MPL
Program Reference

Manual

Document No. 72791

c 1980 Codex Corporation First Edition
Intelligent Terminal Systems Group Through Version 5.0

Preface

This User's Guide provides a description of MPL, a
high-level systems programming language used with the Codex
Disk Operating System (CODOS) intended for programmers and
other technically-oriented personnel. This Guide includes
general information, descriptions of program formats,
constants, variables, expressions, and statements, and sample
MPL programs.

Other Codex publications that may be of interest include
the Codex Disk Operating System (CODOS) User's Guide, the
CODOS Reference Manual, and the Operator's Guides and
Hardware Reference Manuals appropriate to the user's system
configuration,

Table of Contents

CHAPTER 1. INTRODUCTION . . &« &« « o o o &

Hardware Support Required .
Optional Hardware Supported
Software Support Required .
Software Installation . . .

e o ¢ o
L] L]] L]
e o o o
e o o o
e o o o

CHAPTER 2. STATEMENT TYPES AND ORDER . .

Program Format . .

Comments . . .
Data o« o o o o o &
Arithmetic Data .
String Data . .
Label Data . . .
Pointer Data .
Constants« .
Numeric Constants .

Integer constants .

Decimal constants .
Hexadecimal constants
Character-string Constants
Label Constants &
Address Constants
Restrictions

Record Format ¢« ¢« ¢« . .
Character Set . . ¢« . ¢« ¢« ¢« « .« .
Identifiers e e e
Spaces and Semicolons . . o o
Labels« . o o .

e o o o
e o o o
e o o o

. . [[. . . [L) . . [
L] L) [. . L) . . . L) . .
. L) [] . . . [. [. . .

CHAPTER 3 L] PROCEDURES L] L] L4 L L] L] L] L] L] L]

Main Procedures
PROCEDURE OPTIONS(MAIN) statement
Subroutine Procedures . o« o« o« « o o o«
PROCEDURE statement
Invocation ¢« « « ¢ o« o ¢ ¢ « o o @
Return . . ¢ ¢ ¢ o o ¢ o o o o o &«

CHAPTER 4. DECLARE STATEMENTS

Variables o o s »
Variable Attrlbutes « o e
Attribute Restrictions . .
Declaring Simple Variables

LABEL variables
Non-LABEL variables . . .
Declaring Array Variables . .
Declaring Structure Variables

Constant Interpretation
Contexts . ¢ ¢ ¢« ¢ o o o o o o
Attribute Determination . . .

e o ¢ o
° L] . .
.
e o e o o o

MPL User's Guide

e e o o

L] . L] L] . . L] L o

e e e o6 o o o ® e o ¢ o

L

. L] '3 L]

L) []

L] L] L] (] . L] L]

3 e« o o o

. . L] L] L) L] . . L[]

- . L] o L] . L]

. . .] .

e e ® o o

e o o o

. . L)

. e o o o

L] L] L) .] L]

L] L . L . .

¢ e © o o

e« © o o ¢ o

. e o o o

* o ° o o

Page

‘._l
COWVWWOWWVWWOO WWJ~I0 U H»WW w NN L

= b
oo

e
N

13

Table of Contents

Integer constants, decimal
Hexadecimal constants . .
Character-string constants
Label constants
Address constants . . . &

Value Determination . . .

Integer constants, decimal
Hexadecimal constants . .
Character-string constants
Label constants
Address constants

Section Specification

CHAPTER

Arithmetic Expressions .

Logical Expressions . .

CHAPTER

Assignment Statements .

5. EXPRESSIONS

Arithmetic Operands .
Arithmetic Operators .
Order of Evaluation .
Use of Arithmetic Express
Logical Operands . . .
Logical Operators . .
Order of Evaluation .

i
Use of Logical Expressions

s
o

6. STATEMENTS . . . « .« &

Effect « ¢« ¢« ¢ &« +

Format . . « ¢« &« « « &
Implicit Conversions .

GOTO Statements .« « o ¢ o o &

Label Constant GOTO Statemen
Label Variable GOTO Statement

Computed GOTO Statement .

IF Statements . + ¢« ¢« ¢« o o o

DO Statements . « ¢« ¢« o &

IF Statement Format

Form o L] L] L] L] L] L] L] .
Simple DO L] L] L] L] L] L] L[]
DO with Iteration Clause

- DO with WHILE Clause . .

END

Embedded Assembly Language . . .

CHAPTER

GLOBAL and EXTERNAL Considerations

DO with Iteration and WHIL
Statements « « « ¢« ¢ & ¢ o

7.

An MPL Procedure Call

MPL User's Guide

Routine name
Parentheses CALL . . « + &
Angle-brackets CALL . .

constants
L] L] L] L] L]
constants

e o o o
e o o o

]

e o o DB e o e o

.
.
] . [. [L] () [] o o

.
.
e © e & o ® o ° o o o o o

. . (] . L] . . L L] . [] L] . . [}

e © o o e o

Cla

o o (L o o o o o o
0n

e o (D e o
0

e o H e o o o o o

ASSEMBLY LANGUAGE ROUTINE LINKAGE

e o o o o
e e ° o o
e o o o o

e o e © o o o

e o o o o

L) L] . L] [} L] . L] L] L] L) L] .

e e o o »

@ ® e © o © o e e o o o+ o e o o o o o e o o o

e e o o o

e e © e o o o o o e & 9 o o o o o o e o e o o o

e ® o © o o e o o o e °o o e o o o e e o o 2 e o o o o o

e e 6 e ® e ® @ © o © o ° o & e °o o

Table of Contents

Calling MPL Procedures . . .

CHAPTER

Procedure name . . . « o o o o o
Parentheses PROCEDURE
Angle-brackets PROCEDURE

8.

RELOCATABLE OBJECT MODULE LIBRARIES

MPLULIB.RO & « v o v o o o o o o .
MPLULIB.RO ContentsS

DSPLY

KEYIN . ¢ ¢ ¢ ¢ ¢ o ¢ o o @
CODOS . & ¢ ¢ ¢ o o o o o &
PRINT . o ¢ ¢ ¢ ¢ o o o o @
PULL 2 . + ¢ ¢ o o o o « o &
PUSH 2 o ¢ ¢ ¢ ¢ ¢ o o o o @
CKBRK . & ¢ ¢ ¢ ¢ o ¢ o o @

MPLUTLIBO RO L] ° L] L L] L] . L] L] L] L] .
MPLUTLIB.RO Contents

CHAPTER

Mathematical Subroutines

ABS & ¢ ¢ ¢ ¢ ¢ o o o o o @
ABS2 ¢« ¢ ¢ ¢ o o o o o o o
MOD & & ¢ ¢ ¢ o o « o o o =«
SETBIT ¢ o ¢ ¢ o o o o o o o
I/0 Subroutines . .« « ¢ ¢ ¢ o o
OPEN ¢ ¢ ¢ o ¢ o o o o o o &
READ 4« ¢ e o o o o o o o o o
WRITE e ® o o o o o e e o
WRITEF . ¢ ¢ ¢ ¢ o o o o o
CLOSE & ¢ ¢ o o o o o o o =
Error Table . . ¢ ¢« ¢ ¢ ¢ o o &

9.

MPL COMPILER . . . ¢ o o «

Invocation . ¢ ¢ ¢ ¢ ¢ e o e o o o

Resu

APPENDIX

Sample MPL Program
The MPL Compiler
Echo Program Example . .
Binary Tree Sort Program

APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

MPL User's Guide

1ts

A.

B.
C.

D.

. . [[. L] L] L] .

MPL EXAMPLES . « « « . . .

. e o o
.
e e o o

ASCII CHARACTER SET

DIPL SYNTAX °

MPL COMPILER OPTIONS . . .
MPL RESERVED WORDS

MPL COMPILER ERROR MESSAGES

. * e & o o o o

® o e ¢ o ¢ 0 e o o o .

3 ¢ o e o o e o

L] . L L] L] . L] L] L] (] L]

L] * . L L] L] L] L

. L] . L] L ° L]

e e o o & o ® o o+ o o

e o & o

. e e e o o o o

3 e o o

Page

CHAPTER 1. INTRODUCTION

MPL is a high-level systems programming language.
Designed for use with Codex Intelligent Terminal Systems, MPL
permits users to generate operating systems, utility
routines, and other system software with a minimum of
programming time and effort. Based on the popular PL/1
syntax, MPL simplifies the translation from functional
requirements to an operating program.

MPL is a modular programming language designed for
flexibility and ease of use. The high level of
self-documentation makes MPL programs easy to read and write;
MPL's block structure encourages software modularity and
structured programming. Free-format input simplifies MPL
program writing, reducing training requirements and
development times. MPL programs can be optimized for
execution speed or memory space quickly and without rewriting
the assembly language output. In addition, the high-level
orientation of MPL permits emphasis on correcting algorithms
and design flaws rather than on the details of an assembly
language implementation,

MPL output is in assembly language, permitting the user
to add additional assembly language program segments. This
capability allows the programmer to develop different

programs by adding different subroutines to a single MPL
program acting as a basic framework.

Hardware Support Required

The minimum hardware configuration required to support
MPL consists of:

~- CDX-68 Basic Display Terminal with the appropriate
firmware options

-- 56k bytes of user memory (RAM)

-- .5 Mb or 1 Mb Diskette Storage (CDX-FS Series) or 10
Mb Disk Storage (CDX-FS/DR)

-- Microcomputer Module D (CDX-SBC/D)

-- System Self-Test firmware package (CDX-SST/D)

MPL User's Guide Page 1

Chapter 1 } Optional Hardware Supported

Optional Hardware Supported

MPL also supports a variety of printers, including
Matrix and Character printers (the Codex SP Series). These
optional printers are linked to the Basic Display Terminal
through either the Microcomputer Module D or the Printer
Interface Module (CDX-PI).

Software Support Required

No additional software is required to run the MPL as it
comes shipped on the system disk.

Software Installation
There is no software installation that need be

performed. All MPL software is on the disk containing the
selected software package.

MPL User's Guide Page 2

CHAPTER 2. STATEMENT TYPES AND ORDER

An MPL program is a sequence of procedures; a procedure
is a named routine that performs a task. Procedures called
subroutine procedures execute when called from within
procedures.

Procedures are sequences of statements defining (1) the
type and arrangement of the data and (2) the sequence of
actions. A procedure is composed of any combination of the
following statements.

The PROCEDURE statement denotes that the following part of
the program is a procedure. It specifies the procedure's
name, and whether it is a main or a subroutine procedure. 1If
it is a subroutine procedure, the statement specifies the
assigned values of any parameters.

DECLARE statements define the type and arrangement of
the data used by the procedure. They specify names, possible
initial values, and other attributes of the data items.

Executable statements define the sequence of actions
when the procedure is executed. They reference the data
items named in the "DECLARE" statements.

The RETURN statement is used only with subroutine
procedures. It specifies return from the procedure to the
point of call. It may, in some cases, specify results that
are to be returned.

The END statement denotes the end of the procedure.

Program Format
Record Format

The statements of an MPL program must be located in one
or more CODOS ASCII-record disk files. The disk files are
organized into records in the following format:

[<sequence number> <space>] <séquence of characters> <CR>

The "<sequence number>" is an optional four-digit number. If
used, it must appear in each record. The "<sequence of
characters>" are characters from the ASCII character set.

The compiler recognizes a maximum input record of 80
characters. The "<space>" is an ASCII space character. The
"(CR>" is an ASCII carriage return character.

MPL User's Guide Page 3

Chapter 2 Program Format

Except for the restrictions, (see Restrictions), the
statement formats for records are unrestricted. A statement
too long for one record continues onto successive records,
Multiple statements may appear on a record when separated by
spaces, semicolons, or comments.

Character Set

MPL programs are written with the ASCII character set,
Character-string constants and comments may contain any
displayable ASCII characters. Other language elements, such
as arithmetic operators and variables, may contain characters
chosen from a subset of ASCII, called the MPL character set.
The MPL character set is alphabetic and numeric characters,
collectively called alphameric and special characters.

The alphabetic characters are the characters A through 2
(upper—-case only).

The numeric characters or the decimal digits are the

characters 0 through 9. The decimal digits and the
characters A through F are hexadecimal digits.

MPL User's Guide Page 4

Chapter 2

Program Format

The special characters and their meanings or uses,
outside of character-string constants and comments, are as

follows:

Charac

A Se ee N0 IS 4+ %~~~ = oe

A\

Cert

ter Name

Space
Exclamation point
Dollar sign

Percent sign

Ampersand

Single quote

Left parenthesis
Right parenthesis
Asterisk

Plus sign

Comma

Minus sign

Period

Slash

‘Colon

Semicolon |
Less—-than sign

Equal sign
Greater—-than sign

ain symbols,

called two-character symbols,

Meaning or Use

Separator, otherwise ignored
Start of comment

Embedded assembhly language or
start of hex constant

Rotate or arithmetic shift
operator

Logical and operator
Character-string constant
Grouping or begin argument list
Grouping or end argument list
Multiply

Add

Separator

Subtract or minus

Decimal point

Divide

Label

Separator, otherwise ignored
Less than or begin argument
list

Assignment

Greater than or end argument
list

are

composed of pairs of adjacent characters: |

Symbol
->

/*
*/

Identifie

Name

Arrow

Slash-asterisk
Asterisk-slash

rs

|

Meaning or Use

Pointer
Begin comment
End comment

The programmer may assign names to statements and data

items in

an MPL program.

These names,

together with words

reserved by the compiler for special purposes, are

identifie
alphameri

MPL User's Guide

rs.
¢ characters.

A name consists of a string of (1 to 6)
The first character must always be

Page 5

Chapter 2 Program Format

alphabetic. Any such string may be assigned a name, provided
that the following two conditions are met:

. The string is not already assigned in the MPL
program.

. The string is not a word reserved by the compiler for
a special purpose.

Note: names may not contain special characters.

The compiler's reserved words are the following:

A DCL GIVING LE RETURN
ADDR DEC GLOBAL LONG SHIFT
AND DECLARE GO LT SHORT
B DEF GOTO MAIN SIGNED
BASED DEFINED GT NARG SS

BIN DO IAND NE THEN
BIT DSCT IEOR NOT TO
BSCT ELSE IF OPTIONS WHILE
BY END INIT OR X

CALL EQ INITIAL PROC

CHAR EXTERNAL IOR PROCEDURE

CSCT GE LABEL PSCT

The compiler interprets the longest possible string of
adjoining characters as an identifier. Because of this, an
identifier may not be followed by another identifier or by a
numeric constant without a separator, such as a "space,"
interposed. For example:

Valid Names Invalid Names

FRED INIT (reserved)
COST23 2TIMES (initial digit)
X1Y171 A.B (not alphameric)
SMALL small (not alphameric)
T SABC (not alphameric)

Spaces and Semicolons

Spaces, semicolons, or comments must be used to separate
adjacent identifiers or numeric constants. They may not be
used within identifiers, numeric constants, or two-character
symbols. They are only significant as data character-string
constants, 1In address constants, spaces and semicolons are
ignored, while comments may not be used. Except for these
rules and the restrictions (see Restrictions), spaces,
semicolons, or comments may appear throughout an MPL program.

MPL User's Guide Page 6

Chapter 2 - Program Format

Labels

MPL statements may be preceded by statement labels. A
statement label is a name that is immediately followed by a
colon. Control may be transferred to a labelled statement to
alter sequential statement execution. "PROCEDURE" statements
must have a label.

Comments

Comments designate character strings that document a
program or explain the function of various statements or
procedures. Comments print when the program is listed, but
are otherwise ignored by the compiler. Comments have the
following two formats:

. /* <character string> */

where the "<character string>" may span several records
and contain any displayable ASCII characters, provided
that it does not contain an asterisk-slash. The
slash—-asterisk and asterisk-slash are two-character
symbols, with the two characters adjacent on the same
record.

. ! <character string>

where the "<character string>" is the remainder of the
"<{sequence of characters>" on the record containing the
exclamation point. It may contain any displayable ASCII
characters.

Comments act only as separators unless they appear in
character-string constants. Comments within character-string
constants are considered as data. Comments may not be used in
address constants.

MPL User's Guide : ' Page 7

Chapter 2 Data

Data

A data item is a storage area with a value and
attributes. It is represented in the program text by a
constant or a variable.

All data items have certain attributes. For example, a
data item may have values that are decimal numbers with six
significant digits and two digits to the right of the decimal
point. It may have values that are strings of ten
characters; or it may have values that are pointers to other
data items.

A constant data item is a data item whose value does not
change when a program executes. The attributes of a constant
data item may be determined from the textual form of the
constant that denotes the data item and the context in which
it appears. For a variable data item, a data item whose
value may change when a program executes, the attributes must
be declared to the compiler,

There are four classes of data: arithmetic, string,
label, and pointer.

Arithmetic Data

Arithmetic data items have numeric values. They have
the attributes of base, precision, and sign. A data item's
base attribute is either binary (BIN) or decimal (DEC). The
precision attribute specifies the amount of storage the value
requires and, if its base is "DEC," the number of decimal
places. The sign attribute states whether the data item's
value is non-negative (default) or not (SIGNED).

String Data

- String data items have values that are strings of
displayable ASCII characters or binary digits. They have the
attribute of length. A data item's length attribute
specifies the number of displayable ASCII characters or
binary digits it contains.

MPL User's Guide Page 8

Chapter 2 Data

Label Data

Label data items have values that are statement labels.
The label data type is listed below:

LABEL

A data item of this type requires two bytes of storage. It
assumes values that are statement labels.

Pointer Data

Pointer data items have values that are the memory
addresses of variable data items. They are called pointer
data items because they "point" to the data items whose
addresses are their value.

MPL does not have a special reserved word signifying the
pointer data type. Instead, pointer data items are considered
to be of type "BIN(2)."

Constants

Constant data items are data items whosée values do not
change when a program executes. They are represented in the
program text by character strings called "constants." A
constant is said to "denote" the data item it represents.
Occasionally the phrase, "the value of the constant," is used
to mean "the value of the data item denoted by the constant."
This section describes the format of constants.

Corresponding to the four classes of data: arithmetic,
string, label, and pointer, there are four classes of
constants., These are: numeric, character-string, label, and
address.

Numeric Constants

Numeric constants are used to denote arithmetic data
items. A numeric constant may not contain spaces,
semicolons, or comments. There are three subclasses:
integer, decimal, and hexadecimal.

MPL User's Guide Page 9

Chapter 2 Constants

Integer constants

An integer constant is a string of (a maximum) 30
decimal digits. For example:

Vvalid Invalid
26 2A
131072 -4.60

0 +2

Decimal constants

A decimal constant is a string of (a maximum) 22 decimal
digits. It is followed by a decimal point and optionally

followed by a string of (a maximum) 30 decimal digits. For
example:

valid Invalid
2698.273 +26.03
00.00 2,468
0.1 .1

Hexadecimal constants

A hexadecimal constant is a dollar sign followed by a
string of (a maximum) 29 hexadecimal digits. For example:

valid Invalid
SFFFF FFFF

S0 OF3H
$2A $s2

SOD S12XF

MPL User's Guide Page 10

Chapter 2 Constants

Character-string Constants

Character-string constants denote data items whose
values are strings of (a maximum) 30 displayable ASCII
characters. A character-string constant is a string of ASCII
characters enclosed in single quotation marks. Within the
string, a single quotation mark is represented by two
adjacent single quotation marks. An exclamation point is
represented by two adjacent exclamation points. Spaces,
semicolons, and comments within the string are significant
data. For example:

valid Invalid
'"HELLO!!' !
IIIQUOTEIII IA
'THIS IS A STRING' 'IT'S'

There are no constants to denote data items whose values
are strings of binary digits.

Label Constants

Label constants are used to denote label data items. A
label constant is a name assigned to label a statement in the
program,

Address Constants

Address constants are used to denote pointer data items.
An address constant is an expression, enclosed in
parentheses, preceded by the reserved word, "ADDR." The
expression may not contain single quotation marks or
exclamation points. It may contain spaces or semicolons for
readability.

The expression designates the data item whose memory
address is the value of the pointer data item. A subset of
the set of allowable address constants is described later.
Comments may not appear within the expression. The
expression may contain a maximum of 30 characters, not
including spaces and semicolons. For example:

valid Invalid
ADDR (SAM) 'SAM!
ADDR(SAM + 1) ADDR((SAM + 1)

MPL User's Guicde » Page 11

Chapter 2 ‘ Constants

Restrictions

Except for the following restrictions, the statement
format is unrestrained for records:

. A label and its colon must appear on the same record
with no intervening characters.

. The iteration clause of a "DO" statement must appear
on the record containing the "DO." At least one space
must precede and follow the "TO" in the iteration
clause,

. An embedded assembly language statement must be on
one record and be the only statement on that record. Its
dollar sign must be the first character in the
"<{sequence of characters>" of its record.

. The dollar sign of a hexadecimal constant may not be
the first character in the "<sequence of characters>" of
its record.

. No symbol (identifier, constant, or two-character
symbol) may continue from one record to the next.

MPL User's Guide . Page 12

CHAPTER 3. PROCEDURES

A program is organized as a main procedure, a sequence
of statements bracketed by a "PROCEDURE OPTIONS(MAIN)"
statement and an "END" statement. The compilation, assembly,
and linking-load process converts main procedures into
free-standing programs.

This section describes main and subroutine procedures
and their invocation and return.

Main Procedures

The main procedure is the portion of a program that
initially has control. It has no parameters. It may not
contain a "RETURN" statement and may not be called by a
"CALL" statement. The main procedure may call procedures
which in turn may call others and so forth.

MPL allocates space for statements of a program in
"PSCT." Variable data may be allocated storage in BSCT, CSCT,
DSCT, or PSCT as desired with a default of DSCT. The stack
used by a program is allocated space at the end of the main
procedure's "DSCT." Storage for temporary results is
allocated in a labelled common block in "DSCT."

PROCEDURE OPTIONS(MAIN) statement

The "PROCEDURE OPTIONS (MAIN)" statement has one of the
four forms:

. label constant: PROCEDURE OPTIONS(MAIN)
. label constant: PROC OPTIONS (MAIN)
. label constant: PROCEDURE OPTIONS(MAIN,
SS = integer constant)
. label constant: PROC OPTIONS(MAIN,
SS = integer constant)

The first and second forms are equivalent, as are the third
and fourth forms. Note that the statement must be labelled.
The "PROCEDURE OPTIONS (MAIN)" statement acts as a "left

parenthesis" for the statements in the main procedure. The
corresponding "END" statement acts as a "right parenthesis."

MPL User's Guide - o Page 13

Chapter 3 Subroutine Procedures

The "SS = integer constant" form of the statement
specifies the number of bytes allocated to the stack. For

example:
MNPGM: PROC OPTIONS(MAIN, SS = 40)

specifies a stack size of 40 bytes (decimal). If you omit
the "SS" clause, MPL allocates 100 bytes (decimal) for the

stack.

Subroutine Procedures

A subroutine procedure is a sequence of statements
performing a specific task. The procedure has a name so that
the program may "call" it. A subroutine may have parameters,
Parameters allow it to perform the same task but with
different data. It is called by a "CALL" statement, giving
its name and the data (if any) it uses. It must contain a
"RETURN" statement to return control to the calling
procedure, Procedures may call other procedures, but they
may not cause themselves to be called recursively unless
performing required data stacking.

A subroutine procedure may be compiled during the same
time that procedures call it. It may also be compiled
separately and combined with the calling procedures by the
Linking Loader. Simce all variables are global, all
procedures in one compilation have a common access to
variables declared in any procedure in the compilation.

PROCEDURE statement

The "PROCEDURE" statement has one of the following four
forms:

label constant: PROCEDURE (fpl, fp2, ..., fpn)
label constant: PROC (fpl, fp2, ..., fpn)
label constant: PROCEDURE <fpl, fp2, fp3>
label constant: PROC <fpl, fp2, fp3>

The first and second forms and the third and fourth forms are
equivalent. The lists of formal parameters in parentheses
and angle brackets are optional. The statement must have a
label.

The "PROCEDURE" statement acts as a "left parenthesis"

for the statements in the subroutine procedure. The
corresponding "END" statement acts as a "right parenthesis."™

MPL User's Guide | | ' Page 14

Chapter 3 : | Subroutine Procedures

The statement label is the name the procedure is called
by a "CALL" statement. The list of formal parameters is a
list of unqualified nonsubscripted variables. These
variables, like any others, are declared following the
"PROCEDURE" statement.

The idea here is similar to the definition of functions
in mathematics. A function "f" may be defined by "f(x) =
2x," where "x" has no meaning other than as a placeholder or
dummy argument. References to "f(2)" or "f(3)" implies a
temporary association of 2 or 3, respectively, with the dummy
"x" during the computation of "2x." In this same way, the
formal parameters of a procedure are dummies. A procedure
with formal parameters is called by a "CALL" statement with
actual parameters, whose values are temporarily associated
with the formal parameters.

For example, the MPL procedure implements the "f(x)"
function by: ,

F: PROC(XX, RESULT)
DCL XX BIN(2), RESULT BIN(2)
RESULT = XX + XX
RETURN
END

The calls:

CALL F(2, RES1)
CALL F(3, RES2)

results in "RES1" having the value of 4 and "RES2" having the
value of 6.

Two procedures in the same compilation may not have the
same formal parameters. A procedure may not attain the
formal parameters of another procedure.

Within a procedure, the formal parameters may not be
used as subscripts, actual parameters of parentheses "CALLS,"
or result variables., They may not appear in computed "GOTO"
statements or "DO" statements.

MPL User's Guide ’ ' Page 15

Chapter 3 " Subroutine Procedures

The angle-brackets form of the "PROCEDURE" statement may
be used when the formal parameters satisfy certain data type
restrictions. It generates a more efficient calling
sequence. In this form, any of the three formal parameters
may be omitted, but all commas prior to the last included
parameter must appear. For instance, the first and third
parameters may be omitted by:

P: PROC <, fp2>
but not:
P: PROC <fp2, >

All three parameters must be scalar variables. The first two
must have size 1 (such as SIGNED BIN(l) or CHAR(1l)) and the
third must have size 2 (such as CHAR(2) or LABEL).

Invocation .

Subroutine procedures are called by the "CALL"
statement, which has one of the following two forms:

. CALL label constant (apl, ap2, ..., apn)
. CALL label constant <apl, ap2, ap3>
GIVING <rl, r2, r3>

The first form calls procedures beginning with the first and
second form of the "PROCEDURE" statement. The second form
calls procedures beginning with the third and fourth form of
the "PROCEDURE" statement. The label constant is the name of
the called procedure. The parameters in parentheses and
angle brackets may be constants or variables. Variables in
the first form may not be formal parameters and may not be
qualified or subscripted.

The parameters must agree in number, order, and type
with the formal parameters specified in the "PROCEDURE"
statement. This means that if any or all of the formal
parameters are omitted, the corresponding actual parameters
should be omitted.

In the second form, "GIVING <rl, r2, r3>" should only
appear if the procedure returns by the angle-brackets form of
the "RETURN" statement. 1In this case, rl, r2, and r3 must be
unqualified nonsubscripted variables that are not formal
parameters. They must agree in the same ways with the result
parameters in the "RETURN" statement.

MPL User's Guide Page 16

Chapter 3 , Subroutine Procedures

The effect of the "CALL" statement is to execute the
named procedure, associating the actual parameters in the
call with the formal parameters in the procedure. When the
procedure terminates by a "RETURN" statement, control goes to
the statement that follows the "CALL" statement.

With the first form, if the procedure has modified the
values of any of its formal parameters, the values of the
corresponding actual parameters (which in this case must be
variables) are changed accordingly. With the second form, if
the procedure executes the angle-brackets form of the
"RETURN" statement, the values returned are assigned to the
result variables.

Return

Subroutine procedures return control to their callers by
a "RETURN" statement. The "RETURN" statement has one of the
following two forms:

. RETURN
. RETURN <rpl, rp2, rp3>

The result parameters in the second form may be constants or
variables., The same data type restrictions and rules for
omission apply as in the angle-brackets form of the
"PROCEDURE" statement.

The effect of the "RETURN" statement is that it returns
control to the calling procedure at the statement following
the invoking "CALL" statement. The second form specifies
that the current values of the result parameters are to be
returned for assignment to the result variables in the "CALL"
statement.

MPL User's Guide | Page 17

CHAPTER 4. DECLARE STATEMENTS

When variables are needed in assignment statements,
"CALL" statements, etc., "DECLARE" statements must be used to
declare them to the compiler. "Declaring variables means
telling the compiler what attributes the data item possess.
All variables defined in one compilation are global to that
compilation.

This section describes how to use the "DECLARE"
statement for different kinds of variables. It first gives a
description of the different types of variables. Then it
shows the additional features needed to declare array
variables, structure variables, and to specify the Linking
Loader section in which variables are allotted storage.

Variables

Variable data items are data items whose values may
change when a program executes, They are represented in the
program text by character strings called "variables." A
variable "refers to" the data item it represents. The
phrase, "the value of the variable," may be used to mean "the
value of the data item referred to by the variable.," The
phrase, "the attributes of the variable," may be used to mean
"the attributes of the data item referred to by the

' variable."

Variable Attributes

A variable data item may have certain attributes that a
constant data item may not have. For instance, the data item
may be located in the base section rather than the data
section. Since names are used to refer to variable data
items, a variable's attributes must be declared to the
compiler. This is done for each variable before the first
usage of that variable.

In addition to its type attributes, each variable may
have combinations of the following attributes: DEFINED,
INITIAL, GLOBAL, EXTERNAL, section, BASED, scalar, array, and
structure.

A variable can be allocated storage at an absolute
memory address, or at the same memory address where another
variable has storage. This variable has the "DEFINED"
attribute. A variable may also be assigned a certain initial
value before executing the program. This variable has the
"INITIAL" attribute. The "GLOBAL" attribute specifies that a
variable is obtainable in separately compiled MPL programs.

MPL User's Guide ’ Page 18

Chapter 4 Variables

A variable that is declared with the "GLOBAL" attribute
can be subsequently referenced in a separately compiled MPL
program using the "EXTERNAL" attribute. Variables can be
allotted storage in the data section, the base section, blank
common, or the program section. This is done by declaring
the group of variables to have one of the section attributes:
DSCT, BSCT, CSCT, or PSCT.

The "BASED" attribute refers to constructs of a
data-item template used as pointer variables. The template
is a map or pattern describing a fictitious variable data
item with certain attributes. With MPL, the programmer
obtains a real variable data item with a memory address the
value of a pointer variable, as if it were a variable data
item matching the template.

Such a template is not really a variable, since a
variable refers to a defined memory address. For language
consistency, the template is called a variable having the
"BASED" attribute.

A "BASED" variable describing a fictitious variable data
item, not contained in a fictitious array, represents a real
variable data item when qualified by a pointer variable. MPL
does this qualification through the use of an arrow. For
example, if "P" is a pointer variable and "T" is a "BIN(1)
BASED" variable (template), then the "BIN(1l)" variable data
item with an address value of "P," is referenced by:

P->T

A data item that does not have the array or structure
attribute has the scalar attribute and is called a scalar.
MPL allows the programmer to organize data into a collection
of data items having the same attributes. This collection is
called a data item with the array attribute, or an array.

An array is a named 1-, 2-, or 3-dimensional collection
of unnamed similar data items. A name is given to the array
as a whole. An individual data item in the array is referred
to by a variable containing a subscript reference. This
indicates the position of the data item with respect to the
start of the array. The size of each of the 1-, 2-, or
3-dimensions of the array is specified when its array
variable is declared.

The data items collected to form the array may be
scalars or structures, but the number of subscripts must
never exceed 3.

MPL User's Guide v Page 19

Chapter 4 ' | Variables

MPL allows the programmer to organize data into a
collection of data items with different attributes. This
collection is called a data item, with the structure
attribute, or a structure,

A structure is a collection of named, dissimilar data
items. A name is given to the structure and to the scalars,
the arrays, and the structures comprising the structure. The
result is a hierarchical collection. The names and
attributes of the data items that form the structure are a
part of the declaration of its structure variable. The
structure, as a whole, has the "CHAR" attribute.

The data items forming the structure may be scalars,
arrays, or structures. The maximum nesting level of
structures must not exceed 5. The length of a structure must
not exceed 327 bytes.

Attribute Restrictions

, There are additional rules and restrictions on the
attributes of structure variables. They are listed below:

. Type attribute

Variables that refer to composite data items may not
have type attributes.

Successive "BIT(m)" data items within a structure, are
packed into bytes as long as byte boundaries are not crossed.
Whenever the packing results in byte-boundary crossing, the
next byte is used.

. INITIAL attribute

Variables that refer to composite data items may not
have "INITIAL" attributes.

. BASED attribute

Level-k variables, where "k > 1," may not be declared
with the "BASED" attribute. Level-1l variables may be
declared with the "BASED" attribute, in which case the entire
structure is "BASED." For example:

DCL 1 BSTR BASED,V,
2 BASED]1 BIN(2),
2 BASED2 CHAR(5)
declares BSTR to refer to a "BASED" structure with a "BIN(2)"
component and a "CHAR(5)" component.

MPL User's Guide v Page 20

Chapter 4 Variables

. DEFINED attribute

Remarks analogous to those made above for the "BASED"
attribute apply to the hexadecimal constant form of the
. "DEFINED" attribute. For the variable form, the rule is that
a level-k variable, where "k >1," may only be "DEFINED" to a
previously declared "brother" within the structure. No other
kind of variable may be "DEFINED" to level-k variables where
"k > 1." For example, this declaration is valid:

DCL 1 S,
2 ABC,
2 DEFF CHAR(5),
2 GHI CHAR(1l) DEF ABC

This one is invalid:

DCL 1 BAD
2 BR1,
3 ABC,
2 BR2,
3 GHI CHAR(1l) DEF ABC

This rule may be stated more precisely as follows: two
level-k variables related by "DEFINED," where "k > 1," must
refer to data items contained in the same level-(k - 1) data
item.

. EXTERNAL and GLOBAL attributes

Remarks analogous to those made above for the "BASED"
attribute apply as well to the "EXTERNAL" and "GLOBAL"
attributes.

. Array attribute

MPL allows you to describe and refer to arrays of
composite data items, as well as arrays of elementary data
items. This means that you may construct an array of four
structures, each containing an array of five "BIN(2)" data
items and an array of nine "DEC(5, 2)" data items. There can
never be more than a total of three dimensions in a
structure, no matter how many levels the dimensions are
distributed. For example, a variable referring to the
structure array just described is:

DCL 1 STRARR(4),

2 BINARR(5) BIN(2),
2 DECARR(9) DEC(5, 2)

As many subscripts as necessary to completely specify
data items should be used. For example, you would refer to

MPL User's Guide | Page 21

Chapter 4 ‘ : | Variables

the fourth "DEC(5, 2)" data item in the third structure by :

DECARR(3, 4)

Declaring Simple Variables

The "DECLARE" statement begins with one of the reserved
words, DECLARE or DCL. Following the reserved word, a list
of variable declarations, separated by commas, is written.

Each variable declaration begins with the variable
itself and ends with the list of attributes of the data item.
The allowed forms of the attribute list depend on whether the
variable refers to "LABEL" data. The next two sections
describe the allowed forms. .

LABEL variables

The attribute list of a "LABEL" variable may have one of
the three forms: :

. LABEL
. LABEL INITIAL(label constant)
. LABEL INIT(label constant)

The second and third forms are the same. "INIT" is an
acceptable abbreviation for "INITIAL." If the second form is
used, the "LABEL" variable is contained within the
parentheses. For example, in a program containing a
statement labelled, "LETTER," you may declare L1 and L2 to be
"LABEL" variables with L1 initialized to "LETTER" by the
statement:

DCL L1 LABEL INIT(LETTER), L2 LABEL

The initial value of L2 in this example is undefined.

MPL User's Guide . Page 22

Chapter 4 Variables

Non-LABEL variables

The attribute list of a non-LABEL variable begins with a
type attribute, If this type attribute is omitted, the
variable assumes type "BIN(l)." A type attribute begins with
one of the type designators: BIN, SIGNED BIN, DEC, SIGNED
DEC, CHAR, or BIT.

Any one of these may be followed by a size specification
of the form (integer constant). "DEC" and "SIGNED DEC" may
be followed by a size specification of the form (integer
constant, integer constant). If the size specification is
omitted, "(1)" is assumed. Alternatively, a type attribute
may be the single word, "SIGNED," in which case the wvariable
is assumed to be of type "SIGNED BIN(1l)."

For example, if Bl is declared a "BIN(l)" variable, SBl
a "SIGNED BIN(1l)" variable, and BIT4 a "BIT(4)" variable by
the statement:

DCL Bl, SBl1 SIGNED, BIT4 BIT(4)

Following the type attribute, the attribute list
concludes with any of the following six mutually exclusive
attributes.

INITIAL(constant) (or INIT(constant))

This gives the declared variable an initial value of the
constant contained within the parentheses. The constant
should be compatible with the type of the variable. "BIT"
variables may not be initialized by this attribute. For
example: ' '

DCL Bl INIT(25)
DCL STRING CHAR(8) INIT('HI THERE')
DCL N DEC(5, 2) INIT(2.69)

. BASED

This states that the variable is a "BASED" variable. It
is a template or pattern describing a fictional data item.
It is not a variable. For example:

DCL P DEC(6) BASED
DCL Bl BASED

MPL User's Guide A ' Page . 23

Chapter 4. Variables

. DEFINED variable (or DEF variable)

This causes the declared variable to be allocated
storage at the same memory address where a previously
declared variable has storage. A variable data item is then
considered a different type. For example:

DCL Bl, Cl1 CHAR(1l) DEF Bl
. DEFINED hexadecimal constant (or DEF hexadecimal constant)

This causes the declared variable to have storage at the
absolute memory address indicated by the hexadecimal
constant. For example:

DCL ACIA BIN(2) DEF S$ECl4
. EXTERNAL

This states that the variable is to have or has
allocated storage in a separately compiled MPL program. The
variable must be declared with the "GLOBAL" attribute in the
separately compiled program. For example:

DCL REV DEC(4, 2) EXTERNAL
. GLOBAL

This states that separately compiled'MPL programs
execute this variable by declaring it to have the "EXTERNAL"
attribute. For example:

DCL REV DEC(4, 2) GLOBAL INIT(2.0l1), Bl GLOBAL

Declaring Array Variables

A variable is referred to an array by writing a
dimension designator immediately following the "DECLARE"
statement. This dimension designator is a parenthesized list
of no more than three integer constants separated by commas.
Each integer constant must denote a value greater than 1.

The number of integer constants in the list is the number of
dimensions in the array. The minimum subscript used for the
kth dimension, when referring to an array element, is 1. The
maximum is the kth integer constant in the list of the
"DECLARE" statement. For example:

DCL ARRAY (2, 3) CHAR(5)

MPL User's Guide _ Page 24

Chapter 4 Variables

declares an array variable, "ARRAY," consisting of the six
"CHAR(5)" elements: ARRAY(l, 1), ARRAY(l, 2), ARRAY(1l, 3),
ARRAY (2, 1), ARRAY(2, 2), and ARRAY(2, 3). The "INITIAL"
attribute for an array variable may take one of the following
two forms:

. INITIAL(constant, constant, ..., constant)
. INIT (constant, constant, ..., constant)

where the number of constants in the parenthesized list is
less than or equal to the product of the integer constants in
the variable's dimension designator. This assigns the values
of the constants to the array elements as initial values.
Array elements match to constants in the order described by
the phrase, "last subscript varies most rapidly." For
example:

DCL BB(2, 2) INIT(1, 2, 3, 4)
assigns the initial values:
to BB(1l, 1),
to BB(l, 2),

to BB(2, 1), and
to BB(2, 2).

W -

Declaring Structure Variables

In order for a variable to refer to a structure or
component of a structure, a level number is written
immediately before the variable in the "DECLARE" statement.
This level number is an integer constant denoting a value
from 1 to 5, inclusive. All components of a structure
variable are declared in order, in a single "DECLARE"
statement.

A structure is a level-l1l data item. It is composed of a
number of level-2 data items. A level-2 data item may itself
have the form of a structure, in which case it is composed of
a number of level-3 data items, and so on, up to a level of
5. Levels may not be skipped in a "DECLARE" statement. For
example, a level-2 declaration may not be followed by a
level-4 declaration without an intervening level-3
declaration.

Structure components that have the form of structures
are called "composite data items." Structure components that
do not have the form of structure are called "elementary data

items."

MPL User's Guide Page 25

Chapter 4 v , Variables
For example, consider thé declaration:

DCL 1 L1,
2 L2A, 4
3 L3A CHAR(1),
3 L3B BIN(2),
2 L2B LABEL

This example declares the structure variable Ll. Ll
refers to a structure containing two level-2 data items,
which are referred to by the two level-2 variables, L2A and
L2B. The first level-2 data item is further composed of two
level-3 data items, which are referred to by the "CHAR(1l)"
variable, L3A and the "BIN(2)" variable L3B. L2B is a
"LABEL" variable. Ll and L2A refer to composite data items.
L3A, L3B, and L2B refer to elementary data items,

Constant Interpretation

Contexts

The MPL compiler determines the attributes and the value
of a constant from its textual form and its context. The
context of a constant is a list of type attributes dependent
on the constant's textual position within an MPL program.
This section lists the thirteen possible places where
constants appear. The classes of constants and the context
are given. The next two sections discuss attribute and value

determination.

This list refers to MPL statement types. It is useful
primarily as a reference aid. ‘

. Expressions (allows integer, decimal, hexadecimal,
character-string, address)

If a constant within an expression is not the first
operand, its context is the list of type attributes of the
previous operand. If it is the first operand and the
expression is on the right-hand-side of an assignment
statement, then its context is the list of type attributes of
the rightmost variable, on the left-hand-side of the
assignment statement. 1In no other case is a constant the
first operand in an expression.

. Structure level number (allows integer)

The context of a structure level number is "BIN(1)."

MPL User's Guide _ , ‘ : Page 26

Chapter 4 Constant Interpretation

. Dimension (allows integer)
The context of a dimension is "BIN(1l)."
. Subscript (allows integer)

The context of a constant within a subscript is
"BIN(1)."

. Precision attribute specification (allows integer)

The context of constants within a precision attribute
specification is "BIN(1l)."

. DEFINED attribute specification (allows hexadecimal)

The context of an absolute memory address in a "DEFINED"
attribute specification is "BIN(2)."

. Iterative DO (allows integer, decimal, hexadecimal,
character-string, address)

The context of a constant used as the initial value of
an iterative "DO" is the list of type attributes of the index
variable of the "DO."

The context of a constant used as the final value of an
iterative "DO" is the list of type attributes of the initial
- value of the "DO."

The context of a constant used as the increment of an
iterative "DO" is X (1), where "X" is the list of base and
sign attributes of the final value of the "DO."

. GOTO statement (allows integer)

The context of a constant in a "GOTO" statement is
"LABEL."

. Label list of computed "GOTO" statement (allows label)

The context of a constant within the label list of a
computed "GOTO" statement is "LABEL."

. Procedure name in "CALL" statement (allows label)

The context of a constant used as the procedure name in
a "CALL" statement is "LABEL."

MPL User's Guide Page 27

Chapter 4 N ‘ Constant Interpretation

. INITIAL attribute Specification (allows integer, decimal,
hexadecimal, character-string, label, address)

The context of a constant within an "INITIAL" attribute
specification is the list of type attributes of the variable
given the "INITIAL" attribute.

. Argument list of CALL (allows integer, decimal,
hexadecimal, character-string, address)

The context of integer, decimal, hexadecimal, and
address constants within the argument list of a parentheses
"CALL" is "BIN(2)." The context of a character-string
constant within the argument list of a parentheses "CALL" is
"CHAR(m)." "m" is the number of characters in the character
string denoted by the constant.

The context of constants appearing as the first two
arguments of an angle-brackets "CALL" is "BIN(1l)." The
context of a constant appearing as the third argqgument of an
angle-brackets "CALL" is "BIN(2)." ;

. Argument list of RETURN (allows integer, decimal,
hexadecimal, character-string, address)

The context of constants appearing as the first two
arguments of a "RETURN" is "BIN(l)." The context of a
constant appearing as the third argument of a "RETURN" is
"BIN(2)."

Attribute Determination

This section gives the dependence of attributes upon
context for each class of constant.

In the following, reference is made to the "apparent
value" of a constant. For example: if "SB1" is a "SIGNED
BIN(1)" variable, then in the statement "SB1 = 255," the
constant, 255, has a "SIGNED BIN(1l)" context. 1Its apparent
value is 255, but its value is -1, since its type attributes
are "SIGNED BIN(1l)." :

Integer constants, decimal constants
. [SIGNED] BIN(1l) context

If the constant appears in an "INITIAL" attribute
specification, its type attributes are "BIN(1l)." Otherwise,
its type attributes are "[SIGNED] BIN(1l)" or "[SIGNED]

BIN(2)," depending on whether its apparent value is less than
256. : ‘

MPL User's Guide ‘ | _ v Page 28

Chapter 4 , Constant Interpretation

. [SIGNED] BIN(2) context

If the constant appears in an "INITIAL" attribute
specification, its type attributes are "BIN(2)." Otherwise,
its type attributes are "[SIGNED] BIN(2)."
. [SIGNED] DEC(m, n) context

The constant's type attributes are " [SIGNED] DEC(m, n)."
. CHAR(m) context; m <= 2

If the constant appears in an "INITIAL" attribute
specification, its type attributes are "BIN(m)." Otherwise,
its type attributes are "CHAR(m)."
. CHAR(m) context; m > 2

The constant's type attributes are "CHAR(m)."

. BIT(m) context
The constant's type attributes are "BIN(1l)."
. LABEL context '

The constant's type attributes are "BIN(2)."

Hexadecimal constants
. [SIGNED] BIN(1l) context

If the constant appears in an "INITIAL" attribute
specification, its type attributes are "BIN(l)." Otherwise,
its type attributes are "[SIGNED] BIN(1l)" or " [SIGNED]
BIN(2)," depending on whether its apparent value is less than
256.

. [SIGNED] BIN(2) context

If the constant appears in an "INITIAL" attribute
specification, its type attributes are "BIN(1l)." Otherwise,
its type attributes are "[SIGNED] BIN(2)."

. CHAR(1l) context

If the constant appears in an "INITIAL" attribute
specification, its type attributes are "BIN(1l)." Otherwise,
its type attributes are "CHAR(1l)" or "CHAR(2)," depending on
whether its apparent value is less than 256.

MPL User's Guide . ' Page 29

Chapter 4 3 Constant Interpretation

. CHAR(2) context

If the constant appears in an "INITIAL" attribute
specification, its type attrlbutes are "BIN(Z) " Otherwise,
its type attributes are "CHAR(2).
. BIT(m) context

The constant's type attributes are "BIN(1l)."
. LABEL context

The constant's type attributes are "BIN(2)."

Character-string constants
. [SIGNED] BIN(m) context

If the constant appears in an "INITIAL" attribute
specification, its type attributes are "CHAR(m)." Otherwise,
its type attributes are "[SIGNED] BIN(m)."
. CHAR(m) context

The constant's type attributes are "CHAR(m)."
. BIT(m) context

- The constant's type attributes are "BIN(1l)."

. LABEL context

If the constant appears in an "INITIAL" attribute
specification, its type attributes are "CHAR(2)." Otherwise,
its type attributes are "BIN(2)."
Label constants

If the constant appears in an "INITIAL" attribute
specification, its type attributes are "BIN(2)." Otherwise,
its type attribute is "LABEL."
Address constants
. [SIGNED] BIN(m) context

The constant's.type attributes are "[SIGNED] BIN(2)."
. LABEL context

The constant's type attributes are "BIN(2)."

MPL User's Guide ‘ v - Page 30

Chapter 4 Value Determination

‘Value Determination

This section gives the dependence of value upon
attributes for each class of constants. In the following,
the apparent value of a constant is denoted by "A."

Integer constants, decimal constants:
. BIN(1)

A < 256: value = integer part of A.
A >= 256: value is undefined.

. SIGNED BIN(1)

A < 128: value = integer part of A.
128 <= A < 256: value = (integer part of A) - 256.
A >= 256: value is undefined.

. BIN(2)

A < 65536: value = integer part of A.
A >= 65536: value is undefined.

. SIGNED BIN(2)

A < 32768: value = integer part of A.
32768 <= A < 65536: value = (integer part of A) -

65536.
A >= 65536: wvalue is undefined.

. DEC(m, n)

A < 10**(m - n): value = (integer part of
(A*10**n))/10**n,
A >= 10**(m - n): value is undefined.

. SIGNED DEC(m, n)

A < 10**(m - n - 1): value = (integer part of
(A*10**n))/10**n,
A >= 10**(m - n - 1): value is undefined.

. CHAR(m)

"A" is converted to a character string. It is
truncated on the right or right justified and space
filled, if required, on the left. If the constant is
the character string, "clc2...cn," (including leading
zeros) then the value is given by the rule:

>= n: value = ' clc2...cn' (m - n spaces).
<

m
m n: value = 'clc2...cm'.

MPL User's Guide Page 31

Chapter 4 Value Determination

Hexadecimal constants: -
. BIN(1)

A < 256: vwvalue = A,
A >= 256: value is undefined.

. SIGNED BIN(1)

A < 128: value = A.
128 <= A < 256: value = A - 256.
A >= 256: value is undefined.

. BIN(2)

A < 65536: wvalue = A,
A >= 65536: wvalue is undefined.

. SIGNED BIN(2)

A < 32768: wvalue = A.
32768 <= A < 65536: value = A - 65536.
A >= 65536: value is undefined.

. CHAR(1)

A < 128: value = the character string of length 1
containing the single character whose ASCII code is
A, '

A >= 128: value is undefined.

. CHAR(2) .

Let al = integer part of (A/256) and a2 = A mod
256. .

al < 128, a2 < 128: value = the character string
of length 2 whose first character has ASCII code al
and whose second character ASCII code a2.

al >= 128 or a2 >= 128: value is undefined.

Character-string constants:
. BIN(1)
Length of A =1 (A = 'c'): value = ASCII code of

c.
Length of A > 1: value is undefined.

MPL User's Guide Page 32

Chapter 4 Value Determination

. SIGNED BIN(1)

Length of A =1 (A = 'c') and (ASCII code of c) <
128: value = ASCII code of c. ,
Length of A =1 (A = 'c') and (ASCII code of c) >=
128: wvalue = (ASCII code of c) - 256.

Length of A > 1: value is undefined.

. BIN(2)
Length of A =1 (A = 'c'): Compute v = (ASCII code
of ¢c)*256 + (ASCII code of space). Value = v,
Length of A = 2 (A = 'clc2'): Compute v = (ASCII
code of cl)*256 + (ASCII code of c2). Value = v,
Length of A > 2: value is undefined.

. SIGNED BIN(2)
Length of A <= 2: Compute v as in BIN(2) case
above. If v < 32768, then value = v. If v >=
32768, then value = v - 65536.
Length of A > 2: value is undefined.

. CHAR(m)
"A" is left justified and if required, space filled
on the right. 1In other words, if A = 'clc2...cn',
then:

m >= n: value = 'clc2...cn ' (m - n spaces).
m < n: value is undefined.

Label constants:
. BIN(2)

Value = a number equal to the runtime address of
the statement labelled by the constant.

. LABEL

Value = the address of the statement labelled by
the constant.

MPL User's Guide ' Page 33

Chapter 4 ' : Value Determination

Address constants:

The value of "A" of an address constant is
determined from the Macroassembler expression. The
expression may consist of an unqualified nonsubscripted
variable, optionally followed by a plus sign, followed
by an integer constant. "A" is equal to the memory
address of the data item referred to by the variable
plus the apparent value of the constant.

. BIN(2)
. SIGNED BIN(2)

A < 32768: value = A.
A >= 32768: value = A - 65536.

Section Specification

A group of variables may be allocated storage in any of
the Linking Loader sections: BSCT (base section), CSCT (blank
common section), DSCT (data section), or PSCT (program
section). This is done by declaring the group in a single
"DECLARE" statement where the word "DECLARE" (or DCL) is
immediately followed by the reserved word, BSCT, CSCT, DSCT,
or PSCT. 1If a section in a "DECLARE" statement is not
specified, the compiler allocates storage for the variables
in "DSCT." '

For example, AA, BB, and CC may be declared in blank
common by:

DCL CSCT AA, BB, CC

Variables declared in "CSCT" should not have the
INITIAL, BASED, EXTERNAL, or GLOBAL attributes.

The use of the hexadecimal constant form of the
"DEFINED" attribute, in the declaration of a variable,
overrides any express or implied section specification.
Variables so declared are allocated storage in "ASCT"
(absolute section).

MPL User's Guide . o - ' Page 34

Chapter 4 Section Specification

The compiler allocates space for the executable
statements of the MPL program in "PSCT." This means that you
may have to precede "PSCT" declarations by "GOTO" statements
to transfer control, depending on the exact placement of the
declarations, For example:

START:
PROC OPTIONS (MAIN)
GOTO ENTRY .
DCL PSCT AA, BB
ENTRY :
(rest of program)

MPL User's Guide _ Page 35

CHAPTER 5. EXPRESSIONS
Arithmetic Expressions

Calculations performed in an MPL program are specified
by arithmetic expressions. Arithmetic expressions consist of
arithmetic operands combined by arithmetic operators.

Arithmetic Operands

Arithmetic operands may be constants or variables of any
of the BIN, SIGNED BIN, DEC, SIGNED DEC, or CHAR types or
variables of types BIT or LABEL. They may also be arithmetic
expressions as defined in this section. Here are some
arithmetic operands:

ADDR (SAM)

-2.06

((SBIN1 + SBIN2)*SBIN2)
SBIN1A(BIN1 + 2)
PTR->DEC52

Arithmetic Operators

The arithmetic operators provided in MPL are the
following:

Arithmetic Operator Indicated Operation

+ Addition

- ’ Subtraction

- (unary minus) Negation

* Multiplication

/ Division

SHIFT or % Rotate or arithmetic
shift, depending on
context

IAND or & Bitwise AND

IOR Bitwise OR

IEOR Bitwise EXCLUSIVE OR

Each arithmetic operator except for unary minus, takes
two arithmetic operands. Unary minus takes only one
arithmetic operand. The two arithmetic operands must both
either have the BIN, DEC, or CHAR attribute. This is usually
described by: "MPL does not allow mixed-mode expressions."
They may differ as to the "SIGNED" attribute and the size.
For example, "SBIN1 + BIN2" 1s a legal combination, but "BINI
+ CHAR1" is not.

MPL User's Guide ' | : . Page 36

Chapter 5

Arithmetic Expressions

The arithmetic operands of each arithmetic operator are

subject to further data type restrictions.

The following

table shows the data types to which each of the arithmetic

operators are applied:

Arithmetic Operator

+'—'

- (unary minus)

* /

SHIFT or %
IAND or &, IOR
IEOR

Allowed Types of
Arithmetic Operands

CHAR(1l), BIN, SIGNED BIN,
DEC(m, n), SIGNED DEC
(m, n), m <> 2 .
SIGNED BIN, numeric
constants

SIGNED BIN, DEC(m, n),
SIGNED DEC(m, n), m > 2
SIGNED BIN, CHAR(1)

BIN, SIGNED BIN, CHAR(1)
Same as IOR, but
different sizes not
allowed

More needs to be said about the two arithmetic
operators, "*" and "%." First, multiplication must be

explicitly specified.

is not the same as "R*S." Second,

the second arithmetic operand of "%" must be a non-zero

integer or hexadecimal constant, possibly preceded by a minus
sign. The value of the minus sign indicates the number of
bit positions the first arithmetic operand rotates or shifts.

If the value of the second arithmetic operand is
positive, it rotates or shifts to the left (toward the most
significant bit). If it is negative, it rotates to the right
(toward the least significant bit). "SIGNED BIN" arithmetic
operands shift arlthmetlcally. "CHAR(1)" arithmetic operands
rotate.

Because of the rules on constant interpretation, integer
constants used as rotate counts are interpreted as having
type "CHAR(1l)." Thus, hexadecimal constants should be used.
For example, if "SBIN1" has the value -4 and "CHAR1" has the
value "E'," then "SBINl % -1" has the value -2 and "CHARl %
$§4" has the value "'T'."

No two arithmetic operators may be adjacent except in
“the case of unary minus: "W*-Y" is allowed and equivalent to
"W*(-Y). .

MPL User's Guide | - o ' | , Pagel' 37

Chapter 5 ~Arithmetic Expressions

Order of Evaluation

High-precedence arithmetic operators are applied before
low-precedence arithmetic operators. Equal-precedence
arithmetic operators are applied from left to right. This is
always the case unless the order changes through the use of
parentheses. Unary minus has the highest precedence, as
shown in this table:

Arithmetic Operator Precedence
- (unary minus) High

SHIFT or %

IAND or &, IOR, IEOR

*, /

+’ - ' Low

Parentheses are used to override this ordering. For
example, in the arithmetic expression, "V*Y + Z*W&I," first
"W" and "I" are "ANDed." Then "V" and "Y" are multiplied.

The result of "W" and "I" being "ANDed" is multiplied by "Z."
That product is added to the product of "V" and "Y."

In the arithmetic expression, "B + ((C + D)*E) + C&2,"
first "C" and "D" are added, and the result is multiplied by
"E." Then "B" is added to that product, "C" and "2" are
"ANDed, " and the sum of "B" and the product are added to
that.

Use of Arithmetic Expressions

Arithmetic expressions are used in two places in an MPL
program: assignment statements and logical expressions.
When an arithmetic expression appears in an assignment
statement, this means that the arithmetic expression is
evaluated, and the assigned value is the current value of one
or more variables., An arithmetic expression in a logical
expression means that the arithmetic expression is evaluated,
and its value compared with the value of some other
arithmetic expression.

MPL User's Guide ' ‘ ~ Page 38

Chapter 5 Logical Expressions

Logical Expressions

Logical expressions specify the conditions under which
certain statements in an MPL program execute or repeat.
Logical expressions consist of logical operands combined by
logical operators using the ordinary rules of Boolean
algebra. For example, the logical expression "(C < D OR E <
F)" is true if the value of "C" is less than the value of
"D," or if the value of "E" is less than the value of "F."

Logical Operands

A logical operand is a pair of arithmetic expressions
separated by one of the relational operators: EQ, NE, LT (or
<), GT (or >), GE, or LE. The relational operators indicate
comparisons for equal, not equal, less than, greater than,
greater than or equal, and less than or equal, respectively.
The values of the two arithmetic expressions may not be of
mixed modes. Both values must have the "BIN," "DEC," or the
"CHAR" attribute, although they may differ as to the "SIGNED"
attribute and the size.

If the relational operator is "EQ" or "NE," there are
two other allowable combinations:

. Both arithmetic expressions may be "LABEL" variables.
. The first arithmetic expression may be a "BIT(m)"
variable, and the second arithmetic expression may be the
integer constant 0. If "m = 1," the second arithmetic
expression may be the integer constant 1.

. A logical operand may also be a logical expression,
as defined in this section.

Logical Operators

The logical operators used in MPL are the following:

Logical Operator Result

NOT True if logical operand
is false

AND True if both logical
operands are true

OR True if either logical

operand is true

MPL User's Guide ' f ‘ Page 39

Chapter 5 o Logical Expressions

Order of Evaluation

High-precedence logical operators are applied before
low-precedence logical operators, and equal- precedence
logical operators are applied from left to right, unless
parentheses are used. "NOT" has the highest precedence.

Logical Operator Precedence
NOT High

AND

OR Low

Parentheses are used to override this ordering. For
example, the logical expression, "(C EQ D OR E EQ F AND G EQ
H)," is true either if the current values of "C" and "D" are
equal, or if the current values of "E" and "F" are equal, and
the current values of "G" and "H" are equal. The logical
expression "((C EQ D OR E EQ F) AND G EQ H)" is true if the
current values of "G" and "H" are equal, and either the
current values of "C" and "D" are equal, or the current
values of "E" and "F" are equal.

Use of Logical Expressions

Logical expressions are used in two places in an MPL
program: "IF" statements and "DO" statements containing
"WHILE" clauses. A logical expression in an "IF" statement
means that one of two sequences of statements is executed,
depending on the truth or falsity of the logical expression.
A logical expression in a "DO" statement, containing a
"WHILE," clause means that a sequence of statements is
repeatedly executed, as long as the logical expression is
true. _

MPL User's Guide . - Page 40

CHAPTER 6. STATEMENTS
Assignment Statements

The assignment statement is MPL's chief way of modifying
values of variables. It allows the values of one or more
variables to change the value of some arithmetic expression.
This section discusses the assignment statement's format, its
effect, some rules regarding conversions, and some examples.

Format
The format of the assignment statement is:
<variable list> = <arithmetic expression>

where "<variable list>" is a list of variables separated by
commas, and "<arithmetic expression>" is an arithmetic
expression. The "<variable list>" usually consists of a
single variable. A variable in the "<variable list>" may not
have the array attribute. The types of the variables and the
arithmetic expression must be related by the rules described
below.

Effect

The arithmetic expression is evaluated and converted, if
necessary, to the type of the rightmost variable. It is then
assigned the value of that variable. That value is then
assigned the value of the next variable to the left, after
any necessary conversion, This process continues until all
variables in the list are assigned the value.

Implicit Conversions

Some combinations are not allowed in assignments.
Others cause the conversion of data from one type to another.
This section outlines the rules regarding these conversions.

. "CHAR(m)" values may be assigned only to "CHAR(n)"
variables. If "m" and "n" are equal, no conversion is
performed. If "m" is less than "n," the value is extended on
the right with "n-m" ASCII space characters before
assignment, If "m" is greater than "n," the rightmost "m-n"
characters of the value are discarded before assignment.

. Either "BIN" or "DEC" values may be assigned to "BIN"
variables. 1In the case of "BIN" values, a conversion is not
performed. If the value is outside the permitted range of
values for the variable, the result is undefined.

MPL User's Guide ' Page 41

Chapter 6 _ : Assignment Statements

In the case of "DEC(m, n)" values, the value is first
converted to an integer. If the value is a constant, this
conversion is a truncation. Otherwise, it is a
multiplication by "10**n," If the variable is not "SIGNED,"
the converted value is replaced by its absolute value. The
result is converted to the appropriate "BIN" type and
assigned. If it is outside the permitted range of values for
the variable, the result is undefined.

. "LABEL" values may be assigned to "LABEL" variables. A
conversion is not performed.

. Either "BIN" or "DEC" values may be assigned to “DEC(m,
n)" variables. 1In the case of "BIN" values, the value is
first converted to a decimal number. If the value is a
constant, this conversion is the obvious one; otherwise it is
a division by "10**n.," If the variable is not "SIGNED," the
converted value is replaced by its absolute value. The
result is converted to the appropriate "DEC" type and
assigned. If it is outside the permitted range of values for
the variable, the result is undefined.

In the case of "DEC" values, fractional digits are
dropped. Then if the variable is not "SIGNED," the value is
replaced by its absolute value. If it is outside the
permitted range of values for the variable, the result is
undefined.

. Either "BIN" or "DEC" values may be assigned to "CHAR"
variables. 1In either case, the value is converted to a
character string containing its decimal representation with
leading zeros replaced by spaces, a leading minus sign
inserted if the value was negative, and a decimal point
inserted as required for "DEC" values.

. The only arithmetic expression that may be assigned to
"BIT(n)" variables is an integer or hexadecimal constant,
denoting the value "0" or "2**n-1." These values result in
the assignment of an all-0 bit string or an all-1l bit string,
respectively.

MPL User's Guide ' ~ Page 42

Chapter 6 GOTO Statements

Examples:

DCL C3 CHAR(3), C5 CHAR(5)

DCL BIT4 BIT(4) .

DCL D86 DEC(8, 6), D5A DEC(5), D5B DEC(5)
DCL SBl1A SIGNED, SB1B SIGNED, SB1C SIGNED
DCL AVE SIGNED

C3 = 'ABC' /* Gets 'ABC' */
C5 = C3 /* Gets 'ABC ' */
BIT4 = SF /* Gets all ones */

D86 = D5A/DS5B /* Gets quotient to six places */
SB1A = SB1A + 1 /* Increments SB1A */
AVE = (SB1lA + SB1B + SB1C)/3 /* Computes average */

GOTO Statements

MPL permits the alteration of the flow of control in a
program. Ordinarily, control flows from one statement to the
next. Some MPL statements, like the "IF" statement and the
"DO" statement, cause implicit control transfers. "GOTO"
statements specify explicit control transfers.

This section describes the three kinds of "GOTO"
statements and gives examples of their use.

Label Constant GOTO Statement

The label constant "GOTO" statement has one of the
following forms:

. GO TO label constant
. GOTO label constant

The two forms are equivalent. This statement causes a
transfer of control to the statement (elsewhere in the
program) labelled by the label constant. For example:

OTO SAM
SKIP:

]
N

SAM:

o-oHocoHG)o..
]
=

MPL User's Guide ‘ 4 Page 43

Chapter 6 | GOTO Statements

If this example is executed, the "GOTO" statement causes
the statements beginning with "SKIP" to be disregarded. The
statement executed immmediately after the "GOTO" statement is
the statement, "I = 2."

LABEL Variable GOTO Statement

The "LABEL" variable "GOTO" statement has one of the
following forms:

. GO TO <variable>.
. GOTO <variable>

where "<variable)>" is a variable referring to a "LABEL" data
item. The two forms are equivalent. This causes a transfer
of control to the statement (elsewhere in the program)

labelled by the current value of the variable. For example:

DCL I, LARRAY(3) LABEL INIT(GOOD, BAD, UGLY)

I =2
GOTO LARRAY(I)
GOOD: I =0

GOTO OUT
BAD: I =1

GOTO OUT
UGLY: I = -99

GOTO OUT

If this example is executed, the "LABEL" variable "GOTO"
statement causes the statement labelled "BAD" to execute,
followed by the next "GOTO OUT" statement.

MPL User's Guide : Page 44

Chapter 6 GOTO Statements

Computed GOTO Statement

The computed "GOTO" statement has one of the following
forms:

. GO TO (label constant, ..., label constant), <nane>
. GOTO (label constant, ..., label constant), <name>

where "<name>" is an unqualified nonsubscripted "BIN(1l)"
variable that is not a formal parameter. The two forms are
equivalent. This statement causes a transfer of control to
the statement (elsewhere in the program) labelled by the
first, second, third, ..., or nth label constant, whether the
current value of the variable is 1, 2, 3, ..., Or n,
respectively. If the current value is zero or greater than
the number of label constants in the statement, the effect is
undefined. For example:

GOTO (GOOD, BAD, UGLY), I

This statement has the same effect as the statement "GOTO
LARRAY(I)" in the previous example.

IF Statements

MPL provides a statement that allows the programmer to
specify a course of action based on the truth or falsity of a
condition., This statement is the "IF" statement. This
section describes the "IF" statement and gives examples of
its use.

IF Statement Format
The "IF" statement has one of the following forms:

. IF <logical expression> THEN <statement>
. IF <logical expression> THEN <statement> ELSE <statement>

where "<logical expression>" is a logical expression and the
"<{statement>s" are executable statements. The effect of the
first form is to execute the "<statement>" only if the
"<logical expression>" is true. If it is false, control goes
to the statement following the "IF" statement. The effect of
the second form is that it executes either the first
"<statement>" or the second "<statement>," dependent on
whether the "<logical expression>" is true or false,
respectively., After the appropriate "<statement>" executes,
control goes to the statement following the "IF" statement.

MPL User's Guide . Page 45

Chapter 6 ; DO Statements

To choose between sequences of statements, rather than
single statements, the "DO-END" brackets are used, For
example: _

IF I < 25 THEN I = 25

IF (I NE O AND I LE 3) THEN GOTO
(Goop, BAD, UGLY), I

ELSE GOTO ERROR

DO Statements

MPL allows you to group a sequence of statements in
order to consider them as a single statement. It also allows
conditions to be specified so that the sequence repeats. The
"DO" statement is provided for these purposes. This section
describes the permissible forms of the "DO" statement.

Form

"DO" statements have the general form:

DO [<iteration clauée>] [<KWHILE clause>]
This means that a "DO" statement consists of the word "DO,"
optionally followed by an iteration clause, optionally
followed by a "WHILE" clause. psll

If the iteration clause is present, it has the following
form:

<variable> = <DO operand> TO <DO operand>
’ [BY <DO operand>]

where "<variable>" is an unqualified nonsubscripted variable
that is not a formal parameter of a procedure and the "<DO
operand>s" are either variables or constants meeting the same
description. The "BY <DO operand>" is optional.

"<variable>" may have type "BIN(1l)" or "BIN(2)." The first
two "<DO operand>s" must have the same type as "<variable>."
The third "<DO operand>" must have type "BIN(1l)."

If the "WHILE" clause is present, it has the form:
WHILE <logical expression>

where "<logical expression>" is a 1logical expression,

MPL User's Guide | ' Page 46

Chapter 6 DO Statements

Each "DO" statement in your program must have a
corresponding "END" statement. The corresponding "END"
statement is found the same way the right parenthesis,
corresponding to a given left parenthesis, is found in an
expression. For example:

DO

:DO
:DO
:END

éND

END
The first "DO" matches the third "END." The second "DO"
matches the second "END," and the third "DO" matches the
first "END." "DOs" so arranged are called "nested DOs." This
example shows three levels of nesting. "DOs" may be nested

to a level of ten, 1Indentation of nested "DOs" is not
required, but is suggested for readability.

Simple DO

In its simplest form, the "DO" statement acts as a "left
parenthesis" to group statements. The corresponding "END"
statement acts as the "right parentheses." For example, to

assign values to either I, J, and K or L, M, and N, depending
on the sign of Q:

MPL User's Guide : _ Page 47

Chapter 6 DO Statements

IF Q < 0 THEN

DO
I =Vl
J = V2
K = V3
END
ELSE
DO
L =V1
M= V2
N = V3
END

DO with Iteration Clause

An iteration clause on a "DO" statement specifies that
the sequence of statements, beginning with the one following
the "DO" statement and ending with the corresponding "END"
statement, is repeated a certain number of times.

DO V = D1 TO D2 BY D3

, The effect of the above "DO" statement is the following.
When the statement is encountered, the variable "V" is given
the value of "D1" and the sequence of statements executes.
The value of "V" is compared with the value of "D2." If it is
equal (in the BIN(2) case) or greater or equal (in the BIN(1)
case), the process continues with the statement following the
"END" statement. Otherwise, "V" increments by the value of
"D3," and the sequence of statements executes again., This
process repeats until "V" reaches or exceeds "D2."

If "BY D3" is omitted in the above example, "V" would
increment by 1 each time. L

Note that if the values of Vv, D1, D2, or D3 chang\, the
looping process may continue in an unpredictable manner.
|
This example illustrates the zeroing of every element of
the array "AA" and every other element of the array "BB":
DCL AA(10), BB(10), I | |
DO I =1TO 10

AA(I) =0

END

DO I =1TO 9 BY 2
BB(l) =0

END

MPL User's Guide A Page 48

Chapter 6 DO Statements

DO with WHILE Clause

A "WHILE" clause on a "DO" statement specifies that the
sequence of statements, beginning with the one following the
"DO" statement and ending with the corresponding "END"
statement, repeats if a certain condition is met. This
condition is represented by an MPL logical expression.

DO WHILE <logical expression>

The effect of the preceding "DO" statement is as follows., If
the logical expression is false, execution continues with the
statement following the "END" statement. Otherwise, the
sequence of statements executes and the logical expression is
examined again. This process repeats until the logical
expression is false.

The following example illustrates the end of a linked
list, pointed to by "LIST." The last node in the list assumes
a zero link.

DCL LIST BIN(2), P BIN(2)
DCL 1 NODE BASED,

2 VAL,

2 NEXT BIN(2)
P = LIST
DO WHILE P -> NEXT NE 0
P = P -> NEXT
END

DO with Iteration and WHILE Clauses

A "DO" statement may have an iteration clause and a
"WHILE" clause. 1In this case, the sequence of statements
executes until the iteration completes or the "WHILE"
condition fails, whichever comes first. The sequence of
statements in the following example executes from 0 to 5
times, depending on when, if ever, "Y" becomes less than 4.

DO I =1 TO 5 WHILE Y < 4

END

MPL User's Guide ’ Page 49

Chapter 6 | END Statements'

END Statements

"END" statements terminate statement groups begun by
"DO" or "PROCEDURE" statements. ' "END" statements have the
form: ’ .

END [label constant]

The label constant is an optiohal documentation aid. For
example:

LOOP: DO I =1 TO 50

END LOOP

Embedded Assembly Language

Legal Macroassember Language statements may be included
in an MPL program. Such statements are called embedded
assembly language statements. 1In contrast to MPL statements,
the format of these statements is not unrestricted with
respect to records. An embedded assembly language statement
is a record whose "<sequence of characters>" consists of a
dollar sign followed by a legal Macroassember Language
statement. This assembly language statement inserts into the
output assembly language program without further processing
by the compiler.

Names (label constants and variables) defined in MPL
statements may be used as operands in embedded assembly
language statements. Labels defined in embedded assembly
language statements may be used in "GOTO" statements.,

Embedded assembly language statements are syntactically
distinct from MPL statements. The contexts are slightly
different. An embedded assembly language statement is like a
label because it may precede any MPL statement.

Assembly language statements embedded within the MPL
program should make no assumptions regarding the contents of
the processor accumulators, index register, program counter,
stack pointer, condition codes register, or stack. For
example:

MPL User's Guide Page 50

Chapter 6 Embedded Assembly Language

CODOS ¢
PROC

$ NAM CODOS

$ SWI

$ FCB S$1A
RETURN
END

IF T > 1 THEN
$ PAGE

DO

END
ELSE

$ PAGE
DO

END

MPL User's Guide Page 51

CHAPTER 7. ASSEMBLY LANGUAGE ROUTINE LINKAGE

This section gives guidelines on how to write assembly
language routines. It covers MPL calling, returning, and
parameter passing conventions, This also applies to embedded
assembly language statements in an MPL program.

GLOBAL and EXTERNAL Considerations

An assembly language routine -may obtain an MPL "GLOBAL"
variable by naming the variable in an "XREF" directive. An
MPL "EXTERNAL" variable may be located in an assembly
language routine if the routine names the variable in an
"XDEF" directive.

An MPL Procedure Call
Routine name

The entry point of an assembly language routine called
by an MPL procedure must have a name in an "XDEF" directive,

Parentheses CALL

An assembly language routine called by an MPL statement
of the form:

CALL entry point(apl, ap2, ..., apn)
is guaranteed the following conditions on entry:

. The return address is on top of the stack. When this is
true, the routine returns by an "RTS" instruction.

. A list of addresses of the actual parameters, "apl, ap2,
+eer apn," is at the address equal to 2 plus the address on
top of the stack. When this is true, the routine may load
the X register with the address of the kth actual parameter
by the instruction sequence:

TSX

LDX 0,X
LDX 2k,X

MPL User's Guide _ Page » 52

Chapter 7 | An MPL Procedure Call

Angle-brackets CALL

An assembly language routine called by an MPL statement
of the form:

CALL entry point<apl, ap2, ap3>
GIVING <rl, r2, r3>

is guaranteed the following conditions on entry:

. The return address is on top of the stack. When this is
true, the routine returns by an "RTS" instruction.

. The A, B, and X registers contain the values of the first,
second, and third actual parameters, respectively. If any of
the actual parameters are not specified in the "CALL"
statement, the contents of the corresponding registers are
undef ined. :

Before returning, the routine must load the A, B, and X
registers with the values of the first, second, and third
result parameters, respectively. If any of the result
variables are not specified in the "CALL" statement, the
corresponding registers need not be loaded.

Calling MPL Procedures
Procedure name

The name of an MPL procedure that is called by an
assembly language<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>