd _ ojj"'. J.dala (O i.lenglh);
_in""_II_bujLII" _cnl (bujnum .11"_ hd_ojjset. J.pkl_hdr{O i. 3);
_'n,erl_lI_bujLIi,'_cnl (bujnum .11"_ hd _ ol/set. J./rm _hdr (O i. 2);
1l_II_transmlt (bufnum, baton, Iis,_hd _offset, transmit_tag);

The transmit string will look like this on the INTERVIEW's data display:

'ic'll'l.'l'llTHE QUICK BROWN FOX JUMPS OVER THE LAZY DOG 0123456789!ID

(A) Segment Number

The Il_i'-transmit routine required four arguments as input. First, it required
the segment number of the IL buffer that was intended to be transmitted. This
number was supplied by the ..,$et_il_ms8_buff routine, and we called the number
bUfnum. By default, there are a total of sixteen numbered IL buffers available to
the program. You may change the number (and size) of IL buffers via
selections on the Protocol Spreadsheet (Section 27.5) or two C preprocessor
directives-#pragma ii_buffers and #pragma ii_buffer jize (Section 66).

(B) Relay Baton

The second argument was the number of the "relay baton" or "maintain bit."
This relay baton was supplied by the ..,$et_il_msLbuff routine, and we called the
variable that held the number baton. A relay baton is passed down automatically
with every send or transmit routine and serves to hold the buffer until it has
been processed by the next layer (or transmitted by Layer 1). Then the baton is
freed.

There are sixteen numbered relay batons available for each IL buffer. At the
moment that all sixteen batons (or maintain bits) are free, the buffer is returned
automatically to the pool of free IL buffers and its contents are no longer
available to the program.

In many applications-X.25 Layer 2 and Layer 3 personality packages, for
example-an extra maintain bit is reserved (via the _set_maint_buff_bif routine)
each time a buffer is sent down. This extra maintain bit is held onto in case a
frame or packet must be resent, and is not freed (in a Jree_il_msg_buff
routine) until the outstanding frame or packet has been acknowledged.

58-5

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC 107-951 108

POU

--..... , ,
\ --..... " \

Pointer-List
IL BUFFER -

\
\

\ HEADER

1
DATA

list_header list_node

lirst_ node_offset .-.. data_pointer

,. last_node_offset data_length
/

I /"...--
I next node offset

list node { - -
I

, ,
\
\
\
I
I
I I

I data_pointer I

58-6

sou

I \ I I \ Internal
I data_length \ data \ I \ (Layer 2 \ next_node_offset , \
\ \ \ protocol inlo)
\ \ \

\ list_node

'/
\

~ \
data_pointer \ Internal

/ ,
I data

I data -'ength I (Layer 3
I --- --- protocol inlo)
I next ffset ,

I
\'" ..

....

\

\
\ External

data

(User data)

Figure 58-2 When an IL buffer is passed downward, the data-start offset gives the
location of the Jist header. This Ust header and the various pieces of the
transmission (the Jist nodes) are threaded together.

JUL '90

(

JUL '90

58 Receiving and Transmitting Data

(C) List-Header Offset

In addition to buffer number and baton number, the ll_il_lransmil routine also
requires as input the offset from the start of the buffer to the linked-list header.
This offset is supplied at the moment the linked list is started by the
_slarl_i'-buff_lisl routine. In the program above we called this offset
IiSI_hd_offsel.

Figure 58-2 illustrates how the list header ties the linked list together by
identifying the offsets to the first and last nodes. A list node is created by each
_inserl_il_buff_lisl_cntoL_appenrL_lt.bufl_lisl_cnl routine. The program in
Section 58.4 has three _inserl_il_buff_lisl_cnt routines. The IL buffer that is
transmitted therefore has three list nodes.

(0) Transmit Tag

The fourth argument in the ll_il_lransmit routine is a "transmit tag" that
determines the type of BCC to be appended to the transmission. This variable is
stored in the 32-byte header of each IL buffer. Refer to the structure ii_buffer
in the table of OSI structures, Table 66-1.

A transmit tag of 1 means a good BCC and 2 means a bad BCC. 3 causes an
aborted transmission.

58.5 Passing a Buffer Between Tasks

At this point.we need to modify our ll_il_lransmit program to aliow different
layers-which are simply separate concurrent tasks in the programming
architecture-to contribute list nodes to the IL buffer intended for transmission. The
resulting transmit string wili be the same as before, but three different tasks will have
contributed data components to the transmitted buffer. In our new program, a Layer
4 task will provide the fox message, Layer 3 will provide the _inserl_il_buff_lisl_cnt
routine that references the 3-byte packet header, and Layer 2 will provide the insert
routine that references the 2-byte frame header.

How do the separate layer tasks communicate with each other so that the right buffer
is accepted at the moment it is handed down? They relay information in the same
way that tasks always communicate, by signals that are detected throughout the
program as event variables. When Layer 4 sends an IL buffer down in a
send_nyrmlv_be/ow routine, an event variable at Layer 3 (up_nyrmtv, not shown in
the program below but implied nevertheless in the N_DATA REQ condition) comes
true and at the same time updates the variables up_n_il_buff and up_n_sdu. Layer 3
can use these variables to identify the new IL buffer and to determine the offset to
the list header in that buffer. With this information, Layer 3 can insert its own list
node into the buffer before passing it down to layer 2.

58-7

INTERVIEW 7000 Series Advanced Programming: ATLC-107 951-108

58-8

Here is the program, followed by a few explanatory comments:

}

unsigned short bufnum;
unsigned short 14 _balOnj
unsigned short lJ_balon:
unsigned short 12_balon:
unsigned short IIs,_hd_offsel;
static unsigned char data lJ = I'«FOX»";
sIalic unsigned char pkl_hdr(3] = (OxlO,Ox07,0);
stolle unsigned char frm_hdr(2] = (Ox03,0);
int length:
extern volatile unsigned shor' up_n_ll_buf/:
extern volatile unsigned shor' up_dl_"_bulf:
exlern vo/alile unsigned shoTt up_n_sduj
extern 'tIolalile unsigned shor' up_dl_sduj

LAYER: 4
STATE: fox

CONDITIONS: KEYBOARD·
ACTIONS:
(

JeUI_msLbuff(&bufnum,&14_ba!on);
_starl_li_bufL/Ist (bufnum, &/lst_hd_offset);
length = sizeo/(da/a) -1:
_insert_Ii _ buff_lIst_cn I (bufnum, /lsl_ hd _offset, &dala 10], lenglh);
send _"Jrm tv_below (bujnum, 14_ baton ,list _ hd _offset, 0, Ox64, 0);

}
LAYER: 3

STATE: packet_header
CONDITIONS: N_DATA REO
ACTIONS:
(

_lnserUI_bufL/Ist _ cn I (up _n _Ii _buff. up _n _sdu. &pk ,_hdr(O] , J);
_set_malnl_bufLbl/(up _n_li_buff. &13 _balon);
send _d,-yrm tv_be/ow (up _ n _il_ buff,I3 _ balon. up _ n _sdu. 0, Ox44. 0);

}
LAYER: 2

STATE: frame_header
CONDITIONS: DL_DATA REO
ACTIONS:
{
_ins"'_I1_ bufLlist _ cn I (up _ dl_li_buff. up _dl_,du. &frm _ hdr{OJ. 2);
sel main l_bufLbil (up _dl_il_ bUff. &12_ ba Ion);
send"'ph "'prm lv_below (up _ dl_li_ buff. 12 _balon. up _ dl_ ,duo O. Ox24. 0);

}

In the send-primitive routines. the hex values 64. 44. and 24 identify the primitives
as data requests. See, for example, the values of up_nyrmtv_code in Table 66-4.

Note that there is no longer an Il_il_transmit routine in the program. When Layer 2
executes a sendyhyrmtv_below routine, Layer 1 handles the transmit function
automatically.

JUL '90

(

JUL '90

58 Receiving and Transmitting Data

The sendyhyrmtv_below routine does not have a transmit-tag argument that allows
us to specify the BCC. Since the Il_il_transmit routine, which has a transmit-tag
input, is being handled automatically, it is not immediately clear how you would send
the transmit string with a bad BCC. Here is one way. Instead of the
sendyhyrmtv _below routine at Layer 2, u~e the "_il_transmit routine as fOllows:

ll_IUrQn'mi/(up _dl_lI_bu//,12_bQ/on. up_dl_'du, 2);

The 2 in the argument represents the transmit tag for a bad BCC.

If it seems strange to be using an Il_il_transmlt routine at Layer 2, remember that
none of the variables or routines is really layer-specific. In C, layers are simply
concurrent tasks.

A "realistic" implementation of this program might be made somewhat more
complicated by two additional elements. One or more _open_space_in_lI_buff
routines might be used so that, as far as possible, text data could be copied into the
buffer where it would then be erased when the buffer was freed. (One of the
advantages of IL buffers is that the space inside them can be recycled.)

Another complication is that for the same transmission, more than one linked list
might be started in a single buffer. The example under the _insert_il_bufLlist_cnt
routine in Section 66.3(A) shows Layer 2 accepting a buffer from Layer 3 and
starting a new linked list. This allows Layer 3 to reconstruct its original linked list in
case a packet-resend is needed.

58.6 Sample Transmit Program: Sync or Async Echo
This application monitors incoming data for text strings bounded by 'i< and 'x or ... It
copies these strings into an IL buffer and then echoes them back out onto the line,
preceded by two ASCII sync characters. The program will work in most data formats
as long as ASCII 'i< and 'x are included.

The program may be modified for EBCDIC." 'i<, 'x, and... Use received-character
variables fevar JcvdJhar Jd and rcvd_char Jd for data received on RD.

)

extern Jast_eIJent jeva'_Tcvd_char _td:
extern volatile unsigned short ,evd_char _,d,'
unsigned short number, length:
unsigned short ii_buffer _number, relay_baton. data_start_offset;
unsigned char eCho_string{ 100] = {'~' . • ~ '}j

STATE: look for stx
CONDITIONS:
(

)
ACTIONS:
(

number = 2:
eCho_string[number] = rcvd_cha,_td;
number+t:

) .

NEXT_STATE: construct_ocho_strlng

58-9

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-107-951-10B

58-10

STATE: construct echo string
CONDITIONS: - -
(

Jt~Qr_rcvd_char_td
)
ACTIONS:
{

)

echo_string/number} = rcvd_cha,_'d;
numbertt;
If ((rc.d_chaOd == ''i<') II (rcvd_char_rd == J)
(

length = number;

CONDITIONS: RECEIVE GOOD BCC
NEXT STATE: transmit echo atrlng

STATE: transmlt_echo_strTng -
CONDITIONS: ENTER STATE
ACTIONS: -
{

....Be' _il_msg_ bull(&til_buller _"umber, 4lrelay _baton J j
_star' _"_bull _list (lI_bufl'r _number, &.data _510"_ offset);

lnse1'"_ buJl _list_ent (II_buffer _number, data _Slart _offset, echo _siring, length J;
II_II_transmit (ii_buller _number, relay_baton, data_star,_ollset. J);

58.7 Sample Transmit Program: BOP Echo

When Format: M!lliWH is selected on the Line Setup screen. every frame that is
received at the line interface is placed in an IL buffer and passed up to Layer 2.
This sample program makes a pointer to the I-field in the most recent IL buffer
received at Layer 2. and then it echoes the data back out in the C equivalent of a
SEND INFO action. If you try this program. be sure to load the X.2S or SDLC package
at Layer 2.

)

char· doloJ'r;
extern volatile unsigned shor' TcvdJrame_buff_segj
extern volatile unsigned short rcvdJrame_sdu_of!set;
exlern volatile unsigned short rc~dJrame_sdu_s;ze;
struct sendJramejtructure
(

);

unsigned char addr _type;
unsigned char frame_type;
unsigned char nr_type:
unsigned char ns_type:
unsigned char pj_'ype:
unsigned char bcc_type;
unsigned char addr_value:
unsigned char cntrl_byte;
unsigned char nr_yolue:
unsigned char ns_yalue;

struci sendJrame_struclUre frame;
unsigned shorl number, balon, offset;

JUL '90

(

JUL '90

58 ReceIvIng and Transmllllng Da/a

LAYER: 2
STATE: echo

CONDITIONS: RCV INFO
ACTIONS:
{

da'aJI' = (void e)((long)fc"IdJram,_bufl_seg« J6) + rClJdJram,_sdu_oJfset',
....A,'_"_msg_bul/(&t.number, &:baton}j
_star'_il_buff_list(number. &'of/se,) j
'rutl,"_bulf_lIs,_cn,(numbe" offset, datay., t 2, rcvdJram,_sdu_slze - 2)j
frame,bee_type = I,
stndJrame(number, balon, offsel, &frame)j

58-11

INTERVIEW 7000 Series Advenoed Programming: ATLC 107-951-108

(

58-12 JUL '90

59 C Basics

59 C Basics

(

JUL '90 59-1

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-107-951-10B

** re

,..,VeD: 1
TEST: bsc_one
(static label prev_state;)

STATE: poll ing
CONDITIONS: RECEIVE ONE_OF "'D'X"
ACTIONS: SEND "s,.s,.'V" GOOD_BCC
(prev_state = state_polling;)
NEXLSTATE: ack0

STATE: ack0
CONDITIONS: RECEIVE ONE_OF "'D'X"
ACTIONS: SEND "s,.s,,9.!o" GOOD_BCC
(current_state = prev_state;
break;

)

et **

_M.

Figure 59~1 Using C 10 return 10 the prevIous slale.

59-2 JUL '90

59 C BasIcs

59 C Basics

JUL '90

C programming language as implemented in the INTERVIEW 7000 Series is based on the
current ANSI recommendations. It contains severaL extensions to the language which enhance
its utility in protocol testing, notably multi-tasking.

C is intended as an aid to INTERVIEW users who have advanced programming knowledge.
A sophisticated programming tool, C can be applied to testing requirements which are not met
by Protocol Spreadsheet selections. C is useful, for instance, in the analysis and "intelligent"
manipulation of variable data strings anticipated within a complex protocol. Additional
applications of C are the creation of customized protocol and program trace displays.

Figure 59-1 provides a means of returning to whatever state was the former state, without you
the programmer knowing which state was previously active. This "go to previous state"
function is not a standard spreadsheet feature. The example employs Bisync protocol to
demonstrate the usefulness of this capability. The test begins in a state called polling. Here,
an ACK 1 is sent whenever the end of any received data is encountered, and the test passes to
the state cailed ackO. This time when the end of received data is encountered, an ACKO is
sent, and the test returns to whatever state it was in formerly.

The first C region is the declaration of the variable prev_slale, which allows the variable to be
used anywhere within the test. In the second C region, the variable prey jlale is initialized to
the name of the active state. The third C region shows the transition of the test to the
previously active state. Depending on the contents of the prey _slale variable, the former state
could be one of any number of states. This capability means that, as the programmer
expands the simple test, the state ackO can be used again and again as a utility state from
which the test returns to the former state, removing the need for repetitive spreadsheet entry.

59.1 Notable Variations In C

The AR version of C varies in certain respects from the ANSI standard. Notable
exceptions to the standard are outlined below. A full set of implementation-defined
variations appear in Appendix K.

(A) Reserved Words

The following two reserved words, in addition to those covered in the ANSI
standard, are included in C:

task

walt for

59-3

INTERVIEW 7000 Series Advanced ProgrammIng: ATLC-107-9S1-10B

59-4

(8) Predeclared Identifiers

The following type identifiers are always predeclared. They are not defined in
any #include files, nor are their definitions required in any program. Thus they
are part of the INTERVIEW C lexicon, even though they are not reserved words
and therefore do not appear in the language summary in Appendix K.

event

label

(C) Floating Point Notation

Since Floating Point Notation is not required in the protocol testing environment
and since corresponding calculations could degrade processing speed, floating
point notation is omitted from the AR implementation of C, Fixed point
calculations, however, are performed.

(0) Values Returned from C Functions

Functions declared within AR's implementation of C may only return values for
data types which are 1, 2, or 4 bytes long. Consequently, a function cannot
legally return most structure or union types.

59.2 Editing a C Program

Entries in C are made on the Protocol Spreadsheet, accessed from the Main Program
screen. All editing functions available on the spreadsheet can be applied to C
coding. Refer to Section 29 for a description of these editing functions.

59.3 Error Reporting in C

Most syntax errors made on the Protocol Spreadsheet are indicated by strike-through
of the text where the error occurs. This facilitates correction of entries as you create
a test.

Errors which appear in C coding are not indicated by the editor. However, when the
program is compiled (when you press ~), the errors will be noted. If there are
errors in the program, the INTERVIEW will automatically revert to the Protocol
Spreadsheet rather than run the program.

(A) Locating Errors

The cursor is automatically positioned near the first error when the INTERVIEW
reverts to the Protocol Spreadsheet. A diagnostic message about the error will
be displayed at the top (second line) of the screen. Errors pertaining to the

JUL '90

JUL '90

59 C BasIcs

general syntax of the spreadsheet are explained In text. Errors noted by the C
pre-processor or compiler are displayed as numbers. with explanatory text if the
filename syslerror _text is accessible at the moment on a disk. (The file should
always be accessible in units with hard disks.) These numbered messages are
listed in Appendix A4.

Press GO-ERR again to move down through the spreadsheet to the next error.
When you press GO-ERR and there are no more errors. the message "No More
Errors" will be displayed.

59.4 Preprocessor Directives

The INTERVIEW supports preprocessor directives #de/ine and #include. The full set
of ANSI preprocessor directives are supported on the INTERVIEW. Included among
these directives are Hi/. #else. Hi/de/. #i/nde/. and #unde/. (Refer to the ANSI
Recommendation for a discussion of these directives.) Implementation-defined
#pragmas are also preprocessor directives. #pragma object and #pragma hook are
two of the AR #pragmas. As the name implies. preprocessor directives are processed
before the program in which they appear is compiled.

Preprocessor directives are easy to recognize. since they are always preceded by a
pound sign (#). Spaces are significant to the meaning of the directives. since other
delimiters are generally not used. Note also that a semi-colon cannot be used to
terminate a preprocessor directive. Instead. a directive is terminated by a hard
Carriage Return or some indicator of line continuation. Press E3 to terminate the
directive (no indication of the Return will appear on the screen). Type \ (backslash)
and press E3 at the end of the line on the screen to indicate that the directive
continues on the next line. You may also allow text to wrap to the next line by
continuing to type. (Wrapped lines are indicated on the screen by the highlighted
symbol G.)

(A) #define

The #de/ine directive gives you the convenience of replacing frequently
referenced items with a text string of any length.

1. Placement. A #de/ine directive may be placed at the beginning of a logical
line anywhere in a legal C region. The eight valid pOSitions for C regions on
the Protocol Spreadsheet are shown in Figure 56-4. The #de/ine directive
may also be placed in a separate Hinclude file. Use the #include directive as
explained in (B) to invoke the file and make the macro-substitutions it
indicates in your main program file.

59-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

59-6

2. Format. The directive follows this format:

#define identifier string

For example, if you enter the following line of code,

#define message The quick brown fox /2345

the Identifier message (wherever it appears exactly as written in the file being
acted upon) is replaced in subsequent lines of code by the string The quick
brown fox 12345. The replacement, the macro-substitution, is performed
before the code is compiled. When you enter the #define directive, leave a
space between the directive (#define) and the identifier. There should be
no spaces in the identifier. The space following the identifier indicates that
the next ASCII character (or blank) stans the replacement string. Spaces
are allowed and are considered pan of the string. Terminate the string (and
the directive) as described at the beginning of this sub-section.

3. Nesting. #define substitutions may be nested. Of course, the nested
replacements must be described by a #define directive which precedes the
#define for the replacement text which contains them.

There is one exception to nesting identifiers-the macro substitution wiii not
be performed when the identifier occurs in a string. In the example below,
the programmer tries to nest MAXTRIES within the definition of
MESSAGE:

#define MAXTRIES 3
#deJine MESSAGE "Maximum relransmlssions ;s MAXTRIES."

A call to displaYf(MESSAGE); causes the following to be displayed:

Maximum retransmissions Is MAXTRIES.

This is cenainly not what the programmer intended.

(8) Dlnclude

#include files, when invoked in a program, are read into the program file before
the program is compiled. As a result, your program has access to commonly
used items such as subroutines (input/output and string operations, for example),
global variables, constants, and structures without your having to enter or modify
the required code repeatedly.

1. Format. The format for the directive is as follows:

#include <filename>

or

#include "filename"

JUL '90

\.

59 C BasIcs

#include files follow standard naming conventions. You many also include a
single period (.) Or double periods (..) in a filename to indicate the current
or parent directory. See Section'14.2. As an added convention, the suffix
.h is appended to the end of the name (as in the filename stdio.h).

2. Search rules for #include files. The delimiters you use to surround the
filename determine how the INTERVIEW searches its filing system for the
file.

• The <> delimiters are intended for files which are supplied by AR.
When these delimiters are used, the following directories-and only the
following directories-are searched, in the order given:

1. Isyslinclude on current drive (indicated on File Maintenance
screen)

2. The directory named as the current directory on the File
Maintenance screen (provided that the current directory is not the
root directory for FDl, FD2, or hard disk)

3. lusrlinclude on current drive (indicated on File Maintenance
screen)

4. FDlIsyslinciude
5. FD21sysiinciude
6. HRDlsyslinciude
7. FDlIusrlinciude
8. FD21usriinciude
9. HRDlusrlinciude

NOTE: The directory names are given in the format which the
INTERVIEW Interprets as the absolute path from the root
directory of the disk named before the first slash. So
HRDlsyslinciude means Isyslinclude on the hard disk.

• The delimiters are intended for user-created files. The same
directories are searched for the filename, but they are searched in the
following order:

1. The directory named as the current directory on the File
Maintenance screen (provided that the current directory is not the
root directory for FDl, FD2, or hard disk)

2. lusrlinclude on current drive (indicated on File Maintenance
screen)

3. Isyslinclude on current drive (indicated on File Maintenance
screen)

4. FDJ lusrlinclude
5. FD21usriinciude
6. HRDlusrlinciude

JUL '90 59-7

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

59-8

7. FDlIsyslinclude
8. FD2Isysiinclude
9. HRDlsyslinclude

If you have used the same filename for an include file in more than one
directory, the file which is actually read in as a result of an #include directive
will be from the first directory searched which contains that filename. The
delimiters you use, then, can make a difference in the file selected for inclusion.

The filename enclosed in <> or " " delimiters may be a relative pathname. The
highest directory in the path name must reside in the current directory or in one
of the linclude directories. In response to an lIinclude "disk_lolsldlo.h"
directive, for example, the INTERVIEW first looks for a disk_io subdirectory in
the current directory on the File Maintenance screen and then for an sldio.h file
in that subdirectory. If the file is not found, the search for the relative
pathname continues according to the sequence designated for" " delimiters.

If the file is not located in any of these directories, an error message is returned
to the operator.

(el Hpragma object

Use the #pragma objecl directive to access the compiled routine definitions in a
linkable-object file. The OBJECT block-identifier discussed in Section 27.4 may
also be used for this purpose. (Also see Section 14.3(P) on creating a
linkable-object file-displayed as type LOBJ in the directory listings on the File
Maintenance screen).

1. Placement. Place the #pragma objecl directive inside any legal C region on
the Protocol Spreadsheet. Except for those containing the sIalic attribute,
routine definitions from an LOBJ file always have global scope. It makes
sense, therefore, to position the directive at the top of your spreadsheet
program along with other global declarations and definitions.

2. Format. The format for the #pragma object directive is as follows:

#pragma object "filename.o"

A #pragma objecl directive references only one LOBJ filename, but you may
include as many directives as you wish.

The relative or absolute pathname of the linkable-object file is enclosed in
quotation marks.

3. Search rules for linkable-object files. As your spreadsheet program
compiles, the INTERVIEW's filing system is searched for the linkable-object
files referenced in #pragma object directives.

JUL '90

JUL 'SO

59 C BasIcs

• If the referenced LOB] filename begins with FDlI, FD21, or HRDI, the
INTERVIEW interprets it as the absolute pathname and makes only that
one search.

• Pathnames beginning with a I indicate that the root directory on each
drive should be the beginning point of the search. The drives are
searched in the following order: current drive, FDl, FD2, and HRD.

• Otherwise, the name may be a one-word filename, or a relative
pathname which includes the directories leading to the file. The highest
directory in a. relative pathname must reside in the current directory or
in one of the /lib subdirectories. The following directories-and only the
following directories-are searched, in the order given:

1. current directory on the current drive (indicated on the File
Maintenance screen)

2. lusr/lib on the current drive
3. Isysl/ib on the current drive
4. FDJ lusr/lib
5. FD2/usr/lib
6. HRDlusrllib
7. FDlIsys/lib
8. FD21sys/lib
9. HRDlsys/lib

If the pathname is not located in any of these directories, the program will
not compile and an error message will be returned to the operator.

4. How #pragma object works. When the source of code for the Compile
command is gHjdffl~~Wmt1;' the LOB] which results usually defines
user-created routines. These routine definitions may be ilHnked," or
combined, as needed with your spreadsheet program. This means that
routines called within your active program do not always have to be defined
on the Protocol Spreadsheet or in #Include files.

NOTE: An LOB] file may also contain #pragma hook directives.
See Section (D) below. If a #pragma object directive references
an LOB] file which contains #pragma hook directives, the
"hooks" within that file are ignored. Since Compile ;~~.$::
always generates #pragma hooks, use the OBJECT block-identifier
to reference the resulting LOB] file.

(a) Referenced linkable-object files searched for routine definitions. If a
spreadsheet program calls a routine for which no definition is provided,
the LOB] files referenced in #pragma object directives are searched in
the order in which they appear on the Protocol Spreadsheet. If a
routine is defined in more than one referenced LOB] file, the definition
in the first LOB] file listed on the Protocol Spreadsheet will be used.

59-9

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

59-10

If the routine definition is not found in the spreadsheet program or in
any referenced linkable-object file, the compilation will abon. When
you go to the Protocol Spreadsheet and look for error messages, the
routine name will appear as an unresolved reference.

(b) Compiled routine definition combined with compiled spreadsheet. When
the routine's definition is located, the compiled code is copied from the
LOBJ file and combined with the compiled code of the spreadsheet
program.

Routine definitions in an LOBJ file may reference additional routines not
defined within the same file. If these indirectly-referenced routines also
are not defined on the Protocol Spreadsheet, the LOBJ files are
searched again.

Routine definitions containing the static attribute are local to the LOBJ
file. A static routine will be copied from the file only if it is included in
the definition of another routine.

NOTE: Use #pragma object directives in your active spreadsheet
program only. Do no incorporate them in code that will be
compiled and saved as an LOBJ file. Although the code will
compile. no search for routine definitions in referenced LOB]
files will be performed.

(c) Efficiently uses memory. Using #pragma object to reference routines in
linkable-object files, assists in using the INTERVIEW's memory and
spreadsheet buffer efficiently.

• Only the definitions for routines actually called within the current
spreadsheet program are copied into memory from the LOB] file.
All other code within the file is ignored.

• When commonly utilized routines are defined in linkable-object
files, space in the spreadsheet buffer otherwise dedicated to this
purpose can be used for additional programming.

• Since the code in LOB] files has already been compiled, the
INTERVIEW can support a larger program without a corresponding
increase in compilation time.

NOTE: Additional #pragma preprocessor directives utilized by
the INTERVIEW are discussed in other sections of the manual.
Refer to Section 64 on Display Window and Trace, for example,
for information on the #pragma tracebuf directive. Except for
n"pragma hook (below), these other #pragmas should be pan of
the active spreadsheet program, not pan of a linkable-object file.

JUL '90

JUL '90

59 C Basics

(0) #pragma hook

The #pragma hook directive allows compiled C code within a referenced
linkable-object file to be automatically combined with the compiled code of an
active spreadsheet program. There are eight types of #pragma hook
directives-hook_types zero through seven. All types may be system-generated
during the Compile operation when the source of code is l,~Mtiill*1ttl, but the
resulting linkable-object file always contains at least one hook_type zero.

The programmer also uses hook_type zero (#pragma hook 0). For this reason,
#pragma hook 0 will be the focus of the following discussion. The primary
purpose of #pragma hook 0 is to "force" a routine to be called and executed as
part of a spreadsheet program, even though no explicit call to the routine is
made on the Protocol Spreadsheet. The spreadsheet program may also call the
routine, but keep in mind that it will be executed twice-once because of the call
on the spreadsheet and once because of the call made via the #pragma hook 0
directive.

1. Format. Create hooks on the Protocol Spreadsheet and then write them to
a file using the WRITE/U editor command. Before typing your hook on the
spreadsheet, press ~ to prevent the editor from placing a strike-through
over the text.

The format for the #pragma hook 0 directive is as follows:

#pragma hook hook_type "routlne_name();"

Follow the directive with a space and enter a decimal (not hexadecimal)
constant to identify the hook_type.

After the hook_type, enter another space. and then the hook text-C code
that calls the routine you want combined with your spreadsheet program.
The call to the routine is placed inside quotation marks and includes
required syntax-parentheses for the arguments and a semi-colon to
complete statement punctuation.

NOTE: Task names are always local to a linkable-object file and
never directly copied from it. The hook text, therefore, cannot
reference a task. The rule for exporting tasks from a
linkable-object file is to let the #pragma hook 0 directive call a
routine which starts the task(s). See Section 5. following and
Section 55 for examples.

More than one #pragma hook 0 directive may be present in a single LOBJ
file, but each directive calls only one routine.

59-11

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

59-12

2. Routine definitions. Typically, the definition for the routine called in the
directive is located within the same linkable-object file. It may, however, be
in another LOB] file as long as both files are referenced via OBJECT

block-identifiers on the Protocol Spreadsheet.

The definition of the hook-text routine may also reference a task (which
must be defined in the same file) or it may reference additional routines not
defined within the same file. The rules in Section (C) above for indirectly
referencing routines apply.

Definitions for most of the ex/ern routines included In this manual are not
strictly required.

3. Accessing hooks. If you want the hook text combined with your program,
use the OBJECT block-identifier to reference the LOB] file. If you use the
#pragma object directive to reference the file, the "hooks" within that file
will be ignored.

4. Hooks are added to task list of program main. As your program compiles,
referenced linkable-object files are searched for hooks. When a hook_type
zero directive is found in the file, the hook text is automatically added to
the bottom of the task-list in the top-level main. If a referenced LOB] file
contains more than one "hook," they will be added to the task list in the
order in which they appear in the file.

NOTE: The order of tasks and hooks in the task-list indicates
the order in which main initiates tasks and executes hook
routines. It does not necessarily indicate the order in which the
actions in tasks or hooks are processed.

5. Execution of hooks. Recall that the main function is system-created during
compilation. Refer to Section 55, Program Main. Because main simply
initiates the execution of each task listed, the (hook-text) routine essentially
runs concurrently with the tests in your spreadsheet program.

Since the hook text is a routine, and not a task, it must actually be executed
by main, not simply started. The definition of the routine determines when,
or whether, any subsequent hooks will be e"ecuted by main.

• If the routine's definition references a task, as in the e"ample below,
main returns quickly, leaving the routine to execute the task. Then
main begins e"ecution of the next hook in the task list.

#pragma hook 0 "example()i"
extern jast_event /el}a,_time_of_day;
exlern volatile unsigned shor, crnl_time_of_day;

JUL '90

(

task

maln()
{

)

slal,_olarm_a,_one:
walt/or
{

}

, .. a,_lIm._o,_day J.J. (c,nU'm,_oLday == 1300):
{
sound_alarm(}j

}

} example_task;
example(J
(
example_,ask();

}

59 C BasIcs

• If the routine's purpose is not to start a task (or tasks), then main has to
execute all the code. The more code there is, the longer it will be
before main can return to execute the next hook.

If the definition includes a wait/or, as in the following example, any
subsequent hooks will never get executed. Instead, main will continue to
wait for the specified event.

#pragma hook 0 "example();"
extern fQst_e~t11l /e~Q' _tlml_ol_day;
extern volatile unsigned short crnt_tlme_of_daYi
example()
{

)

wail/or
{
/e'IJo'_llme_of_day && (crnt_tlmt_of_day == 1300):

(

)
)

59.5 Data Types

JUL '90

(A) Precisions

When a variable is deClared, the compiler allocates space in memory according
to the type declaration that precedes the variable name. There are three sizes
(or precisions) of data allowable in 80286 memory, and three corresponding
data types. A char is allotted one byte of memory. A short is given two bytes,
while a long reserves four bytes of memory. Shorts and longs are varieties of int
or integer, and the type descriptions short int and long int are permitted. The
type int used by itself is the same as short int.

59-13

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-107-951-10B

59-14

(8) Signed and Unsigned Types

AU three precision types may be signed or unsigned. Signed and unsigned data
types are stored identically, but treated differenUy in arithmetic operations.
Specifically, they differ in the way they undergo type conversion, comparison,
division, and right shifting.

1. Type conversion. The following declarations store the same value in
memory:

signed char a = -6:
unsigned char b = -6:

In both cases, the byte stored in memory will be the two's complement of
00000110, or 11111010. (The two's complement is the one's complement +
1.) This bit pattern translates as hex fa or ASCII z. The displayf routine in
the following program will write two z's to the screen:

signed char a = -6;
unsigned char b = -6;

STATE: data typo
CONDITIONS: ENTER STATE
ACTIONS: -
(

display! ("%c%c" J OJ b);

When you lengthen the chars to shorts, however, they behave differently.
The unsigned char is left-padded with zeroes. The signed char, having a
leftmost bit equaling I, is left-padded with ones. This left-padding with ones
is called Ifsign extension,"

A char is converted to a short automatically when a %d, %u, or %x
conversion is applied to it, so the following example illustrates the difference
between the conversion of signed and unsigned types:

signed char a = -6,'
unsigned char b = -6;

STATE: data type
CONDITIONS: ENTER STATE
ACTIONS: -
(

display! ("%x%x ". a. b);

The variable a will be seen to extend to hex flfa, which is fa left-padded
with eight ones. The unsigned variable b will have been extended by eight
zeroes and will appear unchanged as fa.

If the %x conversion specifiers in the example above are replaced by %d,
the resulting signed-decimal conversion will show a equaling -6, I> equaling
250. The signed char will have survived the type-lengthening with its original
negative value intact.

JUL '90

(

JUL '90

59 C BasIcs

Because they can be lengthened without changing their values, signed
variables should be used for any arithmetic operations. Other differences
between signed and unsigned variables, not renected in Table 59-1, are the
following:

2. Comparison, If the leftmost bit of a signed variable is 1, then the variable
has a negative value and the expression variable> 0 is false. If the leftmost
bit of an unsigned variable is 1, the variable is positive and variable > 0 is
true.

3. Division and modulus. If the leftmost bit of a signed variable is 1, the two's
complement of the variable rather the stored value will be used in any
division or modulus operation.

4. Right shifting. When a right-shift (») operator is used on a signed
variable, a i-bit is shifted in at the left. When the same operation is
performed on an unsigned variable, a O-bit is shifted in.

Table 59-1 shows the ranges of values that are produced by display! and
print! routines when the valid conversion specifiers-%c, %d, %Id, and so
on-are applied to the various signed and unsigned data types. Frequently it
makes no difference whether a variable is declared as signed or unsigned.
When a variable undergoes type conversion, however, as in the case of a
char given a decimal or hex conversion, there is a significant difference.

59-15

char conversion = (%c)

char1 ~ to ~

signed char1 "6 to %

unsigned char' "6 to %

Int

signed Int

unsigned lot

short

signed short

unsigned short

long

Signed long

unsigned long

Table 59-1
Data Types: Ranges of Values Displayed and Printed

signed decimal conyerslon
short (%d) long (%Id)

o to 255

-128 to 127

o to 255

-32768 to 32767

-32768 to 32767

-32768 to 32767

-32768 to 32767

-32768 to 32767

-32768 to 32767

-2147483648 to 2147483647

-2147483648 to 2147483647

-2147483648 to 2147483647

ynslgned decimal conversion
shor%u) long (%Iu)

o to 255

o to 127
and

66408 to 65535

o to 255

o to 65535

o to 65535

o to 65535

o to 65535

o to 65535

o to 65535

o to 4294967295

o to 4294967295

o to 4294967295

1 Through -Integral promotion." char Is converted automatically to Int In a %d, %u, or %x conversion.

hex conversion
short (%x) long (%Ix)

o to fI

o to 71
and

fl80 to ffff

o to fI

o to ffff

o to ffff

o to ffff

o to ffff

o to ffff

o to ffff

o to fffffffff

o to fffffffff

o to fffffffff

JUL '90

59 C Basics

(Cl Static Storage Class

A variable must be of the slatlc storage class to pass its value into a wail/or
statement. Declarations at the Program, Layer, or Test level (Level 1 in the
source code diagram In Figure 52-4) are sialic even If they are not explicitly
declared so. The same is true of a character array initialized by a string (see
Section 59.7).

A variable that is initialized at the State level must be declared as slatic by the
programmer if the initialized value is to be used inside a wail/or.

The following program will display a value of 8 on the prompt line when the
operator presses the spacebar:

STATE: pass Initialized value
{ - -

static Int initialized = 8:

CONDITIONS: KEYBOARD' •
ACTIONS:
{

display! (OJ %d ", Initialized);

If you removed the word Sialic from the declaration, the initialized value would
not be passed into the condition clause and the program would display 0 or a
"garbage" number instead of 8.

59.6 Operator Precedence

In an expression with more than one operator, operations are prioritized according to
the ranking of operator precedence in Table 59-2. The operator with the highest
precedence is at the top of the table. Precedence decreases as you move down.

Consider this example:

STATE: precedence
{

Illt a;
a = 3 • 4 t 2;
display! ("%d". aJ;

Because multiplicative operators (', I, and %) have higher precedence than additive
operators (+ and -), the 3 • 4 operation is performed first. Then 2 is added to the
product of 3 and 4, and finally the sum is assigned to the variable a. (Assignment
operators have very low precedence.) The result of the program is that a is displayed
as 14. Compare this example:

STATE: precedence
{

inloj
a=3'(4+2J;
display! ("%d", aJ;

59-17

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

Operator

o
[] . -> ++ --
++ -- sizeof & ' + - - I
(type)
, I %

+ -
« »
< > <= >=
-_ 1=

&

&&

" ? :

Table 59-2
Operator Precedence 1

Type of Operator

primary expression

postfix

unary

cast
multiplicative

additive
bitwise shift

relational
equality

bitwise AND
bitwise exclusive OR

bitwise inclusive OR
logical AND

logical OR

conditional

= '= /= %= += -= «= »= &= = 1= assignment

comma

Associativity

left to right

left to right

right to left
left to right

left to right

left to right
left to right

left to right
left to right
left to right

left to right

left to right
left to right

left to right

right to left
right to left
left to right

I Operators on the same line have the same precedence; rows are In order of decreasing precedence.

59-18

Here the additive operation is performed before the multiplicative, since the
parentheses that denote a primary expression (see Table 59-2) have the highest
precedence of all. The result of this program is that decimal 18 is displayed.

Given operations with the same precedence, left-to-right or right-to-left
"associativity" (see the right column in Table 59-2) indicates which is performed first.
This order of processing is significant for an expression such as 36 I 6 I 2, where the
associativity is left to right.

Associativity is very important in assignment operations, which are always interpreted
in a right-to-left direction. Consider this example:

STATE: right to left associativity
{ - - -

inta=4;
Inlb=};
Q :; h;
display! ("%d", a);

JUL '90

JUL '90

59 C Basics

The result of this program Is that 1 is displayed, not 4. Right-to-Ieft associativity also
explains why the following program does not compile.

STATE: right to left associativity
{ - - -

Int a = 3.-
3 = (l;
display! (ff%d", aJj

A constant never can have a value assigned to it, even if the value equals the
constant.

59.7 Strings

A string is a sequence of characters enclosed in double quotes. This is an example of
a string:

"hello"

A string is an expression of the type pointer, and may be used anyplace in the
program that is appropriate for a pointer. For example, a pointer is appropriate as
the argument of a'displays routine:

displays ("hello");

The string in this statement does two things during compilation: it writes the character
string "hello" in memory, and it points to the first character in the string. The string
"hello" becomes a 4-byte address that you can examine by displaying it as a long
hexadecimal:

display! ("%Ix", "hello");

(A) Using a String to Initialize an Array

Note that the pointer represented by "hello" in the examples above is not stored
anywhere and therefore can be used only once. The string pointer "hello" could
have been stored as a pointer to the first character in an array, as in this
example:

char string_array Il = "hello";
display! (string_array);

Stored in this manner, the pointer can be used repeatedly.

An array like string_array that has been "initialized" by a string shares many of
the traits of standard arrays, but it has unique characteristics as well.

1. Data type. A string may only initialize an array whose elements are of the
type char.

2. Nul/termination. A string is always terminated by a null character. This null
terminator is appended by the compiler, not the programmer.

59-19

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

59-20

3. Size. All arrays must declare their size,. In any of three ways. The
programmer may declare the length inside of brackets, as in this example:

char array lSi:

Or he may leave the brackets empty and provide a list of initializers, inside
of curly braces, from which the compiler can determine the size of the
array:

char ;nitiolize,_lIs'_orray l/ = {Ih', 'e', ',', Ox6c, 'o'} ;

The third method of indicating size is to leave the brackets empty and
initialize the array with a string, as in our original example of a string
initializer:

char string_array {} = "hello":

The compiler will add a terminating null-character to this string, and
calculate an array size of six. To verify that the compiler counts one more
character than the user has entered, you may try the following test. Note
that the sizeo! operator will return the length of any array:

STATE: dlsplaL Size_of _string
(

char string_array [J = "hello";
In' compiler_count = sizeo/(string_array);
display! ("%d",compller_count);

4. One-dimensional array. Whereas arrays in general can be multidimensional,
a string-initialized array always has one dimension.

(8) Valid Strings

1. ASCII and control. With a few exceptions, all ASCII characters, including
control characters. are valid in a string. The exceptions are ~, ~, II I and \.
These characters are liable to be misinterpreted by the compiler. Null ('10)
and linefeed (") will be taken to indicate a new logical line in the program.
Double-quote (") will be mistaken for the end of the string. Backslash (\)
will be misinterpreted as the start of an escape sequence.

If one of these characters is included in a string, the program may not
compile. II not, you will be returned to the Protocol Spreadsheet. The
following message will be displayed for nulls or linefeeds: "Error 7 J 8:
Newline inside string." For quotation marks, the message is "Unclosed AR
"C" region." Depending on their placement in the string, backslashes may
or may not generate an error. Even when compilation succeeds .. however,
they will not be interpreted correctly.

JUL '90

JUL '90

Non-literal

\a

\b

\f

\n

\r

\t

\v

\'

\"

\\

\###

\x###

Table 59·3
C Siring Non-LIterals

Meaning

bell

backspace

form feed

IIneleed t
oarrlage return

horizontal tab

vertloal tab

single quote

doubla quota t
backslash t
octal representation
hex representation

ASCII character

'.

\

any ASCII character

any ASCII charactar

59 C Bas/cs

Hex character

t These characters require non-literal entries In INTERVIEW strings. The others may be
entered 8S ASCII charaoters. non-literals, or hexadecimal characters.

2, Non-lilera/s. Most characters in strings are Interpreted literally. Each of
the invalid characters listed above, therefore, needs a non-literal
representation. Non-literals are preceded by a backslash. The compiler
converts these non-literals to their one-byte numeric value.

To include a null (or any ASCII) character in a string, use the octal or
hexadecimal representation shown in Table 59·3. Hex and octal numbers
take up to three digits, so use leading zeroes if necessary. Otherwise. a
subsequent digit may be interpreted as part of the value. Suppose. for
example, you want to create the string lI"6abc". You initialize an array as
follows:

char strlngf) = «\xOabc";

The string will be stored as "+c" (hexadecimal characters "',). The correct
declaration was char slring{] = "\xOOOabc". In octal. the null would be
written \000.

Please note that a string that has a null character somewhere other than at
the end will be difficult to display or print completely. Display and print
routines that take strings as input typically begin at the pointer pOSition and
continue until they encounter a terminating null. If, as in the last example, a
null is encountered at the beginning of the string. execution of the routine
will end before anything has been displayed or printed.

Provide precision to the %H conversion specifier to override null termination
of a string while displaying a string in hex: see Section 60.3(C).

59-21

INTERVIEW 7000 Series Advanced ProgrammIng: ATLC-l07-951 108

59-22

3. Constants. Spreadsheet constants may be included in strings. An example of
a spreadsheet constant is the fox message represented as ((FOX)). See Section
25 on Constants.

The C translator expands constants both inside and outside of C regions
before the code is preprocessed.

4. Hexadecimal characters. ASCII characters, including the control characters,
may be entered in strings as hexadecimal characters via the ~ key. Hex
representation is considered literal. That is, you may not enter ASCII
characters which require non-literal representation in strings as hexadecimal
characters. The sequence of characters comprising a non-literal may be
entered as hexadecimal characters. Double backslash (\ \), for example, may
be entered as sese.

(e) String RoutInes

There are several C routines in the INTERVIEW that display or print strings.
See Section 63 on "Print" and Section 60 on "Display Window and Trace" for
detailed descriptions of the prints, displays, and traces routines. as well as other
display and print routines that use the %s conversion specifier.

There is also a pair of routines, index and rindex, that search inside of strings
for particular characters. These routines are defined (with examples) in Section
67.

59.8 Recommended Sources

The following sources provide accurate. in-depth information on C Programming
Language:

1. ANSI Document X3J 11/86-098. Proposed American National Standard for
Information Systems-Programming Language C.

NOTE: When approved, the number for the ANSI document
will change to: ANSI Standard X3.J59-J98X.

2. Darnell, Peter A., and Margolis, Philip E. Software Engineering in C. New
York: Springer-Verlag, 1988.

3. Harbison, Samuel P., and Steele, Guy L., Jr. C: A Reference Manual. 2d ed.
Englewood Cliffs: Prentice-Hall 1987.

4. Kernighan, Brian W., and Ritchie. Dennis M. The C Programming Language.
2d ed. Englewood Cliffs: Prentice-Hall, 1988.

JUL '90

(

60 Variables

60 Variables

JUL '90

60.1 Creating or Accessing C Variables

Softkey-selectable programming "tokens" entered by the user on the Protocol
Spreadsheet are translated automatically into C during the initial compiler phases after
~ is pressed. (Then the C code in turn is compiled into object code.) The C
variables used by the translator are documented throughout this volume.

C regions available to the user at every level of spreadsheet programming (see Section
56) provide direct access to these variables.

An example of a user-accessible variable is keyboard_new_key, used in the following
program to sound an alarm whenever any ASCII-keyboard key is pressed.

STATE: anykey
CONDITIONS:

{

}
ACTIONS: ALARM

The C regions also allow the user to work with variables of his own creation.

Here is an example of a user-created variable named minutes that is used to count
minutes elapsed since the beginning of Run mode. The C program displays this
"counter" on the prompt line of the Run-mode screen.

extern !as,_e'tlent fe\la,_tlme_o!_day;
shorl minutes;

STATE: run mode minute.
CONDITIONS: -
{

}
ACTIONS:
{

minutestt;
pos_cursor (0,0);
display! (fiDuralion of run = %4d minutes", minutes);

60-1

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-107-951-10B

The first C region in the example "declares" the variables levar _time_ol_day and
minutes. The first of these variables is an event variable that is built into the system
software. All event variables in an active State-block are polled constantly. Once
every minute, levar _time_ol_day returns true.

The second variable, minutes, is created by the program itself-that Is, by the user.
The declaration in effect creates the variable: it causes 16 bits in memory ("short" =
16 bits) to be dedicated to Information stored under the name minutes.

The second C region in the example is placed inside the Actions block. The
statement minutes++ causes the value that is. stored in the 16 bits dedicated to
minutes to increment. The function pos_cursor (0,0) places the cursor in the leftmost
column on the second line of the display screen (the Prompt line). The display I
function writes a text message to the display screen, beginning at the current cursor
position. In the text message itself, "%" will be replaced by the current value of the
variable minutes. .. 4" means that four columns on the screen will be dedicated to the
value, and "d" means that the value will be expressed in a decimal number.

60.2 Declaring Variables

(

Declare your variables and routines in a C region, delimited by curly braces { and }, (

60-2

at the top of your program or at the top of a Constants, Layer, Test, State, or
Actions block. Declare a variable preceded by its type descriptors and followed by a
semicolon, as in these examples:

extern fast_event keyboard_new _key;
extern Jasl_'IJent keyboard_new _any_key;
exlern fasl_event Jevo'_time_of_day;
short minutes;

A variable may have its scope limited to a particular Test, State, or Actions block. A
variable also may be redeclared at different levels. (In software revision 5.00 or
earlier, it may not be redeclared at the same level.) Given more than one valid
declaration, the lower or nearer one applies.

The rules governing the placement of variable declarations are laid out in detail in
Section 56.5(A).

(A) Naming Variables

1. Legal names. The first letter of a variable name may be either a letter or an
underscore. Following characters may be letters, numbers, underscores, or
dollar signs.

Reserved words (indicated in boldface type in Appendix K) may nOl be
used as variable names.

JUL '90

JUL '90

60 Variables

2. Naming conventions. Generally speaking, variables that begin with dte_ or
dce_ are used by the software to test DTE and DCE conditions. Variables
that begin rcvd_ are used to test RECEIVE (or RCV) conditions. Variables
that begin m_ are used by the layer packages to construct the protocol
traces.

(8) Modifiers

1. Data type. The data type for each variable precedes the variable name in
the declaration. All standard data types except Iloat are supported in the
INTERVIEW 7000 Series. Standard data types and their sizes and ranges
are given in Table 59-1.

2. Preassigned modifiers. When you declare a user-accessible external variable,
be sure to use the modifiers which precede the data type for that variable as
listed in variable tables throughout this volume.

60.3 Comparing a Variable to a Value

User-accessible and user-created variables may be tested as pan of any standard C
expression.

The following is an example of a user-invented variable called anykey that is declared
with a default value of zero, incremented by the operator pressing any
ASCII-keyboard key, and checked (or a value of 3 by an iI statement after each
depression of a key. An alarm will sound on the third keystroke.

extern fast_e~ent keyboard_new _key;
short QlIykeYi

STATE: press_key
CONDITIONS:
{

ACTIONS:
{

Qnykey++;
If (anykey == 3) sound_alarm ();

The next example uses a built-in, user-accessible variable called crnt_time_of_day
and checks it for a particular value. This 16-bit variable stores the time of day in
hours and minutes. The Condition in the program (the event variable
fevar _time_of_day) is true once per minute. The Action each time the condition is
true is to check ernt time of day (or a value of 1129. At 11:29 AM, an alarm will - --
sound.

60-3

INTERVIEW 7000 Series Advanced programming: ATLC-l07-951-10B

extern fQJt_e~ent Je~Qr_tlme_of_daYj
exler" 'tIolatiit unsigned short cTnt_timt_ol_day;

STATE: alarm clook
CONDITIONS:
{

fe~Q'_,;me_of_dQy
}
ACTIONS:
{

60.4 Checking a Variable In a Waltfor Clause

Please note that the following variation on the preceding example does not produce
the same result. The alarm will never sound if this version of the program is run:

STATE: alarm clock
CONDITIONS:
{

Note that the time-of-day condition that was lodged in an if statement in the
previous e"ample has now been placed in a Conditions block. Conditions blocks on
the Protocol Spreadsheet are converted to waitfor clauses (see Section 56.3). not if
statements. when the program is translated automatically into C coding.

Waitfor clauses work very differently from if statements and other conditional control
structures in C.

(A) Event vs. Nonevent Variables

Two kinds of variables may be used inside of these waitfor clauses-event
variables and nonevent variables. When a state is active. event variables in that
state are checked regularly during routine polling by the CPU. When an event
variable (such as fevar _time_of_day) is polled and returns a value of true.
conditional statements containing nonevent variables (such as crnt_time_of_day)
also are checked for truth or falsity. In the absence of an event variable being
polled and returning a value of true, a statement about a nonevent variable
inside of a Conditions block (waitfor clause) never can be true.

Since there is no event variable in the Conditions block (waitfor clause) above.
the nonevent variable crnt_time_of_day is never even checked.

60-4 JUL 'SO

(

JUL '90

60 VarIables

(8) Translation of Softkey Tokens Into Variables

You could have written the "alarm clock" program using only softkey entries, as
follows:

STATE: alarm clock
CONDITIONS: TIME 1129
ACTIONS: ALARM

In this case, the C translator will convert the Conditions block into a wailfor
clause that uses the event variable fevar _time_of_day to check the nonevent
variable crnt_'ime,-of_day once a minute, Here is the translator's version of the
Conditions and Actions blocks:

wait/or
{

(C) Example of A Nonevent Condition "Waiting For" An Event

The next example illustrates the interplay of event variables and nonevent
variables in a wailfor clause.

extern !as,_epenl keyboard_new _key;
short onykeYi

STATE: press key
CONDITIONS:
{

}
ACTIONS:
{

anykey++:
}
CONDITIONS:
{

anykey == 3
}
ACTIONS: ALARM

This program looks similar to a previous one in which the operator hit three
keys and the alarm sounded. Here, however, the alarm does not sound until the
fourth keystroke. The variable anykey begins the test at zero, and increments
(anykey++) with every keystroke. But remember what a condition such as
anykey == 3 in a wailfor clause really means. It means that the condition will be
true when the variable equals three and an event (such as a keystroke) occurs
that causes the variable to be checked. On these terms, the condition is not
satisfied until the fourth event.

60-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108

60-6

(D) User-Created Event Variables

The user can create his own event variable simply by declaring a new variable
with the modifiers extern event. Once the event variable has been declared. he
can use the signal function to indicate that the event has occurred. Here is an
example of an event variable called check_number that causes the nonevent
variable number to be checked-and sounds the alarm when the value of number
satisfies the condition.

{
short number·= ·3:
extern event check_number;

STATE: user created event
{ --

}
signal (check_numbtr):

CONDITIONS:
{

check_number &:&: (number == 3)
}
ACTIONS: ALARM

(E) Rules and Cautions

To sum up the discussion of event and nonevent variables. here are a few rules
of thumb:

1. 1/ statements. for loops. while loops. and other conditional control structures
may not be used in Conditions blocks (that is. in wail/or clauses). They may
be used in State blocks. above (or in the absence of) Conditions blocks; and
they may be used in Actions blocks.

(Placing an i/ statement at the top of the State block. above any wait/or
clauses. is how the translator converts ENTER_STATE softkey conditions into
C.)

2. Event variables are designed for use in Conditions blocks (wait/or clauses)
only. It makes no sense to use an event variable in an i/ statement. while
loop. etc .• since there is no possibility that the event will be true at the
precise moment the statement is being processed.

3. A Conditions block (wait/or clause) that lacks an event variable can never
come true.

One other word of caution about the importance of event variables: please note
that the following program will not sound the alarm even if the operator presses
a key while the time is 11:29 AM.

JUL '90

(

JUL '90

60 Variables

extern fast_tllent keyboard_new _k.ey;
extern Mialile unsigned short crnt_limt_of_day;

STATE: alarm clock
CONDITIONS:
{

The reason this program doesn't "work" is that aU variables begin Run mode at
zero. Often a particular event variable must return true before a particular
nonevent variable will be updated. The nonevent variable crnl_time_ol_day is
updated only when the event variable levar _lime_ai_day is entered in the waitlor
clause and returns true. In the example above, the operator pressing the key will
cause crnl_lime_ol_day to be checked; but in the absence of levar _lime_ai_day,
the value of crnl_lime_ol_day remains always at zero.

60.5 Checking and Displaying EquIvalent Values of a Variable

Variables may be checked and displayed as octal, decimal, hexadecimal, and
ASCII-character values. Decimal comparison and display is the default.

(A) Checking Equivalent Values

To compare a variable to an octal value, precede the value with a zero (0). No
prefix is necessary to make a decimal comparison. To compare a variable to a
hexadecimal value, precede the value with Ox or OX. To check whether a
variable matches an ASCII character, enter the character in between single
quotes.

The alarm will sound in the example below, since all of the values entered to
the right of the equal signs are equivalent.

char foxtrol = 'f';

STATE: compare_equlvalent_values
{

if ((foxlrol == 0146) && (foxlrol == /02) && (foxlrol == Ox66) && (foxlrol ==
'/')) sound_alarm();

Note that the data type char in the declaration simply means that the variable is
composed of 8 bits. The designation char does not say anything about the
comparison mode or the display mode. (Data types shorl and im = 16 bits;
long = 32 bits.)

60-7

INTERVIEW 7000 Series Advanced Programming: ATLC 107-951-108

60-8

(8) Displaying Equivalent Values

Variables may be displayed in a variety of data formats via the display!
function. The Cull set of display conversions is given in Table 64-7. The program
below generates a representative sample oC display Cormats. When the program is
run, the prompt line on the display screen will look like this: 152 106 6a 6A j
' ..

chor Julltt = 'J';

STATE: display equivalent value.
{ - -

display! ("%0 %d %x %X %c %#u ". Juliet. Juliet, Juliet. juliet, julltt.
juliet):

60.6 Isolating Bits from a Variable Value

Some variables are bit-oriented. That is, one bit (or perhaps a small field oC bits)
may have significance that is independent of the surrounding bit values. The variable
current_eia_leads (refer to Table 63-1), Cor example, uses 7 bits to store the on/ocr
status of seven separate EIA leads, plus an eighth bit to store the status of any lead (
that is patched to the UA Input jack (see Section 12.3). If you want to check this
variable to determine the status oC DTR (for example) you need to determine
whether the bit that represents DTR (the fifth bit from the right or the fifth least
significant bit in the variable) is set to 1 (DTR oCC) or zero (DTR on). How can you
isolate this bit Crom the surrounding bits in order to determine its status?

The tool for isolating a bit in a C variable is the "care mask," a group of bits (usually
expressed in hexadecimal) in which the bit(s) under scrutiny is set to 1 and all other
bits to zero. The care mask Cor DTR is Ox10 (or 16 in decimal notation). The binary
version, 00010000, shows that only the DTR bit is set to 1. When this care mask is
anded (via the "&" operator) with the variable current_eia_leads, only two results
are possible, depending on whether the DTR bit in current_eia_leads is 1 or O.

With DTR on, suppose that the combination of all lead statuses gives
current_eia_leads a value of e6 in hex-ll100110 in binary. The eHect oC anding this
variable with the care mask for DTR will be as Collows:

11100110
& 00010000

00000000

Now turn DTR off. and the result oC the anding will be this:

11110110
& 00010000

00010000

JUL '90

JUL '90

60 Varia bias

The seven IIdon't care" zeroes in the care mask guarantee seven zero-bits in the
result (because 0 & I = 0 and 0 & 0 = 0). So the result of the anding must be either
o if the DTR bit is 0 (on). or hex 10 (decimal 16. binary 00010000) if the DTR bit
is I (ofl).

This C program will detect DTR on:

extern fast_event JevaT_t/a_changed;
extern const vOlallle unsigned shor' current_tiD_leads;

STATE: check dlr on
CONDITION-S: -
{

)
ACTIONS:
{

if ((current_e/o_leads &: OxLO) == 0) sound_alarm();

If you try to run this program. make sure of the following:

1. The Front-End Buffer Setup menu should be configured to buffer control
leads.

2. If you are not connected to a device that provides clock. the Line Setup
menu should be configured to provide internal clock. EIA leads are clocked
through the front-end buffer before they reach the program logic.

3. Alter the program enters Run mode. use a single-wire patch cord to connect
the +12V output pin on the test-interface module to the DTR lead. The
alarm should sound as soon as the patch is made.

A slightly different condition inside of the if statement will detect DTR off:

If ((current_tlo_leads &: OxIO) == OxIO} sound_Qlorm()j

The DSR bit is the fourth least significant bit in the currenljia_leads variable. so
the care mask for DSR is Ox08 (binary 00001000). The following if statement will
detect DSR on:

This if statement will detect DTR on and DSR on:

This if statement will detect DTR off and DSR on:

if ((current_eiD_leads &: OxIS) == OxIO) soulId_alorm();

The last condition simply means that you care (I=care) about DTR and DSR and you
want DTR to be I (off) and DSR to be 0 (on).

60-9

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

60-10

60.7 Pointing to an Address

Some routines require an address as input. The displays (display-string) routine. for
example. requires a CPU memory address as its argument. When executed. the
routine will begin to display characters that it finds at the specified address and at
subsequent addresses. one by one. until a null is encountered. A memory address is
four bytes (32 bits) and is declared as a long.

STATE: display string
{ -

displays (any_cpu_Qddress);

Many of the important addresses needed by the user and by the program can be
found inside of interlayer ("IL") message buffers. When BOP-framed data is
monitored. it is copied automatically into IL buffers. Each time a frame is buffered. a
data primitive is created automatically and the event variable m_loyhyrmtv is
signaled. The segment number of the IL buffer is recorded in the variable
m_lo yh_ii_buff. This segment number can be converted into an address.

Here. for example. is a program that looks for a DTE data packet. converts
m_lo yh_lI_buff into a four-byte address that points to the first data position. and
displays the data contents of the packet.

long flrst_dala_address;
extern ~olatlle unsigned short m_'oyh_"_buff:

}
LAYER: 3

STATE: display_data
CONDITIONS: DTE DATA
ACTIONS:
(

flrst_doto_oddress = «(long) m_lo"'ph_lI_bu//« 16) + 37;
displays (first_daIQ_address);

The IL buffer is illustrated in Section 66 of this manual. and the procedure for
converting the buffer-segment number into a memory address is explained in detail in
Section 66.1(C). Briefly. we have cast the segment number (a short. 16 bits) into a
long and moved the number over to its high-order position in the CPU address.
sixteen bits to the left. Then we added 37 to the number to bypass the header
information for the buffer (32 bits) and the frame and packet headers (5 bits).

Each address in memory stores 8 bits. so the second byte in the data field of the
data packet would be first_data_address + 1. the fourteenth byte would be
first_data_address + 13. and so on.

JUL '90

JUL '90

60 Verlables

60.S Creating a Character Pointer

For most of the variables in a C program, the address is not important to the user or
to the program. The user does not need to know the address in order to declare the
variable, perform operations on it, and compare its value to other values. In general,
addresses of variables are solely the concern of the compiler.

In the case of a routine such as displays, the address is what is important. The value
that is stored at the address is not so important, since the routine will go to the
address and begin displaying the data whatever the value (as long as the value is
displayable) .

There is another kind of variable for which both the address and the value stored at
the address are important. These variables are called pointers. The user creates a
pointer by typing an asterisk (') just following the data type in a declaration, as in
this example:

The variable packet_type"'plr is a four-byte memory address just as
first_data_address, declared as a long in the previous example, was a four-byte
address-even though packel_type...ptr is declared as a char. The data type char
preceding the asterisk simply means that the amount of data pointed to is eight bits.

Once you use an asterisk to declare the variable a pointer, you can access the
address directly as packet_type"'plr or you can access the value stored at that address
as ' packet_type...ptr. A displays routine would accept packet_type"'plr as input, while
a displayc or displayf routine would expect' packel_lype...ptr.

With the X.2S personality package loaded at Layers 2 and 3 (via the Layer Setup
screen), the following program goes to the memory location pointed to by
packet_lype...ptr and checks its value to determine whether the packet in the buffer is
a Clear request.

extern volatile unsigned short m_loyh_il_buff;
extern event dteyocket;
char· packet_typeylr,·

STATE: search for die clear
CONDITIONS: - -
{

dteyacket

60-11

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

60-12

The pointer packet_typeytr is a char, but you could just as easily point to a short
(16 bits) or a long (32 bits). If you increment an address, you get the next address,
8 bits farther in memory. If you increment a char pointer, you also get the next
address. If you increment a short pointer, you add two increments to the memory
address. In effect you move the pointer two places. If you increment a long pointer,
you move the pointer by four addresses, 32 bits.

In the example above, the integer m_lo yh_ii_buff is cast as a pointer (void .) after
it is cast as a long. This is to avoid a compiler error ("Warning 31: Illegal implicit
integer-to-pointer conversion") when the new value of m...Joyh_ii_buff is assigned to·
packet_type ytr.

60.9 Pointing with Subscripts

When it is preceded by an asterisk ('), the pointer packet_typeytr returns the
character value that it points to, as we have just seen. Another way to return this
value is to omit the asterisk and add a subscript: packet_typeytr{Oj. This mechanism
allows you to access an array of values without moving the pointer.

For example, the transmission header ("TH") in a FI02 SNA information field is six
bytes long. If you establish a pointer to the first TH byte (THO), you can use
subscripts to access any other byte in the field without moving the pointer. The
following program checks the values of two bytes in the TH field (corresponding to
"OAF" and "OAF") before freezing the data display and sounding an alarm.

}

extern \lola tile unsigned shorl m_,oyh_ll_buffj
char· thj

LAYER: 2
STATE: th pointer

CONDiTiONS: DTE INFO
ACTIONS:
{

/h = (void 0) (((long) m_lo"'ph_lt_buff« /6) t 34);
if ((/hI2l == 5) && (/hI3! == 1))
{

cll_capture_'d (OxIO);
ell capture rd (OxlOO);
sound_alarm OJ

60.10 Creating a String

Strings are used in INTERVIEW programming mainly for transmissions and for
messages to the operator ("prompts"). In the following program, the compiler
decodes the string "OWERTYUIOP" from ASCII to hex, stores it in memory as a
series of contiguous values, adds a null to it, returns the address of the first
character, "0," and then assigns this address to the variable keyrow:

JUL '90

JUL '90

60 Variables

long Iceyrowi
}
STATE: assign string address to variable
{,- - --

Jceyrow = "QWERTYUIOP"j

The variable keyrow now is the four-byte address of "Q" in the string. You can see
this address for yourself by using either" QWERTYUIOP" or keyrow as the argument
in a display! routine:

display! ("%Ix ", "QWERTYu/OP");

or

display! ("%lx ", Iceyrow)j

Either version will display a CPU address (hex 04400000) on the second line of the
Run-mode screen.

The string can be displayed in a simple displays routine, since that routine expects a
four-byte address as input:

displays ("QWERTYUJOP"):

or

displays (keyrow):

If you want to access individual characters in the string, declare a pointer:

char· keyrow = "QWERTYUIOP"j

With a pointer you can display the entire string or a single character-the seventh
character, "U," in this example:

displays (keyrow)j

displayc (keyrow{6]):

Declaring the string an array has virtually the same effect as declaring it a pointer:

char keyrow 11 = "QWERTYUJOP":

The name of the array still is the address of the first character in the string and so
may be used in a displays routine; and individual characters still may be specified by

a subscript:

displays (keyrow):

displayc (keyrow (6]):

The only difference is that the array name is a constant whose value is assigned in a
declaration and cannot be changed, while the pointer is a variable and may be
incremented, assigned a new value, and so forth, while the program is running.

60-13

INTERVIEW 7000 SerIes Advanced programmIng: ATLC-l07-951-10B

60-14

60.11 Comparing Strings

A string comparison in C may be conducted as follows. First, create a pointer in the
manner described in Section 60.8. or else simply declare one of the pointers to line
data that is provided in the set of user-accessible variables. Example: extern yo/atile
unsigned char' myacketytr.

Next. create an array that represents the search string you will try to match against
the line data. For example:

char search_strIng {] = "\xa"j

Create a trigger to look for a line event (such as the event variable dteyacket) that
will initialize the pointer.

}

exlern volatile unsigned char· mJQcketytrj
char search_SIring /J = { OxIO. Ox04, OxOb };
eXlern event dteJQckelj

LAYER: 3
STATE: matchyaoket_strlng

CONDITIONS:
{

dteYQcket

Compare the pointer-value with the first elemenf of the search string. If a match Is
found. increment the pointer and compare the new value to the second element of
the search string; and so on. If a match is found for every element of the string.
take an appropriate action.

ACTIONS:
{

if (search_string [0] == • myacketytr)
{

fflYQckelylr ++;
if (search_sIring fl] == • mJocketJ")
{

ffl"'pQckely'r ttj
if (search_string /2J == • myocketJ,r) sound_alarm ()j

Here is the same Actions block. only this time the variable element replaces the
numeral in the subscript to search_string. and the same variable is added as a
subscript to myacketytr. This coding may be modified easily for any length string.
For a 9-byte string. for example. simply change the 3 in the if statement to 9.

JUL '90

JUL '90

ACTIONS:
{

element = 0;
while (search_string {element} == m""pQCkelJ'r (element))
{

if (search string/elementttj == 3)
{ -

sound_olarm():
break;

60.12 Accessing a Variable Inside of a Structure

60 Variables

A structure is a mechanism that makes repetitive declarations of similar variables
unnecessary. For example, there are twelve variables associated with any given
counter created in the program. One variable is the current value of the counter,
one is the last sampled value, another is the highest sampled count, another the total
of all the sampled values, another the number of samples taken, and so forth. If the
user creates four counters via the spreadsheet softkeys, the C translator does not
declare 48 separate variables (4 x 12). Instead the translator declares a structure for
counters-called counler _slrucl-that declares each of the twelve variables once, as
follows:

strucl counler struc'
{ -

) ;

unsigned long current;
unsigned long last;
unsigned long maximum;
unsigned long minimum:
unsigned short sample_count;
unsigned long total_high;
unsigned short total_'ow_'ow;
unsigned shor' tOlol_low _high;
unsigned shorl out_oJ_ronge;
unsigned short changed;
unsigned long pre~j
unsigned long old;

Then the translator declares each of the user's four counters as having the structure
counler _Slruel:

In effect the translator has declared all 48 variables. Suppose the user wants to
access one of these variables. He may wish to display the total value of a counter
whose current value no longer is the IOta I value (since the counter may have been
sampled-and therefore cleared-several times). As long as the total is less than
65,536, the entire number will reside in the seventh variable in the eounler _slruel
structure, lotal_low_low. If the counter in question is dce...f!,ood_bee, he will access
this "total" variable under the name dee...f!,ood_bec.lolal_low_low.

60-15

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-108

60-16

Here is a sample trigger that displays this variable whenever the operator presses I!I:

STATE: display total dee good beo
CONDITIONS: KEYBOARD "'ft"
ACTIONS:

{
display! ("To,al DeE good Bee's. %d", deeJood bee.,o'al low low):

) - --

Refer to Section 65.1 for more detail on the structure of counters.

60.13 Creating a Structure Pointer

We have just seen how a structure can be created to store and access data
conveniently. A structure can also be used as a multibyte pointer that is
superimposed on data that has been stored previously.

In our example we will declare the structure of an IL buffer and then point this
structure at a newly received IL buffer.

The precise structure of an IL buffer is given in the following declaration. Note that
there are 32 bytes devoted to header information and the remaining 4K bytes are
available for data.

struct ii_buffer
{

) ;

unsigned short lock;
unsigned shorl maintain bils;
unsigned short buffer_size;
unsigned short transmit_lag:
unsigned short receive_tag;
unsigned long char _buffJrame_starlj
unsigned long cha,_buffJrame_end;
unsigned short tick_caunt_high:
unsigned short tick count mid;
unsigned shorl tick=coun,='ow;
unsigned short available_space_offset;
unsigned short bytesJemaining;
unsigned long bee indicator;
unsigned char data [4064];

The next step is to create a pointer that has the structure of ii_bUffer. First, declare
the structure of ii_bUffer, as indicated above. Then declare buffer ylr as a
structure-pointer, as follows:

strucl ii_buffer· bufferytr;

The next step is to wait for an INFO frame to be monitored. When the the frame
data has been buffered and m_lo yh_il_buff has been updated with the new
buffer-segment number, assign the first address of this buffer to buffer ylr.

JUL 'SO

(

JUL '90

60 Variables

Now a structure has been created around the most recent upward-moving IL buffer.
This means that rather than moving a pointer around in the IL buffer, you can
access elements in the buffer directly. The tlck_count_low variable, for example,
would be called buffer ytr->tick_count_low. (The -> operator is used in place of the
dot operator in structure-pointers.)

The first element of the data string would be called butferytr ->data[O). Here is a
program that displays on the prompt line the fifth data element (the packet-type
byte) in the IL buffer for Info frames monitored on DTE.

extern volatile unsigned shor, m_'oJh_lt_bufl;
sl,ucl "_buffer
{

} ;

unsigned shorl lock;
unsigned shorl maintain_bits;
unsigned shorl buffer_size;
unsigned shor' transmit_,ag;
unsigned shorl receive_'aB;
unsigned long cha,_buffJram,_sIar,;
unsigned long char _buffJrame_end;
unsigned short tick_count_hlgh;
unsigned shorl Itck_caunt_mld;
unsigned short tlcle count low;
unsigned shor' avaltable_space_offset;
unsigned short bylesJemalnlng;
unsigned long bee_lndlcatorj
unsigned cha, dala (4064);

slruc' iI_bufler • buffer ""plr;

LAYER: 2
STATE: monitor II buff.r.

CONDITIONS: DTE INFO
ACTIONS:
{

buf/erytr = (,old 0) ((long) m_loyh_il_buff«16);
pos_cursor (0,0);
displayf ("%02x ", bu//erytr->dala(4});

60-17

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

60-18 JUL '90

61 Routines

61 Routines

JUL '90

This manual documents the C routines that are "external" to the C program-that is, defined
elsewhere than in the program. Most of these routines are used by the C translator when it
converts softkey-selectable programming "tokens"-most commonly those tokens that are
appropriate to Actions blocks-entered by the user on the Protocol Spreadsheet. Some, like
the Disk I/O routines, are associated with no spreadsheet conditions or actions and can be
accessed only in C regions on the spreadsheet.

61.1 Declarations

In most of the examples in the manual, we have not bothered to declare routines
since it is not necessary. In the absence of a declaration, the compiler assumes that
the routine is external and that it returns an integer. In nearly all cases, this
assumption works. In those rare cases when the routine returns another data type
(the stats-display routine gel_68k"'phys_addr, for example, returns a long) it must be
declared.

61.2 Arguments

An argument is an input that the user provides when he calls a routine. Arguments
are placed inside of parentheses just following the routine name, as in this call to the
pos_cursor routine: pos_cursor (1,5);

This routine requires two arguments in order to position the cursor in one of 1,088
possible character positions. The first argument selects one of the seventeen
horizontal rows. The second argument selects one of the sixty-four vertical columns.

Many routines in the INTERVIEW library have arguments whose names end in the
letters plr or pointer. If you look at the synopsis for the displays routine, for
example, you will see that the only argument is something called string...plr. This is
an address argument. The user enters a four-byte address as argument when he calls
the displays routine, and the routine goes to this address and begins displaying data
until a null (or other non displayable character) is encountered.

Pointers are four-byte addresses. The following call to the displays routine will go to
the location of m"'packel_in!0...plr (the first byte of user data in a packet) and begin
displaying data until a non displayable character is encountered:

displays (mYQckel_ln!o...,plr);

61-1

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

61-2

Array names also are four-byte addresses. The following example will display the
characters in the array siring:

char string I J = "QWERTY";
displays (sIring);

A string of characters declared inside of double-quotation marks is really a four-byte
address that points to the first character in the string. In the function call displays
("qwerlyuiop"), "qwerlyuiop" qualifies as a string pointer and therefore satisfies the
formal definition of the routine.

Many routines have no arguments and are called with empty parentheses:

Do not omit the parentheses. Without them, sound_alarm is a variable instead of a
routine.

61.3 Returns

In addition to performing various operations, many routines include a relurn function
that, at the end of the routine, stores a user-defined value in a memory location. As
an example, we will look at an X.2S routine called 13_windowJull.

The 13 _window Jull routine is declared automatically by the translator after the user
has made a WINDOW FULL softkey entry. The synopsis for 13_windowJull shows how
it is declared:

extern unsigned char 13_windowJull (path_number):

The routine is declared as a char because at the end of the routine, a return function
will store a char-sized value (8 bits) in memory. If the packet window is full, the
stored value will be nonzero. If the packet window is not full, the value will be zero.

The stored value is accessed any time you call the routine in your program. If you
want to test for the window being full, you can enter this line of code:

if (lJ_windowJulJ(path_number) 1= 0) sound_alarm()j

Here is a simpler coding for the same test:

if (l3_window JuU(palh_flumber» sound_alarm OJ

This coding works for the same reason that if (1) sound_alarm(); or if (10)
sound_alarm(); will sound the alarm. Nonzero constants, variables, and expressions
are true in C and cause statements to be executed inside of if, while, and other
control constructions. Constants, variables, and expressions that equal zero are false
and prevent statements in control structures from being executed.

JUL '90

(

JUL '90

61 Routines

If a routine is declared as a short, a short will be set aside in memory and any value
returned by the routine (via a return function) will be stored there. If the routine is
declared a long, a long will be reserved. If the routine is declared void, no space will
be reserved in memory and a call to return a value will not be successful.

61.4 User-Defined Routines

The following coding will blank out the prompt line near the top of the INTERVIEW
run-mode display.

pos_cursor(O, 0) i
displays (" OJ) ;

If you code these two routines each time you display a user-prompt, you can always
be sure that the prompt line will be blank and that each prompt will overwrite the
previous prompt completely. The only problem is that the two routines are laborious
to type in.

A better way is to declare a routine that executes the two "subroutines"
automatically.

Declare a routine with its arguments inside parentheses and its body-the list of
statements or subroutines that the routine is intended to perform-inside a pair of
curly braces.

void blankyrompt Une()
{ -

pos_cursor(O, 0);
displays ("

Now you can blank out the line simply by typing this:

blankJrompl_lInt() j

")j

Suppose you wanted a routine that blanked the prompt line and generated a new
prompt. The new prompt will be the argument for the routine:

I}oid new -prompt (string...,poinlerJ
char stringyointer [);
{

pos (ursor(O,O);
disPtays ("
pos_cursor(O,O) ;
displays (string...,pointer);

") ;

Now you can generate a prompt against a blank background with this simple routine:

newyrompt ("This prompt will overwrite any preIJious prompt");

61-3

INTERVIEW 7000 SerIes Advanced Progremmlng: ATLC-l07-9S1-10B

61-4

NOTE: User routines may be declared and defined outside of
the current spreadsheet program-in include files or
linkable-object flies. See Section 59.4.

61.5 Example Routines

We wiil provide three examples that wiil help illustrate how routines are created.

(A) Example Routine: Temporary Prompt

Here is a user-defined routine that blanks the prompt line, displays a new
user-defined prompt, and then waits a user-defined interval before blanking the
prompt line again. The routine is cailed temporary"'prompt. The two inputs are
1) the new prompt, and 2) the number of seconds that you want the prompt to
rema in on the displa y.

The routine incorporates one external routine, timeout_restart_action, discussed
in Section 72.3 of the section titled "Other Library Tools," and one internal
routine. blank"'prompt_line, discussed above.

slrucl
{

)

unsigned long even,_id;
unsigned short even,_'d_uld:

timeOU(l'Tomptj
Mid blankJromp,_line()
{

)

pos_cursor(O. 0);
displays (If

void lempora'Y...,pTompt (strlngyointe,. seconds)
char stringJo;nter lJ;
char seconds;
{

") ;

blankJTomp,_'ine() ;
pos_cursoT(O, 0);
displays (slr/ngyo;nteT) ;
timeout_restart_Dction (&timeoutyrompt. seconds· 1000. blankyromp,_line);

)
)
STATE: test temporary prompt

CONDITIONS: KEYBOARD • "
ACTIONS:
{

temporaryJTompl("This prompt will self-destruct in 4 seconds. 'J. 4)j

Note that the blank"'prompt_line routine is embedded inside the
timeoutJestart_action routine. which in turn is embedded inside the
temporary"'prompt routine.

JUL '90

(

JUL '90

61 Roullnes

Note also:

The structure timeout"prompt is needed by the timeoutJestart_action routine.
The structure is explained in Table 72-1.

The two arguments in the temporary"prompt routine are declared outside the
body of the routine (that is, outside of the curly braces). As a result, they are
not redeclared each time the routine is called.

Timeout timers increment in milliseconds, so the user's seconds entry is
multiplied by 1,000.

(B) Example Routine: Display Binary Value of Byte

The next sample routine takes a user-defined 8-bit value as input and expands
it into a binary display of ASCII l's and O's. The routine, called
display_binary, uses the & ("a.nd") operator to isolate each bit and turn it into a
"I" or "0" in an ASCII string called binarYJ"ing. See Section 60.6 for a
discussion of the & operator.

The condition-and-action program that follows the declaration of display_binary
uses the routine to expand the packet-type byte in each DCE packet.

{
extern votalile unsigned char· m...,packetytr;
extern event dceyQcket;
char binary_string /8);
void display_binary (hex_l}Q/ue)
char hex value;
{ -

If ((hex_value .I< Ox80) == 0) binary_slrlngrO) = '0';
else binary _51,;ng[0 J = '/';
If ((hex_value.l< Ox40) == 0) binary_S1rinSrI) = '0';
else binary_slring[J] = 'I';
if ((hex_value .I< Ox20) == 0) binary_Slrins/2) = '0';
else binary _slringl2} = '}';
if ((hex_value .I< OxlO) == 0) binary_Slrins/l) = '0';
else binary_string!3] = '1';
if ((hex_value .I< Ox08) == 0) binary_Slring/4) = '0';
else binary_slring/4j = '}';
if ((hex_value .I< Ox04) == 0) binary_string/5) = '0';
else binary_slringl5} = 'I';
if ((hex_value .I< Ox02) == 0) binary_slrlng/6) = '0';
else binary str;ng/6] = 'I';
if ((hex_value .I< Ox01) == 0) binary_strins/7} = '0';
else binary_stringl7] = '1';
display! ("\n %s". binary_string);

)
)

STATE: bInary
CONDITIONS: { deeyaekel)
ACTIONS:
{

display_binary (mJacketJlr{2);
)

61-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

61-6

(C) Example Routine: Compare String Against Line Data

Here is a routine called strcmp that matches a user-entered string to line data,
beginning at a point in the line data that the user specifies. The arguments are
the string itself and a pointer to the beginning of the line data.

When the user enters his string inside double quotes, the compiler writes the
string into memory, appends a zero (null), and returns a pointer to the first
character in the string. The strcmp routine uses this zero to determine when the
match is complete.

If a complete match is found, the return(J) routine breaks out of the while loop,
so the return(O) never is executed. A routine that returns 1 (or nonzero) inside
of an i/ condition will make the condition true.

The sample program that uses the strcmp routine looks on the DCE side for a
data packet with a user-data field that begins "<;,'t PASSWORD." This string
occurs on the "HDLC/X.25 Data Sample" diskette, DSK-951-007-1, shipped
with your INTERVIEW. Be sure to load in the Layer 2 and Layer 3 X.25
packages if you tryout this program. The Layer 3 package will provide you with
your line-data pointer (my-acket_in/o ytr).

{
extern "c/atilt unsigned char ·mJQcke,_ln/oylr;
Int element;
in' strcmp (user_strlngY'f, IIne_dotoJ")
char user_strlngy,r ll;
char· line_do lay";
{

element = 0;
while (user_strlngytrlelement] == IIne_dal0....p,,!elementj)

{

)

If (use,_stringJ'r/ttelement) == 0)
return (I);

return (0);
)

)
LAYER: 3

STATE: match user data field
CONDITIONS: DCE-DATA
ACTIONS:
{

If (slrcmp("\xOd\xOaPASSWORD", m...packeUnf0...pIr))
sound alarm ();

) -

JUL '90

(

62 Monitor/Transmit Lin9 Data

62 MonitorlTransmit Line Data

The external variables and routines in this section are available for use by the programmer to
monitor and transmit data. Their use on the Protocol Spreadsheet is not limited to any
panlcular layer, though normally they belong at Layer 1.

The variables and routines approximate Layer 1 spreadsheet-generated conditions and actions.
Refer to Section 31 for more detailed explanations of the purposes of specific conditions and
actions. Sometimes the name of the variable or routine is sufficient for identifying its related
spreadsheet token. When this is not the case, the information is provided below.

62.1 Structures

Use the structure xmit_list, shown in Table 62-1, when transmilling line data via the
II_transmit routine. Refer to II_transmit in Section 62.3(B) for an example of how
to use this structure.

Table 62-1
Transmit Structures

Type Variable Value (hex/decimal) Meaning

Structure Name; xmiUlst

unsigned char • string

unsigned short

JUL '90

0-111110-65535

_Structure of a transmit list for 11 transmit
routine. Declared as type struct-: Reference
member variables of the structure as follows:
xmlUlst. str'ng_'ength.

pointer to the location of the transmit string-the
transmit string Is deClared separately

length althe transmit string

62-1

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

62-2

62.2 Variables

(A) Monitoring Events

1. Emulale or monilor mode. Layer 1 events include characters received, good
or bad BCC's, aborts, parity errors, and framing errors. All event variables
in Table 62-2 containing a _Id or Jd suffix are valid in either emulate or
monitor mode. These event variables are levar Jcvd_char Jd,
levar Jcvd_char _Id, levar...1Id _bcc Jd, levar...1Id _bce _Id, levar _bd _bcc Jd,
levar _bd_bcc_ld, levar _aborlJd,levar _aborl_ld,levar "pariIYJd,
levar "parily_ld, levar Jrmjrror Jd, levar Jrm_error _Id, and
levar Jcv_bufler Jull. The variable levar Jrm_error Jd, for example,
equates to DCE FRAMING_ERROR (or RECEIVE FRAMING_ERROR when you are
emulating DTE).

You can use both Id and rd variables relating to the same event in one
conditions block. Suppose you want count all bad BCC's, from either side
of the line. Enter the following CONDITIONS/ACTIONS block:

CONDITIONS:
{

fevar_bd_bcc_'d II fevar _bd_bccJd
}
ACTIONS: COUNTER bad_beo INC

Using spreadsheet tokens, the same test needs two CONDITIONS/ACTIONS

blocks:

CONDITIONS: DTE BAD_BCC
ACTIONS: COUNTER bad_bee INC
CONDITIONS: DeE BAD_BCC
ACTIONS: COUNTER bad_bee INC

Use levar JCv _buffer Jull and its associated status variable, rcv _bufler Jull,
to monitor the status of the character buffer. The moment the buffer is full,
levar Jcv_bufler Jull comes true and the value of rcv _buffer Jull transitions
from zero to a non-zero value. Then, new data begins to overwrite the old
data. The softkey equivalent of levar _rcv _buffer Jull is the
layer-independent condition BUFFERfULL when it appears alone in a
conditions block. When BUFFERfULL is combined with another condition,
in most cases the other condition will supply the event variable and only the
status test will be used. See Section 30 for a discussion of this and other
layer-independent conditions and actions.

JUL '90

Type

extern fast_Bvent

extern fast_Bvent

extern fast_Bvent

extern fast_Bvent

extern fast_event

extern fast_Bvent

extern fast_event

extern fast_event

extern fast_event

extern fast_event

extern fast_event

extern fast_event

JUL '90

Table 62·2
Monitor/Transmit Variables

62 Monltor/Transm/t Line Data

Variable Value (hex/decimal) Meaning

·tevar yarlty Jd

True for each charaoter
received on RD. Line Setup
configured for emulate or
monitor mode.

True for each character
received on TO. Line Setup
configured for emulate or
monitor mode.

True when a good Bce Is
calculated for an AD block or
frame. Line Setup oonflgured
for emulate or monitor mode.

True when a good BCe la
calculated for a TO block or
frame. Line Setup configured
for emulate or monitor mode.

True when a bad BCe la
calculated for an AD block or
frame. Line Setup configured
for emulate or monitor mode.

True when a bad BCe Is
calculated tor a TO block or
frame. line Setup ·conflgured
for emulate or monitor mode.

True when an abort Is detected
In an RD frame. Line Setup
configured for emulate or
monitor mode.

True when an abort Is deteoted
In a TO frame. Line Setup
configured tor emulate or
monitor mode.

True when a parity error Is
detected for an RD byte. Line
Setup configured for emulate or
monitor mode.

True when a parity error Is
detected for a TO byte. Line
Setup configured for emulate or
monitor mode.

True when an async framing
error Is detected for an RD
byte. line Setup configured for
emulate or monitor mode.

True when an aaync framing
error Is detected for a TO byte.
line Setup configured for
emulate or monitor mode.

62-3

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

Table 62-2 (continued)

Type Variable Value (hex/decimal) Meaning

extern fast_evant favar _xmlt_ cmplt True when the INTERVIEW put.
a transmission out onto the
link. Una Setup configured for
emulate mode only.

extern fast_avent favar Joy_buffer _full Returns true at the moment the
charaoter buffer filio with data
and will begin to overwrite
existing data. Line Setup
conrlgured for emulate or
monitor mode.

extern Yolatlle unsigned short reY _buffer_full 0 not full
1 full

Line Setup configured for
emulate or monitor mode.

sKtar" unsigned short rcyd_char_td Most recent TO charaoter Is
stored In this variable. Line
Setup configured for emulate or
monitor mode.

0-11/0-255 data character (lower byte In (
16-blt data word In data buffer)

1001256 good or bad Bee
1011257 flag
1021258 sync
1031259 abort

extern unsigned short rovd _char Jd Most recent AD character la
stored In this Yarlable. Line
Setup configured for emulate or
monitor mode.

0-/110-255 data character (lower byte In
16-blt data word In data buffer)

1001256 good or bad Bee
1011257 flag
1021258 sync
1031259 abort

extern unsigned char td_modilier Most recent modifier byte for a
TD data character. This Is the
upper byte In the 16-blt data
word reserved for each data
character In the data buffer.
Line Setup configured for
emulate or monitor mode.

data-Initial value (always
Included In value of td_madlllef)

2 alternate code set
4 underline (rd character)
8 reverse Image
10116 hexadecimal
20132 loW Intensity
40164 blink
801128 strlke-thru (parity error)

62-4 JUL '90

Type

extern unsigned char

62 Monltor/Trensmlt Line De/e

Table 62·2 (continued)

Variable Value (hex/decimal) Meaning

2
4

8
10/16
20/32
40/64
80/128

Most recont modifier byte for an
AD data character. This Is the
upper byte In the 16·blt data
word reserved for each data
charaoter In the data buffar.
Line Setup configured for
emulate or monitor mode.
data (alway. Included In value of
rd_modlllsri
alternate code set
underline (rd characterl-Inltlal
value of rd modlllsr
reverse Image
hexadecimal
low Intensity
blink
strlke-thru (parity errorl

2. Emulate mode only. One variable is valid in emulate mode only, since it
monitors an emulate action. IiSENDing" a transmission means queuing a
transmission to send. The layer protocol (the RTS-CTS handshake, for
example, at Layer 1) may delay the actual transmission. The fast-event
variable fevar _xmit_cmp/t will not come true until the transmission actually
has been sent. Use this condition to start accurate response-time
measurements.

If you try to use fevar _xmit_cmp/t in monitor mode, you will be returned to
the main program menu. When you go to the Protocol Spreadsheet and
search for errors, the following message will be displayed: "Error 140:
Unresolved reference fevar _xmit_cmplt."

(8) Status Variables

JUL '90

Status variables are those in Table 62·2 that do not include event in the Type
column. Their associated event variables guarantee that they are updated and
tested.

1. Distinguishing character types. Suppose you're monitoring the DCE side of
the link. Every time a character is detected, the event fevar Jcvd _char Jd
comes true, regardless of whether or not the character will be stored in the
character buffer. Not all characters are "data" characters. A character also
may be a flag or the second byte in a block-check, for example.
fevar Jcvd_char Jd (or fevar Jcvd_char _td) does not distinguish character
types.

Character type is stored in the high byte of rcvd_char Jd or rcvd_char _td.
For data characters, the high byte is zero. The low byte contains the actual
value of the character.

62-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

62-6

For a "non-data" character, hereafter referenced as a special symbol, the
high byte of rcvd_char Jd is a non-zero value. The low byte specifies a
special symbol to be displayed on the data screen, overwriting or replacing
the character. The special symbols are lID (sync),1ID (good BCC), III (bad
BCC), III (abort), and IE] (nag). See Table 62-2.

Notice on Table 62-2 that the value for good BCC and bad BCC is the
same. Use [evar ...lId_bccJd and [evar _bd_bccJd event variables to
distinguish between good and bad BCC's (or data BCC's in DDCMP).
Likewise, use [evar ...lId_bcc2Jd and [evar _bd_bcc2Jd to differentiate
between good and bad header BCC's in DDCMP. Refer to Section 78 for
DDCMP variables.

Aborts are not automatically renected in rcvd_char Jd and rcvd_char _td.
When seven consecutive 1-bits are received in 7E-framed protocols, the
controller chip generates an interrupt. The bits, however, are not stored in
memory. In this case, use [evar _abortJd or [evar _abort_td to detect the
interrupt. When this event variable transitions to true, it updates
rcvd_char Jd (or rcvd_char _td) to indicate an abort.

Use rcvd_char _td and revd_char Jd to monitor received characters,
independent of whether or not they will be buffered. The following
condition detects RD data characters only:

CONDITIONS:
{

/eva'_TclJd_cha'Jd &:&: (/(rcvd_cha'_fd &: OxlOO))
}

2. Attributes. Data characters and special symbols in the character buffer are
available for normal or enhanced display on the data display-screen. Access
the data display by pressing DATA on the first rack of Run-mode softkeys, or
by selecting it as the initial Run-mode display on the Display Setup menu.

The current attributes for RD data are stored in rd_modi[ier. Table 62-2
shows how the various attributes are coded. The initial value of rd_modi[ier
is always five. This value means that the character is data (1) on the RD
(4) side. RD data is always underlined. TD data is never underlined. The
initial value of td_modi[ier, therefore, is one.

You may change some attributes by using spreadsheet tokens (or their
equivalent C routines). The Layer 1 ENHANCE action allows you to control
reverse-image, blink, hexadecimal, and low intensity enhancements. This
action also updates rd_modi[ier, td_modi[ier, or both.

When an RD data character is written to the character buffer, the value of
rd_modi[ier is written to the high byte of a two-byte data event-word. The
data character, found in rcvd_char Jd, is written to the low byte. See
Section 62.3(C) on the format of character-buffer event words.

JUL 'SO

(

(

(

JUL 'SO

62 Monitor/Transmit Llna Data

NOTE: The attributes in rd_modi/ier and Id_modl/ier do not
apply to special symbols. rd_modi/ier and Id_modi/ier always
renect the attributes last assigned to data. Underlining applied to
(RD) special symbols on the data display-screen comes from a bit
in the special receive-event word. See Table 62-3.

62.3 Routines

Unless noted otherwise. the routines discussed below apply when the Line Setup
menu shows either emulate or monitor mode.

(A) Controlling Data Display

ctl_enhance_td

Synopsis

txtern void ctl_,nhance_,d(enhanc,_'yP'_s'o,us),
unsigned ShOTI enhancI_,ype_status;

Description

This routine turns various enhancements of the data display on and off on the
DTE side. It also updates the variable Id_modi/ier. The softkey equivalent of
this routine is the ENHANCE DTE action on the Protocol Spreadsheet .

.l.n!2!ili
There is one two-byte parameter. The high byte identifies the type of
enhancement to be controlled: blink (40). low intensity (20). hexadecimal
representation (10). and reverse image (08). The low-order byte indicates the
status of the enhancement. To indicate a given enhancement is on. the second
byte has the same value as the first. If the enhancement is to be turned off. the
value of the second byte is zero. For example. if you want to turn blink on. the
parameter value is Ox4040. To turn blink off. it is Ox4000.

Multiple enhancements can be controlled with one action by using hexadecimal
addition of the parameters. as in the example for ctl_enhanceJd.

Example

Assume X.25 protocol for this example. You want to enhance the packet type
byte on the DTE side with a blinking. reverse image.

LAYER: 1
STATE: enhance_packet_type

CONDITIONS: DTE STRING @«XXXXXXXO))I8Ei"
ACTIONS:
{
ctl_ enhance _ td (Ox4040):
ctl_.nhance_'d (0.0808):

}

62-7

INTERVIEW 7000 SerIes Advanced Programmlna: ATLC-107-951-10B

CONDITIONS: DTE STRING m«XXXXXXXO»~'
ACTIONS:
{
ctl_,nhanc,_,d(Ox4000j;
ell_enhance _'d (Ox0800);

}

ct,-enhance Jd

Synopsjs

exlern void ctl_tnhanctJd(enhQnce_,yp,_stalus};
unsigned shor, enhQlIct_'yp,_stalus;

Descriptjon

This routine turns various enhancements of the data display on and off on the
DCE side. It also updates the variable rd_modi/ier. The softkey equivalent of
this routine is the ENHANCE DCE action on the Protocol Spreadsheet.

See cll_enhance Id.

Example

Assume X.2S protocol for this example. You want to enhance the packet type
byte on the DCE side with a blinking, reverse image.

LAYER: 1
ST ATE: enhance "'packeUvpe

CONDITIONS: DCE STRING m((XXXXXXXO»~"
ACTIONS:
{

ell_enhance Jd(Ox4848);
}
CONDITIONS: DCE STRING m((XXXXXXXO»I8EEJ"
ACTIONS:
{
ell_enhance Jd(Ox4800);

}

Synopsis

extern void ctl_caplure_,d(slatus)i
unsigned short status;

Description

(

(

This routine turns on and off the presentation of DTE data to the screen-that
is, it stops or "freezes" the display-and capture of data to the screen buffer
(character RAM). Unlike the Manual Freeze mode initiated by the I" .. ", key, I,

62-8 JUL '90

JUL '90

62 MonltorlTransmlt Une Data

however, the "capture off" action does not allow you to scroll through the buffer
while the test continues. The softkey equivalent of this routine Is the CAPTURE

DTE action on the Protocol Spreadsheet.

The only parameter is the status of capture, on (OxOO) or off (OxlO). Turning
capture off freezes the display.

Example

Assume X.2S protocoHor this example. You want to turn capture off as soon
as the cause byte is displayed in a Clear packet on the DTE side. Capture will
be resumed when the spacebar is pressed.

LAYER: 1
STATE: find_cause

CONDITIONS: DTE STRING m«XXXXXXXO))~'~'
ACTIONS:
{
ClI_cap/u,e _/d(OxlO);

)
CONDITIONS: KEYBOARD' •
ACTIONS:
{
ctl_capture_td(OxOO) ;

)

ctl capture rd - -
Synopsis

extern void ctl_captureJd(status):
unsigned shorl status;

Description

This routine turns on and off the presentation of DCE data to the screen-that
is, it stops or "freezes" the display-and capture of data to the screen buffer
(character RAM). Unlike the Manual Freeze mode initiated by the ~ key,
however, the "capture off" action does not allow you to scroll through the buffer
while the test continues. The softkey equivalent of this routine is the CAPTURE

DCE action on the Protocol Spreadsheet.

!!!mIll
The only parameter is the status of capture, on (OxOO) or off (Oxl00). Turning
capture off freezes the display.

Example

Assume X.2S protocol for this example. You want to turn capture off as soon
as the cause byte is displayed in a Clear packet on the DCE side. Capture will
be resumed when the spacebar is pressed.

62-9

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-108

62-10

LAYER: 1
STATE: lind_cause

CONDITIONS: DCE STRING m«XXXXXXXO»I8I8l',~·
ACTIONS:
(
c"_capture_,d(Ox 100);

}
CONDITIONS: KEYBOARD' •
ACTIONS:
(
ctl_capture_,d(OxOO):

}

outsync_8ctlon

Synopsis

extern void oUlSynC_Qction (side);
unsigned shorl side:

Descriptjon

The ou/sync_action routine applies to synchronous format only. This routine
sends one of the receivers (TD or RD) out of sync ,md initiates a search for
sync. The softkey equivalent of this routine is the (PROTOCL) OUT _SYN action on
the Protocol Spreadsheet.

The only parameter identifies which side of the line is to go out of sync, 0 for
the DTE side, 1 for the DCE side.

Example

To display DTE protocol information only, initiate sync each time a stan-of-text
character is found. The results of this routine are similar to turning capture off
and on, but here the display does not have to be turned on again. It resumes
automatically with sync.

LAYER: 1
STATE: go_out_of_syno·

CONDITIONS: DTE STRING "'k
ACTIONS:
{
outsynC_Qctlon (0);

}

JUL 'SO

JUL '90

62 Monitor/Transmit Line Data

disable dee

Synopsis

eXlern void disable_dce():

Description

The disable_dee routine applies only to synchronous format in emulate mode.
This routine completely disables the monitoring of the DeE side of the line.
Once this routine has been executed, the DeE side of the line cannot be
monitored until Run mode has-been exited.

This reduction (by half) in the receive load enables the INTERVIEW to achieve
better speeds for user-implemented BERT.

Example

For this example, configure the Line Setup menu with the following selections:
Mode: ili~.MQ8\t-$.l:p.~~, Source: :JJ~~. Format: W¥im.9t, Syno Char: \ ~. Out sync:

tp~r, Display Idle: 19M:, Xmlt Idle Char: °0 , Clock Source: jrrn~NiWlm.

By disabling the receipt of DeE data, the following program runs at speeds
higher than those possible when the INTERVIEW must process data from both
sides of the line.

LAYER: 1
STATE: look_for_errors

CONDITIONS: ENTER_STATE
ACTIONS:
{
disable jce();

}
CONDITIONS: OTE ONE_OF "l.'l"
ACTIONS: COUNTER error INC
CONDITIONS: KEYBOARD" "
ACTIONS: SEND "«FOX))" NO_BCC

disable_dte

Synopsis

extern void disable_dte():

Descriptjon

The disable_die routine applies only to synchronous format in emulate mode.
This routine completely disables the monitoring of the DTE side of the line.
Once this routine has been executed, the DTE side of the line cannot be
monitored until Run mode has been exited.

This reduction (by half) in the receive load enables the INTERVIEW to achieve
better speeds for user-implemented BERT.

62-11

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-107-9S1-10B

62-12

Example

For this example. configure the Line Setup menu with the following selections:
Mode: i@;jilMt¢i:@i:li: or .fijtl;l\lQ\fi\iit¢i. Source: iM¥i. Formal: ;:~&i"Wl. Syno Char:

'.'5. OUlayne: @lllIL Display Idle: HWt. Xmlt Idle Char: ' •• Cleek Seurce:

};m1ifM\~;;M .

By disabling the receipt of DTE data. the following program runs at speeds
higher than those possible when the INTERVIEW must process data from both
sides of the line.

LAYER: 1
STATE: look_far_errora

CONDITIONS: ENTER_STATE
ACTIONS:
{
disabl._dte():

l
CONDITIONS: DCE ONE_OF ":"
ACTIONS: COUNTER errer INC
CONDITIONS: KEYBOARD" •
ACTIONS: SEND "((FOX))' NO_BCC

(8) Transmitting

Use the following routines in emulate mode only. If you try to call one of these
routines in monitor mode, you will be returned to the main program menu.
When you go to the Protocol Spreadsheet arid search for errors. a message like
the following will be displayed: "Error I 40: Unresolved reference
lI_ii_transmit."

11 transmit

Synopsjs

extern void Il_,ransmit(count, struc/_send_stringy,r, xmit_lag),
unsigned short count;
slruc' xmit_lisl

{
unsigned char· stringJ'tfj
unsigned short string_length;

l:
struc' xmit_lIst • struc/_send_stringy,r;
unsigned short xmit_tagj

Description

The II_transmit routine sends a specified string with a user-determined BCC.

JUL 'SO

JUL '90

62 Monitor/Transmit Line Data

The first parameter is the number of strings to be sent.

The second parameter is a pointer to a structure which in tum identifies the
location and length of each string.

The third parameter is a transmit tag which includes a Bee in bits 0-2: good
(001), bad (010), or abon (011). Bits 3-7 are reserved for future use.
Integers may be used to indicate the value of the transmit tag: good (I), bad
(2), and abon (3).

Example

Assume you want to send a fox message at Layer 1 inside of an X.25 data
packet with a good block check. You might have 2 strings, one with the Layers
2 and 3 header information, and one with the fox message. You would send
these strings as follows:

unsigned char headers II = {0.01. 0.00, 0.10, 0.04, 0.00),
unsigned char message Il = "((FOX» It;

struc' xmlt_lIst

unsigned char· string;
unsigned short string_'ength,"

),
struc' xmi,_"st send_string II = {&'headers/OJ • .s, &-message[OJ. sizeo!(message) - J};

)

LAYER: 1
STATE: send_message

CONDITIONS: KEYBOARD·
ACTIONS:
{
11_,ransmit(2. &send_SlrlngIO I, I),

)

11 II transmit

Synopsis

extern void ll_"_,ransmit(iI_bulfe,_"umber. relay_baton, data_staF,_offset, transmit_'ag);
unsigned shorlll_buffe,_number;
unsigned short relay_baton;
unsigned shorl data_slaTI_of/set;
unsigned shorl transmit_lag;

Description

This routine sends a designated interlayer message buffer out onto the line.

62-13

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

62-14

The first parameter is the interlayer message buffer number.

The second parameter is the maintain bit used to hold the buffer while the send
operation is performed at Layer 1.

The third parameter is the offset from the beginning of the buffer to the service
data unit (SDU).

The fourth parameter is a transmit tag which includes a BCC in bits 0-2: good
(001), bad (010), or abort (011). Bits 3-7 are reserved for future use.
Integers may be used to indicate the value of the transmit tag: good (1), bad
(2), and abort (3).

Example

Send the same text as In the example for Il_transmit. The softkey equivalent of
this routine is the SEND action on the Protocol Spreadsheet. Refer to Section
66.3(A) for a description of the Jet_il_msLbu//, jtart_il_hu/Llist, and
_insert_il_hu/Llist_cnt routines.

}

ullsigned short II_buffer _/lumber;
unsigned shorl relay_baton;
unsigned shorl data_start_offset;
unsigned char message 11 = tf°1\XOOO IO°<4\.xOOO«FOX» ";

LAYER: 1
STATE: send_message

CONDITIONS: KEYBOARD' •
ACTIONS:
{

}

Synopsis

JeUt_msLbuf/(&/I_bu//er _number, &relay_baton):
_star'_il_buff_list (ii_buffer _"umber, &.da/a_staTt_offse,);
_insert _"_bufl _list_en' (il_buffer _"umber, data_start _ o//set. &message [01.

(slzeo/(message) - 1):
1l_1I_,ransmil (II_buffer _"umber, relay_baton, data_staTt_offset, J);

extern \loid idle_oction (character) j
unsigned char charDcter;

Description

Only for format SYNC, the idle_action routine allows you to change the idle-line
condition applied by the INTERVIEW. The softkey equivalent of this routine is
the (PROTOCLI IDLE_LN action on the Protocol Spreadsheet.

JUL '90

(

JUL 'SO

62 Monitor/Transmit Llna Data

The only parameter is a character or numeric value representing the idle
character.

Example

X.21 or X.21BIS idles different characters in various states. F,. '6. +. for
example. To signal a change in protocol state. you might change the Idle
character to +:

LAYER: 1
STATE: changeJdle_character

CONDITIONS: KEYBOARD'
ACTIONS:
{
Idle_action ('t');

}

Synopsis

extern lIold set_tc,_b (teT_register_mask, te,_register_value);
unsigned char leT_reglster_mask;
unsigned char teT -,eg;ster _value;

Description

This routine clamps the transmit line to 0 (space) or 1 (mark). or unclamps it so
that transmil routines may be executed. In X.21. steady zero will signal a clear
request/indication or a clear confirm. while steady 1 will indicate one of the
call-ready or call-setup states. In other contexts. the routine simply initiates and
terminates a break.

The first parameter is the mask that is anded with the current TCR register to
turn the current values of bits 3 and 4 (counting 1-8 from the right) to zero.
This mask is always Oxf3.

The second parameter contains the new values of bits 3 and 4 that will be
written to the register. The three available parameters are OxOB to clamp the line
to zero. OxOc to clamp the line to 1. and Ox04 to unclamp the line and permit
data transmissions.

Example

This program will generate a 250-millisecond break when the operator presses
the B key.

extern jast_event keyboard_new _any_key,
extern lIo/atile unsigned short keyboard_any_key,

}

62-15

INTERVIEW 7000 Series Advanced Programming: ATLC 107 951 108

62-16

STATE: generate_break
CONDITIONS:
I
/r.eyboard_new_any_key && (keyboard_any_key == OxleJ)

}
ACTIONS: TIMEOUT break RESTART 0.250
I
set_",_b (Oxj3. Ox08);

}
CONDITIONS: TIMEOUT break
ACTIONS:
I
set_",_b (Oxf3. Ox04);

}

(C) Writing to Character RAM

For the sake of speed. the 64-Kbyte character buffer uses a shorter data word
than the 32-bit word in the Display Window and traces. Refer to Table 64-4.
A sixteen-bit event word is reserved for each character in the 64-Kbyte
character buffer.

Table 62-3 shows the format of event words. Two kinds of event word should be
distinguished: data and special receive.

1. Data Event-Words. Data event-words may contain enhancement attributes
in the high byte. Whereas attributes comprise 24 bits of a Ions in the
Display Window and the traces. in the character buffer they are contained In
only 8 bits. Data words in the character buffer. therefore. include a less
flexible set of attributes. Color attributes. for example. are not directly
available in words written to the character buffer. See Section 17. Color
Display, for an explanation of how reverse. blink. and low enhancements in
the character buffer may be mapped to colors in the RGB output.
Table 62-3 lists the available attributes.

The character is located in the low 8 bits. Its value can range from
hexadecimal 0 through FF.

2. Special-Receive Words. The high byte in special-receive words determines
the symbol (from the special graphic character font) that will overlay the
character contained in the low byte. The symbols that may be written to the
character buffer are good Bee's. bad Bee's, aborts. flags, and sync. One
bit, the td/rd indicator, controls on which side the symbol will be displayed.
Symbols on the RD side are underlined. as all RD data is. Notice in
Table 62-3 that the td/rd indicator bit is the same one that controls the
underline enhancement in data event-words.

The value in the low byte is meaningless in the context of special-receive
words. The special symbol will overlay or replace the character. Its value.
nevertheless. can range from hexadecimal 0 through FF.

JUL 'SO

(

Type Mask (hex)

data

0100

0500

HOO

special receive

8300

8700

bfOO

reserved 0700

reserved Of 00

62 Monitor/Transmit Line Date

Table 62-3
Character Buffer 16-Blt Word

Input (hex) Meaning

data-event word:
0100 the low byte contains data

add 0100 10 Ihe following: tdlrd Indicator:

0000 td charaoter
0400 cd character (underlined)

add modified value of td I rd enhancements: t
Indicator to one (or a comb/- (enhancements apply to data
nation) of the following: Indicated In low byte)

0000 normal
0200 alternate code set
0800 reverse Image
1000 hexadecimal
2000 low Intensity
4000 blink
8000 strlks-thru (parity error on charaoter)

special receive-event word:

0200 special receive-event word
8200 reserved

add 0200 to the following: Id/rd Indicator:

0000 td character
0400 rd character (underlined)

edd modified value of tdlrd special eyent:
Indicator to one of the (symbols for these events overlay the
following: data Indicated In low byte)

0800 good CRC
1000 bad CRC
1800 abort
2000 flag
2800 sync
3000 bad CRC2 (DDCMP)
3800 good CRC2 (DDCMP)

0400 reserved

0800 reserved

t Selecting rd (0400) for the td/rd Indicator results In the data being underlined. The underline enhancement shares
the same bit. It has been omitted from the list of enhancements to avoid an error from double counting.

JUL '90 62-17

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-107-951-10B

62-18

The routines for writing 16-bit event words to the character buffer are
add_evenl_Io_buff and add_arraY_Io_buff. These routines may be used when
the Line Setup menu shows either emulate or monitor mode.

Synopsis

exlern unsigned inl add_,ven,_,o_buf/(even'_wordj;
unsIgned in' elJlm_word:

Description

The add_evenl_Io_buff routIne writes the specified input to the 64-Kbyte
character buffer.

The only input is a 16-bit event-word to be written to the buffer. Table 62-3
lists the coding of event words.

Returns

A one is returned if the event was successfully added to the character buffer. II
the routine failed, zero is returned.

Example

To display only SDLe frames with an addreSs of hexadecimal c2, enter the
following spreadsheet program:

LAYER: 1
{

}

exlern unsigned short rC\ld_cha,_,d:
extern unsigned shorl rcvd_cha,_,d;

STATE: Inll
CONDITIONS: ENTER_STATE
ACTIONS: CAPTURE BOTH OFF
NEXT_STATE: address

STATE: address
CONDITIONS: DTE STRING m­
ACTIONS:
{
J/(rcvd_cha,_td == Oxe2}

{

}
}

add_elJent_to_buf/ «(short)td_modlfier «8) t rCIJd_cha,_td):
ctl_capturt_'d(OxDO} ;

CONDITIONS: DTE STRING m"
ACTIONS: CAPTURE DTE OFF

JUL '90

(

\.

JUL '90

62 MonItor/Transmit LIne Data

CONDITIONS: DCE STRING m"
ACTIONS:
{

}

;f(rc~d_char_rd == Ox(2)
{

}

add_even,_,o_bu/f (((short)rd_modlfler« 8) + rcvd_cha,_,d);
c"_captur'Jd(OxOO) j

CONDITIONS: DCE STRING "Em"
ACTIONS: CAPTURE DCE OFF

Synopsis

exlern unsigned Int add_array_,o_buf/(arraYJ", count);
unsigned shor, • array..p'Tj
unsigned char count;

Description

The add_array_to_buff rouiine writes specified elements of an array to the
64-Kbyte character buffer.

The first parameter is the location of the array to be written to the character
buffer. The array consists of 16-bit shorts.

The second parameter is the number of elements in the array to be written.
The number of elements which can be written to the buffer must be in the range
0-16. Elements in the array must adhere to the format of event words shown in
Table 62-3.

Returns

The result of the add_array_to_buff routine is all or nothing. A one is returned
when all requested elements of the array are successfully added to the character
buffer. If the routine fails, zero is returned and nothing is written to the buffer.

Example

To display on the Data Screen only X.2S packets with an LCN of 004, enter the
following spreadsheet program. (This program displays the DTE side of the line
only. Additional programming similar to that entered would include DCE data.)

62-19

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-9S1-108

62-20

LAYER: 1
{

}

unsigned shorl dIe_array {100};
unsigned short len:
exlern unsigned shor, ,c~d_chQ' _td:

STATE: Inlt
CONDITIONS: ENTER_STATE
ACTIONS: CAPTURE BOTH OFF
NEXT_STATE: addr •••

STATE: addre ••
CONDITIONS: DTE STRING m"
ACTIONS:
{
dle_orray [0] = (OxOJOO + rcvd_cho,_,d);

}
NEXT_STATE: frame_type

STATE: frame_type
CONDITIONS: DTE STRING "((XXXXXXXO))"
ACTIONS:
{
die_array IlJ = (0.0100 t rcvd_char_'d);

}
NEXT_STATE: gfl
CONDITIONS: DTE STRING "((XXXXXXX1))"
NEXT_STATE: addr •••

STATE: gil
CONDITIONS: DTE STRING 18]"
ACTIONS:
{
die_array 121 = (0.0100 t rcvd_char_'d);
len = ((unsigned int)rcvd_cha,_,d & OxOf) «8;

}
NEXT_STATE: len

STATE: len
CONDITIONS: DTE STRING 18]"
ACTIONS:
{

}

die_array III = (OxOIOO t rC'~d_char_td);

len += ,c~d_cha, _td;
ifl/cn == 0.0004}

{

}

add_array_,o_buf/(dte_orray, 4);
ctl_caplure_,d(OxOO) ;
current_slate = stale_eo!;

else
current_slate = state_address;

break,'

STATE: eof
CONDITIONS: DTE STRING m"
ACTIONS: CAPTURE DTE OFF
NEXT_STATE: addre ••

JUL '90

63 EIA

63 EIA

JUL '90

The Test Interface Module (TIM) located in the rear of the INTERVIEW determines the EIA
leads available for monitoring and control (Section 12). The variables and routines in this
section apply to RS-232, V.35, and RS-449 interface modules. The X.21 module is treated
separately in Section 73.

To use the C variables and routines explained in this section, enable EIA leads by selecting
Butler Control Lead.: :Y~l!i on the FEB Setup menu. See Section 9.I(B). If no other source
for clock is provided, use internal clock (Line Setup menu).

The variables and routines approximate Layer 1 EIA spreadsheet-generated conditions and
actions. Their use on the Protocol Spreadsheet is not limited to any panicular layer, though
normally they belong at Layer I.

63.1 Variables

With an RS-232, V.35, or RS-449 TIM installed, you may monitor RI, DSR, DTR,
CD, CTS, RTS, and VA. The lead names in RS-449 are slightly different: see
Table 63-1.

The fast-event variable levar _eia_changed detects a change in EIA leads. It does
not establish which lead(s) has changed. Two associated variables, current_eia_Jeads
and previous_eia_Jeads, indicate the status of the seven leads. These are two-byte
(short) variables. Each lead is represented by a different bit in the short. Some bits
are unused. Table 63-1 lists the mask that can be used to isolate each lead.

Whenever a lead changes, the value in current_eia_Jeads is written to
previous_eia_Jeads. Then current_eia_Jeads is updated.

(A) Masking To Detect a Change in a Given Lead

To test whether or not a given lead changed, RTS for example, while
disregarding its status, enter the following condition on the Protocol Spreadsheet:

CONDITIONS:
{
!eva,_eia_changed && (((current_eiQ_leads" previous_eia_leads) & Ox80) == Ox80)

}

Select a mask value from the list in Table 63-1 to indicate which lead you care
about. Specify multiple leads with a mask derived via hexadecimal addition.

63-1

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-l07-951-10B

Type

extern fast_Bvent

Table 63·1
EIA Variables

Variable Value (hex/decimal) Meaning

True when the status ohanges
for an EIA lead (non-data).
Una Setup configured for
emulate or monitor mode.

extern canst volatile unsigned short 4

RS-232N 35: (RS-449)

RI (Ie)

extern const yolatlle unsigned short previous ala leads

8
10/16
20/32
40/64
80/128
200/512

OSR (OM)
OTR (TR)
eo (RRI
eTS (es)
RTS (RS)
UA
A value In this list. when anded
(&1 with curr.nt_.'a_leads.
equals zero If the lead Is on.
Example:
STATE: rt. on
{ II ((curr.nt: ,._I •• ds & Ox80)
== 0) sound_a/arm();)

Not.; This variable will store EIA (
status If (1) Internal or external
clock Is supplied and (2) EIA
leads are enabled on FEB
Setup. Line Setup configured
for emulate or monitor mode,

Same values 8S
current ala leads. Updated
only after loglo has had a
chance to compare current and
previous leads. line Setup
configured for emulate or
monitor mOde.

The mask for RTS is Ox80. In the example, the event leva, _eia_changed
updated currenl_eia_leads. The new current_eia_leads was
bitwise-exclusive-ORed with previous_eia_leads to identify all the leads that
changed. Then the result was bilwise ANDed with the RTS mask to determine if
RTS was among the leads that changed. If this result was equal to the mask,
the lead changed.

(8) Masking For the Status of a Lead
You may also test the current status of a lead, independent of any change. And
the mask with current-,ia_leads, as in this if statement testing for RTS "on":

STATE: test_forJls_on
{
if((currenl_ela_leads &: Ox80) == 0) sound_alarm()i

}

63-2 JUL '90

JUL '90

63 EIA

If the result is zero, the lead Is on. If the result equals the mask, the lead is
off. "On" means that a lead is more positive than +3 volts with respect to signal
ground. "Off" implies only that a lead is not at or above the "on" threshold,
not necessarily that a minus threshold has been attained.

(C) Detect Change and Current Status

The two examples shown above could be combined to test for RTS changing
from off to on:

CONDITIONS:
{

(jevar_ela_changed && «(curren'_tla_'eads '" previous_tia_'eads) &: OxBO) == OxBO) &:&:
«current_tiD_'eads &: Ox80) == 0))

This example approximates the translator's version of the spreadsheet-token
condition EIA RTS ON when it appears alone in a conditions block. When an EIA

condition is combined with another condition, in most cases the other condition
will supply the event variable and only the EIA status test will be used.

63.2 Routines

You may control RS-232 EIA leads in emulate mode only. When the Line Setup
menu shows Mod.: j~ijj£UljqW, you control CTS, CD, and DSR. An ;~M\ii4tjj:Rt@
selection gives you control over RTS and DTR. Entries on the Interface Control
menu may be used to set the leads' initial status (Section 12.6).

ctl ela

Synopsis

extern void cll_eia(on_mask, off_mask);
unsigned short on_mask:
unsigned short off_mask;

Description

The ell eia routine allows you to control the status of up to three of nine possible
leads. 'Which leads you control depends on your emulation mode. The softkey
equivalent of this routine is the EIA action on the Protocol Spreadsheet.

The first parameter indicates which leads you want to turn on. Each bit in the
parameter controls a given lead: RTS/CTS (01), DTR/DSR (02), CD (04), AUXO
(10), AUX1 (20), AUX2 (40), AUX3 (80). Wherever there is a zero in the first

63-3

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

63-4

parameter, the corresponding lead will be turned on. A one in this parameter will
not cause any lead to be turned off. A value of Oxff will mean don't care (no
action) .

The second parameter indicates which leads you want in the "off" condition. Each
bit in the parameter controls a given lead: RTS/CTS (01), DTRlDSR (02), CD (04),
AUXO (10), AUXl (20), AUX2 (40), AUX3 (80). Wherever there is a one in the
second parameter, the corresponding lead will be turned off. Zeroes in this parameter
do not tum leads on. A value of 0 will mean don't care (no action).

NOTE: If both bytes are attempting to control the same lead, the
off parameter will override the on parameter.

Example

Suppose your emulate mode is i®il!i@.1j!K\X@\. As a DCE, you control the CTS, DSR,
and CD leads. (An attempt to control the status of RTS or DTR will fail, since the
DTE controls these leads.) When RTS is raised, you want to tum CTS on; when RTS
drops, tum CTS off. .

LAYER: 1
STATE: controLet.

CONDITtONS: EIA RTS ON
ACTIONS:
{
cll_';o(Ox/" OxOO):

}
CONDITIONS: EIA RTS OFF
ACTIONS:
{
cll_,;o(Ox//, OxOI);

}

JUL '90

