

o

c

BRIDGE COMMUNICATIONS, INC.

ETHERNET SYSTEM PRODUCT LINE

SOFTWARE TECHNICAL REFERENCE MANUAL

VOLUME ONE KERNEL AND SUPPORT SOF'rWARE

09-0016-00

July, 1983

Copyright (c) 1983 by Bridge Communications, Inc. All rights
reserved. No part of this publication may be reproduced, in any
form or by any means, without the prior written consent of Bridge
Communications, Inc.

Bridge Communications, Inc., reserves the right to revise
publication, and to make changes in content from time to
without obligation on the part of Bridge Communications to
vide notification of such revision or change.

this
time
pro-

Comments on this publication or its use are invited and should be
directed to:

Bridge Communications, Inc.
Attn: Technical Publications
10440 Bubb Road
Cupertino, CA 95014

0",·
"

o

c

ESPL Software Technical Reference Manual Volume One

PUBLICATION CHANGE RECORD

This page records all reVlSlons to this publication, as well as
a~y Publication Change Notices (PCNs) posted against each revi­
Slone The first entry posted is always the public~tion's initial
release. Revisions and PCNs subsequently posted are numbered
sequentially and dated, and include a brief description of the
changes made. The part numbers assigned to revisions and PCNs
use the following format:

aa-bbbb-cc-dd

where "aa-bbbb" identifies the publication, "cc" identifies the
revision, and Odd" identifies the PCN.

PCN
Number

09-0016-0"

"9-0016-0"

Date Description

06/83 First Release

Bridge Communications, Inc.

Affected
Pages

All

i

Volume One ESPL Software Technical Reference Manual

PREFACE

The ESPL Software Reference Manual provides the Bridge Communica- 0
tions customer with the information necessary to add software to
a Bridge ESPL product.

The manual was prepared based on the following assumptions of
reader knowledge:

1. The reader should be familiar with the information provided
in the Bridge Communications Ethernet System Product Line
Overview and CS/l User's Guide.

2. The reader should be familiar with the Ethernet Specifica­
tion, Version 1.0 (see reference [4]).

3. The reader should be familiar with the Xerox Network System
high-level protocols (see references [5], (6] and [7]).

4. The reader should have some familiarity with the UNIX*
operating system (see reference [8]).

5. The reader should be familiar with the "C" language (see
reference 9), or other high-level structured languages.

The Software Reference Manual is divided into three volumes. The
information in Volume One is grouped in six major sections, whose
contents are as follows: /"'''''1

Section 1.0 Introduction: Provides an overview
Communications Ethernet System
(ESPL), and describes the purpose
this manual. Recommendations on
manual are included.

of the Bridge
Product Line

and scope of
how to use this

Section 2.0 Software Architecture: Provides an overview of the
ESPL software architecture, system resource
management, and the protocol handling processes.

Section 3.0 - Software Development Environment: Describes the
tools necessary for development of software to be
integrated into the ESPL products.

Section 4.0 - MCPU Monitor: Describes the MCPU monitor and the
monitor commands used for debugging, system gen­
eration and floppy utilities.

ii Bridge Communications, Inc. 09-0016-00

,"pI

'0

o

c

ESPL Software Technical Reference Manual Volume One

Section 5.0 - Kernel Interface: Describes the resource manage­
ment services provided by the Kernel and the
access to these services available to processes
running in an ESPL system.

Section 6.0 - Floppy Disk I/O Interface: Describes the Floppy
Disk interface available to processes running in
an ESPL system.

Volume Two of this manual describes the packet-processing proto­
cols used in the ESPL, and Volume Three describes the ESPL
drivers and firmware.

09-0016-00 Bridge Communications, Inc. iii

Volume One ESPL Software Technical Reference Manual

REFERENCES

The following publications describe the Bridge Communications 0
Ethernet System Product Line (ESPL):

[1] Ethernet System Product Line Overview,
Bridge Communications, Inc.

[2] ESPL Communications Server/l User's Guide, Bridge Communica­
tions, Inc.

[3] ESPL Software Reference Manual, Volumes Two and Three,
Bridge Communications, Inc.

The following publications describe Ethernet and the Xerox Net­
work System products:

[4] The Ethernet, A Local Area Network;
Data Link Layer and PhysICal Layer Specifications, Version
~ (Digital Equipment Corporation, Intel Corporution, and
Xerox Corporation, 1980)

[5] Internet Transport Protocols, XSIS 028112 (Xerox Corpora­
tion, 1981)

[6] Courier: The Remote Procedure Call Protocol, XSIS 038112
(Xerox Corporation, 1981)

[7] D. Oppen, Y. Dalal, The C1e~ringhouse: ~ Decentralized Agent
for Locating Named Objects in a Distributed Environment
(Xerox Corporation, 1981)

The following publications describe other related specifications:

[8] UNIX Programmer's Manual, Seventh Edition, Virtual VAX-II
Version, (University of California, Berkeley, 1981)

[9] B. Kernighan, D. Ritchie, The f Programming Language (Pren­
tice Hall, Inc., 1978)

[10] MC68000 Microprocessor User's Manual, Second
MC68 '''HJUM (AD3) (Motorola Corporation, 1982)

[11] MC58000 Educational Computer Board User's Manual,
Edition

Edition

Second

iv Bridge Communications, Inc. 09-0016-C10

0

o

ESPL Software Technical Reference Manual Volume One

1.0

2.0

TABLE OF CONTENTS

INTRODUCTION · · · · · · · · · · · 1-1
1.1 Purpose and Scope · · · · · · · · · · · 1-1
1.2 How to Use The ESPL Software Reference Manual · 1-1

1. 2.1 Adding Device Interfaces · · · · · · · · 1-1
1. 2.2 Adding Filters · · · · · · · · · · · · · 1-2
1. 2.3 Adding XNS Protocol-Based Applications · 1-2
1. 2.4 Replacing Protocols · · · · · · · · · · · 1-2
1. 2.5 Adding Non-Ethernet Network Interfaces · 1-2

1.3 Ethernet System Product Line · ·
SOFTWARE ARCHITECTURE • • • • • • • •
2.1 System Overview ••••
2.2 System Resource Handling ••••
2.3 Protocol and Device Handling

· · · · 1-3

• • • • 2-1
• 2-1

· 2-5
• 2-6

3.0 SOFTWARE DEVELOPMENT ENVIRONMENT •••••••• 3-1
3.1 Requirements of the Development Environment •• 3-1
3.2 Bridge Development Environment Package ••••• 3-1
3.3 Software Development •••••••••••••• 3-4

3.3.1 BDE Distribution Tape Installation .•• 3-5
3.3.2 Software Distribution Tape Installation. 3-6
3.3.3 Adding OEM Files or Modules ••••••• 3-7
3.3.4 Makefiles and Utilities ••••••••• 3-10
3.3.5 S-Record Formatter •••• ~ • •• • 3-12
3.3.6 Downloading Software •••••••• 3-13
3.3.7 Downloading Firmware •••••• 3-14
3.3.8 Debugging. • • • •• ••••• • 3-15
3.3.9 Creating a New Diskette. • • • • 3-15

4.0 MCPU MONITOR • • • • • • • • • • • ••••••• 4-1
4.1 Monitor Commands. • • • • • • ••••• 4-2

09-"'H6-00

4.1.1 Breakpoint Command ••••••••••• 4-2
4.1.2 Boot Command • • • • • • • • •• •• 4-2
4.1.3 Change Address Register Command ••••• 4-2
4.1.4 Change Byte Command. • • • • • • •• 4-2
4.1.5 Change Data Register Command ••• • 4-3
4.1.6 Copy Diskette Command •••••••••• 4-3
4.1.7 Change Process Command • • • • ••• 4-3
4.1.8 Change Word Command. • • • • • •• • 4-4
4.1.9 Disassemble Command. • • • ••• 4-4
4.1.10 Display Memory Command ••••••••• 4-4
4.1.11 Display Registers Command •••• • 4-4
4.1.12 Fill Byte Command ••• • ••••• 4-5
4.1.13 Format Command. • • • • • • • • • • 4-5
4.1.14 Fill Word Command ••• • ••••• 4-5
4.1.15 Sysgen Command. •• ••• • 4-5
4.1.16 Go Command. • • • • • ••• 4-6
4.1.17 Set UART Mode Command • • • • •• • 4-6
4.1.18 Soft Reset Command. • • • • • • 4-6

Bridge Communications, Inc. v

Volume One ESPL Software Technical Reference Manual

4.1.19 Load Command. • • • • • •• • ••• 4-7

44'°11.22°1 MMove wBytde cCommandd • • • •• •. 44- 77 0·'
•• ove or omman ••• •• • .-

4.1.22 Put Command •••••••• 4-7
4.1.23 Read Command.. • •••••••.• 4-8
4.1.24 Trace Command • • • • • • • • • 4-8
4.1.25 Write Command ••••••• • ••. 4-8

4.2 MCPU Monitor Error and Exception Messages • 4-9
4.2.1 Bus Errors • • • • ••••••• 4-9
4.2.2 Address Errors ••••••••••••• 4-9
4.2.3 Exceptions ••••••••••••• 4-10

4.3 Access to MCPU Monitor Trap Vectors •••••• 4-12
4.3.1 TRAP D Usage • • • • • • • • • • • • 4-13
4.3.2 TRAP E Usage •••••••••••••• 4-11
4.3.3 TRAP F Output to Console Usage • 4-13
4.3.4 TRAP F Memory Size Usage ••• • 4-14
4.3.5 TRAP F Input from Console Usage • 4-14
4.3.6 TRAP F Floppy Write Usage •••••••• 4-15
4.3.7 TRAP F Floppy Read Usage • • • • 4-15
4.3.8 TRAP F Floppy Format Usage ••••• 4-16
4.3.9 TRAP F Floppy Initialization Usage • 4-16

4.4 System Generation ••••••••••••••• 4-17
4.4.1 Running Sysgen •••••••••••.• 4-17
4.4.2 Di splaying Cur rent Sysgen Va 1 ues •••• 4-18
4.4.3 Displaying Recommended Sysgen Values •• 4-18
4.4.4 Altering Sysgen Parameter Values •••• 4-18
4.4.5 Saving Sysgen Parameter Values •.••• 4-19

4.5 Floppy Utilities. • . • • • • • • • 4-20 :r"',
'--.,;

5.O KERNEL INTERFACE •••••••••••••••• 5-1
5.1 Overview.. • • • • •• .•••• • 5-1

5.1.1 System Initialization. • •••••• 5-1
5.1.2 Process Scheduling • • • . • • •. • 5-2
5.1.3 Mail Scheduling. . •. • •••••• 5-2
5.1.4 Memory Management.. ••• • 5-3
5.1.5 ESB Shared Memory. • • ••••••• 5-4
5.1.6 Semaphore Scheduling ••••••• • 5-6
5.1.7 Clock Scheduling • • • . 5-6
5.1.8 Interrupt Services • • • • • • . 5-7
5.1.9 Well-known Mailboxes ••• • • •• • 5-7

5.2 Kernel Data Structures • • • • • •• • ••• 5-8
5.2.1 System Initialization Table ••••.•• 5-8
5.2.2 Process Control Block ••• • 5-9
5.2.3 Mailbox Data Structures. • • • •• • 5-9
5.2.4 Semaphore Data Structures •••••••• 5-10
5.2.5 Interrupt Facility Data Structures • 5-10
5.2.6 Alarm Messages and Clock Structures • 5-11
5.2.7 Storage Block Data Structures. •• • 5-11
5.2.8 Buffer Descriptor Data Structures •••• 5-12

o
vi Bridge Communications, Inc. 09-0016-00

o

(/

o

ESPL Software Technical Reference Manual Volume One

5.3 Process Management Procedure Calls ••••• 5-13
5.3.1 Procreate Call •••••• • •••• 5-14
5.3.2 Prorun Call. • • • • • • •••• 5-15
5.3.3 ProPriority Call • • • . •. •• 5-16
5.3.4 Sched Call ••••••••••••••• 5-15
5.3.~ MYPID Macro. •• ••• • ••• 5-17
5.3.6 MYMBID Macro •••••••••••••• 5-17
5.3.7 SETDATA and MYDATA Macros. • . •.• 5-18
5.3.8 Mexit Call ••••••• • ••••• 5-19

5.4 Interprocess Communication Procedure Calls . 5-20
5.4.1 Mboxcreate Call ••••••• •• 5-20
5.4.2 Mboxdelete Call • . ••••••••• 5-21
5.4.3 Sendmsg Call ••••••••••• • 5-22
5.4.4 Mboxon Call • • •••.••••••• 5-23
5.4.5 Mboxoff Call • • • • •••••• 5-24
5.4.6 Receive Call • • • • • •• • •• 5-25
5.4.7 Breceive Call. • • • • • • • • •• • 5-26
5.4.8 Blocking Message Reception for Shared-

Stack Processes • • • • • • • 5-26
5.4.9 Notifynfull Call •••••••••• 5-27
5.4.10 Stopnfull Call. • ••••••• 5-28
5.4.11 Testmbox Macro. • • • • • • . • 5-29
5.4.12 Regmbox Call. • • •• • 5-30
5.4.13 Resolve Call. •• ••• • • 5-31

5.5 Semaphore Procedure Calls ••••••••••• 5-32
5.5.1 Semacreate Call. • • • • • •• • •• 5-32
5.5.2 Sematest Call. • • • • • • • • • •• 5-33
5.5.3 Semawait Call. • • • • • • •• • •• 5-33
5.5.4 Semarelease Call •• • • 5-34

5.6 Memory Management Procedure Calls •••.••• 5-35
5.6.1 Allocate Call • • • • • •• • 5-35
5.6.2 Mfree Call ••••••• • ••••• 5-36
5.6.3 BLOCK LEN Macro ••• • ••••••• 5-36
5.6.4 Getbuff Call •••••••••••••• 5-37
5.6.5 Joinbuf Call •••••••••••••• 5-38
5.6.6 Prependbuf Call • • • • • • •• 5-39
5.6.7 Appendbuf Call •••.••••••••• 5-40
5.6.8 Padbuf Call • • • • • •••• 5-41
5.6.9 Copybuf Call •••••• 5-42
5.6.10 Unprependbuf Call ••• • ••• 5-42
5.6.11 Unappendbuf Call •••••••••••• 5-43
5.6.12 Freebuf Call. • • • • • • • • •• • 5-43
5.6.13 Bufinfo Call. • • • • • • • • • •• 5-44
5.6.14 Buflen Call ••• • •••••• 5-45
5.6.15 BUFADDR, BUFLENC and BUFCONT Macros 5-45

5.7 Interrupt Service Procedure Calls ••••••• 5-46
5.7.1 Disable Call ••••• • •••••• 5-46
5.7.2 Enable Call. • • •••••••••• 5-46
5.7.3 Regintrpt Call •• • • • •• 5-47
5.7.4 MYINTID Macro •••••••••••••• 5-47

09-0016-00 Bridge Communications, Inc. vii

Volume One ESPL Software Technical Reference Mahual

5.8 Real-Time Clock Procedure Calls · · · · · · 5-48
5.8.1 Time of Day Macros · · · · · 5-48

0 5.8.2 Getetime Call · · · · · · · · · · 5-49
5.8.3 Delta timer Call · · · · · · · · 5-49
5.8.4 Sum timer Call · · · · · 5-50
5.8.5 Print timer Call · · · · · · · · 5-51
5.8.6 Setalarm Call · · · · · · · · · · 5-51
5.8.7 Testalarm Call · · · · · · · · · · · 5-52
5.8.8 Stopalarm Call · · · · · 5-52
5.8.9 Clockon, Clockoff and Clock restore Calls 5-53

5.9 Kernel Sysgen Parameters · · · · · · · · · · 5-54
5.9.1 Maximum Number of Processes · · · · · 5-54
5.9.2 Maximum Number of Mailboxes · · · · · 5-54
5.9.3 Buffer Allocation · · · · · · · · · · · · 5-54
5.9.4 Statistics Manager Sample Interval · 5-54

6.0 FLOPPY DISK I/O SERVICE . · · · · · · · · · · · · 6-1
6.1 Overview · · · · · · · · · · · · 6-1
6.2 Floppy Disk Interface · · · · · · · · · · · 6-1

6.2.1 Diskiomsg Message · · · · · · · · · · · · 6-3
6.2.2 Diskiollmsg Message · · · · · · · · · 6-3
6.2.3 Diskioopenmsg Message · · · · 6-4
6.2.4 Mdiskioack Acknowledgement Message · 6-5
6.2.5 MOTORON Request · · · · · · · · · · · 6-5
6.2.6 MOTOROFF Request · · · · · · · · · · · · 6-5
6.2.7 RSECTOR Request · · · · · · · · · · · · · 6-5
6.2.8 WSECTOR Request · · · · · · · · · · · 6-6
6.2.9 OPENFILE Request · · · · · · · · · · 6-6 () 6.2.10 CLOSEFILE Request · · · · · 6-7
6.2.11 RRECORD Request · · · · · · · · · · 6-7
6.2.12 WRECORD Request · · · · · · · · · · · · 6-8
6.2.13 RCONF Request · · · · · · · · · · · 6-9
6.2.14 WCONF Request · · · · · 6-9
6.2.15 RCONFDIR Request · · · · · · · · · · 6-9
6.2.16 RMACRO Request · · · · · · · · · · · 6-10
6.2.17 WMACRO Request · · · · · · · · · 5-10
6.2.18 RMACRODIR Request · · · · · 6-10

o
viii Bridge Communications, Inc. 09-0016-0~

c

o

ESPL Software Technical Reference Manual Volume One

LIST OF TABLES

No. Title

3-1 Diskette Block Allocation •••
3-2 Diskette Directory System Fields

4-1 MCPU Monitor Exception Conditions
4-2 MCPU Monitor TRAP E Usage ••

6-1
6-2

DISKIO Request Summary • • •
DISKIO Return Code Summary

LIST OF FIGURES

page

3-16
3-16

4-11
4-12

6-2
6-2

--------------- ----- ----------------------- ----
No.

2-1
2-2
2-3
2-4

3-1
3-2

Title

Basic Functional Modules
Hardware Architecture •••
Software Architecture •••••
Process Interaction • • • •

Software Distribution Directory Organization •
Sample Makefile for SPP Module. •• • ••

5-1 Byte-Swapping in ESB Sharad Memory •

Page

2-1
2-2
2-3
2-7

3-7
3-11

5-5

-- ---------------

09-0010-00 Bridge Communications, Inc. ix

rfl, v

o

ESPL Software Technical Reference Manual Volume One

1.0 INTRODUCTION

(~, This publication provides the Bridge Communications customer with
the information necessary to add software to an Ethernet System
Product Line product. In addition, it provides information about
the existing ESPL software modules.

The Software Reference Manual is divided into three volumes.
Volume One (this manual) describes the ESPL overall software
architecture, the software development environment, the kernel
and various support software. Volume Two describes the high­
level, packet-processing protocols used in the ESPL. Volume
Three describes the ESPL drivers and firmware.

This section defines the purpose, scope and audience of the pub­
lication and provides an overview of the products which comprise
the Ethernet System Product Line.

1.1 Purpose and Scope

The information in this publication has been prepared to fulfill
the needs of the OEM-level customer who wishes to add software to
an ESPL system. In addition, this publication provides technical
information about existing ESPL system software for the sophisti­
cated user (e.g., the Network Manager).

The publication makes no attempt to present tutorial-level
material aimed at the end user; please refer to the appropriate
User's Guide for tutorial material.

1.2 How to Use This Manual

The ESPL products are designed to be customized by the user.
Many different levels of customization are possible, but most
applications will fit within a few major categories.

The following subsections present several categories of custom­
ized user applications, and indicate which interfaces are needed
for each and which portions of the Software Reference Manual are
applicable.

09-0016-00 Bridge Communications, Inc. Page 1-1

Volume One ESPL Software Technical Reference Manual

1.2.1 Adding Device Interfaces

One type of product customization consists of adding a new device ~
interface (e.g., synchronous device support or IEEE 488 inter-
face) to the CS/l Connection Service. This may involve either:

o Adding new hardware to the CS/1 in the form of a Multibus or
iSBX board, and implementing firmware on the new board,

o Replacing the ESPL firmware on the existing SIO board.

Both of these approaches require that the user either modify the
existing SIO agent process running on the MCPU board or create a
new agent process to provide the interface to the new device
driver. This new agent would interface to the CS/l Connection
Service via the VT Program Interface, and could either replace
the existing SIO agent or coexist with it.

The user planning either approach to this type of customization
should read Sections 2.0 through 5.0 of Volume One, Section 5.0
of Volume Two, and Section 3.0 of Volume Three.

1.2.2 Adding Filters

A second type of customization consists of adding a filter
between the Connection Service and the serial ports. For exam-
ple, a filter application might be used to multiplex virtual con- ~,
nections over a single port, or to limit access to a port via ~
software control. The application would require interfaces to
the VT Connection Service and to the sro module. The user plan-
ning an application of this type should read Sections 2.0 through
5.0 of Volume One, Section 5.0 of Volume Two, and Section 3.0 of
Volume Three.

1.2.3 Adding XNS Protocol-Based Applications

Other customized applications may be added to the CS/l Connection
Service. For applications based on XNS protocols (e.g., file
transfer or disk access) interfaces would be required to SPP or
to lOP. The user planning an application of this type should
read Sections 2.0 through 5.0 of Volume One and Sections 2.0 and
4.0 of Volume Two.

1.2.4 Replacing Protocols

Other protocols may be used to replace all CS/1 Connection Ser­
vice protocols above XNS level 0. This type of customization
would utilize the CS/l as a "protocol machine" to perform trans­
lation from the Ethernet to a different set of protocols. The
user planning an application of this type should read Sections
2.0 through 6.0 of Volume One and Section 2.0 of Volume Two. «:)

Page 1-2 Bridge Communications, Inc. 09-0016-00

ESPL Software Technical Reference Manual Volume One

1.2.5 Adding Non-Ethernet Network Interfaces

(~\ This type of customization represents the obverse of the type
described in the previous subsection. In this type, the ESPL
Data Link Service would be replaced or modified by either:

o Adding new hardware to the CS/I to replace the existing Eth­
ernet Controller boards, and implementing firmware on the
new board (s) •

o Replacing the ESPL firmware in the existing Ethernet Con­
troller module.

Both of these approaches require that the user either modify the
existing ESB agent process running on the MCPU board or create a
new agent process to provide the interface to the new network
driver. This new agent could either replace the Ethernet agent
portion of the Data Link Service or coexist with it.

The user planning either approach to this type of customization
should read Sections 2.0 through 5.0 of Volume One and Section
2.0 of Volume Two.

1.3 Ethernet System Product Line

Bridge Communications' Ethernet System Product Line consists of
Ethernet-based system products. Ethernet is a packet-switched
Local Area Network (LAN) providing communications capability to
and interconnection between various types of data processing
equipment.

The Ethernet technology is described in detail in reference [4],
which specifies the physical level and data link level protocols.
Xerox, the original developer of the Ethernet technology, util­
izes a set of published, high-level protocols in their Xerox Net­
work System (XNS) products. These XNS protocols are described in
ref ere n c e s [5], [6] and [7] •

Bridge Communications offers a full range of products compatible
with both the Ethernet technology and the XNS high-level proto­
cols. The products are designed for a maximum of performance,
functionality, modularity and expandability, with a minimum of
cost.

Initially, the Bridge Communications Ethernet System Product Line
consists of the following XNS-compatible products:

o The Communications Server (CS/l) provides a bridge between
an XNS Ethernet network and individual devices, and provides
virtual connection services. Devices supported include most
terminals, printers, host computers, moderns, word proces­
sors, and other devices with a serial device interface.

09-0016-00 Bridge Communications, Inc. Page 1-3

Volume One ESPL Software Technical Reference Manual

Because XNS high-level protocols are implemented, access can
also be provided to XNS workstations, file servers and print
servers.

o The Gateway Server/l (GS/l) connects an XNS Ethernet network
to a host or network that has an X.2S interface, and pro­
vides virtual connection and interconnection services
between devices on either network. The GS/l can be used to
extend the services of the CS/l to include long-haul commun­
ications.

o The Gateway Server/3 (GS/3) connects two geographically dis­
tant XNS Ethernet networks by means of a medium- to high­
speed communications link and provides a virtual intercon­
nection service between devices on either network.

Page 1-4 Bridge Communications, Inc.

0.··,'·, , .,

o

(""

,./

o

ESPL Software Technical Reference Manual Volume One

2.0 SOFTWARE ARCHITECTURE

The overall ESPL structure utilizes shared memory as the means of
communication between modules residing on different processor
boards.

Section 2.1 describes the basic ESPL functional modules and the
hardware and software architecture of the ESPL products. Section
2.2 describes the software module responsible for system resource
management, and Section 2.3 describes the software modules
responsible for protocol processing and device handling.

2.1 Overview

Each ESPL product consists of three basic functional modules: the
Central Communications Processor (CCP) module, and two externnl
interface modules (II and 12).

The CCP is made up of a Main CPU (MCPU) board, a multitasking
kernel (the operating system), and protocol software. The CCP
provides the internal interface between the two external inter­
face modules. The II external interface in any ESPL product is
the Ethernet Controller (EC/l), which implements the Ethernet
data link functions and buffers packets transmitted to and from
the Ethernet.

The second external interface (12) differs for each ESPL product.
For the CS/l, the 12 external interface is the Serial I/O (SIO)
interface which contains serial device interface software. For
the GS/l, 12 is the X.25 interface, a two-board set which imple­
ments X.25 processing functions and handles packets traveling to
and from an X.2S network or host.

NETWORK OR NETWORK OR 11 12
DEVICE DEVICE

INTERFACE 1 INTERFACE 2

cCP

CENTRAL COMMUNICATIONS
PROCESSOR

Figure 2-1 Basic Functional Modules

09-0016-00 Bridge Communications, Inc. Page 2-1

Volume One ESPL Software Technical Reference Manual

The ESPL products are based on multiple microprocessors for per­
formance and flexibility. The multiprocessor architecture used
is one in which independent processors communicate via shared O.

memory and a bidirectional interrupt capability. The kernel,
running on the MCPU board, controls the allocation of the shared
memory on the ESB board. For each other microprocessor in the
system, there is an "agent" on the MCPU board. The agent allo-
cates memory and communicates with other kernel processes on
behalf of its associated microprocessor. The ESB agent and the
SIOagent (described in Volume Three, Sections 2.0 and 3.0,
respectively) are examples of agent processes.

The hardware architecture of the Ethernet System products is
illustrated by the CS/l hardware block diagram shown in Figure
2-2. The boards are interconnected via an IEEE 796 Multibus
backplane. Additional device or network interfaces can be added
by replacing the 12 module, as is done for the GS/l product, or
by adding other Multibus or iSBX boards.

The software architecture of the ESPL is illustrated by the CS/l
software block diagram shown in Figure 2-3. Software support for
additional device or network interfaces is achieved by replacing
the 12 module, as is done for the GS/l product, or by adding
another module.

TAP

~ ETHERNET COAXIAL CABLE

TRANSCEIVER

11 MODULE CCP MODULE 12 MODULE
r , --------------T-------T--------
I
I
I
I
I
I
I
I
I
I
I

ETI

ETHERNET
TRANSCEIVER

INTERFACE

11
:>

ESB

ETHERNET
SHARED
BUFFER

68000
MICROPROCESSOR

128 K8 DUAL
PORTED RAM

1\

I I
I I I

I I I

I MAIN CPU I SIO

I I
I I
I 68000 I 68000

I MICROPROCESSOR I MICROPROCESSOR

I I
I 256·384 KB RAM I 4 KB RAM

I 1\ I 1\ L _________ .- ___ L ___ .-I----.L.--- .-r---

IEEE 796 MUL Tlaus

Figure 2-2 ESPL Hardware Architecture

Page 2-2 Bridge Communications, Inc. 09-0016-00

o

o

(/

ESPL Software Technical Reference Manual Volume One

r-----------------------------~ CCP MODULE I
I

I MUL TITASKING KERNEL I
r--I-----~----I""----I""---, r---- ----r--t
I lOP SPP VTP I VTM I UI/HI I

+ ETHERNET INTER- SEOUENCED VIRTUAL I VIRTUAL I USER AND DEV!CE r+-DATAlINK NETWORK PACKET TERMINAL I TERMINAL I HOST DRIVER
PROTOCOL DATAGRAM PROTOCOL PROTOCOL MONITOR INTERFACES

I PROTOCOL I I I
I I I
I NETWORK MANAGEMENT i i I

I I I I I I
I 11 MODULE I I 12 MODULE I L ________________ ~ ___ ~ ________ J

Figure 2-3 Software Architecture

The Kernel module provides a multiprocess environment for all
protocol and user modules. It includes a message-based interpro­
cess communication facility, a shared buffer manager, a storage
allocator, an interrupt processing dispatcher, and time-of-day
and alarm facilities. The Kernel resides on the MCPU.

The Data Link module performs the functions of the Ethernet Data
Link Protocol (XNS Level 0). These functions include transmit­
ting and receiving frames, keeping statistics on network traffic,
frame characteristics and errors, and supporting diagnostic aids
including self-test diagnostics and higher level testing. Part
of the module resides as firmware on the ESB board; the remainder
consists of a software agent residing on the MCPU.

The Internet Datagram Protocol (IDP) module addresses, routes and
delivers internet datagram packets. IDP is the XNS Level 1 pro­
tocol. IDP provides a best-effort internet delivery service, but
does not guarantee reliable delivery or provide sequenced, flow­
controlled transmission. The IDP module resides on the MCPU.

The Sequenced Packet Protocol (SPP) module provides reliable,
sequenced, flow-controlled transmission of user packets or byte
streams across the internet system. SPP is an XNS Level 2 proto­
col residing on the MCPU.

09-IHH6-00 Bridge Communications, Inc. Page 2-3

Volume One ESPL Software Technical Reference Manual

The Virtual Terminal module (which includes the Virtual Terminal
Monitor (VTM), Virtual Terminal Protocol (VTP) and User Interface
(UI) processes) provides a virtual circuit service to its <=)
clients. The VT service includes name lookup, establishment of
virtual circuits, negotiation of terminal parameters, reliable
exchange of data, attention signaling, and synchronized discon­
nection. VT implements a Virtual Terminal Protocol utilizing XNS
Courier protocol functions. The User Interface (UI) provides the
terminal user or the host with the capacity to control the inter-
face to the CS/I by specifying parameters that describe transmis-
sion and device characteristics. The terminal user specifies
these parameters interactively; host interface parameters are set
via program control. The VT module resides on the MCPU.

The Serial Device Driver module is an interrupt-driven driver
that transfers data, attention and flow control signals to and
from serial devices attached to the SIO board using an asynchro­
nous protocol. Part of the module resides as firmware on the SIO
board; the remainder consists of a software agent residing on the
MCPU.

The Network Management module provides a variety of functions,
including performance monitoring, network control and configura­
tion management. The XNS Error Protocol and Echo Protocol are
implemented within the Network Management module. This module
resides on the MCPU.

In addition to these major modules, the CS/l includes the follow­
ing miscellaneous software:

o Floppy Driver
o PROM Monitor/Debugger
o Boot Loader
o Power On Diagnostics

Page 2-4 Bridge Communications, Inc. 09-012116-121121

~ ~ ~ ~ - ~- ~- -~-~---~---~

o

o

c

(;

c

ESPL Software Technical Reference Manual Volume One

2.2 System Resource Handling

The kernel is the heart of the Bridge operating system. It pro­
vides centralized access to system resources in a transparent
manner, so that the user of these resources need not be concerned
with their underlying form. In a system optimized to perform
specialized tasks efficiently, system resources and the methods
of accessing them are in the domain of the kernel.

System resources include mailboxes, storage, buffers and clock
control structures. The CPU is controlled by a round-robin,
prioritized scheduler, which chooses a process from one of eight
prioritized ready lists. Other processes are accessed by means of
an inter-process communication system, which features multiple
mailboxes with selective receives, and the ability to peek into
mailboxes. The kernel also supports semaphores for synchronizing
access to shared data structures.

The CPU manipulates two kinds of memory: memory private to the
CPU, and memory that is shared between the main CPU and other
processors in the system. There are two means of accessing
memory: via a storage allocator, which allocates blocks of memory
from private or shared memory by returning to the requesting pro­
cess a pointer to the physical block; and via a buffer management
system built on top of it, which instead returns the identifier
of a buffer descriptor, providing a logical view of memory.

External devices are manipulated by agents that execute in the
main CPU space. An agent may be a process, or may run on behalf
of a process. The basic structure of these agents includes a
natural division between synchronous functions (request inter­
face) and asynchronous functions (interrupt servicing). The ker­
nel provides a centralized interrupt dispatch routine, so that
interrupt identifiers can be used instead of process IDs in mes­
sages originating from interrupt routines, and the kernel always
knows the current nested interrupt level.

The clock facility provides an alarm function, so processes can
put themselves to "sleep" for a determined period of time. The
facility also includes the ability to set and read the system
clock.

The kernel functions and the means of accessing them are
described in detail in Section 5.0.

09-0016-00 Bridge Communications, Inc. Page 2-5

Volume One ESPL Software Technical Reference Manual

2.3 Protocol and Device Handling

The CS/l protocol software (briefly described in Section 2.1) is ~
organized as a set of processes that run on top of the kernel.
Figure 2-4 shows how these processes interact.

The Data Link and SIO Drivers each consist of firmware (on the
ESB and SIO boards, respectively) as well as agent code on the
MCPU board.

Of the remaining processes, some exist as a single incarnation
and others as multiple incarnations. The single incarnations
include IDP; multiple incarnations include the SPP and VT
modules. SPP consists of both a single "parent Spp" incarnation,
responsible for dynamically creating and deleting "child SPp"
incarnations, plus an individual "child SPP" incarnation for each
current session. VT consists of a "parent VT" incarnation,
responsible for dynamically creating and deleting "child VT"
incarnations, plus an individual "child VT" incarnation for each
active port.

The protocol processes are described in Volume Two of this
manual, and device handling processes are described in Volume
Three.

Page 2-6 Bridge Communications, Inc.

o

o

ESPL Software Technical Reference Manual

+------------+
1 SIO 1 SIO Board
1 Firmware 1
+-----+------+

1
----------------------1----------------------

1
+------------+
1 SIO 1
1 Agent 1
+-+------+---+

/ 1 1 \ MCPU Board
/ 1 1 \

/ 1 1 \
/ 1 1 \

+----------+ +--+--+ +-+---+
Parent 1---1 VT 1 1 VT

+-----+
••• 1 VT 1

VT 1 1 1 1
+----+---+-+ +--+--+

1 1 /
1 +---/-+
1 / 1

1
1

1

+--+--+
1
1

1

1 1
+-+-+-+

1 \
1 \
1 \

(1)

+----+-----+ +--+--+ +--+--+ +--+--+ +-----+
1 Parent +---+ Spp 1 1 SPP I ••• 1 SPP 1 1 SPP 1

Volume One

1 S PP 1 1 1 1 1 1 1 (2)
+----------+ +--+--+ +--+--+ +-----+ +-----+

\ 1 1 / /
\ 1 1 / /

\ 1 1 / /
+--+-------+--+ /
1 IDP +------+
1 1
+------+------+

1
+------+------+
1 ESB 1
1 Agent 1

+-----+-------+
1

----------------------1-----------------------
1

+-----+------+
1 ESB 1
1 Firmware 1
+------------+

Notes: (1) One VT process pe r po r t

ESB Board

(2) One SPP process per session

Figure 2-4 Process Interaction

Bridge Communications, Inc. Page 2-7

C'~"

.'

o

ESPL Software Technical Reference Manual Volume One

3.0 SOFTWARE DEVELOPMENT ENVIRONMENT

This section describes the requirements of the environment within
which software is developed for integration into an ESPL product,
as well as the development support optionally provided with the
ESPL product.

3.1 Requirements of the Development Environment

For the current release of ESPL product software, all software
development must be performed on a host running UNIX Version 7.0
(or Berkeley Version 4.lbsd) or later.

Bridge Communications does not provide the development host, but
does optionally provide a package of tools and utilities to
facilitate the software development and integration process. This
package, which can be ordered as the Bridge Development Environ­
ment (BDE) package, is described in the Section 3.2. In addi­
tion, the customer who purchases object or source software
receives other development utilities as part of the software dis­
tribution; these are described in Section 3.3.

The development strategy involves linking customer-added code
with the required ESPL release software (which is purchased
separately in either object or source form) using the BDE tools
and utilities. The customer can optionally use other tools, so
long as the resulting compiler/assembler output can be linked
with the Bridge software modules.

3.2 Bridge Development Environment Package

This section briefly describes the tools and utilities included
in the Bridge Development Environment (BDE) package, and provides
some general information on the transportability of the package
among various UNIX hosts.

The BDE package is shipped on a 9-track, 1600 bpi magnetic tape.
On-line documentation for each program is available (via the UNIX
"man" command) as part of the package. The BDE tools and utili­
ties programs are as follows:

o Cc68 is the portable UNIX "C" compiler, modified for the
68000. This flexible program is used to translate between
various types of files, including "C" source files, assembly
language files and relocatable binary files. Arguments to
cc68 may specify options as well as filenames, and the
amount of processing performed by cc68 may be decreased or

09-0016-00 Bridge Communications, Inc. Page 3-1

Volume One ESPL Software Technical Reference Manual

increased by the action of the options. In general, cc68
~ranslatesl eachbl nCb~ sourcf7l file?r assembly langd/uage file C' '"
Into a re ocata e Inary I e uSIng ccom68 an or as68
(described below); then cc68 link-edits all binary files
into a single binary output file.

o Ccom68 is the translator component of cc68, and is used to
translate "C" source files to assembly language files.

o 068 is the assembly language optimizer component of cc68.

o As68 is the 68000 assembler component of cc68, and is used
to generate relocatable binary files.

o Ld68 is the link-editor component of cc68, which combines
several binary files into one, resolving external references
and searching libraries.

In addition to these major utilities, the BDE package includes
several miscellaneous utilities, which operate on binary files to
print extended statistics (pr68), print symbol tables (nm68),
print relocation commands (r168), print segment sizes (size68);
or which translate binary files into a form readable by the 68000
by reversing byte order in some fields and padding or repacking
other fields (rev68).

The steps necessary to install the BDE package on the UNIX host,
and the usage of the listed utility programs are described in
Section 3.3.

The "C" compiler (cc68) should run successfully on any of a wide
variety of machines. Bridge Communications utilizes a VAX 11/750
running Berkeley VAX UNIX Version 4.1. The compiler should also
run with little or no modification on any implementation of Ver­
sion 7 UNIX, and with more extensive modification on most imple­
mentations of System 3 UNIX.

None of the utility programs require more than 64K bytes of code
or 64K bytes of data. However, the total amount of memory needed
by the compiler itself is more than 64K bytes, so it will not run
on the smaller address space machines which do not support
separate code and data spaces (e.g., the PDP-11/34).

In the standard BDE package, the programs cc68, as68, Id68, rev68
and d168 are installed in the directory /usr/bin, and the program
ccom68 is installed in the directory /usr/sun/lib/ccom68. The
library (libc.a) and the run-time startup routines (crtO.b) are
installed in /usr/sun/lib. The user should place all standard
include files in the directory /usr/sun/include.

Page 3-2 Bridge Communications, Inc. 09-0016-00

.f\
I I

~

o

c'

c

ESPL Software Technical Reference Manual Volume One

Most absolute pathnames are specified in cc68.c, and can be
changed if necessary to suit the needs of the customer. The
pathnames of the library and the startup routine crt0.b are
defined in ld68. The library name must not be changed, since
there is some code in ld68 which takes advantage of the number of
characters in the library pathname.

If the customer's development machine orders bytes differently
than the VAX, the customer may need to make some changes to as68,
ld68, rev68 and ds68 (these are the programs that deal with
object code). If changes to any of the utility programs are
required, the program(s) must be recompiled. This should present
no problems when recompiling under Version 7 or Berkeley Version
4.1 UNIX. However, undefined references may be reported when
recompiling under some System 3 implementations. These are typi­
cally due to references to Version 7 routines that do not exist
in System 3.

09-0016-00 Bridge Communications, Inc. Page 3-3

Volume One ESPL Software Technical Reference Manual

3.3 Software Development

This section lists the major steps involved in the software ~
development process; the following subsections describe each step
in detail.

1. The first major step in the software development process is
the installation of the magnetic tape containing the BDE
package on the customer's UNIX host. It includes creating
the appropriate directories and loading utility programs ~nd
UNIX manual sections into them. This portion of the process
is described in Section 3.3.1.

2.

3.

The second major step is the installation of
tape containing the ESPL binary and/or source
on the customer's UNIX host. This portion is
Section 3.3.2.

the magnetic
software files
described in

The third major step in the development process is the
optional creation of software to be added to or substituted
for existing ESPL software. The information necessary for
this portion of the process (e.g., information about inter­
faces to the Bridge kernel or to protocol processes) is con­
tained in Volumes Two and Three of this manual. In addi­
tion, the customer must include information about the new
software in the appropriate initialization table and ensure
that sufficient memory is available for the new software.
These steps are described in Section 3.3.3.

4. The fourth major step in the development process is compil­
ing, assembling, link/loading and formatting source files on
the UNIX host into a single binary file to be downloaded to
the target ESPL unit. This is accomplished using Make
files, described in Section 3.3.4. The formatting utility
is described in more detail in Section 3.3.5.

5. The fifth major step is the download process itself. Refer
to Section 3.3.6 for instructions. Section 3.3.7 describes
the procedure used to download firmware only.

6. The sixth major step, debugging the software downloaded to
the ESPL unit, is described in Section 3.3.8.

7. Once software has been downloaded and debugged, it is ready
to be saved onto the floppy diskette. Section 3.3.9 con­
tains instructions on creating a new floppy diskette, as
well as information on the diskette directory structure.

Page 3-4 Bridge Communications, Inc. 09-0016-00

o

ESPL Software Technical Reference Manual Volume One

3.3.1 BDE Distribution Tape Installation

~' This section describes the procedure used to install the BDE dis­
tribution tape on the customer's UNIX host. The BDE distribution
tape is a 1600 bpi, high-density UNIX "tar" tape. The installa­
tion steps are as follows:

(~\

o

1. Log in to the root directory.

2. Create a directory called "/usr/sun":

mkdir /usr/sun

3. Specify the directory "/usr/sun" as the current directory:

cd /usr/sun

4. Mount the BDE distribution tape on the tape drive; ensure
the drive is configured for 1600 bpi, high-density tape.

5. Read the tape into the directory "/usr/sun":

6.

tar xf /dev/rmt0 •

Note that in this example, "/dev/rmt0" is the mnemonic for
the tape device; the mnemonic may differ depending on host
and peripheral device configuration.

A summary of these instructions may now be obtained from the
file called "READ_ME" in the directory "/usr/sun".

7. Copy all files from the directory "/usr/sun/bin" into the
directory "/usr/bin":

cd /usr/bin
cp /usr/sun/bin/* •

8. Copy all files from the directory "/usr/sun/man" into the
directory "/usr/man/manl":

cd /usr/man/manl
cp /usr/sun/man/* •

9. If the BDE is installed in a different directory than
/usr/sun, the files ./src/cmd/cc68.c, ./src/cmd/ld68/1d68.c
and ./src/cmd/Makefile must be edited to modify the absolute
pathname dependencies, then recompiled and re1inked.

09-0016-00 Bridge Communications, Inc. Page 3-5

Volume One ESPL Software Technical Reference Manual

3.3.2 Software Distribution !ape Installation

This section describes the directory structure of the ESPL
software distribution tape, the procedure used to create the
appropriate directory structure on the target UNIX host and the
procedure for installing the tape on the host.

Binary code and/or source code must be purchased separately from
the BDE. 'rhe software files are distributed on a lfi0~ bpi,
high-density UNIX "tar" tape. There are organizational differ­
ences between files containing floppy-loaded software (typically
run on the ESPL unit's MCPU) and files containing firmware.

Software files are structured in a tree organization, as follows:
\

o There is one master root node directory, named "xxxrlse",
where "xxx" is an abbreviation code designating the product
(e.g., "cslrlse").

o The master root node directory contains one subdirectory per
module, as well as a bin subdirectory and an integ.test sub­
directory.

o The module subdirectories contain the source, object list
and individual make files in an "src" subdirectory, and the
header files in an "h" subdirectory.

o The bin subdirectory contains various utility programs and
shell scripts, including a global makefile (supermake) and
associated make rules (csl make rules). Supermake is used
to recompile and load all-modules in the cslrlse directory.
On-line documentation is available via the UNIX "man" com­
mand for each of the utilities except make rules.

o The integ.test subdirectory contains the system initializa­
tion table (the file "csl.c") and the makefile used to load
(but not recompile) all modules in the cslrlse directory.

This tree structure is illustrated in Figure 3-1.

Page 3-6 Bridge Communications, Inc. 09-0016-00

o

o

(-

c

ESPL Software Technical Reference Manual Volume One

cslrlse
./bin

supermake
csl make rules

./integ.test
csl.c
makefile

./kernel
./src
./h

Figure 3-1 Distribution Directory Organization

Firmware files are distributed in UNIX "archive" files. A
description of archive files is provided in reference [8], under
"ar(l)".

Firmware consists of Levell Diagnostics, an optional monitor,
and one or more sets of optional driver code (e.g., Ethernet
driver or SIO driver), and may be restored as follows:

o Levell Diagnostics (and monitor code, if included) are
stored in a single archive named "xxMON", where "XX" is an
abbreviation code designating the PROM set. Diagnostic and
monitor code are independent of driver code, and may be
restored in a subdirectory anywhere in the cslrlse tree
structure.

o Driver code (if included) is stored in an "h" archive and an
"src" archive, named respectively IxxH" and IxxSRC". Driver
code is archived from "xxxrlse/yyy" (where "XXX" designates
the product, and "yyy" designates the driver module; e.g.
"cslrlse/sio") and should be restored into this software
structure.

09-0016-00 Bridge Communications, Inc. Page 3-7

Volume One ESPL Software Technical Reference Manual

To install the software distribution tape, set the current direc­
tory to the directory where the subtree is to be appended, mount
the distribution tape on the tape drive, and then use the "tar" 0
command to read the tape into the current directory. For exam-
ple:

cd /usr/cslrlse
tar xf /dev/rmte •

In this example, "/usr/cslrlse" is the directory into which the
tape is to be read and "/dev/rmt0" is mnemonic for the magnetic
tape device, which may differ depending on the customer's instal­
lation.

3.3.3 Adding OEM Files or Modules

Adding files or modules should be done in a manner consistent
with the file organization described in Section 3.3.2.

When adding a file to an existing module, the following steps are
required:

1. Place the file in the existing "src" subdirectory of the
module.

2. Update the module's makefile dependencies (refer to Section
3.3.4 for descriptions and examples of makefiles).

When adding a new module, the following steps are required:

1. Create a new module directory (including "src" and "h" sub­
directories) •

2. Create a makefile for the new module (refer to the existing
individual makefiles for examples).

3. Optionally, update the "supermake" file to reflect the addi­
tion of a new individual makefile. This step is required
only if the customer intends to use "supermake" to compile
an entire system, rather than use "make" to compile a single
module.

4. Edit the appropriate initialization table to include the new
module. For most modules, this is the file
cslrlse/integ.test/csl.c. The table contains an entry for
each system process that the parent process "init" must
create; an entry for the new module should be added at the
end of the table. Agent processes, however, are not started
up by "init"; the ESB agent is started by IDP, and the SIO
agent is started by the Parent Virtual Terminal process.
Refer to Section 5.2.1 for further information about the
csl.c initialization table. The ESB and SIO agents are

Page 3-8 Bridge Communications, Inc. 139-131316-1313

o

o

c

c

ESPL Software TechnicAl Reference Manual Volume· One

5.

6.

7.

described in Volume Three of this manual, and lOP and Parent
Virtual Terminal are described in Volume Two.

Use the "size" utility to find the amount of memory required
by the new module.

Edit the file cSlrlse/kernel/src/keram.c to
memory for the new module. In the standard
CS/l, the existing code uses almost all of
memory, and some of the kernel's buffers must
to make room for the new code. To do this,
steps are required:

free enough
release of the
the available
be deallocated
the following

o Locate the structure "privhdrs" in
This structure contains a list of
what sizes are normally allocated
space.

the file keram.c.
how many buffers of
as private header

o Edit the structure to reduce the number of buffers
which normally exist in quantities of 48. These may be
cut back to a minimum of 32 each if necessary.

o If this does not free enough space, reduce the number
of other size buffers until adequate free memory is
available for the new software module.

Execute the makefile residing in cslrlse/kernel/src to
remake the kernel module.

8. Set the current directory to /cslrlse/integ.test. Edit the
makefile in this directory to include an entry for the new
module.

9. Execute the makefile edited in step 7, specifying an argu­
ment of ,. csl " •

09-0016-00 Bridge Communications, Inc. Page 3-9

Volume One ESPL Software Technical Reference Manual

3.3.4 Makefiles and Utilities

The utilities which are provided as part of a software distribu­
tion tape (in the directory /cslrlse/bin) are used to simplify
and standardize the process of compiling, assembling, linking and
formatting code, and to download code to the ESPL system. Brief
descriptions of the most important utilities are presented in
this section; complete on-line documentation for most of the
utilities is available via the UNIX "man" command.

o Makefiles are present in the subdirectories for each indivi­
dual module. An individual module's makefile contains the
commands necessary for "make" to appropriately generate com­
piled and assembled output files, by defining source files,
objects, key files, etc. The makefile also includes an
entry which references the file containing makefile rules.
Since every makefile is different, this manual makes no
attempt to describe each one in detail; instead, a simple
example is provided in Figure 3-2.

o

Note that the makefiles included in the software distribu­
tion tape require that the development host have the UNIX
System 3 level make utility, which supports "include" state­
ments.

Makefile rules are contained in a single rules file
(cslrlse/bin/csl make rules), and are referenced in each
individual Makefile, thus assuring consistency between
module subdirectories. The rules file allows a variety of
requests to be passed as makefile arguments, enabling the
user to remake all objects, make all expanded assembly list­
ing files, remove all objects, make a file listing in each
module or archive all source, header and other keyfiles into
an archive file.

o Supermake (the file cslrlse/bin/supermake) is the global
makefile, used when "making" an entire CS/I. The utility
consists of a cshell script which sets the current directory
to each module's subdirectory, then executes a make with the
arguments present on the supermake command line. Like the
rules file, supermake allows a variety of requests to be
passed as arguments. If the customer adds or replaces a
module in an ESPL system, the Supermake file must be updated
to reflect the change.

o Srecs
files
unit.
detail

Page 3-UJ

is the formatter utility, which translates binary
into S-record format prior to downloading to the ESPL
This utility is available in two forms, described in
in Section 3.3.5.

Bridge Communications, Inc. 09-0016-00

o

o

(-

c

ESPL Software Technical Reference Manual Volume One

o Oad is the download utility, used as a slave process by the
monitor command "LOAD" to transmit S-record format files
from the UNIX host to the ESPL unit via an RS-232-C serial
download line which is connected to the ESPL unit's download
port (refer to Section 4.1 for detailed information).

t ${BDE}/spp/src/Makefile
t Define commands and command parameter strings
ARCHV= VAXSPLIB
CFILES= spp.c spctl.c spidp.c spuser.c sppkt.c \

sptrace.c spVersion.c
VOBJS= spp.o spctl.o spidp.o spuser.o sppkt.o \

sptrace.o spVersion.o
680BJS= spp.b spctl.b spidp.b spuser.b sppkt.b \

sptrace.b spVersion.b
LSTS= spp.lst spctl.lst spidp.lst spuser.lst \

sppkt.lst sptrace.lst spVersion.lst
HFILES= •• /h/spincludes.h •• /h/spint.h \

•• /h/spp.h •• /h/spuser.h
KEYFILES=

$ (ARCHV) : $ (ARCHV) (spp.o) $ (ARCHV) (spctl.o)
$ (ARCHV) (spidp.o) $ (ARCHV) (spuser.o) \
$ (ARCHV) (sppkt.o) $ (ARCHV) (sptrace.o) \
$ (ARCHV) (spVersion.o)

include •• / •• /bin/csl_make_rules

Figure 3-2 Sample Makefile for SPP Module

09-0016-00 Bridge Communications, Inc. Page 3-11

Volume One ESPL Software Technical Reference Manual

3.3.5 S-Record Formatter

This section describes the "srecs" utility, which translates
binary files into S-record format files for transmission between
systems.

S-record formatting consists of a two-level encoding method which
transforms each 8-bit byte of data into two printable ASCII char­
acters. An S-record is a sequential ASCII record starting with
an "S" character (hexadecimal 53) and ending with the carriage
return and linefeed characters. This formatting scheme was
introduced by Motorola for use with its development system, and
is now widely used in the industry.

There are three categories of S-records: header records, data
records and termination records. The Motorola S-record format
specification defines eight separate types of S-records, as fol­
lows:

S0 Header record for a block of data records.

81 Record containing data and a l6-bit destination
address.

S2 Record containing data and a 24-bit destination
address.

S3 Record containing data and a 32-bit destination
address.

S5 Termination record containing a count of records in the
previous Sl block (alternate of 89) •

87 Termination record for a block of 83 records.

88 Termination record for a block of 82 records.

89 Termination record for a block of 81 records.

For further information on S-record format, see reference [111,
Appendix A.

Two forms of the "srecs" utility are available:

1. The "srecs" program creates only record
is used only when the file being
firmware to be downloaded from the UNIX
PROM programmer. This version of the
dard record length of 32 bytes.

types 81 and 89, and
produced consists of
host directly to a
program uses a stan-

Page 3-12 Bridge Communications, Inc. 09-0016-00

o

o

ESPL Software Technical Reference Manual volume· One

2. The "bigsrecs" program creates only record types S2 and S8,
and is used when the file being produced consists of
software to be downloaded via monitor command to an ESPL
unit. This version of the program uses a longer record
length (currently 96 bytes), and thus reduces overhead in
the download process by allowing transmission of larger
packets.

Both forms of the utility use the same syntax;
description may be obtained on the UNIX host via the
command. Arguments passed include the following:

a complete
"man srecs"

-T <destination address>
inputfile
outputfile

The output file may be specified in either of two ways:

-0 outputfile
> outputfile

(anywhere in the command line)
(at the end of the command line)

Thus, the following two examples will produce the same result:

bigsrecs -T 0 -0 kernel.hex kernel.out
bigsrecs -T 0 kernel.out > kernel.hex

(~, 3.3.6 Downloading Software

o

This section lists the steps used to download software (in S­
record format files) from the host to the ESPL unit. The
instructions assume this unit is a CS/li the procedure for a GS/l
is identical. The instructions also assume that a physical con­
nection exists between the host download port and the CS/l down­
load port, and that a console terminal is connected to the CS/l
console port.

1. On the CS/l console terminal, enter transparent mode by typ­
ing the command "i tn.

2. Login to UNIX and change to the directory containing the
file to be downloaded. Note that a search path must also
exist to the directory containing the "oad" program; this
path should be defined as an alternate path in the user's
".login" or ".profile" file.

3. Return to the CS/l monitor by typing the transparent mode
escape sequence ("<CTRL-caret>" followed by the letter "c").

4. Enter the Load command, as follows:

load <filename>

09-0016-00 Bridge Communications, Inc. Page 3-13

Volume One ESPL Software Technical Reference Manual

While the download is in progress, lines of periods will print on
the console screen. When the download is complete, the console 0
terminal bell will ring and the MCPU monitor prompt (» will··,
reappear. The downloaded software is now in CS/I memory, and is
ready to be debugged, saved to diskette and executed.

3.3.7 Downloading Firmware

This section describes the steps used to download SIO firmware to
shared memory in order to debug the firmware using the SIO PROM
debugger. This procedure requires special OEM PROMs for the SIO
board (MONSA, included as part of the OEM SIO Kit). THe follow­
ing steps are required:

1. The MONSA prom configures the port ~ of the SIO board as a
console port, and port 2 of the SIO board as a download
port. Connect the console terminal to port~, and connect
the host to port 2.

2. Perform steps I through 4 of Section 3.3.6.

3. Be sure to use shared memory address space (this may be the
ESB board or a memory card). If the shared memory is on the
ESB, the address range is from 2~0000 to 400000. Note that
code will execute slower out of shared memory.

3.3.8 Debugging

The MCPU monitor provides a complete set of interactive commands
for debugging software. Monitor commands permit the user not
only to examine and alter memory, but also to set multiple break­
points (up to eight), to disassemble instructions, and to trace
instructions via a single-step operation. Refer to Section 4.1
for a comprehensive list of the MCPU monitor commands.

Page 3-14 Bridge Communications, Inc. 09-0016-00

o

C:

o

ESPL Software Technical Reference Manual Volume One

3.3.9 Creating ~ New Diskette

After software has been downloaded and debugged, it may be saved
on the diskette via monitor commands.

This section describes the diskette directory system and lists
the steps required to create a new floppy diskette.

Diskette Directory Structure

The floppy disk drive uses double-sided, double-density
diskettes, with a storage capacity of 327K bytes (formatted).
Each diskette is divided into 639 blocks of 512 bytes each; the
blocks are interleaved from side to side. Side~, track ~, sec­
tors 1 through 8 are used first; then side 1, track ~, sectors 1
through 8 are used; then side ~, track 1, sectors 1 through 8,
and so on. All monitor commands refer to diskette locations by
hexadecimal block number. Since the disk controller translates
the block number to the appropriate side, track and sector
numbers, it is not necessary for the user to calculate these.
Note, however, that in the standard CS/l disk subsystem, one
block equals one sector.

The blocks on the diskette are allocated as indicated in Table
3-1.

Block ~ of each diskette is reserved for the directory system,
and may not be used for storage of code. The directory system
contains up to 32 structures, numbered from 0 to IF (hexade­
cimal). Each structure contains information about one file on
the diskette, divided into fields as indicated in Table 3-2.

The following steps are necessary to read the directory of a
diskette:

1. Use the monitor command "Read" to transfer block 0 into
memory (refer to Section 4.1.23) •

2. Use the monitor command "Display Memory" to display the
information (refer to Section 4.1.10).

09-0016-00 Bridge Communications, Inc. Page 3-15

Volume One ESPL Software Technical Reference Manual

Table 3-1 Diskette Block Allocation

Hexadecimal
Block Number (~)

1 through 181

182 through l8F

190 through lEF

IF" through 27F

Allocation

Directory system

ESPL software

Unused

MCPU monitor overlay routines
(e.g., copy disk, disassembler,
sysgen) -

Clearinghouse tables,
UI configuration tables, and
statistics data structures

,---,------------- ._,-_._-----,-,--,,_.- -----'-- - -----'--

,------------------------------_._-----,,--_.,_._----

No.

1

2

3

4

5

6

7

Table 3-2 Diskette Directory System Fields

~ (Size)

Character
(1 byte)

Character
(1 byte)

Short
(2 bytes)

Short
(2 bytes)

Long
(4 bytes)

Long
(4 bytes)

Short
(2 bytes)

---- --.- ----_._--- ---,-,_._------
Meaning

File presence; 0 = file not
present, 1 = file is present

Executability; 0 = file not exe­
cutable, 1 = file is executable

Block no. of first block of file

Block no. of last block of file

Length of file, in bytes

Execution starting address, in
hexadecimal

Padding, to make structure l~
bytes long

-------_._----------_._-----_. __ ._-------_._._,_._---_.-----,_._._,----'"--,_._------

Page 3-16 Bridge Communications, Inc.

,
--~~~~---- .. - .. -.- - ._- ---~.-------- -- --- -- - ---"_ .. ---

o

o

o

ESPL Software Technical Reference Manual Volume One

Creating ~ New Diskette

(~.' The following steps are necessary to create a new ESPL system
diskette:

(

o

1. Use the monitor command "Format" to format an unused
diskette (refer to Section 4.1.13 for a complete description
of the command). For example:

> fo

2. Remove the newly formatted diskette from the floppy unit,
and place the master system diskette in the unit.

3. Use the monitor command "Copy", with the "partial" option
enabled, to copy block" (the directory block) from the mas­
ter system diskette to the newly formatted diskette, as fol­
lows:

4.

> co -p
First block ? I{)

Last block ? 0

Refer to Section 4.1.6 for a complete description of the
"Copy" command. The copy disk routine will prompt for the
first and last block numbers of the copy, and will indicate
when to change diskettes. For this operation, both first
and last block numbers should be 0.

Repeat the "Copy" command, with the "partial" option
enabled, to copy the monitor overlay routines, configuration
tables, clearinghouse tables and statistics data structures
from the master system diskette to the new diskette. Since
all these are stored in contiguous blocks, a single copy
operation will suffice, as follows:

> co -p
First block ? 190
Last block ? 27F

5. The actions in step 3 created a directory data structure on
the new diskette; next it is necessary to erase any informa­
tion from the directory data structure. This is done with
the "Read", "Change Word" and "Write" commands.

a. Enter the "Read" command to read block zero of the new
diskette into memory location 3000 for a length of 200.
For example:

b.

09-0016-00

> r 0 30130 200

Enter the "Change Word" command to change the value
stored in location 30013. The monitor will display the
current value of location 30013 and prompt for a new

Bridge Communications, Inc. Page 3-17

Volume One ESPL Software Technical Reference Manual

value; enter a zero, followed by a carriage return.
The monitor will then display the current value of the 0: ..

next location (3~~2) and prompt for a new value for

c.

that location; enter the "Quit" command to exit the
"Change Word" operation. For example:

> cw 3"~~
3~~": "l~l ? ~
3"~2: ~lF~ ? Q

Enter the "Write" command to write the new
memory location 3~~~ back to block "
diskette for a length of 20~, as follows:

> w ~ 3~~~ 2~~

value from
on the new

6. Use the monitor command "Put" to save the recently down­
loaded software from memory to the new diskette, as follows:

> P 3~~~" ~ 1

The newly created diskette is now ready to be used to boot the
ESPL system.

Note that the save operation in step 6 is accomplished via the
"Put" command rather than the "Write" command; this is done for
several reasons:

o The "Put" command automatically updates the appropriate
directory structure on the diskette; "Write" does not
update the directory.

o The "Put" command prevents accidental overwriting; if
the starting block number or file identifier specified
by the user already has data written in it, "Put" gen­
erates an error message, aborts the operation and
returns to the monitor.

Creating ~ Backup Diskette

To create a backup copy of a master diskette, use the monitor
command "Copy" (refer to Section 4.1.6) with no options enabled.
The monitor will assume that a disk format operation is to be
performed first, so the "Format" command is unnecessary. The
copy routine issues prompts when the master disk should be
removed and the backup disk placed in the unit.

Page 3-18 Bridge Communications, Inc. ~9-~"l6-~"

o

ESPL Software Technical Reference Manual Volume One

4.0 MCPU MONITOR

c:: The MCPU monitor provides interactive access to utilities for
obtaining hardware diagnostics, debugging an ESPL system, or per­
forming system generation and floppy disk operations.

o

Hardware diagnostics are described fully in the ESPL Hardware
Technical Reference Manual. Section 4.1 of this manunl provides
descriptions of the MCPU monitor commands, which include a full
set of debugging aids. Section 4.2 describes the monitor error
and exception messages that may be displayed on the console ter­
minal. Section 4.3 describes program access to the monitor
exception trap vectors. Section 4.4 describes the Sysgen pro­
gram, and Section 4.5 summarizes the floppy disk operations
available through interactive monitor commands.

09-0016-00 Bridge Communications, Inc. Page 4-1

Volume One ESPL Software Technical Reference Manual

4.1 Monitor Commands

This section describes the MCPU monitor commands.

4.1.1 Breakpoint Command

Syntax: BR

Description: This command is used to set a new breakpoint. The
monitor displays the current breakpoint address and prompts
for a new breakpoint address. The address specified should
be on an instruction boundary.

4.1.2 Boot Command

Syntax: BT <file>

Description: This command is used to boot the spcrified file from
the diskette. Execution begins at location 3000 (hexade­
cimal). File identifiers are hexadecimal values in the
range 0 through IF.

4.1.3 Change Address Register Command

Syntax: CA <n>

Description: This command is used to display (and optionally
change) the contents of the specified address register. If
<n> is omitted, the monitor assumes a default value of 0.
The monitor displays all 32 bits of the register, then
prompts for a new value. To change the current value, enter
a new hexadecimal value. If the value specified is fewer
than 32 bits, the upper bits will be set to 0. To display
the next address register, enter a carriage return. To
return to the monitor, enter the Quit command (q).

4.1.4 Change Byte Command

Syntax: CB <address>

Description: This command is used to display (and optionally
change) the contents of the byte at the specified address.
The monitor displays the current value, then prompts for a
new value. To change the value, enter a new hexadecimal
value; to display the next location, enter a carriage
return. To return to the monitor, enter the Quit command
(q) •

Page 4-2 Bridge Communications, Inc. 09-0016-00

o

o

ESPL Software Technical Reference Manual Volume One

4.1.5 Change Data Register Command

(~ Syntax: CD <n>

Description: This command is used to display (and optionally
change) the contents of the specified data register. If <n>
is omitted, the monitor assumes a default value of 0. The
monitor displays all 32 bits of the register, then prompts
for a new value. If the new value specified is less than 32
bits, the upper bits will be set to 0. To display the next
data register, enter a carriage return. To return to the
monitor, enter the Quit command (q).

4.1.6 f£EY Diskette Command

Syntax: CO -<option> <#copies>

Description: This command is used to copy diskettes. Three
options are available. The "v" option performs the copy
without verification. The "f" option performs the copy
without first formatting the target diskette. The Up"
option performs a partial copy (and assumes the "f" option);
the monitor prompts for the desired hexadecimal block
numbers, then copies only the specified portion of the
diskette. Note that if one or more options are specified,
the first option must be preceded by a single hyphen (-).
The "#copies" parameter is used to specify the decimal

(~ numbe r of copi es des ired.

The monitor prompts the user to insert the source
then the target diskette(s). To indicate that the
ate diskette is in place, enter a carriage return.
the program, press the <BREAK> key.

diskette,
appropri­

To abort

The CO command may only be run immediately after a system
reset; it will not execute properly if normal system code
has been running since the most recent reset. In addition,
because the command runs as an overlay routine, a diskette
containing the copy disk routine must be in place when the
command is entered, or the routine must have already been
run once immediately prior to the current run.

4.1.7 Change Process Command

Syntax: CP

Description: This command is used to display (and optionally
change) the contents of the User Stack (US), Status Register
(SR) and Program Counter (PC). The monitor displays the
current contents of each, and prompts for a new value. To
change the current value, enter a new hexadecimal value; to
continue to the next display, enter a carriage return. To
return to the monitor, enter the Quit command (q).

09-0016-00 Bridge Communications, Inc. Page 4- 3

Volume One ESPL Software Technical Reference Manual

4.1.8 Change Word Command

Syntax: CW <address>

Description: This command is used to display (and optionally
change) the contents of the word beginning at the specified
address. Odd addresses are rounded down to the next lower
even address. The monitor displays the current value, then
prompts for a new value. To change the current value, enter
a new hexadecimal value; to display the contents of the next
location, enter a carriage return. To return to the moni­
tor, enter the Quit command (q).

4.1.9 Disassemble Command

Syntax: Dr <address>

Description: This command is used to disassemble memory at the
specified address into Motorola assembler code. To continue
on to disassemble the next location, enter a carriage
return. To return to the monitor, enter the Quit command
(q) •

The Dr command runs as an overlay routine, so a system
diskette must be in place when the command is entered.

4.1.10 Display Memory Command

Syntax: DM <address> <length>

Description: This command is used to display a block of bytes
beginning at the specified address. The bytes are displayed
first in hexadecimal and then in ASCII. Non-ASCII charac­
ters are replaced by periods in the display. The "length"
parameter specifies (in hexadecimal) how much data will be
displayed; if omitted, the monitor assumes a default length
of ten (hex) bytes. If the user specifies a length less
than ten (or not divisible by ten), the monitor automati­
cally rounds upward to the next ten-byte increment in deter­
mining how much data to display.

4.1.11 Display Registers Command

Syntax: DR

Description: This command is used to display all of the
processor's internal registers in a short, tabular form.

Page 4-4 Bridge Communications, Inc. 09-0016-00

o

o

ESPL Software Technical Reference Manual Volume One

4.1.12 Fill Byte Command

C, Syntax: FB <add ress> < leng th> <da ta>

c

Description: This command is used to insert the specified data,
starting at the specified address, for the specified number
of bytes.

4.1.13 Format Command

Syntax: Fa

Description: This command is used to format both sides of the
diskette currently in the disk unit.

** CAUTION **
Before entering the Fa command, be sure that
appropriate diskette is in the disk unit. The
command immediately formats whichever diskette
present, thus erasing all information written on
the diskette.

the
Fa
is

4.1.14 Fill Word Command

Syntax: FW <address> <length> <data>

Description: This command is used to insert the specified data,
starting at the specified address, for the specified number
of bytes.

4.1.15 Sysgen Command

Syntax: GN

Description: This command is used to execute the Sysgen program.
The program provides a simple, menu-driven means of display­
ing, altering and saving system generation parameter values.
The Sysgen procedure for the CS/l is described in more
detail in Section 4.4. Individual Sysgen parameters for the
ESPL utilities and for each ESPL service are described in
the section{s) of this manual devoted to the appropriate
service or utility.

The Sysgen program may only be run immediately after a sys­
tem reset; it will not execute properly if ESPL product
software has been running since the most recent reset. In
addition, because the command runs as an overlay routine, a
system diskette containing the routine must be in place when
the command is entered, or the routine must have already
been run once immediately prior to the current run.

09-0016-00 Bridge Communications, Inc. Page 4-5

Volume One ESPL Software Technical Reference Manual

4.1.16 Go Command

Syntax: GO <address>

Description: This command is used to start execution of system
code at the specified address. If the "address" parameter
is omitted, execution begins at the address stored in the
Program Counter (PC) register.

4.1.17 Set UART Mode Command

Syntax: I<mode>

Description: This command sets the UART mode. The modes that may
be specified are "A", "B" and "T". The "A" mode (the
default) indicates that the device connected to the console
port is communicating normally with the monitor.

The "B" mode indicates that the device connected to the
download port is communicating with the monitor, and the
device connected to the console port is disabled. "B" mode
should only be used in special circumstances (e.g., when a
modem connected to the download port is used to enable
remote monitor functions usually performed locally via the
console port). In order to change from "B" mode to "A"
mode, either the device connected to the download port must
transmit an "IA" command, or the device connected to the
console port must transmit a <BREAK> signal.

The "T" mode (transparent mode) indicates that the device
connected to the console port is communicating directly with
the device connected to the download port. In order to
change from "T" mode to "A" mode, the user at the device
connected to the console port must enter a <CTRL-caret> fol­
lowed by the letter "cu.

** NOTE **

Transparent mode will not work unless the baud
rate of the console port is equal to or greater
than the baud rate of the download port. Baud
rates of the console and download ports are set
via MCPU jumpers (refer to the CS/l User's Guide).

4.1.18 Soft Reset Command

Syntax: K

o

Description: This command is used to reset the MCPU monitor's
stack and internal variables, and is useful after exceptions
or other unusual situations (e.g., to reset stack and vari­
ables after a series of <BREAK> signals have saved the
current context on the stack). Note: this command does not
reset the entire machine. 0

Page 4-6 Bridge Communications, Inc. 09-0016-00

ESPL Software Technical Reference Manual Volume· One

4.1.19 Load Command

(,. Syntax: L<vax-cmd>

c'

Description: This command is most commonly used to download (via
the serial download line) an S-record format, hexadecimal
file previously generated on the VAX. The parameter "vax­
cmd" has the format "OAD <filename>". For example:

LOAD prog.hex

Note that the "L" portion of the command is interpreted and
stripped off by the MCPU monitor, and the remainder (OAD
prog.hex) is sent to the VAX. The monitor then waits for
data to be transmitted to the ESPL system's download port.
OAD is the VAX download utility, which must be present on
the VAX. The command causes the file "prog.hex" to be
transmitted record by record.

4.1.20 Move Byte Command

Syntax: MB <from> <to> <length>

Description: This command is used to
byte-by-byte from one address
number of bytes.

4.1.21 Move Word Command

Syntax: MW <from> <to> <length>

Description: This command is used to
word-by-word from one address
number of bytes.

4.1.22 Put Command

Syntax: P <length> <file> <block>

copy a block of memory
to another for a specified

copy a block of memory
to another for a specified

Description: This command is used to save a memory image on the
diskette, to be used subsequently by the boot command. The
"length" parameter specifies the length (in bytes) of the
image to be saved. The "file" parameter specifies the file
identifier, which must be a hexadecimal number in the range
o through IF. The "block" parameter specifies the starting
block of the saved image; block" is reserved for directory
information. The Put command will not permit existing
information to be overwritten; if the specified file or
block already contains data, an error message will appear.

Note that the Put command automatically updates disk direc­
tory information, while the Write command does not do so.

09-0016-00 Bridge Communications, Inc. Page 4-7

Volume One ESPL Software Technical Reference Manual

4.1.23 Read Command

Syntax: R <block> <address> <length>

Description: This command is used to perform a raw read from the
diskette. The "block" parameter specifies the starting
block to be read from the diskette. Note that block 0 is
used only for directory information. The "address" parame­
ter specifies the memory location to which the transfer will
be made. The "length" parameter specifies the length (in
bytes) of the transfer.

4.1.24 Trace Command

Syntax: T <address>

Description: This command is used to single-step through code.
The "address" parameter specifies the starting location of
the single-step operation. If omitted, the monitor assumes
as default the current value of the Program Counter (PC).

If a system diskette is in place, the instruction to be exe­
cuted next is first disassembled and displayed; after the
instruction is executed, the current contents of the regis­
ter are dumped.

If the system diskette is not in place, no disassembly is
performed and no instruction is displayed; however, after
instruction execution the current contents of the registers
are dumped.

To continue
return; to
(q) •

to the next instruction, enter a carriage
return to the monitor, enter the Quit command

4.1.25 Write Command

Syntax: W <block> <address> <length>

Description: This command is used to perform a raw write to the
diskette. The "block" parameter specifies the starting
block of the area to be written; block 0 is reserved for
directory information. The "address" parameter specifies
the memory location where the transfer is to start. The
"length" parameter specifies the length (in bytes) of the
transfer.

Note that a partial-sector
specifying a length less
remainder of the specified
zeros. In addition, the
cally update disk directory
mand does do so.

write (e.g., a Write command
than one sector) causes the

sector to be written as all
Write command does not automati­
information, while the Put com-

Page 4-8 Bridge Communications, Inc. 09-00Hi-00

o

o

ESPL Software Technical Reference Manual Volume One

4.2 Monitor Error and Exception Messages

C:~~ The error and exception messages which the monitor is capable of
displaying on the console terminal (if one is attached to the
ESPL unit's console port) are divided into three categories: bus
errors, address errors and exceptions.

4.2.1 Bus Errors

Bus errors occur when an attempt is made to access a nonexistent
location in Multibus memory or to write to the monitor's PROM
space. Bus error messages have the following format:

Bus Error, addr: xx at yy

where "xx" is the address to which the erroneous read or write
was attempted, and "yy" is the value in the program counter when
the attempt was made.

Bus errors are fatal errors. If the MCPU automatic reboot option
is enabled, the monitor performs a software reset and then
automatically reboots the system. If the automatic reboot option
is disabled, control returns to the monitor; no reset or reboot
takes place. Refer to the appropriate ESPL product User's Guide
for a description of the MCPU automatic reboot option.

4.2.2 Address Errors

Address errors occur when an attempt is made to perform a word or
long access starting on an odd address boundary. Address error
messages have the following format:

Address Error, addr: xx at yy

where "xx" is the address to which the erroneous read or write
was attempted, and "yy" is the value in the program counter when
the attempt was made.

Address errors are fatal errors. If the MCPU automatic reboot
option is enabled, the monitor performs a software reset and then
automatically reboots the system. If the automatic reboot option
is disabled, control returns to the monitor; no reset or reboot
takes place. Refer to the appropriate ESPL User's Guide for a
description of the MCPU automatic reboot option.

09-0016-00 Bridge Communications, Inc. Page 4-9

Volume One ESPL Software Technical Reference Manual

4.2.3 Exceptions

The monitor initializes the microprocessor's 256 exception vector c=;
locations to various monitor routines. These routines display
exception messages on the console terminal as exceptions occur,
unless a user program takes control of the vectors used by the
routines.

Exception messages have the following format:

Exception: xx at yy

where "xx" is a two-character mnemonic for the applicable excep­
tion condition and "yy" is the value in the program counter when
the exception condition occurred.

Table 4-1 provides a list of mnemonics and brief descriptions for
each possible exception condition. For more detailed descrip­
tions of the exceptions, see reference [10].

Fatal exceptions are identified by an asterisk following the
mnemonic. The monitor treats fatal exceptions according to the
setting of the MCPU automatic reboot option, as described in the
previous subsections. When nonfatal exceptions occur, the appli­
cable message appears on the console (if one is attached) and
control returns to the monitor.

Note that the Bridge ESPL system code normally uses some of the
exception vectors and thus, when these vectors are called, the
monitor does not consider the event an exception condition. In
the CS/l product, for example, Multibus Interrupt 2 (M2) is used
by the ESB board, and up to four Multibus Interrupts (beginning
with M4) are used by the SIO board(s).

Page 4-10 Bridge Communications, Inc. 09-0016-130

.-.--.. ---~--- -----

()

o

('~

ESPL Software Technical Reference Manual Volume-One

Table 4-1 MCPU Monitor Exception Conditions

Mnemonic

II *
ZD *
Ch *
TV *
Pr *
U0 *
Ul *
M0

M1

M2

M3

M4

M5

M6

M7

CA

T2

Tr

UN

Description

Illegal Instruction

Zero Divide

CRK Instruction

'rRAPV Instruction

Privilege Violation

Undefined Opcode 10Hl

Undefined Opcode 1111

Multibus Interrupt "
Multibus Interrupt 1

Multibus Interrupt 2

Multibus Interrupt 3

Multibus Interrupt 4

Multibus Interrupt 5

Multibus Interrupt 6

Multibus Interrupt 7

Channel Attention Interrupt

Timer Channel 2 Interrupt

TRAP 2 through TRAP C Instruction Vector
(TRAPs land D through F are reserved
for the monitor's internal use; refer
to Section 4.3)

Unknown (this message is used for the
remainder of the 68000's vector space)

* - Fatal exception condition

-----------------------.------------------- ------ ----- ---- - ---- - ---

09-0016-00 Bridge Communications, Inc. Page 4-11

Volume One ESPL Software Technical Reference Man~al

4.3 Program Access to Monitor Trap Vectors

As indicated in Table 4-1, four trap vectors are reserved for
monitor's internal use (TRAP 1, TRAP D, TRAP E and TRAP
These vectors may also be accessed by OEM software in order
perform various operations (e.g., I/O to the console or to
floppy, reboot or return to the monitor on error, etc.).

the
F) •

to
the

TRAP 1 is a break trap vector, called only by the monitor during
the processing of a break instruction when a breakpoint is
reached. This trap vector is not called by user code.

TRAP D is an automatic reboot trap vector, called when an event
occurs which requires that the system reboot automatically. An
example of TRAP D usage is provided in Section 4.3.1.

TRAP E is an exit trap vector, called when an event occurs which
requires that the process exit and return control to the monitor.
An example of TRAP E usage is provided in Section 4.3.2.

TRAP F is used for a seven different functions, defined by the
trap type code passed as an argument when the trap is called.
Table 4-2 lists the trap type codes and associated functions.
Sections 4.3.3 through 4.3.9 provide examples of TRAP F usage.

Table 4-2

Code

I

2

3

4

5

6

7

8

TRAP F Type Codes

Function

Output to console

Get memory size

Input from console

Rese rved fo r Us(~

by monitor only

Write to floppy

Read from floppy

Format floppy

Initialize floppy

--_._----_. __ ._._.- -- - _. - -'- - - --- -'--'-'- --'---'- - -.-- _.- -- - - -- - .-. -.- - - - -.-

Page 4-12 Bridge Communications, Lnc. 09-0016-00

o

()

o

ESPL Software Technical Reference Manual Volume One

4.3.1 TRAP Q Usage

c=: The following commented assembly-language procedure call illus­
trates the use of TRAP D to force an automatic system reboot •

c

• text
.globl reboot

TRAPD = /00

exit:
trap #=TRAPD

4.3.2 TRAP ~ Usage

I trap to monitor

The following commented assembly-language procedure call illus­
trates the use of TRAP E to return control to the monitor •

• text
.globl exit

TRAPE = 10E

exit:
trap #=TRAPE I trap to monitor

4.3.3 TRAP! Output to Console Usage

The following assembly-language procedur8 call illustrates the
use of TRAP F to output a character to the console •

• text
.globl putchar

TRAPF = 10F
EMT PUTCHAR = 1

putchar:
movl
pea
trap
addql
rts

char,sp@­
EMT PUTCHAR
tTRAPF
:lt8,sp

trap type code

push arg: character (32 bits)
push traptype: putchar
trap to monitor
pop arg & traptype

09-0016-00 Bridge Communications, Inc. Page 4-13

Volume One ESPL Software Technical Reference Manual

4.3.4 TRAP! Memory Size Usage

The following assembly-language procedure call illustrates the
use of TRAP F to obtain the address of the last long which can be
put into the MPCU's onboard memory •

• text
.globl getmemsize

TRAPF = /0F
EMT GETMEMSIZE = 2

EMT GETMEMSIZE
iTRAPF
:ft4,sp

Ipush traptype: getmemsize
Itrap to monitor
Ipop traptype

getmemsize:
pea
trap
addql
rts Id0 contains memory end value

4.3.5 TRAP! Input from Console Usage

The following assembly-language procedure call illustrates
use of TRAP F to receive a character from the console •

• text
.globl getchar

TRAPF = /0F
EMT GETCHAR = 3

getchar:
pea
trap
addql
rts

EMT GETCHAR
iTRAPF
:fI:4,sp

Ipush traptype: getchar
Itrap to monitor
Ipop traptype
Id0 contains character value

Page 4-14 Bridge Communications, Inc.

the

o

o

ESPL Software Technical Reference Manual Volume One

4.3.6 TRAP ~ Floppy Write Usage

c=~ The following assembly-language procedure call illustrates the
use of TRAP F to perform a write to the floppy disk unit. Note
that the return codes are the same as those generated by the
Floppy Disk I/O Service; refer to Table 6-2 in this manual •

c

• text
.globl write

TRAPF = /0F
EMT WRITE = 5

write:
movl
movl
movl
pea
trap
addl
rts

strtblk,sp@­
ptr,sp@­
length,sp@­
EMT WRITE
iTRAPF
i/10,sp

4.3.7 TRAP ~ Floppy Read Usage

Ipush arg: starting block (32 bits)
Ipush arg: data pointer (32 bits)
Ipush arg: data length (32 bits)
Ipush traptype: write
Itrap to monitor
Ipop arg and traptype
Id0 contains return code

(nonzero on error)

The following assembly-language procedure call illustrates the
use of TRAP F to perform a read from the floppy disk unit. Note
that the return codes are the same as those generated by the
Floppy Disk I/O Service; refer to Table 6-2 in this manual •

• text
.globl read

TRAPF = /0F
EMT READ = 6

read:
movl
movl
movl
pea
trap
addl
rts

strtblk,sp@­
ptr,sp@­
length,sp@­
EMT READ
iTRAPF
i/10,sp

Ipush arg: starting block (32 bits)
Ipush arg: data pointer (32 bits)
Ipush arg: data length (32 bits)
Ipush traptype: write
Itrap to monitor
Ipop arg and traptype
Id0 contains rGturn code (nonzero
on error)

09-IHH6-00 Bridge Communications, Inc. Page 4-15

Volume One ESPL Software Technical Reference Manual

4.3.8 TRAP! Floppy Format Usage

The following assembly-language procedure call illustrates the
use of TRAP F to perform a floppy formatting operation. Note
that the return codes are the same as those generated by the
Floppy Disk I/O Service; refer to Table ~-2 in this manual •

• text
.globl format

'rRAPF = /0F
EMT FORMAT = 7

format:
pea
trap
addql
rts

EMT FORMAT
itTRAPF
:Jt4,sp

Ipush traptype: format
Itrap to monitor
Ipop traptype
Id0 contains return code

(nonzero on error)

4.3.9 TRAPF Floppy Initialization gsage

The following assembly-language procedure call illustrates the
use of TRAP F to initialize the floppy disk unit. This procedure
call must precede any of the other TRAP F floppy procedure calls
(i.e., write, read or format). This call causes the monitor to
check for the presence of the floppy controller, the floppy unit
and a diskette, initializes the controller, and turns on the
floppy unit motor. Note that the return codes are the same as
those generated by the Floppy Disk I/O Service; refer to Table
6-2 in this manual.

It is the user's responsibility to turn off the floppy motor
after the write, read or format operation is complete by writing
the value 1800 (hexadecimal) to location C00000. Note that the
exit trap (TRAP E) also turns off the floppy motor •

• text
.globl floppyinit

'rRAPF = /0F
EMT FLOPPY INIT = 8

floppyinit:
pea
trap
addql
rts

Page 4-16

EMT FLOPPY INIT
~TRAPF
If:4,sp

Ipush traptype: floppy init
Itrap to monitor
Ipop traptype
Id0 contains return code

(nonzero on error)

Bridge Communications, Inc. 09-0016-00

----------- "--------------"--

o

ESPL Software Technical Reference Manual Volume One

4.4 System Generation

This section describes the Sysgen program, which is used to
display, change and save sysgem generation parameter values.

System generation parameters differ from configuration parameters
in that system generation parameters typically need only be
changed once per ESPL product for any given installation; confi­
guration parameters are changed dynamically, often on a per-port
basis, and may need to be changed frequently, depending on the
requirements of the customer application and the device attached
to the port. This section describes the Sysgen program; Sysgen
parameters for the ESPL utilities and for each ESPL service are
described in the section(s) of this manual devoted to each ser­
vice or utility. Configuration parameters are described in the
User's Guides for each ESPL product.

The Sysgen program is executed from the MCPU monitor, and pro­
vides a simple, menu-driven means of performing the following
operations:

1. View (display) the current values of Sysgen parameters,

2. View the recommended values of Sysgen parameters,

3. Alter current Sysgen parameter values, or

4. Save Sysgen parameter values on the diskette.

The following subsections briefly describe these operations.

4.4.1 Running Sysgen

To run the Sysgen program, enter the MCPU monitor command "GN".
The Sysgen program executes as a monitor overlay routine, so a
system diskette must be in place when the command is entered.
The main Sysgen menu (a numbered list of options similar to the
list above) is then displayed, followed by the prompt:

Command number ?

At this prompt, enter the number corresponding to the desired
option. Note that no carriage return is needed to terminate the
entry.

Depending on the number entered, the program either displays a
secondary menu or returns to the MCPU monitor.

09-0016-00 Bridge Communications, Inc. Page 4-17

Volume One ESPL Software Technical Reference Manual

4.4.2 Displaying Current Sysgen Parameter Values

To display current Sysgen parameter values from the main Sysgen
menu, enter the command "1". Note that no carriage return is
necessary.

The program displays a numbered list of parameter types, nnd
prompts the user to specify the desired parameter type. To
seLect a parameter type, enter the number corresponding to the
type (with no terminating carriage return).

Depending on the number selected, the program either displays all
the parameters of the specified type or returns to the main Sys­
gen menu.

4.4.3 Displaying Recommended Sysgen Parameter Values

The optimum Sysgen parameter values may differ for each ESPL pro­
duct, or even for each version of product code, depending on the
number of ports present in the unit, the maximum number of ses­
sions permitted per port, and the type of traffic supported by
each port (e.g., interactive terminal-to-host session, host-to­
host file transfer, or X.25 gateway). The "Recommended Settings"
menu lists the optimum parameter values for the applicable confi­
gurations.

0····· . .

To obtain the list from the main Sysgen menu, enter the command (-.)
"2" without a terminating carriage return. The program displays ~
a table listing the parameters affected by the various possible
combinations, and indicates how to return to the main Sysgen
menu.

4.4.4 Altering Sysgen Parameter Values

To alter a Sysgen parameter value from the main Sysgen menu,
enter the command "3" with no terminating carringe return. The
program displays the secondary "Alter Parameter Values" menu,
which is identical to the "View Current Values" menu except for
its heading. To select a parameter type, enter the number
corresponding to the desired type (with no terminating carriage
return) •

The program then prints a numbered list of the
appropriate to the selected type, prints instructions
ing to the main menu, and prompts the user to type a
number.

Page 4-18 Bridge Communications, Inc.

parameters
for return­

parameter

139-13016-313

o

c

ESPL Software Technical Reference Manual Volume One

To alter the value of a parameter, enter the number corresponding
to the desired parameter. The program prints the recommended
range for the parameter, then prompts for a new value. To alter
the current value, enter a new value followed by a carriage
return. To leave the current value unchanged, enter a single
carriage return; the program will then return to the "Alter
Parameter Values" menu.

** NOTE **
In most standard ESPL product installations, there is
no need to alter any Sysgen parameters except those
listed in the "Recommended Settings" menu, in order to
ensure that the basic software configuration is
appropriate for the hardware configuration and the
requirements of the application. The remaining Sysgen
parameters should only be altered if a standard ESPL
product has been modified to add custom software or
interfaces to the system.

4.4.5 Saving Sysgen Parameter Values

To save altered Sysgen parameter values on the diskette from the
main Sysgen menu, enter the command "4" with no terminating car­
riage return. Before performing the disk write, the program
requests confirmation from the user. To save the changed parame­
ters, first ensure that the diskette is in place in the floppy
disk unit, then enter "yo. The program prints a message confirm­
ing the disk write.

To ignore all changes made during the current run (or all changes
made since a prior "Save" operation earlier in the current run),
enter Un". (Note, however, that the Un" response will not undo a
"Save" operation performed earlier in the same run.) The program
confirms the fact that no disk write is performed, and returns to
the main Sysgen menu.

09-0016-00 Bridge Communications, Inc. Page 4-19

Volume One ESPL Software Technical Reference Manual

4.5 Floppy Utilities

The floppy utilities available to the user fall into three ~
categories: utilities accessible interactively via the MCPU moni-
tor, and utilities accessible via procedure calls to monitor trap
vectors, and utilities accessible via procedure calls to the
Floppy Disk I/O Service. This section briefly describes the
first category. Utilities accessible via monitor traps are
described in Section 4.3, ~hd utilities accessible via the Floppy
Disk I/O Service are described in Section 6.0.

The floppy utilities which may be accessed interactively via the
MCPU monitor include the following:

1. Booting the ESPL system code from a file on the diske~te
(refer to Section 4.1.2),

2. Making duplicate copies of ESPL system diskettes (refer to
Section 4.1.6),

3. Formatting diskettes (refer to Section 4.1.l1),

4. Copying a memory image of code onto the diskette (refer to
Section 4.1.22), or

5. Performing a raw read from the diskette or a
the diskette (refer to Sections 4.1.23 and
tively). These two functions should only
patching code, and must be used with caution.

Page 4-20 Bridge Communications, Inc.

raw write to
4.1. 25, respec­

be used when

09-001~-00

o

ESPL Softw~re Technical Reference Manual Volume One

5.0 KERNEL INTERFACE

C=~. This section describes the system resource management provided by
the ESPL kernel, and the access to kernel resources available to
processes running in an ESPL product.

(

5.1 Overview

The kernel provides or manages system resources of several types:

o A flexible process management system

o A fast, efficient InterProcess Communication (IPC) faciljty

o A memory management system

o A centralized facility for the use of a real-time clock

o An interrupt service handler

These resources are available via procedur~ calls to a process
running under the kernel. The data structures used by the kernel
to manage resources are described in Section 5.2. The procedur~

calls made by a process to request resource management from the
kernel are described in Sections 5.3 through 5.6. For each pro­
cedure call, a "C" procedure declaration is given, as well as
definitions of all input and output parameter types, return
values and possible errors.

5.1.1 System Initialization

When the system software is loaded into the main processor memory
by the bootload device, the entrypoint is a global symbol called
"main". The routine "main" initializes all system tables and
buffer descriptors, and makes queues of available process control
blocks, storage blocks, mailboxes, semaphores, etc. The routine
then creates the single initial process.

This process, called "init", acts as the parent process and
creates the first instances of the system processes, based on
information contained in the system initialization t~ble
"sysinit". (Refer to Section 5.2.1 for a description of this
data structure.) The init process registers the mailboxes allo­
cated to the new system processes in the table of well-known
mailboxes, then lowers its own priority and allows the system
processes to begin execution. At this point, init becomes the
idle process and runs when no other process has sufficient
resources to run. It is the lowest priority process in the sys­
tem, and is always on the ready list.

09-0016-00 Bridge Communications, Inc. Page 5-1

Volume One ESPL Software Technical Reference Manual

After initialization, the newly-created system processes may use
library routines to insert mailbox names into the table of well­
known mailboxes or to searc~ the table. Processes may register
different mailboxes with this table, differentiating them by
string name. A mailbox can be looked up by its string name.

5.1.2 Process Scheduling

The scheduling algorithm used by the kernel is round-robin,
prioritized scheduling with preemption based on availability of
resources and presence of messages. When a process is created, it
has a priority. This priority, together with a ready state, puts
the process on a ready queue. The processes are dispatched from
the highest priority ready queue that has any process linked to
it.

o

Each process is either on the ready queue, waiting at a sema­
phore, or waiting for a message. When the resource associated
with the semaphore becomes available (or the message arrives),
the waiting process is given the resource and graduated to the
end of the ready queue of processes of like priority. As the
currently running process requests resources, it may be queued
onto a semaphore wait queue or marked waiting for a message, and
the scheduling of the next ready process of highest priority
takes place. On the other hand, if the process gives up a sema­
phore or sends a message which makes a process of higher priority
runnable, then that higher priority process will be run and the
first process wi 11 be 1 inked to the front of the ready queue of 0··
its own priority. ~

5.1. 3 Ma i1 Sched ul i ng

When a message is sent to a mailbox, it is linked into a circular
queue associated with the mailbox (in fact, part of the mailbox
data structure). There are two priorities for messages, URGENT
and NORMAL. An urgent message is inserted at the front of the
queue, after other URGENT messages, and a normal message is
inserted at the end of the queue. The mail is only delivered
when the owner of the mailbox makes a receive request on the
mailbox. The owner may be blocked waiting for the message, in
which case the owner can be made ready at the time of the send;
if the owner is of higher priority than th8 sender, the own~r
will be run and the sender returned to the front of the sender's
ready queue.

Multiple mailboxes are implement2d so that a process may demulti­
plex its messages based on the mailbox receiving the mail. A
process can take advantage of this feature by setting up separate
mailboxes for its communicants to send data and control messages,
as well as a special mailbox for emergency messages.

Messages must always be built in memory obtained from free
storage. Also, the same message should not be sent to more than
one mailbox, since messages are linked rather than copied. ~

Page 5-2 Bridge Communications, Inc. 09-"0111-00

ESPL Software Technical Reference Manual Volume One

5.1.4 Memory Management

c=: Within the Bridge kernel, memory is viewed in two ways: storage
memory, and buffer memory. The major data processing tasks in the
system are protocol processes. On reception of a packet, the pro­
tocol process need look only at the beginning of a packet, per­
form some function based on the header information, then pass the
packet up to the next level of protocol with the header stripped
off. The data portion of the packet is not of interest except in
a few cases. During transmission of a packet, each protocol pro­
cess needs to prepend a header to the data portion. The succes­
sive data encapsulation with headers can be done with a preallo­
cated prologue at the beginning of the buffer, but the size And
number of headers is not known at allocation time.

o

Copying data is something to be avoided. If a protocol layer
guarantees reliable transmission, it must retain a copy of the
packet it sends to the next lower layer. And if one network has a
smaller maximum packet size, or a connection has a smaller packet
size, then the splitting up of packets should be made an easy and
centrally-controlled function in the system. In addition, each
new packet resulting from a split needs its own header, and needs
to be kept for retransmission if the peer protocol fails to ack­
nowledge its reception. These considerations are motivation for
the buffer management scheme described in this manual.

Storage memory comes in fixed sized blocks. Each block is a con­
tiguous string of bytes, beginning at a word boundary. Storage
memory can be accessed directly.

Memory is allocated whenever requested if there is enough free
memory. If a process does not get the memory it requests, it may
try to alleviate the buffer shortage problem by freeing up any
buffers or storage of which it has control. Otherwise, if it has
nothing else to do until memory is available, it can create an
alarm to wake itself up to try again later.

09-0016-0" Bridge Communications, Inc. Page 5-3

Volume One ESPL Software Technical Reference Manual

5.1.5 ESB Shared Memory

The ESB shared memory addresses are in Multibus memory relative
to the MCPU. As the MCPU views this memory, the ESB resides in a
single 256K-byte block which is one of four 256K-byte block par­
titions of the address range from 1M to 2M. However, the ESB CPU
only decodes the low 17 bits of the offset Into Multibus memory,
so to the ESB each 128K-byte block in the 1M to 2M range is
identical to any other.

From the MCPU point of view, the low-order 128K bytes of each
256K-byte block are in a straight access window, while the high­
order l28K bytes are in a swapped access window.

The swapped access window is necessitated by the difference
between the way bytes are normally ordered by the 68000 in memory
and the order in which the DMA transfers bytes to and from the
Ethernet. The 68000 normally orders bytes according to Motorola
convention in increasing address order from most significant byte
to least significant byte (whether singly, within a word or with­
in a long word).

o

The DMA, on the other hand, uses the Intel convention for byte
order. The DMA transfers 16-bit quantities at a time, starting
on an even address. Within this 16 bits, the DMA transfers the
bits individually, starting with the least significant bit of the
byte residing in the higher address. Thus in order to ensure
that the DMA transfers properly ordered bytes, a byte swap opera- ~)
tion can be performed automatically by the 68000 by writing to
memory via the swapped access window. On a read from the Ether-
net, the same byte swap operation can be achieved by the 68000 by
reading from the swapped access window.

Figure 5-1 illustrates the byte swapping operation. In the
illustration, the DMA is shown writing data to ESB shared memory
in the order in which it was received from the Ethernet. The
68000 is shown writing to or reading from ESB shored memory both
via the straight access window and via the swapped access window,
according to how the data is to be used.

Typically, the straight window addresses are used for interpro­
cessor communication and the swapped window addresses are used
for data transferred to or from the Ethernet. However, a
customer-added OEM board in an ESPL systam might need to use the
straight access window rather than the swapped access window for
Ethernet-bound data, depending on the type of processor and the
byte-ordering scheme it uses.

Page 5-4 Bridge Communications, Inc. 09-0015-00

o

c'

ESPL Software Technical Reference Manual

==========Ethernet======= -->

-+--------+--------+
I LSB I MSB I

I 7 ••• ~ '15 ••• 8 1-'
-+--------+--------+ I

I <-- 16-Bit Transfer
I
I

+----+---+
I I
I DMA I
, I
+----+---+

I
+---<-------->--+
I
I
I
I

+-----+--+--------+
I LSB I MSB I

I 7 ••• ~ I 15 ••• 8 I
+--------+--------+
I I
I ESB I
I SHARED I
I MEMORY I
I I
+--------+--------+
I MSB I LSB I
I 15 ••• 8 I 7 ••• 0 I
+--------1--------+

Notes:

Swapped
Access Window

<---------+----------->
I
I

+----+----+
I I
I 68000 I
I I
+----+----+

I
I

<---------+----------->
Straight

Access Window

LSB - Least Significant Byte
MSB - Most Significant Byte

Volume One

+--------+--------+
I MSB I LSB I
I 15 ••• 8 I 7 ••• 0 I

+--------+--------+
I I
I 68000 I
I MEMORY I
I I
I I
+--------+--------+
I MSB I LSB I
I 15 ••• 8 I 7 .•• 0 I
+--------+--------+

Figure 5-1 Byte Swapping in ESB Shared Memory

Bridge Communications, Inc. Page 5-5

" ~ .. ---- -_._. -,-- ------_._-------_ .. _ .. __ ._ ... - ._---"-

Volume One ESPL Software Technical Reference Manual

5.1.6 Semaphore Scheduling

When a process requests a semaphore, if the semaphore is not ~
available then the process is linked into a wait queue whose
header is part of the semaphore data structure. When a process is
finished using the object protected by the semaphore, it releases
the semaphore, thus allowing another process to use the object.
At the time the semaphore becomes available, a process waiting
for the semaphore gets it, and is linked onto the ready queue of
processes of the same priority. If the newly readied process is
of higher priority than the current process, the newly readied
process runs, and the first process is returned to the front of
its ready queue.

A semaphore has a depth associated with it which enumerates the
number of similar objects that are governed by the semaphore.
The semaphore count is not allowed to go to zero, and if a block­
ing request is made, the requestor is queued at the semaphore
until the resource is again available.

5.1.7 Clock Scheduling

The MCPU contains a clock used as an interval timer. The resolu­
tion of the interval timer is one "tic" every 50 milliseconds.
The kernel clock structure may be set or read, and alarm messages
may be created for wake-up scheduling. The minimum interval that
may be specified for an alarm message is one tic; however, a
finer resolution of time may be measured using an elapsed time
routine provided by the kernel. Alarm messages are created with
a priority (URGENT or NORMAL). When the timer interrupt occurs,
the interval count on all outstanding alarms is decremented, and
the global clock updated. The interval count (or duration of an
alarm) is specified as a 32-bit number of milliseconds in the
range from 50 milliseconds to 25 days. If the count on an alarm
reaches zero, the alarm message is sent to the caller's default
mailbox.

The timer interrupt may be turned on/off for debugging purposes.
An elapsed time structure, calibrated in seconds and cycles, may
be read by the requesting process. A cycle is derived from the
timer/counter input clock, divided by 10. Each such cycle is 2.5
microseconds, using the 10Mhz system clock. The kernel uses this
elapsed time facility to measure the accumulated execution time
in each process.

If the process using an alarm ceases to need the alarm before it
has expired, the alarm may be cancelled.

Page 5-6 Bridge Communications, Inc. 09-0016-0'"'

o

c

ESPL Software Technical Reference Manual Volume One

5.1.8 Interrupt Services

Standard interrupt routines on the MCPU include the clock, one or
more agents for the data link, and one or more agents for the
serial link. An agent may be a process on its own, or it may b~
a set of subroutines running on behalf of a requesting process.
All the agents mentioned above model well as a set of subroutines
along with one (or two) interrupt routines. The part of the agent
that runs under interrupt control must have an interrupt vector
set up for it by the subroutine portion. Also, a mailbox must be
set up for the interrupt routine to use for notification of an
event and for data associated with it.

To this end, the general structure of an agent is a body of code
that handles requests from a client. One of those requests is an
initialization request, passing the 10 of the mailbox for asyn­
chronous events. Within the initialization code, the agent makes
a kernel call to set up the interrupt vector so that dispatching
can be done through a centralized facility which saves the
machine state and keeps a nesting count. The nesting count is
used by the kernel so it will refrain from scheduling decisions
should an agent make a kernel call during an interrupt service
routine (e.g., when sending a message). Also, the kernel knows
which 10 to put in the message header because the interrupts all
passed through a common point. All interrupt routines are writ­
ten in "C", use a common stack, and return from interrupt through
a common point.

5.1.9 Well-known Mailboxes

THe kernel maintains a globally accessible table in which
processes can register their "well-known" mailboxes for initial
contact. The "init" process makes the first entries into the
table. A table entry consists of a string name and the mailbox
10. Registration of a mailbox requires a string and a maIlbox 10.
Resolution of the name takes the string and returns the mailbox
10.

The mailboxes registered in this table should be stable (not
transient) •

09-0016-00 Bridge Communications, Inc. Page 5-7

Volume One ESPL Software Technical Reference Manual

5.2 Kernel Data Structures

The kernel uses several types of data structures, including the ~
system initialization table "sysinit", Process Control Blocks
(PCBs), mailboxes, semaphores, interrupt facility data struc-
tures, clock data structures, storage blocks and buffer descrip-
tors (BDs). The following subsections briefly describe these
structures.

5.2.1 System Initialization Table

The system initialization table (known as "sysinit") is read by
the "init" parent process. The table contains an entry for each
system process that init must create. The format for entries
includes the same arguments as those used for the process crea­
tion procedure call (described in Section 5.3.1).

For the customer who wishes to add software to an ESPL product,
the sysinit table is distributed as part of the ESPL software
distribution kit, in the file "cslrlse/integ.test/csl.c". In
order to add a new process and instruct init to start it up, the
customer must edit and recompile this source file. In order to
disable an existing system process (e.g., the Statistics Monitor
or the Echo Protocol), the customer must delete or comment out
the corresponding entry in the table and recompile the source
file.

If a new process is added, it should be added at the end of the
table. The order in which existing entries appear in the table
is critical, and should not be altered. The following rules must
be observed:

1. The entry for the IDP process (idinit) must appear
before the entry for the Parent VT process.

2. The entry for the Data Link Network Manager process
(eanminit) must appear before the entry for the Statis­
tics Monitor process (sminit).

3. The entry for the Statistics Monitor (SM) process
(sminit) must appear before the entries for the Parent
VT and Parent SPP processes (pvinit and psinit, respec­
tively) •

In addition, note that neither the Ethernet Agent nor the SIO
Agent is started up by the init process. Instead, the Ethernet
Agent is started by the IDP process, and the 8IO Agent is started
by the Parent VT process.

Page 5-8 Bridge Communications, Inc. 09-0016-00

o

o

c

ESPL Software Technical Reference Manual

5.2.2 Process Control Block

A Process Control Block (PCB) describes
"p lookup" is an array of pointers
processes that exist on the system.

Volume One

a process. The ta ble
to the PCBs of all the

A PCB is initialized for a process at process creation time. the
process is awarded a unique identifier, which is a hybrid struc­
ture composed of the p lookup index of the PCB and a number drawn
from an ever-increme~ting counter. The process also gets or
shares a stack, and the process state is set to "suspended". As
the process becomes ready to run, it is graduated to a ready list
designated for processes of its priority, and subsequently
scheduled to run.

As a process requests a resource, it may choose to block until
the resource is available, allowing another process to run. The
other process could conceivably release the rGsource that the
blocking process needs. A process can be blocked waiting for a
message from one or more mailboxes, or waiting for access to a
data structure (semaphore). If the process is waiting for a
semaphore, it is linked into a wait queue in the same way it was
linked into the ready list. As the resource becomes available,
the process is graduated to the ready list and scheduled accord­
ing to priority.

During its lifetime, a process allocates memory for itself, gives
some of this memory away to other processes, and keeps some for
private tables, etc. When a process terminates, the kernel knows
about mailboxes belonging to the process and about the process
stack segments. In order to free all resources absorbed by the
terminating process, the kernel must know about any dynamically
allocated memory still held by the process. To this end, in the
development phase a queue header for a linked list of memory
blocks and one for buffer descriptors is kept in the PCB.

5.2.3 Mailbox Data Structures

The kernel's mailbox scheme uses several data structures, includ­
ing mailboxes, mailbox lists, messages and the well-known mailbox
directory.

A mailbox belongs to exactly one process. Associated with the
mailbox are a queue of messages, a queue depth and a message
count. The sendmsg, receive, and testmbox procedure calls (refer
to Section 5.4) access the mailboxes directly. The sendmsg call
allows for two priorities of messages (URGENT and NORMAL), with
the additional requests of MUSTDELIVER and FAST.

09-0016-00 Bridge Communications, Inc. Page 5-9

Volume One ESPL Software Technical Reference Manual

5.2.4 Semaphore Data Structures

When a data structure is shared between two or more processes, ~
there is a need for some way to ensure mutual exclusion on the
data structure. If one process tests a variable in the structure
and performs some action based on its value, the process must be
assured that the value hasn't changed between the time the struc-
ture was tested and the time the action was taken. This exclu-
sion is accomplished through the use of semaphores.

If a process wants to share a data structure, it defines a field
within the structure to hold the ID of a semaphore, and requests
a semaphore from the kernel during runtime. When access to the
protected structure is required, the requesting process waits at
the semaphore. The wait call will disable interrupts to make a
check on the availability of the structure. If the structure is
available, the process instructs the kernel to mark the semaphore
in use. Interrupts are enabled and the process continues. If
the structure is not available, the process may be blocked,
queued on a waiting list at the semaphore until the structure is
released by the process currently holding the semaphore.

5.2.5 Interrupt Facility Data Structures

Both the interrupt facility and the context switching mechanism
use a data structure called a FRAME in which to record the con-
text of a process. Most processor registers are recorded in the ~\
FRAME at context switch time and when the process is interrupted. ~
In addition, when a process is interrupted, the temporary regis-
ters a0, aI, d0 and dl are saved on the current stack (usually
the process's stack). Another data structure used by the inter-
rupt facility is the ITABLE of INTPTR structures. Each structure
contains an interrupt handler for one type of interrupt.

Each interrupt routine is "registered" with the kernel, at which
time the kernel-supplied interrupt handler is bound to the user­
supplied interrupt handler. The interrupt is armed by storing
the location of the kernel-supplied interrupt handler into the
specific exception vector in low memory. All interrupt handlers
are dispatched through a central place in the kernel, so nesting
and stack usage can be carefully controlled.

Page 5-1121 Bridge Communications, Inc. 1219-12112116-00

o

c

ESPL Software Technical Reference Manual Volume One

5.2.6 Alarm Messages and Real-Time Clock Data Structures

The real-time clock facility uses a structure coIled an alarm
message when a process requests a "wakeup" service. An alarm is
created with a delay interval and a priority. The delay is
specified as a 32-bit number of milliseconds, in the range from
50 milliseconds to 25 days of delay. There is an interval timer
which interrupts the system every 50 milliseconds (20Hz), at
which time the alarm counters are decremented. When one of the
counts descends to zero during the decrementation, the message is
sent to the requestor's default mailbox.

A process can put itself to sleep for a specified period of time
by first requesting an alarm, then blocking on reception of a
message from its default mailbox. If a process is waiting for a
message, and wants to give up on the message if it doesn't come
within a specified time period, the process may wait on two mail­
boxes. Then, if the expected message is received before the
alarm goes off, the alarm may be cancelled.

The current time can be read with two routines, each providing a
different accuracy. One routine returns (and another routine
sets) a 32-bit number of seconds. The current time is maintained
in a "timeb" structure similar to the UNIX timeb structure. In
addition, another routine reads the system timer-counter chip
(the source of the 20Hz interrupts) and determines the elapsed
time, accurate to the cycle (2.5 microseconds). Procedure calls
to compute the difference between two exact times are provided,
as well as calls to convert time to more meaningful structures Of
strings.

5.2.7 Storage Block Data Structure

Normal memory is allocated in blocks. At system generation time,
free memory is broken up into a reasonable number of blocks of
reasonable size and made available to the processes in the sys­
tem. The number and sizes are sysgenable numbers. There is a
header array for the two kinds of memory (private and shared),
and the elements in these arrays are structures containing a
pointer to the beginning of a FIFO list of storage blockS, plus
the size, count, and HIGH/LOW water marks, etc., for the list.
The memory blocks themselves will have headers and a pointer back
to the free list to which the block belongs.

When a process needs memory for tables or working parameters, it
allocates normal private storage from the kernel. If a process
wants to send a message to another process, the storage for the
message should be allocated from normal private storage. All
memory needs aside from network-bound data and headers should be
allocated from normal private storage.

139-0016-00 Bridge Communications, Inc. Page 5-11

Volume One ESPL Software Technical Reference Manual

5.2.8 Buffer Descriptor Data Structure

A buffer descriptor is used to logically associate several 0
discontiguous segments of a packet, or to define a subsegment of
a larger buffer. The buffer itself has a use count, which is
incremented every time another buffer descriptor is created that
points to the buffer or to any fragment of the buffer. A buffer
is fully described by a linked list of these buffer descriptors,
which are pointer structures. Each pointer structure has an
address and a length, pointing to a contiguous memory block of at
least the recorded length. Collectively, the pointer structures
in the buffer descriptor define the logical buffer.

Buffer descriptors are required because the data link layer can
perform a gather read; from the buffer descriptor information,
the data link layer can locate and deliver the discontiguous
pieces to the physical layer as an uninterrupted stream of bits.

Copying data is a costly task which downgrades performance. The
ability to chain headers onto data at each layer of protocol dur­
ing transmission is key to the notion of buffer descriptors, and
the ability of reliable protocol layers to retain an image of the
packet (in case a retransmission is necessary) depends on this
logical view of a buffer. The kernel is aware of buffer descrip­
tors, and can make a copy of an original buffer descriptor for a
process if necessary.

The buffers themselves are allocated from storage by the kernel,
and ownership is transferred to the buffer allocator by linking
the buffer into a circular list in the structure containing the
buffer descriptor.

Page 5-12 Bridge Communications, Inc. 09-0016-00

o

c

c

ESPL Software Technical Reference Manual Volume One

5.3 Process Management Procedure Calls

The ESPL architecture views protocol entities as separate
processes. For some protocols (e.g., IDP), a single process is
sufficient; for other protocols, there must be a separate process
for each session. As sessions are established and disconnected,
processes are dynamically created and deleted. Processes of the
same protocol type share code, but each possesses its own IPC
mailboxes (maintained on its behalf by the kernel) and dynamic
data structures. There are two types of processes: those that
share a stack with all other processes of the same priority, and
those that have their own stack.

The following subsections describe the procedure calls used in
process management.

09-0016-00 Bridge Communications, Inc. Page 5-13

-~- -- ---

Volume One ESPL Software Technical Reference Manual

5.3.1 The Procreate Call

The procreate procedure call is used for dynamic creation of ~
processes. The parameter "initentry" is the address at which
this process will start execution when it becomes ready. The
parameter "initarg" can be either a parameter passed by value, or
a pointer to a parameter list. The specified process name is
placed in the PCB for this process, and the specified priority
will be assigned to it. The parameter "mode" specifies whether
the process has user or supervisor privilege, and optionally that
the process is a shared-stack process. 'privilege is a 68~~~­
dependent security mechanism. Supervisor privilege allows a pro-
cess to execute all instructions and operations; user privilege
restricts a process to a subset of instructions and operations.
A detailed description of user and supervisor privilege is pro-
vided in reference [l~], Section 5.3.

Shared stack processes have two entry points: an initial entry
point specified by "initentry", and a main entry point specified
by "mainentry". The routine "mainentry" has the following argu­
ments:

mainentry{ msgptr, mboxid)
MSG *msg;
MBID mboxid;

Shared-stack processes must never issue blocking kernel calls,
such as semawait, breceive or sched, even during initialization. C .. :.)
Shared-stack processes return back to the kernel on completion of -
both initialization and message processing, and the kernel calls
them again at mainentry to process the next message.

Non-shared-stack processes have a single entry point, specified
by the parameter "initentry". These processes never return back
to the kernel from initentry until they are ready to exit.

All processes are created in the suspended state.

The kernel returns either a pointer to the new process's PCB, or
an error code if the request fails. Each new process is created
with one default mailbox, whose mailbox ID may be obtained via
the MYMBID procedure call (refer to Section 5.3.6).

"C" Declaration:

PCB *

int
long
char *
ushort
short
int

Page 5-14

procreate{ initentry, initarg, p name,
priority, mode, mainentry

(*initentry) ();
initarg;
p_name
priority;
mode
(*ma i nentry) () ;

Bridge Communications, Inc. 09-0016-00

o

c

ESPL Software Technical Reference Manual Volume One

Input Parameters:

initentry Initial entry point of process.

initarg An argument or argument pointer to initentry.

Pointer to a string consisting of the process name
followed by a zero.

priority Process priority, in the range 0-7 (0 is highest).

mode Mode (USER/SUPER + SHARESTACK).

mainentry
Main entry point, applicable only if this is a
shared-stack process.

Output Parameters:

PCB Pointer to PCB of new process. On error, a NULL
pointer is returned.

5.3.2 The Prorun Call

The prorun procedure call causes the specified suspended process
to move to the ready list.

"c" Declaration:

short
PCB *

prorun (p)
Pi

Input Parameters:

p Pointer to PCB of process to be made runnable.

Error Codes:

NoError No error detected (0).

InvPCB Process does not exist (-1).

procWaiting
Process is waiting (-2).

09-0016-00 Bridge Communications, Inc. Page 5-15

Volume One ESPL Software Technical Reference Manual

5.3.3 The ProPriority Call

The propriority call changes the priority of the specified pro- ~~
cess. The highest-priority ready process is then resumed.

A process may use this call to deschedule itself. For example,
the SPP parent process (running at a specific priority) can
create a child process with the same priority and then lower its
own priority, thus effectively descheduling itself and relinqu­
ishing the CPU to the child process •

.. c .. Declaration:

short propriority(p, priority)
PCB * p;
ushort priority;

Input Parameters:

p Pointer to the PCB of the process.

priority New priority of process, in the range 0 through 7.

Error Codes:

NoError No error detected (0) •

InvPCB I n val i d PCB (-1) •

InvOp Invalid operation if called by a shared-stack pro­
cess (-2).

InvPriority
Invalid priority (-2).

5.3.4 The Sched Call

The sched procedure
quish the CPU to
process of the same
switch will occur •

call is used when a process wishes to relin­
the next process of the same priority. If no
priority is currently ready, no context

.. c .. Declaration:

sched ()

Input Parameters: None

Error Codes: None

Page 5-16 Bridge Communications, Inc. 09-00.16-00

o

ESPL Software Technical Reference Manual Volume One

5.3.5 The MYPID Macro

c=~. The MYPID call supplies the calling process with its own process
ID. This call is implemented as a macro for efficiency.

"C" Declaration:

PID MYPID ()

Input Parameters: None

Output Parameters:

PID Process 10 of current process.

Error Codes: None

5.3.6 The MYMBIO Macro

The MYMBID call supplies the calling process with the ID of its
default mailbox. The call is implemented as a macro for effi­
ciency.

"C" Declaration:

MBIO MYMBID ()

Input Parameters: None

Output Parameters:

mbid Default mailbox 10 of current process.

Error Codes: None

09-0016-00 Bridge Communications, Inc. Page 5-17

Volume One ESPL Software Technical Reference Manual

5.3.7 The SETDATA and MYDATA Macros

When a protocol consists of multiple processes, all processes of <=)
the same type share the same code. However, if a process needs
to have separate data sections, it needs a way of associating the
data with its process id rather than with the code space. To do
this, a process allocates storage from the kernel via the "allo-
cate" procedure call, then informs the kernel that the storage is
a "global" data area. Then, when the process resumes after
blocking it can orient itself towards the data by requesting the
value of its global data pointer from the kernel.

Two procedure calls are used; one call sets the pointer, and the
other returns an already set pointer. These calls are imple­
mented as macros for efficiency.

Set Data Pointer "c" Declaration:

SETDATA(dataptr
ADDRESS dataptr;

Input Parameters:

dataptr Pointer to global data area.

Output Parameters: None

Error Codes: None

Return Data Pointer "c" Declaration:

ADDRESS MYDATA ()

Input Parameters: None

Output Parameters:

dataptr Pointer to global data area.

Error Codes:

None Macros typically do not return error codes. Note
that if the SETDATA macro has not previously been
called, the pointer returned by the MYDATA macro
wi 11 be invalid.

Page 5-18 Bridge Communications, Inc. 09-0016-00

---~---~------------

o

c

c

ESPL Software Technical Reference Manual Volume One

5.3.8 The Mexit Call

The mexit call is used for voluntary surrender of existence. The
kernel will reclaim any dynamic resources belonging to the pro­
cess (mailboxes, queued messages and stack). Any dynamic memory
must be freed by the process before calling mexit.

The process may inform its communicants of its termination; the
kernel does not do so. Any process which continues to send the
terminated process messages will know by the return code from the
sendmsg call that the process no longer exists.

"C" Declaration:

mexi t ()

Input Parameters: None

Output Parameters: None

Error Codes: None

09-0016-00 Bridge Communications, Inc. Page 5-19

Volume One ESPL Software Technical Reference Manual

5.4 Interprocess Communication Procedure Calls

Processes communicate with the kernel via procedure calls, but 0
they communicate with other processes via messages to a mailbox.
Any process may send a message to a mailbox, but only the owner
of a mailbox can receive a message from the mailbox.

All messages have a standard message header, which may be fol­
lowed by any number of bytes of data. The format of the header
is as follows:

#define MSG struct MSG
MSG {

MSG *m fwd; /* kernel queue pointers */
MSG *m-bwd;
PID m sender; /* process ID of sender */
BD *m_bufdes; /* ptr to buffer descriptor */
short m_prio; /* message priority */
short m_type; /* user message type */

The following subsections describe the procedure calls used for
interprocess communication.

5.4.1 The Mboxcreate Call

The mboxcreate call requests that a mailbox be created for the
process. The kernel returns the mailbox identifier. Mailboxes 0
are always created with a state of "on"; in order to not receive
from the newly created mailbox, the requestor must issue an mbox-
off call.

To create a mailbox with an infinite depth, set the parameter
"qdepth" equal to zero.

"c" Declaration:

MBID
ushort

mboxcreate{ qdepth)
qdepth;

Input Parameters:

qdepth Depth of message queue.

Output Parameters:

mbid ID of newly created mailbox (or NULL if no more
mailboxes are available).

Page 5-20 Bridge Communications, Inc. 09-0016-00

o

(

ESPL Software Technical Reference Manual Volume One

5.4.2 The Mboxdelete Call

The mboxdelete call deletes the specified mailbox. The request­
ing process must be the owner of the mailbox. Any queued mes­
sages will be freed •

.. c .. Declaration:

short
MBID

mboxde1ete(mboxid)
mboxid;

Input Parameters:

mboxid Identifies the mailbox to be deleted.

Output Parameters:

Error code

Error Codes:

NoError No error detected (0).

InvMbox No such mailbox (-1).

NotYourMbox
Requesting process is not mailbox owner (-2).

09-0016-00 Bridge Communications, Inc. Page 5-21

Volume One ESPL Software Technical Reference Manual

5.4.3 The Sendmsg Call

The sendmsg call sends the message pointed to by "msgptr" to the
mailbox specified by "mboxid".

There are two priorities of message (URGENT and NORMAL), plus two
independent delivery requests called MUSTDELIVER and FAST. The
priority is specified in the field m prio as the binary OR of the
queue priority and the delivery -requests. The MUSTDELIVER
request means that even if the mailbox is exactly full, the mes­
sage must be delivered. However, a subsequent MUSTDELIVER mes­
sage will fail if the mailbox is still over-full. The FAST
request means that the receiving process is queued at the front
of its run queue, so that it will be the next process of its
priority to be run.

A buffer may be passed to the receIvIng process at the same time
as the message by passing the buffer descriptor of the buffer in
the m bufdes field. Note that this method must not be used to
transfer ownership of storage allocated using the "allocate"
call; it may only be used to transfer buffer memory referenced by
buffer descriptors. If a process wants to inform another process
of the location of allocated storage, it must pass the pointer in
the text of the message.

If no buffer is passed, the m bufdes pointer should be set to
NULL.

"C" Declaration:

short
MSG *
MBID

sendmsg(msgptr, mboxid)
msgptr;
mboxid;

Input Parameters:

msgptr Pointer to the message being sent.

mboxid 10 of mailbox to which message is being sent.

Output Parameters:

Error code

Page 5-22 Bridge Communications, Inc. 09-0016-00

- ~~---- ----------------~~-~-------~---~-~ ~-~--

o

o

o

('"
"

ESPL Software Technical Reference Manual Volume One

Error Codes:

NoError No error detected (0).

InvMbox Invalid mailbox (-1).

InvBD Invalid BD (-2).

InvPriority
Invalid priority (-3).

MBFul1 Mailbox already full (-4).

5.4.4 The Mboxon Call

The mboxon call turns on the specified mailbox, indicating that
the process is willing to receive messages from the mailbox.

"C" Declaration:

short
MBID

mboxon(mboxid)
mboxid;

Input Parameters:

mboxid Id of mailbox to be turned on.

Output Parameters:

Error code

Error Codes:

NoError No error detected (0).

InvMbox Invalid mailbox (-1).

NotYourMbox
Requesting process is not mailbox owner (-2).

09-0016-00 Bridge Communications, Inc. Page 5-23

Volume One ESPL Software Technical Reference Manual

5.4.5 The Mboxoff Call

The mboxoff call turns off the specified mailbox, indicating that ~
the process is not willing to receive messages from the mailbox.

"c" Declaration:

short
MBID

mboxoff(mboxid);
mboxid;

Input Parameters:

mboxid Id of mailbox to be turned off.

Output Parameters:

Error code

Error Codes:

NoError No error detected (0).

InvMbox Invalid mailbox (-1).

NotY'ourMbox
Requesting process is not mailbox owner (-2).

Page 5-24 Bridge Communications, Inc. 09-0016-00

(j

o

ESPL Software Technical Reference Manual Volume One

5.4.6 The Receive Call

The receive call dequeues the first message found in any of the
process's mailboxes that are turned on, and returns a message
pointer. If no messages are queued, the message "NoMessage" is
returned.

In "C", variables may be assigned registers for efficiency. How­
ever, a pointer to a register is always NULL; when this call is
used, a "msgptr" and a "mboxid" may point to memory (either stack
or local) but not to a register.

The message header contains the process 10 of the sending pro­
cess, the priority of the message and the buffer descriptor
pointer.

"C" Declaration:

short
MSG
MBID

receive(amsgptr, amboxid)
**amsgptr;
*amboxid;

Input Parameters:

amboxid Address for returning message pointer.

amsgptr Address for returning mailbox 10.

Output Parameters:

Error code

Error Codes:

NoError No error detected (0).

NoMessage No message in mailbox (-3).

09-0016-013 Bridge Communications, Inc. Page 5-25

Volume One ESPL Software Technical Reference Manual

5.4.7 The Breceive Call

The breceive call waits for a message to arrive at any of the c:)
process's mailboxes which are set to "on", and returns message
pointer and mailbox 10. The process is suspended until a message
is received.

The error code "InvOp" is returned if a shared-stack process
issues this call. The pointers "amsgptr" and "amboxid" must
point to memory, either stack or local, and not to a register.

The message header contains the process 10 of the sending pro­
cess, the priority of the message and the buffer descriptor
pointer.

"C" Declaration:

short
MSG
MBID

breceive(amsgptr, amboxid)
**amsgptr;
*amboxid;

Input Parameters:

amsgptr Address for returning message pointer.

amboxid Address for returning mailbox 10.

Output Parameters:

Error code

Error Codes:

NoError No error detected (0).

InvOp Invalid operation (-2).

5.4.8 Blocking Message Reception, Shared Stack Processes

Whenever a shared-stack process returns from an entry point back
to the kernel, logic similar to the breceive call is executed to
wait for a message to arrive at any of the process's mailboxes
that are set to "on". The process is resumed by calling its main
entry point with arguments as follows:

mainentryt(msgptr, mboxid)
MSG *msgptr;
MBID mboxid;

This call returns a pointer to the received message, and the id
of the mailbox from which "msgptr" was dequeued.

Page 5-26 Bridge Communications, Inc. 09-0016-00

c

o

ESPL Software Technical Reference Manual Volume One

5.4.9 The Notifynfull Call

The notifynfull call is used after a
the specified mailbox is full.
pointed to by the parameter "msgptr"
default mailbox when the mailbox
longer full.

sendmsg has failed because
The call saves the message
and sends it to the caller's
specified by "mboxid" is no

The message header must contain valid priority and buffer
descriptor fields.

If the specified mailbox has a depth of zero (infinite depth),
the error code "MBNFull" is returned.

"CD Declaration:

short
MSG
MBID

notifynfull(msgptr, mboxid)
*msgptr;
mboxid;

Input Parameters:

msgptr Pointer to message to be sent when mailbox becomes
not full.

mboxid Id of full mailbox.

('- Output Parameters:

Error code

Error Codes:

NoError No error detected (0).

InvMbox Invalid mailbox (-1).

InvBD Invalid buffer descriptor (-2).

MBNFul1 Mailbox not full (-3).

09-0016-00 Bridge Communications, Inc. Page 5-27

Volume One ESPL Software Technical Reference Manual

5.4.10 The Stopnfull Call

The stopnfull call cancels a previous notifynfull request by 0
dequeuing the message from the specified mailbox's notifynfull
list, or from the caller's default mailbox if the notification
message has already been sent.

If no such message is found, the message "NoMessage" is returned.

"CO Declaration:

short
MSG *
MBID

stopnfull(msgptr, mboxid)
msgptr;
mboxid;

Input Parameters:

msgptr Pointer to message to be sent when mailbox becomes
not full.

mboxid Id of full mailbox.

Output Parameters:

Error code

Error Codes:

NoError No error detected (0).

InvMbox Invalid mailbox (-1).

NoMessage No message found (-3).

Page 5-28 Bridge Communications, Inc. 09-0016-00

o

o

~-.~.'.- .. -..... -.......... '" .. "." , .. " .. ,.,.--.... ".~"~ .. -... , .•.... "- .. -".-.~-~

(".

.'

('

ESPL Software Technical Reference Manual

5.4.11 The Testmbox Macro

The testmbox macro tests the mailbox specified by
any messages queued at it. The kernel returns the
sages queued at the box. If a query is made of a
does not belong to the calling process, the count
be negative •

.. c .. Declaration:

short
MBID

testmbox(mboxid)
mboxid;

Input Parameters:

mboxid ID of mailbox being tested.

Output Parameters:

Volume One

"mboxid"
count of
mailbox
returned

for
mes­
that
will

count Number of messages queued at the mailbox. A nega­
tive count is returned on error.

Error Codes:

InvMbox Invalid mailbox (-1).

NotYourMbox
Requestor is not the owner of the mailbox (-2).

09-0016-00 Bridge Communications, Inc. Page 5-29

Volume One ESPL Software Technical Reference Manual

5.4.12 The Regmbox Call

The regmbox call registers a mailbox ID under a string name in ~
the directory of well-known mailboxes •

.. c .. Declaration:

short regmbox(pname, mbid)
char * pname;
MBID mbid;

Input Parameters:

pname Process name (zero-terminated string, no more than
seven characters).

mbid Mailbox ID.

Output Parameters:

Error code

Error Codes:

NoError No error detected (0).

InvMbox Invalid mailbox ID (-1).

NoRoom No room in registration table (-2).

TooLong Name too long (-3).

Page 5-30 Bridge Communications, Inc. 09-0016-00

o

o

c

ESPL Software Technical Reference Manual Volume One

5.4.13 The Resolve Call

The resolve call is used to obtain the mailbox ID represented by
a string name in the directory of well-known mailboxes •

.. c .. Declaration:

MBID resolve(pname)
char * pname;

Input Parameters:

pname Name to resolve, null terminated string no more
than seven characters long.

Output Parameter:

mboxid

Error Codes:

NoEntry

09-0016-00

Mailbox 1D corresponding to resolved name, or
error code.

Mailbox entry not found (-1).

Bridge Communications, Inc. Page 5-31

Volume One ESPL Software Technical Reference Manual

5.5 Semaphore Procedure Calls

Semaphores are used to guarantee a process exclusive access to a 0
shared data structure. Refer to Section 5.2.3 for a description
of the use of semaphores.

5.5.1 The Semacreate Call

The semacreate call creates a semaphore. The integer returned is
an identifier for the semaphore. The identifier should be stored
as part of the data structure it is protecting, so that each pro­
cess interested in the structure can know the ID of the semaphore
protecting it. The kernel manages a queue of processes blocked
waiting for the semaphore.

"c" Declaration:

SEMAID semacreate(count)
ushort count;

Input Parameters:

count Number of processes allowed access to the sema­
phore (typically one).

Output Parameter:

SemaID Nonzero semaphore identifier, or error code.

Error Codes:

Error No semaphores available (-1).

Page 5-32 Bridge Communications, Inc.

o

o

c.

ESPL Software Technical Reference Manual Volume One

5.5.2 The Sematest Call

The sematest call returns the availability of the semaphore. The
result is not guaranteed to remain accurate. The count at the
semaphore may change after the semaphore is tested, since there
is no semaphore on the semaphore.

"C" Declaration:

BOOL sematest(semaid)
SEMAID semaid;

Input Parameters:

SemaId ID of semaphore.

Output Parameters:

Result Result of test (true = 1, false = 0).

Error Codes: None

5.5.3 The Semawait Call

The semawait call tests the availability of a semaphore and also
blocks the requesting process if necessary. If the semaphore use
count is zero, the process is blocked and queued at the sema­
phore. Otherwise, the semaphore count is decremented and the
process continues with access to the data structure granted.

"C" Declaration:

short
SEMAID

semawait(semaid)
semaid;

Input Parameters:

SemaId ID of semaphore.

Output Parameters:

Error code

Error Codes:

NoError No error detected (0).

NoSuchSema Specified semaphore does not exist (-1).

InvOp Invalid if called by shared-stack process (-2).

InvSema Invalid semaphore identifier (-3).

09-0016-00 Bridge Communications, Inc. Page 5-33

Volume One ESPL Software Technical Reference Manual

5.5.4 The Semarelease Call

The semarelease call allows other processes waiting at the sema- ~
phore to get the semaphore and thus become ready.

"c" Declaration:

short
SEMAID

semarelease(semaid)
semaid;

Input Parameters:

Semald ID of semaphore.

Output Parameters:

Error code

Error Codes:

NoError No error detected (0).

NoSuchSema
Specified semaphore does not exist (-1).

InvSema Invalid semaphore identifier (-3).

Page 5-34 Bridge Communications, Inc.

~--------~~~--------------

o

o
"9-- 0016 - ""

ESPL Software Technical Reference Manual Volume One

5.6 Memory Management Procedure Calls

(~ Within the Bridge kernel, memory is viewed in two ways: storage
memory and buffer memory. The following subsections describe the
procedure calls used to manipulate these types of memory.

C:

5.6.1 The Allocate Call

The allocate procedure call requests a block of memory of
least "nbytes" in length from the list of free blocks.
parameter "area" indicates whether the memory is to come
private memory or shared memory.

"CO Declaration:

caddr t allocate(nbytes, area)
short- nbytes;
short area;

Input Parameters:

nbytes Number of bytes to allocate.

area Type of memory (PRIVATE or SHARED).

Output Parameters:

ptr Pointer to memory. A NULL pointer is returned
no free memory is available.

at
The

from

if

09-0016-00 Bridge Communications, Inc. Page 5-35

Volume One ESPL Software Technical Reference Manual

5.6.2 The Mfree Call

The mfree call returns to the list of free blocks the bl~ck ~
pointed to by the parameter "memptr".

"c" Declaration:

mfree(memptr
caddr_t memptr;

Input Parameters:

memptr Pointer to the block being freed.

Output Parameters: None

Error Codes: None

5.6.3 The BLOCKLEN Macro

The BLOCKLEN macro returns the length of the specified memory
block. A scalar variable "x" is assigned the block length of the
block to which Up" points.

"C" Declaration:

short BLOCKLEN(x, p)
short X;
caddr t p;

Input Parameters:

X Scalar variable.

p Pointer.

Output Parameters:

length Length of block to which Up" points.

Error Codes: None

Page 5-36 Bridge Communications, Inc.

-- ---------------------------------------

09-0016-00

o

ESPL Software Technical Reference Manual

5.6.4 The Getbuf Call

The getbuf call allocates a buffer of at
length from the list of free buffers.
buffer descriptor for the buffer and returns
descriptor.

Volume One

least the specified
The kernel sets up a

a pointer to the

If there are no buffers or buffer descriptors, the pointer
returned is NULL.

"C" Declaration:

BD *
short

getbuf(length)
length;

Input Parameters:

length Size of buffer to get.

Output Parameter:

ptr

09-0016-00

Pointer to the buffer descriptor. A NULL pointer
is returned if no buffers or buffer descriptors
are available.

Bridge Communications, Inc. Page 5-37

Volume One ESPL Software Technical Reference Manual

5.6.5 The Joinbuf Call

The joinbuf call logically appends buffer 2 (bd2) to buffer 1 ~
(bdl) by pointing the last segment pointer of bdl at bd2. This
makes bdl point to the entire buffer. The descriptor bd2 must
never be used to refer to memory again and should be freed using
the freebuf call (refer to Section 5.6.12).

"C" Declaration:

short
BD

joinbuf(bdl, bd2)
*bdl, *bd2;

Input Parameters:

bdl Buffer descriptor for first buffer.

bd2 Buffer descriptor for second buffer.

Output Parameters:

Error code

Error Codes:

NoError No error detected (0).

Error Invalid parameter (-1).

Page 5-38 Bridge Communications, Inc.

-------------------~------- --~---

09-0016-00

c

o

ESPL Software Technical Reference Manual Volume One

5.6.6 The Prependbuf Call

The prependbuf call attempts to add to the physical beginning of
the specified buffer the specified number of bytes. This can
only be done if there are "length" unused bytes at the beginning
of the buffer. If it is impossible to allocate contiguous
memory, the kernel will link a buffer of "length" bytes to the
current buffer using the getbuf and joinbuf calls to logially add
"length" bytes to the beginning of the buffer.

The kernel returns a pointer to the new BD, which may be the same
as the old BD, with address and length fields updated.

"C" Declaration:

BD *
BD *
short

prependbuf(bd, length)
bd;
length;

Input Parameters:

bd Pointer to buffer descriptor of original buffer.

length Required additional length to be prepended.

Output Parameters:

ptr

09-0016-00

Pointer to new buffer descriptor. A NULL pointer
is returned if no buffers or 8Ds are available.

Bridge Communications, Inc. Page 5-39

Volume One ESPL Software Technical Reference Manual

5.6.7 The Appendbuf Call

The appendbuf call logically appends a buffer by adding space at ~
the end. The kernel attempts to add "length" bytes to the physi-
cal end of the buffer. This can only be done if there are
"length" unused bytes at the end of the buffer. If it is unable
to allocate contiguous memory, the kernel will link a buffer of
"length" bytes to the current buffer using the getbuf and joinbuf
calls.

In either case, the original buffer descriptor pointer still
points to the extended buffer.

"C" Declaration:

short
BD *
short

appendbuf(bd, length)
bd;
length;

Input Parameters:

bd Pointer to buffer descriptor of original buffer.

length Required additional length to be prepended.

Output Parameters:

Error Code

Error Codes:

No Extend Bad parameter(s), or no buffers available (-1).

CheapExtend
Append was contiguous (0).

ExpensiveExtend
Append required a joinbuf (1).

Page 5-40 Bridge Communications, Inc. 09-0016-00

o

o

(-'

ESPL Software Technical Reference Manual Volume One

5.6.8 The Padbuf Call

The padbuf call logically pads a buffer by adding one byte to the
length. This can only be done if there is one unused byte at the
end of the buffer.

In the current implementation, this call is used only by lOP to
pad a buffer to even length •

.. c .. Declaration:

short
BD *

padbuf(bd)
bd;

Input Parameters:

bd Pointer to buffer descriptor of original buffer.

Output Parameters:

Error code

Error Codes:

CheapExtend
Padbuf call was successful, no error detected (0).

NoExtend Bad parameter, or call failed because no buffer
space was available (-1).

09-0016-00 Bridge Communications, Inc. Page 5-41

Volume One ESPL Software Technical Reference Manual

5.6.9 The Copybuf Call

The copybuf call logically copies the buffer described by "bd" by
creating a new buffer descriptor that points to it. This incre­
ments the usage count on the buffer pieces. The pointer to the
new BD is returned.

If there are no buffer descriptors available, the pointer
returned will be NULL.

"C" Declaration:

BD *
BD *

copybuf(bd)
bd;

Input Parameters:

bd Pointer to buffer descriptor of original copy.

Output Parameters:

ptr Pointer to buffer descriptor of new copy. A NULL
pointer is returned if no buffers or BDs are
available.

5.6.10 The Unprependbuf Call

The unprependbuf call logically deletes "length" bytes from the
front of a buffer. The kernel returns the pointer to the new Bd,
which may be the same as the input BD.

"C" Declaration:

BD *
BD *
short

unprependbuf(bd, length)
bd;
length;

Input Parameters:

bd Pointer to the buffer descriptor.

length Number of bytes to be deleted.

Output Parameters:

ptr Pointer to resulting BD (may be same as old BD).

Page 5-42 Bridge Communications, Inc.

o

o

(".

/

ESPL Software Technical Reference Manual Volume One

5.6.11 The Unappendbuf Call

The unappendbuf call logically deletes "length" bytes from the
end of a buffer.

"C" Declaration:

BD *
BD *
short

unappendbuf(bd, length)
bd;
length;

Input Parameters:

bd Pointer to the buffer descriptor.

length Number of bytes to be deleted.

Output Parameters:

Error code

Error Codes:

NoError No error detected (0).

ErrParm Bad parameter (-1).

5.6.12 The Freebuf Call

The freebuf call logically frees the buffer by freeing the BD.
If this was the only BD with a link to the buffer, the buffer is
also released to the list of free buffers •

.. c .. Declaration:

freebuf(bd
BD * bd;

Input Parameters:

bd Pointer to the descriptor of the buffer to be
freed.

Output Parameters: None

Error Codes: None

09-0016-00 Bridge Communications, Inc. Page 5-43

Volume One ESPL Software Technical Reference Manual

5.6.13 The Bufinfo Call

The bufinfo call returns information about the specified buffer ~
at the specified offset into the buffer. The returned status
flag indicates whether or not this block is the last block of the
buffer.

"c" Declaration:

short bufinfo(
BD * bd;
short offset;
caddr t *addrp;
short- *lenp;

bd, offset, addrp, lenp)

Input Parameters:

bd

offset

addrp

lenp

Pointer to the buffer descriptor.

Point in the buffer at which to resolve physical
address.

Address to which to return physical address infor­
mation.

Address to which to return length information.

Output Parameter:

status

Error Codes:

Error

Page 5-44

Indicates whether or not this block is last in
buffer (e.g., LASTSEG or NOTLASTSEG), or error
code.

Invalid parameter(s) (-1).

Bridge Communications, Inc. 09-0IH6-00

C··'\.
J

()

c

ESPL Software Technical Reference Manual Volume One

5.6.14 The Buflen Call

The buflen call extracts the buffer segment lengths from all
buffer descriptors in the chain of buffer descriptors that start
with "bd", and returns the sum of these lengths.

"C" Declaration:

short
SD *

buflen(bd)
bd;

Input Parameters:

bd Pointer to a buffer descriptor.

Output Parameters:

number Total number of bytes in all buffer segments;
returns length = zero on error.

Error Codes: None

5.6.15 The BUFADDR, BUFLENC and BUFCONT Macros

Three macros are provided for retrieving buffer information.

The BUFADDR macro returns the address of the start of the buffer.

"C" Declaration:

caddr t BUFADDR(bd)
BD * bd;

The BUFLENC macro returns the length of the first contiguous seg­
ment in the buffer.

"C" Declaration:

short
BD *

BUFLENC(bd)
bd;

The BUFCONT macro returns a boolean variable in answer to the
query "ls this buffer contiguous?".

"C" Declaration:

BOOL
BD *

09-0016-00

BUFCONT(bd)
bd;

Bridge Communications, Inc. Page 5-45

._----------------

Volume One ESPL Software Technical Reference Manual

5.7 Interrupt Service Procedure Calls

The kernel provides the actual interrupt handler for any armed 0
interrupts. However, the user process can register an interrupt,
and thereby bind a "C" routine to the interrupt server. The fol-
lowing subsections describe interrupt service procedure calls.

5.7.1 The Disable Call

The disable call disables interrupts on the MC68e~0.

"C" Declaration:

int di sable ()

Input Parameters: None

Output Parameters:

imask Previous mask value of the SR register.

5.7.2 The Enable Call

The enable call re-enables interrupts, using as an imask value
the function return value from a previous disable call. (-~ j
"C" Declaration:

enable (imask)
short imask;

Input Parameters:

imask The interrupt mask assigned to the SR register.

o
Page 5-46 Bridge Communications, Inc. 09-0016-00

ESPL Software Technical Reference Manual Volume One

5.7.3 The Regintrpt Call

(,': The regintrpt call registers an interrupt by vector and 10. An
interrupt handler is bound at call time to the specified func­
tion. Because an ID is established and used while the interrupt
handler is running, these routines can use system services.

If messages are sent (using sendmsg) while this interrupt is
being served, the message sender is identified as this "intid".

The actual interrupt handler is built in the kernel's ITABLE.

nCo Declaration:

regintrpt(intid, funcp, vector}
INTID intid;
int (*funcp}();
caddr t *vectorj

Input Parameters:

intid The unique ID of this interrupt.

funcp The "CO function bound to the interrupt server.

vector The hardware interrupt vector address (see refer­
ence [10], Table 5-2, for a list of legal values).

Output Parameters: None

5.7.4 The MYINTID Macro

This macro is used to obtain the exact interrupt ID recorded by
the interrupt dispatch routine. The macro is typically called by
interrupt handlers (e.g., the SIO Agent interrupt code) in cases
where multiple SIO agents exist in a single system. The result­
ing ID is used as an index into a shared table, assuring that an
agent locates its own entry, not one belonging to another agent.

"C" Declaration:

long MYINTID ()

Input Parameters: None

Output Parameters:

intid ID of interrupt currently being serviced.

09-0016-00 Bridge Communications, Inc. Page 5-47

Volume One ESPL Software Technical Reference Manual

5.8 Real-Time Clock Procedure Calls

The MCPU contains a real-time clock. The following subsections <=;
describe the procedure calls used for time of day and timeout
facilities. These calls are typically used only for testing;
most normal timer-related functions can be performed by alarm
messages.

5.8.1 The Time of Day Macros

Five macros are provided for time of day clock functions.

The GETTIME secs macro returns the value of the time of day
clock, measured in seconds •

.. c .. Declaration:

long GETTIME_secs()

The SETTIME secs macro sets the time of day clock to the speci­
fied time, measured in seconds •

.. c .. Declaration:

SETTIME secs(time
long - time;

The GETTIME msec macro returns the value of the millisecond field
of the time of day clock. This is an integer in the range 0-999 •

.. c .. Declaration:

short

The GET MSEC COUNTER macro returns the number of milliseconds
since the system was booted.

"c" Declaration:

long

The SET MSEC COUNTER macro sets the number of milliseconds since
the system was booted •

.. c .. Declaration:

SET MSEC COUNTER (new)
long - new;

Page 5-48 Bridge Communications, Inc. 09-0016-00

C·· i .J

o

<:

ESPL Software Technical Reference Manual Volume One

5.8.2 The Getetime Call

The getetime call fills in the specified elapsed time (ETIME)
structure. A hardware source interval timer is used to provide
the highest possible resolution.

Getetime "CO Declaration:

getetime(timer
ETIME *timer;

Input Parameters:

timer Pointer to the ETIME structure.

Output Parameters: None

The "CO representation of the ETIME structure is as follows:

typedef struct etime {
long
long
ushort
short

} ETIME;

et seconds;
et-cycles;
et-amd2;
et:pad;

The fields in the structure are as follows:

et seconds Elapsed time, in seconds.

et_cycles Elapsed time, in cycles. There are 20000 cycles
per tic, and 400000 cycles per second.

et amd2 The exact timer count reading from the AMD9513
timer/counter chip, channel 2.

Pad to make the structure 10 bytes long.

5.8.3 The Delta timer Call

The delta timer call is used to obtain the difference between two
specified-timers.

"CO Declaration:

delta_timer (dt, timerl, timer2
ETIME *dt, *timer1, *timer2;

09-0016-00 Bridge Communications, Inc. Page 5-49

Volume One ESPL Software Technical Reference Manual

Input Parameters:

dt Pointer to the location into which the kernel is
to write the resultant delta time, calculated as
timer2 minus timerl.

timerl Pointer to the first ETIME structure.

timer2 Pointer to the second ETIME structure.

Output Parameters: None

Error Codes: None

An event can be timed and reported as follows, where e(} is the
event:

{

}

ETIME dt, tl, t2;
getetime(&tl);
e();
getetime(&t2 };
delta timer(&dt, &tl, &t2 };
print:timer ("time to do e () is

5.8.4 The Sum timer Call

. " . , &dt);

The sum timer call adds the elapsed time since the time stored in
"timerl" to the time stored in "ttimer".

"C" Declaration:

sum timer(ttimer, timerl
ETIME *ttimer, *timerl;

Input Parameters:

ttimer The total accumulated elapsed time.

timerl The current elapsed time.

Output Parameters: None

Error Codes: None

Page 5-5" Bridge Communications, Inc.

o

o

o

ESPL Software Technical ~eference Manual Volume One

5.8.5 The Print timer Call

The print timer call displays the contents of the specified timer
on the monitor screen. Refer to Section 5.8.3 for an example of
how print_timer is used.

print timer (s, timer
char" s;
ETIME * timer;

Input Parameters:

s Descriptive string to be printed.

timer Elapsed time (in the format hh:mm:ss.m.u).

Output Parameters: None

Error Codes: None

5.8.6 The Setalarm Call

The setalarm message passes a pointer to an alarm message which
is sent to the requestor's default mailbox when the alarm goes
off.

"C" Declaration:

short
AMSG

setalarm(msgptr)
*msgptr;

Input Parameters:

msgptr Pointer to alarm message, or error code.

Error Codes:

NoError No error detected (0).

Error Invalid timeout interval (-1).

InvBD Invalid buffer descriptor (-2).

The message itself must have the format:

itdefine AMSG
AMSG {

struct AMSG

1* message header MSG
long

a msg;
a=timer; 1* timeout, in msec.

*1
*1

}

Any amount of data may follow the alarm message header. The mes­
sage header fields "m_prio" and lim bufdes" must be valid.

09-0016-00 Bridge Communications, Inc. Page 5-51

Volume One ESPL Software Technical Reference Manual

5.8.7 The Testalarm Call

The testalarm call returns the number of milliseconds until the ~
alarm goes off.

"c" Declaration:

short
AMSG

testalarm(msgptr)
*msgptr;

Input Parameters:

msgptr Pointer to alarm message.

Output Parameters:

time Remaining time on alarm.

5.8.8 The Stopa1arm Call

The stopalarm call dequeues the specified alarm message from the
pending alarm list, or from the client's default mailbox if the
alarm message has already been sent.

If no such message is found, an error code is returned.

"c" Declaration:

short
AMSG

stopalarm(msgptr)
*msgptr;

Input Parameters:

msgptr Pointer to alarm message.

Output Parameters:

Error code

Error Codes:

NoError No error detected (0).

NoMessage No such alarm message (-3).

page 5-52 Bridge Communications, Inc. 09-0016-00

C' .i, •... I

('-' ,

...

('"

.....

ESPL Software Technical Reference Manual Volume One

5.8.9 The Clockon, Clockoff and Clockrestore Calls

Three procedure calls provide the ability to turn the interval
timer on and off and to restore the previous timer status.

The clockon call turns on the 50-millisecond interrupt mechanism.
The clock is initially on. A process need not use this function
unless clockoff has been previously called.

"c" Declaration:

clockon()

The clockoff call turns off the 50-millisecond interrupt mechan­
ism. Pending alarms will not age, and the kernel will not incre­
ment the real-time clock.

"C" Declaration:

BOOL
clockoff()

Input Parameters: None

Output Parameters:

on/off Previous setting of the clock.

The clockrestore call turns the 50-millisecond interrupt mechan­
ism either on or off, depending on the argument passed.

"c" Declaration:

clockrestore(onoff
BOOL onoff;

Input Parameters:

on/off The setting of the clock.

Output Parameters: None

This call is used as follows:

csav = clockoff(); { . . .
} clockrestore(csav);

Bridge Communications, Inc. Page 5-53

Volume One 'ESPL Software Technical Refer·ehce Manual

5.9 Kernel Sysgen Parameters

This section describes the system generation parameters that 0
apply to the kernel and to kernel functions.

5.9.1 Maximum Number of Processes

This parameter specifies the maximum number of separate processes
in the system. In the CS/l, this is typically based on 32 VT
processes, 48 SPP processes, and one each of the IDP, Parent VT,
Parent SPP, Error, Echo, Statistics Manager, DISKIO, Data Link
Manager (DLNM), and Clearinghouse processes.

5.9.2 Maximum Number of Mailboxes

This parameter specifies the maximum number of mailboxes the ker­
nel can create. For the CS/I, the default is based on the the
maximum number of processes, plus the following additional mail­
boxes:

2
2
2
1
1
2
1
1

(each VT process)
(each SPP process)
(IDP)
(Parent SPP)
(Error)
(Echo)
(Statistics Manager)
(Clearinghouse

5.9.3 Buffer Allocation

This Sysgen menu allows the user to specify the size and quantity
of memory blocks allocated to private memory and to shared
memory.

5.9.4 Statistics Manager Sample Interval

This parameter specifies the length (in seconds) of the interval
between statistics samples. In the Sysgen menu display, this
parameter is listed under the heading "Miscellaneous Parameters".

Page 5-54 Bridge Communications, Inc. 09-0016-0"

o

ESPL Software Technical Reference Manual Volume One

6.~ FLOPPY DISK I/O SERVICE

(_ This section describes the floppy disk I/O services available to
processes running in an ESPL system.

6.1 Overview

The DISKIO module provides an interface between client processes
(e.g., VTP/UI, Clearinghouse or Network Management) and the phy­
sical disk driver.

The DISKIO module includes a queueing mechanism which ensures
that disk requests from multiple client processes are handled one
at a time. This prevents race conditions caused by simultaneous
read/write requests to the same disk record or file.

6.2 Floppy Disk Interface

Communication between the DISKIO module and client processes is
accomplished via four IPC messages. Three of the messages are
sent by the client to DISKIO's default mailbox. These messages
may contain anyone of fourteen I/O-related requests, which are
distinguished by message type. The DISKIO process performs the
requested function and sends an acknowledgement message to the
mailbox specified in the requesting message.

Sections 6.2.1 through 6.2.3 describe the three request messages;
Section 6.2.4 describes the acknowledgement message.

Sections 6.2.5 through 6.2.19 describe the fourteen I/O-related
requests recognized by DISKIO. The requests fall into three
classifications: low-level requests, which deal with physical
disk drive activities (e.g., turning the motor on/off,
reading/writing sectors); mid-level requests, which deal with
reading/writing disk files and records; and high-level requests,
which deal primarily with User Interface-related requests (e.g.,
reading/writing port configuration tables, macros and directories
of tables and macros). Note that the message structures used for
the requests vary depending on the information needed by DISKIO.
Table 6-1 summarizes the requests and the corresponding message
types and message structures.

Each message structure
contains fields for
process ID, pointer to
message type.

uses the common IPC message header, which
forward and packward pointers, requestor's
a buffer descriptor, message priority and

~9-~0l6-00 Bridge Communications, Inc. Page 6-1

V6lumeOne . ESPL.Softwa£e Technical Reference Manual

In addition, each message structure contains a "dResult" field,
which is filled in by DISKIO and supplies a £eturn code fo£ the C
requested operation. Table 6-2 contains a list of all possible • .•.
return codes.

Page 6-2

Table 6.,..1 DlSKlO Request Summary

Request Message Type Message Format

MOTORON MDI MOTORON diskiollmsg
MOTOROFF MDl-MOTOROFF diskiollmsg
RSECTOR MDI-RSECTOR diskiollmsg
WSECTOR MDI-WSECTOR diskiollmsg

OPENFILE MDI OPENFILE diskioopenmsg
CLOSEFILE MDI CLOSEFILE diskiomsg
RRECORD MDI-RRECORD diskiomsg
WRECORD MDI-WRECORD diskiomsg

RCONF MDl RCONF diskioopenmsg
WCONF MDI-WCONF diskioopenmsg
RCONFDIR MDI RCONFDIR diskiomsg
RMACRO MDI-RMACRO diskioopenmsg
WMACRO MDl-WMACRO diskioopenmsg
RMACRODIR MDI-RMACRODIR diskiomsg

Table 6-2 DlSKIO Return Code Summary

Return Code Meaning

o
1

-1
-2
-3
-4
-5
-6
-7
-8
-9

NoError
Replaced
IllegalCmd
SeekError
ReadError
WriteError
NotPresent
WriteProtected
NoMemory
NoFile
DirFull

Bridge Communications, Inc.

C

o

(-

ESPL Software Technical Reference Manual Volume One

6.2.1 Diskiomsg Message

This structure is used for the MDISKIOACK message and for the
mid- and high-level RRECORD, WRECORD, CLOSEFILE, RCONFDIR and
RMACRODIR requests.

"C" Declaration:

struct diskiomsg {

} ;

MSG dMsg;
MBID dReplyMbox;
short dResult;
short dRecord;
short dFileld;

Message Parameters:

dMsg System portion of message, containing the standard
message fields identifying forward and backward
message pointers, sending process, applicable BD,
message priority and message type.

dReplyMbox
Mailbox of requesting process.

dResult Return code (see Table 6-2).

dRecord Disk file record number.

dFileld Disk file identifier.

6.2.2 Diskiollmsg Message

This structure is used for the low-level MOTORON, MOTOROFF, RSEC­
TOR, and WSECTOR requests.

"c" Declaration:
struct diskiollmsg {

139-131316-00

MSG dMsg;
MBID dReplyMbox;
short dResult;
short dSector;
} ;

Bridge Communications, Inc. Page 6-3

Volume One ESPL Software Technical Reference Manual

Message Parameters:

dMsg System portion of message, identifying forward and
backward message pointers, sending process, appli­
cable BD, message priority and type.

dReplyMbox
Mailbox of sending process.

dResult Return code (see Table 6-2).

dSector Disk sector number.

6.2.3 Diskioopenmsg Message

This structure is used in the mid- and high-level OPENFILE,
RCONF, WCONF, RMACRO and WMACRO requests.

"C" Declaration:
struct diskioopenmsg {

} i

MSG dMsg;
MBID dReplyMboxi
short dResulti
short dRecordSize;
short dFirstSector;
char dFileName[l4]i

Message Parameters:

dMsg System portion of message.

dReplyMbox
Sender's mailbox.

dResult Return code (see Table 6-2).

dRecordSize
Size of record written or read.

dFirstSector
Number of first sector written or read.

dFileName Disk file name.

Page 6-4 Bridge Communications, Inc.

---- -----.-.-~--------.-.------- "---

09-001/;-00

o

o

o

c

ESPL Software Technical Reference Manual Volume One

6.2.4 Mdiskioack Acknowledgement Message

This acknowledgement message is sent from the DISKIO process to
the default mailbox of the requesting process upon completion of
the requested function.

The acknowledgement message uses the same message block as the
request; however, only the m type field, the dResult field, and
sometimes the m bufdes field are utilized. The possible return
codes contained-in the dResult field are listed in Table 6-1.

The acknowledgement message uses the diskiomsg message structure.

6.2.5 MOTORON Request

This request is used to turn on the motor that rotates the
floppy. The request uses the diskiollmsg message structure. The
m bufdes field should be NULL, the mReplyMbox field should be
filled in and the dSector field is unused. The head performs a
recalibrate operation, the motor is turned on, and an acknowledg­
ment message is returned.

6.2.6 MOTOROFF Request

This request is used to turn off the motor that rotates the
floppy. The request uses the diskiollmsg message structure. The
m bufdes field should be NULL, the mReplyMbox field should be
filled in and the dSector field is unused. The motor is turned
off, and an acknowledgment message is returned.

6.2.7 RSECTOR Request

This request is used for a raw read of an arbitrary-length sec­
tion of the disk. The request uses the diskiollmsg message
structure. The m bufdes field should point to a buffer descrip­
tor; the data is read into the buffer pointed to by the buffer
descriptor. The data length is derived from the length of the
first buffer pointed to by the buffer descriptor; data cannot be
read into chained BDs.

The mReplyMbox field should be filled in. The dSector field con­
tains the sector number to read, and should be between 0 and 639.
The motor is turned on (if it is off), the necessary seek is per­
formed, and the data is read. The returned acknowledgement mes­
sage passes the buffer descriptor back to the requestor.

09-0016-00 Bridge Communications, Inc. Page 6-5


~~~. ---~.-.- ... - _._ .. _._._----_ .. _._---

Volume One ESPL Software Technical Reference Manual 

6.2.8 WSECTOR Request 

This request is used to do a raw write to an arbitrary-length ~ 
section of the disk. The request uses the diskiollmsg message 
structure. The m bufdes field should point to a buffer descrip-
tor; the data is written from the buffer pointed to this buffer 
descriptor. The data length is derived from the length of the 
first buffer pointed to by the buffer descriptor; data cannot be 
written into chained BDs. The m ReplyMbox field should be filled 
in. The dSector field contaIns the sector number to read, and 
should be between 0 and 639. The motor is turned on (if it is 
off), the necessary seek is performed, and the data is written. 
The returned acknowledgement message passes the buffer descriptor 
back to the requestor. 

6.2.9 OPENFILE Request 

This request opens a file on which record I/O will later be per­
formed. The request uses the diskioopenmsg message structure. 
The m bufdes field should be NULL. The mReplyMbox field should 
be f iII ed in. 

The dRecordSize field contains the record size in bytes. If the 
record size is between 1 and 256 bytes, more than one record is 
packed in a sector. If the record size is between 257 and 512 
bytes, each record takes up one sector. Record sizes greater than 
512 bytes are not implemented. 01 

\i...) 
The dFirstSector field contains the sector number of the first 
record. It is responsibility of the requestor to properly use a 
first sector number (an enumerated constant in diskio.h), and 
limit the range of record numbers to fit in the preallocated 
areas on the disk (refer to Table 3-1). 

The dFilename field will not be used in the initial implementa­
tion. 

The information is recorded in a private data structure, and a 
FILEID is assigned. An acknowledgement message is returned, pass­
ing the return code in dResult and the FILEID in dFileid. 

Page 6-6 Bridge Communications, Inc. 09-0016-00 

c 



(-

c 

ESPL Software Technical Reference Manual Volume One 

6.2.10 CLOSEFILE Request 

This request is used to close a file. THe request uses the 
diskiomsg message structure. The m bufdes field should be NULL, 
and the dReplyMbox field should be filled in. The dFileid field 
is the FILEID of the file being closed. The private file struc­
ture is deallocated, and an acknowledgement message is returned. 

6.2.11 RRECORD Request 

This request is used to read a random, single record from an open 
file. The request uses the diskiomsg message structure. The 
m bufdes field should point to a buffer descriptor. The data is 
read into the buffer pointed to by the buffer descriptor. The 
data length copied is the record length, but the length of the 
buffer is not checked. The dReplyMbox field must be filled in. 
The dRecord field is the record number, and the dFileid field is 
the FILEID. The file must already be open. 

A one-sector cache is maintained; therefore, subsequent sequen­
tial reads of records packed in the same sector will not cause 
disk reads. The data is either found in the cache or read into 
the cache, then copied into the requestor-supplied buffer. The 
returned acknowledgement message passes the buffer descriptor 
back to the requestor. 

09-0016-00 Bridge Communications, Inc. Page 6-7 



Volume One ESPL Software Technical Reference Manual 

6.2.12 WRECORD Request 

This request is used to write a random, single record into an ~ 
open file. The request uses the diskiomsg message structure. 
The m bufdes field should point to a buffer descriptor and the 
dReplyMbox field must be filled in. The data is written from the 
buffer pointed to by the buffer descriptor. The data length 
copied is equal to the record length, but the length of the 
buffer is not checked. The dRecord field is the record number, 
the dFileid field is the FILEID. The file must already be open. 

All record writes are "write-through" the cache (i.e., the disk 
write is always done). If two or more records are packed in each 
sector, the sector is read into the cache (if not already there), 
the record is copied from requestor's buffer to the cache, and 
the sector is written. 

After the write is complete, an acknowledgement message is 
returned, passing the buffer descriptor back to the requestor. 

The following example clarifies the limited effectiveness of the 
one-sector cache in the case of writing sequential records. 

FileDescriptor 
RecordSize = 128 
FirstSector = 300 

Reguest 

write record 0 
write record 1 
write record 2 
write record 3 
write record 4 
write record 5 
write record 6 
write record 7 
write record 8 
write record 9 
write record HJ 

Action 

read sector 300, 
write sector 300 
write sector 300 
write sector 300 
read sector 301, 
write sector 301 
write sector 301 
write sector 301 
read sector 302, 
write sector 302 
write sector 302 

Page 6-8 Bridge Communications, Inc. 

write sector 300 

write sector 301 

write sector 302 

09-0016-00 

(~ 
"J 

c 



ESPL Software Technical Reference Manual Volume One 

6.2.13 RCONF Request 

This request is used to read a configuration table. The request 
uses the diskioopenmsg message structure. The m bufdes field 
should be NULL and the dRep1yMbox field should be filled in. The 
dFi1eName field contains the name of the configuration to be 
read. 

The configuration tables are stored in a record-based (always 
open) file. The first two sectors of the file are actually a 
directory of names and starting record numbers. 

First, a buffer is allocated; then the configuration table is 
read and finally copied into the buffer. The returned ack­
nowledgement message passes the buffer descriptor back to the 
requestor. 

6.2.14 WCONF Request 

This request is used to write a configuration. The request uses 
the diskioopenmsg message structure. The m bufdes field should 
point to a buffer descriptor and The data is written from the 
buffer pointed to by the buffer descriptor. The data length 
copied is the size of a UIBLOCK structure; the length of the 
buffer is not checked. The dRep1yMbox field should be filled in. 
The dFi1eName field contains the name of the configuration table 
to be written. 

The configuration tables are stored in a record-based (always 
open) file. The first two sectors of the file are actually a 
directory of names and starting record numbers. 

The configuration directory is inspected and updated if neces­
sary. The data is written, the buffer is freed, and an ack­
nowledgement message is returned. 

6.2.15 RCONFDIR Request 

This request is used to read the configuration directory. The 
request uses the diskiomsg message structure. The m bufdes field 
should be NULL and the dRep1yMbox field should be filled in. 
Except for the m type field (see Table 6-1), the remaining fields 
in the diskiomsg-format are not used. 

Buffers are allocated for each of the two directory sectors. The 
sectors are read and copied into the buffers, and the buffers are 
joined together. The returned acknowledgement message passes the 
linked buffer descriptor back to the requestor. 

Bridge Communications, Inc. Page 6-9 



Volume One 

6.2.16 RMACRO Request 

This request is used to 
diskioopenmsg message 
NULL and the dRep1yMbox 
field contains the macro 

ESPL Software Technical Reference Manual 

read a macro. The request uses the 
structure. The m bufdes field should be 
field should be filled in. The dFi1eName 

name to be read. 

The macros are stored in a record-based (always open) file. The 
first two sectors of the file are actually a directory of names 
and starting record numbers. 

A buffer is allocated, the macro records are read, then copied 
into the linked buffers buffer, and an acknowledgement message is 
returned, passing the buffer descriptor back to the requestor. 

6.2.17 WMACRO Request 

This message is used to write a macro. The request uses the 
diskioopenmsg message structure. The m bufdes field should be a 
pointer to a buffer descriptor; the data is written from the 
linked buffers pointed to by the buffer descriptor. The data 
length copied is the record size or buffer length (null-padded to 
the record size), which ever is less. The dFileName field con­
tains the macro name to be written. The dReplyMbox field should 
be filled in. 

The macros are stored in a record-based (always open) file. The 
first two sectors of the file are actually a directory of names 
and starting record numbers. 

The macro directory is inspected and updated if necessary. The 
data records are written, the buffer is freed, and an ack­
nowledgement message is returned. 

6.2.18 RMACRODIR Request 

This request is used to read the macro directory. The request 
uses the diskiomsg message structure. The m bufdes field should 
be NULL and the dReplyMbox field should be filled in. Except for 
the m type field, the remaining fields of the diskiomsg format 
are not used. 

Buffers are allocated for each of the two directory sectors. The 
sectors are read and copied into the buffers, and the buffers are 
joined together. The returned acknowledgement message passes the 
linked buffer descriptor back to the requestor. 

Page 6-10 Bridge Communications, Inc. 09-0016-00 

o 



PAGE 1 
12:30:29 25 JAN 1984 

BF~ f ••• t + • f 

BDE 
CC68 
CCP 
EBA 
EDP 
ESB 
ESPL 
ETI 
FDC 
ICE 
IDP 

MCPU 
PI 
SBA 
SDD 
SIa 
SPP 
UI 
VTM 
VTP 
XNS 

IS: ... t • + .... t • t • +. t • + t •• + ••• t ••• + •••••••• 

BRIDGED DEVELOPMENT ENVIRONMENT PACKAGE 
MODIFIED FOR 68000, UNIX 'C' COMPILER 
CENTRAL COMM PROCESSOR 
ETHERNET BACKPLANE ATTACHMENT 
ETHERNET DATAL INK (XNS LEVEL 0) 
ETHERNET SHARED BUFFER 
ETHERNET SYSTEM PRODUCT LINE 
ETHERNET TRANSCEIVER INTERFACE 
FLEXIBLE DISK CONTROLLER 
IN-CIRCUIT EMULATOR 
INTER-NETWORK DATAGRAM PROTOCOL (XNS LEV 
EL 1) 
MAIN CPU 
PROGRAM INTERFACE 
SERIAL BACKPLANE ATTACHMENT 
SERIAL DEVICE DRIVER 
SERIAL 1/0 
SEQUENCED PACKET PROTOCOL (XNS LEVEL 2) 
USER/HOST INTERFACE 
VIRTUAL TERMINAL MONITOR 
VIRTUAL TERMINAL PROTOCOL 
XEROX NETWORK SYSTEM PROTOCOL 

21 ITEMS LISTED. 



Bridge Communications, Inc. 
10440 Bubb Road 
Cupertino, California 95014 
408/446-2981 


