73 X.21 Library

The Test Interface Module (TIM) located in the rear of the INTERVIEW determines the leads available for monitoring and control (Section 12). The variables and routines in this section apply to the X.21 interface module. RS-232, V.35, and RS-449 modules are treated in Section 63.

To use the C variables and routines explained in this section, you must select Buffer Control Leads: SES on the FEB Setup menu. See Section 9.1(B). If no other source for clock is provided, use internal clock (Line Setup menu). Finally, load in the X.21 package via the Layer Setup screen.

The variables and routines approximate X.21 Layer 1 spreadsheet-generated conditions and actions. Their use on the Protocol Spreadsheet is not limited to any particular layer, though normally they belong at Layer 1. Refer to Section 35 for more detailed explanations of the purposes of specific conditions and actions. Sometimes the name of the variable or routine is sufficient for identifying its related spreadsheet token. When this is not the case, the information is provided below.

73.1 Structures

Use the structure $xmit_list$, shown in Table 73-1, when transmitting line data via the $x21_transmit_call$ routine. Refer to $x21_transmit_call$ in Section 73.3(A) for an example of how to use this structure.

Турө	Variable	Value (hex/decimal)) Meaning
<u>Structure Nam</u>	<u>ne:</u> xmit_list		Structure of a transmit list for x21_transmit_call routine. Declared as type struct. Declared automatically if a softkey-entered CALL_SETUP_SEND action is taken. Reference member variables of the structure as follows: xmit_list.string_length
unsigned char *	string		pointer to the location of the transmit string—the transmit string is declared separately
unsigned short	string_iength	0-11110-65535	length of the transmit string

Table 73-1 X.21 Structures

73.2 Variables

With an X.21 TIM installed, you may monitor the T and R data leads, the C and I control leads, and UA. See Table 73-2.

The fast-event variable *fevar_eia_changed* detects a change in leads. It does not establish which lead(s) has changed, nor the validity of the lead's status. Two associated status variables, *current_eia_leads* and *previous_eia_leads*, indicate the condition of the leads. These are two-byte (*short*) variables. Each lead is represented by a different bit in the *short*. Table 73-2 provides the mask that can be used to isolate each lead.

Other bits in these variables monitor the validity of lead status. For the status of a lead to be considered valid in X.21, the lead must be stable for a minimum of 16 bit-times. Each lead's valid status is indicated by a separate bit in *current_eia_leads* and *previous_eia_leads*. Again, refer to Table 73-2.

Whenever a lead changes, the value in *current_eia_leads* is written to *previous_ela_leads*. Then *current_eia_leads* is updated.

(A) Masking To Detect a Change in a Given Lead

To test whether or not a given lead changed, I for example, while disregarding its status, enter the following condition on the Protocol Spreadsheet:

CONDITIONS:

fevar_eia_changed && ({(current_eia_leads ^ previous_eia_leads) & 0x40) == 0x40) }

Select a mask value from the list in Table 73-2 to indicate which lead you care about. Specify multiple leads with a mask derived via hexadecimal addition.

The mask for I is 0x40. In the example, the event fevar_eia_changed updated current_eia_leads. The new current_eia_leads was bitwise-exclusive-ORed with previous_eia_leads to identify all the leads that changed. Then the result was bitwise ANDed with the I mask to determine if I was among the leads that changed. If this result was equal to the mask, the lead changed.

Following the evaluation of the condition, *previous_eia_leads* was updated to match *current_eia_leads*.

.

Туре	Variable	Value (hex/deci	mal) Meaning
extern fast_event	fevar_ela_changed		True when the status changes for an EIA lead. Line Setup configured for emulate or monitor mode.
extern const volatile unsigned short	current_ela_leads	2 4 8 10/16 40/64 80/128 100/256 200/512	C-valid B (RS-232 mapping is SQ) I-valid (RI) R-valid (DSR) T-valid (DTR) I (CTS) C (RTS) R (RD) UA T (TD)
		·	A value in this list indicates which lead(s) you care about. When anded (&) with current_eia_leads, the result equals zero if the lead is on (of the mask if the lead is off). F validity checks, the result of anding with current_ela_leads equals the mask for valid (or zero for invalid).
			Examples:
			STATE: c_on_and_valid { If ((current_ela_leads & 0x8 == 1) sound_alarm(); }
			STATE: c_off_and_valld { if ((current_ela_leads & 0x8 == 0x81) sound_alarm(); }
			Note: This variable will store E status if (1) internal or extern clock is supplied, (2) EIA lead are enabled on FEB Setup, ar (3) fevar_ela_changed has updated the leads. Line Setu configured for emulate or monitor mode.
extern const volatile unsigned short	previous_ela_leads		Same values as current_ela_leads. Updated when leads change, but only after logic has had a chance t compare current and previous leads. Line Setup configured for emulate or monitor mode.

Table 73-2 X.21 Variables

{

t

.

(B) Masking For the Status or Validity of a Lead

You may also test the current status or validity of a lead, independent of any change. If a mask testing for status is *anded* with *current_eia_leads*, zero will mean that the lead in on. If the result equals the mask, the lead is off. If a mask testing for validity is *anded* with *current_eia_leads*, the lead status is valid when the result equals the mask. If the result is zero, the status is invalid.

To test for both status and validity, derive a mask via hexadecimal addition. And the mask with current_eia_leads, as in this if statement testing for I "on" and valid:

STATE: test_for_i_on_and_valid
 {
 if((current_eia_leads & 0x44) == 4) sound_alarm();
 }

(C) Detect Change and Current Status

The two examples shown above could be combined to test for I changing from off to valid on:

CONDITIONS:

This example approximates the translator's version of the spreadsheet-token condition LEADS I V-ON when it appears alone in a conditions block. When a LEADS condition is combined with another condition, in most cases the other condition will supply the event variable and only the lead status test will be used.

73.3 Routines

(A) Control and Transmit

Use the following routines in emulate mode only. If you try to call one of these routines in monitor mode, you may be returned to the main program menu. When you go to the Protocol Spreadsheet and search for errors, a message like the following may be displayed: "Error 140: Unresolved reference ctl_eia."

ctl_eia

Synopsis

extern void ctl_eia(on_mask, off_mask); unsigned short on_mask; unsigned short off_mask;

Description

The *ctl_eia* routine allows you to control the status of the two X.21 controlleads. Which lead you control depends on your emulation mode. When the Line Setup menu shows Mode: EMULATE DOE, you control I. An EMULATE DTE selection gives you control over C. The softkey equivalent of this routine is the LEADS action on the Protocol Spreadsheet.

Inputs

The first parameter indicates which lead you want to turn on. One bit in the parameter controls a given lead: I (01) and C (04). Wherever there is a zero in the first parameter, the corresponding lead will be turned on. A one in this parameter will not cause any lead to be turned off. A value of 0xff will mean don't care (no action).

The second parameter indicates which lead you want in the "off" condition. One bit in the parameter controls a given lead: I (01) and C (04). Wherever there is a *one* in the second parameter, the corresponding lead will be turned off. Zeroes in this parameter do *not* turn leads on. A value of 0 will mean *don't care* (no action).

NOTE: If both bytes are attempting to control the same lead, the off parameter will override the on parameter.

Example

Suppose your emulate mode is **EMALATE DOE**. As a DCE, you control the I lead. (An attempt to control the status of C will fail, since the DTE controls this lead.) When C is raised, you want to turn I on; when C drops, turn I off.

```
LAYER: 1
```

```
STATE: control_I
CONDITIONS: LEADS C ON
ACTIONS:
{
    ctl_eia(0xfe, 0x00);
  }
CONDITIONS: LEADS C OFF
ACTIONS:
  {
    ctl_eia(0xff, 0x01);
  }
```

x21_idle_action

Synopsis

extern void x21_idle_action(character); unsigned char character;

Description

Only for format SYNC, the x21_idle_action routine allows you to change the idle-line condition applied by the INTERVIEW. A LEADS R BELLS action, for example, requires the x21_transmit_call routine in addition to x21_idle_action.

Inputs

The only parameter is a character or numeric value representing the idle character.

Example

To signal an incoming call, you would use the x21_transmit_call routine to send the sync pattern. Then you would use the x21_idle_action routine to send an idle string of bells:

```
LAYER: 1
ł
 unsigned char syncs [] = {0x16,0x16};
 struct xmlt_list
  ł
   unsigned char * string;
  unsigned short string_length;
  };
 struct xmit_list send_string [] = {&syncs[0], 2};
}
     STATE: signal_incoming_call
         CONDITIONS: KEYBOARD " "
         ACTIONS:
         x21_transmit_call(1, &send_string[0], 0);
         x21_idle_action('<sup>B_</sup>');
         }
```

x21_transmit_call

<u>Synopsis</u>

```
extern void x21_transmit_call(count, struct_send_string_ptr, xmit_tag);
uhsigned short count;
struct xmit_list
{
    char * string_ptr;
    unsigned short string_length;
    };
struct xmit_list * struct_send_string_ptr;
unsigned short xmit_tag;
```

Description

The x21_transmit_call routine sends a specified data string in call-setup mode. The softkey equivalent of this routine is the CALL_SETUP_SEND action.

Inputs

The first parameter is the number of strings to be sent.

The second parameter is a pointer to a structure which in turn identifies the location and length of each string.

The third parameter is a transmit tag. In other contexts it identifies the type of BCC to be sent. In X.21, however, no BCC is sent from Layer 1. The value of this parameter should be zero.

Example

Assume you are emulating a DTE. To send a call request in call-setup mode, enter the following spreadsheet program:

LAYER: 1

```
{
unsigned char syncs [] = {0x16,0x16};
unsigned char number [] = "1234567";
unsigned char end [] = "+";
struct xmit_list
{
    unsigned char * string;
    unsigned short string_length;
    };
struct xmit_list send_string [] = {&syncs[0], 2, &number[0], sizeof(number) - 1, &end[0], 1};
}
```

STATE: send CONDITIONS: RECEIVE STRING 'S++' ACTIONS: { x21_transmit_call(3, &send_string[0], 0); }

Notice in the preceding example that sync characters were sent in the same call to $x21_transmit_call$ that sent the called number. The equivalent softkey-generated action is LEADS T DATA CALL_SETUP_SEND " 5^{5} 1234567+".

x21_transmit call idle

<u>Synopsis</u>

```
extern void x21_transmit_call_idle(count, struct_send_string_ptr, xmlt_tag, new_idle);
unsigned short count;
struct xmlt_list
    {
      char * string_ptr;
      unsigned short string_length;
    };
struct xmlt_list * struct_send_string_ptr;
unsigned short xmit_tag;
unsigned char new_idle;
```

Description

The $x21_transmit_call_idle$ routine sends a data string in call-setup mode and includes a specified idle character. The softkey equivalent of this routine is the CALL_SETUP_SEND_IDLE action. This routine differs from $x21_transmit_call$ in that a change in idle character is guaranteed to occur during the transmission.

Inputs

The first parameter is the number of strings to be sent.

The second parameter is a pointer to a structure which in turn identifies the location and length of each string.

The third parameter is a transmit tag. In other contexts it identifies the type of BCC to be sent. In X.21, however, no BCC is sent from Layer 1. The value of this parameter should be zero.

The fourth parameter is the idle character. Enter the idle character as a decimal or hexadecimal value, or as a character enclosed by single quotes (").

Example

This example is the same as the one for $x21_transmit_call$ except that here the idle character, +, is included in the call to $x21_transmit_call_idle$.

```
LAYER: 1
{
unsigned char syncs [] = {0x16,0x16};
unsigned char number [] = "1234567";
struct xmit_list
  ł
  unsigned char * string;
  unsigned short string_length;
 };
struct xmit_list send_string [] = {&syncs[0], 2, &number[0], sizeof(number) - 1};
}
     STATE: send
        CONDITIONS: RECEIVE STRING "S++"
        ACTIONS:
        {
         x21_transmit_call_idle(2, &send_string[0], 0, 0x2b);
        }
```

Notice in the example that sync characters were sent in the same call to $x21_transmit_call_idle$ that sent the called number. The equivalent softkey-generated action is CALL_SETUP_SEND_IDLE "\$ 1234567" NEW_IDLE "+".

set_tcr_b

Synopsis

extern void set_tcr_b (tcr_register_mask, tcr_register_value); unsigned char tcr_register_mask; unsigned char tcr_register_value;

Description

This routine clamps the transmit line to 0 (space) or 1 (mark), or unclamps it so that transmit routines may be executed. In X.21, steady zero will signal a clear request/indication or a clear confirm, while steady 1 will indicate one of the call-ready or call-setup states.

The X.21 softkey actions that are built on this routine are LEADS R (T) ONE. LEADS R (T) ZERO, and LEADS R (T) DATA. In other contexts, the routine simply initiates and terminates a *break*.

Inputs

The first parameter is the mask that is anded with the current TCR register to turn the current values of bits 3 and 4 (counting 1-8 from the right) to zero. This mask is always 0xf3.

The second parameter contains the new values of bits 3 and 4 that will be written to the register. The three available parameters are 0x08 to clamp the line to zero, 0x0c to clamp the line to 1, and 0x04 to unclamp the line and permit data transmissions.

Example

Assume you are emulating a DTE. To indicate a clear confirmation, enter the following spreadsheet program:

```
LAYER: 1

STATE:

CONDITIONS: KEYBOARD * *

ACTIONS:

{

set_icr_b (0xf3, 0x08);

cil_eia(0xff, 0x04);

}
```

The equivalent softkey-generated action is LEADS T ZERO C OFF.

(B) Phase

The following routines are valid in either emulate or monitor mode.

enter_call_phase

<u>Synopsis</u>

extern void enter_call_phase();

Description

During the call-establishment phase, this routine overrides existing selections on the Line Setup menu with ASCII code, 7-bit odd parity, and SYNC format.

Example

When a lead changes, look for these conditions: T and R on (space), C and I off, and all leads valid. If conditions are true, enter call phase.

```
{
  extern fast_event fevar_ela_changed;
  extern const volatile unsigned short current_ela_leads;
}
LAYER: 1
  STATE: look_for_change_to_call_phase
      CONDITIONS;
      {
        fevar_ela_changed && ((current_ela_leads & 0x5dd) == 0xdd)
      }
      ACTIONS:
      {
        enter_call_phase();
      }
```

(

enter_data_phase

Synopsis

extern void enter_data_phase();

Description

During the data-transfer phase, this routine implements existing selections on the Line Setup menu.

Example

When a lead changes, look for these conditions: T and R off (mark), C and I on, and all leads valid. If conditions are true, enter data phase.

```
{
    extern fast_event fevar_eia_changed;
    extern const volatile unsigned short current_ela_leads;
}
LAYER: 1
    STATE: look_for_change_to_data_phase
        CONDITIONS:
        {
            fevar_eia_changed && ((current_eia_leads & 0x5dd) == 0x51d)
        }
        ACTIONS:
        {
            enter_data_phase();
        }
}
```

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

74 X.25 Layer 2 Library

When the X.25 Layer 2 package is loaded in via the Layer Setup screen, the following external routines and variables become available for use by the programmer. Their use on the Protocol Spreadsheet is not limited to any particular layer, though normally they belong at Layer 2.

The variables and routines approximate X.25 Layer 2 spreadsheet-generated conditions and actions. Refer to Section 36 for more detailed explanations of the purposes of specific conditions and actions. Sometimes the name of the variable or routine is sufficient for identifying its related spreadsheet token. When this is not the case, the information is provided below.

74.1 Structures

The structure send frame_structure defines the format of transmitted X.25 frames. See Table 74-1. Use this structure to send frames via the send_frame routine in emulate mode. See Section 74.3(B). Each variable in the structure relates to some softkey selection or user entry in the SEND action.

74.2 Variables

(A) Monitoring Events

 Emulate or monitor mode. X.25 Layer 2 events include frames detected, good or bad BCC's, and aborts. All event variables in Table 74-2 containing a dte_ or dce_ prefix are valid in either emulate or monitor mode. These event variables are dte_frame, dce_frame, dte_good_bcc, dce_good_bcc, dte_bad_bcc, dce_bad_bcc, dte_abort, dce_abort. The variable dce_good_bcc, for example, equates to DCE GDBCC.

You can use both *dte* and *dce* variables relating to the same event in one conditions block. Suppose you want to count all bad BCC's from either side of the line. Enter the following CONDITIONS/ACTIONS block:

CONDITIONS: { die_bad_bcc || dce_bad_bcc } ACTIONS: COUNTER bad_bcc INC

Туре	Variable	Value (hex/decima)	Meaning	
 			struct. Declar softkey-entere- frames assigne send_frame_st structure varial values in the fr the user, they values when the	frame in X.25. Declared as type ed automatically if a d SEND action is taken. Program dd to structure as follows: struct ructure name. Reference a ble as follows: name.bcc_type. If ame structure are not initialized by default to 0. You may initialize the e structure is declared: ime_structure name = {1, 1, 1, 0, 3, 0};	
unsigned char		addr_type	0 1 2	command response other	
unsigned char		frame_type	(The codes for frame_type are the same as for the X.25-variable rcvd_frame_type.)		
unsigned char		nr_type	0 1 2 3	auto value recelved ns plus 1 last nr sent	
unsigned char		ns_type	0 1 2 3	auto skip last nr received value	
unsigned char		p_f_type	0 1 2	0 1 loopback	
unsigned char		bcc_type	0 1 2 3	default (bad bcc) good bcc bad bcc abort	
unsigned char		addr_value	1 3	to DCE to DTE	
unsigned char	cntrl_byte	(actual value of	the control byte)		
unsigned char		nr_value	0-7 (MOD 8)	lf nr_type = 1	
unsigned char		ns_value	0-7 (MOD 8)	if ns_type = 3	

Table 74-1 X.25 Layer 2 Structures

Туре	Variable	Value (hex/decimal)	Meaning
extern event	dte_frame	detecte configu	hen a DTE frame is ad. Line Setup red for emulate or - mode.
extern event	dce_frame	detecte	hen a DCE frame is ad. Line Setup red for emulate or mode.
extern event	dte_good_bcc	calculat Line Se	nen a good BCC is ted for a DTE frame. tup configured for a or monitor mode.
extern event	dce_good_bcc	calculat Line Se	nen a good BCC Is ied for a DCE frame. tup configured for e or monitor mode.
extern event	dte_bad_bcc	calculat Line Se	nen a bad BCC is ed for a DTE frame. tup configured for a or monitor mode.
extern event	dce_bad_bcc	calculat Line Se	nen a bad BCC is ed for a DCE frame. tup configured for e or monitor mode.
extern event	dte_abort	for a D	nen an abort is detected TE frame. Line Setup red for emulate or mode.
extern event	dce_abort	for a D	ten an abort is detected CE frame. Line Setup red for emulate or mode.
extern event	rcvd_frame	Line Se	nen a frame is received. tup configured for a mode only.
extern event	Invalid_frame	detecte	nen an Invalid frame Is Id. Line Setup red for emulate mode
extern event	I2_T1	has exp	nen the T1 timeout-timer bired. Line Setup red for emulate mode
extern event	bcc_error	detecte	nen a BCC error is d. Line Setup red for emulate mode
extern event	nr_error	detecte supervis	nen an N(R) error is Id in a received INFO or sory frame. Line Setup red for emulate mode
extern event	ns_erro <i>r</i>	detecte frame.	nen an N(S) error is id in a received INFO Line Setup configured vlate mode only.

Table 74-2 X.25 Layer 2 Variables

,

f

Туре	Variable	Value (hex/dec	imal)	Meaning
əxtern event	frame_sent		down to L	i frame is passed ayer 1. Line Setup I for emulate mode
extern volatile const unsigned char	m_frame_addr	1 3	to DCE to DTE	
· · ·				o configured for r monitor mode.
extern volatile const unsigned char	m_frame_type	(same as rcvd_ conligured for	frame_type emulate or	—Line Setup monitor mode)
extern volatile const unsigned char	m_frame_cntrl_byte_1			te—Line Setup monitor mode)
xtern volatile const unsigned char	m_frame_pf	0 10/16	pf=0 pf=1	
				configured for monitor mode.
extern volatile const unsigned char	m_frame_bcc_type	1 2 3	good bad abort	
extern volatile const unsigned char	rovd_frame_addr	1 3		configured for monitor mode.
			Line Setup emulate m	configured for
extern volatile const unsigned char	rovd_frame_type	0 1 5 9 d/13 21/47 6f/111 43/67 f/15 f/15 63/99 87/135 ff/255 ff/255	Info rr rnr rej sabm disc dm sarm ua frmr other unknown	
			Line Setup emulate m	configured for ode only.
xtern volatile const unsigned char	rcvd_frame_cntrl_byte_1	(actual value ol configured for a		
xtern volatile const unsigned char	rcvd_frame_pf	0 10/16	pf=0 pf=1	
xtern volatile const unsigned char	rcvd_frame_bcc_type	1 2 3	-	configured for ode only.
xtern volatile const unsigned char	rcvd_frame_nr	0-7 (MOD 8)	emulate m	configured for

Table 74-2 (continued)

Турө	Variable	Value (hex/dea	cimal) Meaning
extern volatile const unsigned char	rcvd_frame_ns	0-7 (MOD 8)	Line Setup configured for emulate mode only.
extern volatile unsigned short	rcvd_frame_buff_seg		Inter-layer message buffer number (actually, an IAPX-286 segment number) in a received frame. This segment number can be converted to a pointer by shifting it left 16 bits. Line Setup configured for emulate mode only.
extern volatile unsigned short	rcvd_frame_sdu_offset		Offset to where the service dat unit begins in an inter-layer message buffer in a received frame. Add to buffer segment number (converted to pointer) to point to first byte in frame. Line Setup configured for emulate mode only.
extern volatile unsigned short	rcvd_frame_sdu_size		Size of service data unit in a received frame. Line Setup configured for emulate mode only.
extern volatile unsigned short	l2_current_window_edge		When equal to upper edge, window is full; when equal to lower edge, window is empty; when not equal to upper edge, window is not full; and when not equal to lower edge, window is not empty. Line Setup configured for emulate mode only.
extern volatile unsigned short	l2_lower_window_edge		see I2_current_window_edge
extern volatile unsigned short	l2_upper_window_edge		see I2_current_window_edge
extern volatile unsigned short	l2_resend_edge		When resend edge is not equal to lower window edge, there is more to resend; when resend edge is equal to lower window edge, there is no more to resend. Line Setup configured for emulate mode only.
extern unsigned char	l2_enhance	0 1 4 5 8 9 12/18	normal reverse low reverse low blink reverse blink blink low Line Setup configured for emulate or monitor mode.
extern unsigned char	i2_suppress	0 1	off on Line Setup configured for emulate or monitor mode.

Table 74-2 (continued)

É

, { Using spreadsheet tokens, the same test needs two CONDITIONS/ACTIONS blocks:

CONDITIONS: DTE BDBCC ACTIONS: COUNTER bad_boo INC CONDITIONS: DCE BDBCC ACTIONS: COUNTER bad_bcc INC

When the user selects DTE or DCE on the first rack of softkeys for Layer 2 conditions, a second rack appears from which he must select a particular frame type. A DTE INFO condition, for example, when translated, includes two C variables, one event variable and one status variable:

```
{
dte_frame && (m_frame_type == 0)
}
```

As a C programmer, you do not need to specify a frame type. To include all frames in a condition, use the event variable only:

```
CONDITIONS:
{
dte_frame
}
```

 Emulate mode only. Some events may be detected in emulate mode only. The event variables are rcvd_frame, invalid_frame, l2_T1, bcc_error, nr_error, ns_error, and frame_sent.

If you try to use one of these variables in monitor mode, you may be returned to the main program menu. When you go to the Protocol Spreadsheet and search for errors, a message like the following may be displayed: "Error 140: Unresolved reference rcvd_frame."

When the user selects RCV on the first rack of softkeys for Layer 2 conditions, a second rack appears from which he must select a particular frame type. When the translator converts a RCV INFO condition into C, it will include two C variables, one event variable and one status variable:

```
{
rcvd_frame && (rcvd_frame_type == 0)
}
```

The C programmer does not have to specify a frame type. To include all received frames in a condition, use the event variable only:

CONDITIONS: { rcvd frame

}

Error detecting may be accomplished via *bcc_error*, *nr_error*, *ns_error*, and *invalid_frame*. These variables equate to the softkey tokens bearing similar names.

One of the emulate-mode variables monitors an emulate action. The event variable *frame_sent* will come true as soon as the frame has been passed to the layer below. Note that if Layer 1 is an X.21 protocol in call-setup phase, a frame that is "sent" at Layer 2 will stop at Layer 1 and will not be transmitted out onto the line.

(B) Status Variables

Status variables are those in Table 74-2 that do not include *event* in the Type column. Their associated event variables guarantee that they are updated and tested.

The softkey-generated condition for received Info frames is RCV INFO. The C version of the same condition should look like this:

CONDITIONS:

{ rcvd_frame && (rcvd_frame_type == 0) }

 Frame characteristics. All status variables in Table 74-2 containing an m_ prefix are valid in either emulate or monitor mode: m_frame_addr, m_frame_type, m_frame_cntrl_byte_1, m_frame_pf, and m_frame_bcc_type. Use these variables to monitor a particular address, frame type, control byte, P/F value, or BCC.

All status variables in Table 74-2 containing a *rcvd* prefix are valid in emulate mode only: *rcvd_frame_addr*, *rcvd_frame_type*, *rcvd_frame_cntrl_byte_1*, *rcvd_frame_bcc_type*, *rcvd_frame_pf*, *rcvd_frame_nr*, and *rcvd_frame_ns*. Use these variables to monitor a particular address, frame type, control byte, BCC, or P/F, N(R), or N(S) value.

If you try to use an emulate-mode variable in monitor mode, you may be returned to the main program menu. When you go to the Protocol Spreadsheet and search for errors, a message like the following may be displayed: "Error 140: Unresolved reference rcvd_frame_type."

2. Frame buffers. As BOP frames are received, they are automatically placed in IL message buffers to be passed up the layers. Three emulate-mode variables provide the user with access to the information in the frame that is located beyond the control byte. These variables are rcvd_frame_buff_seg, rcvd_frame_sdu_offset, and rcvd_frame_sdu_size. See Section 66.1 for a more detailed discussion of the buffer components to which these variables refer. Make a pointer to an IL buffer by casting *rcvd_frame_buff_seg* as a *long*, shifting it left sixteen bits, adding *rcvd_frame_sdu_offset*, and casting the result to a pointer. Increment the pointer twice (thereby adding two to the offset).

{ unsigned char * ptr; ptr = {void *}(({long})rcvd_frame_buff_seg << 16) + rcvd_frame_sdu_offset); ptr+=2; }

It is now pointing at the first byte in the X.25 Layer 3 header. You may continue to move through the frame for its entire length, indicated in *rcvd_frame_sdu_size*.

3. *Transmit window*. Four related variables test the status of the Layer 2 window. The particular values of these variables at any given time is not significant. What is significant is how they compare to each other. The softkey status condition on the left makes the variable comparison on the right:

12_current_window_edge == 12_upper_window_edge
l2_current_window_edge == l2_lower_window_edge
l2_current_window_edge l= l2_upper_window_edge
l2_current_window_edge l= l2_lower_window_edge
12_resend_edge
l2_resend_edge == l2_lower_window_edge

(C) Controlling Protocol Trace Display

To enhance or suppress particular frames on the Layer 2 Protocol Trace screen in emulate or monitor mode, assign a coded value to *l2_enhance* or *l2_suppress*. The values are listed in Table 74-2. To assign a value to either of these variables, place the statement in an ACTIONS block. For example, display RNR frames in reverse-video and suppress display of invalid frames:

```
CONDITIONS: RCV RNR
ACTIONS:
{
l2_enhance = 1;
}
CONDITIONS: RCV INVALID
ACTIONS:
{
l2_suppress = 1;
}
```

Check the value of these display-control variables in a CONDITIONS block

CONDITIONS: RCV INFO { 12_enhance == 1 } ACTIONS: { 12_enhance = 0; } or an ACTIONS block: CONDITIONS: RCV INFO

ACTIONS: { if(12_enhance == 1) 12_enhance = 0; }

74.3 Routines

Use the following routines in emulate mode only. If you try to call one of these routines in monitor mode, you may be returned to the main program menu. When you go to the Protocol Spreadsheet and search for errors, a message like the following may be displayed: "Error 140: Unresolved reference 12_give_data."

(A) Receive

l2_give_data

<u>Synopsis</u>

extern void 12_give_data();

Description

The *l2_give_data* routine takes an interlayer message buffer associated with a received INFO frame, changes the SDU offset to point to higher-level data, and sends a DL_DATA IND primitive up to Layer 3 along with a reference to this buffer. The softkey equivalent of this routine is the GV_DATA action on the Protocol Spreadsheet.

Example

Layer 3 wants access to the line in order to receive and send data. Assuming X.25 personality packages are loaded at Layers 2 and 3, enter the following program:

LAYER: 2 STATE: datalink CONDITIONS: DL_CONNECT REQ ACTIONS: DL_CONNECT CONF CONDITIONS: DL_DATA REQ ACTIONS: SEND INFO "((DL_DATA))" CONDITIONS: RCV INFO ACTIONS: { i2_give_data{}; }

(B) Transmit

resend frame

<u>Synopsis</u>

extern void resend_frame(pf, first_or_next); unsigned char pf; unsigned char first_or_next;

Description

The *resend_frame* routine will set the P/F bit to a specified value and resend either the first or next frame in the window. The softkey equivalent of this routine is the (PROTOCL) RESEND action on the Protocol Spreadsheet.

<u>Inputs</u>

The first parameter is the value of the P/F bit in the frame. It may be set to either 0 or 1.

The second parameter indicates whether the first frame in the window will be sent, or whether the next frame in the window will be sent. The first resend action will send the first frame in the window regardless of whether first or next has been selected. Legal entries are 0 (first) or 1 (next).

Example

Suppose you want to resend the entire transmit window if you receive a REJ frame.

LAYER: 2 STATE: xfer

/* Whatever conditions and actions send data precede the following condition. */

CONDITIONS: RCV REJ RESP NEXT STATE: recover

```
STATE: recover
CONDITIONS: ENTER_STATE
ACTIONS:
{
    resend_frame(1, 0);
    }
CONDITIONS: FRAME_SENT
    MORE_TO_RESEND
ACTIONS:
    {
    resend_frame(1,1);
    }
CONDITIONS: FRAME_SENT
    NO_MORE_TO_RESEND
NEXT_STATE: xfer
```

reset_nr

Synopsis

extern void reset_nr();

Description

This routine resets the N(R) field in information and supervisory frames to zero. The softkey equivalent of this routine is the (PROTOCL) RSET_NR action on the Protocol Spreadsheet.

Example

When a link is established, reset N(R).

```
LAYER: 2
STATE: reset
CONDITIONS: ENTER_STATE
ACTIONS: SEND SABM
CONDITIONS: RCV UA
ACTIONS:
{
reset_nr();
}
```

reset_ns

Synopsis

extern void reset_ns();

Description

The N(S) field in information frames is reset to zero and the transmit window is cleared. The softkey equivalent of this routine is the (PROTOCL) RSET_NS action on the Protocol Spreadsheet.

ł

Example

When a link is established, reset N(S).

```
LAYER: 2

STATE: reset

CONDITIONS: ENTER_STATE

ACTIONS: SEND SABM

CONDITIONS: RCV UA

ACTIONS:

{

resei_ns();

}
```

send_frame

<u>Synopsis</u>

```
extern void send_frame(il_buffer_number, relay_baton, data_start_offset, transmit_frame_ptr);
unsigned short il_buffer_number;
unsigned short relay baton;
unsigned short data start offset;
struct send_frame_structure
ł
 unsigned char addr_type;
 unsigned char frame_type;
 unsigned char nr_type;
 unsigned char ns_type;
 unsigned char p_f_type;
 unsigned char bcc_type;
 unsigned char addr_value;
 unsigned char cntrl_byte;
 unsigned char nr_value;
 unsigned char ns value;
};
struct send_frame_structure * transmit_frame_ptr;
Description
```

The send_frame routine adds a frame-level header to an interlayer message buffer and passes the buffer to Layer 1. The softkey equivalent of this routine is the SEND action on the Protocol Spreadsheet.

Inputs

The first parameter is the interlayer message buffer number. See Section 66.3(A), Layer-Independent OSI routines.

The second parameter is the maintain bit used to hold the buffer while the send operation is being performed. See Section 66.3(A).

The third parameter is the offset from the beginning of the buffer to the start of the service data unit. See Section 66.3(A).

The fourth parameter is a pointer to the frame structure to be sent. For a description of *send_frame_structure*, see Table 74-1.

Example

Send an Info frame containing a canned fox message and a good BCC onto the line.

```
{
static unsigned short il_buffer_number;
static unsigned short relay_baton;
static unsigned short data_start_offset;
struct send_frame_structure
 {
  unsigned char addr_type;
  unsigned char frame_type;
  unsigned char nr_type;
  unsigned char ns_type;
  unsigned char p_f_type;
  unsigned char bcc_type;
  unsigned char addr_value;
  unsigned char cntrl_byte;
  unsigned char nr_value;
  unsigned char ns_value;
 };
struct send_frame_structure transmit_frame;
static char transmit_string [] = "((FOX))";
LAYER: 2
     STATE: send_a_frame
        CONDITIONS: KEYBOARD * *
        ACTIONS:
        ł
         _get_il_msg_buff(&il_buffer_number, &relay_baton);
         _start_il_buff_list(il_buffer_number,&data_start_offset);
         transmit_frame.bcc_type = 1;
         _insert_il_buff_list_cnt(il_buffer_number, data_start_offset, &transmit_string[0],
               (sizeof(transmit_string) - 1));
         send_frame(il_buffer_number, relay_baton, data_start_offset, &transmit_frame);
```

}

INTERVIEW 7000 Series Advanced Programming:_ ATLC-107-951-108____

,

.

.

(

.

75 X.25 Layer 3 Library

When the X.25 Layer 3 package is loaded in via the Layer Setup screen, the following external routines and variables become available for use by the programmer. Their use on the Protocol Spreadsheet is not limited to any particular layer, though normally they belong at Layer 3.

The variables and routines approximate X.25 Layer 3 spreadsheet-generated conditions and actions. Refer to Section 37 for more detailed explanations of the purposes of specific conditions and actions. Sometimes the name of the variable or routine is sufficient for identifying its related spreadsheet token. When this is not the case, the information is provided below.

75.1 Structures

The send_packet_structure defines the format of transmitted X.25 packets. See Table 75-1. Use this structure to send packets via the send_packet routine in emulate mode. See Section 75.3(B). Each variable in the structure relates to some softkey selection or user entry in the SEND action.

75.2 Variables

(A) Monitoring Events

1. Emulate or monitor mode. Two X.25 Layer 3 event variables are valid in either emulate or monitor mode. These event variables are dte_packet and dce_packet.

When the user selects DTE or DCE on the first rack of softkeys for Layer 3 conditions, a second rack appears from which he must select a particular packet type. A DTE DATA condition, for example, when translated, includes two C variables, one event variable and one status variable:

```
{
    die_packet && (m_packet_type == 0)
}
```

Туре	Variable	Value (hex/decima	l) Meaning
Structure Nam	<u>ne:</u> send_packet_s	tructure	Structure of a packet in X.25. Declared as type struct. Declared automatically if a softkey-entered SEND action is taken. Program packets assigned to structure as follows: struct send_packet_structure name. Reference a structure variable as follows: name.q_bit. If values in the frame structure are not initialized by the user, they default to 0. You may initialize the values when the structure is declared: struct send_packet_structure name = $\{2, 0x13, 0x13, 0, 0, 0, 1, 0, 0, 0\}$; &facilities_string[0], 0, 0};
unsigned char	path_num	0-8 fe/254	path number use path number of last received packet
unsigned char	packet_type	(The codes for m_packet_type.	packet_type are the same as for the X.25-variable)
unsigned char	packet_type_byte	(actual value of	the packet type byte)
unsigned char	m_bit	0 1	m = 0 m = 1
unsigned char	d_bit	0 40/64	d = 0 d = 1
unsigned char	q_blt	0 80/128	q = 0 q = 1
unsigned char	pr_type	0 1 2 3	auto value received ps plus 1 last pr sent
unsigned char	ps_type	0 1 2 3	auto skip received pr value
unsigned char	pr_value	0-7 (MOD 8)	lf pr_type = 1
unsigned char	_ ps_value	0-7 (MOD 8)	if ps_type = 3
unsigned char	cause	(value of cause	byte—see Flgure 36–15)
unsigned char	diag_flag	0 1	diagnostic field not present diagnostic field is present
unsigned char	diag	(value of diagno pp. 237–8)	stic byte—consult CCITT Recommendation X.25,
unsigned char	spare	0	reserved space
unsigned char	facilities_len	0-1110-255	length of the facilities field
char *	facilities		pointer to the location of the facilities field—the facilities field is declared separately
unsigned short	data_len		reserved for future use
char *	data		reserved for future use

Table 75-1 X.25 Layer 3 Structures

(

Туре	Variable	Value (hex/dec	cimal)	Meaning
extern event	dte_packet		detecte configu	hen a DTE packet is ed. Line Setup red for emulate or r mode.
extern event	dcə_packət		detecte configu	hen a DCE packet is ed. Line Setup red for emulate or r mode.
extern event	rcvd_packet		from La	hen a packet is received ayer 2. Line Setup red for emulate mode
extern event	invalid_packet		detecte	hen an Invalld packet is ed. Line Setup red for emulate mode
extern event	pr_error		detecte supervi	hen an P(R) error Is ad In a data or sory packet. Line Setup red for emulate mode
extern event	ps_error		detecte	hen an P(S) error is ed in a data packet. Line configured for emulate only.
extern event	packet_sent		passed	hen a packet has been down to Layer 2. Line configured for emulate only.
extern volatile unsigned short	m_packet_icn	0-11110-4095	Setup o	channel number. Line configured for emulate or r mode.
extern volatile unsigned char	m_packet_lcn_grp	0-110-15	Line Se	channel group number. tup configured for e or monitor mode.
extern volatile const unsigned char	m_packet_q	0 80/128		stup configured for e or monitor mode.
extern volatile const unsigned char	m_packet_d	0 40/64		tup configured for a or monitor mode.
extern volatile const unsigned char	m_packet_m	0 10/16		stup configured for e or monitor mode.
extern volatile const unsigned char	m_packet_pr	0-7 (MOD 8)		tup configured for e or monitor mode.
extern volatile const unsigned char	m_packet_p\$	0-7 (MOD 8)	Line Se emulate	tup configured for e or monitor mode.

Table 75-2X.25 Layer 3 Variables

•

i

ţ

Туре	Variable	Value (hex/dec	cimal)	Meaning
extern volatile const unsigned char	m_packet_cause	(same as rcvd_pkt_cause—Line Setup configured for emulate or monitor mode)		
extern volatile const unsigned char	m_packet_diag_code	(same as rcvd_pkt_dlagn—Line Setup configured for emulate or monitor mode)		
extern volatlle const unsigned char	m_packet_type_byte	(actual value of packet type byte—Line Set configured for emulate or monitor mode)		
extern volatile const unsigned char	m_packet_type	b/11 f/15 13/19 17/23 0 23/35 27/39 1 5 9 1b/27 1f/31 fb/251 ff/255 f1/241 f3/243 f7/247 11/17 11/17		onf onf conf kt
xtern volatile unsigned short	revd_okt_lcn	0-11110-4095	receive	channel number in a d packet. Line Setup red for emulate mode
xtern volatile const unsigned char	rcvd_pkt_q	0 80/128		tup configured for mode only.
xtern volatlle const unsigned char	rcvd_pkt_d	0 40/64		tup configured for mode only.
xtern volatile const unsigned char	rcvd_pkt_m	0 10/16		tup configured for a mode only.
xtern volatile const unsigned char	rcvd_pkt_pr	0-7 (MOD 8)		tup configured for a mode only.
xtern volatile const unsigned char	rovd_pkt_ps	0-7 (MOD 8)		tup configured for a mode only.
xtern volatile const unsigned char	rcvd_pkt_cause	(see Figure 36-15—Line Setup conligured f emulate mode only)		
extern volatile const unsigned char	rcvd_pkt_dlagn	(consult CCIT) pp.237–8—Line mode only)	T Recomi ə Setup c	mendation X.25, configured for emulate

Table 75-2 (continued)

.

(

(

.

.

Туре	Variable	Value (hex/de	cimal) Meaning	
extern volatile const unsigned char	rcvd_pkt_type_byte	(actual value of packet type byte—Line Setup configured for emulate mode only)		
extern volatile const unsigned char	rcvd_packet_type	b/11 f/15 13/19 17/23 0 23/35 27/39 1 5 9 1b/27 1f/31 fb/251 f1/241 f3/243 f7/247 11/17 11/17	oall call aco clear clear conf data Int Int conf rr rnr rej reset reset conf restart restart conf diag reg reg conf other pkt unknown pkt Line Setup configured emulate mode only.	d for
extern volatlie unsigned short	m_packet_buff_seg		Inter-layer message number (actually, an segment number). segment number car converted to a pointe shifting it left 16 bits. Setup configured for monitor mode.	IAPX-286 This I be Sr by Line
extern volatile unsigned short	m_packet_info_seg		Same as m_packet_l	ouff_seg.
extern volatile unsigned short	m_packet_sdu_offset		Offset to where the unit begins in an inter message buffer. Add m_pkt_buff_seg (con pointer) to point to fl packet-header byte. configured for emula monitor mode.	r-layer I to verted to rst Line Setu;
extern volatile unsigned short	m_packet_info_offset		Offset to where the information begins, e the header. Add to m_pkt_bulf_seg (com pointer) to point to p Line Setup configure emulate or monitor n	verted to acket data d for
extern volatile unsigned short	m_packet_length		Length of the packet header. Line Setup for emulate or monit	configured
extern volatile unsigned short	m_packet_Info_length		Length of the packet Information, excludin header. Line Setup for emulate or monit	g the configured

Table 75-2 (continued)

ţ

ĺ

.

Туре	Variable	Value (hex/decimal)	Meaning
extern volatile unsigned short	rcvd_pkt_buff_seg	number segmer packet, can be by shift	yer message buffer (actually, an JAPX-286 In number) in a received This segment number converted to a pointer ing it left 16 bits. Line configured for emulate only.
extern volatile unsigned short	rcvd_pkt_info_seg	Same a	s rcvd_pkt_bull_seg.
extern unsigned short	rcvd_pkt_sdu_offset	unit beg messag receive rcvd_pl pointer) packet-	to where the service data gins in an inter-layer ge buffer in a packet d. Add to <i>(t_bulf_seg</i> (converted to to point to first header byte. Line Setup red for emulate mode
extern volatile unsigned short	rcvd_pkt_Info_offset	informa the hea <i>rcvd_pk</i> pointer) Line Se	to where the packet ition begins, excluding ider. Add to (<i>t_bulf_seg</i> (converted to) to point to packet data, tup configured for a mode only.
extern unsigned short	rovd_pkt_length	Includin Line Se	of a received packet, g header information. tup configured for a mode only.
extern volatile unsigned short	rovd_pkt_info_length	receive header.	of the Information in a d packet, excluding the , Line Setup configured Jiate mode only.
extern volatile unsigned char *	m_packet_ptr	at the f Line Se	to the packet, beginning liret byte in the header, tup configured for e or monitor mode.
extern volatlle unsigned char *	m_packet_info_ptr	packet. byte im packet- configu	to the information in a Initially points to the Imediately following the type byte. Line Setup red for emulate or mode.
extern volatile unsigned char *	rcvd_packet_ptr	at the f Line Se	to the packet, beginning lirst byte in the header. tup configured for a mode only.
extern volatlle unsigned char *	rcvd_pkt_Info_ptr	informa the byte the pac	to the packet ition, initially located at e immediately following sket header. Line Setup red for emulate mode

Table 75-2 (continued)

ŧ

,

(

(

Туре	Variable	Value (hex/	decimal)	Meaning
extern volatile const unsigned char	rovd_device_path		Path number connecting received packet to particular LCN and particular set of call parameters on the X.25 Packet Level Setup screen. Line Setup configured for emulate mode only.	
extern unsigned char	l3_enhance	0 1 4 5 8 9 12/18		e e low e blink
extern unsigned char	13_suppress	0 1		itup configured for e or monitor mode.

Table 75-2 (continued)

A C programmer does not have to specify a packet type. To include all packets in a condition, use the event variable only:

```
CONDITIONS:
{
dte_packet
}
```

2. Emulate mode only. Some events may be detected in emulate mode only. These are rcvd_packet, invalid_packet, pr_error, ps_error, and packet_sent.

If you try to use one of these variables in monitor mode, you may be returned to the main program menu. When you go to the Protocol Spreadsheet and search for errors, a message like the following may be displayed: "Error 140: Unresolved reference rcvd_packet."

When the user selects RCV on the first rack of softkeys for Layer 3 conditions, a second rack appears from which he must select a particular packet type. When the translator converts a RCV DATA condition into C, it will include two C variables, one event variable and one status variable:

{
 rcvd_packet && (rcvd_packet_type == 0)
}

As a C programmer, you do not have to specify a packet type. To include all received packets in a condition, use the event variable only:

CONDITIONS:

{ rcvd_packet } Error detecting may be accomplished via *pr_error*, *ps_error*, and *invalid_packet*. These variables equate to the softkey tokens bearing similar names.

One of the emulate-mode variables monitors an emulate action. "SEND"ing a packet means queuing a packet to be passed down to Layer 2. If the Layer 2 link is not established, for example, the packet will be held at Layer 3 pending link establishment. The event variable *packet_sent* will not come true until the packet actually has been passed to the layer below. Use this condition to start accurate response-time measurements at the packet level rather than at the line level.

(B) Status Variables

Status variables are those in Table 75-2 that do not include *event* in the Type column. Their associated event variables guarantee that they are updated and tested.

The softkey-generated condition for received Data packets is RCV DATA. The C version of the same condition should look like this:

CONDITIONS:

```
{
rcvd_packet && (rcvd_packet_type == 0)
}
```

 Packet characteristics. All status variables in Table 75-2 containing an m_ prefix are valid in either emulate or monitor mode: m_packet_lcn, m_packet_lcn_grp, m_packet_q, m_packet_d, m_packet_m, m_packet_pr, m_packet_ps, m_packet_cause, m_packet_diag_code, m_packet_type, and m_packet_type_byte.

All status variables in Table 75-2 containing a *rcvd* prefix are valid in emulate mode only: *rcvd_pkt_lcn*, *rcvd_pkt_q*, *rcvd_pkt_d*, *rcvd_pkt_m*, *rcvd_pkt_pr*, *rcvd_pkt_ps*, *rcvd_pkt_cause*, *rcvd_pkt_diagn*, *rcvd_pkt_type*, and *rcvd_pkt_type_byte*.

If you try to use an emulate-mode variable in monitor mode, you may be returned to the main program menu. When you go to the Protocol Spreadsheet and search for errors, a message like the following may be displayed: "Error 140: Unresolved reference rcvd_packet_type."

- 2. Packet buffers. Packets are passed up to Layer 3 from Layer 2 in IL message buffers. Several variables provide the user with access to the information in the packet that is located beyond the packet-type byte. These variables are rcvd_pkt_buff_seg, m_packet_buff_seg, rcvd_pkt_sdu_offset, m_packet_sdu_offset, rcvd_pkt_length, and m_packet_length. See Section 66.1 for a more detailed discussion of the buffer components to which these variables refer.
- 3. Pointers. Two variables, rcvd_pkt_info_ptr and m_packet_info_ptr, point to the first byte beyond the packet header. You may move these pointers to

access data throughout the length of the packet. The length is indicated by rcvd_pkt_info_length (or m_packet_info_length).

4. Path. An IL buffer that is sent down the layers or received up the layers is provided with a "path" number that ties it, at X.25 Layer 3, to a particular LCN as well as to a particular set of Call Request parameters on the X.25 Packet Level Setup screen.

When a call request is sent or received by the INTERVIEW, the call parameters are correlated to the Packet Level Setup screen. If the INTERVIEW sends a call request that specifies a path number, or if the INTERVIEW receives a call request that matches one of the path entries on the setup screen, the LCN of the call request is tied to the path number (path #3, for example), and any subsequent packets with the same LCN will satisfy $rcvd_device_path == 3$ conditions.

(C) Controlling Protocol Trace Display

To enhance or suppress particular packets on the Layer 3 Protocol Trace screen in emulate or monitor mode, assign a coded value to *l3_enhance* or *l3_suppress*. The values are listed in Table 75-2. To assign a value to either of these variables, place the statement in an ACTIONS block. For example, display RNR packets in reverse-video and suppress display of invalid packets:

```
CONDITIONS: RCV RNR
ACTIONS:
{
13_enhance = 1;
}
CONDITIONS: RCV INVALID
ACTIONS:
{
13_suppress = 1;
}
```

Check the value of these display-control variables in a CONDITIONS block

```
CONDITIONS: RCV DATA
```

```
{

13_enhance == 1

}

ACTIONS:

{

13_enhance = 0;

}
```

or an ACTIONS block:

```
CONDITIONS: RCV DATA
ACTIONS:
{
if(13_enhance == 1)
13_enhance = 0;
}
```

75.3 Routines

Use the following routines in emulate mode only. If you try to call one of these routines in monitor mode, you may be returned to the main program menu. When you go to the Protocol Spreadsheet and search for errors, a message like the following may be displayed: "Error 140: Unresolved reference 13_give_data."

(A) Receive

13_give_data

<u>Synopsis</u>

extern void 13_give_data();

Description

The 13_give_data routine takes an interlayer message buffer associated with a received data packet, changes the SDU offset to point to higher-level data, and sends an N_DATA IND primitive up to Layer 4 along with a reference to this buffer. The softkey equivalent of this routine is the GV_DATA action on the Protocol Spreadsheet.

<u>Example</u>

Layer 4 wants access to the line in order to receive and send data. Assuming X.25 personality packages are loaded at Layers 2 and 3, enter the following program:

```
LAYER: 2
    STATE: datalink
       CONDITIONS: DL_CONNECT REQ
       ACTIONS: DL CONNECT CONF
       CONDITIONS: DL_DATA REQ
       ACTIONS: SEND INFO "((DL_DATA)) "
       CONDITIONS: RCV INFO
       ACTIONS: GIVE_DATA
LAYER: 3
    STATE: pass data up
       CONDITIONS: N_CONNECT REQ
       ACTIONS: SEND CALL
       CONDITIONS: RCV CALL_CONF
       ACTIONS: N_CONNECT IND
       CONDITIONS: N_DATA REQ
       ACTIONS: SEND DATA "(N_DATA)"
       CONDITIONS: RCV DATA
       ACTIONS:
       13_give_data();
       }
LAYER: 4
    STATE: establish_link
       CONDITIONS: ENTER_STATE
       ACTIONS: N_CONNECT REQ
```

1

(B) Transmit

13_clear_path

<u>Synopsis</u>

extern void 13_clear_path(path_number);
unsigned char path_number;

Description

The $l3_clear_path$ routine resets P(R)- and P(S)-related variables, clears the transmit window, and resets the LCN and address fields to void (unless permanently assigned on the Layer 3 X.25 Packet Level Setup screen) on a designated path.

Inputs

The only parameter is the path number which is to be cleared. The value may be 0 - 8, or 0xfe if you want the path number to be that of the last received packet.

Example

When a Clear packet is received, clear the path.

```
LAYER: 3
```

I3_more_to_resend

<u>Synopsis</u>

extern unsigned char l3_more_to_resend(path_number); unsigned char path_number;

Description

The *l3_more_to_resend* routine determines whether or not there are any more packets in the transmit window to resend. It is used in combination with a transitional condition such as *packet_sent* as a condition on the Protocol Spreadsheet. The softkey equivalent is PACKET_SENT MORE_TO_RESEND or PACKET_SENT NO_MORE_TO_RESEND.

Inputs

The only parameter is the path number associated with the transmit window. The value may be 0 - 8, or 0xfe if you want the path number to be that of the last received packet.

<u>Returns</u>

If there is more to resend, the returned value is non-zero. If there is no more to resend, or if the given path is invalid, the returned value is 0.

<u>Example</u>

In this example, the entire transmit window will be resent.

```
{
extern event packet_sent;
}
LAYER: 3
     STATE: xfer
       /* Whatever conditions and actions send data precede the following condition. */
        CONDITIONS: RCV REJ
        ACTIONS: RESEND FIRST
       NEXT_STATE: recover
    STATE: recover
       CONDITIONS: ENTER_STATE
        Ł
        packet_sent &&(13_more_to_resend(0xfe) != 0)
        }
        ACTIONS: RESEND NEXT
       CONDITIONS:
        ł
        packet_sent &&(13_more_to_resend(0xfe) == 0)
        3
       NEXT_STATE: xfer
```

13_window_full

Synopsis

extern unsigned char 13_window_full(path_number);
unsigned char path_number;

Description

This routine determines whether the Layer 3 window for a specified path is full or not full. When the window is full, no additional packets will be buffered until some acknowledgment is received. It is used in combination with a transitional condition such as *receive_packet* as a condition on the Protocol Spreadsheet. The softkey equivalent is RCV RR (PROTOCL) WINDOW NOT_FULL or RCV RR (PROTOCL) WINDOW FULL.

Inputs

The only parameter is the path number whose window is to be checked. The value may be 0 - 8, or 0xfe if you want the path number to be that of the last received packet.

Returns

If the window is full, or if the given path is invalid, the returned value is non-zero. If the window is not full, the returned value is 0.

<u>Example</u>

}

Transmit data packets until the transmit window is full.

```
ł
extern event packet_sent;
LAYER: 3
     STATE: check_window
        CONDITIONS:
        {
        packet_sent && (13_window_full(0xfe) l= 0)
        }
        ACTIONS: SEND DATA "((FOX))"
```

I3_window_empty

Svnopsis

extern unsigned char 13_window_empty(path_number); unsigned char path_number;

Description

This routine determines whether the Layer 3 window for a specified path is empty or not empty. It is used in combination with a transitional condition such as receive packet as a condition on the Protocol Spreadsheet. The softkey equivalent is RCV RR (PROTOCL) WINDOW NOT_EMPTY or RCV RR (PROTOCL) WINDOW EMPTY.

Inputs

The only parameter is the path number whose window is to be checked. The value may be 0 - 8, or 0xfe if you want the path number to be that of the last received packet.

Returns

If the window is empty, or if the given path is invalid, the returned value is non-zero. If the window is not empty, the returned value is 0.

Example

If a timeout expires and the transmit window is not empty, resend the first packet in the window.

{
extern event timeout_ack_expired;
extern event rcvd_packet;
LAYER: 3
STATE: check_window
CONDITIONS: PACKET_SENT
ACTIONS: TIMEOUT ack RESTART
CONDITIONS:
{
rcvd_packet
}
ACTIONS: TIMEOUT ack STOP
CONDITIONS:
{ · · · · · · · · · · · · · · · · · · ·
timeout_ack_expired && (13_window_empty(0xfe) 1= 0)
}
ACTIONS: RESEND FIRST

resend_packet

<u>Synopsis</u>

```
extern void resend_packet(path_number, first_or_next);
unsigned char path_number;
unsigned char first_or_next;
```

Description

The *resend_packet* routine will resend either the first or next packet in the window along a specified path. The softkey equivalent of this routine is the RESEND action on the Protocol Spreadsheet.

Inputs

The first parameter is the value of the path on which to resend the packet. It may be 0 - 8, or 0xfe for the path of the last received packet.

The second parameter indicates whether the first packet in the window will be sent, or whether the next packet in the window will be sent. The first resend action will send the first packet in the window regardless of whether first or next has been selected. Legal entries are 0 (first) or 1 (next).

Example

Suppose you want to resend the entire transmit window if you receive a REJ packet. In this example, it's being sent along the path of the last received packet.

LAYER: 3

STATE: xfer

/* Whatever conditions and actions send data precede the following condition. */

CONDITIONS: RCV REJ NEXT_STATE: recover STATE: recover CONDITIONS: ENTER_STATE ACTIONS: ł resend_packet(0xfe, 0);) CONDITIONS: PACKET_SENT MORE_TO_RESEND ACTIONS: { resend_packet(Oxfe,1); } CONDITIONS: PACKET SENT NO MORE TO_RESEND NEXT_STATE: xfer

reset_pr_ps

Synopsis

extern void reset_pr_ps(path_number);
unsigned char path_number;

Description

The P(R) and P(S) fields in data and supervisory packets are reset to zero. The transmit window is also cleared. The softkey equivalent of this routine is the (PROTOCL) RSTPRPS action on the Protocol Spreadsheet.

<u>Inputs</u>

The only parameter is the path number on which P(R) and P(S) are to be reset. The value may be 0 - 8, or 0xfe if you want the path number to be that of the last received packet.

Example

In this example, P(R) and P(S) are reset on path 2 whenever a Reset packet is received.

```
LAYER: 3
STATE: reset
CONDITIONS: RCV RESET
ACTIONS:
{
reset_pr_ps(2);
}
```

send_packet

Synopsis

extern void send_packet(il_buffer_number, relay_baton, data_start_offset, transmit_packet_ptr); unsigned short il_buffer_number; unsigned short relay_baton; unsigned short data_start_offset;

struct send_packet_structure

ł unsigned char path_num; unsigned char packet_type; unsigned char packet_type_byte; unsigned char m bit; unsigned char d_bit; unsigned char q_bit; unsigned char pr_type; unsigned char ps_type; unsigned char pr_value; unsigned char ps_value; unsigned char cause; unsigned char diag_flag unsigned char diag; unsigned char cntrl byte; unsigned char facilities len; char * facilities; unsigned short data_len; char * data; }; struct send_packet_structure * transmit_packet_ptr;

Description

The *send_packet* routine adds a packet-level header to an interlayer message buffer and passes the buffer to Layer 2. The softkey equivalent of this routine is the SEND action on the Protocol Spreadsheet.

<u>Inputs</u>

The first parameter is the interlayer message buffer number. See Section 66.3(A), Layer-Independent OSI routines.

The second parameter is the maintain bit used to hold the buffer while the send operation is being performed. See See Section 66.3(A).

The third parameter is the offset from the beginning of the buffer to the start of the service data unit. See See Section 66.3(A).

The fourth parameter is a pointer to the packet structure to be sent. For a description of *send packet_structure* see Table 75-1.

Example

To successfully send a packet out to the line, you must include the Layer 2 section of the program below. In this example, you are sending a Call Request packet with a facilities field present.

```
ł
static unsigned short it_buffer_number;
static unsigned short relay_baton;
static unsigned short data_start_offset;
struct send_packet_structure
  ł
  unsigned char path num;
   unsigned char packet_type;
   unsigned char packet_type_byte;
   unsigned char m_blt;
   unsigned char d_bit;
   unsigned char q_bit;
   unsigned char pr_type;
   unsigned char ps_type;
   unsigned char pr value;
   unsigned char ps value;
   unsigned char cause;
   unsigned char diag_flag
   unsigned char diag;
   unsigned char cntrl_byte;
   unsigned char facilities_len;
   char * facilities;
  unsigned short data len;
   char * data;
 };
static char transmit string [] = "((FOX))";
static char facilities_string [] = "0,0,0,4,1,4,5,0,4,0,7,7";
struct send packet structure transmit packet = {0, 0x13, 0x13, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
      (sizeof(facilities_string)-1), &facilities_string[0], 0, 0};
}
LAYER: 2
     STATE: datalink
        CONDITIONS: DL CONNECT REQ
        ACTIONS: DL_CONNECT CONF
        CONDITIONS: DL_DATA REQ
        ACTIONS; SEND INFO "((DL_DATA)) "
        CONDITIONS: RCV INFO
        ACTIONS: GIVE_DATA
LAYER: 3
     STATE: send_a_packet
        CONDITIONS: KEYBOARD " "
        ACTIONS:
        ł
         _get_il_msg_buff(&il_buffer_number, &relay_baton);
         _start_il_buff_list(il_buffer_number,&data_start_offset);
         _insert_il_buff_list_cnt(il_buffer_number, data_start_offset, &transmit_string[0],
               (sizeof(transmit_string) - 1));
         send_packet(il_buffer_number, relay_baton, data_start_offset, &transmit_packet);
        }
```

NOTE: A null is appended to the end of an array initialized as a string inside quotation marks; it is not appended to the end of an array entered inside curly braces. So, if *facilities_string* was initialized as a list of values, like this—

static char facilities_string [] = {1, 1, 4, 1, 0x41, 0x45, 0x03, 0x43, 7, 7};

-then transmit_packet would look like this-

76 SDLC Library

When the SDLC package is loaded in via the Layer Setup screen, the following external routines and variables become available for use by the programmer. Their use on the Protocol Spreadsheet is not limited to any particular layer, though normally they belong at Layer 2.

The variables and routines approximate SDLC Layer 2 spreadsheet-generated conditions and actions. Refer to Section 38 for more detailed explanations of the purposes of specific conditions and actions. Sometimes the name of the variable or routine is sufficient for identifying its related spreadsheet token. When this is not the case, the information is provided below.

76.1 Structures

The structure send frame_structure defines the format of transmitted SDLC frames. See Table 76-1. Use this structure to send frames via the send_frame routine in emulate mode. See Section 76.3(B). Each variable in the structure relates to some softkey selection or user entry in the SEND action.

76.2 Variables

(A) Monitoring Events

 Emulate or monitor mode. SDLC events include frames detected, good or bad BCC's, and aborts. All event variables in Table 76-2 containing a dte_ or dce_ prefix are valid in either emulate or monitor mode. These event variables are dte_frame, dce_frame, dte_good_bcc, dce_good_bcc, dte_bad_bcc, dce_bad_bcc, dte_abort, dce_abort. The variable dce good bcc, for example, equates to DCE GDBCC.

You can use both *dte* and *dce* variables relating to the same event in one conditions block. Suppose you want to count all bad BCC's from either side of the line. Enter the following CONDITIONS/ACTIONS block:

CONDITIONS:

ł

dte_bad_bcc || dce_bad_bcc

} ACTIONS: COUNTER bad_bcc INC

Туре	Variable	Value (hex/decin	nal) Meaning
<u>Structure Nar</u>	<u>me:</u> send_frame_a	structure	Structure of a frame in SDLC. Declared as type struct. Declared automatically if a softkey-entered SEND action is taken. Program frames assigned to structure as follows: struct send_frame_structure name. Reference a structure variable as follows: name.bcc_type. If values in the frame structure are not initialized by the user, they default to 0. You may initialize the values when the structure is declared: struct send_frame_structure name = {2, 1, 1, 0, 1, 1, 3, 0x71, 3, 0};
unsigned char	addr_type	2 3	address is specified in addr_value variable below loopback
unsigned char	frame_type	(The codes for rcvd_frame_ty	or frame_type are the same as for the SDLC-variable
unsigned char	nr_type	0 1 2 3	auto value received ns plus 1 last nr sent
unsigned char	ns_type	0 1 2 3	auto skip last nr received value
unsigned char	p_f_type	0 1 2	0 1 Ioopback
unsigned char	bcc_type	0 1 2 3	default (bad bcc) good bcc bad bcc abort
insigned char	addr_value	00-11/0-255	
insigned char	cntrl_byte	(actual value	of the control byte)
unsigned char	nr_value	0-7 (MOD 8)	if nr_type = 1
unsigned char	ns value	0-7 (MOD 8)	if ns_type = 3

Table 76-1 SDLC Structures

.

(

1

Туре	Variable	Value (hex/decimal)	Meaning
extern event	dte_frame	detecte configu	hen a DTE frame is ed. Line Setup red for emulate or r mode.
extern event	dce_frame	detecte configu	hen a DCE frame Is ad. Line Setup red for emulate or r mode.
extern event	dte_good_bcc	calcula: Line Se	hen a good BCC ls ted for a DTE frame. htup configured for e or monitor mode.
extern event	dce_good_bcc	calcula Line Se	hen a good BCC Is ted for a DCE frame. htup configured for e or monitor mode.
extern event	dte_bad_bcc	calcula Line Se	hen a bad BCC ls ted for a DTE frame. htup configured for e or monitor mode.
extern event	dce_bad_bcc	calcula Line Se	hen a bad BCC Is ted for a DCE frame. stup configured for e or monitor mode.
extern event	dte_abort	for a D configu	hen an abort is detected TE frame. Line Setup red for emulate or r mode.
extern event	dce_abort	for a D configu	hen an abort is detected CE frame. Line Setup red for emulate or r mode.
extern event	rcvd_frame	Line Se	hen a frame is received. Stup configured for e mode only.
extern event	Invalid_frame	detecte	hen an invalid frame is ad. Line Setup red for emulate mode
extern event	12_T1	has ex	hen the T1 timeout-time pired. Line Setup ired for emulate mode
extern event	bcc_error	detecte	hen a BCC error is ed. Line Setup red for emulate mode
extern event	nr_error	detecte supervl	hen an N(R) error is ad in a received INFO or sory frame. Line Setup red for emulate mode
extern event	ns_error	detecte frame.	hen an N(S) error Is ed in a received INFO Line Setup configured ulate mode only.

Table 76-2 SDLC Variables

.

(

ĺ

L

Турө	Variable	Value (hex/de	cimal) Meaning
extern event	frame_sent		True when frame is passed down to Layer 1. Line Setup configured for emulate mode only.
extern volatile const unsigned char	m_frame_addr	00-11/0-255	Line Setup configured for emulate or monitor mode.
extern volatile const unsigned char	m_frame_type	 (same as rovo configured for 	frame_typeLine Setup r emulate or monitor mode)
extern volatile const unsigned char	m_frame_cntrl_byte_1		of control byte—Line Setup r emulate or monitor mode)
extern volatile const unsigned char	m_frame_pf	0 10/16	pf=0 pf=1
			Line Setup configured for emulate or monitor mode.
extern volatile const unsigned char	m_frame_boc_type	1 2 3	good bad abort
			Line Setup configured for emulate or monitor mode.
extern volatile const unsigned char	rovd_frame_addr	00 -1 110-255	Line Setup configured for emulate mode only.
oxtern volatile const unsigned char	rcvd_frame_type	0 1 5 9 d/13 3 7 7 f/15 23/35 43/67 43/67 63/99 83/131 87/135 af/175 c7/199 cf/207 e3/227 ef/239 b/11 ff/240 ff/240	info rr rnr rej srej ul rim slm dm up disc rd ua snrm frmr xid cfgr snrme test bcn lpda other unknown Line Setup configured for emulate mode only.
extern volatile const unsigned char	rcvd_frame_ontrl_byte_1		of control byte—Line Setup r emulate mode only)
xtern volatile const unsigned char	rcvd_frame_pf	0 10/16	pf=0 pf=1
			Line Setup configured for emulate mode only.

Table 76-2 (continued)

(

ĺ

Туре	Variable	Value (hex/dea	cimal) Meaning
extern volatlle const unsigned char	rcvd_frame_bcc_type	1 2 3	good bad abort
			Line Setup configured for emulate mode only.
extern volatile const unsigned char	rcvd_frame_nr	0-7 (MOD 8)	Line Setup configured for emulate mode only.
extern volatile const unsigned char	rcvd_frame_ns	0-7 (MOD 8)	Line Setup configured for emulate mode only.
extern volatile unsigned short	rcvd_frame_buff_seg		Inter-layer message buffer number (actually, an IAPX-286 segment number) in a received frame. This segment number can be converted to a pointer by shifting it left 16 bits. Line Setup configured for emulate mode only.
extern volatile unsigned short	rcvd_frame_sdu_offset		Offset to where the service dat unit begins in an Inter-layer message buffer in a received frame. Add to buffer segment number (converted to pointer) to point to first byte in frame. Line Setup configured for emulate mode only.
extern volatile unsigned short	rcvd_frame_sdu_size		Size of service data unit in a received frame. Line Setup configured for emulate mode only.
extern volatlle unsigned short	l2_current_wIndow_edge		When equal to upper edge, window is full; when equal to lower edge, window is empty; when not equal to upper edge, window is not full; and when not equal to lower edge, window is not empty. Line Setup configured for emulate mode only. Valid for point-to-point operation only.
extern volatile unsigned short	l2_lower_window_edge		see I2_current_window_edge
extern volatile unsigned short	l2_upper_window_edge		see l2_current_window_edge
extern volatlle unsigned short	l2_resend_edge		When resend edge is not equal to lower window edge, there is more to resend; when resend edge is equal to lower window edge, there is no more to resend. Line Setup configured for emulate mode only.

Table 76-2 (continued)

ļ

l

,

.

Туре	Variable	Value (hex/	decimal) Meaning	
extern unsigned char	l2_enhance	0 1 4 5 8 .9 12/18	normał reverse low reverse low blink reverse blink blink low	
extern unsigned char	12_suppress	0 1	Line Setup configured for emulate or monitor mode. off on Line Setup configured for emulate or monitor mode.	

Table 76-2 (continued)

Using spreadsheet tokens, the same test needs two CONDITIONS/ACTIONS blocks:

CONDITIONS: DTE BDBCC ACTIONS: COUNTER bad_bcc INC CONDITIONS: DCE BDBCC ACTIONS: COUNTER bad_bcc INC

When the user selects DTE or DCE on the first rack of softkeys for Layer 2 conditions, a second rack appears from which he must select a particular frame type. A DTE INFO condition, for example, when translated, includes two C variables, one event variable and one status variable:

dte_frame && (m_frame_type == 0) }

As a C programmer, you do not have to specify a frame type. To include all frames in a condition, use the event variable only:

CONDITIONS:

{ die_frame }

 Emulate mode only. Some events may be detected in emulate mode only. The event variables are rcvd_frame, invalid_frame, l2_T1, bcc_error, nr_error, ns_error, and frame_sent.

If you try to use one of these variables in monitor mode, you may be returned to the main program menu. When you go to the Protocol Spreadsheet and search for errors, a message like the following may be displayed: "Error 140: Unresolved reference rcvd_frame."

When the user selects RCV on the first rack of softkeys for Layer 2 conditions, a second rack appears from which he must select a particular

frame type. When the translator converts a RCV INFO condition into C, it will include two C variables, one event variable and one status variable:

```
{
rcvd_frame && (rcvd_frame_type == 0)
}
```

In a C condition, a frame type does not have to be specified. To include all received frames in a condition, use the event variable only:

CONDITIONS: { rcvd_frame }

Error detecting may be accomplished via *bcc_error*, *nr_error*, *ns_error*, and *invalid_frame*. These variables equate to the softkey tokens bearing similar names.

One of the emulate-mode variables monitors an emulate action. The event variable *frame_sent* will come true as soon as the frame has been passed to the layer below.

(B) Status Variables

Status variables are those in Table 76-2 that do not include *event* in the Type column. Their associated event variables guarantee that they are updated and tested.

The softkey-generated condition for received Info frames is RCV INFO. The C version of the same condition should look like this:

CONDITIONS:

{

rcvd_frame && (rcvd_frame_type == 0)
}

 Frame characteristics. All status variables in Table 76-2 containing an m_ prefix are valid in either emulate or monitor mode: m_frame_addr, m_frame_type, m_frame_cntrl_byte_1, m_frame_pf, and m_frame_bcc_type. Use these variables to monitor a particular address, frame type, control byte, P/F value, or BCC.

All status variables in Table 76-2 containing a *rcvd* prefix are valid in emulate mode only: *rcvd_frame_addr*, *rcvd_frame_type*, *rcvd_frame_cntrl_byte_1*, *rcvd_frame_bcc_type*, *rcvd_frame_pf*, *rcvd_frame_nr*, and *rcvd_frame_ns*. Use these variables to monitor a particular address, frame type, control byte, BCC, or P/F, N(R), or N(S) value.

If you try to use an emulate-mode variable in monitor mode, you may be returned to the main program menu. When you go to the Protocol Spreadsheet and search for errors, a message like the following may be displayed: "Error 140: Unresolved reference rcvd frame type."

2. Frame buffers. As BOP frames are received, they are automatically placed in IL message buffers to be passed up the layers. Three emulate-mode variables provide the user with access to the information in the frame that is located beyond the control byte. These variables are rcvd frame buff_seg, rcvd_frame_sdu_offset, and rcvd_frame_sdu_size. See Section 66.1 for a more detailed discussion of the buffer components to which these variables refer.

Make a pointer to an IL buffer by casting rcvd_frame_buff_seg as a long, shifting it left sixteen bits, adding rcvd_frame_sdu_offset, and casting the result to a pointer. Increment the pointer twice (thereby adding two to the offset).

```
{
 unsigned char + ptr:
 ptr = (void *)(((long)rcvd_frame_buff_seg << 16) + rcvd_frame_sdu_offset);</pre>
 ptr+=2;
}
```

It is now pointing at the first byte in the information field. You may continue to move through the frame for its entire length, indicated in rcvd_frame_sdu_size.

3. Transmit window. Four related variables test the status of the Layer 2 window in point-to-point operation. The particular values of these variables at any given time is not significant. What is significant is how they compare to each other. The softkey status condition on the left makes the variable comparison on the right:

WINDOW FULL	l2_current_window_edge == l2_upper_window_edge
WINDOW EMPTY	l2_current_window_edge == l2_lower_window_edge
WINDOW NOT_FULL	l2_current_window_edge l= l2_upper_window_edge
WINDOW NOT_EMPTY	12_current_window_edge l= l2_lower_window_edge
MORE_TO_RESEND	12_resend_edge 1= 12_lower_window_edge
NO_MORE_TO_RESEND	l2_resend_edge == l2_lower_window_edge

(C) Controlling Protocol Trace Display

To enhance or suppress particular frames on the Layer 2 Protocol Trace screen in emulate or monitor mode, assign a coded value to *l2_enhance* or *l2_suppress*. The values are listed in Table 76-2. To assign a value to either of these variables, place the statement in an ACTIONS block. For example, display RNR frames in reverse-video and suppress display of invalid frames:

```
CONDITIONS: RCV RNR
ACTIONS:
{
12_enhance = 1;
}
CONDITIONS: RCV INVALID
ACTIONS;
{
12_suppress = 1;
}
```

Check the value of these display-control variables in a CONDITIONS block

```
CONDITIONS: RCV INFO
{
12_enhance == 1
}
ACTIONS:
{
12_enhance = 0;
}
```

or an ACTIONS block:

```
CONDITIONS: RCV INFO
ACTIONS:
{
if(12_enhance == 1)
i2_enhance = 0;
}
```

76.3 Routines

Use the following routines in emulate mode only. If you try to call one of these routines in monitor mode, you will be returned to the main program menu. When you go to the Protocol Spreadsheet and search for errors, a message like the following will be displayed: "Error 140: Unresolved reference l2_give_data."

(A) Receive

12 give data

<u>Synopsis</u>

extern void l2_give_data();

Description

The *l2_give_data* routine takes takes an interlayer message buffer associated with a received INFO frame, changes the SDU offset to point to higher-level data, and sends a DL_DATA IND primitive up to Layer 3 along with a reference to this buffer. The softkey equivalent of this routine is the GIVE_DATA action on the Protocol Spreadsheet.

<u>Example</u>

Layer 3 wants access to the line in order to receive and send data. Assuming the SDLC personality package is loaded at Layer 2, enter the following program:

LAYER: 2

```
STATE: datalink

CONDITIONS: DL_CONNECT REQ

ACTIONS: DL_CONNECT CONF

CONDITIONS: DL_DATA REQ

ACTIONS: SEND INFO "((DL_DATA))"

CONDITIONS: RCV INFO

ACTIONS:

{

I2_give_data();

}
```

(B) Transmit

resend frame

Synopsis

```
extern void resend_frame(pf, first_or_next);
unsigned char pf;
unsigned char first_or_next;
```

Description

The *resend_frame* routine will resend either the first or next frame in the window with the P/F bit set to a specified value.

NOTE: To ensure that this routine executes properly, select Emulation Addressing: FOINT TO FOINT on the SDLC Frame Level Setup screen. For either point-to-point or multi-drop operation, see resend_frame_multi.

Inputs

The first parameter is the value of the P/F bit in the frame. It may be set to either zero or one.

The second parameter indicates whether the first frame in the window will be sent, or whether the next frame in the window will be sent. The first resend action will send the first frame in the window regardless of whether first or next has been selected. Legal entries are 0 (first) or 1 (next).

Example

Suppose you want to resend the entire transmit window if you receive a REJ frame.

LAYER: 2

```
STATE: xfer
```

/* Whatever conditions and actions send data precede the following condition. */

CONDITIONS: RCV REJ RESP NEXT_STATE: recover STATE: recover CONDITIONS: ENTER STATE ACTIONS: { resend_frame(1, 0); ł CONDITIONS: FRAME_SENT MORE_TO_RESEND ACTIONS: { resend_frame(1,1); } CONDITIONS: FRAME_SENT NO_MORE_TO_RESEND NEXT_STATE: xfer

resend frame multi

<u>Synopsis</u>

```
extern void resend_frame_multi(pf, first_or_next, addr_value);
unsigned char pf;
unsigned char first_or_next;
unsigned char addr_value;
```

Description

The *resend_frame_multi* routine will resend either the first or next frame in the window to a specified controller address. The softkey equivalent of this routine is the (PROTOCL) RESEND action on the Protocol Spreadsheet.

NOTE: For multi-drop operation, select Emulation Addressing: MULTI-DROP on the SDLC Frame Level Setup screen.

Inputs

The first parameter is the value of the P/F bit in the frame. It may be set to either zero or one.

The second parameter indicates whether the first frame in the window will be sent, or whether the next frame in the window will be sent. The first resend action will send the first frame in the window regardless of whether first or next has been selected. Legal entries are 0 (first) or 1 (next).

The third parameter is the value of the controller address. The specified address must be listed in the ADDR table on the SDLC Frame Level Setup screen (see Section 38.1). Values in the decimal range 0 through 255 are valid. Value may be represented as decimal, hexadecimal, or octal. For loopback, use the variable rcvd frame addr.

Example

}

Suppose you want to resend the entire transmit window for the controller address in a received REJ frame.

```
{
extern volatile const unsigned char rcvd frame addr;
LAYER: 2
    STATE: xfer
       /* Whatever conditions and actions send data precede the following condition. */
       CONDITIONS: RCV REJ RESP
       NEXT_STATE: recover
    STATE: recover
       CONDITIONS: ENTER STATE
       ACTIONS:
       {
        resend_frame_multi(1, 0, rcvd_frame_addr);
       }
       CONDITIONS: FRAME_SENT
            MORE_TO_RESEND
       ACTIONS:
       {
        resend_frame(1,1, rcvd_frame_addr);
       }
       CONDITIONS: FRAME SENT
            NO_MORE_TO_RESEND
       NEXT_STATE: xfer
```

reset nr

Synopsis

extern void reset nr();

Description

This routine resets the N(R) field in information and supervisory frames to zero.

NOTE: To ensure that this routine executes properly, select Emulation Addressing: EONTETOEPOINT on the SDLC Frame Level Setup screen. For either point-to-point or multi-drop operation, see reset_nr_multi.

Example

When a link is established, reset N(R).

```
LAYER: 2
STATE: reset
CONDITIONS: ENTER_STATE
ACTIONS: SEND SABM
CONDITIONS: RCV UA
ACTIONS:
{
reset_nr();
}
```

reset_nr _multi

Synopsis

extern void reset_nr_multi(addr_value);
unsigned char addr_value;

Description

This routine resets to zero the N(R) field in information and supervisory frames for a specified controller address. The softkey equivalent of this routine is the (PROTOCL) RSET_NR action on the Protocol Spreadsheet.

NOTE: For multi-drop operation, select Emulation Addressing: MULTHDROP on the SDLC Frame Level Setup screen.

<u>Inputs</u>

The only parameter is the value of the controller address. The specified address must be listed in the ADDR table on the SDLC Frame Level Setup screen (see Section 38.1). Values in the decimal range 0 through 255 are valid. Value may be represented as decimal, hexadecimal, or octal. For loopback, use the variable *rcvd frame_addr*.

Example

When a link is established, reset N(R) for address in received UA frame.

```
{
  extern volatile const unsigned char rcvd_frame_addr;
}
LAYER: 2
  STATE: reset
      CONDITIONS: ENTER_STATE
      ACTIONS: SEND SABM
      CONDITIONS: RCV.UA
      ACTIONS:
      {
        reset_nr_multi(rcvd_frame_addr);
      }
```

reset_ns

<u>Synopsis</u>

extern void reset_ns();

Description

The N(S) field in information frames is reset to zero and the transmit window is cleared.

NOTE: To ensure that this routine executes properly, select Emulation Addressing: POINT=TO=POINT on the SDLC Frame Level Setup screen. For either point-to-point or multi-drop operation, see reset_ns_multi.

<u>Example</u>

When a link is established, reset N(S).

```
LAYER: 2

STATE: reset

CONDITIONS: ENTER_STATE

ACTIONS: SEND SABM

CONDITIONS: RCV UA

ACTIONS:

{

reset_ns();

}
```

reset_ns _multi

Synopsis

extern void reset_ns_multi(addr_value);
unsigned char addr_value;

Description

This routine resets to zero the N(S) field in information frames for a specified controller address. It also clears the transmit window. The softkey equivalent of this routine is the (PROTOCL) RSET_NS action on the Protocol Spreadsheet.

NOTE: For multi-drop operation, select Emulation Addressing: MULTEDROP on the SDLC Frame Level Setup screen.

Inputs

The only parameter is the value of the controller address. The specified address must be listed in the ADDR table on the SDLC Frame Level Setup screen (see Section 38.1). Values in the decimal range 0 through 255 are valid. Value may be represented as decimal, hexadecimal, or octal. For loopback, use the variable *rcvd_frame_addr*.

Example

When a link is established, reset N(S) for address in received UA frame.

```
{
  extern volatile const unsigned char rcvd_frame_addr;
}
LAYER: 2
  STATE: reset
      CONDITIONS: ENTER_STATE
      ACTIONS: SEND SABM
      CONDITIONS: RCV UA
      ACTIONS:
      {
        reset_ns_multi(rcvd_frame_addr);
      }
}
```

send_frame

<u>Synopsis</u>

extern void send_frame(il_buffer_number, relay_baton, data_start_offset, transmit_frame_ptr); unsigned short il_buffer_number; unsigned short relay_baton; unsigned short data_start_offset; struct send_frame_structure { unsigned char addr_type;

unsigned char frame_type; unsigned char nr_type; unsigned char ns_type; unsigned char p_f_type; unsigned char bcc_type; unsigned char addr_value; unsigned char cntrl_byte; unsigned char nr_value; unsigned char ns_value; }; struct send_frame structure * transmit frame ptr;

Description

The send_frame routine adds a frame-level header to an interlayer message buffer and passes the buffer to Layer 1. The softkey equivalent of this routine is the SEND action on the Protocol Spreadsheet.

<u>Inputs</u>

The first parameter is the interlayer message buffer number. See Section 66.3(A), Layer-Independent OSI routines.

The second parameter is the maintain bit used to hold the buffer while the send operation is being performed. See Section 66.3(A).

The third parameter is the offset from the beginning of the buffer to the start of the service data unit. See Section 66.3(A).

The fourth parameter is a pointer to the frame structure to be sent. For a description of *send frame structure* see Table 76-1.

<u>Example</u>

Send an Info frame containing a canned fox message and a good BCC onto the line.

```
{
 static unsigned short il_buffer_number;
 static unsigned short relay_baton;
 static unsigned short data_start_offset;
 struct send_frame_structure
  {
  unsigned char addr_type;
  unsigned char frame_type;
  unsigned char nr_type;
  unsigned char ns type;
  unsigned char p f type;
  unsigned char bcc_type;
  unsigned char addr_value;
  unsigned char cntrl byte;
  unsigned char nr_value;
  unsigned char ns_value;
 };
struct send_frame_structure transmit_frame;
static char transmit_string [] = "((FOX))";
}
```

LAYER: 2

STATE: send_a_frame CONDITIONS: KEYBOARD * " ACTIONS:

{

_get_il_msg_buff(&il_buffer_number, &relay_baton);

_start_il_buff_list(il_buffer_number,&data_start_offset);

transmit_frame.bcc_type = 1;

_insert_il_buff_list_cnt(il_buffer_number, data_start_offset, &transmit_string[0], (sizeof(transmit_string) - 1));

send_frame(ii_buffer_number, relay_baton, data_start_offset, &transmit_frame); } INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

77 SNA Library

When the SNA package is loaded in via the Layer Setup screen, the following external variables become available for use by the programmer. Their use on the Protocol Spreadsheet is not limited to any particular layer, though normally they belong at Layer 2.

SDLC variables and routines, while they are included in the SNA layer-personality package, are not documented here. They are documented fully in Section 76.

Those variables that are specific to the SNA package are documented here. They pertain to fields in SNA transmission headers, request/response headers, and request/response units. These variables have no spreadsheet-token equivalents.

77.1 Structures

Use the SDLC send_frame_structure shown in Table 76-1.

77.2 Variables

The variables discussed below apply when the Line Setup menu shows either emulate or monitor mode. Emulate mode, however, is not supported by emulate-only conditions and actions on the Protocol Spreadsheet.

(A) Monitoring Events

Use the SDLC event variables discussed in Section 76.2(A).

(B) Status Variables

All SNA variables in Table 77-1 are status variables. Also refer to the SDLC status variables listed in Table 76-2.

There are no softkey tokens on the spreadsheet that are equivalent to the SNA variables listed in Table 77-1. To search for Info frames with a FID2 transmission header, for example, use C variables. The condition should look like this:

```
CONDITIONS:
{
dte_frame && (m_frame_type == 0) && (m_packet_fid_type == 2)
}
```

Туре	Variable	Value (hex/dec	imal) Meaning
extern volatile unsigned short	m_packet_length		Length of the packet, including the transmission and request/response headers. Line Setup configured for emulate or monitor mode.
extern volatile const unsigned char	<u>Transmission Header:</u> m_packet_fid_type	0 1 2 3 4 f/15	Format identification Type: FID0; TH 10 bytes FID1; TH 10 bytes FID2; TH 6 bytes FID3; TH 2 bytes FID4; TH 26 bytes FIDF; TH 26 bytes Line Setup configured for emulate or monitor mode.
extern volatile const unsigned short	m_packet_daf	0-111f10-65535	Destination address field—2 bytes in FID0 and FID1; 1 byte in FID2. Line Setup configured for emulate or monitor mode.
extern volatile const unsigned short	m_packet_def	0-111110-65535	Destination element field—2 bytes; FID4 only. Line Setup configured for emulate or monitor mode.
extern volatlie const unsigned long	m_packet_dsaf	0-11111111 0-4294967295	Destination subarea address field—4 bytes; FID4 only. Line Setup configured for emulate or monitor mode.
extern volatile const unsigned char	m_packet_Isld	(actual value of byte)	Local Session Identification: FID3 only SSCP-PU session SSCP-LU session Reserved LU-LU session Line Setup configured for emulate or monitor mode.
extern volatile const unsigned short	m_packet_oaf	00-1110-255	Origin address field—2 bytes in FID0 and FID1; 1 byte in FID2. Line Setup configured for emulate or monitor mode.
extern volatlle const unsigned short	m_packet_oef	00-1110-255	Origin element fleid—2 bytes; FID4 only. Line Setup configured for emulate or monitor mode.
extern volatile const unsigned long	m_packet_osaf	0~1111111 0-4294967295	Origin subarea address field—4 bytes; FID4 only. Line Setup configured for emulate or monitor mode.

Table 77-1 SNA Variables†

† Refer to Table 76-2 for SDLC variables.

Туре	Variable	Value (hex/o	decimal) Meaning
	<u>Transmission Header (co</u>	ontinued) :	
extern volatile unsigned char *	th_ptr		Pointer for the transmission header; begins at the byte containing FID type. Line Set configured for emulate or monitor mode.
	Request/Response Head	<u>er:</u>	
extern volatlle const unsigned char	m_packet_ru_category	0	<u>Request/Response Unit:</u> Function Management Data (FMD)
		20/32 40/64 60/96	Network Control (NC) Data Flow Control (DFC) Session Control (SC)
			Line Setup configured for emulate or monitor mode.
extern volatile const unsigned char	m_packet_fl	0 8	<u>Format Indicator:</u> User data without header in R In LU-LU frame, indicates header follows the RH, In SC NC, or DFC RU, indicates a formatted RU beginning with a request code.
			Line Setup configured for emulate or monitor mode.
extern volatile const unsigned char	m_packet_rrl	0 80/128	<u>Request/Response Indicator:</u> request response
			Line Setup configured for emulate or monitor mode.
extern volatile unsigned char	m_packet_rtl	0 10/16	<u>Response Type Indicator:</u> positive response negative response
			Line Setup configured for emulate or monitor mode.
extern volatile unsigned char	m_packet_sdl	0 4	<u>Sense Data Indicator:</u> sense data not Included sense data included
			Line Setup configured for emulate or monitor mode.
extern volatile unsigned char *	_rh_ptr		Pointer for the request/respor header; begins at the byte containing the request/respon Indicator. Line Setup configur for emulate or monitor mode.
	Request/Response Unit:		Deleter for the request/respon
extern volatile unsigned char *	ru_ptr		Pointer for the request/respor unit; begins at the first byte in the unit. Line Setup configure for emulate or monitor mode.

Table 77-1 (continued)

.

ĺ

(

- 1. Info frame characteristics. Most status variables in Table 77-1 contain an $m_{\rm prefix}$, indicating that they are valid in emulate or monitor mode. Some variables are associated with the transmission header: $m_{\rm packet_fid_type}$, $m_{\rm packet_daf}$, $m_{\rm packet_def}$, $m_{\rm packet_dsaf}$, $m_{\rm packet_lsid}$, $m_{\rm packet_oaf}$, $m_{\rm packet_oef}$, and $m_{\rm packet_osaf}$. Other variables are associated with the request/response header: $m_{\rm packet_ru_category}$, $m_{\rm packet_fi}$, $m_{\rm packet_rri}$, $m_{\rm packet_rti}$, and $m_{\rm packet_sdi}$.
- 2. Pointers. There are three pointers to SNA fields. *th_ptr* points to first byte of the transmission header, *rh_ptr* points to the first byte of request/response header, and *ru_ptr* points to the start of the request/response unit.

(C) Controlling Protocol Trace Display

To enhance or suppress particular packets on the Layer 2 Protocol Trace screen in emulate or monitor mode, assign a coded value to l2_enhance or l2_suppress. The values are listed in Table 76-2. To assign a value to either of these variables, place the statement in an ACTIONS block. For example, display only Info frames with FID2 transmission headers. Of these, display frames with sense data in reverse-video.

```
CONDITIONS:

{

dte_frame && (m_frame_type == 0) && (m_packet_fid_type != 2)

}

ACTIONS:

{

12_suppress = 1;

}

CONDITIONS:

{

dte_frame && (m_frame_type == 0) && (m_packet_fid_type == 2) && (m_packet_sdi == 4)

}

ACTIONS:

{

12_enhance = 1;

}
```

Check the value of these display-control variables in a CONDITIONS block

CONDITIONS:

{ dte_frame && (m_frame_type == 0) && (m_packet_fid_type i= 2) && (l2_suppress == 0) } ACTIONS: { l2_suppress = 1; }

```
or an ACTIONS block:
CONDITIONS:
{
    dte_frame && (m_frame_type == 0) && (m_packet_fid_type != 2)
}
ACTIONS:
{
    if(l2_suppress == 0)
    l2_suppress = 1;
}
```

77.3 Routines

There are no routines associated exclusively with SNA. Use the SDLC routines discussed in Section 76.3. To send a frame including SNA protocol, for example, include a *transmit_string* of SNA data in the *send_frame* routine.

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

.

78 DDCMP Library

When the DDCMP package is loaded in via the Layer Setup screen, the following external variables become available for use by the programmer. Their use on the Protocol Spreadsheet is not limited to any particular layer, though normally they belong at Layer 1.

78.1 Structures

There are no extern structures associated exclusively with DDCMP.

78.2 Variables

The only variables exclusive to DDCMP relate to block checking. When the DDCMP package is loaded in, the results of both header and data block checks are displayed on the data screen. If you want your program to detect good or bad BCC's, you may use the BCC selections on the trigger menus and at Layer 1 of the Protocol Spreadsheet to interrogate the header block check only.

If you want to detect a good or bad data block check, you must use one of the C event variables listed in Table 78-1.

Here is a program that counts bad DTE BCC's for both header and data:

extern fast_event fevar_bd_bcc2_td;	
YER: 1	
STATE: count_all_bad_dte_bccs	
CONDITIONS: DTE BAD BCC	
ACTIONS: COUNTER t bdbcc	INC
{	
fevar_bd_bcc2_td	
}	
ACTIONS: COUNTER t_bdbcc	INC
	YER: 1 STATE: count_all_bad_dte_bccs CONDITIONS: DTE BAD_BCC ACTIONS: COUNTER t_bdbcc CONDITIONS: { fevar_bd_bcc2_td }

78.3 Routines

There are no routines associated exclusively with DDCMP.

Туре	Variable	Value (hex/decimal) Meaning
extern fast_event	fevar_gd_bcc_rd	True when a good header BC is received on RD. Line Setu configured for emulate or monitor mode.
extern fast_event	fevar_gd_bcc_td	True when a good <i>header</i> BC Is received on TD. Line Setu configured for emulate or monitor mode.
extern fast_event	fevar_bd_bcc_rd	True when a bad <i>header</i> BCC received on RD. Line Setup configured for emulate or monitor mode.
extern fast_event	fevar_bd_bcc_td	True when a bad <i>header</i> BCC received on TD. Line Setup configured for emulate or monitor mode.
extern fast_event	fevar_gd_bcc2_td	True when a good <i>data</i> BCC I received on TD. Line Setup configured for emulate or monitor mode.
extern fast_event	fevar_gd_bcc2_rd	True when a good <i>data</i> BCC i received on RD. Line Setup configured for emulate or monitor mode.
extern fast_event	fevar_bd_bcc2_td	True when a bad <i>data</i> BCC is received on TD. Line Setup configured for emulate or monitor mode.
extern fast_event	fevar_bd_bcc2_rd	True when a bad <i>data</i> BCC is received on RD. Line Setup configured for emulate or monitor mode.

Table 78-1 DDCMP Variables

ĺ

.

79 ISDN D Channel Library

To use the C structures, variables, and routines explained in this section, your INTERVIEW must be equipped with Option 15. Install the ISDN Test Interface Module (TIM) in the rear of the INTERVIEW, as explained in Section 12. Also install the ISDN mux board according to the directions in Appendix J4. Load in the ISDN_D Layer 1 package via the Layer Setup screen. The ISDN_D package contains the variables and most of the routines documented below. Finally, select one of the B channels in the Channel field on the ISDN Interface Setup screen. See Section 51.5.

The configuration of the INTERVIEW described above supports dual-channel monitoring. Dual-channel monitoring means tracking one of the B channels and the D channel. All menu selections (with the possible exception of **Speaker** on the ISDN Interface Setup menu), triggers, and spreadsheet conditions and actions apply to the B channel selected. Use the C structures, variables, and routines in this section to monitor the D channel.

> NOTE: When the ISDN Interface Setup screen shows Channel: , your unit is configured for single-channel monitoring. Menu selections, triggers, and the Protocol Spreadsheet apply to the D channel. Do not load in the ISDN_D Layer 1 package.

You may develop your own program to monitor the D channel, or simply load and run the program contained in the ISDN trace application package (available as OPT-951-35).

79.1 Structures

Use the structure *xmit_list*, shown in Table 79-1, when transmitting on the D channel via the *send_d_frame* routine. Refer to *send_d_frame* in Section 79.3 for an example of how to use this structure.

Туре	Variable	Value (hex/decimal)	Meaning
<u>Structure_Nar</u>	<u>ne:</u> xmit_list		Structure of a transmit list for send_d_frame routine. Declared as type struct. Reference member variables of the structure as follows: <i>xmit_list.string_length.</i>
unsigned char *	string		pointer to the location of the transmit string-the transmit string is declared separately
unsianed short	string length	0-11110-65535	length of the transmit string

Table 79-1 ISDN Structures

79.2 Variables

There are three event variables associated with the ISDN_D personality package. They are d_dte_frame, d_dce_frame, and d_rcv_frame. See Table 79-2.

(A) Monitoring Events

- 1. In monitor mode. When a frame is detected on the D channel, one monitor event, d_dce_frame or d_dte_frame, is signaled. Use both event variables to construct an ISDN trace.
- 2. In emulate mode. In emulate mode, the receive event d_rcv_frame and one of the monitor events are signaled when a frame is received on the D channel. The INTERVIEW's transmissions on the D channel may not be monitored when the unit is in dual-channel mode. The implication of this difference is that ISDN trace programs written in monitor mode may not be placed intact in an emulation program.

Турө	Variable	Value (hex/decimal)	Meaning
extern event	d_dte_frame	True when a DTE frame is detected on the D channel. Line Setup configured for emulate or monitor mode.	
extern event	d_dce_frame	True when a DCE frame is detected on the D channel. Line Setup configured for emulate or monitor mode.	
extern event	d_rcv_frame	True when a frame is received on the D channel. Line Setup configured for emulate mode only.	

Table 79-2 ISDN Variables

79.3 Routines

There are two routines associated with the ISDN_D package: *send_d_frame* and *send_d_frame_il*. Another ISDN routine, *set_isdn_speaker_chan*, controls the speaker for either of the B channels. This routine is supplied by the ISDN Test Interface Module.

(A) Transmit

Use the following routines in emulate mode only. If you try to call one of these routines in monitor mode, you may be returned to the main program menu. When you go to the Protocol Spreadsheet and search for errors, a message like the following may be displayed: "Error 140: Unresolved reference send_d_frame_il."

send_d_frame

<u>Synopsis</u>

extern void send_d_frame(count, struct_send_string_ptr, xmit_tag);
unsigned short count;
struct xmit_list
{
 unsigned char * string_ptr;
 unsigned short string_tength;
 };
struct xmit_list * struct_send_string_ptr;
unsigned short xmit_tag;

Description

The *send_d_frame* routine sends a specified string on the D channel with a user-determined BCC.

Inputs

The first parameter is the number of strings to be sent.

The second parameter is a pointer to a structure which in turn identifies the location and length of each string.

The third parameter is a transmit tag which includes a BCC in bits 0-2: good (001), bad (010), or abort (011). Bits 3-7 are reserved for future use. Integers may be used to indicate the value of the transmit tag: good (1), bad (2), and abort (3).

<u>Example</u>

Assume you want to send on channel D a fox message inside of an X.25 data packet with a good block check. You might have 2 strings, one with the Layers 2 and 3 header information, and one with the fox message. You would send these strings as follows:

```
{
unsigned char headers [] = {0x01, 0x00, 0x10, 0x04, 0x00};
unsigned char message [] = "((FOX))";
struct xmit_list
{
    unsigned char * string;
    unsigned short string_length;
    };
struct xmit_list send_string [] = {&headers[0], 5, &message[0], sizeof(message) - 1};
}
```

```
LAYER: 1
STATE: send_message
CONDITIONS: KEYBOARD " "
ACTIONS:
{
send_d_frame(2, &send_string[0], 1);
}
```

send_d_frame_il

Synopsis

extern void send_d_frame_il(il_buffer_number, relay_baton, data_start_offset, transmit_tag); unsigned short il_buffer_number; unsigned short relay_baton; unsigned short data_start_offset; unsigned short transmit_tag;

Description

This routine sends a designated interlayer message buffer out on the D channel.

Inputs

The first parameter is the interlayer message buffer number.

The second parameter is the maintain bit used to hold the buffer while the send operation is performed at Layer 1.

The third parameter is the offset from the beginning of the buffer to the service data unit (SDU).

The fourth parameter is a transmit tag which includes a BCC in bits 0-2: good (001), bad (010), or abort (011). Bits 3-7 are reserved for future use. Integers may be used to indicate the value of the transmit tag: good (1), bad (2), and abort (3).

Example

Send the same text as in the example for send_d_frame. Refer to Section 66.3(A) for a description of the _get_il_msg_buff, _start_il_buff_list, and _insert_il_buff_list_cnt routines.

```
{

unsigned short il_buffer_number;

unsigned short relay_baton;

unsigned short data_start_offset;

unsigned char message [] = "°1\x000<sup>1</sup>0°4\x000((FOX))";

}
```

```
LAYER: 1

STATE: send_message

CONDITIONS: KEYBOARD " "

ACTIONS:

{

_get_il_msg_buff(&il_buffer_number, &relay_baton);

_start_il_buff_list(ll_buffer_number, &data_start_offset);

_insert_il_buff_list_cnt(il_buffer_number, data_start_offset, &message[0],

(sizeof(message) - 1));

send_d_frame_il(il_buffer_number, relay_baton, data_start_offset, 1);

}
```

(B) Speaker Control

set_isdn_speaker_chan

Synopsis

extern void set_isdn_speaker_chan(selection);
unsigned short selection;

Description

The set_isdn_speaker_chan routine allows the programmer to control the speaker located on the ISDN mux board, Option 15. The programmer may enable the speaker for one of the B channels. This selection is independent of the channel selected for monitor or emulation on the ISDN Interface Setup screen.

<u>Inputs</u>

The only parameter is the channel selection. A value of one means turn the speaker on for channel B1. Enable the speaker for channel B2 with two. Turn the speaker off by setting the value to zero.

<u>Example</u>

Suppose you want to know whether data or voice is being transmitted over channel B1. Use the *set_isdn_speaker_chan* routine to enable the speaker for B1. Even if you are otherwise using the INTERVIEW to monitor B2, you will hear the B1 transmissions.

```
LAYER: 1
STATE: enable_b1
CONDITIONS: KEYBOARD "sS"
ACTIONS:
{
set_isdn_speaker_chan(1);
}
```

.

JUL '90

ĺ

(

80 LAPD Library

When the LAPD package is loaded in via the Layer Setup screen, the following external routines and variables become available for use by the programmer. Their use on the Protocol Spreadsheet is not limited to any particular layer, though normally they belong at Layer 2.

The variables and routines approximate LAPD Layer 2 spreadsheet-generated conditions and actions. Refer to Section 42 for more detailed explanations of the purposes of specific conditions and actions. Sometimes the name of the variable or routine is sufficient for identifying its related spreadsheet token. When this is not the case, the information is provided below.

80.1 Structures

The structure send_frame_structure defines the format of transmitted LAPD frames. See Table 80-1. Use this structure to send frames via the send_frame routine in emulate mode. See Section 80.3(B). Each variable in the structure relates to some softkey selection or user entry in the SEND action.

80.2 Variables

(A) Monitoring Events

 Emulate or monitor mode. LAPD events include frames detected, good or bad BCC's, and aborts. All event variables in Table 80-2 containing a dte_ or dce_ prefix are valid in either emulate or monitor mode. These event variables are dte_frame, dce_frame, dte_good_bcc, dce_good_bcc, dte_bad_bcc, dce_bad_bcc, dte_abort, dce_abort. The variable dce good bcc, for example, equates to DCE GDBCC.

You can use both *dte* and *dce* variables relating to the same event in one conditions block. Suppose you want to count all bad BCC's from either side of the line. Enter the following CONDITIONS/ACTIONS block:

CONDITIONS:

-}

die_bad_bcc || dce_bad_bcc

ACTIONS: COUNTER bad_bcc INC

Туре	Variable	Value	(hex/decimal)	Meaning
<u>Structure Nam</u>	<u>ne:</u> send_frame_a	structure		Structure of a frame in LAPD. Declared as type struct. Declared automatically if a softkey-entered SEND action is taken. Program frames assigned to structure as follows: struct send_frame_structure name. Reference a structure variable as follows: name.bcc_type. If values in the frame structure is declared: struct send_frame_structure is declared: struct send_frame_structure name = $\{1, 1, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0\}$:
unsigned char	sapi_type	1	I	no other value valid—indicates a value is given
unsigned char	tel_type	1	I	no other value valid—indicates a value is given
unsigned char	cr_type			0 1 loopback
unsigned char	frame_type		The codes for fr cvd_frame_type.	ame_type are the same as for the LAPD-variable .)
unsigned char	nr_type		l	auto value received ns plus 1 last nr sent
unsigned char	ns_type	(1 2 3	2	auto skip last nr received value
unsigned char	p_f_type	(1 2		0 1 loopback
unsigned char	bcc_type	(1 2 3	2	default (bad bcc) good bcc bad bcc abort
unsigned char	sapl_value	C	00-3110-63	
unsigned char	tel_value	C	0-71/0-127	
unsigned char	_ cntrl_byte	(actual value of t	he control byte)
unsigned char	nr_value	C)-7 (MOD 8)	if nr_type = 1
unsigned char	ns_value	c)-7 (MOD 8)	If ns_type = 3

Table 80-1 LAPD Structures

,

(

Туре	Variable	Value (hex/decimal)	Meaning
extern event	dte_frame	detecte configu	hen a DTE frame is ad. Line Setup red for emulate or mode.
extern event	dce_frame	detecte configu	hen a DCE frame Is ad. Line Setup red for emulate or [•] mode.
extern event	dte_good_bcc	calcula: Line Se	hen a good BCC is ted for a DTE frame. tup configured for e or monitor mode.
extern event	dce_good_bcc	calcula Line Se	hen a good BCC is ted for a DCE frame. tup configured for a or monitor mode.
extern event	dte_bad_bcc	calcula Line Se	hen a bad BCC ls ted for a DTE frame. tup configured for e or monitor mode.
extern event	dce_bad_bcc	calcula Line Se	hen a bad BCC is ted for a DCE frame. tup configured for e or monitor mode.
extern event	dte_abort	for a D configu	hen an abort is detected TE frame. Line Setup red for emulate or r mode.
extern event	dce_abort	for a D configu	hen an abort is detected CE frame. Line Setup red for emulate or r mode.
extern event	rcvd_frame	Line Se	hen a frame is received. tup configured for e mode only.
extern event	invalid_frame	detecte	hen an Invalld frame is ed. Line Setup red for emulate mode
extern event	I2_⊤1	has ex	hen the T1 timeout-timer bired. Line Setup red for emulate mode
extern event	bcc_error	detecte	hen a BCC error Is ad. Line Setup red for emulate mode
extern event	nr_error	detecte supervi	hen an N(R) error is ad in a received INFO or sory frame. Line Setup red for emulate mode
extern event	ns_error	detecte frame.	hen an N(S) error Is ed in a received INFO Line Setup configured ulate mode only.

Table 80-2 LAPD Variables

.

ţ

ĺ

Турө	Variable	Value (hex/dec	imal)	Meaning
extern event	frame_sent		down to	nen frame is passed b Layer 1. Line Setup red for emulate mode
extern volatile const unsigned char	m_frame_addr_sapi	00-31/0-63		tup configured for or monitor mode.
extern volatile const unsigned char	m_frame_addr_tei	00-7/10-127	Line Sei emulate	tup configured for or monitor mode.
extern volatile const unsigned char	m_frame_addr_cr	0 1		tup configured for or monitor mode.
extern volatile const unsigned char	m_frame_type	(same as rcvd_ configured for	frame_ty	pe—Line Setup or monitor mode)
extern volatlle const unsigned char	m_frame_cntrl_byte_1			byte—Line Setup or monitor mode)
extern volatile const unsigned char	m_frame_pf	0 10/16		tup configured for
extern volatile const unsigned char	m_frame_bcc_type	1 2 3		tup configured for
xtern volatile const unsigned char	m_frame_nr	0-7 (MOD 8)		up configured for or monitor mode.
xtern volatlle const unsigned char	m_frame_ns	0-7 (MOD 8)		tup configured for or monitor mode.
xtern volatile const unsigned char	rcvd_frame_addr_sapl	00-31/0-63		tup configured for mode only.
xtern volatile const unsigned char	rcvd_frame_addr_tel	00-71/0-127		up configured for mode only.
xtern volatlle const unsigned char	rcvd_frame_addr_cr	0 1 2		k tup configured for mode only.
extern volatile const unsigned char	rcvd_frame_type	0 1 3 5 9 2f/37 6f/111 43/67 f/15 f/15 f/15 63/99 67/103 87/135 e7/224 ff/255 ff/255		n tup configured for mode only.

Table 80-2 (continued)

(

Туре	Variable	Value (hex/de	cimal)	Meaning
extern volatile const unsigned char	rcvd_frame_cntrl_byte_1	(actual value of configured for		byte—Line Setup mode only)
extern volatile const unsigned char	rcvd_frame_pf	0 10/16		tup configured for 5 mode only.
extern volatile const unsigned char	rcvd_frame_bcc_type	1 2 3		tup configured for a mode only.
extern volatlle const unsigned char	rcvd_frame_nr	0–7 (MOD 8)		tup configured for mode only.
extern volatile const unsigned char	rcvd_frame_ns	0-7 (MOD 8)		tup configured for mode only.
extern volatlie unsigned short	rcvd_frame_buff_seg		number segmer frame, can be by shift	yer message buffer (actually, an IAPX-286 It number) in a received This segment number converted to a pointer ing it left 16 bits. Line configured for emulate only.
extern volatlie unsigned short	rcvd_frame_sdu_offset		unit beg messag frame. number to point Line Se	to where the service da gins in an inter-layer ge buffer in a received Add to buffer segment (converted to pointer) t to first byte in frame. tup configured for e mode only.
extern volatile unsigned short	rcvd_frame_sdu_slze		receive	service data unit in a d frame. Line Setup red for emulate mode
extern volatile unsigned short	l2_current_window_edge		window lower e when ne window equal to not emj	qual to upper edge, Is full; when equal to dge, window is empty; ot equal to upper edge, Is not full; and when no o lower edge, window is pty. Line Setup red for emulate mode
extern volatlie unsigned short	l2_lower_window_edge		see l2_	current_window_edge
extern volatile unsigned short	l2_upper_window_edge		see I2_	current_window_edge
extern volatile unsigned short	l2_resend_edge		to lower more to edge is edge, t resend.	esend edge is not equal r window edge, there is o resend; when resend equal to lower window here is no more to Line Setup configured ulate mode only.

Table 80-2 (continued)

ĺ

ĺ

Туре	Variable	Value (hex/	decimal) Meaning
extern unsigned char	2_enhance	0 1 4 5 8 9 12/18	normal reverse low reverse low blink reverse blink blink low Line Setup configured for emulate or monitor mode.
extern unsigned char	l2_suppress	0 1	off on Line Setup configured for emulate or monitor mode.

Table 80-2 (continued)

Using spreadsheet tokens, the same test needs two CONDITIONS/ACTIONS blocks:

CONDITIONS: DTE BDBCC ACTIONS: COUNTER bad_bcc INC CONDITIONS: DCE BDBCC ACTIONS: COUNTER bad bcc INC

When the user selects DTE or DCE on the first rack of softkeys for Layer 2 conditions, a second rack appears from which he must select a particular frame type. A DTE INFO condition, for example, when translated, includes two C variables, one event variable and one status variable:

{ dte_frame && (m_frame_type == 0) }

In C, the programmer does not need to specify a frame type. To include all frames in a condition, use the event variable only:

CONDITIONS: { dte_frame }

2. Emulate mode only. Some events may be detected in emulate mode only. The event variables are rcvd_frame, invalid_frame, l2_T1, bcc_error, nr_error, ns_error, and frame_sent.

If you try to use one of these variables in monitor mode, you may be returned to the main program menu. When you go to the Protocol Spreadsheet and search for errors, a message like the following may be displayed: "Error 140: Unresolved reference rcvd_frame."

When the user selects RCV on the first rack of softkeys for Layer 2 conditions, a second rack appears from which he must select a particular

frame type. When the translator converts a RCV INFO condition into C, it will include two C variables, one event variable and one status variable:

```
{

rcvd_frame && (rcvd_frame_type == 0)

}
```

The C programmer does not have to specify a frame type. To include all received frames in a condition, use the event variable only:

CONDITIONS:

{ rcvd_frame }

Error detecting may be accomplished via *bcc_error*, *nr_error*, *ns_error*, and *invalid_frame*. These variables equate to the softkey tokens bearing similar names.

One of the emulate-mode variables monitors an emulate action. The event variable *frame_sent* will not come true until the frame actually has been passed to the layer below.

(B) Status Variables

Status variables are those in Table 80-2 that do not include *event* in the Type column. Their associated event variables guarantee that they are updated and tested.

The softkey-generated condition for received Info frames is RCV INFO. The C version of the same condition should look like this:

CONDITIONS:

Ł

rcvd_frame && (rcvd_frame_type == 0)
}

 Frame characteristics. All status variables in Table 80-2 containing an m_ prefix are valid in either emulate or monitor mode: m_frame_addr_sapi, m_frame_addr_tei, m_frame_addr_cr, m_frame_type, m_frame_ontrl_byte_1, m_frame_pf, m_frame_bcc_type, m_frame_nr, and m_frame_ns.

All status variables in Table 80-2 containing a *rcvd* prefix are valid in emulate mode only: *rcvd_frame_addr_sapi*, *rcvd_frame_addr_tei*, *rcvd_frame_addr_cr*, *rcvd_frame_type*, *rcvd_frame_cntrl_byte_1*, *rcvd_frame_pf*, *rcvd_frame_bcc_type*, *rcvd_frame_nr*, and *rcvd_frame_ns*.

If you try to use an emulate-mode variable in monitor mode, you may be returned to the main program menu. When you go to the Protocol Spreadsheet and search for errors, a message like the following may be displayed: "Error 140: Unresolved reference rcvd_frame_type." 2. Frame buffers. As BOP frames are received, they are automatically placed in IL message buffers to be passed up the layers. Three emulate-mode variables provide the user with access to the information in the frame that is located beyond the control byte. These variables are rcvd_frame_buff_seg, rcvd_frame_sdu_offset, and rcvd_frame_sdu_size. See Section 66.1 for a more detailed discussion of the buffer components to which these variables refer.

Make a pointer to an IL buffer by casting *rcvd_frame_buff_seg* as a *long*, shifting it left sixteen bits, adding *rcvd_frame_sdu_offset*, and casting the result to a pointer. Increment the pointer twice (thereby adding two to the offset).

```
{

unsigned char * ptr;

ptr = (void *)(((long)rcvd_frame_buff_seg << 16) + rcvd_frame_sdu_offsel);

ptr+=2;

}
```

It is now pointing at the first byte in the information field. You may continue to move through the frame for its entire length, indicated in *rcvd_frame_sdu_size*.

3. *Transmit window*. Four related variables test the status of the Layer 2 window. The particular values of these variables at any given time is not significant. What is significant is how they compare to each other. The softkey status condition on the left makes the variable comparison on the right:

WINDOW FULL	12_current_window_edge == 12_upper_window_edge
WINDOW EMPTY	12_current_window_edge == 12_lower_window_edge
WINDOW NOT_FULL	12_curren1_window_edge 1= 12_upper_window_edge
WINDOW NOT_EMPTY	l2_currenl_window_edge l= l2_lower_window_edge
MORE_TO_RESEND	12_resend_edge
NO_MORE_TO_RESEND	12_resend_edge == 12_lower_window_edge

(C) Controlling Protocol Trace Display

To enhance or suppress particular frames on the Layer 2 Protocol Trace screen in emulate or monitor mode, assign a coded value to *l2_enhance* or *l2_suppress*. The possible values are listed in Table 80-2. To assign a value to either of these variables, place the statement in an ACTIONS block. For example, display RNR frames in reverse-video and suppress display of invalid frames:

```
CONDITIONS: RCV RNR
ACTIONS:
{
l2_enhance = 1;
}
CONDITIONS: RCV INVALID
ACTIONS:
{
l2_suppress = 1;
}
```

Check the value of these display-control variables in a CONDITIONS block

CONDITIONS: RCV INFO

```
{

12_enhance == 1

}

ACTIONS:

{

12_enhance = 0;

}

or an ACTIONS block:
```

```
CONDITIONS: RCV INFO
ACTIONS:
{
if(l2_enhance == 1)
l2_enhance = 0;
}
```

80.3 Routines

Use the following routines in emulate mode only. If you try to call one of these routines in monitor mode, you will be returned to the main program menu. When you go to the Protocol Spreadsheet and search for errors, a message like the following will be displayed: "Error 140: Unresolved reference 12_give_data."

(A) Receive

12 give data

Synopsis

extern void l2_give_data();

<u>Description</u>

The *l2_give_data* routine takes an interlayer message buffer associated with a received INFO frame, changes the SDU offset to point to higher-level data, and sends a DL_DATA IND primitive up to Layer 3 along with a reference to this buffer. The softkey equivalent of this routine is the GIVE_DATA action on the Protocol Spreadsheet.

<u>Example</u>

Layer 3 wants access to the line in order to receive and send data. Assuming the LAPD personality package is loaded at Layer 2, enter the following program:

```
LAYER: 2

STATE: datalink

CONDITIONS: DL_CONNECT REQ

ACTIONS: DL_CONNECT CONF

CONDITIONS: DL_DATA REQ

ACTIONS: SEND INFO "((DL_DATA))"

CONDITIONS: RCV INFO

ACTIONS:

{

12_give_data();

}
```

(B) Transmit

resend_frame

Synopsis

extern void resend_frame(pf, first_or_next); unsigned char pf; unsigned char first_or_next;

Description

The resend_frame routine will resend either the first or next frame in the window with the P/F bit set to a specified value. The softkey equivalent of this routine is the (PROTOCL) RESEND action on the Protocol Spreadsheet.

Inputs

The first parameter is the value of the P/F bit in the frame. It may be set to either 0 or 1.

The second parameter indicates whether the first frame in the window will be sent, or whether the next frame in the window will be sent. The first resend action will send the first frame in the window regardless of whether first or next has been selected. Legal entries are 0 (first) or 1 (next).

<u>Example</u>

Suppose you want to resend the entire transmit window if you receive a REJ frame.

LAYER: 2

STATE: xfer

/* Whatever conditions and actions send data precede the following condition. */

```
CONDITIONS: RCV REJ RESP
  ACTIONS:
  {
   resend frame(1, 0);
  }
  NEXT_STATE: recover
STATE: recover
  CONDITIONS: FRAME SENT
       MORE_TO_RESEND
  ACTIONS:
  {
   resend_frame(1,1);
  }
  CONDITIONS: FRAME_SENT
       NO_MORE_TO_RESEND
  NEXT_STATE: xfer
```

reset nr

<u>Synopsis</u>

extern void reset_nr();

Description

This routine resets the N(R) field in information and supervisory frames to zero. The softkey equivalent of this routine is the (PROTOCL) RSET_NR action on the Protocol Spreadsheet.

Example

When a link is established, reset N(R).

```
LAYER: 2
STATE: reset
CONDITIONS: ENTER_STATE
ACTIONS: SEND SABM
CONDITIONS: RCV UA
ACTIONS:
{
reset_nr();
}
```

reset_ns

<u>Synopsis</u>

extern void reset_ns();

Description

The N(S) field in information frames is reset to zero and the transmit window is cleared. The softkey equivalent of this routine is the (PROTOCL) RSET_NS action on the Protocol Spreadsheet.

<u>Example</u>

When a link is established, reset N(S).

```
LAYER: 2

STATE: reset

CONDITIONS: ENTER_STATE

ACTIONS: SEND SABM

CONDITIONS: RCV UA

ACTIONS:

{

reset_ns();

}
```

send_frame

<u>Synopsis</u>

```
extern void send_frame(il_buffer_number, relay_baton, data_start_offset, transmit_frame_ptr);
unsigned short il_buffer_number;
unsigned short relay_baton;
unsigned short data start offset;
struct send_frame_structure
Ł
unsigned char sapi type;
unsigned char tei_type;
unsigned char cr_type;
unsigned char frame_type;
unsigned char nr_type;
unsigned char ns_type;
unsigned char p_f_type;
unsigned char bcc type;
unsigned char sapi_value;
unsigned char tei_value;
unsigned char cntrl_byte;
unsigned char nr_value;
unsigned char ns_value;
};
struct send_frame_structure * transmit_frame_ptr;
```

Description

The send_frame routine adds a frame-level header to an interlayer message buffer and passes the buffer to Layer 1. The softkey equivalent of this routine is the SEND action on the Protocol Spreadsheet.

(

(

<u>Inputs</u>

The first parameter is the interlayer message buffer number. See Section 66.3(A), Layer-Independent OSI routines.

The second parameter is the maintain bit used to hold the buffer while the send operation is being performed. See Section 66.3(A).

The third parameter is the offset from the beginning of the buffer to the start of the service data unit. See Section 66.3(A).

The fourth parameter is a pointer to the frame structure to be sent. For a description of *send_frame_structure* see Table 80-1.

Example

Send an Info frame containing a canned fox message and a good BCC onto the line.

```
{
static unsigned short il buffer number;
static unsigned short relay_baton;
static unsigned short data_start_offset;
struct send_frame_structure
  {
  unsigned char sapi_type;
  unsigned char tei_type;
  unsigned char cr_type;
  unsigned char frame_type;
  unsigned char nr_type;
  unsigned char ns_type;
  unsigned char p_f_type;
  unsigned char bcc_type;
  unsigned char sapi_value;
  unsigned char tei value;
  unsigned char cntrl_byte;
  unsigned char nr_value;
  unsigned char ns_value;
 };
struct send_frame_structure transmit_frame;
static char transmit_string [] = "((FOX))",
}
LAYER: 2
     STATE: send_a_frame
        CONDITIONS: KEYBOARD " "
        ACTIONS:
        {
         _get_il_msg_buff(&il_buffer_number, &relay_baton);
         _start_il_buff_list(il_buffer_number,&data_start_offset);
         transmit_frame.bcc_type = 1;
         _insert_il_buff_list_cnt(il_buffer_number, data_start_offset, &transmit_string[0],
               (sizeof(transmit_string) - 1));
         send_frame(il_buffer_number, relay_baton, data_start_offset, &transmit_frame);
        }
```

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

(

{

81 Q.931 Library

When the Q.931 package is loaded in via the Layer Setup screen, the following external variables become available for use by the programmer. Their use on the Protocol Spreadsheet is not limited to any particular layer, though normally they belong at Layer 3.

The variables approximate Q.931 Layer 3 spreadsheet-generated conditions and actions. Refer to Section 41 for more detailed explanations of the purposes of specific conditions and actions. Sometimes the name of the variable is sufficient for identifying its related spreadsheet token. When this is not the case, the information is provided below.

81.1 Structures

There are no extern structures associated exclusively with Q.931.

81.2 Variables

The variables discussed below apply when the Line Setup menu shows either emulate or monitor mode. Emulate mode, however, is not supported by emulate-only conditions and actions on the Protocol Spreadsheet.

(A) Monitoring Events

Q.931 Layer 3 event variables detect packets on either side of the line. See Table 81-1. They are valid in either emulate or monitor mode. The event variables are *dte_packet* and *dce_packet*.

When the user selects DTE or DCE on the first rack of softkeys for Layer 3 conditions, a second rack appears from which he must select a particular message type. A DTE INFO condition, for example, when translated, includes two C variables, one event variable and one status variable:

{ die_packei && (m_message_type == 0x7b) }

As a C programmer, you do not need to specify a message type. To include all DTE messages in a condition, use the event variable only:

CONDITIONS: { die_packet

Туре	Variable	Value (hex/d	ecimal)	Meaning
extern event	dte_packet		detected	en a DTE packet is d. Line Setup ed for emulate or mode.
extern event	dce_packet		detected	en a DCE packet is 3. Line Setup ed for emulate or mode.
extern volatile const unsigned char	m_packet_bcc_type	1 2 3	good bad abort	
				up configured for or monitor mode.
extern volatile const unsigned char	m_prot_disc	00-1110-255	discrimin	alue of protocol nator—should be 8. Line onfigured for emulate or mode.
extern volatile const unsigned char	m_call_ref_flag	0 1	originatio destinati	
				up configured for or monitor mode.
extern volatile const unsigned char	m_message_type_defined	0		alue received is not a value for a LAPD e type.
		1	the follow	alue received is one of wing valid values for a essage type:
·			1 2 5 7 d/13 f/15 20/32 21/33 22/34 25/37 26/38 2d/45 2e/46 40/64 45/69 48/72 4d/77 5a/90 60/96 62/98 64/100 68/104 6a/106 6c/108	alerting call proceeding setup connect setup ack connect ack user Info suspend rej resume rej suspend resume suspend ack resume detach disconnect detach detach ack release release complete cancel facility register cancel ack facility ack register ack

Table 81-1 Q.931 Variables

(m_message_type_defined continued on next page)

(

ĺ

Турө	Variable	Value (hex/de	cimal)	Meaning
	(m_message_type_defin	ned continued)	70/112 72/114 74/116 79/121 7b/123 7d/125	cancel rej facility rej register rej congestion control info status
				up configured for or monitor mode.
extern volatile const unsigned char	m_message_type	00-11/0-255	message	alue of the h-type byte. Line Setu ad for emulate or mode.
extern volatlle const unsigned char	m_call_ref_len	0-15	value fiel	f the call-reference d. Line Setup d for emulate or mode.
extern volatile const unsigned char	m_Info_element_Ien		field. Th informati	f information element le total includes all on elements. Line nfigured for emulate o mode.
extern volatile const unsigned char *	m_ptr_to_call_ref		value fiel byte, col reference	o the call-reference d. Begins at the first ntaining the call e length. Line Setup ed for emulate or mode.
extern volatile const unsigned char *	m_ptr_to_Info_element		element first byte message	o the Information field, Begins at the after the type byte. Line Setu ed for emulate or mode.
extern unsigned char	l3_enhance	0 1 4 5 8 9 12/18	normal reverse low reverse blink reverse blink low	
				up configured for or monitor mode.
extern unsigned char	l3_suppress	0 1	off on	
			Line Setu	up configured for or monitor mode.

Table 81-1 (continued)

ĺ

ţ

(B) Status Variables

Status variables are those in Table 81-1 that do not include *event* in the Type column. Their associated event variables guarantee that they are updated and tested.

The softkey-generated condition for DTE Info frames is DTE INFO. The C version of the same condition should look like this:

CONDITIONS: {

```
die_packet && (m_message_type == 0x7b)
}
```

 Packet characteristics. All status variables in Table 81-1 containing an m_ prefix are valid in either emulate or monitor mode: m_packet_bcc_type, m_prot_disc, m_call_ref_len, m_call_ref_flag, m_message_type, m_message_type_defined, and m_info_element_len.

١,

Pointers. Two pointers provide access to variable-length fields.
 m_ptr_to_call_ref is the pointer to the call-reference field.
 m_ptr_to_info_element is the pointer to the information-element field.

(C) Controlling Protocol Trace Display

To enhance or suppress particular packets on the Layer 3 Protocol Trace screen in emulate or monitor mode, assign a coded value to *l3_enhance* or *l3_suppress*. The values are listed in Table 81-1. To assign a value to either of these variables, place the statement in an ACTIONS block. For example, display Suspend messages in reverse-video and suppress display of Status messages:

```
CONDITIONS: DTE SUSPEND
ACTIONS:
{
    l3_enhance = 1;
}
CONDITIONS: DTE STATUS
ACTIONS:
{
    l3_suppress = 1;
}
```

Check the value of these display-control variables in a CONDITIONS block

CONDITIONS: DTE INFO

```
{

13_enhance == 1

}

ACTIONS:

{

13_enhance = 0;

}
```

,

.

or an ACTIONS block:

```
CONDITIONS: DTE INFO
ACTIONS:
{
if(13_enhance == 1)
i3_enhance = 0;
}
```

81.3 Routines

.

ť

{

There are no routines associated exclusively with Q.931.

INTERVIEW 7000 Series Advanced Programming: ATLC-107-951-108

.

82 SS#7 Layer 2 Library

When the SS#7 Layer 2 package is loaded in via the Layer Setup screen, most of the following external variables become available for use by the programmer. Their use on the Protocol Spreadsheet is not limited to any particular layer, though normally they belong at Layer 2.

The SS#7 Layer 1 variables shown in Table 82-2 are accessible only when the Layer 1 SS7_CMPRESN package is loaded in via the Layer Setup screen. They do not have related spreadsheet tokens. These Layer 1 variables are included in this section since they are associated with the Layer 2 event variables in Table 82-1.

The Layer 2 variables approximate SS#7 Layer 2 spreadsheet-generated conditions and actions. Refer to Section 45 for more detailed explanations of the purposes of specific conditions and actions. Sometimes the name of the variable is sufficient for identifying its related spreadsheet token. When this is not the case, the information is provided below.

82.1 Structures

There are no extern structures associated exclusively with SS#7.

82.2 Variables

The variables discussed below apply when the Line Setup menu shows either emulate or monitor mode. Emulate mode, however, is not supported by emulate-only conditions and actions on the Protocol Spreadsheet.

(A) Monitoring Events

SS#7 Layer 2 events include frames detected, good or bad BCC's, and aborts. All event variables in Table 82-1 containing a *dte_* or *dce_* prefix are valid in either emulate or monitor mode. These event variables are *dte_frame*, *dce_frame*, *dte_good_bcc*, *dce_good_bcc*, *dte_bad_bcc*, *dce_bad_bcc*, *dte_abort*, *dce_abort*.

You can use both *dte* and *dce* variables relating to the same event in one conditions block. Suppose you want to count all bad BCC's from either side of the line. Enter the following CONDITIONS/ACTIONS block:

CONDITIONS:

{

die_bad_bcc || dce_bad_bcc

} ACTIONS: COUNTER bad_bcc INC

Туре	Variable	Value (hex/de	ecimal)	Meaning
extern event	dte_frame		DTE fr. Setup (hen a non-suppressed ame is detected. Line configured for emulate or r mode.
extern event	dce_frame		DCE fr Setup	hen a non-suppressed ame is detected. Line configured for emulate or r mode.
extern event	dte_good_boc		good B DTE fra configu	hen a non-suppressed CC is calculated for a ame. Line Setup red for emulate or r mode.
extern event	dce_good_bcc		good 8 DCE fr configu	hen a non-suppressed CC is calculated for a ame. Line Setup red for emulate or r mode.
extern event	dte_bad_bcc		calcula Line Se	hen a bad BCC ls ted for a DTE frame. etup configured for e or monitor mode.
extern event	dce_bad_bcc		calcula Line Se	hen a bad BCC is ted for a DCE frame. stup configured for e or monitor mode.
extern event	dte_abort		for a D configu	hen an abort is detected TE frame. Line Setup red for emulate or r mode.
extern event	dce_abort		for a D configu	hen an abort is detected ICE frame. Line Setup Ired for emulate or r mode.
extern volatile const unsigned char	m_unit_type	1 2 3	Link St.	Signal Unit (FI) atus Signal Unit (LSU) ge Signal Unit (MSU)
				e or monitgured for
extern volatile const unsigned char	m_blb	0 non-zero		stup configured for
and an end attended and a second attended at	we file	0		e or monitor mode.
extern volatile const unsigned char	m_fib	0 1		e or monitor mode.

Table 82-1 SS#7 Layer 2 Variables

Ĺ

ĺ

ť

Туре	Variable	Value (hex/c	decimal) Meaning
extern volatile const unsigned char		0 1-2 3-3f/63	FI LSU MSU Line Setup configured for emulate or monitor mode.
extern volatile const unsigned char	m_so0	0 1 2 3 4 5	out of alignment normal emergency out of service processor out busy Line Setup configured for emulate or monitor mode.
xtern volatile const unsigned char	m_frame_bcc_type	1 2 3	good bcc bad bcc abort Line Setup configured for
xtern unsigned char	l2_enhance	0 1 4 5 8 9 12/18	emulate or monitor mode. normal reverse low reverse low blink reverse blink blink low
xtern unsigned char	l2_suppress	0	Line Setup configured for emulate or monitor mode. off on
		,	Line Setup configured for emulate or monitor mode.

Table 82-1 (continued)

When the user selects DTE or DCE on the first rack of softkeys for Layer 2 conditions, a second rack appears from which he must select a particular frame type. A DTE FILL_IN condition, for example, when translated, includes two C variables, one event variable and one status variable:

```
{
    dle_frame && (m_unit_type == 1)
}
```

The C programmer does not need to specify a frame type. To include all frames in a condition, use the event variable only:

CONDITIONS: { dte_frame }

(B) Status Variables

Status variables are those in Table 82-1 that do not include *event* in the Type column. Their associated event variables guarantee that they are updated and tested.

The softkey-generated condition for DTE Busy Link Status Signal Unit is DTE STATUS= B. The C version of the same condition should look like this:

CONDITIONS:

{ die_frame && (m_unit_type == 2) && (m_so0 == 5) }

Status variables in Table 82-1 containing an m_ prefix are valid in either emulate or monitor mode: m_unit_type, m_bib, m_fib, m_li, m_so0, and m_frame_bcc_type.

The Layer 1 variables listed in Table 82-2 are also status variables, valid in either emulate or monitor mode. Any of the Layer 2 event variables in Table 82-1 guarantee that they are updated and tested.

NOTE: The SS#7 Layer 1 variables are updated frequently. If you want to track these variables for statistical purposes, we recommend that you copy their values into temporary variables.

(C) Controlling Protocol Trace Display

To enhance or suppress particular frames on the Layer 2 Protocol Trace screen in emulate or monitor mode, assign a coded value to *l2_enhance* or *l2_suppress*. The values are listed in Table 82-1. To assign a value to either of these variables, place the statement in an ACTIONS block. For example, display only Link Signal Units. Of these, display Emergency LSU's in reverse-video.

CONDITIONS:

```
{
    dte_frame && (m_unit_type != 2)
}
ACTIONS:
{
    12_suppress = 1;
}
CONDITIONS:
{
    dte_frame && (m_unit_type == 2) && (m_so0 == 2)
}
ACTIONS:
{
    12_enhance = 1;
}
```

JUL '90

Туре	Variable Valu	ue (hex/decimal) Meaning
extern unsigned short	dte_frames_suppressed	Number of DTE Fill-In or Link Status Signal Units suppressed since the last non-suppressed frame. Line Setup configured for emulate or monitor mode.
extern unsigned short	dce_frames_suppressed	Number of DCE Fill-In or Link Status Signal Units suppressed since the last non-suppressed frame. Line Setup configured for emulate or monitor mode.
extern unsigned short	dte_flags	Number of DTE flags received since the last non-suppressed frame. Line Setup configured for emulate or monitor mode.
extern unsigned short	dce_flags	Number of DCE flags received since the last non-suppressed frame. Line Setup configured for emulate or monitor mode.

Table 82-2 SS#7 Layer 1 Variables

Check the value of these display-control variables in a CONDITIONS block

```
CONDITIONS:
{
dte_frame && (m_unit_type == 2) && (m_so0 == 2) && (l2_enhance == 0)
}
ACTIONS:
ł
12_enhance = 1;
}
or an ACTIONS block:
CONDITIONS:
{
dte_frame && (m_unit_type == 2) && (m_so0 == 2)
}
ACTIONS:
{
if(12_enhance == 0)
  l2_enhance = 1;
}
```

82.3 Routines

There are no routines associated exclusively with SS#7.

INTERVIEW_7000 Series Advanced Programming: ATLC-107-951-108

83 SS#7 Layer 3 Library

When the SS#7 Layer 3 package is loaded in via the Layer Setup screen, the following external variables become available for use by the programmer. Their use on the Protocol Spreadsheet is not limited to any particular layer, though normally they belong at Layer 3.

The variables approximate SS#7 Layer 3 spreadsheet-generated conditions and actions. Refer to Section 46 for more detailed explanations of the purposes of specific conditions and actions. Sometimes the name of the variable is sufficient for identifying its related spreadsheet token. When this is not the case, the information is provided below.

83.1 Structures

There are no extern structures associated exclusively with SS#7.

83.2 Variables

The variables discussed below apply when the Line Setup menu shows either emulate or monitor mode. Emulate mode, however, is not supported by emulate-only conditions and actions on the Protocol Spreadsheet.

(A) Monitoring Events

SS#7 Layer 3 event variables detect Message Signal Units on either side of the line. See Table 83-1. They are valid in either emulate or monitor mode. The event variables are *dte_packet* and *dce packet*.

When the user selects DTE or DCE on the first rack of softkeys for Layer 3 conditions, a second rack appears from which he must select a particular MSU type. A DTE NETM condition, for example, when translated, includes two C variables, one event variable and one status variable:

```
{
dte_packet && (m_sio_si == 0)
}
```

As a C programmer, you do not have to specify an MSU type. To include all DTE Message Signal Units in a condition, use the event variable only:

CONDITIONS:

{ die_packet }

Туре	Variable	Value (hex/d	ecimal) Meaning
extern event	dce_packet		True when a DCE packet is detected. Line Setup configured for emulate or monitor mode.
extern event	dte_packet		True when a DTE packet is detected, Line Setup configured for emulate or monitor mode.
extern volatile const unsigned char	m_slo_nl	0 40/64 80/128 c0/192	International 0 International 1 national 0 national 1
			Line Setup configured for emulate or monitor mode.
extern volatile const unsigned char	m_slo_priority	0 10/16 20/32 30/48	priority=0 priority=1 priority=2 priority=3
			Line Setup configured for emulate or monitor mode.
extern volatile const unsigned char	m_slo_sł	0-7	<u>User Part</u> :
		0 1 2 3 4 5 6 7	netm ntr nts sccp tup Isdn dup0 dup1
		8-1/8-15	spare Line Setup configured for emulate or monitor mode.
extern volatile const unsigned char	m_code_type		<u>Test headers</u> :† (high 4 bits not defined)
		1 2	ltm Ita

Table 83-1 SS#7 Layer 3 Variables

(m_code_type continued on next page)

† The high four bits in test headers are not defined. To check the value of m_code_type for test headers, and m_code_type with 0x0f:

header = m_code_type & 0x0f;

For LTM's, header equais 1; for LTA's, header equals 2.

.

Туре	Variable	Value (hex/	decimal) Meaning	
(m_code_type continued)	· · ·	SCCP headers:		
			or	
		1	cr	
		2 3	cc cref	
		4	risd	
		4	rlo	
		5 6	dt1	
		7	dt2	
		8	ak	
		9	udt	
		a/10	udts	
		b/11	ed	
		c/12	ea	
		d/13	rsr	
		e/14	rsc	
		f/15	err	
		10/16	it	
			NETM headers:	
		11/17	C00	
		12/18	900	
		13/19	rct	
		14/20	tfp	
		15/21	rsp (US format only)	
		15/21	rst (CCITT format only)	
		16/22	fin	
		18/24	dlo	
	. •	21/33	coa	
		22/34	eca	
		23/35	tfo	
		24/36	tcp (US format only)	
		25/37	rsr (US format only)	
		25/37	rst (CCITT format only, nation	
			option)	
		26/38	lun	
		28/40	CSS	
		34/52	tfr	
		35/53	rcp (US format only)	
		36/54	lla	
		38/56	cns	
		44/68	tor (US format only)	
		45/69	rcr (US format only)	
		46/70	lua	
		48/72	cnp	
		51/81	cbd	
		54/84	tfa	
		56/86	lid	
		61/96	cba	
		64/100	tca (US format only)	
		66/102	lfu	
		76/118	10 10	
		86/134	iri	

Table 83-1 (continued)

.

Ļ

ĺ

(m_code_type continued on next page)

.

Турө	Variable	Value (hex/	decimal) Meaning
m_code_type continued)		<u>TUP headers</u> :	
		6	anu
		10	reserved
		11/17	lam
		12/18	gsm
		13/19	grq
		14/20	acm
		15/21	Sec
		16/22	anc
		17/23	rig
		18/24	mgb
		19/25	cfm
		21/33	lai
		24/36	chg
		25/37	cgc
		26/38	ann
		27/39	blo
		28/40	mba
		29/41	opm
		31/49	sam
		32/50	cot
		35/53	nnc
		36/54	cbk
		37/55	bla
		38/56	mgu
		39/57	сра
		41/65	sao
		42/66 45/69	cof adl
		45/69	clf
		46/70	ubl
		48/72	mua
		49/73	CSV
		55/85	cfi
		56/86	ran
		57/87	uba
		58/88	hgb
		59/89	cym
		65/101	ssb
		66/102	fot
		67/103	cor
		68/104	hba
		69/105	crm
		75/117	unn
		76/118	ccl
		77/119	rsc
		78/120	hgu
		79/121	cll
		85/133	los
		88/136	hua

Table 83-1 (continued)

(m_code_type continued on next page)

{

Турө	Variable	Value (hex/d	decimal)	Meaning
(m_code_type continued)			(TUP h	eaders continued)
		95/149	sst	
		98/152	grs	
		a5/165	acb	
		a8/168	gra	
		b5/181	dpn	
		b8/184	sgb	
		c5/197	mpr	
		c8/200	sba	
		d8/216 e8/232	sgu	
		f5/245	sua	
		f6/246	eum	
		107240	eam	
			ISDN he	eaders:
		1 · 2 3 4 5 6	lam	
		2	sam	
		3	inr i	
		4	Inf	
		5	cot	
		C P	aom	
		8 9	fot	
		a/10	anm	
		b/11	ubm rel	
		d/12		
		e/14	pau res	
		f/15	risd	
		10/16	ric	
		11/17	ccr	
		12/18	rsc	
		13/19	blo	
		14/20	ubl	
		15/21	bla	
		16/22	uba	
		17/23	grs	
		18/24	cgb	
		19/25	cgu	
		1a/26	cgba	
		1b/27	cgua	
		1c/28	cmr	
		1d/29	cmc	
		1e/30	rcm	
		1f/31	far	
		20/32	faa	
		21/33	fr	
		22/34	fad	
		23/35	fal	
		25/37	CSVC	
		26/38	CSVS	
		27/39	drs	
		28/40	pam	
		29/41	gra	
			Line Se	tup configured for

Table 83-1 (continued)

.

{

į

,

Туре	Variable m_łabel_dpc	Value (hex/decimal) Meaning		
extern volatile unsigned long		0-3### 0-16383 0-1#### 0-16777215	CCITT format (2 bytes) ANSI format (3 bytes)	
			Line Setup configured for emulate or monitor mode.	
extern volatile unsigned long	m_label_opc	0-31111 0-16383 0-1111111	CCITT format (2 bytes)	
		0-16777215	ANSI format (3 bytes) Line Setup configured for emulate or monitor mode.	
extern volatlle const unsigned char	m_label_sis	0-1/0-15 0-1//0-31	CCITT format ANSI format	
			Line Setup configured for emulate or monitor mode.	
extern volatile unsigned short	m_cic	0-111/0-4095 0-1111/0-65535	TUP MSUs ISDN MSUs	
			Line Setup configured for emulate or monitor mode.	
extern unsigned ohar	13_enhance	0 1 4 5 8 9 12/18	normal reverse low reverse low blink blink reverse blink blink low	
			Line Setup configured for emulate or monitor mode.	
extern unsigned char	I3_suppress	0 · 1	off on	
		·	Line Setup configured for emulate or monitor mode.	

Table 83-1 (continued)

(B) Status Variables

Status variables are those in Table 83-1 that do not include *event* in the Type column. Their associated event variables guarantee that they are updated and tested.

The softkey-generated condition for NETM Message Signal Units on the DTE side of the line is DTE NETM. The C version of the same condition should look like this:

CONDITIONS: { dte_packet && (m_sio_si == 0) }

ſ

Most status variables in Table 83-1 contain an *m*_prefix: *m_sio_ni*, *m_sio_priority*, *m_sio_si*, *m_code_type*, *m_label_dpc*, *m_label_opc*, *m_label_sls*, and *m_cic*.

(C) Controlling Protocol Trace Display

To enhance or suppress particular packets on the Layer 3 Protocol Trace screen in emulate or monitor mode, assign a coded value to 13_enhance or 13_suppress. The values are listed in Table 83-1. To assign a value to either of these variables, place the statement in an ACTIONS block. For example, display only messages with NETM headers. Of these, display Transfer Restricted headers in reverse-video.

```
CONDITIONS:
{
 dte_packet && (m_sio_si l= 0)
}
ACTIONS:
{
13_suppress = 1;
}
CONDITIONS:
{
dte_packet && (m_sio_si == 0) && (m_code_type == 0x34)
}
ACTIONS:
ł
13\_enhance = 1;
}
```

Check the value of these display-control variables in a CONDITIONS block

```
CONDITIONS:

{

dte_packet && (m_sio_si != 0) && (l2_suppress == 0)

}

ACTIONS:

{

l2_suppress = 1;

}

or an ACTIONS block:

CONDITIONS:

{

dte_packet && (m_sio_si != 0)

}

ACTIONS:
```

```
{

    if(12_suppress == 0)

    12_suppress = 1;

}
```

83.3 Routines

ī

There are no routines associated exclusively with SS#7.

{

(