
64 Display Window and Trac9

64 Display Window and Trace

The C structures, variables, and routines detailed in this section control the type and location
of cenain displays on the INTERVIEW. These displays can be grouped into three categories.

The first display area is the prompt line, the second line on all Run-mode screens.

The second type of display utilizes the Display Window, available as a selection on the Display
Setup ponion of the Line Setup menu, or conditionally accessible via softkey during Run
mode. To write to the Display Window, use the pos_cursor (or restore_cursor) and dlsplayc,
display!, or displays routines. When using Display Window, you may position the cursor
before output is generated on the screen.

The third type of display utilizes one or a combination of the eight available trace buffers.
Trace screens are conditionally accessible -via softkey during Run mode. Seven user-traces
appear as choices under the User Trace selection on the Display Setup menu. The remaining
trace is Program Trace, also an option on Display Setup. Program Trace enables you to track
any or all layers, one or all tests, and movement between states. To write to any of the eight
trace-screens, use the tracee, trace!, and traces routines.

NOTE: You may not use the pos_cursor routine to position the
cursor on any trace screen. New lines (or blank lines) may be
generated via the U\n" specifier.

Attributes-color, underlining, and font, for example-may be assigned to characters in the
Display Window and all of the Trace buffers.

NOTE: Color attributes are applied to the ROB output signal,
not to the plasma screen.

64.1 Current Display Mode

JUL 'SO

A group of variables keeps track of softkey movement from one display screen to
another (see Table 64-1). When you move from the Display Window to the Program
Trace screen, for example, the fast-event variable displaYjcreen_changed indicates
the change of display. The coded value for Display Window now is stored in
prev_displaYjcreen, and the value for Program Trace can be found in
crnt _display jcreen.

64-1

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

Type

extern fast_evant

These variables also distinguish between Run mode and Freeze mode. This
distinction is imponant since some keys on the keyboard are mode-dependent. In
Freeze mode, for instance, cursor keys automatically become operational for scrolling
through the buffer. The programmer will want to avoid using these keys as
user-input when crnl_dispJaYjcreen indicates that the unit is in Freeze mode.

Table 64-1
Current DIsplay VarIables

Variable Value (hex/decimal) Meaning

display_screen _changed True when Run-mode
display-screen Is changed. or
when Run/Freeze mode Is
changed. Value In
crnCdlsplay_scresn Is stored In
prev_dlsplay_soreen, and
crnCdlsplay-screen Is updated.
Line Setup oonflgured for
emulate or monitor mode.

extern unsigned short crnt_ display_screen Contains current display screen
(lOW byte) and Indio ate. whether
unit Is In Run mode or Freeze
mode (high byte). Line Setup
configured for emulate or
monitor mode.

64-2

o
1
2
3
4
11117
12118
21133
31149
41165
42166
43/67
44168
45169
46170
47171
51181
52182
53183
54184
55185
56186
57187
61197
62198

1001256
o

display-screen

no display
single-line data
dual-line data
single-line data with lead.
dual-line data with leads
tabular statistics
graphic statistics
Display Window
Program Trace
Layer 1 Protocol Trace
Layer 2 Protocol Trace
Layer 3 Protocol Trace
Layer 4 Protocol Trace
Layer 5 Protocol Trace
Layer 6 Protocol Trace
Layer 7 Protocol Trace
User Trace 1
User Trace 2
User Trace 3
User Trace 4
User Trace 5
User Trace 6
User Trace 7
TIM paokage standard stats
TIM paokage aux
RunlFreeze mode (bit 9)

Freeze mode
Run mode

JUL '90

(

64 DIsplay WIndow and Trace

Table 64-1 (continued)

Type Variable Value (hex/decimal) Meaning

extern unsigned short prav_dlsplay_screen Contains previous display screen
(low bylel and Indicates whether
unit was In Run mode or Freeze
mode (high by tel . Line Setup
configured for emulate or
monitor mode.

64.2 Prompt Line

o
1
2
3
4
11/17
12/18
21/33
31/49
41/65
42/66
43/67
44/68
45/69
46170
47171
51181
52/82
53/83
54/84
55/85
56/86
57/87
61/97
62/98

1001256
o

display-screen

no display
single-line data
dual-line dala
single-line data with leads
dual-line data with leads
tabular statistics
graphic statistios
Display Window
Program Trace
Layer 1 Protocol Trace
Layer 2 Protocol Trace
Layer 3 Protocol Trace
Layer 4 Protocol Trace
Layer 5 Protocol Trace
Layer 6 Protocol Trace
Layer 7 Protocol Trace
User Trace 1
User Trace 2
User Trace 3
User Trace 4
User Trace 5
User Trace 6
User Trace 7
TIM package standard stats
TIM package aux
RunlFreeze mode (bit 9)

Freeze mode
Aun mode

Access to the prompt line is always available via the displaY"prompt routine, or its
softkey equivalent, the PROMPT action. Attributes may not be assigned to a prompt
created via either of these methods. (To create a prompt with attributes, use the
pas_cursor and display! routines.) Prompts appear on whatever screen is active at
the time the prompt is written, including trace screens. With one exception,
movement to another display erases the prompt. The only screen which retains the
most recent prompt is the Display Window.

JUL 'SO

You may also position the cursor to the prompt line in the Display Window via the
pas_cursor routine. The initial position of the cursor in the Display Window is at the
beginning of the prompt line-row zero, column zero. Anything written to this cursor

64-3

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

64-4

position in the Display Window will appear as a prompt on anyone of the other
display screens (assuming one of them is active at the time the message is written).
Position the cursor below the prompt line for messages intended for the Display
Window only.

Trace buffers retain no record of prompts. When you write to a trace screen, the
initial position of the cursor is the line immediately below the prompt line-row one.
Since you may not position the cursor in trace buffers, all messages written to trace
buffers are appended at the end of the buffer. You may never access the prompt
line via tracef (or tracec or traces) routines.

64.3 Display Window

The Display Window preserves one screen, including the prompt line, of user-entered
messages. When the end of the display screen is reached, the previous messages are
overwritten. beginning at row one (the line below the prompt line).

NOTE: Use the keyboard variables and the send_key routine
explained in Section 72, Other Library Tools, to program the
Run-mode use of I±I and I!I in the Display Window. (For other
Run-mode screens, these keys control the playback speed of disk
data.)

(A) Variables

There are variables accessible to the user which provide information about the
Display Window. Table 64·2 lists the variables and their possible values. Two
variables indicate the current position of the cursor: current _line stores the row
number and current_col stores the column number. To find out which attributes
are active in the Display Window, check the values stored in window_color and
window_modifier. Color is stored in the high byte of the two-byte variable
window_color. Enhancements are stored in the low byte. The current font code
can be found in window_modi/ier.

NOTE: Attributes assigned via the %m conversion specifier
(refer to tracef-routine input) to characters in trace buffers will
not alter the values of window_color and window_modifier. These
variables refer to the Display Window only.

The variable display_window _buffer provides the user with access to the
display-window buffer. This variable is an array of 1,088 longs. Each element
in the array contains one byte of character data and three bytes of attributes.
The attributes are determined by the current values of window_color and

window_modifier.

JUL '90

(

(

Type

extern unsigned short

extern unsigned short

extern unsigned short

JUL '90

64 Display Window and Trace

Table 64·2
Display Window Variables

Variable Value (hex/decimal) Meaning

currentJlne

window_color

0·1010-16

0-31/0-63

o
1
2
3
4
5
6
7

o
8
10/16
18/24
20/32
28/40
30/48
38/56

Contains the currant row
number at the cureor position In
the Display Window. Line Setup
oonflgured for emulate or
monitor mode.

Contains the current column
number of the ours or position In
the Display Window. Line Setup
configured for emulate or
monitor mode.

Two-byte variable. Current
color selections are Indicated In
the low byte. Current
enhancements are Indloated In
the high byte. Written to by 'Yom
conversions. Attributes are
copied Into data words In
Display Window. Line Setup
configured for emulate or
monitor mode.

Isolate bits of Interest via
bitwise Bnding (&) of mask with
variable. Compare result to
value column. For example,
underline attribute mask =
Ox100. Therefore window color
& Oxl00 equals 0 (underlln-. off)
or Oxl00 (underline on). Lin.
Setup configured for emulate or
monitor mode.

background color mask = 7 (blls
1-3);

black
blue
green
cyan
red
magenta
yellow
white

foreground color mask = Ox38
(blls 4-6);

black
blue
green
cyan
red
magenta
yellow
white

64-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108

Table 64·2 (continued)

Type Variable Value (hex/decimal) Meaning

(window_color continued)

64-6

o
40/64

o
80/128

o
100/256

o
200/512

o
400/1024

o
800/2048

o
1000/4096

o
2000/8192

o
4000/16384

o
8000/32768

color blink mask. Ox40 (bit 7);

no blink
blink

color strlke-thru mask = Ox80
(bit 8);

no strlke-thru
strlke-thru

overllne mask = Oxl00 (bit 9);

no averllne
overllne

blank mask = Ox200 (bit 10);

no blank
blank

underline mask = Ox400 (bit
11);

no underline
underline

reverse Image mask = Ox800 (bit
12);

no reverse Image
reveres Image

hex mask = OxlQOO (bit 13);

no hex
hex

low Intensity mask = Ox2000 (bit
14);

no low Intensity
low Intensity (RS-170 output)

monochrome blink mask =
Ox4000 (bit 15);

no monochrome blink
monochrome blink

monochrome strlke-thru mask =

Ox8000 (bit 16);

no monochrome strlke-thru
monochrome strlke-thru

JUL '90

Type

extern unsigned char

extern unsigned long

64 Display Window and Trace

Table 64-2 (continued)

Variable Value (hex/declmal) Meaning

window_modifier

o
1

2

3

7

dlsplav.wlndow_buffer (1088)

Contains the current modifiers,
Line Setup con'lgured 'or
emulate or monitor mode.

rant mask. 7 (bits 1-3):

ASCII
special graphic oharacter set
(re'.r to Table 64-5)
primary font-code selected on
line Setup
alternate font-current
Implementation Is for call-setup
phase In X.21 IASCII)
hexadecimal

Arrav 0' 32-blt words that make
up the one-screen Display
Window. Each word contains
three bytes of attributes and a
one-byte character. Refer to
Table 64-4. Line Setup
configured for emulate or
monitor mode.

(B) Structures

JUL '90

Once the data word is written to the buffer as an element in the
display_window_buffer array. it can be accessed and written to-and therefore
changed-the same as any other location in memory. There is an exlern array.
display_window_index_buffer/17J. which provides a method of informing the
display controller on the CPM card that the display needs to be updated. The
structure of this array is shown in Table 64-3.

Each element in the display_window_index_buffer array represents a horizontal
row or line in the Display Window. Each element is a structure with two
variables. mpm and cpm. The first variable in the structure. mpm. increments
automatically whenever a line in the display-window buffer is updated by a
display routine. (If you write to the buffer directly without using one of the
display routines. you must increment this variable "manually. ") Its particular
value at any moment is not important. What is significant is whether or not the
value of the second variable in the structure. cpm. is the same as mpm. The
processor on the CPM compares these two variables (for each line) periodically
to determine if a line in the Display Window needs to be rewritten. If the
values of the two variables do not match. it means that a line updated in
memory now needs to be updated by the CPM display-controller software.
After the display is changed. the value of mpm is copied automatically into cpm.

64-7

INTERVIEW 7000 Series Advanced Programming: A TLC-l 07-951-108

Table 64·3
Display Window Buffer Structures

Type Variable Value (hex/decimal) Meaning

Structure Name; dlsplay_window_lndex_buffer (17) An array of structures used for detecting
changes to the display-window buffer. There are
seventeen elements In the array. one tor each
line In the Display Window. When a change 10
made to a line In the display-window buffer. the
corresponding element In the array Is accessed.
If a display' routine changes line 3.
dlsplay_wlndow_'ndex_buller{3/.mpm 10
automatically Incremented. The CPM detects
the difference between

unsigned char

unsigned char

64-8

mpm 0·1110-255

cpm 0-1110-255

(C) Routines

display_window _'ndex_ bull.r 13/. mpm and
d'sp'ay_w'ndow_'ndex_buller (3/ .cpm and
updates line 3 In the Display Window. Declared
as type extern struct.

You must Increment an mpm variable manually
when you write directly (not via a dlsplayt routine)
to the Display Window.

When the MPM updates a line In the
display-window buffer. thlo variable Is
Incremented.

The CPM cheoks the value 01 thl. variable agalnot
the value 01 mpm. II they are different. the
value In mpm I. copied Into cpm. The updated
line In MPM Is then presented on the
display-window screen.

You may position the cursor before output is generated on the screen via the
pos_cursor and restore_cursor routines. The pos_cursor routine positions the
cursor at the row and column you specify. The restore_cursor routine returns
the cursor to a previous location.

One routine. display!. allows you to add attributes to messages In the Display
Window. including the prompt line. These attributes are listed in Table 64·4.

Additional routines control the labeling of Display Window softkeys;
set_dwJkey_label. show_dwJkeY_labels. highlighf_dwJkey_label. and
unhighlighl_dw Jkey _label.

JUL 'SO

(

JUL '90

dlsplayc

Synopsis

extern void displayc(character},'
const char character;

Description

64 Display Window and Trace

The displayc routine outputs a single ASCII character to the Display Window
screen. The placement of the output on the screen may be controlled via the
pos_cursor routine. Attributes may not be used In dlsplayc.

The parameter value may be given as a hexadecimal. octal. or decimal constant;
as an alphanumeric constant inside of single quotes; or as a variable. A
hexadecimal value must be preceded by the prefix Ox or OX; an octal value must
be preceded by the prefix O. If no prefix appears before the input. the number
is assumed to be decimal. Valid numeric entries are 00 to 127. decimal. An
alphanumeric character placed between single quotes will be output as is to the
display.

Example

The displayc entries on the left output the character given on the right. at the
cursor location on the Display Window screen:

dlsplayc('Q'); a

displayc(65); A

displayc(Ox65); e

displayc(065); 5

dlsplayf

Synopsis

extern int dfsplay/(formatJ"r, ...);
const char· formatJlr ,'

Description

The display! routine writes output to the Display Window screen. under control
of the string pointed to by!ormalylr that specifies how subsequent arguments
are converted for output. If there are insufficient arguments for the format. the
behavior is undefined. If the format is exhausted while arguments remain. the
excess arguments are evaluated but otherwise ignored. The display! routine
returns when the end of the format string is encountered. The placement of the
output on the screen may be controlled via the pos_cursor routine.

64-9

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-107-951-10B

The format is composed of zero or more directives: ordinary characters (not
%), which are copied unchanged to the output stream; and conversion
specifications, each of which results in fetching zero or more subsequent
arguments. Each conversion specification is introduced by the character %.
After the %, the following appear in sequence:

• Zero or more flags that modify the meaning of the conversion specification.
The flag characters and their meanings are:

The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a plus or
minus sign.

space If the first character of a signed conversion is not a sign, a space will
be prepended to the result. If the space and + flags both appear, the
space flag will be ignored.

The result is to be convened to an "alternate form." For d and i
conversions. the flag has no effect. For 0 conversion, it increases the
precision to force the first digit of the result to be a zero. For x (or (
X) conversion, a nonzero result will have Ox (or OX) prepended to it.
For u conversions, the argument is displayed in small hex characters.
For example, displayf ("o/o#u" , 258); yields 0,0,. For c and s
conversions, if the argument contains a newline character, it is
displayed as .,..

• An optional decimal integer specifying a minimum field width. If the
convened value has fewer characters than the field width, it will be padded
on the left (or right, if the left adjustment flag, described above, has been
given) to the field width. The padding is with spaces unless the field width
integer starts with a zero, in which case the padding is with zeros.

• An optional precision that gives the minimum number of digits to appear for
the d. i, 0, U, x, and X conversions, the maximum number of characters to
be written from an array in an s conversion, or the number of characters to
be written from an array in an H conversion (overriding the usual
null-termination of strings). The precision takes the form of a period (.)
followed by an optional decimal integer; if the integer is omitted, it is treated
as zero. The amount of padding specified by the precision overrides that
specified by the field width.

64-10 JUL '90

JUL '90

64 Display Window and Trace

• An optional h specifying that a following d, I, 0, u, x, or X conversion
specifier applies to a shorl int or unsigned short int argument (the argument
will have been promoted according to the integral promotions, and its value
shall be converted to short int or unsigned short int before printing); or an
optional I specifying that a following d, i, 0, u, x, or X conversion specifier
applies to a long int or unsigned long int argument. If an h or I appears
with any other conversion specifier, it is ignored.

• A character that specifies the type of conversion to be applied. (Special AR
extensions have been added.) The conversion specifiers and their meanings
are:

d, i, 0, ll, x, X

The int argument is converted to signed decimal (d or i), unsigned
octal (0), unsigned decimal (u), or unsigned hexadecimal notation (x
or X); the letters abcdef are used for x conversion and the letters
ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting a zero value with
a precision of zero is no characters.

c The int argument is converted to an unsigned char, and the resulting
character is written.

s

p

%

\n

H

The argument shall be a pointer to a null-terminated array of 8-bit
chars. Characters from the string are written up to (but not including)
the terminating null character: if the precision is specified, no more
than that many characters are written. The string may be an array
into which output was written via the sprint! routine. (If the string
pointed to is an array which has been written via the strace! routine,
you must use %b rather than %s to display it.)

The argument shall be a pointer to void. The value of the pointer is
converted to a sequence of printable characters, in this format:
0000:0000. There are always exactly 4 digits to the right of the
colon. The number of digits to the left of the colon is determined by
the pointer's value and the precision specified. Use this conversion to
display 80286 memory addresses. The 16-bit segment number will
appear to the left of the colon and the 16-bit offset to the right.

A % is written. No argument is converted.

Displays'>. No argument is converted. When \n is not preceded by
a %, it is not a conversion speCifier. Instead of a '> being displayed, a
newline (<;. '» will be executed.

displays a character array (pointed to by the argument) as small hex
characters. If precision is specified, it is used as the length of the
array (overriding the usual null-termination of strings).

64-11

INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108

64-12

b The argument shall be a pointer to an array of 32-bit words.
Characters from the string are written up to (but not including) the
terminating word containing a null character: if the precision is
specified, no more than that many words are written. If the string
pointed to is an array into which output was written via the strace/
routine, you must use %b rather than %s to display it. (To display
the information in an array written to via sprint/, use %s.)

m The argument is a long integer that indicates attributes to be assigned
to subsequent characters. Attributes stay "on" until they are
specifically turned "off" with. another %m conversion specifier. The
lowest-order byte contains primarily font code. The next higher byte
is not used to set attributes. (In the display-window buffer, this
second byte Is reserved for character coding.) The third byte holds
color information. The high byte indicates which enhancements
should be invoked.

Attributes are written automatically to window _color and
window _modifier variables, then copied into subsequent 32-bit data
words in the Display Window. Table 64-4 shows the format of this
32-bit word.

Attributes may not be assigned as a one-byte value. Even if you want
to alter only one attribute setting, color for example, you must include
it as part of along. Append an "L" at the end of the hexadecimal
code specifying attributes to indicate the value is a long.

NOTE: If you are specifying an attribute in a lower-order byte of the
long, color for example, and you want the high byte (or bytes) to be
zero, you may omit the high byte provided you have the "L"
appended at the end of the hexadecimal code. The high byte (or
bytes) will be left-padded with zeroes. For example, Ox200000L is
converted to Ox00200000L. Associated characters will be displayed
on a color monitor as green on a black background, as dictated by the
hexadecimal 20 in the third byte. Enhancements are controlled in the
high byte, now assigned a value of zero. Any enhancements
previously turned lion" will be turned II off. "

If a conversion specification is invalid, the behavior is undefined.

If any argument is or points to an aggregate (except for an array of characters
using %s conversion or any pointer using %p conversion), the behavior is
undefined.

In no case does a nonexistent or small field width cause truncation of a field; if
the result of a conversion is wider than the field width, the field is expanded to

contain the conversion result.

JUL '90

(

JUL '90

64 Display Window and Trace

Returns

The display! routine returns the number of characters displayed.

Example

To display a date and time in the form "Sunday, July 3, 10:02," where weekday
and month are pointers to strings:

LAYER: 1
{

)

unsigned char'weekday /10];
unsigned char month /lOJ;
unsigned short day;
uruigned char houri
unsigned char min:

STATE: output_to_dlsplay_wlndow
CONDITIONS: KEYBOARD' •
ACTIONS:
{
dlsplay/("%s, %s %d, %.2d:%.2d\n", weekday. monrh. day, hour, min):

)

sprintf

The sprint! routine is similar to the display! routine. display! writes output with
or without attributes directly to the Display Window. sprint!, fully documented
in Section 67.3, writes output to a character array in which attributes are not
supported. This routine is useful for writing formatted output to a display,
printer, or file.

See also strace! in Section 64.4(C).

64-13

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

Bit Mask (hex)t

1-3 OOOOOO.QZL

4 OOOOOOQaL

Table 64-4
Display WlndowlTrace Buffer 32-BII Dala Word

Input (hex) tt

OOOOOOQl!L
OOOOOOlUL

OOOOOOQ2.L

OOOOOOQaL

OOOOOO.QZL

OOOOOOQl!L

OOOOOOQaL

Meaning

Modifier aUrlbute., font for example,
are oontalned In the low byte of the
32 -bit word.

Eml1:

ASCII "
speolal graphic character sat (refer to
Table 64-5)
primary font-oode .elected on Lin.
Satup
alternate font-current Implementation
Is for oall-setup phase In X.21 (ASCII)
hexadecimal

Special charaoter IndlQatgr:
(used In trace buffer only; should not
b. altered by user)

only value In modlller In trace buffer
header
Character Is not displayable but
contains control Info used Internally by
the trace loglo. When a "\n- Is
Included In a tracef routine. for
example, a new line Is generated, but
nothing Is displayed on the traoe
screen. The tracel routine
automatically .et. this bit before the
32-blt word Is wrlUen Into
trace_but. array.

5-8

9-16

OOOOOOfllL
OOOOllOOL

OOOOOOQl!L
OOOOQl!OOL

unused. but should be zero

Character data Is contained In the
second byte of the long word. Input
shOUld be 00 In all %m oonverslona,

t Use the masks to change attributes of characters In the Display Window or trace buffer, In the Display Window.
characters are represented In the second byte of the longs that comprise the 1,088 array elements In
dlsplay_wlndow_bufler, In the trace_but structure. the characters are represented In the second byte of the
longs that make up the trace_but. array, To change one attribute of a character while leaving the others
unchanged:

display_window _butler [position] = ((display_window _buller [position] & (-artrlbute-mask)) I Input);

To change only the font of the twenty-first character In the trace buffer from Its current setting to the special
graphic font, for example:

12_trbuf.array[20] = ((trace_buf.arrayI20] & (-OxOOOOOOOlL)) I OxOOOOOOO1L);

Anding the character with the mask will Indicate the current setting of an attribute:

If (12_trbuf.array[20] & OxOOOOOOOlL) equals 2, then the 21st character In the Trace 2 user-trace buHer I.
being displayed In the font selected on the Line Setup menu.

tt In display(routines, the %m conversion specifier writes Input to the wlndow_oo/or and window_modlller
variables. These variables are copied Into subsequent data words In the Display Window. In tracet routines, the

%m conversion speCifier writes Input to trace_buffer_header. The header Is then copied Into each subsequent
data word In the buffer. Combine attributes via hexadecimal addition.

64-14 JUL '90

(

Bit MasK (hex)

17-19 OOQZOOOOL

20·22 003ll0000L

23 OO!QOOOOL

24 OOllOOOOOL

25 Q.1000000L

26 J!2000000L

27 QAOOOOOOL

JUL '90

Table 64·4 (continued)

Input (hex)

OOQQOOOOL
00Q.10000L
00J!20000L
000.30000L
OOQAOOOOL
OO~OOOOL
OOl).§OOOOL
OOQZOOOOL

OOQQOOOOL
00Ql10000L
001!10000L
001J!0000L
002l!0000L
002.80000L
OO:lQOOOOL
003ll0000L

OOQQOOOOL
OO!QOOOOL

OOQQOOOOL
OOllOOOOOL

QQOOOOOOL
Q.1000000L

QQOOOOOOL
J!2000000L

QQOOOOOOL
QAOOOOOOL

64 Display Window and Trace

Meaning

C%r 19 contained In the third byte of
the lona. Combine color attributes via
hexadecimal addition.

Background color:

black
blue
green
cyan
red
magenta
yellow
white

Foreground color:

black
blue
green
cyan
red
magenta
yellow
white

Color blink:

no blink
blink

Color strike-they:

no strlke-thru
strlk8-thru

Enhance aUrlbutes, underlining for
example, are contained In the high
byte of the /ong. Combine
enhancements via hexadecimal
addition.

Oyerllne:
(for monochrome and color)

no overllne
overllne

6IiIllk:

monochrome display. color display
monochrome no display I color display

Underline:
(for monochrome and color)

no underline
underline

64-15

INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108

Table 64·4 (continued)

Bit Mask (hex) Input (hex) Meaning

28 oaOOOOOOL MacacbCQmll UI~Ii![S8 Image:

Q.QOOOOOOL no reverse Image
oaOOOOOOL reverse Image

29 10000000L 1::!l!.K:

Q.QOOOOOOL no hex
10000000L hex

30 2.0000000L MgDgcb[~nDg lew IC1IiIDSI1!l:

Q.QOOOOOOL no low Intensity
2.0000000L low Intensity (RS·170 Interlace,

31 iQOOOOOOL Monochrome blink:

Q.QOOOOOOL no blink
iQOOOOOOL blink

32 D.QOOOOOOL Monochrome s1rlke-thry:

Q.QOOOOOOL no strlke-thru
D.QOOOOOOL strlke-thru (

(

64-16 JUL '90

64 DIsplay WIndow and Trace

Table 64·5
Special Graphic Character Sett

Display Input (hex/decimal) Display Input (hex/decimal)

"L 0 lc/28

S ld/29

2 T le/30

3 .L 11131

» 4 -i 20/32

« 5 ~ 21133

.li. 6 ~ 22/34

I!I 7 I 23/35

I!1l 8 • 24/36

lEI 9 ~
~ 25/37

III all0 ~ 26/38

lID bill I 27/39

[I c/12 >\
~ 28/40

Itil d, 11/13, 17
.,

29/41 Ii

;J e/14 I 2a/42

filS ~~. 2b/43

10116 I\'Ij 2c/44

1 12118 • 2d/45

J 13/19 ~~ 2e/46

14120 W!I 2f147

15121 • 30/48

!ill 16122 (space) 31149

~ 17123 -t 32/50

L 18124 '"
33/51

r 19/25 +- 34/52

1 lal26 + 35/53

+ lbl27 36/54

t Written to the Display Window or a trace buffer when low (modifier) byte of 32-blt data word = OxOl,

JUL '90 64-17

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

Table 64-5 (continued)

Display Input (hex/decimal) Display Input (hex/decimal)

¥ 80/128 :J 9a/154

• 81/129 fj 9b/155

r 821130 SI 90/156

J 83/131 ~ 9d/157

84/132 t? ge/158

85/133 ') 911169

3 86/134 5' aO/160

l' 87/135 f a1/161

-(88/136 \~ a2l162

., 89/137 T a3/163

r 8a/138 ~ a4/164

>t 8b/139 l' a5/165

l' 80/140 a6/166

.::l 8d/141)I a7/167

:0 8e/142 ~ a8/168

!!I 81/143) a9/169

90/144 II aa/170

J' 91/145 !:: ab/171

,(921146 "J ao/l72

oj 93/147 "- ad/173

I 94/148 1r ae/174

>t 95/149 ? al/175

;i) 96/150 => ~ bO/176

'f 97/151 6. b1/177

IJ 98/152 ;. b2l178

'r 99/153 'E b3/179
(

64-18 JUL '90

64 Display Window and Trace

Table 64·5 (continued)

Display Input (hex/decimal) Display Input (hex/decimal)

." b4/l80 A 0.1206

2 b5/l8l A 01/207

3 b6/l82 It d01208

"5 b7/l83 <I! dl/209

IJ b8/l84 i£ d2/2l0

J~ b91l85 6 d31211

II bal186 ti d41212

0 bb/187 6 d5/213

'J be/188 U d6/214

:! bdl189 U d7/215

" b./190 9 d81216

bl/191 d d9/217

<; 00/192 U dal218

U 01/193 ct db/219

e 021194 £ do/220

it 031195 B dd/221

a 041196 R d./222

a 051197 J dl/223

~ 061198 a .0/224

c 071199 .11225

e 081200 6 .21226

e 091201 U .3/227

Eo oal202 Pi .4/228

r ob/203 N 95/229

00/204 9 .6/230

cdl205 Q .71231

JUL '90 64-19

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Display

(..

~

~

~

~

64-20

Table 64·5 (continued)

Input (hex/decimal)

06/232

09/233

0./234

ob/235

00/236

displays

Synopsis

extern 'Void displays (strinSJ'r) ;
const char· stringJtr;

Descriptioo

Display

§

•

Input (hex/decimal)

od/237

00/236

011239

10/240

The displays routine writes output to the Display Window screen, under control (.
of the string that is pointed to by stringytr. The displays routine returns when
the end of the string is encountered. The pia cement of the output on the screen
may be controHed via the pos_cursor routine. Attributes may not be used in
displays.

The input is a pointer to a string composed of zero or more ordinary characters.
Octai or hexadecimal values also may be included in the string, with octal
preceded by \ and hex by \x. Pad each value to three integers with leading
zeroes.

Example

The foHowing entry

pos_cursor(0, 0);
displays("End of test. ");

produces the foHowing output on the prompt line:

End oj test.

The foHowing coding produces the same output:

pos_cursor(0, 0)j
consl char· stringylr:
stringy,r = "End of test. H;

displays (stringyl,.)"

JUL '90

JUL '90

64 Display Window and Trace

display-prompt

Synopsis

extern lJold display YTompt (stringy");
const char' strlngy'r;

Descriptjon

The displayyrompt routine displays a designated string at the beginning of the
prompt line. The cursor is automatically positioned at row zero, column zero.
Once the prompt .is. written,_the_curso~ is returned to its previous position. The
softkey equivalent of this routine is the PROMPT action. The prompt is visible on
whichever display screen is active at the time the prompt Is written. The most
recent prompt is retained in the Display Window. Attributes may not be used in
display yrompt.

The input is a pointer to a string composed of zero or more ordinary characters.
Octal or hexadecimal values also may be included in the string, with octal
preceded by \ and hex by \x. Pad each value to three integers with leading
zeroes.

Example

Refer to the example provided for the displays routine. The same string could
be output to the same position without calling the pos_cursor routine:

or

dlsptayyrompt("End of test.");

const char' stringy'r,'
strlngylr = "End of test. ";
dlsplaYJ'rompt (strlngY'f):

pos cursor

Synopsis

exlern unsigned int pos_cursor(row. column),'
unsigned char row;
unsigned char column,'

Description

This routine positions the cursor on the Display Window screen by row and
column numbers.

NOTE: The pos_cursor routine may not be used to position the
cursor on trace screens.

64-21

INTERVIEW 7000 Series Advanced Programming: A TLC-1 07-951-108

64-22

The first parameter is the row number. Possible values: 0-16. (The top line of
the screen is reserved for header information and cannot be written to.)

The second parameter is the column number. Possible values: 0-63.

Returns

The pos_cursor routine returns the previous cursor position in the form of an
unsigned int. The high byte contains the row number; the low byte identifies the
column number.·

Example

To position the cursor at the far left edge of the prompt line on the Display
Window, enter zero for both parameters.

LAYER: 4
STATE: wrlte_to_dlsplay

CONDITIONS: KEYBOARD·
ACTIONS:
{
pos_cursor(O, 0);
disp/ays("Dlsp/ay on prompt line. "};

)

restore_cursor

Synopsis

extern ~oid restore_cursor(posllion);
unsigned Int postlion;

Description

The restore_cursor routine returns the cursor to a previous position.

.l!l!2!!U

NOTE: The restore _cursor routine may not be used to position
the cursor on trace screens .

The only input is an unsigned int in the same form that is used by the returned
value of the pos _cursor routine. The high byte identifies the row number. The
low byte identifies the column number.

Example

Suppose the cursor is located in the middle of the Display Window. You want
to write a message to the prompt·line, but return to your previous location on
the screen to continue your display.

JUL '90

JUL '90

64 Dlspl8y Window 8nd Tr8ce

}
unsigned 1711 previous;

STATE: display
CONDITIONS: KEYBOARD'
ACTIONS:
{
pos_cursar(S, 0);
dlsplaysC"Thls tine begins on row 8, column 0 of the Display Window,"):
prell;ous = pos_cursor(O,O);
dlsplays("This sentence Is on the prompt line. ")j
restore_cursor (previous);
dlsplaysC"Thls senlenctr-beglns on row 8, column 58 of the Display Window, the
position of the CUrsor at 'he time pos3ursor(O,O} was caUed. ",:

}

Synopsis

extern lJoid sel_dwJkey_lobel(fkey, labelJ'tr);
unsigned in' /key;
const char· labelJ"j

Description

The set_dwJkey_label routine assigns a user-defined label to a specified Display
Window soltkey. A call to set_dwJkey_label does not automatically update the
label on the Display Window screen. You must press the Run-mode DSP WND

soltkey at least once to access the new rack of softkey labels. Alter that, you
may update the display by calling the show_dwJkeY_'abels routine.

You may monitor the soltkeys associated with your labels only when the
user-defined rack of soltkeys is active, i.e., the labels are displayed. When the
labels are displayed and a function key pressed, the fast-event variable
keyboard_new_any_key comes true and the variable keyboard_any_key is updated
according to the values listed below. See Section 72.2 lor more inlormation on
these variables.

H~1!; Valll~ K~~ er~ss~g

197 !Ill
198 1m
199 rrn
19a (H]

19b 1m
19c 1m
19d !W
1ge [f!)

There is no Protocol Spreadsheet soltkey equivalent of this routine.

64-23

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

64-24

The first parameter identifies the number of the function key to be labeled.
Integers Crom 1 through 8 are valid values. If the specified value is out oC the
valid range, the label is not assigned to any soitkey.

The second parameter is a pointer to a null-terminated string, i.e., the label that
should appear below the designated soCtkey. The label string has a maximum
length oC seven characters. If it has fewer than seven characters, it is padded to
the right with spaces. If it has more than seven characters, only the first seven
are used.

Example

In the example below a label is assigned to each of the soitkeys in the Display
Window. To see the labels displayed, press DSP WND.

LAYER: 1
STATE: dellneJabels

CONDITIONS: ENTER_STATE
ACTIONS:
{

}

set_dwJkeY_label(J, .. one"):
sel_dwJkeY_label(2." two");
sel_dwJkey_labe/(J, If three");
set_dwJkey_labe/(4, " four");
set_dwftey_,abel(5 • .. jive"):
sel_dwJk.eY_label(6, .. six");
set_dwJkey_labe/(7, .. seven");

show _ dw _fkey Jabels

Synopsis

extern '!Iold show _dw Jkey_'abels():

Description

The show_dwJkeY_labels routine updates the display of all user-assigned softkey
labels in the Display Window. For this routine to have any effect, the DSP WND

soCtkey must have been pressed at least once and the user-assigned labels must
be currently displayed. There is no Protocol Spreadsheet softkey equivalent of
this routine.

Example

Enter the Display Window by pressing DSP WND in Run mode. Then alternate
between two defined softkey rack by pressing (E!J (labeled MORE) Crom either

rack.

extern fast_event keyboQrd_new _any_key;
extern volatile unsigned short keyboard_a ny_key;

}

JUL 'SO

(

JUL 'SO

LAYER: 1
STATE: flrstJack

CONDITIONS: ENTER_STATE
ACTIONS:
{

}

set_dwJlcey_'abel(1, .. one"};
ul_dwJkey_'abel(2." two"};
sel_dwJkey_'abtl(3, OJ three"};
stl_dwJk,y_'ab.'(4, .. lour"~);

set_dwJkey_label(S, II /ive"):
se,_dw Jkey_,abet(6." six"):
se,_dwJkey_'abel(7, .. sev,n"};
set_dw Jkey_'abel(8, .. MORE");
show _dw Jk,y_'ab.,s ();

NEXT_STATE: •• condJack
STATE: second_rack

CONDITIONS:
{

64 Display Window and Trace

keyhoard_new_any_key && (keyboard_any_key == Ox1ge) ,- MORE pressed on rack 1 ./
}
ACTIONS:
{

}

set_dwJkey_labet(J, .. eight"I;
se,_dwJkey_label(2," nine"};
se,_dwJkey_'abel(3," ten");
set_dwJkey_'abel(4, .. elt\len"):
sel_dwJkeY_label(5, .. Iwel"e");
sel_dw J/(ey_'abel(6, .. ,hiT'n") j
set_dw.JkeY_label(7, .. jour'n");
se,_dw Jkey_'abe'(B," MORE");
show_dw Jk,y_'abe's();

NEXT_STATE: walt_for_mor.
STATE: waIUor_mor.

CONDITIONS:
{
keyboard_new_any_key && (keyboard_any_key == Ox/ge) /- MORE pressed on rack 2 -/

}
NEXT_STATE: flrstJack

hlghlight_dw_fkeYJabel

Synopsis

extern void hfghligh,_dwJkey_'abel(jkey);
unsigned In, /key;

Description

The highlight_dwJkey_/abel displays a specified user-defined softkey label in
reverse video. This routine applies to the Display Window only. There is no
Protocol Spreadsheet so[tkey equivalent of this routine.

64-25

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

64-26

The only parameter identifies the number of the function key whose label is to
be highlighted. Integers from 1 through 8 are valid values. Values outside this
range are ignored.

Example

This example is similar to the one for show_dwJkey_/abe/s except that each
time a sohkey is pressed, its label is highlighted and any previous highlighted
label is returned to normal video.

extern !ast_tvent keyboard_new_ony_key:
exlern volatile unsigned shor' keyboard_any_keYi
unsigned short currentJkey; ,- currenlly highlighted flcey label -,

}
LAYER: 1

STATE: flrstJack
CONDITIONS: ENTER_STATE
ACTIONS:
{

}

unhlghlight_dw Jkey_label(currentJkey);
se,_dw Jkey_'obel(J . .. on"');
set_dwJkey_labeJ(2 • .. two"};
se,_dwJkey_lahel(3, If three"};
set_dwjkey_Iabel(4, .. jour"}:
set_dwJkey_label(S, .. li'lle"):
sel_dw Jkey_label(6, .. six"}:
set_dwJkey_label(7, .. sellen");
set_dwJkey_labe/(8, .. MORE");
currentJkey = 0; ,- 0 nol in range - no f'key highlighted ./
show jw Jkey_'abe's();

NEXT _STATE: .econdJaok
STATE: secondJaok

CONDITIONS:
{
keyboard_new_any_key && (keyboard_any_key == Ox/ge) ,- MORE pressed on rack 1 -,

}
ACTIONS:
{

}

unhighligh t_ dw Jkey _la bel (curren tJkey):
currentJkey = 0: ,- no hIghlight on inIlIal dispJay of rack 2 -,
set_dwJkeY_label(l, " eight");
set_dw...fkey _label (2," nine");
sel_dw...fkey_label(3, .. len"):
sel_dwJkey_labe/(4, .. eleven");
set_dw Jkey_label(5, .. lwelve"):
sel_dw Jkey_'abel (6, II ,hirtn"):
sel_dwJkey_label(7, II fourtn");
set_dwJ<ey_label(8, " MORE");
show _dw J<ey_labels();

JUL '90

I.

JUL '90

NEXT_STATE: walt_lor_more
CONDITIONS:
{

64 DIsplay WIndow and Trace

,. key other than MORE pressed on rack 1 '"I .
ktyboard_new_ony_key &:& «keyboard_ony_key >= Q,xJ97) && (keyboard_any_key <=

Oxl9d))
}
ACTIONS:
{

}

unhlghllghljw Jkey_'abel (currtnIJkey);
currentJkeY = keyboard_a ny_key - OxJ96;
hlghllghl_dw Jkey_'abel(currenIJkey);

STATE: walt_lor_more
CONDITIONS:
{

,- key other than MORE. pressed on rack 2 '"
keyboard_new_any_key && «keyboard_ony_key >= Ox197) && (1ctyboard_any-"ey <=

Ox19d))
}
ACTIONS:
{

}

unhlghligh t _dw Jkey _label (curren t Jkey);
currentJkey = keyboard_anY_key - OxJ96,
hlghllgh ,_ dw Jkey _'abe' (curren I Jkey);

CONDITIONS:
{
keyboard_new_Qny_key && (keyboard_any_key == OxJgeJ ,. MORE pressed on rack 2·'

}
NEXT_STATE: IlrstJack

unhlghllght_dw_fkeyJabel

SynQl2sis

exlern void hlghllghl_dwJkey_'abe/(fkey):
unsigned inl Ikey;

Description

The unhighlight_dw Jkey _label displays a specified user-defined so[tkey label in
normal video. This routine applies to the Display Window only. There is no
Protocol Spreadsheet softkey equivalent of this routine.

The only parameter identifies the number of the function key to be
unhighlighted. Integers from 1 through 8 are valid values. Values outside this
range are ignored.

Example

64-27

INTERVIEW 7000 Series Advanced Progremmlng: ATLC-l07-951-10B

64-28

64.4 Program and User Traces

Unless their sizes are increased. Program Trace and the User Traces retain a
maximum of 4096 characters, equivalent to four full screens when every character
space is used. (See Section (B)2. below on increasing the size of trace buffers.)
When a buffer's limit is reached, new characters written to the end of the buffer
force out the same number of characters from the beginning of the buffer. The
prompt line is not part of these buffers. Messages are appended to the end of the
buffers. In Freeze mode you may scroll through the buffer using the cursor keys.

You write messages to the User Traces only by using C routines. The Run-mode
softkeys for User Traces-USER TR, TRACE 1, TRACE 2, TRACE 3, TRACE 4, TRACE 5,
TRACE 6, TRACE 7-appear when the buffers are used in a program.

(A) Variables

There are no extern variables associated exclusively with Traces.

(8) Structures

1. Declaring trace buffers. The trace routines that write to any of the trace
buffers require a pointer to the appropriate trace buffer as input. To point
to one of the trace buffers, you must first have declared it as a structure.
The structure that is common to trace buffers is named trace _buf. This
structure is already declared in a file called trace_buf.h located in the
HRDlsyslinclude directory. The trace_but structure contains another
structure, trace_buffer_header, which also is declared in the trace_buf.h file.
(These structures are explained in Table 64-6.) Use the #include
pre-processor directive to include both declarations in your program.

There are eight trace buffers available (including the Program Trace), each
one having its own display screen. All are instances of the trace_but
structure. Declare each one you use as an extern strucl, as in this example:

The names of all the trace buffers are listed in Table 64-6.

2. Sizing trace buffers. There is a preprocessor #pragma which allows the user
to configure the size of the data array in each user trace buffer. The syntax
is TRACE-NUMBER SIZE TRACE-NUMBER SIZE. . .. Trace number 0
refers to the Program Trace buffer, and trace-number "." allows all
trace-buffer arrays to be set at once. All sizes are given in terms of
four-byte array elements.

JUL '90

(

(

(

JUL '90

64 Display Window and Trace

The example below first sets all trace-buffer arrays to 16,000 elements, and
then down-sizes array number 3 to 2,048 elements.

#pragma Iracebuj· 16000 3 2048

When a trace buffer is declared, its array will have the size specified in the
#pragma Iracebuf directive. If the buffer was not referenced in a #pragma
Iracebuf directive, its array size will default to 4,096. The maximum size for
a trace-buffer array is 16,381 elements. If you specify a size that is too
small or too large, an error message will be displayed.

64-29

INTERVIEW 7000 SerIes Advanced ProgrammIng: A TLC 107 951-108

Table 64-6
Trace Buffer Structure9

Type Variable Value (hex/decimal) Meaning

Structure Name; trace_buffer_header

unsigned short

unsigned short

unsIgned char

unsigned char

unsIgned char

unsigned short

unsigned short

unsigned char

unsigned char

loglcal_snd

logIcaL end_wrap _count

modifier

color

enhance

wrlteJock

array_size

IIns_slze

spare

Structure Name; trace_but

hdr

unsigned long array (4096)

64-30

0-11/10-4095

0
non-zero

0-11/0-255

0-11/0-255

0-11111/0-65535

1000/4096

0-3/10-63

o

Struoture of a header for trace buffers.
Declared as type extern struct. Declared
automatically II a 90ft key-entered TRACE action
la taken. Contained In the structure of the trace
bufter. Declaration contaIned In file named
HRD/sys/lnc/ude/lrace but.h. Written to by %m
conversion specifier. -

Because It Is an extern structure I values of
component variables should not be altered
directly by the user. In some Instances, e.g.,
altering array size. the result could be a crash.

end of data within the buffer. Maximum value Is
one less than the arraY_Size.

trace buffer Is not full
trace buffer Is full. As new lines are written to
the end of the trace buffer, lines at the beginning
of the buffer are removed.

Special-character Indicator bit and bit 8 must be
zero. For other speclflo values and their
meanlngs,see Table 64-4.

For speclflo values and their meanings, see
Table 64-4.

For specific values and their meanings. see
Table 64-4.

prevents two processes from writing to the same
buffer at the same time. Should not be altered
by user or future access to the trace buffers
may be locked out.

size of buffer: at present only one value

number of characters In last line In buffer

reserved for future use

Structure of a trace buffer. Declared as type
extern struct. Declared automatically If a
softkey-entered TRACE action Is taken.
Declaration contained In file named
HRD /sys/lnclude/lrace _but. h.

structure of the trace-buffer header described
above

array of data words In the buffer

JUL '90

\

Type Variable

Structure Name: prog_trbuf

hdr

unsigned long array 140961

Structure Nama: 11_trbuf

hdr

unsigned long array 14096)

Structure Name: 12_trbuf

hdr

unsigned long array 14096)

Structure Name: 13_trbuf

struc1 trace_buffer_header hdr

unsigned long array 14096)

Structure Name: 14_trbuf

struct tracs_buffer _header hdr

unsigned long array 14096)

JUL '90

64 Display WIndow and Trace

Tabla 64·6 (continued)

Value (hex/decimal) Meaning

Structure of the Program Trace buffer. an
Instance 01 the trace but structure declared In
file named HRDlsyslfnc/udellrace_bul.h.
Declared as type extern struct tracB_but.
Declared automatically If a sollkey·entered
TRACE aotlon Is taken. Writing to this buffer
make. the Run·mode PROG TR sollkey appear.

structure of the traoe·buffer header described
above
array of data words In the buffer

Structure of one of seven user trace buffers, an
Instance of the trace but structure declared In
file named HRDlsyslfncludeltrace bul.h.
Declared as type extern struct traCS_but.
Writing to this buffer causes the Run-mode
TRACE 1 soflkey appear.

structure of the trace-buffer header described
above

array of data words In the buffer

Structure of one of seven user trace buffers I an
Instance of the trace but structure declared In
file named HRDlsyslfnclude/trace bul.h.
Declared as type extern struct trace_but.
Writing to this buffer causes the Run-mode
TRACE 2 soli key appear.

structure of the trace-buffer header described
above

array of data words In the buffer

Structure of one of seven user traoe buffers. an
Instance of the trace buf structure declared In
file named HRD/sysllncludeltrace_bul.h.
Declared as type extern struct trace_but.
Writing 10 this buffer causes the Run-mode
TRACE 3 softkey appear.

structure of the trace-buffer header described
above

array of data words In the buffer

Structure of one of seven user trace buffers. an
Instanoe of the trace but structure declared In
file named HRDlsysllncludeltrace_but.h.
Declared as type extern struct trace_but.
Writing to this buffer caUses the Run-mode
TRACE 4 soltkev appear.

structure of the trace-buffer header described
above

array 01 data words In the buffer

64-31

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-108

Table 64-6 (continued)

Type Variable Value (hex/decimal) Meaning

Structure Name; IS_trbuf Structure of one of seyen user trace buffers, an
Instance of the trace but structure declared In
file named HRDlsyollncludeltrBce_bul.h.
Declared as type extern struct trace bul.
Wf1t1ng to this buffer causes the Run:mode
TRACE 5 soltkey appear.

struot tracs_buffer_header hdr structure of the trace-butter header described
above

unsigned long array [40961 array of data words In the buffer

Structure Name; [6_trbuf Structure of one of seYen user trace buffers I an
Instance of the trace but structure declared In
tile named HRDlsysllncludeltrace_buf.h.
Declared as type extern struct tr8ce_bul.
Writing to this buffer causes the Run-mode
TRACE 6 soltkey appear.

struot trac9_ buffer_header hdr structure of the trace-buffer header described
above

unsigned long array [40961 array of data words In the buffer

Structure Name; 17 _trbuf Structure of one of seven user trace buffers I an
Instance of the trace but structure declared In
Ille named HRDlsysllncludelCracB_bul.h.
Declared as type extern struct trace_but.
Writing to this buffer causes the Run-mode
TRACE 7 softkey appear.

unsigned long

64-32

hdr

array [4096)

ee) Routines

structure 01 the trace-buffer header described
above

array of data words In the buffer

Most routines defined below are valid for either the Program Trace or the user
traces. One, however, applies to the user traces only. set_utraceJkey_label
allows the programmer to modify the current softkey labels for the user traces.

The other four trace routines-tracec, tracei, stracei, and traces-apply to both
the Program Trace and the user traces. The softkey TRACE action is built on

the tracei routine.

JUL '90

(

JUL '90

64 Display Window and Trace

The first argument in three of these trace routines is the address of the trace
bulfer into which you want output written. Each time you call a trace routine.
trace! for example, variables in the named trace-buffer structure are updated.
Those variables which store attributes are updated when the %m conversion
specifier is used in the trace! routine parameter. 'When %m is not present, the
routine applies the attributes currently stored in the color, modifier, and enhance
variables.

The second argument in all four of these trace routines is the character, string.
or format pointer to the data that will be written to the selected trace buffer.

The trace! routine allows you to add attributes to messages on the Program
Trace screen and User Traces. These attributes are listed in Table 64-4.

Each trace operation appends output to the end 01 the trace buffer. You may
not use the pos_cursor routine to position the cursor on any trace screen. New
lines (or blank lines) may be generated via the "\n" nonliteral. Put the "\n"
nonliteral at the end of the string to generate a leading blank line on the
selected trace screen:

Irace!(&pr08_,rbu!. "This trace message will generate a leading blank line. \n"};

During real-time display, this line moves just ahead of the Ireshest trace message
and continuously overwrites the oldest one. II you put the "\n" sequence at the
beginning 01 the format string, no leading blank line will help you distinguish
new messages from the old:

trace!(&pr08_,rbuf. "\1IThis message will not generate a leading blank lint. "):

tracec

Synopsis

extern 'Void 'raelcOroce buf/trytr, character);
extern struc' ,race_bu! ;- trace __ buffer ylr:
const char character:

Description

The tracec routine outputs a single ASCII character to the trace screen
indicated.

The first parameter is a pointer to the trace buffer into which the character will
be written.

For the second parameter, see the disp/ayc routine.

64-33

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

64-34

Example

In this instance, output will be written to the Program Trace screen.

II/nclude <lra"_buj.h>
extern sl,uc' ,race_buj pro8_,rbU/;

}
LAYER: 2

STATE: display_to Jlrog_ Ir
CONDITIONS: KEYBOARD'
ACTIONS:
{

}

Iracec(&'pr08_,rbu/. 'Q') ;
tracec(&pro8_,rbu/. '\n ');
I,acec(&'prog_,rbu/,65) ;
tracec(tipro8_,rbu/. '\n 'J;
"Qcec(&proL"bu/, 0.65);
'racec(&'pro8_'rbu!. '\n');
IrQcec(&pro8_"buf, 065);

When the user views the PROG TR screen, the output will look like this:

a
A
e
5

tracef

Syoopsis

exlern Int ,racef(trace_bufferyl" !ormatytr, ...);
extern slruc' trace_buj· trace_hufferyIT;
const char· jormalytrj

Description

The trace! routine writes output to a specified trace screen, under control of the
string, pointed to by !ormat...ptr,-that- specifies how subsequent arguments are
converted for output. If there are insufficient arguments for the format, the
behavior is undefined. If the format is exhausted while arguments remain, the
excess arguments are evaluated but otherwise ignored. The trace! routine
returns when the end of the format string is encountered .

.lnm!ll
The first parameter is a pointer to the trace buffer into which the output will be
written.

For the second parameter, see the display! routine. Placement of "\n" in the
format string of a call to trace! generates a blank new line on the selected trace
screen. (In a display! routine, the newline character does not blank the new
line.)

JUL '90

I,

JUL '90

64 Display Window and Trace

Attributes are written via the %m conversion specifier to trace_buf.hdr.modlfier,
trace_bu/.hdr.color, and trace_buf.hdr.enhance. The attributes are copied from
these variables into subsequent 32-bit data words in the Program Trace and User
Traces. Table 64-4 shows the format of this 32-bit word.

Rehlrns

The tracef routine returns the number of characters displayed, or a negative
value if the unit is in freeze mode.

Example

This program traces X.29 PAD-control messages in DTE and DeE data packets.
The lelters "DeE" are underlined in the DeE trace lines.

LAYER: 3
{

Hlnclude <tface_bu/.h>
extern slruc' ',ace_bu! IJ _"but,
extern unsigned char· m...pQcke,_/njoJ"j
extern unsigned short myacke,_'cn,
unsigned char pad_ctrl_msg,

STATE: paokeUype
CONDITIONS: DTE DATA Q= 1
ACTIONS:
{

}

pad_ctrl_msg = myacket_lnJoyl'{Oj;
trace! (&13_'rbu/, "DTE LCN:%.3x PAD MSG:%.2x\n", mJQcke,_'cn.

pad_ctrl_msg)j

CONDITIONS: DCE DATA Q= 1
ACTIONS:
{

pad_ctrl_msg = myacke,_in/oytr/O}i
trQcel (&13_,rbul, "%mDCE%m LCN:%.3x PAD MSG:%.2x\n", Ox04000000L,

OxOOOOOOOOL. mJQckt,_'cn, pad_ctrl_msg);

stracef

Synopsis

extern void sirace/(arrayy'r, stringy',);
unsigned long arraYJ'r,'
const char· s,ringJ'r;

Description

The stracef routine is similar to the tracef routine, except that stracef writes
output to a variable, while tracef writes output to a trace screen. The output is
under control of the string pointed to by stringytr that specifies how subsequent
arguments are converted for output. If there are insufficient arguments for the

64-35

INTERVIEW 7000 Series Advanced Programming: A TLC-1 07-951-108

64-36

format, the behavior is undefined. If the format Is exhausted while arguments
remain, the excess arguments are evaluated but otherwise ignored. The strace!
routine returns when the end of the format string is encountered.

The strace! routine differs from sprint! in that it generates an array of longs,
whereas sprint! generates an array of chars. When the strace! array is written to
a trace buffer (or to the Display Window) it carries its predefined attributes
along with it. An sprint! array, by contrast, will receive the attributes that are
active in the buffer at the moment.

At the end of the output string, there will be a null character with the Special
Character Indicator bit set in its modifier attribute-byte.

The first parameter is a pointer to the variable into which output will be written.
The array which will hold output must be declared as a long. By allocating 32
bits for each element, the array may accommodate attributes assigned via the
%m conversion specifier. Attributes comprise 24 bits of the long. The preferred
form of the declaration is unsigned long name {JOO}. The size and name of the
array are user-determined.

For the second parameter, see the display! routine.

Example

This program traces X.29 PAD-control messages for DTE and DCE data
packets. The resulting trace is identical to the one generated by the example
under trace!. Note that attributes that are turned on in an strace! array do not
need to be turned off after the array has been brought, via the %b conversion
specifier, into a trace! format string.

LAYER: 3
{

#;nclude <trace_buj,h>
extern struct troce_buj 13_trbuf;
extern unsigned char'" myocket_inJoytr:
extern unsigned shor' mYQcke,_lcn;
unsigned char pad_ct',-msg;
unsigned long source/4l;

STATE: packet_type
CONDITIONS: DTE DATA Q= 1
ACTIONS:
{

Slfaee! (source, "%s". "DTE");
}
NEXT_STATE: pad_msg_trace

JUL '90

JUL '90

64 DIsplay WIndow and Trace

CONDITIONS: DCE DATA Q= 1
ACTIONS:
{

strace! (sourc,. "%m%s", Ox04000000L, "DeE"):
}
NEXT STATE: pad msg Irace

STATE: pad_m9g_lraCe -
CONDITIONS: ENTER STATE
ACTIONS: -
{

pad_ctrl_msg = myockel_lnfoytrfOJ;
I,acel (&IJ_"buJ. 'I%b LCN:%.3x PAD MSG:%.2x\n", source, mJllcke'_'cn.

pad_"rl_msg);

traces

Synopsis

extern void 'Tllces(lrace_bufferJ'r. stringy,,);
extern struct trace_bu/ trace_buffer yt,:
const char· string"'y,r;

Description

The traces routine writes output to a specified trace screen, under control of the
string that is referenced by stringytr. The traces routine returns when the end
of the string is encountered.

The first parameter is a pointer to the trace buffer into which the output will be
written.

For the second parameter, see the displays routine.

Example

In this instance, output will be written to the TRACE 1 screen.

The following entry

#include <trace_buf.h>
extern StfUC' Iroct_buJ 1I_,rbu/;
}

LAYER: 1
STATE: any

CONDITIONS: KEYBOARD'
ACTIONS:
{
traces(&ll_'rbuJ. "End of test. JI);

}

64-37

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-l07-951 108

64-38

produces the following output on the .TRACE. 1 trace screen:

End of lest.

The following coding produces the same output:

#Include <,race_bu/, h>
extern slruc' trace _buj Il_trbu/;
}

LAYER: 1
STATE: any

CONDITIONS: KEYBOARD·
ACTIONS:
(

}

Synopsis

const char· strlngylr;
string""p'r = "End oj test. OJ;
traces (&1/ _'Tbuj. stringy");

extern void se,_ulraceJkey_label(lrace_bufJer, label"'p'r);
unsigned Int trace_buffer;
const char· labelytr;

Description

Use the set_utraceJkey..Jabel routine to modify the labels which identify the
seven user-trace buffers. The default labels are TRACE 1, TRACE 2, TRACE 3,
TRACE 4, TRACE 5, TRACE 6, TRACE 7. These labels correspond to the user-trace
buffer with the same number. There is no Protocol Spreadsheet softkey
equivalent of this routine.

The first parameter identifies the user-trace function key whose label is to be
replaced. Integers from 1 through 7 are valid values. The buffer number must
correspond to a user-trace buffer that is written to in the program. If it does
not or if the specified value is out of the valid range, the label is not assigned to
any soltkey.

The second parameter is a pointer to a null-terminated string, i.e., the label that
should replace the current one for the specified trace bu ffer. The label string
has a maximum length of seven characters. If it has fewer than seven
characters, it is padded to the right with spaces. If it has more than seven
characters, only the first seven are used. (.

JUL '90

64 Display Window and Trace

Example

In the following example, new labels are assigned to the softkeys for user-trace
buffers 2 and 3. If you press the USER TR softkey in Run mode, the labels
TRACE 1 and TRACE 2 should be replaced with FRAME and PACKET.

#/nclude <tract_buJ.h>
extern slru,' trace_buj 12_,rbufj
extern struc' tract_buJ 13"-'rbu!:

}
LAYER: 1

STATE: define_labels
CONDITIONS: ENTER_STATE
ACTIONS:
{
stt_ulrQceJkey_lobet(2. If FRAME");
set_ulraceJkey_label(3, II PACKET");

} .
NEXT_STATE: write_1o_buffer.

STATE: write_1o_buffers
CONDITIONS: KEYBOARD "2"
ACTIONS:
{
,racef(&12_,rbu/, flFrame Le~el In/ormation");

}
CONDITIONS: KEYBOARD "3"
ACTIONS:
{
'racefC &13 _"buf, OJ Packet Level Information"):

)

64.5 Attributes

Attributes are written to the Display Window and to the trace buffers in 32-bit words
that include 8 bits of character data (the second-lowest byte) and 24 bits of
attributes. The format of the 32-bit data word, given in Table 64-4, is the same for
the Display Window and for the trace buffers.

JUL '90

In displayf routines, the %m conversion specifier writes input to window _color and
window _modifier variables. These variables are then copied into data words written to
the Display Window by string pointers in this. and subsequent displayf routines. See
Figure 64-1.

In tracef routines, the %m conversion specifier writes input to the
trace _buffer _header structure for a particular user-trace buffer. The header is then
copied into each data word written to the particular user buffer by string pointers in
this and subsequent tracef routines. See Figure 64-2.

64-39

INTERVIEW 7000 Series Advenced Programming: ATLC-l07-951-10B

64-40

(A) Applying Attributes As Data Is Buffered

There are two ways an attribute may be assigned to a character in the Display
Window. One way uses the %m conversion specifier to assign attributes to the
window_color and window_modifier variables. This program, for example,
includes a display! routine that uses the %m conversion specifier to write
underlined data to the Display Window:

STATE: apply _attribute_to _window_color_variable
CONDITIONS: ENTER_STATE
ACTIONS:
{

pos_cursor (/,0);
display! ("%mThis data;s underlined In the Display Window.", Ox04000000L);

}

The chan in Table 64-4 shows the hex value 04000000L in the "input" column
alongside the underline attribute. This means that when the value Ox04000000L
is input to the conversion specifier %m, an underline attribute is applied to the
current display! string and any that follow until the attribute is turned off. The
underline attribute actually is applied to the external window_color variable. See
Table 64-2. The window _color and window _modi/ier variables lend their
attributes to every character that is written in a format string to the Display
Window. In Run mode if the user presses the softkey for DSP WND, he will see
his underlined string. Subsequent characters or strings written to the Display
Window also will be underlined.

The same attribute could be applied to a string in any of the user-trace buffers,
as follows:

}

#include <trace_buj.h>
exlern sl,uC' trace_buj 1l_lrbuj;

STATE: apply_attrlbute_to_header
CONDITIONS: ENTER_STATE
ACTIONS:
{
trace! (&l1_trbuJ. "%mThis data Is underlined.", Ox04000000L);

}

Only the header for the TRACE 1 display is affected by this %m conversion.
Only the TRACE 1 buffer is written to. When other trace buffers are
subsequently written to, the strings will not receive underlining as a result of the
attributes applied above to the TRACE 1 header.

JUL '90

64 Display Window and Trac8

dlsplayf("%mDATA", OxQf11li.OOQQL);
".,' ~ 1

---- " --" I
----" I -- " ,..-' / t

~------~~=r----------~~ r-----------~
(enhance) (color) window_modifier
11111111111111

16 • 1 Bit,

I I I , • •
(enhance) (color) (character) (modifier)

display_window _buffer [0]

"
., '. I, D ••

. -. I I I I I I I I I I I I
32 2. 1. • I Bits

display_window _buffer [1]

"
., I, '. I, A L ••

I I .-. I I I I I I I I I I I I
32 2. 1. • 1 Bits

display-window _buffer [2] L
., I, '. I, T L ••

I I . -.
I I I I I I I I I I I I

32 2. I. • 1 Bits

display_window _buffer [3] I, ., I, '. I, A L ••
I I

JUL '90

. -. I I I I I I I I I I I I
32 2. 1. • 1 Bits

displaLWlndow_buffer [1088]

Figure 64-1 When a display! routine Is called, the attributes assigned via the %m
conversion specifier are stored in two eX'ern variables. accessible 10 the user. Both
color and enhance attributes are contained in window_color. The low byte in
window _color indicates the colori the high byte contains enhancements. In this
example. Ihe following attributes will be assigned to characters wrillen to the
DIsplay Window: reverse-image enhancement, green-on-black color, and ASCII
font. Before a character Is written to the Display Window. it is combined in a long
with Its attributes, as mapped in the figure.

64-41

INTERVIEW 7000 SerIes Advanced programmIng: ATLC 107-951-108

Iracef(&I1_Irbuf, "%mDATA", OxqBJ.QOO~L);
,/,/
///
///

11/
I II

I II
I II 11 trbuf·
1/1
, II
I I \
\ \ \ ~---------------------------
\ \ ~ modifier'

"_trbuf.hdr
\ 'I-----------------------t------
" " i color I I----------T-----------r-----"i , enhance I I----,-----T-----------,-----

11_trbuf.array[O] .-..
32

11_trbuf.array[1] .-..
32

!! !
I' I
t t t

(enhance)

0,

I I I

0,

I I I

24

24

(color)

'0

I ! I

'0

I I I

(character) (modifier)

D 00

I I ! r I I

16 8

A 00

! I I r ! I

16 8

1 aits

1 Bits

11_trbuf.array[2] .-.. 0,

I I I I I !

'0

I I I

o.

r I I

T , I
32 24 16 8

11_trbuf.array[3] .-.. 0, '0 A 00

64-42

! I ! I ! I I , I r I I

32 24 16 8

11 trbuf.array [4096)

Figure 64-2 When a Irace! routine is called, the atlribules assigned via the %m
conversion specifier are stored in three variables In the trace-buffer header of a
designated buffer. In IhIs example. fl_,rbuj.hdr holds the following attributes:
reverse-image enhancement. green-an-black color, and ASCII ConI. Before a
character is written 10 the buffer, it is combined in a long with lis attributes, as
mapped in the figure.

1 Bits

1 Bits

JUL '90

(

JUL '90

64 Dlsplav WIndow and Trace

(B) ApplyIng AttrIbutes to Buffered Data

The Display Window is an array of 1,088 long integers, each including one byte
of character data, and three bytes of attributes. The character data is generated
by strings in display routines. The attributes for each character are derived from
the current window _color and window _modifier values at the time the character
is written to the display-window buffer.

Once the data word is written to the buffer as an element in the array, it can be
accessed and written to-and therefore changed-the same as any other location
in memory. In the, example- that foJlows, a string is written to the Display
Window without underlining. Then, as a result of a keyboard input from the
operator, the first 32-bit word in the string (containing the first character, the
letter "T") is given a new value that includes the underline attribute.

}

extern unsIgned long dfsplay_wlndow_buffer{J088};
extern slruct

}

unsigned char mpmj
unsigned char cpm;

display_window _index_buffer, 17 J;

ST ATE: apply_attribute _directly_to _display_window
CONDITIONS: ENTER_STATE
ACTIONS:
{
pos_cursor(J. 0);
display! ("This dala Is nol underlined. ");

}
CONDITIONS: KEYBOARD' "
ACTIONS:
{
display_wIndow _buJJer/64/ = «display_wIndow _bu//er/64/ & -Ox04000000L)

Ox04000000L) ;
display_window _index_bufferfl}. mpm Hj

}

Incrementing disp/ay_window_index_buffer.mpm is necessary to alert the
processor on the CPM card (containing the display-controJler software) that the
program has changed the contents of the Display Window. Refer to Table 64-3
for an explanation of this structure.

The bitwise an ding and oring in the example are necessary if you want to change
certain bits in the word without affecting others. Note that the value whose
complement (-) is anded with display_window_buffer element #64 is the "mask"
for the underline attribute in Table 64-4; and the value to the right of the or
operator (I) is the "input" value for the underline attribute.

64-43

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-l07-951-10B

Specifier

%b

%1

%0

%#c

%d

%Id

%H

%m

%0

%10

%#0

%#10

%p

%s

%#s

%u

%Iu

%#U

%#lu

64-44

Table 64·7
Conversion Specifiers

Argument type

Integer-array poInter

Integer

unsigned charaoter

unsigned character

Integer

Integer

character-array pointer

Integer

Integer

Integer

Integer

Integer

Integer

character-array poInter

character-array pointer

Integer

Integer

Integer

Integer

Conversion Type

array 01 long Integers. 2nd byte 01 each
10nQ Is displayed as charaoter. 1st. 3rd. and
4th byt.s Interpreted as attributes. Array
begins at pointer I ends at element containing
null character and Special Character bit = I.

signed decimal representing IS·blt value

unsigned character

newline character displayed 8S "t rather than
acted on

signed decimal representing 15-blt value

signed decimal representing 31·blt value

character array Indicated by argument
appears as small hex charaoters.
(Precision as to number of characters
becomes length of the array. overriding
usual null-termination of strings.)

long Integer not displayed or printed I but
written to attribute header-variable for Display
WIndow or for one of the trace buffers

unsigned octal representing l6-blt value

unslg.ned octal representing 32-blt value

unsigned octal representing l6-blt value I

preceded by 0

unsigned octal representing 32-blt value,
preceded by 0

unsigned hexadecimal (lower-case letters)
representing 32-blt value, with a minimum 5
digits displayed and a cclon between the 4
right-hand digits and the 1·4 left-hand dlgll9.
Useful fer displaying CPU segment number and
offset.

array of characters beginning at pointer and
ending at null terminator cr at array·length
precision, whichever occurs first

newline character displayed as '> rather than
acted on

unsigned decimal representing l6-blt value

unsigned decimal representing 32-blt value

hex characters (example: BF"E§) representing
16·blt value

hex characters (example: BF"ES10J] I
representing 32-blt value

JUL '90

JUL '90

Specifier

%x

%Ix

%#X

%#lx

%X

%IX

%/IX

%#lX

%'n

%%

64 Display Window and Trace

Table 64-7 (continued)

Argument type

Integer

Integer

Integer

Integer

Integer

Integer

Integer

integer

none

none

Conversion Type

unsigned hexadecimal (Iewer-ca •• lettera)
rapresentlng 16-blt value

unsigned hexadecimal (lower-oass lettera)
representing 32-blt value

un.lgned hexadecimal (Iewer-cas. letters)
repre.entlng 16-blt value, preceded by Ox

unsigned hexadecimal (lower-case letters)
representing 32-blt value, preceded by Ox

unsigned hexadecimal (upper-case letters)
representing 16-blt value

unsigned hexadecimal (upper-case letters)
representing 32-blt value

unsigned hexadecimal (upper-case letters)
representing 16-blt value, preceded by Ox

unsigned hexadecimal (upper-case letters)
representing 32-blt value. preceded by Ox

displays an '>
displays a %

64.6 Protocol Trace Buffers

There are two Protocol Trace buffers, one dedicated to Layer 2 and the other to
Layer 3 data, Run-mode softkeys for accessing these traces-PROTOCL, L2TRACE,
and L3TRACE-appear when personality packages are loaded in at Layers 2 and 3,
The prompt line is not part of these buffers,

The size of each Protocol Trace buffer is 65,536 bytes, Of this total, two bytes are
dedicated to the buffer header and two bytes to the trailer, The usable size of a
Protocol Trace buffer, therefore, is 65,532 bytes, When a buffer's limit is reached,
new characters written to the end of the buffer force out the same number of
characters from the beginning of the buffer. In Freeze mode you may scroll through
the buffer using the cursor keys,

You cannot write directly to the Protocol Trace buffers, Monitor the position within
the buffers, as well as the wrap count, using the variables and structures discussed
below,

(A) Variables
The addresses of the variables in Table 64-8 identify the physical location of the
beginning and end of each Protocol Trace buffer, The beginning position is at
the first data byte in the buffer, The end is just after the last data byte,

64-45

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-108

Type

extern unsigned char

extern unsigned long

extern unsigned char

extern unsigned long

64-46

Table 64-8
Protocol Trace Buffer Variables

Variable Value (hex/decimal) Meaning

First data byte In the Layer 2
Protocol Trace buffer. Address
of this variable-segment
number plu. offset-will Indicate
the physical location of the flr.t
data byte. two bytes from the
beginning of the buffer. Line
Setup configured for emulate or
monitor mode.

Flrot byte In the two-byte trailer
of the layer 2 Protocol Trace
buffer-I.e .• after the last data
byte. Addre •• of thl.
variable-segment number pluB
offset-will Indicate the physical
location of the end of the data
area, hexadecimal FFFE bytss
from the beginning of the
buffer. Line Setup configured
for emulate or monitor mode.

First data byte In the Layer 3
Protocol Trace buffer. Address
of this variable-segment
number plus offset-will Indicate
the physical location of the first
data byte, two bytes from the
beginning of the buffer. Line
Setup configured for emulate or
monitor mode.

Flr.t byte In the two-byte trailer
of the Layer 3 Protocol Trace
buffer-I. e .. after the last data
byte. Address of thl.
variable-segment number plus
offset-will Indicate the physical
location of the end of the data
area, hexadecimal FFFE bytes
from the beginning of the
buffer. Line Setup configured
for emulate or monitor mode.

JUL '90

JUL '90

64 Display Window and Trace

(8) Structures

The structure variables in Table 64-9 contain the high and low bytes of a
beginning and ending offset and wrap-count in the Layer 2 and Layer 3
Protocol Trace buffers. Create a logical beginning (or ending) offset within a
buffer by combining the two offset-variables relating to a beginning (or ending)
position into a single, two-byte offset. Add the resulting offset to the address of
13 _Irbull to identify the physical address of a logical location.

The example below uses #deline preprocessor directives for determining
beginning and ending offsets in the Layer 3 Protocol Trace buffer. When
gel_13pp_value_end is encountered in a program, for example, each of the two
"end" offset-variables is cast into a long and, if necessary, shifted left to its
appropriate position in an offset. Then the tWO variables are added together.

#dejine gel_'3pp_~alue_begln
(((unsigned long)(13pp_,rbull_cl/.begln_ofLhi) «8) t
((unsigned ,long) (13pp_"bull_ctl.begin _011_10)))

#define get_13pp_~Qlue_end
(((unsigned 10ng)(IJpp_'rbuII_cl/.end_off_hi) «8) t
((unsigned long) (13pp _"buILcl/. end_oILlo)))

When the ending offset, in this example, is added to the address of 13 _Irbull,
the result is the address of the logical end in the buffer:

unsigned long end_address;
end_address = &13_trbuff t ge,_'Jpp_value_end;

You may also use the offsets and wrap counts to determine how much data is
currently in the buffer. Include the wrap count in the high two bytes of a
four-byte offset. Then subtract the beginning offset from the ending offset.

Udeline get_13pp_volue_begin
(((unsigned 10ng)(IJpp_"bull_cl/. begin_wrap_hi) « 24) t
((unsigned long)(13pp_,rbull_ctl.begin_wrap_lo) « 16) t
((unsigned long) (13pp_lrbuILcl/.begin_oll_hi) «8) t

((unsigned long) (/3pp_'rbuILc,l. begin_oll_lo)))

#define get_13pp_value_end
(((unsigned 10ng)(/3pp_"bull_ctl.end_wrap_hi) «24) t
((unsigned long)(13pp_"bufl_ctl.end_wrap_lo) « 16) t
((unsigned long) (13pp_,rbuILcl/.end_oll_hi) «8) t
((unsigned long) (13pp_"buILcl/. end_oILlo)))

unsigned long end, begin, count;
end = get_'3pp_value_end;
begin = gel_13pp_value_begin;
count = end - begin;

64-47

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

Type Variable

Structure Name: Ipp_trbuff_ctl

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char end_wrapJo

Structure Name: 12pp_trbuff_ctl

64-48

Table 64·9
Protocol Trace Buffer Structures

Value (hex/decimal)

0-"'0-255

0-"'0-255

0-/110-255

0-11/0-255

0-"'0-255

0-"'0-255

0-"'0-255

0-"'0-255

Meaning

Declared as type sfruct. The variables contained
In this structure monitor rogleallocatlon In a
Protocol Trace buffer. Reference structure
variables .s foJ/ows: Ipp_Irbull_cl'.beg'n_oll_hl.

High byte of a 2-byte offset from the physical
beginning of the Protocol Trace buffer to a
logical beginning In the buffer. Range of the
two-byte offset Is 2 through hexadecimal FFFE.

Low byte of a 2-byte offset from the physical
beginning of the Protocol Trace butter to a
logical beginning In the buffer. Range of the
two-byte offset Is 2 through hexadecimal FFFE.

High byte of a 2-byte count of the number of
times a log/cal beginning has wrapped through
the Protocol Trace butter.

Low byte of a 2-byte count of the number of
times a logical beginning has wrapped through
the Protocol Trace buffer. It will have a value of
zero only once. Once the count reaches
hexadecimal FFFF. It will wrap to one.

High byte of a 2-byte ollset from the physical
beginning of the Protocol Trace buffer to a
logical end In the buller. Range of the two-byte
ollset Is 2 through hexadecimal FFFE.

Low byte of a 2-byte ollset from the physical
beginning of the Protocol Trace buller to a
logical end In the buller. Range of the two-byte
ollset Is 2 through hexadecimal FFFE.

High byte of a 2-byte count of the number of
times a logical end has wrapped through the
Protocol Trace buffer.

Low byte of a 2-byte count of the number of
times a logical end has wrapped through the
Protocol Trace buffer, It will have a value of zero
only once. Once the count reaches heXadecimal
FFFF. It will wrap to one.

An Instance of the /pp_trbuff_ctl struoture,
declared as type extern struct Jpp_trbuff_otl.
The variables contained In this structure monitor
logical location In the Layer 2 Protocol Trace
buffer. Has the same struoture as
Jpp_trbulf_otl. Reference structure variables as
follows: 12pp_trbufl_cll. begln_ofl_h.

JUL 'SO

(

64 Display Window and Trace

Table 64-9 (continued)

Type Variable Value (hex/decimal) Meaning

Structure Name: 13pp_trbuff_ctl An Instance of the Ipp_trbu"_ctl structure,
declared as type extern struct Jpp trbull ct/.
The variables contained In this structure monitor
loglcallacatlo" In the Layer 3 Protocol Trace
buffer. Has the same structure 8S

JUL '90

(e) Routines

/pp trbuff otl. Reference structure variables as
follows: 13pp _'rbuff _ell. begin_off _h.

The set_ltraceJkey_label routine allows the programmer to modify the current
softkey labels for the Layer 2 and 3 Protocol Traces. There is no Protocol
Spreadsheet softkey equivalent of this routine.

seUtrace _fkey -,abel

Synopsis

extern l}old set_lrrace.Jkey_label(layer, labelJtr);
unsigned in! layer;
const char· labelytr:

Description

Use the sel_ltraceJkey_labe/ routine to modify the labels which identify the two
Protocol Trace buffers. The default labels are L2TRACE and L3TRACE. These
labels correspond to the Layer 2 and 3 Protocol Traces.

The first parameter identifies the Protocol Trace function key whose label is to
be replaced. Integers from 1 through 7 are valid values. The number must
correspond to a layer package which is currently loaded into the INTERVIEW.
If it does not or if the specified value is out of the valid range, the label is not
assigned to any softkey.

The second parameter is a pointer to a null-terminated string, I.e., the label that
should replace the current one for the specified Protocol Trace. The label string
has a maximum length of seven characters. If it has fewer than seven
characters, it is padded to the right with spaces. If it has mOTe than seven
characters, only the first seven are used.

64-49

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-l07-951-10B

64-50

Example

In the following example, the X.2S Layer 2 and Layer 3 protocol packages have
been loaded via the Layer Setup screen. New labels are assigned to the softkeys
for both Protocol Traces. If you press the PROTOCL softkey in Run mode, the
labels L2TRACE and L3TRACE should be replaced with X25 FRM and X25 PKT.

LAYER: 1
STATE: denneJabel.

CONDITIONS: ENTER_STATE
ACTIONS:
(
set_ltrace.Jkey_label(2, "X25 FRM");
seUtraceJkey_label(3. "X25 PKT");

}

JUL 'SO

65 Counters, Timers, and Accumulators

65 Counters, Timers, and Accumulators

JUL '90

65.1 Counters

The translator declares the following structure for counters that are entered as softkey
tokens on the Protocol Spreadsheet:

slruct counter slruct
{ -

l,

unsigned long current;
unsigned long last:
unsigned long maximum;
unsigned long minimum;
unsigned short sample_count;
unsigned long total_high;
unsigned short total_low_'ow;
unsigned short total_low_high;
unsigned short oUi_o/Jonge;
unsigned short changed;
unsigned long prev;
unsigned long old;

slruc' counter _Slruct counter _name= {O, 0, 0, -Ou J};

The first eight counter variables in the structure are used to calculate statistical values
whenever the counter is sampled. See Table 65-1. Three of the
variables-counter _name. current, counter _name.prev, and counter _name. old-come
into play each time the counter is incremented, decremented, or set to a particular
value.

Counters are internal program variables and counter interrupts are strictly
program-generated signals, so the C programmer is free to ignore this structure and
maintain counts and statistics in a different way. Please note, however, that the
68010 CPU expects this counter structure when it polls the 80286 periodically for
statistical values to display in columns on the tabular and graphic stats screens.

(A) Current, Previous, and Old Values

When a counter is incremented, decremented, or set to a specific value on the
Protocol Spreadsheet, the program does not signal a counter _name_change
interrupt automatically. First it verifies that the new value of the counter really
is a change from the previous value. See Table 65-2. For this comparison, the
program needs to maintain two variables, counter _name.current and
counter_name .prev.

65-1

INTERVIEW 7000 Series Advanced ProgrammIng: ATLC-107-951-10B

Table 65-1
Counter Structures

Type Variable Meaning

Strycture Name: counter_struct Structure of a counter. Declared as type strutt.
Declared automatically If a program counter la
used. Program counters assigned to struoture
as follows: struet counter struet counter name.
Reference a structure variable as folloW9:
counter_name. currant.

unsigned long

unsigned long

unsIgned long

un91gned long

unsigned short

unsigned long

unsigned short

unsigned short

unsigned short

unsigned short

unsigned long

unsigned long

65-2

current

last

maximum

minimum

sample_count

totaLhlgh

totaUowJow

totaUow_hlgh

out_ofJange

changed

prey

old

This value of the counter Is acted on directly by
program actions.

Last sampled value: displayed on the tabular
stat/stlcs screen.

Maximum value of all samples: displayed on the
tabular statlstlos scrsen.

Minimum value of all samples; displayed on the
tabular statistics screen. Should be Initialized as
-Oul.

Number of samples.

High four bytes of an eight-byte counter total.

Low two bytes of an eight-byte oounter total.
This twa-byte variable oount. to 65,535,

Bytes 3 and 4 of an eight-byte counter total.

Number Is out of range, either Inoremented
beyond the range or decremented below 0;
should not be factored Into averages.

For future use.

When converting a counter action to C, the
translator compares prev with current to
determine whether counter has changed. Then
prev Is updated to current and
counter_name_change Is signaled.

When oonvertlng a counter oondltlon to C, the
translator compares old with current to

. determine mether true condition Is new
(transitional). After program loglo has examined
oounter, old Is updated to prevo

Here, for example, is the C translation of the simple action COUNTER example

SET 5,

counter_example. current = 5;
if (counter_example. prey 1= counter_example. current)

{

}

counter_example. old = counter_example. prey;
counter_example. prey = counter _example. current:
si&nal (counter _example_change):

JUL '90

(

Type

extern event

JUL '90

Table 65-2
Counter Variables

Variable

65 Counters , Timers , and Accumulators

Meaning

True when the named counter Is
Incremented. decremented, or
set to new value. This event will
not be triggered unless a
spreadsheet condition names
the counter. Line Setup
configure d for e mutate or
monitor mode.

It is clear from the translation that the variable counter _example.prey is used to
limit the number of counter _example_change interrupts to those cases where the
current value of the counter really has changed.

What is counter_name .old used for? We will preface the answer by citing the
behavior of the counter in the following spreadsheet example.

STATE: threshold condition
CONDITIONS: KEYBOARD'
ACTIONS: COUNTER spacebar INC
CONDITIONS: COUNTER spacebar GE 7
ACTIONS: ALARM

Each time you press the space bar While this program is running, the counter will
increment, but no matter how many times you press the space bar the alarm will
only sound once. It will sound on the seventh keystroke, the first time the
counter is greater than or equal to 7. If the program had a decrement or set
action that lowered the counter to less than 7, the alarm would sound again
when the counter reached the 7 threshold.

The translator accomplishes this threshold condition by coding the wailfor clause
as follows:

counte,_spaceba,_change && (I (counte,_spacebar,old >= 7}) &&: (counter_spacebar, current >= 7):

Since counter -,pacebar.prev was used (and then updated to "current") in the if
statement that sent the counter _spacebar _change interrupt, the "old" value is
required in the waitfor condition· to insure a "transitional" or "threshold"
counter condition.

65-3

INTERVIEW 7000 Series Advanced Programming: A TLC-1 07-951-108

65-4

(8) Sampling a Counter

Here is the translator's version of a counter sample action:

counler name.lasl = counter name. current;
if (coun-'er_name, current > c7mnt"_flame,maximumj

{
counter_name. maximum = counter _name. current;

If (counter _"ame. current < counter _"ame. minimum)
{

counter _"ame. minimum = 'counter_name. current;
}

counter name. sample counttt:
{- -

unsigned long temp:
temp = (counter_name,current & OxOOOOJlffJ t counte'_flame.tola'_low_'owj
counter_name. lolal_'ow _low = temp,'
temp = (counter_name. curren I »16) t counte'_flame.total_low_hlgh t (Iemp» /6);
counler _name,lolal_'ow _high = temp;
counle,_name.tola'_high t= lemp» 16;

}
counter_name,current = 0:

In order to establish an average value for all samples, a grand total for current
values at the time of each sampling must be maintained. Since an ordinary
INTERVIEW current counter is 32 bits, the counter that maintains the grand
total of current counts must be larger (64 bits). There is rio data type this large
in C, and so the "total" counter is distributed among three variables and the
somewhat complicated coding involving the temp variable is required to add the
current counter to this composite counter.

(C) Updating the Statistics Screen

The CPM polls the MPM continuously to see if data is available to be output to
the printer or the plasma display. This data includes character data, trace data,
prompts, and values to be posted to the statistics screens.

In order to know where on the statistics screens the values for the particular
counters (and timers and accumulators) should be placed, the 68010 CPU on
the CPM needs some help from the program (that is, from the MPM). This
help is in the form of a "stat message" that the translator (or the programmer)
codes once at the beginning of the program. The stat message is a structure that
the MPM sends to the CPM. See Table 65-3. The stat message says, in effect,
"Here is the address of a counter structure. When you access this structure
during the running of the program in order to pull out the current, last,
maximum, minimum, total, and sample-count values, display those values on the
row of the tabular stats screen where the user has typed spacebar" (for
example).

JUL 'SO

65 Countsrs, Tlmsrs, and Accumulators

Table 65·3
Counter, Timer, and Accumulator Structures

Type Variable Value (hex/decimal) Meaning

Structure Name: stat_msg Structure of a stat message. A Btat message Is
sent once for Bach named counter. timer, or
accumulator. Declared as type struot. Declared
automatically If a softkey-entered COUNTER Is
used as a condition. or If saftkey-entered
COUNTER, TIMER. or ACCUMUL action 10 taken.
Program stat messages assigned to structure as
follows: struct stat mag name. You must

unsigned short

unsigned short

unsigned long

unsigned long

JUL '90

type

OaOO/2560

o
0100/256
0200/512

assign values to the-elements of the structure.
Reference a struoture variable as follows:
name.type.

Register statistics objects from the MPM to the
CPM. Other values and meanings for future USB,

accumulator
counter
timer

Tho MPM (80286J addre •• of a counter. timer.
or accumulator name, converted to CPM (68010)
format. To get an obJect_name address, enter:
name.obJect name =
got_68kyhys_addr("name_ol_counte,");

object_address The MPM (80286) addre •• of a counter. timer.
or accllmulator structure, converted to CPM
(68010) format. To get a struoture address for
a counter, enter: name. obJect address =
get_ 6Bk yhys _ addr (&counter _name_of _counter) ;

Here is a C program that causes the current value of a counter named Ukey" to
increment on the tabular-statistics screen each time an ASCII-keyboard key is
struck.

struct

unsigned short op_type:
unsigned short type;
unsigned 101lg object_name:
unsigned long object_address:

} slot_msg:
extern unsigned long get_68kyhys_addr();

65-5

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

65-6

slrucl counler _slrUCI

) :

unsigned long current;
unsigned long last;
unsigned long maximum:
unsigned long minimum:
unsigned shor' sample_count;
unsigned long total_high;
unsigned short tolal_Jow _low;
unsigned shorl ,olal_'ow _high:
unsigned shor' oUI_o/Jange:
unsigned short changed;
unsigned long prel};
unsigned long old:

slruc' counter _structure counter_key;
eXler" last_,"ent keyboard_new_key,'

STATE: update_stat_screen
{

slol_msg.op_'ype = 2560,'
stal_msg.type = 256:
sIDI_msg. object_name = get_68kyhys_oddr("key")j
slol_msg. object_address = gel_68kJhys_Qddr(&teounter _key) j
send_Slat _ message (&'51a,_ msg);
wail/or

{
keyboard_new _key:

{
counter_key. current++;

)

The variable slal_msg.objecl_name is a pointer to the name of the counter that
the user has entered on the protocol spreadsheet. The program gives this name
to the CPM, and expects the CPM to locate the name among the names that
the user has entered on the tabular or graphic statistics menu. The delivery to
the CPM of a pointer to the stats-menu name and a pointer to the counter
structure is the purpose of the stat message. The message allows the CPM to
correlate a line on the statistics results screen with an actual program counter (or
timer or accumulator).

JUL '90

(

I.

JUL '90

65 Counters, Timers, and Accumulators

NOTE TO C PROGRAMMERS: When the translator creates a
counter variable it adds the prefix counter_to the spreadsheet
name, but the programmer who is working primarily in C and is
not making use of spreadsheet counters can name the counter
any way he wishes, with or without the prefix. Similarly, the
string that is communicated to the CPM in stat_msg.objecl_name
("key" in the example above) must agree with the name on the
stats menu, but it need not bear any resemblance to the name of
the counter structure.

NOTE ALSO: In most of the examples in this manual, we have
not bothered to declare routines since it Is not necessary. In the
absence of a declaration, the compiler assumes that the routine is
external and that it returns an integer. In nearly all cases, this
assumption works. get_68k...Phys_addr() returns a long, however,
and must be declared.

65-7

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

65-8

65.2 Timers

The translator declares the following structure for timers that are entered as softkey
tokens on the Protocol Spreadsheet:

slrUc' Ilmer _Slruct
(

);

unsigned long current;
unsigned long lasli
unsigned long maximum;
unsigned long minimum:
unsigned shor' sampf,_count,'
unsigned long tOlal_hlgh:
unsigned ShOTt 'ola/_'ow_tow;
unsigned short IOlal_low _high:
unsigned long slarl_lick_~Qlue;
unsigned short running:
unsigned short changed;

There are no timer conditions in the software (since time outs provide the
time-triggering function), and therefore all of the variables in the structure serve a.
data for the CPM when it updates the stats screens. See Table 65-4. A stat message
must be sent so the CPM can correlate a line on the statistics results screen with the
correct program timer. The stat message is documented in the previous section on
counters. The timer stat message is different only in respect that the stat_msg.type
element should be set to 512 instead of 256.

Timer restart, continue, and stop actions are explained in this section. The clear
action is simply a matter of changing the elements in the structure to zero (except for
timer _name. minimum, which becomes the one's complement of zero).

(A) Time Ticks

Time ticks are timed increments of either of two hardware counters in the
INTERVIEW. The programmer can select which of the two timing mechanisms
to use for a given timer.

One tick-counter is on the FEB card and is used to time-stamp incoming data
and EIA leads. The intervals between ticks is determined on the FEB Setup
menu. Ticks can be enabled/disabled on the same menu. The current value of
this counter is available in a variable called ll_tick_count. See Table 65-5. The
current value always reflects the number of ticks since the program entered Run
mode. The number of ticks mayor may not equate 10 the amount of time in
Run mode, since ticks are also encoded in playback data and the playback rate
is subject 10 "local conditions" such as playback speed and idle suppression.

FEB time ticks are the most precise timing mechanism in that they have a
resolution to 10 microseconds. They also represent the most durable method of
timekeeping, since they preserve the original data timings even during playback.

JUL '90

(

(

Type Variable

Structure Name; t1mer_struct

unsigned long current

unsigned long last

unsigned long maximum

unsigned long minimum

(
unsigned short sample_count

unsigned long total_high

unsigned short totalJow JOw

unsigned short tota!Jow_hlgh

unsigned long start_tlck_value

unsigned short running

unsigned short changed

JUL '90

65 Counters, TImers, and Accumulators

Table 65-4
Timer Structures

Value (hex/decimal)

o

-0

-0

Meaning

Struoture ot a timer. Declared 8S type struct.
Declared automatically It a program timer Is
used. Program timers assigned to structure a9
follows: struct timer struot tlmar name.
Reference a structure variable aa followa:
timer_name. current.

current value of timer I not updated while timer Is
running. Values are In microseconds rounded to
tlok-unlt on FEB Setup screen.

Value of last sample: displayed on the tabular
statistics screen.

Maximum value of all samples: displayed on the
tabular statistics screen.

Minimum value of all samples: displayed on the
tabular statistics screen. Should be Initialized as
-Oul.

Number of samples.

High four bytes at an eight-byte timer total.

Low two bytes of an eight-byte timer total.

Bytes 3 and 4 of an eight-byte timer total.

Tick-count In microseconds when timer was
started, restarted, or continued. For
line-related conditions at Layer 1. this value Is
stored In If tick count: for non-line conditions,
use gecwaiUlriie_286_rlcks routine.

Stopped. This variable Is polled and a zero stops
the timer from Incrementing and sets the current
value to timer name. current (understood as
microseconds).

Running. All 1's In this Variable Causes the timer
to Increment, showing a value that equals
(wail-time ticks - tlmer_name.s1arctlck._value) +
timer _name. current.

For future use.

65-9

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

Type

extern unsigned long

extern unsigned long

extern unsigned long

Table 65-5
Timer Variables

Variable Meaning

This variable counts ticks from
the start of RUn moda.
Tlck=SBO. maeo. ato .•
depending on FEB .etup.
Subtraot early value from later
value to create a timer.
ACTIONS:
{ display! I' %ld mseos -.
(II tlok oount -
timer _name.starU/ok_value)):)
Add to st8rt 01 run time to
determine more precIse ourrent
time tor time-stamping events.
Line Setup configured for
emulate or monitor mode.

Date when Run mode entered.
Byte 1 (low byte) Indicate. day:
byte 2 stores month: and bytes
3 and 4 Indicate. year. May be
used to time-stamp avents.
Sea also start of run time.
Line Setup configured-for
emulate or monitor mode.

Time when Run mode entered.
Byte 1 (lOW byte) Indicate.
seconds; byte 2 stores minutes:
and byte 3 Indicate. hour •.
May be used to time-stamp
events. See also
start of run date and
11 tick Count. t
Line Setup contlgured for
emulate or monitor mode.

t In the example below, the display! (or tracel) routine use. timer variables to time-stamp good BCCs on the DCE
side. (Similar programming could determine the current date.) The tick unit .elected on the FEB Setup menu I.
seconds. Adjust the program as needed for other tick units.

)

exlern unsigned long slarl_of_run_dale, starl_ofJun_time. Il_tick_count;
unsigned shari seconds. hours, minutes, IIck_mins. tlck_secs. tick_hours;
#define SECS(run_'lme) (unsigned shari) (run_time & Ox!fl
#d.!in. MINSlrun_limel (Iunslgned shorl)(run_lim.» HI & Oxffl

STATE: time
CONDITIONS: DCE GOOD Bec
ACTIONS: -
{

lick secs:c II tick counl % 60,-
tlc(: .. mins = (ii_tiCk_count t SECS(slQr'_o!_run_,ime)) 160,
lick_hours = (tick_mins + MINS(s'arl_of_run_time)) I 60;
display!("Tim.: %. 2d: %. 2d:%. 2d\n",

(unsigned short)(((sla,,_o!Jun_time» 16) & Ox!fl + 'ick_hours)%24,
(MINS(slafl_of-,un_'ime) t tlck_mins) %60,
(SECS(slaft_of_run_/jme) t tick_secs) %60),-

65-10 JUL '90

JUL '90

65 Counters, Timers, and Accumulators

The other tick-counter is on the MPM and is referred to as the wall-time clock.
This clock ticks once per millisecond and drives the timers displayed on the
statistics results screens-at least while they are incrementing. At the moment a
timer stops incrementing, the programmer can reach in and replace the
Incremented value with a timer value based the FEB tick-counter Instead.

The current value of this wall-time tick-counter is available to lbe program via
the gel_waIClime_286_tlcks routine. The current value always reflects both the
number of ticks and the actual elapsed time ("wall time") since the program
entered Run mode.

(8) Running

While it increments on the stats screen, a timer always is driven by wall-time
ticks. To start a current timer incrementing, first you must have sent a stat
message to correlate the timer structure with a timer line on the stats screen. At
that point the simple statement limer _name. running = ·0 will start the timer.
The value of the timer at any given time while it is running will be the MPM
(wall-time) ticks minus the timer _name.starl_lick_value plus any
limer _name. current value.

To stop a timer, change limer _name. running to zero. The current column of
the timer will Immediately display the value of limer _name.currenl (zero, unless
you have done something in your program to calculate the current value of the
timer). The stats display will interpret limer _name.currenl as a value in
microseconds and convert it to the unit selected for that timer line.

(C) Restart

The translator has two different versions of the timer restart action, depending
on what condition precipitated the action. The first version is used if the
condition was data-related (or EIA-related) and time ticks are enabled on the
FEB Setup menu. Here is this data-timer version:

unsigned lon8 temp,
convert_tick_count (l1_tick_count, &temp);
tlmer_name,current = 0;
timer _"arne. start_lick_value = temp,
limer_nome,running = -0,

The converl_lick_count routine converts 1l_lick_counl into microseconds and
stores the result in lemp. The value of temp is aSSigned immediately to
limer _name.slart_lick_value. When the 68010 sees that timer _name.running
equals the one's complement of zero, it subtracts the stan-tick value from the
l1-tick count and displays the difference in the current column of the timer line.
Since the start-tick value was derived a moment before from the Il-tick count,
the difference will be zero. The current column on the stats screen should begin
a timer at zero following a restart.

65-11

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

65-12

A slightly different version of the program is used If the condition was
nondata-related or if time ticks are disabled in the FEB. The
convert_tick_count routine is not used and the following routine is used in its
place:

get_waIUlme_286_tlcks (&temp);

This routine returns the current value of the wall-time tick-counter, in
milliseconds zero-padded to microseconds. It stores the value in temp and the
program proceeds as above.

(D) Continue
The timer-continue action is very similar to the restan. There are just two
differences. One, the action is enclosed in an if statement that verifies that
timer _name. running equals zero-that the timer actually is stopped, in other
words; and two, timer _name. current is not set to zero, but retains the value it
received the last time the timer stopped.

(E) Stop
Here is one of the two versions of a timer stop action:

if (IImer_nome.running 1= 0)
{

unsigned long temp;
conlJert_tlck_counI (Il_tick_counl, &.temp);
tim,,_nome.current t= temp - tlme,_name,sla,,_tlck_volue:
timer_nome, running = 0;

In this translation, the stan-tick value is subtracted from the current tick count,
and any pending current value (held over if the timer was continued) is added
in. The result is a new timer _name.current value. This value is posted to the
stats screen as soon as the 68010 sees timer _name.running = O.

The other version of the stop action uses get_wall_time_286_ticks instead of
convert_tick_count.

(F) Sample Action
The code that produces the sample action is identical to the code that sampled a
counter. See Section 65.1 (B). The timer _name. sample_count variable's not
equaling zero causes minimum. maximum, and average values to be displayed.

65.3 Accumulators

Shown below is the structure of an accumulator as the translator declares it (and
as the 68010 accesses it to update the statistics screens). Also refer to
Table 65-6. Note that there is no current value, since an accumulator neither
counts nor times. There are no "previous" and "old" values, because in its
spreadsheet implementation an accumulator never is tested in a Conditions
block.

JUL 'SO

(

I.

struc' accumulator _stru"

} ;

unsigned long last:
unsigned long maximum:
unsigned long minimum,'
unsigned short sample_count:
unsigned long lotal_hlgh:
unsigned short total_low_'ow:
unsigned short total_'ow _high:
unsigned short changed;

65 Counters , Timers , and Accumulators

slrud accumulator _slruc, accumulato,_name={O,O,-Oul).'

Here is the translator'S version of an accumulate action when the object of the
accumulation (selected by the user) was the maximum sampled value of a
counter named Iramechar.

accumulator_nome. last = accumulatorJramechar. maximum:
if (accumulator_nome. last > accumulator_nome.maximum)

{
accumulator _name. maximum = accumulator _name. last:

}
If (accumulator_nome. las' < accumutato'jJome,minimum)

{
accumulator_nome. minimum = accumulator _name. last:

}

occum ulator _name. sample _ coun Itt j
{

}

unsigned long temp;
temp = (accumulator-,Iame.last & OxOOOOflffl + accumulator _name. total_'ow_'ow;
accumulator_name. tOlal_'ow _low = temp;
temp = (accumulator_name. last »16) + accumulator_name.tolal_'ow_hlgh + (temp» 16);
accumulator _name.lotal_'ow _high = temp;
accumulator_name. tOlal_high t= temp » 16;

accumulator _name. changed = -0;

A stat message must be sent so the CPM can correlate a line on the statistics
results screen with the correct accumulator. The stat message is documented in
the previous section on counters. The accumulator stat message is different only
in respect that the stat_msg.type element should be set to 0 instead of 256.

The accumulator _name.sampleJount variable's not equaling zero causes
minimum, maximum, and average values to be displayed.

JUL 'gO 65-13

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-l07-951-10B

Type Variable

Table 65-6
Accumulator Structures

Meaning

Structure Name; accumulator_struct Struoture of an accumulator. Declared as type
struot. Declared automatically by program when
the user softkey-enters an ACCUMULATE
action. Specific accumulator assIgned to
struoture-as follows: struot aocumulator struot
accumulator nama. Reference a structure
variable 8S follows: accumulator_nama. last.

unsigned long

unsigned long

unsigned long

unsigned short

unsigned long

unsigned short

unsigned short

unsigned short

last

maximum

minImum

sample_count

total_high

totaUowJow

totaLlow_hlgh

changed

Value of last sample: displayed on the tabular
statistiCS screen.

Maximum value ot allaample8; displayed on the
tabular statistics screen.

Minimum value of all samples: dIsplayed on the
tabular statistics screen. Should be Initialized as
-Oul.

Number of samples.

High four bytes of an eight-byte accumulator
total.

Low two bytes of an eight-byte accumulator
total.

Bytes 3 and 4 of an eight-byte accumUlator total.

For future use.

65.4 Routines

65-14

Synopsis

eXlern unsigned long gel_68kJhys_addr('lIariableJlr);
unsigned char· variableJ'r:

Description

This routine converts the address of a specified variable in the 80286 processors
(MPM boards) to 68010 (CPM) format. This routine must be declared.

The only parameter is the address to be convened.

JUL 'SO

(

(

(

JUL 'SO

65 Counters. Timers. and Accumulators

Returns

The get_68kyhys_addr routine returns the converted address.

Example

See send_stat_message routine.

Synopsis

exle,n ~old s,nd_sla,_message(struc'_s,a,_msgy,r)j
sl,uel stat_msg

unsigned short 0p_'ype;
unsigned short type;
unsigned long object_name;
unsigned long object_address;

}:

Description

The send_Slat_message routine sends the stat message structure to the 68010
CPU (CPM board). The current use of this routine sends the addresses of
program counters. timers. and accumulators in the 80286 processors (MPM
boards) to the CPM board where the tabular and graphic statistics displays are
located.

The routine is called only one time in a program for each named counter. timer,
or accumulator. Entering COUNTER as a condition or action (or TIMER or
ACCUMUL as actions) via soltkey on the Protocol Spreadsheet automatically
declares the counter named and sends the stat message.

The only parameter is a pointer to the structure of the stat message. For an
explanation of the elements of the stat message. see Table 65-3.

Example

You plan on incrementing a counter named "dte_info" when a DTE Info frame
is detected.

struc'

unsigned short 0p_'ype;
unsigned short type;
unsigned rong object_name;
unsigned long object_address;

} stat_msg:

65-15

INTERVIEW 7000 Series Advanced Programming: ATLC-107 951 108

65-16

}

slruc, counter_structure

unsigned long current:
unsigned long last:
unsigned long maximum;
unsigned long minimum:
unsigned short sample_count;
unsigned long lotal_hlgh;
unsigned short tOlal_'ow _low;
unsigned short IOlae/ow_high:
unsigned shor' oUI_oIJonge;
unsigned short changed;
unsigned long pre~j
unsigned long old;

}:
struc' counter_structure counter_die_info = {Of 0, 0, -Oul}:
exlern unsigned long gel_68kJhys_addrO:

LAYER: 2
STATE :send_stat_message

CONDITIONS: ENTER STATE
ACTIONS: -
{

}

sIat_msg.op_,ype = 2560:
slal_msg. type = 256; .
slal_msg. object_name = get_68kJJhys_addr("dtt_in/o");
stat_msg. object _address = get_68IcJJhys_addr(&.counttT _dle_in/o);
send _5Ia'_ message (&SIOI_ msg);

NEXT_STATE: counUnfo
STATE: counUnfo

CONDITIONS: DTE INFO
ACTIONS:
!
counler _die_info. currenltt;

}

Synopsis

ex/ern void gel_wall_,lme_ticks(licks_68kjormaIJ'r);
unsigned long· licks_68kjormalJlr;

nescription

The get_wall_time_ticks routine gets the number of wall-time ticks (in CPM
storage format) from the time ~ was hit. The wall clock gives millisecond
resolution rounded to microseconds,

The only input is a pointer to the location where the returned time-tick value
will be stored,

JUL '90

JUL '90

65 Counters, Timers, and Accumulators

Example

unsigned long ticks;
}
LAYER: 2

STATE: get_licks
CONDITIONS: KEYBOARD· •
ACTIONS:
{
get_wall_time _ticks (&lIcks);

)

Synopsis

extern void gel_wail_time _286 _'icks (ticks_286 Jormatytr) j
unsigned long· ticks_286Jormatytr;

Description

The get_wall_time_286_ticks routine gets the number of wall-time ticks (in
MPM storage format) from the time ~ was hit. The wall clock gives millisecond
readings rounded to microseconds. Use this routine prior to setting the
start_tick_value in a timer action when Time Ticks: @~f;: has been selected on
the Front-End Buffer Setup screen. Also use this routine to derive the
start_tick_value if the condition is not line-related, e.g., KEYBOARD, even when
time ticks are enabled on the FEB Setup menu.

The only input is a pointer to the location where the returned time-tick value
will be stored.

Example

unsigned long ticks_286,
}

LAYER: 3
STATE: get_licks

CONDITIONS: KEYBOARD· "
ACTIONS:
{

)

get_waf Clime _286_ ticks (&Iicks _286);
display! ("·%/u'·, IIcks_286);

65-17

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

65-18

Synopsis

extern void conver'_tick_counl(mpmJorma,_ticks, conv,rted_ticksJ,r):
unsigned long mpmJormal_tidsj
unsigned long' converted_ticks""ptr;

Description

The convert~tick_caunt routine .convens a.designated tick count into
microseconds.

Use this routine to derive the start_tick_value for a timer action if ticks are
enabled on the FEB Setup menu and the condition is line-related, e.g., RCV

INFO.

The first parameter is a designated tick count as long as it is in MPM storage
format. It may be any of the layer tick counts. The unit of the 1/ _tick_count
(and other layers' tick counts) value is determined on the Front End Buffer
menu.

The second parameter is a pointer to the location where the returned tick count
convened to microseconds will be stored.

Example

}

exlern unsigned tong ll_tick_count;
unsigned long converted_ticks;

LAYER: 1
STATE: convert_ticks

CONDITIONS: RECEIVE GOOD_BCC
ACTIONS:
{

}

convert_tick _count (I J _lick_count. &conv,rted _,Icks);
display! ("%lu", conYer/ed_ticks);

JUL '90

66 OSI

66 OSI

(

JUL '90 66-1

INTERVIEW 7000 Series Advanced Programming: ATLC-/07-95/-/0B

66-2

POU

iI_ buffer_number

sou

\
\

\

1

Pointer-LIst
IL_BUFFER

HEADER

DATA
list_header list_node

--. data_pointer
t-------I "

last_node_offset
/" '------_ ...

, / ,,- - - next node offset
I list node.,. --
I

\
\
\
I
I
I ,

r-----.../
Internal

I data_pointer,
I \
I data-,ength ,
I \

\ next_node_offset, \
\ \ \
\ \ ,
'-.....,...._,...;ls.;:t __ n_o...;d...;e_""""II/ \,

/ data_pointer ,

I
I

I

/

data-'ength

I n;r- -:!&et
I
I
\

\

\ External
data

(User data)

data

(Layer 2
protocol info)

Internal
data

(Layer 3
protocol info)

Figure 66-1 Primitive Data Unit and sample Poinier-Usl Buffer being passed down
the layers.

JUL '90

(

66 OSI

660S1

JUL '90

The most convenient tools for handling protocol headers while data is moving down and up
the layers in the INTERVIEW are the spreadsheet SEND and GIVE_DATA actions in the various
protocol packages. For instances when a protocol package is not loaded, such as when you
are developing a new protocol or simply using a protocol that is not yet an option on the
Layer Setup screen, OSI structures, variables, and routines in C. become essential tools also.

66.1 Structures

The programmer may access the information in primitive data units conveniently by
using a C structure as a multibyte pointer that is superimposed on data in the PDU's.
Before using a structure-pointer, it is necessary to understand the contents of IL
buffers and primitive data units. All structures referenced may be found in
Table 66-1.

(A) Interlayer Message Buffers

1. Configuring the number/size of IL buffers. By default, there are a maximum
sixteen IL buffers in use at a given time. Each buffer's size is 4,096 bytes.
You may change the number and size of the interlayer (IL) buffers. The IL

BUFS softkey on the Protocol Spreadsheet presents seven number/size
combinations that allocate 64 Kbytes of RAM to IL buffers. See Section 27.
In addition to these softkey selections, there are two C preprocessor
directives the programmer may use to reconfigure the number and/or size of
IL buffers:

(a) /lpragma ii_buffers sets the number of IL buffers that will be available
at a given time. Following the directive, enter a space and then a
decimal integer within the range 4 through 255. In the following
example, the number of buffers is set to 25:

/lpragma ii_buffers 25

The specified number of buffers will override the number selection on
the Interlayer Buffers menu. The buffer size indicated on the Interlayer
Buffers menu will remain unchanged, however, unless altered via the
/lpragma ii_buffer -,ize directive.

66-3

INTERVIEW 7000 Series Advanced Programming: ATLC 107-951-108

(b) #pragma ii_buffer jize sets the size of IL buffers. Following the
directive, enter a space and then a decimal integer within the range 33
through 65535. These values include the 32-byte buffer header. (See
Section 2. below.) In the following example, the size of buffers is set
to 8 Kbytes:

#pragma iI_bufferjize 8192

The specified buffer size will override the size selection on the
Interlayer Buffers menu. The number of buffers indicated on the
Interlayer Buffers menu will remain unchanged, however, unless altered
via the #pragma ii_buffers directive.

Be careful when you are passing messages down from higher layers that
you do not make the buffer size too small. Even small messages require
a buffer large enough to accommodate the overhead of linked lists.

These two directives provide the programmer with more flexibility in
configuring IL buffers than the Protocol Spreadsheet softkeys. With the
#pragmas, the available RAM for IL buffers may exceed the 64-Kbyte
threshold of the IL BUFS selections.

(

The memory required for IL buffers is the product of the number and size
of the buffers (number' size). If this amount exceeds available memory, (

66-4

your program will not compile and the message "Error 219: OUi of memory
during compilation - program too big" will be displayed. Available memory
for IL buffers varies depending on the complexity of your program.

2. IL buffer components. IL buffers may be one of two kinds: data-character
or pointer-list. In buffers being passed up the layers, data-character buffers
(Figure 66-2) are always used. In buffers going down the layers, pointer-list
buffers (Figure 66-1) are primarily used. The difference is that pointer-list
buffers contain list-nodes which provide information about the location of
data (or "lists") inserted or referenced in the buffer, while data-character
buffers do not.

(a) Header. Each IL buffer contains a header that stores useful information
such as the status of the maintain bits that prevent the buffer from being
returned to the general pool; the position of the buffered data in the
INTERVIEW's display buffer; and the tick count (time) when the data
was buffered from the line. (See ii_buffer structure.)

(b) Service Data Unit. The IL buffer also contains the data itself. This data
component, the service data unit (or "SDU"), is added to as the buffer is
passed down the layers, and subtracted from as a buffer travels up the
layers. A data-character IL buffer includes all the data that was present
when the data was first buffered, and the contents of this buffer do not
change as the buffer is passed up the layers. What changes is the service
data unit, derived from the data-start offset in the PDU.

JUL '90

PDU

iI_buffer_number

data_start_offset

data_length

,-

66 OSI

The first part of the SDU in a pointer-Ust buffer is a list-header node
(structure i'-list_header) which contains information about the location
of the first and last text nodes. As a buffer is passed down from Layer
3 to Layer 2 in·X.25 (see Figure 66-1), a new text node containing a
Layer 3 protocol header is inserted in bufler. Since the Layer 3 data
will precede user data, the list node lor the protocol information is
referenced ahead of any other list nodes, changing the first-node
reference in the list header. (If text is appended to the end of existing
data, the list node referenced as last will change.)

The SDU in a pointer-list buffer also includes list nodes (structure
ii_list_node) which give a pointer to data, the length of the data pointed
to, and the offset from the start of the buffer to the next list node.

Finally, the service data unit in all buffers includes data, whether copied
into the buffer (usually protocol Information) or located in memory
outside of the buffer (usually user data).

Data-Character
-------.... IL BUFFER

...." -
-------- \

HEADER
DATA \ \

~ ---'. r-~===-f~====-; .. -. a\ Layer 2 ,.1' ".',.,.' .. ' , .. "

SOU Size I
SOU Size f
Layer 31

'/ .

....... ,."" ..•

r L~yer2protOC6 ' hfc>)'
-- a\ Layer 3

",." 1

JUL '90

Figure 66-2 Primitive Data Unll and sample Data-Character Buffer being passed up
the layers.

66-5

INTERVIEW 7000 Series Advanced Programming: ATLC-l07 951-108

66-6

(8) Primitive Data Units

Like interlayer message buffers, PDU's have a format that is dependent on
which direction the primitive is being passed. Refer again to Figure 66-1 and
Figure 66-2.

1. IL buffer number. The buffer number to be passed with the primitive is
always stored in the primitive. This buffer number is actually an
80286-processor segment number.

2. Data-start ollset. The offset from the beginning of the buffer to the
beginning of the service data unit for a given layer is different for the two
types of buffers. In a pointer-list buffer going down the layers, the
data-stan offset will indicate the offset from the beginning of the buffer to
the list-header node. This offset will vary if different linked lists have been
staned at different layers. Each list will have its own list header. In a
data-character buffer going up the layers, the data-stan offset will change
from layer to layer. For example, a buffer containing X.2S data that is
being passed from Layer 2 to Layer 3 will have an offset at Layer 3 two
bytes beyond the offset at Layer 2.

3. Data length. The size of the SDU in a data-character buffer also varies
from layer to layer. In the example just given, the SDU will be smaller by
two bytes at Layer 3 than it was at Layer 2. In pointer-list buffers, the
length of all data is unknown at any given layer.

(C) Accessing Information in Structures
There are two stages that are preliminary to accessing the Information in these
structures. The first step is to conven the 80286-processor segment number into
a 32-bit address. The second stage is to place a pointer, in the shape of an IL
buffer structure, at that address. Let's use an IL buffer as an example.

1. Converting a segment number. The IL-buffer segment number is returned
any time you access one of the external, protocol-independent iI_bufler
variables listed in Table 66-1. These variables have names like
m_lo_dU/_buff and up_n_il_bufl.

To make a pointer to an IL buffer, (1) shift the 80286 segment number to
the left sixteen bits, since a full address in the 80286 is 32 bits long; (2) cast
it as a long, so that the segment number is in the high 16 bits and the offset
to a buffer for that segment is zero (the low 16 bits); and (3) cast it as a
pointer. The following expression will take care of all three requirements:

(,oid ') ((tons) m_lo_dUI_buJJ«J6);

Now you have a pointer to the first memory location of the most recent
monitor-mode IL buffer passed up from Layer 2 to Layer 3. An
upward-moving IL buffer was illustrated in Figure 66-2. The precise
structure of both the IL buffer is given in the following declaration.

JUL '90

(

JUL 'SO

slruc' ii_buffer
{

};

unsigned short lock;
unsigned short maintain_bits,
unsigned short buffer_size;
unsigned shor' transmit_'as;
unsigned shorl "ce;\I,_'ag:
unsigned long cha,_buffJram'_S,or/j
unsigned long cha,_buffJraml_,nd,
unsigned short tlck_count_high;
unsigned short tlck_count_mld,'
unsigned shorl tlck_count_'ow;
unsigned short Qvoilabl,_spact_offset:
unsigned short bytes_remaining;
unsigned long bee_'ndicator:
unsigned char data {4064/:

66 OS,

2. Create a structure-pointer at a given address. First, declare the structure of
II_buffer, as indicated above. Then declare ii_buffer "pointer as a
structure-pointer, as follows:

slruc, ii_buffer· "_buffer yointer;

Converting the segment number and assigning it to ii_buffer "pointer may be
accomplished with this one statement:

Now a structure has been created around the most recent upward-moving IL
buffer at Layer 3. This means that rather than moving a pointer around in
the IL buffer, you can access elements in the buffer directly. The
tick_count_low variable, for example, would be called
ii_buffer "pointer->tick_count_low. (The -> operator is used in place of the
dot operator in structure-pointers.)

The first element of the data string would be called
iI_buffer..pointer->data{Oj. Here is a program that displays on the prompt
line the fifth data element, the packet-type byte, in every IL buffer that is
monitored at Layer 3.

66-7

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

66-8

}

exlern tvent m_'o_dl""prmtvj
exler" lIolatile unsigned short m_lo_dl_"_buffj
slru" iI_bufler

{

} ;

unsigned shorl lock;
urlSigned short maintain_bits;
unsigned shorl buffer_size:
unsigned shorl transmit_,ag:
unsigned short receive_,ag;
unsigned long cha,_bul/Jrame31arlj
unsigned long cha,_buJIJram,_,nd;
unsigned shorl liclc_count_hlgh;
unsigned short tick_caunt_mid:
unsigned short tid_caunt_'ow;
unsigned shorl avallable_space_offset:
unsigned shor' byles_remaining;
unsigned long bee_Indica tOT;
unsigned char data 14.064/;

slruc, "_bu/f'r • i1_bufferJointer;

LAYER: 3
STATE: monitor -''-buff.rs

CONDITIONS:
{
m_lo_dlJrmt"

}
ACTIONS:
{

iI_buffer...p0in,er = (void 0) ((long) m_lo_dUI_buff«16};
pos_cursor (0,0);

di'playf ("%02x ", iI_buffer...p0in'er->da,a/4j):
}

If you run this program, be sure to load in the Layer 2 and Layer 3
personality packages for X.2S. These packages will take care of delivery of
the monitor primitives to Layer 3.

JUL 'SO

Type Variable

Structyre Name; pdu

unsigned char

unsigned char path

(unsigned long parameter

unsigned short relay_baton

unsigned short "_buffer_number

unsigned char butter_contents

unsigned short

unsigned short

JUL '90

66 OSI

Table 66·1
OSI Structures

Value (hex/decimal)

0-8

o

Meaning

Structure 01 an 051 primitive data unit IPOU).
Declared as type struct. Use this structure as follows.
Declare the entire structure. Make a pointer to a PDU
by shifting mJo_dlydu_sog lor up_n_pdu_sog) 16 bits
to. the lett. Then convert this pointer to a pointer to a
PDU structure: struct pdu II pduJlolnter
pduyolntor =1 void' II (long)m_lo_dlydu_sog « 16).
Reference a structure-pointer variable a9 follows:
pdu J>0lnter->prlmltlve _code.

Code. lor 051 variables are listed In Table 66·2
through Table 66·8. For Layar 3 primitive code ••
for example I refer to Table 66-4. The value of this
variable Is also stored In external varIable
mJo_dlyrmtv_code (or up_n_prmtv_code).

Path number. both directions. The value of this
variable Is also stored In external variable
mJo_dl_prmtvyath (or up_nyrmtvyath).

For future use. At present. under user control.

Maintain bit passed with an Interlayer-message
buller. both directions. Zoro In this variable
Identifies maintain bit.

Segment number of the Interlayer-message
buffer, both directions. The value of this variable
Is also stored In external variable m 10 dl II buff
(or up_n_lI_bull). - - --

Contains data-character buffer type. Must be
used for buffer being passed up.

Contains pointer-list buller type. May be used
for buffers being passed up, but Is currently used
primarily lor bullers being passed down.

Ollset from tho beginning 01 the buller to the
header node In the SOU of an Interlayer-message
buffer In an OSI primitive being sent down from a
layer above. In a primitive being sent up from a
layor below. It Is tho ollsot to tho SOU. Varies
according to the layer at which the buffer Is
located. For example. In a buffer passed up to
Layer 3 from Layor 2, tho ollsot would bo to tho
beginning 01 tho Layer 3 header, bypassing Layer
2 header Information. The value of this variable
Is also stored In external Variable
mJo_dl_sdu_oflset (or up_n_sdu).

Length of the service data unit, Including headers
and user data. Only for primitives sent up from
layer below. Varies with the layer where the
buffer Is located. For example, at Layer 3,
length would excludo Layor 2 heador (or trallsr)
Information. The value of this variable Is also
stored In external variable m_lo_dCsdu_slze.

66-9

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-9S1-108

Type Variable

Structure Name: ii_buffer

unsigned short lock

unsigned short maintaIn_bits

unsIgned short

unsIgned short transmIt_tag

unsIgned short receive_tag

unsigned long char _bufCframe_start

unsigned long char _ bufCframe _end

Table 66-1 (continued)

Value (hex/decimal)

a

Meaning

Structure of an Interlayer-message buffer, both
'directions. Declared as type struct. Use this
structure as follows. Deolare the entire structura.
Make a poInter to an II_butter by shifting
m_lo_dULbuH (or up_"JI_buH) 16 bits to the left:
"_buffer -"olnter = (void· II (longlllo_dUI_buff « 16).
Then convert this polntsr to a pointer to an II_buffer
structure: struot II_buffer· "_buffer yolnter.
Reference a structure-pointer variable as follows:
"_buffer _pointer ->tlck _ countJaw.

Internal Yarlable which prevents structure from
being updated by more than one program at the
same time.

Two-byte variable which provides the status of
the maintain bits. A bit with a value of 1 Is In
use.

1000/4096 default value
21-/111/33-65535 Specific value depends on buffer size set via

IL BUFFERS programmIng block or #pragma
(buffer_sIze

a
1
2
3
4

a
1
2
3
4

0
1

0
1

Bits 1-3 defIne bee Indication:

no bee
good bee
bad bee
abort
half bad bee (DDCMP)

Bits 4-8 for future use.

Bits 1-3 define bee Indication:

no bee
good bee
bad bee
abort
half bad bee (DDCMP)

BIt 4 Idenllfles side of the line:

td
rd

Bit 5 message buffer oyerflow:

frame fits In buffer
frame too large for the buffer

BIts 6-8 for future use.

Location In the character buffer of the start of
the buffered data.

Location In the character buffer of the end of the
buffered data.

(II_buffer structure continued on next page)

66-10 JUL '90

(

Type Variable

ii_buffer (continued)

unsigned short

unsigned short tlck_count_mld

unsigned short tlck_countJow

unsigned short avallable_space_offset

unsigned short bytesJemalnlng

unsigned long bee -,"dleator

unsigned char data [4064[

Structure Name: "_list_header

unsigned short

unsigned short last_node _offset

unsigned long reserved

JUL '90

66 OSI

Table 66·1 (continued)

Value (hex/decimal)

0

Meaning

Value of Internal variable that counts the number
of times 11 tick count has reached Its maximum
value. Together, the three 1/ buller tick-count
variables preserve at each layer the original time
when the end of the data (BCC) was clocked Into
the buffer.

16 high-order bits of 32-blt II_tlck_count.

16 low-order bits of 32-blt II_lick_count.

Offset to the next available space In the
Interlayer-message buffer.

Available number of bytes remaining In the buffer.

reserved

Contains all data IncludIng 8ach layer's header
Information, as well as the fIrst of two block
check characters. Does not vary from layer to
layer. Default size Is 4064, but may range from
33·65535 (hex 21-ffff) depending on the buffer
size set via IL BUFFERS programming block or
#pragma "_butfer _Size.

Structure of the header node In an
Interlayer-message buffer. Only for primitives
sent down from the layer above. Declared as
type struct. Use this structure as follows.
Declare the entire structure. Make a pointer to
an II list header by shifting up n II buff lor
m 10 dill buff) 16 bits to the-10ft-and adding the
data -start offset from the PDU structure (also
etorad a6 external variable up n sdu or
m 10 dl .du offset): - -
II ifst-header pointer =
(vold-'lIlllong)up_n_l,-buffl «16) + up_n_sdu).
Then convert this pOinter Into a pointer to an
II list header structure:
struct II list header • II list header pointer.
Reference a structure-pointer variable as fOllows:
"_list_header _pOinter ->Iast_ node_offset.

Offset from the beginning of the buffer to the
first text node In the buffer. Varies according to
the layer at which the buffer Is located. At Layer
2, the offset would be to different starting node
than at Layer 3.

Offset to the location of the last text node In the
buffer, from the beginning of the buffer.

reserved

66-11

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

Type Variable

Structure Name: IUlst_node

unsigned char ill

unsigned short

unsigned short

66-12

dataJlolnter

dataJength

next_nods_offset

Table 66-1 (continued)

Value (hex/decimal) Meaning

Structure of text nodes In an Interlayer-message
buffer. Only for primitives sent down from the
layer above. Declared 8S type struct. Use this
structure as tollows. Declare the entire
structure. Make a pointer to an II list node by
shifting up n II buff (or m 10 dl II-bu;;) 16 bUs to
the left and adding the first nod. -offset (or
last node offset) from the ii list iieader
structure: " list node pointer =-
(void ')«((Iong)up_n_lCbuH« 16) +
II list header polnter->flrst node off.et). Point
to the next n'Ode 8S follows: -
next_"odeyolnter = (IIJlst_"od8_polnter +
IUlst_"odeJJolnter->next_"ods_offset) .

Pointer to the data In a text node,

length of the data In a text node.

Offset to the location of the next text node In the
buffer, from the beginning of the buffer.

Generally, there Is a text node for each layer"
header Information and one for the user data. A
buffer that started at Layer 3 would have two
text nodes, one for Layer 3 header Information
and one for user data (If any). At Layer 2. the
buffer would acquire an additional text node.

JUL '90

(

(

66 OSI

66.2 Variables

OSI variables are layer-specific. The information stored in the OSI variables may be
obtained by using the structure-pointer to IL buffers and primitives. But rather than
requiring the user to repeat this process at each layer as a buffer moves through the
layers, monitor and emulate variables have been made-available at Layers 2-7 to
store layer-specific, as well as general, information: the interlayer-buffer number,
the offset to the service data unit, the path number, the size of the SOU, the
segment number of the POU, etc. There are also event variables which indicate that
a primitive has_been received.aL a. given layer. Table 66-2 through Table 66-8 give
the current OSI variables and their meanings.

The exchange of connect primitives shown primarily in Figure 33-4 is demonstrated in
Figure 66-3 using C variables and routines. The SEND actions insert data in a buffer
and send the buffer in a DATA REO primitive. See Section 66.3 for an explanation of
the _inserl_lI_buff_lisl_cnt and send primitive routines. The conditions use event
variables to detect primitives and non-event variables to identify specific primitive
types.

LAYER 3: '0" (send dLprmtv below ENTER STATE (ILbuffer_number. relay baton.
- data start offset. 1l.

OX40. path):)

LAYER 2:

(up dl prmtv && \\ l.
(up_dlyriiitv-:'code == OX40)jSEND SABM

{Io dlyrmtv && ,/."
Ilo_dlyriiitv_code =" OX43))/ SEND RESTART

1----1
.. J OL_OATA L~

, REO,." " ,. ,,.
eto.

V
(\I buffer number. relay baton. I' (.end dl prmtv above

RC UA - data -start offset .• !Ze.
llx43.-pathl :)

Figure 66~3 Layer 3 uses connect primitives to be sure that the Layer 2 entity below has
established a link.

JUL '90 66-13

INTERVIEW 7000 Series Advanced ProgrammIng: ATLC 107 951-108

Table 66·2
Layer 1 OSI VarIables

Type Variable Value (hex/decimal) Meaning

extern Yolatlle unsigned char

66-14

20/32
21/33
22/34
23/35
24/36
25/37
2a/42
2b/43
20/44
2d/45
2e/46
21147
30/48
31/49
33/51
34/52
35/53
38/56
39/57

ph aotlvate req
ph aotlvate Ind
ph activate resp
ph activate cant
ph data req
ph data Ind
ph reset req
ph re.et Ind
ph reset rasp
ph reset cant
ph deaotlvate req
ph deaotlvate Ind
ph debug req
ph debug Ind
ph error report Ind
ph xmlt req
ph .et Idle req
ph mgt facility req
ph mgt facility Ind

OSI primitive code for primitives
moving between Layers 1 and 2.
Line Setup oonflgured for
emulate mode only.

JUL '90

Type

extern event

extern event

extern event

extern volatile unsigned short

extsrn volatile unsigned short

extern volatile const unsigned char

exlern volallie consl unsigned char

JUL'SO

Table 66-3
Layer 2 OSI Variables

66 OSI

Variable Value (hex/declmal) Meaning

10,J>h ,J>rmlv

21/33
23135
25137
2bl43
2dl45
2fJ47
31149
33151
39157

24136
25137

True when an 051 primitive Is
received at Layer 2 from Layer
1. Line Selup configured for
emulate mode only.

True when an 051 primitive Is
received at Layer 2 from Layer
1. Line Selup configured for
emulate or monitor mode.

True when an 051 prlmilive Is
received at Layer 2 from layer
3. Line Selup configured for
emulate mode only.

051 primitive dala unll (PDU)
IAPX-286 segmenl number
received at Layer 2 from layer
1. This segment number can
be oonverted to a pointer by
shlfllng II left 16 bits. Line
Setup oonflgured for emulate
mode only.

051 primitive dala unit (PDU)
IAPX-286 segmenl number
received at Layer 2 from layer
1. This segment number can
be converted to a pOinter by
shifting II left 16 biIS. Line
Setup configured fer emulate or
monitor mode.

ph acllvale Ind
ph acllvale conf
ph data Ind
ph resellnd
ph reset cont
ph deactlvale Ind
ph debug Ind
ph error report Ind
ph mgl faclilly Ind

051 primitive code received at
Layer 2 In a PDU from Layer 1.
Line Selup oonflgured for
emulate mode only.

Id ph dala Ind
rd ph data Ind

051 primitive code received at
Layer 2 In a PDU from Layer 1.
Une Setup configured for
emulate or monitor mode.

66-15

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

Type

extern volatile const unsigned char

extern volatile const unsigned char

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

66-16

Table 66-3 (continued)

Variable Value (hex/decimal) Meaning

10 JlhJlrmtv Jlath 0-8

m Ja Jlh Jlrmtv Jlath 0-8

laJlhJLbull

Path number received at Layer
2 In a PDU from Layer 1. Une
Setup configured for emulate
mode only.

Path number received at Layer
2 In a PDU from Layer 1. Une
Setup configured for emulate or
monitor m~de.

Interlayer-buffer number (an
IAPX-286 .egment number)
received at Layer 2 In a PDU
from Layer 1. This segment
number can be converted to a
pointer by shlfllng It lett 16 bits.
line Setup configured for
emulate mode only.

Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 2 In a POU
from Layer 1. This segment
number can be converted to a
pOinter by shifting It left 16 bits.
Line Setup configured for
emulate or monitor mode.

In OSI primitive received at
Layer 2 from Layer 1, the offset
to where the service data unit
begins. Line Setup configured
for emulate mode only.

In OSI primitive received at
Layer 2 from Layer 1, the offset
to where the service data unit
begins. Line Setup configured
for emulate or monitor mode.

Size of the service data unit In
an Interlayer-message buffer,
displayed as SIZE on the Layer
2 traca screen. Received at
Layer 2 from Layer 1. Same as
data length In a PDU. line
Setup configured for emulate or
monitor mode.

OSI prlmilive data unit (PDU)
IAPX-286 segment number
received at Layer 2 from Layer
3. This segment number can
be converted to a pointer by
shifting It left 16 blls. Line
Setup contlgured for emulate
mode only.

JUL '90

(

Type

extern volatile const unsigned char

extern volatile canst unsigned char

extern volatile unsigned short

extern volatile unsigned short

extern unsigned long

JUL '90

66 OSI

Table 66-3 (continued)

Variable Value (hex/decimal) Meaning

12_ tick_count

40/64
42/66
44/68
48/72
4a/74
40/76
4e/78
50/80
52/82
58/88

0-8

dl oonn req
dl conn resp
dl data req
dl expd data req
dl reset req
dl reset resp
dl dlsconn req
dl debug req
dl unit data req
dl mgt facility req

OSI primitive oode reoelved at
Layer 2 In a PDU from Layer 3.
Line Setup oonflgured for
emulate mode only.

Path number received at Layer
2 In a PDU from Layer 3. Line
Setup configured for emulate
mode only.

Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 2 In a POU
from layer 3. This segment
number can be converted to a
pointer by shifting It lett 16 bits.
Line Setup oonflgured for
emulate mode only.

Ottset to the stert (header
node) of the servloe data unit In
an Interlayer-rnessage buffer.
Received at Layer 2 from Layer
3. Same as data start offset In
a PDU. Line Setup coriilgured
for emulate mode only.

32-blt 11 tick count Btored In
header of most recent IL buffer
passed up to Layer 2.
Preserves at each layer 1he
original 11me when 1he end of
the data (BCC) was clocked
Into 1he buffer. Line Setup
configured for emulate or
monitor mode.

66-17

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-108

Table 66·4
Layer 3 OSI Variables

Type Variable Value (hex/decimal) Meaning

extern event

extern event

extern event

extern volatile unsigned short

extern volatile unsigned short

extern YolaUle const unsigned char

66-18

mJo,-dl.J>rmtv-

41/65
43/67
45/69
49/73
4b/75
4d/77
4f179
51/81
53/83
55/85
59/89

True when an OSI primitive I.
received at Layer 3 from layer
2. Une Setup configured for
emulate mode only.

True when an OSI primitive la
received at Layer 3 from layer
2. Line Setup configured tor
emulate or monitor mode.

True when an OSI prImitive Is
received at layer 3 from Layer
4, line Setup configured for
emulate mode only.

OSI primitive data unit IPOU)
IAPX-286 segment number
received at layer 3 from Layer
2. This segment number can
be converted to a pointer by
shifting It left 16 bits. Line
Setup configured for emulate
mode only.

OSI primitive data unit (POU)
IAPX-286 segment number
received at Layer 3 from layer
2. This segment number can
be converted to a pointer by
shifting It lett 16 bit.. Line
Setup configured for emulate or
monitor mode.

dl oonn Ind
dl conn cant
dl data Ind
dl expd data Ind
dl reset Ind
dl reset oonf
dJ dlsconn Ind
dl debug Ind
dl unit data Ind
dl error report Ind
dl mgt facility Ind

OSI primitive code received at
Layer 3 In a PDU from Layer 2.
LIne Setup configured for
emulatB mode only.

JUL '90

(

Type

extern volatile const unsigned char

extern volatile const unsigned char

extern volatile const unsigned char

extern volatile unsigned short

I

extern volatile unsigned short

extern volatile unsigned short

extern Yolatlle unsigned short

extern volatile unsigned short

JUL '90

66 OSI

Table 66-4 (continued)

Variable Value (hex/decimal) Meaning

44/66
45/69
46/72
49/73
54/64
55/65

0-8

0-8

td dl data Ind
rd dl data Ind
td dl expd data Ind
rd dl expd data Ind
td dl unit data Ind
rd dl unit data Ind

OSI primitive code received at
Layer 3 In a POU from Layer 2.
lIna Setup configured for
emulate or monitor mode.

Path number received at Layer
3 In a POU from Layer 2. Line
Setup oonflgured for emulate
mode only.

Path number received at Layer
3 In a POU from Layer 2. Line
Setup configured for emulate or
ma nltor mode.

Interlayer-buffer number (an
IAPX-266 segment number)
received at Layer 3 In a PDU
from Layer 2. This segment
number can be converted to a
pointer by shifting It left t6 bits.
Line Setup configured for
emulate mode only.

Interlayer-buffer number (an
IAPX-266 segment number)
received at Layer 3 In a PDU
from Layer 2. This eegment
number can be converted to a
pointer by shlfllng It left 16 bits.
Line Setup configured for
emulate or monitor mode.

In OSI primitive received at
Layer 3 from Layer 2, the offset
to where the service data unit
begins. Line Setup configured
for emulate mode only.

In 051 primitive received at
Layer 3 from Layer 2. the offset
to where the service data unit
begins. Line Setup configured
for emulate or monitor mode.

Size of the service data unit In
an Interlayer-message buffer I
displayed as SIZE on the Layer
3 trace screen. Received at
Layer 3 from Layer 2. Same as
data)ength In a POU. Line
Setup configured for emulate or
monitor mode.

66-19

INTERVIEW 7000 Series Advanced ProgrammIng: ATLC-107-951-10B

Table 66-4 (continued)

Type Variable Value (hex/decimal) Meaning

extern volatile unsigned short

extern volatile const unsIgned char

extern volatile oonst unsigned char

extern volatile unsIgned short

extsrn volatile unsigned short

extern unsigned long

66-20

60/96
62198
64/100
66/102
68/104
6a/l06
6c/l08
6e/ll0
70/112
72/114
74/116
76/118
78/120

0-8

OSI primitive data unit (PDU)
IAPX-286 segment number
receIved at Layer 3 from Layer
4. This segment number can
be converted to a pointer by
shlttlng It lett 16 bits. Line
Setup configured tor emulate
mode only.

n conn req
n aonn rssp
n data req
n data ack req
n expd data req
n raset req
n reset rasp
n dlscon" req
n debug req
n unit data req
n qual data req
n qual data ack req
n mgt facility req

OSI primitive code received at (
Layer 3 In a PDU from Layer 4,
Line Setup configured tor
emulate mode only.

Path number reoelved at Layer
3 In a PDU from Layer 4. Line
Setup configured for emulate
mode only.

Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 3 In a PDU
from Layer 4, This segment
number can be converted to a
pointer by shifting It left 16 bits.
Line Setup configured for
emulate mode only.

Offset to the start (header
node) of the service data unit In
an Interlayer-message buffer.
Received at Layer 3 from Layer
4. Same as data start offset In
a PDU, Line Setup coriilgured
for emulate mode only.

32-blt 11 tIck count stored In
header 01 most recent IL bufter
passed up to Layer 3.
Preserves at each layer the
original time when the end of
the data (BCC) was clocked
Into the buffer, Line Setup
configured for emulate or
monitor mode.

JUL '90

Type

extern event

extern event

extern event

extern volatile unsigned short

extern yolatlle unsigned short

extern volatile const unsigned char

JUL '90

Tabla 66-5
Layer 4 OSI Variables

66 OSI

Variable Value (hex/decimal) Meaning

m -'0 _" J>rmtv.

61/97
63/99
65/101
671103
69/105
6b/l07
6d/l09
611111
71/113
73/115
75/117
77/119
79/121
7a/122

True when an 051 primitive 10
reoelved at Layer 4 from Layer
3. Line Selup configured for
emulate mode only.

True when an 051 primitive 10
received at Layer 4 from Layer
3. Line Setup configured for
emulate or monitor mode.

True when an OSI primitive 18
received at layer 4 from Layer
5. Line Setup oonflgured for
emulate mode only.

051 primitive data unit (POU)
IAPX-286 segment number
received at Layer 4 from Layer
3. This segnient number can
be oonverted to a pointer by
shifting It left 16 bit.. Line
Setup configured for emulate
mode only.

051 primitive data unit (POU)
IAPX-286 segment number
received at Layer 4 from Layer
3. This segment number can
be converted to a pointer by
shifting It left 16 bit.. Line
Setup configured for emulate or
monitor mode.

n conn Ind
n conn conf
n data Ind
n data ack Ind
n expd data Ind
n reset Ind
n reset conf
n dlsconn Ind
n debug Ind
n unit data Ind
n qual data Ind
n qual data ack Ind
n mgt facility Ind
n error report Ind

OSI primitive code received at
Layer 4 In a POU from Layer 3.
Line Setup configured for
emulate mode only.

66-21

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-l07-951-108

Type

extern volatile const unsigned char

extern volatile oonst unsigned char

extern volatile canst unsigned char

extern volatile unsIgned short

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

66-22

Table 66-5 (continued)

Variable Value (hex/decimal) Meaning

64/100
65/101
68/102
69/103
74/116
75/117

0-8

0-8

td n data Ind
rd n data Ind
td n expd data Ind
rd n expd data Ind
td n unit data Ind
rd n unit data Ind

051 primitive code received at
Layer 4 In a PDU from Layer 3.
line Setup configured for
emulate or monitor mode.

Path number receIved at Layer
4 In a PDU from Layer 3. Line
Setup configured for emulate
mode only,

Path number received at Layer
4 In a PDU from Layer 3. line
Setup configured for emulate or
monitor mode.

Interlayer-buffer number {an
IAPX-286 segment numbe"
receIved at Layer 4 In a PDU
from Layer 3. This segment
number can be converted to a
pointer by .hlftlng It lett 16 bit •.
line Setup configured for
emulats mode only.

Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 4 In a PDU
from Layer 3. This segment
number aan be converted to a
pointer by shifting It left 16 bit •.
Line Setup configured for
emulate or monitor mode.

In 051 primitive received at
Layer 4 from Layer 3. the offset
to where the service data unit
begins. Line Setup configured
for emulate mode only.

In 051 primitive received at
Layer 4 from Layer 3. the offset
to where the service data unit
begins. Line Setup conllgured
for emulate or monitor mode.

Size of the service data unit In
an Interlayer-message buffer.
Received at Layer 4 from Layer
3. Same as data length In a
PDU. Une Setup-configured for
emulate or monitor mode.

JUL '90

Type

extern volatile unsigned short

extern volatile const unsigned char

extern volatile const unsigned char

extern volatile unsigned short

extern volatile unsigned short

extern unsigned long

JUL '90

66 OSI

Table 66-5 (conllnued)

Variable Value (hex/decimal) Meaning

801128
82/130
84/132
88/136
8e/142
90/144
92/146
98/152

0-8

051 primitive data unit (PDU)
IAPX-286 segment number
received at Laver 4 from Laver
5. This segment number can
be converted to a pointer by
shifting It left 16 bit.. Line
Setup configured for emUlate
mode onlv.

t conn req
t conn rasp
t data req
t expd data req
t disco"" req
t debug req
t unit data req
t mgt facllltv req

051 primitive code received at
Laver 4 In a PDU from Laver 5.
Line Setup configured for
emulate mode only.

. Path number received at Layer
4 In a PDU from Laver 5. Line
Setup configured for emulate
mode only.

Interlayer-buffer number (an
IAPX-286 .egment number)
received at Layer 4 In a PDU
from Layer 6. This segment
number can be converted to a
pointer bV shifting It left 16 bits.
Line Setup configured for
emulate mode only.

Offset to the start (header
node) of the service data unit In
an Interlayer-message buffer.
Received at Layer 4 from Layer
5. Same as data start offset In
a PDU. Line Setup configured
for emulate mode only.

32-blt /1 tick count stored In
header of most recent IL buffer
passed up to Laver 4.
Preserves at each layer the
original time when the end of
the data (BCC) was cloaked
Into the buffer. Line Setup
configured for emulate or
monitor mode.

66-23

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 66·6
Layer 5 OSI Variables

Type Variable Value (hex/decimal) Meaning

extern event

sKtarn event

extern avant

extern volatile unsigned short

extern Yolatlle unsigned short

extern volatile const unsigned char

extern volatile const unsigned char

66-24

81/129
83/131
851133
891137
81/143
911145
931147
951149
991153

84/132
851133
881136
89/137
941148
951149

True when an OSI primitive Is
received at Layer 5 from Layer
4. Line Setup configured for
emulate mode only.

True when an 051 primitive Is
received at Layer 5 from layer
4. Line Setup ccnflgured for
emulate or monitor mode.

True when an OSI primitive Is
receIved at Layer 5 from Layer
6. LIne Setup configured for
emulate mode only.

051 primitive data unit (PDU)
IAPX-286 segment number
received at Layer 5 from Layer
4. This segment number oan
be converted to a pointer by
shifting It left 16 bits. Line
Setup configured tor emulate
mode only.

OSI primitive data unit (PDU)
IAPX-286 segment number
received at Layer 5 from Layer
4. This segment number oan
be converted to a pointer by
shifting It left 16 bits. Une
Setup configured tor emulate or
monitor mode.

t conn Ind
t conn cont
t data Ind
t expd data Ind
t dlsconn Ind
t debug Ind
t unit data Ind
t error report Ind
t mgt facility Ind
OSI primitive code received at
Layer 5 In a PDU from Layer 4.
Une Setup configured fcr
emulate mode only.

td t data Ind
rd t data Ind
td t expd data Ind
rd t expd data Ind
td t unit data Ind
rd t unit data Ind
OSI primitive code received at
Layer 5 In a PDU from Layer 4.
Une Setup configured fcr
emulate or monitor mode.

JUL '90

(

Type

extern volatile const unsigned char

ex.tern Yolatlle const unsigned char

extern volatile unsIgned short

extern volatile unsigned short

(

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

JUL '90

66 OSI

Table 66·6 (continued)

Variable Value (hexldeclmal) Meaning

0-8

Path number received at Layer
5 In a PDU from Layer 4. Line
Setup configured for emulate
mode only.

Path number receIved at layer
6 In a PDU from Layer 4. Line
Setup configured for emulate or
monitor mode.

Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 6 In a PDU
from Layer 4. This segment
number can be converted to a
pointer by shifting It left 16 bits.
Line Setup configured for
emulate mode only.

Intarlayer -bUffer number (an
IAPX-286 segment number)
received at layer 5 In a POU
from Layer 4. This segment
number can be converted to a
pointer by shifting It left 16 bits.
Line Setup configure d for
emulate or monitor mode.

In OSI primitive received at
Layer 5 from Layer 4. the offset
ta where the service data unit
begins. Line Setup configured
for emulate mode only.

In OSI primitive reoelved at
Layer 5 from Layer 4. the oHset
to where the service data unit
begins. Line Setup configured
for emulate or monitor mode.

Size of the service data unit In
an Interlayer-message buffer.
Received at Layer 5 from Layer
4. Same as data length In a
PDU. Line Setup-configured for
emulate or monitor mode.

OSI primitive data unit (PDU)
IAPX-286 segment number
received at Layer 6 from Layer
6. This segment number can
be converted to a pointer by
shifting It left 16 bits. Line
Setup configured for emulate
mode only.

66-25

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-107-9S1-10B

Table 66·6 (continued)

Type Variable Value (hex/decimal) Meaning

extern volatile oonst unsigned char

extern Yolatlle const unsigned char

extern yolatlle unsigned short

extern volatile unsigned short

extern unsigned long

66-26

aO/160
a2/162
84/164
88/168
ac/l72
ae/174
bO/176
b2l178
b8/184

0-8

8 conn req
8 conn rasp
8 data req
8 expd data req
8 release req
8 release resp
8 debug req
8 unit data req
• mgt facility req

OS! primitive code received at
Layer 6 In a PDU from L8yer 6.
line Setup configured for
emulate mode only.

Path number reoelved at Layer
5 In a PDU from Layer 6. Line
Setup configured for emulate
mode only.

Interlayer-buffer number (an
IAPX-286 segment number I
received at Layer 5 In a PDU
from Layer 6. This segment
number oan be converted to a
pointer by shifting It left 16 bits.
Line Setup configured for
emulate mode only.

Oll.et to the start (header
node J at the service data unit In
an Interlayer-message buffer.
Received at layer 5 from layer
6. Same as data start offset In
a PDU. Une Setup contlgured
for emulate mode only.

32-blt 11 tick count stored In
header of most recent Il buffer
passed up to Layer 5.
Preserves at each layer the
original time when the end of
the data (BCC) was clocked
Into the buller. Line Setup
configured for emulate or
monitor mode.

JUL '90

(

,
'.

(

Type

extsrn event

extern event

extern event

extern volatile unsigned short

extern volatile unsigned short

extern volatile const unsigned char

extern volatile const unsigned char

JUL '90

Table 66·7
Layer 6 OSI Variables

66 OSI

Variable Value (hex/decimal) Meaning

IO_8J>rmtv

al/161
a3/163
a5/165
a9/169
ad/173
afl175
bl/177
b3/179
b5/181
b9/185

a4/164
05/165
a8/168
a9/169
b4/180
b5/181

True when an 051 primitive I.
received at Layer 6 from Layer
6. Line Setup configured for
emulate mode only.

True when an 051 primitive I.
received at Layer 6 from Layer
6. Une Setup configured for
emulate or monitor mode.

True when an 051 primitive I.
received at Layer 6 from Layer
7. Line Setup configured for
emulate mode only.

051 primitive data unit (PDU)
IAPX·286 .egment number
received at Layer 6 from Layer
5. This segment number can
be converted to a pOinter by
shifting It left 16 bits. Line
Setup oonflgured for emulate
mode only.

051 primitive data unit (PDU)
IAPX-286 segment number
received at Layer 6 from Layer
5. This segment number can
be converted to a pointer by
shifting It left 16 bits. Line
Setup configured tor emulate or
monitor mode.

8 conn Ind
8 conn conf
8 data Ind
8 expd data Ind
8 release Ind
s release cont
s debug Ind
s unit data Ind
s error report Ind
s mgt facility Ind
OSI primitive code received at
Layer 6 In a PDU from Layer 5.
Line Setup configured for
emulate mode only.

td s data Ind
rd s data Ind
td s expd data Ind
rd s expd data Ind
td s unit data Ind
rd s unit data Ind
OSI primitive code received at
Layer 6 In a PDU from Layer 5.
Line Setup configured for
emulate or monitor mode.

66-27

INTERVIEW 7000 Series Advanced Programming: A TLC-l 07-951-108

Type

extern Yolatlle const unsigned char

extern volatile const unsigned char

extern volatile unsigned short

extern yolatlle unsigned short

extern volatile unsigned short

extern yolatlle unsigned short

extern yolatlle unsigned shprt

extern volatile unsigned short

66-28

Table 66-7 (continued)

Variable Value (hex/decimal) Meaning

0-8

0-8

Path number received at Layer
6 In a PDU Irom Layer 5. Line
Setup configured for emulate
mode only.

Path number received at Layer
6 In a PDU Irom Layer 5. Line
Setup configured tor emulate or
monitor mode,

Interlayer-buffer number (an
IAPX-286 segment number)
reoelved at Layer 6 In a POU
from Layer 6. This segment
number oan be oonverted to a
pointer by shlltlng It left 16 bits.
line Setup configured for
emulate mode only.

Interlayer-buffer number (an
IAPX-286 segment number)
reoelved at Layer 6 In a PDU
from Layer 5. This segment
number can be converted to a
pointer by shifting It lett 16 bits.
Line Setup configured tor
emulate or monitor mode.

In OSI primitive received at
Layer 6 from Layer 5, the off6et
to where the service data unit
begins. line Setup configured
for emulate mode only.

In OSI primItive received at
Layer 6 from Layer 5. the offset
to where the service data unit
begins. line Setup configured
for emulate or monitor mode.

Size of the service data unit In
an Interlayer-message buffer.
Received at Layer 6 from Layer
5. Same a9 data length In a
PDU. Line Setup -configured lor
emulate or monitor mode.

OSI primitive data unit (PDU)
IAPX-286 segment number
received at Layer 6 from Layer
7. This segment number oan
be converted to a pointer by
shifting It lett 16 bits. Line
Setup configured for emulate
mode only.

JUL '90

Type

extern yolatlle oonst unsigned char

extern volatile const unsigned char

extern volatile unsigned short

extern Volatile unsigned short

extern unsigned long

JUL '90

66 OSI

Table 66-7 (continued)

Variable Value (hex/decimal) Meaning

upyyrmtvyath

16_ tick_count

001192
02/194
041196
081200
001204
oel206
dOl208
d21210'
d81216

0-8

p conn req
p conn resp
p dala req
p expd data req
p release raq
p release resp
p debug req
p unit data req
p mgt laoility req

OSI primitive oode received at
Layer 6 Irom Layer 7 In a POU.
Line Setup configured lor
emulate mode only.

Path number received at Layer
6 from Layer 7 In a POU. Line
Setup configured for emulate
mode only.

Interlayer-buffer number (an
IAPX-286 segment number)
reoelved at Layer 6 from Layer
7 In a POU. This segment
number oan be converted to a
pointer by shifting It left 16 bits.
line Setup configured for
emulate mode only.

Offset to the start (header
node) of the service data unit In
an Interlayer-message buffer.
Received at Layer 6 from Layer
7. Same as data start offset In
a PDU. Line Setup coriflQured
for emulate mode only.

32-blt 11 rick count stored In
header of most recent IL buffer
passed up to Layer 6.
Preserves at each layer the
original time when the end of
the data (BCC) was olocked
Into the buffer. Line Setup
configured for emulate or
monitor mode.

66-29

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-l07-951-10B

Table 66-8
Layer 7 OSI Variables

Type Variable Value (hex/decimal) Meaning

extern event

extern event

extern volatile unsigned short

extern volatile unsigned short

extern volatile canst unsigned char

extern volatile const unsigned char

extern volatile const unsigned char

66-30

l0..p..prmtv

IOYJlrmtv_code 011193
03/195
05/197
09/201
od/205
01/207
dl/209
d3/211
d5/213
d91217

04/196
05/197
08/200
09/201
d4/212
d5/213

0-8

True when an 051 primitive I_
received at Layer 7 from Layar
6. line Setup configured for
emulate mode only.

True when an 051 primitive I_
received at Layer 7 from layer
6. Line Setup oonllgured for
emulate or monitor mode.

OSI primitive data unit (POUI
IAPX-286 segment number
received at Layer 7 from Layer
6. This segment number aan
be converted to a pointer by
shilling It left 16 bit.. Line
Setup configured for emulate
mode only.

051 primitive data unit (POU)
IAPX-286 s8gment number
received at Layer 7 from Layer
6. This segment number oan
be converted to a pointer by
_hilling It lell 16 bit.. Line
Setup configured tor emulate or
monitor mode.

p conn Ind
p conn cont
p data Ind
p expd data Ind
p release Ind
p release cont
p debug Ind
p unit data Ind
p error report Ind
p mgt facility Ind

OSI primitive code received at
Layer 7 In a POU from Layer 6.
Line Setup conllgured for
emulate mode only.

td p data Ind
rd p data Ind
td p expd data Ind
rd p expd data Ind
td p unit data Ind
rd p unit data Ind

OSl primitive code received at
Layer 7 In a POU Irom Layer 6.
line Setup configured tor
emulate or monitor mode.

Path number received at Layer
7 In a POU from Layer 6. Line
Setup configured tor emulate
mode only.

JUL '90

Type

extern volatUe const unsigned char

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

extern volatile unsigned short

extern unsigned long

66.3 Routines

66 OSI

Table 66-8 (continued)

Variable Value (hex/decimal) Meaning

m -'0 Jl Jlrmtv Jlath 0-8

10 Jl-''-buff

Path number received at Layer
7 In a PDU from Layer 6. Une
Setup configured for emulate or
monitor mode.
Interlayer-buffer number (an
IAPX-286 segment number I
received at Layer 7 In a PDU
from Layer 6. This segment
number can be converted to a
pointer by shifting It left 16 bfts.
Line Setup configured for
emulate mode only.

Interlayer-buffer number (an
IAPX-286 segment number)
received at Layer 7 In a PDU
from Layer 6. This segment
number can be converted to a
pointer by shifting It lett 16 bits.
Line Setup configured for
emulate or monitor mode.
In OSI primitive reoelved at
Layer 7 from layer 6, the offset
to where the service data unit
begins. Line Setup configured
for emulate mode only.
In OSI primitive received at
Layer 7 from Layer 6. the offset
to where the service data unit
begins. Line Setup configured
for emulate or monitor moda.
Size of the service data unit In
an Interlayer-message buffer.
Received at Layer 7 from Layer
6. Same as data_'ength In a
PDU. Line Setup oonflgured for
emulate or monitor mode.
32-blt 11 rick counr stored In
header 01 most recent IL buffer
passed up to Layer 7.
Preserves at each layer the
original time when the end of
the data (BCC) was clocked
Into the buffer. Line Setup
configured for emulate or
monitor mode.

OSI routines available at each layer make sending primitives to a layer above or
below possible (see Figure 66-3). The routine name and its arguments provide the
same information as the softkey selections on the Protocol Spreadsheet. (In the early
phases of compiling the program, the C translator uses the routines to convert the
spreadsheet softkey-token primitives into C.) All routines are protocol-independent.

JUL '90 66-31

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-108

66-32

CAl Layer-Independent OSI Routines

The following interlayer buffer service routines operate at any layer. regardless of
protocol (or in the absence of a protocol package).

Synopsis

exttrn void Jet_il_ms8_bu!f(buffe,_numberylr, malntaln_bUy,r)j
unsigned short' buffe,_numberY"i
unsigned short' maintain_bUytr;

Description

The ~et_il_msg_buff routine gets a free interlayer message buffer from the pool
and returns the buffer number to the caller for use in subsequent calls to other
interlayer buffer services. It also returns a maintain bit for use in the freeing
operation.

The first parameter is a pointer to the location where the buffer number is to be
stored. The buffer number that is returned is actually an iAPX-286 segment
number which can be converted to a pointer by shifting it 16 bits to the left. If (
there is no free buffer available. the routine will wait for one to become
available.

The second parameter is a pointer to the location where the maintain bit will be
stored. Since it must be used in the freeing operation. the maintain bit value
should not be modified. The zero bit in this variable indicates your maintain
bit.

Example

The variables in which the returned buffer number and maintain bit will be
stored must be declared. When calling the routine. reference the addresses of
these variables.

}

unsigned short il_buffer_number;
unsigned shorl relay_baton;

LAYER: 4
STATE: get_a_buffer

CONDITIONS: KEYBOARD' •
ACTIONS:
{
...,&et_lI_ms8_buff(&iJ_huffer _number, &Te/ay_baton) j

}

The routine will get a buffer number and store it in variable ii_buffer _number.
It will also return a maintain bit and store it in variable relay_baton.

JUL '90

JUL '90

Synopsis

extern void _sIart_lt_buff_UsI(i'_buff,,_number. sra,,_oflsetJ,r)j
u".dgned short iI_buff,,_numb,,:
unsigned shorl • slar,_o/fselytr:

Description

66 OSI

The jlarl_itbuff_lisl routine stans a linked list of text inside an interlayer
message buffer. The list is made up of a header node and text nodes. The
header node contains offsets to the first and last text nodes. Each text node
contains a pointer to the actual text, the length of the text, and the offset to the
next text node. This routine actually creates the header node inside the
interlayer message buffer and initializes the first and last text node offsets to
zero, indicating an empty list. It will return the offset to the list header node for
use in subsequent list service calls.

The first parameter is the interlayer message buffer number that will contain the
list.

The second parameter is a pointer to the location where the offset to the list
header will be stored. The returned offset will be zero if there is insufficient
room in the buffer for the header node and one text node. Otherwise, it is the
offset from the beginning of the message buffer to the start of the header node.

To convert the offset into a pointer, shift the buffer number 16 bits to the left
and add the offset:

Example

Get a buffer and start a linked list. The variable In which the returned offset
will be stored must be declared. When calling the routine, reference the address
of this variable.

)

unsigned short II_buffer _number:
unsigned short ,elay_balon:
unsigned short data_start_offset:

66-33

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

66-34

STATE: ,tart_aJlst
CONDITIONS: KEYBOARD· •
ACTIONS:
(
Je,_"_msG_buII(&i1_buffer _number. riTe/oy_baton);
_starl_il_ buff _Iisl (lI_bufler _number, &'data _start_offset) p'

,. See _inserl_fl_bufl_lisl_cl1t routine on how informallon is Jnserted in the buffer .• ,

The routine will get the offset to the header node and store it in variable
dataJtart~offset .

dup /I buff list start - - - - -
Syoopsis

extern unsigned short _dup_lI_buff_lIsl_slar' (ii_buffer _numbe" star,_ offset,
new _star,_offset.ytr);

unsigned short iI_buffer_number,'
unsigned shor' start_ojfset;
unsigned short· new_slar,_offsetylrj

Descrjption

This routine duplicates the header node of a pointer list. In order for a layer to
retain the ability to resend a buffer-that is, to reference again the same list
header with the same lirst-node offset-it must keep its own linked list safe from
data inserted at a layer below. The _dup~l_buff_list_start routine allows the
lower layer to start its own list.

If the lower layer will insert data into the buffer, it need duplicate only the list
header ("list_start"), not the entire list. If the layer will append data to the
end of the buffer, it must duplicate the complete linked list via the
_dup _ii_bUff _list routine.

The lirst parameter is the interlayer message buffer number in which the header
node will be duplicated.

The second parameter is the offset to the header node to be duplicated.

The third parameter is a pointer to the location where the offset to the new
header node will be stored.

Returns

This routine returns zero if there is not enough room in the buffer for the
duplicated header node and at least one list node.

JUL '90

(

JUL '90

Example

Duplicate the header node of a buffer passed down from Layer 3.

}

utern votatile unsigned short up_dl_"_buff;
exl,rn volatile unsigned short up_dl_sdu;
unsigned ShOTI 12_data_star,_offset;

LAYER: 3
STATE: me.sage

CONDITIONS: KEYBOARD' •

ACTIONS: DL_DATA REQ ''I. " '1. ((FOX)) •
LAYER: 2

STATE: duplicate_header
CONDITIONS: DL DATA REQ
ACTIONS: -
{
_dup_il_buff_lIsl_slart(up_dl_i1_buff. up_dl_sdu. &12_data_slarl_offset);

,- See _inser,_i1_buff_lisl_cnt routine on how Informalion is Inserted In the burrer .• ,

Synopsis

66 OSI

extern unsigned shor, _dup_U_bulf_list(lI_buff,,_numblr, slort_offset, new_star,_offsely"),'
unsigned thoTtll_buffer_number:
unsigned short SlOTt_offset;
unsigned shori • new_star,_offselJ,ri

Description

This routine duplicates an entire pointer list. In order for a layer to be able to
retain the ability to resend a buller-that is, to reference again the same list
header with the same lirst- and last-node o((sets-it must keep its own linked
list safe from data inserted and appended at a layer below. The
_dup_il_buff_lisl routine allows the lower layer to have its own list.

If the lower layer will append data to the buffer, it should duplicate the entire
linked list. If the layer will only insert data into the buffer, it need only
duplicate the header node via the _dup_i1_buff_lisljlarl routine.

The first parameter is the interlayer message buffer number in which the list will
be duplicated.

The second parameter is the offset to the header node of the list to be
duplicated.

66-35

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-107-951-10B

66-36

The third parameter is a pointer to the location where the offset to the header
node for the new list will be stored.

Retyrns

This routine returns zero if the duplication is successful. If there is not enough
room in the buffer to duplicate the list, one is returned.

Example

Duplicate the entire pointerlist'of a buffer passed' down from Layer 3.

}

extern lJolatlle unsigned shor, up_dl_il_buf/i
extern volatile unsigned shor, up_dl_sdu;
unsigned short 12_dala_star'_oJ/set;

LAYER: 3
STATE: message

CONDITIONS: KEYBOARD'
ACTIONS: DL_DATA REO 'Dc <''1o((FOX»"

LAYER: 2
STATE: duplicate Jist

CONDITIONS: DL_DATA REO
ACTIONS:
{
_dup _I'-bu//_lis/(up _dUI_bu//, up _dljdu. &12_da'aj,ar'_o//se');

'* See _oppend_ll_buff_list_cnt routine on how information is appended to the buffer. "

Synopsis

extern I}oid _open_space_in_il_buf/(/I_bu//e'_number. length, space_offsetytr);
unsigned shorl ii_buffer _number;
unsigned shor, length;
unsigned shor, " space_of/selylr;

Descriptjon

The _openjpace_in_il_bu// routine opens up the requested amount of space in
the specified interJayer message buffer. It returns an offset from the beginning
of the buffer to the start of the open space.

The first parameter is the interlayer message buffer number in which space is to

be made.

JUL 'SO

i.

JUL '90

66 OSI

The second parameter is the amount of space (number of bytes) requested.

The third parameter is a pointer to the location where the returned offset will be
stored. The returned offset will be zero if there is insufficient room in the
buffer.

To convert the offset into a pointer. shift the buffer number 16 bits to the left
and add the offset:

Example

Always open space in the buffer if you are going to copy data (usually header
information) into the buffer. If you are not going to copy data into the buffer.
but reference its location in memory outside the buffer (usually user data). you
do not need to open space.

The variable in which the returned offset will be stored must be declared. When
calling the routine. reference the address of this variable. The length may be
entered as a numeric value. in which case a length variable need not be
declared.

For example. a buffer at Layer 3 will have three X.25-header bytes inserted.
The call for space to hold the header would look like this:

)

unsigned shOrl "_buffer _"umbe"
unsigned shor' relay_batonj
unsigned short data_start_offsel,
unsigned short avallable_space_offset,'

STATE: get_space
CONDITIONS: KEYBOARD'
ACTIONS:
{
J'U,_msLbuff(&Il_buffer_number. &re'ay_ba/on):
_stQlt_il_buff_list(il_bufJ"_number, &.dato_star,_offsel) ,
_open _spact_in _il_bufJ(i1_buffer _number, 3, &available_spoce _offset);

,. See _inserl_i1_buff_lisl_cnt routine on how information Is Inserted In the buffer. -/

The routine will get the offset to the next available space in the buffer and store
it in variable avai/able_space_offse/.

Once space has been opened. the buffer-number and available-space variables
can be converted into an open-space pointer. With this pointer. data can be
copied into the space. The pointer can then be referenced in an
_inserl_il_buff_lisl_cnl routine. so that the opened space becomes threaded onto
the linked list in the IL bu ffer. See the programming example under
_inserU/_buff_lisl_cnl.

66-37

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-l07-951-10B

66-38

SynOJ)'ijs

exlern Mid Jree_lI_msg_buj/(i1_hufle,_number, ,elay_baton}j
unsigned shorl "_bufler_number;
unsigned shorl relay_baton;

Description

The Jree_il_msLbuff routine returns an interlayer message buffer to the pool of
free buffers. Before actually returning the buffer to the pool, this routine
verifies that all maintain bits have been reset, assuring that all users have freed
this buffer.

The first parameter is the interlayer-buffer number to be freed.

The second parameter is the maintain bit associated with the buffer user to be
freed.

Example

Synopsis

extern void jet_malnl_buf/_bil(lI_bufle'_rlumber, new_bUYlf);
unsigned short lI_buffe,_ number;
unsigned short' new _bi'JJtrj

Description

The jet_maint_buff_bit routine sets a new maintain bit for a given interlayer
message buffer. It returns that bit to the caller to be used in the freeing
operation.

The maintain bit allocated in thecet ... j1_msLbuff routine should be considered
valid only for the layer at which it was obtained. Once you pass a buffer, the
maintain bit will hold the buller at the next layer only until action on it has been
processed. (In Spreadsheet terms, the buffer will be held until the ACTIONS

block has been processed in response to the first CONDITIONS block identifying
the buffer. In any other CONDITIONS block referring to the buffer, the buffer
will not be found unless an additional maintain bit was set.) The maintain bit

JUL '90

(

JUL '90

66 OSI

eventually will be freed automatically whether or not any action is taken on it at
the next layer. To hold a buffer at a particular layer, or to continue passing the
buffer (in either direction), a new maintain bit must be set. The same maintain
bit cannot be used continuously, since it will be freed after the jirst process on it
(an ACTION to send, for example).

If you wish to keep a buffer available for your use while also sending it to
another layer, set two maintain bits. One will be used to pass the buffer; the
other will "maintain" the buffer for other processes. The latter will have to be
freed via the Jree_il_msLbujj routine.

The first parameter is the interlayer-buffer number in which the new bit will be
set.

The second parameter is a pointer to the location where the returned maintain
bit will be stored. There are sixteen maintain bits reserved for each interlayer
buffer. Each bit is identified by a two-byte variable with a single zero. The first
maintain bit allocated is the least significant, so the value returned is
hexadecimal FFFE (binary 11111111 11111110). The last maintain bit
allocated is 7FFF (0111111i 11111111). If all the maintain bits are already in
use, FFFF will be returned.

The maintain bit value should not be modified. It must be used in the freeing
operation to make sure the buffer is returned to the free buffer pool.

Example

The variable in which the returned maintain bit will be stored must be declared.
When calling the routine, reference the address of this variable. For example,
you receive a buffer at Layer 2 from Layer 3 (up_dU/_bujfJ and insert
information into it. Before passing the buffer to Layer I, set two maintain bits.
The one stored in variable maintain_bit will hold the buffer for the purpose of
repeated resends of the frame, if necessary, and will have to be freed via the
Jree_il_msLbujj routine. When you pass the buffer down, use the bit in
variable 12Jelay_baton. When you resend the frame, set a new resend_baton
bit and pass that down, still holding maintain_bit in reserve for subsequent
resends.

unsigned shor' 12JelaY_baton;
unsigned short resend_baton;
unsigned short maintain_bit:
extern volatile unsigned short up_dl_il_buJf:
extern lIolatUe unsigned shor, up_dl_sdu;
unsigned short 12_da,a_stort_offset;
unsigned short Qvailable_space_0!fset:
stallc unsigned char l2_dato[2) = {OxOI, OxOO):
int i:
unsigned char· ptf _12:

66-39

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-l07-951-10B

#deline makeylr(number.ollsel) «void ')I«(iong)number« /6) • ollsel))
}
LAYER: 3

STATE: .end_Iox_message
CONDITIONS: KEYBOARD'

ACTIONS: DL_DATA REO "'I. o;.'6«FOX»"
LAYER: 2

STATE: sand_a_buffer
CONDITIONS: DL_DATA REO
ACTIONS:
{

,- See _insert_il_bu//_lis,_cn, roullne for an explanation of how information is Jnserled in the
buffer. -,

_dup _1i_bull_ilsl_Slarl (up _di_li_bufl. up _dUdu. &i2_dala_slarl_ollsel);
_op,,,_spact_/"_il_buf/(up_dl_il_buf/. 2, &Qvoliab/e_spoCt_ollsel)j
pl,_12 = mokeJlr(up_dJ_il_huff. a~Qilable_sPQce_offset):
lor(i = 0; i < 2; iu)

{

}

'plr_i2 = dala_i2Ii);
pl,_12++:

p"_12 -=2;
_inserUi_buILilsl_cnl(up_dUi_bufl. i2jala_Slarl_ollsel. plr_i2. 2);
_sel_ma;nt_buff_bit{up_dl_i1_buff. &moinlain_blt):
sel mainl_bull_bit (up _ di _it_buff. &i2 Jeiay _ balon);
send...phyrmtv_below(up_dJ_U_buff. 12_,eloy_baton. 12_doIQ_storcoffset, 0, Ox24, 0):

}
LAYER: 1

STATE: rasend_buffer
CONDITIONS: RECEIVE STRING ,®o, ((XXXXI 001)) "
ACTIONS:
{
_set_molnl_buff_hll(Up _ dl_i1_ buff, &resend_baton):
Il_il_transmit (up _dl_i1_buff. resend_baton, 12_dato_star,_offset. J);

, .. See Sec lion 62, Monitor'Transmit Line Dala, for an explanalion of Ihe II_ii_transmit
rouUne. '-I

CONDITIONS: RECEIVE STRING "m((XXXXOOOll)"
ACTIONS:
{
Jree _11_ mSLbuf!(up _di_ii_bufl. mainlaln_bil);

,'- See Jree_il_ms8_bufffor an explanalion of Ihis roullne ... ,

Synopsis

extern unsigned short _lnserl_lI_buff_lisl_cnt(lI_buffer _number, daIQ_SlaTt_offset, texlytr,
texl_length),'

unsigned shorl ii_buffer _number;
unsigned short data_slart_offsel;
unsigned char '- lexi ytr;
unsigned shorl lext_length:

66-40 JUL • 90

JUL'SO

66 OSI

Description

The _inserU/_bufLlIsl_cnl routine Insens a text node at the beginning of a
linked list of text inside of an interlayer message buffer. It will set the text
pointer and byte-count in the text node to the values specified.

The first parameter is the interlayer-buffer number in which the linked list will
be insened.

The second parameter is the offset to the header node for the linked list, from
the beginning of the buffer.

The third parameter is a pointer to a text.

The founh parameter is the length of the text.

Returns

If the insen is successful, a value of 0 is returned; if it is not successful, a value
of 1 is returned. If you want to check the returned value, do so at the time the
routine is called, as in the following example at Layers 2 and 3.

Example

If text is to be copied into the buffer, a pointer to the text must be declared. If
not, when calling the _inserl_il_buff_list_cn(routine, reference the address of
the text. The length of the text may be entered as an integer, in which case a
length variable need not be declared.

Always open space in the buffer if you are going to copy data (usually header
information) into the buffer. If you are not going to copy data into the buffer,
but reference its location in memory outside the buffer (usually user data), you
do not need to open space.

In the following spreadsheet example, an interlayer-buffer number is obtained at
Layer 5, a header node is created in the buffer, and the address of a fox
message text (located in memory outside of the buffer) is insened into a text
node in the buffer.

unsigned short ii_buffer _"umber;
unsigned short relay_baton;
unsigned short 14Jelay_baton
unsigned shorl 13_,elay_botonj
unsigned short 12Jelay_balon;
unsigned short data_start_offset;
unsigned short l2_dato_start_offset;

66-41

INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B

66-42

unsigned short a~ailable_space_oJfset;
slatic unsigned char dola{j = "((FOX» "j

Slatlc unsigned char iJ_dala!Jj = 10xlO, Ox04, OxOO);
slatic unsigned char 12_data/21 = {OxOl, OxOO};
Int i,'
inl length,.
exl,rn lJo/atile unsigned short up_'_II_bul/i
extITn vola III, unsigned short up_n_il_buffj
exlern volatile unsigned shor' up_dl_lI_bul/;
extern lJo/atile unsigned short up_n_sdu;
extern volatile unsigned short up_dl_sduj
extern lIolatile unsigned shorl up_,_sdu;
unsigned chaT' p1T_13, • pl,_12;

" Whenever makeJlr is encountered, the (jrst parameter wHl be shirled 16 bUs 10 the left.
The second parameter will be added, and the resuU easlinlo a pointer. "

#define make...p'r(number,offse/) «,oid ')llIiong)number« 16) + offse/))
)
LAYER: 5

STATE: begin_message
CONDITIONS: KEYBOARD'
ACTIONS:
I
-BeUi _ mSL buff(&/1 _buffer_number, &relay _balon);
_slarl_il_bufl_"st(it_bufle,_"umber, &dato_star,_ollsel)j

I' Do nol include the terminaling null character in the length determination of a siring. "

length = sizeo/(da/a) - 1;

" The address oC data outside of the buffer is given for Insertion. The data itself is not copied
inlo the buffer. The buffer is then passed down 10 Layer 4 (see send_Iyrmt»_below for an
explanation oC Ihls routine). "

_insert_iCbuff_lIs,_cntO'-buJ/er _"umber, data_star,_offset, &:dato 10J, length) j
send_'yrml'l_below(ll_bufle,_"umber, 'tlay_baton, data_slaTt_offse,. 0, Ox84, 0);

}

At Layer 4 a new maintain bit is set to use in passing the buffer to Layer 3.
Since no data is insened, the same data start offset is used (in the form of the - -
variable up_t_sdu). The buffer is then passed down to Layer 3 (see
send_nyrmtv_below for an explanation of this routine).

LAYER: 4
STATE: pass

CONDITIONS: T_DATA_REQ
ACTIONS:

I

)

_sel_mainl_buff _bit (up _,_II_buff. &:14 Jelay_baton);
sel1d_l1yrmlv_below(up_'_il_buJJ. 14_,elay_balon, up_t_sdu, 0, Ox64, 0);

At Layer 3, space is opened for an X.2S packet header. A pointer to the
opened space is created and the data is insened into the linked list passed down
from Layer 4.

JUL '90

(

JUL '90

LAYER: 3
STATE: Insert_and_send

CONDITIONS: N_DATA_REQ
ACTIONS:
I
_open_space _'II_II_buf/(up _II_II_buff. 3, 4r.avallabl',_spac,_offs,t) j
ptr_13 = maktJ1Ir(up_II_It_buff. avallabl,_spac,_of/Sft),
lor (I = 0, ; < 3, Itt)

I

}

'plr_13 = 13_dala{I),
pI' _'3++,

66 OSI

/. The location oC the data in the buffer is referenced in the insert routine. so the pointer musl
be moved back to the beginning of the opened space. The oUset 10 the Layer 3 header node is
given in the Inser! routine. I[the insertion is not successful, an alarm will sound and a message
wiU be displayed on the prompt line oC the screen. -,

plr_'3 -=3,
IIU"serl_"_buILlist_c" I (up_"_"_bu//, up_"_sdu, P IT_I 3 , 3) 1= 0)

I
sound_Qlarm 0;
dlsplayyrompt(fllnser' failed at Layer 3. "),'

}

, .. A new maintain bit Is sel (or passing the buffer. The burrer Is then passed down 10 Layer 2
(see send_dIJrmtv_btlow for an e~planaUon of this routine) .• ,

}

_sel_mal"'_buILbi/(up _ "_II_bul!, &13 -,.lay_baIO") '
send_dlJrml'Y_below(up_n_i1_buJf. 13JeloY_balon. up_"_sdu. 0, Ox44, 0);

At Layer 2, a new linked list is started. The Layer 2 header could be inserted
into the linked list passed down from Layer 3; but if Layer 3 wants to retain the
ability to resend a buffer-that is, to reference again the same list header with
the same first-node offset-it must keep its own linked list safe from data
inserted at Layer 2,

LAYER: 2
STATE: Insert_more

CONDITIONS: DL_DATA_REQ
ACTIONS:
I

,. The _dup_ll_bufJ_lisl_slorl routine allows Layer 2 to start its own list. Part of this routine
copies the Layer 3 header into the Layer 2 header node .• ,

jup_il_bu//_liSl_slarl(up_dl_lI_bul!, up_dl_sdu, &12_dala_slarl_0!!set);

,. Space Is opened In the buffer. A pointer to thIs location is created and the data is copied
into the buffer .• ,

_open_spoce_in_"_buJf(up_dl_"_buff, 2. &a'Yailable _space_offset);
plr _'2 = makeJlr(up_dl_il_buff, o'YaUable_space_offset);
lor(; = 0; 1<2, itt)

I
'plr_12 = 12_dola(l),
plr _12++,

}

,. The location of the data in the buffer is referenced in the insert routine, so the pointer must
be moved back to the beginning of the opened space. The offset to the Layer 2 header node is
given in the insert routine. J£ the insertion is not successful, an alarm will sound and a message
will be displayed on the prompt line of the screen .• ,

66-43

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

66-44

plU2 -=2;
IJUnserU/_bufLlisl_cn I (up_dU/_buJJ, 12_dolo_storl_oJJset, ptr_/2, 2) 1= 0)

{

}

sound_alQrm () "
pos_cursor(O, 30):
dlsplays(" Inser, jailed at Layer 2. ");

,. A new maintain hI! is set for passing the buffer. The buffer is then passed down 10 Layer 1
(see sendyhyrmlv_below for an explanation oC thIs routine). -,

_set _ moin ,_buJL bit (up _ dU/_buJJ, &12 -,doy _bolon);
sendyhJJrmtv_below{up_dl_il_bufl. 12-"lay_balon. 12_doIQ_Slarl_offset, 0, Ox24. 0),

}

The following text will be sent out onto the line and displayed as line data:

l<'1.'l <,. '1. THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG 0123456789f'@

append II buff list cnt - - - - -
Synopsis

extern unsigned shorl _QPpend_ll_buff_lIsl_cnl(it_bufler_number, daID_star(..offset, lexIJ'r,
text_length);

unsigned shorllf_buJle,_number;
unsigned shor' datQ_Slart_ollsel:
unsigned char· textytr:
unsign,ed short text_length;

Description

The _append_il_buff_list_cnt routine appends a text node at the end of a linked
list of text inside of an interlayer message buffer. It will set the text pointer and
count in the text node to the information provided.

Returns

Example

Two modifications to the program shown for the _insert_iCbuff_list_cnt routine
are all that is required to make the program work for appending data. The
changes primarily involve Layer 2 in the example, so we will replicate only that
portion of the program below. Substitute _append_iCbufLlist_cnt for every
occurrence _insert_il_buff_lisl_cnt. When data is to be appended in a buffer,
you should duplicate the entire linked list received from the layer above, not just
the header node. So also substitute _dup_il_buff_list for _dup_il_buff_listJtart.

JUL '90

(

JUL '90

66 OSI

LAYER: 2
STATE: Insert_more

CONDITIONS: DL_DATA_REQ
ACTIONS:
(
_ dup _II_buff _II" (up _dUI_bu//. up _ dl_sdu. &12_ dala _"a,' _O//sll):
_open _space_In _"_ bu//(up _dl_lI_bu//. 2. &a,allabte _space _o//set):
plU2 = make...ptr(up_dUI_bu//. a,ailable_space_o//sel):
/0'(1 = 0: 1<2: Itt)

(

}

'pl,_12 = 12_dala(I):
pIT_12+t,

pIT _'2 -=2j
I/Cappend_"_bu/Lllsl_cnl(up_dUI_bu//. 12_dara_"a,,_o//set. ptr_'2. 2) 1= 0)

(

}

sound_alarm ();
pos_cuTsor(O,30):
dlsplays(fflnsert jailed at Layer 2. "}j

_set_malnl_bu/Lbi/(up_dU/_buf/. &12 _relay _balon):
send...ph"'p,m,,_below(up_dUI_buf/. 12JelaY_balon. 12_da,a_sta,,_o//set. O. Ox24. 0):

}

The following text will be sent out onto the line and displayed as line data:

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG 0123456789'l. ... '1.~'1.*1ID

(B) Layer 1 OSI Routines

OSI data primitives are handled automatically between Layers 1 and 2. In the
"up" direction. line data is placed in an IL buffer and the associated data
primitive is given automatically to Layer 2. In the "down" direction. data
primitives are received at Layer 1 and put out automatically onto the line.

In the absence of line data. if you want to originate a buffer at Layer 1 and
send it upward. use the following routine. In primitives being sent down the
layers. Layer 1 will automatically send the primitive out onto the line.

Synopsis

extern void send"'ph_'o_obove(iCbuffe,_"umber, relay_baton, data_start_offset. size, code,
palh):

unsigned shorl il_buffer_number:
unsigned shorr relay_baton;
unsigned shorr data_starr_offset:
unsigned shor, size:
unsigned char code:
unsigned char path;

66-45

INTERVIEW 7000 SerIes Advanced Programming: ATLC-l07-951-10B

66-46

Rescription

The sendyh_to_above emulate routine passes a specified interlayer message
buffer from Layer 1 to Layer 2 in an OSI primitive. Received line data is
placed in an IL buffer and passed automatically to Layer 2. If you wish to get a
buffer "manually" at Layer 1 and then pass it up, use this routine.

The first parameter is the interlayer buffer number returned by the
.Jfet_il_msg-'.buff routine.

The second parameter is the returned maintain bit from the .Jfetjl_msg_buff
routine. As soon as Layer 2 processing on the buffer is completed, the bit is
automatically freed.

The third parameter is the returned offset (from the call to -,tart _il_bufLlist) to
the Layer 1 service data unit in a buffer.

The fourth parameter is the length of the data in the buffer.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable 10 yhyrmtv _code in Table 66-3 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent.

Example

Oet a buffer at Layer 1. Assuming X.2S protocol, insert data into the buffer
and pass it up to Layer 2.

{

}

unsigned shorl il_bufler_number;
unsigned short ,tlaY_baton;
unsigned short data_slaTt_offset;
unsigned short QlIoUable_space_oflsetj
Int length;
Int ;;
SIalic unsigned char da/a[j = {OxOJ, OxOO, OxlO, Ox04. OxOO, Ox02, OxOJ, OxOJj;
unsigned char· plr,

LAYER: 1
STATE; gel_buff.r

CONDITIONS; KEYBOARD· "
ACTIONS:
{
Jel_il_msg_buff(&iI __ bufler _numbe,. &relay _baton);
_starl_i'-buff_list (ii_buffer _number, &data_starl_offset);
length = sizeo/(data):
_open_spact_II1_il_bu!J(iI_buf/t'_l1umber, length, &QvoUablt_spact_offset);
plr = (void ·)(((long)il_buffer_"umber« /6) t ayaiiabJe_space_offset);

JUL '90

JUL '90

66 OSI

forri = 0; I < length; IH)
{
·plT = dala/I}:
ptrtt;

}
ptr-=Iength;
_/nse,,_lt_buff_lIsl_cnt{lI_bufftr _"umber, data_slart_offset, plr, length) j
sendJ'h_,o_above(ll_buffe,_"umber, 'tlay_balon, data_start_offset. length, Ox25, 0):

}

(C) Layer 2 OSLRoutlnes

The following routines pass OSI primitives from Layer 2 to either Layer 3 or
Layer 1.

Synopsis

txtern void send_dlyrmllJ_obove(l,-buffe,_numbe,. 12J,'ay_baton. 12_data_star,_of!set, size.
12_codt. path);

unsigned short II_buffer _number:
unsigned short 12Jelay_baton:
unsigned short 12_data_start_offset:
unsigned short slzej
unsigned char 12_code:
unsigned char path,

Description

The send_dl"'prmlv_above emulate routine passes a specified interlayer message
buffer from Layer 2 to Layer 3 in an OS! primitive.

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 2 from Layer 1. the variable 10 "'ph_ii_buff
may be used to identify the buffer number.

The second parameter is the returned maintain bit from a call to
jel_mainl_buff_bit. It is used only to pass a received buffer from Layer 2 to
Layer 3. As soon as Layer 3 processing on the buffer is completed, the bit is
automatically freed.

The third parameter is the offset to the Layer 2 service data unit in a received
buffer. The variable 10"'ph_sdu contains the offset to the service data unit when
the buffer reached Layer 2. The offset must be incremented by the length of
the Layer 2 header.

66-47

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

66-48

NOTE: In general, do not modify extern variables, such as
10yhJdu, which may be updated by other processes. Name
another variable, assign it the same value, and then increment
that variable. Or, after loyh_sdu has been named in the
argument of the send routine, add the length of the Layer 2
header, as in the example below.

The fourth parameter is the length of the data in the buffer. Use the length
indicated in the pdu structure-pdu.data_length. Then subtract the length of the
Layer 2 header;

The fifth parameter is the code specifying the type of prImitive in which the
buffer will be sent. Refer to variable 10 _dlyrmtv _code in Table 66-4 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 2 from Layer 1, the variable
loyhyrmtvyath may be used to specify the path number.

Example

A buffer is received at Layer 2 from Layer 1. AssumIng X.2S protocol, the
data specific to Layer 2 (the frame header) begins at the SDU offset
(loyh_sdu) and consists of two bytes. Before the buffer Is passed up to Layer 3,
the offset to the SDU and the size of the SDU will be adjusted by two bytes and
a new maintain bit will be set.

I

slruct pdu
{
unSigned char prlmilive_codej
unsigned char path;
unsigned long parameter;
unsigned shor, relay_baton;
unsigned shorl ii_buffer _number;
unsigned char buffer_contents;
unsigned shari data_start_offset;
unsigned shor, dalo_length;

I;
siruel pdu .. pduJ',r;
extern vola We unsigned short loyhydu_segj
extern "olalile const unsigned char IOJhyrmtllyolh;
extern volatile unsigned short loyh_il_buff;
exlern volatile unsigned short loyh_sdu;
unsigned short 12JeJoy_balOnj

JUL 'SO

(

(

JUL '90

66 OSI

LAYER: 2
STATE: .end_burrer_up

CONDITIONS: PH_DATA IND
ACTIONS:
{

)

Synopsis

pdu"'p'r = (void ")(('ong)lo"'ph...pdu_"g« 16):
_set _ ma/n'_ bulL bit (lo"'ph _"_buff. 4<12 Jday _ba,on):
send_dlyrmtl1_obove(loJh_ll_buff, 12JtlaY_baton, loyh_sdu + 2.

pdu"'p'r->da,a_'eng,h - 2. Ox4S. /o"'ph"'prm'v"'pa,h):

extern IIold send_m_dlyrmll1_Qbo'Je(il_bufJel_number, 12J,'ay_baton. 12_data_starl_offset.
size, 12_code, path),

unsigned shor, "_buffer_number;
unsigned short I2Jelay_balon:
unsigned short 12_data_sta,,_offset;
unsigned short size;
unsigned char 12_code:
unsigned char path;

Description

The send_m_dl"'prmlv_above monitor routine passes a specified interlayer
message buffer from Layer 2 to Layer 3 in an OS! monitor primitive.

See send_dl"'prmlv_above. Use the monitor variables m_lo...ph_il_buff.
m_1o...phjdu_offsel. and m_lo"'phjdujize as input. Refer to variable
m_lo_dl"'prmlv_code in Table 66-4 for the appropriate primitive code.

Example

Make the appropriate variable declarations. For a condition monitoring RD data
primitives. the Layer 2 programming block should look like this:

LAYER: 2
STATE: .end_butter_up

CONDITIONS: PH_RD_DATA IND
ACTIONS:
{
_sel_main'_buff_bi' (m_lo "'ph_II_buff. &/2Je/ay_ba'on):
send_m_dlyrmll1_abol1e(m_loJh_lI_buff. 12J,'ay_balon,m_'oyh_sdu_olfsel t 2,

m_loyh3du_slze - 2, Ox45, m_loyhyrrntvyQlh);

66-49

INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108

66-50

Synopsis

extern void sendJhJrmtv_below(if_buffer_number. 12J,'ay_baton, 12_data_start_o/lset, size,
12_codt, path};

unsigned shoTt "_buller _number,
unsigned short 12_,elay_baton;
unsigned short 12_dala_slar'_oflsel;
unsigned short size;
unsigned char 12_code:
unsigned char path;

De"scription

The send...ph"'prmtv_below emulate routine passes a specified interlayer message
buffer from Layer 2 to Layer 1 in an OS! primitive.

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 2 from Layer 3, the variable up_dl_il_buff
may be used to identify the buffer number. If the buffer originated at Layer 2,
use the buffer-number variable named in the ..Jiet_il_msLbuff routine. (See
_insert_il_bufLlist_cnt routine example at Layer 5.)

The second parameter is the returned maintain bit from a call to
jet_maint_buff_bil. It is used only to pass a received buffer from Layer 2 to
Layer 1. As soon as Layer 1 processing on the buffer is completed, the bit is
automatically freed. If the buffer originated at Layer 2, use the maintain bit
variable named in the ..Jiet_il_msLbuff routine. (See _insert_il_buff_list_cnt
routine example at Layer 5.)

The third parameter is the offset to the Layer 2 list header node in the buffer.
For a buffer which has been received at Layer 2 from Layer 3, the variable
up_dl_sdu may be used to indicate the offset.

The fourth parameter is the size of the data in the buffer. It will always be set
to zero since the data length is unknown in a primitive being passed down the
layers.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable ph"'prmtv _type in Table 66-2 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 2 from Layer 3, the variable
up_dl...prmtv"'path may be used to specify the path number. I..

JUL '90

JUL '90

66 OSt

Example

A buffer is received at Layer 2 from Layer 3. No text will be inserted at Layer
2. (For information on inserting text, see _inserl_il_bufLlisl_cnl routine.) The
buffer will be passed to Layer 1, requiring a new maintain bit to be set. If
values are entered for the code and path, variables for code and path need not
be declared.

)

extern volatile unsigned shor' up_dl_lI_buff;
extern "olallle unslgned- short .up;..dl_sdu;
unsigned shorl 12_TtlaY_baton;

LAYER: 2
STATE: pass_buffer_down

CONDITIONS: DL_DATA REO
ACTIONS:
{
_sel _ mainl _ bUff_bll (up jl_lI_buff, &IZ -,elay _ ba Ian);
sendJhJrmlv_be/aw(up_dUI_buff, IZ-,elay_balan, up_dl_sdu, 0, 0.24, 0,:

)

(0) Layer 3 051 Routines

The following routines pass OS) primitives from Layer 3 to either Layer 4 or
Layer 2.

Synopsis

extern lJold send_"JrmtlJ_obove(lI_bufle,_"umber, 13J,'ay_baton, IJ_dato_star,_oflset, size.
13_code. path);

unsigned short iI_buffer_number;
unsigned shor"JJelay_baton;
unsigned shoTlI3_dato_star,_offset;
unsigned short size;
unsigned char 13_code;
unsigned char path;

Description

The send_nyrmlv_above emulate routine passes a specified interlayer message
buffer from Layer 3 to Layer 4 in an OS) primitive.

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 3 from Layer 2, the variable lo_dl_il_buff may
be used to identify the buffer number.

66-51

INTERVIEW 7000 Series Advanced Programming: ATLC-l01-951-10B

66-52

The second parameter is the returned maintain bit from a call to
_set_maint_bufl_bit. It is used only to pass a received buffer from Layer 3 to
Layer 4. As soon as Layer 4 processing on the buffer is completed. the bit is
automatically freed.

The third parameter is the offset to the Layer 3 service data unit in a received
buffer. The variable 10 _dl_sdu contains the offset to the service data unit when
the buffer reached Layer 3. The offset must be incremented by the length of
the Layer 3 header.

NOTE: In general. do not modify extern variables. such as
lo_dIJdu. which may be updated by other processes. Name
another variable. assign it the same value. and then increment
that variable. Or. after lo_dl_sdu has been named in the
argument of the send routine. add the length of the Layer 3
header. as in the example below.

The fourth parameter is the length of the data in the buffer. Use the length
indicated in the pdu structure-pdu.data_length. Then subtract the length of the
Layer 3 header.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable lo_n"'prmtv_code in Table 66-5 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 3 from Layer 2. the variable
lo_dl...prmtv"'path may be used to specify the path number.

Example

A buffer is received at Layer 3 from Layer 2. Assuming X.25 protocol. the
header consists of three bytes. The offset to and size of the service data unit
will be adjusted by three bytes. a new maintain bit will be set. and the buffer will
be passed up to Layer 4.

stfuct pdu
{
unsigned char primlti~e_code;
unsigned char path;
unsigned long parameter;
unsigned short relay_baton;
unsigned short it_buffer_number;
unsigned char buffer_contents;
unsigned shorl data_start_offset;
unsigned short data_length;

l;

JUL '90

(

JUL '90

66 OSI

)

Slruct pdu • pdu y";
extern vOlallie unsigned shor' lo_dlydu_seg;
extern volatUe const unsigned char lo_d/yrmtlJyQth:
exlern volatile unsigned short IO_dl_"_bufl;
extern volatile unsigned short 10 _dl_sdu;
unsigned short lJJtlay_baton:

LAYER: 3
STATE: send_buffer _up

CONDITIONS: DL_DATA IND
ACTIONS:
{

Synopsjs

pduylr = (void ')((long)lo_dlydu_seg« 16),
_w_malnt_&ujj_&/t(lo jUI_&ujj, &13 Jetay _&alon),
stnd_"yrm tv_above (Io_dl_"_buff. lJJelay_baton. IO_dl_sdu + 3.

pduylr->dala_'tnglh - 3, 0.65, lo_dlyrmlvyalh),

extern void .send_m_nyrmtv_obo\le(il_buffe'_number, 13_relay_baton, 13_dalQ_Slart_of/ut,
size, 13_code, path):

umlgned shorlll_buffe,_"umber:
unsigned short 13_relay_baton,"
unsigned shorl 13_data_start_offset;
unsigned short size:
unsigned char I}_code,·
unsigned char path;

Description

The send_m_nyrmlv_above monitor routine passes a specified interlayer
message buffer from Layer 3 to Layer 4 in an aS! monitor primitive.

See send_nyrmlv_above. Use the monitor variables m_lo_dl_il_bu//,
m_lo_dljdu_o/lsel, and m_lo_dl_sdujize as input. Refer to variable
m_lo_nyrmtv_code in Table 66-5 for the appropriate primitive code.

Example

Make the appropriate variable declarations. For a condition monitoring RD data
primitives, the Layer 3 programming block should look like this:

LAYER: 3
STATE: send_buffer_up

CONDITIONS: DL_RD_DATA IND
ACTIONS:
{
_sel_malnl_&ujL&il (m_lo _dl_il_&ujj, &13 _relay _balon),
send_m_nyrmtv_above(m_lo_dl_il_buff, 13Jelay_balon, m_,o_dljdu_ofJset + 3,

m_lo_dl_sdu_slze - 3, Ox65. m_,o_dlJ'rmt'!}yath)j

66-53

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

66-54

Synopsis

ext"n IJold send_dlyrmtv_below(/l_bufle,_numbtr, 13J,'oy_baton, lJ_datQ_Slart_offsel. size,
13_code, path):

unsigned shor, "_buffer_number;
unsigned shorllJJ,'ay_baton;
unsigned shorI13_dato_sla,,_o//ut;
unsigned short size:
unsigned char "_code:
unsigned char path;

Description

The send_dlyrmlv_below emulate routine passes a specified interlayer message
buffer from Layer 3 to Layer 2 in an OSI primitive.

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 3 from Layer 4, the variable up_n_il_buff may (.
be used to identify the buffer number. If the buffer originated at Layer 3, use
the buffer-number variable named in theseU/_msLbuff routine. (See
_inserl_i'-bufLlisl_cnt routine example at Layer 5.)

The second parameter is the returned maintain bit from a call to
Jel_mainl_buff_bil. It is used only to pass a received buffer from Layer 3 to
Layer 2. As soon as Layer 2 processing on the buffer is completed, the bit is
automatically freed. If the buffer originated at Layer 3, use the maintain bit
variable named in thesel_il_msLbuff routine. (See _inserl_il_buff_lisl_cnl
routine example at Layer 5.)

The third parameter is the offset to the Layer 3 list header node in the buffer.
For a buffer which has been received at Layer 3 from Layer 4, the variable
up_n_sdu may be used to indicate the offset.

The fourth parameter is the size of the data in the buffer. It will always be set
to zero since the data length is unknown in a primitive being passed down the
layers.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable up_dlyrmtv_code in Table 66-3 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 3 from Layer 4, the variable
up_nyrmlvyath may be used to specify the path number.

JUL '90

JUL '90

66 OSI

Example

A buffer is received at Layer 3 from Layer 4. No text will be inserted at Layer
3. (For information on inserting text, see _inserl_lI_buff_lisl_cnt routine.) The
buffer will be passed to Layer 2, requiring a new maintain bit to be set. If
values are entered for the code and path, these variables need not be declared.

)

extern volatile unsigned short up_n_lI_buff:
exltrn volatile unsigned short up_n_sdu;
unsigned shoTtlJ_,e1ay_batoni

LAYER: 3
STATE: pass_buller_down

CONDITIONS: N_DATA REQ
ACTIONS:
{
_stl_mainf_buff_bil (up _"_il_bufl. &13 -,,'ay_baton);
send_dlyrmt'rJ_below(up_n_il_buff. l3-,elay_baton, up_n_sdu, 0, Ox44, 0);

)

(E) Layer 4 OSI Routines

The following routines pass aS! primitives from Layer 4 to either Layer 5 or
Layer 3.

Synopsis

extern void send_,yrm,,,_abol)e(il_buffer_number. 14Jelay_baton, 14_data_star,_offset, size,
14_code, path}:

unsigned short ii_buffer _number;
unsigned short 14Jelay_baton;
unsigned shor, 14_data_star,_offset;
unsigned short size;
unsigned char 14_code;
unsigned char path,'

Description

The send_tyrmtv_above emulate routine passes a specified interlayer message
buffer from Layer 4 to Layer 5 in an aS! primitive. .

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 4 from Layer 3, the variable 10 _n_il_buff may
be used to identify the buffer number.

66-55

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

66-56

The second parameter is the returned maintain bit from a call to
_set_maint_bufLbit. It is used only to pass a received buffer from Layer 4 to
Layer S. As soon as Layer 5 processing on the buffer is completed, the bit is
automatically freed.

The third parameter is the offset to the Layer 4 service data unit in a received
buffer. The variable lo_njdu contains the offset to the service data unit when
the buffer reached Layer 4. The offset must be incremented by the length of
the Layer 4 header, if any.

NOTE: In general, do not modify extern variables, such as
lo_n_sdu, which may be updated by other processes. Name
another variable, assign it the same value, and then increment
that variable. Or, after lo_n_sdu has been named in the
argument of the send routine, add the length of the Layer 4
header, if any.

The fourth parameter is the length of the data in the buffer. Use the length
indicated in the pdu structure-pdu.data_length. Then subtract the length of the
Layer 4 header, if any.

The fifth parameter is the code specifying the type of primitive in which the (
buffer will be sent. Refer to variable 10 _,-prmtv _code in Table 66-6 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 4 from Layer 3, the variable
lo_nyrmtvyath may be used to specify the path number.

Example

A buffer is received at Layer 4 from Layer 3. The offset to and size of the
service data unit will be adjusted if needed, a new maintain bit will be set, and
the buffer will be passed up to Layer 5.

Sl,u't pdu
{
unsigned char primiti~e_code;
unsigned char path;
unsigned long parameter,
unsigned sho" relay_baton;
unsigned short iI_buffer_number;
unsigned char buffer_contents;
unsigned shor, datajtart_offset;
unsigned short data_length;

);
slrUcl pdu ' pduylr;
extern vo/alile unsigned short lo_nydu_seg;
extern \lo/atile const unsigned char'/o_nyrmlvyath;

JUL '90

JUL '90

66 OS!

}

extern volatile unsigned shor, IO_Tl_II_buf/:
extern volatile unsigned short lo_"_sdui
unsigned short 14_ftlay_baton:

LAYER: 4
STATE: .end buffer up

CONDITIONS: N:DATA IND
ACTIONS:
{
pdu-Ptr = (.old ")((long}lo_n"pdu-,.g« J6):
_ sel _main' _buff _bl' (10 _"_II_buff. &d4 _"'ay _ balon);
send _, yrm tv _Qbove(lo _"_ii_buff. 14 J,'ay _bolon. 10 _n3du,pdu ylr->data _length.

Ox85, lo_"yrmtvyath};

Synopsis

txtern void send_m_,yrmh_above(ll_buffe,_numbtr, 14JelaY_baton. 14_datQ_stor,_ol/set,
slzt, 14_code, palh)i .

unsigned short lI_buffer_number:
unsigned short 14_,elay_ba'on;
unsigned shorl 14_dotQ_stQr,_offset;
unsigned short slu:
unsigned char 14_codej
unsigned char path,.

Description

The send_m_t"'prmtv _above monitor routine passes a specified interlayer message
buffer from Layer 4 to Layer 5 in an OS! monitor primitive.

See send_''''prmtv_above. Use the monitor variables m_lo_n_il_buff,
m_lo_njdu_offset, and m_!o_njdujize as input. Refer to variable
m_lo_t"'prmlv_code in Table 66-6 for the appropriate primitive code.

Example

Make the appropriate variable declarations. For a condition monitoring RD data
primitives, the Layer 4 programming block should look like this:

LAYER: 4
STATE: send_butter_up

CONDITIONS: N_RO_DATA INO
ACTIONS:
{
_set _mainl_buff_bi I (m _10 _"_ii_buff. &14 Jelay _balon);
send_m_'yrmtv_obo'Je(m_lo_"_II_bul/. 14_relay_balon,m_ lo_n_sdu_offset ,

m_lo_"_sdu_size, Ox85. m_lo_"yrmIIJya,h):

66-57

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-108

66-58

Syoopsjs

extern void send_nJlrm'l'_below(lI_buff,,_numbtr, 14Jtlay'-bolon. 14_data_star,_oJlset, siZto

14_code, path):
unsigned shortll_buffe,_number:
unsigned shor' 14_,etay_baton:
unsigned shortl4_data_slar,_ollset;
unsIgned short size:
unsigned char 14_code:
unsigned char path:

Description

The send_nyrmlv_below emulate routine passes a specified interlayer message
buffer from Layer 4 to Layer 3 in an OS! primitive.

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 4 from Layer 5, the variable up_l_il_buff may
be used to identify the buffer number. If the buffer originated at Layer 4, use
the buffer-number variable named in the Jel_il_msg_buff routine. (See
_inserl_il_buff_lisl_cnl routine example at Layer 5.)

The second parameter is the returned maintain bit from a call to
jel_maint_buff_bit. It is used only to pass a received buffer from Layer 4 to
Layer 3. As soon as Layer 3 processing on the buffer is completed, the bit is
automatically freed. If the buffer originated at Layer 4, use the maintain bit
variable named in the Jel_il_msLbuff routine. (See _inserl_il_buff_lisl_cnt
routine example at Layer 5.)

The third parameter is the offset to the Layer 4 list header node in the buffer.
For a buffer which has been received at Layer 4 from Layer 5, the variable
up_ljdu may be used to indicate the offset.

The fourth parameter is the size of the data in the buffer. It will always be set
to zero since the data length is unknown in a primitive being passed down the
layers.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable up_nyrmlv_code in Table 66-4 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 4 from Layer 5, the variable
up_lyrmlvyath may be used to specify the path number.

JUL '90

(

JUL '90

66 OSI

Example

A buffer is received at Layer 4 from Layer 5. No text will be inserted at Layer
4. (For information on inserting text, see _inserl_il_bull_lisl_cnl routine.) The
buffer will be passed to Layer 3, requiring a new maintain bit to be set. If
values are entered for the code and path, variables for code and path need not
be declared.

)

extern volatile unsigned shorl up_,_II_buff;
exler" volatile unsigned shorl up_,_sdu;
unsigned short 14_,elay_batorl,

LAYER: 4
STATE: paso_buller_down

CONDITIONS: T_DATA REQ
ACTIONS:
{

)

_sel_maint_buff _bit (up _'_il_bufl. Jcl4 Jelay _ balon) j
send_nJrm/v_below(up_'_i1_buff. 14_,elay_baton, up_,_sdu, 0, Ox64. OJ;

(F) Layer 5 OSI Routines

The following routines pass OS! primitives from Layer 5 to either Layer 6 or
Layer 4.

send s prmtv above - - -
Synopsis

extern void send_syrml'll_obove(iI_buffe,_number, ISJelay_balon, 15_dato_starl_olfset, slzt,
IS_code, polh);

unsigned shor, it_buffer _number;
unsigned short lS_relay_baton;
unsigned shorl 15_dato_star,_offset;
unsigned short size;
unsigned char 15_codej
unsigned char path;

Description

The sendjyrmlv_above emulate routine passes a specified inter-layer message
buffer from Layer 5 to Layer 6 in an OS! primitive.

The first parameter is the inter-layer buffer number to be sent. For a buffer
which has been received at Layer 5 from Layer 4, the variable IO_I_il_bujj may
be used to identify the buffer number.

66-59

INTERVIEW 7000 Series Advanced programming: ATLC-107-951-10B

66-60

The second parameter is the returned maintain bit from a call to
_set_mainl_bufLbit. It is used only to pass a received buffer from Layer 5 to
Layer 6. As soon as Layer 6 processing on the buffer is completed, the bit is
automatically freed.

The third parameter is the offset to the Layer 5 service data unit in a received
buffer. The variable lo_tjdu contains the offset to the service data unit when
the buffer reached Layer 5. The offset must be incremented by the length of
the Layer 5 header, if any.

NOTE: In general, do not modify extern variables, such as
lo_tjdu, which may be updated by other processes. Name
another variable, assign it the same value, and then increment
that variable. Or, after lo_t_sdu has been named in the argument
of the send routine, add the length of the Layer 5 header, if any.

The founh parameter is the length of the data in the buffer. Use the length
indicated in the pdu structure-pdu.data_Iength. Then subtract the length of the
Layer 5 header, if any.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable lo_s"'prmlv_code in Table 66-7 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 5 from Layer 4, the variable
IO_I...prmtv...path may be used to specify the path number.

Example

A buffer is received at Layer 5 from Layer 4. The offset to and size of the
service data unit will be adjusted if needed, a new maintain bit will be set, and
the buffer will be passed up to Layer 6.

)

strUc' pdu
{
unsigned char primitive_code;
unsigned char path;
unsigned long parameter;
unsigned short relay_balon:
unsigned shor, iI_buffer_number;
unsigned char buffer_contents:
unsigned short data_slaTt_offset;
unsigned short data_length;

);
struc' pdu • pdu-ytr;
extern volatile unsigned shor' lo_'ydu_seg;
extern volatile const unsigned char lo_,yrmtvyoth;
extern vo/atile unsigned shor, lo_,_il_buff:
extern volatile unsigned shorl lo_,_sdu;
unsigned shorl J5Jelay_balOn:

JUL 'SO

(

JUL 'SO

66 OSI

LAYER: 5
STATE: .end_buffer_up

CONDITIONS: T_DATA IND
ACTIONS:
{
pdu...J>lr = (,Did ')((long)lo_'...J>du_seg« 16);
_set _main I_bull _bil ('0_' _II_bull, &15 -,,'ay _balon);
send_s...,PTmtv_abollt{lo_'_II_buff. IS_relay_balon, lo_,_sdu, pduJ,r->dato_/lnglh,

OxaS, IO_'yrmtv....palh):

Synopsis

extern void send_m_syrm,,,_obove(ll_bul/e,_number. IS_relay_baton, IS_dato_star,_olfset.
size. IS_code. path):

unsigned shor' lI_buffe,_number;
unsigned shor' ISJelay_ba,on:
unsigned short 15_data_star,_offse,:
unsigned short size:
unsigned char IS_code:
unsigned char path:

Description

The send_mjyrmlv_above monitor routine passes a specified inter-layer
message buffer from Layer 5 to Layer 6 in an aS! monitor primitive.

See send_syrmlv_above. Use the monitor m_lo_l_il_bull, m_lo_ljdu_olfsel,
and m_lo_l_sdujize variables as input. Refer to variable m_lo_syrmlv_code in
Table 66-7 for the appropriate primitive code.

Example

Make the appropriate variable declarations. For a condition monitoring RD data
primitives, the Layer 5 programming block should look like this:

LAYER: 5
STATE: .end_buffer_up

CONDITIONS: T_RD_DATA IND
ACTIONS:
{
_'et_mainl_bull_blt (m_lo _'_ii_buff. &15 _relay_balon);
send_m_s Jrmtv _obove(m_lo _,_II_buff. 15 -,elay _balon, m_ 10 _'_sdu_offse, I

m_'o_,_sdu_size, Oxa5, m_lo_tJrmtI}Jath);

66-61

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-108

66-62

Synopsis

exlern void send_'...prmty_below(lI_bul/e,_number. ISJelay_baton, IS_data_slar'_offset, size,
IS_code, path);

unsigned shortll_bufle,_numberj
unsigned shorl ISJelay_balon;
unsigned shor' /S_doIQ_Slart_offsel;
unsigned shorl size:
unsigned char IS_code:
unSigned char path;

Description

The send_lyrmlv_be/ow emulate routine passes a specified inter-layer message
buffer from Layer 5 to Layer 4 in an OS! primitive.

The first parameter is the inter-layer buffer number to be sent. For a buffer
which has been received at Layer 5 from Layer 6, the variable up _s_il_buff may
be used to identify the buffer number. If the buffer originated at Layer 5, use
the buffer-number variable named in the ...J!el_il_msg_buff routine. (See
_inserl_il_bufLlisl_cnl routine example at Layer 5.)

The second parameter is the returned maintain bit from a call to

_sel_mainl_buff_bil. It is used only to pass a received buffer from Layer 5 to
Layer 4. As soon as Layer 4 processing on the buffer is completed, the bit is
automatically freed. If the buffer originated at Layer 5, use the maintain bit
variable named in the ...J!et_il_msLbuff routine. (See _insert_il_bufLlist_cnt
routine example at Layer 5.)

The third parameter is the offset to the Layer 5 list header node in the buffer.
For a buffer which has been received ~at Layer 5 from Layer 6, the variable
up_sjdu may be used to indicate the offset.

The founh parameter is the size of the data in the buffer. It will always be set
to zero since the data length is unknown in a primitive being passed down the
layers.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable up _Iyrmlv _code in Table 66-5 for the
appropriate primitive code;

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 5 from Layer 6, the variable
upjyrmlvyalh may be used to specify the path number.

JUL '90

JUL '90

66 OSI

Example

A buffer is received at Layer 5 from Layer 6, No text will be inserted at Layer
5, (For information on inserting text, see _inserl_il_buff_lisl_cnl routine,) The
buffer will be passed to Layer 4, requiring a new maintain bit to be set. If
values are entered for the code and path, variables for code and path need not
be declared.

)

extern 'IIolatile unsigned short up_s_i1_buffj
extern volatile unsigned short up_s_sdu:
unsigned shor, IS_relay_balon;

LAYER: 5
STATE: pas. buffer down

CONDITIONS: Sj)ATA REO
ACTIONS:
{

)

_set_maint_bulf_bit (up_s_i1_huff. &15 -,e/ay_balon);
send_,yrmtv_below(up_s_lI_bujf. IS_relay_baton, up_s_sdu, 0, Ox84, 0):

(G) Layer 6 OSI Routines

The following routines pass OS! primitives from Layer 6 to either Layer 7 or
Layer 5.

Synopsis

extern void sendYJ'rmtv_obolJe(iI_huffe,_number, 16Jelay_balon, 16_doIQ_Slorl_oflset, size,
16_code. path):

unsigned short iI_buffer_number:
unsigned shor, 16Jelay_batonj
unsigned shor, 16_data_start_offsel:
unsigned ShOTt size;
unsigned char 16_code;
unsigned char path:

Description

The send"'p"'prmtv_above emulate routine passes a specified interlayer message
buffer from Layer 6 to Layer 7 in an OS! primitive.

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 6 from Layer 5, the variable [OJ_it_buff may
be used to identify the buffer number.

66-63

INTERVIEW 7000 Series Advenced ProgrammIng: ATLC-107-9S1-10B

66-64

The second parameter is the returned maintain bit from a call to
_set_maint_bufLbit. It is used only to pass a received buffer from Layer 6 to
Layer 7. As soon as Layer 7 processing on the buffer is completed, the bit is
automatically freed.

The third parameter is the offset to the Layer 6 service data unit in a received
buffer. The variable IOj_sdu contains the offset to the service data unit when
the buffer reached Layer 6. The offset must be incremented by the length of
the Layer 6 header, if any.

NOTE: In general. do not modify extern variables, such as
IOjjdu, which may be updated by other processes. Name
another variable, assign it the same value, and then increment
that variable. Or, after Jo_sjdu has been named in the
argument of the send routine, add the length of the Layer 6
header, if any.

The fourth parameter is the length of the data in the buffer. Use the length
indicated in the pdu structure-pdu.data_lengrh. Then subtract the length of the
Layer 6 header, if any.

The fifth parameter is the code specifying the type of primitive in which the (
buffer will be sent. Refer to variable JO"'p"'prmtv_code in Table 66·8 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 6 from Layer 5. the variable
Jo_s...prmtvyath may be used to specify the path number.

Example

A buffer is received at Layer 6 from Layer 5. The offset to and size of the
service data unit will be adjusted if needed, a new maintain bit will be set, and
the buffer will be passed up to Layer 7.

slruct pdu
{
unsigned char primitive_code;
unsigned char path;
unsigned long parameter;
unsigned short relay_baton;
unsigned short "_buffer _number:
unsigned char buffer_contents;
unsigned short data_starl_offset;
unsigned short dalO_length,-

};
slruc' pdu • pduytr;
extern volotile unsigned ShOTt lo_sJdu_seg;
extern volollle const unsigned char lo_syrmtv""'poth;

JUL '90

JUL '90

)

extern volallle unsigned short lo_s_i1_buJ/:
extern vola lilt unsigned short lo_s_sdu;
unsigned short 16_,elay_baton:

LAYER: 6
STATE: send_buffer_up

CONDITIONS: S_DATA IND
ACTIONS:
{
pduJtr = (void 0) ((long)lo_sJdu_seg « 16):
_set_main t _bulL bit (10 _s _ii_bull. &16 -,'lay_baton):

66 OSI

SendJlJ1Tmtv _obove(lo _s_il_buff. 16_,elay_balon, lo_s_sdu, pduylr->dato_'ength,
OxeS, lo_syrm/yyolh);

send m p prmtv above - - - -
Synopsis

extern void send_myyrmlv_obolJe(U_huffer_l1umber, 16_relay_baton. 16_dato_slort_offset,
size, 16_code, path);

unsigned short it_buffer_number:
unsigned shorI16_,elay_baton;
unsigned short 16_dalo_slorl_offset;
unsigned short slu;
unsigned char 16_code:
unsigned char path;

Description

The send_m"'p"'prmlv_above monitor routine passes a specified interlayer
. message buffer from Layer 6 to Layer 7 in an OS! monitor primitive.

See send"'p"'prmlv_above. Use the monitor variables m_loj_il_buff.
m_lo_s_sdu_offsel. and m_lojjdujize as input. Refer to variable
m_lo"'p"'prmrv_code in Table 66·8 for the appropriate primitive code.

Example

Make the appropriate variable declarations. For a condition monitoring RD data
primitives. the Layer 6 programming block should look like this:

LAYER: 6
STATE: send_buffer_up

CONDITIONS: S_RD_DATA IND
ACTIONS:
{
_se,_main,_buff _bJt(m_lo _s_lI_buJ/. &.16 _,elay _baton);
send_mJ yrmtv _aboye (m_lo j_fl_buJf. 16 -"'ay_baton, m_ 10 _s_sdu_offset,

m_lo_s_sdu_size, Oxc5.· m_'ojyrmtvyalh);

66-65

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

66-66

Synopsis

extern void send_sJrmtv_below(il_buffe'_flumber. 16Jelay_baton, 16_dala_sIDrl_offset. sin,
16_code, path);

unsigned shor, II_buffer _number;
unsigned short 16_,elay_baIOnj
unsigned short 16_data_start_olfset:
unsigned short size;
unsigned char 16_codej
unsigned char path:

Description

The send_syrmtv _below emulate routine passes a specified interlayer message
buffer from Layer 6 to Layer 5 in an OSI primitive.

The first parameter is the interlayer buffer number to be sent. For a buffer
which has been received at Layer 6 from Layer 7, the variable upy_il_buff may
be used to identify the buffer number. If the buffer originated at Layer 6, use (
the buffer-number variable named in the ...$et_il_ms8_buff routine. (See
_insert_il_bufLlist_cnt routine example at Layer 5.)

The second parameter is the returned maintain bit from a call to
_set_maint_buff_bit. It is used only to pass a received buffer from Layer 6 to

Layer 5. As soon as Layer 5 processing on the buffer is completed, the bit is
automatically freed. If the buffer originated at Layer 6, use the maintain bit
variable named in the ...$et_il_msLbuff routine. (See _insert_il_buff_list_cnt
routine example at Layer 5.)

The third parameter is the offset to the Layer 6 list header node in the buffer.
For a buffer which has been received at Layer 6 from Layer 7, the variable
upyjdu may be used to indicate the offset.

The fourth parameter is the size of the data in the buffer. It will always be set
to zero since the data length is unknown in a primitive being passed down the
layers.

The fifth parametet is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable up _syrmtv _code in Table 66-6 for the
appropriate primitive code.

The sixth parameter is the path number along which the buffer will be sent. For
a buffer which has been received at Layer 6 from Layer 7, the variable
upyyrmtvyath may be used to specify the path number. (

JUL '90

JUL '90

66 OSI

Example

A buffer is received at Layer 6 from Layer 7. No text will be inserted at Layer
6. (For information on inserting text, see _inserl_il_bulf_lisl_cnl routine.) The
buffer will be passed to Layer 5, requiring a new maintain bit to be set. If
values are entered for the code and path, variables for code and path need not
be declared.

}

extern volatile unsigned shor, upy_lI_bu/J:
extern volatile 'unsigned short up y _sduj
unsigned short 16_ftlay_baton:

LAYER: 6
STATE: pass_buffer_down

CONDITIONS: P_DATA REQ
ACTIONS:
{

)

_sel_moin'_hufl_hit(upy _ii_buff. &16 _relay_baton);
send_syrmtv_below(upy_il_bufl. 16_,eloy_baton. uPJ_sdu, 0, Oxa4. 0);

(H) Layer 7 OSI Routines

Synopsis

extern void sendYJrmtv_below(ll_buffe,_number, relay_balon, data_star,_offset, size. codt,
path);

unsigned short ii_buffer _number;
unsigned shor, relay_balon:
unsigned shorl datQ_start_offset;
unsigned short size:
unsigned char code:
unsigned char path:

Description

The sendy yrmtv _below emulate routine passes a specified interlayer message
buffer from Layer 7 to Layer 6 in an OS! primitive.

The first parameter is the interlayer buffer number to be sent.
buffer-number variable named in the Jfel_il_msg_bu// routine.
_insert_il_bu//_lisl_cnt routine example at Layer 5.)

Use the
(See

The second parameter is the returned maintain bit from the cal! to
JfeU/_msg_bu//.

66-67

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

66-68

The third parameter is the returned offset (from a call to jlarl iI_buff.)isl) to
the Layer 7 list header node in the buffer.

The fourth parameter is the size of the data in the buffer. It will always be set
to zero since the data length is unknown in a primitive being passed down the
layers.

The fifth parameter is the code specifying the type of primitive in which the
buffer will be sent. Refer to variable up"'p"'prmlv_code in Table 66-7 for the
appropriate code.

The sixth parameter is the path number along which the buffer will be sent.

Example

A buffer is obtained at Layer 7. The buffer will be passed to Layer 6, without
any data inserted. (For information on inserting text, see _inserl_il_buff_lisl_cnl
routine.) If values are entered for the code and path, variables for code and
path need not be declared.

}

unsigned shorl ii_buffer _number;
unsigned shorl data_start_offset,
unsigned short relay_baton;

LAYER: 7
STATE: pass_butter_down

CONDITIONS: KEYBOARD" "
ACTIONS:
{
...,&el_fl_msg_buff(&iI_buffer _number, &reJay_baton);
_start_il_buff_lisI(iI_buffer_number, &dala_slar,_offset);
send.....P....Prml'll_below(iI_buffe'_number. relay_baton, data_start_offse" O. Oxc4, 0),-

}

JUL '90

(

67 Print

67 Print

The PRINTER port is a serial interface through which the programmer may direct output from
the INTERVIEW to a printer. The printer~portis 10catedJlt the rear of the INTERVIEW
between the REMOTE RS-232 and AUXILIARY ports.

NOTE: Before directing output to the printer port. configure the
Printer Setup menu as explained in Section 15.2.

Each spreadsheet PRINT action or cail to one of the C print routines causes output to be
added to a queue of unprinted text in the print buffer. If not doing so already. the print
server also begins to poil the print buffer for text to print. As long as there is unprinted text
in the buffer. the print server poils the buffer. removes text. and sends it to the printer port
of the INTERVIEW. Use the "'print_buffer structure to monitor the now of text in and out
of the print buffer.

Use any of the four C print routines explained in this section to add text to the print buffer.
Three of them-prime. prlntf. and prints-are similar to the displaye. displayf. and displays
routines which direct output to the Display Window. See Section 64.3(C). With the
set"'print_header routine. you determine the heading which wiii appear at the top of each
printed page. One other routine. sprintf. writes output to a string. The string can then be
referenced in subsequent cails to printf. (You may also use the string named in sprlntf in
cails to displayf. traeef. or fprintf.)

67.1 Structures

JUL '90

Refer to Table 67-1 for the structure of the print buffer. Compare "'print_buffer.in
with "'print_buffer.out to determine whether or not the print buffer has emptied.
When the values of these two variables are equal. the buffer is empty.

NOTE: Consider the variables in the "'print_buffer structure
read-only variables. In general. do not modify extern structures
or variables which may be updated by other processes.

At times. processes may add transactions to the print buffer more quickly than the
print server takes them out. If a process cannot add to the buffer without overwriting
unprinted text. a buffer overrun occurs. When your INTERVIEW is configured for

67-1

INTERVIEW 7000 Series Advanced ProgrammIng: ATLC-107-951-10B

Type

data playback, you can minimize print-buffer overruns by periodically suspending
playback and allowing the print server to empty the buffer. In judging how often to
suspend playback, keep in mind the following points: 1) In general, the more
conditions a program has that trigger print actions, the more frequently playback
should be suspended, 2) When planning to print Run-mode buffers, remember that
the faster the playback speed, the quicker the print buffer fills,

Variable

Table 67-1
Print Structures

Value (hex/decimal) Meaning

Structure Name: print_buffer Structure of the print buffer. Declared as type
struot.

unsigned short In

unsigned short out

unsigned short

unsigned short lock

char polling

char overrun

char buffer (8192)

Structure Name: _print_buffer

67-2

0-207110-8199

0-207110-8199

209/8201

o
non-zero

o
non-zero

offset Into the print buffer (from the physical
beginning of the buffer) to the looatlon where
next transaction text will be added. Advances
with each spreadsheet PRINT action or oall to a
C print routine. When In equals out, the print
buffer Is empty,

offset Into the print buffer (from the physical
beginning of the buffer) to the last transaction
text printed from the buffer, Advances each
time text Is actually sent out the printer port ot
the INTERVIEW, When out equals In. the print
buffer Is empty,

offset to the physical end of the print
buffer-I. e .. to the end of the array named
buller (see below)

when process Is printing, locks out other
processes from accessing the print buffer

print server Is not polling
print server Is polling print buffer for text to print

print buffer Is not In overrun state
print buffer Is In overrun state-I. e., a process
attempting to add text to the print buffer can't
because unprinted text In the buffer would be
overwritten. Following message will appear on
printout: "print buffer overrun has occurred.·

array of text transactions

An Instance of the print buffer structure,
declared as type externstruct print_buffer. Use
the variables contained In this structure to
monitor flow of text In and out of the print buffer.
Referenoe structure variables as follows:
....Print_buffer. In.

JUL '90

(

(

67 Print

The following example shows how you might use a TIMEOUT condition to check the
print buffer periodically. Each time the timeout expires, the program determines
whether or not the buffer is half full. If so, playback is suspended. If the buffer is
only one-quarter full, playback is resumed. (Other conditions in the program, not
illustrated here, would cause print actions to send output to the print buffer.)

{
#define PRINT_BUFFER_SZ 8192
#define STOP_P01NT (PR1NT_BUFFER_SZI2)
#define START_POINT (PRINT_BUFFER_SZI4)

)
LAYER: 1

{

)

,truel print_buffer
{
unsigned short In;
unsigned short out;
unsigned shorl buffer_end;
unsigned shor, lock;
char polling;
char overrun;

);
exler" struel print_buffer yrlnt_buffer;
Int crn,_buffe,_szj

STATE: checkjlrlnl_buffer
CONDITIONS: ENTER_STATE
ACTIONS: TIMEOUT ck_buffer RESTART 0.01
CONDITIONS: TIMEOUT ck_buffer
ACTIONS:
{

J

ernl_buffer-,z = (("prinl_buffer.ln + PRINT_BUFFER_SZ) - "'prinl_buffer.oul) %
PRINT_BUFFER_SZ;

if(ernl_buffer_sz> STOP_P01NT)
suspend _,crdylaJ();

else if(ernl_buffer_sz < START_POINT)
star,_,crdy[ay() "

TIMEOUT ck_buffer RESTART 0.01

67.2 Variables

There are no variables associated exclusively with print functions.

JUL '90 67-3

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-108

67-4

67.3 Routines

printc

Synopsis

extern void printc(character):
.const char character;

Description

The printc routine outputs a single ASCII character to the print buffer for printing,
converting the value provided as the argument into its ASCII equivalent. Decimal
and octal values are converted to hexadecimal format before the ASCII equivalent is
sought.

The only parameter is a numerical value. The value may be given as a hexadecimal,
octal, or decimal constant; as an alphanumeric constant inside of single quotes; or as
a variable. A hexadecimal value must be preceded by the prefix Ox or OX; an octal
value must be preceded by the prefix O. If no prefix appears before the input, the (
number is assumed to be decimal. Valid numeric entries are 00 to 127, decimal. An
alphanumeric character placed between single quotes will be output as is to the
printer.

Example

The printc entries on the left output the printed character given on the right:

printc('a') ; a

prlnlc(65); A

prinlc(Ox65): e

prlnlc(065); 5

printf

Synopsis

extern inl prinl!(jormatytr • .. , J:
const char· Jormal..ptr;

Description

The print! routine writes output to the print buffer for printing, under control of the
string pointed to by!ormatylr that specifies how subsequent arguments are converted
for output. If there are insufficient arguments for the format, the behavior is

JUL '90

67 Print

undefined. If the format is exhausted while arguments remain, the excess arguments
are evaluated but otherwise ignored. The printf routine returns when the end of the
format string is encountered.

The format is composed of zero or more directives: ordinary characters (not %),
which are copied unchanged to the output stream; and conversion specifications, each
of which results in fetching zero or more subsequent arguments. Each conversion
specification is introduced by the character %. After the %, the following appear in
sequence:

• Zero or more flags that modify the meaning of the conversion specification.
The flag characters and their meanings are:

The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a plus or minus
sign.

space If the first character of a signed conversion is not a sign, a space will be
prepended to the result. If the space and + flags both appear, the space
flag will be ignored.

The result is to be converted to an "alternate form," For d, i, U, c, and
s conversions, the flag has no effect. For 0 conversion, it increases the
precision to force the first digit of the result to be a zero. For x (or X)
conversion, a nonzero result will have Ox (or OX) prepended to it.

• An optional decimal integer specifying a minimum field width. If the converted
value has fewer characters than the field width, it will be padded on the left (or
right, if the left adjustment flag, described above, has been given) to the field
width. The padding is with spaces unless the field width integer starts with a
zero, in which case the padding is with zerOS.

• An optional precision that gives the minimum number of digits to appear for the
d, it 0, U, X, and X conversions, or the maximum number of characters to be
written from an array in an s conversion. The precision takes the form of a
period (.) followed by an optional decimal integer; if the integer is omitted, it is
treated as zero. The amount of padding specified by the precision overrides that
specified by the field width.

• An optional h specifying that a following d, i, 0, u, x, or X conversion specifier
applies to a short int or unsigned short int argument (the argument will have
been promoted according to the integral promotions, and its value shall be
converted to short inl or unsigned short inl before printing); or an optional I
specifying that a following d, i, 0, u, x, or X conversion specifier applies to a
long int or unsigned long int argument. If an h or I appears with any other
conversion specifier. it is ignored.

JUL '90 67-5

INTERVIEW 7000 Series Advanced Programming: ATLC 107 951 108

67-6

• A character that specifies the type of conversion to be applied. (Special AR
extensions have been added.) The conversion specifiers and their meanings are:

d, i, 0, U, X, X

The inl argument is converted to signed decimal (d or i), unsigned octal
(0), unsigned decimal (u), or unsigned hexadecimal notation (x or X); the
letters abcdef are used for x conversion and the letters ABCDEF for X
conversion. The precision specifies the minimum number of digits to
appear; if the value being convened can be represented in fewer digits, it
will be expanded with jeading zeros. The default precision is 1. The
result of converting a zero value with a precision of zero is no characters.

c The inl argument is convened to an unsigned char, and the resulting
character is written.

s The argument shall be a pointer to a null-terminated array of 8-bit chars.
Characters from the string are printed up to (but not including) the
terminating null character: if the precision is specified, no more than that
many characters are printed. The string may be an array into which
output was written via the sprint! routine.

p The argument shall be a pointer to void. The value of the pointer is
convened to a sequence of printable characters, in this format:
0000:0000. There are always exactly 4 digits to the right of the colon.
The number of digits to the left of the colon is determined by the
pointer's value and the precision specified. Use this conversion to print
80286 memory addresses. The segment number will appear to the left of
the colon and the offset to the right.

% A % is written. No argument is convened.

\n Writes hexadecimal OD OA, the ASCII carriage-return and Iinefeed
characters. No argument is convened.

If a conversion specification is invalid, the behavior is undefined.

If any argument is or points to an aggregate (except for an array of characters using
%s conversion or any pointer using %p conversion), the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is expanded to contain
the conversion result.

Retyrns

The print! routine returns the number of characters output.

Example

To print a date and time in the form "Sunday, July 3, 10:02," where weekday and
month are pointers to strings:

JUL '90

JUL '90

LAYER: 1
{

)

unsigned char date_time [l00):
unsigned char weekday flO);
unsigned chaT month flO}:
unsigned short day;
unsigned char hour:
unsigned char min;

STATE: outpuUoJlrlnter
CONDITIONS: KEYBOARD'
ACTIONS:
{
prlntf("%5, %s %d, %.2d:%.2d\n", weekday, month. day, hour, min);

)

sprlntf

Synopsis

extern 1m sprinl/(slr;ngJ"r, /orma'J'r);
unsigned char Siring [128};
consl char· !ormat'y,r;

Descriptjon

67 Print

The sprint! routine is similar to the print! routine, except that sprint! writes output to
a string, while print! writes output directly to the print buffer for printing. The sprint!
routine is useful for writing formatted output to a display, printer, or file.

The output is under control of the string pointed to by!armat...ptr that specifies how
subsequent arguments are converted for output. If there are insufficient arguments
for the format, the behavior is undefined. If the format is exhausted while arguments
remain, the excess arguments are evaluated but otherwise ignored. The sprint!
routine returns when the end of the format string is encountered.

The first parameter is a pointer to the array to which output will be written.

For the second parameter, see print! routine.

Returns

This routine returns the number of characters written into the array, not counting the
added null terminating character.

Example

Refer again to the sample program for the display! routine in Section 64.3(C). This
time you also want to send the output· to a printer. By using the sprint! routine, you
only have to enter the format string once.

67-7

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

LAYER: 1
{
unsigned char dott_time /laO);
unsigned char weekday (10);
unsigned char month [10/;
unsigned sho" day;
unsigned char houri
unsigned char min:

}
STATE: outpuUo _display _ window_and -",Inte,

CONDITIONS: KEYBOARD·
ACTIONS:
{
sprint!ldate_time, "%$, 90s %d, %.2d: %.2d\71", weekday, month, day. hour,

min):
dlsplayf(" %s". dale_time);
print!("%s", date_lime):

}

set print header - -
Synopsis

eXlern ;711 selyrinl_header(jormatJ,r):
const char· jormotytr;

Description

This routine writes output to the print buffer, to be printed after each form feed,
under control of the string pointed to by jormatytr. Paging is done automatically by
the INTERVIEW. The setyrint_header routine returns when the end of the format
string is encountered.

The format is composed of zero or more ordinary characters. Octal or hexadecimal
values also may be input, with octal preceded by \ and hex by \x. Pad each value
to three integers with leading zeroes.

The status information shown above the prompt line on the display screens of the
INTERVIEW can be sent to a printer with the following inputs:

#d

#t
#p

#b

Retyrns

dale (mm/dd/yy)

lime (hh:mm)

page (no I shown on the display screens)

block number

The setyrint_header routine returns the length of the header (0-255), or a -1 if the
header exceeds the buffer size.

67-8 JUL 'SO

JUL 'SO

67 Print

Example

If you want the date, time, and page number to appear in the heading on each page
sent to a printer, enter the following:

LAYER: 2
STATE: header

CONDITIONS: ENTER_STATE
ACTIONS:
{
,se,-yrin,_header("'I1## #d lit

}

The printer output will look like this:

'N 09/01/89 09:30

IN 09/01/89 09:31

reset print page - -
Synopsis

extern int resety,lnt."pQge();

Description

Np NNNN\.");

Page 1 ••

page 2 N.

The reset"'print"'page routine resets the INTERVIEW's automatic page numbering for
printer output to 1.

Returns

If the page number is successfully reset, the routine returns zero. If the print buffer
is overrun, it returns -1.

Example

In the following example, a header with page numbering is assigned to printed output.
(See set"'print_header routine above.) Elsewhere in the program (not shown) the
programmer has designated text to be printed. When the user presses the spacebar.
a new header will appear on the next page output to the printer. That output will
begin again with page 1.

67-9

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-9S1-108

67-10

LAYER: 1
STATE: print_output

CONDITtONS: ENTER_STATE
ACTIONS:

prints'

{
setyrin,_header("#d #t

)
CONDITIONS: KEYBOARD" "
ACTIONS:
(

)

selyrln,_header("lId #t
reset..yrint..page() ;

Synopsis

extern void prints(str;ngJ,r);
const char· stringylr;

Description

First Header IIp\"'');

New Header IIp\n'');

The prints routine is similar to the displays routines, except that prints writes output
to the print buffer for printing while displays writes output to the Display Window.
The output is under control of the string pointed to by the argument. The prints (
routine returns when the end of the string is encountered. The soitkey equivalent of
this routine is the PRINT PROMPT action on the Protocol Spreadsheet. A PRINT

PROMPT action automatically time-stamps the output. Although prints does not, you
can create your own time or date stamp with set"'print_header.

The input is a pointer to a string composed of zero or more ordinary characters.
The newline nonliteral sequence "\n" writes hex OD OA (ASCII r",,) to the output
string. Octal or hexadecimal values also may be included in the string, with octal
preceded by \ and hex by \x. Pad each value to three integers with leading zeroes.

Examole

The following entry

LAYER: 1
STATE: print_message

CONDITIONS: KEYBOARD" "
ACTIONS:
{
prinU(" End of test . ..);

)

produces the following output to a printer:

End of test.

JUL '90

