
Worldwide Technical Support

HLLAPI Language Reference

© 2004 Attachmate Corporation. All Rights Reserved.

If this document is distributed with software that includes an end user agreement, this document, as well as the
software described in it, is furnished under license and may be used or copied only in accordance with the terms
of such license. Except as permitted by any such license, no part of this document may be reproduced or
transmitted in any form or by any means (electronic, mechanical, recording, or otherwise) without the prior
express written permission of Attachmate Corporation. The content of this document is protected under
copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this document is furnished for informational use only, is subject to change without notice, and
should not be construed as a commitment by Attachmate Corporation. Attachmate Corporation assumes no
responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in
this document.

Attachmate and EXTRA! are registered trademarks, the Attachmate logo is a trademark and enterprise solutions
for the e-world is a service mark of Attachmate Corporation.

All other trademarks or registered trademarks are the property of their respective owners.

Except as may be expressly stated in this document, any use of non-Attachmate Corporation trademarks in this
document is not intended to represent that the owners of such trademarks sponsor, are affiliated with, or approve
products from Attachmate Corporation.

HLLAPI Language Reference

Table of Contents

PURPOSE .. 1

INTRODUCTION ... 1

HLLAPI FUNCTIONS .. 2

FUNCTION CROSS-REFERENCE ... 2

WHAT INFORMATION IS PROVIDED FOR EACH FUNCTION? .. 3

SYNTAX.. 3
PREREQUISITES .. 3
APPLICABLE SESSION PARAMETERS ... 3
CALL PARAMETERS ... 3
RETURN PARAMETERS .. 3
NOTES ... 3

FUNCTION 1: CONNECT PRESENTATION SPACE ... 4

FUNCTION 3: SEND KEY ... 9

FUNCTION 4: WAIT ... 11

FUNCTION 5: COPY PRESENTATION SPACE... 13

FUNCTION 6: SEARCH PRESENTATION SPACE... 15

FUNCTION 7: QUERY CURSOR LOCATION ... 17

FUNCTION 8: COPY PRESENTATION SPACE TO STRING .. 19

FUNCTION 9: SET SESSION PARAMETERS .. 22

FUNCTION 10: QUERY SESSIONS ... 26

FUNCTION 11: RESERVE... 28

FUNCTION 12: RELEASE ... 29

FUNCTION 13: COPY OIA... 30

FUNCTION 14: QUERY FIELD ATTRIBUTE ... 32

FUNCTION 15: COPY STRING TO PRESENTATION SPACE ... 34

FUNCTION 16: WSCTRL .. 36

FUNCTION 18: PAUSE .. 38

FUNCTION 20: QUERY SYSTEM .. 40

HLLAPI Language Reference

FUNCTION 20: QUERY SYSTEM .. 40

FUNCTION 21: RESET SYSTEM ... 42

FUNCTION 22: QUERY SESSION STATUS... 43

FUNCTION 23: START HOST NOTIFICATION... 45

FUNCTION 24: QUERY HOST UPDATE .. 47

FUNCTION 25: STOP HOST NOTIFICATION ... 49

FUNCTION 30: SEARCH FIELD .. 50

FUNCTION 31: FIND FIELD POSITION .. 52

FUNCTION 33: COPY STRING TO FIELD ... 56

FUNCTION 40: SET CURSOR... 60

FUNCTION 50: START KEYSTROKE INTERCEPT ... 61

FUNCTION 51: GET KEY .. 63

FUNCTION 52: POST INTERCEPT STATUS ... 66

FUNCTION 53: STOP KEYSTROKE INTERCEPT.. 67

FUNCTION 90: SEND FILE ... 68

FUNCTION 91: RECEIVE FILE .. 71

FUNCTION 99: CONVERT POSITION OR ROWCOL.. 74

APPENDIX A: GENERAL TROUBLESHOOTING PROCEDURES.. 76

APPENDIX B: HOST KEYBOARD MNEMONICS ... 78

APPENDIX C: INTERPRETING THE RETURNED DATA STRING FOR FUNCTION 13 ... 80

APPENDIX D: EXTENDED ATTRIBUTES ... 85

APPENDIX E: ATTACHMATE HLLAPI MESSAGES.. 86

HLLAPI Language Reference

Prepared by Attachmate Technical Support 1

Purpose
This document is intended to assist customers wanting to enable existing or new
automation software to work with a legacy application programming interface
implemented in a current Attachmate emulator product: WinHLLAPI, EHLLAPI,
Attachmate HLLAPI, Enterprise Access Library (EAL), PCSHLL (IBM PCOMM 4.01
EHLLAPI), or WD_API (Wall Data abstraction of HLLAPI).

Attachmate recommends that new automation programs be developed using
EXTRA!'s COM (OLE Automation) interfaces. Only when a new automation program
requires obscure capability not available in a COM solution should a legacy API be
considered. In such situations, Attachmate recommends WinHLLAPI be given first
preference, if only because it came about through an industry standardization effort.
A second option would be EHLLAPI.

Introduction
An application programming interface, API, is typically provided in a software product
to facilitate development of applications that automate tasks employing the software.
For tasks that are highly repetitive, time-consuming or error-prone, automation can
raise user job satisfaction, reduce operational costs, and improve service to
customers.

The Attachmate High-Level Language Application Programming Interface (HLLAPI) is
one such API. Introduced originally by Attachmate Corporation in the early 1990s in
EXTRA! for Windows, Attachmate HLLAPI was a proprietary implementation of the
already-popular programming interface, EHLLAPI, employed successfully throughout
business and industry for a wide range of automation tasks.

The Attachmate HLLAPI interface provided through HLLAPI32.DLL is intended for use
by applications written in C or C++. Due to the many language-specific conventions
employed, it is quite awkward to attempt use of this API in other programming
languages.

Header and lib files for EHLLAPI, WinHLLAPI, and Attachmate HLLAPI are distributed
with EXTRA!.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 2

HLLAPI Functions

Function cross-reference

This chapter describes each function provided in Attachmate’s HLLAPI. The list below
identifies the functions by number, name and entry-point name.

.
Number Name Entry point

1 Connect Presentation Space HLL_ConnectPS
2 Disconnect Presentation Space HLL_DisconnectPS
3 Send Key HLL_SendKey
4 Wait HLL_Wait
5 Copy Presentation Space HLL_CopyPS
6 Search Presentation Space HLL_SearchPS
7 Query Cursor Location HLL_QueryCursorLocation
8 Copy Presentation Space to String HLL_CopyPSToString
9 Set Session Parameters HLL_SetHLLWinParameters
10 Query Sessions HLL_QuerySessions
11 Reserve HLL_Reserve
12 Release HLL_Release
13 Copy OIA HLL_CopyOIA
14 Query Field Attribute HLL_QueryFieldAttribute
15 Copy String to Presentation Space HLL_CopyStringToPS
16 Workstation Control HLL_WSCtrl
18 Pause HLL_Pause
20 Query System HLL_QuerySystem
21 Reset System HLL_ResetSystem
22 Query Session Status HLL_QuerySessionStatus
23 Start Host Notification HLL_StartHostNotification
24 Query Host Update HLL_QueryHostUpdate
25 Stop Host Notification HLL_StopHostNotification
30 Search Field HLL_SearchField
31 Find Field Position HLL_FindFieldPosition
32 Find Field Length HLL_FindFieldLength
33 Copy String to Field HLL_CopyStringToField
34 Copy Field to String HLL_CopyFieldToString
40 Set Cursor HLL_SetCursor
50 Start Keystroke Intercept HLL_StartKeystrokeIntercept
51 Get Key HLL_GetKey
52 Post Intercept Status HLL_PostInterceptStatus
53 Stop Keystroke Intercept HLL_StopKeystrokeIntercept
90 Send File HLL_SendFile
91 Receive File HLL_ReceiveFile
99 Convert Position or RowCol HLL_Convert

HLLAPI Language Reference

Prepared by Attachmate Technical Support 3

What information is provided for each
function?
For each HLLAPI function, the following information is presented:

• The function name and syntax used,

• Brief description of the function purpose,

• Prerequisites

• Applicable session parameters

• Call parameters

• Return parameters

• Notes or tips

Syntax
This section describes the correct syntax required to call the function.

Prerequisites
Many HLLAPI functions require another function to be called and successfully
completed before the desired call is issued. If the prerequisites are not satisfied, an
error code is returned. If None appears, no prerequisite calls are necessary.

Applicable session parameters
Function 9, “Set Session Parameters,” allows an application program to set optional
HLLAPI features, or session parameters. This section indicates whether any session
parameters affect this function and, if so lists the applicable parameters and how
they affect the function. If the function is not affected by any session parameters,
None appears.

Call parameters
This area lists parameters that must be presented in a call statement when an
application program can call a HLLAPI function.

Return parameters
Results returned to an application program by the functions are explained in this
section.

Notes
This area presents guidelines and tips on how to use the function in an application
program, along with technical information about the function.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 4

Function 1: Connect Presentation Space
This function connects a HLLAPI application to a specified presentation space (PS). If
the application already has a connection, the connected PS is automatically
disconnected, and a new connection established. An application program must call
this function before requesting any of the following-listed functions.

Number Name
2 Disconnect Presentation Space
3 Send Key
4 Wait
5 Copy Presentation Space
6 Search Presentation Space
7 Query Cursor Location
8 Copy Presentation Space to String
11 Reserve
12 Release
13 Copy OIA
14 Query Field Attribute
15 Copy String to Presentation Space
30 Search Field
31 Find Field Position
32 Find Field Length
33 Copy String to Field
34 Copy Field to String
40 Set Cursor

You will be automatically disconnected from your currently connected PS when you
connect to another PS using the same window handle (hWnd). Use separate window
handles for each Connect Presentation Space call in order to connect to multiple
sessions simultaneously.

Syntax
WORD HLL_ConnectPS(HWND hWnd, char cPSID)

Prerequisites
Sessions must be configured to be associated with a HLLAPI "short-name". End
users must make this configuration on EXTRA!'s Global Preferences:Advanced dialog
box.

Applicable session parameters
The following session parameters from Function 9 affect this function.

WRITE_SUPER (default)

This application requires write access and allows only supervisory applications to
connect to its PS.

WRITE_WRITE

HLLAPI Language Reference

Prepared by Attachmate Technical Support 5

This application requires write access and allows other applications that have
predictable behavior to connect to its PS.

WRITE_READ

This application requires write access and allows other applications to use read-only
functions on its PS.

WRITE_NONE

This application requires exclusive access to its PS. No other applications may access
its PS.

SUPER_WRITE

This supervisory application allows applications with write access to share the
connected PS. The application program setting this parameter will not cause errors
for other applications but will provide only supervisory-type functions.

WRITE_READ

This application requires read-only access and allows other applications that perform
read-only functions to connect to its PS.

CONLOG (default)

When Function 1, “Connect Presentation Space,” is called, the emulator session
corresponding to the target PS does not become the active application. The calling
application remains active. Likewise, when Function 2, “Disconnect Presentation
Space,” is called, the calling application remains active.

CONPHYS

Calling Function 1, “Connect Presentation Space,” makes the emulator session
corresponding to the target PS the active application (does a physical connect). Note
that this parameter is honored only when there is host access software attached to
the session. During Function 2, “Disconnect Presentation Space,” the host access
software becomes the active application.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_ConnectPS

hWnd Window handle of the application

cPSID 1-character session short name which must be a letter of the alphabet

Return parameters

Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded; the PS is unlocked and
ready for input.

HLL_INVALIDPSID An invalid PSID (null or blank or unconfigured
session) was specified.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 6

HLL_PSLOCKED The connection was successful, but the PS is busy
or locked (all input is inhibited by XCLOCK or
XSYSTEM).

HLL_SYSTEMERROR A system error occurred; the function failed.

Example
/* Connect with session B */
WORD Result = HLL_ConnectPS(hWnd, 'B');

Notes
Unlike EHLLAPI or WinHLLAPI, an application can maintain connections to several
HLLAPI sessions concurrently as long as the hWnd used for each conversation
remains unique.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 7

Function 2: Disconnect Presentation Space
This function disconnects an application from its currently connected PS and releases
any PS keyboard reservation, but does not reset session parameters to defaults.
After calling this function, the application cannot call functions that depend on
connection to a PS.

An application automatically disconnects from the currently connected PS when it
connects to another PS. After calling this function, you cannot call functions that
depend on a connection to a PS. You will be automatically disconnected from your
currently connected PS when you connect to another PS using the same window
handle (hWnd). Use separate window handles for each Connect Presentation Space
call in order to connect to multiple sessions simultaneously.

Syntax
WORD HLL_DisconnectPS (HWND hWnd);

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameter from Function 9 affects this function.

CONPHYS

If set (as opposed to default CONLOG), the calling application becomes activated
when HLLAPI function 2 is called.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_DisconnectPS

hWnd Window handle of the application

Return parameters

Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.

HLL_INVALIDPSID Not connected.

HLL_SYSTEMERROR A system error occurred; the function failed.

Example

HLLAPI Language Reference

Prepared by Attachmate Technical Support 8

WORD Result = HLL_DisconnectPS(hWnd);

Notes
This function only logically disconnects an application from an EXTRA! session. It
does not signal the end of EHLLAPI interaction by the application. In contrast, a call
to function 21, “Reset System,” frees resources used by EXTRA! and allows
disconnected session(s) to close when the application exits.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 9

Function 3: Send Key
This function sends a string of up to 255 keystrokes to the currently connected PS.
The session cannot receive keystrokes unless the keyboard is unlocked. After the
first AID key is processed by the function, keystrokes are no longer accepted and the
rest of the string is ignored.

It is possible to represent all necessary keystrokes, including special function keys in
ASCII, by using an escape character (the default value is @) followed by the
appropriate key code. Appendix B, “Keyboard Mnemonics,” provides a complete list
of these key codes.

HLLAPI changes the cursor position to the position immediately following the entered
string.

Syntax
WORD HLL_SendKey (HWND hWnd, LPSTR lpszKeys);

Prerequisites
Function 1, “Connect Presentation Space.”

The keyboard must be unlocked before keystrokes will be accepted.

Applicable session parameters
The following session parameters from Function 9 affect this function.

ESC= char

Specifies the escape character for keystroke mnemonics (“@” is the default). Blank is
not a valid escape value.

AUTORESET (default)

Attempts to reset inhibited conditions by adding the RESET prefix to all keystroke
strings sent.

NORESET

Does not add RESET prefix to key strings.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_SendKey

hWnd Window handle of the application

lpszKeys A string of maximum 255 characters (keystrokes) to be sent to the
host PS, terminated with a null character.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 10

Return parameters
Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID Not connected.
HLL_INVALIDPARAMETER The lpszKeys string was empty or the given

length was less than zero or greater than 255.
HLL_SESSIONOCCUPIED The host system session was busy; not all of

the keystrokes could be sent.
HLL_PSLOCKED Input to the target session was inhibited or

rejected; all of the keystrokes could not be sent.
HLL_SYSTEMERROR A system error occurred; the function failed.

Example
/* Send "Hello" followed by Enter keystroke */
WORD Result = HLL_SendKey(hWnd, "Hello@E");

Notes
• For increased performance, an application may send entire strings using

Function 33, “Copy String to Field,” or Function 15, “Copy String to
Presentation Space,” rather than using this function; however, only function 3
may send escape sequences such as ENTER or PF3.

• If the keystroke string is longer than 255 characters (which is the Send Key
function’s limit), use multiple calls to the Send Key function.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 11

Function 4: Wait
This function provides current status of XCLOCK or XSYSTEM conditions of the OIA.
(Function 9, “Set Session Parameters,” allows a program to vary the amount of time
this function will wait for the OIA to clear.)

Because host applications are so different and a terminal cannot determine when a
host application is ready for input, the HLLAPI application must determine when the
host is ready for more input. The Wait function is not a good method for determining
when the host is ready for input. This function is provided to determine if the
terminal session can accept keystrokes (using “Send Key” or a copy function). To
determine when the host session is ready, the application should search the screen
for key fields, usually near the bottom of the screen. Another method is to query the
cursor position until it is located at the correct field. Or an application could use this
function repetitively until is returns successfully for a certain period of time, perhaps
one or two seconds.

If the application program is already in a Wait, Pause, Get Key, or synchronous file
transfer, the request for another delay is rejected.

Syntax
WORD HLL_Wait (HWND hWnd);

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

TWAIT (default)

The function waits up to one minute before it times out waiting for XCLOCK or
XSYSTEM (3270) or II (5250) to clear.

LWAIT

The function waits for XCLOCK or XSYSTEM (3270) or II (5250) to clear before
returning to the calling application.

NWAIT

The function does not wait but returns immediately with busy / inhibited status.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_Wait

hWnd Window handle of the application

HLLAPI Language Reference

Prepared by Attachmate Technical Support 12

Return parameters
Result code

Function returns one of the following codes:

HLL_SUCCESS The keyboard is unlocked and ready for
input.

HLL_INVALIDPSID Not connected.
HLL_TIMEOUT The function timed out while still in

XCLOCK or XSYSTEM.
HLL_PSLOCKED The keyboard is locked.
HLL_SYSTEMERROR A system error occurred; the function

failed.
HLL_RESOURCEUNAVAILABLE The client application window is already

waiting, pausing, getting a key, operating
a synchronous file transfer, and so forth.

Example
WORD Result = HLL_Wait(hWnd);

Notes
• This function can be used together with a function like Function 6, “Search

Presentation Space,” to determine when the host is ready for the next input.

• The HLLAPI application should consider relative machine speed. For example,
a host may complete its task during a Wait on a slow machine, but a faster
machine may need another approach, as noted earlier.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 13

Function 5: Copy Presentation Space
This function copies the currently connected PS to a string allocated in the calling
application.

Syntax
WORD HLL_CopyPS (HWND hWnd, LPSTR lpBuffer);

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

XLATE = 1 (default)

Translates strings to be copied to the PS, as well as search strings, into 3270 display
codes (EBCDIC). Translates strings copied from the PS into ASCII.

NOXLATE = 2

Skips translation. Allows an application to copy 3270 display codes directly to and
from the PS, and to search directly for 3270 display-code strings.

NOATTRB (default)

Attribute bytes and other characters not displayable in ASCII are translated into
blanks.

ATTRB

Attribute bytes and other characters not displayable in ASCII are not translated.

EAB

Extended Attribute Bytes (EABs) are copied. Two characters are placed in the
application data string for each one that appears in the PS. The EAB is the second
character. To accommodate this, the application program must allocate a data string
that is twice the number of displayable characters to be copied from the presentation
space of the current display model.

NOEAB (default)

EABs are not copied.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_CopyPS

hWnd Window handle of the application

HLLAPI Language Reference

Prepared by Attachmate Technical Support 14

lpBuffer A string large enough to accommodate data from the current PS
display

Model (including EABs if requested). See chart below.

Model number Data string length required
 2 1920 (3840 with EABs)
 3 2560 (5120 with EABs)
 4 3440 (6880 with EABs)
 5 3564 (7128 with EABs)

Return parameters
Data string

Function replaces content of call parameter lpBuffer with text and, if requested,
extended attribute bytes from the presentation space.

Refer to Appendix D, “Extended Attributes,” for information on EAB interpretation.

Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID No connected.
HLL_SESSIONOCCUPIED The PS contents were copied; the PS was waiting

for host system response (XCLOCK or
XSYSTEM).

HLL_PSLOCKED The PS was copied; the keyboard was locked.
HLL_SYSTEMERROR A system error occurred; the function failed.

Example
/* Reserve string for text from Model 2 screen w/o EABs (1920
bytes */
char HllDataStr[2000];
WORD Result = HLL_CopyPS(hWnd, HllDataStr);

Notes
• Use this function only when the entire PS is needed; otherwise, use Function

8, “Copy Presentation Space to String,” or Function 34, “Copy Field to String.”

• Use Function 10, “Query Sessions,” or Function 22, “Query Session Status,”
to check host session PS size.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 15

Function 6: Search Presentation Space
This function searches the currently connected PS for first or last occurrence of
specified text.

This function is useful for determining whether a specific host panel is present. For
example, if the application is expecting a prompt before sending data, this function
will search for the message or string before moving on. If the prompt or message is
not found, the application program can call Function 18, “Pause,” or Function 24,
“Query Host Update,” and continue to call Function 6 until the string is found.

Syntax
DWORD HLL_SearchPS(HWND hWnd, LPSTR lpsSearchString,

WORD wStringLength, WORD wPSP);

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

SRCHALL and SRCHFRWD (default)

The function scans the entire PS for the first occurrence of the specified string.

SRCHALL and SRCHBKWD

The function scans the entire PS for the last occurrence of the specified string.

SRCHFROM and SRCHFRWD

The function scans the PS from the specified PS position for the first occurrence of
the string.

SRCHFROM and SRCHBKWD

The function scans the PS from the specified PS position for the last occurrence of
the string.

XLATE = 1 (default)

Translates strings to be copied to the PS, as well as search strings, into 3270 display
codes (EBCDIC). Translates strings copied from the PS into ASCII.

NOXLATE = 2

Skips translation. Allows an application to copy 3270 display codes directly to and
from the PS, and to search directly for 3270 display-code strings.

Call parameters
An application program must pass the following parameters when calling this
function:

HLLAPI Language Reference

Prepared by Attachmate Technical Support 16

Function HLL_SearchPS

hWnd Window handle of the application

lpsSearchString Text to be searched for in the PS

wStringLength This specifies the length of the search string.

It is used if HLLWIN_NOXLATE is set; otherwise, it is ignored.

wPSP Start position where the search function is to begin
(SRCHFRWD) or to end (SRCHBKWD). This parameter is
ignored if SRCHALL is set.

Return parameters
Function returns a double word (4 bytes).

PS Position

The high-order word of the return value contains the PS position where specified text
was found, or 0 if the text was not found.

Result code

The low-order word of the return value contains one of the following codes:

HLL_SUCCESS The function succeeded; the
string was found.

HLL_INVALIDPSID Not connected.
HLL_INVALIDPARAMETER An error was made in specifying

parameters (for example,
LLWIN_NOXLATE is set
but wStringLength=0).

HLL_INVALIDPSPOSITION An invalid PS position was
specified.

HLL_SYSTEMERROR A system error occurred; the
function failed.

HLL_SEARCHSTRINGNOTFOUND The search string was not
found.

Example

/* Search for: "Hello" starting at PS position 199 */
DWORD Result = HLL_SearchPS(hWnd, "Hello", 5, 199);

Notes
• The SRCHFROM option is useful when you are searching for a string that may

occur several times.

• The search carried out by this function is case-sensitive.

• To determine when the host is ready for input, the application should search
the screen for key fields, usually near the bottom of the screen.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 17

Function 7: Query Cursor Location
This function returns the position of the cursor in the currently connected PS.

Syntax
DWORD HLL_QueryCursor (HWND hWnd);

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_QueryCursorLocation

hWnd Window handle of the application

Return parameters
Function returns a double word (4 bytes).

PS Position

The high-order word of the return value contains the PS position of the cursor.

Result code

The low-order word of the return value contains one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID Not connected.
HLL_SYSTEMERROR A system error occurred; the function

failed.

Example
DWORD Result = HLL_QueryCursorLocation(hWnd);

Notes
• This function is one method of determining whether a host session is at a

particular screen.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 18

• To make this determination, the application can repeatedly query cursor
position until it is located at the correct field.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 19

Function 8: Copy Presentation Space to
String
This function copies all or part of the currently connected PS to a string allocated in
the calling application.

Syntax
WORD HLL_CopyPSToString (HWND hWnd, LPSTR lpBuffer,

 WORD wBufferLength, WORD wPSP);

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

XLATE = 1 (default)

Translates strings to be copied to the PS, as well as search strings, into 3270 display
codes (EBCDIC). Translates strings copied from the PS into ASCII.

NOXLATE = 2

Skips translation. Allows an application to copy 3270 display codes directly to and
from the PS, and to search directly for 3270 display-code strings.

NOATTRB (default)

Attribute bytes and other characters not displayable in ASCII are translated into
blanks.

ATTRB Attribute bytes and other characters not displayable in ASCII are not
translated.

EAB

Extended Attribute Bytes are copied. Two characters are placed in the application
data string for each one that appears in the PS. The EAB is the second character. To
accommodate this, the application program must allocate a data string that is twice
the number of displayable characters to be copied. For example, 160 bytes should be
allotted to copy the first 80 characters with EABs.

NOEAB (default)

Extended Attribute Bytes are not copied.

Call parameters

HLLAPI Language Reference

Prepared by Attachmate Technical Support 20

An application program must pass the following parameters when calling this
function:

Function HLL_CopyPSToString

hWnd Window handle of the application

lpBuffer A string of sufficient size to hold data requested from the PS, including
EABs if requested

wBufferlength The number of characters allocated in Data string.

WPSP The PS position where the copying should begin.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 21

Return parameters

Data string

Function replaces content of call parameter lpBuffer with text from the presentation
space.

Refer to Appendix D, “Extended Attributes,” for information on EAB interpretation.

Result code

Function returns one of the following codes:

HLL_SUCCESS The PS contents were copied to the string; the PS was
active and the keyboard was unlocked.

HLL_INVALIDPSID Not connected.
HLL_INVALIDPARAMETER An error was made in specifying the string length.
HLL_SESSIONOCCUPIED The PS contents were copied; the currently connected

PS was waiting for the host response.
HLL_PSLOCKED The PS was copied; the keyboard was locked.
HLL_INVALIDPSPOSITION An invalid PS position was specified.
HLL_SYSTEMERROR A system error occurred; the function failed.

Example
/* Start position to copy */
WORD PsPos = 199;
/* Buffer for returned data */
char DataStr[5];
/* Length of string to copy */
WORD DataLn = 5;
WORD Result = HLL_CopyPSToString(hWnd, DataStr, DataLn, PsPos);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 22

Function 9: Set Session Parameters
This function sets session parameters in HLLAPI for the connected presentation
space. Parameters set with this function affect many other HLLAPI functions, as
noted in individual function descriptions (“Applicable session parameters”) and in
descriptions of this function’s call parameters.

Session parameters set with function 9 remain in effect until one of the following
occurs:

• Function 21, “Reset System,” which resets the session parameters to default
values

• A new value is specified by a second function 9 call

• The HLLAPI client application program terminates

Syntax
WORD HLL_SetHLLWinParameters (HWND hWnd, LPHLLPARAMS lpHLLParams);

Prerequisites
None.

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_SetHLLWinParameters

hWnd Window handle of the application

lpHLLParams A structure containing desired values of session parameters. (Format below)

Parameter structure

The session-parameter structure is comprised of 13 bytes organized as shown:

Byte Description
0 Attribute control (ATTRB or NOATTRB)
1 Autoreset control (AUTORESET or NOAUTORESET)
2 Connect type control (CONLOG or CONPHYS)
3 Extended attribute control (EAB or NOEAB)
4 Escape character (default '@')

HLLAPI Language Reference

Prepared by Attachmate Technical Support 23

5 Pause control (IPAUSE or FPAUSE)
6 Search Origin control (SRCHALL or SRCHFROM)
7 Search Direction control (SRCHFRWD or SRCHBKWD)
8-9 Timeout control (0 .. 64k, a binary word)
10 Reserved
11 Wait control (TWAIT, LWAIT, NWAIT)
12 Xlate control (XLATE or NOXLATE)

For formal declarations of these parameters, see header file HLLAPI.H.

NOTE: It is recommended an application call function HLL_QueryHLLWinParameters
to initialize the structure with current values before making changes.

Copy parameters

The following session parameters affect all copy functions.

ATTRB = 1

EBCDIC characters that cannot be translated to displayable ASCII characters are not
translated.

NOATTRB = 2 (default)

EBCDIC characters that cannot be translated to displayable ASCII characters are
translated to blanks (0x20).

EAB = 1

Extended Attribute Bytes are copied along with data.

NOEAB = 2 (default)

EABs are not copied (data only).

XLATE = 1 (default)

Translates strings to be copied to the PS, as well as search strings, into 3270 display
codes (EBCDIC). Translates strings copied from the PS into ASCII.

NOXLATE = 2

Skips translation. Allows an application to copy 3270 display codes directly to and
from the PS, and to search directly for 3270 display-code strings.

Connect parameters

The following session parameters affect Function 1, “Connect Presentation Space,”
and Function 2, “Disconnect Presentation Space.”

CONLOG = 1 (default)

When Function 1, “Connect Presentation Space,” is called, the emulator session
corresponding to the target PS does not become the active application. The calling
application remains active. Likewise, when Function 2, “Disconnect Presentation
Space,” is called, the calling application remains active.

CONPHYS = 2

Calling Function 1, “Connect Presentation Space,” makes the emulator session
corresponding to the target PS the active application (does a physical connect). Note
that this parameter is honored only when there is host access software attached to

HLLAPI Language Reference

Prepared by Attachmate Technical Support 24

the session. During Function 2, “Disconnect Presentation Space,” the host access
software becomes the active application.

Esc/Reset parameters

The following session parameters affect Function 3, “Send Key,” and Function
51,“Get Key.”

ESC= char

Specifies the escape character for keystroke mnemonics (“@” is the default). Blank is
not a valid escape value.

AUTORESET = 1 (default)

Attempts to reset all inhibited conditions by adding the prefix RESET to all keystroke
strings sent using Function 3, “Send Key.”

NORESET = 2

Does not add RESET prefix to function 3 key strings.

Search parameters

The following session parameters affect all search functions.

SRCHALL = 1 (default)

Scans the entire PS or field.

SRCHFROM = 2

Starts the scan from a specified location in the PS or field.

SCRCHFRWD = 1 (default)

Performs the scan in an ascending direction.

SRCHBKWD = 2

Performs the scan in a descending direction through the PS or field.

Wait parameters

The following session parameters affect Function 4, “Wait,” and Function 51, “Get
Key.”

TWAIT = 1 (default)

For Function 4, “Wait,” TWAIT waits up to a minute before timing out on XCLOCK or
XSYSTEM.

For Function 51, “Get Key,” TWAIT does not return control to the HLLAPI client
application program until it has intercepted a key (a normal or AID key, based on the
option code specified under Function 50, “Start Keystroke Intercept”).

LWAIT = 2

For Function 4, “Wait,” LWAIT waits until XCLOCK / XSYSTEM clears. This option is
not recommended because XSYSTEM or permanent XCLOCK will prevent control
being returned to the application.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 25

For Function 51, “Get Key,” LWAIT does not return control to your application until it
has intercepted a key. The intercepted key could be a normal or AID key, based on
the option specified under Function 50, “Start Keystroke Intercept.”

NWAIT = 3

For Function 4, “Wait,” NWAIT checks status and returns immediately (no wait).

For Function 51, “Get Key,” NWAIT returns code 25 (keystroke not available) if
nothing matching the option specified under Function 50, “Start Keystroke
Intercept,” is queued.

Pause parameters

The following session parameters affect Function 18, “Pause,” determining the type
of pause to perform.

NOTE: An application can make multiple Function 23 calls, and an event satisfying
any of the calls will interrupt the pause.

FPAUSE = 1 (default)

Full-duration pause. Control returns to the calling application when the number of
half-second intervals specified in the Function 18 call have elapsed.

IPAUSE = 2

Interruptible pause; Control returns to the calling application when a system even
specified in a preceding Function 23, “Start Host Notification,” call has occurred, or
the number of half-second intervals specified in the Function 18 call have elapsed.

Timeout parameter

The following session parameter affects Function 90, “Send File,” and Function 91,
“Receive File.”

TIMEOUT= n

Specifies the number of 10 millisecond intervals a file-transfer operation should be
allowed to run before CTRL BREAK is issued to terminate it. Zero means CTRL
BREAK will not be issued.

Return parameters
Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPARAMETER One or more parameter values were unrecognized;

all recognized values were
accepted.

HLL_SYSTEMERROR A system error occurred; the function failed.

Example
/* Allocate session-parameter structure */
HLLPARAMS Params; /* Refer to HLLAPI.H for details */
/* Update session parameters */
WORD ResultO = HLL_SetHLLWinParameters(hWnd, &Params);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 26

Function 10: Query Sessions
This function returns summary information about each HLLAPI-configured session.
The information is returned in a 12-byte structure for each session.

Syntax
DWORD HLL_QuerySessions(HWND hWnd, LPSESSIONS lpSessions,

 WORD wSessionState, WORD wNumberOfSessions);

Prerequisites
None.

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_QuerySessions

hWnd Window handle of the application

lpSessions An array of one or more 12-byte session structures.

wSessionState An integer specifying the state of session(s) for which information is wanted
HLL_QUERYSESSIONSCONFIGURED
HLL_QUERYSESSIONSOPENED
HLL_QUERYSESSIONSPOWERED

wNumberOfSessions The number of session structures in call parameter lpSessions.

Return parameters
Function returns a double word (4 bytes).

Sessions started

The high-order word of the return value contains the count of the number of sessions
found that met the specified session-state criterion.

Result code

The low-order word of the return value contains one of the following codes:

HLLAPI Language Reference

Prepared by Attachmate Technical Support 27

HLL_SUCCESS The function succeeded.
HLL_INVALIDPARAMETER null–lpSessions or zero wNumberOfSessions.
HLL_SYSTEMERROR A system error occurred; the function failed.

Session information

Function replaces content of call parameter Sessions with information about sessions
meeting the specified session-state criterion, filling each structure as follows:

Byte Description
1 Session short name.
2–9 Session long name (first 8 characters of the "edp" filename)
10 A fixed constant byte value (‘H’)
11–12 PS size as a binary word.

Example
/* Allocate space for as many as 26 sessions */
SESSIONS Sessions[26];
/* Get information about opened sessions */
DWORD Result = HLL_QuerySessions(hWnd, Sessions,
HLL_SESSIONOPENED, 26);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 28

Function 11: Reserve
This function locks the currently connected PS. Locking the PS prevents another
application program or terminal operator from entering data into it. Once the PS is
locked, it is not accessible until it is unlocked.

The PS can be unlocked with Function 12, “Release”; Function 21, “Reset System”;
Function 2, “Disconnect Presentation Space”; or Function 1, “Connect Presentation
Space.” Function 1 performs an implicit disconnect. (Terminating a session with Task
Manager also unlocks it.)

This function is useful for preventing users from gaining access to the session while
an application program sends a series of transactions to the host.

Syntax
WORD HLL_Reserve (HWND hWnd);

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_Reserve

hWnd Window handle of the application

Return parameters
Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID Not connected.
HLL_SYSTEMERROR A system error occurred; the function failed.

Example
WORD Resullt = HLL_Reserve(hWnd);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 29

Function 12: Release
This function unlocks a PS that was reserved using Function 11, “Reserve.” The
target is the currently connected PS.

Release also occurs automatically when the client application program calls Function
2, “Disconnect Presentation Space”; Function 1, “Connect Presentation Space”;
Function 21, “Reset System”; or terminates, or the session itself is terminated.

Because release occurs automatically on disconnect, it is not crucial that you use the
Release function whenever you end an application.

Syntax
WORD HLL_Release (HWND hWnd);

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this function:

Function HLL_Release

hWnd Window handle of the application

Return parameters
Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID Not connected.
HLL_SYSTEMERROR A system error occurred; the function failed.

Example
WORD Resullt = HLL_Release(hWnd);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 30

Function 13: Copy OIA
This function returns the contents of the OIA from the currently connected PS. The
length of the OIA data does not change with the terminal model.

Syntax
WORD HLL_CopyOIA (HWND hWnd, LPSTR lpOIA);

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
None.

Call parameters
The following session parameters from Function 9 affect this function.

Function HLL_CopyOIA

hWnd Window handle of the application

lpOIA A pre-allocated 103-byte data string

Return parameters
OIA data

Function replaces content of call parameter lpOIA with data from the OIA for the
currently-connected PS, organized as follows:

Byte Description
1 The OIA Format Byte for the host access program.
2–81 These bytes contain the untranslatable image of the OIA in hexadecimal codes.
82–103 The OIA bit group.

Detailed explanation of information contained in this string is given in Appendix C,
“Interpreting the Returning Data String for Function 13.”

Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID Not connected.
HLL_INVALIDPARAMETER A parameter error occurred; no OIA data was

returned.
HLL_SESSIONOCCUPIED The OIA data was returned; the target PS is busy.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 31

HLL_PSLOCKED The OIA data was returned; the target PS is
locked.

HLL_SYSTEMERROR A system error occurred; no OIA data was
returned.

Example
char HllDataStr[103];
/* Length of allocated data area */
WORD Result = HLL_CopyOIA(hWnd, HllDataStr);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 32

Function 14: Query Field Attribute
This function returns the attribute byte for the field at the specified PS position in the
currently-connected presentation space. If extended attribute bytes (EABs) are
enabled and present, the function returns the EAB value as well.

Syntax
DWORD HLL_QueryFieldAttribute (HWND hWnd, WORD wPSP);

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_QueryFieldAttribute

hWnd Window handle of the application

wPSP The PS position for which field information is wanted
.

Return parameters
Function returns a double word (4 bytes).

Result code
The low-order word of the return value contains one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID Not connected.
HLL_INVALIDPSPOSITION An invalid PS position was specified.
HLL_SYSTEMERROR A system error occurred; the function failed.
HLL_UNFORMATTEDHOSTPS The host PS was unformatted.

Attribute value

The low-order byte of the high-order word contains the value of the attribute byte
that begins the field pointed to by call parameter wPSP. If zero, the PS is
unformatted and no attribute can be returned.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 33

3270 Field attribute

Bit Meaning
0-1 Both = 1, field attribute value
2 0 = unprotected; 1 = protected
3 0 = alphanumeric; 1 = numeric only
4-5 00 = normal intensity, not pen detectable

01 = normal intensity, pen detectable
10 = high intensity, pen selectable
11 = nondisplay, not pen detectable

6 Reserved
7 0 = field has not been modified; 1 = field has been modified

5250 Field attribute

Bit Meaning
0 0 = nonfield attribute; 1 = field attribute
1 0 = nondisplay; 1 = display
2 0 = unprotected; 1 = protected
3 0 = normal intensity; 1 = high intensity
4-6 000 = alphameric data; all characters available

001 = alphabetic only, u/c and l/c, comma, period, hyphen, blank and Dup available
010 = numeric shift; automatic shift for number
011 = numeric only: 0-9, comma, period, plus, minus, blank and Dup available
101 = numeric only: 0-9 or Dup available
110 = magnetic strip reading device data only
111 = signed numeric data: 0-9, plus, minus and Dup are available

7 0 = field has not been modified; 1 = field has been modified

Extended attribute value

The high-order byte of the high-order word contains the Extended Attribute Byte for
the specified PS position, if EABs are enabled and present. (Refer to Appendix D,
“Extended Attributes,” for information on interpreting this value.

Example
/* Query field attribute at position 199 */
DWORD Result = HLL_QueryFieldAttribute(hWnd, 199);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 34

Function 15: Copy String to Presentation
Space
This function copies a string directly into the currently connected PS at the specified
location. When the copy operation is complete, the cursor’s physical location remains
unchanged.

The data string to be copied cannot be any larger than the size of the designated
writable area or field. Unprintable characters in the string are translated into blanks
in the host system session.

Syntax
WORD HLL_CopyStringToPS(HWND hWnd, LPSTR lpString,

WORD wStringLength, WORD wPSP);

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

XLATE = 1 (default)

Translates strings to be copied to the PS, as well as search strings, into 3270 display
codes (EBCDIC). Translates strings copied from the PS into ASCII.

NOXLATE = 2

Skips translation. Allows an application to copy 3270 display codes directly to and
from the PS, and to search directly for 3270 display-code strings.

EAB

Extended Attribute Bytes are copied. Two characters are copied from the application
data string for each position in the PS. The EAB is the second character.

NOEAB (default)

Extended Attribute Bytes are not present.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_CopyStringToPS

hWnd Window handle of the application

HLLAPI Language Reference

Prepared by Attachmate Technical Support 35

lpString ASCII text and, if requested, EABs to be copied into the PS.
Refer to Appendix D, “Extended Attributes,” for information on EAB
format.

wStringLength Data string length.

WPSP Position of the PS where function is to begin copying data.

Note: This function cannot send keyboard mnemonics for host commands.

Return parameters

Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID Not connected.
HLL_INVALIDPARAMETER An invalid parameter string was specified (the string

contains no characters or the given string length
parameter was zero).

HLL_PSLOCKED The target PS is protected or inhibited, or illegal data
was sent to the target PS (for example, field attribute
byte when HLLWIN_XLATE is set).

HLL_DATATRUNCATED The copy was completed but the size of the string is
longer than the available PS space. The part of the
string that extends beyond the PS will be truncated.

HLL_INVALIDPSPOSITION An invalid PS position was specified.
HLL_SYSTEMERROR A system error occurred; the function failed.

Example
/* Copy "Hello World" starting at position 199 of PS */
WORD Result = HLL_CopyStringToPS(hWnd, "Hello World", 11, 199);

Notes
To copy data to the current PS position, use Function 7, “Query Cursor Location,” to
obtain the PS position, then use that value as the PS position calling parameter of
this function.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 36

Function 16: WSCtrl
This function allows an application to control product features such as configuration,
layouts and emulator window state.

Syntax
WORD HLL_WSCtrl (HWND hWnd, WORD wOption,

LPVOID lpvState, WORD wStateLength);

Prerequisites
None.

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_WSCtrl

hWnd Window handle of the application

wOption number specifying which WSCtrl subfunction is requested:
HLL_WSCTRLOPENLAYOUT
HLL_WSCTRLQUERYLAYOUT
HLL_WSCTRLQUERYEXTRADIRECTORY
HLL_WSCTRLEMULATORHANDLE
HLL_WSCTRLSTARTEMULATOR
HLL_WSCTRLSTOPEMULATOR
HLL_WSCTRLTERMINALON
HLL_WSCTRLTERMINALOFF
HLL_WSCTRLBLOCKEMULATORUPDATES
HLL_WSCTRLALLOWEMULATORUPDATES

lpvState Additional controls pertaining to the requested option. (See following)

wStateLength 2-byte integer specifying the number of bytes in lpvState of significance

Control structures

Format and organization of lpvState depends on the Option requested.

Option Data-string format
Open layout Null-terminated ASCII text giving location and name of the layout file.
Query layout A pre-allocated string to receive location and name of current layout.
Emulator handle Address of a WORD, the low byte of which is the byte value of the

HLLAPI Language Reference

Prepared by Attachmate Technical Support 37

session short name on entry; the WORD on return is the emulator
window handle

Start emulator 12-byte EMULATORCONTROL structure providing the short name and
window state of the session to be opened. (See format below)

Stop emulator NA (Data string and data length are ignored for this option)
Terminal On NA (Data string and data length are ignored for this option)
Terminal Off NA (Data string and data length are ignored for this option)
Allow updates NA (Data string and data length are ignored for this option)
Block updates NA (Data string and data length are ignored for this option)
Query Extra Directory A buffer which will contain the EXTRA! install directory on return.

Start Emulator control structure

When the requested option is Start Emulator, the following control structure is
required.

Byte Description
1 Session short name.
2 Visibility (‘N’ = normal; ‘I’ = icon; ‘M’ = maximized; ‘H’ = hidden)
3 Reserved
4 Case (‘U’ = uppercase; ‘M’ = upper/lower)
5-6 Left coordinate of normal session window
7-8 Bottom coordinate of normal session window
9-10 Right coordinate of normal session window
11-12 Top coordinate of normal session window

Return parameters

Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPARAMETER An invalid parameter string (for example,

lpString null or wStringlength=0) was specified.
HLL_SYSTEMERROR A system error occurred; the function failed.
HLL_INVALIDPSID Not connected.
HLL_RESOURCEUNAVAILABLE The requested PS is being used by

another client application window connection.
HLL_NOEMULATORATTACHED This call requires an emulator attached

to the session.
HLL_WSCTRLFAILURE The workstation control function failed.

Example
/* Point control structure to desired layout file */
char Layout[] = "C:\\Program Files\\E!PC\\Sessions\\Monitor.ELF";
/* Open layout */
WORD Result = HLL_WSCtrl(hWnd, HLL_WSCTRLOPENLAYOUT, Layout,

 strlen(Layout));

/* Get window handle to session B */
WORD wHandle = MAKEWORD('B', 0);
WORD Result = HLL_WSCtrl(hWnd, HLL_WSCTRLEMULATORHANDLE, wHandle, 4);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 38

Function 18: Pause
This function waits a specified amount of time or until a host-initiated update occurs.

If the client application program is already in a Wait, Pause, Get Key, or synchronous
file transfer delay, the request for another delay is rejected.

Syntax
WORD HLL_Pause (HWND hWnd, WORD wDuration);

Prerequisites
Function 23, “Start Host Notification,” must be called if the application program uses
session parameter IPAUSE.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

FPAUSE (default)

The function waits the amount of time specified if session parameter FPAUSE is in
effect.

IPAUSE

The function waits until a specified host update occurs if session parameter IPAUSE is
set and the application has called Function 23, “Start Host Notification. The
application must call Function 24, “Query Host Update,” before setting the next
pause; otherwise, the next pause will be immediately satisfied by the pending event.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_Pause

hWnd Window handle of the application

wDuration The pause duration in 1/2-second multiples.

Return parameters

Result code

Function returns one of the following codes:

HLL_SUCCESS The pause duration has expired.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 39

HLL_SYSTEMERROR A system error occurred; the function failed.
HLL_RESOURCEUNAVAILABLE Another pause, wait, get key, or

synchronous file transfer is in progress
for the specified client application window.

HLL_HOSTSESSIONUPDATE A host session monitored by the
pausing client application has been
updated; use Function 24, “Query HostUpdate,” for more
information.

Example
/* Wait for 10 sec. or until interrupted */
WORD Result = HLL_Pause(hWnd, 20);

Notes
Instead of using interruptible pauses, the client application can establish the host
monitor (Function 23, “Start Host Notification”) specifying the windows message
service. HLLAPI will then post XM_SESSIONUPDATE messages to the hWnd when
host session updates occur. See Appendix E, “Attachmate HLLAPI Messages,” and
Function 23 for details.

This function returns the cursor to its class shape. For example if you define the
cursor as an hourglass and perform a lengthy operation, the first time you call this
function, it will return your cursor shape to an arrow.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 40

Function 20: Query System
This function returns information about system state that may be useful for
determining the cause of a result code 9 being received from some other function
call.

Syntax
WORD HLL_QuerySystem (HWND hWnd, LPSYSTEM lpSystem);

Prerequisites
None.

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_QuerySystem

hWnd Window handle of the application

lpSystem A 9-byte structure to receive system information.

Return parameters
System information

Function replaces content of call parameter lpSystem with information about the
system state, organized as follows:

Byte Description
1 Month
2 Day
3–4 Year
5 Short name of currently-connected PS
6-9 Extended error code 1 (system component, printable ASCII)

Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_SYSTEMERROR A system error code for the specified client application.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 41

Example
SYSTEM sys;
WORD Result = HLL_QuerySystem(hWnd, &sys);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 42

Function 21: Reset System
This function resets session parameters changed in Function 9, “Set Session
Parameters,” to their default state and releases any reserved sessions. This function
also releases any connected PS, and cancels any keystroke interceptions and host
update monitors.

An application can call this function at any time to restore session parameters to
default values. This function should always be called just before a HLLAPI application
program exits.

Syntax
WORD HLL_ResetHLLWin (HWND hWnd);

Prerequisites
None.

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_ResetSystem

hWnd Window handle of the application

Return parameters

Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_SYSTEMERROR A system error code for the specified client application.

Example
WORD Result = HLL_ResetSystem(hWnd);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 43

Function 22: Query Session Status
This function returns specific information about the specified session. It returns the
following information in the data string:

• Short and long names

• Terminal type

• Characteristics (EAB and programmed symbol support)

• Session usage

• Number of rows and columns in the PS

This function provides more information on individual sessions than the allsessions
call (Function 10, “Query Sessions”).

Syntax
WORD HLL_QuerySessionStatus (HWND hWnd, LPSESSIONSTATUS lpSessionStatus);

Prerequisites
None.

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_QuerySessionStatus

hWnd Window handle of the application

lpSessionStatus An 16-byte structure to receive session information, the first
byte of which contains the session short name.

Return parameters
Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID No session configured with short-name specified.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 44

HLL_INVALIDPARAMETER lpSessionStatus is null.
HLL_SYSTEMERROR A system error occurred; the function failed.

Session information

If successful, function replaces content of call parameter lpSessionStatus with
information about the session, organized as follows:

Byte Description
1 Session short name
2-9 Session long name
10 Session type:

‘A’ = HP T27 terminal
‘D’ = 3270 terminal
‘E’ = 3270 printer
‘F’ = 5250 terminal
‘G’ = 5250 printer
‘O’ = UNISYS UTS60 terminal
‘V’ = UNIX or VAX

11 Session characteristics:
Bit 0: 0=No EAB; 1=EABs
Bit 1: 0=No programmed symbols
 1=Programmed symbols
Bit 2–7: Reserved

12 Usage state: logical OR of
10000000 = configured
01000000 = opened
00100000 = powered
00010000 = autopowered
00001000 = emulated (visible)
00000100 = HLLAPI-connected
00000010 = in file transfer

13–14 Number of rows (binary).
15–16 Number of columns (binary).

Example
SESSIONSTATUS ss;
ss.cPSID = 'J';
WORD Result = HLL_QuerySessionStatus(hWnd, &ss);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 45

Function 23: Start Host Notification
This function begins the process by which HLLAPI determines if the host session PS
or OIA has been updated. Your application can then call Function 24, “Query Host
Update,” to find out more specific information about the update. This function also
enables the designated host session event to end an interruptible pause started with
Function 18, “Pause.”

If Windows Message Service notification is requested, an XM_SESSIONUPDATE
message will be posted to the application when HLLAPI receives updates of the
specified type. This avoids the application querying for updates. See Appendix E,
“Attachmate HLLAPI Messages,” for more information on Windows XM messages.
Even though a client receives XM_SESSIONUPDATE messages, HLLAPI continues to
track updates, so interruptible pauses and Function 24, “Query Host Update,”
operate normally.

Syntax
WORD HLL_StartHostNotification(HWND hWnd, char cPSID,

WORD wNotificationType, BOOL bWindowsMessage);

Prerequisites
None.

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_StartHostNotification

hWnd Window handle of the application

cPSID The session short-name character.

wNotificationType A word specifying the type(s) of notifications requested, a logical
OR of the following:
HLL_NOTIFYALLUPDATE
HLL_NOTIFYCURSORUPDATE
HLL_NOTIFYOIAUPDATE
HLL_NOTIFYPSUPDATE
HLL_NOTIFYBEEP

bWindowsMessage If TRUE, indicates the application requests

HLLAPI Language Reference

Prepared by Attachmate Technical Support 46

XM_SESSIONUPDATE messages on updates.

Return parameters

Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID Not a valid PSID.
HLL_INVALIDPARAMETER An error was made in designating parameters.
HLL_INVALIDPSPOSITION An invalid PS position was specified.
HLL_SYSTEMERROR A system error occurred; the function failed.

Example
/* Request notification of OIA updates for session B */
WORD Result = HLL_StartHostNotification(hWnd, 'B', 2, 0);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 47

Function 24: Query Host Update
This function allows your application to determine if the host has updated the PS or
OIA since the last time Function 23, “Start Host Notification” or this function was
called.

The application program need not be connected to the PS for updates; however, it
must specify the short name for the desired session.

Syntax
DWORD HLL_QueryHostUpdate (HWND hWnd, char cPSID);

Prerequisites
Function 23, “Start Host Notification.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_QueryHostUpdate

hWnd Window handle of the application

cPSID A char containing the short name of the desired session

Return parameters
Function returns a double word (4 bytes).

Result code

The low-order word of the return value contains one of the following codes:

HLL_SUCCESS The updates were received; see HIWORD.
HLL_INVALIDPSID Invalid short-name character.
HLL_NOPRIORSTARTHOSTNOTIFY Function 23, “Start Host Notification,”

has not been called.
HLL_SYSTEMERROR A system error occurred; the function failed.
HLL_NOSESSIONUPDATE There were no session updates since last call.

Updates posted

HLLAPI Language Reference

Prepared by Attachmate Technical Support 48

The high-order word of the return value indicates the type(s) of notifications
received, a logical OR of the following:

HLL_NOTIFYCURSORUPDATE
HLL_NOTIFYOIAUPDATE
HLL_NOTIFYPSUPDATE
HLL_NOTIFYBEEP
HLL_NOTIFYBASECOLORCHANGE
HLL_NOTIFYMODELCHANGE
HLL_NOTIFYPOWERCHANGE

Example
DWORD Result = HLL_QueryHostUpdate(hWnd, 'B');

HLLAPI Language Reference

Prepared by Attachmate Technical Support 49

Function 25: Stop Host Notification
This function disables the capability of Function 24, “Query Host Update.” This
function can also be used to stop host events from affecting Function 18, “Pause.”

Syntax
WORD HLL_StopHostNotification (HWND hWnd, char cPSID);

Prerequisites
Function 23, “Start Host Notification.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_StopHostNotification

hWnd Window handle of the application

cPSID A char containing the short name of the session for which
notification is to be stopped.

Return parameters

Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID Invalid session short-name supplied.
HLL_NOPRIORSTARTHOSTNOTIFY Function 23, “Start Host Notification,”

has not been called.
HLL_SYSTEMERROR A system error occurred; the function failed.

Example
WORD Result = HLL_StopHostNotification(hWnd, 'B');

HLLAPI Language Reference

Prepared by Attachmate Technical Support 50

Function 30: Search Field
This function searches through a specified field of the currently connected PS for a
specified string. It can be used to search for a string in either protected or
unprotected fields of a field formatted host PS. If the target string is found, this
function returns the starting position of the string.

This search is always case-sensitive. This function requires a complete match of
target string to field contents, regardless of the direction of the search.

Note: If the field at the end of the host presentation space wraps, wrapping occurs
when the end of the presentation space is reached.

Syntax
DWORD HLL_SearchField (HWND hWnd, LPSTR lpSearchString,

WORD wStringLength, WORD wPSP);

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

SRCHALL (default)

The entire field containing the specified PS position is searched.

SRCHFROM

Search begins at the specified position in the field.

SRCHFRWD (default)

Search finds first instance of the string between the origin and the end of the field.

SRCHBKWD

Search finds the last instance of the string between the field origin and the end of
the field, or the specified PS position (if SRCHFROM is set).

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_SearchField

hWnd Window handle of the application

lpSearchString ASCII text to be searched for in the field

HLLAPI Language Reference

Prepared by Attachmate Technical Support 51

wStringLength Number of characters in lpSearchString to be used as search target.

wPSP Specifies a PS position within the target field or on the field attribute that
begins it.. For SRCHALL, this can be any PS position within the field. For
SRCHFROM, search begins here for SRCHFRWD or ends here for
SRCHBKWD.

Return parameters
Function returns a double word (4 bytes).

Result code
The low-order word of the return value contains one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID Not connected
HLL_INVALIDPSPOSITION An invalid PS position was specified.
HLL_SYSTEMERROR A system error occurred; the function failed.
HLL_SEARCHSTRINGNOTFOUND The search string was not found,

or the screen was unformatted.

Location

The high-order word of the return value indicates the PS position where the specified
text was found. If zero, the specified text was not found.

Example
/* Search field at PS position 199 for "Hello" */
DWORD Result = HLL_SearchField(hWnd, "Hello", 5, 199);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 52

Function 31: Find Field Position
This function searches through the currently connected PS for a field’s beginning
position and returns the position. This function will search for either protected or
unprotected fields, but the fields must be in a field-formatted host PS.

Syntax
DWORD HLL_FindFieldPosition(HWND hWnd, WORD wFieldSpecifier,

WORD wTargetPSP);

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_FindFieldPosition

hWnd Window handle of the application

wFieldSpecifier This contains one of the following values from the header file:
HLL_THISFIELD
HLL_NEXTFIELD (protected or unprotected)
HLL_NEXTPROTECTEDFIELD
HLL_NEXTUNPROTECTEDFIELD
HLL_PREVIOUSFIELD (protected or unprotected)
HLL_PREVIOUSPROTECTEDFIELD
HLL_PREVIOUSUNPROTECTEDFIELD

wTargetPSP This contains the PS position where you want to start the search.

Return parameters
Function returns a double word (4 bytes).

Result code

The low-order word of the return value contains one of the following codes:

HLL_SUCCESS The function succeeded. (See HIWORD.)
HLL_INVALIDPSID Not connected.
HLL_INVALIDPSPOSITION An invalid PS position was specified.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 53

HLL_SYSTEMERROR A system error occurred; the function failed.
HLL_NOSUCHFIELD No such field was found, or the PS was unformatted.
HLL_INVALIDPARAMETER An invalid option was specified.

Field position

The high-order word of the return value indicates the PS position where the specified
field begins (one character past the field attribute byte in the presentation space.; =
1 if the field attribute is in the last position of the PS).

Example

/* Find start of the field that includes PS position 199*/
DWORD Result = HLL_FindFieldPosition(hWnd, HLL_THISFIELD, 199);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 54

Function 32: Find Field Length
This function returns the length of a specified PS field, protected or unprotected, and
is the number of characters contained in the field between the attribute byte that
begins the field and the next-following field attribute.

NOTE. This function wraps from the end to the beginning of the PS.

Syntax
DWORD HLL_FindFieldLength(HWND hWnd, WORD wFieldSpecifier,

 WORD wTargetPSP);

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_FindFieldLength

hWnd Window handle of the application

wFieldSpecifier This contains one of the following values from the header file:
HLL_THISFIELD
HLL_NEXTFIELD (protected or unprotected)
HLL_NEXTPROTECTEDFIELD
HLL_NEXTUNPROTECTEDFIELD
HLL_PREVIOUSFIELD (protected or unprotected)
HLL_PREVIOUSPROTECTEDFIELD
HLL_PREVIOUSUNPROTECTEDFIELD

wTargetPSP This contains the PS position where you want to start the search.

Return parameters
Function returns a double word (4 bytes).

Result code

The low-order word of the return value contains one of the following codes:

HLL_SUCCESS The function succeeded. (See
HIWORD.)

HLL_INVALIDPSID Not connected.
HLL_INVALIDPSPOSITION An invalid PS position was specified.
HLL_SYSTEMERROR A system error occurred; the function failed.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 55

HLL_NOSUCHFIELD No such field was found, or the PS
was unformatted.

HLL_ZEROLENTHFIELD The field length is zero.
HLL_INVALIDPARAMETER The value of the given wFieldSpecifer

parameter was not within the range this function requires.
Field position

The high-order word of the return value indicates the length of the field specified. .
If zero, the field was not found, or is zero length, or the PS is unformatted.

Note If a field attribute is followed by another field attribute, the field is assumed to
have a length of zero.

Example

/* Find length of the field that includes PS position 199*/
DWORD Result = HLL_FindFieldLength(hWnd, HLL_THISFIELD, 199);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 56

Function 33: Copy String to Field
This function copies characters to a specific unprotected field in a field-formatted PS.

The copy operation ends when one of four conditions is met:

• The entire string has been copied.

• The text has been written to the last field position.

• The function has copied the specified number of characters in the data length
parameter.

• The character before the EOT character is copied when EOT is specified.

Note AID key character sequences are not evaluated when using this function, but
are copied to the field as literal strings. Function 3, “Send Key,” must be used to
send an AID key to a session.

Syntax
WORD HLL_CopyStringToField(HWND hWnd, LPSTR lpString, WORD wStringLength,

WORD wFieldPSP);

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

EAB

Text and EABs are copied from the data string.

NOEAB (default)

The data string does not contain EABs.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_CopyStringToField

hWnd Window handle of the application

lpString Text and, if session parameter EAB is set, EABs to be copied into the field.
Refer to Appendix D, “Extended Attributes,” for information on EAB
formats.

wStringLength Number of characters to be copied from Data string.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 57

PS position A position in the PS that lies within the field or on the field attribute that
begins it. Copy always starts at the beginning of the field.

Return parameters

Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID Not connected.
HLL_INVALIDPARAMETER An invalid parameter string (for example,

lpString null or wStringlength=0) wasspecified.
HLL_PROTECTED The target was protected or inhibited, or

illegal data was sent to the target field (for
example, a field attribute byte).

HLL_TRUNCATED The copy was completed, but data may have
been truncated.

HLL_INVALIDPSPOSITION An invalid PS position was specified.
HLL_SYSTEMERROR A system error occurred; the function failed.
HLL_UNFORMATTEDHOSTPS The host PS was unformatted.

Example
/* Copy "Hello World" to field containing position 199 */
WORD Result = HLL_CopyStringToField(hWnd, "Hello World", 11, 199);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 58

Function 34: Copy Field to String
This function copies all characters from a field in the currently connected PS into a
string. It can be used with either protected or unprotected fields, but only in a field-
formatted PS.

The copy operation begins at the field’s origin. This position and length information
can be found by using Function 31, “Find Field Position,” and Function 32, “Find Field
Length.”

This function ends when one of two conditions is met:

• The last character in the field was copied.

• All character positions in the copy string have been filled.

Syntax
WORD HLL_CopyFieldToString(HWND hWnd, LPSTR lpBuffer,

WORD wBufferLength, WORD wPSP);

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

EAB

Text and EABs are copied to the buffer.

NOEAB (default)

EABs are not copied.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_CopyFieldToString

hWnd Window handle of the application

lpBuffer The string to which the program copies the contents of the field.

wBufferLength The number of characters to be copied, allowing for EABs if session
parameter EAB is set.

WPSP A position in the PS that lies within the field or on the field attribute that
begins it. Copy starts at the beginning of the field.

Return parameters

HLLAPI Language Reference

Prepared by Attachmate Technical Support 59

Field content

Function replaces content of call parameter lpBuffer with text and, if requested, EABs
from the field.

Refer to Appendix D, “Extended Attributes,” for information on EAB interpretation.

Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID Not connected.
HLL_INVALIDPARAMETER An invalid parameter string (for example,

lpString null or wStringlength=0) was specified.
HLL_FIELDSIZEMISMATCH The data to be copied and the target field were

not the same size.
HLL_INVALIDPSPOSITION An invalid PS position was specified.
HLL_SYSTEMERROR A system error occurred; the function failed.
HLL_UNFORMATTEDPS The host PS was unformatted.

Example
/* Allocated data buffer */
char DataStr[11];
/* Copy ten characters, w/o EABs, from field at PS pos 199 */
WORD Result = HLL_CopyFieldToString(hWnd, DataStr, 10, 199);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 60

Function 40: Set Cursor
This function sets the cursor position to the target PS position in the currently
connected PS.

There is no direct way to move the cursor in Control Unit Terminal (CUT) mode. This
function can be simulated by using keystrokes.

Syntax
WORD HLL_SetCursor (HWND hWnd, WORD wCursorLocation);

Prerequisites
Function 1, “Connect Presentation Space.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_SetCursor

hWnd Window handle of the application

wCursorLocation The desired cursor position in the PS. (Two bytes)

Return parameters

Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID Not connected.
HLL_SESSIONOCCUPIED The session is busy.
HLL_INVALIDPSPOSITION An invalid PS position was specified (the cursor

position is less than 1 or greater than PS maximum.)
HLL_SYSTEMERROR A system error occurred; the function failed.

Example
/* Put cursor in PS position 199 */
WORD Result = HLL_SetCursor(hWnd, 199);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 61

Function 50: Start Keystroke Intercept
This function allows an application to filter any keystrokes sent to a session by a
terminal operator. After a call to this function, keystrokes are intercepted and saved
until the keystroke buffer overflows or call is made to Function 21, “Reset System,”
or Function 53, “Stop Keystroke Intercept.”

Intercepted keystrokes can be

• received through Function 51, “Get Key,” and sent to the same or another
session with Function 3, “Send Key”

• accepted or rejected through Function 52, “Post Intercept Status”

• replaced by other keystrokes with Function 3, “Send Key”

• used to trigger other processes.

As an alternative to using the delay version of “Get Key,” an application can also
request that Windows message, XM_KEYSTROKEINTERCEPTED, be posted whenever
a keystroke pf the specified type is received.

Note: Extended processing of each keystroke may cause unacceptable delays for
keyboard users.

If AID-key-only intercept is requested (option “D” is specified), non-AID keys are
sent to the PS; only AID keys will be available to the application.

An application may intercept keystrokes for more than one session at a time, but can
send keystrokes only to the currently connected session.

Syntax
WORD HLL_StartKeystrokeIntercept (HWND hWnd,

LPSTARTINTERCEPT lpIntercept);

Prerequisites
None.

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_StartKeystrokeIntercept

hWnd Window handle of the application

HLLAPI Language Reference

Prepared by Attachmate Technical Support 62

Intercept spec A 6-byte structure specifying the intercept desired. (See format below.)

Intercept spec format

Byte Description
1 Session short name character.
2-3 WORD - Intercept type. One of the following values:

HLL_INTERCEPTAIDKEYS
HLL_INTERCEPTALLKEYS

 4-5 WORD Length of HLLAPI keystroke queue. Each keystroke requires 2
bytes of storage (a queue of 128 bytes holds 64 keystrokes).

6 If TRUE, HLLAPI posts the
XM_KEYSTROKEINTERCEPTED message
when a keystroke is intercepted
(see Appendix E, “Attachmate
HLLAPI Messages,” for information on
XM messages). If FALSE, no message is
posted.

Return parameters

Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID Invalid session short name supplied.
HLL_INVALIDPARAMETER An invalid parameter string (for example,

lpString null or wStringlength=0) was specified.
HLL_RESOURCEUNAVAILABLE The function failed; another client application

window has a keystroke interceptor on
the target session.

HLL_SYSTEMERROR A system error occurred; the function failed.
HLL_MEMORYNOTAVAILABLE The queue can’t be allocated.
HLL_NOEMULATORATTACHED This call requires an emulator attached to

the session.

Example
/* Start intercept of AID keystrokes in session B */
STARTINTERCEPT IntrcptSpec;
IntrcptSpec.cPSID = 'B' ;
IntrcptSpec.wKeyFilter = HLL_INTERCEPTAIDKEYS;
IntrcptSpec.wQueueLength = 127;
IntrcptSpec.bWindowsMessage = TRUE;
WORD Result = HLL_StartKeystrokeIntercept(hWnd, &IntrcptSpec);

Notes
Specifying the bWindowsMessage as TRUE is an excellent way of avoiding a Function
51, “Get Key,” delay. The client application can trap the
XM_KEYSTROKEINTERCEPTED message and call Function 51, “Get Key,” only when it
receives the message.

Extended processing of each keystroke by setting HLL_INTERCEPTALLKEYS may
cause unacceptable delays for keyboard users.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 63

Function 51: Get Key
This function allows your application to receive the keystrokes for the sessions that
were specified with Function 50, “Start Keystroke Intercept.”

Use Function 3, “Send Key,” to pass keystrokes to the target PS.

When keystrokes are available, they are read into the data area that you have
provided in your client application program. Each keystroke is represented by one of
the key codes listed in Appendix B, “Keyboard Mnemonics.”

The CAPSLOCK key on the PC works like the SHIFTLOCK key on the host system; it
produces the uppercase of all keys, not just alphanumeric keys. So if the application
is getting keys with CAPSLOCK on, it gets all keys in the shifted state.

HLLAPI can also notify your application with a message when a message is received.
Then the function will fetch the keystroke with no delay, whatever Wait parameter
value is specified. See Function 50, “Start KeystrokeIntercept.”

Syntax
WORD HLL_GetKey (HWND hWnd, LPKEYSTROKE lpKeystroke);

Prerequisites
Function 50, “Start Keystroke Intercept.”

Applicable session parameters
The following session parameters from Function 9 affect this function.

TWAIT (default)

The function does not return control to the calling application until a key has been
intercepted.

LWAIT

The function does not return control to the calling application until a key has been
intercepted.

NWAIT

The function checks for intercepted keystrokes and returns immediately. NWAIT
means that Function 51, “Get Key, will return the code
HLL_KEYSTROKESNOTAVAILABLE if nothing is queued that matches the option
specified under Function 50, “Start Keystroke Intercept.”

HLLAPI Language Reference

Prepared by Attachmate Technical Support 64

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_GetKey

hWnd Window handle of the application

lpKeystroke An 8-character code specifying the intercept desired. (See format below.)

Data string format

Byte Description
1 Session short name character. If blank or null, the session to which the

application is currently connected.
2-8 Blanks reserving space for the intercepted data.

Return parameters
Intercept string

Function replaces content of call parameter lpKeystroke with information describing
the keystroke intercepted.

Byte Description
1 A 1-character session short name; if or blank/null indicating a intercept

is for the currently connected PS.
2 One of : A= ASCII returned, or M= Keystroke mnemonic
3-7 Allocated buffer used for queuing and dequeuing keystrokes. This buffer

contains the following:
• If the key returned is a character key, bytes 3 and 4 contain
the ASCII character followed by 00. If it is a 3270 key, bytes 3
and 4 will contain a mnemonic for the keystroke (for example,
@5 represents PF5).
• Bytes 5 through 7 contain nulls, unless the key returned was
a combination key such as ERASEINPUT, for which bytes 3
through 6 would contain @A@F and bytes 7-8 nulls.

Typical intercept strings

Intercept strings Function 51 might return are shown below with their keyboard
equivalents

Intercept string Keyboard equivalent
Eat “E” represents the session and “A” informs your HLLAPI application that

the keystrokes will be sent as ASCII; the returning key is a lowercase T
(Bytes 4–7 = X'00').

EM@2 “E” represents the session, “M”indicates that the keystrokes will be
returned as key mnemonics, and “@2” indicates the key being returned
is PF2 (Bytes 5–7 = X'00').

ES@A@2 “E” represents the session, “S” indicates that the keystrokes will be
returned in a special shift state, and “@A@2” indicates the key being
returned is ALT PF2 (Byte 7 = X'00').

ES@r@2 “E” represents the session, “S” indicates that the keystrokes will be
returned in a special shift state, and “@r@2” indicates the key being

HLLAPI Language Reference

Prepared by Attachmate Technical Support 65

received is CTRL PF2 (Byte 7 = X'00').
EM@E “E” represents the session, “M” indicates the keystrokes will be returned

as mnemonics, and “@E” indicates that the key being received is
ENTER (Bytes 5–7 = X'00').

Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID Invalid session short-name supplied.
HLL_PSLOCKED An attempt to enter a non-AID keystroke was made

after the client application specified the
HLL_INTERCEPTAIDKEY intercept code in Function
50, “Start Keystroke Intercept.”

HLL_NOPRIORSTARTKEYSTROKE No prior call to Function 50, “Start Keystroke
Intercept,” was made for this PS.

HLL_SYSTEMERROR A system error occurred; the function failed.
HLL_KEYSTROKENOTAVAILABLE The requested keystrokes are not available on the

input queue.
HLL_KEYSTROKEQUEUEOVERFLOW The keystroke queue overflowed;

keystrokes were lost.

Example
/* Allocate space for returning keystroke from session B */
KEYSTROKE k;
k.cPSID = 'B';
WORD Result = HLL_GetKey(hWnd, &k);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 66

Function 52: Post Intercept Status
This function places a sentinel on keyboard input that sounds a beep if the keystroke
obtained through Function 51, “Get Key,” was rejected.

Syntax
WORD HLL_PostInterceptStatus (HWND hWnd, char cPSID, WORD wStatus);

Prerequisites
Function 50, “Start Keystroke Intercept.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_PostInterceptStatus

hWnd Window handle of the application

cPSID A string specifying the session short name.

WStatus API_INTERCEPTACCEPTED or
API_INTERCEPTREJECTED

Return parameters
Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID Invalid session short-name supplied.
HLL_NOPRIORSTARTKEYSTROKE No prior call to Function 50, “Start

Keystroke Intercept,” was made for this PS.
HLL_SYSTEMERROR A system error occurred; the function failed.

Example
/* Post 'accepted' status to session B */
WORD Result = HLL_PostInterceptStatus(hWnd, 'B',

API_INTERCEPTACCEPTED);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 67

Function 53: Stop Keystroke Intercept
This function ends an application’s ability to intercept keystrokes for the specified
session.

Syntax
WORD HLL_StopKeystrokeIntercept (HWND hWnd, char cPSID);

Prerequisites
Function 50, “Start Keystroke Intercept.”

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_StopKeystrokeIntercept

hWnd Window handle of the application

cPSID The session short-name character.

Return parameters

Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID Invalid session short name supplied.
HLL_NOPRIORSTARTKEYSTROKE No prior Function 50, “Start Keystroke

Intercept,” was issued for this PS.
HLL_SYSTEMERROR A system error occurred; the function failed.

Example
WORD Result = HLL_StopKeystrokeIntercept(hWnd, 'B');

HLLAPI Language Reference

Prepared by Attachmate Technical Support 68

Function 90: Send File
This function allows the client application program to send a file to a host session.

HLLAPI-initiated file transfers are synchronous, returning control on completion of
the file transfer.

The program requesting synchronous file transfers must not be intercepting
keystrokes for any sessions, must not be awaiting the outcome of another
synchronous file transfer, and must not be waiting for host events in any session.

For asynchronous file transfers, an XM_FILETRANSFERCOMPLETION message is
posted to the application upon completion. See Appendix E, “Attachmate HLLAPI
Messages,” for more information.

Syntax
DWORD HLL_SendFile (HWND hWnd, LPSTR lpszSendCommand,

 LPWORD lpwSequenceID);

Prerequisites
The session to be used for a file transfer must be logged on and at a host system
prompt.

Applicable session parameters
The following session parameters from Function 9 affect this function.

TWAIT = 1 (default)

File transfer is synchronous (function returns when the transfer completes).

LWAIT = 2

File transfer is synchronous (function returns when the transfer completes).

NWAIT = 3

File transfer is asynchronous (function returns immediately.
WM_FILETRANSFERCOMPLETION message is posted when the transfer completes).

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_SendFile

hWnd Window handle of the application

lpszSendCommand A string (maximum 128 bytes) containing the send command string.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 69

lpwSequenceID The far pointer to WORD (asynchronous
only).

Return parameters
Function returns a double word (4 bytes).

Result code

The low-order word of the return value contains one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID An invalid session short name

was specified in the commandstring.
HLL_INVALIDPARAMETER The command line is not valid

(for example, command string is longer than 128 bytes).
HLL_SYSTEMERROR A system error occurred; the function failed.
HLL_RESOURCEUNAVAILABLE The session is already in use by file transfer.
HLL_TIMEOUT The client application window time limit expired; the transfer

was ended.
HLL_DELAYENDEDBYCLIENT The application broke synchronous delay with a

Wait, Pause or GetKey

Transfer outcome

For asynchronous transfer, the high-order word receives the handle to the file
transfer application

For synchronous transfer,.the high-order word of the return value contains one of
the following codes:

Code Description
3 The file was transferred.
4 The file was transferred with records segmented.
5 Workstation file name not valid or file not found.
9 A system error occurred.
27 The file transfer was terminated by CTRL C.
301 Invalid function number.
302 File not found.
303 Path not found.
305 Access denied.
308 Insufficient memory.
310 Invalid environment.
311 Invalid format.

Return codes from the file transfer applications are returned to the client application
window that requested synchronous file transfers as the HIWORD of the function
DWORD. Asynchronous file transfers receive a file transfer application handle that
identifies the file transfer application and the 16-bit sequence number. On
completion of the transfer, the file transfer will receive an
XM_FILETRANSFERCOMPLETION Windows message with the corresponding sequence
number and the same file transfer completion code. See Appendix E, “Attachmate
HLLAPI Messages,” for more information on Windows messages.

Example

HLLAPI Language Reference

Prepared by Attachmate Technical Support 70

/* Send command string Assumes */
/* PC filename = pcfile.ext */
/* Session short name = D */
/* Host filename = hostfile.ext */
/* CMS transfer options = ASCII,CRLF */
char HllDataStr [] = "pcfile.ext d: hostfile ext (ASCII CRLF";
WORD Result = HLL_SendFile(hWnd, HllDataStr, NULL);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 71

Function 91: Receive File
This function allows the client application program to receive a file from a host
session.

HLLAPI-initiated file transfers are synchronous, returning control on completion of
the file transfer.

The program requesting synchronous file transfers must not be intercepting
keystrokes for any sessions, must not be awaiting the outcome of another
synchronous file transfer, and must not be waiting for host events in any session.

For asynchronous file transfers, an XM_FILETRANSFERCOMPLETION message is
posted to the application upon completion. See Appendix E, “Attachmate HLLAPI
Messages,” for more information.

Syntax
DWORD HLL_SendFile (HWND hWnd, LPSTR lpszSendCommand,

 LPWORD lpwSequenceID);

Prerequisites
The session to be used for a file transfer must be logged on and at a host system
prompt.

Applicable session parameters
The following session parameters from Function 9 affect this function.

TWAIT = 1 (default)

File transfer is synchronous (function returns when the transfer completes).

LWAIT = 2

File transfer is synchronous (function returns when the transfer completes).

NWAIT = 3

File transfer is asynchronous (function returns immediately.
WM_FILETRANSFERCOMPLETION message is posted when the transfer completes).

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_ReceiveFile

hWnd Window handle of the application

lpszSendCommand A string (maximum 128 bytes) containing the send command string.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 72

lpwSequenceID The far pointer to WORD (asynchronous
only).

Return parameters

Result code

The low-order word of the return value contains one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID An invalid session short name

was specified in the commandstring.
HLL_INVALIDPARAMETER The command line is not valid

(for example, command string is longer than 128 bytes).
HLL_SYSTEMERROR A system error occurred; the function failed.
HLL_RESOURCEUNAVAILABLE The session is already in use by file transfer.
HLL_TIMEOUT The client application window time limit expired; the transfer

was ended.
HLL_DELAYENDEDBYCLIENT The application broke synchronous delay with a

Wait, Pause or GetKey

Transfer outcome

For asynchronous transfer, the high-order word receives the handle to the file
transfer application

For synchronous transfer,.the high-order word of the return value contains one of
the following codes:

Code Description
3 The file was transferred.
4 The file was transferred with records segmented.
5 Workstation file name not valid or file not found.
9 A system error occurred.
27 The file transfer was terminated by CTRL C.
301 Invalid function number.
302 File not found.
303 Path not found.
305 Access denied.
308 Insufficient memory.
310 Invalid environment.
311 Invalid format.

Return codes from the file transfer applications are returned to the client application
window that requested synchronous file transfers as the HIWORD of the function
DWORD. Asynchronous file transfers receive a file transfer application handle that
identifies the file transfer application and the 16-bit sequence number. On
completion of the transfer, the file transfer will receive an
XM_FILETRANSFERCOMPLETION Windows message with the corresponding sequence
number and the same file transfer completion code. See Appendix E, “Attachmate
HLLAPI Messages,” for more information on Windows messages.

Example
/* Receive command string Assumes */
/* PC filename = pcfile.ext */
/* Session short name = B */

HLLAPI Language Reference

Prepared by Attachmate Technical Support 73

/* Host filename = hostfile.ext */
/* CMS transfer options = ASCII,CRLF */
char HllDataStr [] = "pcfile.ext b: hostfile ext (ASCII CRLF";
DWORD Result = HLL_ReceiveFile(hWnd, HllDataStr, NULL);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 74

Function 99: Convert Position or RowCol
This function converts a PS position value into display row/column coordinates or a
row/column value into PS position display coordinates.

When the conversion is made, the function considers the model number of the host
system display type being emulated. This function does not change the cursor
position.

Syntax
WORD HLL_Convert(HWND hWnd, char cPSID,

WORD wPositionOrRowColumn, LPPOINT lpPoint);

Prerequisites
None.

Applicable session parameters
None.

Call parameters
An application program must pass the following parameters when calling this
function:

Function HLL_Convert

hWnd Window handle of the application

cPSID This specifies the target PS.

wPositionOrRowColumn This contains one of the following identifiers
from the include file:
HLL_CONVERTPOSITION
HLL_CONVERTROWCOLUMN

lpPoint This points to a data structure that contains
initial values. If wOption is HLL_CONVERTPOSITION,
then lpPoint.x=wPSP to be converted. If wOption is
HLL_CONVERTROWCOLUMN, then
lpPoint.y=row and lpPoint.x=column.

Return parameters

lpPoint LPPOINT This points to the data structure, which returns the converted values.
The structure contains the row number in y and the column
number in x, if wOption is HLL_CONVERTPOSITION.
The structure contains a PS position in x if wOption is

HLLAPI Language Reference

Prepared by Attachmate Technical Support 75

HLL_CONVERTROWCOLUMN.

Result code

Function returns one of the following codes:

HLL_SUCCESS The function succeeded.
HLL_INVALIDPSID An invalid session short name was specified in

the command string.
HLL_INVALIDPARAMETER The option is other than HLL_CONVERTROWCOLUMN or

HLL_CONVERTPOSITION, or null value for lpPoint.
HLL_INVALIDPSPOSITION An invalid position or row/column was specified.
HLL_SYSTEMERROR A system error occurred; the function failed.

Example
POINT RowCol;
/* Convert position 199 of session B to row column */
RowCol.x = 199;
WORD HLL_Convert(hWnd, "B", 2, &RowCol);

HLLAPI Language Reference

Prepared by Attachmate Technical Support 76

Appendix A: General troubleshooting
procedures
If you have problems running your automation software with Attachmate product,
consider the following.

1. Check that EXTRA! is in the path. Often the reason an application will fail
to start is that the system cannot find the emulator software. At a command
prompt, type EXTRA and press Enter. A response like “Unknown command or
file name” indicates EXTRA! is not in the system search path. Make needed
correction, then re-test to verify.

2. Check the configuration options. Many problems occur when a session
with a short name required by an application has not been configured. Start a
session, choose Global Preferences… from the Options menu, then select
Advanced properties. Verify that the HLLAPI short name needed by the
application has an appropriate session assigned. If not, make needed
correction and run the application again to verify.

3. Check connections. While faulty cable connections are rare in newer
hardware, inspect plugs and jacks to confirm they are securely attached. A
more common cause of “failed to connect” errors is improper specification of
connection parameters, for example, host TCP/IP network address. Use a
technique such as PING to check the connection configuration, and correct as
necessary.

4. Check the session. On occasion, host application programmers may modify
content or organization of screens to meet changing need. If workstation
automation software has been written to expect specific text in a particular
place on a particular screen, software error of some kind is likely to result.
Because host applications are rarely changed without notice, systematically
review all such advisories. In the event an issue of this type does occur, use a
tool such as an API trace to determine exactly where in the software failure
occurs, then use that information to identify specifics of the change, and
develop appropriate updates for automation software.

5. Check workload and timings. If an automation program has been in use
for several years, chances are good that hardware at the host, in the
network, or the workstation will have been upgraded – or, if not, that
workloads on the hardware have changed. In either case, time required to
receive and process requests will change, possibly enough that host
applications and automation software can get “out of synch”, expecting (and
trying to process) information that has not yet arrived. Problems like these
can be perplexing to diagnose and resolve. Review automation-software logic
to verify that suitably robust techniques are being used to synchronize host

HLLAPI Language Reference

Prepared by Attachmate Technical Support 77

and workstation operations. If necessary, Attachmate Technical Support can
assist by analyzing communications traces to provide information about
turnaround times and other details of host/workstation data exchanges.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 78

Appendix B: Host keyboard mnemonics
Table B-1 shows the key codes that allow you to represent special function keys in
your calling data strings. You can use these codes with Function 3, “Send Key,” to
specify the keystrokes you want to send, as well as with Function 51, “Get Key,”
which receives the keystrokes sent through Function 3.

These codes rely on ASCII characters to represent the special function keys of the
3270-PC. For example, to send the keystroke PF1, you would code “@1”. And to
represent a System Request keystroke, you would code “@A@H”.

Each key code represents the actual key that is being sent or received. Keep in mind
that placing an Alt (@A) or Shift (@S) before a key code will change its meaning.
When sending text keystrokes, be sure the codes are entered just as you want them
to be received, including the correct case.

Since the Escape character defaults to the at sign (@), you must code the character
twice in order to send the escape character as a keystroke. For example, to send a
single “@”, you must code “@@”. When your program calls Function 51, “Get Key,”
you send a pointer to a

keystroke structure used for the returning keystroke. Each keystroke is represented
by the following key codes:

• Each key has a number between 1 and 133, which represents the key position
on the keyboard.

• Every key has four states: Lower Case, Upper Case, Alt State, and Ctrl State.

Symbols used throughout the tables have the following meanings:

Shift keys: this symbol indicates that what follows will be a mnemonic key code.

* These key positions are not used.

E A host session’s short name.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 79

Table B-1. Windows keyboard mnemonics

Host key Mnemonic Host key Mnemonic
@ @@ Home @0
Alternate Cursor @$ Insert @I
Attention @A@Q Jump @J
Backspace @< New Line @N
Backtab @B Num Lock @t
Blue @A@h Page Down @v
Caps Lock @Y Page Up @u
Clear @C PA1 @x
Cursor Down @V PA2 @y
Cursor Left @L PA3 @z
Cursor Left Double @A@L PF1 @1
Cursor Right @Z PF2 @2
Cursor Right Double @A@Z PF3 @3
Cursor Select @A@J PF4 @4
Cursor Up @U PF5 @5
Delete @D PF6 @6
Delete Word @A@D PF7 @7
Device Cancel @A@R PF8 @8
DUP @S@x PF9 @9
End @q PF10 @a
Enter @E PF11 @b
Erase to EOF @F PF12 @c
Erase Input @A@F PF13 @d
Reset Reverse Video @A@c PF14 @e
Field Mark @S@y PF15 @f
Green @A@f PF16 @g
Reset Host Colors @A@l PF17 @h
Reverse Video On @A@9 PF18 @i
Scr Lock @s PF19 @j
System Request @A@H PF20 @k
Tab @T PF21 @l
Test @A@C PF22 @m
Turquoise @A@i PF23 @n
Underscore @A@b PF24 @o
White @A@j Pink @A@e
Word Tab Back @A@z Print PS @A@T
Word Tab Forward @A@y Print Screen @P
Yellow @A@g Queue Overrun @/
(reserved) @X Red @A@d
Reset @R Field Exit @A@E
Cursor Up Double @A@U Cursor Down Double @A@V

HLLAPI Language Reference

Prepared by Attachmate Technical Support 80

Appendix C: Interpreting the Returned Data
String for Function 13
This appendix explains how to decode the data string that Function 13, “Copy OIA,”
returns. To interpret this information, you must be able to decipher the OIA image
symbols that are returned in positions 2 to 81 of the string, as well as the bits that
are returned in positions 82 to 103 of the string.

Position 1 (OIA format byte)
Position 1 of the returning data string always returns the format byte, 1 for 3270
terminal emulation or 9 for 5250.

Positions 2 to 81 (OIA image symbols)
The following chart displays symbols found in the DFT host and CUT host
presentation spaces. These symbols can be part of the OIA image returned in
positions 2 to 81 of the returning data string.

HLLAPI Language Reference

Prepared by Attachmate Technical Support 81

Positions 82 to 103 (OIA bit groups)
Remaining positions in the returned data string can be interpreted with the help of
the following sections. Each position or group returns a bit number that explains a
particular OIA characteristic. The list below summarizes the different groups, the OIA
characteristic, and the position number associated with it.

Group Characteristic explained Position number
1 Online and Screen Ownership 82
2 Character Selection 83
3 Shift State 84
4 PSS, Part 1 85
5 Highlight, Part 1 86
6 Color, Part 1 87
7 Insert 88
8 Input Inhibited (5 bytes) 89–93
9 PSS, Part 2 94
10 Highlight, Part 2 95
11 Color, Part 2 96
12 Communication Error Reminder 97
13 Printer Status 98
14 Reserved (3270) / Graphic (5250) 99
15 Reserved Group 100
16 Automatic Key Play/Record Status 101
17 Automatic Key Quit/Stop State 102
18 Enlarge State Position 103

Group1: Online and screen ownership

This bit group is the 82nd byte of the OIA data returned to an application by Function
13. This group contains 1 byte of information, describing who owns the current
session.

Bit 3270 Description 5250 Description
0 Setup Reserved
1 Test Reserved
2 SSCP–LU session owns screen Reserved
3 LU–LU session owns screen System available
4 Online and not owned Reserved
5 Subsystem ready Subsystem ready
6–7 Reserved Reserved

Group 2: Character selection

This group is the 83rd byte in the OIA data returned to an application by Function
13. The group contains 1 byte of data and defines the character set currently used in
the OIA.

Bit 3270 Description 5250 Description
0 Extended select Reserved
1 APL Reserved
2 Kana Katakana (Japan only)
3 Alphanumeric Alphanumeric
4 Text Reserved
5 Reserved Reserved
6 Reserved Hiragana (Japan only)
7 Reserved Double-byte character

HLLAPI Language Reference

Prepared by Attachmate Technical Support 82

Group 3: Shift state

This group is the 84th byte in the OIA data, showing whether caps lock and numeric
lock are active.

Bit 3270 Description 5250 Description
0 Upper Shift Reserved
1 Numeric Keyboard shift
2 CAPS CAPS
3-6 Reserved
7 Reserved Double-byte char available

Group 4: Program symbol support, part 1

This group is the 85th byte in the OIA data.

Bit Description
0–7 Reserved

Group 5: Highlight, part 1

This group is the 86th byte in the OIA data and contains highlighting information for
the current PS.

Bit 3270 Description 5250 Description
0 User selectable Reserved
1 Field inherit Reserved
2–7 Reserved Reserved

Group 6: Color, part 1

This group is the 87th byte in the OIA data, defining some of the color characteristics
being used in the current PS by this operator.

Bit 3270 Description 5250 Description
0 User selectable Reserved
1 Field inherit Reserved
2–7 Reserved Reserved

Group 7: Insert

This group is the 88th byte in the OIA data, defining whether the current PS is in
insert mode.

Bit Description
0 Insert mode
1–7 Reserved

HLLAPI Language Reference

Prepared by Attachmate Technical Support 83

Group 8: Input inhibited

This group consists of bytes 89 through 93 in the OIA data, and indicates why input
is inhibited in the current PS.

Byte Bit 3270 Description 5250 Description
1 0 Non-resettable machine check Reserved

1 Reserved for security key Reserved
2 Machine check Reserved
3 Communications check Reserved
4 Program check Reserved
5-7 Reserved Reserved

2 0 Device busy Reserved
1 Terminal wait Reserved
2 Minus symbol Reserved
3 Minus function Reserved
4 Too much entered Reserved
5-7 Reserved Reserved

3 0-2 Reserved Reserved
3 Invalid dead key combination Reserved
4 Wrong place Reserved
5 Reserved Operator input error
6-7 Reserved Reserved

4 0-1 Reserved Reserved
2 System wait System wait
3-7 Reserved Reserved

5 0-7 Reserved Reserved

Group 9: Program symbol support, part 2

This is the 94th byte of the OIA data, providing additional information about program
symbol support.

Bit Description
0–7 Reserved

Group 10: Highlight, part 2

This is the 95th byte in the OIA data, and defines more highlight options in the
current PS.

Bit Description
0–7 Reserved

Group 11: Color, part 2

This is the 96th byte in the OIA data. The group defines more color options available
to the operator in the information area.

Bit Description
0–7 Reserved

HLLAPI Language Reference

Prepared by Attachmate Technical Support 84

Group 12: Communications error reminder

This is the 97th byte in the OIA data. Bits in this group define whether the host and
the current PS are communicating.

Bit 3270 Description 5250 Description
0 Communications error Reserved
1–6 Reserved Reserved
7 Reserved Message wait

Group 13: Printer status error reminder

This is the 98th byte in the OIA data. Bits in this group describe the status of the
printer connected to the current PS.

Bit Description
0–7 Reserved

Group 14: Reserved (3270) / Graphics (5250)

This is the 99th byte in the OIA data.

Bit Description
0–7 Reserved

Group 15: Reserved

This is the 100th byte in the OIA data.

Bit Description
0–7 Reserved

Group 16: Automatic key play/record state

This group is the 101st byte in the OIA data.

Bit Description
0–7 Reserved

Group 17: Automatic key quit/stop state

This group is the 102nd byte in the OIA data.

Bit Description
0–7 Reserved

Group 18: Expanded state

This is the 103rd byte in the OIA data.

Bit Description
0–7 Reserved

HLLAPI Language Reference

Prepared by Attachmate Technical Support 85

Appendix D: Extended Attributes
Function 5, “Copy Presentation Space,” Function 8, “Copy Presentation Space to
String,” Function 15, “Copy String to Presentation Space,” Function 33, “Copy String
to Field,” and Function 34, “Copy Field to String,” allow an application to access
extended attribute bytes (EABs) in a 3270 or 5250 presentation space. Information
in this Appendix explains format and interpretation of EABs.

3270 Character Attributes
When a subject function is executed with session parameter EAB in effect, EAB data
are passed to or from a 3270 presentation space in the following format:

Bit Meaning
0–1 Character highlighting

00 = Normal
01 = Blink
10 = Reverse video
11 = Underline

2-4 Character color
000 = Default
001 = Blue
010 = Red
011 = Pink
100 = Green
101 = Turquoise
110 = Yellow
111 = White

5-7 Reserved

5250 Character Attributes
When a subject function is executed with session parameter EAB in effect, EAB data
are passed to or from a 5250 presentation space in the following format:

Bit Meaning
0 0 = normal image, 1 = reverse image
1 0 = no underline, 1 = underline
2 0 = no blink, 1 = blink
3 0 = no column separator, 1 = column separator
4-7 Reserved

HLLAPI Language Reference

Prepared by Attachmate Technical Support 86

Appendix E: Attachmate HLLAPI messages
Attachmate HLLAPI provides a Windows message option with Function 23, “Start
Host Notification”; Function 50, “Start Keystroke Intercept”; and, when running in
asynchronous mode, Function 90, “Send File”; and Function 91, “Receive File.”
Attachmate HLLAPI notifies the client that an update of the appropriate kind has
occurred; that a keystroke has been intercepted; or that a file transfer has been
completed by posting a Windows message to the client.

EXTRA! broadcasts a system-close message when it is about to shut down in
response to a user's request to terminate Windows or terminate EXTRA!. If there are
open host sessions at the time the user initiates the termination (terminal emulator
or file transfer sessions, or HLLAPI connections, monitors, or keystroke interceptors),
EXTRA! warns the user that the termination will release resources and asks for
confirmation before terminating.

The messages themselves are registered with Windows. To be able to process the
messages, the HLLAPI application must call the Windows routine
RegisterWindowsMessage (<string>) at some point before making one of the above
HLLAPI calls; for example, while processing the WM_CREATE message for the client
window, or as part of the WinMain code.

The value returned from RegisterWindowMessage (<string>) can then be tested for
in the client's WinProc. An example follows the discussion of messages.

XM_FILETRANSFERCOMPLETION
This message indicates that an asynchronous file transfer has finished.

Parameter Type Description
wParam (LOBYTE) cPSID This contains the session short name.
wParam (HIBYTE) Reserved.
lParam (LOWORD) This is the transfer sequence ID.
lParam (HIWORD) This is the transfer completion code; it can be either

FT_SUCCESS (HIWORD = 0) or a numeric value
greater than 0 indicating a transfer failure.

XM_KEYSTROKEINTERCEPTED
This message notifies the application that a keystroke has been intercepted.

Parameter Type Description
wParam (LOBYTE) cPSID This contains the session short name.
wParam (HIBYTE) Reserved.
lParam (LOWORD) This is the key filter type. It will be one of the following

HLLAPI identifiers:
HLL_INTERCEPTAIDKEYS
HLL_INTERCEPTALLKEYS

lParam (HIWORD) Reserved.

XM_KILLFILETRANSFER

HLLAPI Language Reference

Prepared by Attachmate Technical Support 87

This message allows an application to abort an asychronous file transfer. It is sent by
the HLLAPI client to the file transfer application.

Parameter Type Description
hWnd This is the file transfer application handle; it is

returned as the HIWORD from HLL_SENDFILE or
HLL_RECEIVEFILE

wParam This is the file transfer sequence ID; it is returned
as a parameter from HLL_SENDFILE or
HLL_RECEIVEFILE.

lParam Reserved.

XM_PREVENTSYSTEMCLOSE
This message is returned to EXTRA! when EXTRA! asks if a client application can be
shut down. By returning this message, the client application prevents EXTRA! from
shutting down. EXTRA! asks by broadcasting a XM_QUERYSYSTEMCLOSE message to
the client application.

Parameter Type Description
hWnd This parameter uses wParam from the

XM_QUERYSYSTEMCLOSE message.
wParam Reserved.
lParam Reserved.

XM_QUERYSYSTEMCLOSE
This message is sent to a client application by EXTRA! to ask if the application can be
shut down. The applications can prevent EXTRA! from shutting down by sending back
a XM_PREVENTSYSTEMCLOSE message.

Parameter Type Description
wParam cPSID This is the handle to be used in

XM_PREVENTSYSTEMCLOSE.
lParam Reserved.

XM_SESSIONUPDATE
This message notifies the client application window that an update has occurred in a
session where the client application window called Function 23, "Start Host
Notification."

Parameter Type Description
wParam (LOBYTE) cPSID This is the session short name.
lParam (LOWORD) This is the type of update. Its value is a combination

of the following identifiers from HLLAPI.H:
HLL_NOTIFYPSUPDATE
HLL_NOTIFYOIAUPDATE
HLL_NOTIFYCURSORUPDATE
HLL_NOTIFYBEEP
HLL_NOTIFYBASECOLORCHANGE
HLL_NOTIFYMODELCHANGE
HLL_NOTIFYPOWERCHANGE

lParam (HIWORD) This contains the session status prior to the current
update. It’s value is a combination of the following
identifiers from HLLAPI.H:
HLL_NOTIFYPSUPDATE

HLLAPI Language Reference

Prepared by Attachmate Technical Support 88

HLL_NOTIFYOIAUPDATE
HLL_NOTIFYCURSORUPDATE
HLL_NOTIFYBEEP
HLL_NOTIFYBASECOLORCHANGE
HLL_NOTIFYMODELCHANGE
HLL_NOTIFYPOWERCHANGE

XM_SYSTEMCLOSE
This message calls for an unconditional EXTRA! shutdown. All EXTRA! resources,
including HLLAPI resources, will be released. HLLAPI clients, if they remain in
operation after the termination of EXTRA!, no longer have access to HLLAPI
resources. It is appropriate to call HLL_ResetHLLWin () at this point.

Parameter Type Description
wParam cPSID Reserved.
lParam Reserved.

Example
To obtain the registered Windows message, the HLLAPI application must call the
Windows routine RegisterWindowMessage () as follows:

WORD wmsgXMSYSTEMCLOSE, wmsgKEYSTROKE;
{
/* ...WinMain routine... */

wmsgXMSYSTEMCLOSE = RegisterWindowMessage ("XM_SYSTEMCLOSE");
wmsgKEYSTROKE = RegisterWindowMessage ("XM_KEYSTROKEINTERCEPTED");

...
}

/*If the WinProc is built around a large case statement */
/* pivoting on the message value, the test for wmsgXXXX */
/* can be made either before the switch (wMsg) */
/* or as part of the default case.*/

WinProc (
HWNDhWnd, WORD wMsg, WORD wParam, DWORD lparam)
{

if (wMsg == wmsgXMSYSTEMCLOSE)
{

HLL_ResetHLLWin (hWnd);
DestroyWindow (hWnd);

}
else

switch (wMsg)
{
case XXXX:

break;
case YYYY:

break;
default:

if (wMsg == wmsgKEYSTROKEINTERCEPTED)
{

processKeystroke (wParam, lParam);
}
else

return DefWindowProc (hWnd, wMsg, wParam,
lParam);

}
} /* end WinProc */

	Function cross-reference
	Syntax
	Prerequisites
	Applicable session parameters
	Call parameters
	Return parameters
	Notes

