

(""., ..

(

c

BRIDGE COMMUNICATIONS, INC.

ETHERNET SYSTEM PRODUCT LINE

SOFTWARE TECHNICAL REFERENCE MANUAL

VOLUME THREE -- DRIVERS AND FIRMWARE

09-0018-00

July, 1983

Copyright (c) 1983 by Bridge Communications, Inc. All rights
reserved. No part of this publication may be reproduced, in any
form or by any means, without the prior written consent of Bridge
Communications, Inc.

Bridge Communications, Inc., reserves the right to revise
publication, and to make changes in content from time to
without obligation on the part of Bridge Communications to
vide notification of such revision or change.

this
time
pro-

Comments on this publication or its use are invited and should be
directed to:

Bridge Communications, Inc.
Attn: Technical Publications
10440 Bubb Road
Cupertino, CA 95014

o

o

ESPL Software Technical Reference Manual Volume Three

PUBLICA'fION CHANGE RECORD

This page records all revisions to this publication, as well as
any Publication Change Notices (PCNs) posted against each revi­
sion. The first entry posted is always the publication's initial
release. Revisions and PCNs subsequently posted are numbered
sequentially and dated, and include a brief description of the
changes made. The part numbers assigned to revisions and peNs
use the following format:

aa-bbbb-cc-dd

where "aa-bbbb" identifies the publication, "cc" identifies the
revision, and "dd" identifies the PCN.

PCN
Number Date Description

----_._._-------

09-0018-00 07 /S 3 First Release

B9-0'HS-00 Bridge Communications, Inc.

Affected
Pages

All

i

Volume Three ESPL Software Technical Reference Manual

PREFACE

The Ethernet System Product Line (ESPL) Software Reference Manual 0
provides the Bridge Communications customer with the information
necessary to add software to a Bridge ESPL product.

The publication was prepared based on the following assumptions
of reader knowledge:

1. The reader should be familiar with the information provided
in the Bridge Communications Ethernet System Product Line
Overview and CS/l User's Guide.

2. The reader should be familiar with the Ethernet Specifica­
tion, Version 1.0 (see reference [4]).

3. The reader should be familiar with the Xerox Network System
high-level protocols (see references [5], [6] and [7]).

4. The reader should have some familiarity with the UNIX*
operating system (see reference [8]).

5. The reader should be familiar with the "C" language (see
reference [9]), or other high-level structured languages.

6. The reader should be familiar with the material presented in
Volume One of this manual (particularly Section 5.0, the
Kernel Interface).

Volume Three of the Software Technical Reference Manual is
grouped in three major sections whose contents are as follows:

Section 1.0 Introduction: Provides an overview of the three
volumes of the Software Technical Reference Manual
and describes their purpose and scope.

Section 2.0 - Data Link Service: Describes the Data Link Ser­
vice, which provides a means of sending packets
compatible with the Ethernet Version 1.0 Specifi­
cation. The interfaces with higher-level protocol
layers are defined. .

Section 3.0 - Serial I/O Interface: Describes the Serial I/O
(SIO) interface between the serial I/O driver and
software on the Main CPU board.

Volume One of this manual describes the ESPL
ture, development environment, MCPU monitor,
floppy disk interface. Volume Two describes
tocols used in the ESPL.

*UNIX is a Trademark of Bell Laboratories.

software architec­
operating system and
the high-level pro-

i i Bridge Communications, Inc. 09-0018-00

~
\ ') '<O..J

o

(~

c

ESPL Software Technical Reference Manual Volume Three

REFERENCES

The following publications describe the Bridge Communications
Ethernet System Product Line (ESPL):

[1] Ethernet System Product Line Overview,
Bridge Communications, Inc.

[2] ESPL Communications Server/1 User's Guide, Bridge Communica­
tions, Inc.

[3] ESPL Software Reference Manual, Volumes One and Two, Bridge
Communications, Inc.

The following publications describe Ethernet and the Xerox Net­
work System products:

[4] The Ethernet, A Local Area Network;
Data Link Layer and PhysICal Layer Specifications, Version
1.0 (Digital Equipment Corporation, Intel Corporation, and
Xerox Corporation, 1980)

[5] Internet Transport Protocols, XSIS 028112 (Xerox Corpora­
tion, 1981)

[6] Courier: The Remote Procedure Call Protocol, XSIS 038112
(Xerox Corporation, 1981)

(7] D. Oppen, Y. Dalal, The Clearinghouse: ~ Decentralized Agent
for Locating Named Objects in a Distributed Environment
(Xerox Corporation, 1981)

The following publications describe other related specifications:

[8] UNIX Programmer's Manual, Seventh Edition, Virtual VAX-II
Version, (University of California, Berkeley, 1981)

[9] B. Kernighan, D. Ritchie, The f Programming Language (Pren­
tice Hall, Inc., 1978)

[10] MC68000 Microprocessor User's Manual, Second
MC68000UM(AD3) (Motorola Corporation, 1982)

Edition

[11] MC68000 Educational Computer Board User's Manual, Second
Edition MEX68KECB/D2 (Motorola Corporation, 1982)

09-0018-00 Bridge Communications, Inc. iii

Volume Three ESPL Software Technical Reference Manual

TABLE OF CONTENTS

1.0 INTRODUCTION • 1-1

2.0 DATA LINK SERVICE • • • • • • '. • • • • • • • • • • • 2-1
2.1 Overview.. •••• • ••••••• 2-1

2.1.1 ESB Firmware and Software •••••••• 2-1
2.1.2 ESB Hardware •• • • • • • • • • • • 2-1
2.1.3 ESB Control Structure. • • • • • • • 2-2
2.1.4 Initialization • • • • • • • • • • • 2-3
2.1. ~j Transmission •• • • • • • • • • 2-4
2.1.6 Reception. • • • •• • ••••••• 2-5

2.2 Communication Between Firmware and Agent • • 2-6
2.2.1 Control Commands •••••• • • • • 2-7
2.2.2 Block Commands •••• • •••••• 2-8
2.2.3 Data Structures ••••••••••••• 2-8

2.2.3.1 System Control Block •••••• 2-10
2.2.3.2 Command Block List. • • 2-11
2.2.3.3 Receive Packet Area •••• 2-13
2.2.3.4 Packet Descriptor ••••••• 2-13
2.2.3.5 Buffer Descriptor ••• •• 2-14
2.2.3.6 Network Table ••••••••• 2-15

2.3 Client Interface to ESB Agent ••••• 2-16
2.3.1 Eainit Procedure Call. • • • • • 2-16
2.3.2 EaU2Nxmit Procedure Call ••• • •• 2-17
2.3.3 ML0RCV Message ••••••••••••• 2-18
2.3.4 Receiver Restart Message •••• 2-18

2.4 Peer Protocol • • • • • • • •••• 2-19

3.0 SERIAL I/O SERVICE ••••••••••••• 3-1

iv

3.1 Overview. • •••••••••••••• 3-1
3.1.1 SIO Software • • • • • • • • 3-1
3.1.2 SIO Hardware • • • • 3-2
3.1.3 Agent/Firmware Control Structure •• 3-3
3.1.4 Initialization ••• • • • • • • 3-4
3.1.5 Line Configuration • • • • • • • •• 3-4
3.1.6 Transmission • • • • • • • • • • • • 3-5
3.1.7 Reception. • • • • • • • • • • • 3-5

3.2 Communication Between Firmware and Agent •••• 3-5
3.2.1 Channel Attention. • • • • • 3-5
3.2.2 Multibus Interrupt ••••••• 3-6
3.2.3 SIO Reset. • • • • • • • •••••• 3-6
3.2.4 Software Control Flags ••••• 3-7
3.2.5 Commands • • • •••• • • • • • 3-7
3.2.6 Synchronization. • • • • 3-8
3.2.7 Data Structures. • •• • •••••• 3-9

3.2.7.1 SIO Control Block ••••••• 3-11
3.2.7.2 Command Block •••••• • 3-13
3.2.7.3 Agent Private Data Structures • 3-14

Bridge Communications, Inc. 09-0018-00

o

o

(-

c

ESPL Software Technical Reference Manual Volume Three

3.3

09-0018-00

Client
3.3.1

3.3.2

3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11
3.3.12
3.3.13

Interface to SIO Agent • • • • ••• 3-15
Connect Request Procedure Call
and Message • • • • • • • • •• ••• 3-15
Disconnect Request Procedure Call
and Message • • • • • • • • • • •• • 3-16
Connected Procedure Call ••••• • 3-17
Disconnected Procedure Call and Message. 3-17
Board Initialization Procedure Call. • • 3-18
Set Parameters Procedure Call • • 3-18
Change Parameter Procedure Call • 3-19
Flow Control Procedure Call ••••• 3-20
Restart Line Procedure Call and Message • 3-20

Send Data Procedure Call • • • • 3-21
Receive Data Message • • • • 3-22
Send Attention Procedure Call ••.• 3-22
Full CBL Message • • • • • • • • • • • • 3-23

Bridge Communications, Inc. v

Volume Three ESPL Software Technical Reference Manual

LIST OF TABLES

No. Title Page

2-1 Receiver Restart Algorithm • 2-19

3-1 SIO Line Number/Port Mapping • • • • • 3-2
3-2 SIO Channel Attention, Multibus Interrupt and

Reset Addresses ••••••••••• • • • 3-6

LIST OF FIGURES

No. Title Page

2-1 ESB Command and Message Flow · · · · . · · · . . · 2-7
2-2 ESB Control Structure . . · · · · · · · · 2-9

3-1 SIO Synchronization Control · · · · · . · · · · 3-8
3-2 SIO Data Structures · · · · · · · . . · 3-10

vi Bridge Communications, Inc. 09-0018-00

--------------~------------- --- - ----------------

o

,r,,\
,J

()

c

ESPL Software Technical Reference Manual Volume Three

1.0 INTRODUCTION

The ESPL Software Reference Manual provides the Bridge Communica­
tions OEM-level customer with the information necessary to add
software to an Ethernet System Product Line product. In addi­
tion, it provides information about the existing ESPL software
modules for the sophisticated user (e.g., the Network Manager).

The manual makes no attempt to present tutorial-level material
aimed at the end user; please refer to the appropriate User's
Guide for tutorial material.

The Software Technical Reference Manual is divided into three
volumes. Volume One describes the ESPL overall software archi­
tecture, the software development environment, the kernel and
various support software. Volume Two describes the high-level,
packet-processing protocols used in the ESPL. Volume Three (this
manual) describes the ESPL drivers and firmware.

09-0018-00 Bridge Communications, Inc. Page 1-1

o

()

C"'··
!

ESPL Software Technical Reference Manual Volume Three

2.~ DATA LINK SERVICE

This section describes the Data Link Service. Section 2.1 pro­
vides an overview of the service and the functions it performs,
and Section 2.2 describes the interface between the Data Link
firmware (residing on the ESB board) and its agent (residing on
the MCPU board). Section 2.3 describes the interfaces between
the Data Link Service and its level one client protocols. Sec­
tion 2.4 indicates the Ethernet peer protocols with which the
Data Link Service communicates.

2.1 Overview

The data link layer is the lowest layer of protocol in the net­
work. Its primary functions are transmitting and receiving pack­
ets, keeping statistics about network traffic, packet charac­
teristics and errors, and supporting diagnostic aids (including
power-on diagnostics and higher-level testing). The majority of
the data link protocol resides as firmware on the Ethernet Shared
Buffer (ESB) board. This firmware is known as the ESB firmware.
In addition, an ESB Agent (EA) module residing on the MCPU acts
as a driver for the Ethernet controller, and provides an inter­
face to the data link layer for IDP or any other client layer.

2.1.1 ESB Firmware and Software

There are two operational units of the ESB firmware: the Command
Unit (CU) and the Receive Unit (RU). The natural division into
the two units is synchronous versus asynchronous. The CU handles
the communication with the ESB agent, performs any control com­
mands, and initiates any transmit requests. The RU handles packet
reception from the Ethernet, providing separation of the data
link header from the data portion of the packet. The RU performs
data chaining on transmit as well as receive.

2.1.2 ESB Hardware

The FIFO register structure of the ESB DMA provides the capabil­
ity to scatter-write during packet reception. This is exploited
so that the header information can be placed in a separate loca­
tion from the data. The data portion of the packet could be
received into discontiguous memory segments, though it is typi­
cally received into a single contiguous block. The reception of
back-to-back packets, however, is made possible with the FIFO
register and scatter-write capability. Address filtering is per­
formed by the Ethernet Transceiver Interface (ETI) hardware,
unless the multicast bit in the address is set; all multicast
filtering is done by the ESB firmware. The ESB may be set to
receive promiscuously.

Bridge Communications, Inc. Page 2-1

Volume Three ESPL Software Technical Reference Manual

The FIFO register structure of the ESB DMA also provides the
capability to gather-read on transmission. Packets destined for
the Ethernet may be presented to the data link layer as an c:>
ordered collection of packet fragments, each fragment character- .
ized by an address in the shared buffer memory plus a byte count.
The ESB firmware loads the transmit portion of the FIFO register
with the fragment characteristics. The DMA can then be commanded
to transmit, at which point it initializes itself with the infor-
mation about the first fragment and presents the first fragment
to the Ethernet Transceiver Interface (ETI). As the data is being
transferred, the DMA can pre fetch the address and byte count for
each fragment in turn, thus presenting the packet to the ETI as a
contiguous stream of words.

2.1.3 ESB Control Structure

Commands and buffers are passed to the ESB firmware from the ESB
Agent (EA) via the control structure called the System Control
Block (SCB). The SCB contains pointers to lists of buffers and
commands, as well as fields for error statistics (CRC, alignment,
and resource errors). The EA presents new commands to the ESB
firmware by acquiring a command block in the Command Block List
(CBL), formatting it and logically chaining it to the end of the
CBL. The free buffer pool is expanded by appending new buffers
onto the end of the buffer list. Some commands are written
directly into the SCB (control commands only, with no parameters
or data associated with them).

The packets received with CRC or alignment errors are counted by
the ESB agent, and then discarded. Resource errors occur when
there are not enough buffers for packet reception. If this hap­
pens, the receiver shuts down and must be restarted by the agent
when the supply of buffers increases again.

In addition, the ESB firmware keeps a count of the following
statistics for use by Network Management:

1. Packets too short (Receive)

2. Packets too long (Receive)

3. Number of collisions (Transmit)

4. Packet size histogram (Receive and Transmit)

5. Retransmission histogram (Transmit)

6. Number of packets with CRC errors (Receive)

7. Number of resource errors (Receive)

page 2-2 Bridge Communications, Inc. 09-0018-00

------------_._-----------------_ .. ----------

c

ESPL Software Technical Reference Manual Volume Three

2.1.4 Initialization

The ESB agent is started up by a client process (usually the lOP
process) via the "eainit" procedure call described in Section
2.3.1. lOP obtains the required information from its Service
Access Point Table, which contains an entry for every attached
network (i.e., each agent with which lOP must be able to communi­
cate) including the entry point for initialization. .The table is
described in more detail in Volume Two, Section 2.0.

After it has been initialized, the ESB agent initializes the Sys­
tem Control Block (SCB), the Receive Packet Area (RPA), and the
placement of any initial commands in the Command Block List
(CBL). The ESB firmware finds these data structures through the
System Configuration Pointer (SCP), which points to the System
Control Block. The SCP is stored at a known location so the
firmware can always find it.

It is extremely important that the two processors be coordinated
in the initialization effort. The order is agreed upon by the use
of interrupt lines and state variables. When the ESB receives a
hardware reset (or software reset command), it initializes its
RAM and timers, etc. When all device initialization is complete,
the firmware waits for a Channel Attention from the agent.

While the firmware waits, the agent initializes the SCP, SCB,
RPA, and CBL to a ready state and then sends a Channel Attention
to the ESB firmware. On receipt of the first Channel Attention,
the ESB firmware reads the SCP from the known location, finds the
SCB, and starts executing commands from the Command Block List
(CBL) •

The ESB addresses are in Multibus memory relative to the MCPU. As
the MCPU views this memory, the ESB resides in a single 256K-byte
block which is one of four 256K-byte block partitions of the
address range from 1M to 2M. However, the ESB CPU only decodes
the low 17 bits of the offset into Multibus memory, so to the ESB
each 128K-byte block in the 1M to 2M range is identical to any
other.

From the MCPU point of view, the low l28K bytes of each 256K-byte
block are in a straight access window, while the high l28K bytes
are in a swapped access window (refer to Volume One, Section
5.1.5, for a description of the straight and swapped access win­
dows). In a system containing two ESBs (e.g., an Ethernet-to­
Ethernet bridge), from the MCPU's viewpoint ESBI would have the
range 100000-13FFFF, while ESB2 would have 140000-17FFFF.

09-0018-00 Bridge Communications, Inc. Page 2-3

Volume Three ESPL Software Technical Reference Manual

The agent would initialize ESBI by writing to llFFlC and giving
it a Channel Attention with a write to llFFE0, and initialize
ESB2 by writing to l5FFlC and giving it a Channel Attention with n
a write to 15FFE0. Each ESB, however, would look at 11FFIC (or '-'
15FFIC, 19FFIC, lDFFIC, depending on its ESB number) on receipt
of the first Channel Attention to find its SCP and SCB.

The following steps summarize the initialization process:

1. The ESB firmware initializes variables and devices, and
waits for the first Channel Attention from the agent.

2. The ESB agent sets up the ESB interrupt handler with the
kernel and initializes state variables.

3. The ESB agent initializes the SCP (located
ESBl, and at 15FFIC for ESB2), SCB, CBL and
the ESB firmware its first Channel Attention
IlFFE0 (for ESBl) or 15FFE0 (for ESB2).

at 11FFIC for
RPA, and issues
by writing to

4. The ESB firmware reads the SCP, finds the SCS, performs any
control commands in the SCB and possibly starts executing
commands in the CBL.

2.1.5 Transmission

The data link layer transmits all packets destined for another
station on the network. It must obey the rules of the contention
scheme, and must present the data to the physical layer in a con­
tiguous stream of bytes once access to the channel is acquired.

Some of the transmit functions are provided by the hardware and
some by the software. The transmit functions provided by the
hardware include generating the preamble to the packet, serializ­
ing the sequence of octets into a stream of bits, generating the
CRC and appending it to the end of the packet, performing Man­
chester encoding on the bit stream, deferring, enforcing the
interpacket gap, detecting collisions, and reinforcing collisions
with jamming.

The functions performed by the ESB software during transmission
include padding packet to minimum length, initiating transmission
of a packet (data link header and data portion), keeping track of
the number of retries, performing the truncated binary exponen­
tial backoff algorithm, and recording transmission errors.

Page 2-4 Bridge Communications, Inc. 09-0(318-00

c'

(.

c

ESPL Software Technical Reference Manual Volume Three

2.1.6 Reception

Address recognition and carrier sense are hardware functions.
The firmware Receive Unit is activated after a successful address
match on an incoming packet (i.e., the destination address
matches the host address). If the multicast bit in the destina­
tion address of the data link header is set, the packet will be
received and the multicast addresses will be filtered by the
firmware. True broadcast packets are always received.

The ESB agent is responsible for maintaining a pool of free
buffers into which packets may be received, and for feeding the
characteristics of these buffers to the FIFO register as needed
by the DMA to continue reception of the incoming bit stream. The
ESB firmware feeds the buffer addresses to the FIFO register, and
records the count at the end of a packet full of data.

The ESB agent keeps the buffer pool well-stocked, replacing
buffers as they are used up, and maintaining a reasonable margin
of the number of buffers available at one time. The goal is to
never run out of buffers if at all possible, without absorbing
system resources in the process. This might not always be possi­
ble if traffic is very heavy; buffers may not be available at the
time of the interrupt, and the firmware might need to stop
recelvlng until there are more buffers. A process known as Data
Link Network Manager (DLNM) assists the ESB agent in situations
such as this. When the firmware reports to the agent (via the
SCB field "esb stat") that it has stopped recelvlng due to a
shortage of buffers or packet descriptors, the interrupt routine
tries to restock the pool and sends a message to DLNM to restart
the receiver. DLNM then checks the buffer pool, replenishes it
if necessary, and issues a control command (via the SCB field
"esb_cmd") to resume the receive unit.

Bridge Communications, Inc. Page 2-5

Volume Three ESPL Software Technical Reference Manual

2.2 Communication Between Firmware and Agent

The ESB agent runs on
protocol (IDP or a
vides an interface to
calls (synchronous)
(asynchronous) •

behalf of the level one internetwork layer
customer's network layer protocol) and pro­
the ESB that is based partly on procedure
and partly on messages from interrupt level

There are three singly-linked lists the agent stocks: the PO
list, the BO list, and the CBL list. The PO list is of finite
length; the elements in the list are allocated once during InI­
tialization, but never given back to free storage. Instead, their
contents (Ethernet header and pointer to first buffer descriptor)
are copied into a message block and passed to the appropriate
recipient. The POs are always linked circularly, with the head
being pointed to by the SCB and by another pointer held by the
agent, and the tail pointed to by a status bit in the PD itself
and by another pointer held by the agent. If the ESB firmware
runs out of POs, a resource error is noted in the statistics
block of the SCB.

The BOs are allocated at initialization and every time a packet
is successfully received by the ESB agent. The method for replen­
ishing the ESB buffer pool is to allocate as many new buffers as
are used each time a packet is received. There is no re-use of
transmit buffers; they are freed when transmission terminates
(whether successfully or not). If the ESB runs out of buffers, a
resource error is noted in the statistics block of the SCB.

At any time, the statistics that the ESB firmware is keeping on
the network traffic can be read by the Statistics Monitor, so no
special communication between processors is necessary.

There are two types of commands to which the ESB firmware
responds: control commands (resume, suspend, reset, acknowledge­
ments) and block commands (transmit packet, read host address
from prom, add multicast address for receive). The ESB firmware
can report asynchronous events to the ESB agent via the status
fields in the SCB and an interrupt line.

Figure 2-1 illustrates the flow of commands and messages
the ESB firmware, the ESB agent, and the agent's
processes.

between
client

Page 2-6 Bridge Communications, Inc. 09-QHH8-00

o

o

o

c

ESPL Software Technical Reference Manual Volume Three

ESB Board

ESB
Firmware

ESB Agent

---) Interrupt
1

MCPU Board

Client
Process

<--- Channel Attention
1
1
1
1

1
1

1
1

<---

<---

---)

---)

eainit procedure call
1

eaU2Nxmit procedure call
1

ML0RCV message
1

EA HELP message
_______ 1 ------------------1--_____ -----

Figure 2-1 Command and Message Flow

2.2.1 Control Commands

Control commands are communicated to the ESB firmware via the
SCB. They have no parameters. The ESB agent writes the command
into the command field in the SCB and issues a Channel Attention
to the ESB firmware. The ESB firmware acknowledges completion of
any of these commands by writing a zero into the same field. Two
commands (resume and suspend) apply individually to either unit.
In addition, the reset command always applies simultaneously to
both units.

The command field in the SCB is also used by the ESB agent to
acknowledge the following ESB events:

l. Command completed.

2. Packet received.

3. Command Unit becoming not ready.

4. Receive Unit becoming not ready.

Refer to Section 2.2.3.1 for the specific bit values used to
specify commands and acknowledge events.

09-0018-00 Bridge Communications, Inc. Page 2-7

Volume Three ESPL Software Technical Reference Manual

2.2.2 Block Commands

The block commands are chained together in shared memory, and the
SCB contains a pointer to the first command in the chain. Each
command is composed of two parts: the common portion with the
standardized status, link, and command name fields; and the com­
mand specific portion, which is different for each command.

2.2.3 Data Structures

The data structures used by the ESB firmware and agent reside in
shared ESB memory. Interprocessor communication is conducted via
these structures (plus a Channel Attention or a Multibus inter­
rupt, depending on the direction of information flow). The data
structures include the System Control Block (SCB), the Command
Block List (CBL), the Receive Packet Area (RPA), the Packet
Descriptor (PO), the Buffer Descriptor (BD), respectively. In
addition, the agent maintains in private memory a data structure
called the NET table, which contains pointers into the shared
data structures. These data structures are illustrated in Figure
2-2, and described in the subsequent subsections.

Page 2-8 Bridge Communications, Inc. 09-0018-00

-----------~~----------- ------~-~---~-----~~-

o

~,
I.;)
"'--

o

(:

c

ESPL Software Technical Reference Manual

+-----------+
I SCP I

(llFFlC)
+-----------~

1;-----------+
SCB

ptr to
+-<------------+ CBL

ptr

Volume Three

Shared Memory

I to RPA+------>+----+
+->+----+ I I CB I +-----------+
~
~----+

I CB I
+----:=J

c;.

~
I CB I
+----:-1

L;O----+
I CB I
+----

+-----------+ I NET Table

~-----------+net cblast
L---------------~net-cbnext

net-pdnext
net=pdlast
net bdlast

+-----------+

I PO +---+
+----~ +-->+----+

l;----+ l-~~-L,
l-~~-L, ~----+

1;: -, l-~~-L,
~-~--+ to;:""]

1 PO I I·

~ i-~~-i
~----+ +----~

I PO I 1'---_---
+---- ~NULL

Agent's Private
Memory

Figure 2-2 ESB Control Structure

09-0018-00 Bridge Communications, Inc. Page 2-9

_____________ ~.~ _____ ------__ · ______ • ___ r"_"

Volume Three ESPL Software Technical Reference Manual

2.2.3.1 System Control Block

The "CO representation of the SCB data structure is as follows:

#define SCB struct scb
SCB {

short

short esb cmd; -

CB *esb cbl; -PD *esb _rpa;
short esb PktPend; -
short esb _CmdCmplt;

long esb crc;
long esb_algn;
long esb _pderr;
long esb bderr; -long esb short;

. long esb-long;
long esb-coll;
short esb-MaxSize;
short esb-MinSize;
long esb _Then;
long esb LastTic; -
long esb ticsz; -

/* definition of SCB

/* status of ESB RU and CU
* bits meaning

* * 9-15
* 8
* 7
* 6
* 5
* 4
* 3
* 2
* 1-0

*

unused
reset
completed CBL command
packet received
CU not ready
RU not ready
CU Ready/Not Ready
RU Ready/Not Ready
unused

*/

* bits 4-7 are valid only at the
* time of interrupt to agent
*/

/* command field, set by agent,
* cleared by ESB CPU
* bits meaning
* 8-15 unused
* 7 ack command executed
* 6 ack packet received
* 5 ack CU not ready
* 4 ack RU not ready
* 3 suspend CU
* 2 resume CU
* 1 suspend RU
* 11) resume RU
*/

/* ptr to command block list
/* receive packet J?tr to area
/* no. of processed packets (valid

at time of intrpt to MCPU)
/* no. of cmds completed (valid

at time of intrpt to MCPU)
/* no. crc err since powerup
/* no. align. err since p.u.
/* no. PD rsrc err since p.u.
/* no. BD rsrc err since p.u.
/* no. pkt-2-short since p.u
/* no. pkt-2-1ong err since p.u.
/* no. collisions since p.u.
/* maximum size packet
/* minimum size packet
/* last time reading (not impl)
/* clock value at last tic

* increment (not implemented)
/* size of a tic

*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

Page 2-10 Bridge Communications, Inc. 09-0018-00

o

~-) l

C "'"

ESPL Software Technical Reference Manual Volume Three

} ;

long

long
long
long
long
short
short
short
short

esb_tind; /* index array esb_tic (wraps
around) (not implemented) */

esb tic[MAXTIC]; /* pkts per tic (n.impl.) */
esb-size[MAXSZ]; /* hist of pkt sizes (n.i.) */
esb-rtry[MAXRETRY]; /* "" no. of retries */
esb-ipa[MAXGAPS]; /* "" intrpkt arrvls(n.i.) */
esb-ipat; /* interpkt arrival bin size */
esb-bytpkt; /* byte-per-packet bin size */
esb-retry; /* max retry value */
esb=opmode; /* control to ETI */

2.2.3.2 Command Block List

The Command Block List (CBL) is a singly-linked list of command
blocks awaiting execution by the ESB cpu. The header for the list
is in the SCB. When the Receive Unit is quiet, the Command Unit
is executing commands from the CBL, or waiting for a Channel
Attention. The "c" structure of a command block is as follows:

idefine CB struct cb /* definition of cmd block */
CB {

short

short

09-riHH8-00

cb_stat; /* command block status
* bit meaning
* 15-8 unused
* 7 currently executing
* 6 completed execution
* 5,4 reserved
* 3-0 status:

* 0 no error (TU, RU)
* 1 invalid cmd (TU only)
* 2 MAX RETRY reached -

(TU only)
* 3 transmit too long

(TU only)
*/

cb_cmd; /* command
* bit meaning
* 15-8 unused
* 7 last cb on CBL
* 6 suspend CU at end
* 5 interrupt CPU at end
* 4 reserved
* 3-0 command:
* 0 no op
* 1 READ HOST
* 2 CONFIGURE
* 3 MULTICAST ADDRESS
* 4 XMIT
* 5 DIAGNOSTIC
*/

Bridge Communications, Inc. Page 2-11

Volume Three ESPL Software Technical Reference Manual

CB *cb link; /* offset to next cb in list */

union { /* structures for command-specific parameters */ o.

READHOST CB readhost; /* read host address in prom */
CONFIG CB confg; /* config the network intrface */
MC ADDR CB maddr; /* rcv pkts w-this m.cast addrs */
TRANS CB trans; /* transmit packet */
DIAG CB diag; /* diagnostic command */

} cb_parms;

idefine READHOST CB struct readhost cb
READHOST CB {

HOSTADD h_addr; /* 4S-bit station address */
} ;

#define CONFIG CB struct config_cb
CONFIG CB {

- HOSTADD cf_addr; /* 4S-bit station address
} ;

#define MC ADDR CB struct mc addr cb
MC ADDR CB-{

-HOSTADD mc_addr; /* 4S-bit multicast address
} ;

idefine TRANS CB
TRANS CB {

struct trans cb

*/

*/

- short
HOSTADD
HOST ADD
short,
BD

trans bbhdptr;
trans=dest;
trans_src;
trans type;
*trans_bdptr;

/* DMA-style address */
/* destination of packet */

} ;

#define DIAG CB struct diag cb
DIAG CB {

/* source of packet */
/* blue book hdr type */
/* ptr to BD with data */

int (*diag routine) (); /* ptr to diag. routine */
} ;

Page 2-12 Bridge Communications, Inc. 09-1301S-I313

c

c

ESPL Software Technical Reference Manual Volume Three

2.2.3.3 Receive Packet Area

The RPA is a linked list of Packet Descriptors (PDs) with an
associated list of Buffer Descriptors (BD). The PDs are initially
all linked together and empty, except that the first PD has a
pointer to the first free BD. The BDs are also linked together.
Before reception starts, a pointer to the Ethernet header field
in the first PD is loaded into the first FIFO register for
receive, and a pointer to the buffer pointed to by the first free
BD is loaded into the second FIFO register. When reception
begins, the Ethernet header is received into the PD, and the data
portion is received into the buffer pointed to by the first BD.
If there is more data than the first buffer can hold, the next BD
in the linked list is used; the next buffer pointer is loaded
into the FIFO register immediately after the DMA fetches the
address/count pair, so that it can be ready for a back-to-back
receive in which the first packet is a "runt" packet.

2.2.3.4 Packet Descriptor

The structure of the Packet Descriptor is customized for the FIFO
register hardware, so that it can be loaded quickly from the
structure.

#define PD struct pd
PD {

} ;

short
short
BD
short
PD
short

short
short
HOSTADD
HOSTADD
short

pd busy;
pd-bbhd;
*pd_bdptr;
pd end;
*pd link;
pd_stat;

pd comp;
pd-length;
pd=dest;
pd src;
pd=type;

/* definition of PD */

/* 0/1 busy word */
/* word ptr to blue book hdr */
/* pointer to first BD */
/* marked 1 =) last free PD */
/* pointer to next PD */
/* status field

* bit meaning
* 0 invalid multicast addr
* 1 ran out of buffer space

*
*
*
*
*
*/

2 CRe error
3 alignment error
4 packet too long
5 runt packet
8-15 unused

/* reception completed
/* total length of packet
/* destination address
/* source address
/* packet type field

*/
*/
*/
*/
*/

09-0018-00 Bridge Communications, Inc. Page 2-13

Volume Three ESPL Software Technical Reference Manual

2.2.3.5 Buffer Descriptor

The data structure used on the ESB to keep track of, link 0'
together, split in two and grow buffers is the buffer descriptor
(BD). Some conversions and derivations must be done by the ESB
agent before passing a packet to the ESB firmware for transmis-
sion, and conversely, some fields in the buffer descriptors of
the received packets must be initialized by the ESB agent.

The "C" representation of the buffer descriptor data structure is
as follows:

typedef struct bufdesc {
union {

} BD;

struct esbuffarea bd esb;
struct siobuffarea bd sio;
struct sppbuffarea bd-spp;
struct uibuffarea bd_ui;

} bd_uarea;
struct bufdesc
caddr t

*bd next;
bd-address;

*bd-buf;
bd-length;
bd-flags;

/* next BD in chain */
/* buffer address */

BUFP
short
short

/* pointer to buffer header */
/* length of this segment */
/* flags on buffer descriptor */

struct esbuffarea {
short use;

addr;
last;

/* buffer in use by esb */
/* shifted offset into 128K */
/* marked 1 => last free BD */

} ;

short
short
struct bufdesc
short
short

*next;
eop;
count;

/* ptr to next BD in chain */
/* esb, end of packet flag */
/* count for ESB datalink rcv */

The ESB DMA uses a word pointer, which supplies the lowest
address line as zero, and the highest address line as a one, so
the address of the data must be shifted right and truncated to 16
bits to feed the DMA.

bd esb.addr = (short) (((long) bd_address)

Page 2-14 Bridge Communications, Inc. 09-0018-00

o

ESPL Software Technical Reference Manual Volume Three

2.2.3.6 Network Table

The ESB agent maintains an array of data structures containing
initialization parameters, network address, client table and
various pointers into shared data structures (everything it needs
to keep track of the controller). These data structures are
called NET structures, whose "CO representation is given below,
along with the representation of the subsidiary CLIENT structure,
which consists of an array used to store client and type identif­
iers.

#define NET struct net

NET {

};

INTID
SCB
CB
CB
PD
PD
BD
CLIENT
short
HOSTADD
short
long
short
short
short
short
short
short
short
short
short
short
short
short

net ident;
*net scbptr;
*net-cblast;
*net-cbnext;
*net-pdlast;
*net-pdnext;
*net-bdlast;
*net-clients;
net N'extClient;
net=hostadd;
net vec;
net-offset;
net=opmode;
net cbs;
net-pds;
net=bds;
net_tic;
net_max;
net_min;
net ipg;
net-bpp;
net-rtrYi
net-bdcount;
net=EsbCmd;

/* one structure per network

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

put on stack for handler
ptr to shared SCB structure
last formatted
next to be recycled
last to be processed
next to be processed
last free
array of (client,type)
index into client block
station address
68000 vector number
addr offset for this network
receive mode
number of CBs
number of PDs
number of BDs
size of basic tic
size of maximum packet
size of minimum packet
size of interpkt arrival bin
size of byte per packet bin
maximum retry count
current count of buffers
private copy of acks

idefine CLIENT struct client /* array of (client,type)

CLIENT {
MBID
short

} ;

client name;
client=type;

/* client mailbox for packets
/* this client type

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/

09-0018-00 Bridge Communications, Inc. Page 2-15

._ .. _-- ---.. _--

Volume Three ESPL Software Technical Reference Manual

2.3 Client Interface to ESB Agent

Communication between the ESB Agent and its client consists of 0<
two procedure calls and two IPC messages, described in the fol-
lowing subsections.

2.3.1 The Eainit Procedure Call

The eainit procedure call must be used by all clients of the ESB
Agent The first time it is issued, the data structures are allo­
cated and initialized, and the first Channel Attention is sent to
the firmware. Also, on the first and any subsequent calls to this
routine, the client-type data is entered in a table. Any
received packet of the same specified type will be sent to the
corresponding client mailbox.

If the ESB being initialized by this call is the first ESS to be
initialized, the ESS's host ID PROM is also read and that address
used as the station address. If another ESB is subsequently ini­
tialized, its host ID PROM will not be read.

"C" Declaration:

eainit
INTID
MBID
short
long

(ident, client, type, ret_parm)
ident;
client;
type;
ret_parmi

Input Parameters:

ident Identifies this attached network.

client Mailbox to which to send received packets.

type All packets of this data link type go to client.

ret_parm This value is passed to the level 1 client with
the ML0RCV message as the parameter "earcv ident".

Output Parameters: None

Error Codes:

NoError No error detected.

Error Not enough memory, or invalid interrupt ID.

Page 2-16 Bridge Communications, Inc. 09-0018-00

o

ESPL Software Technical Reference Manual Volume Three

2.3.2 The EaU2Nxmit Procedure Call

The eaU2Nxmit procedure call is used by clients of the ESB Agent
to instruct the Agent to transmit a packet. Assuming the parame­
ter "ident" is valid and there is a free command block in the
CBL, the Agent will build a header in the command block using the
values specified by the "dest", "src", and "type" parameters in
the message, format a transmit command block for the ESB
firmware, and issue a Channel Attention to the firmware.

If the destination host is this host, the ESB agent will not send
the message out over the Ethernet, but will instead send a mes­
sage to the proper recipient within the local node.

"C" Declaration:

short eaU2Nxmi t (m)

Input Parameters:

m Pointer to message (message type EA_XMITPKT).

The message pointed to by "m" has the format:

EA XMITMSG {
MSG
INTID
HOST ADD
HOSTADD
short

} i

Message Parameters:

eaxmit sysmsgi
eaxmit-identi
eaxmit=eadesti
eaxmit easrci
eaxmit=eatypei

eaxmit_sysmsg System portion of message (includes BD).

eaxmit ident Distinguishes between networks in a bridge.

eaxmit eadest Destination address.

eaxmit easrc Source address.

eaxmit_eatype Protocol type.

Output Parameters: Error code

E-rror Codes:

NoError No error detected.

Error No command block available, or invalid ident.

09-0018-00 Bridge Communications, Inc. Page 2-17

Volume Three ESPL Software Technical Reference Manual

2.3.3 The ML0RCV Message

If a packet has been received when the ESB firmware issues an
interrupt to the agent, the interrupt routine will format an
ML0RCV message and send it to the appropriate recipient. The
appropriate recipient is either a process which called the eainit
procedure call with a type parameter matching this packet's type
field, or DLNM if the packet is unclaimed. Any buffer that was
consumed by the received packet is replaced with a new one at
this time, and the replacement is linked to the end of the BD
list. The PD with the Ethernet header will be recycled.

"C" Declaration:

ML0RCV {
MSG
long
HOSTADD
HOSTADD
short

}

earcv sysmsg;
earcv-ident;
earcv=eadest;
earcv_easrc;
earcv_eatype;

Message Parameters:

earcv_sysmsg
System portion of message (message type ML0RCV).

earcv ident
Distinguishes between networks
Derived from the eainit
parameter"ret_parm".

earcv eadest
Destination address.

earcv easrc
Source address.

earcv_eatype
Protocol type.

2.3.4 The Receiver Restart Message

in a bridge.
procedure call

When the Receive Unit detects a resource error, it shuts down in
a graceful manner and must be restarted by a higher level process
after the higher-level process has unloaded the full buffers by
shipping them off to their appropriate destinations. The agent
interrupt service routine makes the initial steps to start the
receiver back up by recycling used packet descriptors and replen­
ishing used buffers. Some recoveries are simple, while other
recoveries are more complex. For instance, if the last buffer is
used, a new "last" buffer must be allocated to prime the list.

Page 2-18 Bridge Communications, Inc. 09-0018-00

0:·· , ...

(..

c

ESPL Software Technical Reference Manual Volume Three

There are four fields in the PO and one field in the BO which
determine the restart algorithm. The four PO fields pertain to
the PO following the last complete packet. The four fields are
pd busy, pd comp, pd bdptr, and pd last. The BO field is
bd-lastfree. -Table 2-1-represents a simple boolean table which
sorts the various scenarios into a small number of cases.

The bd lastfree field doubles this table and is sampled on the
last SO that is used; if bd lastfree is TRUE, then a new BO must
be allocated to start the new chain of free buffers.

The agent first appraises the situation, then sets the pointers
correctly, clears fields in partially used POs and BOs, and sends
a message to the higher level process. The higher level process
checks the count of BOs on the list, replenishes it if necessary,
and sends a control command (RU RESUME) to the ESB firmware to
resume the Receive Unit. The message type for the message is
EA HELP.

Table 2-1 Receiver Restart Algorithm

pd_comp

FALSE xxxx xxxx xxxx

TRUE NULL xxxx xxxx

TRUE bdptr FALSE xxxx

TRUE bdptr TRUE TRUE

Note: xxxx = don't care.

2.4 Peer Protocol

The Oata Link Service is compatible with the data link protocol
described in the Ethernet Specification, Version 1.0 (reference
[·4]) •

09-0018-00 Bridge Communications, Inc. Page 2-19

o

c

c'

ESPL Software Technical Reference Manual Volume Three

3.0 SERIAL I/O MODULE

This section describes the Serial I/O (SIO) Module, which pro­
vides communication between an agent process and other processes
running on the MCPU, and communication between the agent process
and the firmware on the SIO board.

3.1 Overview

The Serial I/O Module is a front-end processor board which pro­
vides eight RS-232-C/RS-423 full duplex lines for connecting
serial devices to a CS/l. Each line can be independently config­
ured for the type of serial device attached.

The purpose of the SIO board is to alleviate the burden of char­
acter interrupt handling in the MCPU, so that the MCPU can be
devoted mostly to high-level protocol-processing tasks. Instead
of interrupting on each character, the MCPU is interrupted on a
buffer of characters. On output, when a buffer of characters has
been transmitted, an interrupt is generated to the MCPU. On
input, the particular conditions which cause the interrupt to the
MCPU depend on the line discipline.

In addition to the basic read and write commands, the SIO board
responds to commands for setting the parameters of a line, dynam­
ically changing these parameters, and flow-controlling the line.

The following subsections describe the SIO software and its
interfaces in detail.

3.1.1 SIO Software

The SIO software is comprised of firmware residing on the SIO
board and an SIO agent (SA) which resides on the MCPU and commun­
icates with the S10 firmware on behalf of the agent's client,
normally the Virtual Terminal Process.

The firmware maintains character flow over eight serial lines in
a manner which is fair to all lines. It receives requests from
the SA, and reports completion of requested actions as well as
exceptions to the agent. The agent maintains shared data struc­
tures used for communication and control between firmware and
agent, allocates memory, and acts as an interface to the SIO's
client processes. The agent is capable of interfacing to SIO
firmware on up to four SIO boards; demultiplexing is based on
port numbers, which are mapped to physical board and line numbers
as described in Table 3-1.

09-0018-013 Bridge Communications, Inc. Page 3-1

Volume Three ESPL Software Technical Reference Manual

3.1.2 SIO Hardware

The SIO board is described in detail in reference [2]. Note that
the SIO firmware and agent described in this manual do not util­
ize all the configuration features supported by the SIO board.
These modules' current scope is limited to asynchronous device
support, including terminals, host computers and modems.

The first 32 SIO ports, beginning with 0, are mapped to physical
SIO lines as indicated in Table 3-1.

Table 3-1 SIO Line Number/Port Mapping

,----, --'-"-- ---"--'---'--"--'
Port No. SIO Board No. Line Number

0 1 " 1 1 1
2 1 2
3 1 3
4 1 4
5 1 5
6 1 6
7 1 7
8 2 0
9 2 1
10 2 2
11 2 3
12 2 4
13 2 5
14 2 6
15 2 7
16 3 0
17 3 1
18 3 2
19 3 3
20 3 4
21 3 5
22 3 6
23 3 7
24 4 (3

25 4 1
26 4 2
27 4 3
28 4 4
29 4 5
30 4 6
31 4 7

Page 3-2 Bridge Communications, Inc. 09-0018-00

o

(~

(

c

ESPL Software Technical Reference Manual Volume Three

3.1.3 Agent/Firmware Control Structure

The firmware is initially set up with an SIO Control Block
(SIOCB), a Command Block List (CBL), and a Character Receive Area
(CRA). The CRA receives characters into a supply of buffers whose
BDs are singly linked in chains. The SIOCB contains pointers to
one LINE structure for each port; each LINE structure points to
the first BD in a chain. The CBL is a circular list of singly­
linked Command Blocks (CBs).

When a buffer is completed with a termination condition commen­
surate with the particular line discipline, the termination con­
dition is noted in the structure associated with the buffer (BD)
and the event is marked in the SIO's private copy of the status
for that line. When a command from the CBL is completed, the com­
pletion status is noted in the CB and likewise marked in the
SIO's private copy of the status.

If the MCPU has acknowledged all previous events from the SIO
board (any of the lines may report concurrently), then the
firmware can report a new event to the MCPU by copying the status
and associated count fields to the SIOCB in shared memory, and
issuing a Multibus interrupt to the MCPU. This invokes the SIO
agent (SA), which reports these events to the appropriate client
and restocks the CRA.

If a BREAK condition is detected, the current read is completed
and the status BREAK is noted in the BD associated with the
buffer. The same is true of a change in the carrier sense or a
receive error condition.

The SIO Agent (SA), residing on the MCPU board, initializes the
shared data structures for the firmware by setting up the two
list structures used for character handling (the CRA and the CBL)
and linking them to the SIOCB. The agent then writes the address
of the SIOCB in a prearranged location in shared memory (the
range IlFF00 through IlFF0F) for the SIO firmware to read, and
issues a Channel Attention to the SIO board (the GO signal).

Upon request of its client (usually VT), the agent formats
request blocks for the SIO firmware using a CB in the CBL, and
interrupts the firmware via a Channel Attention.

The interrupt-driven portion of the SA handles completed requests
from the SIO firmware. If a write request is completed, the agent
frees the buffer. For a completed read buffer, the agent sends a
message to the appropriate client process and restocks the CRA.

09-0018-00 Bridge Communications, Inc. Page 3-3

.------------------------------.-------~~-~-~-~" ---~--------.~----.-.

Volume Three ESPL Software Technical Reference Manual

3.1.4 Initialization

The first code that executes on both the SIO board and the MCPU c:>
is a multiprocessor power up diagnostic. In addition to memory
and devices, the diagnostic tests mutual interrupt capability
between the two processors, and in doing so determines both the
presence of each SIO board and the firmware type assigned to the
higher level code controlling the board. This information is
stored on the MCPU in a globally accessible structure. If an OEM
customer replaces the higher level code of the SIO firmware and
develops a new agent to run with some or all of the existing ESPL
software, a different type code must be assigned to the new
firmware.

** NOTE **

Firmware type codes are two-byte codes allocated by
Bridge Communications to uniquely identify each dif­
ferent set of higher-level code controlling an SIO
board. To obtain a new firmware type code, contact
Document Control, Bridge Communications, Inc., 10440
Bubb Road, Cupertino, CA 95014.

Additionally, the OEM firmware and agent must not use the
addresses in the range IlFF00 to IlFF0F for the equivalent of the
SIOCB pointer. Instead, the addresses from IlFEF0 to IlFEFF
should be used as an array of four pointers to the shared struc­
ture.

The SIO firmware initializes its own private structures,
waits for the first Channel Attention from the SIO agent.

then

For each SIO board, the agent allocates all the shared data
structures (CBL, CRA, and SIOCB), writes the address of the SIOCB
in a known location, then sends the first Channel Attention to
the SIO firmware.

3.1.5 Line Configuration

Upon client request (e.g., VT), the agent allocates memory in
shared memory, copies the relevant parameters from the UI parame­
ters into the shared memory block, gets the first free CB in the
CBL for the SIO line, fills in the command field and parameter
field (pointer to the shared memory with the parameters), and
issues the Channel Attention to the SIO board.

The SIO firmware interprets the command on the CBL and copies the
relevant parts into the Line Control Block (LCB) for that line.
Then the UART is initialized according to the parameters that
control the physical device. The SIO line is now ready for
operation.

Page 3-4 Bridge Communications, Inc. 09-0018-00

o

(

c

ESPL Software Technical Reference Manual Volume Three

3.1.6 Transmission

The client requests transmission by specifying the sro line
number and the buffer descriptor with the data.

The agent gets the pointer to the first free CB in the CBL of the
S10 line, and fills in the fields.

The agent uses the control command field in the SlOCB to inform
the S10 firmware of the presence of a CB on the list and issues a
Channel Attention to the S10 board to draw its attention to the
command. The S10 firmware is now responsible for the transmis­
sion.

3.1.7 Reception

The agent sets the firmware up with a list of BDs in which to
receive characters before the UARTs are even initialized.

The interrupt service portion of the agent receives the Multibus
interrupt from the S10 firmware and notes that a read has been
completed. The agent sends the buffer to the appropriate data
mailbox.

3.2 Communication Between Firmware and Agent

The MCPU and the S10 are loosely coupled processors, each with a
private memory space, I/O space and Multibus mastership capabil­
ity. They exchange information in shared data structures con­
tained in ESB memory. The control mechanisms that govern the
exchange consist of a mutual hardware interrupt capability,
software control flags and commands. This section describes these
mechanisms and the way they are used to achieve processor syn­
chronization.

3.2.1 Channel Attention

The Channel Attention interrupt is used by the SA to interrupt
the S10 firmware in order to pass a new command (or set of com­
mands) or to acknowledge receipt of a command completion notice.
The Channel Attention is a decoded address interrupt and does not
consume a Multibus interrupt level. It is automatically cleared
by the S10 board in hardware. There is one Channel Attention
interrupt per S10 board. The SA generates a Channel Attention by
writing to the locations indicated in Table 3-2.

09-flHHS-00 Bridge Communications, Inc. Page 3-5

--.. _--_._----------_. __ .. _------------ ._- ~ .. --

Volume Three ESPL Software Technical Reference Manual

3.2.2 Multibus Interrupt

The Multibus interrupt is used by the SIO firmware to interrupt ~
the SA upon completion of a command (or set of commands). As its
name indicates, it is a real Multibus interrupt. It is cleared by
the SIO agent on the MCPU. There is one Multibus interrupt for
all SIO boards, and one Multibus interrupt clear address for each
SIO board (see Table 3-2).

3.2.3 SIO Reset

The SIO board can be reset by the MCPU. Once reset, the board is
held in reset mode until a reset clear is received. The
addresses written to for reset and reset clear are listed in
Table 3-2.

Table 3-2 SIO Channel Attention, Multibus
Interrupt and Reset Addresses

Function

Channel
Attention

Multibus
Interrupt *

Multibus
Interrupt Clear

Reset

Reset Clear

SIO 1
Address

1 EfiHHH'

E0000QJ

lE2000

lE4000

lE6000

SIO 2
Address

IES000

E00000

IEA000

lEC000

lEE000

SIO 3
Address

IF0000

E00000

lF2000

lF4000

lF6000

* The same address is used by all boards;

SIO 4
Address

lFS000

lFA000

lFC000

lFE000

SIO jumper E6l indicates which of eight Multibus
interrupts will be generated (see reference [2]
for jumper information).

Page 3-6 Bridge Communications, Inc. 09-00lS-00

...... __ ._-_ .. _ _-----

()

(

(

c

ESPL Software Technical Reference Manual Volume Three

3.2.4 Software Control Flags

The SIC firmware maintains two software flags for synchroniza­
tion. The flag "rcv" indicates how many lines have a control
command outstanding, while the flag "sent" indicates whether or
not the SIC firmware is expecting an acknowledgment from the
MCPU. Both flags are read and written by the SIC firmware only.
Together with a few rules, they determine how the two processors
become synchronized and achieve mutual exclusion of access to
shared data structures.

The "rcv" flag is zero when the SIC firmware is in its initial
state, and is incremented in the Channel Attention interrupt ser­
vice routine when the MCPU issues a control command to the SIC
firmware. The flag value is decremented at the time a control
command is interpreted and acted upon.

The "sent" software control flag value is false when the SIC
firmware is in its initial state, and is set to true immediately
after a Multibus interrupt (command completion notification) has
been issued to the MCPU. It is set to false in the Channel Atten­
tion interrupt service routine when the MCPU issues an ack­
nowledgement to the SIC CPU.

3.2.5 Commands

There are two types of commands to which the SIC firmware
responds: control commands (resume, suspend, acknowledgements,
and send break) and block commands (set parameters, transmit,
change a parameter, and send break). The SIC firmware reports
asynchronous events to the SIC agent on the MCPU via status
fields in the LINE structure and the interrupt line.

Control commands are communicated to the SIC firmware via the
LINE structure, and have no parameters. The MCPU writes the com­
mand into the command field in the LINE structure and issues a
channel attention to the SIC CPU. The SIC CPU acknowledges com­
pletion of any of these commands by writing a zero into the same
command field and clearing the Channel Attention.

Block commands (set parameters, transmit, change a parameter,
send break) are received by the agent from the client in a mes­
sage passed to one of the agent's procedures. The agent formats
them into a CB and chains them into the CBL for the particular
line on the particular SIC board. A channel attention is then
issued with the control command "resume the Command Unit".

09-0018-00 Bridge Communications, Inc. Page 3-7

- - ,---, __ .--- -.-.--,,---------------------.--~---~------~

Volume Three ESPL Software Technical Reference Manual

3.2.6 Synchronization

The following rules must be observed to achieve synchronization: ~

1. The Agent must wait for the command fields in the LINE
structure to be reset by the SIO firmware before setting
them again to issue a control command.

2. The Agent must write the command field into the LINE struc­
ture before issuing a Channel Attention interrupt.

3. While Sent is true, the SIO firmware cannot modify the
status fields of the LINE structure.

4. The Sent and Rcv flags should change state after the
occurrence of the event rather than before.

The steps necessary to achieve synchronization are illustrated in
Figure 3-1.

Agent

Wait for command fields
to be cleared
Format LINE structure
Channel Attention ===)

New commands and Channel
Attention allowed

Clear Multibus Interrupt
Read LINE structure status
Issue acknowledgement
Channel Attention ===)

Firmware

Initial State
Rcv = 0
Sent= F

Rcv --) +=1
Sent= F

Rcv --) -=1
Clear command fields

<=== Multibus Interrupt
Sent --) T

Sent --) F
Clear acknowledgement
If cmd pending,
Rcv --) +=1

Figure 3-1 Synchronization Control

Page 3-8 Bridge Communications, Inc. 09-0018-00

c

(

(

c

ESPL Software Technical Reference Manual Volume Three

3.2.7 Data Structures

The SID agent and firmware use ESB shared memory for the SIOCB,
the CBL and the CRA. The following subsections describe these
shared data structures. Also described are the data structures
CS and SIOPORT, which are kept by the agent in private memory and
are used to store information on a per-board and per-line basis.
These data structures are included here because they contain
pointers into the CBL and CRA that reflect current CB and buffer
utilization.

The data structures used by the SID firmware and agent are illus­
trated in Figure 3-2.

09-0018-00 Bridge Communications, Inc. Page 3-9

Volume Three ESPL Software Technical Reference Manual

+--------+-------+-------+-------+

/
SIOInit_ptr Array (11FF00) I

[1] I [2] I [3] I [4]
+---+----+---+---+---+---+---+---+

t v t ~
+------+-------+ v

SIOCB
(1 per board)

Shared
Memory

SIO 1ines[0] +---->
SIO=lines[1] +--->

+
SIO_1ines[7] +->+------------+

+--------------+ LINE
(1 per port)

+-<------------+ptr to I
1->+----+ I CBL toP~~Ai------>i-~~-i

I CB I +------------+ e--: -- :J
+----i""]

L;'
~ ~-~--+
~-~--+ I BD I

I CB I +----+:1
+---- L NULL

+------------+
SIOPORT

(1 per port)

+--------------+ siop cb1ast
siop-cbnext CS

(1 per board)

CS 1ines[0]
CS=1ines[1]

ISioP_bdnext
siop_bdlast

+---->+------------+
+->
+-->

I CS_1ines[7] +--->
Agent's Private

Memory
+------+-------+

Page 3-10

I
+--+----+---+---+---+---+---+---+

I [1] I [2] I [3] I [4] I
CSTab1e Array

+-------+-------+-------+-------+

Figure 3-2 SIO Data Structures

Bridge Communications, Inc. 09-0018-00

o

(-

ESPL Software Technical Reference Manual Volume Three

3.2.7.1 SIO Control Block

The SrOCB is a shared data structure containing the fields for
interprocessor communication. There are eight
sources/destinations for characters, so the body of the structure
is an array structure; but there is an overall structure for the
entire board which facilitates the search for the interrupting
line, and enables information about several lines to be exchanged
in one interrupt. There is a LINE structure for each of the
eight ports, containing pointers to the CRA and the CBL as well
as fields for error and statistic information.

The SIOCB and LINE structures have the following format:

*define SrOCB struct siocb

srOCB {
short

short

LINE

}

09-13018-00

sio_statmask; /* bit mask - Each line is
assigned a bit. The assigned
bit is ON if the interrupt
to the MCPU has information
from that line. The obvious
bit assignment is made, i.e.
bit in is used for line tn.

*/
/* bit mask - The assigned

*/

bit is ON if the channel
attention from the MCPU has
information for that line,
acknowledgement or new cmd.
Again, the obvious bit
assignment has been made.

sio_lines[8]; / pointers to the structures

*/

of the individual lines. A
pointer is picked from here
when it is determined (by
checking the masks) which line
has new information.

Bridge Communications, Inc. Page 3-11

••• -p ."~".------"-.
._._-_._. __ ._----

Volume Three ESPL Software Technical Reference Manual

#define LINE struct line

LINE { 0 short line stat; /* - bit meaning
8-15 unused
7 command(s} completed
6 read(s} completed
5 CU gone not ready
4 RU gone not ready
3 CU ready/not ready
2 RU ready/not ready
1-0 unused

*/
short line cmd; /* - bit meaning

9-15 unused
8 out of band break
7 ack command complete
6 ack read complete
5 ack CU not ready
4 ack RU not ready
3 suspend CU
2 resume CU
1 suspend RU
0 resume RU

*/
BD *line cra; /* ptr to char rcv area */

~ -CB *line cbl; /* ptr to first CB */)
short line _cmdcmplt; /* cnt of complete CBs */
short line _readcmplt; /* cnt of complete reads */
short line _parityerri /* count of parity errors */
short line bderr; /* count of characters lost -

* due to lack of buffers */
} ;

c
Page 3-12 Bridge Communications, Inc. 09-0018-00

(

ESPL Software Technical Reference Manual Volume Three

3.2.7.2 Command Block

The SIO Command Block (SIOCB) is a shared data structure. A com­
mand (e.g., initialize, write or change parameter) is given to
the SIO firmware by chaining it into the Command Block List
(CBL). The CBL is a circular, singly-linked list of blocks, the
last of which is marked by the absence of a command in the com­
mand type field. Each line has its own CBL, and keeps a pointer
to the beginning of the CBL in the SIOCB.

'define CB struct cb

CB {
short
short
CB
union {

cb stat;
cb-cmd;
*cb link-- ,
SIO INIT
SIO WRITE
SIO CHGPARM
SIO-CONNECT
SIO DISCONNECT
SIO-DIAG

sio init;
sio=write;

} cb_parms;

sio chgparm;
sio-connect;
sio-disconnect;
sio=diag;

} ;

SIO INIT { - UIBLK
} ;

SIO WRITE {
BD
short

} ;

SIO CHGPARM { - short
short

} ;

SIO CONNECT {

} ;

- BD
char
short

SIO DISCONNECT {
} ;

SIO DIAG {
int

} ;

09-QH?Jl8-00

chg parmno;
chg=parmval;

*c bufdes;
*c-ptr;
c_Ien;

(*diag routine) () ;

Bridge Communications, Inc. Page 3-13

Volume Three ESPL Software Technical Reference Manual

3.2.7.3 SIO Agent Private Data Structures

The private structures CS and SIOPORT are used by the agent and 0
network management. These structures contain configuration vari-
ables, pointers for tracking the lists of CBs and buffers, and
line or board identification such as interrupt identifiers.

#define CS struct cs /* per-board structure */

CS {
INTID cs ident; /* interrupt id for board */
SIOCB *cs_siocbptr; /* ptr to SIOCB for this board */
short cs vec; /* vector offset */
SIOPORT *cs lines[8]i /* individual lines */

} ; -

#define SIOPORT struct sioport /* per-line structure */

SIOPORT {
short siop index; /* index in table */
short siop-state; /* connected or not */
MSG *siop safull; /* msg kept when mbox full */
MBID siop cmbox; /* client control mailbox */
MBID siop=dmbox; /* client data mailbox */
CB *siop cblast; /* first free CB */
CB *siop-cbnext; /* next CB to process */
BD *siop-bdnext; /* next BD to process */
BD *siop=bdlast; /* last BD in receive area */
short siop qcount; /* no. of unused buffers */ .~

short siop-cbs; /* number of CBs per line */ ~~

short siop-bds; /* number of BDs per line */
short siop-bdcount; /* no. of buffers in chain */
short siop=bdsZi /* size of buffer */

} ;

Page 3-14 Bridge Communications, Inc. eJ9-QHH8-eJeJ

(-

(

ESPL Software Technical Reference Manual Volume Three

3.3 Client Interface to SIO Agent

The agent receives requests in the form of procedure calls
directed to a specific line number and gives notification in the
form of IPC messages to the client's control mailbox. The pro­
cedure calls all take message pointers as parameters. Since the
BD parameter is already in the message, the message block can
easily be reused, thus reducing overhead.

The SA keeps track of the connection state of each line. The
state of being connected or disconnected is associated with the
establishment of a Virtual Terminal process for an SIO line. When
the SA receives any data while in the disconnected state, it
sends a connect request message to the Parent Virtual Terminal
process. Once a VT process is established, it notifies the SA of
data and control mailboxes to which to send messages.

For the IPC porti6n of the interface, the agent uses a standard
message header (SAMSG) which has a standard data structure as
follows:

SAMSG {

} i

MSG
ushort

sa msgi
sa=portidi

/* the system message */
/* the SIO line number */

3.3.1 Connect Request Procedure Call and Message

The connect request procedure call is issued by a VT process to
connect itself to an SIO line. The connect request message is
sent by SA to the Parent VT to request the establishment of a VT
process for an SIO line. The message has the same format as that
passed as a parameter in the procedure call. A connection
request may be rejected by sending a disconnected message back to
the requestor.

Procedure Call "C" Declaration:

saV2Sconnect (m)
MSG *mi

Input Parameters:

m Message pointer.

139-0018-00 Bridge Communications, Inc. Page 3-15

Volume Three ESPL Software Technical Reference Manual

The format of the connect request message (whether pointed to by
Om" in the procedure call or sent as an IPC message) is as fol­
lows:

SACONNECT {
SAMSG
MBID
MBID

} ;

sac msg;
sac-cmbox;
sac=dmbox;

The parameter "sac_msg" has the standard SAMSG format, and con­
tains the system message, a line number and a message type of
MSACONN. When passed as a parameter in a procedure call, the
other parameters of the message block indicate the control mail­
box and data mailbox of the requesting VT process.

3.3.2 Disconnect Request Procedure Call and Message

The disconnect request procedure call is issued by a VT process
to disconnect itself from an SIO line. The disconnect request
message is sent by SA to a VT process to request disconnection
from an SIO line. Disconnection invalidates the VT data and con­
trol mailboxes, so that any further data from the line causes a
connect request message to be sent to the Parent VT process.
Disconnection also flushes input and output, and drops DCD to the
device if the UseDCDout parameter is set to "OnConnection".

Procedure Call "CO Declaration:

saV2Sdisconnect (m)
MSG *m;

Input Parameters:

m Message pointer.

The format of the disconnect request message is as follows:

SADI SCONNEc'r {
SAMSG
ushort

} ;

sad msg;
sad=reason;

The parameter "sad msg" has the standard SAMSG forma~, with a
message type of MSADISCONNECT. The "sad reason" parameter values
are passed to SA by VT and are defined in Section 5.3.9.

Page 3-16 Bridge Communications, Inc. 09-0018-00

c

\ ~~ ~/

c

("

(

(

.- - .. -- .. "~-.----"" .. _-"_._ _ - ... _"_.- --- -- .-~.-~--~-

ESPL Software Technical Reference Manual Volume Three

3.3.3 Connected Procedure Call

The connected procedure call is issued by a VT process to SA in
order to inform SA of the establishment of a connection.

Procedure Call "C" Declaration:

saV2Scnctd (m)
MSG *m;

Input Parameter: Message pointer

The format of the connected message is as follows:

SACNCTD {
SAMSG
MBID
MBID

} ;

sacd msg;
sacd-cmbox;
sacd=dmbox;

The parameter "sacd msg" has the standard
format, with a message type of MSACNCTD.
are the VT command and data mailboxes.

SAMSG message block
The other parameters

3.3.4 Disconnected Procedure Call and Message

The disconnected procedure call is issued by VT to SA to ter­
minate a connection (e.g., when VT wishes to notify SA that a
connection has been terminated at the remote end). The discon­
nected message is sent by SA to VT to terminate a connection
(e.g., when SA wishes to advise VT that carrier is lost on an sro
line) •

Procedure Call "C" Declaration:

saV2Sdscnctd (m)
MSG *m;

Input Parameter: Message pointer

The format of the disconnected message is as follows:

SADSCNCTD {
SAMSG
ushort

sadd msg;
sadd=reason; };

The parameter "sadd msg" has the standard SAMSG format, with a
message type of MSADSCNCTD. The "sadd reason" parameter values
are passed to SA by VT and are defined in Section 5.3.9.

09-0018-00 Bridge Communications, Inc. Page 3-17

volume Three ESPL Software Technical Reference Manual

3.3.5 Board Initialization Procedure Call

This procedure call is issued by the Parent Virtual Terminal pro­
cess once per SIO board at initialization time to request the SA
to initialize the SIOCB, CRA and CBL for each line of the board
according to the initial configuration state (which may say
DO_NaT_INITIALIZE).

Procedure Call "C" Declaration:

salnitCBlck (board);

3.3.6 Set Parameters Procedure Call

The client (e.g., VT) issues this procedure calIon a per-line
basis to specify the parameters of the SIO line according to the
set negotiated between the user interface and the user, or in
response to a Rmtset command. All the parameters are affected,
and the SIO line is initialized.

Procedure Call "C" Declaration:

saV2Ssparm (m)
MSG *m;

Input Parameters: Message pointer

Output Parameter: Error code

Error Codes:

NoError

Error

SAFULL

The message

SASPARM

} ;

No error detected (0).

No memory blocks available for a copy of parame­
ters (-1).

No command block available for requested operation
(1) •

block pointed to by "m" has the following format:

{
SAMSG
UIBLK

sas msgi
*sas_parmset;

The parameter "sas msg" has the standard SAMSG format, and con­
tains a line number and a message type of MSASPARM. The parame­
ter "sas parmset" points to the block of UI parameters which
determine the specified line's parameters.

Page 3-18 Bridge Communications, Inc. 09-0018-00

- --------------- -- '-' ------------------

o

C,"," " ,!

c

ESPL Software Technical Reference Manual Volume Three

3.3.7 Change Parameter Procedure Call

This procedure call is used to change a single parameter in the
parameter list.

procedure Call "C" Declaration:

saV2Schgp (m)
MSG *m;

Input Parameters:

Output Parameter:

Error Codes:

Message pointer

Error code

NoError No error detected (0).

SAFULL No command block available for requested operation
(1) •

The SIO line, the parameter number and the new value are parame­
ters in the message block, which has the format:

SACHGP {

} ;

SAMSG
ushort
ushort

sach msg;
sach=parmno;
sach_value;

The parameter "sach_msg" has the standard SAMSG format, with a
message type of MSACHGP.

09-0018-00 Bridge Communications, Inc. Page 3-19

Volume Three ESPL Software Technical Reference Manual

3.3.8 Flow Control Procedure Call

When SA cannot send received data to VT because VT's data mailbox
is full, SA changes the message type to MSAFLCTRL and sends the
message to VT's control mailbox instead. When VT receives this
message, it passes the message as a parameter to the procedure
call saV2Sflctrl, which again attempts to forward the data to
VT's data mailbox. The cycle repeats if the data mailbox is
full.

Procedure Call "CD Declaration:

saV2Sflctrl(m)
MSG *mi

Input Parameter:

m Message pointer.

The message block pointed to by Om" has the format:

SAFLCTRL {
SAMSG
ushort

} ;

safl msgi
safl=ctrli

The parameter "safl msg" has the standard SAMSG format, with a
message type of MSAFLCTRL.

3.3.9 Restart Line Procedure Call and Message

When the SIO firmware needs to flow control a line, it uses this
message. The line may have run completely out of buffers if no
flow control mechanism is used or if the client's data mailbox is
full for a long time (e.g., if the remote end of the connection
is flow-controlled). In this case, the interrupt routine sends
an SAMSG to the Parent Virtual Terminal process, which in turn
issues the restart line procedure call with the same message to
initiate reception again. The cycle repeats if the line does not
have an adequate supply of buffers.

Procedure Call "CD Declaration:

saV2Srestart (m)
MSG *m;

Input Parameter:

m Message pointer.

The restart message block has the standard SAMSG format, and a
message type of MSARESTART.

Page 3-20 Bridge Communications, Inc. 09-0018-00

c

ESPL Software Technical Reference Manual Volume Three

3.3.10 Send Data Procedure Call

This procedure call is used to transmit data to the SIO line. The
buffer descriptor and the SIO line are passed in the message as
parameters. The parameter "sada reason" indicates whether or not
an EOM signal accompanies the buTfer. The EOM is mapped according
to the parameter set for the port. If the data cannot be chained
into the Command Unit of the SIO line, the return code indicates
the reason.

Procedure Call "C" Declaration:

short
saV2Sdata (m)
MSG *m;

Input Parameter:

m Message pointer.

Output Parameter:

Error code

Error Codes:

NoError No error detected (0).

SAFULL No command block was available (l).

The send data message block pointed to by "m" has the format:

SADATA {

} ;

SAMSG
ushort

sada msg;
sada=reason;

The parameter "sada msg" has the standard SAMSG format, and a
message type of MSADATA.

09-0018-00 Bridge Communications, Inc. Page 3-21

Volume Three ESPL Software Technical Reference Manual

3.3.11 Receive Data Message

This message is sent from interrupt level to the client data {';
mailbox when a read is completed on the line. The reason for com- ~
pletion is passed in the message, and comes from the status field
of the BD for the received buffer •

.. c .. Declaration:

SADATA {

} ;

SAMSG
ushort

sada msg;
sada=reason;

The parameter "sada msg" has the standard SAMSG format, and a
message type of MSADATA.

3.3.12 Send Attention Procedure Call

The attention procedure call is called when the VT process needs
to send a BREAK to the SIO line. The attention message is sent
from the interrupt level of SA to the VT control mailbox when a
BREAK is detected on the SIO line.

Procedure Call .. c .. Declaration:

saV2Sattn (m)
MSG *m;

Input Parameter:

m Message pointer.

Output Parameter:

Error code

Error Codes:

NoError No error detected (0).

SAFULL No command block was available for requested
operation (1).

The format of the attention message is as follows:

SAATTN {

} ;

Page 3-22

SAMSG
ushort

saa msg;
saa=signal;

Bridge Communications, Inc. 09-0018-00

ESPL Software Technical Reference Manual Volume Three

The parameter "saa msg" has the standard SAMSG format, and a mes­
sage type of MSAATTN. The message parameter "saa_signal" indi­
cates whether the BREAK should be sent in-band or out-of-band.
When directed to an SIO line by VT, the in-band BREAK is sent in
a Command Block and follows any outstanding commands, while the
out-of-band BREAK is issued as a control command and so occurs
immediately.

3.3.13 Full CBL Message

Each SIO line has a small number of preallocated command blocks.
If all of a line's command blocks are full, and a procedure call
is received which requires a command block, the agent generates a
return code of SAFULL and saves the pointer to the message used
in the procedure call. When a command block becomes available,
SA sends the saved message back to the client with a message type
of MTMSAFULL. It is the responsibility of the client to remember
the original message type and to reissue the procedure call.

The procedure calls which require a command block are the send
data procedure call, the attention procedure call, the set param­
eters procedure call, and the change parameters procedure call.

09-0018-00 Bridge Communications, Inc. Page 3-23

o

(~

Bridge Communications, Inc.
10440 Bubb Road
Cupertino, California 95014
408/446-2981

