68_Disk 1O

68 Disk I/0

The disk 1/0O routines explained in this section allow disk files to be read from and written to
during Run mode. *Streams” describes how most of the routines operate on a data stream
rather than the actual file. Under “Routines,” all the disk I/O routines are explained. These
routines perform read and write functions as well as other file maintenance tasks in Run
mode, such as creating directories, renaming files, and deleting files.

68.1

JUL 'S0

Streams

Most disk I/O routines are not executed on the actual disk file, but on a stream
which includes a copy of the file’s data. Opening a disk file for reading or writing
associates a stream with the file. A stream may be input or output. Input streams
are read-only. Output streams are write-only. In either case, the stream remains
associated with a disk file until the file is closed.

You may have more than one stream associated with a given file. (A maximum of
ten streams may be open at one time.) For example, to read from and write to an
existing file, you must open the file twice, once to create an input stream and once
to create an output stream. '

(A) Stream Components

A stream contains everything needed to perform disk 1/0 functions on a file.

1. Buffer. A buffer containing a copy of the data in a disk file is part of the
stream. When a disk file is opened for reading, sectors of the disk
containing the file are copied to this buffer.

Sometimes a file's size may exceed the maximum size (512 bytes) of the
buffer. In this instance, as much data from the file as will fit in the buffer is
copied. As each character is read from the input stream, it is removed.
(The ungetc routine may temporarily return a removed character to an input
stream.) Each call to fread, fgetc, or fgeis further empties the buffer, while
leaving the contents of the disk file unchanged. When the buffer is empty,
the next sector (or sectors) of the disk file is (are) automatically copied into
the buffer.

Similarly, when a file is opened for writing, the empty buffer is filled as
fwrite or other output routines are invoked. Characters written to the output
stream are not transferred to the disk file until there is a call to fflush,
Fflush is automatic in fclose or when the stream buffer is full.

68-1

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

68-2

2.

File-position indicator. The file-position indicator keeps track of
progression through the disk file. For files opened in read mode, the
indicator is initially located at the first character (character zero) in the file.
As characters are read from the input stream, the indicator advances through
the file.

For existing files opened in append mode, the indicator is positioned after
the last character in the file. For newly created files or files opened in
overwrite mode, it is located at the beginning of the file. Every time an
output routine is executed, the file-position indicator is advanced by the
number of characters successfully written to the stream.

Buffer pointer. The stream also contains a pointer into the associated buffer
of a file. In input streams, it points to the next character to be read. In
output streams, it points to the next empty byte.

EOF indicator. If the end-of-file (EOF) indicator is set in a input stream,
it means that a read operation encountered the end of the file. The EQF
indicator is cleared via calls to fopen, fseek, rewind, clearerr, or ungelc.

Error indicator. In input streams, this indicator gets set when an fread,
Jgetc, or fgets routine does not successfully execute. Attempting to execute
these input routines {or ungefc) on an output stream sets the error indicator.
In output streams, the error indicator gets set when the fflush, fwrite, fputc,
Jputs, or fprintf routine does not successfully execute, or when output
routines try to execute on an input stream. A call to fopen, clearerr, or
Jseek, clears the error indicator in either input or output streams. A rewind
operation on an input stream also clears the indicator.

(B) Stream Pointer

The fopen routine returns a pointer to the stream, Disk I/O routines which
perform operations on a stream require the stream pointer as an argument. It
has been named stream_ptr in the routines discussed below.

(C) Locking Streams

Each file stream is locked internally during operations on it. If the user program

is executing different conditions on multiple processors and both actions require

writing to the same file stream, internally the stdio library will allow the first task

that requests to write to execute until completion and the second task will be
locked out. All processes that are locked out are temporarily put to sleep and
removed from the tasking queues for that CPU. When the first process
completes its operations on the stream, the locked-out processes are woken up
and may try to claim the lock. Deadlock or deadly embrace situations can
never arise internally to the stdio library.

JuL "80

68 Disk 11O

If two or more file streams are associated with a single file, processes on each
stream may try to operate on the file concurrently. Internal locking does not
apply in this situation, so use the locking routines.

68.2 Routines

Disk 1/0 routines fall into four categories. The first category includes routines valid
for both input and output streams, including the two locking routines (not exclusive
to disk I/0). The remaining groups are routines valid for input streams only, routines
applicable to output streams only, and routines which handle other file maintenance
functions.

The routines and their descriptions ¢losely conform to the ANSI specification for the
Propramming Language C, as defined in the draft document published July 9, 1986.
Discrepancies with the ANSI standard are noted. The document number is
X3711-86-098. Refer to pages 107-129,

Use the #include <stdio.h> preprocessor directive with all disk I/O routines. The
stdio.k file contains type definitions and function prototypes, making declarations of
the routines unnecessary.

When a filename is required as an argument, give the absolute pathname of the file,
prefixed by the device name. Valid device names are FD1, FD2, or HRD. See
Section 14.2(B) for a discussion of absolute pathnames. The disk filename is
required as an argument for the fopen routine, which opens a file for reading or
writing. From that point on, disk I/O routines relating to that file use the stream
pointer, explained above, as input. File maintenance routines, such as rename or
remove, use the filename as input.

NOTE: A single program can perform disk I/O functions as well
as data playback or recording. Disk I/O, however, must be
suspended while disk recording (or playback) proceeds, and vice
versa. RAM recording, on the other hand, may occur
simultaneously with disk 1/0 operations. Refer to the
star(_rerd_play and suspend_rcrd_play routines in Section 72 for
more information on the interaction between disk I/0 and
recording/playback.

(A) Input/Output-Stream Routlnes

Several disk I/0 routines may be executed on either input or output streams.
fopen opens an existing disk file for reading or writing, or creates a new file. In
each case, a stream is associated with the file until there is a call to fclose.
fclose or a specific call to fflush delivers any output written to a stream to the
host environment where it will be written to the disk file.

NOTE: Always include a call to felose in your program to make
sure output is written to the file.

JUL 'S0 68-3

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-851-108

684

Test the end-of-file and error indicators with the feof and ferror routines,
respectively. These same indicators may be cleared via the clearerr routine.

The fseek and rewind routines manipulate the file—position indicator and erase
any memory of a character put into the stream via ungetc.

The lock and unlock routines prevent deadlock from occurring when processes
on multiple streams try to operate concurrently on a single file,

fopen

Synopsis

#include <sidio h>

extern FILE * fopen(filename_ptr, mode_pir);

const char * fllename_ptr;
const char * mode_pir;

Description

The fopen routine opens a file for access. Depending on the open mode, a file
can be opened for reading (via an input stream) or for writing (via an output
stream). For existing files, this routine also clears the end-of-file and error
indicators.

Inputs

The first parameter is a pointer to the file to be opened, represented as the
name of the file, placed inside double quotation marks. The filename must be
the absolute pathname, prefixed by the device name (HRD, FD1, or FD2).

The second parameter is a pointer to a string (represented as a character inside
double quotationn marks) which identifies the type of open to be performed. Of
the ANSI standard open modes, the following are supported:

r Open an existing file for reading only. The file-position indicator is
located at the start (character zero) of the file,

w Create a file, or open an existing file, for writing only. For an existing
file, truncate its length to zero and discard the contents,

a Create a file, or open an existing file, for writing only. For an existing
file, retain the contents and locate the file—position indicator at the
end of the file. Append néw data to the end of existing data, unless
a call to fseek or rewind has repositioned the file-position indicator.
In this instance, overwrite existing data. (This implementation is
different from the ANSI specification which appends new data to the
end of existing data regardless of any previous calls to fseek.}

JuL '80

88 Disk 11O

JUL '90

b Currently implemented the same as “r.” Use "“rb" for the fseek
routine.
wb Currently implemented the same as “w.” Use “wb” for the fseek
routine.
ab Currently implemented the same as “a.” Use “ab” for the fseek
routine.
Returns

This routine returns a pointer-to the stream, with a type definition FILE
(defined in the stdio.h file).

If the open fails (for example, the file does not exist), zero is returned.

Example

Open a file called “buff01" in the /fusr directory on a disk in floppy drive 2,
Store the pointer to the stream in siream_ptr. Indicate whether or not the open
is successful on the prompt line.

{

H#include <stdlo.b>
FILE * stream_ptr;

)
LAYER: 1
STATE: open_a_flle
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open file, "
CONDITIONS: KEYBOARD “00"
ACTIONS: ‘
{
if((stream_pir = fopen (“FD2tusrtbuffoI”, "r"}} == 0)
dispiay_prompt(*Cannot open file. "k
else
display_prompt(“File opened. ");

fclose
Synopsis

Rinclude <stdio. h>
extern imt felose(siream_pir);
FILE * stream_ptr;

Description

All opened files must be closed. If the disk file to be closed is an input file,
then any data remaining in the stream buffer is discarded. If the file is an
output file, any data written to the stream is written to the file. (In other words,
fclose automatically calls fffush.) The stream is freed from its association with
the disk file, and the disk file is closed.

68-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

868-5

Inputs

The only parameter is the stream pointer.

Returng

If the stream is successfully closed, zero is returned. If errors are detected, or if
the stream is already closed, a non-zero value is returned.

Example
Close the file that was opened in the fopen example. Indicate whether or not
the close is successful on the prompt line,

H#include <stdio. h>
FILE * stream_ptr;
}
LAYER: 1
STATE: open_and_close_a_{file
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open file,
CONDITIONS: KEYBOARD “0Q"
ACTIONS:

{
if{(stream_pir = fopen(“FD2tusribuff01”, “r’)} == 0)

display_prompt(“Cannot open file. ")
eise

display_prompt(“File opened. *);

}
CONDITIONS: KEYBOARD “cC”
ACTIONS:

{
if(fclose(stream_ptr) 1= 0)
display_prompt(“Either file is already closed, or close cannot be executed. ");

else
display_prompt(“File closed. ")

fflush
Sy' nopsis

#include <stdio. k>
extern int fflush{stream_pir)
FILE * stream_ptr;

Description
If stream_ptr points to an output stream, the fflush routine causes any unwritten
data for that stream to be delivered to the host environment where it will be

written to the file. If stream_ptr points to an input stream, the fflusk routine
undoes the effect of any preceding ungetc operation on the stream.

Inputs

The only parameter is the stream pointer.

JUL 90

68 Disk IO

JuL '80

Returns

If a write error occurs, non-zero is returned and the error indicator is set.

Example

Assume the X.25 personality package has been loaded in at Layer 2. Whenever
you receive a frame type “unknown,” write the actual value of the control byte
to an output file stream and to the disk file.

{
#include <stdio. h>

FILE * stream_pir;
extern volatile const unsigned char revd_frame_cntrl_byte_I;
}
LAYER: 2
STATE: write_then_Hlush
CONDITIONS: ENTER_STATE
ACTIONS:;
{
if{(stream_ptr = fopen(“FD2iusriframe_unkwn”, “a”}) == 0)
dispiay_prompt{*Cannot open file. wh
else
display_prompt(“File opened. h
pos_cursor(1,0);
)
CONDITIONS: RCV UNKNOWN
ACTIONS:

if(fprintf{stream_ptr, “%02x\n ", rcvd_frame_cntrl_byte_1) < 0)

displayf(“Error in printing te siream. \n");
else

displayf(“ Print to stream completed. \n");
if(fflush(stream_ptr) I= 0)

display_prompt(“Write error. "};
else

display_prompt(“Write to file completed. Press C (o close file. ");

}
CONDITIONS: KEYBOARD “cC”
ACTIONS:

{
iftfclose(stream_pir} 1= 0)
display_prompt(“Either file is already closed, or close cannot be executed. ”);

else
display_prompt("File closed. "1

feof
Synopsis

#include <sidio. h>

extern int feof(stream_ptr);
FILE * stream_ptr;

Description
This routine tests the end-of-file indicator for an associated stream.

68-7

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

€8-8

Inputs

The only parameter is the stream pointer.

ngurna

The feof routine returns a non-zero value if the end-of-file indicator is set for
the stream.

Example

Get a character from a file. If it is not at the end of the file, display it;
otherwise prompt with “End of file."”

{

#include <stdio. h>

FILE *

stream_pir;

int character;

}
LAYER:

1

STATE: test_for_eof

ferror

CONDITIONS: ENTER_STATE

ACTIONS: PROMPT “Press O to open flle.

CONDITIONS: KEYBOARD “00"

ACTIONS:

{

if{{stream_ptr = fopen(“FD2/usrtbuff01”, “rd”)) == 0)
display_prompi(“Cannot open file.

else

display_prompt(“File opened. Press G to get characier.

pos_cursor(1,0);
}
CONDITIONS: KEYBOARD “gG"
ACTIONS:
{
character = fgetc(stream_pir);
if(fecf (stream_ptr) 1= 0)
display_prompt(“End of file. Press C to close file.
else
displayf(* %c", character);
}
CONDITIONS: KEYBOARD “cC"
ACTIONS:

{
if(fetose(stream_pir) 1= 0}

’

"};
");

")

display_prompi(“Either file Is already closed, or close cannol be executed. N

else
display_prompi(“File closed.

Synapsis

#include

<stdio. h>

extern int ferror(stream_ptr);

FILE * stream_pir;

”);

JUL '80

68_Disk /O

JUL '90

Description

This routine tests the error indicator for a stream.

Inputs

The only parameter is the stream pointer.

Returns

The ferror routine returns a non-zero value if the error indicator is set for the
stream.

Example

Read a file called "buff0!" from the /usr directory on the disk in drive 2, If
the number of elements read is less than the number designated to be read,
determine whether an end-of-file was encountered or a read error occurred.

{
#include <stdio. h>
FILE * stream_ptr;
char data [6091];
size_t n;
}
LAYER: 1
STATE: read_a_file
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O 1o open file. "
CONDITIONS: KEYBOARD “o0O"
ACTIONS:
{
if{(stream_pir = fopen(“FD2iusribuffoi”, “r'}} == 0}
display_prompt(“Cannot open flle. ");
else
dispiay_prompt(“File opened. Press R to read the file. R
}
CONDITIONS: KEYBOARD “rR”
ACTIONS:
{
n = fread(data, I, 609!, stream_pir);
if(n 1= 6091}

if(ferror{stream_ptr) I= 0)

displtay_prompt(“ Read error. ");
else if(feof(stream_ptr) 1= 0)
display_prompt(“End-af-file encountered. ")
}
else
displayf(*“\n%.6091s", data);
dispiay_prompi(“Press C to close the file. ");
}
68-9

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

88-10

CONDITIONS: KEYBOARD “cC”

ACTIONS:
{
If(fclose{stream_pir) 1= 0}
display_prompt(“Either file Is already closed, or close cannot be executed, WH
else
display_prompt(“File closed. ")
}
clearerr
Synopsis

#include <stdio h>
extern void clearerr{stream_pir);
FILE * stream_pir;

Description

This routine clears the end-of-file and error indicators for a stream. When an
error occurs, no further operations are allowed until the error indicators are
explicitly cleared. (These indicators are also cleared by a fopen or rewind
operation.)

Inputs

The only parameter is the stream pointer,

If a write error occurs, clear the indicators.

{

#include <stdio. h>
FILE * stream_pir;
int character;

}
LAYER: 1
STATE: clear_Indicators
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open file.
CONDITIONS: KEYBOARD *00~

ACTIONS:
{
if((stream_ptr = fopen("FD2iusribuff01", “wb")) == 0}

display_prompi(“Cannot open file. ")
else

display_prompt(“File opened. Press P to write character. "
}

JUuL '90

68 Disk i1Q

CONDITIONS: KEYBOARD “pP*
ACTIONS:
{

character = fpute(*h’, stream_pir);
if(character == EOF)

{

dispiay_prompt(“Write error. All indicators will be cleared. "h
clearerr(stream_pir};

}
else
display_prompt(“Write completed. Press C to close the file. "):

CONDITIONS: KEYBOARD ™oC”
ACTIONS:

{
if{fclose(stream_ptr) 1= 0}

display_prompt(“Elther file Is aiready closed, or close ¢cannot be executed. i
else

display_prompt{"File closed. ")

fseek

Synopsi

#include <sidio.h>

extern Int fseek(stream_ptr, byles, reference);
FILE * stream _ptr;

long int byles;

int reference;

Description

This routine manipulates the file—position indicator, according to the ANSI
specification for binary files. Future read operations will be referenced from that
point. fseek clears the end-of-file indicator and resets the ungetc variable.

NOTE: The ANSI specification for text files is not currently
implemented. To ensure proper execttion of fseek if future
releases include the ANSI specification for text files, open files
for fseek as binary (“rb,” “wb,” or "ab”).

Inputs
The f[irst parameter is the stream pointer.

The second parameter is the number of characters the file-position indicator
should be moved from a specified position. A positive number advances the
file-position indicator forward in the file; a negative number moves it backward.

INTERVIEW 7000 Sarles Advanced Prograrmming: ATLC-107-951-108

68-12

The third parameter specifies the location of the file-position indicator.
SEEK_SET will move the file-position indicator from the beginning of the file;
SEEK_END will move the file-position indicator from the end-of-file; and
SEEK_CUR will move the file-position indicator from its current position.

BQ[QI’I’I&

This routine returns non-zero for an improper request; otherwise it returns zero.

Examplg

Open a file and move the file-position indicator 4 characters from the beginning
of the file. Each time the [§ key is pressed, move the indicator one character
backward from its current position. After 4 executions, the indicator will be
back at the beginning of the file.

{

#include <stdio. h>
FILE * stream_ptr;
int character;
}
LAYER: 1
STATE: move_Indlcater
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open file. "
CONDITIONS: KEYBOARD “o0"
ACTIONS:
{
If((stream_pir = fopen{“FD2lusrtbuff01", “rb"}) == 0}
display_prompi{“Canno!t open Jile, ")
else.
{
display_prompt(“File opened. ");
pos_cursor(0,14);
if(fseek (stream_ptr, 4, SEEX SET) I= 0)

displays("Improper fseek request. ! Y);
else
dispiays(“Fseek completed. Press § to seek new position. ");
}
}
CONDITIONS: KEYBOARD “sS”
ACTIONS:
{
if(fseek (stream_ptr, -1, SEEK_CUR) = 0}
display_prompt{“Improper fseek request, Press C 1o close file. ");
else
display_prompt(“Fseek completed. Press C to close file. ")
}

JUL. '90

68 Disk IO

JUL '90

CONDITIONS: KEYBOARD “cC"

ACTIONS:
{if(fclose(srream_pfr) 1= 0)
display_prompi(“Either file Is already closed, or close cannot be executed.)
medisplay _prompt(“Flle closed. ")
rewind
Synopsis

#include <sidio. h>
extern void rewind(stream_pir};
FILE * stream_ptr;

Descripti

This routine returns the file—position indicator to the beginning of the file (i.e., it
is equivalent to an fseek with the number of characters to move set as zero and
the specified position SEEK_SET). The rewind operation also clears the
end-of-file and error indicators and erases any memory of the character in a
previous ungetc operation.

Inputs

The only parameter is the stream pointer.

Example

In this example, the first call to fgetc following the rewind operation will read the
first character in the file.

{
#include <stdio. h>

FILE * stream_ptr;
int character;

)
LAYER: 1
STATE: move_|ndicator
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open file.
CONDITIONS:; KEYBOARD “00"

ACTIONS:
{
if{(stream_pir = fopen (“FD2jusr/buffo!”, “rb")) == 0)

display_prompt (" Canno! open file. ”);
else ’

display_prompt{“File opened. Press § to fseek. ");
}

68-13

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

CONDITIONS: KEYBOARD “85"

ACTIONS:
{
if(fseek(stream_ptr, 4, SEEK_SET} 1= 0)
disptay_prompt(“Improper fseek request. ")
else
display_prompt{“Fseek completed. Press spacebar to rewind. ")

CONDITIONS: KEYBOARD * *
ACTIONS:
{

rewind(stream_pir);
display_prompt(“Press G to get a character. W H

}

CONDITIONS: KEYBOARD “g@”
ACTIONS:

{

character =fgeic{stream_pir);
display_prompt(“Press C to close flle. ")

CONDITIONS: KEYBOARD “cC”
ACTIONS:

{
if(fclose(stream_ptr} 1= 0)

display_prompt(“Either file is already closed, or close canno! be executed. gk
else

display_prompi(“Flle closed, o H

lock

Synopsis

#include <stdio. h>
extern void lock{lock_variable_pir);
int * lock_varlable_ptr;

Description

The Jock routine implements a lock using the integer variable pointed to by the
routine parameter. If the lock variable is currently locked, the task goes to
sleep. When an unlock on the same variable occurs (within an independent
task), the task invoking the lock function will attempt to claim the lock. If

. successful, the task is executed; otherwise, it goes back to sleep until the next
unlock.

NOTE: If locking is used at any place in the program, all related
or possibly concurrent routines must also use the locking
functions.

68-14 JUL 'S80

68 Disk IfO

NOTE: The lock variable should always be defined as a global
integer, never as local to a function. The lock variable should
never be altered by the user program or deadlock can occur.
Deadlock aiso results if the lock is invoked twice within the same
task without an intervening unlock.

Inputs

The only parameter is a pointer to the lock variable.

Exampte

Two tasks concurrently write to their own file streams. The file streams are local
to the routine write_fox, making them independent of each other even though
both are referenced by stream_ptr. During the felose operation (which
automatically calls ffiush), however, both tasks need to write to the same file.
The locking routines ensure that the writes to the file occur sequentially, not
concurrently.

{
#include <sidio. k>
const char data {} = “UFOXD\n";
int key;
vold write_fox()
{
FILE * stream_pir;
size_t n;
lock{d&key);
if({stream_ptr = fopen(“FD2tusrtbuff01”, “a’}) == 0}
display_prompi(“Cannot open file. ")
else :
display prompt(“File opened. "
n = fwrite(data, 1, sizeof(data)-1, stream_ptr);
pos_cursor(l,0);
iftn 1= (sizeof(data}-1))
displayf(“Write error. \n’');
else
displayf("Write completed. \n”);
if(felose(stream_ptr} = 0) ‘
displayf(“Either file is already closed, or close cannot be executed. ")
efse
displayf("File closed. "
untock (&key);
}
}
LAYER: 1
TEST: a
STATE: write_and_slgnal
CONDITIONS: RECEIVE STRING *THE QUICK BROWN FOX*
ACTIONS: SIGNAL xyz
{
write_fox();
}

JUL '90 68-15

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-851-108

68-16

(B)

TEST: b
STATE: write_only
CONDITIONS: ON_SIGNAL xyz
ACTIONS:

{
write_fox();

unlock
Synopsi

#include <stdio. h>
extern void unlock(lock_varlable_ptr);
int * lock_varlable pir;

ripti
The unlock routine implements the inverse of the lock routine using the same
integer variable, Sleeping tasks will be woken up to retry their attempt to ¢laim

the Inck, Cne will succeed, and the rest will go back to sleep. See also lock
routine.

Inputs

The only parameter is a pointer to the lock variable.

Example

See lock routine.

Input-Stream Routines

The following routines are valid for input streams only. An attempt to apply
them to output streams results in a read error. The error indicator for the input

stream will be set.

Three routines read characters from the input stream. The fread and fgets
routines transfer a specified number of characters from the stream buffer into a
user—defined array. fgeic reads the next character from the input stream. The
ungetc routine temporarily forces a designated character back into the input

stream.

fread
Synopsis

#include <stdio. h>

extern size_| fread(data_ptr, size, number, stream_ptr);
void * data_pir;

size_t size;

size_t number;

FILE * stream_ptr;

JUL 80

68 Disk 1O

JUL '90

Descripti

This routine reads elements from the input-stream buffer and puts them into a
user-defined buffer. The file-position indicator is advanced by the number of
characters successfully read. The fread routine can read a file whose elements
are more than eight bits each, 16-bit shorts or 32-bit longs, for example. The
Jgets routine is similar to fread. fgefs, however, reads only 8-bit characters.
The primary use of fread is to read the entire contents of a file, whereas the
primary purpose of fgets is to read from a file one line at a time.

Inputs

The first parameter is a pointer to an array in which the incoming data should
be placed.

The second parameter is the number of bytes in each element to be read. If
the value of this parameter is zero, the contents of the array and the stream
remain unchanged. '

The third parameter is the number of elements to be read. If the value of this
parameter is zero, the contents of the array and the stream remain unchanged.

The fourth parameter is the stream pointer.

Returns

The fread routine returns the total number of elements read. If the number of
elements read is less than the number of elements designated to be read, an
end-of-file has been encountered or a read error has occurred. Use the feof
and ferror routines to distinguish an end-of-file from a read error. If an error
occurs, the location of the file—position indicator is indeterminate.

Example

Read in a file called “buff0i" from the /usr directory on the disk in drive 2 and
display it on the Program Trace screen. (See Section 64.4 for information on
using trace buffers in C.) Determine the size of the array data from the file size
indicated on the File Maintenance screen.

{

#include <trace_buf h>

#include <stdlo. k>

FILE * stream_pir;

char data [6091];

slze_t ny

extern struct trace_buf prog_trbuf;

68-17

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

68-18

LAYER: 1
STATE: read_a_file
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open flle.
CONDITIONS: KEYBOARD “o0"

ACTIONS:
{
if({stream_ptr = fopen{“FD2tusrtbuffot”, “r")} == 0)
display_prompt(“Cannot open fite. wh
eise
display_prompt(“Flie opened. Press R io read the file. h
CONDITIONS! KEYBOARD "rR"’
ACTIONS:
{

n = fread(data, 1, 6091, stream_pir);
if(n 1= 6091)
display_prompt(“Eilther a read error has occurred, or an EOF has been
encouniered. ”);
else

{
tracef{&prog_trbuf, " %.6091s", data);

display_prompt(“Press C to close the file. ")
y .

}
CONDITIONS: KEYBOARD “cC”
ACTIONS:

{
if (felose{stream_pir) 1= 0)

disptay_prompi(“Either file is already closed, or close cannot be executed, "
else

display_prompt(“File closed. #H

fgets
Synopsis

#include <stdio. h>

extern char * fgels(string_ptr, max_number, stream_pir);
char * string_ptr;

int max_number;

FILE * stream_pir;

Description

This routine gets at the most one less than the specified number of characters
from an input stream and puts them in an array. If an EOF, newline, or null is
encountered in the stream, no more characters will be read, even if the specified
number of characters has not yet been read. The newline will be retained. A
terminating null character is written after the last character read into the array.
The file-position indicator is advanced by the number of characters successfully
read. The fgets routine is similar to fread. The fread routine can read a file

JuL '90

68_Disk 110

JuL '90

whose elements are more than eight bits each, 16-bit shorts or 32-bit longs, for
example, fgels, however, reads only 8-bit characters. The primary use of fgets
is to read from a file one line at a time.

Inputs

The first parameter is a pointer to the array into which the characters will be
put.

The second parameter is the maximum number of characters (minus one) to be
read.

The third parameter is the stream pointer.

Returns

If the routine is successful, a pointer to the array is returned. If end-of-file is
encountered before any characters have been read into the array or if a read
error occurs, a null pointer is returned. The contents of the array are
indeterminate when a read error occurs.

Example

Five characters, at the most, from a disk [ile will be put into an array called
data and displayed on the screen.

{

finclude <stdio.h>
FILE * stream_ptr;
char data {10};
}
LAYER: 1
STATE: read_characters
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open flle.
CONDITIONS: KEYBOARD “00O"

ACTIONS:
{
If((stream_ptr = fopen(“FD2tusribuff01", “r"'}) == 0}
display_prompt{"Cannot open file. o h
else
display_prompt("“File opened. Press G lo get string. i H

}

CONDITIONS: KEYBOARD “gG"

ACTIONS:

{

fgeis(data, 6, stream_pir);

displayf(“\n%.6s", data);

display_prompt(“Press C to close the flle. wh

)

68-19

INTERVIEW 7000 Serles Advanced Frogramming: ATLC-107-951-108

68-20

CONDITIONS: KEYBCARD “cC”

ACTIONS:
{
If(felose(stream_ptr) 1= 0}
display_prompt(“Elther file is already closed, or close cannot be executed. Y);
else
display_prompt(“File closed. ”);
}
fgetc
Synopsis

#lnclude <stdio, i>
extern int fgetc(stream_ptr);
FILE * stream_pir;

Description
The fgetc routine gets the next character (if present) from the input stream.

The character is an unsigned char cast to an int (stored in the least-significant
byte of the int). The file-position indicator advances by one character.

Inputs

The only parameter is the stream pointer,

Returns

This routine returns the next character in the input stream. EOF is returned if
an end-of-file is encountered or if a read error occurs. The stdio.h file defines
the macro EQF as —1. Use the feof and ferror routines to determine the reason
for a returned EOF.

Example

In the following example, open an input file for reading. Each time the @ key
is pressed, display the next character in the file.
{

#include <stdic. h>
FILE * stream_pir;
int character, end;

}
LAYER: 1
STATE: get_next_character
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open flle.
CONDITIONS: KEYBOARD “00"
ACTIONS:
{
if{(stream_ptr = fopen("FD2tusribuffo1", “r"}) == 0)
display_prompi(“Cannot open file. ");
else
display_prompt(“File opened. Press G to get a characler. "1
displayf("\n");
} l

JuL '90

68_Disk 11O

JUL ‘90

CONDITIONS: KEYBOARD “gG-
ACTIONS:
{
character = fgetc(siream_ptr);
if(character == EOF)
{
end = feof(stream_ptr);
if(end 1= 0)
display_prompt(“EOF encouniered.
else
display_prompi(“ Read error.

else
displayf(* %c”, character);

CONDITIONS: KEYBOARD *“cC*
ACTIONS:
{
if(fclose(siream_ptr) I= 0)
dispiay_prompt(“Either file is already closed, or close cannot be executed.
else
display_prompi(“File closed.

ungetc

Synopsis

Hinclude <stdlo. h>

externt int ungete(character, stream_ptr);

int character;
FILE * stream_pir;

. Description

H)'.
“h

This routine temporarily forces a specified character into a variable associated
with the input stream, overwriting the previous ungetc variable. The routine
does not affect the location of the file—position indicator. The next fgetc will
read the ungetc variable, not the stream. An intervening fflush, fseek, or rewind
erases memory of the character. If the ungetc function is called too many times

on the same stream without an intervening read, fflush, fseek, or rewind
operation on that stream, the operation may fail. Ungerc also clears the
end-of-file indicator.

Inputs
The first parameter is the character to be put into the input stream.
The second parameter is the stream pointer,

Returns

This routine returns the specified character. If the operation fails, EOF is

returned and the input stream remains unchanged. It will fail if the values of

the specified character and the macro EOF are equal.

88-21

INTERVIEW 7000 Serles Advanced Programming: ATLC-107~951-108

Example

Read a character from the stream. Press the {U key when you want to return
the last character read to the stream. The next call 1o fgeic will read the
returned character.

{
Rinclude <sidio. h>

FILE * stream_ptr;
int character;
}
LAYER: 1
STATE: get_next_character
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open file. - -
CONDITIONS: KEYBOARD “00"
ACTIONS:
{
if((stream_pir = fopen(“FD2jusribuffol", “r”}) == 0}
display_prompi(“Cannot apen file, "}
else
display_prompt(“File opened. Press G to get a character. ");

CONDITIONS: KEYBOARD “gG"
ACTIONS:
{
character = fgelc(stream_pir);
if(character == EOF)
display_prompt(“End of file or read error. "1
else
{
pos_cursor(0,0);
displayf(“character = %c¢ Press U to relurn character to stream.”, character);

).
CONDITIONS: KEYBOARD “uU*

ACTIONS:
{
if((ungetc{character, stream_pir)) == EQF)
display_prompt(“Character not returned. “);
eise
display_prompt(“ Characler returned. H
}
CONDITIONS: KEYBOARD “cC"
ACTIONS:
{
if(felose(stream_ptr} I= 0}
display_prompt{“Either file is already closed, or close canno!l be executed, W H
eise
display_prompt(“File closed. ")i

g8-22 JUL 'S0

68 Disk 1O

JUL '90

(C) Output-Stream Routines

The following routines are valid for output streams only. An attempt to apply
them to input streams will result in a write error. The error indicator for the
output stream will be set.

Four routines write to output streams. The fwrite and fpurs routines transfer a
specified number of characters from a user-defined array into the stream buffer.
Jputc writes a character to the next empty byte in an output—stream buffer.
Sfprintf writes formatted output to an output stream similar to the way displayf
writes output to the Display Window:

fwrite

Synopsis

#include <stdio. h>

extern size_t fwrite(outpul_ptr, size, number, stream_ptr);
const void * ouipui_ptr;

size_t size;

size_t number;

FILE * stream_ptr;

Description

This routine writes elements from a user-defined array to the output-stream
buifer. The file-position indicator is advanced by the number of characters
successfully written. '

lnpms

The first parameter is a pointer to an array from which the data should be
taken. Declare it as const if it is read-only. In cases where the array will be
written to, as in the example below, do not include const as part of the
declaration.

The second parameter is the number of bytes in each element to be written.
The third parameter is the number of elements to be written,

The fourth parameter is the stream pointer.

Returns

The fwrite Toutine returns the total number of elements written. If the number

of elements written is less than the number of elements designated to be written,
a write error has occurred. If an error occurs, the location of the file-position

indicator is indeterminate.

68-23

INTERVIEW 7000 Serles Advanced Programming: ATI.C-107-851-108

68-24

Example

Read the contents of a file, and write them to a new file.

#include <stdio.h>
FILE * read_stream;
FILE * wrlte_stream;
char output [6091};
size_t n;
}
LAYER: 1
STATE: wrlte_to_a_flle
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Prass O to open flles.
CONDITIONS: KEYBOARD “00"
ACTIONS:
{
if{{read_stream = fopen(“FD2iusribuffol”, “r"}) == 0)
{
display_prompt(“Cannot open buffol. ");
pos_cursoer(0,21);
}
else
{
display_prompt (“Buff0! opened. "};
pos_cursor(0,16);
}
if({write_stream = fopen (“FD2tusrinew_file”, “w”")) == 0)
displays(“Cannot open new_file.
else
displays(“New_flle opened. Press R to read buffoi.
} .
CONDITIONS: KEYBOARD “rR"
ACTIONS:
{
n = fread(output, 1, 6091, read_stream);
ifin I= 6091)
display_prompi(“Either a read error has occurred, or an EOF has been
encountered., ”):
else
display_prompi(“Press W to write to new_file.

)
CONDITIONS: KEYBOARD “ww"
ACTIONS:
{
n = fwritefoutput, 1, 6091, write_stream);
if(n = 6091)
display_prompt{“Write error. Press C to close files.
else
display_prompt (“Write completed. Press C to close flles,

");

")
")

JUL ‘80

88 Disk 110

JUL '90

CONDITIONS: KEYBOARD “cC*
ACTIONS:

{

if(felose(read_siream) I= @)

{
display_prompt(“Either buff0! is already closed, or ciose cannot be executed. ”);

pos_cursor(0,0);

}

else

{
display_prompt(“Buffol closed. ");
pos_cursor(0,16);

)
if(felose(write_stream) = 0)

displays{"Either new_file is already closed, or close cannot be executed. o h
else

displays(“ New_file closed. ")

fputs
Synonsi

#include <stdio. h>

extern int fputs(siring_ptr, stream_pir);
const char * string pir;

FILE * stream_pir;

Description

This routine writes a string of characters from an array, excluding the
terminating null character, to the output stream. The fite—position indicator is
advanced by the number of characters successfully written,

Inputs
The first parameter is a pointer to the string to be written.

The second parameter is the stream pointer.

Returns

This routine returns zero if it is successful; it returns a non-zero value if a write
eIror OCCuUrs.

Example

Write a fox message at the end of existing data in a file.

{
#include <stdio. h>

FILE * stream_ptr;
char data [} = “UFOX)\n";

}

68-25

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

68-26

LAYER: 1
STATE: write_a_string
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to cpen flle.
CONDITIONS: KEYBOARD “00"
ACTIONS:
{
ift{stream_ptr = fopen(“FD2iusribuff01”, “a”}) == 0)
display_prompt({“Cannot open file. ")
else
display_prompit(“File opened. Press P (o wrlte string, ”);
)
CONDITIONS: KEYBOARD “pP"
ACTIONS:
{
if(fputs(data, stream_pir) 1= 0)
display_prompt(“Write error. Press C to close file. ")
else
display_prompt(“Write completed. Press C (o close file. ")
)
CONDITIONS: KEYBOARD “¢cC-
ACTIONS:
{
if(fclose(stream_ptr) 1= 0)
display_prompt{“Either file is already closed, or close cannot be executed, "}:
else
display_prompt(“File closed. ")

fpute
Synopsis

#include <stdio. h>

extern ini fpuic(characier, stream_pir};
int characier;

FILE * stream_ptr;

D iptign

This routine writes a given character (cast L0 an unsigned char) to an output
stream. The file-position indicator advances one character.

Inputs

The first parameter is the character to be written to the output stream. It may
be given as a hexadecimal, octal, or decimal constant; as an alphanumeric
constant inside single quotes; or as a variable, A hexadecimal value must be
preceded by the prefix Ox or 0X; an octal value must be preceded by the prefix
0. If no prefix appears before the input, the number is assumed to be decimal.

The second parameter is the stream pointer.

JUL '90

68 Disk 11O

Returns

If the character is successfully written to the output stream, the routine returns
that character. If a write error occurs, EOF is returned and the error indicator
is set.

Example

Open the named file. 1f the file does not already exist, create it. If it does
exist, truncate its length to zero, thereby deleiing its contents. Put the character
read from the input stream pointed to by read_siream into the output stream
pointed to by write_stream. This example is similar to the one given for fwrite,
except that in this case, each time the [] key is pressed, only one character is
copied, rather than the entire file.

{ '
#include <stdio.h>
FILE * read_stream;
FILE * write_stream;
int character;
)
LAYER: 1
STATE: copy_a_character
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open flles. "
CONDITIONS: KEYBOARD “o0O"
ACTIONS:
{
if((read_stream = fopen{“FD2tusrtbuffo1", “r*)) == 0)
{
display_prompt{“Cannot open buffol. ”);
pos_cursor{0,21);
}
else
{
display_prompt (" Buff0l opened. ");
pos_curser(0,16);

}
if((write_stream = fopen(“FD2iusr!buff0l_copy”, “w”)) == 0)
displays(“Cannot open buff0i_copy. ")
else
displays(“Buff01_copy opened. Press P to copy a character. ");
}
CONDITIONS: KEYBOARD “pP”
ACTIONS:
{

character = fgetc(read_siream);
if{character == EOF)

{
if(feaf(read_stream) I= 0)

display_prompt{“EOF encountered. Press C to close files, h
else

disptay_prompt(“Read error. Press C to close files. "):
}

JuL 's0 68-27

INTERVIEW 7000 Serfes Advanced Programming: ATLC-107-951-108

68-28

else
Jputc(character, wrlte_stream);

)
CONDITIONS: KEYBOARD “cC"
ACTIONS: '

{
if(fclose(read stream) 1= 0)

{

display_prompt(“Either buff01 is already closed, or close cannot be executed. ");
pos_cursor(0,0);
}

else

{

display_prompi(“Buff0l closed. ");

pos_cursor(0,16};

)
if(felose(write_stream) f= 0)

displayf(“Elther buff0l_copy is aiready closed, or close cannot be executed. ?);
else

display(“Buff0l_copy closed. WH

fprintf
Synopsis

#include <sidio. h>
extern int fprintf(siream_ptr, format_ptr, ...);
FILE * stream_pir;
char * format_ptr;

Description

The fprinif routine is similar to the sprin¢f routine, except that fprintf writes
output to an output stream, while sprintf writes output to an array. The output
is under control of the string pointed to by format_ptr that specifies how
subsequent arguments are converted for output. If there are insufficient
arguments for the format, the behavior is undefined. If the format is exhausted
while arguments remain, the excess arguments are evaluated but otherwise
ignored. The fprintf routine returns when the end of the format string is
encountered. (Sprintf is documented in Section 67.3.)

Inputs

The first parameter is the stream pointer.

The second parameter points ta the format string composed of zero or more
directives: ordinary characters (not %), which are copied unchanged to the
output stream; and conversion specifications, each of which results in fetching

zero or more subsequent arguments. Each conversion specification is introduced
by the character %. After the %, the following appear in sequence:

JUL 'S0

68_Disk 110

® Zero or more flags that modify the meaning of the conversion specification.
The flag characters and their meanings are:

- The result of the conversion will be left—justified within the field.

+ The result of a signed conversion will always begin with a plus or
minus sign.

space If the first character of a signed conversion is not a sign, a space will
be prepended to the result. If the space and + flags both appear, the
space flag will be ignored.

The result is to be converted to an “alternate form.” For d, i, ¢, and
s conversions, the flag has no effect. For o conversion, it increases
the precision to force the first digit of the result to be a zero. For x
(or X) conversion, a nonzero result will have 0x {(or 0X) prepended to
it.

® An optional decimal integer specifying a minimum field width. 1f the
converted value has fewer characters than the field width, it will be padded
on the left (or right, if the left adjustment flag, described above, has been
given) to the field width. The padding is with spaces unless the field width
integer starts with a zero, in which case the padding is with zeros.

® An optional precision that pives the minimum number of digits to appear for
the d, i, o, u, x, and X conversions or the maximum number of characters
to be written from an array in an s conversion. The precision takes the
form of a period (.} followed by an optional decimal integer; if the integer is
omitted, it is treated as zero. The amount of padding specified by the
precision overrides that specified by the field width.

® An optional h specifying that a following d, i, 0, u, x, or X conversion
specifier applies to a short int or unsigned short int argument (the argument
will have been promoted according to the integral promotions, and its value
shall be converted to short int or unsigned shor¢ int before printing); or an
optional] specifying that a following d, i, o, u, X, or X conversion specifier
applies to a long int or unsigned long in¢ argument. If an h or | appears
with any other conversion specifier, it is ignored.

® A character that specifies the type of conversion to be applied. (Special AR
extensions have been added.) The conversion specifiers and their meanings

are:

JUL '90 68-29

INTERVIEW 7000 Series Advanced Prograrmming: ATLC-107-951-108

68-30

d i o ux X

The int argument is converted to signed decimal (d or i), unsigned
octal (0), unsigned decimal (u), or unsigned hexadecimal notation (x
or X); the letters abcdef are used for x conversion and the letters
ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting a zero value with
a precision of zero is no characters.

c The int argument is converted to an unsigned char, and the resulting
character is written.
s The argument shall be a pointer to a null-terminated array of 8-bit

chars. Characters from the string are written up to (but not including)
the terminating null character: if the precision is specified, no more
than that many characters are written. The string may be an array
into which output was written via the sprintf routine.

p The argument shall be a pointer to void. The value of the pointer is
converted to a sequence of printable characters, in this format:
0000:0000. There are always exactly 4 digits to the right of the
colon. The number of digits to the lelt of the colon is determined by
the pointer's value and the precision specified. Use this conversion to
display 80286 memory addresses. The 16-bit segment number will
appear to the left of the colon and the 16-bit offset to the right.

% A % is written. No argument is converted.

\n Writes hexadecimal 0A, the ASCII linefeed character. No argument
is converted.

If a conversion specification is invalid, the behavior is undefined.

If any argument is or points to an aggregate {except for an array of characters
using %s conversion or any pointer using %p conversion), the behavior is
undefined.

In no case does a nonexistent or small field width cause truncation of a field; if
the result of a conversion is wider than the field width, the field is expanded to
contain the conversion result.

Returns
This routine returns the number of characters written, or a negative value if an

output error occurred.

Example
i

Assume the X.25 personality package has been loaded in at Layer 2. When an
unknown frame is received, copy the actual value of the control byte to an

output stream.

JUL '90

68 Disk 1O

{
#include <sidlo.h>
FILE * stream_pir;
extern volatile const unsigned char revd_frame_cniri_byte_I;.
}
LAYER: 2
STATE: save_unknowns
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open file,
CONDITIONS: ENTER_STATE
ACTIONS:
{
if{(stream_ptr = fopen(“FD2lusriframe_unkwn”, “w")) == 0)
display_prompi("Cannot open file. ")
else
display_prompt("“File opened. ");
)
CONDITIONS: RCYV UNKNOWN
ACTIONS:
{
If(fprintf(siream_ptr, “%02x\n", revd_frame_cntrl_byte_1) < 0)
display_prompt(“Error in printing to stream. ");
else
display_prompt(“Print to siream completed. Press C to close file, M H

}
CONDITIONS: KEYBOARD “cC”
ACTIONS:

{
if(fclose(stream_ptr}) i= 0)

display_prompt(“Either file is already closed, or close cannot be executed, ")
else ‘

display_prompt{"File closed. ")

(D) File Maintenance Routines

rename

Synopsis

#inciude <stdio. h>

extern int rename(oldfile_ptr, newfile_ptr);
const char * oldfile_pir;

const char * newfile_pir;

Tipti

This routine renames a specified file, A file can only be renamed if it resides
on the active disk, indicated on the Current Directory line of the File
Maintenance screen. Renaming an open file does not affect subsequent disk 1/O
operations on the stream. The stream is still assoclated with the same file, even

though the filename has changed.

JUL '80 68-31

INTERVIEW 7000 Serles Advanced Programming: ATLC-~107-951-108

68-32

Inputs

The f[irst parameter is a pointer to a string, the current name of the file. Give
the absolute pathname of the file, prefixed by the device name (HRD, FDI1, or
FD2).

The second parameter is a pointer to a string, the new name to be piven to the
file. Give the absolute pathname of the file, prefixed by the device name.

Returns

If the rename operation succeeds, zero is returned: If it fails, a non-zero value
is returned. If the renaming fails, the fite will still be known by its original
name.

Example

Change the name of a file from old to backup. Prompt whether or not the
rename operation was successful. '

{

#include <stdio, h>

}
LAYER: 1
STATE: rename
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press spacebar to rename file.
CONDITIONS: KEYBOARD * - '

ACTIONS:
{
if(rename(“FD!Itusriold”, “FDItusrtbackup”) I= 0)
disptay_prompt (" Rename failed. ")
else
display_prompl(“File has been renamed. ");
}
remove
Synopsis

#include <sidio. h>
extern int remﬂwe(ﬁle_prr):
const char * flle_ptr;

Description
This routine removes the named file from the disk. The file must be closed in

order for the remove operation to succeed. Subsequent attempts to open the
file will fail. Empty directories may also be removed with this routine.

Inputs

The only input is a pointer to a string, i.e., the filename. It must be the
absolute pathname, prefixed by the device name (HRD, FD1, or FD2).

JUL ’80

68 Disk IO

JUL 'S0

Returns

Zero is returned if the file is removed; non-zero if it is not {for example, the
file does not exist in the specified location).

Example

Remove file oldfile from the /usr directory on the disk in floppy drive 1.
Prompt whether or not the remove operation was successful.

{
#include <stdio. h>
)
LAYER: 1
STATE: delote_a_flle
CONCITIONS: ENTER_STATE
ACTIONS: PROMPT “Press D to delate fiie. "
CONDITIONS: KEYBOARD “dD"
ACTIONS:
{
if(remove(“FD1iusrloldfile”} 1= 0)
display_prompt(“File has not been deleted. ");
else)
display_prompt (“File deleted. ")i
}
mkdir
Synopsis

#include <stdio. h>

extern int mkdir(directory_pir);

char * directory_pir;

Description

This routine creates a directory.

Inputs

The only parameter is a pointer to a string, i.e., the name of the directory to be
created, The absolute pathname must be used, prefixed by the device name
(FD1, FD2, or HRD).

Returns

If the directory is created, zero is returned; otherwise, a non-zero value is
returned.

Example
Create a sub-directory called disk_j_o in the /usr directory on the disk in
drive 2.

{
#include <stdio. >

}

68-33

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-851-108

68-34

LAYER: 1
STATE: make_directory
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Pross M to make a directory,
CONDITIONS: KEYBOARD “mM"

ACTIONS:
{
if(mkdir("FD2lusridisk_i_o") 1= 0}
display_prompt(“Directory not created. ")
else
display_prompt(“Directory created. H
}

_set_flle_type

Svnopsjs

#include <stdio.h>

extern inl _sei file_type(pathname_ptr, type_buff ptr);
char * pathname_ptr;

char * type_buff_ptr;

Descripti

This routine determines the type identification of a specified file on the File
Maintenance screen. If a file is created by a “w” or “a” open mode and a file
type is not specified with the _set_file_type routine, it will be designated as an
ASCII file. Note, however, that it is the file's contents, not its label, that
determines which functions are valid for the file (see example).

Inputs

The first parameter is a pointer to a string, the name of the file. The filename
must be the absolute pathname, prefixed by the device name (HRD, FD1, or
FD2).

The second parameter is a pointer to a string, the file type. The type may be
any of the following {upper or lower case is acceptable):
SYS System

DIR Directory

PRGM Program

SETUP Setup

OBJ Object code

LOBJ Linkable object

LPGM Linkable program

ASCII ASCII

BITIM Bit-image data

CHDAT Character data

JuL ‘g0

68 Disk 110

Returns

If the operation succeeds, the routine returns zero; otherwise, it returns a
non-zero value.

Example

The following example is almost the same one used for fwrite: read the contents
of a program file and write. them to a new file. The difference is that new_file is
set to be a program file. In the fwrite example, the type designation in the file
directory would default to “ASCIL.” Tt would stilt load and run as a program
file, however, since the file's contents, not its type label, determine which
operations are valid.

{

#include <stdio h>
FILE * read_stream;
FILE * write_stream;
char output {6091];
size_t n;

}
LAYER: 1
STATE: write_to_a flle
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press O to open flles. "
CONDITIONS: KEYBOARD “o0"
ACTIONS: '
{
if((read_stream = fopen("FD2iusrtbuffoi”, “r")) == 0]
{
display_prompt(“Cannot apen buffol. ");
pos_cursor(0,21);
}
else
{
display_prompi(“ Buff0! opened. ”};
pos_cursor(0,16);

}
if((write_stream = fopen(“FD2lusrinew_file”, "w")) == 0}
displays(“Cannot open new_file. ");
else
displays(“New_file opened. Press “sS" to set the file type. ");
}
CONDITIONS: KEYBOARD “sS”
ACTIONS:
{
if(_sei_file_type(“FD2iusrinew_file”, “PRGM”} i= 0}
disptay prompi(“File type not set. Press R to read buff01. "1
else
display_prompi(“File type sel. Press R to read buff0l. ”);
}

JUL '90 68-35

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-851-108

68-36

CONDITIONS: KEYBOARD “rR"
ACTIONS:
{
n = fread(output, 1, 6091, read stream):
iftn I= 6091)
display_prompi(“Either a read error has occurred, or an EOF has been
encountered. ")
else
display_prompt(" Press W to write to new_file,
)
CONDITIONS: KEYBOARD “ww"
ACTIONS:
{
n = fwritefoutput, I, 6091, write_stream);
ifin 1= 6091)
display_prompt("Write error. Press C 1o close files.
else
display_prompt("“Write completed. Press C to close files.

}
CONDITIONS: KEYBOARD “cC~
ACTIONS:
{
if{fclose(read_stream) 1= 0}
{

disptay_prompit(“Either buff0! is already closed, or close cannot be executed.

pos_cursor(0,0);
}
else
{
dispiay_prompt(“Buff01 closed. ");
pos_cursor(0,16);
}
if{fclose(write_stream) i= 0}
dispiays(“Either new_file is already closed, or close cannot be executed.
else
displays("New file closed.

_get_file_type
Synopsis

#include <sidio.h>

extern int _get_file_type (pathname_ptr, type_buff ptr);
char * pathname_pir;

char * type_buff ptr;
Description

This routine determines the type of a specified file.

!

"k

WH
")

"k

“);

The first parameter is a pointer to a string, the name of the file. The filename
must be the absolute pathname, prefixed by the device name (HRD, FDI, or

JUL "90

68 Disk 1O

The second parameter is a pointer to an array in which the [ile type should be
written. See _set_file_type for the different file types.

Bg;urns

If the operation succeeds, the routine returns zero; otherwise, it returns a
non-zero value.

Example

{

#include <stdio. h>
FILE * stream_ptr;
char type [8];

LAYER: 1
STATE: find_type
CONDITIONS: ENTER_STATE
ACTIONS: PROMPT “Press G to get flle type. "
CONDITIONS: KEYBOARD “gG"
ACTIONS:
{
if{_get_file_type("FD2tusrinew_file", &typel0]) 1= 0)
display_prompt(“File type not found. ?);
else
displayf(“File type=%s. ", type);

JUL 's0 68-37

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

69 Status

69 Status

The structures and variables referenced in this section provide information about the current
status of the programmer's INTERVIEW. This information must be accessed via C coding on
the Protocol Spreadsheet since these structures and variables have no softkey equivalents.

69.1 Unit Configuration

Two structures presented in Table 69-1 may be accessed by the user to identify
current features of the INTERVIEW. unit_setup variables reflect current Line Setup
menu and FEB tick-rate selections. unit_config variables contain information about
the user’s INTERVIEW hardware and software.

69.2 Current Display Mode

The variables display_screen_changed, crnt_display_screen, and prev_display_screen
track movement via softkey from one display screen to another. These variables also
indicate transitions between Run mode and Freeze mode. They are documented in

Section 64.1.

JUL '90 69-1

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-8951-108

Table 69-1

Status Structures

Type

Variable

Value {hex/decimal)

Meaning

Structure Name: unit_setup

unsigned long

unslgned long

unsigned long

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unslgned char

69-2

spoed_dce

spead_dte

usec_per_tick

bit_order_polarity

bits_per_byte
clocking_type

data_source

format

mode

parity

code_name [13]

al10

64/100
3e8/1000
2710/10000
186a0/100000
14240/1000000

- O N =0

BWN=O0 WOWN=D WGN=O

Structure contalning Line Setup and FEB tlck-rate
selectlons, Declared as type extern struct.
Reference member varlabies of the structure as
follows: unit_setup.speed_dce.

If Clock Source selection Is Internal, thls varlable
has Speed value entered on Line Setup. If Clock
Source Is External, thle variable has DCE epsed

Indicated under Clock Source: Internal Split,

If Clock Source selectlon Is Intarnal, this varlable
has Spesd value entered on Line Setup. If Clock
Source Is External, this varlable has DTE speed
Indicated under Clock Source: internal Spiit.

tick rate selected on FEB Setup
10 useo

100 usec

1 msec

10 mse¢

1000 mseo

1 sec

normal
normal-inyerse
reverse-normal
reverse-inverse

internal
external
Internal-split

disk
line

syno
bop
async
Isoc

automonltor
monitor

emulate dce
emulate dte

none

even

odd '
mark

space

ASCIl, EBCDIC, eto.

JUL '90

69 Status

Table 69-1 (continuad)

Type

Variable

Value (hex/decimal}

Meaning

Structure Name: unlt_config

unsigned char
unslgned char
unslgned char
unsigned char
unsigned char

unsigned char

struct mpm_info

unsigned char
unslgned char
unsigned char

unsigned char
unsigned char
unsigned char

unsligned long

floppy_exists_mask

hard_dIsk
test_board
mux
modem

num_mpms
mpm [4]

cpm_rev
gbm_rev
pcm_rev

modem_rev
mux_rev
tim_type

last_ram_cpm

Q =O =m0 40 =0 N

0, 7110, 127
1-111-31
20-7el32-126

0, ff/0, 256

" 0, /0, 256

1

f0/240
f1/241
f2/242
13/243
147244
157245
f6-1b/246-251
fe/252
fd/253
fo/254
17255

Structure contalning unit configuration. Declared
as type extern struct. Reference member
varlables of the structure as foliows:

unit_config . lloppy_exists_mask.

floppy1
floppy2+
not present
present

not present
present

not present
present

not present
present

nurmber of MPM boards present

array of structures. Each element In the array 1s
an Instance of the structure mpm_info and
corresponds to one of four MPM boards which
may be present. Reference member varlables of
the structure elements in the array as follows:
unit_config.mpm{0}.present.

original CPM board
TUARBO-compatible CPM board
4-Mbyte, TURBO-compatible CPM board

original GBM board

original PCM board
44-Mbyte hard disk compatlble PCM board

reserved
reserved

RS-232
X.21
V.35
RS-449

_expanslon adaptor

RC-8245
reserved
ISDN
G.703
T1

none

the value of this vartable plus one ylelds the CPM
memory size (In bytes)

(unit_conflg continued on next page)

t+ If (unit_config.floppy_exists_mask & value) == value, the drive Is present.
For example, If (unit_config.floppy_exists_mask & 2) == 2, floppy drive 2 Is present.

JUL '90

69-3

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

Table 69-1 (continued}

Type Variable Value (hex/decimal) Meaning
unsigned long self_test_errors {mask) galf-test errors encountered during
power-uptt

1 CPM DRAM error
2 CPM 32-blt counter
4 CPM System Timing Controlier {9513a)
8 CPM DMAC
10/186 MPMO DRAM (tested from CPM-global bus)
20/32 MPMO DRAM (tested from MPMO}
40/64 MPMO interrupt latch
ad/128 unused
100/256 MPM1 DRAM (tested from CPM-global bus}
200/512 MPM1 DRAM (tested from MPM1)
400/1024 MPM1 interrupt latch
800/2048 unused
1000/4096 MPM3 DRAM (tested from CPM-global bus)
2000/8192 MPM3 DRAM {tested from MPM3)
4000/16384 MPM3 Interrupt latch
8000/32768 unused
10000/65536 unused
20000/131072 unused
40000/262144 unused
80000/524288 unused
100000/1048576 unused
200000/2097152 unused
400000/4194304 unused
800000/8388608 unuged
1000000/16777216 unused
2000000/33554432 unused
4000000/67108864 unused

8000000/134217728 unused
10000000/268435456 unused
20000000/536870912 unused
40000000/1073741824 unused
80000000/2147483648 unused

unsigned long verslon 9 current value for this version of unit_contlg
structure
unslgned long model_number 19¢8/6600 INTERVIEW 6600
1a90/6800 INTERVIEW 6800 TURBO
1b58/7000 INTERVIEW 7000
1¢20/7200 INTERVIEW 7200 TURBO
1d40/7500 INTERVIEW 7500
1e14/7700 INTERVIEW 7700 TURBO
unsigned char feb_type 0 original verslon
1 verslon with increased speed of software and
faster access to ticks from FEB
2 version which supports high-speed RAM

recording, specifically aggregate T1 or G.703
data capture

3 version which also supports INTERVIEW 7200 and
7700 TURBOs

{unit_config continued on next page) -

++ If (unit_config.self_test_errors & mask} == mask, the error Is present.
It (unit_config.self_test_errors & Oxififfif) == 0, no errors encountered during power-up.

69-4 JUL ‘90

69 Status

Table 69-1 (continuad)

Type Variable Value (hex/decimal) Meaning

unit Is not TURBO
unlt Is TURBC

XDRAM revislon humber

xdram_present 0 XDRAM board Is not present
| XDRAM board ls present

low end of memory range
high end of memory range

unsigned char Is_turbo 0

[y

unsigned char
unslgned char

xXdrarm_rev_num

unsigned long xdram_lo_addr
Xdram_hl_addr

reserved

unsigned long

unsigned char reserved

unsigned char hard_disk_type 0,2 20-Mbyte disk
3 44-Mbyte disk
unsigned char xtim_installed 0 TIM-expansion shelf Is not present
1 TIM-expansion shelf Is present
unsigned char Xsys_ram_present 0 additlonal system memory Is not present
1 additional system memory Is presen
unslgned iong xsys_ram_lo_addr low end of memory range
unsigned long xsys_ram_hl_addr high end of memory range
unslgned long sparel reserved/undeflined
unstgned long spared reserved/undefined
unsigned long spare3d reserved/undefined
unsigned long spared reserved/undefined
unsigned long spareS reserved/undefined
unsigned long sparet reserved/undefined
unsigned fong spare? reserved/undefined
unsigned long sw_version software verslonttt
unsigned long fw_version firmware verslonitt
Structure Name: mpm_info Structure contalning informatlon on specitic MPM
board. Instance of this structure for each MPM
board Is contalned In array named
unit_config.mpm. Declared as type extern
struoct.
unsigned char rev_num MPM revislon number
unsigned char presant 0 speclilc MPM board [of four} not present
1 spaclfic MPM board {of four) present
unsigned long lo_addr low end of memory range
unsigned long hl_addr high end of memory range

++1 To display the scftware verslon In the same format presented on the main menu screen, 5.00 for example, use the
following format In a call to displayf {or tracef):

displayf(“ %lu. %02lu%e", ((unit_config.sw_version >> 8)1100), {{unit_conflg.sw_version >> 8)%100),
{char) (unit_conflg.sw_verslon & OxIf});

The same format may he used for presentatlon of the firmware verslon,

JUL '80

69-5

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-851-108

69-6 : JUL 'S0

70 Remote Port 11O

70 Remote Port I/O

The REMOTE RS-232 port is a “spare” serial interface through which the programmer may
communicate with other equipment.. The remote port is located at the rear of the
INTERVIEW next to the printer port. (The REMOTE LED on the front panel of the
INTERVIEW is related to remote control of the unit, unimplemented at this time.)

Remote-port functions must be coded in C regions on the Protocol Spreadsheet. There are
no spreadsheet-token equivalents of the C variables and routines described in this section.
Use these variables and routines in either emulate or monitor mode to transmit and receive
data through the remote port.

The remote~communications process on the CPM controls the flow of data between the user’s
program and the remote port. When data is received through the remote port, this process
temporarily buffers it in a 2048-byte input queue. The user's program makes requests for
data from the input queue via the rm¢_getc, rmt_getl, and rm¢_gets input routines discussed
below. When the remote-communications process receives a request, it removes data from
the queue and passes it to the task. IF there are no outstanding requests at the time data is
received, it is discarded from the input queue—i.e., data received between requests cannot be
retrieved. This is the default condition of the input queue.

To “lock” all received characters in the input queue, call rm¢_lock. When the input queue is
locked, the remote-communications process removes data only when 1) a user task has
requested data via the ramn_getc, rmt_getl, or rm{_gets routine, 2) the input queue is full and
some data must be discarded in order for incoming data to be buffered, or 3} rmt_flushi is
executed. “Unlock” the input queue with rm¢_unlock. rmt_unlock, rme¢_flushi, and
rmt_flusho are automatically executed whenever the INTERVIEW returns to Program mode.

NOTE: Aithough requests to receive (or transmit) data from more
than one task are queued by the remote-communications process,
a single task can have only one such request outstanding at a time.

Similarly, when the programmer wants to send data out the remote port, he calls rms_putc,
rmi_puts, or rmt_putb. The remote-communications process temporarily places these requests
in an output queue before t‘ransmitting them through the remote port.

70.1 Structures

There are no structures associated exclusively with remote functions.

JUL '90 70-1

INTERVIEW 7000 Series Advanced Programrning: AfLC-iO?—QS 1-108

70-2

70.2

Variables

Table 70-1 lists the event variables specific to remote port 1/O operations. Use most
of these variables to detect changes in the status of the input and output queues.

As data is received through the remote port, the remote-communications process
temporarily stores it in the input queue. Use rm¢_input_not_empty,
rmt_input_almost_full, and rmt_input_overfiow to monitor how full the input queue
is. When the input queue is “almost full,” incoming data must be stopped in order
to prevent the queue from overflowing.

rmi_input_almost_empty and rm¢_input_empty are significant events as the remote
communications process takes data out of the input queue. These events indicate
that that the input queue is ready to accept more data.

JUL 'S0

70 Remote Port 11O

Table 70-1

Remote Port 1/O Variables

Type

Variable

VYalua (hex/decimal} Meaning

extern event

aextern event

extern event

extern event

extern event

extern event

extern event

rmt_break

rmt_Input_not_empty

rmt_Input_almost_full

rmt_{nput_overflow

rmt_input_almost_smpty

rmt_lnput_empty

rmt_output_empty

True when a break (NULL with a
framing error) Is recelved
through the remote port. Line
Setup conflgured for emulate or
monltor mode.

True when remote input-gueue
transitions from empty to not
empty. Beglnning to recelve
characters. Line Setup
conflgured for emulate or
monltor mode.

True when the remote
input-qusue transltlons from
less than 3/4 fuil to 3/4 full as
data Is being put into the queus.
Line Setup configured for
emulate or moniter mods.

True when remote Input-queus

. transltions from not full to full,

At this point, the oldest exlsting
data In the queue s discarded
to make room for new data
coming in the remote port. Line
Setup configured for emulate or
monltor mode.

True when the remote
Input-queus transitions from
more than 1/4 {ull to 1/4 full as
data Is being taken out of the
queus. Line Setup configured
for amulate or monitor mode,

True when remote input-queue
transitions from not empty to
empty. Al characters have
been read or discarded. Line
Setup configured for emulate or
monitor mode.

True when remote output-queue
transitlons from not empty to
empty. All data output to the
remote port has been
transmitted. Line Setup
configured for emulate or
monitor mode.

JUL '90

70-3

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

70-4

70.3 Routines

Remote routines fali into three categories. Input routines are used to read data
received from the remote port. Use ouiput routines to transmit data through the
remote port. The last category of routines reads or sets parameters for the remote
port.

(A) Input Routines

Use rmi_geic, rmt_get!, and rm¢_gets to read data received through the remote
port. Use rm¢_lock and rm¢_unlock to control the flow of data from the input
queue.

rmt_getc

Synopsis

extern int rmt_getc{wait);
int wait;

Description

The rmt_gete routine reads the next character (if present) from the remote port.

Inputs

If no character is available from the input queue when rmt_getc is called, this
parameter determines when the routine will return:

o Specify a timeout value in the hexadecimal range %% through %" (decimal 1
through 65534} to indicate how long the routine should wait for a character
to become available before returning. During this waiting period, no other
conditions and actions within the same state will be executed. (The extern
event variable rmi_input_not_empty in Table 70-1 can be used to indicate
when data is received.)

At the end of the timeout, the routine returns without a character if none is
available. Timeout values represent tenths of a second. If another task has
already requested data from the queue, this request will be queued.

¢ When the value is hexadecimal =+, the routine does not return until a
character becomes available. If another task has already requested data
from the queue, this request will be queued.

® When the value is zero, the routine returns without a character if none is
available. If there is already an outstanding request from another task, a
zero value also causes the remote—-communications process to return from
the routine without checking the input queue.

JUL 'S0

70 Remote Port |10

JUL '90

NOTE: More than one test (task) may request data from the
input queue. The remote-communications processes queues these
requests as they are made. To ensure that requests are processed
in wurn, use this "wait” parameter consistently across tests. If you
set the parameter to a non-zero value in a call to rm¢_getc (or
rmt_gets) in one test, do the same in all tests.

Returns

If a character is present in the input queue, this routine returns the character (as
an inf) read. If no character is present and the routine's “wait” parameter is
zero or the timeout expires, a -1 is returned. When the parameter is zero, a -1
also is returned if there is already an outstanding request from another task.

Exampie

In the following example, the routine does not wait for a character to become
available in the remote port before returning. Each time the [€ key is pressed,
the next character, if present, is displayed. If a -1 is returned instead of a
character, a message to that effect will be displayed on the prompt line.

LAYER: 1
STATE: get_next_character

CONDITIONS: ENTER_STATE
ACTIONS:
{
display_prompt(“Press C to gel next character. ")
rmit_tock();
}
CONDITIONS: KEYBOARD “cC"
ACTIONS:
{
int character;
character = rmi_getc(0);
iffcharacter == -1)

display_prompi(“No character avallable. ");
else
displayf(“%c", character);
}
rmt_getl
Synopsis

extern int rmt_geti{string_ptr, max_length};

char * string_ptr;

int max_length;

Description

rmt_getl reads from the remote port one line at a time. This routine gets at the

most the specified number of characters from the remote port and puts them in
an array. Unless a carriage return or linefeed is encountered, the routine does

70-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

not return until the specified number of characters has been read. A carriage
return or linefeed causes the routine to return, even if the specified number of
characters has not yet been read. The carriage return or linefeed is replaced by
a terminating NULL character in the array.

Inputs

The first parameter is a pointer to the array into which the characters will be
put.

The second parameter is the maximum number of characters to be read.

Returns

This routine returns the number of characters (preceding the terminating NULL})
read into the array.

Example

Each time the {U key is pressed, twenty characters, at the most, are read from
the remote port, put into an array calied data, and displayed on the screen.

LAYER: 1
STATE: read_line
CONDITIONS: ENTER_STATE
ACTIONS:

{

display_prompt{“Press L to gel next line. Y}
rmi_lock();

}
CONDITIONS: KEYBOARD *“iL"
ACTIONS:

{

int number;

unsigned char data {25];

number = rmit_getl(data, 20);

displayf(“\n%u characters read:\n%.205s\n", number, dara);

}

rmt_gets
Synopsis

extern int rmi_gets(string_pir, length, wait);
char * string_pir;

int length;

int wait;

Description

Similar to rm¢_getl, this routine gets a specified number of characters from the
remote port and puts them in an array. Unlike rm¢_getl, characters continue to
be read even if a carriage return or linefeed is encountered. The array is not
NULL-terminated.

70-6 JUL 'S0

70 Remote Port i{O

JUL '90

Inputs

The first parameter is a pointer to the array into which the characters will be
put. .

The second parameter is the number of characters to be read.

If the specified number of characters is not available from the input queue when
rm¢_getl is called, the third parameter determines when the routine will return:

® Specify a timeout value in the hexadecimal range %% through frfe (decimal 1
through 65534) to indicate how long the routine should wait for the specified
number of characters to become available before returning. During this
waiting period, no other conditions and actions within the same state will be
executed,

At the end of the timeout, the routine returns with less than the specified
number of characters if all are not available. Timeout values represent
tenths of a second. If another task has already requested data from the
queue, this request will be queued.

® When the value is hexadecimal "=%r, the routine does not return until the
specified number of characters becomes available. If another task has
already requested data from the queue, this request will be queued.

¢ When the value is zero, the routine returns with less than the specified
number of characters if all are not available. If there is already an
outstanding request from another task, a zero value also causes the
remote-communications process to return from the routine without checking
the input queue.

NOTE: More than one test (task) may request data from the
input queue. The remote—communications processes queues these
requests as they are made. To ensure that requests are processed
in turn, use this “wait” parameter consistently across tests. If you
set the parameter to a non-zero value in a call to rmi_gets (or
rmt_getc) in one test, do the same in all tests.

Returns

This routine returns the number of characters read from the remote port.

Example

When the @ key is pressed, the INTERVIEW has a minute to read up to 4000

characters from the remote port. The program puts the characters into an array
called data, displays them on the screen (until a NULL is encountered—see %s

in tracef routine, Section 64), and writes them to a file named echo_time. This
is the program that might be run to receive the file transmitted in the rmt_putb

example.

70-7

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

#define FILE LENGTH 4000
#define FILENAME “FD!lusriecho_time™
#include <stdlo. h>
#include <trace_buf. k>
extern struct trace_buf !]_trbuf;
FILE * stream_pir;
size_t n;
unsigned char daita (FILE_LENGTH];
int count;
)
LAYER: 1
STATE: get_string
CONDITIONS: ENTER_STATE
ACTIONS:
{
rimi_lock();
if({stream_pir = fopen(FILENAME, “w")) == 0)
display_prompt(“Cannot open file.");
else
{
display_prompt(* Press § to read string.”);
pos_cursor(l,0);
}
}
CONDITIONS: KEYBOARD “sS”
ACTIONS:
{
count = rmi_gets(data, FILE_LENGTH, 600);
if(count I= FILE LENGTH)
displayf(“Could not read entire string.\n");

tracef(&i!_trbuf, “ %d characters read: \n%s\nm\n", count, data};

n = fwrite(data, 1, FILE LENGTH, stream_ptr};
iftn I= FILE_LENGTH)

displayf(“A write error has occurred.\n");
efse

displayf(“ File written. \n");
if(fclose(stream_ptr) [= 0}

displayf(‘“ Elther file is already closed, or close cannot be execuied. \n");

else
displayf(* File closed.\n");

rmt_flushi

Synopsis

extern int rmi_flushi();

Description

If characters have been received in the input queue, but have not been read yet,
this routine causes them to be discarded. Whenever the INTERVIEW enters or
leaves Run mode, rm¢_flushi is automatically executed. This ensures that the

input queue is empty.

70-8

70 Remote Port /O

JuL 'eQ

NOTE: A call to any of the routines which sef the parameters of
the remote port also causes rmi_flushi to be executed
automatically. The routines which only get the current
parameters of the remote port have no effect on the input queue.

When the programmer calls rm¢_flushi, requests for data from the input gqueue
are processed before the input queue is flushed. When a call to rme_flushi is
made from another test, however, input routines waiting for characters from the
input queue are returned,

Returns

rmt_flushi returns a zero when the input queue is flushed successfully.
Otherwise, it returns a non-zero value.

Example

This example is the same as that for rm!_getc. Notice that as the program
enters the first state, the input queue is flushed.

LAYER: 1
STATE: get_next_character
CONDITIONS: ENTER_STATE
ACTIONS:

{

display_prompt(“Press C to get next character. wh
rmi_lock();
rmit_flushi();

}
CONDITIONS: KEYBOARD “cC"

ACTIONS:
{

int character;
character = rmt_gete(0);
if(character ==-1)
display_prompt(“Ne character available. ");
else
displayf(“ %", character);

rmt_lock
Synopsis

extern void rmt_lock();

Description

Recall that in its default state, the input queue does not retain characters
received through the remote port between requests from user tasks. Data in the
queue must either be passed to a user task or be discarded. The rmt_lock
routine “locks” all received characters in the input queue until they are
requested. (Refer again to the beginning of this section.)

70-9

INTERVIEW 7000 Serles Advancad Programming: ATLC-107-951-108

Example

The following example is the same as the one for the rm¢_ger! routine, Notice
that a call to rm¢_lock is made as the program begins. The operator makes a

request for data from the input queue by pressing (. The next line of data in
the input queue is removed and put in the array named data.

LAYER: 1
STATE: read_lins
CONDITIONS: ENTER_STATE
ACTIONS:

{
display_prompt(“Press L to gel next line. "
rm¢_lock();

)
CONDITIGNS; KEYBOARD "IL"
ACTIONS:

{

int number;

unsigned char data [25];

number = rmi_getl (data, 20};

displeyf(“\n%u characters read:\n%.205\n", number, data);

rmt_unlock

Synopsis

extern vold rmt_unfock();
Descripti

The rm¢_unlock routine implements the inverse of the rmt_lock routine. If
characters are received in the remote port and there are no outstanding requests
for data, the remote-communications process discards the characters, (Refer
also to rm¢_Jock and to the beginning of this section.)

rmt_unlock is automatically executed when the INTERVIEW returns to Program
mode.

Example

In the following example, the input queue is tocked as soon as the program
begins. It remains locked until the operator press {§ (or boww).

LAYER: 1
STATE: read_line
CONDITIONS: ENTER_STATE
ACTIONS:
{
display_prompt(“Press L to get next line. W H
rmit_lock();

}

20-10 JUL '90

70 Remote Port I/O

JUuL '80

CONDITIONS: KEYBOARD “IL”

ACTIONS:

{

int number;

unsigned cher data {23};

number = rmt_getl(data, 20);

displayf("\n%u characters read:\n%.205\n", number, data);

CONDITIONS: KEYBOARD “uy®
ACTIONS:
{

rmt_unlock();

)

(B) Output Routines

Use the following routines to transmit data through the remote port.

rmt_putc

Synopsis

extern int rmt_putc(characier, wait);
unsigned char character;
int wail;

Descripti

This routine sends a specified character to the output queue of the remote port
for transmission. '

Inputs

The first parameter is the character to be transmitted. It may be given as a
hexadecimal, octal, or decimal constant; as an alphanumeric constant inside
single quotes; or as a variable. A hexadecimal value must be preceded by the
prefix Ox or 0X; an octal value must be preceded by the prefix 0. If no prefix
appears before the input, the number is assumed to be decimal.

If space in the output queue is not available for the character when rmt_puic is
called, the second parameter determines when the routine will return:

® Specify a timeout value in the hexadecimal range %% through "*e (decimal 1
through 65534) to indicate how long the routine should wait for space in the
output queue to become available before returning. During this waiting
period, no other conditions and actions within the same state will be
executed.

If the character is successfully put in the queue, the routine returns zero.
Timeout values represent tenths of a second. If there is already a request
from another task, this request will be queued.

70-11

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

¢ When the value is hexadecimal *r"r, the routine does not return until space
in the output queue becomes available. If there is already a request from
another task, this request will be queued,

® When the value is zero and space in the output queue is not available, the
routine returns ~1. The character will not be in the queue. If another task
is already waiting for access to the output queue, a zero value also causes
the remote-communications process to return from the routine without
checking for available space in the output queue.

NOTE: More than one test (task) may request to send data to
the output queue. The remote-communications processes queues
these requests as they are made. To ensure that requests to
output data are processed in turn, use this “wait” parameter
consistently across tests. If you set the parameter to a non-zero
value in a call to rm¢_putc (rmi_puts or rmi_putb) in one test, do
the same in all tests.

Returns

If the character is successfully written to the output queue, the routine returns
zero. If no space is available in the output queue and the routine's “wait”
parameter is zero or the timeout expires, a -1 is returned. When the parameter
is zero, a -1 also is returned if another task is already waiting for access to the
output gqueue.

Example

In the following example, the next character in a fox message is sent to the
output queue of the remote port each time the operator presses [€. As a
character is successfully queued, it is displayed in the Display Window. If no
space is available in the output queue for the character, -1 is returned and a
message to that effect is displayed on the prompt line. No more characters will
be sent.

{
unsigned char data {} = “CFOXD®”;

unsigned char character;
int i, length, error;

)
LAYER: 1
STATE: transmit_characters
CONDITIONS: ENTER_STATE

ACTIONS:

{

display prompit(“Press C lo transmit character. ")
length = sizeof(data) - 1;

}

70-12 JUL '90

70 Remote Port 11O

JUL '90

CONDITIONS: KEYBOARD “cC"

ACTIONS:
A
SJor(l = 0; i <length; i++)
{

characier = datafi}];
error = rmi_puic{character, 0);
if{errar == -I) '
display_prompt(“No space available In outpul gqueue. ");
else
displayf(“ %c”, character);

rmt_puts
Synopsis

extern int rmt_puts(string_ptr, wait);
const char * string_ptr;
int wait;

Description

This routine outputs a NULL-terminated string to the output queue of the
remote port.

Inputs
The first parameter is a pointer to the string to be transmitted.

If space in the output queue is not available for the string when rmt_puts is
called, the second parameter determines when the routine will return:

® Specify a timeout value in the hexadecimal range %% through "r"e (decimal 1
through 65534) to indicate how long the routine should wait for space in the
output queue to become available before returning. During this waiting
period, no other conditions and actions within the same state will be
execuled.

Before the timeout expires, as many characters as will fit are put into the
output queue. Timeout values represent tenths of a second. If there is
already a request from another task, this request will be queued,

® When the value is hexadecimal *¢"r, the routine does not return until space
in the output queue becomes available. If there is already a request from
another task, this request will be queued.

e When the value is zero and space is not available in the output queue, the
routine returns the number of characters, if any, put into the queue. If
another task is already waiting for access to the output queue, a zero value
also causes the remote-communications process to return from the routine
without checking for available space in the output queue.

70-13

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108 : |

70-14

NOTE: More than one test (task) may request to send data to
the output queue. The remote-communications processes queues
these requests as they are made. To ensure that requests to
output data are processed in turn, use this “wait" parameter
consistently across tests. If you set the parameter to a non-zero
value in a call to rmi_puts (rmt_putc or rmt_putb) in one test, do
the same in all tests.

Returns

This routine returns the number of characters put into the output queue.

Example

The following example is similar to the one given for rmt_putc. When the [
key is pressed, the fox message is sent to the remote port. The difference is
that the message is output to the remote port as a string (rather than character
by character). If the output queue is full, the routine does not wait for space to
become available before returning, The number of characters successfully
queued is displayed in the Display Window. If the number of characters queued
is less than the length of the string, a message to that effect is displayed on the
prompt line,

{
unsigned char data [] = "CFOXD%";
int count, length;
}
LAYER: 1
STATE: transmit_string
CONDITIONS: ENTER_STATE
ACTIONS:
{
display _prompi(“ Press § to transmit string. ");
length = sizeof(data) - 1;
}
CONDITIONS: KEYBOARD “sS™
ACTIONS:
{
count = rmi_puts(data, 0);
If(count I=length)
display_prompt{"Could not output enlire siring. ");
pos_curser(!,0);
displayf(“ %d characters transmitted."”, count);

rmt_putb
Synopsis

extern int rmt_putb(string_ptr, length, wait};
consi char ® siring_ptr; o
int length; (

int wait;

JUL '90

70 Remote Port 1O

JUL '80

Description
This routine sends a string of specified length to the output queue of the remote
port.

Inputs
The first parameter indicates the string to be output.
The second parameter is the length of the string to be output.

If space in the output queue is not available for the string when rm¢_putb is
called, the third parameter determines.when the routine will return:

® Specify a timeout value in the hexadecimal range %% through " (decimal 1
through 65534) to indicate how long the routine should wait for space in the
output queue to become available before returning. During this waiting
period, no other conditions and actions within the same state will be
executed.

Before the timeout expires, as many characters as will fit are put into the
output queue. Timeout values represent tenths of a second. If there is
already a request from another task, this request will be queued.

® When the value is hexadecimal %7, the routine does not return until space
in the output queue becomes available and all characters in the string have
been queued. If there is already a request from another task, this request
will be queued. |

® When the value is zero and space is not available in the output queue, the
routine returns the number of characters, if any, put into the queue. If
there is already an outstanding request from another task, a zero value also
causes the remote-communications process to return from the routine
without checking for available space in the output queue,

NOTE: More than one test {task) may request to send data to
the output queue. The remote-communications processes queues
these requests as they are made. To ensure that requests to
output data are processed in turn, use this “wait” parameter
consistently across tests. If you set the parameter to a non-zero
value in a call to rm¢ _putb (rm{_putc or rmt_puis) in one test, do
the same in all tests.

Returns

This routine returns the number of characters put into the output queue.

Example

This is the program that might be run to transmit the file received in the
rmt¢_gets example. The user specifies the filename and its size (shown in the
directory listing on the File Maintenance screen) in the two #define preprocessor
directives at the beginning of the program. When the program begins, the

70-15

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

contents of the file named echo_time are read into an array called data. When
the operator presses the [0 key, the contents of the array are transmitted and
displayed.

{

#define FILE LENGTH 4000
#define FILENAME “FD!iusriecho_time"
#include <stdip. h>
#include <trace_buf.h>
extern struct trace_buf I1_trbuf;
FILE * siream_ptr;
size_t n;
unsigned char data [FILE LENGTH];
unsigned char size {FILE _LENGTH+100};
int count;
)
LAYER: 1
STATE: transmit_string
CONCITIONS: ENTER_STATE
ACTIONS:
{
ift(stream_ptr = fopen(FILENAME, “r")) == 0}
display_prompt(“Cannot open file.”);
else
{
pos_cursor(l,0);
n = fread(data, 1, FILE LENGTH, stream_pir);
ifftn i= FILE_LENGTH}
displayf(“Either a read error has occurred, or an EOF has been
encountered, \n");
if(felose (stream_ptr) 1= 0}
displayf(“Elther file Is already closed, or close cannot be executed. \n");
else
displayf(“File closed.\n");
iftn == FILE_LENGTH)
display_prompt(“ Press T to transmil characters.”);

}

CONDITIONS: KEYBOARD “tT"

ACTIONS:

{
count = rmt_putb(data, FILE_LENGTH, Oxff};
if(count 1= FILE_LENGTH)

displayf(*Could not output entire string.\n"};

spriniffsize, “%d characters (ransmitted: % %. %dH"”, count, count);
tracef(&ii_trbuf, size, data);

tracef(&lI_trbuf, “\n\n");

}

rmt_flusho

Synopsis

extern int rmt_flusho();

70-186 ‘ _ JuL '90

70 Remote Port 11O

JUL '90

Description

If characters are queued to be output from the remote port, but have not been
transmitted yet, this routine causes them to be discarded. This ensures that
anything previously in the output queue port is deleted.

rmt_flusho is automatically executed when the INTERVIEW returns to Program
mode.

NOTE: A call to any of the routines which set the parameters of
the remote port causes rm¢_flusho to be executed automatically.
The routines which only get the current parameters of the remote
port have no effect on the output queue.

Returng

rmt_flusho returns a zero when the output queue is flushed successfully.
Otherwise, it returns a non-zero value.

Example

This example is the same as that for rm¢_putc. Notice that as the program
enters the first state, the output queue is flushed.

{
unsigned char data [} = “CFOXN";
unsigned char character’
int i, length, error;
}
LAYER: 1
STATE: transmit_a_character
CONDITIONS: ENTER_STATE
ACTIONS:
{
rmt_flushof);
display_prompt(“Press C to transmit character. o
length = sizeof(daia};
}
CONDITIONS: KEYBOARD “cC”
ACTIONS:
{
Jor(i = 0; i <length; i+t)
{
character = darafij;
error = rmi_putc(character, 0);

If{error ==-1)
{
display_prompt(“No space available in oulput queue. o H
break;
}
else

displayf(“%c", character);

70-17

INTERVIEW 7000 Series Acvanced Programming: ATLC-107-951-108

rmt_suspendo
Synopsis

extern int rmi_suspendo();

Description

If characters are queued to be output from the remote port, but have not been
transmitted yet, this routine causes transmitting to be suspended. The output
queue is not flushed. Use. this routine. only. when. the remote port handshaking
mode is full-duplex without flow control.

Returng
rm!_suspendo returns a zero when transmitting is successfully suspended.
Otherwise, it returns a non-zero value.

Example

When the INTERVIEW receives an X-OFF as a signal to stop sending data, it
suspends transmissions from the remote port.

{
extern event rmi_inpul_not_empty;
int character;
)
LAYER: 1
STATE: suspend_output
CONDITIONS: ENTER_STATE
ACTIONS:
{
rmi_lock(});
}
CONDITIONS:
{
rmi_input_nof_emply
}
ACTIONS:
{
character = rmt_getc(l);
if(character == 0x13)
rmt_suspendo();
}

TIMEQUT ck_fnput RESTART 0.001
CCNDITIONS: TIMEOUT ck_Input
ACTIONS:
{
character = rmt_gete(l);
if(character == 0x13)
rmi_suspendo();

)
TIMEOUT ck_input RESTART 0.001

70-18 JUL '90

70 Remote Port /O

JUL '80

rmt_resumeo

Synopsis

extern lnt rmt_resumeo();

This routine resumes transmission of characters from the remote port. Use this
routine only when the remote port handshaking mode is full-duplex without flow
control.

Returns

rmi_resumeo returns a zero when transmitting is successfully resumed.
Otherwise, it returns a non-zero value,

Example

When the INTERVIEW receives an X-ON as a signal to send data, it resumes
transmissions from the remote port.

{

int character;

)
LAYER: 1
STATE: resume_output
CONDITIONS: ENTER_STATE
ACTIONS:

{

rmi_tock();

}

TIMEOUT RESTART ck_input 0,001
CONDITIONS: TIMEOUT check_lnput
ACTIONS:

{

character = rmi_getc(1);
iffcharacter == 0x11)
rmi_resumeo(};

}
TIMEOUT ck_Input RESTART 0.001

rmt_send_break

Synopsis

extern int rmi_send_break(wait);
int wait;

ription

This routine causes a break, queued as other transmits, to be transmitted.

70-19

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

Loputs

If space in the output queue is not available for the break when rm¢_send_break
is called, the only parameter determines when the routine will return:

® Specify a timeout value in the hexadecimal range %% through e (decimal 1
through 65534) to indicate how long the routine should wait for space in the
output queue to become available before returning. During this waiting
period, no other conditions and actions within the same state will be executed,

If the break is successfully put in the queue, the routine returns zero.
Timeout values represent tenths of a second, If there is already a request
from another task, this request will be queued.

® When the value is hexadecimal *+*r, the routine does not return until space
in the output queue becomes available and the break has been queued. If
there is already a request from another task, this request will be queued.

® When the value is zero and space in the output queue is not available, the
routine returns -1, The break will not be in the queue. If another task is
already waiting for access to the output queue, a zero value also causes the
remote-communications process to return from the routine without checking
for available space in the output queue.

NOTE: More than one test (task) may request to send data to
the output queue. The remote-communications processes gueues
these requests as they are made. To ensure that requests to
output data are processed in turn, use this “wait” parameter
consistently across tests, If you set the parameter to a non-zero
value in a call to rmt_send_break (rmt_putc, rmt_puts or
rmi_puib) in one test, do the same in all tests.

Returns

If the break is successfully written to the output queue, the routine returns zero.
If no space is available in the output queue and the routine’s "wait" parameter
is zero or the timeout expires, a —1 is returned. When the parameter is zero, a
-1 also is returned if another task is already waiting for access to the output
queue,

Example
In this example, a break is transmitted each time the operator presses the space
bar.

LAYER: 1
STATE: transmit_break
CONDITIONS: KEYBOARD “ °
ACTIONS:
{

rmt_send_break(1);

}

70-20 JuL '90

70 Remote Port 1IQ

JUL '90

(C) Configuration Routines

The default confipuration for the remote port at boot-up is the following:

Baud rate = 1200
Bits/character = 8
Parity = None
Mode = Full-duplex

Use the: first four routines- discussed-below to change these settings. The
programmer’s reconfiguration of the remote port is not affected when the
INTERVIEW exits or re—enters Run mode,

A call to any of these sef routines causes rm¢_flushi and rmi_flusho to be
executed automatically before the parameter is set.

Use the remaining four routines to read the current parameter-setiings for the
remote port. These ger routines have no effect on the input and output gueues.

rmt_set_baud_rate

Synopsis

extern int rmi_set_baud_rate(speed);
int speed;

Description

This routine sets the baud rate for the remote port. The default value at
boot-up is 1200.

NOTE: A call to rm¢_set_baud_rate causes rmi_flushi and
rmi_flusho 10 be executed automatically before the baud rate is

set.

Inputs

The only parameter is the desired baud rate. Values that are muitiples of 300 in
the range 300 through 19200 are valid.

Returng

If the specified baud rate is valid and successfully set, zero is returned. If the
baud rate is valid, but not successfully set, —1 is returned. For an invalid baud
rate, the routine returns -2.

70-21

INTERVIEW 7000 Serles Advanced Progremming: ATLC-107-951-108

70-22

Example

In order for two devices to communicate with each other, they must be using the
same baud rate. When they are not the same, some devices send a break as a
signal for the other to adjust its baud rate. If the following example, the
INTERVIEW changes the baud rate for the remote port whenever a break is
received. .

{
extern event rmi_break;
int error;
int speed = 300;
}
LAYER: 1
STATE: adjust_baud_rate
CONDITIONS:
{

rmi_break

)
ACTIONS:

{

error = rmi{_sel_baud_rate(speed);
iferror 1= -1)

{
speed *= 2;
if(speed > 19200)
speed = 300;
)
else

displayf("Unable to set the baud rate to %d.", speed);

rmt_set_bits
Synopsis

extern fnt rmt_set_bits(value);
int value;

Description
This routine sets the number of bits per character for the remote port. The
default setting at boot-up is 8 bits/character.

NOTE: A call to rmt_set_bits causes rmi_flushi and rm¢_flusho
to be executed automatically before the number of bits/character

is set.
Inputs

The only parameter is the number of bits/character. Valid values are five
through eight.

JuL 80

70 Remote Port 110

JUL '80

Returns

If the specified number of bits/character is valid and successfully set, zero is
returned. If the number is valid, but not successfully set, -1 is returned. For
an invalid value, the routine returns -2.

Example

In this example, the number of bits/character for the remote port is set to 7 and
displayed on the Display Window screen.

LAYER: 1
STATE: set_paramoeters
CONDITIONS: ENTER_STATE
ACTIONS:

{
displayf("Bits = %d ”, rmi_set_bits(?});

rmt_set_parity

Synopsis

extern int rmi_sel_parity(parily};

int parity;

Description

This routine sets the parity for the remote port. The default setting at boot-up
is no parity.

NOTE: A call to rmt_set_parity causes rmi_flushi and
rmi_flusho 10 be executed automatically before the parity for the
remote port is set.

Inputs

The only parameter is a value designating the desired parity. Valid values are
the following: none (0), odd (1), even (2), mark (3), or space (4).

Returns

If the specified parity value is valid and successfully set, zero is returned. If the
value is valid, but not successfully set, —1 is returned. For an invalid parity
value, the routine returns -2.

Example

In this example, the number of bits/character for the remote port is set to 7 and
parity is even. Both settings are displayed on the Display Window screen.

70-23

INTERVIEW 7000 Series Advariced Programming: ATLC-107-851-108

70~24

LAYER: 1
STATE: set_parameters
CONDITIONS: ENTER_STATE
ACTIONS:
{

displayf("Biis = %d Parity = %d ", rmi_set_blis(7), rmt_sel_pariiy{2));
) .

rmt_set_mode

Synopsis

externt int rmi_set_mode(mode);
int mode;

Descripti

This routine sets the handshaking mode for the remote port. The default setting
at boot-up is FDX with no flow control.

NOTE: A call to rmt_sei_mode causes rmt_flushi and rmt_flusho
to be executed automatically before the mode for the remote port
is set.

Inputs

The only parameter i3 a value designating the mode. WValid values are the
following:

0 = Full-duplex with no flow control (FDX)

1 = Half-duplex (HDX)

2 = Full-duplex with X-ON/X-OFF characters for [low control

31 = Full-duplex with DTR and CTS EIA leads for flow control. Use a
special null-modem cable for direct connections. See Figure 70-1.

Chassis Ground i 1 Chassis Ground

™ 2 —1 3 AD
RD 3 = 2 ™

RTS 4 » 8 cD

cTs 5 [20 | bR

Grownd 7 7 Ground

cD 8 | 4 RTS

DTR 20 5 oTs

Figure 70-1 Null-modem cable connections.

JUL '80

70 Remote Port /O

Returns

If the specified mode value is valid and successfully set, zero is returned. If the
value is valid, but not successfully set, -1 is returned. For an invalid mode
value, the routine returns -2.

Example

In this example, the number of bits/character for the remote port is set to 7,
parity is even, and the mode is set for FDX with X-ON/X-OFF. All three
settings are displayed on the Display Window screen.

LAYER: 1
STATE: set_parameters
CONDITIONS: ENTER_STATE
ACTIONS:

{ .
displayf("Bits = %d Parity = %d Mode = % d ", rmt_set_bits(7),
rmt_set_parity(2), rmi_sei_mode(2));

)

rmt_get_baud_rate

Synopsis

exiern int rmt_get_baud rate();

Description

This routine gets the current baud-rate setting for the remote port.

Bg[g;rns

The baud rate for the remote port is returned.

Example

As the program begins, the current baud-rate setting for the remote port is
displayed on the Display Window screen.

LAYER: t
STATE: baud_rate '
CONDITIONS; ENTER_STATE
ACTIONS:
{
displayf("Baud = %d ", rmt_gei_baud rate()});

}

JUL '30 70-25

INTERVIEW 7000 Serigs Advanced Programming: ATLC-107-951-108

rmt_get bits

Synopsis

extern int rmi_get bits();

Descripti

This routine tells how many bits there are per character. Possible values are five
through eight.

Rgggrns

The current number of bits per character for the remote port is returned.

Example
In this example, the current baud-rate setting and the number of bits/character
for the remote port are displayed on the Display Window screen.

LAYER: 1
STATE: current_parameters
CONDITIONS: ENTER_STATE
ACTIONS:

{
displayf(“"Baud = %d Bits = %d ", rmi_get_baud_rate(), rmi_get_blts());

rmt_get_parity
Synopsis

extern int rmi_get parity();
Description
This routine gets the current parity setting for the remote port.

Lrn

The current humber of bits per character for the remote port is returned.

Example

In this example, the current baud-rate setting, number of bits/character, and the
parity for the remote port are displayed on the Display Window screen.

LAYER: 1
STATE: current_parameters
CONDITIONS: ENTER_STATE
ACTIONS:

{
displayf(“Baud = %d Bits = %d Parity = %d ”, rmi_gel baud_rate(),

rmt_get_bits(), rmt_gel_parity()};
}

70-26 JUL '90

70 Rernote Port IO

rmt_get_mode

Synopsis

extern int rmi_get_mode();

Descripti

This routine gets the current handshaking mode for the remote port.

Returns

The current handshaking mode for the remote port is returned:

0 = Full-duplex with no flow control (FDX)

1 = Half-duplex (HDX)

2 = Full-duplex with X-ON/X-OFF characters for flow control

3 = Full-duplex with DTR and CTS EIA leads for flow control Requires
a special null-modem cable for INTERVIEW-to-INTERVIEW direct
connections. Refer to Figure 70-1.

Example

In this example, the current baud-rate setting, number of bits/character, parity,
and handshaking mode for the remote port are displayed on the Display Window
screen.

LAYER: 1
STATE: current_parameters
CONDITIONS: ENTER_STATE
ACTIONS:
{
displayf(“Baud = %d Bits = %d Parity = %d Mode = %d ", rmi_get_baud_rate(),
rmt_get_bits(), rmt_gel_parity(), rmi_get_mode()};
}

JuL 'S0 70-27

INTERVIEW 7000 Series Advanced Progremming: ATLC-107-951-108

70-28 JUuL '90

71 _AUX Port IO

71 AUX Port /O

JUL '90 ' 71-1

INTERVIEW 7000 Serles Advanced FProgramming: ATLC-107-951-108

Bit Number

Transmitter's
AUX Port Lead
Configuration

Pln Number

Blt will be
used for

Bit Number

Recealver's
AUX Port Lead
Configuration

Pin Number

15 14 13 12 11 10 8 7 6 5 1 0
0 | | I | | Wy o} 041 0 o} O
16 14 12 10 8 6 2 15 13 11 3 1
C U U u U U C D D D D D
15 14 13 12 11 10 8 7 6 5 1 0
el | | I ! | O I | | | |
t6 14 12 10 8 6 2 16 13 11 3 1

0 Output/Non-control

| Input/Non-control

W Input/Control

c Control

D Data

u Unassigned

Figure 71-1 Sam'ple AUX port lead configuratiens for two INTERVIEWSs connected by their AUX
interfaces. Assume one-way dala transmisslon (i.e., one device is controlling the other).
JUL 'S0

71 _AUX Ponrt 1[0

71

AUX Port I/0

The Auxiliary (AUX) port is a “spare” interface through which the programmer may
communicate with other lab equipment, The AUX port is located at the rear of the
INTERVIEW, between the printer and RGB connectors. It is controlled by a Zilog CIO
(Counter/Timer, Parallel /nput/Output Unit) chip. The AUX port may be used as a serial or
parallel interface. When it is operated as a paralilel port, up to sixteen bits (one bit on each
of sixteen leads) may be transmitted simultanecusly,

AUX-port control must be coded in C regions on the Protocol Spreadsheet. There are no
spreadsheet-token equivalents of the C variables and routines described in this section.

A normal configuration of equipment using the AUX port will involve two INTERVIEWSs with
AUX port setups that mirror each other to some extent, as in Figure 7t-1. The transmitting
INTERVIEW will use one of its output leads as a “strobe" to signal to the receiving
INTERVIEW that an AUX word is available to be read. The receiver will detect this strobe
as an aux_change event.

The receiving INTERVIEW will use one of its output leads to acknowledge each AUX word
received. The transmitting INTERVIEW will detect this acknowledgment as an aux_change
event.

NOTE: The AUX port is not controlled by the same CPU that
handles the user program. The need for interprocessor
communication without data buffering makes rapid, successive
transmissions difficult to handle. It is recommended, therefore,
that control bits be set aside for flow control—a bit set by the
transmitter as input/control is set by the receiver as
output/non-control, and vice versa—and that every output word
be acknowledged before a succeeding word is output.

71.1 Variables

Table 71-1 lists the variables specific to AUX I/O operations. The fast-event
variable, aux_change, detects a change in a lead that has been configured as a
control lead. Any or all of the sixteen leads in the interface may be designated
control leads., Section 71.2 explains how to configure control leads.

71-3

JUL '90

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

aux_change does not establish which control lead(s) has changed. Two associated

variables, curr_aux_value and prev_aux_value, indicate the status of all sixteen leads.

These are two-byte (short) variables. Each lead is represented by a different bit in

the short. If the bit-value of a given lead is zero, the lead is on. If the bit-value is
: one, the lead is off,

Whenever a control lead changes, the value in curr_aux_value is written to
prev_aux_value. Then curr_aux_value is updated.

Table 71-1
AUX Port /O Variables

Type Variable Meaning

extern fast_event aux_change True when the status of a lead
deslgnated as control {and
input} changes. Is automatically
made to come true by the CIO
chlp as soon as leads have been
configured vla set_aux_direction
and sel_aux_ctl_feads routines,
Therefore, conditlon must be
togted agaln In a different state.
Line Setup configured for
emulate or monitor mode.

extern volatlle const unslgned short curr_aux_value Each bit deslgnates a different
lead. A bit-value of one
Indicates a glven lead Is on.
When vaiue of curr_aux_value ls
exclusive ored (") with
prev_aux_value, result Indicates
those leads whose status has
changed. Updated when
aux_change comeas true. Llne
Setup configured for emutate or
monitor mode.

extern volatite const unsigned short prev_aux_value Value of previous
curr_aux_value, Updated when

control leads change, but only
after logle has had a chance to
compare current and previcus
leads. Line Setup conflgured
for emulate or monitor mods.

JUL '90

71 _AUX Port I10_

71.2 Routines

JUL 'S0

In the examples for the following routines, assume that two INTERVIEW’s are
connected and that data flows in one direction.

CAUTION: You may damage the AUX interface If the same lead
is designaied as output on both units. We suggest that you set
the leads on each unit as input/output and controlinon-control
before you connect the AUX interfaces. See Figure 71-1.

set_aux_direction

Synopsis

extern void set_aux_direction{(input_or_output);
unsigned short input_or_output;

Description

This routine designates leads on the AUX port as input or output. Designated output
leads for the transmitter are set as input leads by the receiver.

Inputs

The only input is a sixteen-bit variable. Each bit in the variable designates one lead
and may be set to zero (output) or one {input).

Example

Both sides of the connection may be transmitter or receiver. But for simplification in
examples, let's designate only one side as the transmitter and the other as the
receiver. In this example, the transmitter sets all 8 bits of the low-order byte as
output bits for data, the low-order bit of the high byte as input (for handshaking),
the next 6 bits of the high byte as input (unused), and the high-order bit as output
(the receiver will designate this bit as input for handshaking).

LAYER: 1
STATE: set_lnput_leads
CONDITIONS: ENTER_STATE
ACTIONS:
{

set_aux_direction (0x7/00};
}

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

The other (receiver) INTERVIEW sets a bit as input (for handshaking). It must be
one that was designated as output by the transmitter, the highest-order bit of the high
byte. The data bits set as output by the transmitter must be set as input by the
receiver. The receiver's set_aux_direction routine would look like this:

LAYER: 1
STATE: set_fput_leads
CONDITIONS: ENTER_STATE
ACTIONS:

{

set_aux_direction(Oxfeff);
}

set_aux_ctl_leads
Synopsis

extern void sel_aux_ctl_leads(ctl_or_not);
unsigned short ctl_or_nol;

Description

This routine determines whether or not leads will be control leads. Control leads
must also be input leads, but input leads do not necessarily have to be control leads.
Output leads can never be control leads.

Inputs

The only input is a sixteen—bit variable. Each bit in the variable designates one lead
and may be set to zero (non-control) or one (control).

Example

Assuming the input/output bits set in the previous example, the transmitter sets all 8

_data bits (output) as non-control, the low~order input bit of the high byte as control

(for handshaking), the next 6 input bits of the high byte as non-control (unused},
and the high-order output bit as non-control (the receiver will designate this bit as
control for handshaking}.

LAYER: 1
STATE: sset_control_lsads
CONDITIONS: ENTER_STATE
ACTIONS:

{
sef_aux_ctl_leads(0x0100});

}

JUL 'S0

71_AUX Port IfO

JUL '90

The “receiver” INTERVIEW sets one input bit as control for handshaking purposes.
It must be one that was designated as output by the transmitter, the highest-order bit
of the high byte. The receiver's set_aux_ct!_leads routine would lock like this:

LAYER: 1
STATE: set_contrel_leads
CONDITIONS: ENTER_STATE
ACTIONS:

{
set_aux_ctl_leads(0x8000);

}

wrlte_aux .
Synopsis

extern vold write_aux(outpui_word);
unsigned short oulpul_word;

Description

This routine sends a combination of data, control, and (perhaps) unused bits as
output. Input bits are not transmitted by the CIQ.

Inputs

The only input is a sixteen-bit variable, Each bit designates one lead and may
represent data or control information, or be unused. If a given lead was designated
as a control lead, it is an input lead and the CIO will not transmit the status of the
bit in any case, so its setting of 1 or 0 does not matter. If the lead was designated as
a non-control lead, it might contain data, be unused, or contain an alternating value
to indicate acknowledgment (if the other side designated it as a control lead).

Example

The transmitting INTERVIEW is going to send data to the receiving INTERVIEW.
Before the next transmission can be sent, an acknowledgment must be received. The
acknowledgment is detected by the fast-event variable aux_change.

NOTE: The CIO chip automatically generates a true aux_change
condition when the set_aux_ct!_leads routine has been executed.
The aux_change condition, therefore, should be placed in a
separate programming state from the set_aux_ctl_leads routine.

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

- The transmitter's program might look like this:

LAYER: 1
{
extern fasi_event aux_change;
extern volatlle const unsigned short curr_aux_value;
volatile unsigned short curr;
unsigned short mask;
unsigned char data;

STATE: conflgure_loads
CONDITIONS: ENTER.STATE-
ACTIONS;

{
set_aux_direction (0x7f00);
sel_aux_cil_leads(0x0100);
curr = curr_aux_value;
data = 0x01;
mask = curr ~ 0x8000;
display_prompt(“Connect cable. Press spacebar to transmit,
pos_cursor(1,0);
}
NEXT_STATE: send_data
STATE: send_data
CONDITIONS: KEYBOARD “ *
ACTIONS:
{
if(data <= 10)

write_aux(mask | data);
displayf(“Transmission %d waiting for ACK,

)
NEXT_STATE: walting
STATE: walting
CONDITIONS: {aqux_change)
ACTIONS:
{
data+t;
mask = (mask ~ 0x8000);
displayf(“"ACK received: %04x Press spacebar to transmit.
}
NEXT_STATE: send_data
CONDITIONS: {data > 10}
ACTIONS:
{

display_prompt(“End of test.

")i

\n", data);

\n", curr);

")

JUL '80

71 _AUX Port 110

The receiver’s program would look like this:

LAYER: 1
{
exiern fast_event aux_change;
extern volatlle const unsigned short curr_aux_value;
volatile unsigned short curr;
unsigned short mask;
int count;

STATE: configure_leads
CONDITIONS: ENTER_STATE
ACTIONS:

{
set_aux_direction (Oxfeff);
set_aux_cil_leads{0x8000};
}
CONDITIONS: {aux_change)
ACTIONS:
{
curr = curr_aux_value;
ecunt = 1;
mask = curr * 0x0100;
display prompi(“Connecit cable. Ready lo receive,
pos_cursor(1,0);
}
NEXT_STATE: recelve_data

STATE: recelve_data
CONDITIONS: {aux_change}
ACTIONS:

{

displayf(“Transmission %d received: %Q4x Press spacebar to send ACK.

count, curr};

NEXT_STATE: sond_ack
CONDITIONS: {count > 10}
ACTIONS:

{
display_prompt{“End of tesi.

}

STATE: send_ack
CONDITIONS: KEYBOARD * "
ACTIONS:

{
if(count <= 10}

write_aux(mask);
countts;

mask = (mask " 0x0100};
}

}
NEXT_STATE: recelve_data

JUL '90

")

Wk

\n",

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

NOTE: If you designate more than one lead as control, you
might need to compare prev_aux_value with curr_aux_value to
determine if the lead you are interested in is the one that ‘
changed. Here, since there is only one input-control lead on
each side, the event aux_change is sufficient to signal and to
acknowledge transmission. ‘The value of prev_aux_value does not
have to be checked.

set_aux_reg

Synopsis

extern veid sel_aux_reg(reg_value_word);
unsigned short reg_value_word;

Description

The CIO chip may be reconfigured by the user via the sef_aux_reg routine.

NOTE: At present, the initial configuration of the Master
Interrupt Control Register is (0x0082). The initial configuration
of the Master Configuration Control Register is (0x0194).

Inputs

The only input is a sixteen~bit variable. The high byte is the CIO register number;
the low byte is the value to store in the register number. For register numbers and
their values, consult Appendix B in Zilog's Z8036 Z-CI0/Z28536 CIO Counter{Timer
and Parallel 10 Unit Technical Manual, March 1982,

xampl

The Master Configuration Control Register allows for selective enabling/disabling of
the CIO ports. Port A's input/output is reflected in the least—significant byte of
reg_value_word. Port B's input/output is reflected in the most-significant byte of
reg_value_word.

NOTE: Port C of the CIO chip is used internally and is not
available to the user of the INTERVIEW.

71-10 JUL '90

71_AUX Port /O

Suppose you want to disable port B input, output, and interrupts (ports A and C
enabled) in one state, and in another state restore the original configuration (ports A,
B, and C enabled):

LAYER: 1

STATE: recenflgure_chip
CONDITIONS: ENTER_STATE
ACTIONS:
{
set_aux_reg(Ox0114});
}

STATE: restore_original.config
CONDITIONS: ENTER_STATE
ACTIONS:

{
set_aux_reg(0x0194);

JuL 80 71-11

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

71-12 ' JUL 90

72 Other Library Tools

72 Other Library Tools

The C structures, variables, and routines-in this section provide additional programming tools
not specific to any particular protocol. Most of these tools approximate layer-independent
conditions or actions. Refer to Section 30 for more detailed explanations of the purposes of
specific conditions and actions. Sometimes the name of the variable or routine is sufficient
for identifying its related spreadsheet token. When this is not the case, the information is
provided below.

721

JuL 'g0

Structures

Use the structures ¢m, crnt_tm, and prev_tm listed in Table 72-1 to monitor the
current and previous date and time. Each minute the values in crn¢_tm are copied
to prev_tm. Then cra¢_tm is updated. These structures are used to produce the
date/time displays at the top of Run-mode screens and the Date/Time Setup screen.

The variables flag_struct.prev, flag_struct.current, and flag_struct.old (in the
Jlag_struct structure) are used each time a flag is incremented, decremented, or set
to a particular value. The current, previous, and old values these variables represent
work the same way as their counterparts in the counter structure, discussed fuily in

Section 65.1(A).

NOTE: The purpose of flags is to make it easy for the user to
isolate selected bits in a variable, The translator does most of the
work of flags by taking the user’s flag masks and coding them in
C. Flags constructed entirely in C bypass the translator and
require the programmer to create the flag-mask code normally
generated by the translator.

Before using the timeout routines included in this section, declare an instance of the
timeout structure shown in Table 72-1. Refer to the timeout_restart_action and
timeout_stop_action routines for examples of how to use this structure.

The keyboard structure stores the value of the most recent ASCII key used. The
structure variable keyboard.value is updated only by the fast-event variable

keyboard_new_key.

72-1

INTERVIEW 7000 Serfes Advanced Programming: ATLC-107-951-108

Table 72-1
Structure Fields—Other Library Tools

Type

Variable

Value (hex/decimal)

Meaning

Structure Name: keyboard

char value
Structurg Name: tm

Int tm_sec

int tm_min

Int tm_hour
int tm_mday
Int tm_mon
Int tm_year
Int trm_wday
int tm_yday
Int tm_lsd'st
tructure N : ernt_tm
tructure Name: prev_tm
tructure Name: flag_struct
unsigned short prev
unsigned short current
unsigned short old

72-2

0-3b/0-59

0-3b/0-59
0-1710-23
i=-11ti-31
0-bi0-11

0-6

0-16d/0-365

Declared as type extern struct, Declared
automatlically If program KEYBOARD condltion [s
used. Updated by keyboard_new_key event
variable. Refaerence the structure varlable as
follows: keyboard.value.

- ASCII value of key just executed,

Structure of time of day. Declared as type
extern struct!. Reference a structure variable as
follows: tm.tm_sec.

Seconds after the minute. Not currently
updated; always set to -1.

Minutes after the hour.

Hours since mldnlghy.

Day of month.

Months since January.

Years since 1900.

Days sinoe Sunday. Not currently updated;
always set to -1.

Days since January 1. Not currently updated;
always set to -1,

. Daylight Savings Time flag. Not currently

updated; always set to -1.

Structure of current time of day. Updated every
minute. Declared as type extern struct tm.

Structure of previous time of day, one minute
aqgo. Declared as type extern struct tm.

Structure of a flag. Declared as type struct.
Declared automatically if a program flag Is used.
Program flags assigned to structure as follows:
struct flag_struct flag_name. Reference a
structure varlable as follows: flag_name,current.

When converting a flag action to C, the translator
compares prev with current to determine
whether fiag has changed. Then prev is updated
to current and flag_name_change (s signaled.

This value of flag is acted on directly by program
actlons.

When converting a flag condition to C, the
translator comparses old with curraent to
determine whether true condition s new
{transitlonal). After program logic has examined
flag, oid Is updated to prev.

JUL '80

72 Other Library Tools

Table 72-1 (continued)

Type

Variable Value (hex/decimal) Meaning

Structure Name: timeout Structure of a timeout. Daclared as type struct.

unsigned long

unsigned short

Declared automatically If a program timeout Is
used. Program timeouts assigned to structure
as follows: struct timeout name. Reference a
structure varlable as follows:
timeout_name.event_id.

event_td Four bytes of a 6-byte timeout, containing the

segment number and offset.
Timeout_name_stop routines set this event id to
zero,

event_|d_uld Two bytes of a 6-byte timeout which unlquely

identify (uld) the timeout. Do not try to assign a
value to thls varlable.

72.2 Variables

All of the variables in Table 72-2 are valid in either emulate or monitor mode.

JuL '80

(A)

(B)

Monitoring Events

The event variables in Table 72-2 are fevar_time_of day, flag_name_change,
timeout_name_expired, signal_name, keyboard_new_key, and
keyboard_new_any key.

Event variable fevar_time_of_day comes true once a minute. An example of
how to use this variable is provided in Section §7.1. This event variable is part
of the spreadsheet TIME condition.

The event variable keyboard _new_key is used by the translator in a spreadsheet

KEYBOARD condition. I comes true when any ASCII key is pressed. The event
keyboard_new_any_key, on the other hand, comes true when an ASCII or other
keyboard key is pressed. The only keys which will not trigger this event are [er],

| ﬂnd '

Status Variables

Status variables are those in Table 72-2 that do not include event in the Type
column. Their associated event variables guarantee that they are updated and
tested. '

Time and date variables are updated by fevar_time_of_day. Variables
crnt_time_of_day, prev_time_of_day, crni_daie_of day, and prev_date_of_day
are older versions of variables that belong to the crnt_tm and prev_tm structures.
The C translator uses these older versions when it construct time-of-day
conditions (e.g., CONDITIONS: TIME 1614).

The status variable keyboard _any_key is updated by the fast-event variable
keyboard_new_any_key.

72-3

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

Table 72-2
Other Library Variables

Type

Variable Value {hex/decimal) Meaning

extern fast_event

extern event

extern event

oxtern event

extern volatile unsigned short

extern volatlle unsigned short

extern volatlle const unsigned char

extern volatlle const unsigned char

extern fast_event

72-4

fevar_time_of_day

flag_name_change

timeout_name_explred

signal_name

crnt_time_of_day 0-93710-2359
prev_time_of_day 0-937/0-2358
crht_date_of_day 1-1111-31
prev_date_of_day 1-1H1-31

keyboard_new_key

True once per minute. Llne
Satup configured for emulate or
monltor mode.

This event must be signaled by
the program itself; it Is not
“axternal” to the program. The
translator signals thls event as
part of the FLAG Incremaent,
decrament, or set actlon. Line
Setup conflgured for emulate or
monltor mode.

This event must be signaled by
the program Itseif. it Is not
“external” to the C program.
The translator signals this event
as part of the
timeout_restart_action routine,
Line Setup configured for
smulate or monitor mode.

True when the named signal ls
the argument In a signal routine.
Spreadsheet-token equivalent is
ON_SIGNAL name. Line Setup
configured for emulate or
monitor mode.

Current time s stored In this
variable. Updated as soon as
time changes. Line Setup
configured for emulate or
monitor mode.

Current time Is stored in this
variable. Updated when time
changes, but only after loglc
has had a chance to compare
current and previous time. Line
Setup conflgured far emulate or
monltor mode.

Current date Is stored In this
varlable. Updated as soon as
date changes. Line Setup
conflgured for emulate or
monltor mode,

Current date is stored In this
varlable. Updated when date
changes, but only after logic
has had a chance to compare
current and previous date. Line
Setup conflgured for emulate or
monltor mode.

True when any ASCIl key Is
pressed. Line Setup conflgured
for emulate or monitor mode.

JUL '80

72__Other Library Tools

Table 72-2 (continued)

Type

Variable Value (hex/decimal) Meaning

extarn fast_event

extern volatile unsigned short

JUL '90

keyboard new_any_key

keyboard_any_key

0-7f10-127
80-1711
128-383

180/384
1817385
182/386
1837367
184/388
185/389
186/390
187/391
16a/394
16b/395
18c/396
18d/397
180/393
1817399
190/400
1917401
1927402
193/403
1947404
195/405
196/406
187/407
1968/408
198/409
19a/410
19b/411
19c/412
19d/413
196/414
10d/269
1a0/416
1ai/417

(keyboard_any_key variable continued on next page)

True when any key Is pressed.
The only exceptlons are [e],
(B8], and . Line Setup

configured for emulate or
monitor mode,

Identiflas last key or
key-combination executed. Line
Setup conflgured for emulate or
monltor mode.

ASCIl keys

not used
Flald entry keys:

EBEEEE

]

NEEEEEEBE0EE FE

BEEEEERENEEEEEREERARERE

fH

g
HH

72-5

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

Table 72-2 (continued)

Type Variable Value (hex/decimal) Meaning
{keyboard_any_key continued) Editing Keypad Keys (cont):
122/418 iy '
1a3/419
1a4/420 75|
1a5/421
1a6/422 [em) - (D
1a7/423 freorn) (3T
1a8/424 (o) -EEEY
1297425 oo =5
1aa/426 [om])- {55
1ab/427 (om)-CF
1ac/428 [em]-FRTH
1ad/429 femd)- B9
Utiiity Keys
1b0/432 oo
1b1/433 (w}
1b2/434
163/435 fuvg
1b4/436 joncz]
1b5/437 g
1b7/439 [pma}
1b8/440 (9]
1ba/d42 0
1bb/443 E=-0
1bc/444 [=)-0
1bd/445 [Fer) - freonnd
1be/446 o] - froannd
1bf/447 {em1)- (]
1¢0/448 (o)~ (o]
1017449 (perr)-[1ona]
1¢2/450 [em]- [towe]
1¢3/451 [rr) [}
1c4/452 [em])-[aam]
1657453 [- frrexz)
1c6/454 {em] - [ree)
107/455 =
1c8/456 E =
109/457 [eor)-[e=n)
1ca/458 fem]-{eon]
1cb/459 CREED]
1cc/460 [cm]-[rmm)
1cd/461 (o) [re]
1ca/462 [em]—[x0]

(keyboard_any_key variable continued on next page)

72-6 JUL 'S0

72 Other Library Tools

Table 72-2 {continued)

Type

Variable Value (hex/decimal) Meaning

JUL '90

(keyboard_any_key continued}
1d0/464
1d1/465
1d2/466
1d3/467
1d4/4686
1d5/469
1d6/470
1d7/471
1dB/472

1d9/473
ida/474
1db/475
1dc/476
1dd/477
1de/478

100/480
1o01/481
1e2/482
1e3/483
1e4/484
1e5/485
1e6/486
1e7/487
1e8/488
169/489
10a/490
1eb/491
16c/492
1ed/493
fee/404
1e1/495

1f0/496

1f1/497

112/498

1f3/499

114/500

Pure Cursor Keys (conl):

2®

UE DM @@ 3R k3]

BEEEEEEHANR PRE®

Cursor Keypad Keys:
fund

(o] -fq
[ED)
[rerr)-[me)
[5:83)
G2

(o] —fund
(om]-{e)
(o) [E5)
[end- ()
{eert)- ()
[em]- (85
()- (D)
fem)-(80)
() (5
fem]- (F220)
(o) (82
EAREL

(keyboard_any_key varlable continued on next page)

72-7

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

. Table 72-2 (continued)

Variable Value (hex/decimal) Meaning

Q
=
@
=
x
©
%

(keyboard_any_key continuegd)
115/601
116/502
1¢7/503
118/504
1f9/505°
1fa/506
1fo/507
110/508
188/392
189/393
11d/509

IBEHED

IOEEEE
OUREERMRNEBREEE

72-8

72.3 Routines

timeout_restart_action

Synopsis

extern void timeout_restari_action (timeout_name_ptr, value, function);
struct * timeout_name_pir
{
unsigned long event_id;
unsigned short event_id_uid;
);
unsigned short value;
vold function ();

ripti

This routine starts a named timeout timer running down, starting at a specified value,
When the timer reaches zero, a named function is called, The
timeout_reslart_aétion routine, preceded by a call to the timeout_stop_action routine,
is the equivalent of the softkey TIMEOUT name RESTART action on the Protocol
Spreadsheet.

Inputs

The first parameter is a pointer to the timeout structure, See Table 72-1 for further
explanation of the timeout structure.

The second parameter is the starting value of the timeout timer in milliseconds.

JUL '90

-

72 _Other Library Tools

JUL 'S0

The third parameter is the name of a routine to be called when the timeout expires.
The routine may include the following statement: timeout_name.event_id = 0;.
Timeout-stop actions set this event 1D to zero. This action is not strictly necessary
here, since the timeout has already expired; but the action may make the processing
of subsequent stop actions slightly more efficient.

The body of the routine to be called may also include this statement:
signal(timeoui_name_expired);. In a softkey-entered TIMEQUT RESTART acticn, both
statements are included in a routine called timeout_name_isp.

NOTE: The routine named in the third parameter is an interrupt
service process {isp). A long definition for this routine makes the
processing of timeout_restart_action unpredictable.

Example

When a frame is sent, start a timeout timer at 2 seconds. When it expires, sound
the alarm. If another frame is sent before the 2 seconds expires, stop the current
timer and restart the timeout.

{
struet timeout
{
unsigned long event_id;
unsigned short eveni_id_uid;
b
struct timeout timeout_example;
extern event timeout_example_expired;
void timeoui_example_isp ()}
{
timeout_example.event_id = 0;
signal (timeout_example_expired);

)

}
LAYER: 2
STATE: example_of_timeout
CONDITIONS: FRAME_SENT
ACTIONS:

{
timeout_stop_action(&timeout_example);
{imeout_restart_action{&timeout_example, 2000, timeout_example_{sp};

)
CONDITIONS:

{
timeoutl_example_expired

)

ACTIONS: ALARM

Here is a version of the program that accomplishes the same result without an action
to signal the timeout event:

72-9

INTERVIEW 7000 Serfes Advanced Programming: ATLC-107-951-108

72-10

{

struct timeout

{

unsigned long event_id;
unsigned short event_id_uld;
b
struct timeout timeout_example;
extern void sound_aiarm();

}
LAYER: 2
STATE: example_of_timeout
CONDITIONS: FRAME_SENT
ACTIONS:

{
timeout_siop_action(&timeout_example);
timeout_restart_action{&timeout_example, 2000, sound_alarm);

}

timeout_stop_action
Svynopsis

extern void timeout_stop_action(limeout_name_ptr);
Struct * timeout_name_ptr

{
unsigned long event_id;
unsigned short eveni_id_uid;

}l
Description
This routine stops a named timeout timer, preventing it from expiring. The softkey
equivalent of this routine is the TIMEOUT name STOP action on the Protocol

Spreadsheet. timeout_stop_action also precedes the call to the timeout_restart_action
in the spreadsheet TIMEOUT name RESTART action,

Inputs
The only parameter is a pointer to the timecu! structure., See Table 72-1 for further
explanation of the timeout structure,

Example

In this example, if the user presses the (S key, the timeout timer will not expire and
the alarm will not sound (until another frame is sent and the timeout is restarted).

{

struct timeout

{

unsigned long event_id;
unsigned short event_id_uid;
}’.
Struel timeou! timeoul_example;
extern void sound_alarm();

}

JUL '90

72_Other Library Tools

JUL '80

LAYER: 2
STATE: stop_a_timeout
CONDITIONS: FRAME_SENT
ACTIONS:

{

timeout_stop_action(&timeout_exampile);
timeout_restart_action(&timeoul_example, 2000, sound_alarm);

}
CONDITIONS: KEYBOARD "Sg”
ACTIONS:

{

timeout_stop_aciion(&ilmeoul_example);

}

Index
Synopsis
extern char * index(siring, character);
char * sirlng;
e¢har character;
ription
This routine searches for an instance of a character starting at the beginning of a

specified list. The routine is used by the C translator to convert CONDITIONS:
KEYBOARD softkey entries into C. This routine must be declared.

Inputs
The first parameter is a list of characters to be searched.

The second parameter is the character to be searched for in the list.

Returns

This routine returns a pointer to the first instance of the specified character, or zero
if it does not occur.

Example

In the example below, the following test is established: when a key is pressed on the
keyboard, search for a match to the keyboard character in the string “ abc ™. If it is
found, sound the alarm.

{

extern char * index(};
extern fast_event keyboard_new_key;
extern Struct keyboard

{

char value;

h;

extern struct keyboard keyboard;

}

72-11

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

72-12

LAYER: 1
STATE: Index_example
CONDITIONS:

{
(keyboard_new_key && Index(“ abec ™, keyboard. value)}

)
ACTIONS: ALARM

Let’s suppose that the user presses the space bar. In this case, the returned pointer
will be pointing to the blank preceding the “a.” If rindex had been used, the
returned pointer would be pointing to the blank following the “c.” As long as any
non-null character is returned, the condition is frue. '

rindex

Synopsis
extern char ® rindex(siring, characier);

char * string;
char character;

Description

This routine searches for an instance of a character starting at the end of a specified
list, This routine must be declared.

Inputs
See index.
Returns

See /ndex.

Example

See index.

load_program

Synopsis

exiern void load _program(filename_pir)
const char * filename_pir;

Description
The load_program routines allows you to link programs together while the unit is in

Run mode. When a call to Joad_program is encountered in a spreadsheet program,
the current program is exited. The program named as the argument in the routine Is

JUL 'S80

72 Other Library Tools

JUL '90

loaded and run. When you return to Program mode, the program displayed on the
Protocol Spreadsheet will be the one just loaded. If load_program fails, you are
returned to the main menu screen in Program mode.

Inputs

The only input is the absolute pathname, preflixed by the device name, of the file to
be loaded. Valid device names are “HRD,"” “FD1,” and “FD2."”

Example
In the example below, at the successful conclusion of the last of a series of tests in
module 18, a program for module 19 will be loaded and run.

LAYER: 3
STATE: tost_26
CONDITIONS: ENTER_STATE
ACTIONS: SEND DIAG
CONDITIONS: RCV CLEAR_CONF
ACTIONS: TRACE “Test_26 passed”

{
load_program (¥ FD1iusrtmodule_I19");

}

lock
Synopsis
#include <stdio.h>

extern void lock (lock_variable_pir);
int * lock_variable_ptr;

Description

The lock routine implements a lock using the integer variable pointed to by the
routine parameter. If the lock variable is currently locked, the task goes to sleep.
When an unlock on the same variable occurs (within an independent task), the task
invoking the lock function will attempt to claim the lock. If successful, the task is
executed; otherwise, it goes back to sleep until the next unlock.

NOTE: If locking is used at any place in the program, all related
or possibly concurrent routines must also use the locking

functions.

NOTE: The lock variable should always be defined as a global
integer, never as local to a function. The lock variable should
never be altered by the user program or deadlock ¢an occur.
Deadlock also results if the lock is invoked twice within the same
task without an intervening unlock.

72-13

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108 (

Inputs

The only parameter is a pointer to the lock variable,

Example

Two tasks concurrently write to their own file streams. (The file streams are local to
the routine write_fox, making them independent of each other even though they have
the same name.) However, during the fclose operation (which automatically calls
Jflush), both tasks need to write to the same file. The locking routines ensure that
the writes to the file occur sequentially, not concurrently.

{

#Hinclude <stdio.h>

const char data [} = “UFOXD\n";
int key;

vold write_fox(}

FILE * stream_ptr;
size_t n;
lock (&key);
if{(stream_ptr = fopen(“FD2iusribuffol"”, "a")) == @) o
display_prompt(“Cannot open file. "); (
else ’
disptay_prompt("File opened. WH
n = fwrite(data, 1, sizeof{data}~1, stream_pir);
pos_curser(1,0);
iftn 1= (sizeof(dala)-1})
displayf(“Write error, \n");
else
displayf(“Write completed. \a");
if(felose(stream_plr} 1= 0) ‘
displayf(“Either file is already closed, or close cannot be executed. ");
else
displayf(“File closed. V)i
unlock{&key);
}
)
LAYER: 1
TEST: a
STATE: write_and_signal
CONDITIONS: RECEIVE STRING “THE QUICK BROWN FOX”
ACTIONS: SIGNAL xyz .
{
write_fox();
}
TEST: b
STATE: wrlte_only
CONDITIONS; ON_SIGNAL xyz
ACTIONS:
{
write_fox(); (
} \

7014 JUL '80

72 _Other Library Tools

JUL '90

unlock
Synopsis
#include <stdlo. h>

extern vold unlock(lock_variable_ptr);
int * lock_variable_ptr;

Description
The unlock routine implements the inverse of the lock routine using the same integer

variable. Sleeping tasks will be. woken up .ta.retry their attempt to claim the lock.
One will succeed, and the rest will go back to sleep. See also fock routine.

Inputs

The only parameter is a pointer to the lock variable.

Example

See lock routine.

signal
Synopsis

extern void signal(signal_name};
D Stion
This routine conveys instructions to other tests and layers where conditions are

monitoring the signal by name. The softkey equivalent of this routine is the SIGNAL
action on the Protocol Spreadsheet.

Inputs

The only parameter is a name descriptive of the event being signaled.

Example

LAYER: 2
STATE: signal_routine
CONDITIONS: RCY FRMR
ACTIONS:
{
signal(signal_link_down);
}
CONDITIONS: ON_SIGNAL link_down
ACTIONS: ALARM

Here is a related example, this time with the signal detection also given in C. Note
that a signal automatically generates an “event” that can be detected alone in a
waitfor clause.

72-15

INTERVIEW 7000 Serias Advanced Programming.: ATLC-107-951-108

72-18

{

extern even! link_down;

)
LAYER: 2

STATE: slgnal_event
CONDITIONS: RCV FRMR
ACTIONS:

{
signal(link_down);

}
CONDITIONS:

{

link_down

}
ACTIONS: ALARM

sound_alarm
Synopsi

extern void sound _alarm();
Description

This routine will sound the alarm. The softkey equivalent of this routine is the
ALARM action on the Protocol Spreadsheet.

Example

When a bad BCC is detected on the DTE side of the link, sound the alarm.

LAYER: 1
STATE: example
CONDITIONS: DTE BAD_BCC
ACTIONS:

{

sound_alarm();

}

start_rcrd_play
Synopsis
extern void start_rcrd_play();

Description

Depending on the Line Setup configuration, this routine activates data rgcording or
playback. If the Line Setup menu shows Mode: Source: , the
routine controls playback. In all other cases, it initiates recording.

JUL 90

72 Other Library Tools

Unless your recording source is RAM, make a call to fclose in programs containing
disk I/0O routines (Section 68) before you start to record (or resume playback). If
you don't, the file will be closed automatically as soon as recording (or playback)
begins, even if processes on the file have not been completed. (Using the = key to
activate recording or resume playback will have the same effect.)

Example

LAYER: 1
STATE: example
CONDITIONS: KEYBOARD “ "
ACTIONS:
4
start_rerd_play();
}

suspend_rcrd_play
Synopsis

exiern vold suspend _rerd _play();
Description

Depending on the Line Setup configuration, this routine suspends data recording or
playback. If the Line Setup menu shows Mode: Source: [k, the
routine controls playback. In all other cases, it suspends recording. Once recording
or playback is suspended, resume it with a call to start_rcrd_play.

Unless your recording source is RAM, do not call disk I/O routines (Section 68) until
you suspend recerding (or playback). If you do, the disk I/O operation will fail.

NOTE: Although playback is immediately suspended when
suspend_rcrd_play is executed, the screen display continues until
the character buffer's contents are fully displayed. {For
bit~image data, the FIFO must empty.) At slower playback
speeds, you may notice a slight delay before the display actually
freezes.

Example

LAYER: 2
STATE: example
CONDITIONS: KEYBOARD - ©
ACTIONS:
{
suspend_rerd_play():
)

JUL '90 72-17

INTERVIEW 7000 Serles Advancsd Programming: ATLC-107-951-108

72-18

send_key
Synopsis

extern void send_key(number_of keys, keys_ptr);
unsigned char number_of _keys;
unsigned short * keys_ptr;

Descripti

This routine sends a specific keystroke (or sequence-of keys) during Run mode, as
though the operator pressed the key. It also may be used to change the Run-mode
display.

Inputs
The first parameter specifies the number of keys to be sent,

The second parameter is a pointer to an array of shorts. This array lists the Keys to
be sent. To send keyboard keys, use the values listed in Table 72-2 for the
keyboard_any_key variable. To change the Run-mode display, send two keys. The
first "key"” always has a value of Oxff75. The second “key” identifies the desired
display-screen. Use the values listed in Table 64-1 for the crnt_display_screen
variable.

xampl

For this example, assume you are playing back data from a disk and that the initial
Run-mode screen is the dual-line data display. After a five-second pause, playback
is slowed as though you pressed (. As soon as a bad BCC is detected on the DTE
side, the data display wilt change to the Layer 2 Protocol Trace screen.

{
unsigned short keys [} = {0xff75, 0x42);
unsigned short siow_down [] = {Ox1d¢};
}
LAYER: 2
STATE: change_dlsplays
CONDITIONS: ENTER_STATE
ACTIONS: TIMECUT pause RESTART 5
CONDITIONS: TIMEOUT pause
{
send_key(1l, slow_down);
)
CONDITIONS: DTE BDBCC
ACTIONS:
{
send_key(2, keys});
)

JUL '90

_72_Other Library Tools

surrender_cpu
Synopsis

extern void surrender_cpu();
Description

This routine surrenders the CPU, placing the calling task onto the end of the ready
queue. If no other tasks are currently ready to run, this routine returns.

Use surrender_cpu only when executing C code which started as part of an
ENTER_STATE condition. It is useful in programs containing a task that only performs
computations (i.e., no I/O operations like disk accesses). Make a call to
surrender_cpu to give other tasks on the same CPU a chance to run.

Example

In the following example, one task on a CPU waits on a rcvd_frame event variable in
order to count frame types. For each of the different frame types, another task
displays the value of the counter. Without a call to surrender_cpu, the display task
would monopolize the CPU, preventing the frame-counting task from running.

{
extern event revd_frame;
extern volatile const unsigned char revd_frame_type;
unsigned short frame_type_count{256};
veid display_frame_type_count()
|
pos_cursor(7,12);
displayf(" % 3u", frame_type count|0];
pos_cursor(7,22);
displayf("“ % 3u”, frame_type_count{l};

/* ... Continue 1o position and display count for each frame lype */

}
LAYER: 2
TEST: display_frame_types
STATE: only
CONDITIONS: ENTER_STATE
ACTIONS:
{
pos_cursor(3,23);
displays(* FRAME COUNTS BY TYPE");
pos_cursor(5, 11);
displays("INFO RR RNR REJ Y H
while(l)
{
display_frame_type_count();
surrender_cpu();
}
)

JUL 90 72-19

INTERVIEW 7000 Serles Advanced Programming: ATLC-107-951-108

TEST: count_frame_types
STATE: only

CONDITIONS:
{
revd_frame
)
ACTIONS:
{
t+frame_type_count{rcvd_frame_type};

}

72-20 JUL '90

