64 Display Window and Trace

64 Display Window and Trace

The C structures, variables, and routines detailed in this section control the type and location
of certain displays on the INTERVIEW. These displays can be grouped into three categories.

The first display area is the prompt line, the second line on all Run-mode screens.

The second type of display utilizes the Display Window, available as a selection on the Display
Setup portion of the Line Setup menu, or conditionally accessible via softkey during Run
mode. To write to the Display Window, use the pos_cursor (or restore_cursor) and displayc,
displayf, or displays routines. When using Display Window, you may position the cursor
before output is generated on the screen.

The third type of display utilizes one or a combination of the eight available trace buffers.
Trace screens are conditionally accessible-via softkey during Run mode. Seven user-traces
appear as choices under the User Trace selection on the Display Setup menu. The remaining
trace is Program Trace, also an option on Display Setup. Program Trace enables you to track
any or all layers, one or all tests, and movement between states. To write to any of the eight
trace-screens, use the tracec, tracef, and traces routines.

NOTE: You may not use the pos_cursor routine to position the
cursor on any trace screen. New lines (or blank lines) may be
generated via the “\n” specifier.

Attributes—color, underlining, and font, for example—may be assigned to characters in the
Display Window and all of the Trace buifers.

NOTE: Color attributes are applied to the RGB output signal,
not to the plasma screen.

64.1 Current Display Mode

A group of variables keeps track of softkey movement from one display screen to
another (see Table 64-1). When you move from the Display Window to the Program
Trace screen, for example, the fasr—event variable display_screen_changed indicates
the change of display. The coded value for Display Window now is stored in
prev_display_screen, and the value for Program Trace can be found in

crnt_display_screen.

JUL '90 64-1

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

These variables also distinguish between Run mode and Freeze mode. This
distinction is important since some keys on the keyboard are mode-dependent. In
Freeze mode, for instance, cursor keys automatically become operational for scrolling
through the buffer. The programmer will want to aveid using these keys as
user-input when crnt_display_screen indicates that the unit is in Freeze mode,

Table 64-1

Current Display Varlables

Type

Variable

Value (hex/decimal) Maeaning

extern fast_evant

extern unslgned short

64-2

display_screen_changed

crnt_display_screen

E AN S -]

N1z
12718
21/33
31/49
41/65
42/66
43/67
44/68
45/69
46/70
4717
51/81
52/82
63/83
54784
55/85
56/86
57/87
61/97
62/98

100/256
o

True when Run-mode
display-screen Is changed, or
when Run/Freeze mode Is
changed. Value [n
crnt_display_screen Is stored In
prav_display_screen, and
crnt_dispiay-screen Is updated.
Line Setup configured for
emulate or monltor mode.

Contalns current display screen
{low byte) and indicates whether
unit Is In Run mode or Freeze
mode (high byte). Line Setup
conflgured for emulate or
rmonitor mode.

display-screen

no display

single-lins data
dual-line data
single-line data with leads
dual-line data with leads
tabular statistlcs
graphlc statistics
Plsplay Window
Program Trace

Layer 1 Protocol Trace
Layer 2 Protoool Trace
Layer 3 Protocol Trace
Layer 4 Protocol Trace
Layer 5 Protocol Trace
Layer 6 Protocol Trace
Layer 7 Protocol Trace
User Trace 1

User Trace 2

User Trace 3

User Trace 4

User Trace 5

User Trace 6

User Trace 7

TIM package standard stats
TIM package aux

RuniFreeze modse (bit 8)

Freeze mode
Run mode

JUL 90

(

64 Display Window and Trace

Table 641 (continued)

Type Variable Value (hex/decimal) Meaning
extern unsigned short prev_display_scraen Contalns previous display scresn

(low byte) and Indicates whether
unlt was In Run mode or Freeze
mode (high byte). Line Setup
configured for emutate or
monitor mode.
display-screen

1] no display

1 single-line data

2 dual-line data

3 single-line data with leads

4 dual-line data with leads

114117 tabular statlstics

12/18 graphic statistlos

21/33 Display Window

31/49 Program Trace

41/65 Layer 1 Protocol Trace

42/66 Layer 2 Protocol Trace

43/67 Layer 3 Protocol Trace

44/68 Layer 4 Protocol Trace

45169 Layer 5 Protocol Trace

46/70 Layer 6 Protocol Trace

47171 Layer 7 Protocol Trace

51/81 User Trace 1

52/82 User Trace 2

53/83 User Trace 3

54/04 User Trace 4

55/85 User Trace §

56/86 User Trace 6

57787 User Trace 7

61/97 - TIM package standard stats

62/98 TIM package aux
RunlFreeze mode (bit 9)

100/256 Freeze mode

0 Run mode

64.2 Prompt Line

JUL '90

Access to the prompt line is always available via the display_prompt routine, or its
softkey equivalent, the PROMPT action. Attributes may not be assigned to a prompt
created via either of these methods. (To create a prompt with attributes, use the
pos_cursor and displayf routines.) Prompts appear on whatever screen is active at
the time the prompt is written, including trace screens. With one exception,
movement to another display erases the prompt. The only screen which retains the
most recent prompt is the Display Window.

You may also position the cursor to the prompt line in the Display Window via the
pos_cursor routine. The initial position of the cursor in the Display Window is at the
beginning of the prompt line—row zero, column zero. Anything written to this cursor

64-3

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

64-4

64.3

position in the Display Window will appear as a prompt on any one of the other
display screens (assuming one of them is active at the time the message is written).
Position the cursor below the prompt line for messages intended for the Display
Window only.

Trace buffers retain no record of prompts. When you write to a trace screen, the
initial position of the cursor is the line immediately below the prompt line—row one.
Since you may not position the cursor in trace buffers, all messages written to trace
buffers are appended at the end of the buffer. You may never access the prompt
line via tracef (or tracec or traces) routines.

Display Window

The Display Window preserves one screen, including the prompt line, of user-entered
messages. When the end of the display screen is reached, the previous messages are
overwritten, beginning at row one (the line helow the prompt line).

NOTE: Use the keyboard variables and the send_key routine
explained in Section 72, Other Library Tools, to program the
Run-mode use of @ and @ in the Display Window. (For other
Run-mode screens, these keys control the playback speed of disk
data.)

(A) Variables

There are variables accessible to the user which provide information about the
Display Window. Table 64-2 lists the variables and their possible values. Two
variables indicate the current position of the cursor: current_line stores the row
number and current_col stores the column number. To find out which attributes
are active in the Display Window, check the values stored in window_color and
window_modifier. Color is stored in the high byte of the two-byte variable
window_color. Enhancements are stored in the low byte. The current font code
can be found in window_modifier.

NOTE: Auttributes assigned via the %m conversion specifier
(refer to tracef-routine input) to characters in trace buffers will
not alter the values of window_color and window_modifier. These
variables refer to the Display Window only.

The variable display_window_buffer provides the user with access to the
display-window buffer. This variable is an array of 1,088 longs. Each element
in the array contains one byte of character data and three bytes of attributes.
The attributes are determined by the current values of window_color and

window_modifier.

JUL '90

64 Display Window and Trace

Table 64-2

Display Window Varlables

Type Variable Value (hex/decimal) Meaning
extern unsigned short current_line G-10/0-16 Contalns the current row
number of the cursor position In
the Display Window. Line Setup
configured for emulate or
monlior mode.
extern unsigned short current_col 0-3f10-63 Contalns the current column
number of the oursor position In
the Display Window. Line Setup
configured for emulate or
maonitor mode.
extern unsigned short window_color Two-byte varlable. Current
color selections are Indicated In
the low byte. Current
enhancemnents are Indloated In
the high byte. Written to by %m
conversions. Attributes are
copled Into data words In
Display Window. Line Setup
configured for emulate or -
monitor mode.
lsolate blts of Interest via
bitwise anding (&) of mask with
variable. Compare result to
vaiue column. For example,
underline attribute mask =
0x100. Therefore window_color
& Ox100 equals 0 {underline off})
or 0x100 {underline on). Llne
Setup configured for emulate or
monltor mode.
background color mask = 7 (blts
1-3):
0 black
1 blue
2 agreen
3 cyan
4 red
5 magenta
6 yellow
7 white
foreground color mask = 0x38
{bits 4-6):
0 black
8 blue
10/16 green
18/24 cyan
20/32 red
28140 magenta
30/48 ysllow
38/56 white

JUL '90

64-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 64-2 (continued)

Type Variable Value (hex/decimal} Meaning
{window_color continusd) color blink mask = 0x40 (bit 7):
'] no blink

40/64 blink
color strike-thru mask = Ox80
(bit 8):

0 no strike-thru

80/128 strike-thru

overline mask = Ox100 (bit 9}:

0 ' no overline
100/256 ovarline

blank mask = 0x200 (bit 10);

0 no blank
200/512 blank
underiine mask = 0x400 (bit
11):
0 no underline
400/1024 underline
reverse Image mask = Ox800 (bit
12};
0 no reverse Image

800/2048 reverse image
' hex mask = 0x1000 (bit 13):

0 no hex

1000/4096 hex
low Intensity mask = Ox2000 (bit
14):

0 no low Intensity

2000/8192 low Intensity (RS-170 output)

monochrome blink mask =
0x4000 (bit 15):

0 no rmonachrome blink
4000/16384 monochrome blink

monochrome strike-thru mask =
Ox8000 (bit 16):

0 no monochrome strike-thru
8000/32768 monochrome strike-thru

64-8 : JuL '90

64 Display Window and Trace

Table 64-2 (continued)

Type

Variable Value (hex/decimal) Meaning

extern unsigned char

extern unsigned long

window_modifler Contalns the current modiflers,
Line Setup configured for
emulate or rmonltor mode.

font mask = 7 (bits 1-3):
0 ASCH

special graphlc charaoter set
(refer to Table 64-5)

-

2 primary font—code selected on
Line Setup
3 alternate font—current

Implementation Is for call-setup
phase In X.21 (ASCIl)
7 hexadecimal

display_window_buffer [1088) Array of 32-blt words that make
up the one-screen Dlsplay
Window. Each word contalns
three bytes of attributes and a
one-byte charaoter. Refer to
Table 64-4. Line Setup
configured for emulate or
monltor mode.

(B) Structures

JUL '90

Once the data word is written to the buffer as an element in the
display_window_buffer array, it can be accessed and written to—and therefore
changed—the same as any other location in memory. There is an extern array,
display_window_index_buffer {17], which provides a method of informing the
display controller on the CPM card that the display needs to be updated. The
structure of this array is shown in Table 64-3.

Each element in the display_window_index_buffer array represents a horizontal
row or line in the Display Window. Each element is a structure with two
variables, mpm and cpm. The first variable in the structure, mpm, increments
automatically whenever a line in the display-window buffer is updated by a
display routine. (If you write to the buffer directly without using one of the
display routines, you must increment this variable “manually.”) TIts particular
value at any moment is not important. What is significant is whether or not the
value of the second variable in the structure, ¢pm, is the same as mpm. The
processor on the CPM compares these two variables (for each line) periodically
to determine if a line in the Display Window needs to be rewritten. If the
values of the two variables do not match, it means that a line updated in
memory now needs to be updated by the CPM display—controlier software.
After the display is changed, the value of mpm is copied automatically into cpm.

64-7

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

Table 64-3
Display Window Buffer Structures

Type Variable Value (hex/decimal) Meaning
Structure Name: display_window_index_buffer [17] An array of structures used for detecting

unsigned char mpm 0-{f10-255

unsigned char cpm 0-1110-255

changes to the display-window buffer. There are
seventeen elements [n the array, one for each
line in the Display Window. When a change is
made te a line In the display-window buffer, the
coerrasponding element in the array e accessed.
If a disptayf routine changes line 3,
display_window _ index_butler{3}.mpm ls
automatically incremented. The CPM detects
the difference betwesen
display_window_index_butfer [3].mpm and
disptay_window_Index_buffer [3].com and
updates line 3 In the Display Window. Declared
as type extern struct.

You must [ncrement an mpm variable manually
when you write directly (not via a displayf routine)
to the Display Window.

When the MPM updates a line in the
display-window buffer, thls variable Is
Incremented.

The CPM checks the value of thls varlable agalnst
the value of mpm. |f they are different, the
value in mpm is copled Into cpm. The updated
line In MPM Is then presented on the
display-window screen,

(C) Routines

You may position the cursor before output is generated on the screen via the
pos_cursor and restore_cursor routines. ‘The pos_cursor routine positions the
cursor at the row and column you specify. The restore_cursor routine returns

the cursor to a previous location.

One routine, displayf, allows you to add attributes to messages in the Display
Window, including the prompt line. These attributes are listed in Table 64-4.

Additional routines control the labeling of Display Window softkeys:
set_dw_fkey_label, show_dw_fkey_labels, highlight_dw_fkey_label, and

unhighlight_dw_fkey_label.

64-8

JuL 's0

64 Display Window and Trace

JUuL '80

displayc
Synopsis

extern void displayc{character);
const char character;

Description
The displayc routine outputs a single ASCII character to the Display Window

screen. The placement of the output on the screen may be controlled via the
pos_cursor routine. Attributes may not be used in displayc.

Inputs

The parameter value may be given as a hexadecimal, octal, or decimal constant;
as an alphanumeric constant inside of single quotes; or as a variable. A
hexadecimal value must be preceded by the prefix Ox or 0X; an octal value must
be preceded by the prefix 0. If no prefix appears before the input, the number
is assumed to be decimal. Valid numeric entries are 00 to 127, decimal. An
aiphanumeric character placed between single quotes will be output as is to the
display.

Example

The displayc entries on the left output the character given on the right, at the
cursor location on the Display Window screen:

displayc(‘a’};
displayc(65);
displaye{0x65);
displayc(065);

LS T L -

displayf
Synopsis

extern int displayf{format_pir, . . .);
const char * format_pir;

Description

The displayf routine writes output to the Display Window screen, under control
of the string pointed to by format_ptr that specifies how subsequent arguments
are converted for output. If there are insufficient arguments for the format, the
behavior is undefined. If the format is exhausted while arguments remain, the
excess arguments are evaluated but otherwise ignored. The displayf routine
returns when the end of the format string is encountered. The placement of the
output on the screen may be controlled via the pos_cursor routine.

64-9

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

Inputs

The format is composed of zero or more directives: ordinary characters (not
%), which are copied unchanged to the output stream; and conversion
specifications, each of which results in fetching zero or more subsequent
arguments. Each conversion specification is introduced by the character %.
After the %, the following appear in sequence:

® Zero or more flags that modify the meaning of the conversion specification.
The flag characters and their meanings are:

- The result of the conversion will be Ieft—jtistified within the field.

+ The result of a signed conversion will always begin with a plus or
minus sign.

space If the first character of a signed conversion is not a sign, a space will
be prepended to the result. If the space and + flags both appear, the
space flag will be ignored. '

The result is to be converted to an “alternate form.” For d and i
conversions, the flag has no effect. For o conversion, it increases the
precision to force the first digit of the result to be a zero. For x (or
X) conversion, a nonzero result will have Ox (or 0X) prepended to it.
For u conversions, the argument is displayed in small hex characters.
For example, displayf (“%#u”, 258); yields %%. For c and s
conversions, if the argument contains a newline character, it is
displayed as .

® An dptional decimal integer specifying a minimum field width. If the
converted value has fewer characters than the field width, it will be padded
on the left (or right, if the left adjustment flag, described above, has been
given) to the field width. The padding is with spaces unless the field width
integer starts with a zero, in which case the padding is with zeros.

® An optional precision that gives the minimum number of digits to appear for
the d, i, o, u, x, and X conversions, the maximum number of characters to
be written from an array in an s conversion, or the number of ¢haracters to
be written from an array in an H conversion (overriding the usual
nuli-termination of strings). The precision takes the form of a period (.)
followed by an optional decimal integer; if the integer is omitted, it is treated
as zero. The amount of padding specified by the precision overrides that
specified by the field width.

64-10 JUL '90

64 Display Window and Trace

JUL '90

An optional h specifying that a following d, i, 0, u, x, or X conversion
specifier applies to a short ini or unsigned short int argument (the argument
will have been promoted according to the integral promotions, and its value
shall be converted to short int or unsigned short int before printing); or an
optional 1 specifying that a following d, i, o, u, x, or X conversion specifier
applies to a long int or unsigned long int argument. If an h or | appears
with any other conversion specifier, it is ignored.

A character that specifies the type of conversion to be applied. (Special AR
extensions have been added.) The conversion specifiers and their meanings

are:

d, i, 0, u, x, X

%
\n

The int argument is converted to signed decimal (d or i), unsigned
octal (0), unsigned decimal (u), or unsigned hexadecimal notation (x
or X); the letters abcdef are used for x conversion and the letters
ABCDEF for X conversion. The precision specifies the minimum
number of digits to Appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting a zero value with
a precision of zero is no characters.

The int argument is converted to an unsigned char, and the resulting
character is written.

The argument shall be a pointer to a null-terminated array of 8-bit
chars. Characters from the string are written up to (but not including)
the terminating null character: if the precision is specified, no more
than that many characters are written. The string may be an array

into which output was written via the sprintf routine, (If the string

pointed to is an array which has been written via the stracef routine,
you must use %b rather than %s to display it.)

The argument shall be a pointer to void. The value of the pointer is
converted to a sequence of printable characters, in this format:
0000:0000. There are always exactly 4 digits to the right of the
colon. The number of digits to the left of the colon is determined by
the pointer's value and the precision specified. Use this conversion to
display 80286 memory addresses. The 16-bit segment number will
appear to the left of the colon and the 16-bit offset to the right.

A % is written. No argument is converted.

Displays . No argument is converted. When \n is not preceded by
a %, it is not a conversion specifier. Instead of a ‘r being displayed, a
newline (%'¢) will be executed.

displays a character array (pointed to by the argument) as small hex
characters. If precision is specified, it is used as the length of the
array (overriding the usual nuli-termination of strings).

B4—11

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

b The argument shall be a pointer to an array of 32-bit words.
Characters from the string are written up to (but not including) the
terminating word containing a null character: if the precision is
specified, no more than that many words are written, If the string
pointed to is an array into which output was written via the stracef
routine, you must use %b rather than %s to display it. (To display
the information in an array written to via sprinif, use %s.)

m The argument is a Jong integer that indicates attributes to be assigned
to subsequent characters. Attributes stay “on” until they are
specifically turned “off” with. another %m conversion specifier. The
lowest-order byte contains primarily font code. The next higher byte
is not used to set attributes. (In the display-window bulffer, this
second byte is reserved for character coding.) The third byte holds
color information. The high byte indicates which enhancements
should be invoked.

Attributes are written automatically to window_color and
window_modifier variables, then copied into subsequent 32-bit data
words in the Display Window. Table 64-4 shows the format of this
32-bit word.

Attributes may not be assigned as a one-byte value. Even if you want
to alter only one attribute setting, color for example, you must include
it as part of a long. Append an “L"” at the end of the hexadecimal
code specifying atiributes to indicate the value is a long.

NOTE: If you are specifying an attribute in a lower—order byte of the

. long, color for example, and you want the high byte (or bytes) to be
zero, you may omit the high byte provided you have the “L"
appended at the end of the hexadecimal code. The high byte (or
bytes) will be left-padded with zerces. For example, 0x200000L is
converted to 0x00200000L. Associated characters will be displayed
on a color monitor as green on a black background, as dictated by the
hexadecimal 20 in the third byte. Enhancements are controlled in the
high byte, now assigned a value of zero. Any enhancements
previously turned “on” will be turned “off.”

If a conversion specification is invalid, the behavior is undefined.

If any argument is or points to an apgregate (except for an array of characters
using %s conversion or any pointer using %p conversion), the behavior is
undefined.

In no case does a nonexistent or smalt field widih cause truncation of a field; if
the result of a conversion is wider than the field width, the field is expanded to

contain the conversion result.

6412 JUL 'S0

64 Display Window and Trace

JUL '90

Returns

The displayf Toutine returns the number of characters displayed.

Example

To display a date and time in the form “Sunday, July 3, 10:02,"” where weekday
and month are pointers to strings:

LAYER: 1

{
unsigned char weekday [10];

unsigned char month [10];
unsigned short day;
unsigned char hour;
unsigned char min;

}
STATE: output_to_display_window

CONPITIONS: KEYBOARD = "
ACTIONS:

{ .
displayf(“%s, %s %d, %.2d:%.2d\n", weekday, month, day, hour, min);

sprintf

The sprintf routine is similar to the displayf routine. displayf writes output with
or without attributes directly to the Display Window, sprintf, fully documented
in Section 67.3, writes output to a character array in which attributes are not
supported. This routine is useful for writing formatted output to a display,
printer, or file.

See also stracef in Section 64.4(C).

64-13

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

Table 64-4
Display Window/Trace Buffer 32-Blt Data Word

Bit

Mask (hex)t input (hex)tt . Meaning

5-8
9-16

Modifler attributes, font for example,
are contalned In the iow byte of the
32-bit weord.

000000071 Eont:

00000000L ASCII -

000000011 speolal graphic character set (refer to
Table 64-5)

000000021 primary font—ocoede salected on Line
Satup

00000003L alternate font—current Implementation
Is for call-setup phase in X.21 (ASCII}

000000071 hexadecimal

00000008L :
{used in trace buffer only; should not

be altered by user)

00000000L only value [n modliler in trace buffer
header

00000008L Character Is not displayable but
contalns control Info used Internally by
the trace logio. When a “\n" s
inciuded In a tracef routine, for
example, a new line Is generated, but
nothing Is displayed on the trace
screen. The tracef routine
automatically sets this bit before the
32-blt word s wrltten Into
trace_buf.array.

00000010L, 0000000Q0L unused, but should be zero

0000ff00L ¢0000000L ' Character data i8 contalned In the
gecond byte of the /jong word. Input
should be 00 In all %m conversions,

F Use the masks to change attrlbutes of characters In the Display Window or trace buffer. In the Display Window,
characters are represented In the second byte of the longs that comprise the 1,088 array elements In
display_window_buffer. in the trace_buf structure, the characters are represented In the second byte of the
longs that make up the trace_buf.array. To change one attribute of a character while leaving the others
unchanged:

dispiay_window_buffer{position} = {({display_window_buffer{position] & (~attribute-mask)) | Input);

To change only the font of the twenty-first character In the trace butfer from lts current setting to the special
graphic font, for example:

i2_trbut,array{20] = ((trace_buf.array[20] & (-0x00000007L)) | 0x00000001L);

Anding the character with the mask wiil Indicate the current setting of an attribute:

It (12_trbut.array[20] & Ox00000007L) equals 2, theﬁ the 21st character In the Trace 2 user-trace buffer is
being displayed in the font selected on the Line Setup menu.

++ In displayf routines, the %m converslon epecifier writes Input to the window_color and window_modifier

varlables. These varlables are copled Into subsequent data words In the Display Window. |n tracef routines, the

%m converslon specliier writas Input to trace_buffer_headsr. The header is then copled Into each subsequent
data word In the buffer. Combine attributes vla hexadecimal additlon.

64-14

JUL '90

84 Display Window and Trace

Table 64-4 (continued)

Bit Mask (hex) input (hex) Meaning

Color |3 contained in the third byte of
the Jong. Combine color attributes via
hexadecimal addition.

17-19 0eQ70000L Background color:
00000000L black
000100001, blue
00020000L green
000Q30000L cyan
00040000L red
00050000L magenta
00080000L yellow
00070000L white
20-22 00380000L Eoreground cofor:
00000000L black
00080000L blue
00100000L green
004180000L cyan
002000001 red
00280000L magenta
00300000L yeliow
003800001 white
23 00400000L Color dlink:
00000000L no blink
00400000L blink
24 00800000L Cotor. strike-thru:
00000000L no strike-thru
00800000L strike-thru
Enhance attributes, underlining for
example, are contalned in the high
byte of the long. Combine
enhancements vla hexadacimal
, additlon.
25 010000001 :
{for monochrome and color)
00000000L no overline
010000004 overline
26 02000000L Blank:
00000600L monochrome display, color display
02000000L monochrome no display, color display
27 04000000L Under|ing:
{for monachrome and color}
000000001 no underline
04000000L underline

JUL '90

€64-15

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 64-4 (continued)

Bit Mask (hex) Input {hex) Meaning
28 08000000L Monachrome reverse Image:
000000001 no reverse Image
Q8000000L, reverse Image
29 100000001 Hex:
000000001 no hex
100000C0L hex
30 20000000L Meonochrome tow Intensity:
£0000000L no low Intensity
20000000L low intensity {RS-170 Interface)
31 4Q000000L Monochrome bifink:
00000000L no blink
40000000L blink
a2 80000000L Monochrome strike-thru:
Q0000000L no strike-thru
800000001 strike-thru

64-16 . JUL 90

64 Display Window and Trace

Table 64-5
Speclal Graphic Character Set}

Display Input (hex/decimal) Display Input (hexldeclmal)
T 0 - 1c/28
I 1 | 19/29
- 2 T 1e/30
- 3 L 1t/31
)] 4 1 20/32
« 5 F 21/33
i 6 N 22/34
@ 7 [23/36
& 8 [| 24/36
B 9 N 25/37
(| a/10] 26/38
) b/ 11 | 27139
6] c/12 3 28/40
d,11/13,17 £ 29741
! e/14 | 2a/42
f/15 W, 2b/43

10/16 _ b 2c/44

1 12118 - 24145
I 13/19 = 20/46
- 14/20 ¥ 21/47
_ 15/21 - 30748
16/22 (space) 31749
4 17/23 4+ 32/50
L 18/24 + 33/51
r 19/25 e 34/52
1 1a/26 -+ 35/53
+ 1bf27 - 36/54

+ Written to the Display Window or a trace buffer when low {modifler) byte of 32-bit data word = 0x01.

JUL '90 64-17

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

Table 64-5 (continued)

Display Input (hex/decimal) Display Input (hex/decimal)
¥ 807128 2 9a/154
. 81/129 Vi 9b/1565
r 827130 z 90/156
4 83/131 A 9d/157
. ' 841132 t 90/158

85/133) 9f/169
3 86/134 9 a0/160
T 877135 ¥ at/i61
« 88/136 . a2/162
» 89/137 ¥ a3/163
I 8a/138 k ad4/164
* 8b/139 rd a5/166
t 807140 hd a6/166
a 8d/141 2 az/167
s 8e/142 x a8/168
v 8f/143 J a9/169
- 90/144 N aa/170
b 91/145 E ab/171
4 92/146 J ac/172
7 93/147 ~ ad/173
I 94/148 i ae/174
A 95/149] af/175
p/) 96/150 £ b0/176
¥ 97/151 A b1/177

J| 98/152 A b2/178
v 99/153 T b3/179

JUL '80

64-18

64 Display Window and Trace

Table 64-5 (contlnued)

Display : Input (hex/decimal) Displayr Input (hex/decimal}
1 b4/180 A ce/206
2 b5/181 a of/207
3 b6/182 E do/s208
. b7/183 2 d1/209
1 b8/184 s d2/210
J b9/185 o dar211
L ba/186 o d4/212
o bb/187 o d5/213
n bo/188 a dé/214
0 bd/189 | d7/215
" be/190 g de/216
‘ bf/101 e d9/217
G c0/192 O da/218
d ¢1/193 ¢ db/219
e c2/194 £ dc/220
a c3/195 8 dd/221
a c4/196) de/222
a c5/197 F dfr223
a c6/198 a 00/224
¢ c7/199 { e1/225
e c8/200 o] 02/226
é 097201 vl 03/227
] cal202 A ad/228
T cb/203 N 05/229
i ©c/204 a 86/230
i cd/205 o 97/231

64-19

JUL '90

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 64-5 (continued)

64-20

Display Input (hex/decimal) Display Input (hex/decimal)
& 08/232 i ed/237
— e8/233 a ea/238
- 0a/234 8 0$/239
: eb/235 * 107240
4 0c/236
displays
Synopsig

extern void displays(string_pir);
const char * string_ptr;

Description

The displays routine writes output to the Display Window s¢reen, under control
of the string that is pointed to by string_ptr. The displays routine returns when
the end of the string is encountered. The placement of the output on the screen
may be controlled via the pos_cursor routine. Attributes may not be used in
displays.

Inputs

The input is a pointer to a string composed of zero or more ordinary characters.
Octal or hexadecimal values also may be included in the string, with octal

preceded by \ and hex by \x. Pad each value to three integers with leading
Zeroes.

Exampie
The following entry

pos_cursor(0, 0);
displays(“End of test.”);

produces the following output on the prompt line:
End of test.

The following coding produces the same output:

pos_cursor(0, 0);

consi char * string_pir;
string_ptr = “End of test.”;
displays (string_ptr};

JUL '90

64 Display Window and Trace

display_prompt
Synopsis

extern vold dhplay_pfampl(sffing_plr);
const char * siring_ptr;

Description

The display_prompt routine displays a designated string at the beginning of the
prompt line. The cursor is automatically positioned at row zero, column zero.
Once the prompt is. written,.the.cursor is returned to its previous position. The
softkey equivalent of this routine is the PROMPT action. The prompt is visible on
whichever display screen is active at the time the prompt is written. The most
recent prompt is retained in the Display Window. Autributes may not be used in
display_prompt.

Inputs

The input is a pointer to a string composed of zero or more ordinary characters.
Octal or hexadecimal values also may be included in the siring, with octal
preceded by \ and hex by “x. Pad each value to three integers with leading
zeroes.

Example

Refer to the example provided for the displays routine. The same string could .
be output to the same position without calling the pos_cursor routine:

dispiay_prompi(“End of test."});
or
const char * string_ptr;

string_pir = “End of test.”;
display_promp! (string_ptr);

pos_cursor
Synopsis

extern unsigned int pos_cursor(row, column);
unsigned char row;
unsigned char column;

Description
This routine positions the cursor on the Display Window screen by row and
column numbers.

NOTE: The pos_cursor routine may not be used to position the
CUrsor on trace screens.

JUL '90 64-21

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

64-22

Inputs

The first parameter is the row number. Possible values: 0-16. (The top line of
the screen is reserved for header information and cannot be written to.)

The second parameter is the column number. Possible values: 0-63,

Returns

The pos_cursor routine returns the previous cursor position in the form of an
unsigned int. The high byte contains the row number; the low byte identifies the
column number..

Example -
To position the cursor at the far left edge of the prompt line on the Display
Window, enter zero for both parameters.

LAYER: 4
STATE: write_to_display
CONDITIONS: KEYBOARD * "
ACTIONS:

{
pos_cursor(0,0);
displays(* Display on prompt line.");

}

restore_cursor
Synopsis

extern void restore_cursor{position);
unsigned Int postiion;

ription

The restore_cursor routine returns the cursor to a previous position,

NOTE: The restore_cursor routine may not be used to position
the cursor on trace screens.

Inputs

The only input is an unsigned int in the same form that is used by the returned
value of the pos_cursor routine. The high byte identifies the row number. The
low byte identifies the column number.

Example

Suppose the cursor is located in the middle of the Display Window. You want
to write a message to the prompt.line, but return to your previous location on
the screen to continue your display.

JuL 'S0

64 Display Window and Trace

{

unsigned int previous;

}
STATE: display

CONDITIONS: KEYBOARD * "
ACTIONS:
{

pos_cursor(8,0);

displays(“This line begins on row 8, column 0 of the Display Window.”);
previous = pos_cursor(0,0);

displays(“This sentence is on the prompt line.");

restore_cursor(previous);

displays(“This sentence begins on row 8, column 58 of the Display Window, the
position of the cursar at the time pos_cursor(0,0} was cailed.”):;

set_dw_tkey label
Synopsis

extern void sel_dw_fkey_label(fkey, label_pir);
unsigned int fkey;
const char * label_ptr;

Description

The set_dw_jkey_label routine assigns a user-defined label to a specified Display
Window softkey. A call to set_dw_fkey_label does not automatically update the
label on the Display Window screen. You must press the Run-mode DSP WND
softkey at least once to access the new rack of softkey labels. After that, you
may update the display by calling the show_dw_fkey_labels routine.

You may monitor the softkeys associated with your labels only when the
user—defined rack of softkeys is active, i.e., the labels are displayed. When the
labels are displayed and a function key pressed, the fast—event variable
keyboard_new_any_key comes true and the variable keyboard_any_key is updated
according to the values listed below. See Section 72.2 for more information on
these variables.

E

Hex Value

197
198
199
19a
19b
19¢
19d
19%e

BREFEERE

There is no Protocol Spreadsheet softkey equivalent of this routine.

JUuL '80 64-23

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

64-24

Inputs

The first parameter identifies the number of the function key to be labeled.
Integers from 1 through 8 are valid values. If the specified value is out of the
valid range, the label is not assigned to any softkey.

The second parameter is a pointer to a null-terminated string, i.e., the label that
should appear below the designated softkey. The label string has a maximum
length of seven characters. If it has fewer than seven characters, it is padded to
the right with spaces. If it has more than seven characters, only the first seven
are used.

Example

In the example below a label is assigned to each of the softkeys in the Display
Window. To see the labels displayed, press DSP WND,

LAYER: 1
STATE: define_labels
CONDITIONS: ENTER_STATE
ACTIONS:

{
set_dw_fkey_label(], “ one");
set_dw_fkey label(2, “ two");
set_dw_fkey label(3, " three"};
sei_dw_fkey label(4, * four");
set_dw_fkey label(5, * five");
sef_dw_fkey label(6, * six”);
sel_dw_fkey_label(7, “ seven”);
}

show_dw_fkey_labels
Synopsis

extern vold show_dw_fkey_labels(};

Description

The show_dw_fkey_labels routine updates the display of all user-assigned softkey
labels in the Display Window. For this routine to have any effect, the DSP WND
softkey must have been pressed ar least once and the user-assigned labels must

be currently disptayed. There is no Protocol Spreadsheet softkey equivalent of
this routine.

Example

Enter the Display Window by pressing DSP WND in Run mode. Then alternate
between two defined softkey rack by pressing (labeled MORE} from either
rack. '

{

extern fast_event keyboard_new_any_key;

extern volatile unsigned shart keyboard_any_key;

}

JuL '9Q

JUL 80

LAYER: 1
STATE: first_rack

64_Display Window and Trace

CONDITIONS: ENTER_STATE

ACTIONS:

{

set_dw_fkey_label(l, * one");
set_dw_fkey label(2, ¥ two");
set_dw_fkey_tabel(3, * three"”);
sei_dw_fkey label(4, “ four”);
set_dw_fkey label(5, “ five");
set_dw_fkey_label(6, “ six");
set_dw_jkey_label(7, “ seven”);
set_dw_frey labei(8, * MORE"};

show_dw_fkey_labels
}

{):

NEXT_STATE: second_rack

STATE: second_rack

CONDITIONS:

{ .
keyboard_new_any_key && (keyboard_any_key == Ox19¢) [* MORE pressed on rack 1 */
)

ACTIONS:

{

set_dw_fkey label(l, ' eight”};
set_dw_fkey_label(2, " nine");
set_dw_fkey label(3, * ten");
set_dw_fkey label(4, “ eleven”);
set_dw_fkey label(5, “ twelve");
sei_dw_fkey label(6, " thirtn");
sel_dw_fkey label(7, “ fourtn”);
set_dw_fkey label(8, * MORE"};

show_dw_fkey labels(};

}

NEXT_STATE: wait_for_more
STATE: wait_for_more

CONDITIONS:

{
keyboard_new_any_key && (keyboard_any key == 0x19¢) /* MORE pressed on rack 2 */

)
NEXT_STATE: flrst_rack

highlight_dw_fkey_label
Synopsis

extern void highlight_dw_fkey_label (fkey);
unsigned Int fkey;

Description
The highlight_dw_fkey_label displays a specified user—defined softkey label in

reverse video. This routine applies to the Display Window only. There is no
Protocol Spreadsheet softkey equivalent of this routine.

64-25

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Inputs

The only parameter identifies the number of the function key whose label is to
be highlighted. Integers from I through 8 are valid values. Values outside this
range are ignored.

Example

This example is similar to the one for show_dw_fkey_labels except that each
time a softkey is pressed, its label is highlighted and any previous highlighted
label is returned to normal video.

{
extern fast_event keyboard _new_any_key;
extern volatile unsigned short keyboard _any_key;
unsigned short current_fkey; /* currently highlighted fkey label */
}
LAYER: 1
STATE: first_rack
CONDITIONS: ENTER_STATE
ACTIONS:
{
unhighlight_dw_fkey_labei(current_fkey);
set_dw_fkey_label(l, ™ one”); \
set_dw_fkey_labei(2, " twe”);
sel_dw_fkey label(3, " three”);
set_dw_fkey_label(4, “ four"});
set_dw_fkey_label(5, “ five"};
set_dw_fkey label(6, " six");
set_dw_fkey_tabel(7, * seven”};
set_dw_fkey labei(8, * MORE");
curreni_fkey = 0; /* 0 not In range — no fkey highlighted */
show_dw_fkey labels();

)

NEXT_STATE: second_rack
STATE: second_rack

CONDITIONS:

{
keyboard_new_any_key & & (keyboard_any_key == Ox]9¢) /* MORE pressed on rack 1 */

}
ACTIONS:

{

unhightight_dw_fkey_label (current_jkey);

current_fkey = 0; /* no highlight on initial display of rack 2 */
sel_dw_fkey label(l, " eight™);

set_dw_fkey_label(2, * nine”);

sel_dw_fkey label(3, " ten");

sef_dw_fkey_labei(4, “ eleven”});

set_dw_fkey_label(5, * twelve”);

sei_dw_fkey label(6, “ thirtn™);

sel_dw_fkey label(7, " fourtn”);

set_dw_fkey_label(8, * MORE");

show_dw_fkey_labels(); (

JuL 'S0

64 Dlsplay Window and Trace

JUL '80

NEXT_STATE: walt_for_more
CONDITIONS:

{
- 1* key other than MORE pressed on rack 1 */

keyboard _new_any_key && ((keyboard_any . ke_y >= 0x197) && (keyboard any_key <=
0x194d))

}
ACTIONS:

{

unhighlight_dw_fkey tabei(current_fkey);
current_fkey = keyboard_any_key - Ox196;
hightight_dw_fkey label(curren:_fkey);

}
STATE: walt_for_more
CONDITIONS:

{
/* key other than MORE pressed on rack 2 */

keyboard_new_any_key && ((keyboard_any_key >= Ox197) &d& (keyboard_any_key <=
0x19d))

}
ACTIONS:

{

unhighlight_dw_fkey_label(current_fkey);
current_fkey = keyboard_any key - 0x196;
highlight_dw_fkey_label(current_fkey);

)
CONDITIONS:

{
keyboard_new_any_key &d (keyboard_any key == OxI9¢) /* MORE pressed on rack 2 */

}
NEXT_STATE: first_rack

unhighlight_dw_tkey_label
Synopsis

exiern void highlight_dw_fkey_label (fkey);
unsigned int fkey;

Description

The unhighlight_dw_fkey_label displays a specified user-defined softkey label in
normal video. This routine applies to the Display Window only. There is no
Protocol Spreadsheet softkey equivalent of this routine.

Inputs

The only parameter identifies the number of the function key to be
unhighlighted. Integers from 1 through 8 are valid values. Values outside this

range are ignored.

.E_xamnl_c

See highlight_dw_fkey label.

64-27

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

64-28

64.4 Program and User Traces

Unless their sizes are increased, Program Trace and the User Traces retain a
maximum of 4096 characters, equlvalent to four full screens when every character
space is used. (See Section (B)2. below on increasing the size of trace buffers.)
When a buffer’s limit is reached, new characters written to the end of the buffer
force out the same number of characters from the beginning of the buffer. The
prompt line is not part of these buffers. Messages are appended to the end of the
buffers. In Freeze mode you may scroll through the buffer using the cursor keys.

You write messages to the User Traces only by using C routines. The Run-mode
softkeys for User Traces—USER TR, TRACE 1, TRACE 2, TRACE 3, TRACE 4, TRACE 5,
TRACE &, TRACE 7—appear when the buffers are used in a program.

(A) Varlables

There are no extern variables associated exclusively with Traces.
(B) Structures

1. Declaring trace buffers. 'The trace routines that write to any of the trace
buffers require a pointer to the appropriate trace buffer as input. To point
to one of the trace buffers, you must first have declared it as a structure,
The structure that is common to trace buffers is named trace_buf. This
structure is already declared in a file called trace_buf.h located in the
HRD/syslinclude directory. The trace_buf structure contains another
structure, trace_buffer_header, which also is declared in the trace_buf.h file.
{These structures are explained in Table 64-6.) Use the #include
pre-processor directive to include both declarations in your program.

There are eight trace buffers available (including the Program Trace), each
one having its own display screen. All are instances of the trace_buf

structure, Declare each one you use as an exfern struct, as in this example:

extern struct irace_buf i1_trbuf;

The names of all the trace buffers are listed in Table 64-6.

2. Sizing trace buffers. There is a preprocessor #pragma which allows the user
to configure the size of the data array in each user trace buffer. The syntax
is TRACE-NUMBER SIZE TRACE-NUMBER SIZE. . . . Trace number 0
refers to the Program Trace buffer, and trace-number “*” allows all
trace-buffer arrays to be set at once. All sizes are given in terms of

four-byte array elements.

Jut 's0

64 Display Window and Trace

The example below first sets all trace-buffer arrays to 16,000 elements, and
then down-sizes array number 3 to 2,048 elements.

#pragﬁla tracebuf * 16000 3 2048

When a trace buffer is declared, its array will have the size specified in the
#pragma tracebuf directive. If the buffer was not referenced in a #pragma
tracebuf directive, its array size will default to 4,096. The maximum size for
a trace-buffer array is 16,381 elements. If you specify a size that is too
small or too large, an error message will be displayed.

JUL 90 . 84-29

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

Table 64-6
Trace Buffer Structures

Type

Variable

Value (hex/decimal)

Meaning

Structure Name; trace_buffer_header

unsigned short

unslgned short

unsigned char

unsigned char

unsigned char

unsigned short

unsigned short
unsigned char

unsigned char

loglcal_snd

loglcal_end_wrap_count

modifler

color
enhance

write_lock

array_size
line_size

gpare

Strugture Name; trace_buf

struct trace_buffer_header hdr

unsigned iong

64-30

array [4096]

0-11110-4095

0
non-zero

0-f110-255

0-f110-255

0-fliti10-65535

1000/4096
0-3110-63
0

Structure of a header for trace buffers,
Declared as type extern struct. Declared
automatlically If a softkey-entered TRACE actlon
ls taken. Contalned In the structure of the trace
buffer. Dectaration contalned In file named
HRODIsyslincludeltrace_buf.h. Written to by %m
conversion speclfier.

Because It Is an extern structure, values of
component varlables should not be altered
directly by the user. In some Instances, e.g.,
altering array size, the result could be a crash.

end of data within the buffer. Maximum value Is
one less than the array_size.

trace buffer Is not full

trace buffer ls full. As new lines are written to
the end of the trace buffer, lines at the beginning
of the buffer are removed.

Speoclal-character Indicator bit and bit 8 must be
zero. For other speclflo values and thelr
meanlings,see Table 64-4,

For speclfic values and thelr meanings, see
Table 64-4,

For specific values and their meanings, see
Table 64-4,

prevents two processes from writing to the same
buffer at the same tlme. Should not be altered
by user or future access to the trace buffere
may be locked out.

slze of buffer; at presaent only one valus
number of characters In last llne In buffer

reserved for future use

Structure of a trace buffer. Declared as type
extern struct. Declarad automatically If a
softkey-entered TRACE action Is taken.
Declaratlon contalned In file named
HRD{syslinclude/trace_buf.h.

structure of the trace-buffer header described
above

array of data words In the buffer

JuL '90

64 Display Window and Trace

Table 64-6 (continued)

Type Variable

Value (hex/decimal)

Meaning

Structure Name: prog_trbuf

struct trace_buffer_header hdr

unsigned tong array {4096)
Structure Name: 11_trbuf

struct trace_buffer_header hdr
unsigned long array [4096)

trugture Name: 12_trbuf

struct trace_buffer_header hdr
unsigned long array {4086)

tructure N : 13_trbuf

struct trace_buffer_header hdr

unsigned long array [4096]

Structure Name: 14_trbuf

struct trace_buffer_header hdr

unsigned long array |4096]

JUL '90

Structure of the Program Trace buffer, an
instance of the trace_buf structure declared In
flle named HRD/sys!includeltrace_bul.h.
Daclared as type extern struct trace_buf,
Declared automatically If a softkey-entered
TRACE aotlon ls taken. Writing to this buffer
makes the Run-mode PROG@ TR softkey appear,

structure of the trace-buffer header described
above

array of data words In the buffer

Structure of one of saven user trace buffers, an
Instance of the trace_buf structure declared In
flle named HROD/syslincludeltrace_bul.h.
Declared as type extern struct trace_buf.
Writing to this buffer causes the Run-mode
TRACE 1 softkey appear.

structure of the trace-buffer header described
above

array of data words in the buffer

Structure of one of seven user trace buffers, an
Instance of the trace_buf structure declared In
flle named HROD/syslincludeltrace_bul.h.
Declared as type axtern struct trace_bul.
Writing to this buffer causes the Run-mode
TRACE 2 softkey appear.

structure of the trace-buffer header described
above

array of data words in the buffer

Structure of one of seven user trace buffers, an
Instance of the trace_buf structure declared In
file named HRD/syslincludeltrace_buf_h.
Daclared as type extern struct trace_bul.
Writing to this butfer causes the Run-mode
TRACE 3 softkey appear,

structure of the trace-buffer header described
above

array of data words In the buffer

Structure of one of sevan user trace buffers, an
Instanoe of the trace_huf structure declared In
flle named HRD{syslincludeltrace_bul.h,
Declared as type extern struct trace_buf.
Wrlting to this buffer causes the Run-mode
TRACE 4 softkey appear.

structure of the trace-buffer header described
above

array of data words in the buffer

64-31

INTERVIEW 7000 Serles Advanced Prograrnming: ATLC-107-9571-108

Table 64-6 (continued)

Type Variable

Value (hex/decimali)

Meaning

Structure Name: 15_trbuf

struct trace_buffer_header hdr

unsigned long array [4096]

Structure Name: 16_trbuf

struct trace_buffer_header hdr
unsigned long array [4096)

tr re Name: [7_trbuf

struct trace_buffer_headsr hdr

unsigned long array [4096}

Structure of one of seven user trace buffers, an
Instance of the trace_buf structure declared in
flle named HRD/sys/include/trace_bul.h.
Declared as type extern struct trace_but.
Writing to this buffer causes the Run-mode
TRACE 5 softkey appear.

structure of the trace-buffer header described
above

array of data words in the buffer

Structure of one of seven user trace buffers, an
Instance of the trace_buf structure declared In
flle named HAD/sys/includeltrace_buf.h.
Declared as type extern struct trace_buf.
Writing to this buffer causes the Run-mode
TRACE 6 softkey appear.

structure of the trace-buffer header described
above

array of data words In the buffer

Structure of one of seven user trace buffers, an
Instance of the {race_buf structure declared In
file named HRD/sysl/includeltrace_buf.h.
Declared as type extern struct trace_buf,
Writing to this buffer causes the Run-mode
TRACE 7 softkey appear.

structure of the trace-buffer header describad
above

array of data words In the buffer

(C) Routines

Most routines defined below are valid for either the Program Trace or the user
traces. One, however, applies to the user traces only. sef_utrace_fkey_label
allows the programmer to modify the current softkey labels for the user traces.

The other four trace routines—tracec, tracef, stracef, and traces—apply to both
the Program Trace and the user traces. The softkey TRACE action is built on

the tracef routine.

64-32

JuL 90

64 Display Window and Trace

JUL 90

The first argument in three of these trace routines is the address of the trace
buffer into which you want output written. Each time you call a trace routine,
¢racef for example, variables in the named trace-buffer structure are updated.
Those variables which store attributes are updated when the %m conversion
specifier is used in the tracef routine parameter. "When %m is not present, the
routine applies the attributes currently stored in the color, modifier, and enhance
variables,

The second argument in all four of these trace routines is the character, string,
or format pointer to the data that will be written to the selected trace buffer.

The tracef routine allows you to add attributes to messages on the Program
Trace screen and User Traces. These attributes are listed in Table 64-4.

Each trace operation appends output to the end of the trace buffer. You may
not use the pos_cursor routine to position the cursor on any trace screen. New
lines (or blank lines} may be generated via the “\n” nonliteral. Put the “\n”
nonliteral at the end of the string to generate a leading blank line on the
selected trace screen:

tracef(&prog_trbuf, “This trace message will generate a leading biank line.\n");

During real-time display, this line moves just ahead of the freshest trace message
and continuously overwrites the oldest one. If you put the “\n" sequence at the
beginning of the format string, no leading blank line will help you distinguish
new messages from the old:

tracef(&prog_trbuf, “\nThis message will not generate a leading blank line.”);

tracec
Synopsis
extern void tracec(trace_buffer_ptr, character);

extern struct irace_buf * trace_buffer_ptr;
const char character;

Description
The tracec routine outputs a single ASCII character to the trace screen
indicated.

Inputs

The first parameter is a pointer to the trace buffer into which the character will
be written.

For the second parameter, see the displayc routine.

64-33

INTERVIEW 7000 Serles Advanced Frogramming: ATLC-107-951-108

Example

In this instance, output will be written to the Program Trace screen.

{ .
Hinclude <trace_buf.h>
extern sirucl trace_buf prog trbuf;
)
LAYER: 2
STATE: display_to_prog_tr
CONDITIONS: KEYBOARD " -
ACTIONS:
{
tracec(&prog_trbuf, 'a’);
tracec(&prog trbuf, ‘\n’);
tracec{&prog_irbuf,65);
tracec(&prog_trbuf, ‘\n’};
tracec{&prog_trbuf,0x65);
tracec(&prog trbuf, '\n’);
tracec(&prog_trbuf,065);
)

When the user views the PROG TR screen, the output will look like this;

T o o W

tracef
SYDopsis
extern Int tracef(trace buffer_ptr, format_ptr, . . .);

extern stract trace_buf * trace_buffer pir;
const char * format_ptr;

Description

The tracef routine writes output to a specified trace screen, under control of the
string, pointed to by format_ptr,-that- specifies-how subsequent arguments are
converted for output. If there are insufficient arguments for the format, the
behavior is undefined. If the format is exhausted while arguments remain, the
excess arguments are evaluated but otherwise ignored. The fracef routine
returns when the end of the format siring is encountered.

Inputs

The first parameter is a pointer to the trace buffer into which the output will be
written.

For the second parameter, see the displayf routine. Placement of “\n” in the

format string of a call to (racef generates a blank new line on the selected trace
screen. (In a displayf routine, the newline character does not blank the new

line.)

64-34 JUL '90

64 _Display Window and Trace

JUL '90

Attributes are written via the %m conversion specifier to trace_buf.hdr.modifier,

trace_buf hdr.color, and trace_buf.hdr.enhance. The attributes are copied from

these variables into subsequent 32-bit data words in the Program Trace and User
Traces, Table 64-4 shows the format of this 32-bit word.

Returns

The ¢racef routine returns the number of characters displayed, or a negative
value if the unit is in freeze mode.

Example

This program traces X.29 PAD-control messages in DTE and DCE data packets.
The letters “DCE" are underlined in the DCE trace lines.

LAYER: 3
{

#include <trace_buf. h>

extern struct trace_buf 13_trbuf;

extern unsigned char * m_packe!_info_pltr;
extern unsigned short m_packet_lcn;
unsigned char pad_ctrl_msg;

STATE: packet_type
CONDITIONS:; DTE DATA Q=1
ACTIONS:

{
pad_ctrl_msg = m_packet_info_ptr{0];
tracef (&i3_trbuf, "DTE LCN:%.3x PAD MSG:%.2x\n", m_packet_lcn,
pad_ctri_msg);

}
CONDITIONS: DCE DATA Q=1
ACTIONS:

pad_ctrl_msg = m_packel_info_ptr{0};

tracef (&I3_irbuf, “FomDCE%m LCN:%.3x PAD MSG:%.2x\n", 0x04000000L,
0x00000000L, m_packet_lcn, pad_ctrl_msg);

stracef

Synopsis

extern vold stracef{array_ptr, string_ptr);
unsigned long array_pir;
const char * siring_ptr;

Description

The stracef routine is similar to the rracef routine, except that stracef writes
output to a variable, while tracef writes output to a trace screen. The output is
under control of the string pointed to by string_ptr that specifies how subsequent
arguments are converted for output. If there are insufficient arguments for the

64-35

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

64-36

format, the behavior is undefined. If the format is exhausted while arguments
remain, the excess arguments are evaluated but otherwise ignored. The stracef
routine returns when the end of the format string is encountered.

The stracef routine differs from sprintf in that it generates an array of longs,
whereas sprintf generates an array of chars. When the stracef array is written to
a trace buffer (or to the Display Window) it carries its predefined attributes
along with it. An sprintf array, by contrast, will receive the attributes that are
active in the buffer at the moment.

At the end of the output string, there will be a null character with the Special
Character Indicator bit set in its modifier attribute-byte.

Inputs

The first parameter is a pointer to the variable into which output will be written.
The array which will hold output must be declared as a long. By allocating 32
bits for each element, the array may accommodate attributes assigned via the
%m conversion specifier. Attributes comprise 24 bits of the Jong. The preferred
form of the declaration is unsigned long name {100). The size and name of the
array are user-determined.

For the second parameter, see the displayf routine,

Example

This program traces X.29 PAD-control messages for DTE and DCE data
packets. The resulting trace is identical to the one generated by the example
under tracef. Note that attributes that are turned on in an stracef array do not
need to be turned off after the array has been brought, via the %b conversion

specifier, into a tracef format string.

l{_AYEFI: 3
#include <trace_buf. h>
extern struct trace_buf 13_trbuf;
exlern unsigned char * m_packe!_info_ptr;
extern unsigned short m_packe!_lcn;
unsigned char pad_ctrl_msg;
unsigned long source{4];

STATE: packet_type
CONDITIONS: DTE DATA Q=1
ACTIONS:
{
stracef (source, “"%s", “DTE");

})
NEXT_STATE: pad_msg_trace

JuL 's0

64 Dlsplay Window and Trace

CONDITIONS: DCE DATA Q=1
ACTIONS:
{

stracef (source, "%m%s”, 0x04000000L, “DCE");

}

NEXT_STATE: pad_msg_trace
STATE: pad_mag_trace

CONDITIONS: ENTER_STATE

ACTIONS:

pad_cirl_msg = m_packet_Info_ptr{0];
tracef (&i3_trbuf, “%b LCN:%.3x PAD MSG:%.2x\n", source, m_packel_lcn,
pad_cirl_msg);

}
NEXT_STATE: packet_type

traces
Synopsis

extern void (races(trace_buffer pir, string_ptr);
extern struct irace_buf trace_buffer ptr;
const char * string_ptr;

I e
The {races routine writes output to a specified trace screen, under contro} of the

string that is referenced by string_ptr. The traces routine returns when the end
of the string is encountered.

Inputs

The first parameter is a pointer to the trace buffer into which the output will be
written.

For the second parameter, see the displays routine.

Example

In this instance, output will be written to the TRACE 1 screen.

The following entry

{
#include <trace_buf. h>
extern struct trace_buf 11_trbuf;

}

LAYER: 1
STATE: any
CONDITIONS: KEYBOARD * *
ACTIONS:

{
traces(&II_irbuf, “End of test.”);

)

JUL 'S0 64-37

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

64-38

produces the following output on the TRACE.1 trace screen:
End of test.

The following coding produces the same output:

{
Hinclude <trace buf. h>
extern struct trace_buf 11_trbuf;

}
LAYER: 1
STATE: any
CONDITIONS: KEYBOARD * "
ACTIONS:

{

consl char * siring_ptr;
string_pir = “End of test.”;
{races (&I1_trbuf, string_pir};
}

set_utrace_fkey_label

Synopsis

exiern vold set_utrace_fkey label(irace_buffer, label pir);
unsigned Int trace_buffer;
const char * label_ptr;

Description

Use the set_utrace_fkey_label routine to modify the labels which identify the
seven user—trace buffers. The default labels are TRACE 1, TRACE 2, TRACE 3,
TRACE 4, TRACE 5, TRACE 6, TRACE 7. These labels correspond to the user—trace
buffer with the same number. There is no Protocol Spreadsheet softkey
equivalent of this routine.

Inputs

The first parameter identifies the user—trace function key whose label is to be
replaced. Integers from 1 through 7 are valid values. The buffer number must
correspond to a user-trace buffer that is written to in the program. If it does
not or if the specified value is out of the valid range, the label is not assigned to
any softkey.

The second parameter is a pointer to a null-terminated string, i.e., the label that
should replace the current one for the specified trace buffer. The label string
has a maximum length of seven characters. If it has fewer than seven
characters, it is padded to the right with spaces. If it has more than seven
characters, only the first seven are used,

JUL '80

64 Dlsplay Window and Trace

64.5

JUL 'S0

Example

In the following example, new labels are assigned to the softkeys for user-trace
buffers 2 and 3. If you press the USER TR softkey in Run mode, the labels
TRACE 1 and TRACE 2 should be replaced with FRAME and PACKET.

{

#include <trace_buf.h>
extern struct trace_buf 12_trbuf;
extern struct trace_buf 13_trbuf;

}
LAYER: 1
STATE: define_labels
CONDITIONS: ENTER_STATE
ACTIONS:
{
set_utrace_fkey_label(2, “ FRAME”);
set_utrace_fkey labei(3, "PACKET");
} .
NEXT_STATE: write_to_buffers
STATE: write_to_butfers

CONDITIONS: KEYBOARD “2-
ACTIONS:
{
iracef(&I2_trbuf, “Frame Level Information”);
}
CONDITIONS: KEYBOARD “3"
ACTIONS:
tracef(&l3_trbuf, “ Packet Level Information™);

Attributes

Attributes are written to the Display Window and to the trace buffers in 32-bit words
that include 8 bits of character data {the second-lowest byte) and 24 bits of
attributes, The format of the 32-bit data word, given in Table 64-4, is the same for
the Display Window and for the trace buffers,

In displayf routines, the %m conversion specifier writes input to window_color and
window_modifier variables. These variables are then copied into data words written to
the Display Window by string pointers in this. and subsequent displayf routines. See
Figure 64-1.

In tracef routines, the %m conversion specifier writes input to the
trace_buffer_header structure for a particular user-trace buffer. The header is then
copied into each data word written to the particular user buffer by string pointers in
this and subsequent {racef routines. See Figure 64-2.

64-39

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

(A) Applying Attributes As Data Is Buffered

There are two ways an attribute may be assigned to a character in the Display
Window. One way uses the %m conversion specifier to assign attributes to the
window_color and window_modifier variables. This program, for example,
includes a displayf routine that uses the %m conversion specifier to write
underlined data to the Display Window:

STATE: apply_attribute_to_window_color_variable
CONDITIONS: ENTER_STATE
ACTIONS:

{
pos_cursor (1,0);
displayf (“%mThis data is underiined In the Display Window.", 0x04000000L);

}

The chart in Table 64-4 shows the hex value 4000000L in the "input” column
alongside the underline attribute, This means that when the value 0x04000000L
is input to the conversion specifier %m, an underline attribute is applied to the
current displayf string and any that follow until the attribute is turned off. The
underline attribute actually is applied to the external window_color variable. See
Table 64-2. The window_color and window_modifier variables lend their
attributes to every character that is written in a format string to the Display
Window. In Run mode if the user presses the softkey for DSP WND, he will see
his underlined string. Subsequent characters or strings written to the Display
Window also will be underlined. '

The same attribute could be applied to a string in any of the user-trace buffers,
as foltows:

{

Hinclude <trace_buf. h>
extern struct (race_byf 11_trbuf;

}
STATE: apply_attribute_to_header
CONDITIONS: ENTER_STATE
ACTIONS: ‘

{
tracef (&ll_trbuf, "%mThis data is underlined.”, 0x04000000L);

}

Only the header for the TRACE 1 display is affected by this %m conversion.
Only the TRACE t buffer is written to. When other trace buffers are
subsequently written to, the strings will not receive underlining as a result of the
attributes applied above to the TRACE 1 header.

64-40 JUL '90

64 Display Window and Trace

display _window_buffer[0]

- — -

display_window_bulfar([1]

e

display_window_buffer[2]

—_——

display_window_buffer[3]

- —

Figure 64-1 When a displayf routine is ¢alled, the altributes assigned via the %m

displayf(“%mDATA” , 0x08100000L);
[

-
/” // |
- 4
P // |
‘/’ -)
{enhance} {color) window_madifier
NN ER N NEN NN
16 8 1 Bits i
g oo |
e l
window_color |
|
| | |
[| |
| | |
| [i
¥ ¥ ¥
(enhance) (color) {character}) (modifier)
% s D %
it e e ep ity ep i1 tgtl
32 24 1€ 8 Bits
%) A %
1 2 I O T I I Lty et erd
a2 24 18 8 Bits
% a T %
/BN EEENEEEEEEE R EEENEE RN EEEE
az 24 16 8 Bits
°o 'o A °o
L1111l Lttt et el et g
22 24 16 8 Blis

display window_buffer [1088]

conversion specifier are stored in two extern variables, accessible 10 the user. Both
color and enhance allribules are contained in window_color. The low byle in

window_color Indicates the color; the high byle coniains enhancements. In this

example, the following allributes will be assigned to characters writlen to the

Display Window: reverse-image enhancement, green-on-black color, and ASCII

font. Before a character s wrillen to the Display Window, it is combined in a long
with Its aliribules, as mapped in the figure.

JUL '90

64-41

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

tracef(&I1_trbuf, "%mDATA", 0x08100000L};
I //’

Ve
///5/
70
/! .
/ ’I ’f 11_trbuf
/
[L
iy
\\ \\ 3 modifier {
1_trbuf.hdr \\ Y : i .color
WD T anhance r
| | |
i i L
I [i
L] v Y
(enhance) (color) {character) (modifier)
H_trbuf.array(0] -—» % ‘s D %0
Lol er i g e d ety Lri gl
az 24 16 8] 1 Blis
H_trbuf.arrayf{1] -—» % ‘o A %
: AAEENE AN RN AR N
az 24 16 8 1 Blts
i1_trbuf.array2] -—= % b T %
Jig g rr ety gt et
32 24 16 8 1 Bits
1_trbuf.array[3] -—= % Y A %
(et trg ety e e et ettt
az2 © 24 16 8 1 Bits
11_trbuf.array [4096]

Figure 64-2 When a fracef routine is calied, the attributes assigned via the %m
conversion specifier are stored in three variables in the trace-buffer header of a
designated buffer. In ihls example, f1_trbuf. hdr holds the following atiributes:
reverse-image enhancement, green-on-black color, and ASCII font. Before a
character is wrltten to the buffer, it is combined in a {ong with its atiribules, as
mapped in the figure.

64-42 : JUL ’90

64 Display Window and Trace

JUL '80

(B) Applying Attributes to Buffered Data

The Display Window is an array of 1,088 long integers, each including one byte

of character data- and three bytes of attributes. The character data is generated

by strings in display routines. The attributes for each character are derived from
the current window_color and window_modifier values at the time the character

is written to the display-window buffer.

Once the data word is written to the buffer as an element in the array, it can be
accessed and written to—and therefore changed—the same as any other location
in memory. In the example-that follows; a string is written to the Display
Window without underlining. Then, as a result of a keyboard input from the
operator, the first 32-bit word in the string (containing the first character, the
letter “T") is given a new value that includes the underline atribute.

{
extern unsigned long display_window_buffer{1088];

extern struct
{
unsigned char mpm;
unsigned char cpm;
}
disptay_window_index_buffer{17];
}
STATE: apply_attribute_directly_to_display_window
CONDITIONS: ENTER_STATE
ACTIONS:
{
pos_cursor(1,0);
displayf (“This daia Is not underlined. ”)."

}
CONDITIONS: KEYBOARD * "

ACTIONS:

{

display window_buffer[64] = ((display_window_buffer{64] & ~0x04000000L) |
0x04000000L);

display_window_index_buffer{l].mpm ++;

}

Incrementing display_window_index_buffer.mpm is necessary to alert the
processor on the CPM card (containing the disptay—controller software) that the
program has changed the contents of the Display Window. Refer to Table 64-3
for an explanation of this structure.

The bitwise anding and ering in the example are necessary if you want to change
certain bits in the word without affecting others. Note that the value whase
complement (-) is anded with display_window_buffer element #64 is the “mask”
for the underline attribute in Table 64-4; and the value to the right of the or
operator (|} is the “input” value for the underline attribute.

64-43

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 64-7

Conversion Speclfiers

64-44

SpecHler Argument type Converslon Type

%b Integer-array pointer array of long Integers. 2nd byte of each
fong Is displayed as character. 1st, 3rd, and
4th bytes Interpreted as attributes. Array
begins at pointer, ends at eloment containing
null character and Speclal Character blt = 1.

%l Integer signed decimal representing 15-blt value

%0 unslgned character unsigned character

%#c unslgned character newline character displayed as v rather than
acted on

%d integer ‘slgned decimal representing 15-bilt value

%Id Integer signed declmal representing 31-blt value

%H character-array pointer character array Indlcated by argument
appears as small hex characters.

(Preclislon as to number of characters
becomes length of the array, overriding
usual nui-termination of strings.)

%m Integer long Integer not displayed or printed, but
wrltten to attribute header-variable for Display
Window or for one of the trace buffers

%0 Integer unsigned octal reprasenting 16-bit value

%lo Integer unslg_nad octal representing 32-blt value

%Ho Integer unsigned octal representing 16-bit value,
preceded by 0

Y%itlo Integer unsigned octal representing 32-bit value,
preceded by 0

%p Integer unsigned hexadecimal {lower-case jatters)
representing 32-bit value, with a minimum 5
digits displayed and a colon between the 4
right-hand digits and the 1-4 left-hand dlgits.
Useful for displaylng CPU segment numbear and
offset.

%5 character-array polnter array of characters beginning at polnter and
ending at null terminator or at array-length
precislon, whichever occurs first

%i#ts character-array pointer newline character displayed as v rather than
acted on

%uU Integer unsigned decimal representing 16-blt value

%iu Integer unsigned decimal representing 32-bit value

%#u Integer hex characters (example: %%) representing
16-bit value

% #lu Integer hex characters (example: %%%%)

representing 32-blt value

JUL '80

64 Display Window and Trace

Table 64-7 (continued)

Specilfier Argument type Converslon Type

%X Integer unsignad hexadecimal {lower-case letters)
reprasenting 16-blt value

Slx Integer unsignad hexadecimal (lower-oase letters}
representing 32-bit value

WX integer unsigned hexadecimal (lower-casa letters)
repragsenting 16-blt value, preceded by 0x

% Hix Integer unsignad hexadecimal (lower-case letters)
representing 32-bit value, preceded by Ox

%X Integer unsigned hexadeclmal (upper-case letters)
representing 16-blt value

%X Integer unsigned hexadecimal (upper-case letters)

_ representing 32-bit value

R#X Integer unsigned hexadecimal (upper-case letters)
representing 16-blt value, preceded by 0x

Y #iX Integer unsigned hexadecimal (upper-case letters)
representing 32-bit vaiue, precedsd by Ox

%\n none dlsplays an v

% %

none displays a %

64.6 Protocol Trace Buffers

JUL '90

There are two Protocol Trace buffers, one dedicated to Layer 2 and the other to
Layer 3 data. Run-mode softkeys for accessing these traces—PROTOCL, L2TRACE,

and L3TRACE—appear when personality packages are loaded in at Layers 2 and 3.

The prompt line is not part of these buffers.

The size of each Protocol Trace buffer is 65,536 bytes, Of this total, two bytes are
dedicated to the buffer header and two bytes to the trailer. The usable size of a
Protocol Trace buffer, therefore, is 65,532 bytes. When a buffer's limit is reached,
new characters written to the end of the buffer force out the same number of
characters from the beginning of the buffer. In Freeze mode you may scroll through
the buffer using the cursor keys.

You cannot write directly to the Protocol Trace buffers. Monitor the position within
the buffers, as well as the wrap count, using the variables and structures discussed
below.

(A) Variables

The addresses of the variables in Table 64-8 identify the physical location of the
beginning and end of each Protocol Trace buffer. The beginning position is at
the first data byte in the buffer. The end is just after the last data byte.

64-45

INTERVIEW 7000 Serfes Advanced Programming: ATLC-107-951-108

Table 64-8
Protocol Trace Buffer Variables

Type

Variable Value (hex/decimal) Meaning

extern unsigned char

extern unsigned long

extern unsignad char

extern unsigned long

i2pp_trbuff

12pp_trbuff_end

13pp_trbuff

13pp_trbuff_end

First data byte In the Layer 2
Protocol Trace buffer. Address
of this variable—segment
number plus offset—wlll Indicate
the physical location of the flrst
data byte, two bytes from the
beginning of the buffer, Line
Setup configured for emulate or
monltor mode,

First byte In the two-byte traller
of the Layer 2 Protocol Trace
buffer—I.e., after the last data
byte. Address of this
varlable—segment mimber plis
offset—will indicate the physical
locatlon of the end of the data
area, hexadecimal FFFE bytes
from the beginning of the
buffer. Line Setup configured
for emulate or monltor mods.

First data byte In the Layer 3
Protocol Trace buffer. Address
of this varlable—segment
number plus offset—will Indlcate
the physical looatlon of the first
data byte, two bytes from the
beginning of the buffer. Line
Setup conflgured for emulate or
monitor mode.

First byte in the two-byte traller
of the Layer 3 Protocol Trace
buffer—l.e., after the last data
byte. Address of this
varlable—segment number plus
offset—will Indicate the physical
location of the end of the data
area, hexadecimal FFFE bytes
from the beginning of the
buffer. Line Setup conflgured
for srmulate or monltor meds.

64-46

JUL '90

64 Display Window and Tracs

(B) Structures

The structure variables in Table 64-9 contain the high and low bytes of a
beginning and ending offset and wrap-count in the Layer 2 and Layer 3
Protocol Trace buffers. Create a logical beginning (or ending) offset within a
buffer by combining the two offset-variables relating to a beginning (or ending)
position into a single, two-byte offset. Add the resulting offset to the address of
13_trbuff to identify the physical address of a logical location.

The example below uses #define preprocessor directives for determining
beginning and ending offsets in the Layer 3 Protocol Trace buffer. When
get_I3pp_value_end is encountered in a program, for example, each of the two
“end” offset-variables is cast into a long and, if necessary, shifted left to its
appropriate position in an offset. Then the two variables are added together,

#define get_13pp value begin
(({unsigned long) (i3pp_trbuff ctl.begln_off_hi) << 8) +
({unsigned long) (13pp_irbuff_ctl.begin _off i0}})

#define get_13pp_value_end
{((unsigned long) (13pp_trbuff ctl.end_off hi) << 8) +
((unsigned long) (13pp_trbuff_ctl.end_off Io}})

When the ending offset, in this example, is added to the address of I3_trbuff,
the result is the address of the logical end in the buffer:

unsigned long end_address;
end_address = &I3_trbuff + get_l3pp_value_end,;

You may also use the offsets and wrap counts 1o determine how much data is
currently in the buffer. Include the wrap count in the high two bytes of a
four-byte offset. Then subtract the beginning offset from the ending offset.

ftdefine get_13pp_value_begin

(((unsigned iong) (13pp_trbuff cll. begin_wrap_hi) << 24} +
{(unsigned long) (13pp_trbuff ctl.begin_wrap_lo) << 16) +
((unsigned long) (13pp_trbuff_cil.begin_off hi) << 8) +
{(unsigned long) (13pp_trbuff ctl.begin_off lo)})

#define get_13pp_value_end

(((unsigned long) (13pp_trbuff _ctl.end_wrap_hi} << 24) +
((unsigned long) (13pp_trbuff ctl.end_wrap_lo) << 16) +
((unsigned long) (13pp_trbuff ctl.end_off_hi} << 8} +
((unsigned long) (13pp_trbuff_cil.end_off_lo}})

unsigned long end, begin, count;
end = get_{3pp vailue_end;

begin = get_I3pp_value_begin;
count = end — begin;

JUL '90 64-47

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 64-9
Protocol Trace Buffer Structures

Type

Variable

Value (hex/decimal)

Meaning

unsigned char

unsigned char

unsighed char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

¢ lpp_trbuff_ctl

begin_aff_hl

begin_off_lo

begin_wrap_hl

begin_wrap_lo

end_off_hl

end_off_lo

end_wrap_hl

end_wrap_lo

Structure Name: [2pp_trbuff_ctl

64-48

0-1110-255

0-/f10-265

0-110-255

0-1110-255

0-110-255

O-1110-255

0-1110-255

0-fi10-255

Declared as type struct, The varlables contalned
In this structure monitor logical location In a
Protocol Trace buffer. Reference structure
varlables as followe: /pp_trbuff_cll.begin_off_hl.

High byte of a 2-byte offset from the physical
beglinning of the Protocol Trace buffer to a
foglcal beginning In the buffer. Range of the
two-byte offset Is 2 through hexadecimal FFFE.

Low byte of a 2-byte offset from the physical
beginning of the Protocol Trace buffer to a
logical beglinning in the buffer. Range of the
two-byte offset Is 2 through hexadecimal FFFE.

High byte of a 2-byte count of the number of
times a fogical beglnning has wrapped through
the Protoccl Trace buffer,

Low byte of a 2-byte count of the number of
times a logical beginning has wrapped through
the Protocoi Trace bulfer. It will have a value of
zero only once. Once the count reaches
hexadecimal FFFF, it will wrap to one.

High byte of a 2-byte offset from the physical
beglnning of the Protocol Trace buffer to a
fogical end In the buffer. Range of the two-byte
offset Is 2 through hexadecimal FFFE.

Low byte of a 2-byte offset from the physical
beginning of the Protocol Trace buffer to a
logical end In the buffer. Range of the two-byte
otfset Is 2 through hexadecimal FFFE.

High byte of a 2-byte count of the number of
times a logical end has wrapped through the
Protocol Trace buffer.

Low byte of a 2-byte count of the number of
times a logical end has wrapped through the
Protocol Trace buffer. It will have a value of zero
only once. Onoce the count reaches hexadecimal
FFFF, It wlll wrap to one.

An Instance of the lpp_trbulf_ct! structure,
declared as type extern struct Ipp_trbuff_ctl.
The varlables contalned [n this structure monitor
loglcal location In the Layer 2 Protocol Trace
buffer. Has the same structure as
Ipp_trbuff_ctl. Reference structure varlables as
follows: [2pp_trbuff_ctl.begin_off_h.

JuL '90

64 Display Window and Trace

Table 64-9 (continued)

Type Variable . Value (hex/decimal) Meaning
Structure Name: [3pp_trbuff_ctl An instance of the Ipp_trbulf_ctl structure,

declared as type extern struct lpp_trbuff_ctl.
The varlables contalned In this structure monitor
loglcat locatlon In the Layer 3 Protocol Trace
buffer. Has the same structure as
Ipp_trbuff_ctl. Reference structure varlables as
follows: /3pp_trbulf_ctl.begin_off_h.

JUL '90

(C) Routines

The set_ltrace_fkey_label Toutine allows the programmer to modify the current
softkey labels for the Layer 2 and 3 Protocol Traces. There is no Protocol
Spreadsheet softkey equivalent of this routine.

set_ltrace_tkey_label

Synopsis

extern vold se!_ltrace_fkey label(layer, label pir);
unsigned int layer;
const char * label_ptr;

ripti

Use the ser_lirace_fkey label routine to modify the labels which identify the two
Protocol Trace buffers. The default labels are L2TRACE and L3TRACE. These
labels correspond to the Layer 2 and 3 Protocol Traces.

Inputs

The first parameter identifies the Protocol Trace function key whose label is to
be replaced. Integers from 1 through 7 are valid values. The number must
correspond to a layer package which is currently loaded into the INTERVIEW.
If it does not or if the specified value is out of the valid range, the label is not
assigned to any softkey.

The second parameter is a pointer to a null-terminated string, i.e., the label that
should replace the current one for the specified Protocol Trace. The label string
has a maximum length of seven characters. If it has fewer than seven
characters, it is padded to the right with spaces. If it has more than seven
characters, only the first seven are used.

64-49

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-851-108

Example

In the following example, the X.25 Layer 2 and Layer 3 protocol packages have
been loaded via the Layer Setup screen. New labels are assigned to the softkeys
for both Protocol Traces. If you press the PROTOCL softkey in Run mode, the
labels L2TRACE and L3TRACE should be replaced with X25 FRM and X25 PKT.

LAYER: 1
STATE: define_labels
CONDITIONS: ENTER_STATE
ACTIONS: ’
{
set_lirace_fkey label(2, “X25 FRM"};
set_ltrace_fkey label(3, “X25 PKT”");

}

64-50 JUL 'S0

65 Counters, Timers, and Accumulators

65 Counters, Timers, and Accumulators

65.1 Counters

The translator declares the following structure for counters that are entered as softkey
tokens on the Protocol Spreadsheet:

struct counter_struct

{
unsigned long current;
unsigned long last;
unsigned long maximum;
unsigned long minimum;
unsigned short sample_couni;
unsigned long total_high;
unsigned short total_low_low;
unsigned short total_low_high;
unsigned short oul_of range;
unsigned short changed;
unsigned long prev;
unsigned long old;

Y

struct counter_siruct counter_name={0,0,0,-0ul};

The first eight counter variables in the structure are used to calculate statistical values
whenever the counter is sampled. See Table 65-1. Three of the
variables—counter_name.current, counter_name.prev, and counter_name.old—come
into play each time the counter is incremented, decremerted, or set to a particular
value,

Counters are internal program variables and counter interrupts are strictly
program-generated signals, so the C programmer is free to ignore this structure and
maintain counts and statistics in a different way. Please note, however, that the
68010 CPU expects this counter structure when it polls the 80286 periodically for
statistical values to display in columns on the tabular and graphic stats screens.

(A) Current, Previous, and Old Values

When a counter is incremented, decremented, or set to a specific value on the
Protocol Spreadsheet, the program does not signat a counter_name_change
interrupt automatically. First it verifies that the new value of the counter really
is a change from the previous value. See Table 65-2. For this comparison, the
program needs to maintain two variables, counter_name.current and
counter_name.prev.,

JUL '90 85-1

INTERVIEW 7000 Series Advanced Frogramming: ATLC-107-951-108

Table 65-1
Counter Structures

Type

Variable Meaning

Strycture Name: counter_struct

unsigned long
unsigned long
unsigned long
unsigned long
unsigned short

unslgned long
unslgned short

unsigned short
unsigned short

unsigned short
unsigned long

unsigned long

Structure of a counter. Declared as type struct.

current

last

maximum
minlmum
sample_count

total_high
total_low_low

total_low_high
out_of _range

changed
prevy

old

Declared automatically If a program counter s
used. Program counters assigned to structure
as follows: struct counter_struct counter_name.
Reference a structure varlable as follows:
counter_narne.current.

This value of the counter is acted on directly by
program actlons.

Last samplad value; displayed on the tabular
statistics screen.

Maximum value of all samples: displayed on the
tabular statlstios screen.

Minimum value of all samples; displayed on the
tabular statistles screan. Should be Inltlalized as
~Qul.

Number of samples.
High four bytes of an elght-byte counter total.

Low two bytes of an elght-byte oounter total.
This two-byte variable counts to 65,535,

Bytes 3 and 4 of an elght-byte counter total,

Nurber Is cut of range, elther Incramented
beyond the range or decremented bealow 0;
should not be factored Into averages.

For fuldre use.

When converting a counter action to C, the
translator compares prev with current to
determine whether counter has changed. Then
prev |s updated to current and
counter_name_change lIs signaled,

When converting a counter conditlon to C, the
translator compares old with current to

- determine whether true condition is new

{transitional). After program logic has examined
counter, old s updated to prav,

65--2

Here, for example, is the C translation of the simple action COUNTER example

SET 5.

counter_example.current = 5;

if (counter_example.prev I= counter_example. current)

{

counler_example.old = counter_example.prev;
counter_example. prev = counter_example. currenl;

signat (counter_example_change);

}

JUL 80

65 Counters, Timers, and Accumnulators

Table 65-2
Counter Variables

Type Variable Meaning

extern event counter_name_change True when the namad counter Is
Incremsnted, decremented, or
set to new value, This event wiil
not be triggered untess a
spreadsheet condition names
the counter. Line Setup
conflgured for emulate or
monjtor mode.

It is clear from the translation that the variable counter_example.prev is used to
limit the number of counter_example_change interrupts to those cases where the
current value of the counter really has changed.

What is counter_name.old used for? We will preface the answer by citing the
behavior of the counter in the following spreadsheet example.

STATE: threshold_condition
CONDITIONS: KEYBOARD * 7
ACTIONS: COUNTER spacebar INC
CONDITIONS: COUNTER spacebar GE 7
ACTIONS: ALARM

Each time you press the space bar while this program is running, the counter will
increment, but no matter how many times you press the space bar the alarm will
only sound once. It will sound on the seventh Keystroke, the first time the
counter is greater than or equal to 7. If the program had a decrement or set
action that lowered the counter to less than 7, the alarm would sound again
when the counter reached the 7 threshold.

The transiator accomplishes this threshold condition by coding the waitfor clause
as follows:

counter_spacebar_change && (! (counter_spacebar.old >= 7)) && (counter_spacebar. current >=7):

Since counter_spacebar.prev was used (and then updated to “current”) in the if
statement that sent the counter_spacebar_change interrupt, the “oid” value is
required in the waitfor condition 1o insure a “transitional” or “threshold”
counter condition.

JUL '90 65-3

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

65-4

(B)

(C)

Sampling a Counter

Here is the translator’s version of a counter sample action:

counler_name.last = counter_name.curreni;
if (counter_name.current > counter_name.maximum)

{

counier_name.maximum = counter_name.curren!;

if (counter_name.current < counter_name.minimum)
counter_name.minimum = counter_name, curreni;

counler_name.sample_count++;

{
unsigned long temp;
temp = (counter_name.current & Ox0000/fff) + counter_name.tolal_low_low;
counter_name.totlal_low _low = temp;
lerp = (counter_name.current >> 16) + counter_name. tolal_low_high + (lemp >> [6);
counter_name.lotal_low_high = temp;
counter_name.lotal_high += temp >> [6;

}

counier_name.currenl = 0;

In order to establish an average value for all samples, a grand total for current
values at the time of each sampling must be maintained. Since an ordinary
INTERVIEW current counter is 32 bits, the counter that maintains the grand
total of current counts must be larger (64 bits). There is rio data type this large
in C, and so the “total” counter is distributed among three variables and the
somewhat complicated coding involving the temp variable is required to add the
current counter to this composite counter,

Updating the Statistics Screen

The CPM polls the MPM continuously to see if data is availabie to be output to
the printer or the plasma display. This data includes character data, trace data,
prompts, and values to be posted to the statistics screens:

In order to know where on the statistics screens the values for the particular
counters (and timers and accumulators) should te placed, the 68010 CPU on
the CPM needs some help from the program (that is, from the MPM). This
help is in the form of a “stat message” that the translator (or the programmer)
codes once at the beginning of the program. The stat message is a structure that
the MPM sends to the CPM. See Table 65-3. The stat message says, in effect,
“Here is the address of a counter structure. When you access this structure
during the running of the program in order to pull out the current, last,
maximum, minimum, total, and sample-count values, display those values on the
row of the tabular stats screen where the user has typed spacebar” (for
example).

Jut 's0

65 Counters, Timers, and Accumulalors

Table 65.3

Counter, Timer, and Accumulator Structures

Value (hex/decimal)

Meaning

Type Variable
Struciure Name: stat_msg
unsigried short op_type
unsigned short type

unslgned long

unsigned long

object_name

oblect_address

0a00/2560

0
0100/256
0200/512

Structure of a stat message. A stat message ls
gont once for each named counter, timer, or
accumulator, Declared as type struct. Declared
autoratloally If a softkey-entered COUNTER ls
used ae a condltlon, or if softkey-entered
COUNTER, TIMER, or ACCUMUL actlon is taken.
Program stat messages assigned to structure as
follows: struct stat_msg name. You must
asslign values to the elements of the structure.
Reference a structure varlable as follows:
name.type.

Reglster statistics objects from the MPM to the
CPM. Other values and meanings for future use,

accumulator
counter
timer

The MPM (80288) address of a counter, timer,
or accumulator name, converted to CPM (68010)
format. To get an oblact_name address, enter:
name.object_name =
get_68k_phys_addr(“name_of counter”™),

The MPM (80286) addrese of a counter, timer,
or accumulator structure, convertad to CPM
{68010} format. To get a structure address for
a counter, enter: name,object _address =
get_68k_phys_addr{&counter_narne_of_counter);

JUL 90

Here is a C program that causes the current value of a counter named “key” to
increment on the tabular-statistics screen each time an ASClI-Keyboard key is

struck.

{

struct

{

unsigned short op_type;
unsigned short type;

unsigned fong object_name;
unsigned long object_address;

} stat_msg;
extern unsigned long gel_68k_phys_addr();

65-5

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

struet counter_struct
{
unsigned long current;
unsigned long last;
unsigned long maxlmum;
unsigned long minimum;
unsigned short sample_count;
unsigned long total_high;
unsigned short tolal_low_low;
unsigned short total_low_high;
unsigned short out_of range;
unsigned short changed;
unsigned long prev;
unsigned long old;
E '
struct counter_structure counter_key;
extern fast_event keyboard new_key;
}
STATE: update_stat_screen
{
stat_msg.op_type = 2560;
stai_msg.lype = 256;
stat_msg.object_name = get_68k_phys_addr(“key");
stat_msg.object _address = get_68k_phys_addr(&counter_key);
send_stat_message(&siat_msg};
waitfor
{
keyboard_new _key:
{

counter_Kkey.currentt+;

}
}

The variable stat_msg.object_name is a pointer to the name of the counter that
the user has entered on the protocol spreadsheet. The program gives this name
to the CPM, and expects the CPM to locate the name among the names that
the user has entered on the tabular or graphic statistics menu. The delivery to
the CPM of a pointer to the stats—menu name and a pointer to the counter
structure is the purpose of the stat message. The message alows the CPM to
correlate a line on the statistics results screen with an actual program counter (or
timer or accurnulator). '

65-6 JUL 'S0

65 Counters, Timers, and Accumulators

JUL '90

NOTE TO C PROGRAMMERS: When the translator creates a
counter variable it adds the prefix counter_ to the spreadsheet
name, but the programmer who is working primarily in C and is
not making use of spreadsheet counters can name the counter
any way he wishes, with or without the prefix. Similarly, the
string that is communicated to the CPM in stat_msg.object_name
{"key" in the example above) must agree with the name on the
stats menu, but it need not bear any resemblance to the name of
the counter structure.

NOTE ALSO: In most of the examples in this manual, we have
not bothered to declare routines since it is not necessary. In the
absence of a declaration, the compiler assumes that the routine is
external and that it returns an integer. In nearly all cases, this
assumption works. get_68k_phys_addr() returns a long, however,
and must be declared.

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

65.2 Timers

The translator declares the following structure for timers that are entered as softkey
tokens on the Protocol Spreadsheet:

Struct timer_struct

{
unsigned long current;
unsigned long last;
unsigned long maximum;
unsigned long minlmum;
unsigned short sample_count;
unsigned long total_high;
unsigned short total_tow_iow;
unsigned short total_low_high;
unsigned long start_tick_value;
unsigned short running;
unsigned short changed;

k

There are no timer conditions in the software (since timeouts provide the
time-triggering function), and therefore all of the variables in the structure serve as
data for the CPM when it updates the stats screens. See Table 65-4. A stat message
must be sent so the CPM can correlate a line on the statistics results screen with the
correct program timer. The stat message is documented in the previous section on
counters. The timer stat message is different only in respect that the star_msg.type
element should be set to 512 instead of 256.

Timer restart, continue, and stop actions are explained in this section. The clear
action is simply a matter of changing the elements in the structure to zero (except for
timer_name.minimum, which becomes the one’s complement of zero).

(A) Time Ticks

Time ticks are timed increments of either of two hardware counters in the
INTERVIEW. The programmer can select which of the two timing mechanisms
to use for a given timer.

One tick-counter is on the FEB card and is used to time-stamp incoming data
and ElA leads. The intervals between ticks is determined on the FEB Setup
menu. Ticks can be enabied/disabled on the same menu. The current value of
this counter is available in a variable called I!_tick_count. See Table 65-5. The
current value always reflects the number of ticks since the program entered Run
mode. The number of ticks may or may not equate to the amount of time in
Run mode, since ticks are also encoded in playback data and the playback rate
is subject to “local conditions” such as playback speed and idle suppression.

FEB time ticks are the most precise timing mechanism in that they have a
resolution to 10 microseconds. They also represent the most durable method of
timekeeping, since they preserve the original data timings even during playback.

65-8 JUL '90

65 Counters, Timers, and Accumulators

Table 65-4

Timer Structures

Value (hex/decimal)

Meaning

Type Variable
Strycture Name: timer_struct
unsigned long current
unsigned long last
unsligned long maximum
unsigned long minimurn

unsigned short
unsigned long

unsigned short
unsigned short

unsigned tong

unsigned short .

unsigned short

sample_count
total_high
total_low low
total_tow_high

start_tick_value

running

changed

Structure of a timer. Declared as type struct,
Declared automatically If a program timer lg
used. Program timers assigned to structure as
follows: struct timer_struot timer_name.
Reference a structure variable as follows:
timer_narme.current.

Current value of timer, not updated whlle timer Is
running. Values are In microsecends rounded to
tiek-unit on FEB Setup screen.

Value of last sample; displayed on the tabular
statlstlcs screen.

Maximum value of all samples; displayed on the
tabular statistlcs screan,

Minlmum value of all samples: displayed on the
tabular statistics screen. Should be inltlalized as
~0ul,

Number of samples.

High four bytes of an elght-byte timer total.
Low two bytes of an eight-byte timer total.
Bytes 3 and 4 of an slght-byte timer total.

Tick-count In microseconds when timer was
started, restarted, or continued. For
IIne-related conditions at Layer 1, this value Is
stored in I1_tlck_count: for non-line conditions,
use get wall_time_286_tlcks routine.

Stopped. This variable |5 polled and a zero stops
the timer from Incrementing and sets the current
value to timer_name.current {understood as
microseconds}.

Running. All 1*s In this varlable causes the timer
to Increment, showing a value that equals
(wall-time ticks - timer_name. starl_tick_value) +
timer_name.current.

For fuiure use.

JuL '90

65-9

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 65-5
Timer Variables

Type Variable Meaning

extern unsigned long I1_tick_count This variable counts ticks from
the start of Run mode.
Tlck=seo0, mseo, ete,,
depending on FEB setup.
Subtraot early value from later
value to create a timer.
ACTIONS:
{ displayf (“ %id msecs ",
(I1_tick_count -
timer_name,start_tick_value));}
Add to start_of run_time to
determine more precise current
time for time-stamping events,
Line Setup configured for
emulate or monitor mode.

extern unsigned long start_of_run_date Date when Run mode entered.

Byte 1 (low byte) Indicates day;
byte 2 stores month; and bytes
3 and 4 Indicates year. May be
used to time-stamp events.
See also start_of_run_time.
Line Setup configured for
emulate or monitor mods.

extern unsigned long start_of run_time Time when Run mode entered.
Byte 1 (fow byte) Indicates
seconds; byte 2 stores minutes;
and byte 3 Indicates hours.
May be used to time-stamp
avents, See also
start_ol_run_date and
i1_tick_count. ¥
Line Setup configured for
emulate or monltor mode.

t In the example below, the displayf (or tracef) routine uses timer varlables to time-stamp good BCCs on the DCE
slde. (Simllar programming could determine the current date.) The tick unlt selected on the FEB Setup menu is
saconds. Adjust the program as needed for other tick units,

{

extern unsigned long start_of run_date, start_of run_time, 11_tick_count;
unsigned short seconds, hours, minutes, tick_mins, tick_secs, tick_hours;
#define SECS(run_time) (unsigned short) (run_time & Oxff)

#define MINS (run_time} ({unsigned short) (run_time >> 8) & 0xff)

}
STATE: time
CONDITIONS: DCE GOOD_BCC
ACTIONS:
{
tick_secs = II_tick_count % 60;
tick_mins = (Il_tick_count + SECS(stari_of run_time)) ¢ 60;
tlek_hours = (tick_mins + MINS(stari_of run_time}} } 60;
displayf(“Time: %.2d:%.2d:%.2d\n",
(unsigned short) (((stari_of _run_time >> 16) & Oxff) + tick_hours) %24,
(MINS(start_of run_time) + tlck_mins) %60,
(SECS(stari_of_run_time) + tick_secs)%60);

65-10 : JUL '80

65 Counters, Timers, and Accumnulators

JUL '90

(B)

(C)

The other tick-counter is on the MPM and is referred to as the wall-time clock.
This clock ticks once per millisecond and drives the timers displayed on the
statistics results screens—at least while they are incrementing. At the moment a
timer stops incrementing, the programmer can reach in and replace the
incremented value with a timer value based the FEB tick-counter instead.

The current value of this wall-time tick-counter is available to the program via
the ger_wall_time_286_ticks routine, The current value always reflects both the
number of ticks and the actual elapsed time (“wall time") since the program
entered Run mode.

Running

While it increments on the stats screen, a timer always is driven by wall-time
ticks. To start a current timer incrementing, first you must have sent a stat
message to correlate the timer structure with a timer line on the stats screen. At
that point the simple statement timer_name.running = -0 will start the timer.
The value of the timer at any given time while it is running will be the MPM
(wall-time) ticks minus the timer_name.start_tick_value plus any
timer_name.current value,

To stop a timer, change timer_name.running to zero. The current column of
the timer will immediately display the value of timer_name.current (zero, unless
you have done something in your program to calculate the current value of the
timer). The stats display will interpret timer_name.current as a value in
microseconds and convert it to the unit selected for that timer line.

Restart

The translator has two different versions of the timer restart action, depending
on what condition precipitated the action. The first version is used if the
condition was data-related (or EIA-related) and time ticks are enabled on the
FEB Setup menu. Here is this data-timer version:

unsigned long temp;

converi_tick_count (11_tick_count, &temp};
timer_name.current = 0;
timer_name.start_tick_value = temp;
timer_name.running = -0;

The convert_tick_count routine converts /I_tick_count into microseconds and
stores the result in temp. The value of femp is assigned immediately to
timer_name.start_tick_value. When the 68010 sees that t/imer_name.running
equals the one’s complement of zero, it subtracts the start-tick value from the
11-tick count and displays the difference in the current column of the timer line.
Since the start-tick value was derived a moment before from the l1-tick count,
the difference wilt be zero. The current column on the stats screen should begin

a timer at zero following a restart,

65-11

INTERVIEW 7000 Serles Advenced Programming: ATLC-107-951-108

65-12

(D)

(E)

(F)

A slightly different version of the program is used if the condition was
nondata-related or if time ticks are disabled in the FEB. The
convert_tick_count routine is not used and the following routine is used in its
place:

get_wall_time_286_ticks (&temp);

This routine returns the current value of the wall-time tick-counter, in
milliseconds zero—padded to microseconds, It stores the value in femp and the
program proceeds as above,

Continue-

The timer-continue action is very similar to the restart. There are just two -
differences. One, the action is enclosed in an if statement that verifies that
timer_name.running equals zero—that the timer actually is stopped, in other
words; and two, timer_name.current is not set to zero, but retains the value it
received the last time the timer stopped.

Stop
Here is one of the two versions of a timer stop action:

if (timer_name.running 1= 0)
{
unsigned long temp;
convert_tick_count (11_tick_count, &temp);
timer_name.current += temp — timer_name. stari_tick_value;
timer_name.running = 0;
}
In this translation, the start-tick value is subtracted from the current tick count,
and any pending current value (held over if the timer was continued} is added
in, The result is a new (imer_name.current value. This value is posted to the

stats screen as soon as the 68010 sees timer_name.running = 0.

The other version of the stop action uses get_wall_time_286_ticks instead of
convert_tick_count.

Sample Action

The code that produces the sample action is identical to the code that sampled a
counter. See Section 65.1(B). The timer_name.sample_count variable’s not
equaling zero causes minimum, maximum, and average values to be displayed.

65.3 Accumulators

Shown below is the structure of an accumulator as the translator declares it (and
as the 68010 accesses it to update the statistics screens). Also refer to

Table 65-6. Note that there is no current value, since an accumulator neither
counts nor times. There are no “previous” and “old” values, because in its
spreadsheet implementation an accumulator never is tested in a Conditions

block.

JUL 90

65 Counters, Timers, and Accumnulators

struct accumulator_struct

{
unsigned long last;
unsigned long maximum;
unsigned long minimum;
unsigned short sample_count;
unsigned long total_high;
unsigned short total_low_low;
unsigned short total_low_high;
unsigned short changed;

h

struct accumulator_struct accumuiator_name=(0,0,-0ul};

Here is the lranslator’s version of an accumulate action when the object of the
accumulation (selected by the user) was the maximum sampled value of a
counter named framechar.

accumulator_name.last = accumulator_framechar. maximum,;
if {accumulater_name.last > accurnulator_name.maximum)

accumulaior_name.maximum = accumulalor_name.last; |
If taccumulator_name.last < accumulator_name.minimum)
accumulator_name.minimum = accumulator_name.last;

accumulalor_name. sample_couni{++;

{

unsigned long temp;
temp = (accurnulator_name.last & 0x0000ffff) + accumulator_name.total_low_low;

accumulator_name.total_low_low = temp;
temp = (accumulator_name, lasi >> 16) + accumulator_name.total_low_high + {temp >> I6);

accumulaior_name, toial_ltow_high = temp;
accumulator_name.total_high += temp >> 16;

}

accumulator_name.changed = -0;

A stat message must be sent so the CPM can correlate a line on the statistics
results screen with the correct accumulator, The stat message is documented in
the previous section on counters, The accumulator stat message is different only
in respect that the stal_msg.type element should be set to 0 instead of 256.

The accumulator_name.sample_count variable’'s not equaling zero causes
minimum, maximum, and average values to be displayed.

JUL 'S0 65-13

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

Table 65-6
Accumulator Structures

Type Variable 7 Meaning
Structure Name: accumulator_struct Structure of an accumulator, Declared as type

unsigned long

unsigned long

unsigned long

unsigned short

unsigned long

unsigned short

unsigned short
unslgned short

struct, Declared automatically by program when
the user softkey-enters an ACCUMULATE
actlon. Speciflc accumulator assigned to
structure.as follows: . struct accumulator_struct
accurmnulator_name. Reference a structure
varlable as follows: accumulator_name.last.

last Value of last sample; displayed on the tabular
statistlce screen,

maximum Maximum value of all samples; displayed on the
tabular statistics screen,

minimum Minimum value of all samples; displayed on the

' ' tabutar statistics screen. Should be Initlalized as

~0ul.

sample_count Number of samples.

total_high High four bytese of an elght-byte accumulator
total,

total_low_low Low two bytes of an elght-byte accumulator
total,

total_low_high Bytes 3 and 4 of an eight-byte accumulator total.

changed For future use,

65.4 Routines

65-14

get_68k_phys_addr
Synopsis

extern unsigned long get_68k_phys_addr(variable_ptr);
unsigned char * variable_ptr;

Description

This routine converts the address of a specified variable in the 80286 processors
(MPM boards) to 68010 (CPM) format. This routine must be declared.

Inputs

The only parameter is the address to be converted.

JuL 's0

65 Counters, Timers, and Accumulators

JUL '90

Returns

The get_68k_phys_addr routine returns the converted address.

Example

See send_stat_message routine,

send_stat_message

Synopsis

extern vold send_stat_message(struct_stat_msg_pir);
slruct stat_msg

{

unsigned short op_type;
unsigned shori type;

unsigned long object_name;
unsigned long object_address;

}:

struct stat_msg * struct_stat_msg_pir;

Description

The send_stat_message routine sends the stat message structure to the 68010
CPU (CPM board). The current use of this routine sends the addresses of
program counters, timers, and accumulators in the 80286 processors (MFM
boards) to the CPM board where the tabular and graphic statistics displays are
located.

The routine is called only one time in a program for each named counter, timer,
or accumulator. Entering COUNTER as a condition or action (or TIMER or
ACCUMUL as actions) via softkey on the Protocol Spreadsheet automatically
declares the counter named and sends the stat message.

IHQQI,E

The only parameter is a pointer to the structure of the stat message. For an
explanation of the elements of the stat message, see Table 65-3.

Example
You plan on incrementing a counter named “dte_info” when a DTE Info frame
is detected.

{

struct
{
unsigned short op_type;
unsigned short type;
unsigned long object_name;
unsigned long object_address;
} stat_msg;

65-15

INTERVIEW 7000 Series Advanced Programrning: ATLC-107-951-108

65-16

struct counter_structure
{
unsigned long current;
unsigned long last;
unsigned long maximum;
unsigned long minimum;
unsigned short sample_count;
unsigned long total_high;
unsigned short total_low_low;
unsigned short total_low_high;
unsigned short out_of range;
unsigned short changed;
unsigned long prey;
unsigned long old;
I8
struet counter_structure counter_dte_info = {0, 0, 0, -0ul};
extern unsigned long get _68k_phys_addr();
)]
LAYER: 2
STATE:send_stat_message
CONDITIONS: ENTER_STATE
ACTIONS: '
{
stat_msg.op_type = 2560;
stat_msg. type = 256; ‘
stal_msg. object_name = get_68k_phys_addr("dte_info");
Stat_msg.object_address = gel_68k_phys_addr{&ecounter_dte_info);
send_stal_message(&stat_msg);
}
NEXT_STATE: count_info
STATE: count_Info
CONDITIONS: DTE INFO
ACTIONS:
{
counter_dte_info.currenttt;

)

get_wall_time_ticks

Synopsis

extern void get_wall_time_ticks(ticks_68k_format_ptr);
unsigned long * ticks_68k_formal_pir;

Description

The get_wall_time_ticks routine gets the number of wall-time ticks (in CPM
storage format) from the time [(w] was hit. The wall clock gives millisecond
resolution rounded to microseconds.

Inputs

The only input is a pointer to the location where the returned time-tick value
will be stored,

JUL '90

65 Counters, Timers, and Accumulators

JUL 'e0

Example

{

unsigned long ticks;

}
LAYER: 2
STATE: get_ticks
CONDITIONS: KEYBOARD * *
ACTIONS:

{

get_wall_time_ticks(&tlcks);
}

get_wall_time_286_ticks
Synopsis

extern void get_wall_time_286_ticks(ticks_286_formait_ptr);
unsigned long * ticks_286_format_ptr;

Descriptt

The get_walil_time_286_ticks routine gets the number of wall-time ticks (in
MPM storage format) from the time [w] was hit. The wall clock gives millisecond
readings rounded to microseconds. Use this routine prior to setting the
start_tick_value in a timer action when Time Tlcks: has been selected on
the Front-End Buffer Setup screen. Also use this routine to derive the
start_tick_value if the condition is not line-related, e.g., KEYBOARD, even when
time ticks are enabled on the FEB Setup menu.

Inputs

The only input is a pointer to the location where the returned time-tick value
will be stored.

Exa leﬁ

{

unsigned long ticks_286;

)

LAYER: 3
STATE: get_ticks
CONDITIONS: KEYBOARD * ©
ACTIONS:

{
get_wall_time_286_ticks(&ticks_286);
displayf (“%iu", ticks_286);

}

66-17

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

convert_tick_count
Synopsis
extern vold converi_tick_count(mpm_format_ticks, converted_ticks_pitr);

unsigned long mpm_format_ticks;
unsigned long * converted_ticks_ptr;

Description

The convert_tick_count routine .converts a.designated tick count into
microseconds.

Use this routine to derive the start_tick_value for a timer action if ticks are
enabled on the FEB Setup menu and the condition is line-related, e.g., RCV
INFO,

lnpmﬁ

The first parameter is a desighated tick count as long as it is in MPM storage
format. It may be any of the layer tick counts. The unit of the /I _tick_count
(and other layers’ tick counts) value is determined on the Front End Buffer
menu.

The second parameter is a pointer to the location where the returned tick count
converted to microseconds will be stored.

Example

{

extern unsigned long li_tick_count;
unsigned long converted_ticks;
)
LAYER: 1
STATE: convert_ticks
CONDITIONS: RECEIVE GOOD_BCC
ACTIONS:
{
converi_tick_count(i!_tick_count, &converted_licks);
displayf (" %ilu", converied_tlcks);

)

65-18 JUL '90

66 OSI

66 OSI

JuL 'sC ’ 66-1

INTERVIEW 7000 Series Advanced Programming:

ATLC-107-951-108

PDU

il_buffer_number

data_start_offset

e

66-2

Sbu

1 SrE

1 list_header

- ~
—ee e ren
\\\ \ .
-
\
\
\\ HEADER
‘ DATA

list_node

first_node_offset

= — -

data_pointer

_ 1 1ast_node_offset data_length \\
— \
/ -~ next_node_offset i
! list_node ¢ I'
!
I data_pointer /
’ /
: data_length Internal
‘ = \ data
\ next_node_offset |._ \\ (Layer 2
\ \ protocol info)
\ A
~ list_node \
- data_pointer \‘ Internal
data
/ data_lenglh (Layer 3
/ protocol info)
: next —offset
|
<
\ "
External
data

{(User data}

Figure 66-1 Primitlve Data Unit and sample Pointer-List Buffer being passed down
the layers.

JUL 90

66 08!

66 OSI

The most convenient tools for handling protocol headers while data is moving down and up
the layers in the INTERVIEW are the spreadsheet SEND and GIVE_DATA actions in the various
protocol packages. For instances when a protocol package is not loaded, such as when you
are developing a new protocol or simply using a protocol that is not yet an option on the
Layer Setup screen, OSI structures, variables, and routines in C become essential tools also.

66.1 Structures

The programmer may access the information in primitive data units conveniently by
using a C structure as a multibyte pointer that is superimposed on data in the PDU’s,
Before using a structure—pointer, it is necessary to understand the contents of IL
buffers and primitive data units. All structures referenced may be found in

Table 66-1.

(A) Interlayer Message Buffers

1. Configuring the numberisize of IL buffers. By default, there are a maximum
sixteen IL buffers in use at a given time, Each buffer’s size is 4,096 bytes.
You may change the number and size of the interlayer (IL) buffers. The IL
BUFS softkey on the Protocol Spreadsheet presents seven number/size
combinations that allocate 64 Xbytes of RAM to IL buffers. See Section 27.
In addition to these softkey selections, there are two C preprocessor
directives the programmer may use to reconfigure the number and/or size of
1L buffers:

(a) #pragma il_buffers sets the number of 1L buffers that will be available
at a given time. Following the directive, enter a space and then a
decimal integer within the range 4 through 255. In the following
example, the number of buffers is set to 25:

#pragma il_buffers 25

The specified number of buffers will override the number selection on
the Interlayer Buffers menu. The buffer size indicated on the Interlayer
Buffers menu will remain unchanged, however, unless altered via the
#pragma il_buffer_size directive.

JUL '90 66-3

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

66-4

(b) #pragma il_bujfer_size sets the size of IL buffers. Following the
directive, enter a space and then a decimal integer within the range 33
through 65535. These values include the 32-byte buffer header. (See
Section 2. below.) In the following example, the size of buffers is set
to 8 Kbytes:

#pragma il_buffer_size 8192

The specified buffer size will override the size selection on the
Interlayer Buffers menu. The number of buffers indicated on the
Interlayer Buffers menu will remain unchanged, however, unless altered
via the #pragma il_buffers directive,

Be careful when you are passing messages down from higher layers that
you do not make the buffer size too small. Even small messages require
a buffer large enough to accommodate the overhead of linked lists.

These two directives provide the programmer with more flexibility in
configuring IL buffers than the Protocol Spreadsheet softkeys. With the
#pragmas, the available RAM for IL buffers may exceed the 64-Kbyte
threshold of the IL BUFS selections.

The memory required for IL buffers is the product of the number and size
of the buffers (number * size). If this amount exceeds available memory,
your program will not compile and the message “Error 219; Out of memory
during compilation — program too big” will be displayed. Available memory
for IL buffers varies depending on the complexity of your program.

IL buffer components. IL buffers may be one of two Kinds: data-character
or pointer-list. In buffers being passed up the layers, data-character buffers
(Figure 66-2) are always used. In buffers going down the layers, pointer-list
buffers (Figure 66-1) are primarily used. The difference is that pointer-list
buffers contain list—-nodes which provide information about the location of
data (or “lists”) inserted or referenced in the buffer, while data-character
buffers do not.

(a) Header, Each IL buffer contains a header that stores useful information
such as the status of the maintain bits that prevent the buffer from being
returned to the general pool; the position of the buffered data in the
INTERVIEW's display buffer; and the tick count (time) when the data
was buffered from the line. (See il_buffer structure.)

(b) Service Data Unit. The IL buffer also contains the data itself. This data
component, the service data unit (or “SDU"), is added to as the buffer is
passed down the layers, and subtracted from as a buffer travels up the
layers. A data-character IL buffer includes all the data that was present
when the data was first buffered, and the contents of this buffer do not
change as the buffer is passed up the layers. What changes is the service
data unit, derived from the data-start offset in the PDU.

JUL 'S80

66 OS!

The first part of the SDU in a pointer-list buffer is a list-header node
(structure il_list_header) which contains information about the location
of the f[irst and last text nodes. As a bufler is passed down from Layer
3 to Layer 2 in X.25 (see Figure 66-1), a new text node containing a
Layer 3 protocol header is inserted in buffer. Since the Layer 3 data
will precede user data, the list node for the protocol information is
referenced ahead of any other list nodes, changing the first-node
reference in the list header. (If text is appended to the end of existing

data, the list node referenced as last will change.)

The SDU in a pointer-list buffer also includes list nodes (structure
il_list_node) which give a pointer to data, the length of the data pointed
to, and the offset from the start of the buffer to the next list node.

Finally, the service data unit in all buffers includes data, whether copled
into the buffer (usually protocol information) or located in memory
outside of the buffer (usually user data).

PDU
- ——___ Data-Character
il_buffer_number §— ~~_IL_BUFFER data_start_offset:
N
data_start_offset [T ——— \
Y ~
data_length N \\\ |
N N HEADER
N \ DATA
\
- -}« —- at Layer 2

¥

SDU Size g

JUL '80

Layer 2 % spu size g
¢ Layer 3 g

srotocol Info)

— «—— at Layer 3

Figure 66-2 Primitive Data Unlt and sample Data-Characler Buffer being passed up
the layers.

66-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

66-6

(B) Primitlve Data Units

Like interlayer message buffers, PDU's have a format that is dependent on
which direction the primitive is being passed. Refer again to Figure 66-1 and
Figure 66-2.

1.

IL buffer number. The buffer number to be passed with the primitive is
always stored in the primitive. This buffer number is actuaily an
80286-processor segment number.

Data~start offset. The offset from the beginning of the buffer to the
beginning of the service data unit for a given layer is different for the two
types of buffers. In a pointer-list buffer going down the layers, the
data-start offset will indicate the offset from the beginning of the buffer to
the list-header node. This offset will vary if different linked lists have been
started at different layers. Each list will have its own list header. In a
data-character buffer going up the layers, the data-start offset will change
from layer to layer. For example, a buffer containing X.25 data that is
being passed from Layer 2 to Layer 3 will have an offset at Layer 3 two
bytes beyond the offset at Layer 2.

Data length, The size of the SDU in a data-character buffer also varies
from layer to layer. In the example just given, the SDU will be smaller by
two bytes at Layer 3 than it was at Layer 2. In pointer-list buffers, the
length of all data is unknown at any given layer.

(C) Accessing Information in Structures

There are two stages that are preliminary to accessing the information in these
structures. The first step is to convert the 80286—processor segment number into
a 32-bit address. The second stage is to place a pointer, in the shape of an IL
buffer structure, at that address. Let’s use an IL buffer as an example.

1.

Converting a segment number. The IL-bulfer segment number is returned
any time you access one of the external, protocol-independent il_bu/ffer
variables listed in Table 66-1. These variables have names like
m_lo_dl_il_buff and up_n_il_buff.

To make a pointer to an IL buffer, (1) shift the 80286 segment number to
the left sixteen bits, since a full address in the 80286 is 32 bits long; (2} cast
it as a long, so that the segment number is in the high 16 bits and the offset
to a buffer for that segment is zero (the low 16 bits); and (3) cast it as a
pointer. The following expression will take care of all three requirements:

(void *} ((long) m_lo_di_ll_buff <<16);

Now you have a pointer to the first memory location of the most recent
monitor-mode 1L buffer passed up from Layer 2 to Layer 3. An
upward-moving IL buffer was illustrated in Figure 66-2, The precise
structure of both the IL buffer is given in the following declaration.

JUL 80

66 OS!

JUL '80

{

struct fl_buffer

{ .
unsigned short lock;

unsigned short maintain_bils;
unsigned short buffer_size;

unsigned short transmit_tag;

unsigned short receive_tag;

unsigned long char_buff frame_siart;
unsigned long char_buff frame_end;
unsigned short tick_count_high;
unsigned short tick_count_mid;
unsigned short tick_count_low;
unsigned short available_space_offset;
unsigned short bytes_remaining;
unsigned long bec_indieator;

unsigned char data [4064};

15

Create a structure—pointer at a given address. First, declare the structure of
H_buffer, as indicated above. Then declare il_buffer_pointer as a
structure-pointer, as follows:

struct il_buffer * Il_buffer pointer;

Converting the segment number and assigning it to i/_buffer_pointer may be
accomplished with this one statement:

it_buffer_pointer = (void *) ((long} m_to_dl Il buff <<I16);

Now a structure has been created around the most recent upward-moving IL
buffer at Layer 3. This means that rather than moving a pointer around in
the IL buffer, you can access elements in the buffer directly. The
tick_count_low variable, for example, would be called
il_buffer_pointer->tick_count_low. (The -> operator is used in place of the
dot operator in structure-pointers.) ‘

The first element of the data string would be called
il_bujffer_pointer->data[0]. Here is a program that displays on the prompt
line the fifth data element, the packet-type byte, in every IL buffer that is
monitored at Layer 3.

B6-7

INTERVIEW 7000 Serles Advenced Prograrmming: ATLC-107-951-108

66-8

{

exiern event m_lo_dl_prmiuv;

extern volatile unsigned short m_lo_dl I_buff;

struct il_buffer

unsigned shorit lock;
unsigned short maintain_bits;
unsigned short buffer_size;
unsigned short transmit_tag;
unsigned short receive_tag;

unsigned long char_buff frame_stari;
unsigned long char_buff frame_end;

unsigned short tick_count_high;
unsigned short tick_count_mid;
unsigned shart tick_count_low;

unsigned short avallable_space_offset;

unsigned short bytes_remaining;
unsigned long bee_indicator;
unsigned char data {4064];
Y
struct 11_buffer * il_buffer_pointer;

LAYER: 3
STATE: monitor_{i_buffers
CONDITIONS:
{
m_lo_dl_prmiv
}
ACTIONS:
{

il_buffer_pointer = (void *) ((long) m_lo_dl_il_buff <<16);

pos_cursor (0,0);

displayf ("%02x », il_buffer_pointer->dataf4]);

If you run this program, be sure to load in the Layer 2 and Layer 3

personality packages for X.25. These packages will take care of delivery of

the monitor primitives to Layer 3.

JUL 'S0

66 OS!

Table 66-1
0S| Structures

Type Variable Value {hex/decimal) Meaning
Structyre Name: pdu Structure of an OSl primitive data unlt (PDU),

unsigned char

unsigned char

unsigned long

unsigned short

unslgned short

unsigned char

unsigned short

unsigned short

JUL '90

primitive_code

path

parameter

relay_baton

Il_buffer_number

buffer_contents

data_start_offset

data_léngth

Declared as type struct. Use this structure as follows,
Daclare the entlre structure. Make a pointer to a PDU
by shifting m_lo_d/_pdu_seg (or up_n_pdu_seg) 16 bits
to.the left. Then convert this polnter to a pointer to a
PDU structure: struct pdu * pdu_polnter

pdu_palnter ={ vold “){{long)m_lo_dI_pdu_seg << 16).
Reference a structure-pointar varlable as follows:
pdu_polntar->primitive_code.

Codes for OSl variables are listed in Table 66-2
through Table €6-8. For Layer 3 primitlve codes,
for example, refer to Table €6-4. The value of this
varlable Is also stored In external varlable

m_lo_dl premtv_code (or up_n_prmtv_cods).

Path number. both directlons, The value of this
varlable Is also stored In external varlable
m_lo_dl_prmtv_path (or up_n_prmtv_path).

For future use. At present, under user control.

Malntaln bit passed with an Interlayer-message
buffer, both directions. Zero In thls variable
Identifles mailntain bit.

Segment number of the Interlayer-message
buffer, both directlons. The value of this varlable
Is also stored In external variable m_lo_di_ll_buff
{or up_n_lI_buff).

Contalns data-character buffer type. Must be
used for buffer being passed up.

Contalns pointer-list buffer type. May be used
for buffers being passed up, but Is currently used
primarlly for butfers belng passed down.

Offset from the beginning of the buffer to the
header node In the SDU of an interlayer-message
buffer In an OS! primitlve being sent down from a
layer above. In a primitlve being sent up from a
layer below, It is the offset to the SDU. Varles
according to the layer at which the buffer is
located. For example, In a buffer passed up to
Layer 3 from Layer 2, the offset would be to the
beginning of the Layer 3 header, bypassing Layer
2 header Information. The value of this varlable
Is also stored In external variable
m_lo_di_sdu_offset {or up_n_sdu).

Length of the service data unlt, including headers
and user data. Only for primitives sent up from
layer below. Varles with the layer where the
buffer is located. For example, at Layer 3,
tength would exclude Layer 2 header (or traller)
informatlon. The value of this varlable Is also
stored In external varlable m_lo_d/_sdu_slze.

£6-9

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

Table 66-1 (continued)

Type Variable

Value (hex/decimal)

Meaning .

Structure Name: il_buffar

unsigned short lock

unsigned short malntaln_bits
unslgned short buffer_size

unslgned short transmit_tag

unsigned short receive_tag

unsigned long char_buff_frame_start
unsigned leng char_buff_frame_end

1000/4096
21-/i1F133-65536

O -0

BN -0

-

Struoture of an Interlayer-message buffer, both

"directions. Declared as type struct. Use this

structure as follows. Declare the entire structure,
Make a polnter to an lI_buffer by shlfting
m_lo_dl_IIl_buff {or up_n_Il_buff) 16 bits to the left:
il_buffer_pointer = (vold *) {(long) {lo_dI_ll_buff << 16).
Then convert this polnter to a pointer to an li_butfer
structure: struct ll_buffer * Il_buffer_polinter.
Reference a structure-polnter varlable as follows:
II_buffer_pointer->tick_count_low.

internal varlable which prevents structure from
belng updated by more than one program at the
same time.

Two-byte varlable which provides the status of
the malntaln bits. A bilt with a value of 1 is In
use.

default value
Speclflc value depends on buffer slze set via
IL_BUFFERS programming block or #pragma
I_buffer_size

Bits 1-3 deflne bee Indleation:

no beco

good bce

bad bee

abort

half bad bcc (DDCMP)

Bits 4-8 for future use.
Blts 1-3 define bee indlcatlon:

no beo

good bee

bad bcec

abort

half bad bee (DDCMP)

Bt 4 |dentliles side of the line:

td
rd

—mess f

frame fits In buffer
frame too large for the buffer
Bits 6-8 for future use,

Locatlon In the character buffer of the start of
the buffered data.

Locatlon In the character buffer of the end of the
buffered data.

{Ii_buifer structure continued on next page)

66-10

JUL '30

66 OS!

Table 66-1 (contlnued)

Type Variable Value (hex/decimal) Meaning

il_buffer (continued)

unsigned short tick_count_high Value of Internal varlable that counts the number
of times l1_tick_count has reached Its maximum
value. Together, the three il_buffer tick-count
varlables preserve at each layer the original time
when the end of the data (BCC} was clocked Into

_the butfer.
unslgned short tick_count_mid 16 high-order bits of 32-bit /1_tick_count.
unsigned short tick_count_low 16 low-order blts of 32-blt 11_tick_count.
unsigned short available_space_offset Offset to the next avallable space In the
Interlayer-message buffer.
unsigned short bytes_remalning : Available number of bytes remalning in the buffer.
unsigned long bee_Indlcator 0 reserved
unsigned char data [4064]) Contalns all data Including each layer's header

Information, as well as the flrst of two block
chack characters. Does not vary from layar to
layer. Default size Is 4064, but may range from
33-65535 {hex 21-f{ff) depending on the buffer
size set via IL_BUFFERS programming block or
#pragma Il _buffer_size.

Structure Name: il_list_header Structure of the header node In an
Interlayer-message buffer. Only for primitives
sent down from the layer above. Declared as
type struct. Use this structure as follows.
Declara the entire structure. Make a pointer to
an Ii_list_header by shifting up_n_Il_buff (or
m_lo_di_il_buff } 16 bits to the left and adding the
data_start_offset from the PDU structure (also
stored as external vartable up_n_sdu or
m_lo_d!_sdu_offset):
li_list_header_ pointer =
(vold *)({(tong)up_n_lI_buff) << 16) + up_n_sdu).
Then convert this pointer Into a polnter to an
Il_list_header structtire:
struct #_list_header * Il_list_header_pointer.
Reference a structure-polnter varlable as follows:
Il_iist_header_polnter->last_node_offset.

unsigned short flrst_node_offset Offset from the beginning of the buffer to the
first text node in the buffer. Varles according to
the iayer at which the buffer is located. At Layer
2, the offset would be to different starting node
than at Layer 3.

unsigned short last_node_offset Offset to the iocation of the last text node in the
buffer, from the beglnning of the buffer,

unsigned long reservad reserved

JuL 90 66-11

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

Table 66-1 (continued)

Type Variable

Value (hex/decimal)

Meaning

Structure Name: Il_list_node

unsigned char * data_pointer
unsigned short data_length

unsigned short next_node_offset

Structure of text nodes In an Interlayer-message
buffer. Only for primitlves sent down from the
layer above. Declared as type struct, Use this
structure as follows. Daclare the entire
structure. Make a polnter to an #l_llst_node by
shifting up_n_lI_buff {or m_lo_dI_|I_bulf) 16 bits to
the left and adding the first_node_offset {or
last_node_offset) from the Il_list_header
structure: N_list_node_pointer =

(veld *}({(long)up_n_i_buff << 16) +
Ii_list_header_polnter->first_node_offset). Polnt
to the next node as follows:

next_node_polnter = {il_ilst_node_polnter +
Il_list_node_pointer->next_node_ofiset).

Pointer to the data In a text node,
Length of the data in a text node.

Offset to the locatlon of the next text node in the
buffer, from the beginning of the buffer,

Generally, there Is a text node for each layer's
header Information and one for the user data. A
buffer that started at Layer 3 would have two
text nodes, cne for Layer 3 header Information
and one for user data (If any). At Layer 2, the
buffer would acquire an addltlonal text node.

66-12

JUL '90

66 OSI

66.2

LAYER 3:

Variables

OSI variables are layer—specific. The information stored in the OSI variables may be
obtained by using the structure-pointer to IL buffers and primitives. But rather than
requiring the user to repeat this process at each layer as a buffer moves through the
layers, monitor and emulate variables have been made-available at Layers 2-7 to
store layer-specific, as well as general, information; the interlayer-buffer number,
the offset to the service data unit, the path number, the size of the SDU, the
segment number of the PDU, etc. There are also event variables which indicate that
a primitive has.been received.at a. given layer. Table 66-2 through Table 66-8 give
the current OSI variables and their meanings.

The exchange of connect primitives shown primarily in Figure 33-4 is demonstrated in
Figure 66-3 using C variables and routines. The SEND actions insert data in a buffer
and send the buffer in a DATA REQ primitive. See Section 66.3 for an explanation of
the _insert_il_buff list cnt and send primitive routines. The conditions use event
variables to detect primitives and non-event variables to identify specific primitive

types.

{send_d! prmtv_below 1o dl prmtv &&
ENTER_STATE/U’“”“ nurh'Eer. relay baton, “0_dl_§,rﬁm.-_%ode == 0x43)} J SEND RESTART

data start_offset, 0,
0x40, path):)

G
DL_CONNECT -GN T, «doroatal,
~ REQ ~ RECQ //
\\ //
LAYER 2: eto.
{up_dI prmty && (o b{;.}end_dl_ rmw_lal:\m.rbet
dl| utfer_Aurmber, relay baton,
{up_d! prmtv_code == 0x40}} f SEND SABM RCV UA ~ data_start_offset, gﬁe.
0x43, path);}
PH_DATA
Flgure 66-3 Layer 3 uses conneci primilives to be sure that the Layer 2 entity below has
eslablished a link.
66-13

JUL '90

INTERVIEW 7000 Serfes Advanced Prograrnming: ATLC-107-951-108

Table 66-2

Layer 1 OS] Variables

Type

Variable

Value (hex/decimal) Meaning

extern volatlle unsigned char

ph_prmtv_type

20/32
21/33
22/34
23/35
24/36
25/37
2a/42
2b/43
20/44
2d/45
20/46
21/47

30/48
31/49
33/51

34/52
35/53
38756
39/57

ph activate req
ph activate ind
ph activate resp
ph activate conf
ph data req

- ph data Ind

ph reset req

ph reset Ind

ph reset resp

ph reset conf

ph deactivate req
ph deactivate ind
ph debug req

ph debug Ind

ph error report Ind
ph xmit req

ph set ldle req

ph mgt faclilty req
ph mgt facllity ind

OS8| primitive codse for primitives
moving between Layers 1 and 2.
Line Setup conflgured for
emulate mode only.

86-14

JUL "80

66 0OSI

Table 66-3

Layer 2 OS| Variables

Type

Variable

Value (hex/decimal) Meaning

extern event

extern event

extern event

extern volatlle unsigned short

extern volatlle unsigned shart

extern volatlle const unsigned char

extern volatlle const unsigned char

JUL '80

lo_ph_prmtv

m_lo_ph_prmtv

up_di_prmty

lo_ph_pdu_seg

m_lo_ph_pdu_seg

lo_ph_prmty_code

m_lo_ph_prmtv_code

21/33
23/35
25/37
2b/43
2d/45
21147
31/49
33/51
39/57

24436
25/37

True when an OS] primitive is
recelved at Layer 2 from Layer
1. Line Setup configured for
emulate mode only.

True when an OS| primitive Is
received at Layer 2 from Layer
1. Line Setup conflgured for
emulate or moniter mode.

True when an OSl primitive s
recelved at Layer 2 from Layer
3. Line Setup configured for
emulate mode only.

QS primitive data unit (PDU)
IAPX-286 segment number
recelved at Layer 2 from Layer
1. This segment number can
be converted to a pointer by
shifting It teft 16 blte. Llne
Setup configured for emulate
mode only,

OS5l primitive data unit {PDU)
IAPX-286 sagment number
recelved at Layer 2 from Layer
1. This segment number oan
be converted to a pointer by
shifting It left 16 blts. Line
Setup configured for emulate or
monltor mode.

ph actlvate Ind

ph activate conf
ph data Ind

ph reset Ind

ph reset conf

ph deactlvate ind
ph debug ind

ph error report ind
ph mgt facllity Ind

0S8l primitive code recelved at
Layer 2 In a PDU from Layer 1.
Line Setup configured for
ernulate mode only.

td ph data Ind
rd ph data Ind

OsSl primitive code recelved at
Layer 2 In a PDVU from Layer 1.
Line Setup conflgured for
emulate or monltor made.

66-15

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 66-3 (continued)

Type

Variable Value (hex/decimal)

Meaning

extern volatile const unsigned char

extern volatile const unsigned char

extern volatile unsigned short

extern volatlle unsigned short

extern volatlle unsigned short

extarn volatile unslgned short

axtern volatlie unsigned short

extern volatile unsigned short

66-16

lo_ph_prmtv_path 0-8

m_lo_ph_prmtv_path 0-8

lo_ph_lI_buff

m_lo_ph_|ll_buff

lo_ph_sdu

m_lo_ph_sdu_offset

m_lo_ph_sdu_slze

up_di_pdu_seg

Path number recelved at Layer
2 In a PDU from Layer {. Line
Setup configured for emulate
mode only.

Path number recelved at Layer

2 in a PDV from Layer 1. Line

Setup configured for emulate or
monltor mode.

Interiayer-buffer number (an
IAPX-286 segment number)
recelved at Layer 2 In a PDU
from Layer 1. This segment
number can be converted to a
polnter by shifting it left 16 bits.
Line Setup conflgured for
emulate mode only.

Interlayer-buffer number {an
JAPX-286 segment number)
recelved at Layer 2 In a PDU
from Layer 1. This segment
number can be converted to a
polnter by shifting It left 16 bits.
Line Satup configured for
emulate or monitor mode,

In OSI| primitive recelved at
Layer 2 from Layer 1, the offset
to where the service data unit
begins. Line Setup configured
for emulate mode only.

In O8I primitive received at
Layer 2 from Layer 1, the offset
to where the service data unit
beglins. Line Setup configured
for emulate or monltor mode.

Size of the service data unit In
an interlayer-message buffer,
displayed as SIZE on the Layer
2 trace screen. Recelved at
Layer 2 from Layer 1. Same as
data_fength In a PDU. Line
Setup conflgured for emulate or
monlter mods.

0Sl! primitive data unlt (PDU)
IAPX-286 segment number
recelved at Layer 2 from Layer
3. This segment number can
be converted to a pointer by
shifting It left 16 bits. Line
Setup conligured for emulate
moda only.

JUL '90

66 OS/

Table 66-3 {(continued)

Type Variable Value (hex/decimal) Meaning
extern volatile const unsigned char up_dl_prmtv_code 40/64 dl conn req
42/66 dl conn resp
44/68 di data req
48/72 dl expd data req
4a/74 dl reset req
4c/76 dl reset resp
40/78 di disconn req
50/80. . dl debug req
62/82 di unlt data req
58/88 dl mgt facliity req
OSl primitive code recelved at
Layer 2 in a PDU from Layer 3,
Line Setup conflgured for
emutate mode only.
extorn volatlle const unsigned char up_dl_prmtv_path 0-8 Path number recelved at Layer

extern volatlle unsigned short

extern volatlle unsignad short

extern unsigned long

up_dl_N_butf

up_dI_sdu

12_tick_count

2 In a PDU from Layer 3. Line
Setup configured for emulate
mode only.

Interlayer-butfer number (an
IAPX-286 segment nurmber)
recelved at Layer 2 In a PDU
from Layer 3. This segment
number can be converted to a
pointer by shlifting 1t left 16 bits.
Line Setup oconfigured for
emulate mode only.

Offset to the start (header
node) of the service data unit in
an Interlayer-message buffer.
Recelved at Layer 2 from Layer
3. Same as data_start_offset In
a PDU. Line Setup conflgured
for emulate mode only.

32-blt I1_tick_count stored In
header of most recent IL buffer
passed up ¢ Layer 2.
Preserves at each layer the
orlginal time when the end of
the data (BCC) was clocked
into the buffer. Line Setup
configured for emulate or
monitor mode.

JuL '90

66-17

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

Table 66-4
Layer 3 OSI Varlables

Type Variable Value (hex/decimal) Meaning

extern event lo_dI_prmitv True when an OS| primitive ie
recelved at Laver 3 from Layer
2. Line Setup conflgured for
amulate mode only.

axtern event m_lo_dl- prmtv- True when an OSi primitlve ie
received at Laysr 3 from Layer
2. Line Setup configured for
emulate or monitor mode.

extern event up_n_prmty True when an OS) primitive s
recelved at Layer 3 from Layer
4, Llne Setup conflgured for
emulate mode only.

extern volatile unsigned short lo_di_pdu_seg O8] primitive data unit (PDU}
IAPX-286 segment number
racelved at Layer 3 from Layer
2. This segment number can
be converted to a pointer by
shifting it left 16 bits. Line
Setup conflgured for emulate
mode only.

extern volatile unsigned short m_lo_di_pdu_seg OS5l primitive data unit (FDU)
IAPX-286 segment number
recelved at Layer 3 from Layer
2. This segment number can
be converted to a polnter by
shifting It ieft 16 blts. Line
Setup configured for emutate or
monltor mode.

extern volatlle const unsigned char lo_dl_prmiv_code 41/85 dit conn Ind
43167 dl conn conf
45/69 di data ind
49/73 dl expd data Ind
4b/75 dl reset Ind
ad/77 di reset conf
4179 dl disconn ind
51/81 dl debug Ind
53/83 di unit data ind
§5/85 dl error report Ind
59/89 dl mgt faciiity Ind

OS! primitive code recelved at
Layer 3 In a PDU from Layer 2.
Line Setup configured for
emulate mode only.

66-18 JUL 'S0

66 OS/

Table 66-4 (continued)

Type Variable Value (hex/decimal) Meaning
extern volatlle const unsigned char m_lo_di_prmtv_code 44/68 td dl data Ind
45/G69 rd dl data Ind
48/72 td dl expd data ind
49/73 rd dl expd data ind
54/84 td dl unit data Ind
55/85 rd dl unit data Ind
OS) primitive code recelvad at
Layer 3 In a PDU from Layer 2.
Line Setup conflgured for
. emulate or monltor mede.
extern volatile const unsigned char lo_dl_pritv_path 0-8 Path number recelved at Layer
3 in a PDU from Layer 2, Lins
Setup configured for emulate
mode only.
extern volatlle const unsigned char m_lo_dl_prmtv_path 0-8 Path number recelvad at Layer

extern volatlle unsigned short

extern volatile unsigned short

extern volatlle unsigned short

extern volatlle unsigned short

extern votatlle unsigned short

JUL 'S0

to_dl_lI_buff

m_lo_dl_il_buft

lo_dl_sdu

m_lo_dl_sdu_offset

m_lo_di_sdu_slze

3 in a PDU from Layer 2. Line
Setup configured for emulate or
monltor mode.

Interlayer-buffer number {an
IAPX-286 segment number)
recelved at Layer 3 in a PDU
from Layer 2. This segment
number can be converted to a
pointer by shifting it left 16 bits.
Line Setup configured for
emulate mode only,

interlayer-buffer number {(an
IAPX-286 segment number)
recelved at Layer 3 In a PDU
from Layer 2. This segment
number can be converted to a
pointer by shifting it left 16 bits.
Line Setup conflgured for
emulate or monitor mode.

In OSl primitive received at
Layer 3 from Layer 2, the offset
to where the service data unit
begins. Line Setup configured
for emulate mode only.

In O8Il primitive received at
Layer 3 from Layer 2, the offset
to where the service data unit
begins. Line Setup configured
for emulate or monitor mode.

Size of the service data unlt in
an Interlayer-message buffer,
displayed as SIZE on the Layer
3 trace screen. Recelved at
Layer 3 from Layer 2. Same as
data_length In a PDU, Line
Setup conflgured for emulate or
monitor mods.

g6-19

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 56-4 (continued)

Type Variable Value (hex/decimal} Meaning

extern volatlle unsigned short up_n_pdu_seg ‘ 0S| primitive data unit (PDU)
|IAPX-286 segment number
recelved at Layer 3 from Layer
4, This segment humber can
be converted to a pointer by
shifting it left 16 bits. Line
Setup configured for emulate

mods only.
extern volatile const unsigned char up_n_prmtv_code 60/96 n conn req
62/98 n oonn resp
64/100 n data req
66/102 n data ack req
68/104 n expd data req
6a/108 n reset req
6c/108 n reset resp
6e/110 n disconn req
70/112 n debug req
721114 n unit data req
741116 n gual data reqg
76/118 n qual data ack req
768/120 n mgt faclity req

08l primitive code recelved at
Layer 3 In a PDU from Layer 4.
Line Setup configured for
emulate mode only.

extern volatlle const unsigned char up_n_prmtv_path 0-8 Path number recelved at Layer
3in a PDU from Layer 4. Line
Setup configured for emulate
maode only.

extern volatlle unsigned short up_n_il_buff interlayer-buffer number {an
1APX-286 segment number)
recelved at Layer 3 in a PDU
from Layer 4. This segment
number can be converted to a
pointer by shifting it left 16 bits.
Line Setup configured for
emulate mode only.

extern volatlle unsigned short up_n_sdu Offset to the start (header
node) of the service data unit In
an Interlayer-message buffer.
Recelved at Layer 3 from Layer
4. Same as data_start_offsat In
a PDU. Line Setup configured
for emulate mode oniy.

extern unsigned long 13_tick_count 32-blt I1_tick_count stored in
header of most recent IL buffer
passed up to Layer 3.
Preserves at each layer the
original time when the end of
the data (BCC) was clocked
Into the buffer. Line Setup
configured for emulate or
monitor mode,

66-20 . : JuL '80

66 OS!

Table 66-5

Layer 4 OS] Varlables

Type

Variable

Value (hex/decimal} Meaning

axtaern event

extern event

extern event

extern volatile unsigned short

extern volatile unsignad short

extern volatlle const unsigned char

JUL 'S0

lo_n_prmtv

m_lo_n_prmty-

up_t_prmtv

lo_n_pdu seg

m_lo_n_pdu_seg

lo_n_prmtv_code

61/97

63/99

65/101
§7/103
69/105
6b/107
6d/109
a6f/111

711113
731118
751117
771119
78/121
7a/i22

True when an OSI primitiva ls
recelved at Layer 4 from Layer
3. Line Setup configured for
emulate mode only,

True when an OSl primitive Is
recelved at Layer 4 from Layer
3. Lline Setup configured for
emulate or monitor mode.

True when an O8I primitive 18
recelved at Layer 4 from Layer
5. Line Setup oonfigured for
emulate mode only.

OS1 primitive data unlt {(PDU)
1APX-286 segment numbear
recelved at Layer 4 from Layer
4. This segment number can
be converted to a polnter by
shifting it left 16 bits. Line
Setup conflgured for emulate
mode only.

0OSl primitive data unit (PDU)
IAPX-286 segment number
recelved at Layer 4 from Layer
3. This segment number can
be converted to a pointer by
shifting it left 16 bits. Line
Setup conflgured for emulate or
monitor mode.

n conn ind

n conn conf

n data Ind

n data ack ind

n expd data Ind
n reset Ind

n reset conf

n disconn ind

n debug Ind

n unit data Ind

n qual data Ind

n qual data ack ind
n mgt facility Ind
n error report ind

OSl primitive code received at
Layer 4 in a PDU from Layer 3.
Line Setup conflgured for
emulate mode only.

66-21

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

Table 66-5 (continued)

Type Variable Value (hex/decimal) Meaning
extern volatile const unsigned char m_lo_n_prmtv_code 64/100 td n data Ind
65/101 rd n data Ind
68/102 td n expd data Ind
69/103 rd n expd data Ind
74/116 td n unit data Ind
75/117 rd n unit data Ind

OSI primitlve code received at
Layer 4 In a PDU from Layer 3.
Line Setup conflgured for
emulate or moniter mode.

extern volatlle const unsigned char lo_n_prmtv_path -8 ' Path number recelved at Layer
4 in a PDU from Layer 3. Line
Setup conflgured for emulate
mode only.

extern volatlle const unsigned char m_lo_n_primtv_path 0-8 Path number recelved at Layer
4 In a PDU from Layer 3. Line
Setup conflgured for emulate or
monitor mode.

extern volatilte unsigned short lo_n_ll_buff Intsrlayer-buffer number {an
IAPX-286 segment number)
recelved at Layer 4 in a PDU
from Layer 3. This segment
number can be converted to a
pointer by shifting it left 16 bits.
Line Setup conflgured for
emulate mode only.

extarn volatlle unsigned short m_lo_n_{l_buff Interlayer-buffer number (an
: IAPX-286 segment number)

recelved at Laysr 4 In a PDU
from Layer 3. This segment
number oan be converted to a
polnter by shifting It left 16 bits.
Line Setup configured for
emulate or monltor mode.

extern volatlle unsigned short lo_n_sdu in O8I primitive received at
Layer 4 from Layer 3, the offset
to where the service data unit
begins, Line Setup conflgured
for emulate mode only.

extern volatlle unsigned short m_lo_n_sdu_offset In OSI primitive recelved at
Layer 4 from Layer 3, the offset
to where the service data unit
begins, Line Setup configured
for emulate or monltor mode.

extern volatie unsigned short m_lo_n_sdu_slie Size of the service data unit In
an Interlayer-message buffer.

Recelved at Layer 4 from Layer
3. Same as data_length in a
PDU. Line Setup conflgured for
ermnufate or monitor mode.

66-22 : JuL '90

66 OSi

Table 66-5 (continued)

Type

Variable

Value (hex/decimal) Meaning

extern volatile unsigned short

extern volatlle const unsigned char

extern volatlle const unsigned char

extern volatlle unsigned short

extern volatlle unsigned short

extern unsigned long

up_t_pdu_seg

up_t_prenty_code

up_t_prmtv_path

up_t_ll_buff

up_t_sdu

14_tlck_count

80/128
82/130
84/132
88/136
8o/142
907144
92/148
98/152

0S| primitive data unlt (PDU)
IAPX-286 segment number
recelved at Layer 4 from Layer
5. This segment number can
be converted to a pointer by
shifting It left 16 blts. Line
Setup conflgured for emulate
mode only.

t conn req

t conn rasp

t data req

t oxpd data req
t disconn req

t debug req

t unlt data req

t mgt facllity req

Q8] primitive code racelved at
Layer 4 In a PDU from Layer 5.
Line Setup configured for
emulate mode oniy.

.Path number recelved at Layer

4In a PDVU from Layer 5. Line
Setup conflgured for emulate
mode only,

interlayer-buffer number (an
iAPX-286 segment number)
recelved at Layer 4 In a PDU
from Layer 5. This segment
number can be converted to a
pointer by shifting It lett 16 bits.
Line Setup conflgured for
emulate mode only.

Offset to the start (header
node) of the service data unit In
an interlayer-message buffer.
Receilved at Layer 4 from Layer
5, Same as data_star{_offset In
a PDU. Line Setup conflgured
for emulate mode only.

32-blt 11_tick_count stored in
header of most recent iL buffer
passed up 1o Layer 4.
Preserves at each layer the
orlginal time when the end of
the data (BCC) was clooked
Into the buffer, Line Setup
configured for emulate or
monltor mode.

JUL '90

66-23

INTERVIEW 7000 Serfes Advanced Programming: ATLC-107-951-108

Table 66-6
Layer 5 OS| Variables

Type Variable Value (hex/decimal) Meaning

extern event lo_t_primtv True when an OSi primitive s
recelved at Layer 5 from Layer
4, Line Setup configured for
emulate mode only.

extern avent m_lo_t_prmty True when an OS| primitiva ls
recelved at Layer 5 from Layer
4. Llne Setup conflgured for
emuiate or monitor mode.

extern event up_s_prmtv True when an OSl primitive Is
recelved at Layer 5 from Layer
6. Line Setup configured for
emulate mode only.

extern volatile unsigned short lo_t_pdu_seg 08I primitive data unit {(PDU}
IAPX-286 segment number
recelved at Layer 5 from Layer
4., Thls ssgment number can
be converted to a pointer by
shifting [t feft 16 bits. Line
Setup configured for emulate
mode only.

extern volatlle unsigned short m_lo_t_pdu_seg ‘ ©OSI primitive data unit {PDU)
IAPX-286 segment number
recelved at Layer 5 from Layer
4. Thls segment number can
be converted to a pointer by
shifting it left 16 bits. Llne
Setup conflgured for emulate or
monitor mode.

extern volatlle const unsigned char lo_t_prmtv_code 81/129 t conn ind
83/131 t conn conf
85/133 t data Ind
89/137 t expd data ind
8f/143 t disconn Ind
91/145 t debug ind
93/147 t unit data Ind
a95/149 t error report ind
99/153 t mgt facllity Ind

OS§I primitlve code recelved at
Laysr 5 In a PDU from Layer 4.
Line Setup configured for
emulate mode only.

extern volatlle const unsigned char m_lo_t_prmtv_code 84/132 td t data ind
' 85/133 rd t data Ind
88/136 td t expd data Ind
89/137 rd t expd data ind
94/148 td t unit data Ind
95/149 rd t unit data Ind

OSI primitive code recelved at
Layer 5 In a PDU from Layer 4.
Line Setup configured for
emulate or monltor mode.

66-24 JUL '90

66 OS!

Table 66-6 (continued)

Type

Variable Valus (hex/declmal)

Meaning

extern volatile const unsigned char

extern volatlle const unsigned char

extern volatile unsigned short

extern volatile unsigned short

extern volatlle unslgned short

extern volatlle unsigned short

extern volatile unsigned short

extern volatile unsigned short

JuL 's0

lo_t_prmtv_path 0-8

m_lo_t_prmtv_path 0-8

lo_t_II_buff

m_lo_t_Il buff

lo_t_sdu

m_to_t_sdu_offset

m_lo_t sdu size

up_s_pdu_seg

Path number received at Layer
5In a PDU from Layer 4. Line
Setup configured for emulate
maode only.

Path number recelved at Layer

6 In a PDU from Layer 4, Line

Setup conflgured for emulate or
monltor mods.

Interlayer-buffer number {an
IAPX-286 segment number)
recelved at Layer 5 In a PDU
from Layer 4, This segment
number can be converted to a
pointer by shifting It left 16 bits.
Line Setup configured for
emulate mode only.

Interlayer-buffer number (an
IAPX-286 segment number).
recelved at Layer 5 In a PDU
from Layer 4. This segment
number can be converted to a
pointer by shifting It left 16 bits.
Line Setup conflgured for
emulate or monltor moda,

In OSI primitive recelved at
Layer 5 from Layer 4, the ofiset
to where the service data unlt
begins. Llne Setup conflgured
for emulate mode only.

In OSI primitive recelved at
Layer 5 from Layer 4, the offset
to wheroe the service data unit
begins, Line Setup configured
for emulate or monitor mode.

Size of the service data unit in
an Interlayer-message buffer.
Recelved at Layer 5 from Layer
4, Same as data fength In a
PDU. Line Setup configured for
emulate or moenltor mode.

O8I primitive data unlt {PDV)
IAPX-286 sagment number
recelved at Layer 5 from Layer
6, This segment number can
be converted to a pointer by
shifting It left 16 bits. Line
Setup configured for emulate
mode only.

66-25

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 66-6 {continued)

Type Varfable Value (hex/decimal) Meaning

extern volatile const unsigned char up_s_prmtv_code a0/160 8 conn req -
a2/162 @ conn resp
ad4/164 g data req
a8/168 8 oxpd data req
ac/172 g release req
ae/174 8 release resp
b0/176 g debug req
b2/178 8 unit data req
b8/184 9 mgt facllity req

0OS! primitive code recelved at
Layer 6 In a PDU from Layer 6.
Line Setup conflgured for
emulate mode only.

extern volatlle const unsigned char up_s_prmtv_path 0-8 Path number recelved at Layer
§ In a PDU from Layer 6. Line
Setup configured for emulate
maode only.

extern volatile unaigned short up_s_ll_buff Interlayer-buffer number (an
: IAPX-286 segment numbser)

recelved at Layer 5 In a PDU
from Layer 6, Thls segment
number can be converted to a
pointer by shifting It left 16 bits.
Line Setup conflgured for
emulate mode only.

extern volatlle unsigned short up_s_sdu Olfiset to the start (header
node) of the service data unit In
an Interlayer-message buffer,
Received at Layer 5 from Layer
6. Same as data_start_offset In
a PDU. Line Setup conflgured
for emulate mode only.

extern unsigned long I5_tlck_count 32-blt 11_tick_count stored In
header of most racent IL buffer
passed up to Layer 5.
Preserves at each layer the
original iime when ths end of
the data (BCC) was clocked
Into the buffer. Line Setup
configured for emulate or
monitor mode.

66-26 . JUL '90

66 OS/

Table 66-7

Layer 6 OSI Variables

Type

Variable

Value {hex/decimal) Meaning

oxtern event
extern event
extern evant

extern volatlle unsigned short

extern volatile unsigned short

extern volatile const unsigned char

extern volatlle const unsigned char

JUL '90

lo_s_prmty

m_lo_s_prmty

up_p_prety

lo_s_pdu_seg

m_lo_s_pdu_seg

fo_s_prmtv_code

m_lo_s_prmtv_code

al/i61
a3/163
as5/165
ag9/169
ad/173
af/175
b1/177
b3/179
b5/181
bos185

a4/164
a5/165
ag/168
ag/169
b4/180
b5/181

True when an OSI primitive Is
recelved at Layer 6 from Layer
§. Line Setup configured for
emulate mode only.

True when an OSI primitive 18
recelved at Layer 6 from Layer
6. Line Setup configured for
emutate or monltor mode.

True when an OS] primitive le
received at Layer 6 from Layer
7. Line Setup configured for
emulate mode only.

O3l primitive data unit (PDU)
IAPX-286 segment number
received at Layer 6 from Layer
5. This segment number can
be converted to a pointer by
shifting It left 16 bits, Line
Setup conflgured for emulate
mode only,

QOS! primitive data unlt (PDU)
IAPX~-286 segment number
racelved at Layer 6 from Layer
§. Thig segment number can
be converted to a polnter by
shifting It left 16 blts. Line
Satup conflgured for emulate or
monltor mede.

s conn ind

s conn conf

s data Ind

s oxpd data ind
s release Ind

s release conf

s debug ind

s unlt data ind

s error report (nd
s mgt facllity Ind

OS5} primitive code received at
Layer & In a PDU from Layer 5.
Line Setup conflgured for
emulate mode only,

td s data Ind

rd s data Ind

td s expd data Ind

rd s expd data ind

td s unit data Ind

rd s unit data ind

OS] primitive code received at
Layer 6 In a PDU from Layer 5.
Line Setup configured for
emulate or monitor mode.

66-27

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

Table 66-7 (continued)

Type

Variable Value (hex/decimal)

Meaning

extern volatlle const unsigned char

extern volatile const unsigned char

extern volatlle unsigned short

extern volatlle unsigned short

extern volatile unsigned short

extern volatlle unslgned short

extern volatlle unsigned short

extern volatlle unsigned short

66-28

lo_s_prmtv_path 0-8

m_lo_s_prmtv_path o-6

lo_s_ll_butf

m_lo_s_|Il_buff

lo_s_sdu

m_lo_s_sdu_offset

m_lo_s_sdu_size

up_p_pdu_seg

Path number recelved at Layer
6 In a PDU from Laysr 6. Line
Setup conflgured for emulate
mode only.

Path number recelved at Layer
6 In a PDU from Layer §. Line
Setup configured for emulate or
monltor mode,

Interlayer-buffar number {an
IAPX-286 segment number)
reosived at Layer 6 In a PDU
from Layer 6. This segment
number can be oonverted to a
pointer by shifting it left 16 bits.
Line Setup conflgured for
emulate mode only.

Interlayer-buffer number {an
IAPX-286 sagment number)
recelved at Layer 6 in a PDU
from Layer 56, This segment
number can be convarted to a
pointer by shifting it left 16 bits.
Line Setup configured for
ermulate or monltor mods,

in OS] primitive recelved at
Layer & from Layer &, the offeet
to where the service data unit
begins. Line Setup configured
for emulate mode only,

In QS| primitive received at
Layer 6 from Layer 5, the offset
to where the service data unit
begins. Line Setup configured
for emulate or monlter mode.

Slze of the service data unit In
an interlayer-message buffer,
Rocelved at Layer 6 from Layer
5. Same as data_length In a
PDU. Line Setup confligured for
emulate or monltor moda.

O8I primitive data unit {(PDU)
IAPX-286 segment number
received at Layer 6 from Layer
7. This segment number can
be cohverted to a pointer by
shifting It loft 16 bits. Line
Setup conflgured for emujate
mode only.

JUL "90

66 OS!

Table 66-7 {(continued)

Type

Variable

Value (hex/decimal) Meaning

extern volatlle const unsigned char

extern volatlle const unsigned char

extern volatile unsigned short

extern volatlle unsigned short

extern unsigned long

up_p_prmtv_code

up_p_prmty_path

up_p_lI_buff

up_p_sdu

16_tick_count

c0/192
c2/194
c4/196
¢8/200
cc/204
ce/206
d0/208

d2/210°

de/216

0-8

p conn req

p cohn resp

p data req

p expd data req
p release raeq

p release resp

p debug req

p unit data req

p mgt facillty req

OSl primltive code recelved at
Layer 6 from Layer 7 In a PDU.
Line Setup configured for
emnutate mode only.

Path number recelved at Layer
6 from Layer 7 In a PDU. Llre
Setup conflgured for emulate
mode only.

Interlayer-buffer number (an
IAPX-286 segment number)
recelved at Layer 6 from Layer
7 In a PDU, This segment
number can be converted to a
polnter by shifting it left 16 bits.
Line Setup configured for
emulate mode only.

Offset to the start (header
node) of the service data unit In
an Interlayer-message buffer.
Recelved at Layer 6 from Layer
7. Same as data_start_offset In
a PDU. Line Setup configured
for emulate mode oniy.

32-plt I1_tick_count stored In
header of most recent IL buffer
passed up to Layer 6.
Preserves at oach layer the
orlginal time when the end of
the data (BCC) was clocked
Into the buffer. Line Setup
conflgured for emutate or
monltor mode.

JUL '90

66-29

INTERVIEW 7000 Serios Advanced Programming: ATLC-107-951-108

Table 66-8
Layer 7 O8I Variables

Type Variable Value (hex/decimal) Msaning

extern event lo_p_prmty True when an OS] primitive Is
recelved at Layer 7 from Layer
6. Line Setup configured for
emuiate mode only,

extern event m_lo_p_prmtv True when an OSI primitive Is
: recelved at Layer 7 from Layer
6. Line Setup configured for
emulate or monitor mode.

extern volatile unsigned short lo_p_pdu_seg O8I primitive data unit (PDU)
IAPX~286 segment number
recelved at Layer 7 from Layer
6. This segment number can
be converted to a pointer by
shifting [t teft 16 bits. Line
Setup configured for emulate
mode only.

extern volatile unsigned short m_lo_p_pdu_seg 08I primltive data unit (FDU)
IAPX-286 segment number
recelved at Layer 7 from Layer
6. This segment number can
be converted to a polnter by
shifting It left 16 bits. Line
Setup configured for emuiate or
monitor mode.

extern volatite const unsigned char lo_p_prmtv_code ¢1/193 p conn ind
03/195 p conn conf
¢5/197 p data Ind
¢9/201 p expd data Ind
cd/205 p release ind
ct/207 p refease conf
d1/209 p debug Ind
di3/211 p unlt data Ind
d5/213 p error report ind
d9/217 p mgt facility Ind

QSI primitlve code recelved at
Layer 7 in a PDU from Layer 6.
Line Setup oconflgured for
emulate mode only.

extern volatile const unsigned char m_lo_p_prmtv_code ¢4/196 td p data Ind
c5/197 rd p data Ind
¢B/200 td p expd data Ind
c9/201 rd p expd data Ind
d4/212 td p unit data Ind
d5/213 rd p unit data Ind

O3Sl primitive code recelved at
Layer 7 In a PDU from Layer 6.
Line Setup configured for
emulate or monitor mode.

extern volatlle const unslgned char lo_p_prmtv_path 0-8 Path number recelved at Layer
7 In a PDVU from Layer 6. Line

Setup conflgured for emulate
mode only.

66-30 JUL 'S0

66 OS!

Table 66-8 (continued)

Type

Variable Value (hex/decimal)

Meaning

extern volatlle const unsigned char

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

axtern volatile unsigned short

extern volatile unsigned short

extarn unsigned long

m_lo_p_prmtv_path 0-8

lo_p_lI_buff

m_lo_p_II_buff

lo_p_sdu

m_lo_p_sdu_offset

m_lo_p_sdu_size

I7_tlck_count

Path number recelved at Layer

7 In a PDU from Layer 6. Llne

Setup conflgured for emulate or
monltor mode.

Interlayer-buffer number {an
IAPX-286 segment number)
received at Layer 7 In a PDU
from Layer 6. This segment
number can be converted to a
pointer by shifting It left 16 bits.
Line Setup configured for
emulate mode only,

Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 7 In a PDU
from Layer 6. This sagment
number can be converted to a
polnter by shifting lt teft 16 bits.
Line Setup configured for
emulate or monitor mode.

In OS! primitlve regelved at
Layer 7 from Layer €, the offset
to where the service data unit
begins. Line Setup configured
for erulate mode only.

In OS] primitive received at
Layer 7 from Layer 6, the offset
to where the service data unit
begins. Line Setup conflgured
for emulate or rnonitor mods.

Size of the service data unit In
an Interlayer-message buffer.
Recelved at Layer 7 trom Layer
6. Same as data_length In a
PDU. Line Setup configured for
emulate or mionitor mode,

32-hlt 11_tlck_count stored In
header of most recent IL buffer
passed up to Layer 7.
Preserves at each layer the
orlginal time when the end of
the data (BCC) was clocked
into the buffer. Line Setup
configured for emutate or
monltor mode.

66.3 Routines

OSI routines available at each layer make sending primitives to a layer above or
below possible (see Figure 66-3). The routine name and its arguments provide the
same information as the softkey selections on the Protocol Spreadsheet. (In the early
phases of compiling the program, the C translator uses the routines to convert the
spreadsheet softkey-token primitives into C.) All routines are protocol-independent.

JuL 'sQ

66-31

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

66-32

(A) Layer-Independent OSI Routines

The following interlayer buffer service routines operate at any layer, regardless of
protocol (or in the absence of a protocol package).

_get_il_msg_buff
Synopsis

extern vold _get il _msg_buff(buffer_number_ptr, mainicin_bit_ptr);
unsigned short * buffer_number_ptr;
unsigned short * maintain_bil_ptr;

Description

The _get_il_msg_buff routine gets a free interlayer message buffer from the pool
and returns the buffer number to the caller for use in subsequent calls to other
interlayer buffer services. It also returns a maintain bit for use in the freeing
operation.

Inputs

The first parameter is a pointer to the location where the buffer number is to be
stored, The buffer number that is returned is actually an iAPX-286 segment
number which can be converted to a pointer by shifting it 16 bits to the left. If
there is no free buffer available, the routine will wait for one to become
available. ‘

The second parameter is a pointer to the location where the maintain bit will be
stored. Since it must be used in the freeing operation, the maintain bit value
should not be modified. The zero bit in this variable indicates your maintain
bit.

Example

The variabies in which the returned buffer number and maintain bit will be
stored must be declared. When calling the routine, reference the addresses of
these variables.

{
unsigned short il_buffer_number;
unsigned short relay_baion;
}
LAYER: 4
STATE: get_a_buffer
CONDITIONS: KEYBOARD *
ACTIONS:

{ :
_getf_Il_msg_ buff(&il_buffer_number, &retay_baton);

The routine will get a buffer number and store it in variable H_buffer_number.
It will also return a maintain bit and store it in variable relay_baton.

JuL '80

66 0S|

JUL '90

_start_il_buff_list

Synopsis

extern vold _start_il_buff lst(il_buffer number, start_offset_pir);
unsigned short il_buffer_number;
unsigned short * start_offset_ptr;

ripti

The _start_il_buff_list routine starts a linked list of text inside an interlayer
message buffer. The list is made up of a header node and text nodes. The
header node contains offsets 1o the first and last text nodes. Each text node
contains a pointer to the actual text, the length of the text, and the offset to the
next text node. This routine actually creates the header node inside the
interlayer message buffer and initializes the first and last text node offsets to
zero, indicating an empty list. It wiil return the offset to the list header node for
use in subsequent list service calls.

Inputs

The first parameter is the interlayer message buffer number that will contain the
list.

The second parameter is a pointer to the location where the offset to the list
header will be stored. The returned offset will be zero if there is insufficient
room in the buffer for the header node and one text node. Otherwise, it is the
offset from the beginning of the message buffer to the start of the header node.

To convert the offset into a pointer, shift the buffer number 16 bits to the left
and add the offset:

(void *}(((long)il_buffer_number << 16) t+ data_start_offset);

Example

Get a buffer and start a linked list. The variable in which the returned offset
will be stored must be declared. When calling the routine, reference the address

of this variable.

{

unsigned short It_buffer_number;
unsigned short relay_baton;
unsigned shori data_star!_offsel;

}

66-33

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

66-34

STATE: start_a_list
CONDITIONS: KEYBOARD “ "
ACTIONS:

{
_ket_ll_msg buffi&il_buffer_number, &relay_baton);
_Stari_il_buff list(ll_buffer_number, &data_start_offset);

/* See _insert_{l_buff_lisi_ent routine on how information is inserted in the buffer. */

}

The routine will get the offset to the header node and store it in variable
data_start_offset.

_dup_il_buff_list_start

Synopsis

extern unsigned short _dup_{l_buff_list_stari (ii_buffer_number, start_offset,
new_starl_offset_pir);

unsigned short il_buffer_number;

unsigned short start_offset;
unsigned short * new_stari_offsel_ptr; ' ‘)

Descripti

This routine duplicates the header node of a pointer list. In order for a layer to
retain the ability to resend a buffer—that is, to reference again the same list
header with the same f[irst-node offset—it must keep its own linked list safe from
data inserted at a layer below. The _dup_il_buff list_start routine allows the
lower layer to start its own list. '

If the lower layer will insert data into the buffer, it need duplicate only the list
header (“lisi_start™), not the entire list. If the layer will append data to the
end of the buffer, it must duplicate the complete linked list via the
_dup_il_buff_list routine.

!n;;uts

The first parameter is the interlayer message buffer number in which the header
node will be duplicated.

The second parameter is the offset to the header node to be duplicated.
The third parameter is a pointer to the location where the offset to the new

header node will be stored7

Returns

This routine returns zero if there is not enough room in the buffer for the
duplicated header node and at least one list node.

JUL 'S0

66 _OSt

Example

Duplicate the header node of a buffer passed down from Layer 3.

{

extern volatile unsigned short up_di_it_buff;
extern volatile unsigned short up_di_sdu;
unsigned shori 12_data_stari_offset;

}
LAYER: 3
STATE: message
CONDITIONS: KEYBOARD = * .
ACTIONS: DL_DATA REQ “R5WEFOXD "
LAYER: 2
STATE: duplicate_header
CONDITIONS: DL_DATA REQ
ACTIONS:

{
_dup_il_buff Iist_start{up_d!_il_buff, up_dl_sdu, &I2_data_start_offset);

/* See _insert_il_buff list_cnt routine on how Information is inserted in the buffer. */

)
_dup_Il_buff_list

Synopsis

extern unsigned short _dup_N_buff list(il_ buffer number, start_offset, new_stari_offset_pir);
unsigned short Ii_buffer number;

unsigned short start_offset;

unsigned shor(* new_stari_offset_pir;

Descripti

This routine duplicates an entire pointer list, In order for a layer to be able to
retain the ability 1o resend a buffer—that is, to reference again the same list
header with the same first- and last-node offsets—it must keep its own linked
list safe from data inserted and appended at a layer below. The
_dup_il_buff list routine allows the lower layer to have its own list.

If the lower layer will append data to the buffer, it should duplicate the entire
linked list. If the layer will only insert data into the buffer, it need only
duplicate the header node via the _dup_il_bujff_list_start routine.

Inputs

The first parameter is the interlayer message buffer number in which the list will
be duplicated.

The second parameter is the offset to the header node of the list to be
duplicated.

JUL '80 66-35

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

The third parameter is a pointer to the location where the offset to the header
node for the new list will be stored.

Returng

This routine returns zero if the duplication is successful. If there is not enough
room in the buffer to duplicate the list, one is returned.

Example

Duplicate the entire pointer list-of a buffer passed-down from Layer 3.

{

extern volatlle unsigned short up_di_ll_buff;
extern volatile unsigned short up_di_sdu;
unsigned short [2_data_start_offset;

}
LAYER: 3
STATE: message
CONDITIONS: KEYBOARD * "~

ACTIONS: DL_DATA REQ “L & UFOXN "
LAYER: 2
STATE: duplicate_list
CONDITIONS: DL_DATA REQ
ACTIONS:
{ .
_dup_it_buff list(up_di_il_buff, up_di_sdu, &I2_data_start_offset);
/* See _append_H_buff_tisi_cnt routine on how information is appended lo the buffer. */

}
_open_space_in_il_buff

Synopsis

extern void _open_space_in_il_buff(li_buffer_number, length, space_offset_ptr);

unsigned short il_buffer_number;
unsigned short length;
unsigned short * space_offset_pir;

Description

The _open_space_in_il_buff routine opens up the requested amount of space in
the specified interlayer message buffer. It returns an offset from the beginning
of the buffer to the start of the open space.

Inputs

The first parameter is the interlayer message buffer number in which space is t0
be made.

66-36 JuL 's0

66 OS!

JUL '90

The second parameter is the amount of space (number of bytes) requested.

The third parameter is a pointer to the location where the returned offset will be
stored. The returned offset will be zero if there is insufficient room in the
buffer.

To convert the offset into a pointer, shift the buffer number 16 bits to the left
and add the olfset:

(void *)(({long)li_buffer number << 16) + availlable_space_offset};

Example

Always open space in the buffer if you are going to copy data (usually header
information) into the buffer. If you are not going to copy data into the buffer,
but reference its location in memory outside the buffer (usually user data), you
do not need to open space.

The variable in which the returned offset will be stored must be declared. When
calling the routine, reference the address of this variable. The length may be
entered as a numeric value, in which case a length variable need not be
declared.

For example, a buffer at Layer 3 will have three X.25-header bytes inserted.
The call for space to hold the header would look like this:

{

unsigned short i_buffer number;
unsigned short relay_baton;

unsigned short data_stari_offsel;
unsigned short available_space_offset;

}
STATE: get_space
CONDITIONS: KEYBOARD “ *
ACTIONS:

{

_get_Il_msg_buff(&Il_buffer_number, &relay_baton);

_start_fL_buff list{il_buffer_number, &daia_stari_offset);
_open_space_in_il_buff(il_buffer number, 3}, &available_space_offset);

1* See _insert_{l_buff_list_cat routine on how information is Inserted in the buffer. */

}

The routine will get the offset to the next available space in the buffer and store
it in variable available_space_offset.

Once space has been opened, the buffer-number and available-space variables
can be converted into an open-space pointer. With this pointer, data can be
copied into the space. The pointer can then be referenced in an
_insert_il_buff_list_cnt routine, so that the opened space becomes threaded onto
the linked list in the IL buffer. See the programming exampie under
_insert_il_buff list_cnt.

66-37

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

66-38

_free_Il_msg_buff

Synopsis
extern vold _free_tl_msg_buff(il_buffer_number, relay_baton);

unsigned short Ii_buffer_number;
unsigned short relay_baton;

Descripti

The _free_il_msg_buff routine returns an interlayer message buffer to the pool of
free buffers. Before actually returning the buffer to the pool, this routine
verifies that all maintain bits have been reset, assuring that all users have freed
this buffer.

Inputs

The first parameter is the interlayer-buffer number to be freed.

The second parameter is the maintain bit associated with the buffer user to be
freed.

Example

See _set_maint_buff bit routine.

_set_maint_buff_bit

S&mnsj&‘

extern vold _set_maint_buff_bit(ii_buffer_number, new_blt_pir);
unsigned short Ii_buffer number;
unsigned short * new_bit_ptr;

Description

The _set_maint_buff bit routine sets a new maintain bit for a given interlayer
message buffer, It returns that bit to the caller to be used in the freeing

operation.

The maintain bit allocated in the _ger_il_msg_buff routine should be considered
valid only for the layer at which it was obtained. Once you pass a buffer, the
maintain bit will hold the buffer at the next layer only until action on it has been
processed. (In Spreadsheet terms, the buffer will be held until the ACTIONS
block has been processed in response to the first CONDITIONS block identifying
the buffer. In any other CONDITIONS block referring to the buffer, the buffer
will not be found unless an additional maintain bit was set.) The maintain bit

JUL '90

66__0S§!

JUL '90

eventually will be freed automatically whether or not any action is taken on it at
the next layer. To hold a bufier at a particular layer, or to continue passing the
buffer (in either direction}, a new maintain bit must be set. The same maintain
bit cannot be used continuously, since it will be freed after the first process on il
{an ACTION to send, for example).

If you wish to keep a bufler available for your use while also sending it to
another layer, set two maintain bits, One will be used to pass the buffer; the
other will “maintain” the buffer for other processes. The latter will have to be
freed via the _free_ il msg_buff routine.

Inputs

The first parameter is the interlayer-buffer number in which the new bit will be
set.

The second parameter is a pointer to the location where the returned maintain
bit will be stored. There are sixteen maintain bits reserved for each interlayer
buffer. Each bit is identified by a two-byte variable with a single zero. The first
maintain bit allocated is the least significant, so the value returned is
hexadecimal FFFE (binary 11111111 11111110), The last maintain bit
allocated is 7FFF (01111111 111111311). If all the maintain bits are already in
use, FFFF will be returned.

The maintain bit value should not be modified. It must be used in the freeing
operation to make sure the buffer is returned to the free buffer pool.

Example

The variable in which the returned maintain bit will be stored must be declared.
When calling the routine, reference the address of this variable. For example,
you receive a buffer at Layer 2 from Layer 3 (up_dl_il_bujff) and insert
information into it. Before passing the buffer to Layer 1, set two maintain bits.
The one stored in variable maintain_bit will hold the buffer for the purpose of
repeated resends of the frame, if necessary, and will have to be freed via the
_free_il_msg_buff routine. When you pass the buffer down, use the bit in
variable 12_relay_baton. When you resend the frame, set a new resend_baton
bit and pass that down, still holding maintain_bit in reserve for subsequent
resends.

{

unsigned short 12_relay_baton;

unsigned short resend_baton;

unsigned short maintain_blt;

extern volatile unsigned short up_d!_il_buff;
extern volatile unsigned short up_d!_sdu;
unsigned shart 12_data_stari_offset;
unsigned short available_space_offset;
static unsigned char 12_data[2] = {0x0!, 0x00};
int i;

unsigned char * ptr_i2;

66-39

INTERVIEW 7000 Serles Advanced Prograrnming: ATLC-107-951-108

66-40

#define make_ptr{number,offset) ((void *)(({long)number << 16} + offset})
}
LAYER: 3
STATE: send_fox_message
CONDITIONS: KEYBOARD " "
ACTIONS: DL_DATA REQ “L5"6(FOXD ~
LAYER: 2
STATE: send_a_buffer
CONDITIONS: DL_DATA REQ
ACTIONS:
{
/* See _insert_il_buff list_cnt routine for an explanation of how information is inserted in the
buffer. */
dup I1_buff list_start (up_d!_il_buff, up_di_sdu, &i2_data_start_offset};
_open_space_{n_il_buff(up_di_il_buff, 2, &avaliable_space_offset};
pir_{2 = make_ptr(up_di_il_buff, available_space_offset);
for(i=0; 1 <2; i+t)
{
*ptr 12 = data_{2{1];
pir_12++;
}
pir_i2 -=2;
insert{I_buff list_cnt(up_dt_il_buff, 12_data_start_offset, pir_i2, 2);
_sel_maint_buff_bit(up_dl_ii_buff, &maintain_bit);
_sel_malini_buff bit{up di_il_buff, &I12_relay_baton);
send_ph_prmiv_below(up_di_il_buff, 12_relay_baton, 12_data_stari_offset, 0, 0x24, 0);
}
LAYER: 1
STATE: resend_buffer
CONDITIONS: RECEIVE STRING {F]% ({XXXX1001) "
ACTIONS:
{ .
_set_maint_buff blt(up_di_il_buff, &resend baton);
H i transmit(up_di_il_buff, resend_baton, 12_data_star!_offset, 1);

{* See Section 62, Monitor/Transmil Line Daia, for an explanalion of the !J_fi_transmit
routine. */

)
CONDITIONS: RECEIVE STRING {EH(XXXX0001) "
ACTIONS:
{
_free_il_msg bufffup_di_il_buff, maintain_bit);
/* See _free_:'l_m:g_buff for an explanation of this routine. */

}
_insert_il_buff_list_cnt

Synopsis

extern unsigned short _Insert_l_buff list_cnt(il_buffer_number, data_start_offset, text_ptr,
text_length);

unsigned short il_buffer_number;

unsigned short data_stari_offses;

unsigned char * text_pir;

unsigned short text_length;

JUL '80

66 0s!

Description
The _insert_il_buff list_cnt routine inserts a text node at the beginning of a

linked list of text inside of an interlayer message buffer. It will set the text
pointer and byte-count in the text node to the values specified.

lnputs

The first parameter is the interlayer-buffer number in which the linked list will
be inserted.

The second parameter is the offset to the header node for the linked list, from
the beginning of the buffer.

The third parameter is a pointer to a text.

The fourth parameter is the length of the text.

Returns

If the insert is successful, a value of 0 is returned; if it is not successful, a value
of 1 is returned. If you want to check the returned value, do so at the time the
routine is called, as in the following example at Layers 2 and 3.

Example

If text is to be copied into the buffer, a pointer to the text must be declared. If
not, when calling the _insert_il_buff list_cnt routine, reference the address of
the text. The length of the text may be entered as an integer, in which case a
length variable need not be declared.

Always open space in the buffer if you are going to copy data (usually header
information) into the buffer. If you are not going to copy data into the buffer,
but reference its location in memory outside the buffer (usually user data), you

do not need Lo open space.

In the following spreadsheet example, an interlayer-buffer number is obtained at
Layer 5, a header node is created in the buffer, and the address of a fox
message text (located in memory outside of the buffer) is inserted into a text
node in the buffer.

{

unsigned short il_buffer_number;
unsigned short relay_baton;
unsigned short i4_relay_baton
unsigned short {3_relay_baton;
unsigned short [2_relay_baton;
unsigned short data_start_offset;
unsigned short 12_data_stari_offset;

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

unsigned short available_space_offsel;

static unsigned char dataf} = “"((FOX)";

static unsigned char 13_dataf3] = {0x10, 0x04, 0x00);
static unsigned char 12_dataf2] = {0x01, 0x00);
int i;

int length;

extern volatile unsigned short up_t_I_buff;
extern volaille unsigned short up_n_il_buff;
extern volatile unsigned short up_di_li_buff;
extern volatile unsigned short up_n_sdu;

extern volatlle unsigned short up_di_sdu;

extern volatile unsigned short up_t_sdu;
unsigned char * pir_i3, * ptr_{2;

/* Whenever make_ptr is encountered, 1he first parameier wiil be shifted 16 bils 1o the left.
The second parameler will be added, and the resull casi into a pointer. */

#define make_pir(number,offset) ({void *}({({long)number << 16) + offset))

}
LAYER: §
STATE; bagin_massage
CONDITIONS: KEYBOARD * "
ACTIONS:

{
_get_il_msg_ buff(&il_buffer_number, &relay_baton); .
_stari_il_buff lst(if_buffer number, &data_start_offsei);

/* Do nol include the terminating null character in the length determinaiion of a siring. */
length = sizeof(data) ~ I;

/* The address of data oulslide of the bulfer is given for inseriion. The data iiself i3 not copled
into the buffer. The buffer is then passed down lo Layer 4 (see send_t_prmiv_below for an
explanation of ihis routine). */

_insert_il_buff_tist_cnt{il_buffer_number, data_stari_offset, &data[0], length);
send_{_prmiv_below(ll_buffer number, relay_baton, data_stari_offset, 0, 0x84, 0);
}

At Layer 4 a new maintain bit is set to use in passing the buffer to Layer 3.
Since no data is inserted, the same data_start_offset is used (in the form of the
variable up_t_sdu). The buffer is then passed down to Layer 3 (see
send_n_prmtv_below for an explanation of this routine).

LAYER: 4
STATE: pass
CONDITICNS: T_DATA_REQ
ACTIONS:

{
_set_maint_buff bit(up_t_il_buff, &I4_relay_baton);
send_n_prmiv_below (up_1_il_buff, I4_relay_baton, up_t_sdu, 0, 0x64, 0);

}

At Layer 3, space is opened for an X.25 packet header. A pointer to the
opened space is created and the data is inserted into the linked list passed down

from Layer 4.

66-42 JuL 's0

66 OS!

JUL '90

LAYER: 3
STATE: Insert_and send
CONDITIONS: N_DATA_REQ
ACTIONS:

{
_open_space_in_il_buff(up_n_il_buff, 3, &available_space_offset);
ptr_{3 = make_pir(up_n_il_buff, avallable_space_offset);
Jor(i=0; i <3; i+t)

{

*ptr_I3 =13 datafi};

pir_13++;

}

/* The location of the dala in the buffer is referenced in the insert routine, so the pointer must
be moved back to the beginning of the opened space. The offset to the Layer 3 header node is
glven in the insert routine. If the insertion is not successful, an alarm will sound and a message
will be displayed on the prompt line of the screen, */

pir_13 -=3;

If(_Insert_Il_buff tist_ent(up_n_H_buff, up_n_sdu, ptr_{3, 3) 1= 0)
{
sound_atarm();
display_prompt(“Insert failed at Layer 3.”'});

/* A new maintain bil Is sel for passing the buffer. The buffer Is then passed down to Layer 2
(scc send_di_prmtv_below for an explanation of this routine). */
_set_maint_buff_bit(up_n_fl_buff, &(3_relay_balon);
send_dl_prmiv_below (up_n_il_buff, 13_relay_baton, up_n_sdu, 0, 0x44, 0};
}

At Layer 2, a new linked list is started. The Layer 2 header could be inserted
into the linked list passed down from Layer 3; but if Layer 3 wants to retain the
ability to resend a buffer—that is, to reference again the same list header with
the same first—node offset—it must keep its own linked list safe from data

inserted at Layer 2.

LAYER: 2
STATE: Insert_more

CONDITIONS: DL_DATA_REG

ACTIONS:

{
/* The _dup_I1_buff lisi_start Toutine allows Layer 2 lo starl ils own list. Part of this soutine
copies the Layer 3 header into the Layer 2 header node. */

_dup_il_buff list_start(up_dI_il_buff, up_d!_sdu, &I2_data_start_offset);

/* Space Is opened In the buffer. A pointer lo this location is created and the data is copled
into the buffer. */
_open_space_in_Il_buff(up_dl_il_buff, 2, &available_space_offset);
pir_12 = make_ptr{up_dl_il_buff, avallable_space_offset);
Jor(i=0; 1 <2; itt)
{
*ptr 12 = 12_datafl};
pir_12+4+; ‘
}

/* The location of the data in the buffer is referenced in the insert routine, so the pointer must
be moved back to the beginning of the opened space. The offset to the Layer 2 header node is
given in the insert routine. If the insertion is not successful, an alarm will sound and a message

will be displayed on the prompl line of the sereen. */

66-43

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

66-44

ptr_i2 -=2;
If(_insert_{i_buff list_ent{up_di_il_buff, 12_dara_start_offset, ptr_12, 2) 1= 0)

sound_alarm();
pos_cursor(0,30);
displays(” Insert failed at Layer 2.”};

/* A new mainlain bil is sel for passing the bulffer. The buffer is then passed down lo Layer 1
(see send_ph_prmiv_below for an explanation of this routine). */

_set_maint_buff bitfup_di_Il_buff, &I2_relay_baton);
send_ph_prmtv_below(up_di_il_buff, 12_relay baten, I2_data_start_offset, 0, 0x24, 0);

The following text will be sent out onto the line and displayed as line data:

#%1 5N THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG 0123456788Ng)
_append_il_buff_list_cnt

Synopsis

extern unsigned short _append {1 _buff list_cnt(il_buffer number, daia_start_offset, texi_ptr,
texi_length);

unsigned short Il _buffer number;

unsigned short data_start_offset;

unsigned char * texi_pir;

unsigned short text_length;

Description

The _append_il_buff list_cnt routine appends a text node at the end of a linked
list of text inside of an interlayer message buffer. It will set the text pointer and
count in the text node to the information provided.

Inputs

See _insert il buff list_cnt routine.

Returns

See _insert_il_buff_list_cni routine.

Example

Two modifications to the program shown for the _insert_il_buff_list_cnt routine
are all that is required to make the program work for appending data. The
changes primarily involve Layer 2 in the example, so we will replicate only that
portion of the program below. Substitute _append_il_buff_list_cnt for every
occurrence _insert_il_buff list_cnt. When data is to be appended in a bulfer,
you should duplicate the entire linked list received from the layer above, not just
the header node. So also substitute _dup_il_buff_list for _dup_il_buff_list_start.

JUL 'S80

66 OSs!

LAYER: 2
STATE: Insert_more
CONDITIONS: DL_DATA_REQ
ACTIONS:
{
_dup_il_buff lst(up_dl_il_buff, up dl_sdu, &I2_data_start_offset);
_open_space_In_il_buff(up_di_li_buff, 2, &avallable_space_offset};
pir_I2 = make_pir{up_di!_ll_buff, available_space_offsetl);
for(i=0;1<2; i+4)
{
*pir 12 = 12_datafi};
prr_{2++4;
}
pir_i2 -=2;
U (_append_I1_buff Nst_cni(up_dl_ti_buff, 12_data_start_offset, ptr_{2, 2) 1= 0}
sound_alarm();
pos_curser(0,30);
displays(“Insert failed at Layer 2.");

}
_set_malnt_buff bit{up_dl_il_buff, &I2_relay_baton};
send_ph_prmtv_below(up_d!_il_buff, 12_relay_baton, 12_data_start_offset, 0, Ox24, 0);

The following text will be sent out onto the line and displayed as line data:

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG 0123456789% %" %G

(B) Layer 1 OSl Routines

OSI data primitives are handled automatically between Layers 1 and 2. In the
“up” direction, line data is placed in an IL buffer and the associated data
primitive is given automatically to Layer 2. In the “down” direction, data
primitives are received at Layer 1 and put out automatically onto the line.

In the absence of line data, if you want to originate a buffer at Layer 1 and
send it upward, use the following routine. In primitives being sent down the
layers, Layer t will automatically send the primitive out onto the line.

send ph_to_above

Synopsis

extern void send_ph_to_above(il_buffer_number, relay_baton, data_start_offset, size, code,
path);

unsigned short il_buffer_number;

unsigned short relay_baton;

unsigned short data_start_offset;

unsigned short size;

unsigned char code;

unsigned char path;

JUL '90 66-45

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Descripti

The send_ph_to_above emulate routine passes a specified interlayer message
buffer from Layer 1 to Layer 2 in an OSI primitive. Received line data is
placed in an IL buffer and passed automatically to Layer 2. If you wish o get a
buifer “manually” at Layer 1 and then pass it up, use this routine.

Inputs

The first parameter is the interlayer buffer number returned by the
_get_il_msg_bujff routine..

The second parameter is the returned maintain bit from the _get_il_msg_buff
routine, As soon as Layer 2 processing on the buffer is completed, the bit is
automatically freed.

The third parameter is the returned offset (from the call to _start_il_buff_list} to
the Layer 1 service data unit in a buffer.

The fourth parameter is the length of the data in the buffer.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable lo_ph_prmtv_code in Table 66-3 for the
appropriate primitive code. :

The sixth parameter is the path number along which the buffer will be sent,

Example

Get a buffer at Layer 1. Assuming X.25 protocol, insert data into the buffer
and pass it up to Layer 2.

{

unsigned short il_buffer_number;
unsigned short relay_baion;
unsigned short data_siart_offsel;
unsigned short available_space_offset;
int tengih;
int i;
static unsigned char dataf] = {0x01, 0x00, Ox10, 0x04, 0x00, 0x02, 0x01, 0x01};
uhsigned char * ptr;
}
LAYER: 1
STATE: get_buffer
CONDITIONS: KEYBOARD “ °
ACTIONS:
{
_gel_il_msg_buff(&il_buffer_number, &relay_baton);
_start_il_buff_list(ii_buffer_number, &data_stari_offset);
lengih = sizeof(data);
_open_space_in_il_buff(il_buffer_number, length, &available_space_offset);
ptr = (void *)(((long)il_buffer_number << 6} + available_space_offset);

66-46 JUL '90

66 0s!

JUL '90

Jorfi = 0; | <length; i++)

{

*ptr = datafi};

pires;

} o
pir-=length;
_insert_ll_buff lis¢_cnt(il_buffer_number, daia_stari_offset, pir, length);
send_ph_to_above(ll_buffer_number, relay_baton, data_start_offset, length, 0x25, 0);

)

(C) Layer 2 OSl Routines. ..

The following routines pass OSI primitives from Layer 2 to either Layer 3 or
Layer 1.

send_dl_prmtv_above

Synopsis

extern void send_di_prmiv_above(li_buffer_number, [2_relay baton, I12_data_start_offset, size,
12_code, path);

unsigned short I_buffer_number;

unsigned short 12_relay_baton;

unsigned short 12_data_start_offset;

unsigned short size;

unsigned char {2_code;

unsigned char path;

Descripti

The send_d!_prmtv_above emulate routine passes a specified interlayer message
buffer from Layer 2 to Layer 3 in an OSI primitive.

Inputs

The first parameter is the interlayer buffer number to be sent, For a buffer
which has been received at Layer 2 from Layer 1, the variable lo_ph_il_buff
may be used to identify the buffer number,

The second parameter is the returned maintain bit from a call to
_set_maint_buff bit. It is used only to pass a received buffer from Layer 2 to
Layer 3. As soon as Layer 3 processing on the buffer is completed, the bit is
automatically freed.

The third parameter is the offset to the Layer 2 service data unit in a received
buffer. The variable Jo_ph_sdu contains the offset to the service data unit when
the buffer reached Layer 2. The offset must be incremented by the length of
the Layer 2 header.

66-47

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

NOTE: In general, do not modify extern variables, such as
lo_ph_sdu, which may be updated by other processes. Name
another variable, assign it the same value, and then increment
that variable, Or, after lo_ph_sdu has been named in the
argument of the send routine, add the length of the Layer 2
header, as in the example below.

The fourth parameter is the length of the data in the buffer. Use the length
indicated in the pdu structure—pdu.data_length. Then subtract the length of the
Layer 2 header:

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable lo_dl prmiv_code in Table 66-4 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 2 from Layer 1, the variable
lo_ph_prmtv_path may be used to specify the path number.

Example

A buffer is received at Layer 2 from Layer 1. Assuming X.2$5 protocol, the
data specific to Layer 2 (the frame header) begins at the SDU offset
(lo_ph_sdu) and consists of two bytes. Before the buffer is passed up to Layer 3,
the offset to the SDU and the size of the SDU will be adjusted by two bytes and
a new maintain bit will be set,

{

struct pdu
{
unsigned char primitive_code;
unsigned char path;
‘unsigned long parameter;
unsigned short relay_baton;
unsigned short il_buffer_number;
unsigned char buffer_contents;
unsigned short data_start_offset;

unsigned short date_length;

|3

struct pdu * pdu_pir;

extern volatile unsigned short lo_ph_pdu_seg;

extern volatile const unsigned char lo_ph_prmtv_path;

extern volatile unsigned short lo_ph_il buff;

extern volatile unsigned short lo_ph_sdu;

unsigned short 12_relay baton;

66-48 JUL '90

66_0OSiI

LAYER; 2
STATE; send_buffer_up
CONDITIONS: PH_DATA IND
ACTIONS:
{
pdu_pir = (void *)((long)lo_ph_pdu_seg << 16); -
_set_maint_buff bit{lo_ph_N_buff, &i2_relay baton);
send_dl_prmiv_above(lo_ph_il_buff, 12_relay_baton, lo_ph sdu + 2,
pdu_ptr->data_{ength - 2, 0x45, lo_ph_prmiv_path);

send_m_di_prmtv_above

Synopsis

extern void send_m_dl_prmiv_above(il_buffer number, 12_relay baton, 12_data_start_offset,
size, 12 _code, path);

unsigned short iI_buffer_npumber;

unsigned short [2_relay baton;

unsigned short 12_data_start_offset;

unsigned short size;

unsigned char I12_code;

unsigned char path;

Deserinti

The send_m_dl_prmiv_above monitor routine passes a specified interlayer
message buffer from Layer 2 to Layer 3 in an OSI monitor primitive.

. Ioputs

See send_dl_prmitv_above. Use the monitor variables ml_lo _ph_il_buff,
m_lo_ph_sdu_offset, and m_lo_ph_sdu_size as input. Refer to variable
m_lo_dl_prmtv_code in Table 66-4 for the appropriate primitive code.

Example

Make the appropriate variable declarations. For a condition monitoring RD data
primitives, the Layer 2 programming block should look like this:

LAYER: 2
STATE: send_buffer_up
CONDITIONS: PH_RD_DATA IND
ACTIONS: '
{
_set_mainit_buff_bit{m_lo_ph_li_buff, &I2_relay_baton);
send_m_d!_prmiv_above(m_lo_ph_ll_buff, 12_relay_baton,m_ lo_ph_sdu_offsel + 2,
m_lo_ph_sdu_size - 2, Ox45, m_lo_ph_prmtv_path);
}

JUL '90 66-49

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

66-50

send_ph_prmtv_below

Synaopsis

extern void send_ph_prmtv_below(il_buffer_number, 12_relay baton, 12_data_start_offset, size,
12_code, path);

unsigned short il_buffer number;

unsigned short 12_relay_baton;

unsigned short 12_data_start_offset;

unsigned short size;

unsigned char I12_code;

unsigned char path;

Description

The send_ph_prmtv_below emulate routine passes a specified interlayer message
buffer from Layer 2 to Layer 1 in an OSI primitive.

Inputs

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 2 from Layer 3, the variable up_dl_il_bujff
may be used to identify the buffer number. If the buffer originated at Layer 2,
use the buffer-number variable named in the _get il msg buff routine. (See
_insert_il_buff list_cnt routine example at Layer 5.)

The second parameter is the returned maintain bit from a call to
_sel_maint_buff bit. It is used only to pass a received buffer from Layer 2 to
Layer 1. As soon as Layer 1 processing on the buffer is completed, the bit is
automatically freed. If the buffer originated at Layer 2, use the maintain bit
variable named in the _get il _msg_buff routine. (See _insert_il_buff list_cnt
routine example at Layer 5.)

The third parameter is the offset to the Layer 2 list header node in the buffer.
For a buffer which has been received at Layer 2 from Layer 3, the variable
up_d!_sdu may be used to indicate the offset.

The fourth parameter is the size of the data in the buffer. It will always be set
to zero since the data length is unknown in a primitive being passed down the

layers.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable ph_prmtv_type in Table 66-2 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 2 from Layer 3, the variable
up_d!_prmtv_path may be used to specify the path number.

JuL '90

66 08!

JUL '80

Example

A buffer is received at Layer 2 from Layer 3. No text will be inserted at Layer
2. (For information on inserting text, see _insert_{l_buff list_cnt routine.) The
buffer will be passed to Layer 1, requiring a new maintain bit to be set. If
values are entered for the code and path, variables for code and path need not
be declared.

{

extern volatlle unsigned short up_dl_il_buff;
extern volaille unsigned.shori.up. di_sdu;.
unsigned shori 12_relay_baton;
}
LAYER: 2
STATE: pass_buffer_down
CONDITIONS: DL_DATA REQ
ACTIONS:

{
_set_maint_buff blt(up_di_il_buff, &I2_relay_baton);

send_ph_prmiv_below(up_di_il_buff, 12_relay_baton, up_d!_sdu, 0, 0x24, 0);
)

(D) Layer 3 OSl Routines

The following routines pass OS] primitives from Layer 3 to either Layer 4 or
Layer 2. '

send_n_prmtv_above

Synopsis

extern vold send_n_prmiv_above(ll_buffer_number, 13_relay_baton, 13_data_start_offset, size,
13_code, path);

unsigned short it_buffer_number;

unsigned short 13_relay_baton;

unsigned short 13_data_start_offset;

unsigned short size;

unsigned char {3_code;

unsigned char path;

Description
The send_n_prmtv_above emulate routine passes a specified interlayer message

buffer from Layer 3 to Layer 4 in an OSI primitive.

Inputs

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 3 from Layer 2, the variable lo_dI_il_buff may
be used to identify the buffer number.

66-51

INTERVIEW 7000 Serfes Advenced Programming: ATLC-107-951-108

The second parameter is the returned maintain bit from a call to
_set_maint_buff bit. It is used only to pass a received buffer from Layer 3 to
Layer 4. As soon as Layer 4 processing on the buffer is completed, the bit is
automatically freed,

The third parameter is the offset to the Layer 3 service data unit in a received
buffer. The variable lo_d!_sdu contains the offset to the service data unit when
the buffer reached Layer 3. The offset must be incremented by the length of
the Layer 3 header.

NOTE: In general, do not modify extern variables, such as
lo_dl_sdu, which may be updated by other processes. Name
another variable, assign it the same value, and then increment
that variable. Or, after lo_d!_sdu has been named in the
argument of the send routine, add the length of the Layer 3
header, as in the example below.

The fourth parameter is the length of the data in the buffer. Use the length
indicated in the pdu structure—pdu.data_length. Then subtract the length of the
Layer 3 header, :

The {fifth parameter is the code specifying the type of primitive in which the
buffer will be sent, Refer to variable lo_n_prmtv_code in Table 66-5 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 3 from Layer 2, the variable
lo_dl_prmtv_path may be used to specify the path number.

Example

A buffer is received at Layer 3 from Layer 2. Assuming X.25 protocol, the
header consists of three bytes. The offset to and size of the service data unit
will be adjusted by three bytes, a new maintain bit will be set, and the buffer will

be passed up to Layer 4.

{

struct pdu
{
unsigned char primitive_code;
unsigned char path;
unsigned long parameter;
unsigned short relay_baton;
unsigned short il_buffer_number;
unsigned char buffer _contenis;
unsigned short data_start_offset;
unsighed short data_length;

);

66-52 JUL '90

66_OS!

Struct pdu * pdu_ptr;
extern volatile unsigned short lo_dl_pdu_seg;
extern volatile const unsigned char lo_dl_prmtv_path;
extern volatile unsigned short lo_di_Il_buff;
extern volatile unsigned short lo_dl_sdu;
unsigned short 13_relay_baton;
}
LAYER: 3
STATE: send_buffer_up
CONDITIONS: DL_DATA IND
ACTIONS:
{
pdu_ptr = (void *){(lengHo_dl_pdu_seg << 16);-
_sel_maint_buff_bit(lo_di_ll_buff, &I3_relay_baton);
send_n_prmiv_above(lo_dl_Il_buff, {3_relay_baton, lo_di_sdu + 3,
pdu_ptr->data_length - 3, 0x65, lo_di_prmtv_path);
}

send_m_n_prmtv_ahove

Synopsis

extern vold send_m_n_prmiyv_above(il_buffer number, 13_relay_baton, 13_data_start_offset,
size, [3_code, path}; :

unsigned short Il_buffer_number;

unsigned short 13_relay_baton,;

unsigned short 13_data_start_offset;

unsigned short size;

unsigned char i3_code;

unsigned char path;

Descripti
The send_m_n_prmiv_above monitor routine passes a specified interlayer
message buffer from Layer 3 to Layer 4 in an OSI monitor primitive.

Inputs

See send_n_prmtv_above. Use the monitor variables m_lo_d!_il_buff,
m_lo_d!_sdu_offset, and m_lo_dl_sdu_size as input. Refer to variable
m_lo_n_prmtv_code in Table 66-5 for the appropriate primitive code.

Example

Make the appropriate variable declarations. For a condition monitoring RD data
primitives, the Layer 3 programming block should look like this:

LAYER: 3
STATE: send_buffer_up
CONDITIONS: DL_RD_DATA IND
ACTIONS:
{
_sel_maint_buff_bit(m_lo_di_il_buff, &I3_relay_baton);
send_m_n_prmiv_above(m_lo_dl_ii_buff, I3_relay_baton, m_lo_dl_sdu_offset + 3,
m_lo_di_sdu_size - 3, 0x65, m_lo_di_prmiv_path);

JUL 'S0 66-53

INTERVIEW 7000 Serlas Advanced Programming. ATLC-107-951-108

66-54

send_dl_prmtv_below

Synopsis

extern vold send _dI_prmiv_below(ll_buffer_number, i3_relay_baton, I3_data_start_offset, size,
13_code, path);

unsigned short I_buffer_number;

unsigned short 13_relay_baton;

unsigned short 13 _data_start_offset;

unsigned short size;

unsigned char I13_code;

unsigned char path;

Description
The send_di_prmiv_below emulate routine passes a specified interlayer message
buffer from Layer 3 1o Layer 2 in an OSI primitive.

Inputs

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 3 from Layer 4, the variable up_n_il_bujff may
be used to identify the buffer number. If the buffer originated at Layer 3, use
the buffer-number variable named in the _get_il_msg_buff routine. (See
_insert_il_buff list_cnt routine example at Layer 5.)

The second parameter is the returned maintain bit from a call to
_set_maint_buff bit. It is used only to pass a received buffer from Layer 3 to
Layer 2. As soon as Layer 2 processing on the buffer is completed, the bit is
automatically freed. If the buffer originated at Layer 3, use the maintain bit
variable named in the _ger il msg_buff routine. (See _insert_il_buff list_cnt
routine example at Layer 5.)

The third parameter is the offset to the Layer 3 list header node in the buffer.
For a buffer which has been received at Layer 3 from Layer 4, the variable
up_n_sdu may be used to indicate the offset.

The fourth parameter is the size of the data in the buffer. It will always be set
to zero since the data length is unknown in a primitive being passed down the

layers,

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable up_dl_prmtv_code in Table 66-3 for the

appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 3 from Layer 4, the variable
up_n_prmtv_path may be used to specify the path number.

JuL 90

66 0OS/

Example

A buffer is received at Layer 3 from Layer 4. No text will be inserted at Layer
3. (For information on inserting text, see _inseri_il_buff list_cnt routine.) The
buffer will be passed to Layer 2, requiring a new maintain bit to be set. If

values are entered for the code and path, these variables need not be declared.

{

extern volalile unsigned short up_n_li_buff;
extern volatile unsigned short up_n_sdu;
unsigned short 13_relay_baton;

)
LAYER: 3
STATE: pass_buffer_down
CONDITIONS: N_DATA REQ
ACTIONS;

{
_set_maint_buff_bit(up_n_il_buff, &I3_relay_baton);

send_di_prmtyv_below (up_n_ii_buff, I13_relay baton, up_n_sdu, 0, Ox44, 0);
)

(E) Layer 4 OSl Routines

The following routines pass OSI primitives from Layer 4 to either Layer 5 or
Layer 3.

send_t_prmtv_above

Synopsis

extern void send_t_prmiv_above(il_buffer_number, 14_relay_baton, [4_data_stari_offset, size,
i4_code, path);

unsigned short il_buffer_number;

unsigned short i4_relay_baton;

unsigned short 14_data_start_offset;

unsigned short size;

unsigned char [4_code;

unsigned char path;

Description

The send_t_prmtv_above emulate routine passes a specified interlayer message
buffer from Layer 4 to Layer 5 in an OSI primitive.

Inputs

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 4 from Layer 3, the variable lo_n_il_bujf may

be used to identify the buffer number,

JuL '90 66-55

INTERVIEW 7000 Series Advanced Programming: ATLG-107-951-108

The second parameter is the returned maintain bit from a call to
_set_maint_buff bit. It is used only to pass a received buffer from Layer 4 to
Layer 5. As soon as Layer 5 processing on the buffer is completed, the bit is
automatically freed.

The third parameter is the offset to the Layer 4 service data unit in a received
buffer. The variable lo_n_sdu contains the offset to the service data unit when
the buffer reached Layer 4. The offset must be incremented by the length of

the Layer 4 header, if any.

NOTE: In general, do not modify extern variables, such as
lo_n_sdu, which may be updated by other processes. Name
another variable, assign it the same value, and then increment
that variable. Or, after lo_n_sdu has been named in the
argument of the send routine, add the length of the Layer 4
header, if any.

The fourth parameter is the length of the data in the buffer. Use the length
indicated in the pdu structure—pdu.data_length. Then subtract the iength of the
Layer 4 header, if any.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable fo_t_prmitv_code in Table 66-6 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 4 from Layer 3, the variable
lo_n_prmtv_path may be used to specify the path number.

Example

A buffer is received at Layer 4 from Layer 3. The offset to and size of the
service data unit will be adjusted if needed, a new maintain bit will be set, and

the buffer will be passed up to Layer 5.

{

struct pdu
{
unsigned char primitive_code;
unsigned char path;
unsigned long parameter;
unsigned short relay_baton;
unsigned short it_buffer_number;
unsigned char buffer_contents;
unsigned short data_start_offset;

unsigned short data_length;

5

struct pdu * pdu_pir;

extern volatile unsigned short lo_n_pdu_seg;

extern volatile const unsigned charlo_n_prmiv_path;

66-56 JuL '90

66 08!

extern volatile unsigned short to_n_{l_buff;
extern volatlie unsigned short lo_n_sdu;
unsigned short I4_relay_baton;
}
LAYER: 4
STATE: eend_buffer_up
CONDITIONS: N_DATA IND
ACTIONS:
{
pdu_ptr = (void *)({long)lo_n_pdu_seg << 16);
_set_maini_buff bli(lo_n_il_buff, &!4_relay_baton};

send t_prmty_above(lo_n_il_buff, I4_relay_baton, lo_n_sdu,pdu_ptr->data_length,

0x85, lo_n_prmiv_path);
)

send_m_t_prmtv_above

Synopsis

extern void send_m_t_prmiv_above(il_buffer_number, i4_relay_baton, 14_data_start_offset,
size, 14_code, path);)

unsigned short il_buffer_number;

unsigned short 14_relay_balon;

unsigned shorl 14_data_siart_offset;

unsigned short size;

unsigned char I4_code;

unsigned char paih;

Descripti

The send_m_¢_prmtv_above monitor routine passes a specified interlayer message
buffer from Layer 4 to Layer 5 in an OSI monitor primitive,

Inputs

See send ¢ _prmtv_above. Use the monitor variables m_lo_n_il_buff,
m_lo_n_sdu_offset, and m_lo_n_sdu_size as input. Refer to variable
m_lo_t_prmtv_code in Table 66-6 for the appropriate primitive code.

Example

Make the appropriate variable dectarations. For a condition monitoring RD data
primitives, the Layer 4 programming block should look like this:

LAYER: 4
STATE: send_buffer_up
CONDITIONS: N_RD_DATA IND
ACTIONS:
{
_sel_maini_buff bit{m_lo_n_il_buff, &l4_relay_baton);
send_m_i_prmtv_above(m_to_n_ii_buff, !4_relay_baton,m_ lo_n_sdu_offset ,
m_{o_n_sdu_size, 0x85, m_lo_n_prmtv_path);

}

JuL. 'a0 66-57

INTERVIEW 7000 Serles Advanced Progremming: ATLC-107-951-108

66-58

send_n_prmtv_below

Synopsis

extern vold send_n_prmiv_below (Il_buffer_number, I4_relay_baton, 14_data_start_offset, size,
I4_code, path};

unsigned short Y{_buffer_number;

unsigned short I4_relay_baton;

unsigned short 14_data_stari_offset;

unsigned short size; ’

unsigned char i4_code;

unsigned char path;

Descripti

The send_n_prmiv_below emulate routine passes a specified interlayer message
buffer from Layer 4 to Layer 3 in an OSI primitive.

Inputs

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 4 from Layer 5, the variable up_¢_il_buff may
be used to identify the buffer number. If the buffer originated at Layer 4, use
the buffer-number variable named in the _get_il_msg_buff routine. (See
_insert_il_buff list_cnt routine example at Layer 5.)

The second parameter is the returned maintain bit from a call to
_set_maint_buff bit. Tt is used only to pass a received buffer from Layer 4 to
Layer 3. As soon as Layer 3 processing on the buffer is completed, the bit is
automatically freed. If the buffer originated at Layer 4, use the maintain bit
variable named in the _get_il_msg_buff routine. (See _insert_il_buff_list_cnt
routine example at Layer 5.)

The third parameter is the offset to the Layer 4 list header node in the buffer.
For a buffer which has been received at Layer 4 from Layer 5, the variable
up_t_sdu may be used to indicate the offset.

The fourth parameter is the size of the data in the buffer. It will always be set
to zero since the data length is unknown in a primitive being passed down the
layers.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable up_n_prmtv_code in Table 66-4 for the

appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 4 from Layer 5, the variable
up_t_prmtv_path may be used to specify the path number.

JUL '80

66_0s!

Example

A buffer is received at Layer 4 from Layer 5. No text will be inserted at Layer
4. (For information on inserting text, see _inser(_il_buff_list_cnt routine.) The
buffer will be passed to Layer 3, requiring a new maintain bit to be set, If
values are entered for the code and path, variables for code and path need not
be declared.

{

extern volatile unsigned shori up_t_li_buff;
extern volatile unsigned short up_t_ sdu;
unsigned short 14_relay_baton;

}
LAYER: 4
STATE: pass_buffer_down
CONDITIONS: T_DATA REQ
ACTIONS:

{
_set_maint_buff bit{up_t_il_buff, &I4_relay_baton);
send_n_prmiv_below (up_t_il_buff, 14_relay_baton, up_t_sdu, 0, 0x64, 0);

}

(F) Layer 5 0S| Routines

The following routines pass OSI primitives from Layer 5 to either Layer 6 or
Layer 4.

send_s_prmtv_above

ynopsis

extern void send_s_prmiv_above(il_buffer_number, 15_relay_baton, 15_data_start_offset, size,
{5_code, path);

unsigned short il_buffer number;

unsigned short IS relay_baton;

unsigned short 15_data_start_offset;

unsigned short size;

unsigned char I5_code;

unsigned char path;

Description ¢

The send_s_prmtv_above emulate routine passes a specified inter-layer message
buffer from Layer 5 to Layer 6 in an OSI primitive.

Inputs

The first parameter is the inter-layer buffer number to be sent. For a buffer
which has been received at Layer 5 from Layer 4, the variable lo_t_il_buff may
be used to identify the buffer number.

JuL ‘90 £6-69

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

The second parameter is the returned maintain bit from a call to
_set_maint_buff_bit. 1t is used only to pass a received buffer from Layer 5 to
Layer 6. As soon as Layer 6 processing on the buffer is completed, the bit is
automatically freed.

The third parameter is the offset to the Layer 5 service data unit in a received
buffer. The variable /o_t_sdu contains the offset to the service data unit when
the buffer reached Layer 5, The offset must be incremented by the length of
the Layer 5 header, if any.

NOTE: In general, do not modify extern variables, such as
fo_t_sdu, which may be updated by other processes. Name
another variabie, assign it the same value, and then increment
that variable. Or, after lo_t_sdu has been named in the argument
of the send routine, add the length of the Layer 5 header, if any.

The fourth parameter is the length of the data in the buffer. Use the length
indicated in the pdu structure—pdu.data_length. Then subtract the length of the
Layer 5 header, if any.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable lo_s_prmtv_code in Table 66-7 for the
appropriate primitive code.

The sixth parameter is the path number alohg which the buffer will be sent. For
a buffer which has been received at Layer 5§ from Layer 4, the variable
lo_t_prmtv_path may be used to specify the path number.

Example

A buffer is received at Layer 5 from Layer 4. The offset to and size of the
service data unit will be adjusted il needed, a new maintain bit will be set, and
the buffer will be passed up to Layer 6.

{
struct pdu
{
unsigned char primitive _code;
unsigned char path;
unsigned long parameter;
unsigned shori relay_baton;
unsigned short il_buffer_number;
unsigned char buffer contents;
unsigned short data_star!_offset;
unsigned short data_length;
E
strucl pdu * pdu_ptr;
extern volatile unsigned short lo_I_pdu_seg;
extern velatile const unsigned char lo_{_prmiv_path;
extern volatile unsigned short lo_t_il_buff;
extern volatile unsigned short lo_t_sdu;
unsigned short 15_relay baion; ‘

66-60 JUL '80

66 OSi

LAYER: §
STATE: send_buffer_up
CONOITIONS: T_DATA IND
ACTIONS:
{
pdu_ptr = (void *)((long}lo_t_pdu_seg << 16);
_sei_maint_buff bit{lo_t_ii_buff, &I5_relay baton};
send_s_prmtv_above(lo_i_il_buff, 15_relay_baton, lo_t_sdu, pdu_ptr->data_length,

Oxa$, lo_t_prmtv_path);
)

send_m_s_prmtv_above

Synopsis

extern void send_m_s_prmiv_above(ll_buffer_number, I5_relay baton, 15_data_start_offset,
size, I5_code, path);

unsigned short il_buffer_number;

unsigned short 15_relay_baton;

unsigned short I5_data_start_offset;

unsigned short size;

unsigned char 15_code;

unsigned char path;

Description

The send_m_s_prmtv_above monitor routine passes a specified inter-layer
message buffer from Layer 5 to Layer 6 in an OSI monitor primitive.

Inputs

See send_s_prmtv_above. Use the monitor m_lo_t_il_buff, m_lo_t_sdu_offset,

and m_lo_t sdu_size variables as input. Refer to variable m_lo_s_prmtv_code in
Table 66-7 for the appropriate primitive code,

Example

Make the appropriate variable declarations. For a condition monitoring RD data
primitives, the Layer 5 programming block should look like this:

LAYER: &
STATE: send_buffer_up
CONDITIONS: T_RD_DATA IND
ACTIONS: :
{
_set_maint_buff_blt(m_lo_t_il_buff, &!I5_relay_baton};
send_m_s _prmiv_above(m_lo_t_iI_buff, I5_relay_baten,m_lo_t_sdu_offset,
m_lo_t_sdu_size, Oxa5, m_lo_{_prmiv_path);

}

JUL '80 66-61

INTERVIEW 7000 Series Advanced Prograrmmming: ATLC-107-951-108

66-62

send_t_prmtv_below

Synopsis

extern void send_t_prmiv_below (li_buffer_number, 15_relay _baton, 15_data_start_offset, size,
15_code, path};

unsigned short Il_buffer_number;

unsigned short 15_relay_baton;

unsigned short I5_data_start_offsel;

unsigned short size;

unsigned char |5_code;

unsigned char path;

Descripti

The send_t_prmtv_below emulate routine passes a specified inter-layer message
buffer from Layer 5 to Layer 4 in an OSI primitive.

Inputs

The [irst parameter is the inter-layer buffer number to be sent. For a buffer
which has been received at Layer 5 from Layer 6, the variable up_s_il_buff may
be used to identify the buffer number. If the buffer originated at Layer 5, use
the buffer-number variable named in the _get il msg_buff routine. (See
_insert_il_buff list_cnt routine example at Layer 5.)

The second parameter is the returned maintain bit from a call to
_set_maint_buff_bit. 1t is used only to pass.a received buffer from Layer 5 to
Layer 4. As soon as Layer 4 processing on the buffer is completed, the bit is
automatically freed. If the buffer originated at Layer 5, use the maintain bit
variable named in the _ger_il_msg_buff routine. (See _insert_il_buff_list_cnt
routine example at Layer 5.)

The third parameter is the offset to the Layer 5 list header node in the buffer.
For a buifer which has been received .at Layer 5 from Layer 6, the variable
up_s_sdu may be used to indicate the offset.

The fourth parameter is the size of the data in the buffer. It will always be set
to zero since the data length is unknown in a primitive being passed down the

layers.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent, Refer to variable up_t_prmtv_code in Table 66-5 for the

appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 5 from Layer 6, the variable
up_s_prmiv_path may be used to specify the path number.

JUL '90

66 _QOs!

JUL '80

Example

A buffer is received at Layer 5 from Layer 6, No text will be inserted at Layer
5. (For information on inserting text, see _insert_il_buff_list_cnt routine.) The
buffer will be passed to Layer 4, requiring a new maintain bit to be set. If
values are entered for the code and path, variables for code and path need not
be declared.

{

extern volatile unsigned short up_s_il_buff;
extern volatite unsigned short up_s_sdu;
unsigned short 15_relay_baton;

}

LAYER: §

STATE: pass_buffer_down
CONDITIONS: S_DATA REQ
ACTIONS:

{ .
_set_maint_buff_bit(up_s_il_buff, &l15_relay_baton);

send _t_prmiv_below{up_s_l_buff, 15_relay_baten, up_s_sdu, 0, 0x84, 0);
}

(G) Layer 6 OSI Routines

The following routines pass OSI primitives from Layer 6 to either Layer 7 or
Layer 5.

send_p_prmtv_above

Synopsis

extern void send_p_prmtv_above(il_buffer_number, 16_relay baton, 16_data_stari_offset, size,
16_code, path);

unsigned short it_buffer_number;

unsigned short 16_relay baton;

unsigned shart 16_data_stari_offsel;

unsigned short size;

unsigned char I6_code;

unsigned char path;

Descripti

The send_p_prmtv_above emulate routine passes a specified interlayer message
buffer from Layer 6 to Layer 7 in an OSI primitive.

Inputs

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 6 from Layer 5, the variable lo_s_il_buff may
be used to identify the buffer number.

66-63

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

The second parameter is the returned maintain bit from a call to
_set_maint_buff bit. It is used only to pass a received buffer from Layer 6 to
Layer 7. As soon as Layer 7 processing on the buffer is completed, the bit is
automatically freed.

The third parameter is the offset to the Layer 6 service data unit in a received
buffer. The variable lo_s_sdu contains the offset to the service data unit when
the buffer reached Layer 6. The offset must be incremented by the length of
the Layer 6 header, if any.

NOTE: In general, do not modify extern variables, such as
lo_s_sdu, which may be updated by other processes. Name
another variable, assign it the same value, and then increment
that variable. Or, after lo_s_sdu has been named in the
argument of the send routine, add the length of the Layer 6
header, if any.

The fourth parameter is the length of the data in the buffer. Use the length
indicated in the pdu structure—pdu.data_length. Then subtract the length of the
Layer 6 header, if any.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable lo_p_prmtv_code in Table 66-8 for the
appropriate primitive code. .

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 6 from Layer 5, the variable
lo_s_prmtv_path may be used to specify the path number.

Example

A buffer is received at Layer 6 from Layer 5. The offset to and size of the
service data unit will be adjusted if needed, a new maintain bit will be set, and
the buffer will be passed up to Layer 7.

{

struct pdu
{
unsigned char primitive_code;
unsigned char path;
unsigned long parameter;
unsigned shorl relay_baton;
unsigned shart li_buffer_number;
unsigned char buffer_conients;
unsigned short data_start_offset;
unsigned short data_length;
5
struct pdu * pdu_pir;
extern volatile unsigned short lo_s_pdu_seg;
extern volatile const unsigned char lo_s_prmtv_path;

66-64 JUL '90

66 OS!

extern volatlle unsigned short lo_s_il_buff;
extern velatile unsigned short lo_s_sdu;
unsigned short {6_relay_baton;
}
LAYER: 6
STATE: send_buffer_up
CONDITIONS: S_DATA IND
ACTIONS:
{
pdu_ptr = (vold *)((long)lo_s_pdu_seg << 16);
_set_maint_buff blt(lo_s_ii_buff, &l6_relay_baton);
send_p_prmiv_above(lo_s_il_buff, 16_relay baton, lo_s_sdu, pdu_pir->data_length,
Oxc5, lo_s_prmiv_path);
}

send_m_p_prmtv_above

Synopsis

extern vold send_m_p prmiv_above(il_buffer_number, 16_relay_baton, 16_data_start_offset,
size, 16_code, path);

unsigned short il_buffer_number;

unsigned shori 16_relay_baton;

unsigned short 16_data_start_offsel;

unsigned short slze;

unsigned char 16_code;

unsigned char path;

Descripti

The send_m_p_prmitv_above monitor routine passes a specified interlayer
- message buffer from Layer 6 to Layer 7 in an OSI monitor primitive.

Inputs

See send _p_prmtv_above. Use the monitor variables m_lo_s_il_buff,
m_lo_s_sdu_offset, and m_lo_s_sdu_size as input. Refer to variable
m_lo_p_prmtv_code in Table 66-8 for the appropriate primitive code.

Example

Make the appropriate variable declarations. For a condition monitoring RD data
primitives, the Layer 6 programming block should look like this:

LAYER: 6
STATE: send_buffer_up
CONDITIONS: 8_RD_DATA IND
ACTIONS:
{
_sel_maint_buff_bit(m_lo_s_{I_buff, &I6_relay_baton);
send_m_p_prmty_above(m_la_s_II_buff, 16_relay_baton,m_ lo_s_sdu_offsel,
m_lo_s_sdu_size, Oxc3, m_lo_s_prmiv_path);

}

JUL '90 66-65

INTERVIEW 7000 Serles Advanced Prograrnming: ATLC-107-951-108

66-66

send_s_prmtv_below

Synopsis

extern vold send_s_prmitv_below(il_buffer_number, i6_relay_baton, 16_data_start_offset, size,
16_code, path);

unsigned short Il_buffer_number;

unsigned shor! 16_relay_baton;

unsigned short 16_data_start_offset;

unsigned short size;

unsigned char 16_code;

unsigned char path;

Description

The send_s_prmtv_below emulate routine passes a specified interlayer message
buffer from Layer 6 to Layer 5 in an OS] primitive,

Inputs

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 6 from Layer 7, the variable up_p_il buff may
be used to identify the buffer number. If the buffer originated at Layer 6, use
the buffer-number variable named in the _get il_msg_buff routine. (See
_insert_il_buff list_cnt routine example at Layer 5.)

The second parameter is the returned maintain bit from a call to
_sei_maint_buff_bit. It is used only to pass a received bufler from Layer 6 to
Layer 5. As soon as Layer 5 processing on the buffer is completed, the bit is
automatically freed. If the buffer originated at Layer 6, use the maintain bit
variable named in the _ger il_msg buff routine. (See _insert_il_buff_list_cnt
routine example at Layer 5.)

The third parameter is the offset to the Layer 6 list header node in the buffer.
For a buffer which has been received at Layer 6 from Layer 7, the variable
up_p_sdu may be used to indicate the offset,

The fourth parameter is the size of the data in the buffer. It will always be set
to zero since the data length is unknown in a primitive being passed down the
fayers.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable up_s_prmtv_code in Table 66-6 for the
appropriate primitive code,

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 6 from Layer 7, the variable
up_p_prmiv_path may be used to specify the path number.

JUL '90

66 CSI

JUL '90

(H)

Example

A buffer is received at Layer 6 from Layer 7. No text will be inserted at Layer
6. (For information on inserting text, see _insert_il_buff list_cnt routine.) The
buffer will be passed to Layer 5, requiring a new maintain bit to be set. If
values are entered for the code and path, variables for code and path need not
be declared.

{

extern volatile unsigned short up_p_H_buff;
extern volatile unsigned short up_p_sdu;
unsigned short 16_relay_baton;

}
LAYER: 6
STATE: pass_buffer_down
CONDITIONS: P_DATA REQ
ACTIONS:

{
_set_maini_buff bit(up_p_il_buff, &I6_relay_baton);
send_s_prmiv_below (up_p_il_buff, 16_relay_baton, up_p_sdu, 0, Oxad, 0);

)

Layer 7 OSI Routines

send_p_prmtv_below

Synopsis
extern void send_p_prmiv_below(ll_buffer number, relay_baton, data_start_offset, size, code,
path);
unsigned short il_buffer_number;
unsigned short relay_baton;
unsigned short data_start_offset;
unsigned short size;
unsigned char code;
unsigned char path;

ripti
The send_p_prmtv_below emulate routine passes a specified interlayer message
buffer from Layer 7 to Layer 6 in an OSI primitive.

Inputs

The first parameter is the interlayer buffer number to be sent. Use the
buffer-number variable named in the _get il_msg_buff routine. (See
_insert_il_buff_list_cnt routine example at Layer 5.)

The second parameter is the returned maintain bit from the call to
_get_il_msg_buff.

66-67

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

The third parameter is the returned offset (from a call to _start il_buff_list) to
the Layer 7 list header node in the buifer.

The fourth parameter is the size of the data in the buffer. It will always be set
to zero since the data length is unknown in a primitive being passed down the
layers, .

The fifth parameter is the code specifying the type of primilive in which the
buffer will be sent. Refer to variable up_p_prmtv_code in Table 66-7 for the
appropriate code.

The sixth parameter is the path number along which the buffer will be sent,

Example

A buffer is obtained at Layer 7. The buffer will be passed to Layer 6, without
any data inserted. (For information on inserting text, see _insert_{l_buff_list_cnt
routine.) If values are entered for the code and path, variables for code and
path need not be declared.

{
unsigned shor! il_buffer_number;
unsigned short data_stari_offsel;
unsigned shori relay_baton;
}
LAYER: 7
STATE: pass_buffer_down
CONDITIONS: KEYBOARD “ 7
ACTIONS:
{
_get_1l_msg buff(&il_buffer_number, &relay_baton);
_stars_il_buff_tist(il_buffer_number, &data_ stari_offset);
send_p_prmiv_below(il_buffer_number, relay_baton, data_stari_offset, 0, Oxcd, 0);
}

66-68 JuL 'S80

67 Print

67 Print

The PRINTER port is a serial interface through which the programmer may direct output from
the INTERVIEW to a printer. The printer port is located at the rear.of the INTERVIEW
between the REMOTE RS-232 and AUXILIARY ports.

NOTE: Before directing output to the printer port, configure the
Printer Setup menu as explained in Section 15.2,

Each spreadsheet PRINT action or call to one of the C print routines causes output to be
added to a queue of unprinted text in the print buffer. If not doing so already, the print
server also begins to poll the print buffer for text to print. As long as there is unprinted text
in the buffer, the print server polls the buffer, removes text, and sends it to the printer port
of the INTERVIEW. Use the _print_buffer structure to monitor the flow of text in and out
of the print buffer.

Use any of the four C print routines explained in this section to add text to the print buffer.
Three of them—printc, printf, and prints—are similar to the displayc, displayf, and displays
routines which direct output to the Display Window. See Section 64.3(C). With the
set_print_header routine, you determine the heading which will appear at the top of each
printed page. One other routine, sprintf, writes output to a string. The string can then be
referenced in subsequent calls to printf. (You may also use the string named in sprinif in
calls to displayf, tracef, or fprinif.)

67.1 Structures

Refer to Table 67-1 for the structure of the print buffer. Compare _print_buffer.in
with _print_buffer.out to determine whether or not the print buffer has emptied.
When the values of these two variables are equal, the buffer is empty.

NOTE: Consider the variables in the _print_buffer structure
read—only variables. In general, do not modify extern structures
or variables which may be updated by other processes.

At times, processes may add transactions to the print buffer more quickly than the
print server takes them out. If a process cannot add to the buffer without overwriting
unprinted text, a buffer overrun occurs. When your INTERVIEW is configured for

JUL '90 67-1

INTERVIEW 7000 Series Advanced Prograrnming: ATLC-107-8951-108

data playback, you can minimize print-buffer overruns by periodically suspending
playback and allowing the print server to empty the buffer. In judging how often to
suspend playback, keep in mind the following points: 1) In general, the more
conditions a program has that trigger print actions, the more frequently playback
should be suspended. 2) When planning to print Run-mode buffers, remember that
the faster the playback speed, the quicker the print buffer fills.

Table 67-1
Print Structures

Type

Variable

Value (hex/decimal)

Meaning

Structure Name: print_buffer

unslgned short

unslgned short

unsigned short

unsigned short

char

char

char

In

out

butfer_end

lock

poliing

ovarrun

buffer (8192}

Structure Name: _print_buffer

a-207116-8199

a-207/10-819%

209/8201

0
non-zero

0
non-zero

Structure of the print butfer. Declared as type
struot.

offset into the print buffer (from the physical
beginning of the buffer) to the locatlon where
next transaction text will be added. Advances
with each spreadsheet PRINT action or call to a
C print routine. When /n equals out, the print
buffer Is empty.

offset Into the print buffer (from the physical
beglnning of the buffer} to the last transaction
text printed from the buffer. Advances each
time text Is actually sent out the printer port of
the INTERVIEW. When out equals in, the print
buffer Is empty.

offset to the physlcal end of the print
buffer—l|.e., to the end of the array named
buffer (see below)

when process Is printing, focks out other
processss from accessing the print buffer

print server {s not polling
print server is polling print buffer for text to print

print buffer Is not In overrun state

print buffer Is in overrun state—l.e., a process
attempting to add text to the print buffer can't
because unprinted text in the buffer would be
overwritten. Following message wlll appear on
printout: “print buffer overrun has occurred.”

array of text transactions

An Instance of the print_buffer structure,
declared as type extern struct print_bufler. Use
the variables contalned In this structure to
monitor flow of text in and out of the print buffer.
Reference structure variables as follows:
_print_bulfer.in.

67-2

JuL '80

67 Print

The following example shows how you might use a TIMEOUT condition to check the
print buffer periodically. Each time the timeout expires, the program determines
whether or not the buffer is half full. If so, playback is suspended. If the buffer is
only one-quarter full, playback is resumed. (Other conditions in the program, not
illustrated here, would cause print actions to send output to the print buffer.)

{
#define PRINT_BUFFER_SZ 8192

#define STOP_POINT (PRINT_BUFFER_SZ12)
#define START_POINT (PRINT_BUFFER_SZ!4)
}
LAYER; 1

{

siruct print_buffer

unsigned short in;

unsigned short out;

unsigned short buffer_end;

unsigned short lock;

char polling;

char overrun;

Y
exiern struct print_buffer _print_buffer;
int crni_buffer_sz;

}
STATE: check_print_buffer
CONDITIONS: ENTER_STATE
ACTIONS: TIMEQUT ck_buffer RESTART 0.01
CONDITIONS: TIMEQUT ck_butfer
ACTIONS:

{
ernt_buffer sz = ({_print_buffer.in + PRINT_BUFFER_SZ) - _print_buffer.out} %

PRINT_BUFFER SZ;
if(ernt_buffer sz > STOP_POINT)
suspend_rcrd _play();
else if(crnt_buffer sz < START_POINT)
start_rerd _play():

}
TIMEOUT ck_buffer RESTART 0.01

67.2 Variables

There are no variabies associated exclusively with print functions.

JuL '90 67-3

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

674

67.3 Routines

printc

Synopsis

extern void printc(character);

.const char character;

ripti

The printc routine outputs a single ASCII character to the print buffer for printing,
converting the value provided as the argument into its ASCII equivalent. Decimal
and octal values are converted to hexadecimal format before the ASCII equivalent is
sought.

Inputs

The only parameter is a numerical value. The value may be given as a hexadecimal,
octal, or decimal constant; as an alphanumeric constant inside of single quotes; or as
a variable. A hexadecimal value must be preceded by the prefix 0x or 0X; an octal
value must be preceded by the prefix 0. If no prefix appears before the input, the
number is assumed to be decimal. Valid numeric entries are 00 to 127, decimal. An
alphanumeric character placed between single quotes will be output as is to the
printer.

Example

The printc entries on the left output the printed character given on the right:

printe(‘a’);
printe(65);
printc(0x65);
printc(065);

th ¢ b o

printf
Synopsis

extern int prinif{format_ptr, . . .);
const char * formai_ptr;

Description

The printf routine writes output to the print buffer for printing, under control of the
string pointed to by format_ptr that specifies how subsequent arguments are converted
for output. If there are insufficient arguments for the format, the behavior is

JUL 'S0

67 Print

JUL '90

undefined. If the format is exhausted while arguments remain, the excess arguments
are evaluated but otherwise ignored. The printf routine returns when the end of the
format string is encountered.

Inputs

The format is composed of zero or more directives: ordinary characters (not %),
which are copied unchanged to the output stream; and conversion specifications, each
of which resuits in fetching zero or more subsequent arguments. Each conversion
specification is introduced by the character %. After the %, the following appear in
sequence:

Zero or more flags that moedify the meaning of the conversion specification.
The flag characters and their meanings are:

- The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a plus or minus
sign. '

space If the first character of a signed conversion is not a sign, a space will be
prepended to the result. If the space and + flags both appear, the space
flag will be ignored.

The result is to be converted to an “alternate form." For d, i, u, ¢, and
s conversions, the flag has no effect. For o conversion, it increases the
precision to force the first digit of the result to be a zero. For x {or X)
conversion, a nonzero result will have 0x (or 0X) prepended to it.

An optional decimal integer speéifying a minimum field width. If the converted
value has fewer characters than the field width, it will be padded on the left (or
right, if the left adjustment flag, described above, has been given) to the field
width. The padding is with spaces unless the field width integer starts with a
zero, in which case the padding is with zeros.

.An optional precision that gives the minimum number of digits to appear for the

d, i, o, u, x, and X conversions, or the maximum number of characters to be
written from an array in an s conversion. The precision takes the form of a
period (.) followed by an optional decimal integer; if the integer is omitted, it is
treated as zero. The amount of padding specified by the precision overrides that
specified by the field width.

An optional h specifying that a following d, i, o, u, x, or X conversion specifier
applies to a short int or unsigned short int argument (the argument will have
been promoted according to the integral promotions, and its value shall be
converted to short int or unsigned short int before printing); or an optional 1
specifying that a following d, i, 0, u, X, or X conversion specifier applies to a
long int or unsigned long int argument. If an h or | appears with any other
conversion specifier, it is ignored.

67-5

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

67-6

® A character that specifies the type of conversion to be applied. (Special AR
extensions have been added.) The conversion specifiers and their meanings are:

d, i, o u x, X

The int argument is converted to signed decimal (d or i}, unsigned octai
(o), unsigned decimal (u), or unsigned hexadecimal notation (x or X); the
letters abedef are used for x conversion and the letters ABCDEF for X
conversion. The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in fewer digits, it
will be expanded with leading zeros. The default precision is 1. The
result of converting a zero value with a precision of zero is no characters.

c The int argument is converted to an unsigned char, and the resulting
character is written.

s The argument shail be a pointer to a null-terminated array of 8-bit chars.
Characters from the string are printed up to (but not including) the
terminating null character: if the precision is specified, no more than that
many characters are printed. The string may be an array into which
output was written via the sprinff routine, '

P The argument shall be a pointer to void. The value of the pointer is
converted to a sequence of printable characters, in this format:
0000:0000. There are always exactly 4 digits to the right of the colon.
The number of digits to the left of the colon is determined by the
pointer’s value and the precision specified. Use this conversion to print
80286 memory addresses. The segment number will appear to the left of
the colon and the offset to the right.

% A % is written. No arpument is converted.

\n Writes hexadecimal 0D 0A, the ASCII carriage-return and linefeed
characters. No argument is converted.

If a conversion specification is invalid, the behavior is undefined.

If any argument is or points to an aggregate (except for an array of characters using
%s conversion or any pointer using %p conversion), the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is expanded to contain
the conversion result.

Returng

The printf routine returns the number of characters output.

Example

To print a date and time in the form "Sunday, July 3, 10:02,” where weekday and
month are pointers to strings:

JUL "90

87 Print

JUL '90

LAYER: 1

{

unsigned char date_time [100};
unsigned char weekday [i10};
unsigned char month [10];
unsigned short day;

unsigned char hour;

unsigned char min;

}
STATE: output_to_printer
CONDITIONS: KEYBOARD * "
ACTIONS;
{ : ‘
printf{ “%s, %s %d, %.2d:%.2d\n", weekday, month, dey, hour, min};
}
sprintf
Synopsi

extern int sprintf(string_ptr, formai_ptr);
unsigned char string [128];
const char * format_ptr;

Description

The sprintf routine is similar to the printf routine, except that sprintf writes output to
a string, while printf writes output directly to the print buffer for printing. The sprintf
routine is useful for writing formatted output to a display, printer, or file.

The output is under control of the string pointed to by format_ptr that specifies how
subsequent arguments are converted for output. If there are insufficient arguments
for the format, the behavior is undefined. If the format is exhausted while arguments
remain, the excess arguments are evaluated but otherwise ignored. The sprintf
routine returns when the end of the format string is encountered.

Inputs

The first parameter is a pointer t0 the array to which output will be written.

For the second parameter, see prin{f routine.

Returns

This routine returns the number of characters written into the array, not counting the
added null terminating character,

Example

Refer apain to the sample program for the displayf routine in Section 64.3(C). This
time you also want to send the output-to a printer. By using the sprintf routine, you
only have to enter the format string once.

67-7

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

67-8

LAYER: 1

{
unsigned char date_time [100];

unsigned char weekday [10};
unsigned char month {10];
unsigned short day;
unsigned char hour;
unsigned char min;

STATE: output_to_dlsplay_window_and_printer
CONDITIONS: KEYBOARD * -
ACTIONS:

{
sprintf(date_time, “%s, %5 %d, %.2d: %,2d\n", weekday, month, day, hour,

min);
displayf(" %s”, date_time);
printf(“%s", date_time);
}

set_print_header

Synopsis

extern int sel_prini_header(format_pir);
const char * format_ptr;

Description

This routine writes output to the print buffer, to be printed after each form feed,
under control of the string pointed to by formait_pt¢r. Paging is done automatically by
the INTERVIEW. The set_print_header routine returns when the end of the format
string is encountered.

Inputs

The format is composed of zero or more ordinary characters. Octal or hexadecimal
values also may be input, with octal preceded by \ and hex by \x. Pad each value
to three integers with leading zerges.

The status information shown above the prompt line on the display screens of the
INTERVIEW can be sent to a printer with the following inputs:

#d date (mm/dd/yy)
#t time (hh:mm)
#p page (not shown on the display screens)
#b block number
#
turn

The set_print_header routine returns the length of the header (0-255), or a -1 if the
header exceeds the buffer size.

JUL '80

67 Print

JUL '90

Example
If you want the date, time, and page number to appear in the heading on each page

sent to a printer, enter the following:

LAYER: 2
STATE: header
CONDITIONS: ENTER_STATE
ACTIONS:

{
set_print_header("##H# #d #t #p #in");

}
The printer output will look like this:

09/01/89 09:30 Page ; 1 ##4

#¥ OB/01/89 09:381 Page : 2 #¥

reset_print_page

Synopsis

extern int rese!_print_page();

ription

The reset_print_page routine resets the INTERVIEW's automatic page numbering for
printer output to 1.

Returns

If the page number is successfully reset, the routine returns zero. If the print buffer
is overrun, it returns -1.

Example

In the following example, a header with page numbering is assigned to printed output.
(See set_print_header routine above.) Elsewhere in the program (not shown) the
programmer has desipnated text to be printed. When the user presses the spacebar,
a new header will appear on the next page output to the printer. That output will

begin again with page 1.

67-9

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

67-10

LAYER: 1
STATE: print_output
CONDITIONS: ENTER_STATE
ACTIONS:

{
set_print_header("#d #t First Header kp\n");

)
CONDITIONS: KEYBOARD “ "

ACTIONS:

{
set_print_header{“#d #! New Header #p\n”);

resel_print_page(};
}

prints:

Synopsis

extern void prinis(siring_pir};
const char * string_pir;

Description

The prints routine is similar to the displays routines, except that prints writes output
to the print buffer for printing while displays writes output to the Display Window.
The output is under control of the string pointed to by the argument. The prints
routine returns when the end of the string is encountered. The softkey equivalent of
this routine is the PRINT PROMPT action on the Protocel Spreadsheet. A PRINT
PROMPT action automatically time—-stamps the output. Although prints does not, you
can create your own fime or date stamp with sei_print_header,

Inputs

The input is a pointer to a string composed of zero or more ordinary characters.
The newline norliteral sequence “\n" writes hex 0D 0A (ASCII %) to the output
string. Octal or hexadecimal values aiso may be included in the string, with octal
preceded by \ and hex by \x. Pad each value to three integers with leading zeroes.

Example
The following entry

LAYER: 1
STATE: print_message
CONDITIONS: KEYBOARD “ ~
ACTIONS:

{
prints(“End of test,");

produces the following output to a printer:

End of test.

JUL 'S0

