
. . '

LtNKING LOADER
User's Guide ,,
Document Number 72781 a

. I

Table of Contents Page

CHAPTER 1 - INTRODUCTION • • • • • • • • • • • • • • • 1-01

1.1 HARDWARE SUPPORT REQUIRED ••••••••
1.2 OPTIONAL HARDWARE SUPPORTED •••••••
1.3 SOFTWARE SUPPORT REQUIRED ••••••••
1.4 SOFTWARE INSTALLATION ••••••••••

• •

• •
• •

• 1-01
• 1-01
• 1-01
• 1-02

CHAPTER 2 - LINKING LOADER FEATURES • • • • • • • • • • 2-01

2.1 RELOCATION • • • . • • • • • • • • • • • • • • 2-01
2.2 LINKING • 2-01
2.3 SECTIONS • • • • . • • • • • • • • • . 2-02
2.4 NAMED COMMON • • • • • • • • • • . • • • • • • 2-03
2.5 MODULE LIBRARIES • • • • • • • • • • • • • • . 2-06
2.6 MEMORY ASSIGNMENT • • • • • • • • • • • • • • • 2-06
2.7 LOAD MAPS • • • • . • • • • • • • • • • • • . • 2-06

CHAPTER 3 - LINKING LOADER COMMANDS • 3-01

3.1 LINKING LOADER INPUT ••••••••••••• 3-01
3.2 COMMAND FORMAT •••••••••••••••• 3-02
3.3 LINKING LOADER COMMANDS •••••••••••• 3-03
3.4 CONTROL COMMANDS ••••••••••••••• 3-04

3.4.1 IDOF - SUPPRESS PRINTING OF MODULE ID •• 3-04
3.4.2 IDON - PRINT MODULE ID ••••••••• 3-04
3.4.3 IF - INTERMEDIATE FILE ••••••••• 3-05
3.4.4 IFOF - INTERMEDIATE FILE MODE OFF •••• 3-06
3.4.5 IFON - INTERMEDIATE FILE MODE ON •••• 3-06
3.4.6 INIT - INITIALIZE LOADER •••••••• 3-07
3.4.7 MO - MAP OUTPUT ••••••••••••• 3-07
3.4.8 OBJ - PRODUCES LOAD MODULE ••••••• 3-08
3.4.9 EXIT •••••••••••••••••• 3-09

3.5 LOAD DIRECTIVES •••••••••••••••• 3-10
3.5.1 LIB - LIBRARY SEARCH •••••••••• 3-10
3.5.2 LOAD - LOAD A FILE ••••••••••• 3-11

3.6 STATE COMMANDS •••••••••••••••• 3-12
3.6.1 BASE - INITIALIZE MINIMUM LOAD ADDRESS • 3-12
3.6.2 STR - STARTING ADDRESS ••••••••• 3-13
3.6.3 CUR - SET CURRENT LOCATION COUNTER ••• 3-14
3.6.4 DEF - LOADER SYMBOL DEFINITION ••••• 3-16
3.6.5 END - ENDING ADDRESS •••••••••• 3-17
3.6.6 MAP - PRINTS LOAD MAPS ••••••••• 3-18

CHAPTER 4 - SAMPLE OPERATIONS WITH THE LINKING LOADER • 4-01

4.1 SIMPLIFIED LINKING LOADER OPERATION •••••• 4-01
4.2 LOADER OPERATIONS USING INTERMEDIATE FILES •• 4-12
4.3 LOADER OPERATIONS USING A LIBRARY FILE •••• 4-14
4.4 LOADER OPERATIONS USING A CHAIN FILE ••••• 4-17

APPENDIX A - LINKING LOADER COMMANDS • • • • • • • • • A-01

APPENDIX B - LINKING LOADER ERROR MESSAGES • • • • • • B-01

Page i

List of Figures Page

Figure 2-1. Load Maps • • • • • • • • • • • . • • • • 2-04
Figure 2-2. Load Map • • . . . • • • • • • • 2-05
Figure 2-3. Loader-Produced Memory Map • • • • . • • . 2-07
Figure 4-1. Message Program 1 (PGl) • • • • • • . 4-03
Figure 4-2. Message Program 2 (PG2) • • • • • • • • • 4-08
Figure 4-3. Message Program 3 (PG3) . • . • • 4-10
Figure 4-4. Basic Loader Operation • • • • • • • • • • 4-11
Figure 4-5. Using an Intermediate File • 4-13
Figure 4-6. Using a Library File • • . • • 4-16
Figure 4-7. Listing of Chain File Invoking RLOAD • • • 4-18
Figure 4-8. Using a Chain File and RLOAD • . • • • • • 4-20
Figure 4-9. Map Output File Listing . . . • • . • . . 4-21

Page ii

CHAPTER 1 - INTRODUcrION

The Linking Loader combines relocatable object modules
produced by the Macroassembler to produce a complete
executable program.

Since the Linking Loader permits load origins and
inter-module references to be resolved at linkage time rather
than at assembly time, modules are not required to specify
absolute addresses (only relative addresses are required).
As the modules are loaded' by the Linking Loader, labels are
automatically assigned absolute addresses, satisfying the
references to such labels located in other modules. This
process greatly speeds program development and permits time
to be spent on correcting program design rather than on
defining label addresses.

The Linking Loader also allows modules to be compiled
separately, enabling the user to build a library of standard
or commonly-used program modules for inclusion in other
programs.

1.1 HARDWARE SUPPORT REQUIRED

The minimum hardware configuration required to support
Linking Loader consists of:

- CDX-68 Basic Display Terminal with the appropriate
firmware options

- 32K bytes of user memory (RAM)

- 10 Mb Disk or 1 Mb Diskette Storage (CDX-DS/FR or
CDX-FS Series)

1.2 OPTIONAL HARDWARE SUPPORTED

Linking Loader also supports a variety of printers,
including Matrix and Character printers (the Codex SP
Series). These optional printers are linked to the Basic
Display Terminal through either the Microcomputer Module D or
the Printer Interface Module (CDX-PI).

1.3 SOFTWARE SUPPORT REQUIRED

No additional software is required to run the Linking
Loader as it comes shipped on the system disk.

Page 1-01

1.4 SOFTWARE INSTALLATION

There is no software installation that need be
performed. All Linking Loader software is on the disk
containing the CODOS system software.

Page 1-02

CHAPTER 2 - LINKING LOADER FEATURES

2.1 RELOCATION

Relocation allows the user to assemble/compile a source
program without assigning absolute addresses at the time of
assembly or compilation. ·Absolute memory assignment is
performed at load time. In order to relocate a program
(within memory), the source program must be assembled with
the Macroassembler, using the OPT REL directive. The
Macroassembler produces a relocatable object module. These
relocatable object modules contain information describing the
size of each section (ASCT, BSCT, CSCT, and DSCT) and named
common area, as well as the relocation data.

In order to load any relocatable object module, the
Linking Loader must be used. The Linking Loader assigns
addresses and produces an absolute object module compatible
with the system loader.

2.2 LINKING

Linking allows instructions in one program to refer to
instructions or data residing within other programs. If all
programs are assigned absolute addresses during assembly
time, it is possible to directly reference another program by
absolute addresses. However, when using relocatable
programs, absolute load addresses are not generally known
until load time. In order to obtain other relocatable
programs or data blocks, external reference symbols are used.
These external symbols are commonly called global symbols
since they may be referenced by any module at load time.

Although global symbols are used to link modules at load
time, they must be explicitly defined and referenced at
assembly time. This is accomplished by the Macroassembler
directives, XDEF and XREF. The XDEF directive indicates
which labels defined within a module can be referenced by

'other modules. The XREF directive indicates that the
ref~renced label is defined outside the module.

At load time, global references match with their
corresponding global definitions. Any reference within a
module to a global symbol updates with the load address of
the global symbol. If the loader detects a global reference
without an associated global definition, an undefined global
error occurs, and a load address of zero is assigned to the
reference.

Page 2-01

2.3 SECTIONS

The section concept is preserved by the Linking Loader
during the load process. As a module loads, each of its
sections combines with the corresponding sections of
previously loaded modules. As a result, the absolute load
module produced by the Linking Loader, contains one
continuous memory area for each section type encountered.
The following is a brief definition of each section type.

ASCT - Absolute Section (non-relocatable)

There may be an unlimited number of absolute sections
in a user's program. These sections are used to
allocate/load/initialize memory locations assigned by
the programmer rather than the loader (i.e., addresses
assigned to ACIA's and PIA's).

BSCT - Base Section (direct addressing)

There is only one base section. The Linking Loader
allocates portions of this section to each module that
needs space in BSCT. BSCT is generally used for
variables that are refe~enced through direct
addressing. BSCT is limited to locations within the
addressing range of O through 255 (hexadecimal
locations 0 through OOFF).

CSCT - Blank Common (uninitialized)

There is only one CSCT. This section is used for blank
common. This section cannot be initialized.

DSCT - Data Section

There is only one data section. The Linking Loader
allocates portions of this section to each module that
needs a part of DSCT. DSCT is generally used for
variables (RAM) obtained through extended mode
addressing (hexadecimal locations 100-FFFF).

PSCT - Program Section

PSCT is similar to PSCT except that it is normally used
for instructions.

Page 2-02

2.4 NAMED COMMON

In addition to the program segmentation provided by the
section concept, the relocation and linking scheme supports
named common. The named common concept designates common
areas within BSCT, DScT, or PSCT. In processing named common
definitions, the Linking Loader (1) assigns to each named
common area a size equal to the largest size defined for the
named common during the load process, and (2) allocates
memory at the end of each section for the named common blocks
defined within that section.

The load maps shown in Figure 2-1 describe the load
process with regard to sections and named common. The module
EXl requires reserved memory in BSCT, CSCT, DSCT, and PSCT.
The only space necessary in DSCT is for the named common
NCOMl. The module EX2 requires that memory is allocated in
BSCT, CSCT, DSCT, and PSCT. Neither module defines ASCT
blocks.

The load module map illustrates a typical memory map
that might be produced by loading EXl and EX2. The BSCT for
both EXl and EX2 are allocated memory within the first 256
bytes of memory. As shown, the first 32 ($20 hex) bytes of
BSCT are reserved by the Linking Loader for use by the disk
operating system, unless otherwise directed. After BSCT,
space for blank common is allocated, followed by space for
EX2 DSCT. Since EXl requires no DSCT for its exclusive use,
none is allocated. The named common block, NCOMl, within
DSCT is assigned memory at the end of DSCT. Finally, the
PSCT's for EXl and EX2 are allocated along with the PSC'l'
common blocks NCOM2 and NCOM3.

The Linking Loader assigns memory within sections in the
order in which the modules are specified. Named common
blocks are allocated memory at the end of their corresponding
section in the defined order. Figure 2-2 illustrates a load
module map produced by loading EX2 followed by EXl. This
load module map is slightly different from the map in Figure
2-1 where EXl was loaded first.

Page 2-03.

LENGTH

3

30

20

50

5

10

EXl

BSCT

CSCT

NCOMl (DSCT)

PSCT

NCOM2(PSCT)

NCOM3(PSCT)

DECIMAL
ADDRESS

0

32

35

45

80

100

120

170

230

235

250

LENGTH

10

35

20

15

5

LOAD MODULE

SYSTEM AREA

BSCT EX

BSCT EX

CSCT

DSCT EX

NCOMl

PSCT EX

PSCT EX

NCOM2

NCOM3

EX2

BSCT

CSCT

DSCT

NCOMl(DSCT)

PSCT

NCOM3(PSCT)

NCOM2 (PSCT)

Figure 2-1. Load Maps

Page 2-04

DECIMAL
ADDRESS

0

32

42

45

80

100

120

180

230

245

250

LOAD MODULE

SYSTEM AREA

BSCT EX

BSCT EX

CSCT

DSCT EX

NCO Ml

PSCT EX

PSCT EX

NCOM3

NCOM2

Figure 2-2. Load Map

Page 2-05

2.5 MODULE LIBRARIES

The Linking Loader can automatically search a file for
modules containing definitions satisfying any unresolved
global symbols. Such a file is called a library file. It is
composed of one or more merged object modules. The Linking
Loader sequentially searches the library file. If a module
contains a symbol definition satisfying an unresolved global
symbol, that module is loaded. Only those modules which
satisfy an unresolved reference are loaded.

Since a library file is searched only once, modules
which reference other modules within the library file, should
occur (within the library file) before the referenced module.
Otherwise, the user must direct the Linking Loader to search
the library again.

2.6 MEMORY ASSIGNMENT

During the load process, absolute addresses are assigned
to the program sections within the specified modules.
Normally, the Linking Loader automatically performs this
assignment by allocating memory by sections in the order:
ASCT, BSCT, CSCT, DSCT, and PSCT. However, the user may
define the starting and/or ending address of .any non-ASCT
section. In this case, the Linking Loader first reserves
memory for those sections with defined load addresses before
allocating space for any other section.

The Linking Loader also permits a user to specify the
relative section offset of a module within a section.
However, a section of a module is always loaded in the
associated load section in the orde·r which the module is
specified. Named common blocks are always assigned memory at
the end of the associated load section.

2.7 LOAD MAPS

The Linking Loader optionally produces a load map
describing the memory layout results. Figure 2-3 is an
example of some of the features included in a typical load
map. In addition to this full load map, the Linking Loader
may be directed to produce partial load maps that list only
the undefined global symbols or section load addresses.

Page 2-06

NO UNDEFINED SYMBOLS

MEMORY MAP

s SIZE STR END COMN
A 0006 4510 4515
A 0006 4406 440B
B OOlA 0000 0019 0000
c 0030 0020 004F 0030
D 0042 0400 0441 0020
p 0088 1000 1087 0000

MODULE NAME BSCT DSCT PSCT
PGl 0000 0400 1000
PG3 0005 040E 1060
PG2 . 0005 040E 1070

COMMON SECTIONS

NAME S SIZE STR
DCOMM D 0008 0422
DCOMM2 D 0018 042A

DEFINED SYMBOLS

MODULE NAME: PGl
CR A OOOD EOT ~ 0004 EXBPRT A F024 LF A OOOA
MSGl P 1000 MSG2 D 0400 MSGSIZ B 0000 PGlNE P 1016
START PlOOA

MODULE NAME: PG3
ATEST A 4406 POWERS P 1060

MODULE NAME: PG2
EXBENT A F564 MSG3 D 040E MSG4 D 0418 PGM2 P 1070
STACK B 0019

Figure 2-3. Loader-Produced Memory Map

Page 2-07

CHAPTER 3 - LINKING LOADER COMMANDS

The Linking Loader must be called while under the
control of CODOS. When the user types the command:

=RLOAD

the disk executive loads the Linking Loader. Upon entry, the
loader prints:

LINKING LOADER REV n.m
?
(where n.m is the revision number)

The character "?• is the Linking Loader prompt and prints
whenever the Linking Loader completes the last command and is
ready for another.

3.1 LINKING LOADER INPUT

The input to the Linking Loader is in one of two forms
(1) commands or (2) object modules. The Linking Loader
commands control the relocation and linkage of object
modules. Object modules are produced by the Macroassembler.
Each source program assembled or compiled creates a single
relocatable object module on a disk file. These disk files
or those files created by merging one or more of these files,
are used as the input to the Linking Loader. In addition, a
disk file may be used as a library file. The Linking Loader
may also run under the CODOS CHAIN command.

Nomenclature

<£-name>

<number>

Used to indicate the name of a disk file to be
used by the Linking Loader. Unless specified,
the file is assumed to have a suffix of RO and
a drive number of o. For the format of the
file name, consult the CODOS manual. (Example:
PGl.RO:l)

Used to indicate a decimal or hexadecimal
number. Unless preceded by a •$• character
(which is used to denote hexadecimal), the
number is interpreted as decimal. Unless
explicitly stated otherwise, the allowable
number range is:

O - 65,535 (decimal)
$0 - $FFFF (hexadecimal)

Page 3-01

{

99

Used to indicate that the enclosed directive(s)
is optional.

] Used to indicate that the enclosed directive

}

0 may be repeated from 0 to 99 times, up to a
maximum total of 79 characters.

Indicates that one Of the enclosed options
must be used.

3.2 COMMAND FORMAT

Each Linking Loader command line consists of a sequence
of commands and comments, followed by a carriage return. The
first space in a command line terminates the command portion
of the line, and the remainder is assumed to be comments.
Multiple commands may appear on a line by using a semicolon
(;) as a command separator. The format of a command line may
be defined as:

[<command> [1 <command> J 9: Jtspace> [<comments> 1] <c/r>

Example: STRB=O;STRD=$1000;STRP=$4000
!DON
LOAD=PGl

The commands in a command line execute only after the Linking
Loader detects a carriage return.

If a command line is incorrectly entered, the line may
be corrected in either of two manners. First, the command
line may be deleted completely by typing •cTRL X" (the CTRL
and X keys typed simultaneously}. This causes the Linking
Loader to ignore the current command line, issue a CR, LF,
and await a new command input line.

However, instead of deleting the entire command line, it
may be corrected by deleting the character(s) in error. This
is accomplished by typing a •sHIFT DEL" (the SHIFT and DEL
keys typed simultaneously). After deleting the character(s)
in error, the corrected version of the command line may be
entered. The "CTRL D" key allows the operator to redisplay
the line to show a "clean• copy of the line for operator
inspection. Thus, full compatibility is maintained with the
normal CODOS ".KEYIN" special character functions.

The Linking Loader ~xecutes all the commands in a
command line before another prompt is issued. If an error is
detected while attempting to process a command, that command

Page 3-02

is terminated, and the remaining commands in the command line
are ignored.

When using multiple commands per line, it should be
noted that selected commands require that they are the last
command on a line. These are:

• !NIT
all intermediate file commands (IF, IFOF, IFON)

3.3 LINKING LOADER COMMANDS

The Linking Loader commands are divided into three
classes:

1. control commands
2. load directives
3. state directives

The control commands initiate Passes 1 and 2 of the Linking
Loader, as well the return to the disk operating system. The
load directives identify the modules to be loaded; and the
state directives direct the assignment of memory to the
various program sections and produce a load map.

Page 3-03

3.4 CONTROL COMMANDS

3.4.1 IDOF - SUPPRESS PRINTING OF MODULE ID

Format: IDOF

Description: This command suppresses the printing of the
name and printable information associated
with each object module loaded or encountered
in a library file. For assembly language
programs, this information is specified with
the NAM and IDNT directives.

3.4.2 !DON - PRINT MODULE ID

Format: !DON

Description: This command causes the name and printable
information associated with each object module
loaded or encountered in a library file to
print at the console device. For assembly
language programs, this information is
specified via the NAM and IDNT directives.

Page 3-04

3.4.3 IF - INTERMEDIATE FILE

Format: IF=<f-name>

Description: The IF command defines a file to be used as an
intermediate file. An intermediate file is a
copy of all Pass 1 Linking Loader commands and
object modules. It directs the load operation
during Pass 2, instead of requiring the user
to retype the Pass 1 command sequence during
Pass 2. The IF command also automatically
places the Linking Loader in intermediate file
mode similar to the IFON command. Like the
IFON command, the IF command must be the last
command in a command line.

Example:

The IF file name must be a valid disk file
name and may not be the name of an existing
file on the specified disk. Upon proper
exiting from the Linking Loader, the IF file
is deleted.

IF= I FILE

Defines !FILE on drive 0 as the intermediate
file. Default suffix is IF.

Page 3-05

3.4.4 IFOF - INTERMEDIATE FILE MODE OFF

Format: IFOF

Description: IFOF temporarily suppresses the creation of
the intermediate file until an IFON directive
is encountered. This command must be the last
command in a command line.

3.4.5 !FON - INTERMEDIATE FILE MODE ON

Format: IFON

Description: This command directs the Linking Loader to
write all further commands and object modules
onto the intermediate file. This directive
remains in effect until an IFOF or Pass 2
command is detected. The IFON command must be
the last command on a command line. IFON is
implied when the intermediate file is defined
by the IF command. If an intermediate file is
to be used during Pass 2, the IFON directive
must be in effect.

Page 3-06

3.4.6 INIT - INITIALIZE LOADER

Format: INIT

Description: INIT initializes the Linking Loader for Pass
1. This command is performed automatically
when the Linking Loader first initiates. The
use of this command permits the user to
restart the Linking Loader when entry errors
are made, without having to go back to CODOS.
Any previously created object and/or
intermediate files are deleted. INIT must be
the last command in a command line.

3.4.7 MO - MAP OUTPUT

Format: MO= [:<f-n~me >]
<device>

Description: The MO command specifies the media on which the
map output is to be produced. The MAP output
output defaults to the console.

Example:

If a file name is specified, it must not be the
name of an existing disk file. The map cannot
be directed to a file during Pass 2, or
whenever an intermediate file is used.

A map can be produced on the console or line
printer by specifying the mnemonic ICN
(default) or iLP, respectively.

MO=MAPFL

MO=#LP

All output generated by the MAP
command is writt~n on file MAPFL
on drive o.
The line printer is used for all
future map output.

Page 3-07

3.4.8 OBJ - PRODUCES LOAD MODULE

Format: OBJA=<file-name>

Description: This command is used with the Linking Loader
to initiate the second pass of the Linking
Loader. During this pass, an object file is
created on disk with the name, <file-name>.
This file may not be the name of an existing
file on the specified disk. The file is
created on disk 0 unless disk l is specified

- __ d __________ - --H·rn-----in <file-name>. The type of object file
produced by the Linking Loader is determined
by the command form as follows:

OBJA - This format creates an absolute memory
image file suitable for loading via the
CODOS LOAD command. A default file
suffix of 'LO' and drive O is used if
none are specified.

If an intermediate file (IF) is generated during the
first pass of the Linking Loader, the second pass
automatically processes the commands entered during the first
pass. In the event that an intermediate file is not created,
the same sequence of commands used during the first pass must
be repeated.

Examples: OBJA=REPORT:l
LOAD=REPOR'J;'70BJA=REPORT7LOAD=REPORT

The Linking Loader creates the absolute
object file on file, 'REPORT.LO' on
drive l~

_Page 3-08

3.4.9 EXIT

Format: EXIT~~~~=~~~>)]
Description: The "EXIT" command causes control to return to

the disk operating system after all Linking
Loader files are closed.

The CODOS version of the Linking Loader allows
the user to define the starting execution
address of the object program. If the
<number> option is specified, the given
absolute number is used as the starting
execution address. This address must be a
valid address within the program. The <namel>
option is similar to the <number> option
except that <name> must be a valid global
symbol. If neither option is used, the
starting address defaults to the address
associated with the label appearing in the
operand field of the END statement in the
assembled program. If two or more modules
have END statements with operands, the operand
associated with the first module loaded is
used as the starting address.

Page 3-09

3.5 LOAD DIRECTIVES

3.5.1 LIB - LIBRARY SEARCH

Format: LIB=<f-name> [,[<£-name>]] 9~
Description: The LIB command instructs the Linking Loader

to search the specified file name{s) for those
modules which satisfy any undefined global
references. Any module that satisfies an
unresolved global reference is loaded. A
suffix of RO and logical drive of 0 are
assumed for <f-name>.

Example:

A library file is a collection of individual
relocatable object modules merged into a
single file.

Modules loaded via the LIB command may also
reference undefined global symbols. Since a
library file is searched only once for each
LIB command, it should be made with care so
that no module has any reference to a prior
{higher level) module, or multiple passes of
the same library must be made.

It should be noted that the Macroassembler
produces a.single relocatable object module in
a file. Since these single object module
files can be merged together into other
{library) files, the terms •object file• and
•object module• are not necessarily
equivalent.

LIB=MLIB:l

The modules on file MLIB.RO on drive 1 are
searched to resolve any unsatisfied global
references.

Page 3-10

3.5.2 LOAD - LOAD A FILE

Format: LOAD=<f-name> [[<f-name>J] 9 ~
Description: The LOAD command directs the Linking Loader to

load the specified object files.

Example:

The LOAD command directs the Linking Loader to
load all object modules found in the specified
file name(s). The file name could be a
library file, but the LOAD command unlike the
LIB command, loads each object module found.

A suffix of RO and logical drive 0 are
assumed.

LOAD=PGMl:l

Loads all modules within file PGMl.RO on disk
drive 1.

LOAD=PGM1,RAM:l,PGM2,PGM3

Loads all modules within files PGMl.RO on
drive o, RAM.RO on drive 1, PGM2.RO on drive
o, and PGM3.RO on drive o.

Page 3-11

3.6 STATE COMMANDS

3.6.i BASE - INITIALIZE MINIMUM LOAD ADDRESS

Format: BASE [=<number>]

Description: The BASE command allows the user to specify an
address above which the program loads. ~he
BASE command affects only the memory
assignment of CSCT, DSCT, and PSCT. Memory
assignments related to BSCT, ASCT, and those
sections with defined starting/ending
addresses (via commands STR or END) are not
affected by, this command. ·

The use of the <number> option defines the
lowest address which may be assigned to CSCT,
DSCT, or PSCT. If the <number> option is not
s.pecif ied, the lowest assignable address
defaults to the next modulo 8 address
following CODOS. This format of BASE allows
the user to load the program above CODOS
without having to know where CODOS ends.- If
the BASE command is not specified, a default
address of $20 (32 decimal) is used as the
lowest load address during memory assignment.

Example: BASE

Unassigned CSCT, DSCT, and PSCT are assigned
load addresses above CODOS.

Page 3-12

3.6.2 STR - STARTING ADDRESS

Format: STJ"~~=~number> } -\..gJ _<global ASCT symbol>

Description: The STR commands set the absolute starting
address of the associated section (BSCT, CSCT,
DSCT, PSCT). Those sections whose starting
address is not defined by the user is assigned
a starting address by the loader.

NOTE: A starting address of $FFFF resets any previous STR
directive for the corresponding section. This allows
the Linking Loader to define the starting address.

Example: STRP=$1000

PSCT is allocated memory starting at $1000.

3.6.3 CUR - SET CURRENT LOCATION COUNTER

Format: CUR{~)=[~<number>
Description: The CUR command modifies the Linking Loader's

current relative loading address of the
specified section (BSCT, DSCT, or PSCT). The
CUR command must be used prior to the LOAD or
LIB command in order to update the loading
address. If the •\• option is not specified,
the relative load address for the appropriate
section is set equal to the given <number>
starting section plus its value (see STR
command). This <number> must be equal to or
greater than the section's current load
address. This form of the CUR command allows
the user to start a module section at a
defined address.

Example:

For PSCT, the <number> entered adds to the
absolute value for STRP to obtain the new PSCT
load address value. The following example
loads four lK EPROM's at $4400, $4800, $5000,
and $8000 from multiple files. Each LOAD
command utilizes less than $400 bytes in PSCT
(starting PSCT=$4400).

?STRP=$4400
?LOAD=FILE11,FILE12,FILE13 EPROM at $4400
?CURP=$400
?LOAD=FILE21,FILE22,FILE23 EPROM at $4800

($4400 + $400)
?CURP=$COO
?LOAD=FILE31,FILE32 EPROM at $5000

($4400 + $COO)
?CURP=$4800
?LOAD=FILE41,FILE42,FILE43,FILE44 EPROM at $8000

($4400 + $4800)

Page 3-14

Example:

The "\" option affects the section's relative
load address in a different manner. This
option causes all future modules to be loaded
at an address which is a power of 2 relative
to the start of the section (2,4,8, etc.).
The specified <number> defines the given power
of 2. This option remains in effect until the
option is specified again or until the current
pass of the Linking Loader is complete. If
the "\" option is in effect when memory is
assigned to the starting section addresses,
the starting address of the section is
assigned a load address which is a power of 2.
This option does not apply to named common
blocks within the specified section.

If the CUR directive is not used, each module
normally loads at the next load address in the
appropriate section (contiguously loaded
modules).

CURP=$100

Sets the relative PSCT location counter to
$100 plus STRP value.

CURP=\16

Causes the Linking Loader to load all future
PSCT sections at a relative address within
PSCT which is modulo 16 plus the STRP value.

NOTE: When using the CUR command within a CODOS chain file,
the "\" option must use "\\" instead of "\.•

Example: STRP=$4001
CORP= $400
LOAD=PG1,PG2,PG3

If each file is a single module with less than
lK of PSCT in each one, then each module's
starting PSCT address is assigned as follows:

PG1=$4001
PG2=$4401
PG3=$4801

Page 3-15

3.6.4 DEF - LOADER SYMBOL DEFINITION

Format: DEF: (<number>l
<namel>= <name2> j

,ASCT
,BSCT
,DSCT
,PSCT

Description: The DEF command defines a global symbol and
enters it in the global symbol table. The
symbol to be defined is given by •name1• and
must be a valid Macroassembler variable name.
The symbol may not currently be defined. If
the <number> option is used, the symbol is
defined with the given number as the relative
address within the specified section. The DEF
command may be used to provide another name
for a previously defined symbol by using the
<name2> option. <name2> must be a currently
defined global symbol. The section options,
ASCT, BSCT, DSCT, and PSCT, define the section
associated with the defined section. ASCT is
the default section.

Example: DEF:ACIA1=$EC10,ASCT

Defines symbol ACIAl as an ASCT symbol with
absolute address $EC10 (hexadecimal).

Page 3-16

3.6.5 END - ENDING ADDRESS

Format: EN~~}=<number>
Description: The END commands set the absolute ending

address of the associated section (BSCT, CSCT,
DSCT, PSCT). If both an ending and starting
address are defined, the size described by
these boundaries must be equal to or greater
than the size of the associated section.

NOTE: An ending address of •$0000" resets any previous END
directive for the corresponding section.

Example: ENDB=255

BSCT is allocated such that the last address
reserved is 255 (decimal).

Page 3-17

3.6.6 MAP - PRI~TS LOAD MAPS

Format:

Description: The MAP commands display the current state of
the modules· loaded or the Linking Loader's
state directives.

MAPC - Prints the current size, user defined
starting address, and user defined
ending address for each of the
sections, as well as the size,
starting address, and ending address
for each ASCT defined.

MAPF - A full map of the state of the loaded
modules is produced after the Linking
Loader assigns memory. This map
includes a list of any undefined
symbols, a section load map, a load
map for each defined module and named
common, and a defined global symbol
map. If a user assignment error (UAE)
exists, this command cannot complete.
Use the MAPC command to determine the
cause of the error.

MAPS - The Linking Loader assigns memory to
those sections not defined by a user
supplied starting and/or ending
address. A memory load map, which
defines the size, starting address, and
ending address for each section,
prints. If a user assignment error
(UAE) exists, this command cannot
complete. use the MAPC command to
determine the cause of the error.

MAPU - Prints a list of all global references
which currently remain undefined.

Page 3-18

CHAPTER 4 - SAMPLE OPERATIONS WITH THE LINKING LOADER

This chapter provides a description of the Linking
Loader operations in typical applications. To demonstrate
the use of the Linking Loader, a simple message printing
program is used, consisting of three modules which reference
instruction sequences or data within each other. An assembly
listing of each module is shown in Figures 4-1, 4-2, and 4-3.

4.1 SIMPLIFIED LINKING LOADER OPERATION

The
shown in
PG2, and
created.
follows:

simplest form of the Linking Loader's operation is
Figure 4-4. In this example a11- three files, PGl,
PG3 are loaded, and the object file PG123 is

The sequence of steps shown in Figure 4-4 is as

1. The LOAD command loads the first file, PGl.RO:O. During
all load operations, a global symbol table of all
external definitions and references is built.

2. The LOAD command loads the next two files, PG2 and PG3.
Notice the default suffix RO and drive number 0 are
assumed.

3. The OBJA command starts pass 2 of the load function,
which creates an absolute memory image object file named
PG123 on drive 0 with the suffix LO. This command also
assigns memory addresses to the various program
sections.

4. Since an intermediate file was not created in pass 1,
all commands entered in pass 1 with the exception of
MAP commands, must be repeated. In pass 2, the LOAD
command generates the absolute code for the object file.
Notice that all three files are loaded with one load
command.

5. The "MAPU" command is not really necessary here, but was
entered to verify that no undefined symbols exist.

6. A complete memory map is produced by the MAPF command.
In the first part of the map (6a), any undefined
external references are listed. In the next part (6b),
the section type, the size, starting address, ending
address, and size of the section's common block are
listed for each program section. For example, PG123's
DSCT area has a size of 42 (hex) bytes, of which 20
(hex) bytes are in common. The DSCT area starts at
address $6A and ends' at $AB. The starting address of
the various sections for each program module is given in
the next map part (6c). As seen from the map, PG2 PSCT
starts at address $FD, which corresponds to the PG2

Page 4-01
'

instruction:

PGM2 CLRA

The fourth area Qf the map (6d) defines the size and
starting address of any n~med common blocks. The PGl
variable, CMSGST, which is the first variable in the
DCOMM2 common block, is l.ocated at address $8C. The
final map feature provides an alphatized list of all
global symbols by modules (6e, 6f, 6g). The modules
list in the order that they load. The PGl variable,
"START," has an absolute address of $B6.

7. To return to CODOS, the EXIT command is used·. This
command may be used to assign a starting execution
address. In this example, PG123's starting address is
is at $B6, since the variable START appears as the
operand on PGl's END statement. Two alternate methods
of defining the star~ing execution address are:

EXIT= STAR ...

or EXIT=$B6

Page 4-02

Page 001 PGl

00001
00002
00003
00004

00006
00007
00008
00009
00010

00012 F024

00014
00015
00016 0004
00017 OOOA
00018 OOOD

00020
00021
00022
00023
00024

00026
00027
00028
00029

.SA:l PGl PROGRAM TO PRINT OUT MESSAGES(MAIN)

PGl

A

REL,CREF,NOG
NAM
OPT
TTL
IDNT

PROGRAM TO PRINT OUT MESSAGES (MAIN)
06/06/80 MAIN MESG PROGRAM-MODULE il

* ASSEMBLY PROCEDURE: CMAP X.XX CODOS X.XX
* =CMAP PGl;LN=76
* * PROGRAM PARTS: PGl, PG2, PG3
* COMPUTER: CDX-68

EXBPRT EQU $F024 COBUG PRINT ROUTINE

* ASCII CHARACTER EQUATES
*

A EOT EQU $04 END OF TEXT
A LF EQU $0A LINE FEED
A CR EQU $OD CARRIAGE RETURN

* EXTERNAL REFERENCES
*

XREF ATE ST
XREF DSCT:MSG3,MSG4,ANY:STACK
XREF EXBENT,PGM2

* EXTERNAL DEFINITIONS
* XDEF MSG2,MSG1,EXBPRT,START,PG1NE

XDEF MSGSIZ,EOT,LF,CR

Figure 4-1. Message Program 1 (PGl)

Page 4-03

PAGE 002 PGl .SA:l PGl PROGRAM TO PRINT OUT MESSAGES {MAIN}

00031
00032
00033
00034N 0000
00035N 0000
00036N 0002
00037N 0004

0000
0000
0000

* COMMON MESSAGE AREA
* (NAMED COMMON ·DCOMM· IN DSCT)

* DCOMM COMM DSCT
P MSGlP FDB MSGl
D MSG2P FDB MSG2
A MSG3P FDB MSG3 .

PTR TO MESG l(IN PSCT)
PTR TO MESG 2(IN DSCT)
PTR TO MESG 3

00038N 0006 0000 A MSG4P FDB MSG4
(XREF IN DSCT)

PTR TO MESG 4

00040
00041
00042
00043N 0000
00044N 0000
00045N 0001

(XREF IN DSCT)

* MESSAGES 1 AND 2
* (NEW NAMED COMMON ·DCOMM2· IN DSCT)
*
DCOMM2 COMM DSCT

0001 A CMSGCT RMB 1 COMMON MESSAGE COUNT
0014 A CMSG RMB 20 COMMON MESSAGE

00047C 0000 CSCT BLANK COMMON SECTION
00048C 0000 0010 A MSGCST RMB 16 RESERVE 16 BYTES

OOOSOD 0000 DSCT DATA SECTION
00051D 0000 4D A MSG2 FCC \MESSAGE 2\
00052D 0009 04 A FCB EOT DELINEATE END OF

00054P 0000 PSCT PROGRAM SECTION
OOOSSP 0000 4D A MSGl FCC \MESSAGE 1\
00056P 0009 04 A FCB EOT

00058B 0000 BSCT BASE SECTION
00059B 0000 0001 A MSGSIZ RMB 1 MESG SIZE STORAGE

Figure 4-1. Message Program 1
(PGl - cont'd)

Page 4-04

MESSAGE

PAGE 003 PGl .SA:l PGl PROGRAM TO PRINT OUT MESSAGES(MAIN)

00061
00062
00063
00064P OOOA

* PROGRAM SECTION
* EXECUTION STARTS AT "START"
* PSCT PROGRAM SECTION

00066P OOOA BE 0000 A START LOS #STACK SET UP STACK REGISTER

00067P
00068P
00069P
00070
00071

0000 FE 0000 N
0010 BO F024 A
0013 7E 0000 A

(XREF)
LOX MSGlP GET MESSAGE 1 POINTER
JSR EXBPRT PRINT MESSAGE l
JMP PGM2 GO TO PROGRAM 2(XREF)

0016 CE
0019 BD
OOlC FE
OOlF BD
0022 CE
0025 BD

*

* * PROGRAM 2 RETURNS TO THIS POINT (XDEF)
* 0000 A PGlNE

F024 A
0004 N
F024 A
0000 A
F024 A

LOX tMSG3 GET MESSAGE 3 ADDRESS
JSR EXBPRT PRINT MESSAGE 3
LDX MSG3P GET MESSAGE 3 POINTER
JSR EXBPRT PRINT MESSAGE 3 AGAIN
LOX tMSG4 PRINT MESSAGE 4
JSR EXBPRT

00072
00073P
00074P
00075P
00076P
00077P
00078P
00079
00080
00081
00082P

* MOVE MESSAGE FROM CMSG IN DCOMM2 TO BLANK COMK>N
* 0028 CE 0000 C LDX tMSGCST MESSAGE DESTINATION

ADDRESS
00083P 002B FF
00084P 002E CE
00085P 0031 FF
00086P 0034 F6
00087P 0037 D7
00088P 0039 FE
00089P 003C A6
00090P 003E 08
00091P 003F FF
00092P 0042 FE
00093P 0045 A7
00094P 0047 08
00095P 0048 FF
00096P 004B SA
00097P 004C 26
00098P 004E 7E

0003
0001
0001
0000
00
0001
00

B
N
B
N
B
B LOOP!
A

STX TOPNTR
LOX ICMSG MESSAGE ADDRESS(FROM)

STX FROMPT
LDAB CMSGCT MESSAGE LENGTH
STAB MSGSIZ SAVE MESG LENGTH
LDX FROMPT GET SOURCE POINTER
LDAA O,X GET BYTE
INX UPDATE SOURCE POINTER
STX FROMPT 0001 B

0003 B
00 A

LDX TOPNTR GET DESTINATION POINTER

0003 B

STAA O,X SAVE BYTE
INX UPDATE DESTINATION POINTER
STX TOPNTR
DECB UPDATE CHARACTER COUNTER

EB 0039 . BNE LOOP! LOOP
0000 A JMP ATEST GOTO PROGRAM W/ASCT REGIONS

Figure 4-1. Message Program 1
(:i?Gl - cont'd)

Page 4-05

OOlOOB 0001 BSCT DIRECT ADDRESSING SECTION
00101 * NOTE:IF FO~ARD REFERENCED, EXTENDED ADDR IS USED.
00102 * THEREFORE ALL BSCT VARIABLES SHOULD BE
00103 * DEFINED BEFORE REFERENCED.
00104 *
OOlOSB 0001 0002 A FROMPT RMB 2 FROM POINTER
00106B 0003 0002 A TOPNTR RMB 2 TO POINTER

00108D OOOA DSCT DATA SECTION
00109D OOOA 96 01 B LDAA FROMPT **DlRECT ADDRESSING USSD**
OOllOD OOOC DE 03 B LDX TOPNTR(EXAMPLES ONLY-NOT EXECUTED)

"
00112
00113 OOOA P

TTL CROSS REFERENCE TABLE
END START

TOTAL ERRORS 00000--00000

Figure 4-1. Message Program 1
(PGl - cont'd)

Page 4-06

PAGE 004 PGl

R ATE ST
ND 0001 CMSG
ND 0000 CMSGCT
D OOOD CR
ND DCOMM
ND DCOMM2
D 0004 EQT
R EXBENT
D F024 EXBPRT

B 0001 PROMPT
D OOOA LF

p 0039 LOOP!
DP 0000 MSGl
ND 0000 MSGlP
DD 0000 MSG2
ND 0002.MSG2P
RD MSG3
ND 0004 MSG3P
RD MSG4
ND 0006 MSG4P
c 0000 MSGCST

DB 0000 MSGSIZ
DP 0016 PGlNE
R PGM2
R STACK
DP OOOA START

B 0003 TOPNTR

.SA:l PGl CROSS REFERENCE TABLE

00022*00098
00045*00084
00044*00086
00018*00029
00034*
00043*
00016*00029 00052 00056
00024*
00012*00028 00068 00074 00076
00085 00088 00091 00105*00109
00017*00029
00088*00097
00028 00035 00055*
00035*00067
00028 00036 00051*
00036*
00023*00037 00073
00037*00075
00023*00038 00077
00038*
00048*00082
00029 00059*00087
00028 00073*
00024*00069
00023*00066
00028 00066*00113
00083 00092 00095 00106*00110

Figure 4-1. Message Program l
{PGl - cont'd)

Page 4-07

00078

PAGE

00001
00002
00003
00004

00006.
00007
00008
00009
00010

00012

00014
00015
00016
00017
00018
00019
00020

00022

001

00023
00024N 0000
00025N 0000
00026N 0002
00027N 0004
00028N 0006

00030N 0000
00031N 0000

00032N 0001
00033N 0014
00034

00036
00037
00038D 0000
000390 0000
000400 0009
000410 OOOA
000420 0013

PG2 .SA:l PG2 MESSAGE PRINTER SUBPROGRAM

NAM PG2
OPT CREF,REL,NOG
TTL MESSAGE PRINTER SUBPROGRAM

IDNT 08/10/80 MESG PRN'l'R SUBPROG-MODULE 12

* ASSEMBLY PROCEDURE: CMAP X.XX CODOS X.XX

FS64

0002
0002
0002
0002

* =CMAP PG2;LN=76
*
* PROGRAM PARTS: PGl, PG2, PG3
* COMPUTER: CDX-68

A EXBENT EQU $F564 COBUG ENTRY POINT

* * XDEFS AND XREFS
* XDEF MSG3,MSG4,STACK,EXBENT,PGM2

XREF BSCT:MSGSIZ
XREF EXBPRT,PGlNE,MSGl,MSG2
XREF EOT,CR,LF

* MESSAGE POINTER AREA (DCOMM)
*
DCOMM COMM DSCT

A MSGlPT RMB 2
A MSG2PT RMB 2
A MSG3PT RMB 2
A MSG4PT RMB 2

DCOMM2 COMM DSCT
17 A CMSGCT FCB CMSGE-CMSG.COMMON MESSAGE

43 A CMSG FCC
00 A FCB
0018 N CMSGE EQU

* MESSAGES
*

DSCT
40 A MSG3 FCC
00 A FCB
40 A MSG4 FCC
00 A FCB

3

CHAR COUNT:
\COMMON TEST PROGRAM\
CR,LF,LF,EOT
* END OF MESSAGE .

AND 4

\MESSAGE 3\
EOT
\MESSAGE 4\
EOT

Figure 4-2. Message Program 2 (PG2)

Page 4-08

PAGE 002 PG2 .SA :1 PG2 MESSAGE PRINTER SUBPROGRAM

00044
00045
00046P 0000
00047P 0000 4F
00048P 0001 97
00049P 0003 FE
00050P 0006 BD
00051P 0009 CE
00052P OOOC BD
00053P OOOF FE
00054P 0012 BD
00055P 0015 7E

00057B 0000
00058B 0000
00059B 0014

* START OF PROGRAM 2
*

PSCT
PGM2 CLRA

00 A STAA MSGSIZ !NIT. MESG LENGTH
0000 N LDX MSGlPT PRINT MESSAGE 1
0000 A JSR EXBPRT
0000 A LDX #MSG2 PRINT MESSAGE 2
0000 A JSR EXBPRT
0002 N LDX MSG2PT PRINT MESSAGE 2 AGAIN
0000 A JSR EXBPRT
0000 A JMP PGlNE RETURN TO PROGRAM ONE

BSCT DIRECT ADDRESSING SECTION
0014 A RMB 20
0001 A STACK RMB 1 STACK STORAGE AREA

00061 END
TOTAL ERRORS 00000--0QOOQ

ND 0001 CMSG 00031 00032*
ND 0000 CMSGCT 00031*
ND 0018 CMSGE 00031 00034*
R CR 00020*00033
ND DCOMM 00024*
ND DCOMM2 00030*
R EOT 00020*00033 00040 00042
D F564 EXBENT 00012*00017
R EXBPRT 00019*00050 00052 00054
R LF 00020*00033 00033
R MSGl 00019*
ND 0000 MSGlPT 00025*00049
R MSG2 00019*00051
ND 0002 MSG2PT 00026*00053
DD 0000 MSG3 00017 00039*
ND 0004 MSG3PT 00027*
DD OOOA MSG4 00017 00041*
ND 0006 MSG4PT 00028*
RB MSGSIZ 00018*00048
R PGlNE 00019*00055
DP 0000 PGM2 00017 00047*
DB 0014 STACK 00017 00059*

Figure 4-2. Message Program 2
(PG2 cont• d)

Page 4-09

PAGE 001 PG3 .SA:l PG3 ***PROGRAM TO ILLUSTRATE USE OF ASCT

00001 NAM PG3
00002 TTL ***PROGRAM TO ILLUSTRATE USE OF ASCT
00003 OPT REL,CREF
00004 IDNT 08/10/80 ASCT ILLUSTRATION-MODULE t3

00006 * ASSEMBLY PROCEDURE: CMAP X.XX CO DOS x.xx
00007 * =CMAP PG3:l;LN=76
00008 *
00009 * PROGRAM PARTS: PGl, PG2, PG3
00010 * COMPUTER: CDX-68

00012 XDEF ATEST,POWERS
00013 XREF EXBPRT,EXBENT

00015 * BLANK COMMON
00016 *
00017C 0000 CSCT
00018C 0000 0030 A CMSG RMB $30

00020A 0000
00021A 4406
00022A 4406

00023A 4409

00025A 4510
00026A 4510
00027A 4513

00029P 0000
00030P 0000
00031P 0002
00032P 0004
00033P 0006
00034P 0008

00036

CE

7E

BD
7E

ASCT UNNECESSARY!
ORG $4406 • ORG CAUSES ASCT!

0000 C ATEST LDX #CMSG START OF COMMON
MESSAGE

4510 A JMP ATEST2

ORG $4510
0000 A ATEST2 JSR EXBPRT PRINT MESSAGE
0000 A JMP EXBENT GOTO COBUG/DON'T STOP

0001 A POWERS
OOOA A
0064 A
03EB A
2710 A

PSCT
FDB 1
FDB 10
FDB 100
FDB 1000
FDB 10000

END

PROGRAM SECTION
POWERS OF TEN TABLE

TOTAL ERRORS 00000--00000

D 4406 AT EST 00012 00022*
4510 ATEST2 00023 00026*

c 0000 CMSG 00018*00022
R EXBENT 00013*00027
R EXBENT 00013*00026
DP 0000 POWERS 00012 00030*

Figure 4-3. Message Program 3 (PG3)

Page 4-10

=RLOAD
CODOS LINKING LOADER REV X.XX
COPYRIGHT BY CODEX 1980

(l)?LOAD=PGl.RO:O ------------- LOAD FIRST FILE
(2)?LOAD=PG2,PG3 --------------LOAD OTHER TWO FILES
(3)?0BJA=PG123 ---------------- START PASS 2
(4)?LOAD=PG1,PG2,PG3 ----------REPEAT PASS 1 COMMANDS
(S)?MAPU ---------------------- PRINT UNDEFINED SYMBOLS MAP

NO UNDEFINED SYMBOLS
(6)?MAPF -------------------~- PRINT FULL MEMORY/SYMBOL MAP

NO UNDEFINED SYMBOLS (6a)
MEMORY MAP

S SIZE STR END COMN
A 0006 4510 4515
A 0006 4406 440B .
B OOlA 0020 0039 0000 (6b)
C 0030 003A 0069 0030
D 0042 006A OOAB 0020
P 0073 OOAC OllE 0000

MODULE NAME BSCT DSCT PSCT
PGl 0020 006A OOAC
PG2 0025 0078 OOFD (6c)
PG3 003A 008C 0115

COMMON SECTIONS
NAME S SIZE STR

DCOMM D 0008 008C (6d)
DCOMM2 D 0018 0094

DEFINED SYMBOLS
MODULE NAME: PGl
CR A OOOD EOT A 0004 EXBPRT A F024 LF A OOOA
MSGl P OOAC MSG2 D 006A MSGSIZ B 0020 PGlNE P OOC2 (6e)
START P OOB6
MODULE NAME: PG2
EXBENT A F564 MSG3 D 0078 MSG4 D 0082 PGM2 P OOFD (6f)
STACK B 0039
MODULE NAME: PG3
ATEST A 4406 POWERS P 0015 (6g)
(?)?EXIT------------------------- RETURN TO CODOS
=

Figure 4-4. Basic Loader Operation

Page 4-11

4.2 LOADER OPERATIONS USING INTERMEDIATE FILES

As shown in the previous example, most commands must be
re-entered during pass 2 of the Linking Loader. The use of
an intermediate file eliminates the need to retype Linking
Loader commands. Figure 4-5 is an example of the use of
intermediate files. Commands used in the sequence are
explained below, with the exception of those commands
previously discussed.

1. The intermediate file feature is invoked by defining a
new file for use as the intermediate file.

2. The IDON command turns the identifier option on to allow
printing of the IDNT assembly directive as entered in
the files.

3. This command line shows how more than one command may be
specified on the same line by using the "1" feature.
The STR command is used to define the starting section
addresses of $400 and $1000 for DSCT and PCST,
respectively. These starting addresses are reflected in
the map generated in pass 2.

4. The CUR command with the "\" option causes the PSCT
section of each module to start at an address which is
modulo $10 from the start of PSCT. This feature permits
the user to easily debug relocatable programs, since
modules start at convenient addresses. In Figure 4-5,
the first PSCT for module PG2 starts at $1070.

5. Notice that the loading order is different from the
example in Figure 4-4. As each file/module loads, its
identifier prints (Sa).

6. As in the previous example, the OBJA command initiates
pass 2 of the Linking Loader. However, since the
intermediate file feature is being used, pass 2
automatically performs without the user re-entering the
commands. Notice the identifiers also print as each
file/module loads.

7. The Linking Loader has completed processing all commands
entered in pass 1. The user may now enter any non-load
command, such as a MAP command or EXIT. In this case,
all map output is directed to the line printer with the
MO==:fl:LP command.

8. A full map is sent to the line printer to produce a hard
copy with the MAPF command. The line printer map output
is shown in Figure 2-3.

9. The object file is closed and control is returned to
CODOS via the EXIT command.

Page 4-12

=ROLOAD
CODOS LINKING LOADER REV X.XX
COPYRIGHT BY CODEX 1980

(l)?IF=TEMP-----------------CREATE INTERMEDIATE FILE= TEMP
(2)?IDON------------------------TURN ON IDENTIFIERS
(3)?STRD=$400;STRP=$1000;STRB=O-DEFINE STARTING SECTION

ADDRESSES
(4)?CURP=\$10-------START PSCT ON MODULO 10 (HEX)BOUNDARIES
(5)?LOAD=PG1,PG3,PG2------------LOAD FILES

PGl 08/10/80 MAIN MESG PROGRAM - MODULE 1
(Sa) PG3 08/10/80 ASCT ILLUSTRATION - MODULE 3

PG2 08/10/80 MESG PRNTR SUBPROG - MODULE 2
(6)?0BJA=PG132-START PASS 2-CONTROLLED BY INTERMEDIATE FILE

PGl 08/10/80 MAIN MESG PROGRAM - MODULE l
PG3 08/10/80 ASCT ILLUSTRATION - MODULE 3
PG2 08/10/80 MESG PRNTR SUBPROG - MODULE 2

(7}?MO#LP------------ASSIGN MAP OUTPUT TO LINE PRINTER
(8}?MAPF-------------FULL MEMORY/SYMBOL MAP TO LINE PRINTER
(9)?EXIT-------------RETURN TO CODOS

Figure 4-5. Using an Intermediate File

Page 4-13

4.3 LOADER OPERATIONS USING A LIBRARY FILE

The previous examples described the loading procedure
performed with the LOAD command. In these examples, the user
was aware of each module to be loaded. In other cases, the
user may be aware of only the entry point name required to
perform a desired function. In such instances, the user can
create a file containing a collection of utility modules.
The Linking Loader may be used to extract only the required
modules from this library file. The use of a library file is
shown in Figure.4-6, and a description of the various steps
is explained below:

I

1. The CODOS MERGE command is used to build a library file
PGLIB. This file contains the modules in files PGl,
PG2 , and PG3 • '

2. The use of the BASE command directs the Linking Loader
to assign memory for CSCT, DSCT, and PSCT above the
CODOS system area. As a result, the user program may be
invoked directly as a CODOS command without using the
LOAD command. However, if the program initializes BSCT,
the CODOS LOAD command must be used to execute the
program. The effect of the BASE command is shown in the
program's memory map where CSCT, DSCT, and PSCT are
assigned memory above $2000.

3. All currently undefined symbols list via the MAPU
command. In this example, the six undefined symbols
correspond to the six external references in PGl.

4. The LIB command searches the file PGLIB for any
modules which satisfy the current undefined symbols.
Since PG2 and PG3 are modules in PGLIB that satisfy
these undefined symbols (i.e., PG2 and PG3 have XDEF's
for ATTEST, EXBENT MSG3, MSG4, PGM2, and STACK), they
load via the LIB command. PGl, which is also in PGLIB,
is not loaded again.

5. The second MAPU command shows that all external
references have now been satisif ied.

6. The second pass of the Linking Loader initiates with the
OBJA command and creates an object file with the name
MESSAGE. The use of the suffix CM, ·along with the
Loader's BASE command, permits the created file to be
treated as a CODOS command (see item 9).

7. Since an intermediate file was not created during pass
1, all commands entered in pass 1 must repeat in pass 2.
The MAP, END, and STR commands are the only exceptions
to this rule.

Page · 4-14

8. The EXIT command completes pass 2 of the Linking Loader
and returns to CODOS.

9. The file created by the Linking Loader acts as a CODOS
command and loads and executes automatically.

Page 4-15

(l)=MERGE PG1.RO,PG2.RO,PG3.RO,PGLIB.RO--BUILD LIBRARY FILE
=RLOAD
CODOS LINKING LOADER REV X.XX
COPYRIGHT BY CODEX 1980

(2)?BASE-------------------------LOCATE PROGRAM ABOVE CODOS
?LOAD=PGl-------------------------LOAD FIRST FILE

(3)?MAPU----------------------------PRINT UNDEFINED SYMBOLS
ATEST EXBENT MSG3 MSG4 PGM2 STACK

0006 UNDEFINED SYMBOLS
(4)?LIB=PGLIB------------------------SEARCH LIBRARY FILE
(5)?MAPU----------------------------PRINT UNDEFINED SYMBOLS

NO UNDEFINED SYMBOLS
(6}?0BJA=MESSAGE.CM---------START PASS 2-BUILD COMMAND FILE
(7)?BASE-----------------------------REPEAT PASS 1 COMMANDS

?LOAD=PGl;LIB=PGLIB
?MAPF-----------------------PRINT FULL MEMORY/SYMBOL MAP

NO UNDEFINED SYMBOLS

MEMORY MAP
S SIZE STR END COMN
A 0006 4510 4515
A 0006 4406 440B
B OOlA 0020 0039 0000
C 0030 2000 202F 0030
D 0042 2030 2071 0020
P 0073 2072 20E4 0000

MODULE NAME BSCT DSCT
PGl 0020 2030
PG2 0025 203E
PG3 0038 2052

COMMON SECTIONS
NAME S SIZE STR

DCOMM D 0008 2052
DCOMM2 D 0018 205A

DEFINED SYMBOLS
MODULE NAME: PGl

PSCT
2072
20C3
20DB

CR A OOOD EOT A 0004 EXBPRT A F024 LF A OOOA
MSGl P 2072 MSG2 D 2030 MSGSIZ B 0020 PGlNE P 2088
START P 207C

MODULE NAME: PG2
EXBENT A F564 MSG3 D 203E MSG4 D 2048 PGM2 P 20C3
STACK B 0039

MODULE NAME: PG3
ATEST A 4406 POWERS P 20DB

(8)?EXIT-----------------RETURN TO CODOS
(9)=MESSAGE--------------LOAD AND EXECUTE NEW CODOS COMMAND

Figure 4-6. Using a Library File

Page 4-16

4.4 LOADER OPERATIONS USING A CHAIN FILE

1'~or programs requiring more than a few modules, the use
of the CODOS CHAIN command to link them, becomes a virtual
necessity. It also provides a self-documenting listing of
how to link the program. A sample chain file is shown in
Figure 4-7. The use of this chain file is shown in Figure
4-8, and a description of the various steps is explained
below.

1. The chain file (LINK.CF) is invoked using the CODOS
CHAIN command. There are five option parameters which
are passed on to the chain file. This is the only line
entered by the operator until (7) •

2. The chain file pauses here to give the operator a chance
to abort without destroying anything.

3. The previous map and object file delete.

4. The Linking Loader is invoked via the RLOAD command.
The parameters from the command line (1) are substituted
to define the section values.

5. Map output is directed to an output file called
PG321.MO. This provides a permanent listing of the map
output which can be listed at any time.

6. The CODOS LIST command is invoked to produce a hard copy
of the map file on the line printer. Note the header
option is used and the DATE command line parameter is
substituted. The line printer listing of the map output
files is shown in Figure 4-9.

7. The chain file processing ends and the input stream
returns to the keyboard for operator input.

Page 4-17

PAGE 001 LINK .CF:O

I*
/*
/*
/*
/*
/*
@*

** LINK MESSAGE PROGRAMS CHAIN PROCESSOR **
** 08/10/80 **

@* WARNING!
@*

GOING TO DELETE THE FOLLOWING FILES:
PG321.LO:O (OLD OBJECT)
PG321.MO:O (OLD RLOAD MAP) @*

@*
@*
@.
@*
@SET,M 8

ABORT WITH 'BREAK' KEY OR
STRIKE 'RETURN' TO CONTINUE •••

DEL PG321.LO,PG321.MO
@SET,M 0
RLOAD
!DON
STRD=$%D%;STRP=$%P%;STRB=$%B%
/IFS CP .
CURP=\\$%CP%
/XIF .
LOAD=PG3,PG2,PG1
MAPU
OBJA=PG321
STRD=$%D%;STRP=$%P%;STRB=$%B%
/IFS CP
CURP=\\$%CP%
/XIF
LOAD=PG3,PG2,PG1
MAPU
MO=PG321.MO
MAPF
EXIT
@*

Figure 4-7. Listing of Chain File Invoking RLOAD

Page 4-18

LIST PG321.MO;LH
MESSAGE PROGRAM TEST RLOAD MAP - %DATE%
@*
/IFC B,D,P,DATE
/*
/* COCKPIT ERROR DETECTED!
/*

MUST SPECIFY THE FOLLOWING OPTIONS:
/*
/*
/*

B = START BASE SEGMENT ADDRESS (HEX, NO $)
D = " DATA " n (HEX r NO $)
P = n PROGRAM " " (HEX, NO $) /*

/*
/*
/*

DATE = TODAY'S DATE FOR MAP LISTING

/*
/*
/* ***
/*
/ABORT
/XIF

OPTIONAL
CP = HEX VALUE (NO $} FOR "CORP=\\" COMMAND

CHAIN ABORTED *** ,

Figure 4-7. Listing of Chain File Invoking RLOAD (cont'd}

Page 4-19

(1)
=CHAIN LINK7DATE%10 AUG. 1980%,B%0%,D%400%,P%1000%,CP%100%

*********************'*********************
** LINK MESSAGE PROGRAMS CHAIN PROCESSOR **
** 08/10/80 **

@*
@* WARNING! GOING TO DELETE THE FOLLOWING FILES:
@* -------
@*

PG321.LO:O <OLD OBJECT>
PG321.MO:O <OLD RLOAD MAP>

@*
@*

(2)@.
@*
@SET FOFF 0800

ABORT WITH 'BREAK' KEY OR
STRIKE 'RETURN' TO CONTINUE

(3)DEL PG321.LO,PG321.MO
PG321 .LO:O DELETED
PG321 .MO:O DELETED
@SET FOFF 0000

(4) RLOAD
CODOS LINKING LOADER REV X.XX
COPYRIGHT BY CODEX 1980
?!DON
?STRD=$400;STRP=$10007STRB=$O
?CURP=\$100
?LOAD=PG3,PG2,PG1

. . .

PG3 08/10/80
PG2 08/10/80
PGl 08/10/80

ASCT ILLUSTRATION - MODULE 3
MESG PRNTR SUBPROG - MODULE 2
MAIN MESG PROGRAM - MODULE 1

?MAPU
NO UNDEFINED SYMBOLS

?OBJA=PG321
?STRD=$400;STRP=$1000;STRB=$0
?CURP=\$100
?LOAD=PG3,PG2,PG1

PG3 08/10/80
PG2 08/10/80
PGl 08/10/80

?MAPU

ASCT ILLUSTRATION - MODULE 3
MESG PRNTR SUBPROG - MODULE 2
MAIN MESG PROGRAM - MODULE 1

NO UNDEFINED SYMBOLS
(5)?MO=PG321.MO

?MAPF
?EXIT
@*

(6)LIST PG321.MO;LH
ENTER HEADING:MESSAGE PROGRAM TEST RLOAD MAP-10 AUG. 1980

@*
END CHAIN

(?)=LOAD PG32l;V ----------------------LOAD OBJECT PROGRAM

Figure 4-8. Using a Chain file and RLOAD

Page 4-20

PAGE 001 PG321 .MO:O MESSAGE PROGRAM TEST RLOAD MAP -
10 AUG. 1980

NO UNDEFINED SYMBOLS

MEMORY MAP

s SIZE STR END COMN
A 0006 4510 4515
A 0006 4406 440B
B OOlA 0000 0019 0000
c 0030 0020 004F 0030
D 0042 0400 0441 0020
p 0251 1000 1250 0000

MODULE NAME BSCT DSCT PSCT
PG3 0000 0400 1000
PG2 0000 0400 1100
PGl 0015 0414 1200

COMMON SECTIONS

NAME S SIZE STR
DCOMM D 0008 0422
DCOMM2 D 0018 042A

DEFINED SYMBOLS

MODULE NAME: PG3
ATEST A 4406 POWERS P 1000

MODULE NAME : PG2
EXBENT A F564 MSG3 D 0400 MSG4 D 040A PGM2 P 1100
STACK B 0014

MODULE NAME : PGl
CR A OOOD EOT A 0004 EXBPRT A F024 LF A OOOA
MSGl P 1200 MSG2 D 0414 MSGSIZ B 0015 PGlNE P 1216
START P 120A

Figure 4-9. Map Output File Listing

Page 4-21

APPENDIX A - LINKING LOADER COMMANDS

Command

Control Commands

BASE[=<number>]

t<namel>J
EXIT

<number>

IDOF

!DON

IF=<f-name>

IFOF

!FON

!NIT

OBJA=<f-name>

~devicej MO=
<f-name>

Load Directives

Function

LOAD CSCT, DSCT, and PSCT above
defined address (default=CODOS
compatible)

Give control to the disk operating
system

Suppress identification printing

Print module identification
information

Specify the intermediate file

Intermediate file mode off

Intermediate file mode on

Initialize the Loader

Initiates Pass 2

MAP output

L IB=<f-name > [[< f-name > J] 9: Enter file mode

LOAD=<f-name > [[< f-name > ~ 9:

Page

Load the indicated file(s)/
module (s)

A-01

Command Function

State Commands

CUR~}=[\J<number> Set current location counter

DEF: {
<numberJ ,:~g

<namel>= <name2> ,DSCT Define a symbol
,PSCT

END

MAPC

MAPF

MAPS

MAPU

=<number> Set section ending address

Page

List user assigned section
sizes and addresses

List full load map

List loader assigned section
sizes and addresses

List undefined symbols

Set section starting address

A-02

APPENDIX B - LINKING LOADER ERROR MESSAGES

Errors detected by the Linking Loader, while processing
a command or loading a module, results in an error message
printing at the user terminal. These errors are divided into
two classifications: fatal errors and non-fatal (warning)
errors. When the Linking Loader detects a non-recoverable
error, a fatal error message prints. Any commands not
processed on the last command line are ignored and a new
prompt prints. If the Linking Loader can recover from an
error, only a warning message prints.

Fatal
Error Messages

Message

I

BAE BSCT Assignment Error - the combined size of
BSCT is greater than the amount that can be
allocated in the defined BSCT area.

COV Common Overflow - the size of a section's
common is greater than 65,535.

GAE General Assignment Error - the Linking Loader
cannot assign absolute memory addresses. This
may result from:

•

•

address conflicts associated with ASCT's
user assignment of section addresses
the combined length of all sections
exceeding 65,535
the order in which the Loader assigns
memory.

ICM Illegal Command

IOR Illegal Object Record - the input module is
not a valid relocatable object module.

ISA Illegal Stream Assignment - this error occurs
when an invalid I/O device is assigned to a
Linking Loader I/O stream.

ISY Illegal Syntax - error in the option or
specification field of a command. This error
may also 09cur when a command is not
terminated by a semicolon, space, or carriage
return.

Page B-01

LOV Local Symbol Table Overflow - not enough
memory for all the local (external) symbols
defined by the current object module. Check
for contiguous memory from location O.

GOV Global Symbol Table Overflow - not enough
memory for all the global (external} symbols
defined by the object modules. Check for
contiguous memory from location O,

PHS Phase Error - the absolute address assigned to
a global symbol at the end of Pass 1 does not
agree with the address computed during Pass 2.

SOV Section Overflow - the size of a section is
greater than 65,535.

UAE User Assignment Error - the user has
incorrectly defined load addresses. Use the
MAPC command to produce a map for determining
the cause of this error. The UAE error occurs
when:

•

•

•

•

•

the user defined end address is less than
the user defined start address

the space allocated by the user defined
start and end addresses is less than that
required for the section

the user has defined load section addresses
which overlap

the user defined execution address is out
of range

the user has defined ASCT below $20

the user has initialized locations in BSCT
which are assigned below $20

UIF Undefined "IF" File

UOI Undefined Object Input File

Page B-02

warning Messages

IAM - <address> - Illegal,Address Mode - a global symbol is
referenced as a one-byte operand, and the most
significant byte of the global symbol address is
non-zero. One byte relocation is performed, using
only the least significant byte of the global symbol
address. The warning message indicates the absolute
address of such a reference.

MDS - <symbol> - Multiply Defined Symbol - the Linking
Loader has encountered another definition for the
previously defined global symbol. Only the first
definition is valid. This can also be caused by
section conflicts for the symbol (i.e., defined via
an EOU directive (ASCT), and referenced in another
module as BSCT.

UDS - <symbol> - Undefined Symbol - the symbol was not
defined during Pass 1. A load address of zero is
assumed.

Page B-03

Member of
IDCMA

. codex
A Subsidiary of @ MOTOROLA INC.

CODEX CORPORATION
20 Cabot Boulevard
Mansfield , Massachusetts 02048

CODEX PHOENIX
INTELLIGENT TERMINAL SYSTEMS
2002 West 10th Place
Tempe, Arizona 85281
(602) 994-6580

...

Printed in U.S.A.

\
I

