
co~
A Suboidiary ol ® .

MPL
Program Reference

Manual
Document No. 72791

c 1980 Codex Corporation
Intelligent Terminal Systems Group

Preface

' First Edition
Through Version 5.0

This User's Guide provides a description of MPL, a
high-level systems programming language used with the Codex
Disk Operating System (CODOS) intended for programmers and
other technically-oriented personnel. This Guide includes
general information, descriptions of program formats,
constants, variables, expressions, and statements, and sample
MPL programs.

Other Codex publications that may be of interest include
the Codex Disk Operating System (CODOS) User's Guide, the
CODOS Reference Manual, and the Operator's Guides and
Hardware Reference Manuals appropriate to the user's system
configuration.

Table of contents Page

CHAPTER 1. INTRODUCTION • • • 1

1
2
2
2

Hardware
Optional
Software
Software

Support Required • • • •
Hardware Supported • • • • •

.
• • • •

Support Required • • • • • • • •
Installation • • • • • • • •

CHAPTER 2. STATEMENT TYPES AND ORDER 3

Program Format • • • • • • • • • • • • • • • • • • 3
Record Format • • • . • • . • • • • • • • 3
Character Set • • • • • • • • • • • • 4
Identifiers • • • • • • • • • 5
Spaces and Semi colons • • • • • • • • • • • • .6
Labels 7
Comments • • • • • • • • • • • • • • • •. • 7

Data • 8
Arithmetic Data • • • • • • • • • • • • • 8
String Data • • • • • • • • • • • 8
Label Data • • • • • • • • • • • • • • • • • • 9
Pointer Data • . • • • • • • • • • • • • • 9

Constants • • • • • • • • • • • • • • • • • • 9
Numeric Constants • • • • • • • • • • • • • • 9

Integer constants • • • • • • •• 10
Decimal constants •••••••••••. 10
Hexadecimal constants • • • • • • • • 10

Character-string Constants • • • • • • • • 11
Label Constants • • • • • • • • • • • • • • • 11
Address Constants • • • • • • • • • • 11
Restrictions ••••••••••••••••• 12

CHAPTER 3. PROCEDURES • ~ • 13

Main Procedures • • • • • • • • • • • 13
PROCEDURE OPTIONS(MAIN) statement ••.••• 13

Subroutine Procedures • • • • • • • • • • • • • • 14
PROCEDURE statement • • • • . • • • • • • 14
Invocation • • • • • • • • • • • • • • • • 16
Return • 17

CHAPTER 4. DECLARE STATEMENTS • • 18

Variables • • • • • • • • • • • . • • • • • • 18
Variable Attributes • • • • • • • • • • • • • 18
Attribute Restrictions ••.••••••••• 20
Declaring Simple Variables • • • • • • • • • • 22

LABEL variables • • • • • • • • • 22
Non-LABEL variables • • • • • • • • • 23

Declaring Array variables • • • • • • 24
Declaring Structure Variables • • • • • • 25

Constant Interpretation • • • • • • • • • • • 26
Contexts • • • • • • • • • • • • • • • 26
Attribute Determination • • • • • • • 28

MPL User's Guide

Table of Contents J?age

Integer constants, decimal constants ••••• 28
Hexadecimal constants • • • • • . • • • • 29
Character-string constants • • • • • • • • 30
Label constants • • • • • • • • • •• 30
Address constants • • • • • • • • • • • • 30

Value Determination • • • • • • • • • • • • • 31
Integer constants, decimal constants ••••• 31
Hexadecimal constants • • • • • • • • • • • • 32
Character-string constants • • • • • • • • • • 32
Label constants • • • • • • • • • • • • • • • 33
Address constants • • • • • • • • • • • • • • 34

Section Specification • • • • • • • • • • • . 34

CHAPTER 5. EXPRESSIONS 36

Arithmetic Expressions • • • ••••••••• 36
Arithmetic Operands •••••••••••.• 36
Arithmetic Operators ••••••••••••• 36
Order of Evaluation ••••••••••••• 38
Use of Arithmetic Expressions •••••••• 38

Logical Expressions • • • • • • • • • • • 39
Logical Operands • • • • • • • • . • • • . 39
Logical Operators •••••••••••••• 39
Order of Evaluation • • • • • • • • • • • 40
use of Logical Expressions • • • • • • • • • • 40

CHAPTER 6. STATEMENTS . . • • • 41

Assignment Statements • • • •••
Format • • • • • • • • • •
Effect • . • • • • • • • •
Implicit Conversions •••

GOTO Statements • • • • • • • ••
Label Constant GOTO Statement
Label Variable GOTO Statement
Computed GOTO Statement •••

IF Statements • • . • • • • • • •
IF Statement Format • • •

DO Statements • • • . • • ••••
Form • • • • • • • • • •

. • . • 41

. 41
• • . • . • 41
• • • • 41

• • • • . • . • 43
• . • • 43

. • 44
. • . . 45
• • • • • • • • 4 5
. • . . 45
• • • • . • 46

• 46
Simple DO • • • • • • • • • • • • • • • • 47

. DO with Iteration Clause •.•••••
DO with WHILE Clause • • • • • • • • •
DO with Iteration and WHILE Clauses •••

• • 4 8
• • 49
• • 4 9

END Statements • • • • • • • • • . • • • • • • • • 50
Embedded Assembly Language • • • • • • • • • • • • 50

CHAPTER 7. ASSEMBLY LANGUAGE ROUTINE LINKAGE ••• , 52

GLOBAL and EXTERNAL Considerations
An MPL Procedure Call • • • • • •

MPL User's Guide

Routine name . . • . • . • • •
Parentheses CALL • • • • • • • • •
Angle-brackets CALL • • • • • • •

• • • • 52
. 52
. • • . . • 5 2
. 52
. • 53

Table of Contents Page

Calling MPL Procedures • • • • • • • •
Procedure name • • • • • •
Parentheses PROCEDURE • • • • • •
Angle-brackets PROCEDURE • • • . . .

• 53
• 53
• 53
• 54

CHAPTER 8. RELOCATABLE OBJECT MODULE LIBRARIES • 55

MPLULIB.RO ••.•..•••••••••••••• 55
MPLULIB.RO Contents •••••••••••••• 55

DSPLY • • • • • • • • • • • • • • • • • • 55
KE YIN • • • • • • • • • • • • • • • • • • 56
CODOS • • • • • • • • • • • • • • 56
PRINT • • • • • • • • • • • • • • • • 57
PULL 2 • • • • • • • • 57
PUSH 2 . • • • • • • • • • • • 58
CKBRK • • • • • • • • • • • • • • • • • • 58

MPLUTLIB.RO •••••••••••••••••••• 59
MPLUTLIB.RO Contents •••••.••••••• 59
Ma thema ti cal Subroutines • • • • • • • • • 5~

ABS • • • • • • • • • • • • • • • 5 9
ABS2 • • • • • • • • • • • • • • • 59
MOD • • • • • • • • • • • • • • • 6 0
SETBIT. • • • • • • • • • • • • • 60

I/O Subroutines • • • • • • • 60
OPEN • • • • • • • • • • • • • 61
READ • • • • • • • • • • • • • 62
WRITE • • • • • • • • •••••• 62
WRITEF • • • • • • • • • • • • 63
CLOSE • • • • • • • • 65

Error Table • • • • • • • • • • • • • 66

CHAPTER 9. MPL COMPILER • 67

Invocation •
Results

APPENDIX A. MPL EXAMPLES

Sample MPL Program • • • • • • • • • • • •
The MPL Compiler ••••••••
Echo Program Example • • • • • • •

• 67
• 71

. . • 73

• • • • 7 3
• • • 7 5

• 7 8
Binary Tree Sort Program • • • • • • • • • 78

APPENDIX B. ASCII CHARACTER SET 90
,''t:.

APPENDIX c. MPL SYNTAX • . . . 91

APPENDIX D. MPL COMPILER OPTIONS 95

APPENDIX E. MPL RESERVED WORDS 96

APPENDIX F. MPL COMPILER ERROR MESSAGES 97

MPL User's Guide

CHAPTER 1. INTRODUCTION

MPL is a high-level systems programming language.
Designed for use with Codex Intelligent Terminal Systems, MPL
permits users to generate operating systems, utility
routines, and other system software with a minimum of
programming time and effort. Based on the popular PL/l
syntax, MPL simplifies the translation from functional
requirements to an operating program.

MPL is a modular programming language designed for
flexibility and ease of use. The high level of
self-documentation makes MPL programs easy to read and write;
MPL's block structure encourages software modularity and
structured programming. Free-format input simplifies MPL
program writing, reducing training requirements and
development times •. MPL programs can be optimized for
execution speed or memory space quickly and without rewriting
the assembly language output. In addition, the high-level
orientation of MPL permits emphasis on correcting algorithms
and design flaws rather than on the details of an assembly
language implementation.

MPL output is in assembly language, permitting the user
to add additional assembly language program segments. This
capability allows the programmer to develop different
programs by adding different subroutines to a single MPL
program acting as a basic framework.

Hardware Support Required

The minimum hardware configuration required to support
MPL consists of:

MPL User's Guide

CDX-68 Basic Display Terminal with the appropriate
firmware options

56k bytes of user memory (RAM)

.5 Mb or 1 Mb Diskette Storage (CDX-FS Series) or 10
Mb Disk Storage (CDX-FS/DR)

Microcomputer Module D (CDX-SBC/D)

System Self-Test firmware package (CDX-SST/D)

Page 1

Chapter 1 Optional Hardware Supported

Optional Hardware Supported

MPL also supports a variety of printers, including
Matrix and Character printers (the Codex SP Series). These
optional printers are linked to the Basic Display Terminal
through either the Microcomputer Module D or the Printer
Interface Module (CDX-PI).

Software Support Required

No additional software is required to run the MPL as it
comes shipped on the system disk.

Software Installation

There is no software installation that need be
performed. All MPL software is on the disk containing the
selected software package.

MPL User's Guide Page 2

CHAPTER 2. STATEMENT TYPES AND ORDER

An MPL program is a sequence of procedures; a procedure
is a named routine that performs a task. Procedures called
subroutine procedures execute when called from within
procedures.

Procedures are sequences of statements defining (1) the
type and arrangement of the data and (2) the sequence of
actions. A procedure is composed of any combination of the
following statements.·

The PROCEDURE statement denotes that the following part of
the program is a procedure. It specifies the procedure's
name, and whether it is a main or a subroutine procedure. If
it is a subroutine procedure, the statement specifies the
assigned values of any parameters.

DECLARE statements define the type and arrangement of
the data used by the procedure. They specify names, possible
initial values, and other attributes of the data items.

Executable statements define the sequence of actions
when the procedure is executed. They reference the data
items named in the "DECLARE" statements.

The RETURN statement is used only with subroutine
procedures. It specifies return from the procedure to the
point of call. It. may, in some cases, specify results that
are to be returned.

The END statement denotes the end of the procedure.

Program Format

Record Format

The statements of an MPL program must be located in one
or more CODOS ASCII-record disk files. The disk files are
organized into records in the following f ormat1

[<sequence number> <space>] <sequence of characters> <CR>

The "<sequence number>" is an optional f~ur-digit number. If
used, it must appear in each record. The "<sequence of
characters>" are characters from the ASCII character set.
The compiler recognizes a maximum input record of 80
characters. The "<space>" is an ASCII space character. The
"<CR>" is an ASCII carriage return character.

MPL User's Guide Page 3

Chapter 2 Program For.mat

Except for the restrictions, (see Restrictions), the
statement formats for records are unrestricted. A statement
too long for one record continues onto successive records,
Multiple statements may appear on a record when separated by
spaces, semicolons, or comments.

Character Set

MPL programs are written with the ASCII character set.
Character-string constants and comments may contain any
displayable ASCII characters. Other language elements, such
as arithmetic operators and variables, may contain characters
chosen from a subset of ASCII, called the MPL character set,
The MPL character set is alphabetic and numeric characters,
collectively called alphameric and special characters.

The alphabetic characters are the characters A through z
(upper-case only).

The numeric characters or the decimal digits are the
characters O through 9. The decimal digits and the
characters A through F are hexadecimal digits.

MPL User's Guide Page 4

Chapter 2 Program Format

The special characters and their meanings or uses,
outside of character-string constants and comments, are as
follows:

Character Name

$

%

Space
Exclamation point
Dollar sign

Percent sign

Meaning or Use

Separator, otherwise ignored
Start of comment
Embedded assembly language or
start of hex constant
Rotate or arithmetic shift
operator

&

(
)

*
+

Ampersand
Single quote
Left parenthesis
Right parenthesis
Asterisk

Logical and operator
Character-string constant
Grouping or begin argument list
Grouping or end argument list
Multiply

'
.
I

<

=
>

Plus sign
Comma
Minus sign
Period
Slash
Colon
Semicolon
Less-than sign

Equal sign
Greater-than sign

Add
Separator
Subtract or minus
Decimal point
Divide
Label
Separator, otherwise ignored
Less than or begin argument
list
Assignment
Greater than or end argu~ent
list

Certain symbols, called two-character symbols, are
composed of pairs o~ adjacent characters:

Symbol

->
/*
*/

Identifiers

Name

Arrow
Slash-asterisk
Asterisk-slash

Meaning or Use

Pointer
Begin comment
End comment

The programmer may assign names to statements and data
items in an MPL program. These names, together with words
reserved by the compiler tor special purposes, are
identifiers~ A name consists of a string of (1 to 6)
alphameric characters. The first character must always be

MPL User's Guide Page 5

Chapter 2 Program Format

alphabetic. Any such string may be assigned a name, provided
that the following two conditions are met:

The string is not already assigned in the MPL
program.

• The string is not a word reserved by the compiler for
a special purpose.

Note: names may not contain special characters.

The compiler's reserved words are the following:

A DCL GIVING LE RETURN
ADDR DEC GLOBAL LONG SHIFT
AND DECLARE GO LT SHORT
B DEF GOTO MAIN SIGNED
BASED DEFINED GT NARG SS
BIN DO !AND NE THEN
BIT DSCT IEOR NOT TO
BSCT ELSE IF OPTIONS WHILE
BY END !NIT OR x
CALL EQ INITIAL PROC
CHAR EXTERNAL IOR PROCEDURE
CSCT GE LABEL PSCT

The compiler interprets the longest possible string of
adjoining characters as an identifier. Because of this, an
identifier may not be followed by another identifier or by a
numeric constant without a separator, such as a "space,"
interposed. For example:

Valid Names

FRED
COST23
XlYlZl
SMALL
T

Spaces and Semicolons

Invalid Names

!NIT
2TIMES
A.B
small
$ABC

(reserved)
(initial digit)
(not alphameric)
(not alphameric)
(not alphameric)

Spaces, semicolons, or comments must be used to separate
adjacent identifiers or numeric constants. They may not be
used within identifiers, numeric constants, or two-character
symbols. They are only significant as data character-string
constants. In address constants, spaces and semicolons are
ignored, while comments may not be used. Except for these
rules and the restrictions (see Restrictions), spaces,
semicolons, or comments may appear throughout an MPL program.

MPL User's Guide Page 6

Chapter 2 Program Format

Labels

MPL statements may be preceded by statement labels. A
statement label is a name that is immediately followed by a
colon. Control may be transferred to a labelled statement to
alter sequential statement execution. "PROCEDURE" statements
must have a label.

Comments

Comments designate character strings that document a
program or explain the function of various statements or
procedures. Comments print when the program is listed, but
are otherwise ignored by the compiler. Comments have the
following two formats:

/* <character string> */

where the "<character string>" may span several records
and contain any displayable ASCII characters, provided
that it does not contain an asterisk-slash. The
slash-asterisk and asterisk-slash are two-character
symbols, with the two characters adjacent on the same
record.

! <character string>

where the "<character string>" is the remainder of the
"<sequence of characters>" on the record containing the
exclamation point. It may contain any displayable ASCII
characters.

Comments act only as separators unless they appear in
character-string constants. Comments within character-string
constants are considered as data. Comments may not be used in
address constants.

MPL user's Guide Page 7

Chapter 2

Data

A data item is a storage area with a value and
attributes. It is represented in the program text by a
constant or a variable.

Data

All data items have certain attributes. For example, a
data item may have values that are decimal numbers with six
significant digits and two digits to the right of the decimal
point. It may have values that are strings of ten
characters; or it may have values that are pointers to other
data items.

A constant data item is a data item whose value does not
change when a program executes. The attributes of a constant
data item may be determined from the textual form of the
constant that denotes the data item and the context in which
it appears. For a variable data item, a data item whose
value may change when a program executes, the attributes must
be declared to the compiler.

There are four classes of data: arithmetic, string,
label, and pointer.

Arithmetic Data

Arithmetic data items have numeric values. They have
the attributes of· base, precision, and sign. A data item's
base attribute is either binary (BIN) or decimal (DEC). The
precision attribute specifies the amount of storage the value
requires and, if its base is "DEC," the number of decimal
places. The sign attribute states whether the data item's
value is non-negative (default) or not (SIGNED).

String Data

· String data items have values that are strings of
displayable ASCII characters or binary digits. They have the
attribute of length. A data item's length attribute
specifies the number of displayable ASCII characters or
binary digits it contains.

MPL User's Guide Page 8

Chapter 2 Data

Label Data

Label data items have values that are statement labels.
The label data type is listed below:

LABEL

A data item of this type requires two bytes of storage. It
assumes values that are statement labels.

Pointer Data

Pointer data items have values that are the memory
addresses of variable data items. They are called pointer
data i terns because they "point" to the data i terns whose
addresses are their value.

MPL does not have a special reserved word signifying the
pointer data type. Instead, pointer data items are considered
to be of type "BIN(2)."

Constants

Constant data items are data items whose values do not
change when a program executes. They are represented in the
program text by character strings called "constants." A
constant is said to "denote" the data item it represents.
Occasionally the phrase, "the value of the constant," is used
to mean "the value of the data item denoted by the constant."
This section describes the format of constants.

Corresponding to the four classes of data: arithmetic,
string, label, and pointer, there are four classes of
constants. These are: numeric, character-string, label, and
address.

Numeric Constants

Numeric constants are used to denote arithmetic data
items. A numeric constant may not contain spaces,
semicolons, or comments. There are three subclasses:.
integer, decimal, and hexadecimal.

MPL User's Guide Page 9

Chapter 2 Constants

Integer constants

An integer constant is a string of (a maximum) 30
decimal digits. For example:

Valid

26
131072
0

Decimal constants

Invalid

2A
-4.60
+2

A decimal constant
digits. It is followed
followed by a string of
example:

is a string of (a maximum) 22 decimal
by a decimal point and optionally
(a maximum) 30 decimal digits. For

Valid

2698.273
00.00
0.1

Hexadecimal constants

Invalid

+26. 03
2,468
.1

A hexadecimal constant is a dollar sign followed by a
string of (a maximum) 29 hexadecimal digits. For example:

Valid

$FFFF
$0
$2A
$OD

Invalid

FFFF
OF3H
$$2
$12XF

MPL User's Guide Page 10

Chapter 2 Constants

Character-string Constants

Character-string constants denote data items whose
values are strings of (a maximum) 30 displayable ASCII
characters. A character-string constant is a string of ASCII
characters enclosed in single quotation marks. Within the
string, a single quotation mark is represented by two
adjacent single quotation marks. An exclamation point is
represented by two adjacent exclamation points. Spaces,
semicolons, and comments within the string are significant
data. For example:

Valid

I HELLO!! I

I I I QUOTE I I I

'THIS IS A STRING'

Invalid

I ! I

'A
I IT I s I

There are no constants to denote data items whose values
are strings of binary digits.

Label Constants

Label constants are used to denote label data items. A
label constant is a name assigned to label a statement in the
program.

Address Constants

Address constants are used to denote pointer data items.
An address constant is an expression, enclosed in
parentheses, preceded by the reserved word, "ADDR." The
expression may not contain single quotation marks or
exclamation points. It may contain spaces or semicolons for
readability.

The expression designates the data item whose memory
address is the value of the pointer data item. A subset of
the set of allowable address constants is described later.
Comments may not appear within the expression. The
expression may contain a maximum of 30 characters, not
including spaces and semicolons. For example:

Valid

ADDR(SAM)
ADDR(SAM + 1)

MPL User's Guide

Invalid

'SAM'
ADDR ((SAM + 1)

Page 11

Chapter 2 Constants

Restrictions

Except for the following restrictions, the statement
format is unrestrained for records:

A label and its colon must appear on the same record
with no intervening characters.

• The iteration clause of a "DO" statement must appear
on the record containing the "DO." At least one space
must precede and follow the "TO" in the iteration
clause.

An embedded assembly language statement must be on
one record and be the only statement on that record. Its
dollar sign must be the first character in the
"<sequence of characters>" of its record.

The dollar sign of a hexadecimal constant may not be
the first character in the "<sequence of characters>" of
its record.

• No symbol (identifier, constant, or two-character
symbol) may continue from one record to the next.

MPL User's Guide Page 12

CHAPTER 3. PROCEDURES

A program is organized as a main procedure, a sequence
of statements bracketed by a "PROCEDURE OPTIONS(MAIN)"
statement and an "END" statement. The compilation, assembly,
and linking-load process converts main procedures into
free-standing programs.

This section describes main and subroutine procedures
and their invocation and return.

Main Procedures

The main procedure is the portion of a program that
initially has control. It has no parameters. It may not
contain a "RETURN" statement and may not be called by a
"CALL" statement. The main procedure may call procedures
which in turn may call others and so forth.

MPL allocates space for statements of a program in
"PSCT." variable data may be allocated storage in BSCT, CSCT,
DSCT, or PSCT as desired with a default of DSCT. The stack
used by a program is allocated space at the end of the main
procedure's "DSCT." Storage for temporary results is
allocated in a labelled common block in "DSCT."

PROCEDURE OPTIONS(MAIN) statement

The "PROCEDURE OPTIONS(MAIN)" statement has one of the
four forms:

• label constant: PROCEDURE OPTIONS(MAIN)
• label constant: PROC OPTIONS(MAIN)
. label constant: PROCEDURE OPTIONS(MAIN,

SS = integer constant)
• label constant: PROC OPTIONS(MAIN,

SS = integer constant)

The first and second forms are equivalent, as are the third
and fourth forms. Note that the statement must be labelled.

The "PROCEDURE OPTIONS(MAIN)" statement acts as a "left
parenthesis" for the statements in the main procedure. The
corresponding "END" statement acts as a "right parenthesis."

MPL User's Guide Page 13

Chapter·3 Subroutine Procedures

The "SS = integer constant" form of the statement
specifies the number of bytes allocated to the stack. For
example:

MNPGM: PROC OPTIONS(MAIN, SS = 40)

specifies a stack size of 40 bytes (decimal). If you omit
the "SS" clause, MPL allocates 100 bytes (decimal) for the
stack.

Subroutine Procedures

A subroutine procedure is a sequence of statements
performing a specific task. The procedure has a name so that
the program may "call" it. A subroutine may have parameters.
Parameters allow it to perform the same task but with
different data. It is called by a "CALL" statement, giving
its name and the data (if any) it uses. It must contain a
"RETURN" statement to return control to the calling
procedure. Procedures may call other procedures, but they
may not cause themselves to be called recursively unless
performing required data stacking. '

A subroutine procedure may be compiled during the ~ame
time that procedures call it~ It may also be compiled
separately and combined with the calling procedures by the
Linking Loader. Sioce all variables are global, all
procedures in one compilation have a common access to
variables declared in any procedure in the compilation.

PROCEDURE statement

The "PROCEDURE" statement has one of the following four
forms:

label constant:
label constant:
label constant:
label constant:

PROCEDURE (fpl, fp2, ••• , fpn)
PROC (fpl, fp2, ••• , fpn)
PROCEDURE <fpl, fp2, fp3>
PROC <fpl, fp2, fp3>

The first and second forms and the third and fourth forms are
equivalent. The lists of formal parameters in parentheses
and angle brackets are optional. The statement must have a
label.

The, "PROCEDURE" statement acts as a "left parenthesis"
for the statements in the subroutine prqcedure. The
corresponding "END" statement acts a~· a "right parenthesis."

MPL user's Guide Page 14

Chapter 3 Subroutine Procedures

The statement label is the name the procedure is called
by a "CALL" statement. The list of formal parameters is a
list of unqualified nonsubscripted variables. These
variables, like any.others, are declared following the
"PROCEDURE" statement.

The idea here is similar to the definition of functions
in mathematics. A function "f" may be defined by "f (x) =
2x," where "x" has no meaning other than as a placeholder or
dummy argument. References to "f(2)" or "f(3)" implies a
temporary association of 2 or 3, respectively, with the dummy
"x" during the computation of "2x." In this same way, the
formal parameters of a procedure are dummies. A procedure
with formal parameters is called by a "CALL" statem~nt with
actual parameters, whose values are temporarily associated
with the formal parameters.

For example, the MPL procedure implements the "f (x)"
function by:

F: PROC(XX, RESULT)
DCL XX BIN(2), RESULT BIN(2)
RESULT = XX + XX
RETURN
END

The calls:

CALL F(2, RESl)
CALL F(3, RES2)

results in "RESl" having the value of 4 and "RES2" having the
value of 6.

Two procedures in the same compilation may not have the
same formal parameters. A procedure may not attain the
formal parameters of another procedure.

Within a procedure, the formal parameters may not be
used as subscripts, actual parameters of parentheses "CALLS,"
or result variables. They may not appear in computed "GOTO"
statements or "DO" statements.

MPL User's Guide Page 15

Chapter 3 Subroutine Procedures

The angle-brackets form of the "PROCEDURE" statement may
be used when the formal parameters satisfy certain data type
restrictions. It generates a more efficient calling
sequence. In this form, any of the three formal parameters
may be omitted, but all commas prior to the last included
parameter must appear. For instance, the first and third
parameters may be omitted by:

P: PROC <, fp2>
but not:

P: PROC <fp2, >

All three parameters must be scalar variables. 'l'he first two
must have size 1 (such as SIGNED BIN(l) or CHAR(l)) and the
third must have size 2 (such as CHAR(2) or LABEL).

Invocation ,

Subroutine procedures are called by the "CALL"
statement, which has one of the following two forms:

CALL label constant (apl, ap2, ••• , apn)
CALL label constant <apl, ap2, ap3>

GIVING <rl, r2, r3>

The first form calls procedures beginning with the first and
second form of the "PROCEDURE" statement. The second form
calls procedures beginning with the third and fourth form of
the "PROCEDURE" statement. The label constant is the name of
the called procedure. The parameters in parentheses and
angle brackets may be constants or variables. Variables in
the first form may not be formal parameters and may not be
qualified or subscripted.

The parameters must agree in number, order, and type
with the formal parameters specified in the "PROCEDURE"
statement. This means that if any or all of the formal
parameters are omitted, the corresponding actual parameters
should be omitted.

In the second form, "GIVING <rl, r2, r3>" should only
appear if the procedure returns by the angle-brackets form of
the "RETURN" statement. In this case, rl, r2, and r3 must be
unqualified nonsubscripted variables that are not formal
parameters. They must agree in the same ways with the result
parameters in the "RETURN" statement.

MPL User's Guide Page 16

Chapter 3 Subroutine Procedures

The effect of the "CALL" statement is to execute the
named procedure, associating the actual parameters in the
call with the formal parameters in the procedure. When the
procedure terminates by a "RETURN" statement, control goes to
the statement that follows the "CALL" statement.

With the first form, if the procedure has modified the
values of any of its formal parameters, the values of the
corresponding actual parameters (which in this case must be
variables) are changed accordingly. With the second form, if
the procedure executes the angle-brackets form of the
"RETURN" statement, the values returned are assigned to the
result variables.

Return

Subroutine procedures return control to their callers by
a "RETURN" statement. The "RETURN" statement has one of the
following two forms:

RETURN
RETURN <rpl, rp2, rp3>

The result parameters in the second form may be constants or
variables. The same data type restrictions and rules for
omission apply as in the angle-brackets form of the
"PROCEDURE" statement.

The effect of the "RETURN" statement is that it returns
control to the calling procedure at the statement following
the invoking "CALL" statement. The second form specifies
that the current values of the result parameters are to be
returned for assignment to the result variables in the "CALL"
statement.

MPL User's Guide Page 17

CHAPTER 4. DECLARE STATEMENTS

When variables are needed in assignment statements,
"CALL" statements, etc., "DECLARE 0 statements must be used to
declare them to the compiler. "Declaring variables means
telling the compiler what attributes the data item possess.
All variables defined·in one compilqtion are global to that
compilation.

This section describes how to use the "DECLARE"
statement for different kinds of variables. It first gives a
description of the different types of variables. Then it
shows the additional features needed to declare array
variables, structure variables# arid to specify the Linking
Loader section in which variables are allotted storage.

variables

Variable data items are data items whose values may
change when a program .executes. They are represented in the
program text by character strings called 0 variables. 0 A
variable "refers to 0 the data item it represents. The
phrase, "the value of the variable, 0 may be used to mean "the
value of the data item referred to by the variable." The
phrase, "the attributes of the variable," may be used to mean
"the attributes of the data item referred to by the
variable. 0

variable Attributes

A variable data item may have certain attributes that a
constant data item may not have. For instance, the data item
may b~ lotated in the base section rather than the data
section. Since names are used to refer to variable data
items, a variable's attributes must be declared to the
compiler. This is done for each variable before the first
usage of that variable. ·

In addition to its type attributes, each variable may
have combinations of the following attributes: DEFINED,
INITIAL, GLOBAL, EXTERNAL, section, BASED, scalar, array, and
structure. ·

A variable can be allocated storage at an absolute
memory address, or at the same memory address where another
variable has storage. This variable has the "DEFINED"
attribute. A variable may also be assigned a certain initial
value before executing the program. This variable has the
"INITIAL" attribute. The "GLOBAL" attribute specifies that a
variable is obtainable fn separately compiled MPL programs.

MPL User's Guide Page 18

Chapter 4 variables

A variable that is declared with the "GLOBAL" attribute
can be subsequently referenced in a separately compiled MPL
program using the "EXTERNAL" attribute. variables can be
allotted storage in the data section, the base section, blank
common, or the program section. This is done by declaring
the group of variables to have one of the section attributes:
DSCT, BSCT, CSCT, or PSCT.

The "BASED" attribute refers to constructs of a
data-item template used as pointer variables. The template
is a map or pattern describing a fictitious variable data
item with certain attributes. With MPL, the programmer
obtains a real variable data item with a memory address the
value of a pointer variable, as if it were a variable data
item matching the template.

Such a template is not really a variable, since a
variable refers to a defined memory address. For language
consistency, the template is called a variable having the
"BASED" attribute.

A "BASED" variable describing a fictitious variable data
item, not contained in a fictitious array, represents a real
variable data item when qualified by a pointer variable. MPL
does this qualification through the use of an arrow. For
example, if "P" is a pointer variable and "T" is a "BIN(l)
BASED" variable (template), then the "BIN(l)" variable data
item with an address value of "P," is referenced by:

p -> T

A data item that does not have the array or structure
attribute has the scalar attribute and is called a scalar.
MPL allows the programmer to organize data into a collection
of data items having the same attributes. This collection is
called a data item with the array attribute, or an array.

An array is a named 1-, 2-, or 3-dimensional collection
of unnamed similar data items. A name is given to the array
as a whole. An individual data item in the array is referred
to by a variable containing a subscript reference. This
indicates the position of the data item with respect to the
start of the array. The size of each of the 1-, 2-, or
3-dimensions of the array is specified when its array
variable is declared.

The data items collected to form the array may be
scalars or structures, but the number of subscripts must
never exceed 3.

MPL User's Guide Page 19

Chapter 4 Variables

MPL allows the programmer to organize data into a
collection of data items with different attributes. This
collection is called a data item, with the structure
attribute, or a·structure.

A structure is a collection of named, dissi~ilar data
items. A name is given to the structure and to the scalars,
the arrays, and the structures comprising the structure. The
result is a hierarchical collection. The names and
attributes of the data items that form the structure are a
part of the declaration of its structure variable. The
structure, as a whole, has the "CHAR" attribute.

The data items forming the structure may be scalars,
arrays, or structures. The maximum nesting level of
structures must not exceed 5. The length of a structure must
not exceed 327 bytes.

Attribute Restrictions

There are additional rules and restrictions on. the
attributes of structure variables. They are listed below:

Type attribute

Variables that refer to composite data items may not
have type attributes.

Successive "BIT(m)" data items within a structurej are
packed into bytes as long as byte boundaries are not crossed.
Whenever the packing results in byte-boundary crossing, the
next byte is used.

INITIAL attribute

variables that refer to composite data items may not
have "INITIAL" attributes.

BASED attribute

Level-k variables, where "k > l," may not be declared
with the "BASED" attribute. Level-1 variables may be
declared with the "BASED'' attribute, in which case the entire
structure is "BASED." For example:

DCL 1 BSTR BASED,
2 BASEDl BIN(2),
2 BASED2 CHAR (5)

declares BSTR to refer to a "BASED" structure with a "BIN(2)"
component and a "CHAR(5)" component.

MPL user's Guide Page 20

Chapter 4 variables

DEFINED attribute

Remarks analogous to those made above for the "BASED"
attribute apply to the hexadecimal constant form of the
"DEFINED" attribute. For the variable form, the rule is that
a level-k variable, where "k >l," may only be "DEFINED" to a
previously declared "brother" within the structure. No other
kind of variable may be "DEFINED" to level-k variables where
"k > l." For example, this declaration is valid:

DCL 1 S,
2 ABC,
2 DEFF CHAR(5),
2 GHI CHAR(l) DEF ABC

This one is invalid:

DCL 1 BAD
2 BRl,

3 ABC,
2 BR2,

3 GHI CHAR(l) DEF ABC

This rule may be stated more precisely as follows: two
level-k variables related by "DEFINED," where "k > l," must
refer to data items contained in the same level-(k - 1) data
item.

EXTERNAL and GLOBAL attributes

Remarks analogous to those made above for the "BASED"
attribute apply as well to the "EXTERNAL" and "GLOBAL"
attributes.

Array attribute

MPL allows you to describe and refer to arrays of
composite data items, as well as arrays of elementary data
items. This means that you may construct an array of four
structures, each containing an array of five "BIN(2)" data
items and an array of nine "DEC(S, 2)" data items. There can
never be more than a total of three dimensions in a
structure, no matter how many levels the dimensions are
distributed. For example, a variable referring to the
structure array just described is:

DCL 1 STRARR(4),
2 BINARR(S) BIN(2),
2 DECARR(9) DEC(5, 2)

As many subscripts as necessary to completely specify
data items should be used. For example, you would refer to

MPL User's Guide Page 21

Chapter 4 Variables

the fourth "DEC(S, 2)" data item in the third structure by:

DECARR(3, 4)

Declaring Simple variables

The "DECLARE" statement begins with one of the reserved
words, DECLARE or DCL. Following the reserved word, a list
of variable declarations, separated by commas, is written.

Each variable declaration begins with the variable
itself and ends with the list of attributes of the data item.
The allowed forms of the attribute list depend on whether the
variable refers to "LABEL" data. The next two sections
describe the allowed forms.

LABEL variables

The attribute list of a "LABEL" variable may have one of
the three forms:

• LABEL
LABEL INITIAL(label constant)
LABEL INIT(label constant)

The second and third forms are the same. "!NIT" .is an
acceptable abbreviation for "INITIAL." If the second form is
used, the "LABEL" variable is contained within the
parentheses. For example, in a program containing a
statement labelled, "LETTER," you may declare Ll and L2 to be
"LABEL" variables with Ll initialized to "LETTER" by the
statement:

DCL Ll LABEL INIT(LETTER), L2 LABEL

The initial value of L2 in this example is undefined.

MPL User's Guide Page 22

Chapter 4 variables

Non-LABEL variables

The attribute list of a non-LABEL variable begins with a
type attribute. !f this type attribute is omitted, the
variable assumes type "BIN(l} ."A type attribute begins with
one of the type designators: BIN, SIGNED BIN, DEC, SIGNED
DEC, CHAR, or BIT.

Any one of these may be followed by a size specification
of the form (integer constant). "DEC" and "SIGNED DEC" may
be followed by a size specification of the form (integer
constant, integer constant}. If the size specification is
omitted, "(l}" is assumed. Alternatively, a type attribute
may be the single word, "SIGNED," in which case the variable
is assumed to be of type "SIGNED BIN(l)."

For example, if Bl is declared a "BIN(l}" variable, SBl
a "SIGNED BIN(l}" variable, and BIT4 a "BIT(4}" variable by
the statement:

DCL Bl, SBl SIGNED, BIT4 BIT(4)

Following the type attribute, the attribute list
concludes with any of the following six mutually exclusive
attributes.

INITIAL(constant} (or INIT(constant)}

This gives the declared variable an initial value of the
constant contained within the parentheses. The constant
should be compatible with the type of the variable. "BIT"
variables may not be initialized by this attribute. For
example:

•

DCL Bl INIT(25}
DCL STRING CHAR(8} INIT('HI THERE')
DCL N DEC(5, 2} INIT(2.69}

BASED

This states that the variable is a "BASED" variable. It
is a template or pattern describing a fictional data item.
It is not a variable. For example:

DCL P DEC(6} BASED
DCL Bl BASED

MPL user's Guide Page. 23

Chapter 4 Variables

DEFINED variable (or DEF variable)

This causes the declared variable to be allocated
storage at the same memory address where a previously
declared variable has storage. A variable data item is then
considered a different type. For example:

DCL Bl, Cl CHAR(l) DEF Bl

DEFINED hexadecimal constant (or DEF hexadecimal constant)

This causes the declared variable to have storage at the
absolute memory address indicated by the hexadecimal
constant. For example:

DCL ACIA BIN(2) DEF $EC14

EXTERNAL

This states that the variable is to have or has
allocated storage in a separately compiled MPL program. The
variable must be declared with the "GLOBAL" attribute in the
separately compiled program. For example:

DCL REV DEC(4, 2) EXTERNAL

GLOBAL

This states that separately compiled MPL programs
execute this variable by declaring it to have the "EXTERNAL"
attribute. For example:

DCL REV DEC(4, 2) GLOBAL INIT(2.0l), Bl GLOBAL

Declaring Array variables

A variable is referred to an array by writing a
dimension designator immediately following the "DECLARE"
statement. This dimension designator is a parenthesized list
of no more than three integer constants separated by commas.
Each integer constant must denote a value greater than 1.
The number of integer constants in the list is the number of
dimensions in the array. The minimum subscript used for the
kth dimension, when referring to an array element, is 1. The
maximum is the kth integer constant in the list of the
"DECLARE" statement. For example:

DCL ARRAY(2, 3) CHAR(S)

MPL User's Guide Page 24

Chapter 4 variables

declares an array variable, "ARRAY," consisting of the six
"CHAR(5)" elements: ARRAY{l, 1)' ARRAY{l, 2)' ARRAY{l, 3)'
ARRAY(2, 1)' ARRAY(2, 2), and ARRAY(2, 3). The "INITIAL"
attribute for an array variable may take one of the following
two f orrns:

INITIAL(constant, constant, ••• , constant)
INIT(constant, constant, ••• , constant)

where the number of constants in the parenthesized list is
less than or equal to the product of the integer constants in
the variable's dimension designator. This assigns the values
of the constants to the array elements as initial values.
Array elements match to constants in the order described by
the phrase, "last subscript varies most rapidly." For
example:

DCL BB (2 , 2) IN IT (1 , 2 , 3 , 4)

assigns the initial values:

l to BB (1 , 1) ,
2 to BB(l, 2),
3 to BB (2, 1) , and
4 to BB (2, 2) •

Declaring Structure variables

In order for a variable to refer to a structure or
component of a structure, a level number is written
immediately before the variable in the "DECLARE" statement.
This level number is an integer constant denoting a value
from 1 to 5, inclusive. All components of a structure
variable are declared in order, in a single "DECLARE"
statement.

A structure is a level-1 data item. It is composed of a
number of level-2 data items. A level-2 data item may itself
have the form of a structure, in which case it is composed of
a number of level-3 data items, and so on, up to a level of
5. Levels may not be skipped in a "DECLARE" statement. For
example, a level-2 declaration may not be followed by a
level-4 declaration without an intervening level-3
declaration.

Structure components that have the form of structures
are called "composite data items." Structure components that
do not have the form of structure are called "elementary data
i terns."

MPL User's Guide Page 25

Chapter 4 Variables

For example, consider the declaration:

DCL 1 Ll,
2 L2A1

3 L3A CHAR(!),
3 L3B BIN(2),

2 L2B LABEL

This example declares the structure variable Ll. Ll
refers to a structure containing two level-2 data items,
which are referred to by the two level-2 variables, L2A and
L2B. The first level-2 data item is further composed of two
level-3 data items, which are referred to by the "CHAR(l)"
variable, L3A and the "BIN(2)" variable L3B. L2B is a
"LABEL" variable. Ll and L2A refer to composite data items.
L3A, L3B, and L2B refer to elementary data items.

Constant Interpretation

Contexts

The MPL compiler determines the attributes and the value
of a constant from its textual form and its context. The
context of a constant is a list of type attributes dependent
on the constant's textual position within an MPL program.
This section lists the thirteen possible places where
const~nts appear. The classes of constants and the context
are given. The next two sections discuss attribute and value
determination.

This list refers to MPL statement types. It is useful
primarily as a reference aid.

• Expressions (allows integer, decimal, hexadecimal,
character-string, address)

If a constant within an expression is not the first
operand, its context is the list of type attributes of the
previous operand. If it is the first operand and the
expression is on the right-hand-side of an assignment
statement, then its context is the list of type attributes of
the rightmost variable, on the left-hand-side of the
assignment statement. In no other case is a constant the
first operand in an expression.

• Structure level number (allows integer)

The context of a structure level number is "BIN(l) ."

MPL User's Guide Page 26

Chapter 4 Constant Interpretation

• Dimension (allows integer)

The context of a dimension is "BIN(l).ri

Subscript (allows integer)

The context of a constant within a subscript is
"BIN (1) • II

Precision attribute specification (allows integer)

The context of constants within a precision attribute
specification is "BIN(l)."

DEFINED. attribute specification (allows hexadecimal)

The context of an absolute memory address in a "DEFINED"
attribute specification is "BIN(2)."

• Iterative DO (allows integer, decimal, hexadecimal,
character-string, address)

The context of a constant used as the initial value of
an iterative "DO" is the list of type attributes of the index
variable of the "DO."

The context of a constant used as the final value of an
iterative "DO" is the list of type attributes of the initial
value of the "DO."

The context of a constant used as the increment of an
iterative "DO" is X(l), where "X" is the list of base and
sign attributes of the final value of the "DO."

GOTO statement (allows integer)

The context of a constant in a "GOTO" statement is
"LABEL."

• Label list of computed "GOTO" statement (allows label)

The context of a constant within the label list of a
computed "GOTO" statement is "LABEL."

Procedure name in "CALL" statement (allows label)

The context of a constant used as the procedure name in
a "CALL" ·statement is "LABEL."

MPL User's Guide Page 27

Chapter 4 Constant Interpretation

• INITIAL attribute specification (allows integer, decimal,
hexadecimal, character-string, label, address)

The context of a constant within an "INITIAL" attribute
specification is the list of type attributes of the variable
given the "INITIAL" attribute.

• Argument list of CALL (allows integer, decimal,
hexadecimal, character-string, address)

The context of integer, decimal, hexadecimal, and
address constants within the argument list of a parentheses
"CALL" is "BIN(2)." The context of a character-string
constant within the argument list of a parentheses "CALL" is
"CHAR(m)." "m" is the number of characters in the character
string denoted by the constant.

The context of constants appearing as the first two
arguments of an angle-brackets "CALL" is "BIN(l) ." The
context of a constant appearing as the third argument of an
angle-brackets "CALL" is "BIN(2) ."

• Argument list of RETURN (all_ows integer, ·decimal,
hexadecimal, character-string, address)

The context of constants appearing as the first two
arguments of a "RETURN" is "BIN(l) ." The context of a
constant appearing as the third argument of a "RETURN" is
"BIN(2)." .

Attribute Determination

This section gives the dependence of attributes upon
context for each c1ass of constant.

In the following, reference is made to the "apparent
value" of a constant. For example: if "SBl" is a "SIGNED
BIN(l)" variable, then in the statement "SBl = 255," the
constant, 255~ has a "SIGNED BIN(l)" context. Its apparent
value is 255, but its value is -1, since its type attributes
are "SIGNED BIN(l)."

Integer constants, decimal constants

[SIGNED] BIN(l) context

If the constant appears in an "INITIAL" attribute
specification, its type attributes are "BIN(l}." Otherwise,
its type attributes are "[SIGNED] BIN(l)" or "[SIGNED]
BIN(2)," depending on whether its apparent value is less than
256. .

MPL user's Guide Page 28

Chapter 4 Constant Interpretation

[SIGNED] BIN(2) context

If the constant appears in.an "INITIAL" attribute
specification, its type attributes are "BIN(2)." Otherwise,
its type attributes are "[SIGNED] BIN(2)."

[SIGNED] DEC(m, n) context

The constant' s type attributes are "[SIGNED] DEC (m, · n)."

CHAR(m) context; m <= 2

If the constant appears in an "INITIAL" attribute
specification, its type attributes are "BIN(m)." Otherwise,
its type attributes are "CHAR(m)."

CHAR(m) context; m > 2

The constant's type attributes are "CHAR(m) ."

BIT(m) context

The constant's type attributes are "BIN(l) ."

LABEL context·

The constant's type attributes are "BIN(2) ."

Hexadecimal constants

[SIGNED] BIN(l) context

If the constant appears in an "INITIAL" attribute
specification, its type attributes are "BIN(l) ." Otherwise,
its type attributes are "[SIGNED] BIN(l)" or "[SIGNED]
BIN(2)," depending on whether its apparent value is less than
256.

[SIGNED] BIN(2) context

If the constant appears in an "INITIAL" attribute
specification, its type attributes are "BIN(l) ." Otherwise,
its type attributes are "[SIGNED] BIN(2)."

• CHAR(l) context

If the constant appears in an "INITIAL" attribute
specification, its type attributes are "BIN(l)." Otherwise,
its type attributes are "CHAR(l)" or "CHAR(2)," depending on
whether its apparent value is less than 256.

MPL User's Guide Page 29

Chapter 4 Constant Interpretation

• CHAR(2) context

If the constant appears in an "INITIAL" attribute
specification, its type attributes are "BIN(2)." Otherwise,
its type attributes ar·e "CHAR(2)."

• BIT(rn) context

The constant's type attributes are "BIN(l)."

LABEL context

The constant's type attributes are "BIN(2)."

Character-string constants

[SIGNED] BIN(rn) context

If the constant appears in an "INITIAL" attribute
specification, its type attributes are "CHAR(rn)." Otherwise,
its type attributes are "[SIGNED] BIN(rn) ."

• . CHAR (rn) context

The constant's type attributes are "CHAR(rn)."

• BIT(rn) context

The constant's type attributes are "BIN(l) ."

• LAB.EL con text

If the constant appears in an "INITIAL" attribute .
specification, its type attributes are "CHAR(2)." Otherwise,
its type attributes are "BIN(2) ."

Label constants

If the constant appears in an "INITIAL"·attribute
specification, its type attributes are "BIN(2)." Otherwise,
its type attribute is "LABEL."

Address constants

[SIGNED] BIN(rn) context

The constant's.type.attributes are "[SIGNED] BIN(2)~"

LABEL context

The con~tant's type attributes are "BIN(2)."

MPL User's Guide Page 30

Chapter 4 Value Determination

Value Determination
I

This section gives the dependence of value upon
attributes for each class of constants. In the following,
the apparent value of a constant is denoted by "A."

Integer constants, decimal constants:

BIN(l)

A < 256: value = integer part of A.
A >= 256: value is undefined.

SIGNED BIN(l)

A < 128: value = integer part of A.
128 <= A < 256: value = (integer part of A) - 256.
A >= 256: value is undefined.

BIN(2)

A < 65536:
A >= 65536:

SIGNED BIN(2)

A < 32768:
32768 <= A
65536.
A >= 65536:

DEC(m, n)

value = integer part of A.
value is undefined.

value = integer part of A.
< 65536: value = (integer part of A) -

value is undefined.

A< lO**(m - n): value= (integer part of
(A*lO**n))/lO**n.
A>= lO**(m - n): value is undefined.

SIGNED DEC(m, n)

A< lO**(m - n - 1): value= (integer part of
(A*lO**n))/lO**n.
A >= lO**(m - n - 1): value is undefined.

CHAR(m)

"A" is converted to a character string. It is
truncated on the right or right justified and space
filled, if required, on the left. If the constant is
the character string, "clc2 ••• cn," (including leading
zeros) then the value is given by the rule:

m >= n: value= ' clc2 •.. cn' (m - n spaces).
m < n: value= 'clc2 ••• cm'.

MPL user's Guide Page 31

Chapter 4 Value Determination

Hexadecimal constants:

• BIN(1)

A < 256: value = A.
A >= 256: value is undefined.

SIGNED BIN(l)

A < 128: value = A.
128 <= A < 256: value = A - 256.
A >= 256: value is undefined.

BIN (2)

A < 65536: value = A.
A >= 65536: value is undefined.

SIGNED BIN(2)

A < 32768:. value = A.
32768 <= A < 65536: value = A - 65536.
A >= 65536: value is rindefined.

CHAR (1)

A < 128: value = the character string of length 1
containing the single character whose ASCII code is
A.
A >= 128: value is undefined.

CHAR (2)

Let al = integer part of (A/256) and a2 = A mod
256.
al < 128, a2 < 128: value = the character string
of length 2 whose first character has ASCII code al
and whose second character ASCII code a2.
al >= 128 or a2 >= 128: value is undefined.

Character-string constants:

BIN(l)

Length of A= 1 (A= 'c'): value= ASCII code of
c.
Length of A > 1 :· value is undefined.

MPL User's Guide Page 32

Chapter 4 Value Determination

SIGNED BIN(l)

Length of A= 1 (A= 'c') and (ASCII code of c) <
128: value = ASCII code of c.
Length of A= 1 (A= 'c') and (ASCII code of c) >=
128: value = (ASCII code of c) - 256.
Length of A > 1: value is undefined.

BIN (2)

Length of A= 1 (A= 'c'): Compute v = (ASCII code
of c)*256 + (ASCII code of space). value= v.
Length of A= 2 (A= 'clc2'): Compute v = (ASCII
code of cl)*256 + (ASCII code of c2). Value= v.
Length of A > 2: value is undefined.

SIGNED BIN(2)

Length of A <= 2: Compute v as in BIN(2) case
above. If v < 32768, then value = v. If v >=
32768, then value = v - 65536.
Length of A > 2: value is undefined.

CHAR (m)

"A" is left justified and if required, space filled
on the right. In other words, if A= 'clc2 ••• cn',
then:

m >= n: value = 'clc2 ••• en ' (m - n spaces).
m < n: value is undefined.

Label constants:

BIN(2)

value = a number equal to the runtime address of
the statement labelled by the constant.

LABEL

Value = the address of the statement labelled by
the constant.

MPL User's Guide Page 33

Chapter 4 Value Determination

Address constants:
. . .

The value. of "A~ of an address constant is
determined from the.Macroassembler expression. The
expression may consist of an unqualified nonsubscripted
variable, optionally followed by a plus sign, followed
by an integer constant. "A" is equal to the m~mory
address of the data item referred to by the variable
plus the apparent value of the constant.

• BIN (2)

Value = A.·

SIGNED BIN(2)

A < 32768: value = A.
A >= 32768: value = A - 65536.

Section Specification

A group of variables may be allocated storage in any of
the Linking Loader sections: BSCT (base section), CSCT (blank
common section), DSCT .(data section), or PSCT (program
section). This is done by declaring the group in a single
"DECLARE" statement where the word "DECLARE" (or DCL) is
immediately followed by the reserved word, BSCT, CSCT, DSCT,
or PSCT. If a section in a "DECLARE" statement is not
specified, the compiler allocates storage for the variables
in "DSCT."

For example, AA, BB, and cc may be declared in blank
common by:

DCL CSCT AA, BB, CC

Variables declared in "CSCT" should not have the
INITIAL, BASED, EXTERNAL, or GLOBAL attributes.

The use of the hexadecimal constant form of the
"DEFINED" attribute, in the declaration of a. variable,
overrides any expiess or implied section specification.
variables so declared are allocated storage in "ASCT"
(absolute section).

MPL User's Guide Page 34

Chapter 4 Section Specification

The compiler allocates space for the executable
statements of the MPL program in "PSCT." This means that you
may have to precede "PSCT" declarations by "GOTO" statements
to transfer control, depending on the exact placement of the
declarations. For example:

START:
PROC OPTIONS(MAIN)
GOTO ENTRY.
DCL PSCT AA, BB

ENTRY:
(rest of program)

MPL user's Guide Page 35

CHAPTER 5. EXPRESSIONS

Arithmetic Expressions

Calculations performed in an MPL program are specified
by arithmetic expressions. Arithmetic expressions consist of
arithmetic operands combined by arithmetic operators.

Arithmetic Operands

Arithmetic operands may be constants or variables of any
of the BIN, SIGNED BIN, DEC, SIGNED DEC, or CHAR types or
variables of types BIT or LABEL. They may also be arithmetic
expressions as defined in this section. Here are some
arithmetic operands:

ADDR(SAM)
-2.06
((SBINl + SBIN2)*SBIN2)
SBINlA(BINl + 2)
PTR->DEC52

Arithmetic Operators

The arithmetic operators provided in MPL are the
following:

Arithmetic Operator

+

- (unary minus)
*
l
SHIFT or %

IAND or &
IOR
IEOR

Indicated Operation

Addition
Subtraction
Negation
Multiplication
Division
Rotate or arithmetic
shift, depending on
context
Bitwise AND
Bitwise OR
Bitwise EXCLUSIVE OR

Each arithmetic operator except for unary minus, takes
two arithmetic operands. Unary minus takes only one
arithmetic operand. The two arithmetic operands must both
either have the BIN, DEC,. or CHAR attribute. This is usually
described by: "MPL does not allow mixed-mode expressions."
They may differ as to the "SIGNED" attribute and the size.
For example, "SBINl + BIN2" is a legal combination, but "BINl
+ CHARl" is not.

MPL user's Guide Page 36

Chapter 5 Arithmetic Expressions

The arithmetic operands of each arithmetic operator are
subject to further data type restrictions. The following
table shows the data types to which each of the arithmetic
operators are applied:

Arithmetic Operator

+,-

- (unary minus)

*, I

SHIFT or %
!AND or & , !OR
IEOR

Allowed Types of
Arithmetic Operands

CHAR(l), BIN, SIGNED BIN,
DEC(m, n), SIGNED DEC
(m, n) , m <> 2
SIGNED BIN, numeric
constants
SIGNED BIN, DEC(m, n),
SIGNED DEC(m, n), m > 2
SIGNED BIN, CHAR(l)
BIN, SIGNED BIN, CHAR(l)
Same as IOR, but
different sizes not
allowed

More needs to be said about the two arithmetic
operators, "*" and "%." First, multiplication must be
explicitly specified. "RS" is not the same as "R*S." Second,
the second arithmetic operand of "%" must be a non-zero
integer or hexadecimal constant, possibly preceded by a minus
sign. The value of the minus sign indicates the number of
bit positions the first arithmetic operand rotates or shifts.

If the value of the second arithmetic operand is
positive, it rotates or shifts to ·the left (toward the most
significant bit). If it is negative, it rotates to the right
(toward the least significant bit). "SIGNED BIN" arithmetic
operands shift arithmeticfllly. "CHAR(l)" arithmetic operands
rotate.

Because of the rules on constant interpretation, integer
constants used as rotate counts are interpreted as having
type "CHAR(l)." Thus, hexadecimal constants should be used.
For example, if "SBINl" has the value -4 and "CHARl" has the
value "E'," then "SBINl % -1" has the value -2 and "CHARl %
$4" has the value "'T' ."

No two arithm~tic operators may be adjaeent except in
the case of unary minus: "W*-Y" is allowed and equivalent to
"W* (-Y). II

MPL user's Guide Page 37

Chapter 5 Arithmetic Expressions

Ord~r of Evaluation

High-precedence arithmetic operators are applied before
low-precedence arithmetic operators. Equal-precedence
arithmetic operators are applied from left to right. This is
always the case unless the order changes through the use of
parentheses. Unary minus has the highest precedence, as
shown in this table:

Arithmetic Operator

- (unary minus)
SHIFT or %
!AND or &, IOR, IEOR
*, I
+, -

Precedence

High

Low

Parentheses are used to override this ordering. For
example, in the arithmetic expression, "V*Y + Z*W&I," first
"W" and "I" are "ANDed." Then "V" and "Y" are multiplied.
The result of "W" and "I" being "ANDed" is multiplied by "Z."
That product is added to the product of "V" and "Y."

In the arithmetic expression, "B + ((C + D)*E) + C&2,"
first "C" and "D" are added, and the result is multiplied by
"E." Then "B" is added to that product, "C" and "2" are
"ANDed," and the sum of "B" and the product are added to
that.

Use of Arithmetic Expressions

Arithmetic expressions are used in two places in an MPL
program: assignment statements and logical expressions.
When an arithmetic expression appears in an assignment
statement, this means that the arithmetic expression is
evaluated, and the assigned value is the current value of one
or more variables. An arithmetic expression in a logical
expression means that the arithmetic expression is evaluated,
and its value compared with the value of some other
arithmetic expression.

MPL User's Guide Page 38

Chapter 5 Logical Expressions

Logical Expressions

Logical expressions specify the conditions under which
certain statements in an MPL program execute or repeat.
Logical expressions consist of logical operands combined by
logical operators using the ordinary rules of Boolean
algebra. For example, the logical expression "(C <DORE<
F)" is true if the value of "C" is less than the value of
"D, 11 or if the value of "E" is less than the valqe of "F."

Logical Operands

A logical operand is a pair of arithmetic expressions
separated by one of the relational operators: EQ, NE, LT (or
<),GT (or>), GE, or LE. The relational operators indicate
comparisons for equal, not equal, less than, greater than,
greater than or equal, and less than or equal, respectively.
The values of the two arithmetic expressions may not be of
mixed modes. Both values must have the "BIN," "DEC," or the
"CHAR" attribute, although they may differ as to the "SIGNED"
attribute and the size.

If the relational operator is "EQ" or "NE," there are
two other allowable combinations:

Both arithmetic expressions may be "LABEL" variables •

• The first arithmetic expression may be a "BIT{m)"
variable, and the second arithmetic expression may be the
integer constant O. If "m = l," the second arithmetic
expression may be the integer constant 1.

• A logical operand may also be a logical expression,
as defined in this section.

Logical Operators

The logical operators used in MPL are the following:

Logical Operator

NOT

AND

OR

MPL User's Guide

Result

True if logical operand
is false
True if both logical
operands are true
True if either logical
operand is true

Page 39

Chapter 5 Logical Expressions

Order of Evaluation

High-precedence logical operators are applied before
low-precedence logical operators, and equal- precedence
logical operators are applied from left to right, unless
parentheses are used. "NOT" has the highest precedence.

Logical Operator

NOT
AND
OR

Precedence

High

Low

Parentheses are used to override this ordering. For
example, the logical expression, "(C EQ D OR E EQ F AND G EQ
H},n is true either if the current values of ."C" and "D" are
equal, or if the current values of "E" and "F" are equal, and
the current values of "G" and "H" are equal. The logical
expression "((C EQ DORE EQ F) AND G EQ H)" is true if the
current values of "G" and "H" are equal, and either the
current values of "C" and "D" are equal, or the current
values of "E" and "F" are equal.

use of Logical Expressions

Logical expressions are used in two places in an M~L
program: "IF" statements and "DO" statements containing
"WHILE" clauses. A logical expression in an "IF" statement
means that one of two sequences of statements is executed,
depending on the truth or falsity of the logical expression.
A logical expression in a "DO" statement, containing a
"WHILE," clause means that a sequence of statements is
repeatedly executed, as long as the logical expression is
true.

MPL user's Guide Page 40

CHAPTER 6. STATEMENTS

Assignment Statements

The assignment statement is MPL's chief way of modifying
values of variables. It allows the values of one or more
variables to chan,ge ,the value of some arithmetic expression.
This section discusses the assignment statement's format, its
effect, some rules regarding conversions, and some examples.

Format

The format of the assignment statement is:

<variable list> = <arithmetic expression>

where "<variable list>" is a list of variables separated by
commas, and "<arithmetic expression>" is an arithmetic
expression. The "<variable list>" usually consists of a
single variable. A variable in the "<variable list>" may not
have the array attribute. The types of the variables and the
arithmetic expression must be related by the rules described
below.

Effect

The arithmetic expression is evaluated and converted, if
necessary, to the type of the rightmost variable. It is then
assigned the value of that variable. That value is then
assigned the value of the next variable to the left, after
any necessary conversion. This process continues until all
variables in the list are assigned the value.

Implicit Conversions

Some combinations are not allowed in assignments.
Others cause the conversion of data from one type to another.
This section outlines the rules regarding these conversions •

• "CHAR{m)" values may be assigned only to "CHAR{n)"
variables. If "m" and "n" are equal, no conversion is
performed. If "m" is less than "n," the value is extended on
the right with "n-m" ASCII space characters before
assignment. If "m" is greater than "n," the rightmost "m-n"
characters of the value are discarded before assignment.

Either "BIN" or "DEC" values may be assigned to "BIN"
variables. In the case of "BIN" values, a conversion is not
performed. If the value is outside the permitted range of
values for the variable, the result is undefined.

MPL User's Guide Page 41

Chapter 6 Assignment Statements

In the case of "DEC{m, n)" values, the value is first
converted to an integer. If the value is a constant, this
conversion is a truncation. Otherwise, it is a
multiplication by "lO**n." If the variable is not "SIGNED,"
the converted value is replaced by its absolute value. The
result is converted to the appropriate "BIN" type and
assigned. If it is outside the permitted range of values for
the variable, the result is undefined.

• "LABEL" values may be assigned to "LABEL" variables. A
conversion is not performed.

Either "BIN" or "DEC" values may be assigned to "DEC{m,
n)" variables. In the case of "BIN" values, the valu¢ is
first converted to a decimal number. If the value is' a
constant, this conversion is the obvious one; otherwise it is
a division by "lO**n." If the variable is not "SIGNED," the
converted value is replaced by its absolute value. The
result is converted to the appropriate •DEC" type and
assigned. If it is outside the permitted range of values for
the variable, the result is undefined.

In the case of "DEC" values, fractional digits are
dropped. Then if the variable is not "SIGNED," the value is
replaced by its absolute value. If it is outside the
permitted range of values for the variable, the result is
undefined.

Either "BIN" or "DEC" values may be assigned to "CHAR"
variables. In either case, the value is converted to a
character string containing its decimal representation with
leading zeros replaced by spaces, a leading minus sign
inserted if the value was negative, and a decimal point
inserted as required for "DEC" values.

• The only arithmetic expression that may be assigned to
"BIT{n)" variables is an integer or hexadecimal constant,
denoting the value "0" or "2**n-l." These values result in
the assignment of an all-0 bit string or an all-1 bit string,
respectively.

MPL User's Guide Page ~ 4 2

Chapter 6 GOTO Statements

Examples:

DCL C3 CHAR(3), CS CHAR(5)
DCL BIT4 BIT(4)
DCL D86 DEC(B, 6)~ D5A DEC(S), DSB
DCL SBlA SIGNED, SBlB SIGNED, SBlC
DCL AVE SIGNED
C3 = 'ABC'
CS = C3
BIT4 = $F

Gets 'ABC' */
Gets 'ABC ' */
Gets all ones */

DEC(S)
SIGNED

D86 = D5A/D5B
SBlA = SBlA +
AVE = (SBlA +

/*
/*
/*
/*

1 /*
SBlB

Gets quotient to six places */
Increments SBlA */
+ SBlC)/3 /* Computes average */

GOTO Statements

MPL permits the alteration of the flow of control in a
program. Ordinarily, control flows from one statement to the
next. Some MPL statements, like the "IF" statement and the
"DO" statement, cause implicit control transfers. "GOTO"
statements specify explicit control transfers.

This section describes the three kinds of "GOTO"
statements and gives examples of their use.

Label Constant GOTO Statement

The label constant "GOTO" statement has one of the
following forms:

GO TO label constant
GOTO label constant

The two forms are equivalent. This statement causes a
transfer of control to the statement (elsewhere in the
program) labelled by the label constant. For example:

GOTO SAM
SKIP: I = 1

•
•

SAM: I = 2

MPL User's Guide Page 43

Chapter 6 GOTO Statements

If this example is executed, the "GOTO" statement causes
the statements beginning with "SKIP" to be disregarded. The
statement executed immmediately after the "GOTO" statement is
the statement, "I = 2."

LABEL variable GOTO Statement

The "LABEL" variable "GOTO" statement has one of the
following forms:

GO TO <variable>
GOTO <variable>

where "<variable>" is a variable referring to a "LABEL" data
item. The two forms are equivalent. This causes a transfer
of control to the statement (elsewhere in the program)
labelled by the current value of the variable. For example:

DCL I, LARRAY(3) LABEL INIT(GOOD, BAD, UGLY)

I = 2
GOTO LARRAY(I)

GOOD: I = 0
GOTO OUT

BAD: I = 1
GOTO OUT

UGLY: I = -99
GOTO OUT

If this example is executed, the "LABEL" variable "GOTO"
statement causes the statement labelled "BAD" to execute,
followed by the next "GOTO OUT" statement.

MPL User's Guide Page 44

Chapter 6 GOTO Statements

Computed GOTO Statement

The computed "GOTO" statement has one of the following
forms:

GO TO (label constant, ••• ,label constant), <name>
GOTO (label constant, ••• , label constant), <name>

where "<name>" is an unqualified nonsubscripted "BIN(l)"
variable that is not a formal parameter. The two forms are
equivalent. This statement causes a transfer of control to
the statement (elsewhere in the program) labelled by the
first, second, third, ••• , or nth label constant, whether the
current value of the variable is 1, 2, 3, ••• , or n,
respectively. If the current value is zero or greater than
the number of label constants in the statement, the effect is
undefined. For example:

GOTO (GOOD, BAD, UGLY), I

This statement has the same effect as the statement "GOTO
LARRAY(I)" in the previous example.

IF Statements

MPL provides a statement that allows the programmer to
specify a course of action based on the truth or falsity of a
condition. This statement is the "IF" statement. This
section describes the "IF" statement and gives examples of
its use.

IF Statement Format

The "IF" statement has one of the following forms:

IF <logical expression> THEN <statement>
IF <logical expression> THEN <statement> ELSE <statement>

where "<logical expression>" is a logical expression and the
"<statement>s" are executable statements. The effect of the
first form is to execute the "<statement>" only if the
"<logical expression>" is true. If it is false, control goes
to the statement following the "IF" statement. The effect of
the second form is that it executes either the first
"<statement>" or the second "<statement>," dependent on
whether the "<logical expression>" is true or false,
respectively. After the appropriate "<statement>" executes,
control goes to the statement following the "IF" statement.

MPL User's Guide Page 45

Chapter 6 DO Statements

To choose between sequences of statements, rather than
single statements, the "DO-END'' brackets are used. For
example:

IF I < 2 5 TH EN I = 25
IF (I NE 0 AND I LE 3) THEN GOTO
(GOOD, BAD, UGLY), I
ELSE GOTO ERROR

DO Statements

MPL allows you to group a·sequence of statements in,
order to consider them as a single statement. It also allows
conditions to be specified so that the sequence repeats. The
"DO" statement is provided for these purposes. This section
describes the permissible forms of the "DO" statement.

Form

~DO" statemerits have the general form:

DO {<iteration clause>] [<WHILE clause>]

This means that a "DO" statement consists of the word "DO,"
optionally followed by an iteration clause, optionally
followed by a "WHILE" clause. psll

If the iteration clause is present, it has the following
form:·

<variable> = <DO operand> TO <DO operand>
[BY <DO operand>]

where "<variable>" is an unqualified nonsubscripted variable
that is not a formal parameter of a procedure and the "<DO
operand>s" are either variables or constants meeting the same
description. The."BY <DO operand>" is optional.
"<variable>" may have type "BIN(l)" or "BIN(2)." The first
two "<DO operand>s" must have the same type as "<variable>."
The third "<DO ope~and>" must have type "BIN(l)."

If the "WHILE" clause is present, it has the form:

WHILE <logical expression>

where "<logical expression>" is a logical expression.

MPL user's Guide Page 46

Chapter 6 DO Statements

Each "DO" statement in your program must have a
corresponding "END" statement. The corresponding "END"
statement is found the same way the right parenthesis,
corresponding to a given left parenthesis, is found in an
expression. For example:

DO

DO

DO

END

END

END

The first "DO" matches the third "END." The second "DO"
matches the second "END," and the third "DO" matches the
first "END." "DOs" so arranged are called "nested DOs." This
example shows three levels of nesting. "DOs" may be nested
to a level of ten. Indentation of nested "DOs" is not
required, but is suggested for readability.

Simple DO

In its simplest form, the "DO" statement acts as a "left
parenthesis" to group statements. The corresponding "END"
statement acts as the "right parentheses." For example, to
assign values to either I, J, and K or L, M, and N, depending
on the sign of Q:

MPL User's Guide Page 47

Chapter 6 DO Statements

IF Q < 0 THEN
DO
I = Vl
J = V2
K = V3
END

ELSE
DO
L = Vl
M = V2
N = V3
END

DO with Iteration Clause

An iteration clause on a "DO" statement specifies that
the sequence of statements, beginning with the one following
the "DO" statement and ending with the corresponding "END"
statement, is repeated a certain number of times.

DO V = Dl TO D2 BY D3

The effect of the. above "DO" statement is the following.
When the statement is encountered, the variable "V" is given
the value of "Dl" and the sequence of statements executes.
The value of "V" is compared with the value of "D2." If it is
equal (in the BIN(2} case} or greater or equal (in the BIN(l)
case), the process continues with the statement following the
"END" statement. Otherwise, "V" increments by the value of
"D3," and the sequence of statements executes again. This
process repeats until "V" reaches or exceeds "D2."

If "BY D3" is omitted in the above example, "V" wduld
increment by 1 each time.

Note that if the values of v, Dl, D2, or D3 changJ, the
looping process may continue in an unpredictable manne~.

I

I
This example illustr.ates the zeroing of every element of

the array "AA" and every other element of the array "BB":

DCL AA(lO}, BB(lO), I
DO I = 1 TO 10
AA(I) = 0
END
DO I = 1 TO 9 BY 2
BB (l} = 0
END

MPL User's Guide Page 48

Chapter 6 DO Statements

DO with WHILE Clause

A "WHILE" clause on a "DO" statement specifies that the
sequence of statements, beginning with the one following the
"DO" statement and ending with the corresponding "END"
statement, repeats if a certain condition is met. This
condition is represented by an MPL logical expression.

DO WHILE <logical expression>

The effect of the preceding "DO" statement is as follows. If
the logical expression is false, execution continues with the
statement following the "END" statement. Otherwise, the
sequence of statements executes and the logical expression is
examined again. This process repeats until the logical
expression is false.

The following example illustrates the end of a linked
list, pointed to by "LIST." The last node in the list assumes
a zero link.

DCL LIST BIN(2), P BIN(2)
DCL 1 NODE BASED,

2 VAL,
2 NEXT BIN(2)

P = LIST
DO WHILE P -> NEXT NE 0
P = P -> NEXT
END

DO with Iteration and WHILE Clauses

A "DO" statement may have an iteration clause and a
"WHILE" clause. In this case, the sequence of statements
executes until the iteration completes or the "WHILE"
condition fails, whichever comes first. The sequence of
statements in the following example executes from O to 5
times, depending on when, if ever, "Y" becomes less than 4.

DO I = 1 TO 5 WHILE Y < 4

END

MPL user's Guide Page 49

Chapter 6 END Statements

END Statements

"END" statements terminate statement groups begun by
"DO" or "PROCEDURE" statements. "END" statements have the
form:

END [label constant]

The label constant is an optional documentation aid. For
example:

LOOP: DO I = 1 TO 50

END LOOP

Embedded Assembly Language

Legal Macroassember Language statements may be included
in an MPL program. Such statements are called embedded
assembly language statements. In contrast to MPL statements,
the format of these statements is not unrestricted with
respect to records. An embedded assembly language statement
is a record whose "<sequence of characters>" consists of a
dollar sign followed by a legal Macroassember Lan9uage
statement. This assembly language statement inserts into the
output assembly language program without further processing
by the compiler.

Names (label constants and variables) defined in MPL
statements may be used as operands in embedded assembly
language statements. Labels defined in embedded assembly
language statements may be used in "GOTO" statements.

Embedded assembly language statements are syntactically
distinct from MPL statements. The contexts are slightly
different. An embedded assembly language statement is like a
label because it may precede any MPL statement.

Assembly language statements embedded within the MPL
program should make no assumptions regarding the contents of
the processor accumulators, index register, program counter,
stack pointer, condition codes register, or stack. For
example:

MPL user's Guide Page 50

Chapter 6

CODOS:
PROC

$ NAM CODOS
$ SW!
$ PCB $1A

RETURN
END

IF T > 1 THEN
$ PAGE

DO

END
ELSE
$ PAGE

DO

END

MPL user's Guide

Embedded Assembly Language

Page 51

CHAPTER 7. ASSEMBLY LANGUAGE ROUTINE LINKAGE

This section gives guidelines on how to write assembly
language routines. It covers MPL calling, returning, and
parameter passing conventions. This also applies to embedded
assembly language statements in an MPL program.

GLOBAL and EXTERNAL Considerations

An assembly language routine -may obtain an MPL "GLOBAL"
variable by naming the variable in an "XREF" dir~ctive. An
MPL "EXTERNAL" variable may be located in an assembly
language routine if the routine names the variable in an
"XDEF" directive.

An MPL Procedure Call

Routine name

The entry point of an assembly language routine called
by an MPL procedure must have a name in an "XDEF" directive.

Parentheses CALL

An assembly language routine called by an MPL statement
of the form:

CALL entry point(apl, ap2, ••• , apn)

is guaranteed the following conditions on entry:

• The return address is on top of the stack. When this is
true, the routine returns by an "RTS" instruction.

• A list of addresses of the actual parameters, "apl, ap2,
••• , apn," is at the address equal to 2 plus the address on
top of the stack. When this is true, the routine may load
the X register with the address of the kth actual parameter
by the instruction sequence:

TSX
LDX 0 ,X
LDX 2k,X

MPL User's Guide Page 52

Chapter 7 An MPL Procedure Call

Angle-brackets CALL

An assembly language routine called by an MPL statement
of the form:

CALL entry point<apl, ap2, ap3>
GIVING <rl, r2, r3>

is guaranteed the following conditions on entry:

• The return address is on top of the stack. When this is
true, the routine returns by an nRTSn instruction.

• The A, B, and X registers contain the values of the first,
second, and third actual parameters, respectively. If any of
the actual parameters are not specified in the 0 CALL"
statement, the contents of the corresponding registers are
undefined.

Before returning, the routine must load the A, B, and X
registers with the values of the first, second, and third
result parameters, respectively. If any of the result
variables are not specified in the ncALL" statement, the
corresponding registers need riot be loaded.

Calling MPL Procedures

Procedure name

The name of an MPL procedure that is called by an
assembly language routine is named in a 0 XREF 0 directive.

Parentheses PROCEDURE

An MPL procedure defined by a statement of one of the
forms:

label constant: PROCEDURE (fpl, fp2, fpn)
label constant: PROC (fpl, fp2, fpn)

is called by the instruction sequence:

MPL user's Guide Page 53

Chapter 7

JSR label constant
BRA L

Calling MPL Procedures

FDB address of first actual parameter
FDB address of .second actual parameter
•

•
FDB address of nth actual parameter

L •
•
•

Angle-brackets PROCEDURE

An MPL procedure defined by a statement of one of the
for ms:

label constant: PROCEDURE <fpl, fp2, fp3>
label constant: PROC <fpl, fp2, fp3>

is called by an instruction sequence with the effect:

Load A with value of first actual parameter
Load B with value of second actual parameter
Load X with value of third actual p~rameter
JSR label constant

If any of the formal parameters is not specified in the
"PROCEDURE" statement, the corresponding registers are not
loaded.

If the MPL procedure returns with a statement of the
form:

RETURN <rpl, rp2, rp3>

then on return, the A, B, and X registers contain the values
of the first, second, and third re~ult parameters,
respectively. If any of the result parameters is not
specif ieq in the "RETURN" statement, the contents of the
corresponding registers are undefined.

MPL User's Guide · Page 54

CHAPTER 8. RELOCATABLE OBJECT MODULE LIBRARIES

Three relocatable object module libraries are provided
with MPL: MPLSLIB.RO, MPLULIB.RO, and MPLUTLIB.Ro.

MPLSLIB.RO contains all of the "dot-F" routines called
by compiled MPL programs. These are routines named ".FHH,"
where "HH" is two hexadecimal digits. It should always be
included in the linking-load step. The "dot-F" routines
perform functions such as BIN multiplication and division,
DEC arithmetic, CHAR manipulation, and array subscripting.

MPLULIB.RO

MPLULIB.RO contains several procedures that user
programs may call. It is not required during linking-load
unless procedures being linking-loaded call its members.
Other compiled procedures of general utility may be merged
with MPLULIB.RO. This section defines the contents of
MPLULIB.RO

Some procedures in MPLULIB.RO may only be used if the
resultant absolute load module is running under CODOS. These
load modules must meet the standard requirements for CODOS
commands. They must be linking-loaded with the BASE command,
contain no initialized BSCT, allocate sufficient stack space
(at least 80 bytes), and fit within the available contiguous
memory.

MPLULIB.,RO Contents

MPL User's Guide

DSPLY

Name: DSPLY

Function: Display the value of a "CHAR (m)"
variable on the console.

CODOS Required: Yes

Calling Sequence:

CALL DSPLY<, , p>

where "p" is a pointer variable or address constant
pointing to a "CHAR(m)" variable that terminates in
or is followed by an ASCII carriage return
character, "($0)." On return, the value of the
"CHAR (m)" variable displays. For example:

Page 55

Chapter 8

MPL User's Guide

MPLULIB.RO

KE YIN

DCL GREET CHAR(S) INIT('HELLO'),
CR CHAR(l) INIT($D)

CALL DSPLY<, , ADDR(GREET)>

Name: KEYIN

Function: Read the value of a "CHAR(m)" variable
from the console.

CODOS Required: Yes

Calling Sequence:
\as CALL KEYIN<, c, p> or CALL KEYIN<, c, p>
GIVING <, n>
where "c" is an integer constant or "BIN(l)"
variable with value "v." "p" is a pointer variable
or address.constant pointing to a "CHAR(m)"
variable where "m >= v + l," and "n" is a "BIN(l)"
variable. "KEYIN" does not return until the user
has typed k characters, "ala2 ••• ak" followed by an
ASCII carriage return character, "<CR>," on the
keyboard.

On return, the first "d" characters of the
"CHAR(m)" variable changes to "ala2 ••• ad," where "d
= min(v, k)," and the "(d + l)st" character changes
to "<CR>." If the second sequence is used, "n" is
assigned the value of "d." For example:

DCL INPUT CHAR (81)
CALL KEYIN<, 80, ADDR(INPUT)>

CO DOS

Name: CODOS

Function: Return control to CODOS.

CODOS Required: Yes

Calling Sequence:

CALL CODOS

Example:

CALL CODOS

Page 56

Chapter 8

MPL User's Guide

MPLULIB.RO

PRINT

Name: PRINT

Function: Print the value of a "CHAR(m)" variable
on the line printer.

CODOS Required: Yes

Calling Sequence:

CALL PRINT<, , p>

where "p" is a "CHAR(m)" variable that terminates
in or is followed by an ASCII carriage return
character, "($D)." On return, the value of the
"CHAR(m)" variable prints. For example:

PULL2

DCL GREET CHAR(5) INIT('HELLO'),
CR CHAR(l) INIT($D)

CALL PRINT<, , ADDR(GREET)>

Name: PULL2

Function: Pull a "BIN(2)" value off of the stack.

CODOS Required: No

Calling Sequence:

CALL PULL2 GIVING <, , v>

where "v" is a "BIN(2)" variable. On return, the
"BIN(2)" value on top of the stack is pulled off
and assigned to "v." For example:

DCL P BIN(2)
CALL PULL2 GIVING <, ,, P>

Page 57

Chapter 8

MPL User's Guide

MPLULIB.RO

PUSH2

Name: PUSH2

Function: Push a "BIN(2)" value onto the stack.

CODOS Required: No

Calling Sequence:

CALL PUSH2<, , v>

where "v" is a "BIN(2)" variable. On return, the
value of "v" pushes onto the stack. For example:

DCL P BIN(2)
CALL PUSH2<, , P>

CKBRK

Name: CKBRK

Function: Check console for "BREAK" key
depression.

CODOS Required: Yes

Calling Sequence:

CALL CKBRK

On return, if "BREAK" key is depressed, the carry
bit of the condition code register,is set.

Page 58

Chapter 8 MPLUTLIB.RO

MPLUTLIB.RO

MPLUTLIB.RO is a library of utility subroutines that may
be called from MPL programs. It contains two subroutine
categories, mathematical and I/O.

MPLUTLIB.RO Contents

Mathematical Subroutines

ABS

Name: ABS

Function: Find the absolute value of a SIGNED
BIN(l) variable.

CODOS Required: No

Calling Sequence:

CALL ABS<I> GIVING <J>
where I is ·a SIGNED BIN(l) variable,
and J is a SIGNED BIN(l) variable
which is to receive the absolute value
of I. J may be the same as I.

Result: J := III.

ABS2

Name: ABS2

Function: Find the absolute value of a SIGNED
BIN(2) variable.

CODOS Required: No

Calling Sequence:

CALL ABS2< I I P> GIVING <I I Q>
where P is a SIGNED BIN(2) variable,
and Q is a SIGNED BIN(2) variable
which is to receive the absolute of P.
Q may be the same as P.

Result: Q := IPI.

MPL user's Guide Page 59

Chapter 8

MPL User's Guide

MPLUTLIB.RO

MOD

Name: MOD

Function: Find the modulus of a BIN(2) variable or
constant with respect to a BIN(l) variable Qr
constant.

CODOS Required: No

Calling Sequence:

CALL MOD<I, , P> GIVING <J>
where I is a BIN(l) variable or
unsigned integer constant less
than 256.

P is a BIN(2) variable or
unsigned integer constant less
than 65536, and

J is a BIN(l) variable which is
to receive the modulus of P with
respect to I. J may be the same as I.

Result: J := p - [P/I]*I.

SETBIT

Name: SETBIT

Function: Find the exponential (base 2) of a
BIN(l) variable.

CODOS Required: No

Calling sequence:

CALL SETBIT<I> GIVING <, , P>
where I is a BIN(l) variable, and

P is a BIN(2) variable which is
to receive a bit pattern with bit I,

· and bit I alone, set.

Result: P := 2**I.

I/O Subroutines

Three forms of I/O are pr6~ided by the
MPLUTLIB.RO library: input, unformatted output,
and formatted output. All three operate on ASCII
record format files using record I/O and allow a
maximum of 80 characters.

Page 60

Chapter 8

MPL User's Guide

MPLUTLIB.RO

OPEN

Name: OPEN

Function: Open a disk file or the console for
input or output, or the printer for output.

CODOS Required: Yes

Calling Sequence:

CALL OPEN<NBUFF, IO, FNPTR> GIVING <FILE,
ERROR, P>
where NBUFF is a BIN(l) variable or
unsigned integer contant signifying the
number of buffers to be used.
where IO is a BIN(l) variable or
unsigned integer constant having value
1 (meaning open for input) or 2
(meaning open for output).

FNPTR is a BIN(2) variable or
address constant pointing to a text
area containing the file name (in
ordinary operator-input format) or the
device name (#CN or #LP), preceded and
followed by file name terminators.

FILE is a BIN(l) variable which
is to receive the file number for this
file or device.

ERROR is a BIN(l) variable which
is to receive the error code for this
"open" operation, and

P is a BIN(2) variable which is
to receive a pointer to the file or
device name terminating character and
the IOCB.

Result: If there are no errors, the file or device
whose name is i~ the text area pointed to by FNPTR
is opened for input or output (depending on the
value of IO), FILE is assigned a unique number
identifying the file or device for future I/O
subroutine calls. If there is an error, FILE is
set to 0 and ERROR is assigned a nonzero error code
(see Error Table).

Page 61

Chapter 8

MPL User's Guide

MPLUTLIB.RQ

READ

Name: READ

Function: Read a record from a disk file or the
console.

CODOS Required: Yes

Calling Sequence:

CALL READ<FILE, RSIZ, RPTR> GIVING
<ERROR> where FILE is the BIN(l)
variable which received the file
number for the file or device when
it was opened.

RSIZ is a BIN(l) variable which
contains the record size in
characters. A zero value defaults to
80 characters.

RPTR is a BIN(2) variable or
address constant pointing to a text
area of length 81 characters into
which the record is to.be read, and

ERROR is a BIN(l) variable which
is to receive the error code for this
"read" operation.

Result: If there are no errors, the next record
from the file or device identified by FILE is read
into the text area pointed to by RPTR and ERROR is
set to O. A carriage return follows the last
character of the record. If FILE identifies the
console, a question mark is printed as a prompt
character. If an error occurs, ERROR is assigned a
nonzero error code (see Error Table).

WRITE

Name: WRIT~

Function: Write a record to a disk file, the
console, or the printer.

CODOS Required: Yes

Calling Sequence:

CALL WRITE<FILE, RSIZ, RPTR> GIVING
<ERROR>
where FILE is the BIN(l) variable
which received the file number for
the file or device when it was opened.

Page 62

Chapter 8

MPL User's Guide

MPLUTLIB.RO

RSIZ is a BIN(l) variable which
contains the record size in
characters. A zero value defaults
to 80 characters.

RPTR is a BIN(2) variable or
address constant pointing to a text
area containing the record to be
written followed by a carriage return,

ERROR is a BIN(l) variable which
is to receive the error code for this
"write" operation.

Result: If there are no errors, the next record
for the file or device identified by FILE is
written from the text area pointed to by RPTR and
ERROR is set to o. All characters before the
carriage return (up to a maximum of 80) are
written. !f there is ari error, ERROR is assigned a
nonzero error code (see Error Table).

WRITEF

Name: WRITEF

Function: Write the values of zero or more
variables or constants to a disk file, the console,
or the printer under control of a format string.

CODOS Required: Yes

Calling Sequence:

CALL WRITEF(FILE, FMT, Il, I2, •••)
where FILE is the BIN(l) variable

which received the file number for
the file or device when it was opened.

FMT is a text area containing a
format string, and the

Ik's are BIN(n) variables,
unsigned integer constants less than
6553~, or text areas, the values of
which are to be written.

Page 63

Chapter 8

MPL User's Guide

MPLUTLIB.RO

Result: If there are no errors, the values of Il,
I2, ••• have been written to the file or device
identified by FILE under control of the format
string in FMT. Essentially, this controlled
writing is a simple copying of the format string to
the file or device, with special actions being
taken when control sequences of the form '%c' are
encountered in the string. Control sequences are
not copied. , The legal control sequences and their
corresponding special actions are shown in this
table:

%E Terminate this "write" operation.
'%E' marks the end of the format
string. EVERY FORMAT STRING MUST END
WITH 1 %E'.

%N Write a new line, that is, terminate
and write the current record and
begin a new one. A record is not
actually written until a '%N' is
encountered.

%! The next Ik in the parameter list is a
BIN(l) variable. Write its value at
this point.

%J The next Ik in the parameter list is a
SIGNED BIN(l) variable. Write its
value at this point.

%P The next Ik in the parameter list is a
BIN(2) variable or an unsigned integer
constant less than 65536. Write its
value at this point.

%Q The next Ik in the parameter list is a
SIGNED BIN(2) variable. Write its
value at this point.

%S The next Ik in the parameter list is a
text area of length STRSIZ characters.
Write its value at this point.

%% Write a percent sign.

Following a percent sign by any character other
than the ones shown in the table results in a
question mark being written.

Page 64

Chapter 8

MPL User's Guide

MPLUTLIB.RO

CLOSE

Name: CLOSE

Function: Close a disk file, the console, or the
printer.

CODOS Required: Yes

Calling Sequence:

CALL CLOSE<FILE> GIVING <ERROR>
where FILE is the BIN(l) variable

which received the file number for
the file or device when it was
opened, and

ERROR is a BIN(l) variable which
is to receive the error code for this
"close" operation.

Result: If there are no errors, the file or device
identified by FILE is closed and ERROR is set to O.
If there is an error, ERROR is assigned a nonzero
error code (see Error Table).

Page 65

Chapter S

MPL User's Guide

Error Tabl~

ERROR TABLE

1: Device name not found
2: Device already reserved
3: Device not reserved
4: Device not ready
5: Invalid device
6: Duplicate file name
7: File name not found
8: Invalid open/closed flag
9: End of file

10: Invalid file type
11: Invalid data transfer type
12: End of media
13: Buffer overflow
14: Checksum error
15: File is write protected
16: File is delete protected
17: Logical sector number out of range
18: Insufficient disk space
19: Directory space full
20: Segment descriptor space full
21: Invalid directory entry no.
22: Invalid RIB
23: Cannot deallocate all space, directory

entry exists
24: Record length too large
25: Sector buffer size error
32: FILE does not identify a file or device
33: No room for IOCB or sector buffer
34: Memory allocation error
64: IO is not l or 2, or SUFFIX is not

alphabetic
65: File name contains *
66: Suffix contains *
67: File name and suffix contain *
68: Device other than #CN or #LP
192: File name is null
193: File name is *
194: File name is null, suffix contains *
195: File name is *, suffix contains *

Page 66

CHAPTER 9. MPL COMPILER

Invocation

The MPL compiler is invoked from the CODOS command level
by a command line of the form:

MPL <source file l>, ••• ,<source file n>;<options>

The "<source file l>s" are the names of CODOS ASCII-record
disk files containing the text of the MPL program. The files
are logically linked before inputed to the compiler. usually
the contents of only one source file are compiled. Missing
suffixes or drive numbers default to .SA or :0, respectively.

The clause ";<options>" is optional. If it appears,
"<options>" is a concatenation of the following
specifications:

Option Meaning

L Produce a source listing on the printer
during compilation.

-L Don't produce a source listing on the
printer during compilation. Default.

L = filename Produce a source listing in the output
file during compilation.

M If -L is specified, print compilation
error messages on the printer.

-M If -L is specified, don't print
compilation error messages on the
printer. Default.

S Include the MPL source in the output
file in the form of assembly-language
comments.

-S Don't include the MPL source in the
output file in the form of assembly­
language comments. Default.

O=<AI file> Produce assembly-language output in
the CODOS file called <AI file>.
AI stands for assembler input.

-0 Don't produce assembly-language
output. Default.

MPL user's Guide Page 67

Chapter 9 Invocation

If the O option is specified, it must be the last option
on the command line. A missing suffix or drive number in
"<AI file>" defaults to ".SA" or ":O," respectively. If the
source disk is too full to contain the "<AI file>," it should
be created on a disk on the other drive.

If any option letters are omitted, MPL defaults to
option specifications chosen from the string "-L-M-S""'.O." If
~<options>" contains a sequence of mutually contradictory
option specifications (such as S-S), ~he rightmost tak~s.
effect.

Another compiler option that implements as a local
switch within the program text, rather than as a global
switch on the command line, is the "SHORT/LONG" option.

Ordinarily, the compiler generates conditional control
transfers as 5-byte code sequences. These sequences have the
property to assemble without causing out-of-range-branch
errors. The reserved word "SHORT" may be included anywhere
within the text of a program (other than in comments,
Gharacter-string constants, etc.) to instruct the compiler to
generate 2-byte code sequences.

The 2-byte sequences cause out-of-range-branch errors if
the destination is too far from the control transfer.
"SHORT" is used only for this purpose. It is otherwise
invisible and ignored during compilation. Conditional
control transfers occur with the shorter sequence from the
time "SHORT" is seen until the reserved word "LONG" is seen,
or the end of the program text is encountered, whichever
happens tirst. "LONG" causes a reversion to the longer
sequence generation until "SHORT" appears again, and so on.

The "SHORT-LONG" option also affects the compiler's
choice of a 2-byte or 3-byte code sequence for unconditional
control transfers.

A program should be debugged without using "SHORT" or
"LONG." If necessary, "SHORT-LONG" pairs may be inserted into
the program text to optimize control transfers where it is
possible to do so.

It is difficult to formulate a general rule for the
exact placem~nt of "SHORT-LONG" pairs to optimize the desired
control transfers. This is because the compiler's scan of
the source text does not exactly track its code generation.
In the example below, 2-byte code sequences are generated for
the conditional control transfer at the "DO WHILE" and for
the unconditional control transfer at the "END."

MPL User's Guide Page 68

Chapter 9 Invocation

/**I SHORT /**I
DO WHILE P -> NEXT NE 0
P = P -> NEXT
END
/**/ LONG /**/

Here are some sample chain files that demonstrate the
compilation, assembly, and linking-loading of MPL programs.

MPL User's Guide

PAGE 001 MPLCA .CF:O

/IFC F
/* NO FILE SPECIFIED
/ABORT
/ELSE
@SET,M 8
MPL %F%;L%C%0=%F%.AI
DEL %F%.RO
CMAP %F%.AI;LX%A%
DEL %F%.AI
/XIF

Page 69

Chapter 9

MPL User's Guide

PAGE 001 MPLL .CF:O

/IFC IN
/* NO INPUT SPECIFIED
/ABORT
/ELSE
/IFC OUT
/* NO OUTPUT SPECIFIED
/ABORT
/ELSE
@SET,M 8
DEL %0UT%.CM
RLOAD
IF=%0UT%
BASE
LOAD=%IN%
LIB=MPLSLIB,MPLULIB
OBJA=%0UT%.CM
MO=#LP
MAPF
EXIT
/XIF
/XIF

PAGE 001 MPLCAL .CF:O

/IFC F
/* NO FILE SPECIFIED
/ABORT
/ELSE
@SET,M 8
MPL %F%;L%C%0=%F%.AI
CMAP %F%.AI;L~%A%
@TST,T EQ,0
@JMP Ll
DEL %F%. CM
RLOAD
IF=%F%
BASE
LOAD=%F%
LIB=MPLSLIB,MPLULIB
OBJA=%F%.CM
MO=#LP
MAPF
EXIT
.@LBL Ll
DEL %F%.AI
DEL %F%.RO
/XIF

Invocation

Page 70

Chapter 9 Results

Results

If one of the source files does not exist, the CODOS
message:

FILENAME NOT FOUND

appears on the console and compilation ceases. If the output
file exists, the CODOS message:

DUPLICATE FILE NAME

appears. if the "L" or "M" option specification appears on
the command line and the printer is offline when the compiler
attempts to use it, the me$sage:

PRINTER NOT READY

appears, and the compiler waits for the printer to come back
online. Otherwise, compilation proceeds. An output file
suitable for subsequent assembly is created on request.

If "L" appears on the command line, a source listing
prints during compilation. If the file contains sequence
numbers, these appear on the listing. If not, numbers
ascending from 10, in steps of 10, appear instead.

If any errors are en~ountered during compilation, error
messages print on the printer (if L or M appears on the
command line) and are included in the output file. The CODOS
system error status word is set to n$80.n In any case, the
number "nn of errors prints on the console in the form:

TOTAL ERRORS n

Error messages have the form:

***** nnnn cc ••• c
*ERROR eee *

where "nnnnn is the sequence number; nee ••• en is the text of
the last line read; and "eeen is the error number as
described in the Appendix. The error involves one of the two
symbols prior to the position of the second asterisk on the
n*ERROR" line. If there is only one symbol prior to this
position, the error may involve the last symbol on the
previous line.

MPL User's Guide Page 71

Chapter 9 Results

For example, an attempted CHAR(l) to BIN(l) assignment
results in an error 552 as shown here:

10 DCL Bl, Cl CHAR
20 Bl = Cl
30 GOTO L

***** 30 GOTO L
*ERROR 552 *

It is not advisable to assemble the· output file until
you have an error-free compilation.

MPL user's Guide Page 72

Appendices

APPENDIX A. MPL EXAMPLES

This section shows some sample MPL programs and
demonstrates the use of the chain files MPLCAL, MPLCA, and
MPLL.

Sample MPL Program

The sample program below illustrates some typical MPL
statements.

SHORT
WRSTR:

PROCEDURE <, , CHPTR>
DECLARE CHPTR BIN(2), CH CHAR BASED
CALL WRNL
DO WHILE CHPTR -> CH NE $4

CALL WRCH<CHPTR -> CH>
CHPTR = CHPTR + 1
END

RETURN
END

The above program is a subroutine procedure called
"WRSTR." A subroutine procedure is a named routine to perform
a particular task. such a routine may be executed at many
different times by other routines and may be instructed to
perform its task using different sets of data. It is
executed by a single MPL statement specifying its name and
the date it is to use. "WRSTR's" job is to show, on a
display screen, an ASCII character string terminated by an
ASCII EOT character (hexadecimal 04) • It is executed via an
MPL "CALL" statement specifying its name, "WRSTR," and the
address of the character string it is to display.

The program begins with the MPL reserved word "SHORT."
This word is included for optimization. It has no effect on
the task performed by "WRSTR."

The procedure begins with its name, "WRSTR," followed by
a colon, the word "PROCEDURE," and the formal parameter list
"<, , CHPTR>." "WRSTR:" is a statement label.

The "PROCEDURE" statement is labelled "PROCEDURE <, '
CHPTR>." This establishes the procedure's name, so that other
procedures may name it in "CALL" statements. The "PROCEDURE"
statement announces that what follows is a procedur~ with one
formal parameter or dummy argument (CHPTR). This means that
when the procedure is activated, the memory address of some
character string is in the X register.

MPL user's Guide Page 73

Appendix A MPL Examples

"CHPTR" is a symbolic name, chosen by the programmer, to
refer to this address within the procedure. "CHPTR" is an
abbreviation of "character pointer," since it is the address
of (points to) a character.

Following the "PROCEDURE" statement is a "DECLARE"
statement. This states the variables the procedure uses and
the type of data to which they ref er~ Neither the
"PROCEDURE" statement nor the ilDECLARE" statement is
executable. When the program is executed, nothing will
happen as a direct result of these statements. They simply
state some facts about the program.

"CHPTR," the formal parameter, is a 2-byte binary
variable, which is the type MPL provides to ref er to memory
addresses. "CH," a "BASED" variable, refers to an ASCII
character. The fact that it is "BASED" means that by itself,
it doesn't really refer to a character. It provides a method
for getting to the byte addressed by some "BIN (2)" variable
as a character. For example, "CHPTR -> CH" means "the
character whose address is the value of CHPTR."

Note that nothing would prevent the declaration of a ·
"BASED BIN (2)," variable "PTR," and the subsequent use of
"CHPTR -> PTR" to mean "the memory address whose memory
address is the value of CHPTR." In this case, such use would
be questionable since "CHPTR" contains the address of a
character string, not. a meaningful ltlemory address.

The next statement is a "CALL" statement. It is the
first executable statement of this procedure. This means
that when the program is executed, the first thing "WRSTR"
does is to call another procedure: "WRNL." "WRNL" is not
shown, but it is a procedure that successively writes a
carriage return# linefeed, and null to the display screen.
Execution then continues in "WRSTR" at the statement
following the "CALL" statement.

The next statement is called a "DO" statement. When the
word "WHILE" is used, as in this example, all statements down
to the matching "END" statement are repeatedly executed, as
long as the condition in the "DO" statement is true. The
condition here is "CHPTR ->CH NE $4." This means "the
character whose address is the value of 'CHPTR' is not equal
to a hexadecimal 4 (ASCII EOT)." Thus, the statements between
the "DO" statement and the next "END" statement are executed
when CHPTR "points to" an EOT.

The first of the two repeated statements is another
"CALL" statement. This calls.the procedure "WRCH," and
passes it the character whose address is the value of
"CHPTR." "WRCH" is not shown, but it is a procedure that

MPL User's Guide Page 74

Appendix A. MPL Examples

writes the character it receives to the display screen.

The second of the repeated statements is the assignment
statement. The assignment statement evaluates the arithmetic
expression on the right of the equal sign and assigns the
resulting value to the variable on its left. This results in
the incrementing of "CHPTR" by 1, which makes it contain the
address of the character following the one just written.

The "END" statement marks the end of the statements
affected by the "DO" statement. The "DO" statement writes
~ach character in the string, up to but not including the
EOT. .

The next statement is a "RETURN" statement. It
specifies that at this point, control is to return to the
statement following the "CALL" statement that invokes
"WRSTR. II

The following "END" statement marks the end of the
procedure. "END" statements are not executable; they only
mark the end of DO-groups or procedures.

The MPL Compiler

An MPL program is analyzed by a program called the MPL
compiler. This compilation process produces an assembly
language equivalent of the program. This equivalent is in a
format suitable for assembly by the Macroassembler. After
assembly, the resultant relocatable object module may be
combined with others by the Linking Loader to produce an
absolute load module in a format suitable for loading by
CODOS loader.

During the analysis of the MPL program, the MPL compiler
can also print a source listing and diagnostic messages at
points where the structure of the program fails to comf orm to
the structure of a legal MPL program.

suppose the EDITOR has been used to store the sample
program on disk in a file called WRSTR.SA. The CODOS MPL and
CMAP commands may then be used to create and assemble an
assembly input file WRSTR.AI as shown:

MPL User'.s Guide Page 75

Appendix A

=MPL WRSTR;O=WRSTR.AI

CODOS MPL COMPILER X.XX
COPYRIGHT BY CODEX 1980
TOTAL ERRORS 0
=CMAP WRSTR.AI;L
CODOS MACROASSEMBLER X.XX
COPYRIGHT BY CODEX 1980

=

MPL User's Guide

MPL Examples

Page 76

Appendix A MPL Examples

The result of this process is a relocatable object
module in the file WRSTR.RO and an assembly source listing,
shown here:

00001
00002

*** COMPILED WITH MPL X.XX
OPT REL

00003 * 10 SHORT
00004 * 20
00005 * 30 WRSTR:
00006 * 40 PROCEDURE <, , CHPTR>
00007 0000 P WRSTR EQU *
00008 XDEF WRSTR
00009P 0000 FF 0000 D STX CHPTR
00010 * 50. DECLARE CHPTR BIN(2), CH CHAR BASED
000110 0000 DSCT
00012D 0000 0002 A CHPTR RMB
00013 0000 A CH EQU
00014P 0003 PSCT

2
0

00015 * 60 CALL WRNL
00016P 0003 BD 0000 A JSR WRNL
00017 * 70 DO WHILE CHPTR -> CH NE $4
00018P 0006 FE 0000 D .001 LDX CHPTR
00019P 0009 A6 00 A LDAA O,X
00020P OOOB 81 04 A CMPA #4
00021P OOOD 27 OC OOlB BEQ .002
00022 * 80 CALL WRCH<CHPTR -> CH>
00023P OOOF BD 0000 A JSR WRCH
00024 * 90 CHPTR = CHPTR + 1
00025P 0012 FE 0000 D LDX CHPTR
00026P 0015 08 INX
00027P 0016 FF 0000. D STX
00028P 0019 20 EB 0006 BRA
00029 * 100 END

CHPTR
.001

00030 * 110 RETURN
OOO~lP OOlB 39 .002 RTS
0003 2 * 120. END
00033 XREF
00034 XREF
00035N 0000 T$ COMM
00036N 0000 OOOB A .T RMB
00037 END
TOTAL ERRORS 00000

MPL User's Guide

WRCH
WRNL
DSCT
11

Page 77

Appendix A MPL Examples

Echo Program Example

Figure 1 shows the text of the first sample MPL program.
It is a main procedure called "ECHO" whose function is to
read a line from the console and print it back on the
console. "ECHO" assumes the existence of three procedures,
KEYIN, DSPLY, and CODOS, which do console input, console
output, and return to cooos, respectively. These and other
routines are in MPLULIB.RO. They consist of the appropriate
CODOS system calls. The line is read into and written from
the CHAR{80) variable "BUFFER." "BUFEND" is provided for the
terminating carriage return on SO-character lines.

Figure 2 shows the invocation of MPLCAL to compile,
assemble, and linking-load this program which is contained in
the file SAMPLE.SA:O. The compilation produces the sourGe
listing in Figure 1. The assembly produces the assembly
listing in Figure 3, and the linking-load produces the load
map in Figure 4.

Note the subsequent execution in Figure 2 of the
program, which is left in the file "SAMPLE.CM:O," and the
state of the disk directory when the process completes.

Binary Tree Sort Program

Figures 5, 6, and 7 show the text of the second sample
MPL program. Its main procedure, "MN," repeatedly accepts
two-digit decimal numbers from the console and calls a
procedure "INSERT" to insert them into the appropriate
positions in a binary tree. When "00" is entered, "MN" calls
the procedure "PTREE" to print the tree and return to CODOS.

"INSERT" begins at ~he head of the tree {pointed to by
the EXTERNAL BIN{2) variable HEAD) and "walks" down to the
appropriate terminal node and takes the right branch when the
number exceeds the value at the current node and the left
branch otherwise.

Note the use of the form "PT+ ADDR(BA)" to achieve the
effect of the {forbidden) form "ADDR{PT ->BA)." When the
terminal node is reached, a new node is allocated from the
tree space variable "SPC" and filled with the number and null
left-branch and right-branch pointers.

"PTREE" prints the tree recursively, by calling itself.
Basically it operates as follows:

1. Call myself to print this node's left branch;
2. Print this node's value;
3. Call myself to print this node's right branch.

MPL User's Guide Page 78

Appendix A MPL Examples

The exception is when it is called to print a null tree, it
does nothing but return. The recursive calls are effected by
saving the previous tree pointer on the stack using
MPLULIB.RO procedure PUSH2, setting up the new tree pointer,
calling PTREE, and restoring the previous tree pointer using
the MPLULIB.RO procedure PULL2.

Figures 8, 9, and.10 show the separate compilations and
assemblies of these three procedures using the chain file
MPLCA. Figure 11 shows the use of MPLL to linking-load the
resulting object modules into the load module TREESORT.CM:O.
Figure 12 shows the load map resulting from the linking-load.
Figure 13 shows the execution of TREESORT to sort 10 numbers.

10 /* This is a sample MPL program */
20 ECHO:
30 PROC OPTIONS(MAIN)
40 $ NAM ECHO
50 DCL BUFFER CHAR(80), BUFEND CHAR
60 CALL KEYIN<, 80, ADDR(BUFFER)>
70 CALL DSPLY<, , ADDR(BUFFER)>
80 CALL CODOS
90 END

Figure 1

MPL User's Guide Page 79

Appendix A

=CHAIN MPLCAL;F%SAMPLE%
@SET FOFF 0800
MPL SAMPLE;LO=SAMPLE.AI

CODOS MPL COMPILER X.XX
COPYRIGHT BY CODEX 1980
TOTAL ERRORS 0
CMAP SAMPLE.AI;LX
CODOS MACROASSEMBLER X.XX
COPYRIGHT BY CODEX 1980

@TST,OOFF 0000 0027
DEL SAMPLE.CM
SAMPLE .CM:O DOES NOT EXIST
RLOAD
CODOS LINKING LOADER REV 2.03
COPYRIGHT BY CODEX 1980
?IF= SAMPLE
?BASE
?LOAD= SAMPLE
?LIB=MPLSLIB,MPLULIB
?OBJA=SAMPLE.CM
?MO=#LP
?MAPF
?EXIT
@LBL 2F23
DEL SAMPLE.AI
SAMPLE .AI:O DELETED
DEL SAMPLE.RO
SAMPLE .RO:O DELETED
END CHAIN
=SAMPLE
THIS MESSAGE WILL BE ECHOED
THIS MESSAGE WILL BE ECHOED
=DIR SAMPLE.*;A
DRIVE : 0 DISK I.D. : CODOS022X
SAMPLE .CM .•• C.2 0680 0004 53 00 0680 004
SAMPLE .SA ••••• 5 04B4 0004 9B 00 04B4 004
TOTAL NUMBER OF SECTORS : 0008/$008
TOTAL DIRECTORY ENTRIES SHOWN : 002/$02
=

Figure 2

MPL user's Guide

MPL Examples

Page 80

Appendix A MPL Examples

PAGE 001 ECHO

00001 . *** COMPILED WITH MPL x.xx
00002 OPT REL
00003 * 10 /* This is a sample MPL

program ~1
00004 * 20 ECHO:
00005 * 30 PROC OPTIONS(MAIN)
00006 0000 P ECHO EQU *
00007 XDEF ECHO
00008P 0000 BE OOB4 D .000 LDS #.S
00009 NAM ECHO
00010 * 50 DCL BUFFER CHAR (80) , BU FEND

CHAR
OOOllD 0000 DSCT
00012D 0000 . 0050 A BUFFER RMB 80
00013D 0050 0001 A BUFEND RMB 1
00014P 0003 PSCT
00015 * 60 CALL KEYIN<, 80, ADDR(BUFFER)>
00016P 0003 C6 50 A LDAB #80
00017P 0005 FE 0014 p LDX .366
00018P 0008 BD 0000 A JSR KE YIN
00019 * 70 CALL DSPLY<, , ADDR(BUFFER)>
00020P OOOB FE 0014 p LDX .366
00021P OOOE BD 0000 A JSR DSPLY
00022 * 80 CALL CODOS
00023P 0011 BD 0000 A JSR CO DOS
00024 * 90. END
00025 XREF CO DOS
00026 XREF DSPLY
00027P 0014 0000 D .366 FDB BUFFER
00028 XREF KE YIN
00029N 0000 T$ COMM DSCT
00030N 0000 OOOA A .T RMB 10
00031D 0051 DSCT
00032D 00·51 0064 A RMB 100
00033 OOB4 D .s EQU *-1
00034 0000 p .END .000
TOTAL ERRORS 00000

MPL User's Guide Page 81

Appendix A MPL Examples

p 0000 .ooo 00008*00034
p 0014 .366 00017 00020 00027*
D OOB4 .s 00008 00033*

ND 0000 .T 00030*
D 0050 BU FEND 00013*
D 0000 BUFFER 00012*00027

R DSPLY 00021 .00026*
DP 0000 ECHO 00006*00007
R KE YIN 00018 00028*
R CO DOS 00023 00025*
ND T$ 00029*

Figure

NO UNDEFINED SYMBOLS
MAP

S SIZE STR END COMN
B 0000 0000 FFFF 0000
C 0000 0000 FFFF 0000
D OOBF 2000 20BE OOOA
P OOlF 20BF 20DD 0000

MODULE NAME BSCT DSCT PSCT
ECHO 0000 2000 20BF
CODOS 0000 20B5 2005
DSPLY 0000 20B5 2008
KEYIN 0000 20B5 20DB

COMMON
NAME S SIZE STR

T$ D OOOA 20B5
DEFINED SYMBOLS

3

NAME S STR NAME S STR NAME S STR NAME S STR
ECHO P 20BF CODOS P 20D5 DSPLY P 2008 KEYIN P 20DB

Figure 4

MPL User's Guide Page 82

Appendix A MPL Examples

10 /* GET 2-DIGIT NUMBERS {ENDED BY 00) AND SORT THEM
20 USING A BINARY TREE SORT */
30 SHORT
40 MN:
50 PROC OPTIONS(MAIN)
60 $ NAM MN
70 DCL HEAD BIN(2) GLOBAL INIT(O), N GLOBAL
80 DCL P BIN(2) GLOBAL
90 DCL ND DEC(2), CR CHAR(l)

100
110 /* GET AND INSERT NUMBERS UNTIL YOU GET 00 */
120 CALL KEYIN<, 2, ADDR(ND)>
130 N = ND
140 DO WHILE N NE 0
150 CALL INSERT
160 CALL KEYIN<, 2, ADDR(ND)>
170 N = ND
180 END
190
200 /* PRINT THE TREE, SORTED */
210 P = HEAD
220 CALL PTREE
230
240 CALL CODOS
250 END

MPL User's Guide

Figure 5

Page 83

Appendix A MPL Examples

10 /* INSERT - INSERT N INTO BINARY TREE */
20 SHORT
30 INSERT:
40 PROC
50 $ NAM INSERT
60 DCL Q BIN(2), R BIN(2)
70 DCL HEAD BIN{2) EXTERNAJ;., N EXT·ERNAL
80 DCL PTR BIN(2) BASED,
90 1 NODE BASED,

100 2 VALUE,
110 2 LEFT BIN(2),
120 2 RIGHT BIN(2)
130 DCL SPC CHAR(255), SPCTOP BIN{2) INIT(ADDR(SPC))
140
150 /* FIND LEAF WHERE N GOES */
160 Q = ADDR(HEAD)
170 DO WHILE Q -> PTR NE 0
180 R = Q -> PTR
190 IF N LE R -> VALUE THEN Q = R + ADDR(LEFT)
200 ELSE Q = R + ADR(RIGHT)
210 END
220
230 /*CREATE NEW NODE FOR N THERE·*/
240 R = SPCTOP
2SO SPCTOP = SPCTOP + 5
260 Q -> PT~ = R
270 R -> VALUE = N
280 R -> LEFT = 0
290 R -> RIGHT = 0
300
310 RETURN
320 END

MPL User •'s Guide

Figure 6

Page 84

Appendix A MPL Examples

10 /* PTREE - RECURSIVELY PRINT BINARY TREE */
20 SHORT
30 PTREE:
40 PROC
50 $ NAM PTREE
60 DCL P BIN(2) EXTERNAL
70 DCL VALUED DEC(2), CR CHAR(l) INIT($0D)
80 DCL 1 NODE BASED,
90 2 VALUE,

100 2 LEFT BIN(2),
110 2 RIGHT BIN(2)
120
130 IF P NE 0 THEN
140 DO
150
160 /* SAVE THIS NODE ON STACK AND RECURSIVELY PRINT LEFT

BRANCH */
170 CALL PUSH2<, , P>
180 P = P -> LEFT
190 CALL PTREE
200 CALL PULL2 GIVING <, , P>
210
220 /* PRINT VALUE AT THIS NODE */
230 VALUED = P -> VALUE
240 CALL DSPLY<, , ADDR(VALUED)>
250
260 /* SAVE THIS NODE ON STACK AND RECURSIVELY PRINT RIGHT

BRANCH */
270 CALL PUSH2<, , P>
280 P = P -> RIGHT
290 CALL PTREE
300 CALL PULL2 GIVING <, , P>
310 END
320
330 RETURN
340 END

MPL User's Guide

Figure 7

Page 85

Appendix A

=CHAIN MPLCA;F%MN%
@SET FOFF 0800
MPL MN;LO=MN.AI

CODOS MPL COMPILER X.XX
COPYRIGHT BY CODEX 1980
TOTAL ERRORS
DEL MN.RO
MN • RO: 0 DOES NOT EXIST
CMAP MN. %AI ;LX
CODOS MACROASSEMBLER X.XX
COPYRlGHT BY CODEX 1980

DEL MN .• AI
MN .AI:O DELETED
END CHAIN
=

Figure 8

=CHAIN MPLCA;F%INS:ERT%
@SET FOFF 0800
MPL INSERT;LO=INSERT. AI

CODOS MPL COMPILER X.XX
COPY~IGHT BY CODEX 1980 .
TOTAL ERRORS 0
DEL INSERT.RO
INSERT .RO:O DOES NOT EXIST
CMAP INSERT.AI;LX
CODOS MACROASSEMBLER X.XX
COPYRIGHT BY CODEX 1980

DEL INSERT.AI
INSERT .AI:O DELETED
END CHAIN
=

Figure 9

MP~ user's Guide

MPL Examples

page 86

Appendix A MPL Examples

=CHAIN MPLCA;F%PTREE%
@SET FOFF 0800
MPL PTREE;LO~PTREE.AI

CODOS MPL COMPILER X.XX
COPYRIGHT BY CODEX 1980
TOTAL ERRORS 0
DEL PTREE.RO
PTREE .RO:O DOES NOT EXIST
CMAP PTREE.AI;LX
CODOS MACROASSEMBLER X.XX
COPYRIGHT BY CODEX 1980

DEL PTREE.AI
PTREE .AI:O DELETED
END CHAIN
=

Figure 10

=CHAIN MPLL;IN%PTREE,INSERT,MN%,OUT%TREESORT%
@SET FOFF 0800
DEL TREESORT.CM
TREESORT.CM:O DOES NOT EXIST
RLOAD
CODOS LINKING LOADER REV X.XX
COPYRIGHT BY CODEX 1980
?IF=TREESORT
?BASE
?LOAD=PTREE,INSERT,MN
?LIB=MPLSLIB,MPLULIB
?OBJA=TREESORT.CM
?MO=#LP
?MAPF
?EXIT
END CHAIN
=

Figure 11

MPL User's Guide Page 87

Appendix A MPL Examples

NO UNDEFINED SYMBOLS
MAP

S SIZE STR END COMN
B 0000 0000 FFFF 0000
C 0000 0000 FFFF 0000
D 0181 2000 2180 0008
p 0281 2181 2401 0000

MODULE NAME BSCT DSCT PSCT
PTREE 0000 2000 2181
INSERT 0000 2003 21CA
MN 0000 2108 2243
.FOO 0000 2174 228E
.FOl 0000 2174 2328
.F07 0000 2174 23BF
.F073 0000 2174 23C6
.KlOK 0000 2174 23D3
CODOS 0000 2174 23DD
DSPLY 0000 2174 23EO
KEYIN 0000 2174 23E3
PUSH2 0000 2174 23E6
PULL2 0000 2176 23F8

COMMON
NAME S SIZE STR

T$ D OOOB 2176
DEFINED SYMBOLS

NAME S . STR NAME S STR NAME . S STR NAME S STR NAME
S STR

PTREE P 2181 INSERT P 21CA HEW D 2108 MN P 2243 N
D 210A

P D 210B .FOO P 228E .FOl P 2328 .F07 P 23BF .F073
P 23C6

.KlOK P 23D3 CODOS P 23DD DSPLY P 23EO KEYIN P 23E3 PUSH2
P 23E6

PULL2 P 23F8

Figure 12

MPL User's Guide Page 88

Appendix A

=TREESORT
25
10
99
12
67
25
26
66
65
68
00
10
12
25
25
26
65
66
67
68
99
=

Figure 13

MPL User's Guide

MPL Examples

Page 89

APPENDIX B. ASCII CHARACTER SET

BITS 4 to 6 0 1 2 3 4 5 6 7
--~-----------

0 NUL DLE SP 0 @ p p
B 1 SOH DCl ! 1 A Q a q
I 2 STX DC2 " 2 B R b r
T 3 ETX DC3 # 3 c s c s
s 4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E u e u
0 6 ACK SYN & 6 F v f v

7 BEL ETB I 7 G w g w
T 8 BS CAN (8 H x h x
0 9 HT EM) 9 I y i y

A LF SUB * J z j z
3 B VT ESC + . K [k { ,

c FF FS < L \ 1 I

I

D CR GS = M] rn }
E so RS) N ... n .
F SI us I ? 0 0 DEL

MPL User's Guide ·Page 90

APPENDIX C. MPL SYNTAX

<program> ::= [<statement list>]

<statement list> ::=<statement>
<statement>

<statement> ::=<label> <statement>
<procedure>
<DCL statement>
<IF statement>
<DO>
<GOTO statement>

<statement list>

<CALL statement>
<assignment statement>
<RETURN statement>
<END statement>

<label> ::=<label constant>
statement>

$ <assembly language

<procedure> ::=<label constant> : {PROC : PROCEDURE}
!<options clause>

< <formal parameter list> >
: (<formal parameter list>)]

<block end>

<options clause> := OPTIONS (MAIN [, SS = <integer
constant>])

<formal parameter list> ::= [<formal parameter>]
<formal parameter list> ,
[<formal parameter>]

<formal parameter> ::=<undeclared name> : <declared name>

<block end> ::= [<statement list>] [label list>] <END
statement>

<label list> ::=<label> : <label list> <label>

<END statement> ::=END [<label constant>]

<DCL statement>
list>

: : = {DCL : DECLARE} [<section name>] <item

<section name> ::= BSCT i CSCT : DSCT ; PSCT

<item list> ::=<item> : <item list:> , <item>

MPL User's Guide Page 91

Appendix c

<item> .. -.. -
MPL Syntax

[<level number>] <undeclared name>
[<dimension designator> 1
{LABEL [<INITIAL attribute>]

: [<type attribute>]
[<other attribute>]}

<level number> : : = 1 I 2 3 I 4 I 5 I I I

<dimension designator> .. -.. - (<integer constant>
(<integer constant> ,

<integer constant>)
<integer constant> ,
<integer constant> ,
<integer constant>)

<INITIAL attribute> ::= {INIT : INITIAL} (<constant list>)

<constant list> ::= <constant> ; <constant list> ,<constant>

<type attribute> ::=SIGNED
; BIN [(<integer constant>)]
' SIGNED BIN [(<integer constant>)]

DEC [(<integer const~nt>
[, <integer constant>])]

SIGNED DEC [(<integer constant>
[, <integer constant>])]

:cHAR [(<integer constant>)]
:BIT [(<integer constant>)]

<other attribute> ::=<INITIAL attribute>
: BASED
; {DEF ; DEFINED}

{<declared name> : <hexadecimal constant>}
EXTERNAL
GLOBAL

<IF statement> ::=IF <logical expression> THEN <statecient>
[ELSE <statement>]

<logical expression> ::=<logical term>
i <logical expression> OR <logical term>

<logical term> ::=<logical factor>
<logical term> AND <logical factor>

<logical factor> ::= [NOT] <logical primary>

<logical primary> ::=<relation> : (<logical expression>)

<relation> ::=<arithmetic expression>
<relational operator> <arithmetic expression>

MPL User's Guide Page, 92

Appendix C MPL Syntax

<arithmetic expression> ::=<arithmetic term>
<arithmetic expression>
+ <arithmetic term>
<arithmetic expression>
- <arithmetic term>

<arithmetic term> ::=<arithmetic factor>
<arithmetic term> * <arithmetic factor>
<arithmetic term> / <arithmetic factor>

<arithmetic factor> ::=<arithmetic pattern>
<arithmetic factor>
{IAND : &} <arithmetic pattern>
<arithmetic factor> i
IOR <arithmetic pattern>
<arithmetic factor>
IEOR <arithmetic pattern>

<arithmetic pattern> ::=<arithmetic slide>
: <arithmetic pattern>

{SHIFT : %} [-] <constant>

<arithmetic slide> ::= [-] <arithmetic primary>

<arithmetic primary> ::=<constant>
<variable>
(<arithmetic expression>)

<variable> ::=<declared name> [-> <declared name>]

<subscript list> .. -.. -
[(<subscript list>)]

<subscript>
<subscript> , <subscript>
<subscript> , <subscript> , <subscript>

<subscript> ::= <integer constant>
<declared name> [{+ : -} <integer constant>]

<relational operator> =~= EQ : NE : LE : GE : LT : < : GT : >

<DO> : := [<iteration clause>] [<WHILE clause>] <block end>

<iteration clause> ::=<variable>= <DO operand> TO <DO
operand>

[BY <DO operand>]

<DO operand> ::= <vaxiable> : <constant>

<WHILE clause> ::=WHILE <logical expression>

MPL user's Guide page 93

Appendix C MPL Syntax

<GOTO statement> :~={GOTO GO TO}
I
I

{<label constant>
<variable>
(<label constant list>)
[,] <variable>}

<label constant list> ::=<label constant>
<label constant list> ,
<label constant>

<CALL statement> ::= CALL <label constant>
[(<actual parameter list>)
[< <actual parameter list> >]
[GIVING< <formal parametet rist>>]]

<actual parameter list> ::= [<actual parameter>]
<actual parameter list> ,
[<actual parameter>]

<actual parameter> ::=<variable> : <constant>

<assignment statement> ::=<variable list>
= <arithmetic expression>

\

<variable list> ::=<variable> : <variable list> , <variable>

<RETURN statement> ::=RETURN [<<actual parameter list> >]

MPL User's Guide Page 94

APPENDIX D. MPL COMPILER OPTIONS

Command line:

MPL <source file l>[, ••• ,<source file n>] [1<options>]
Options:

L
-L

L = filename
M

-M
s

-s
O=<AI file>

-o

Defaults:

-L-M-S-0

Source listing (on printer).
No source listing.
source listing is filename.
Error listing (on printer) if -L.
No error listing (if -L).
Include source in AI file
Don't include source in AI file.
Put output in disk file <AI file>.
Must be last.
No output. Must be last.

File suffixes = .SA
File drives = :0

In program text:

MPL User's Guide

SHORT => generate short branch sequence
LONG => generate long branch sequence

Page 95

APPENDIX E. MPL RESERVED WORDS

These words may not be used as names of statements or
data items by the MPL programmer:

A DCL GIVING LE RETURN
ADDR DEC GLOBAL LONG SHIFT
AND DECLARE GO LT SHORT
B DEF GOTO MAIN SIGNED
BASED DEFINED GT NARG SS
BIN DO IAND NE THEN
BIT DSCT IEOR NOT TO
BSCT ELSE IF OPTIONS WHILE
BY END INIT OR x
CALL EQ INITIAL PROC
CHAR EXTERNAL IOR PROCEDURE
CSCT GE LABEL PSCT

MPL User's Guide Page 96

APPENDIX F. MPL COMPILER ERROR MESSAGES

501: Compiler error. (Perge net stack overflow.)

502: Symbol table overflow.

503: Syntax error. Different kind of symbol expected.

504: Declared name D found when undeclared name expected
in one of these contexts:

DCL ••• , D
GOTO (••• , D, •••) I I
CALL D •••

505: Undeclared name U found in one of these contexts:

CALL p (••• I u , •••)

CALL P< ••• , U, ••• >

RETURN < ••• I u, ..• >

DCL ••• , AA ••• DEF U,

variable, that is

...

(expecting variable
or constant)

(expecting variable,
constant, or comma)

(expecting variable,
constant, or comma)

(expecting declared
name or hexadecimal
constant)

U (expecting declared name)
AA => U (expecting declared name)
AA{U) (expecting declared name or integer

constant)

506: Scan error. One of these cases:

Character-string constant empty or containing
single !.
Address constant containing ' or ! or).
Hexadecimal constant containing extra $ or
le~te~ beyond For '·
Integer constant or decimal constant containing

letter.

507: Symbol over 30 characters long.

508: Missing level number in structure declaration.

509: Redeclaration of declared name, or declaration of
a formal parameter within a structure.

MPL user's Guide Page 97

Appendix F MPL Compiler Error Messages

510: n > 9 in DEC(m, n) or SIGNED DEC(m, n) declaration,
or n specified in BIN, SIGNED BIN, BIT, CHAR, or
LABEL declaration.

511: Character-string constant longer than context, or
error in INITIAL attribute in one of these ways:

•

•

A CHAR)m) variable, m > 2, initialized
to an integer, decimal, or hexadecimal
constant.
A DEC(m, n) or SIGNED DEC(m, n) variable
initialized to a character-string or
hexadecimal constant, or an integer or
decimal constant with too many digits.
A variable with size other than 2
initialized to an address constant.

512: INITIAL attribute specified for BIT(m) variable
or a variable contained in a DEFINED substructure.

515: Level number greater than 5 in structure declaration.

516: GOTO undeclared formal parameter.

517: Declared name or undeclared formal parameter N
found in the context P: PROC(••• , N, •• ~).

518: Index of computed GOTO is not BIN.

519: Index of computed GOTO does not have size 1.

520: Index of computed GOTO or actual parameter in
parentheses CALL is qualified or subscripted,
or is a formal parameter.

522: Compiler error.

523: Too many operands in expression.

524: vaxiable requires more than 3 subscripts.

525: Compiler error.

526: Pointer variable is contained in a structure.

527: Pointer variable has the array attribute.

528: Pointer vari~ble does not have size 2.

529: Pointer variable is not BIN.

530: Compiler error.

MPL User's Guide Page 98

Appendix F MPL Compiler Error Messages

531: variable has more than three variable subscripts.

532: Subscript is contained in a structure or is a
formal parameter.

533: Subscript has the array attribute.

534: Subscript does not have size 1.

535: Subscript is not BIN.

537: Constant used in invalid context. One of
these cases:

• Address constant used in CHAR, DEC, or
SIGNED DEC context.
Character-string constant used in DEC or
SIGNED DEC context.

• Hexadecimal constant used in CHAR(m) context,
m > 2, or in DEC or SIGNED DEC context.

538: Constant used as first operand of expression.

539: Wrong number of subscripts used.

540: Variable or constant in DO statement is not BIN.

541: DOs and IFS are nested more than 20 deep.

542: DO-IF stack underflow. Usually too many END
statements, or caused by other error.

543: DO-IF stack overlap. usually too many END
statements, or caused by other error.

544: DOs are nested more than 10 deep.

545: Increment of DO does not have size 1.

546: Initial or final value of DO does not have
size equal to that of the index of the DO.

547: variable in DO statement is qualified or
subscripted, or is a formal para~eter.

548: Shift-rotate count is not a constant.

549: Shift-rotate count is zero.

551: Operation is illegal for operands of. these types.

552: Mixed-mode ex~ression, or illegal implicit
conversion in assignment.

MPL User's Guide Page 99

Appendix F MPL Compiler Error Messages

555: In a BIT(m) operation, the second operand is not
a constant with size 1 and value 0 or 2**m-l;
or, if the operation is comparison for equality
or inequality and m > 1, it is not a constant
with size 1 and value O.

556: A BIT(m) operation is neither assignment nor
comparison for equality or inequality.

558: Undefined action requested.

560: variable referring to composite data item has type
or INITIAL attribute.

561: BIT(m) data item crosses byte boundary.

564: Undeclared name found when BIN, CHAR, or DEC
expected in declaration.

565: Array variable declared with more than
three dimensions.

566: Array variable referring to composite data
item declared with more than 1 dimension.

567: Amount of storage required for initial values
in declaration exceeds size of variable being
declared.

568: A variable contained in a structure has been
given the "DEFINED hexadecimal constant,"
BASED, GLOBAL, or EXTERNAL attribute, or a
variable that is EXTE1RNAL or contained in a
BASED or DEFINED structure has been given the
INITIAL attribute.

595: One variable has been DEFINED to another. At
least one of the two is contained in a
structure, but the two are not "brothers" within
the same structure.

596: useless test like IF BIN! LT 0 (branch never)
or IF BIN! GE O (branch always).

597: Unlabelled PROCEDURE statement.

598: Missing END statements.

599: Compiler error.

MPL User's Guide Page 100

Member of
IDCMA

codex
A Subsidiary of @ MOTOROL~ INC.

CODEX CORPORATION
20 Cabot Boulevard
Mansfield, Massachusetts 02048

CODEX PHOENIX
INTELLIGENT TERMINAL SYSTEMS
2002 West 10th Place
Tempe, Arizona 85281
(602) 994-6580

Printe9 in U.S.A.

I
I

