
68 D/sk I/O

68 Disk 1/0

JUL 'SO

The disk I/O routines explained in this section allow disk files to be read from and written to
during Run mode. "Streams" describes how most of the routines operate on a data stream
rather than the actual file. Under "Routines," all the disk 110 routines are explained. These
routines perform read and write functions as well as other file maintenance tasks in Run
mode, such as creating directories, renaming files, and deleting files.

68.1 Streams

Most disk 110 routines are not executed on the actual disk file, but on a stream
which includes a copy of the file's data. Opening a disk file for reading or writing
associates a stream with the file. A stream may be input or output. Input streams
are read-only. Output streams are write-only. In either case, the stream remains
associated with a disk file until the file is closed.

You may have more than one stream associated with a given file. (A maximum of
ten streams may be open at one time.) For example, to'read from and write to an
existing file, you must open the file twice, once to create an input stream and once
to create an output stream.

(A) Stream Components

A stream contains everything needed to perform disk 110 functions on a file.

1. Buffer. A buffer containing a copy of the data in a disk file is part of the
stream. When a disk file is opened for reading, sectors of the disk
containing the file are copied to this buffer.

Sometimes a file's size may exceed the maximum size (512 bytes) of the
buffer. In this instance, as much data from the file as will fit in the buffer is
copied. As each character is read from the input stream, it is removed.
(The ungetc routine may temporarily return a removed character to an input
stream.) Each call to fread, fgetc, or fgels further empties the buffer, while
leaving the contents of the disk file unchanged. When the buffer is empty,
the next sector (or sectors) of the disk file is (are) automatically copied into
the buffer.

Similarly, when a file is opened for writing, the empty buffer is fmed as
fwrite or other output routines are invoked. Characters written to the output
stream are not transferred to the disk file until there is a call to fflush.
Fflush is automatic in fe/ose or when the stream buffer is full.

68-1

INTERVIEW 7000 Series Advanced Programming: ATLC-l07 951-108

68-2

2. File-position indicator. The file-position indicator keeps track of
progression through the disk file. For files opened in read mode. the
indicator is initially located at the first character (character zero) in the file.
As characters are read from the input stream. the indicator advances through
the file.

For existing files opened in append mode. the indicator is positioned after
the last character in the file. For newly created files or files opened in
overwrite mode. it is located at the beginning of the file. Every time an
output routine is executed. the file-position indicator is advanced by the
number of characters successfully written to the stream.

3. Buffer pointer. The stream also contains a pointer into the associated buffer
of a file. In input streams. it points to the next character to be read. In
output streams, it points to the next empty byte.

4. EOF indicator. If the end-of-file (EOF) indicator is set in a input stream.
it means that a read operation encountered the end of the file. The EOF
indicator is cleared via calls to fopen. fseek. rewind. clearerr. or ungetc.

5. Error indicator. In input streams, this indicator gets set when an fread,
fgetc. or fgets routine does not successfully execute. Attempting to execute
these input routines (or ungetc) on an output stream sets the error indicator.
In output streams. the error indicator gets set when the fflush. fwrite, fputc.
fputs, or fprintf routine does not successfully execute. or when output
routines try to execute on an input stream. A call to fopen. cleare", or
fseek. clears the error indicator in either input or output streams. A rewind
operation on an input stream also clears the indicator.

(8) Stream Pointer

The fopen routine returns a pointer to the stream. Disk I/O routines which
perform operations on a stream require the stream pointer as an argument. It
has been named streamytr in the routines discussed below.

(C) Locking Streams

Each file stream is locked internally during operations on it. If the user program
is executing different conditions on multiple processors and both actions require
writing to the same file stream. internally the stdio library will allow the first task
that requests to write to execute until completion and the second task will be
locked out. All processes that are locked out are temporarily put to sleep and
removed from the tasking queues for that CPU. When the first process
completes its operations on the stream. the locked-out processes are woken up
and may try to claim the lock. Deadlock or deadly embrace situations can
never arise internally to the stdio library.

JUL '90

(

JUL '90

68 Disk 110

If two or more file streams are associated with a single file, processes on each
stream may try to operate on the file concurrently. Internal locking does not
apply in this situation, so use the locking routines.

68.2 Routines

Disk I/O routines fall into four categories. The first category includes routines valid
for both input and output streams, including the two locking routines (not exclusive
to disk I/O). The remaining groups are routines valid for input streams only, routines
applicable to output streams only, and routines which handle other file maintenance
functions.

The routines and their descriptions closely conform to the ANSI specification for the
Programming Language C, as defined in the draft document published July 9, 1986.
Discrepancies with the ANSI standard are noted. The document number is
X3Jl1-86-098. Refer to pages 107-129.

Use the #include <stdio.h> preprocessor directive with all disk I/O routines. The
stdio.h file contains type definitions and function prototypes, making declarations of
the routines unnecessary.

When a filename is required as an argument, give the absolute pathname of the file.
prefixed by the device name. Valid device names are FD1, FD2, or HRD. See
Section 14.2(B) for a discussion of absolute pathnames. The disk filename is
required as an argument for the fopen routine, which opens a file for reading or
writing. From that point on, disk I/O routines relating to that file use the stream
pointer, explained above. as input. File maintenance routines, such as ,ename or
,emove, use the filename as input.

NOTE: A single program can perform disk I/O functions as well
as data playback or recording. Disk I/O, however, must be
suspended while disk recording (or playback) proceeds, and vice
versa. RAM recording. on the other hand, may occur
simultaneously with disk I/O operations. Refer to the
sta,t-,c,dylay and suspend-,c,dylay routines in Section 72 for
more information on the interaction between disk 110 and
recording/playback.

(A) Input/Output-Stream Routines
Several disk I/O routines may be executed on either input or output streams.
fopen opens an existing disk file for reading or writing, or creates a new file. In
each case, a stream is associated with the file until there is a call to fclose.
fclose or a specific call to !flush delivers any output written to a stream to the
host environment where it will be written to the disk file.

NOTE: Always include a call to fclose in your program to make
sure output is written to the file.

68-3

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

68-4

Test the end-of-file and error indicators with the feof and ferror routines.
respectively. These same indicators may be cleared via the clearerr routine.

The fseek and rewind routines manipulate the file-position indicator and erase
any memory of a character put into the stream via ungetc.

The lock and unlock routines prevent deadlock from occurring when processes
on multiple streams try to operate concurrently on a single file.

fopen

Synopsis

#Include <Jldio.h>
exler" FILE' !open(jilenameylr. modeytr):
consl char' jilenameytr;
const char' modeJ"r;

Description

The fopen routine opens a file for access. Depending on the open mode. a file
can be opened for reading (via an input stream) or for writing (via an output
stream). For existing files. this routine also clears the end-of-file and error (
indicators.

The first parameter is a pointer to the file to be opened. represented as the
name of the file. placed inside double quotation marks. The filename must be
the absolute pathname. prefixed by the device name (HRD. FDl. or FD2).

The second parameter is a pointer to a string (represented as a character inside
double quotation marks) which identifies the type of open to be performed. Of
the ANSI standard open modes. the following are supported:

r

w

a

Open an existing file for reading only. The file-position indicator is
located at the start (character zero) of the file.

Create a file, or open an existing file. for writing only. For an existing
file. truncate its length to zero and discard the contents.

Create a file. or open an existing file, for writing only. For an existing
file. retain the contents and locate the file-position indicator at the
end of the file. Append new data to the end of existing data. unless
a call to fseek or rewind has repositioned the file-position indicator.
In this instance. overwrite existing data. (This implementation is
different from the ANSI specification which appends new data to the
end of existing data regardless of any previous calls to fseek.)

JUL '90

JUL '90

68 Disk I/O

rb Currently implemented the same as II r. II Use II rbl! for the fseek
routine.

wb Currently implemented the same as "w." Use "wb" for the Iseek
routine.

ab Currently implemented the same as "a." Use "ab" for the Iseek
routine.

Retyrns

This routine returns a pointer. to the stream, with a type definition FILE
(defined in the sld/o.h file).

If the open fails (for example, the file does not exist), zero is returned.

Example

Open a file called "bullO]" in the lusr directory on a disk in floppy drive 2.
Store the pointer to the stream in slreamylr. Indicate whether or not the open
is successful on the prompt line.

)

#include <SId/a. h>
FILE· stream"'ptr:

LAYER: 1
STATE: open_a_fIIe

CONDITIONS: ENTER_STATE

fclose

ACTIONS: PROMPT 'Press 0 to open file.
CONDITIONS: KEYBOARD '00'
ACTIONS:
{
If((srreamyrr =fopen("FD2IusrlbujjOl", "r")) == 0)

displaYJrompl("Cannot open file.
else

dlsplayyrompt("File opened.

Synopsis

lIinclude <stdio. h>
exlern inl jclose(stream...ptr):
FILE· streamylr;

Description

") ;

"):

All opened files must be closed. If the disk file to be closed is an input file,
then any data remaining in the stream buffer is discarded. If the file is an
output file, any data written to the stream is written to the file. (In other words,
Iclose automatically calls IIlush.) The stream is freed from its association with
the disk file, and the disk file is closed.

68-5

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-108

68-6

The only parameter is the stream pointer.

Retyrns

If the stream is successfully closed, zero is returned. If errors are detected, or if
the stream is already closed, a non-zero value is returned.

Example

Close the file that was opened in the [open example. Indicate whether or not
the close is successful on the prompt line.

}

#Include <Std/o.h>
FILE· streamytrj

LAYER: 1
STATE: open_and_close_a_flla

CONDITIONS: ENTER_STATE
ACTIONS: PROMPT "Press 0 to open fll •.
CONDITIONS: KEYBOARD "00"
ACTIONS:
{
I/«streamyt, = jopen("FD2IusrlbuffOJ", "r")) == 0)

displayyrompt("Cannoi open lile. ");
else

dlsplaYJrompt("File opened. ")j
}
CONDITIONS: KEYBOARD "cC'
ACTIONS:
{
I!ifclose(stream"'ptr) 1= 0)

displaYJrompt("Eilher file ;s a/ready closed, or close cannot be executed. ");
else

dlsploYYTompt("File closed. OJ);

fflush

Synopsis

#include <stdio. h>
extern Int fflush(streamylr)
FILE· stream-ytrj

Description

If slream...pI, points to an output stream, the [[lush routine causes any unwritten
data for that stream to be delivered to the host environment where it will be
written to the file. If slream"'pI, points to an input stream, the [[lush routine
undoes the effect of any preceding ungelc operation on the stream .

.l.!u2lIU
The only parameter is the stream pointer.

JUL 'SO

JUL '90

68 DIsk I/O

Rewrns

If a write error occurs, non-zero is returned and the error indicator is set.

Example

Assume the X.25 personality package has been loaded in at Layer 2. Whenever
you receive a frame type "unknown," write the actual value of the control byte
to an output file stream and to the disk file.
{
#Include <Sldlo. h>
FILE· sireamylr;
extern volatile const unsigned char rcvdJramt_Cnlrl_pyle_J:

}
LAYER: 2

STATE: wrlte_then_fflush
CONDITIONS: ENTER_STATE
ACTIONS:
{

}

if«streamyt, = /open(lfFD2/usrl!rdme_unkwn", "0")) == 0)
dlsplaY..YTompt("Connt?' open file.

else
dlsplaYYTompt("Flle opened.

pos_cursor(1,0);

CONDITIONS: RCV UNKNOWN
ACTIONS:
{

}

iJ(Jprint/(streamytT, "%02x\n ", rcYdJram,_cntrl_byte_J) < 0)
dlsplay/(I'Error In printing to stream.

else
display/(If Print to stream completed.

Ififflush(SlreamYIr) 1= 0)
displaYJTompt("Write er,or.

else
dlspJaYYTompt(.. Wrile to Jile completed. Press C 10 close file.

CONDITIONS: KEYBOARD ·cC·
ACTIONS:
{
ififclose(s/reamylr) 1= 0)

");

tI);

\71"):

\71");

") ;

") ;

displaYYTompl("Either file is a/ready closed, or close cannot be executed. ");
else

dlsplayyrompt("File closed. ");

feof

Synopsis

Itlnclude <stdlo,h>
extern int feof(streamJlr);
FILE· stream"'ptr;

Description

This routine tests the end-of-file indicator for an associated stream.

68-7

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

68-8

The only parameter is the stream pointer.

Retyrns

The feof routine returns a non-zero value if the end-of-file indicator is set for
the stream.

Example

Get a character from a file. If it is not at the end of the file, display it;
otherwise prompt with "End of file."

}

#Include <SId/a, h>
FILE· slreamylrj
in' character;

LAYER: 1
STATE: test_lor_eof

CONDITIONS: ENTER_STATE
ACTIONS: PROMPT "Press 0 to open file.
CONDITIONS: KEYBOARD "00"
ACTIONS:
{
;fllS/reamylr = fopen ("FD2IusrtbuffOJ ", "rb")) == 0)

displayyTompl(.. Cannot open file. '
else

displaYYTompt("Flle opened. Press G to gel charocter.
pos_cursor(J, 0);

}
CONDITIONS: KEYBOARD "gG"
ACTIONS:
{
character = !getc(streamylr):
Iflfeof(sireamytr) 1= 0)

displayyrompl("End of file. Press C 10 close Jile.
else

display!("%c", character);
}
CONDITIONS: KEYBOARD "cC'
ACTIONS:
{
Iflfclose(streamylr) 1= 0)

")j

") ;

")j

dispJay....PTompl(.. Either jUe Is a/ready closed, or close cannOI be executed. ");

else
displayyrompl("File dosed. "):

ferror

Synops.is

Hinclude <.sId/a. h>
extern in' jerror(streamJtr);
FILE· slream"'ptr;

JUL '90

(

I

JUL '90

68 Disk 110

Descrjption

This routine tests the error indicator for a stream.

The only parameter is the stream pointer.

Retyrns

The lerror routine returns a non-zero value if the error indicator is set for the
stream.

ExampJe

Read a file called "buIIOI" from the lusr directory on the disk in drive 2. If
the number of elements read is less than the number designated to be read,
determine whether an end-oC-file was encountered or a read error occurred.

}

#include <.Jldio. h>
FILE· streamytr;
cha, da'a /6091);
size_, n;

LAYER: 1
STATE: ,oad_a_IIIo

CONDITIONS: ENTER_STATE
ACTIONS: PROMPT "Pro •• 0 to opon 1110.
CONDITIONS: KEYBOARD "00"
ACTIONS:
{

}

I/((s/reamy" = /open("FDZlusrlbuf!01", ",")} == 0)
displaYYTo"mpt("Cannol open jlle.

else
dlspfaYJ'Tompl("Flle opened. Press R to read the file.

CONDITIONS: KEYBOARD ",R"
ACTIONS:
{

}

n = jread(data, I, 6091. sireamytr);
I/(n 1= 6091)

{
ijfjerror(streamylr) 1= 0)

dlsplaYYfompl(" Read error,
else I/([eo/(streamy") 1= 0)

displayyrompl("End-o!-/lle encountered.

else
dlsplay/("\n %. 6091 s", da,a);

displayyrompl("Press C 10 close the Jile.

") ;

", ;

");

") ;

"):

68-9

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

68-10

CONDITIONS: KEYBOARD "cC"
ACTIONS:
{
1[(Jclose("reamylr) 1= 0)

dlsplayyrompl(flEJther fUe Is already closed, or close cannot be executed. ")j
else

displaYJrompt(" File closed. ");

clearerr

Synopsis

IIlnclude <SId/a, h>
extern void clearerr(slreamJlr),
FILE· streamyl'j

Description

This routine clears the end-of-file and error indicators for a stream. When an
error occurs, no further operations are allowed until the error indicators are
explicitly cleared. (These indicators are also cleared by a jopen or rewind
operation.)

The only parameter is the stream pointer.

Example

If a write error occurs, clear the indicators.

)

lIinclude <.sId/a. h>
FILE· streamytr,
in' character;

LAYER: 1
STATE : olear_Indicators

CONDITIONS: ENTER_STATE
ACTIONS: PROMPT "Press 0 to open file.
CONDITIONS: KEYBOARD "00"
ACTIONS:
{
i!«streamytr = !open(lfFD2IusrJbuffOl", "wb")) == 0)

displaYJTompl("Cannot open file.
else

displaYJTompt("File opened. Press P to write choracter.

") ;

") j

JUL 'SO

JUL '90

68 DIsk /10

CONDITIONS: KEYBOARD .pp.
ACTIONS:
!
character = /putc('h', streamylr),
'!(character == EOF)

!

}

disploY...YTompt("Wrile error. All indicators will be cleared.
cleorerr(streamJ'tr) ;

else
dfsplaYYTompt("Wrlte completed. Press C to close the file.

}
CONDITIONS·: KEYBOARD ·oC·
ACTIONS:
!
I!(fclose(streamy'r) 1= 0)

")j

dlsplaYYTompt("EJlher file Is already closed, or close cannot be executed. "};
,'se

displaYJfompt("File closed. ")j

fseek

Synopsis

#include <stdio. h>
extern Inl fsed(slreamY'T, bYles, reference};
FiLE· strtamylrj
long in' byles,
int reference,

Description

This routine manipulates the file-position indicator, according to the ANSI
specification for binary files. Future read operations will be referenced from that
point. fseek clears the end-of-file indicator and resets the ungelc variable.

NOTE: The ANSI specification for text files is not currently
implemented. To ensure proper execution of fseek if future
releases include the ANSI specification for text files, open files
for [seek as binary (" rb," II wh." or II ab").

The first parameter is the stream pointer.

The second parameter is the number of characters the file-position indicator
should be moved from a specified position. A positive number advances the
file-pOSition indicator forward in the file; a negative number moves it backward.

68-11

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-9S1-10B

68-12

The third parameter specifies the location of the file-position indicator.
SEEK_SET will move the file-position indicator from the beginning of the file;
SEEK_END will move the file-position indicator from the end-of-fiIe; and
SEEK_CUR will move the file-position indicator from its current position.

Returns

This routine returns non-zero for an improper request; otherwise it returns zero.

Example

Open a file and move the file-position indicator 4 characters from the beginning
of the file. Each time the lID key is pressed, move the indicator one character
backward from its current position. After 4 executions, the indicator will be
back at the beginning of the file.

}

lIinclude <.f/dio. h>
FILE· streamylrj
1711 character;

LAYER: 1
STATE: movsJndlcator

CONDITIONS: ENTER_STATE
ACTIONS: PROMPT· Press 0 to open file.
CONDITIONS: KEYBOARD ·00·
ACTIONS:
{

}

If((stream...ptr = fopen(" FD2lusrlbuffOI", "rb")) == 0)
displayyrompl("Connot open Jile.

else

dlsplaYYTompt(ffFile opened. ")j
pos_cursor(O.I4);
If(fseek(stream...ptr, 4, SEEK_SET) 1= 0)

dlsp/ays("Improper fseek request.
else

displays(ffFseek completed. Press S to seek new position.

CONDITIONS: KEYBOARD ·.S·
ACTIONS:
{
if(fseek(Slream...ptr, -1. SEEK_CUR) != 0)

djsplaYYTompt("lmproper fseek request. Press C to close jile.
else

djsplayyrompt(.. Fseek completed. Press C to close file.

"J;

tI);

");

");

");

JUL '90

JUL '90

CONDITIONS: KEYBOARD ·cC·
ACTIONS:
{
Ij(fclose(streamylr) 1= 0)

68 DIsk 110

displayyrompl(ffEither jile Is already closed. or close cannot be executed. "};
else

displaYJTompl(ffFlle closed. ");

rewind

Synopsis

#Include <Sld/o.h>
extern 'l}oid rewind(streamylr)j
FILE· s"eamytr:

Description

This routine returns the file-position indicator to the beginning of the file (Le., it
is equivalent to an [seek with the number of characters to move set as zero and
the specified position SEEK_SET). The rewind operation also clears the
end-of-file and error indicators and erases any memory of the character in a
previous unsetc operation.

The only parameter is the stream pointer.

Example

In this example, the first call to [gelc following the rewind operation will read the
first character in the file.

)

#include <Sld/o.h>
FILE· streamylrj
in' character;

LAYER: 1
STATE: mave-,ndlcalar

CONDITIONS: ENTER_STATE
ACTIONS: PROMPT • Press 0 10 open file.
CONDITIONS: KEYBOARD ·00·
ACTIONS:
(
Ij((slreamylr =jopen("FD2IusrlbujjO}". "rb")) == 0)

d;splayyrompt("Cannot open file.
else

dlsploYYTompl(ffFile opened. Press S '0 Iseek.

") ;

")j

68-13

INTERVIEW 7000 Series Advanced Programming: ATLC-107 951-108

68-14

CONDITIONS: KEYBOARD ".S"
ACTIONS:
{

}

i/(fseek(slreamylr, 4, SEEK_SET) 1= 0)
displaYJ'Tompl("lmproper fsed request.

else
displaY-YTompl("Fseelc completed. Press spacebar to rewind.

CONDITIONS: KEYBOARD"
ACTIONS:
{
rewlnd(streafflytr) j

");

.,) ;

displaYJromptt'Press G to get Q character. ")j

lock

}
CONDITIONS: KEYBOARD "gG"
ACTIONS:
{
character =jgelc(streamytT)i
displaYJrompt(" Press C to close file. "),

}
CONDITIONS: KEYBOARD "cC"
ACTIONS:
{
I/(fclose(slreamylr) 1= 0)

dlsplay....PTompl(.. Either Jile Is already closed, or close CQnnot be executed. "),
else

d;splaYJrompl("Flle closed, ");

Synopsis

#Include <..stdio.h>
extern void lock(loc1c_variable JIT);
In' • loclc_varlableJJtrj

Description

The lock routine implements a lock using the integer variable pointed to by the
routine parameter. If the lock variable is currently locked, the task goes to
sleep. When an unlock on the same variable occurs (within an independent
task). the task invoking the lock function will attempt to claim the lock. If

. successful, the task is executed; otherwise, it goes back to sleep until the next
unlock.

NOTE: If locking is used at any place in the program, all related
or possibly concurrent routines must also use the locking
functions.

JUL '90

JUL '90

68 Disk /10

NOTE: The lock variable should always be defined as a global
integer, never as local to a function. The lock variable should
never be altered by the user program or deadlock can occur.
Deadlock also results if the lock is invoked twice within the same
task without an intervening unlock.

The only parameter is a pointer to the lock variable.

Example

Two tasks concurrently write to their own file streams. The file streams are local
to the routine writeJox, making them independent of each other even though
both are referenced by sireamylr. During the fe/ose operation (which
automatically calls !flush), however, both tasks need to write to the same file.
The locking routines ensure that the writes to the file occur sequentially, not
concurrently.

}

#Include <Sldio. h>

const char data lJ = "«FOX»\"";
int key:
void wrileJox()
{

}

FILE· siream...ptrj
sizt_' 71:
lock(<I<key);
I/((slream"'p/T = /open (OOFD2Iusrlbu/fOJ". OOa")) == 0)

dlsplaYJJrompt("Cannot open Jile.
else

displaYJfompt(" FlIe opened.
n =jwrite(data, I. slzeo/(data)-I, sireamJ'tr):
pos_cursor(l, 0);
i/(n 1= (sizeo/(da/a)-I)

display!("Write error.
else

dlsplay/(IOW,;te completed.
1/(fclose(SlTeam...p/T) 1= 0)

displayf("Either file is already closed, or clOse cannot be executed.
else

dlsplay/(OO File closed.
unlock(<I<key);

LAYER: 1
TEST: a

STATE: wrlle and signal
CONDITIONS: RECEIVE STRING "THE QUICK BROWN FOX"
ACTIONS: SIGNAL xyz
{
writeJox(};

}

") ;

") ;

\n"J;

\11"):

") ;

"):

68-15

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

68-16

TEST: b
STATE: write_only

CONDITIONS: ON_SIGNAL xyz
ACTIONS:
(
wrlteJox();

)

unlock

Synopsjs

IIlnclude <Sldio.h>
extern void unlock(lock_varJableylr);
/711 • lock_vaT/ahleyIT:

Description

The unlock routine implements the inverse of the lock routine using the same
integer variable. Sleeping tasks will be woken up to retry their attempt to claim
the lock. One will succeed, and the rest will go back to sleep. See also lock
routine.

The only parameter is a pointer to the lock variable.

Example

See lock routine.

(8) Input-Stream Routines

The following routines are valid for input streams only. An attempt to apply
them to output streams results in a read error. The error indicator for the input
stream will be set.

Three routines read characters from the input stream. The fread and fgels
routines transfer a specified number of characters from the stream buffer into a
user-defined array. fgelc reads the next character from the input stream. The
ungelc routine temporarily forces a designated character back into the input
stream.

fread

Synopsis

#include <stdio, h>
extern size_' ",od(dataJ'r, size. number. streamylr):
'Joid • dalaytr:
size_, size;
size _, number;
FILE· streamytr;

JUL '90

(

JUL '90

68 Disk I/O

DescriptioD

This routine reads elements from the input-stream buffer and puts them into a
user-defined buffer. The file-position indicator is advanced by the number of
characters successfully read. The fread routine can read a file whose elements
are more than eight bits each, 16-bit shorts or 32-bit longs, for example. The
fgets routine is similar to fread. !gets, however, reads only 8-bit characters.
The primary use of fread is to read the entire contents of a file, whereas the
primary purpose of fgets is to read from a file one line at a time.

The first parameter is a pointer to an array in which the incoming data should
be placed.

The second parameter is the number of bytes in each element to be read. If
the value of this parameter is zero, the contents of the array and the stream
remain unchanged. .

The third parameter is the number of elements to be read. If the value of this
parameter is zero, the contents of the array and the stream remain unchanged.

The fourth parameter is the stream pointer.

Returns

The fread routine returns the total number of elements read. If the number of
elements read is less than the number of elements designated to be read, an
end-of-file has been encountered or a read error has occurred. Use the feof
and ferror routines to distinguish an end-of-file from a read error. If an error
occurs, the location of the file-position indicator is indeterminate.

Example

Read in a file called "buff OJ " from the lusr directory on the disk in drive 2 and
display it on the Program Trace screen. (See Section 64.4 for information on
using trace buffers in C.) Determine the size of the array data from the file size
indicated on the File Maintenance screen.

}

#Include <trace_buJ.h>
#include <stdlo. h>
FILE" streamylr;
char da'a {609 Jj;
slze_, n;
extern slruct trace_but prog_,rbu/;

68-17

INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1 108

6S-1S

LAYER: 1
STATE: read_a_fIIe

CONDITIONS: ENTER STATE
ACTIONS: PROMPT ·Press 0 to open file.
CONDITIONS: KEYBOARD ·00·
ACTIONS:
{

}

if((slreamJlIr = fopen("FD2IusrlbuffOJ u
, "ruJ) == 0)

dlsplaYJTompt("Cannot open file.
else

displaYJfompt(I<Flle opened. Press R 10 read the file.

CONDITIONS: KEYBOARD' ·rR"
ACTIONS:
{

}

n = jread(data, J, 6091. streamytr);
if(n 1= 609J)

displaYJfompt("Elther a read er,or has occurred. or an EOF has been
encountered. "):

else
{

}

trace!(&prog_lrbuJ • .. %.609/5" I data);
displayyrompl("Press C to close the Jile.

CONDITIONS: KEYBOARD ·cC"
ACTIONS:
{
i/(Jclose(streamJJtr) 1= 0)

");

");

"} ;

dispJaYJrompl("Either file is already closed. or close cannot be executed. ");
else

displaYJTompt(ffFile closed. ");

fgets

Synopsis

#Include <.sId/a. h>
extern char· fgets(s/fingytr, max_number, slreamytr);
cha.T • stringytr;
Int max_number;
FILE· streamytr;

Description

This routine gets at the most one less than the specified number of characters
from an input stream and puts them in an array. If an EOF, newline, or null is
encountered in the stream, no more characters will be read, even if the specified
number of characters has not yet been read. The newline will be retained. A
terminating null character is written after the last character read into the array.
The file-position indicator is advanced by the number of characters successfully
read. The fsels routine is similar to fread. The fread routine can read a file (

JUL '90

JUL '90

68 DIsk 110

whose elements are more than eight bits each, 16-bit shorts or 32-bit longs, for
example. Igets, however, reads only 8-bit characters. The primary use of Igets
is to read from a file one line at a time.

The first parameter is a pointer to the array into which the characters will be
put.

The second parameter is the maximum number of characters (minus one) to be
read.

The third parameter is the stream pointer.

Returns

If the routine is successful, a pointer to the array is returned. If end-of-file is
encountered before any characters have been read into the array or if a read
error occurs, a null pointer is returned. The contents of the array are
indeterminate when a read error occurs.

Example

Five characters, at the most, from a disk file will be put into an array called
data and displayed on the screen.

}

#Include <Sld/o.h>
FILE· stream...plr;
char dala {IO];

LAYER: 1
STATE: read_characters

CONDITIONS: ENTER_STATE
ACTIONS: PROMPT 'Press 0 to open file.
CONDITIONS: KEYBOARD '00"

ACTIONS:
(
Ij«,'reamytr = jopen ("FD2IusrlbujfOl ", "r")) == 0)

dlsplaYJTompt("Cannot open file.
else

") "

displaYJTompt(.. Flle opened. Press G 10 get string. I') ;

}
CONDITIONS: KEYBOARD "gG'
ACTIONS:
(

}

!gets(data, 6, streamylr):
display!("\n%.6s". dala):
dlsplayyrompt("Press C to close the file. ") ;

68-19

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-l07-951-10B

68-20

CONDITIONS: KEYBOARD "cC'
ACTIONS:
{
1!(fclose(slream...p'T) 1= 0)

displaYJrompt(lfElther file is already closed, or close cannot be executed. ")j
else

displaYJrompt("File closed. ");

fgetc

Synopsis

#Incfude <stdio. h>
extern tnt jgelc(streamJJtr);
FILE· streamy";

Description

The fgele routine gets the next character (If present) from the input stream.
The character is an unsigned ehar cast to an inl (stored in the least-significant
byte of the int). The file-posiiion indicator advances by one character.

The only parameter is the stream pointer.

Returns

This routine returns the next character in the input stream. EOF is returned if
an end-of-file is encountered or if a read error occurs. The sldio.h file defines
the macro EOF as -1. Use the feof and ferror routines to determine the reason
for a returned EOF.

Example

In the following example, open an input file for reading. Each time the @ key
is pressed, display the next character in the file.
{

)

#include <Sldio. h>
FlLE • streamylr;
in' character, end;

LAYER: 1
STATE: get_next_character

CONDITIONS: ENTER_STATE
ACTIONS: PROMPT "Press 0 to open file.
CONDITIONS: KEYBOARD "00"
ACTIONS:
{

)

i!((slTeam...p1T =!open("FD2IusrlbuffO/". "T")) == 0)
displaYJTompt("Cannot open Jile.

else
displayyrompl("File opened. Press G to get a character.

dlsplay!("\n") ;

OJ) j

");

JUL '90

(

JUL '90

68 DIsk 110

CONDITIONS: KEYBOARD "gG"
ACTIONS:
{

}

character = fstte(s/reamy,r);
t/(character == EOF)

{
end = !eo/(streamY'f);
i/(end 1= 0)

displayyrompl(/'EOF encountered.
else

dlsplaYJTompl(.. Read error,

else
disployj(" %c". charact,,);

CONDITIONS: KEYBOARD "cC"
ACTIONS:
{
i/(fclose(sIreamylr} f= 0)

") "

") j

dlsplayyrompl("Elthtr file Is already closed, or close cannol be executed. "):
else

displaYYTompl("File closed. ");

ungetc

Synopsis

#include <Sldlo. h>
extern int ungetc(character, sireamylr):
Inl character;
FILE· sireamylr;

Description

This routine temporarily forces a specified character into a variable associated
with the input stream. overwriting the previous ungelc variable. The routine
does not affect the location of the file-position indicator. The next /gelc will

read the ungelc variable. not the stream. An intervening //Iush. /seek. or rewind
erases memory of the character. If the ungelc function is called too many times
on the same stream without an intervening read. //Iush. /seek. or rewind
operation on that stream. the operation may fail. Ungelc also clears the
end-of-file indicator.

The first parameter is the character to be put into the input stream.

The second parameter is the stream pointer.

Retyrns

This routine returns the specified character. If the operation fails. EOF is
returned and the input stream remains unchanged. It will fail if the values of
the specified character and the macro EOF are equal.

68-21

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-9S1-108

68-22

Example

Read a character from the stream. Press the lID key when you want to return
the lasl character read 10 the stream. The next call to /gelc will read the
returned character.

}

#include <Sldio. h>
FILE· streamytr:
in' character;

LAYER: 1
STATE: get_nexI_character

CONDITIONS: ENTER_STATE
ACTIONS: PROMPT" Press 0 to open tile.
CONDITIONS: KEYBOARD '00'

ACTIONS:
{
I!((s/ream...p" = !open("FD2Ius,lbujjOl", "r")) == 0)

displayyTompl(.. Cannot open file.
else

displaYYTompt("File opened. Press G to get a character.
}
CONDITIONS: KEYBOARD "gG'
ACTIONS:
{

}

character = jge/c(s/reamy,r);
fj(cha,acler == EOF)

displaYJrompt("End of file or read error.
else

pos_cursor(O,O) j
display/(If character = %c Press U to return character to stream. ", character) j
}

CONDITIONS: KEYBOARD "uU'
ACTIONS:
{

}

I!«ungetc(character, streamy'r)) == EOF)
displaYYTompl("Character not returned.

else
dlsplayyromptt' Character returned.

CONDITIONS: KEYBOARD "cC'
ACTIONS:
(
ij(fclose(streamJJ,r) 1= 0)

") ;

tI);

"J j

");

") ;

dlsplaYYTompl("Elther file Is already closed, or close cannot be executed. ")j
else

displaYJrompt('4File closed. ")j

JUL '90

JUL '90

68 Disk /10

(C) Output-Stream Routines

The following routines are valid for output streams only. An attempt to apply
them to input streams will result in a write error. The error indicator for the
output stream will be set.

Four routines write to output streams. The /write and /puts routines transfer a
specified number of characters from a user-defined array into the stream buffer.
/putc writes a character to the next empty byte in an output-stream buffer.
/print/ writes formatted output to an output stream similar to the way display/
writes output to the Display Window:

fwrlte

Synopsis

#include <.sldio. h>
exlern sizt_t !write(outpul...Ptr, size, number, streamylr);
const void· outpulylr;
sizt_' size;
sizt_' number;
FILE· stream""prr;

Description

This routine writes elements from a user-defined array to the output-stream
buffer. The file-position indicator is advanced by the number of characters
successfully written.

The first parameter is a pointer to an array from which the data should be
taken. Declare it as const if it is read-only. In cases where the array will be
written to, as in the example below, do not include const as pan of the
declaration.

The second parameter is the number of bytes in each element to be written.

The third parameter is the number of elements to be written.

The founh parameter is the stream pointer.

Returns

The /write routine returns the total number of elements written. If the number
of elements written is less than the number of elements designated to be written,
a write error has occurred. If an error occurs, the location of the file-position
indicator is indeterminate.

68-23

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-108

68-24

Example

Read the contents of a file, and write them to a new file.

)

#Include <stdio,h>
FILE· read_stream;
FILE· write_stream:
char oUlput [6091);
sizt_, 71:

LAYER: 1
STATE: wrlte_lo_a_llle

CONDITIONS: ENTER_STATE
ACTIONS: PROMPT "Press 0 10 open Illes,
CONDITIONS: KEYBOARD "00'

ACTIONS:
{

}

i!((read_Slream = !open(" FD2Iusrlbu!f01 U
, "rU)) == 0)

{
dlsplaYYTompt("Cannot open buffOl. ")j
pos_cursor(O, 2 J) j
)

else

dispJaYJfompl("BufI01 opened. ");
pos_cursor(O, 16)j
}

i!«write_stream = fopen("FD2IusrlnewJile", "w")} == 0)
displays("Cannot open new Jilt.

else
displays("NewJlle opened. Press R to read buffDI.

CONDITIONS: KEYBOARD OrR"
ACTIONS:
{

)

n =/read(outpul, I, 6091, read_stream);
I!(n 1= 6091)

dlsplaYJrompl("Either Q read error has occurred, or an EOF has been
encountered. ..);

else
displayyrompt("Press W to write to newJlle.

CONDITIONS: KEYBOARD "wW"
ACTIONS:
{
n = fwr/le(output, 1, 6091, writejtream);
I!(n /= 6091)

displaYJrompt("Write error. Press C to close Jiles.
else

displayyrompt("Wrlte completed. Press C to close files.

") ;

OJ) ;

") ;

") ;

") j

JUL '90

JUL '90

CONDITIONS: KEYBOARD ·cC·
ACTIONS:
{
I!ifclose(read_stream) 1= 0)

{

68 Disk I/O

dlsplaYJrompt("Elther buflO} is already closed. or close cannot be executed. "),
pos_cursor(O, 0);
}

else
{
displayyrompl("BufjOI closed. "):
pos_cursor(O,16):
}

Ij(fclose(wrlte_Slrtam) 1= 0)
displays(ffEliher newJile is already closed, or close cannot be executed. ");

else
dlsplays(ffNewJlle closed. "):

fputs

Synopsis

#include <Sld/o.h>
exl"n In' !puts(slrlngy'r, sireamylr):
const char· strlngylf:
FILE· sireamytr;

Rescript jon

This routine writes a string of characters from an array, excluding the
terminating null character, to the output stream. The file-position indicator is
advanced by the number of characters successfully written.

The first parameter is a pointer to the string to be written.

The second parameter is the stream pointer.

Returns

This routine returns zero if it is successful; it returns a nOD-zero value if a write
efror occurs.

Example

Write a fox message at the end of existing data in a file.

#Include <Sld/o.h>
FILE· slreamY"i
char dala {} = "((FOX)),n":

)

68-25

INTERVIEW 7000 Series Advanced Programming: ATLC 107 9S1 108

68-26

LAYER: 1
STATE: wrlte_a_strlng

CONDITIONS: ENTER_STATE
ACTIONS: PROMPT "Press 0 to open file.
CONDITIONS: KEYBOARD "00"
ACTIONS:
{

}

Ij((s/r<omy" = jopen("FD2IusrlbujjOI", "aU)) == 0)
dlsplayyrompt("Cannol open file.

else
displaYJrompl("File opened. Press P 10 write string.

CONDITIONS: KEYBOARD "pP"
ACTIONS:
{

}

i/(JpulS(dala. streamJlr) f= 0)
dlsplaYYfompt("Write error. Press C to close Jile.

etse
displaYJfompt("Wrile completed. Press C to close file.

CONDITIONS: KEYBOARD "cC"
ACTIONS:
{
i/ifclose(s/reamy,r) 1= 0)

");

"} ;

") ;

")j

displaYYTompt("Either file is already closed, or close cannot be executed. "J:
else

displayyrompl("File closed. "):

fputc

Synopsis

#include <.stdio.h>
extern in' !pulc(character, s,reamy,r);
inl character;
FiLE" stream-ptrj

Description

This routine writes a given character (cast to an unsigned char) to an output
stream. The file-position indicator advances one character.

The first parameter is the character to be written to the output stream. It may
be given as a hexadecimal, octal, or decimal constant; as an alphanumeric
constant inside single quotes; or as a variable. A hexadecimal value must be
preceded by the prefix Ox or OX; an octal value must be preceded by the prefix
O. If no prefix appears before the input, the number is assumed to be decimal.

The second parameter is the stream pointer.

JUL '90

(

JUL '90

68 Disk 110

Returns

If the character is successfully written to the output stream, the routine returns
that character. If a write error occurs, EOF is returned and the error indicator
is set.

Example

Open the named file. If the file does not already exist, create it. If it does
exist, truncate its length to zero, thereby deleting its contents. Put the character
read from the input stream pointed to by read_stream into the output stream
pointed to by writejtream. This example is similar to the one given for [write,
except that in this case, each time the [f] key is pressed, only one character is
copied, rather than the entire file.

}

Ulnclude <SId/a. h>
FILE· read_stream;
FILE· write_stream:
Inl character:

LAYER: 1
STATE: cOPY_B_charaoler

CONDITIONS: ENTER_STATE
ACTIONS: PROMPT ·Pre •• 0 to open flies.
CONDITIONS: KEYBOARD '00'
ACTIONS:
{

}

ij((read_stream = jopen("FD2IusrlbujjOl", "r")) == 0)
{
dfsplay....prompl("Cannot open bullO}. "):
pos_cursor(O, 2 J);
}

else
{
d;splaYJ'fompt("Buff01 opened. "}:
pos_cursor(O.16) ;
}

ij((write_stream = jopen("FD2IusrlbujjOl_copy", "w")) == 0)
dfspfays("Cannol open bujfOl_copy.

else
disp/oys("BuJJ01_copyopened. Press P to copy a character.

CONDITIONS: KEYBOARD 'pP'
ACTIONS:
{
character = !getc(read_slreom);
ij(characler == EOF)

{
fj(feoj(read_streamJ i= 0)

displaYYTompl("EOF encountered. Press C to close Jile.r.
else

disploYJrompt(" Read error. Press C /0 close files.
}

") ;

") ;

") "

It) ;

68-27

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

68-28

else
!putc(character, wrlle_stream)i

}
CONDITIONS: KEYBOARD "cC"
ACTIONS:
{
ijifclose(read_stream1 1= 0)

{
dlsplaYYTompt("Either bUffOl ;s already closed. or close cOrlnot be executed. ");
pos_cursor(O, 0) j
}

else

displayyrompl("BuffOl closed. ")i
pos_cursor(O,16);
}

IJ(fclose(wrile_stream) /= 0)
disploy!("Elther bUfJO/_copy is already closed, or close cannot be executed. ")j

else
dl,play("BuffOJ_,opy closed. ");

fprlntf

Synopsis

#Include <SId/a. h>
extern ;nl Jprint/(slreomylr, /ormatytr, ...):
FILE· streamJ,r;
char· farmolylr;

Description

The !prinl! routine is similar to the sprinl! routine, except that !print! writes
output to an output stream, while sprint! writes output to an array. The output
is under control of the string pointed to by !ormatytr that specifies how
subsequent arguments are converted for output. If there are insufficient
arguments for the format, the behavior is undefined. If the format is exhausted
while arguments remain, the excess arguments are evaluated but otherwise
ignored. The !print! routine returns when the end of the format string is
encountered. (Sprint! is documented in Section 67.3.)

The first parameter is the stream pointer.

The second parameter points to the format string composed of zero or more
directives: ordinary characters (not %), which are copied unchanged to the
output stream; and conversion specifications, each of which results in fetching
zero or more subsequent arguments. Each conversion specification is introduced
by the character %. After the %, the following appear in sequence: \.

JUL '90

JUL '90

68 Disk 110

• Zero or more flags that modify the meaning of the conversion specification.
The flag characters and their meanings are:

The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a plus or
minus sign.

space If the first character of a signed conversion is not a sign, a space will
be prepended to the result. If the space and + flags both appear, the
space flag will be ignored.

The result is to be converted to an .. alternate form." For d, i, c, and
s conversions, the flag has no effect. For 0 conversion, it increases
the precision to force the first digit of the result to be a zero. For x
(or X) conversion, a nonzero result will have Ox (or OX) prepended to
it.

• An optional decimal integer specifying a minimum field width. If the
converted value has fewer characters than the field width, it will be padded
on the left (or right, if the left adjustment flag, described above, has been
given) to the field width. The padding is with spaces unless the field width
integer starts with a zero, in which case the padding is with zeros.

• An optional precision that gives the minimum number of digits to appear for
the d, i, 0, U, X, and X conversions or the maximum number of characters
to be written from an array in an s conversion. The precision takes the
form of a period (.) followed by an optional decimal integer; if the integer is
omitted, it is treated as zero. The amount of padding specified by the
precision overrides that specified by the field width.

• An optional h specifying that a following d, i, 0, u, x, or X conversion
specifier applies to a short in! or unsigned short int argument (the argument
will have been promoted according to the integral promotions, and its value
shall be converted to short in! or unsigned short int before printing); or an
optional I specifying that a following d, i, 0, u, x, or X conversion specifier
applies to a long int or unsigned long int argument. If an h or I appears
with any other conversion specifier, it is ignored.

• A character that specifies the type of conversion to be applied. (Special AR
extensions have been added.) The conversion specifiers and their meanings
are:

68-29

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951 108

68-30

d, i, 0, U J X, X

The int argument is converted to signed decimal (d or i), unsigned
octal (0), unsigned decimal (u), or unsigned hexadecimal notation ex
or X); the letters abcdef are used for x conversion and the letters
ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading zeros.
The default precision Is 1. The result of converting a zero value with
a precision of zero is no characters.

c The int argument is converted to an unsigned char, and the resulting
character is written.

s

p

The argument shall be a pointer to a null-terminated array of 8-bit
chars. Characters from the string are written up to (but not including)
the terminating null character: if the precision is specified, no more
than that many characters are written. The string may be an array
into which output was wrillen via the sprint! routine.

The argument shall be a pointer to void. The value of the pointer is
converted to a sequence of printable characters, in this format:
0000:0000. There are always exactly 4 digits to the right of the
colon. The number of digits to the left of the colon is determined by
the pointer's value and the precision specified. Use this conversion to
display 80286 memory addresses. The 16-bit segment number will
appear to the left of the colon and the 16-bit offset to the right.

% A % is written. No argument is converted.

\n Writes hexadecimal OA, the ASCII Iinefeed character. No argument
is converted.

If a conversion specification is invalid, the behavior is undefined.

If any argument is or points to an aggregate (except for an array of characters
using %s conversion or any pointer using %p conversion), the behavior is
undefined.

In no case does a nonexistent or small field width cause truncation of a field; if
the result of a conversion is wider than the field width, the field is expanded to
contain the conversion result.

Returns

This routine returns the number of characters written, or a negative value if an
output error occurred.

Example

Assume the X.2S personality package has been loaded in at Layer 2. When an
unknown frame is received, copy the actual value of the control byte to an
output stream.

JUL '90

(

JUL 'SO

}

#Include <Sldla, h>
FILE· streamJtrj
extern volatile consl unsigned char rC\ldJram,_cntr'_byt,_J;.

LAYER: 2
STATE: save_unknowns

CONDITIONS: ENTER_STATE
ACTIONS: PROMPT ·Pre •• 0 10 open file.
CONDITIONS: ENTER_STATE
ACTIONS:
{

}

i/«streomJlr =/open("FD2Iusrljrom,_unkwn", "w")) == 0)
dlsplaYYfompl("Cannot open file.

else
display yrompt (If File opened.

CONDITIONS: RCV UNKNOWN
ACTIONS:
{

}

If(fprlnlj(SIreamylf, j. %02x\n", r~d.Jrame_cntrl_by'e_J) < 0)
displayyTompl(" Error in printing to stream.

else
dlsploYYTompl("Prinl 10 stream completed. Press C to close file.

CONDITIONS: KEYBOARD 'cC"
ACTIONS:
{
1!(fclo,e(,tream.J>,r) 1= 0)

68 Disk 110

OJ):

") ;

");

");

disploYJTompl("Eilher fUe ;s already closed, or close cannot be executed. "):
else

displaYJfompt("File closed. OJ};

(0) File Maintenance Routines

rename

Synopsis

#include <Sldio.h>
extern Int rename(oldjile...,plr, new/i1ey,r);
const char· otdfiltJtr;
const char· newfiltJtr;

Description

This routine renames a specified file. A file can only be renamed if it resides
on the active disk, indicated on the Current Directory line of the File
Maintenance screen. Renaming an open file does not affect subsequent disk 110
operations on the stream. The stream is still associated with the same file, even
though the filename has changed.

68-31

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

68-32

The first parameter is a pointer to a string, the current name of the file. Give
the absolute pathname of the file, prefixed by the device name (HRD, FDl, or
FD2).

The second parameter is a pointer to a string, the new name to be given to the
file. Give the absolute pathname of the file, prefixed by the device name.

Returns

If the rename operation succeeds, zero is returned: If it fails, a non-zero value
is returned. If the renaming fails, the file will still be known by its original
name.

Example

Change the name of a file from old to backup. Prompt whether or not the
rename operation was successful.

#;nclude <.lldio. h>
}
LAYER: 1

STATE: rename
CONDIlIONS: ENTER_STATE
ACTIONS: PROMPT ·Press spacebar to rename file.
CONDITIONS: KEYBOARD· .
ACTIONS:
{
1/(rename("FDllusrlold", "FDllusrlbockup") 1= 0)

displaYJfompl(1f Rename failed.
else

displayyrompt(.. File has been renamed.

remove

Synopsis

#lnclude <.stdio.h>
extern int rem6>JeljUeJ,r);
const char· jlleJ'f;

Description

") ;

") ;

This routine removes the named file from the disk. The file must be closed in
order for the remove operation to succeed. Subsequent attempts to open the
file will fail. Empty directories may also be removed with this routine.

The only input is a pointer to a string, i.e., the filename. It must be the
absolute pathname, prefixed by the device name (HRD, FDl, or FD2).

JUL '90

(

JUL '90

68 Disk 110

Rettlrns

Zero is returned if the file is removed; non-zero if it is not (for example, the
file does not exist in the specified location).

Example

Remove file o/dlile from the lusr directory on the disk in floppy drive l.
Prompt whether or not the remove operation was successful.

#Jnclude <Sld/o. h>
}
LAYER: 1

STATE: delete_a_flle
CONDITIONS: ENTER_STATE

mkdlr

ACTIONS: PROMPT "Press 0 to delete file.
CONDITIONS: KEYBOARD "dO"
ACTIONS:
{
;f(remo~e("FDJlusrJoldfile") != 0)

displayyrompt("File has not been deleled.
else

displayyrompt(.. File deleted.

Synopsjs

#include <Sldio. h>
extern in' mkdir(directOTYJ,r);
char· directoryytr;

Description

This routine creates a directory.

!ni2l.lll

");

");

The only parameter is a pointer to a string, i.e., the name of the directory to be
created. The absolute pathname must be used, prefixed by the device name
(FD1, FD2, or HRD).

Returns

If the directory is created, zero is returned; otherwise, a non-zero value is
returned.

Example

Create a sub-directory called disk_i_o in the lusr directory on the disk in
drive 2.

#Include <Stdio. h>
}

68-33

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-108

68-34

LAYER: 1
STATE: make_directory

CONDITIONS: ENTER_STATE
ACTIONS: PROMPT "Pre •• M to make a directory.
CONDITIONS: KEYBOARD "mM"
ACTIONS:
{

Synopsis

i/(mkdl,("FD2Iusrldl,k_i_o") 1= 0)
dlsplaYJTompt("Dlreclory nol crtated.

else
displaYJrompt(.. Direciory created.

#include <Sldio.h>
extern inl _seIJilt_'ype(polhnameytf, type_bulfY/f);
char· pathnameYlr;
char· type_bu/!J,rj

Description

") ;

")j

This routine determines the type identification of a specified file on the File
Maintenance screen. If a file is created by a "w" or "at. open mode and a file
type is not specified with the _setJile_type routine, it will be designated as an
ASCII file. Note, however, that it is the file's contents, not its label, that
determines which functions are valid for the file (see' example).

The first parameter is a pointer to a string, the name of the file. The filename
must be the absolute pathname, prefixed by the device name (HRD, FDl, or
FD2).

The second parameter is a pointer to a string, the file type. The type may be
any of the following (upper or lower case is acceptable):

SYS System

D1R Directory

PRGM Program

SETUP Setup

OBJ Object code

LOBJ Linkable object

LPGM Linkable program

ASCII ASCII

BITIM Bit-image data

CHOAT Character data

JUL '90

JUL 'SO

68 Disk /10

Returns

If the operation succeeds, the routine returns zero; otherwise, it returns a
non-zero value.

Example

The following example is almost the same one used for !write: read the contents
of a program file and write them to a new file. The difference is that new Jile is
set to be a program file. In the !write example, the type designation in the file
directory would default to .. ASCII." It would still load and run as a program
file, however, since the file's contents, not its type label, determine which
operations are valid.

}

#include <Sld/o,h>
FILE· read_stream,.
FILE· write_stream;
char OUlpUI (6091);
siu_, n;

LAYER: 1
STATE: wrlte_lo_a_lIIe

CONDITIONS: ENTER_STATE
ACTIONS: PROMPT ·Pre •• 0 10 open lIIe •.
CONDITIONS: KEYBOARD ·00·
ACTIONS:
{

}

If((read-,Iream =fopen("FD2tusrlbuffOI"', "r")) == O}
{
displayyrompt("Cannot open buff 01. ");
pos_cursor(O. 21);
}

else
{
dlsplayyrompl("BuffOl opened. "};
pos_cursor(O. /6);
}

i!((wrlte_stream = /open("FD2IusrlnewJile". "w"}) == 0)
disp[ays("Cannot open newJile.

else
dlsplays("NewJile opened. Press "sS" 10 set the file type.

CONDITIONS: KEYBOARD ·.S·
ACTIONS:
{
IfeseIJile_,yper' FD2tusrlnew Jile"'. "PRGM"'} 1= O}

displaYYfompt("File Iype not set. Press R to read bUfJOl.
else

displayyrompl("File type sel. Press R to read buff 01.

");

") ..

") ..

68-35

INTERVIEW 7000 Series Advenced Programming: ATLC-l07-951-108

66-36

CONDITIONS: KEYBOARD "rR"
ACTIONS:
(
n = rread(oulpul, 1.6091, read_stream):
If(n 1= 6091)

displaYJTompl("Elther a read error has occurred, or an EOF has been
encountered. ");

else
displaYJrompl("Press W to write to newJlle.

}
CONDITIONS: KEYBOARD "wW"
ACTIONS:
(

}

n = !wrile(oulpul, I, 6091, write_stream);
If(n 1= 6091)

dlsplayyrompt("Wrlte error. Press C to close files.
else

dfsplaYJTompt("Writ, completed. press C to close /lles.

CONDITIONS: KEYBOARD "cC"
ACTIONS:
(
i!(fclose(read_SITeam) 1= 0)

(

");

") ;

"J;

dlsplaYYTompl("Either buIlD} ;s already closed, or close cannot be executed. ");
pos _cuTsor(O, 0);
}

else

displaYJ'Tompt("BufIOJ closed. ");
pos_cursor(O, 16);
}

ij(jclose(write_slream) /= OJ
displays(ffEilher newJile is already closed, or close cannot be executed. ");

else
displays("New file closed. "'i

Synopsis

#include <.sldio.h>
extern int J,etJile_type(pathnameytr, type_buffY'f);
char· palhnameylfj
char· type_buffy,r;

Description

This routine determines the type of a specified file.

The first parameter is a pointer to a string, the name of the file. The filename
must be the absolute pathname, prefixed by the device name (HRD, FDI, or
FD2). (

JUL '90

JUL 'SO

68 DIsk I/O

The second parameter is a pointer to an array in which the file type should be
written. See _seIJile_lype for the different file types.

Returns

If the operation succeeds, the routine returns zero; otherwise, it returns a
non-zero value.

Example

I

#/nclude <.stdio. h>
FILE· streamytr;
char ,ype {S J;

LAYER: 1
STATE: find_type

CONDITIONS: ENTER_STATE
ACTIONS: PROMPT 'Press 0 to get file type.
CONDITIONS: KEYBOARD 'gO'
ACTIONS:
{
If(J"JiI._,ype("FD2Iusrln.w JII &'yp.{Oj} 1= 0)

dlsplaYYfompt("Flle type not found.
else

dlsplayf("FiI. 'ype=%s.

") ;

", type);

68-37

INTERVIEW 7000 SerIes Advanced Programming: ATLC-107-951-10B

68-38 JUL '90

69 Status

69 Status

The structures and variables referenced in this section provide information about the current
status of the programmer's INTERVIEW. This information must be accessed via C coding on
the Protocol Spreadsheet since these structures and variables have no softkey equivalents.

69.1 Unit Configuration

Two structures presented in Table 69·1 may be accessed by the user to identify
current features of the INTERVIEW. unitjetup variables reflect current Line Setup
menu and FEB tick-rate selections. unit_con/ig variables contain information about
the user's INTERVIEW hardware and software.

69.2 Current Display Mode

JUL '90

The variables displaYjcreen_changed, crnt_displaYjcreen, and prev_displaYjcreen
track movement via soltkey from one display screen to another. These variables also
indicate transitions between Run mode and Freeze mode. They are documented in
Section 64.1.

69-1

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-l07-951-10B

Type Variable

Structure Name; unit_setup

unsigned long

unsigned long

unsigned long

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

69-2

bits_per _byte

clocking_type

format

mode

parity

Table 69·1
Status Structures

Value (hex/decimal)

all0
64/100
3e8/1000
2710/10000
186aO/l00000
14240/1000000

o
1
2
3

5-8

o
1
2

o
1

o
1
2
3

o
1
2
3

o
1
2
3
4

Meaning

Structure oontalnlng Line Setup and FEB tick-rate
selections. Declared as type extern struot.
Referenoe member variables of the structure 8S

follows: unlt_setup.speed_dce.

If Clock Source selection Is Internal, this variable
has Speed value entered on Line Setup. If Clock
Source Is External. this varIable has DeE speed
Indicated under Clock Source: Internal Split.

If Clock Source seleotlon Is Internal. this variable
has Speed value entered on line Setup. If Clock
Source Is External, this variable has DTE speed
Indicated under Clock Source: Internal Split.

tick rate selected on FEB Setup
10 us eo
100 usee
1 msec
10 msec
1000 msec
1 sec

normal
normal-Inverse
reverse-normal
reverse-Inverse

Internal
external
Internal-split

disk
line

sync
bop
async
Isoc

automonltor
monitor
emulate dee
emulate dte

none
even
odd
mark
space

ASCII. EBCDIC. etc.

JUL '90

(

(

Type Variable

Structure Name: unll_conflg

unsigned char floppy_exists_mask

unsigned char hard_disk

unsigned char test_board

unsigned char mux

unsigned char modem

unsigned char nurn_mpms

.truet mpmJnlo mpm 14J

unsigned char cpmJ8v

unsigned char gbmJ8v

unsigned char pcmJ8v

unsigned char

unsigned char

unsigned char

unsigned long

modem_rev

mUXJ8v

tim_type

69 Status

Table 69-1 (continued)

Value (hex/decimal)

1
2

o
1

o
1

o
1

o
1
0-4

0, 7110, 127
1-1111-31
20-7eI32-126

0, HIO, 256

0, HIO, 256
1

10/240
11/241
12/242
13/243
14/244
15/245
16-IbI246-251
le/252
Id/253
le/254
ff/255

MeanIng

Structure contaIning unIt configuration. Declared
as type extern struot. Reference member
variables of the structure as follows:
unit _ eonlla, lIoppy _exists_mask.

floppy 1
floppy2t

not present
present

not present
present

not present
present

not present
present

number of MPM boards present

array of structures. Each element In the array Is
an Instance of the structure mpm Into and
corresponds to one ot tour MPM boards which
may be present. Reference member variables of
the structure elements In the array as follows:
unlt_ conlla. mpm{Oj .present.

original CPM board
TURBO-compatible CPM board
4-Mbyte, TURBO-compatible CPM board

original GBM board

original PCM board
44-Mbyte hard disk compatible PCM board

reserved

reserved

RS-232
X.21
V.35
RS-449

. expansion adaptor
RC-8245
reserved
ISDN
G.703
T1
none

the value at this variable plus one yields the CPM
memory size (In bytes)

(unit conflg continued on next page)

t If (unit conflg.floppy exists mask. & value) == value, the drive Is present.
For example, If (unICconllg,Itoppy_exlsts_mask & 2) 0= 2, floppy drive 210 present.

JUL '90 69-3

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC 107 951 108

Type Variable

unsigned long

unsigned long version

unsigned long

unsIgned char

Table 69·1 (continued)

Value (hex/decimal)

(mask)

1
2
4
8
10/16
20/32
40/64
80/128
100/256
200/512
400/1024
800/2048
1000/4096
200018192
4000/16384
8000/32768
10000/65536
20000/131072
40000/262144
80000/524288
100000/1048576
200000/2097152
400000/4194304
80000018388608
1000000/16777216
2000000/33554432
4000000/67108864
8000000/134217728
10000000/268435456
20000000/536870912
40000000/1073741824
80000000/2147483648

9

19c8/6600
la90/6800
1b58/7000
1 c20/7200
ld4c/7500
1e14/7700

Meaning

self-test errors encountered during
power-uptt
CPM DRAM error
CPM 32-blt counter
CPM System Timing Controller (9513al
CPM DMAC
MPMO DRAM Itested from CPM-global bus)
MPMO DRAM (tested from MPMO)
MPMO Interrupt latch
unused
MPMl DRAM (tested from CPM-global bus)
MPMl DRAM (tested from MPM1)
MPM 1 Interrupt latch
unused
MPM3 DRAM (tested from CPM-global bus)
MPM3 DRAM Itested from MPM3)
MPM3 Interrupt latch
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused

current value for this version of unlt_conflg
structure

INTERVIEW 6600
INTERVIEW 6800 TURBO
INTERVIEW 7000
INTERVIEW 7200 TURBO
INTERVIEW 7500
INTERVIEW 7700 TURBO

o
1

original varslon

2

3

version with Increased speed of software and
faster access to ticks from FEB
version which supports high-speed RAM
recording, specifically aggregate T1 or 0.703
data capture
version which also supports INTERVIEW 7200 and
7700 TURBOs

(unlt_conflg continued on next page)

tt If (unlcconflg.sell_lesl_errors & mask) ::::I"" maSk, the error Is present.
If (unICconlfg.self_test_errors & Ox/lflft") """" 0, no errors encountered during power-up,

69-4 JUL '90

(

(

Type Variable

unsigned char Is_ turbo

unsigned char xdramJev_"um
unsigned char xdram_present

unsigned long xdramJo_addr

unsigned long xdram_hl_addr

unsigned char reserved

unsigned char hard_dlsk_type

unsigned char xllmJnslalied

unsigned char xsys_rarn_present

unsigned long xsysJamJo_addr
unsigned long xsysJam_hl_addr

unsigned long spare1

unsigned long spare2

unsigned long spare3

unsigned long spare4

unsigned long spareS

unsigned long spareS

unsigned long spare7

unsigned long sw_verslon

unsigned long fw_verslon

Structure Name: mpm_lnfo

unsigned char rev_num

unsigned char present

unsigned long lo_addr

unsigned long hl_addr

69 Status

Table 69-1 (continued)

Value (hex/decimal) Meaning

o unll Is nol TURBO
1 unll Is TURBO

o
1

0, 2
3

o
1

o
1

0
1

XDRAM revision number

XDRAM board Is not present
XDRAM board Is present

low end of memory range

high end of memory range

reserved

20-Mbyle disk
44-Mbyle disk

TiM-expansion shelf Is not present
TIM-expansion shelf Is present

additional system memory Is not present
additional system memory Is pres en

low end of memory range

high end of memory range

reserved/undefined

reserved/undefined

reserved/undefined

reserved/undefined

reserved/undefined

reserved/undefined

reserved/undefined

software verslonttt

firmware verslonttt

Structure containing Information on specific MPM
board. Instance of this structure for each MPM
board Is contained In array named
unlt_conflg.mpm. Declared as type extern
strum.

MPM revision number

specific MPM board (of four) not present
specific MPM board (of four) presenl

low end of memory range

high end of memory range

tttTo display the software version In the same format presented on the main menu screen, 5.00 for example, use the
following format In a call to dlsplayf (or tracef):

dlsplayl(" %Iu. %02Iu%c-, «unlt_conllg.sw_vers/on» 8) 1100), ((unlt_conllg.sw_varslon» 8) % 100),
(char){ unit _ conllg. sw _version & Oxll));

The same format may be used for presentation of the firmware version.

JUL '90 69-5

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-9S1-10B

(

69-6 JUL '90

70 Remote Port I/O

70 Remote Port I/O

The REMOTE RS-232 port is a "spare" serial interface through which the programmer may
communicate with other equipment. The remote port is located at the rear of the
INTERVIEW next to the printer port. (The REMOTE LED on the front panel of the
INTERVIEW is related to remote control of the unit, unimplemented at this time.)

Remote-port functions must be coded in C regions on the Protocol Spreadsheet. There are
no spreadsheet-token equivalents of the C variables and routines described in this section.
Use these variables and routines in either emulate or monitor mode to transmit and receive
data through the remote port.

The remote-communications process on the CPM controls the flow of data between the user's
program and the remote port. When data is received through the remote port, this process
temporarily buffers it in a 2048-byte input queue. The user's program makes requests for
data from the input queue via the rmt...1letc, rmt...1letl, and rmt...1lets input routines discussed
below. When the remote-communications process receives a request, it removes data from
the queu'e and passes it to the task. If there are no outstanding requests at the time data is
received, it is discarded from the input queue-i.e., data received between requests cannot be
retrieved. This is the default condition of the input queue.

To "lock" all received characters in the input queue, call rmt_lock. When the input queue is
locked, the remote-communications process removes data only when 1) a user task has
requested data via the rmt...1letc, rmt...1letl, or rmt...1lets routine, 2) the input queue is full and
some data must be discarded in order for incoming data to be buffered, or 3) rmtJlushi is
executed. "Unlock" the input queue with rmt_unlock. rmt_unlock, rmtJlushi, and
rmtJlusho are automatically executed whenever the INTERVIEW returns to Program mode.

NOTE: Although requests to receive (or transmit) data from more
than one task are queued by the remote-communications process,
a single task can have only one such request outstanding at a time.

Similarly, when the programmer wants to send data out the remote port, he calls rmt"'putc,
rmt"'puts, or rmt...Putb. The remote-communications process temporarily places these requests
in an output queue before \ransmitting them through the remote port.

70.1 Structures

There are no structures associated exclusively with remote functions.

JUL '90 70-1

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

70-2

70.2 Variables

Table 70-1 lists the event variables specific to remote port I/O operations. Use most
of these variables to detect changes in the status of the input and output queues.

As data is received through the remote pan, the remote-communications process
temporarily stores it in the input queue. Use rml_inpul_nol_emply,
rml_inpul_almosIJulI, and rml_inpul_over/low to monitor how fult the input queue
is. When the input queue is .. almost fult," incoming data must be stopped in order
to prevent the queue from overflowing.

rml_inpUI_almoSI_emply and rml_inpul_empIY are significant events as the remote
communications process takes data out of the input queue. These events indicate
that that the input queue is ready to accept more data.

JUL'SO

Type

extern Bvent

•

extern event

extern event

ex.tern event

extern event

extern event

extern event

JUL '90

70 Remote Port 110

Table 70-1
Remole Pori 1/0 Variables

Variable Value (hex/decimal) Meaning

rmtJnput_"ot_empty

rmtJnput_almost_full

rmtjnput_ovsrflow

rmUnput_almost_empty

True when a break (NULL with a
framing error) Is received
through the remote port. Line
Setup configured for emulate or
monitor mode.

True when remote Input-queue
transitions from empty to not
empty. Beginning to receive
characters. Line Satup
configured for emulate or
monitor mode.

True when the remote
Input-queue transitions from
less than 3/4 full to 3/4 full as
data Is being put Into the queue.
LIne Setup configured for
emulate or monitor mode.

True when remote Input-queue
transitions trom not full to full.
At this point. the oldest existing
data In the queue Is discarded
to make room for new data
coming In the remote port. Line
Setup configured for emulate or
monitor mode.

True when the remote
Input-queue transitions from
more than 1/4 full to 1/4 full as
data Is being taken out of the
queue. Line Setup configured
for emulate or monitor mode.

True when remote Input-queue
transitions from not empty to
empty. All characters have
been read or discarded. Line
Setup configured for emulate or
monitor mode.

True when remote output-queue
transitions from not empty to
empty. All data output to the
remote port has been
transmitted. Line Setup
configured for emulate or
monitor mode.

70-3

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

70.3 Routines

Remote routines fall into three categories. Input routines are used to read data
received from the remote port. Use output routines to transmit data through the
remote port. The last category of routines reads or sets parameters for the remote
port.

(A) Input Routines

Use rmt-.lietc, rmt-.lietl, and rmt-.liets to read data received through the remote
port. Use rmt_lock and rmt_unlock to control the flow of data from the input
queue.

Synopsis

extern int rmt...setc(wait);
int wait;

Description

The rmt-.lietc routine reads the next character (if present) from the remote port.

If no character is available from the input queue when rmt-.lietc is called, this
parameter determines when the routine will return:

• Specify a timeout value in the hexadecimal range 0.0, through FFFE (decimal 1
through 65534) to indicate how long the routine should wait for a character
to become available before returning. During this waiting period, no other
conditions and actions within the same state will be executed. (The extern
event variable rmt_input_not_empty in Table 70-1 can be used to indicate
when data is received.)

At the end of the timeout, the routine returns without a character if none is
available. Timeout values represent tenths of a second. If another task has
already requested data from the queue, this request will be queued.

• When the value is hexadecimal FF"FF", the routine does not return until a
character becomes available. If another task has already requested data
from the queue, this request will be queued.

• When the value is zero, the routine returns without a character if none is
available. If there is already an outstanding request from another task, a
zero value also causes the remote-communications process to return from
the routine without checking the input queue.

70-4 JUL '90

JUL '90

70 Remote Port I/O

NOTE: More than one test (task) may request data from the
input queue. The remote-communications processes queues these
requests as they are made. To ensure that requests are processed
in turn, use this IIwait lJ parameter consistently across tests. If you
set the parameter to a non-zero value in a call to rml...selc (or
rml...sels) in one test, do the same in all tests.

Retllrns

If a character is present in the input queue, this routine returns the character (as
an inl) read. If no character is present and the routine's "wait" parameter is
zero or the timeout expires, a -1 is returned. \\Then the parameter is zero, a -1
also is returned if there is already an outstanding request from another task.

Example

In the following example, the routine does not wait for a character to become
available in the remote port before returning. Each time the 19 key is pressed,
the next character, if present, is displayed. If a -1 is returned instead of a
character, a message to that effect will be displayed on the prompt line.

LAYER: 1
STATE: get_next_character

CONDITIONS: ENTER_STATE
ACTIONS:
{

}

displayyrompt("Press C to get next character.
rmt_lockO;

CONDITIONS: KEYBOARD "cC"
ACTIONS:
{
int character;
character = rmtJetc(O);
if(character == -1)

displaY...PTompl(ffNo character available.
else

display/(" %c". character);

rmt getl

Synopsis

extern int rmt....setl(stringylr. max_length);
char· stringJtr;
int max_length;

Description

"):

") ;

rml...sell reads from the remote port one line at a time. This routine gets at the
most the specified number of characters from the remote port and puts them in
an array. Unless a carriage return or linefeed is encountered, the routine does

70-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-10B

70-6

not return until the specified number of characters has been read. A carriage
return or Iinefeed causes the routine to return, even if the specified number of
characters has not yet been read. The carriage return or linefeed is replaced by
a terminating NULL character in the array.

The first parameter is a pointer to the array into which the characters will be
put.

The second parameter is the maximum number of characters to be read.

Retyrns

This routine returns the number of characters (preceding the terminating NULL)
read into the array.

Example

Each time the {Q key is pressed, twenty characters, at the most, are read from
the remote port, put into an array called dala, and displayed on the screen.

LAYER: 1
STATE: read_line

CONDITIONS: ENTER_STATE
ACTIONS:
{

}

dlsplaYJrompt("Presr L to gel nexi line.
rmt_lock()j

CONDITIONS: KEYBOARD "IL"
ACTIONS:
{

}

inl number;
unsigned char data {25};
number = rml...,Betl(data. 20};
display!("\n %u characters read:\n %. 20s\n", number, data);

Synopsis

extern Int rml....&ets(stringytr, length. wait):
char· stringJIT;
Int length;
int wail;

Description

") ;

Similar to rml.J/ell, this routine gets a specified number of characters from the
remote port and puts them in an array. Unlike rml.J/ell, characters continue to
be read even if a carriage return or Iinefeed is encountered. The array is not
NULL-terminated. (

JUL '90

(

JUL '90

70 Remote Port /10

The first parameter is a pointer to the array into which the characters will be
put.

The second parameter is the number of characters to be read.

If the specified number of characters is not available from the input queue when
rmt...$etl is called, the third parameter determines when the routine will return:

• Specify a timeout value in the hexadecimal range ••• , through ','E (decimal 1
through 65534) to indicate how long the routine should wait for the specified
number of characters to become available before returning. During this
waiting period, no other conditions and actions within the same state will be
executed.

At the end of the timeout, the routine returns with less than the specified
number of characters if all are not available. Timeout values represent
tenths of a second. If another task has already requested data from the
queue, this request will be queued.

• When the value is hexadecimal F".F"" the routine does not return until the
specified number of characters becomes available. If another task has
already requested data from the queue, this request will be queued.

• When the value is zero, the routine returns with less than the specified
number of characters if all are not available. If there is already an
outstanding request from another task, a zero value also causes the
remote-communications process to return from the routine without checking
the input queue.

NOTE: More than one test (task) may request data from the
input queue. The remote-communications processes queues these
requests as they are made. To ensure that requests are processed
in turn, use this "wait" parameter consistently across tests. If you
set the parameter to a non-zero value in a call to rmt...$ets (or
rmt.J!etc) in one test, do the same in all tests.

Retyrns

This routine returns the number of characters read from the remote port.

Example

When the lID key is pressed, the INTERVIEW has a minute to read up to 4000
characters from the remote port. The program puts the characters into an array
called data, displays them on the screen (until a NULL is encountered-see %s
in trace! routine, Section 64), and writes them to a file named echo_time. This
is the program that might be run to receive the file transmitted in the rmtyutb
example.

70-7

INTERVIEW 7000 Series Advanced ProgrammIng: ATLC-t07 951 108

70-8

}

#define FILEJENGTH 4000
Hdefine FILENAME IfFDllusrlecho_time"
#Include <Sldla. h>
#Include <trace_bu/, h>
extern slrUt' 'race_bu! Il_,rbufj
FILE· streamylr;
size_, 71;
unsigned char dala {FILE_LENGTH};
int count:

LAYER: 1
STATE: get_string

CONDITIONS: ENTER STATE
ACTIONS: -
{

}

rmt_lock(};
if((s/reamy'r - fopen(FlLENAME, "WOO)) -- 0)

displayyrompt("Cannot open file. ");
else

{
dlsplayyrompl("Press S to read string. ");
pos cursor(J,O);

} -

CONDITIONS: KEYBOARD 'sS"
ACTIONS:
{
count = rmt-..Bets(dala, FILE_LENGTH. 600);
if(eoun, I- FILE_LENGTH)

display/("Could not read entire string. \,,").-
tracef(&I1_,rbu/, "%d characters read: \n%5\71\n", count, dala);
n =fwrite(data. J, FILE_LENG-TH, streamytr);
if(n I- FILE_LENGTH)

display!("A write er,or has occurred. \71"),
else

displayf(" File wrItten. \n");
i!(fclose(streamJ'r) != O}

dlsplay/(IiElther file is already closed, or close cannot be executed. \n"):
else

display/('I File closed. \n"}:

Synopsis

extern int rmtJIushi();

Description

If characters have been received in the input queue, but have not been read yet,
this routine causes them to be discarded. Whenever the INTERVIEW enters or
leaves Run mode, rmtJlushi is automatically executed. This ensures that the
input queue is empty.

JUL '90

JUL '90

70 Remote Port 110

NOTE: A call to any of the routines which set the parameters of
the remote port also causes rmtJlushi to be executed
automatically. The routines which only get the current
parameters of the remote port have no effect on the input queue.

When the programmer calls rmtJlushi, requests for data from the input queue
are processed before the input queue is flushed. When a call to rmtJlushi is
made from another test, however, input routines waiting for characters from the
input queue are returned.

Rettl[OS

rmt Jlushi returns a zero when the input queue is flushed successfully.
Otherwise, it returns a non-zero value.

Example

This example is the same as that for rmtJetc. Notice that as the program
enters the first state, the input queue is flushed.

LAYER: 1
STATE: get_next_character

CONDITIONS: ENTER_STATE
ACTIONS:
{

}

dlsplaYYfompl(" Press C to get next character.
rmt_lock();
rml..f/ushl();

CONDITIONS: KEYBOARD "cC'
ACTIONS:
{
In' character;
character = rmtJetc(O):
i!(character ==-1)

displayyrompt(" No character available.
else

display!(" %c". character);

rmUock

Synopsis

extern void rmt_'ock();

Description

..) ;

") ;

Recall that in its default state, the input queue does not retain characters
received through the remote port between requests from user tasks. Data in the
queue must either be passed to a user task or be discarded. The rmt_lock
routine "locks" all received characters in the input queue until they are
requested. (Refer again to the beginning of this section.)

70-9

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

70-10

Example

The following example is the same as the one for the rmt..,Beti routine. Notice
that a call to rmt_lock is made as the program begins. The operator makes a
request for data from the input queue by pressing (D. The next line of data in
the input queue is removed and put in the array named data.

LAYER: 1
STATE: read_line

CONDITIONS: ENTER_STATE
ACTIONS:
(

)

dispJaYJ'rompt("Press L to gel nex/line.
rmt_lock(),

CONDITIONS: KEYBOARD "IL"
ACTIONS:
(

)

Synopsis

in' number;
unsigned char data /25];
number = rml....setl(dala, 20);
dlsplay!("\n%u characters read:\n%.20s\n", number, data);

extern void rm,_unlock(),'

Description

"),

The rmt_unlock routine implements the inverse of the rmt_lock routine. If
characters are received in the remote port and there are no outstanding requests
for data, the remote-communications process discards the characters. (Refer
also to rmt_lock and to the beginning of this section.)

rmt_unlock is automatically executed when the INTERVIEW returns to Program
mode.

Example

In the following example, the input queue is locked as soon as the program
begins. It remains locked until the operator press lID (or ~).

LAYER: 1
STATE: read_line

CONDITIONS: ENTER_STATE
ACTIONS:
{

)

displayyrompl("Press L to get next line.
rmUock();

");

JUL '90

JUL '90

70 Remote Port 110

CONDITIONS: KEYBOARD 'IL'
ACTIONS:
{

)

Inl number;
unsigned char data (25Jj
number = rml...,Aetl(dala, 20);
dtsplay/("\n%u characters read:\n%.20s\n", number, data);

CONDITIONS: KEYBOARD 'uU'
ACTIONS:
{

(8) Output Routines

Use the following routines to transmit data through the remote port.

Synopsis

extern In' rmtyutc(characler. wait);
unsigned char character;
tnt wait;

Description

This routine sends a specified character to the output queue of the remote port
for transmission.

The first parameter is the character to be transmitted. It may be given as a
hexadecimal, octal, or decimal constant; as an alphanumeric constant inside
single quotes; or as a variable. A hexadecimal value must be preceded by the
prefix Ox or OX; an octal value must be preceded by the prefix O. If no prefix
appears before the input, the number is assumed to be decimal.

If space in the output queue is not available for the character when rmtyutc is
called, the second parameter determines when the routine will return:

• Specify a timeout value in the hexadecimal range °0°, through FFFE (decimal 1
through 65534) to indicate how long the routine should wait for space in the
output queue to become available before returning. During this waiting
period, no other conditions and actions within the same state will be
executed.

If the character is successfully put in the queue, the routine returns zero.
Timeout values represent tenths of a second. If there is already a request
from another task, this request will be queued.

70-11

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-9S1-108

70-12

• When the value is hexadecimal "'" the routine does not return until space
in the output queue becomes available. If there is already a request from
another task, this request will be queued.

• When the value is zero and space in the output queue is not available, the
routine returns -1. The character will not be in the queue. If another task
is already waiting for access to the output queue, a zero value also causes
the remote-communications process to rerum from the routine without
checking for available space in the output queue.

NOTE: More than one test (task) may request to send data to
the output queue. The remote-communications processes queues
these requests as they are made. To ensure that requests to
output data are processed in turn, use this Uwait" parameter
consistently across tests. If you set the parameter to a non-zero
value in a call to rmt..putc (rmt..puts or rmt..putb) in one test, do
the same in all tests.

Returns

If the character is successfully written to the output queue, the routine returns
zero. If no space is available in the output queue and the routine's "wait"
parameter is zero or the timeout expires, a -1 is returned. When the parameter
is zero, a -1 also is returned if another task is already waiting for access to the
output queue.

Example

In the following example, the next character in a fox message is sent to the
output queue of the remote port each time the operator presses 19. As a
character is successfully queued, it is displayed in the Display Window. If no
space is available in the output queue for the character, -1 is returned and a
message to that effect is displayed on the prompt line. No more characters will
be sent.

)

unsigned char dala (] = "((FOX)) r,. ";
unsigned char character;
int i, length, error;

LAYER: 1
STATE: transmit_characters

CONDITIONS: ENTER_STATE
ACTIONS:
{

)

displaYJTompt("Press C to transmit character.
length = sizeoJ(data} - I;

");

JUL '90

(

I 70 Remote Port 110

CONDITIONS: KEYBOARD 'cC'
ACTIONS:
{
fOT{I = 0; i < length; Itt)

{
character = datali);
error = rmtJutc(characte" 0);
if!erroT == -1)

display..pTompl(" No space a'llaUable In output queue.
elre

dlsplayf(" %c", character);

Synopsis

extern in' rml"'puts(strlngJt" walt);
const char· stringylr;
In, wait,

Description

This routine outputs a NULL-terminated string to the output queue of the
remote port.

The first parameter is a pointer to the string to be transmitted.

If space in the output queue is not available for the string when rmtyuts is
called, the second parameter determines when the routine will return:

PI);

• Specify a timeout value in the hexadecimal range ••• , through ','E (decimal 1
through 65534) to indicate how long the routine should wait for space in the
output queue to become available before returning. During this waiting
period, no other conditions and actions within the same slate will be
executed.

Before the timeout expires, as many characters as will fit are put into the
output queue. Timeout values represent tenths of a second. If there is
already a request from another task, this request will be queued.

• When the value is hexadecimal FFFF, the routine does not return until space
in the output queue becomes available. If there is already a request from
another task, this request will be queued.

• When the value is zero and space is not available in the output queue, the
routine returns the number of characters, if any, put into the queue. If
another task is already waiting for access to the output queue, a zero value
also causes the remote-communications process to return from the routine
without checking for available space in the output queue.

JUL '90 70-13

INTERVIEW 7000 Sarlas Advanced Programming: A TLC-1 07-951-108

70-14

NOTE: More than one test (task) may request to send data to
the output queue. The remote-communications processes queues
these requests as they are made. To ensure that requests to
output data are processed in turn, use this "wait" parameter
consistently across tests. If you set the parameter to a non-zero
value in a call to rmt...Puts (rmt...Putc or rmt...Putb) in one test, do
the same in all tests.

Returns

This routine returns the number of characters put into the output queue.

Example

The following example is similar to the one given for rmt...Putc. When the lID
key is pressed, the fox message is sent to the remote port. The difference is
that the message is output to the remote port as a string (rather than character
by character). If the output queue is full, the routine does not wait for space to
become available before returning. The number of characters successfully
queued is displayed in the Display Window. If the number of characters queued
is less than the length of the string, a message to that effect is displayed on the
prompt line.

unsigned char data /l = "«FOX)) r,.":
Int count, length;

)
LAYER: t

STATE: transmit_string
CONDITIONS: ENTER_STATE
ACTIONS:
{

)

d;splayyrompl("Press S to transmit string.
length = sizeof(data) - J.-

CONDITIONS: KEYBOARD "oS'
ACTIONS:
{

}

count = rmlyuts(data, 0);
If(count 1=length}

dlsployyrompt (If Could not output enlire Siring.
pos_cursor(l, 0) i
display!("%d characters transmitted. ", counn,-

Synopsis

extern In' rmtyulb(stringJ". length, wait);
consl char· slringytr;
Inl length;
in' walt;

") ;

") j

JUL 'SO

(

JUL '90

70 Remote Port I/O

Description

This routine sends a string of specified length to the output queue of the remote
port.

The first parameter indicates the string to be output.

The second parameter is the length of the string to be output.

If space in the output queue is not available for the string when rmt"'putb is
called, the third. parameter. determines.when the routine will return:

• Specify a timeout value in the hexadecimal range ••• , through F,FE (decimal 1
through 65534) to indicate how long the routine should wait for space in the
output queue to become available before returning. During this waiting
period, no other conditions and actions within the same stale will be
executed.

Before the timeout expires, as many characters as will fit are put into the
output queue. Timeout values represent tenths of a second. If there is
already a request from another task, this request will be queued.

• When the value is hexadecimal ',F" the routine does not return until space
in the output queue becomes available and all characters in the string have
been queued. If there is already a request from another task, this request
will be queued.

• When the value is zero and space is not available in the output queue, the
routine returns the number of characters, if any, put into the queue. If
there is already an outstanding request from another task, a zero value also
causes the remote-communications process to return from the routine
without checking for available space in the output queue.

NOTE: More than one test (task) may request to send data to
the output queue. The remote-communications processes queues
these requests as they are made. To ensure that requests to
output data are processed in turn, use this "wait" parameter
consistently across tests. If you set the parameter to a non-zero
value in a call to rmt...Putb (rmt...Putc or rmt...Puts) in one test, do
the same in all tests.

Returns

This routine returns the number of characters put into the output queue.

Example

This is the program that might be run to transmit the file received in the
rmt...fiets example. The user specifies the filename and its size (shown in the
directory listing on the File Maintenance screen) in the two #define preprocessor
directives at the beginning of the program. When the program begins, the

70-15

INTERVIEW 7000 SerIes Advenced Programming: ATLC-107-951-10B

70-16

contents of the file named echo_time are read into an array called data. When
the operator presses the !II key, the contents of the array are transmitted and
displayed.

)

#dellne FILE_LENGTH 4000
Hdejine FILENAME "FDllurrlecho_time"
#include <Sld/o. h>
#/nc/ude <Irace_bu/.h>
extern slruCI tract_buJ 11_,rbuj;
FILE· slreamJJ,r;
sizt_' II:
un,lgned cha, dOlo {FILE_LENGTH/;
unsigned char size (FILE_LENGTH+100j;
Inl counl;

LAYER: 1
STATE: transmit_string

CONDITIONS: ENTER_STATE
ACTIONS:
{
11((Slreamy" = 10pen(FlLENAME, ",")) == 0)

display....pTompt("Cannot open flle. ");
else

pos_curSOT(1,0):
n = jread(datQ, 1, FILE_LENGTH, streamJ,r)j
II(n 1= FILE_LENGTH)

display/("Either a read error has occurred, or an EOF has been
encountered, \/1");

II([close(,"eamy',) 1= 0)
displayJ("Elther file Is already closed, or close cannot be executed. \n"):

)

else
dl'playl("File closed. \n");

il(n == FILE_LENGTH)
displaYJTompt("Press T to transmi' characters."):

CONDITIONS: KEYBOARD "tr"
ACTIONS:
{

)

Synopsis

counl = ,mlyulb(dala, FILE_LENGTH. Oxff);
il(coun' 1= FILE_LENGTH)

display!("Cou/d not output entire siring. \nU);
sprlnt!(size, "%d characters transmitted: %%. %dH", count. cDunt),.
IrQCe/(&lJ _'Tbul. size, data);
tracef(&I1_,rbu/, "'n\n").-

exttrn ;nl rmtJlUsho()j

JUL '90

JUL '90

70 Remote Pori 110

Description

If characters are queued to be output from the remote port, but have not been
transmitted yet, this routine causes them to be discarded. This ensures that
anything previously in the output queue port is deleted.

rmtJlusho is automatically executed when the INTERVIEW returns to Program
mode.

NOTE: A call to any of the routines which set the parameters of
the remote port causes rmtJlusho to be executed automatically.
The routines which only get the current parameters of the remote
port have no effect on the output queue.

Returns

rml Jlusho returns a zero when the output queue is flushed successfully.
Otherwise, it returns a non-zero value.

Example

This example is the same as that for rm/...pule. Notice that as the program
enters the first state, the output queue is flushed.

}

unsigned char data 11 = "((FOX» ";
unsigned char character'
Int it length, error;

LAYER: 1
STATE: transmlt_a_character

CONDITIONS: ENTER_STATE
ACTIONS:
(

}

rmtJlusho();
displaYJTompt("Press C to transmil character.
length = sizeoj(dala);

CONDITIONS: KEYBOARD 'cC"
ACTIONS:
(
jor(i = 0; i < length; itt)

(
character = dotoli);
error = rmlyutc(choracler. OJ;
Ij(error ==-1)

{

}

disployyrompt("No space Qvailable In output queue.
break;

else
dlsplay/(" %c", character);

..) ..

OJ) ;

70-17

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-108

70-18

rmt suspendo

Synopsis

extern ;nl rm,_suspendo();

Description

If characters are queued to be output from the remote port, but have not been
transmitted yet, this routine causes transmitting to be suspended. The output
queue is not flushed. Use. this routine. only. when. the remote port handshaking
mode is full-duplex without flow control.

Returns

rmtjuspendo returns a zero when transmitting is successfully suspended.
Otherwise, it returns a non-zero value.

Example

When the INTERVIEW receives an X-OFF as a signal to stop sending data, it
suspends transmissions from the remote port.

}

extern event rmt_inpUI_nOl_emptYi
;nl character;

LAYER: 1
STATE: suspend_output

CONDITIONS: ENTER_STATE
ACTIONS:
{
Tmt_'ock(),

}
CONDITIONS:
{
rmt_inpUI_ nOI_empty

}
ACTIONS:
{

}

character = rmt...,&elc(1);
i!(character == OxJ3)

rm'_suspendo() ;

TIMEOUT ckJnput RESTART 0.001
CONDITIONS: TIMEOUT ckJnput
ACTIONS:
{

}

characrer = rmt...2etc(l);
i/(characler == Ox})

rml_suspendo();

TIMEOUT ck_lnput RESTART 0.001

JUL 'SO

JUL '90

70 Remote Port /10

rmt resumeo

Synopsis

extern In' rm'Jesumeo();

Description

This routine resumes transmission of characters from the remote pon. Use this
routine only when the remote port handshaking mode is full-duplex without flow
control.

Returns

rmtJesumeo returns a zero when transmitting is successfully resumed.
Otherwise. it returns a non-zero value.

Example

When the INTERVIEW receives an X-ON as a signal to send data, it resumes
transmissions from the remote port.

in' character;
}
LAYER: 1

STATE: resume_output
CONDITIONS: ENTER_STATE
ACTIONS:
{
rml_'ock ();

}
TIMEOUT RESTART ckJnput 0.001
CONDITIONS: TIMEOUT checkJnput
ACTIONS:
{

}

character = rmt..:etc(l);
If(choTQcter == Ox} 1)

rm'Jesumeo();

TIMEOUT ck_lnput RESTART 0.001

Synopsis

extern in' rm,_send_break(wait};
int wait;

Description

This routine causes a break, queued as other transmits, to be transmitted.

70-19

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-107-951-108

70-20

If space in the output queue is not available for the break when rmt_send _break
is called, the only parameter determines when the routine will return:

• Specify a timeout value in the hexadecimal range °0°, through ','. (decimal 1
through 65534) to indicate how long the routine should wait for space in the
output queue to become available before returning. During this waiting
period, no other conditions and actions within the same state will be executed.

If the break is successfully put in the queue, the routine returns zero.
Timeout values represent· tenths of a second. If there is already a request
from another task, this request will be queued.

• When the value is hexadecimal "'" the routine does not return until space
in the output queue becomes available and the break has been queued. If
there is already a request from another task, this request will be queued.

• When the value is zero and space in the output queue is not available, the
routine returns -1. The break will not be in the queue. If another task is
already waiting for access to the output queue, a zero value also causes the
remote-communications process to return from the routine without checking
for available space in the output queue.

NOTE: More than one test (task) may request to send data to
the output queue. The remote-communications processes queues
these requests as they are made. To ensure that requests to
output data are processed in turn, use this "wait" parameter
consistently across tests. If you set the parameter to a non-zero
value in a call to rmt_send_break (rmtyutc, rmtyuts or
rmtyutb) in one test, do the same in all tests.

Returns

If the break is successfully written to the output queue, the routine returns zero.
If no space is available in the output queue and the routine's "wait" parameter
is zero or the timeout expires, a -1 is returned. When the parameter is zero, a
-1 also is returned if another task is already waiting for access to the output
queue.

Example

In this example, a break is transmitted each time the operator presses the space
bar.

LAYER: 1
STATE: transmIt_break

CONDITIONS: KEYBOARD ••
ACTIONS:
{
rmljeltd_break(1);

}

JUL '90

JUL '90

70 Remote Port /10

(C) Configuration Routines

The default configuration for the remote port at boot-up is the following:

Baud rate = 1200
Bits/character = 8
Parity = None
Mode = Full-duplex

Use the first four routines discussed-below to change these settings. The
programmer's reconfiguration of the remote port is not affected when the
INTERVIEW exits or re-enters Run mode.

A call to any of these set routines causes rmlJlushi and rmtJlusho to be
executed automatically before the parameter is set.

Use the remaining four routines to read the current parameter-settings for the
remote port. These gel routiries have no effect on the input and output queues.

Synopsis

extern Int rm'_sel_baudJQ,e(speed);
Int speed;

Description

This routine sets the baud rate for the remote port. The default value at
boot-up is 1200.

NOTE: A call to rmt_set_bQudJQte causes rmtJlushi and
rmtJlusho to be executed automatically before the baud rate is
set.

The only parameter is the desired baud rate. Values that are multiples of 300 in
the range 300 through 19200 are valid.

Retllrns

If the specified baud rate is valid and successfully set, zero is returned. If the
baud rate is valid, but not successfully set, -1 is returned. For an invalid baud
rate. the routine returns -2.

70-21

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

70-22

Example

In order for two devices to communicate with each other, they must be using the
same baud rate. When they are not the same, some devices send a break as a
signal for the other to adjust its baud rate. If the following example, the
INTERVIEW changes the baud rate for the remote port whenever a break is
received.

(
extern event rm,-breakj
int erro"
in' speed = 300,

)
LAYER: 1

STATE: adJusl_baudJale
CONDITIONS:
(
rml_hreak

)
ACTIONS:
(

Synopsis

er,or = rmt_set_baudJQle(speed);
If(e"., 1= -I)

(
speed iII= 2;
If('peed> 19200)

speed = 300,

else
dlsplay!("Unable to set the baud rale to %d. ", speed),

extern int rmt_set_hits(IJQlue)j
;nl value;

Description

This routine sets the number of bits per character for the remote port. The
default setting at boot-up is 8 bits/character.

NOTE: A call to rmljel_bils causes rmlJlushi and rmlJlusho
to be executed automatically before the number of bits/character
is set.

The only parameter is the number of bits/character. Valid values are five
through eight.

JUL '90

I

JUL '90

70 Remote Port /10

Retyrns

If the specified number of bits/character is valid and successfully set, zero is
returned. If the number is valid, but not successfully set, -1 is returned. For
an invalid value. the routine returns -2.

Example

In this example, the number of bits/character for the remote port is set to 7 and
displayed on the Display Window screen.

LAYER: 1
STATE: set_parameters

CONDITIONS: ENTER_STATE
ACTIONS:
(
display/("Blts = %d ", rm,_se,_bits(7»;

}

rmt set parity

Synopsis

extern int rmtjetyarlty(parity);
int parity:

Description

This routine sets the parity for the remote port. The default setting at boot-up
is no parity.

NOTE: A call to rmt_se(parity causes rmtJlushi and
rmtJlusho to be executed automatically before the parity for the
remote port is set.

The only parameter is a value designating the desired parity. Valid values are
the following: none (0), odd (1), even (2), mark (3), or space (4).

Returns

If the specified parity value is valid and successfully set. zero is returned. If the
value is valid, but not successfully set, -1 is returned. For an invalid parity
value. the routine returns -2.

Example

In this example, the number of bits/character for the remote port is set to 7 and
parity is even. Both settings are displayed on the Display Window screen.

70-23

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

70-24

LAYER: 1
STATE: set_parameters

CONDITIONS: ENTER_STATE
ACTIONS:
{
dlsplay/("Bils = %d Parily = %d ", rm l_se/_bllS (7) , rml_sel...parily(2)):

}

Synopsis

extern int rmt_stl_mode(mode);
Int modej

Description

This routine sets the handshaking mode for the remote port, The default setting
at boot-up is FOX with no flow control.

NOTE: A call to rmtjet_mode causes rmtJlushi and rmtJlusho
to be executed automatically before the mode for the remote port
is set.

The only parameter is a value designating the mode, Valid values are the
following:

o = Full-duplex with no flow control (FOX)
1 = Half-duplex (HOX)
2 = Full-duplex with X-ONIX-OFF characters for flow control
3 = Full-duplex with OTR and CTS EIA leads for flow control. Use a

special null-modem cable for direct connections, See Figure 70-1.

Chassis Ground Chassis Ground

TO 2 3 AO

AD 3 2 TO

ATS 4 6 CD

CTS 5 20 DTA

Ground 7 7 Ground

CD 6 4 ATS

DTA 20 5 CTS

Figure 70-1 Null-modem cable connections.

JUL '90

JUL '90

70 Remote Port /10

Returns

If the specified mode value is valid and successfully set, zero is returned. If the
value is valid, but not successfully set, -1 is returned. For an invalid mode
value, the routine returns -2.

Example

In this example, the number of bitslcharacter for the remote port is set to 7,
parity is even, and the mode is set for FDX with X-ONIX-OFF. All three
settings are displayed on the Display Window screen.

LAYER: 1
STATE: set_parameters

CONDITIONS: ENTER_STATE
ACTIONS:
{
display!(ffBits = %d Parity = %d Mode = % d ", rmt_sel_bits(7).

rm'_selyorjty(2). rml_set_mode(2)};

rmt get baud rate - - -
Synopsis

extern int rmt....se,_baudJote():

Description

This routine gets the current baud-rate setting for the remote pon.

Returns

The baud rate for the remote port is returned.

Example

As the program begins, the current baud-rate setting for the remote pon is
displayed on the Display Window screen.

LAYER: 1
STATE: baud_rate

CONDITIONS: ENTER_STATE
ACTIONS:
{
display!("Baud = %d ", rmt....set_baud_role());

}

70-25

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-I07-951-10B

70-26

Synopsis

extern int rmt...set_blts();

Description

This routine tells how many bits there are per character. Possible values are five
through eight.

Returns

The current number of bits per character for the remote port is returned.

Example

In this example, the current baud-rate setting and the number of bits/character
for the remote port are displayed on the Display Window screen.

LAYER: 1
STATE: currentyarameters

CONDITIONS: ENTER_STATE
ACTIONS:
{
dlsplay/("Baud = %d Bils = %d ", rml.....8e,_baud_,alt() , rmtJe,_blts();

}

Synopsis

extern int rmtJe(yarity();

Descrjption

This routine gets the current parity setting for the remote port.

Returns

The current number of bits per character for the remote port is returned.

Example

In this example, the current baud-rate setting, number of bits/character, and the
parity for the remote port are displayed on the Display Window screen.

LAYER: 1
STATE: current_parameters

CONDITIONS: ENTER_STATE
ACTIONS:
{
display/("Baud = %d BIIS = 'Pod Parity = %d ", rmt...,&e'_baudJate() ,

rmt....8et_bits(). rml....,&etJQrity(»;

JUL 'SO

(

(

JUL '90

70 Remote Port /f0

Synopsis

Descriptjon

This routine gets the current handshaking mode for the remote pan.

Returns

The current handshaking mode for the remote pan is returned:

o = Full-duplex with no flow control (FDX)
1 = Half-duplex (HDX)
2 = Full-duplex with X-ON/X-OFF characters for flow control
3 = Full-duplex with DTR and CTS EIA leads for flow control Requires

a special null-modem cable for INTERVIEW-to-INTERVIEW direct
connections. Refer to Figure 70-1.

Example

In this example, the current baud-rate setting, number of bits/character, parity,
and handshaking mode for the remote pan are displayed on the Display Window
screen.

LAYER: 1
STATE: current_parameters

CONDITIONS: ENTER_STATE
ACTIONS:
{
display!("Baud = %d Bits = %d Parity = %d Mode = %d ", rmt....sel_baud_'ateO.

rmt...,Be'_bits(). rmt...,&eryority(), rmtJet_mode();

70-27

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-107-9S1-10B

70-28 JUL '90

71 AUX Port /10

71 AUX Port I/O

JUL '90 71-1

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-l07-951-10B

Bit Number 15 14 13 12 11 10 9 8 7 6 5 4 3
Transmitter's I I I I I I , ,

IIC'
, , , 0 , , AUX Port Lead 0 0 0 0 0

Configuration

Pin Number 16 14 12 10 8 6 4 2 15 13 11 9 7

Bit will be C U U U U U U C 0 D 0 0 0 usad for

Bit NUmber 15 14 13 12 11 10 9 8 7 6 5 4 3
Receiver's

II/C I I I I I I I 0 I I I I I I AUX Port Lead
Configuration

Pin Number 16 14 12 10 8 6 4 2 15 13 11 9 7

0 Output/Non-control
I Input/Non-control
lie Input/Control
C Control
D Data
U Unassigned

Figure 71-1 Sample AUX pOri lead conflguralions (or two INTERVIEWs connected by their AUX
Interfaces. Assume one-way data transmission (I.e .. one device is controlling the other).

71-2

2 0

0 , 0 , 0 I
5 3

0 0 0

2 0

I I I
5 3

JUL '90

71 AUX Port 110

71 AUX Port I/O

The Auxiliary (AUX) pon is a "spare" interface through which the programmer may
communicate with other lab equipment. The A UX pon is located at the rear of the
INTERVIEW, between the printer and ROB connectors. It is controlled by a Zilog CIa
(Counter/Timer, Parallel Input/Output Unit) chip. The AUX pon may be used as a serial or
parallel interface. When it is operated as a parallel port, up to sixteen bits (one bit on each
of sixteen leads) may be transmitted simultaneously.

AUX-pon control must be coded in C regions on the Protocol Spreadsheet. There are no
spreadsheet-toker, equivalents of the C variables and routines described in this section.

A normal configuration of equipment using the AUX pon will involve two INTERVIEWs with
AUX pon setups that mirror each other to some extent, as in Figure 71-1. The transmitting
INTERVIEW will use one of its output leads as a "strobe" to signal to the receiving
INTERVIEW that an AUX word is available to be read. The receiver will detect this strobe
as an aux_change event.

The receiving INTERVIEW will use one of its output leads to acknowledge each A UX word
received. The transmitting INTERVIEW will detect this acknowledgment as an aux_change
event.

NOTE: The AUX port is not controlled by the same CPU that
handles the user program. The need for interprocessor
communication without data buffering makes rapid, successive
transmissions difficult to handle. It is recommended, therefore,
that control bits be set aside for flow control-a bit set by the
transmitter as input/control is set by the receiver as
output/non-control, and vice versa-and that every output word
be acknowledged before a succeeding word is output.

71.1 Variables

JUL '90

Table 71-1 lists the variables specific to AUX I/O operations. The fast-event
variable, aux_change, detects a change in a lead that has been configured as a
control lead. Any or all of the sixteen leads in the interface may be designated
control leads. Section 71.2 explains how to configure control leads.

71-3

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

Type

extern fast_event

aux_change does not establish which control lead(s) has changed. Two associated
variables, curr _aux_value and prey _aux_value, indicate the status of all sixteen leads.
These are two-byte (short) variables. Each lead is represented by a different bit in
the short. If the bit-value of a given lead is zero, the lead is on. If the bit-value is
one, the lead is off.

Whenever a control lead changes, the value in curr aux value is written to
prey _aux_value. Then curr _aux_value is updated.

Table 71·1
AUX Port 1/0 Variables

Variable Meaning

True when the status of a lead
designated as control (and
Input) change.. I. automatically
made to come true by the CIO
chip 89 Boon as leads have been
configured via set aux direct/on
and set aux ell tBads routines,
Therefore, condition must be
tested again In a different state.
Line Setup configured for
emUlate or monitor mode.

extern volatile const unsigned short curr _ aux_ value Each bit designate. a different
lead. A bit-value of one
Indicates a given lead Is on.
When value at curr aux value Is
exclusive ored n with -
prev_8ux_va/ue, result Indicates
those leads whose status has
changed. Updated when

extern volatile const unsigned short prey aux value

71-4

aux_ change comes true. LIne
Setup configured for emulate or
monitor mode.

Value of previous
curr aux value. Updated when
control leads change. but only
aftar logic has had a chance to
compare current and previous
leads. Line Setup configured
for emulate or monitor mode.

JUL 'SO

71 AUX Port /fa

71.2 Routines

In the examples for the following routines, assume that two INTERVIEW's are
connected and that data flows in one direction.

Synopsis

CAUTION: You may damage the AUX inter/ace 1/ the same lead
is designated as output on both units. We suggest that you set
the leads on each unit as input/output and control/non-control
before you connect the AUX inter/aces. See Figure 71-1.

extern void se,_aux_dlrection(inpu,_o,_output)j
unsigned shor' input_or _output;

Description

This routine designates leads on the AUX pon as input or output. Designated output
leads for the transmitter are set as input leads by the receiver.

JUL '90

The only input is a sixteen-bit variable. Each bit in the variable designates one lead
and may be set to zero (output) or one (input).

Example

Both sides of the connection may be tran,mitter or receiver. But for simplification in
examples, let's designate only one side as the transmitter and the other as the
receiver. In this example, the transmitter sets all 8 bits of the low-order byte as
output bits for data, the low-order bit of the high byte as input (for handshaking),
the next 6 bits of the high byte as input (unused), and the high-order bit as output
(the receiver will designate this bit as input for handshaking).

LAYER: 1
STATE: setJnpuUeads

CONDITIONS: ENTER_STATE
ACTIONS:
{
set_oux_dlrection (Ox7jOO);

}

71-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-9S1-108

71-6

The other (receiver) INTERVIEW sets a bit as input (for handshaking). It must be
one that was designated as output by the transmitter, the highest-order bit of the high
byte. The data bits set as output by the transmitter must be set as input by the
receiver. The receiver's set_aux_direction routine would look like this:

LAYER: 1
STATE: .eUnpuUeads

CONDITIONS: ENTER_STATE
ACTIONS:
{
set_aux _direction (Ox/eln "

I

set aux etl leads - - -
Synopsjs

extern void Sel_QuX_ctl_'eads(ctl_o,_"ot);
unsigned shor, ell_oT_not;

Description

This routine determines whether or not leads will be control leads. Control leads
must also be input leads, but input leads do not necessarily have to be control leads.
Output leads can never be control leads.

The only input is a sixteen-bit variable. Each bit in the variable designates one lead
and may be set to zero (non-control) or one (control).

Example

Assuming the input/output bits set in the previous example, the transmitter sets all 8
,data bits (output) as non-control, the low-order input bit of the high byte as control
(for handshaking), the next 6 input bits of the high byte as non-control (unused),
and the high-order output bit as non-control (the receiver will designate this bit as
control for handshaking).

LAYER: 1
STATE: set_controUeads

CONDITIONS: ENTER_STATE
ACTIONS:
{
sel_ oux_ etl_leads (OxO 1 00);

I

JUL '90

JUL '90

71 AUX Port 110

The "receiver" INTERVIEW sets one Input bit as control for handshaking purposes.
It must be one that was designated as output by the transmitter, the highest-order bit
of the high byte. The receiver's set_aux_ctl_leads routine would look like this:

LAYER: 1
STATE: set_controUeads

CONDITIONS: ENTER_STATE
ACTIONS:
{
set _QUX_ ell_leads (Ox8000);

}

write aux

Synopsis

extern void wrlte_QUx(oUlpu,_word)j
unsigned short output_word;

Description

This routine sends a combination of data, control, and (perhaps) unused bits as
output. Input bits are not transmitted by the CIO.

The only input is a sixteen-bit variable. Each bit designates one lead and may
represent data or control information, or be unused. If a given lead was designated
as a control lead, it is an input lead and the CIO will not transmit the status of the
bit in any case, so its setting of 1 or 0 does not matter. If the lead was designated as
a non-control lead, it might contain data, be unused, or contain an alternating value
to indicate acknowledgment (if the other side designated it as a control lead).

Example

The transmitting INTERVIEW is going to send data to the receiving INTERVIEW.
Before the next transmission can be sent, an acknowledgment must be received. The
acknowledgment is detected by the fast-event variable aux_change.

NOTE: The CIa chip automatically generates a true aux_change
condition when the set_aux_ctl_leads routine has been executed.
The aux_change condition, therefore, should be placed in a
separate programming state from the set_aux_ctl_Jeads routine.

71-7

INTERVIEW 7000 SerIes Advanced ProgrammIng: ATLC-l07-951-108

71-8

The transmitter's program might look like this:

LAYER: 1
{

}

extern faSI_e~ent Dux_change:
extern volatile const unsigned ShOTI curr _Dux_value;
volatile unsigned short CUrTj

unsigned shorl mosk;
unsigned char data;

STATE: configureJeads
CONDITIONS: ENTER.:.STATE·
ACTIONS:
{

}

set_aux_direction (Ox7100);
set_Dux _ell_leads (OxO 100);
curT = CUrt_Dux_value:
dala = Ox01;
mask = eurr A Ox8000:
displaYJTompl(IIConnect cable. Press spacebar to transmll.
pos_cursor(J ,0);

NEXT_STATE: .end_data
STATE: .end_data

CONDITIONS: KEYBOARD·
ACTIONS:
(

)

i!(dala <= 10)
{

}

write_Qux(mask I data);
dlsplayj("Transmlsslon %d waiting for ACK.

NEXT_STATE: waiting
STATE: waiting

CONDITIONS: {aux_change)
ACTIONS:
{
dotatt;
mask = (mask A Ox8000);
display/(lfACK "ctived: %04x Press spacebar to transmit.

}
NEXT_STATE: .end_data
CONDITIONS: {dala > JO}
ACTIONS:
{
displayyrompl("End o! lesl.

)

")j

\71", data):

\,,", CUrt);

OJ);

JUL '90

JUL '90

The receiver's program would look like this:

LAYER: 1
{

)

extern fasl_event aUK_chonge;
extern volatile const unsigned short curf_aux_volue;
volatile unsigned short curTi
unsigned short mask:
Int count:

STATE: configure_'eads
CONDITIONS: ENTER_STATE
ACTIONS:
{

)

sel_Qux_direclion (Ox/tIn j
set _aux _ell_'eads (Ox8000).-

CONDITIONS: {aux_change)
ACTIONS:
{
curT = cu,,_aux_value:
C6unt = 1,
mask = curr'" OxOJOO:
dlsplaYYTompl("Connect cable. Ready to receive.
pos_cursor(1,0) j

)
NEXT_STATE: receive_data

STATE: receive_data
CONDITIONS: {aux_change)
ACTIONS:
{

71 AUX Port I/O

") :

displayJ("Transmlsslon %d received: %04x Press spacebar to send ACK.
coun', curr);

)
NEXT_STATE: send_ack
CONDITIONS: {cGun' > 10)
ACTIONS:
{
displaYJTompt("Elld of test.

)
STATE: send_ack

CONDITIONS: KEYBOARD·
ACTIONS:
{

)

;f(cGun' <" 10)
{
write_Qux(mask);
counttti
mask = (mask'" Ox0100);

)

NEXT_STATE: receive_data

"):

71-9

\11",

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-9S1-10B

71-10

Synopsis

NOTE: If you designate more than one lead as control, you
might need to compare prey _aux_value with curr _aux_value to
determine if the lead you are interested in is the one that
changed, Here, since there is only one input-control lead on
each side, the event aux_change is sufficient to signal and to
acknowledge transmission. The value of prev_aux_value does not
have to be checked.

extern void se'_Qux_,eg(reg_value_word);
unsigned short reg_value_word;

Description

The CIa chip may be reconfigured by the user via the set_auxJeg routine.

NOTE: At present, the initial configuration of the Master
Interrupt Control Register is (Ox0082). The initial configuration
of the Master Configuration Control Register is (OxOI94).

The only input is a sixteen-bit variable. The high byte is the CIa register number;
the low byte is the value to store in the register number. For register numbers and
their values, consult Appendix B in Zilog's Z8036 Z-CIO/Z8536 CIa Counter/Timer
and Parallel I/O Unit Technical Manual, March 1982.

Example

The Master Configuration Control Register allows for selective enabling/disabling of
the CIa ports. Port A's input/output is reflected in the least-significant byte of
reg_value_word. Port B's input/output is reflected in the most-significant byte of
reg_value_word.

NOTE: Port C of the CIa chip is used internally and Is not
available to the user of the INTERVIEW.

JUL 'SO

I

JUL'SO

71 AUX Port 110

Suppose you want to disable port B input, output, and interrupts (ports A and C
enabled) in one state, and in another state restore the original configuration (ports A,
B, and C enabled):

LAYER: 1
STATE: reconfigure_chip

CONDITIONS: ENTER_STATE
ACTIONS:
{
set_QuxJeg(OxOJ 14);

}
STATE: restore_orlglnal-,conflg

CONDITIONS: ENTER_STATE
ACTIONS:
{
sel_auxJeg(OxO/94) ;

}

71-11

INTERVIEW 7000 Series Advanced ProgrammIng: ATLC-107-951-10B

71-12 JUL '90

72 Other LIbrary Tools

72 Other Library Tools

The C structures, variables, and routines-in this section provide additional programming tools
not specific to any particular protocol. Most of these tools apprm<imate layer-independent
conditions or actions. Refer to Section 30 for more detailed explanations of the purposes of
specific conditions and actions. Sometimes the name of the variable or routine is sufficient
for identifying its related spreadsheet token. When this is not the case, the information is
provided below.

72.1 Structures

JUL '90

Use the structures tm, ernt_tm, and prey_tm listed in Table 72-1 to monitor the
current and previous date and time. Each minute the values In ernt_tm are copied
to prey_tm. Then ernt_tm is updated. These structures are used to produce the
dateftime displays at the top of Run-mode screens and the DatelTime Setup screen.

The variables jlaLstruet.prey, jla8_struet.eurrent, and jla8_struel.old (in the
jla8_struet structure) are used each time a flag is incremented, decremented, or set
to a particular value. The current, previous, and old values these variables represent
work the same way as their counterparts in the counter structure, discussed fully in
Section 65.1 (A).

NOTE: The purpose of flags is to make it easy for the user to
isolate selected bits in a variable. The translator does most of the
work of flags by taking. the user's flag masks and coding them in
C. Flags constructed emirely in C bypass the translator and
require the programmer to create the flag-mask code normally
generated by the translator.

Before using the timeout routines inciuded in this section, declare an instance of the
timeout structure shown in Table 72-1. Refer to the timeoutJestart_aetion and
timeoutjtop _action routines for examples of how to use this structure.

The keyboard structure stores the value of the most recent ASCII key used. The
structure variable keyboard. yalue is updated only by the fast-event variable
keyboard_new_key.

72-1

I

INTERVIEW 7000 Series Advanced Programming: ATLC-I07-9S1 108

Type Variable

Structure Name: keyboard

ohar value

Structure Name: tm

Int tm_seo

Int trn_mln

Int tm_hour
Int tm_mday

Int tm_mon
Int tm_year

Int tm_wday

Int tmsday

Int tmJsdst

Structure Name: crnt_tm

Structure Name: prev_tm

Structure Name: fla9_struct

unsigned short prey

unsigned short current

unsigned short old

72-2

Table 72·1
Structure Fields-Other L.lbrary Tools

Value (hex/decimal) Meaning

0-3bI0-59

0-3bI0-59

0-/710-23

/-/11/-3/

O-bIO-11

0-6

0-/6dI0-365

Declared as type extern slruct. Declared
automatically If program KEYBOARD condition Is
used. Updated by keyboard_new_keyevent
variable, Reference the structure variable 8S
follows: keyboard. value.

ASCII value of key lust executed.

Structure of time of day. Declared as type
extern struct. Reference a structure variable as
follows: tm.em_sec.

Seconds after the minute. Not currently
updated; always set to -1.

Minutes after the hour.

Hours since midnight.

Day of month.

Months since January.

Years since 1900.

Days slnca Sunday. Not currently updated:
always set to -1 .

Days since January 1. Not ourrently updated;
always set to -1.

. Daylight Savings Time flag. Not currently
updated; always set to -1.

Structure of current time of day. Updated every
minute. Declared as type eXlern struol tm.

Structure of previous time of day ,one minute
ago. Declared as type extern slrucl tm.

Structure ot a flag. Declared as type struct.
Declared automatically If a program flag Is used.
Program flags assigned to structure as follows:
struct flag struct flag name. Reference a
structure variable as follows: flag_name. current.

When converting a flag action to C I the translator
compares prey with current to determine
whether flag has changed. Then prev Is updated
to current and flag_name_change Is signaled.

This value of flag Is acted on directly by program
actions.

When converting a flag condition to C, the
translator compares old with current to
determine whether true condition Is new
(transltlonall. After program logic has examined
flag, old Is updated to prevo

JUL. 'SO

(

72 Othar LIbrary Too/s

Table 72-1 (continued)

Type Variable Value (hex/decimal) Meaning

Structure Name; timeout Structure of a timeout. Declared as type scruct.
Declared automatically" a program timeout Is
used. Program tlmeouts assigned to structure
as follows: struct timeout name. Reference a
structure variable as follows:

unsigned long eventJd

unsigned short

timeout_name. event _Id.

Four bytes of a 6-byte timeout. containIng the
segment number and offset.
Tlmeout_name_stop routines set this avent Id to
zero.

Two bytes of a 6-byte timeout which uniquely
Identify (uldl the timeout. Do not try to assign a
value to this variable.

72.2 Variables

JUL '90

All of the variables in Table 72-2 are valid in either emulate or monitor mode.

(A) Monitoring Events
The event variables in Table 72-2 are fevar _Iime_of_day, f/ag_name_change,
limeoul_ name _expired, signa/_name, keyboard_new -,key, and
keyboard_new_any_key.

Event variable fevar _Iime_of_day comes true once a minute. An example of
how to use this variable is provided in Section 57.1. This event variable is part
of the spreadsheet TIME condition.

The event variable keyboard_new_key is used by the translator in a spreadsheet
KEYBOARD condition. It comes true when any ASCII key is pressed. The event
keyboard_new_any_key, on the other hand, comes true when an ASCII or other
keyboard key is pressed. The only keys which will not trigger this event are 8,
~, and~.

(8) . Status Variables
Status variables are those in Table 72-2 that do not include event in the Type
column. Their associated event variables guarantee that they are updated and
tested.

Time and date variables are updated by fevar _Iime_of_day. Variables
crnl_lime_oLday, prev_lime_of_day, ernl_dale_of_day, and prev_dale_of_day
are older versions of variables that belong to the ern I_1m and prev_lm structures.
The C translator uses these older versions when it construct time-of-day
conditions (e.g., CONDITIONS: TIME 1614).

The status variable keyboard_any_key is updated by the fast-event variable
keyboard_new _any_key.

72-3

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

Type

extern fast_event

extsrn event

extern event

extern event

extern volatile unsigned short

extern volatile unsigned short

extern yolatlle canst unsigned char

eKtern volatile const unsigned char

extern fast_event

72-4

Table 72·2
Other Library Variables

Variable

flag_name _change

timeout_nama_expired

signal_name

crnt_tlms_of_day

prev_tlms_of_day

crnt_ date _of_day

prey _data _ 0'-day

keyboard_new _key

Value (hex/decimal) Meaning

True once per minute. Line
Setup configured for emulate or
monitor mode.

This event must be signaled by
the program Itsslf; It Is not
"8xternal R to the program. The
translator signals this event as
part of the FLAG Increment I
decrement. or set action. Line
Setup configured for emulate or
monitor mode.

ThiS event must be signaled by
the program Itself. It Is not
"external~ to the C program.
The translator signals this event
as part of the
timeout restart action routine.
line Setup configured for
emulate or monitor mode.

True when the named signal Is
the argument In a signal routine.
Spreadsheet-token equivalent Is
ON SIGNAL name. Line Setup
configured for emulate or
monitor mode.

0-937/0-2359 Current time Is stored In this
variable. Updated as soon as
time changes. line Setup
configured for emulate or
monitor mode.

0-937/0-2359 Current time Is stored In this
variable. Updated when time
changes I but only after logic
has had a chance to compare
current and previous time. line
Setup configured for emulate or
monitor mode.

1-1/11-31 current data Is stored In this
variable. Updated as soon as
date changes. line Setup
configured for emulate or
monitor mode.

1-1111-31 Current date Is stored In this
variable. Updated when date
changes I but only after logic
has had a chance to compare
current and previous date. Line
Setup configured for emulate or
monitor mode.

True when any ASCII key Is
pressed. Line Setup configured
for emulate or monitor mode.

JUL '90

(

(

Type

extern fast_event

extern volatile unsigned short

JUL '90

72 Other Library Too/s

Table 72-2 (continued)

Variable Value (hex/decimal) Meaning

0-71/0-127
80-1711

128-383

180/384

181/385

1821386

183/387

184/388

185/389

186/390

187/391

180/394

18b/395

180/396

18d/397

18e/398

18f/399

190/400

191/401

192/402

193/403

194/404

195/405

196/406

197/407

198/408

199/409

198/410

19b/411

190/412

19d/413

1ge/414

10d/269

180/416

181/417

(k.eyboard_any_l<ey variable continued on next page)

True when any key Is pressed.
The only exoept1on. are ~,
IE!D. and ~. L1ne Setup
configured for emulate or
monitor mode.
1denUf1e. 1a.t key or
key-combination exeouted. LIne
Setup configured for emulate or
monitor mode.

ASe11 key.

not used

Field entry keys:
§l
~
@!J
8
rnru
B
§!I-I I
~-I,,,,,I

B
§!I-B
§!I-8
~-8
§!I-@!J
~-@!J
§!I-I wi
~-~
~-B
§!I-~

~-~
§!I-§l
~-§l

lm
1m
rrn
!Hl
I§]
!lli
1m
@

~
~-E3
§!I-~

72-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

Type

72-6

Table 72·2 (continued)

Variable Value (hex/decimal) Meaning

(keyboard_any _key continued)
132/418

133/419

134/420

135/421

136/422

137/423

138/424

139/425

133/426

1ab/427

100/428

13d/429

Edlllng Keypad Keys (cont):

1b0/432

1b1/433

1b2/434

1b3/435

1b4/436

1b5/437

1b7/439

1b8/440

1b3/442

1bb/443
1bo/444
1bd/445
1bo/446

1bfl447
100/448

101/449

102/450

103/451

104/452

105/453

106/454

107/455

108/456

109/457

100/458

10b/459
100/460

10d/461
100/462

~
~
m'3
~
§J·wn
§J.~

§J-m'3
§J-~
~-wrl

~-=
~-m'3
~-~
Utility Keys:

8
~
§I
§]
E§I
8
1 1
§]
o
§J-D
~-D
§J-8
~-8
§J-~

~-~
§J-§1
~-§1
§J-§]
~-§]
§J-~

~-~
§J-8
~-8
§J-EJ
~-EJ
§J-I"dl
~_I"dl
§J-§]
~-§]

(keyboard_Bny_key variable continued on next page)

JUL 'so

Type

JUL '90

72 Other LIbrary Tools

Table 72-2 (continued)

Variable Value (hex/decimal) Meaning

(keyboard_anyjey conrlnued)
ldO/464

ld1/465

ld2l466

ld3/467

ld4/466

ld5/469

ld6/470

ld7l471

ld6/472

ld9/473

lda/474

ldb/475

ldo/476

ldd/477

ld./476

1.0/460

1.1/461

1.2/462

1.3/463

1.4/464

1.5/465

1.6/466

1.7/467

1.8/466

1.9/489

l.a/490

l.b/491

1.0/492

l.d/493

1 •• /494

1.11495

110/496

1111497

112/498

113/499

114/500

Pure Cursor Keys (cont):

I!J
8-1!J
~-I!J
8
§I-13
~-13

8
§I-8
~-~
13
§I-13
~-13
m
§I-m
~-m

Cursor Keypad Keys:

em
8
§I-8
§)
§I-§)

~
(!l[J
[WJ

~
~-8
~-§)
§I-~
~-[Mk)

8-~
~-~
§I-(!l[J
~-!!Nl
§I-~

~-~
§I-em
~-em

(keyboard_any_key variable continued on next page)

72-7

INTERVIEW 7000 Series Advanced Programming: ATLC-l07 951-108

72-8

Type

Table 72·2 (continued)

Variable Value (hex/decimal) Meaning

(keyboard_any_key continued)
liS/SOl
116/502
117/503
118/504
119/505
lIa/506
lIb/507
110/508
188/392
189/393
lId/509

Other Keys:
~-m
~-m
~-@]

~-m
~-IID
~-IID
~-m
~-(!J
~-[!J
~-(!J
~-E1

72.3 Routines

tlmeoutJestart_ action

Synopsis

extern void tlmeouIJesta"_QClion (tlmeoul_nameytr. value, function):
SlrUcl • tlmeoul_nameylr

(
unsigned long evenl_id,'
unsigned short ellent_id_uid:

):
unsigned short value;
void function ();

Description

This routine starts a named timeout timer running down, starting at a specified value.
When the timer reaches zero, a named function is called. The
timeoutJestart_action routine, preceded by a call to the timeout_stop_action routine,
is the equivalent of the softkey TIMEOUT name RESTART action on the Protocol
Spreadsheet.

The first parameter is a pointer to the timeout structure. See Table 72-1 for further
explanation of the timeout structure.

The second parameter is the starting value of the timeout timer in milliseconds.

JUL 'SO

(

JUL '90

72 Other Library Tools

The third parameter is the name of a routine to be called when the timeout expires.
The routine may include the following statement: timeout_name.event_id = 0;.
Timeout-stop actions set this event ID to zero. This action is not strictly necessary
here, since the timeout has already expired; but the action may make the processing
of subsequent stop actions slightly more efficient.

The body of the routine to be called may also include this statement:
signal(timeoul_name_expired);. In a softkey-entered TIMEOUT RESTART action, both
statements are included in a routine called timeout_name_isp.

Example

NOTE: The routine named in the third parameter is an interrupt
service process (isp). A long definition for this routine makes the
processing of timeoutJestart_action unpredictable.

When a frame is sent, start a timeout timer at 2 seconds. When it expires, sound
the alarm. If another frame is sent before the 2 seconds expires, stop the current
timer and restart the timeout.

slrucl timeout
{
unsigned tong event_idj
unsigned short elJent_id_uid;

}:
slrucl timeout timeout_example,
extern e!Jerl' timeout_example_expired,
void tlmeout_,xampl,_isp ()

{

}
}

timeou'_,xample,event_id = 0;
signal (tim eout _example_expired) j

LAYER: 2
STATE: example_ol_tlmeout

CONDITIONS: FRAME_SENT
ACTIONS:
{
timeout _5 top_action (Jetimeout _example);
timeout -,utaT' _action (&timeout _example. 2000 I timeout_example _Isp) j

}
CONDITIONS:
{
timeout_example_expired

}
ACTIONS: ALARM

Here is a version of the program that accomplishes the same result without an action
to signal the timeout event:

72-9

INTERVIEW 7000 Series Advanced Programming: ATLC-l07-951-10B

72-10

}

sl,UC' timeout
{
unsigned long even,_id;
unsigned short event id uld;

}, - -
struc' limeout timeout_example:
ex'ern void sound_olarm();

LAYER: 2
ST ATE: example _ oC timeout

CONDITIONS: FRAME_SENT
ACTIONS:
{
timeou,_s'op_octll?n (&tlmeou,_example) ..
timeout_restart_action (&timeou,_,xample. 2000. sound_olarm) ..

}

timeout stop action - -
Synopsis

exlern void tlmeou'_Slop_Qct;on(,imeou,_namey'r);
slru" • timeou,_nameytr

{
unsigned long even'_id;
unsigned short evenl_ld_uidj

},

Description

This routine stops a named timeout timer, preventing it from expiring, The softkey
equivalent of this routine is the TIMEOUT name STOP action on the Protocol
Spreadsheet. timeout_stop_action also precedes the call to the timeoUiJestart_action
in the spreadsheet TIMEOUT name REST ART action.

The only parameter is a pointer to the timeout structure. See Table 72-1 for further
explanation of the timeout structure.

Example

In this example, if the user presses the lID key, the timeout timer will not expire and
the alarm will not sound (until another frame is sent and the timeout is restarted).

}

struc' ,imeout

unsigned long event_id;
unsigned shorl event_id_uid;

},
s'ruel ,imeou' timeout_example;
exIern lJoid sound_alarm();

JUL '90

I.

I.

JUL '90

72 Other Library Tools

LAYER: 2
STATE: stop_a_tlmaout

CONDITIONS: FRAME_SENT
ACTIONS:

Index

{
timeout _stop_action (&limeout _example);
tlmeout_restaf'_Dctlon (&timeou,_example, 2000, sound_Qlarm);

}
CONDITIONS: KEYBOARD ·S."
ACTIONS:
{

timeout_stop _Delion (&.tlmeou'_exampJe);
}

Synopsis

exlern char· Index(st,'ng, character);
char· string;
char character;

Description

This routine searches for an instance of a character starting at the beginning of a
specified list. The rouline is used by the C translator to convert CONDITIONS:

KEYBOARD softkey entries into C. This routine must be declared.

The first parameter is a list of characters to be searched.

The second parameter is the character to be searched for in the list.

Returns

This routine returns a pointer to the first instance of the specified character, or zero
if it does not occur.

Example

In the example below, the following lest is established: when a key is pressed on the
keyboard, search for a match to the keyboard character in the string" abc". If it is
found, sound the alarm.

}

extern char· index();
extern fast_e~ent keyboard_new _key;
exlern slruc' keyboard
{
char value:

};
extern struc' keyboard keyboard;

72-11

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-10B

72-12

LAYER: 1
STATE: Index_example

CONDITIONS:
{
(keyboard_new _key && Index(ff abc >I, keyboard, value))

}
ACTIONS: ALARM

Let's suppose that the user presses the space bar. In this case, the returned pointer
will be pointing to the blank preceding the "a." If rindex had been used, the
returned pointer would be pointing to the blank following the "c." As long as any
non-null character is returned, the condition is true.

rlndex

Synopsis

extern char· rindu(string, character):
char· string;
char character:

Descriptjon

This routine searches for an instance of a character starting at the end of a specified
list. This routine must be declared.

See index.

Returns

See index.

Example

See index.

Synopsis

extern void loadYfogram(jilenomeJ,r)
const char· jilenameyl,:

Description

The loadyrogram routines allows you to link programs together while the unit is in
Run mode. When a call to loadyrogram is encountered in a spreadsheet program,
the current program is exited. The program named as the argument in the routine is

JUL '90

(

JUL '90

72 Other Library Tools

loaded and run. When you return to Program mode, the program displayed on the
Protocol Spreadsheet will be the one just loaded. If loadyrogram fails, you are
returned to the main menu screen in Program mode.

The only input is the absolute pathname, prefixed by the device name, of the file to
be loaded. Valid device names are uHRD." "PD1," and IIPD2."

Example

In the example below, at the successful conclusion of the last of a series of tests in
module 18, a program for module 19 will be loaded and run.

LAYER: 3
STATE: test_26

lock

CONDITIONS: ENTER_STATE
ACTIONS: SEND DIAG
CONDITIONS: RCV CLEAR_CONF
ACTIONS: TRACE "Test_26 passed"
{
loadYTo&ram (" FDllusrlmodule_19");

}

Synopsis

#include <stdlo.h>
extern void lock(lock_'IIariableJ'r);
int • lock_variableylr;

Description

The lock routine implements a lock using the integer variable pointed to by the
routine parameter. If the lock variable is currently locked, the task goes to sleep.
When an unlock on the same variable occurs (within an independent task), the task
invoking the lock function will attempt to claim the lock. If successful, the task is
executed; otherwise, it goes back to sleep until the next unlock.

NOTE: If locking is used at any place in the program, all related
or possibly concurrent routines must also use the locking
functions.

NOTE: The lock variable should always be defined as a global
integer, never as local to a function. The lock variable should
never be altered by the user program or deadlock can occur.
Deadlock also results if the lock is invoked twice within the same
task without an intervening unlock.

72-13

INTERVIEW 7000 SerIes Advanced Programming: ATLC-l07-9S1-10B

72-14

The only parameter is a pointer to the lock variable.

Example

Two tasks concurrently write to their own file streams. (The file streams are local to
the routine writeJox. making them independent of each other even though they have
the same name.) However. during the fe/ose operation (which automatically calls
fflush). both tasks need to write to the same file. The locking routines ensure that
the writes to the file occur sequentially. not concurrently.

}

Hlnclude <stdio.h>
consl char dala () = "((FOX))\n";

in' key:
void wrUeJox()
{

}

FILE· stream "'pIT:

sizt_' nj

lock (&key);
if((streamytr = fopen("FD2IusrlbuffOl". "a")) == 0)

displaYYTompt("Cannot open file.
else

display yrompt (" File opened.
n = fwrite(dato. 1, slzeo/(da/a)-I, stream...,ptr):
pos_cursor(J. 0);
if(n 1= (sizeof(dala)-i))

display!(IIWrile error.
else

display/("Wrile completed.
Ij(jclose(streamylr) != 0)

disploy!(flEither file ;s a/ready closed, or close' cannot be execuled.
else

dlsplayf("Flle closed.
unlock (&key);

LAYER: 1
TEST: a

STATE: write and Signal
CONDITIONS: RECEIVE STRING "THE QUICK BROWN FOX"
ACTIONS: SIGNAL xyz
{
Wrile JoxO;

}
TEST: b

STATE: write_only
CONDITIONS: ON_SIGNAL xyz
ACTIONS:
{
wrlteJox();

}

");

") ;

\n"):

\n") :

");

..) ;

JUL '90

(

JUL '90

unlock

Synopsis

#Include <Sld/o.h>
extern I}old unlock(lock_l1oriableJ'r);
int • lock_\}Qriable...p'rj

Description

72 Other Llbrery Tools

The unlock routine implements the inverse of the lock routine using the same integer
variable. Sleeping tasks will be. woken up to retry their attempt to claim the lock.
One will succeed, and the rest will go back to sleep. See also lock routine.

The only parameter is a pointer to the lock variable.

Example

See lock routine.

signal

SynOJlsis

extern void signal(slgnal_nome);

Descrjption

This routine conveys instructions to other tests and layers where conditions are
monitoring the signal by name. The softkey equivalent of this routine is the SIGNAL

action on the Protocol Spreadsheet.

The only parameter is a name descriptive of the event being signaled.

Example

LAYER: 2
STATE: slgnaUoutine

CONDITIONS: RCV FRMR
ACTIONS:
{
signal (signal_link_down);

}
CONDITIONS: ON_SIGNAL link_down
ACTIONS: ALARM

Here is a related example, this time with the signal detection also given in C. Note
that a signal automatically generates an "event" that can be detected alone in a
wait/or clause.

72-15

INTERVIEW 7000 Series Advanced Programming: ATLC 107 951 108

72-16

extern event link down;
) -
LAYER: 2

STATE: signal_event
CONDITIONS: RCV FRMR
ACTIONS:
(
signal (link_down);

)
CONDITIONS:
(
link_down

)
ACTIONS: ALARM

Synopsis

extern void sound_alarm();

Descriptjon

This routine will sound the alarm. The softkey equivalent of this routine is the
ALARM action on the Protocol Spreadsheet.

Example

When a bad Bee is detected on the DTE side of the link, sound the alarm.

LAYER: 1
STATE: example

CONDITIONS: DTE BAD_BCC
ACTIONS:
(
sound_alarm ();

)

startJcrd _play

Synopsis

extern void sta,,-,crdylay();

Description

Depending on the Line Setup configuration, this routine activates data recording or
playback. If the Line Setup menu shows Mode: i@i\1§<9IeW, Source: '!:lIML the

routine controls playback. In all other cases, it initiates recording.

JUL '90

JUL '90

72 Other Library Tools

Unless your recording source is RAM, make a call (0 Iclose in programs con(aining
disk 1/0 routines (Section 68) before you start to record (or resume playback), If
you don't, the file will be closed automatically as soon as recording (or playback)
begins, even if processes on the file have not been completed. (Using the §3 key to
activate recording or resume playback will have the same effect.)

Example

LAYER: 1
sT ATE: example

CONDITIONS: KEYBOARD • "
ACTIONS:
.{
stort_,crdylay();

}

suspend rcrd play - -
Synopsjs

extern lJold suspendJcrdylay():

Description

Depending on the Line Setup configuration, this routine suspends data recording or
playback. If the Line Setup menu shows Mode:i,M§Nlt¢ij%L Source: :J:MK, the
routine controls playback. In all other cases, it suspends recording. Once recording
or playback is suspended, resume it with a call to start-,crdylay.

Unless your recording source is RAM, do not call disk I/O routines (Section 68) until
you suspend recording (or playback). If you do, the disk I/O operation will fail.

NOTE: Although playback is immediately suspended when
suspend -,crd ylay is executed, the screen display continues until
the character buffer's contents are fully displayed. (For
bit-image data, the FIFO must empty.) At slower playback
speeds, you may notice a slight delay before the display actually
freezes.

Example

LAYER: 2
STATE: example

CONDITIONS: KEYBOARD"
ACTIONS:
{
suspend_rcrdylay() ;

)

72-17

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

72-18

Synopsis

extern void send_key(numbe,_o!_keys. keysJtr};
unsigned char number _of_keys;
unsigned short· keysylr;

Description

This routine sends a specific keystroke (or sequence· DC keys) during Run mode, as
though the operator pressed the key. It also may be used to change the Run-mode
display.

The first parameter specifies the number of keys to be sent,

The second parameter is a pointer to an array of shorlS. This array lists the keys to
be sent. To send keyboard keys, use the values listed in Table 72-2· for the
keyboard_any_key variable. To change the Run-mode display, send two keys. The
first "key" always has a value oC OxCC75. The second "key" identifies the desired (
display-screen. Use the values listed in Table 64-1 for the crnl_displaYjcreen
variable.

Example

For this example, assume you are playing back data Crom a disk and that the initial
Run-mode screen is the dual-line data display. ACter a five-second pause, playback
is slowed as though you pressed 0. As soon as a bad BCC is detected on the DTE
side, the data display will change to the Layer 2 Protocol Trace screen.

{

)

unsigned shorl keys (J = {Oxff75, OX42);
unsigned short slow_down f J = {Ox J de};

LAYER: 2
STATE: change_displays

CONDITIONS: ENTER_STATE
ACTIONS: TIMEOUT pause RESTART 5
CONDITIONS: TIMEOUT pause
{
send_key(l, slow _down);

)
CONDITIONS: DTE BDBCC
ACTIONS:
{
send_key(2, keys);

)

JUL '90

JUL '90

72 Other Library Tools

surrender_cpu

Synopsis

extern void surrender _ cpu();

pescription

This routine surrenders the CPU, placing the calling task onto the end of the ready
queue. If no other tasks are currently ready to run, this routine returns.

Use surrender _cpu only when executing C code which staned as pan of an
ENTER_STATE condition. It is useful in programs containing a task that only performs
computations (Le., no I/O operations like disk accesses). Make a call to
surrender _cpu to give other tasks on the same CPU a chance to run.

Example

In the following example, one task on a CPU waits on a rcvdJrame event variable in
order to oount frame types. For each of the different frame types, another task
displays the value of the counter. Without a call to surrender _cpu, the display task
would monopolize the CPU, preventing the frame-counting task f~om running.

{

}

extern event rcvdJramej
extern volatile const unsigned char rcvdJram,_type;
unsigned short jramt_,ypt_count{256};
void displayJrame_'yp,_count()
(
pos_cursor(7, 12);
display/(" %3u", jram,_'yp,_count/Oj;
pos_cursor(7, 22);
dlsplay!(" %3u", frame _,ype_coun'llJ;

, •... Conlinue 10 position and display count fOl each frame type .,

LAYER: 2
TEST: dlsplay_frame_types

STATE: only
CONDITIONS: ENTER_STATE
ACTIONS:
(
pos_cursor(3,23);
displays(" FRAME COUNTS BY TYPE");
pos_cursor(5, 1 J);
displays ("/NFO RR RNR REJ ...);
whlle(/)

(

}
}

display Jrame _type_count ();
surrender _cpu();

72-19

INTERVIEW 7000 Series Advanced Programming: ATLC-107 951 108

72-20

TEST: count_trame_types
STATE: only

CONDITIONS:
{
rcvdJrame

}
ACTIONS:
{
tt!rame _type_count I rcvd Jrame _type J;

}

JUL '90

