
EXOS 204
Ethernet Front-End Processor

For Unibus Systems

Reference Manual

Publication No. 4200009-00
Revision A March 22, 1985

Excelan Inc.
2180 Fortune Drive

San Jose, CA 95131

NOTICE

This document reflects the features and specifications of the EXOS 204 Ethernet Front·
end Processor, and the NX 200 firmware version 4.2. Excelan, Inc. reserves the right to
make changes and improvements in features and specifications at any time without prior
notice or obligation.

The following are trademarks or equipment designations of Excelan, Inc.:

EXOS
EXOS 204
NX
NX200

Ethernet is a trademark of Xerox Corporation.

Unibus is a trademark of Digital Equipment Corporation.

Copyright@1985 by Excelan Inc. All rights reserved. No part of this document may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without prior written
permission of Excelan.

- ii -

EXOS 204
Ethernet Front-End Processor

For Unibus Systems
Reference Manual

REVISION HISTORY

REVISION DATE SUMMARY OF CHANGES

P1 10-25-84 Preliminary-1 Release.
EXOS 204
Ethernet Front-End Processor
Reference Manual
Publication No. 4200009-00

A 03-22-85 Upgrade of Revision P1 to
Revision A. Several technical/
editorial changes.

- iv -

EXOS 204: Preface

PREFACE

This document describes the EXOS 204 Ethernet Front-End Processor board. It covers
information necessary to integrate the EXOS 204 in a Unibus-based system, and to
design software both for the host and the EXOS 204. Ethernet and Unibus are
described in readily available documents; this manual makes no special effort to explain
these standards.

By design, the EXOS 204's operating system kernel (NX 200) insulates user protocol
software from hardware implementation details. This approach simplifies software
design, and facilitates portability to future products which will take advantage of VLSI
Ethernet controllers. Therefore this manual primarily describes the NX 200 kernel, with
reference to hardware design only where necessary. It is intended only as a reference
manual, and does not undertake to explain the product's design philosophy.

Section 1 of this manual outlines the principle features of the EXOS 204.

Section 2 is a guide to useful references.

Section 3 describes conventions and restrictions which are crucial to successful
application of the EXOS 204.

Section 4 describes initialization of the EXOS 204, including software down-load from
the host.

Section 5 discusses using the EXOS 204 as an intelligent link level controller. In this
mode, no software is down-loaded, so that only glancing reference to Sections 6 through
9 will be necessary.

Sections 6, 7, and 8 describe the NX 200 firmware, which provides support for software
down-loaded to the EXOS 204. Section 6 describes the real-time, multitasking OS
kernel services, and describes the programming environment aboard the EXOS 204.
Sections 7 and 8 cover the Ethernet and host interface facilities, which are implemented
in NX 200. They are broken out into separate chapters because NX 2001s design
makes them conceptually detachable.

Section 9 defines the NX 200 kernel calls, and is intended for ready reference once NX
200 services are understood functionally.

Section 1 O describes the EXOS 204's network bootstrap protocol, which can be used to
automatically down-load software to the EXOS 204 over the Ethernet at initialization
time.

Section 11 provides necessary information about EXOS 204 hardware.

- v -

(blank page)

- vi -

TABLE OF CONTENTS

1. INTRODUCTION 1-1

1.1. Overview 1-1
1.2. EXOS 204 Hardware Description 1-1
1.3. NX 200 Firmware Description 1-5

2. REFERENCES 2-1

3. NOTATIONS AND CONVENTIONS 3-1

3.1. Number Base 3-1
3.2. Data Object Terminology 3-1
3.3. Message Format Specification 3-1
3.4. Procedural Specifications 3-1
3.5. Bit Position and Value Specifications 3-2
3.6. Data Storage Order 3-2
3.7. Data Alignment 3-3
3.8. Memory Address Format 3-3
3.9. Shared Unibus Memory Access Restrictions 3-4

4. INITIALIZATION AND HOST INTERFACE 4-1

4.1. Hardware Communications Facilities 4-2
4.2. Host Data Order Conversion Option 4-3
4.3. Reset and Configuration Procedure 4-4
4.4. Configuration Message Format 4-7
4.5. Message Queue Format 4-14
4.6. Message Queue Initialization 4-16
4.7. Message Queue Protocol 4-19
4.8. Down-Loading Software from the Host 4-21

5. LINK LEVEL CONTROLLER MODE 5-1

5.1. The Controller Mode Interface 5-1
5.2. TRANSMIT Request/Reply Message 5-4
5.3. RECEIVE Request/Reply Message 5-7
5.4. NET _MODE Request/Reply Message 5-9
5.5. NET _ADDRS Request/Reply Message 5-11
5.6. NET _RECV Request/Reply Message 5-13
5.7. NET _STSTCS Request/Reply Messaget 5-15

6. THE NX 200 PROGRAMMING ENVIRONMENT 6-1

6.1. Overview 6-1
6.2. Memory Organization 6-1
6.3. Interrupt Types 6-3
6.4. Processes 6-3
6.5. Mailboxes 6-6
6.6. Process Locks 6-7
6.7. System Mailboxes 6-7
6.8. The Clock Device 6-9

- vii -

EXOS 204: Contents

7. THE NX 200 ETHERNET INTERFACE

7.1. Ethernet Transmit Request
7.2. Ethernet Receive Request
7.3. Ethernet Controller Modes
7.4. Ethernet Controller Option Mask
7.5. Address Slots
7.6. Net Statistics

8. THE NX 200 HOST INTERFACE

8.1. Host Transmit Request
8.2. Host Receive Request
8.3. Direct Access to Host System Memory
8.4. Host Data Order Conversion

9. NX 200 KERNEL CALL REFERENCE

10. INITIALIZING AND DOWN-LOADING FROM THE ETHERNET

10.1. Network Bootstrap Protocol Description
10.2. Data Transmission Order
10.3. Network Bootstrap Protocol Message Header
10.4. Message Encapsulation
10.5. FIND and SELECT Request/Reply Messages
10.6. DOWNLOAD Request/Reply Message
10.7. UPLOAD Request/Reply Message
10.8. CONFIGURE Request/Reply Message
10.9. EXECUTE Request/Reply Message

11. HARDWARE REFERENCE

11.1. Access to EXOS 204 Components
11.2. Unibus Interface
11.3. Ethernet Interface
11.4. On-Board Processing Capabilities
11.5. Firmware Configuration Options
11.6. Self-Test Operation
11. 7. General Specifications

APPENDICES

APPENDIX A: EXOS 204 COMPONENT LOCATION

- viii -

7-1

7-1
7-4
7-7
7-7
7-8
7-9

8-1

8-1
8-3
8-4
8-4

9-1

10-1

10-1
10-7
10-8
10-9
10-10
10-13
10-14
10-16
10-17

11-1

11-1
11-1
11-5
11-6
11-7
11-7
11-9

A-1

EXOS 204: Contents

FIGURES

Figure 1-1: An EXOS 204 Front-End Processor Mode Implementation 1-2
Figure 1-2: EXOS 204 Block Diagram 1-3
Figure 1-3: NX 200 Software Architecture 1-6

Figure 3-1: Mapping of Segmented Address into Longword Data Type 3-3
Figure 3-2: Mapping of Absolute Address into Longword Data Type 3-4

Figure 4-1: Host Data Order Conversion Option Test Pattern 4-3
Figure 4-2: Host Data Format Test Pattern Initialization 4-5
Figure 4-3: Typical Reset and Configuration Procedure 4-6
Figure 4-4: Configuration Request/Reply Message 4-8
Figure 4-5: Message Buffer Format 4-16
Figure 4-6: Message Queue Data Structures at Initialization Time 4-17
Figure 4-7: Example EXOS-to-Host Message Queue, at Initialization 4-18
Figure 4-8: EXOS 204 Down-Load Request/Reply Message 4-22
Figure 4-9: EXOS 204 Start-Execution Request/Reply Message 4-24

Figure 5-1: Encapsulation of Request/Reply Message in Message Buffer 5-2
Figure 5-2: Link Level Controller Mode Request Processing Scheme 5-3
Figure 5-3: TRANSMIT Request/Reply Message 5-5
Figure 5-4: RECEIVE Request/Reply Message 5-8
Figure 5-5: NET _MODE Request/Reply Message 5-10
Figure 5-6: NET _ADDRS Request/Reply Message 5-12
Figure 5-7: NET _RECV Request/Reply Message 5-14
Figure 5-8: NET _STSTCS Request/Reply Message 5-16

Figure 6-1: Default EXOS 204 Memory Allocation 6-2
Figure 6-2: Standard Header for System Messages 6-8

Figure 7-1: Ethernet Packet Format 7- 2
Figure 7-2: Ethernet Transmit Request/Reply Message 7-3
Figure 7-3: Ethernet Receive Request/Reply Message 7-5

Figure 8-1: Host Transmit Request/Reply Message 8-2
Figure 8-2: Host Receive Request/Reply Message 8-3
Figure 10-1: State Diagram of Network Bootstrap Protocol 10-3
Figure 10-2: Network Bootstrap Protocol Request/Reply Message Header 10-8
Figure 10-3: Encapsulation of Request/Reply Message 10-10
Figure 10-4: Network Bootstrap FIND/SELECT Request/Reply Message 10-11
Figure 10-5: Network Bootstrap DOWNLOAD Request/Reply Message 10-14
Figure 10-6: Network Bootstrap UPLOAD Request/Reply Message 10-15
Figure 10-7: Network Bootstrap CONFIGURE Request/Reply Message 10-16
Figure 10-8: Network Bootstrap EXECUTE Request/Reply Message 10-17

Figure 11-1: Quick Reference to Status LEDs 11-3

TABLES

Table 11-1: Quick Reference to Jumper Options 11-2
Table 11-3: Interrupt Priority Set-Up Table 11-4
Table 11-2: Self-Diagnostic and Configuration Error Codes 11-7

- ix -

(blank page)

- x -

1. INTRODUCTION

This section provides an overview of the EXOS 204's features and specifications, and
describes its principal modes of operation.

1.1. Overview

The EXOS 204 is a high-performance, front-end communications processor that
connects a Unibus system to an Ethernet local area network. It implements the
complete Ethernet Data Link Level interface, with significant functional extensions, on a
single quad-size Unibus board. In addition, the EXOS 204 can support high-level
network protocols on-board, thereby offloading this burden from the host CPU.

The EXOS 204 is directly managed by an on-board 80186 CPU, which runs the NX 200
operating system, stored in two 16-Kbyte EPROMs. A host system controls the EXOS
204 primarily thcugh command and reply messages located in memory accessible from
the Unibus. NX 200 firmware interprets the command messages and generates the
replies.

NX 200 provides two basic modes of operation, selected at initialization time. Link level
controller mode is useful for applications where host-resident protocol software has
already been developed, or where it is otherwise not feasible to down-load high-level
protocols to run on the EXOS 204. Instead, NX 200 firmware brings the EXOS 204's
Data Link controller functions out to the host interface. The host system obtains Data
Link services through standard request/reply messages; . the EXOS 204's RAM is
entirely available for buffering packets.

In front-end processor mode, the host system down-loads protocol software to the
EXOS 204 at initialization time (or the EXOS/204 bootstraps itself from the Ethernet).
This software then uses NX 200's real-time, multi-tasking process management services
and 1/0 drivers to control the EXOS 204's Ethernet interface and manage
communications with the host system. Standard protocol modules for the EXOS 204,
such as the DARPA TCP/IP protocols, are available from Excelan. Figure 1-1 shows
such an implementation in relation to the ISO Open Systems Integration model.

Alternately, users can develop, or port, their own protocols to run on the EXOS 204
under NX 200. This manual contains all information required to write software for the
EXOS 204. NX 200 is designed to greatly facilitate this process.

First, NX 200 provides a set of parameterized mechanisms that reduce the development
effort required for implementation of high level protocol software. This is accomplished
by offering a multitasking environment and integrated drivers that provide high level
primitives for the functions associated with the Ethernet controller, the host link, and the
clock.

Another objective of NX 200 is to hide the implementation details of EXOS 204
hardware from user software by providing suitable abstractions for all facilities.

1.2. EXOS 204 Hardware Description

Figure 1-2 shows a block diagram of the EXOS 204. Architecturally, the EXOS 204
consists of two loosely-coupled elements: an Ethernet Data Link Level controller, and a
microprocessor-based protocol processing engine. These components communicate
with each other through an internal bus and 128 Kbytes of dual-ported RAM.

The EXOS 204 implements the Ethernet Data Link protocol using the 82586 LAN
Coprocessor. Functions such as address recognition, CRC check, and buffer chaining

1-1

EXOS/204: Introduction

ISO LAYERS

7 APPLICATION

6 PRESENTATION

5 SESSION

4 TRANSPORT

3 NET\\ORK

2 DATA LINK] [
PHYSICAL

Figure 1·1: An EXOS 204 Front-End Processor Mode Implementation

HOST SYSTEM
MEMJRY

g
UNIBUS

re
EXOS/204

FRONT-END
PROTOCOL
PROCESSOR

ETHERNET
DATA LINK
CONTROLLER

ETHERNET
TRANSCEIVER

HOST
SYSTEM
CPU

g

are managed in hardware, so that the 80186 CPU is fully available for front-end
processing applications. The protocol processing engine is supported by either 128K
(Model 2) or 256K (Model 3) of RAM. Two 16-Kbyte EPROMs contain Excelan's NX
200 firmware, which includes self -diagnostic tests, an operating system kernel, and
network bootstrap code.

1.2.1. Principal Features

• One quad-sized (10.44" by 8.9") Unibus board which occupies one SPC slot.

1-2

EXOSi204: Introduction

<---------:HOb:::---BUS --->

CPU
80186

32K Bytes
EPROM

(NX 200
Firmware)

INTELLIGENT HOST INTERFACE

SBX
Connector

Figure 1·2: EXOS 204 Block Diagram

DUAL-PORT
RAM

(128K or
256K Bytes1

)

I

D
ETHERNET
INTERFACE

• On-board 8 MHz 80186 microprocessor (8 MHz clock) and 128 Kbytes of
RAM (256 Kbytes on Model 3) support high-level network protocols on·
board.

• Dual-ported memory allows concurrent, full-speed access by network
hardware and on-board processor.

• Can receive successive frames with minimum interframe spacing (9.6
microsec.). Can receive immediately after transmitting, or vice versa, with
minimum interframe spacing and without losing data.

• Hardware recognition of physical, broadcast, and 252 multicast addresses, in
addition to promiscuous mode.

1-3

EXOS 204: Introduction

• Hardware-supported buffer chaining allows buffering of up to 32 received
frames without any CPU intervention. Allocation of buffers, both location and
size, is completely under software control.

1.2.2. Ethernet Compatibility

The EXOS 204 conforms fully with Ethernet version 1.0 (September 1980) and version
2.0 (November 1982) specifications published by DEC, Intel and Xerox. Integrated with
a standard Ethernet transceiver, it provides all Data Link and physical layer services.
The EXOS 204 is also compatible with the IEEE Standard 802.3.

1.2.3. Unibus Compatibility

The EXOS 204 conforms with Unibus specifications by DEC as a 16-bit master.
Compliance is 8-bit and/or 16-bit transfers, 18-bit addressing, and bus-vectored
interrupts.

1.2.4. Unibus Interface

The EXOS 204 can access the entire Unibus system memory space (256
Kbytes)including the full 8-Kbyte 1/0 space, as a 16-bit bus master. One-byte
communication path is provided from the Unibus to the EXOS processor via an 1/0 port.
This is used during initialization to transmit the address of a communication area in the
shared Unibus memory.

The EXOS 204 and host processors can interrupt each other. The board generates
bus-vectored interrupts to interrupt the host. Interrupt priority can be set from level 4 to
level 7, via jumper selection. The host can interrupt the EXOS 204 processor by writing
to an 1/0 port.

1.2.5. Ethernet Functions

The EXOS 204 performs all physical and Link Level Ethernet functions except for
transceiver functions. These include:

• serial/parallel and parallel/serial conversion.

• address recognition.

• framing and unframing of messages.

• Manchester encoding and decoding.

• preamble generation and removal.

• carrier sense and deference.

• collision detection and enforcement, including jamming, backoff timing and
retry.

• FCS (CRC) generation and verification.

• error detection and handling.

1.2.6. Address Recognition

Each board has a unique 48-bit Ethernet address, which is stored in EPROM (host
software can override this address at run time). Recognition of physical, broadcast and
multicast addresses is fully supported. Up to 252 multicast addresses can be assigned

1-4

EXOS 204: Introduction

to a station; a very efficient filtering scheme reduces processing overhead. The EXOS
204 also provides a promiscuous mode, in which it accepts all addresses.

1.2.7. Frame Format

Link level frames are formatted as per the Ethernet specification, with 64 bits of
synchronizing sequence (preamble), destination address (48 bits), source address (48
bits), message type (16 bits), data (46 to 1500 bytes) and FCS (32 bits). The preamble
is generated and removed in hardware. Generation and checking of the Frame Check
Sequence (FCS) is also handled in hardware.

1.2.8. Error Handling

The EXOS 204 handles all Ethernet error conditions, including CRC, alignment, and
length errors. Packets containing these errors can optionally be received.

1.2.9. High Level Protocol Support

On-board processing power supports execution of higher level communications
protocols, beyond the Ethernet link level. The elements of this programming
environment are:

• 8 MHz 80186 CPU, with on-chip clock timer and interrupt controller,
operating at 8 MHz.

• 128K dual-ported RAM (plus 128K additional dual-ported RAM on Model 3).

• 32 Kbytes of EPROM, containing NX 200 firmware.

Firmware supplied with the board (the NX 200 Network Executive) provides simplified
Ethernet and host interface device drivers, and a multi-tasking environment for high-level
network protocols.

1.3. NX 200 Firmware Description

NX 200 resides in EPROM memory, which appears at the high end of the 1 M byte
address space of the 80186. NX 200 data structures use 4K of the RAM space; the rest
is available for higher level software. Figure 1-3 provides a graphic representation of the
NX 200 software architecture.

1.3.1. Principal Features

•
•

•

•

•
•

Self-diagnostics for testing the integrity of EXOS 204 hardware .

Booting process that allows higher level software to be down-loadeq either
from the host or from the network.

A real-time kernel that provides a multi-tasking environment, enabling the
protocol software to be constructed in a structured manner as a set of
cooperating processes.

Device drivers for the Ethernet controller and host computer interface .
Access through message queues simplifies pipelined communications.

Supports network management functions by collecting network statistics .

Allows the EXOS 204 to be used as a simple Data Link controller, giving
direct access to the network without down-loading any software.

1-5

EXOS 204: Introduction

1.3.2. Initialization

On reset the NX 200 firmware performs a series of self tests which confirm hardware
integrity. In case of failure, the firmware communicates diagnostic codes through an
LED display. After successful completion of the tests, the EXOS 204 either boots itself
from the Ethernet, or awaits initialization by the host system, depending on a jumper
option on the board.

OOhN-LOADED
SOFTWARE

NX200 KERNEL
INTERFACE

NX 200 KERNEL
FIFMNARE
WODULES

EXOS 204
HARONARE
WODULES

HOST SYSTEM
INTERFACE
DRIVER

HOST BUS
INTERFACE

Figure 1-3: NX 200 Software Architecture

HIGH-LEVEL
PROTOCOL
PROCESSES

REAL-TIME
MULTI -TASK
PROCESS
SUPPORT

PROTOCOL
PROCESSING
ENGINE

ETHERNET
DATA LINK
DRIVER

DATA LINK
CONTROLLER

If the jumper selects initialization by a host system, the host then uses a configuration
message to select NX 200's mode of operation, and specify several other parameters.
It can down-load software directly, tell NX 200 to boot itself from the Ethernet, or select
link level controller mode. If initialization includes down-loading software, then NX 200
spawns a process and enters the front-end processor mode of operation. The following
sections describe the execution environment for software which is down-loaded to the
EXOS 204.

1.3.3. Multi-tasking support

NX 200 includes a real-time kernel that implements a multi-tasking environment for
construction of higher level software in a structured manner. This kernel is fast by
design, and imposes very little overhead. It supports two types of object - processes
and mailboxes. The number supported of either object is configurable at start-up time.

1-6

EXOS 204: Introduction

A process is a unit of execution in the conventional sense. All processes share the
same memory address space and can thus communicate via shared memory. Other
than for NX 200's reserved memory there are no restrictions on how memory is used.
Processes access NX 200 functions by executing the 80186's INT n instruction, where n
identifies the service being requested.

A priority-based preemptive round robin scheduling algorithm allocates CPU time among
processes. As many as 256 priority levels are supported, and the highest priority
runnable process will always be scheduled. Among processes of the same priority, CPU
time is allocated in time slices. A time slice is either infinity, or between 1 and 254 ticks,
where each tick is 20 milliseconds. Any process can examine and change the priority
and time slice of any process. Whether a process is runnable is determined solely by a
sleep count, from O to 64K, and driven by the same clock as the time slice. Through
this parameter, any process can suspend, delay or resume any process.

Interprocess communication and synchronization are implemented with mailboxes.
Messages sent or received from the mailboxes can be either null or pointers to buffers in
the common memory. Message buffer format is arbitrary except for the first field, which
NX 200 uses to chain the messages in the mailbox queue. Sending and receiving of
messages is fully synchronized. A process executing a receive call on a mailbox can
specify the maximum time interval it is willing to wait. Waiting is implemented with the
sleep count mechanism described above. If the specified time expires before a
message arrives the process is resumed and given an error code instead of a message.
If only null messages are used, then the mailbox is identical to a conventional
semaphore. The receive operation in this case is equivalent to the P operation and the
send operation is equivalent to the V operation. The mailbox can be thus used as a
synchronization mechanism both for a producer-consumer relationship and a critical
section.

In addition to the mailbox, the NX 200 has a simpler and more efficient synchronization
mechanism intended for short critical sections: the process lock. This operation
postpones scheduling decisions until a corresponding unlock is executed, thereby
excluding all other processes from running. Calls to lock can be nested up to 32K levels
deep.

1.3.4. The Clock

NX 200's clock driver provides the abstraction of a 64-bit clock with a resolution of 20
milliseconds. Processes can read or set the time at will. On initialization the clock is
set to zero.

1.3.5. Host Interface

NX 200 provides a uniform interface to the host regardless of the nature of the actual
hardware host interface. The abstraction of the host is presented as a mailbox and
read/write operations on host memory. The mailbox acts as a source and sink for
messages and also provides synchronization between the processes on the host and
the processes on the EXOS 204.

This interface appears to host system software as two circular queues of message
buffers, one for each direction of transfer. Sending a message to the NX 200 host
mailbox causes the message to be transferred to the host memory, where it can be read
by the host processes. Similarly, receiving a message from the host mailbox causes
any messages placed in the host memory by host processes to be transferred to the
EXOS 204 process.

1-7

EXOS 204: Introduction

Apart from transferring data by means of messages, processes on the EXOS 204 can
also directly read and write the the host memory by means of NX 200 calls. The
contents of messages sent and received from the host is not interpreted by the NX 200,
and is strictly a matter of protocol between the host and the user software.

1.3.6. Ethernet Interface

The Ethernet interface also appears as a special dedicated mailbox. An EXOS 204
process sends a packet over the Ethernet by sending the packet's address in a
message to the special mailbox. The packet is formatted according to the Ethernet
specifications. The preamble and CRC are generated by the hardware automatically
and need not be supplied by the user. After the packet is transmitted a reply message
is returned to a user-specified mailbox, returning the packet buffer. Similarly, packets
are received from the Ethernet by sending an empty buffer's address in a message to
the special mailbox. When the Ethernet controller receives a message, it is stored in the
buffer and a reply message is returned to the user-specified mailbox.

Packets arriving over the Ethernet are filtered based on the destination address. Only
those packets whose destination address matches one of addresses specified by the
user are received. The address filter is implemented in hardware, but for multicast
addresses, it is not perfect. Therefore NX 200 supplements the hardware filter with a
somewhat slower software filter which completes the filtering of multicast addresses.

The user specifies receive addresses by means of address slots. Each slot carries one
destination address. The user can selectively enable/disable receive on address slots.
One address slot is reserved for the physical address and one slot is reserved for the
broadcast address. The remaining address slots contain multicast addresses only. The
number of multicast address slots is defined by the configuration of the NX 200.

The Ethernet controller can operate in one of several possible modes selectable by the
user. Specifically, the user can disconnect the controller from the network,
disable/enable the software multicast address filter, enable to receive all packets from
the network (promiscuous mode), and reject/accept packets received with errors.

The network management functions are supported by the EXOS 204 by keeping a tally
of various events such as the number of packets transmitted/received, packet errors etc.

1.3. 7. Ethernet Link Level Controller Mode

If the EXOS 204 is to be used in link level controller mode, then most of the description
above of NX 200 can be disregarded. In this mode, the host does not down-load any
code to the board. Instead, the host sends command requests to the board which drive
the Ethernet interface described above. When a request completes, the EXOS 204
returns a reply message. Transmit and receive commands can be pipelined -- NX 200
uses 60 Kbytes of the dual-ported RAM for buffering packets.

1-8

2. REFERENCES

The EXOS 204 conforms to the following specification:

[1] DEC, Intel, and Xerox Corporations, 'The Ethernet: A Local Area Network: Data
Link Layer and Physical Layer Specifications," Document no. T588.B/1080/15K,
Intel Corp. (September, 1980).

[2) DEC, Intel, and Xerox Corporations, 'The Ethernet: A Local Area Network: Data
Link Layer and Physical Layer Specifications." Version 2.0 (November, 1982)

The EXOS 204 conforms to the Unibus specifications:

[3] Digital Equipment Corporation, PDP-11 Architecture Handbook , Order Code:
EB-23657-18 (1983).

The EXOS 204 uses the 82586 LAN Coprocessor for implementation of Ethernet Data
Link protocol:

[4] Intel Corp., LAN Components User's Manual, Document No. 230814-001, Intel
Corp., (1984).

The EXOS 204 supports front-end processing of user-written higher-level protocols, on
an 80186 CPU:

[5] Intel Corp., iAPX 86/88, 186/188 User's Manual, Document No. 210911-001,
Intel Corp., (1983).

The following reference describes the C language, which is used for procedural
specifications in this manual:

[6] Kernighan, 8. W. and Ritchie, D.M, The C Programming Language, Prentice-Hall,
Englewood Cliffs, New Jersey (1978).

The following reference describes the ISO Open Systems Model:

[7] International Organization for Standardization (ISO), "Reference Model of Open
Systems Interconnection," Document no. ISO/TC97/SC16 N227 (June 1979).

2-1

(blank page)

3. NOTATIONS AND CONVENTIONS

This section describes notations and conventions followed throughout this manual. Any
restrictions specified here are applicable to all situations unless otherwise specified. The
contents of this section should be carefully read first since the constraints mentioned
here will not always be repeated in following sections.

3.1. Number Base

All numbers in this manual are decimal unless postfixed with the letter H, in which case
they are hexadecimal.

3.2. Data Object Terminology

The following terms are used to describe data objects of various sizes:

byte:
word:
longword:

8 bits
16 bits
32 bits

3.3. Message Format Specification

The EXOS 204 provides access to some of its services by means of request/reply
message pairs. Message formats are specified both in figures and descriptive
paragraphs. The figures show the order of data fields, field length, offset from the
message beginning, and include a brief description of the field's purpose. Descriptive
paragraphs, keyed to the order of fields in the message, provide all necessary details
not supplied in the figures.

One column in the message figures, labeled "Request," specifies what value, if any, the
field should have in the request message. Another column, labeled "Reply," specifies
what value, if any, the reply message returns. When some definite value is specified for
a field in a request message, this value must be used, or undefined effects may occur.
If a field is designated as "undefined" then it can have any arbitrary value. In the reply
message, a field designated as "preserved" will return the same value as was supplied
in the original request message. Where more comment is required, the entry "see text,"
directs the reader to a paragraph labeled with the same index as the field.

3.4. Procedural Specifications

Where it is necessary to describe a procedure, this manual uses the C programming
language. Where appropriate, the language has been adapted in the style of pseudo­
code. Such departures from the formal specification of C are denoted by enclosure in
right-angle brackets, as in this example:

init_toxq () {

for (i=O; i<OLEN; i+ +) {

toxq[i].link = < 16-bit offset of next buffer address>;

toxq[i].rsrvd = O;

toxq[i].status = TOXINITSTAT;

toxq[i].length = TOXDATALEN;

<initialize any user-specified fields>;

3-1

EXOS 204: Notations and Conventions

3.5. Bit Position and Value Specifications

When any data object is described in terms of separate bit fields, the Least Significant
Bit (LSB) is designated as bit O and the Most Significant Bit (MSB) as bit n, where the
object's size is n + 1 bits. For instance, bit 7 is the MSB of an 8-bit data object.

For programming convenience, bit fields are often described in terms of their OR­
maskable numeric value instead of their position, as described above. For instance, if
the description of a request mask reads:

01 write request bit.

02 read request bit.

then a write is specified by bit 0 and a read by bit 1 . The value 03 specifies both read
and write.

3.6. Data Storage Order

Many applications of the EXOS 204 require the consideration of two different
programming environments: that of software on the EXOS 204 itself, and that of
software on a host computer which communicates with the EXOS 204. In either
environment, it is crucial that user software store data objects which are known to NX
200 firmware in the order which NX 200 expects - and that the programmer understand
how NX 200 stores data objects which are known to user software.

In the EXOS 204's own memory address space, NX 200 always interprets data in the
80186 CPU's native order. This means that in any data object of more than one byte,
the most significant byte is stored at the higher memory address. For instance, a
memory dump of the 32-bit value 0103070FH stored at EXOS 204 memory address
1C83H would appear as follows:

1C83: OF
1C84: 07
1C85: 03
1C86: 01

In the Unibus memory address space shared between the EXOS 204 and the host
system, NX 200 can interpret data either in the 80186 CPU's native order, or optionally
in the host system CPU's native order. This is controlled by the host data order
conversion option, described fully in Section 4.2. If the conversion option is not
enabled, then any data objects in host memory which NX 200 interprets must appear to
the EXOS 204 in the 80186 CPU's native order.

If the conversion option is enabled, then NX 200 will automatically translate between its
native order and the host CPU's native order when it reads and writes data to and from
the host's memory. It decides what conversions are necessary by examining a constant
pattern in host memory at initialization time. Conversions work independently on three
data types: byte strings, words, and longwords.

Note that because NX 200 must know the data type to apply the appropriate conversion,
the word and longword conversion are applied only to data objects which NX 200 itself
interprets, such as configuration information or Ethernet Data Link protocol parameters.
Other data objects, such as an Ethernet packet's data field, are subject only to the byte
string conversion applied to any data transferred between host memory and EXOS 204
memory.

3-2

EXOS 204: Notations and Conventions

3.7. Data Alignment

The EXOS 204 requires special data alignment in only one instance. The configuration
message (see Section 4.4) must begin on an even logical address in host memory. All
data structures defined by NX 200 firmware are designed so that they can be efficiently
supported by processors and high-level languages which require even alignment of word
and longword data types.

While the EXOS 204 does not generally require even alignment, this practice is still
recommended, in order to obtain the optimum performance.

3.8. Memory Address Format

All memory addresses are 32-bit objects unless otherwise specified. They are stored in
memory in the same order as the longword data type. When NX 200's host data order
conversion option is enabled, it will apply the same conversions to addresses stored in
shared memory.

The interpretation of memory addresses by NX 200 depends on context. Any address
which refers to a location in EXOS 204 memory, whether the address value itself is
stored in EXOS 204 memory or in host memory, is always interpreted as a segmented
address. This term refers to the 80186 CPU's native address format. A segmented
address consists of a 16-bit segment base and a 16-bit offset address. At run time, the
80186 forms a 20-bit absolute address by shifting the segment base left by four places
(multiply by 16) and adding the offset to the result. Therefore a segmented address can
access 1 Mbyte of memory. Figure 3-1 shows how a segmented address is mapped
into the longword data type.

BIT
NUMBER

3 2 1 0

10987654321098765432109876543210

-+-
SEGMENT BASE OFFSET ADDRESS

-+-

Figure 3·1: Mapping of Segmented Address into Longword Data Type

When a segmented address is stored in EXOS 204 memory, it appears in the following
order:

Byte 0:
Byte 1:
Byte 2:
Byte 3:

Offset, low order
Offset, high order
Segment, low order
Segment, high order

Storage order in the host system memory should appear the same to the EXOS 204
unless the host data order conversion option is enabled, in which case it should appear
in the host CPU's native order for the longword data type.

The interpretation of addresses which refer to host system memory locations depends
on the EXOS 204's host address mode option. In segmented mode, they are
interpreted in the same manner as addresses referring to EXOS 204 memory locations.
The NX 200 also provides an absolute host address mode. An absolute address is a

3-3

BIT
NUMBER

EXOS 204: Notations and Conventions

3 2 1 0

1098765432109876543210987654321 0

-+-

RESERVED ABSOLUTE ADDRESS
-+-

Agure 3·2: Mapping of Absolute AddreH Into Longword Data Type

simple 18-bit physical memory address, mapped into the longword data type as shown
in Figure 3-2.

As shown in the figure, the most significant 14 bits are reserved, and should be set to 0.
When an absolute address is stored in EXOS 204 memory, it appears in the following
order:

Byte 0
Byte 1
Byte 2

Byte 3

(bits 0-7):
(bits 8-15):
(bits 16-23):

(bits 24-31):

least significant byte
somewhat significant byte
most significant byte (low-order 2 bits only);
the high-order 6 bits must be 0
reserved; must be 0

Storage order in the host system memory should appear the same to the EXOS 204
unless the host data order conversion option is enabled, in which case it should appear
in the host CPU's native order for the longword data type.

3.9. Shared Unibus Memory Access Restrictions

It is the user's responsibility to ensure that a specified Unibus memory address exists in
functional memory. If an invalid address is specified and the EXOS 204 attempts to
access it, then, depending on whether or not the ''time out" option has been jumper­
selected or not, one of the two things can happen:

If the time out option is not selected, then the EXOS 204 does not time out if no
memory response is received on the Unibus. To aid diagnostics, four Unibus
Status LEDs are provided. Their location on the EXOS 204 is shown in Section
11. When the LED DS4 is lit, the EXOS 204 is accessing the Unibus. Thus if the
LED is constantly lit then most likely the EXOS 204 has been given a non-existent
address and is stuck waiting for the response.

If the time out option is selected, then after 16 microseconds the EXOS 204 goes
offline and the status LED flashes the error code BA (Hex) at regular intervals.

The EXOS 204 can access data structures anywhere in the 256 Kbyte Unibus memory
space. It accesses this address space by dynamically mapping two consecutive 64-
Kbyte windows of its own CPU's address space into Unibus memory. User software
does not perform either the mapping or the data transfer; it simply gives addresses to
NX 200 firmware, which effects the transfer. Data structures that straddle beyond the
64-Kbyte bound are automatically accessed via the second window without any
remapping.

3-4

4. INITIALIZATION AND HOST INTERFACE

This section contains information pertinent to the design of host-resident software, such
as an 110 driver, which communicates with the EXOS 204 when it is installed in a
Unibus-based system. The host interface can be broken down into two aspects, the
initialization procedure, and the communication method used subsequently. Initialization
refers to the process which begins upon resetting the EXOS 204, and concludes either
with entering the Link Level Controller mode, or with the execution of down-loaded
software. During the process of initialization, the host system sets up the host message
queue data structures. The host message queue protocol, defined by NX 200 firmware,
uses these queues for all further communications between the host processor and the
EXOS 204.

The following paragraphs give an overview of the initialization process:

1) The host system resets the EXOS 204, which then executes self­
diagnostics. If the diagnostics fail, then the EXOS 204 displays an error
code on the NX 200 status LED (see Section 11) until reset again. If the
diagnostics pass, then the EXOS 204 awaits configuration by the host.

2) The host system passes the EXOS 204 the address of a configuration
message in host memory. The EXOS 204 examines this message, and
modifies some fields according to the results of configuration. If
configuration is unsuccessful, then the EXOS 204 again displays an
error code on the NX 200 status LED until reset. If the configuration
message is valid, then the EXOS 204 enters one of three modes, as
specified by the message's operation mode field.

3) Initialization for each of the three different modes. proceeds as follows:

a) In Link Level Controller Mode, the EXOS 204 begins to execute
firmware which brings NX 200's Ethernet Data Link driver
interface out to the host system interface. No software is down­
loaded; instead the host system passes Data Link commands to
the board, and receives replies, through the standard host
message queue protocol. This mode is described fully in
Section 5.

b) In Front-End Mode 1, the host system proceeds to down-load
software to the EXOS 204, by passing down-load request
messages through the standard host message queue protocol.
When the software has been down-loaded, it passes an execute
request to the board, which then begins to execute the down­
loaded software. Subsequent actions depend entirely on the
software which has been installed, although the host message
queue protocol remains in place.

c) In Front-End Mode 2, the EXOS 204 proceeds to bootstrap itself
from the Ethernet interface, as described in Section 10.
Depending on how the bootstrap server configures the EXOS
204, it may still communicate with the host system through the
standard host message queue protocol. Network bootstrap is
quite similar in many ways to initialization by a host processor;
the configuration message described in this section is exactly
identical.

4-1

EXOS 204: Initialization and Host Interface

4.1. Hardware Communications Facilities

Communication between the host processor and the EXOS 204 is conducted via a
coordinated exchange of interrupts, 1/0 instructions, and data transfers through shared
memory on the Unibus. The following sections define these primitive channels of
communication which are used during the process of initialization and, subsequently, to
implement the message queue protocol.

4.1.1. Host Access to the EXOS 204

The host's means of active access to the EXOS 204 are solely through two 1/0 ports,
named port A and port B here for the sake of reference. These ports are accessed over
the Unibus, and can be both read and written. Their addresses are selected by jumpers
on the EXOS 204, described in Section 11.

The effects of reading and writing ports A and B are summarized below:

Read A: No Operation.

Write A: resets the EXOS 204 (see Section 4.3).

Read B: returns the EXOS 204 status byte:

Bit 0: (Error Bit) when 0, indicates a fatal error in EXOS 204.
When the EXOS 204 is reset, this bit is 0, but will be set
to 1 if the self test completes successfully. If this bit is
not set within 2 seconds, then the EXOS 204 has failed
the self diagnostics. "'

Bits 1-2: undefined.

Bit 3: (Ready Bit) when 0, indicates that the EXOS 204 is ready
to accept a byte written into port B. When 1, the EXOS
204 has not yet read the byte last written into port B.

Bits 4-7: undefined.

Write B: interrupts the EXOS 204 CPU, and communicates a 1-byte value.
This is the only way to communicate a value to the EXOS 204 other
than through shared memory.

4.1.2. EXOS 204 Access to the Host

The EXOS 204 functions as a master on a Unibus system. It can access the full 256-
Kbyte memory address space which includes the 8K 1/0 address space, and interrupt
the host processor. User software on the EXOS 204 does not directly control these
resources. Instead, it calls NX 200's host interface driver, described in Section 8.

In general, data is transferred between the host and the EXOS 204 via shared memory,
which may be any portion of system memory accessible to both processors on the
Unibus. The EXOS 204's 80186 CPU performs the transfer by dynamically mapping
part of its own address space into the Unibus memory address space, and executing a
block transfer instruction or, under some circumstances, using the OMA on the 80186.
Note that the EXOS 204's on-board memory cannot be shared; it is not directly
accessible by the host processor.

4-2

EXOS 204: Initialization and Host Interface

The EXOS 204 can interrupt the host either through memory addresses or the Unibus
interrupt lines. The type which will be used is selected at initialization time.
Memory interrupt addresses are configured by software; the interrupt line is selectable
by means of a jumper option, described in Section 11.

4.2. Host Data Order Conversion Option

The host data order conversion option determines whether the EXOS 204 will interpret
data read from host memory according to its own native ordering, or according to the

host CPU's native ordering. This option is selected by a field in the configuration
message (see Section 4.4.5). If enabled, then the NX 200 inspects a known data
pattern in the configuration message, written in the host CPU's native order. It
determines what conversions are necessary to make this pattern appear in the order it
expects, for several different data types: byte array, word array, and longword. NX 200
will then apply the appropriate conversion to all data objects subsequently read from
host memory.

Length Offset Sub-Field Name Value

1) 0 I Byte o I O 1 H

1--------------------------------1
2) I Byte 1 I 03H

!--------------------------------!
3) 2 I Byte 2 I 07H

1--------------------------------1
4) 3 I Byte 3 I OFH

!--------------------------------!
5) 2 4 I Word o I 0103H

I I
!--------------------------------!

6) 2 6 I Wo r d 1 I O 7 O FH

I
!--------------------------------

7) 4 8 ' Longword 0103070FH

I
I
I
!--------------------------------

8) 20 12 : Reserved zero

l<------------1 byte------------>!

Figure 4-1: Host Data Order Conversion Option Test Pattern

4-3

EXOS 204: Initialization and Host Interface

For the word data type, NX 200 can swap bytes if necessary. For the longword data
type, NX 200 can swap words, swap bytes, or both. Therefore 110 driver software for
any reasonably normal host CPU can store data objects in its native order, and leave
conversion up to the EXOS 204.

Naturally, the EXOS 204 must know the type of a data object to apply the appropriate
conversion. All data objects described in this section are known to NX 200, except for
the actual contents of messages between the host and the EXOS 204. NX 200 does
apply the byte array conversion (if necessary) to message contents, and to all data
transferred. How the contents of messages should be further interpreted is the function
of user-level software running on the EXOS 204. For instance, the firmware which
drives the Link Level Controller Mode (see Section 5) runs at user level under NX 200,
and converts word and longword data objects which are known to itself, but not to NX
200. NX 200 assists this process by providing kernel calls (see Section 8.4) which
convert word and longword data types as required by the host data order conversion
option.

Whether or not the host data order conversion option is enabled, the host system must
still write the required data pattern in the configuration message. This pattern occupies
12 bytes of the 32-byte test pattern/memory map field (see Section 4.4.10). It should be
initialized as shown in Figure 4-1. Note that while the relative position of subfields in the
test pattern is specified, the order of bytes within those subfields is dependent on the
host CPU architecture. Figure 4-2 shows how this pattern might be initialized in the C
language, both statically and dynamically.

Note that memory addresses, regardless of the host address mode, are stored and
interpreted as the longword data type. For instance, the longword test pattern can also
be regarded as a memory address in the host's native format for the absolute address
0103070FH (if absolute address mode is selected) or for segment 070FH, offset 0103H
(if segmented mode is selected).

If NX 200 cannot make any sense of the test pattern presented by the host, then
initialization is aborted, and the appropriate error code displayed on the status LED.

4.3. Reset and Configuration Procedure

This section describes initialization by a host system up to the completion of
configuration. Figure 4-3 shows a typical procedure which implements as much.

The EXOS 204 is reset by the Unibus INIT signal, or whenever port A is written from the
Unibus. Host software should use the latter method to be sure. On reset the EXOS 204
performs a series of self tests to confirm hardware integrity. While these tests run, the
NX 200 status LED (see Section 11) will remain lit constantly. When self-diagnostics
complete successfully, the EXOS 204 sets the error bit in 1/0 port B and flashes the
status LED at regular intervals.

If the error bit is not set within 2 seconds of reset, the host may assume that self­
diagnostics turned up a problem. In this case, the EXOS 204 repeatedly reports an
error code through the NX 200 status LED (for error code values, see Section 11). The
EXOS 204 will remain in this state until reset again.

A jumper option, described in Section 11, determines how initialization will proceed after
reset and self-diagnostics. If the jumper selects network bootstrap, then the EXOS 204
will attempt to down-load software over the Ethernet (see Section 10). Otherwise the
EXOS 204 awaits configuration by the host processor.

4-4

EXOS 204: Initialization and Host Interface

/* constants for test pattern "/

#define BYTEO Ox01

#define BYTE1 Ox03

#define BYTE2 Ox07

#define BYTE3 OxOF

#define WORDO Ox0103

#define WOAD1 Ox070F

#define DWORD Ox0103070F

/* static initialization of test pattern "I

struct tstptrn {

};

char byteptrn[4];

short wordptrn[2];

long lwordptrn;

char rsrvd[20];

struct tstptrn tp = {

};

BYTEO, BYTE1 I BYTE2, BYTE3,

WORDO, WOAD1 I

DWOAD,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

I* dynamic initialization of test pattern "/

initptrn ()

{

register int i;

tp.byteptrn[O] = BYTEO:

tp.byteptrn[1] = BYTE1;

tp.byteptrn[2] = BYTE2:

tp.byteptrn[3] = BYTE3;

tp.wordptrn[O] = WOADO:

tp.wordptrn[1] = WOAD1;

tp.lwordptrn = DWORD;

for (i=O; i<20: i+ +) tp.rsrvd[i] = O:

Figure 4-2: Host Data Format Test Pattern Initialization

The host configures the EXOS 204 by passing it the address of a configuration
message, located in shared memory. This message establishes various NX 200
parameters and selects among several modes of operation. Parameters include
memory allocation for NX 200 objects, the address of NX 200's movable data area in
EXOS 204 memory, and the location of message queues in shared memory. Among
the optional operation modes, the host can select network bootstrap. This will proceed
as though the net boot jumper option had been installed, except that NX 200 will first
note the contents of the host configuration message. Other configuration options
include host data order conversion and the host address mode.

4-5

EXOS 204: Initialization and Host Interface

extern read_port(Port_Num) I* returns value read from port Port_Num ·1

extern write_port(Port_Num. Val) I* writes Val to port Port_Num ·1

extern start_ clock() I* starts an interval timer ·I

extern clock()/* returns the current value of the interval timer ·1

I* bit value definitions for status byte read from port B ·1

#define ERROR_BIT 1

#define READY _BIT 8

#define ERRNON 0

struct { I* configuration message*/

short reserved:

char version(4);

char comp_code;

<etc ... >

} init_msg;

char init_addrs[B] = {OxFF, OxFF, 0, 0, <absolute address of init msg> };

I* see Section 3.9 for absolute address format*/

initialize () {

< set up init_msg and the message queues (see Section 4.6) >;

write-port(A); I* reset the EXOS 204 ·I

start_clock(); I* start timer, clock counts real time */

I* wait until self test completes */

while ((read_port(B) & ERROR_BIT) = = 0) {

if (clock() > 2_SECONDS) {

return (malfunctioning_board);

I* write the configuration message address*/

for (i=O; i<8; i+ +) {

while (read_port(B) & READY _BIT);

write_port(B,init_addrs[i]);

I* wait for the reply message ·;

while (init_msg.comp_code = = OxFF);

I* ensure no errors "/

if (init_msg.comp_code != ERRNON)

return (error);

else

return (success);

Figure 4-3: Typical Reset and Configuration Procedure

4-6

EXOS 204: Initialization and Host Interface

The host processor communicates the address of the configuration message to the
EXOS 204 by writing a sequence of 8 bytes into port B. Each byte should be written
after checking that the ready bit of the EXOS 204's port B is clear. This ensures that
the EXOS/204 is ready to accept the next address byte. The first four bytes of the
sequence must be FF-FF-00-00 (sent from left to right). The next four bytes are the
configuration message's absolute Unibus memory address (least significant byte first).
The configuration message must be aligned on a even address boundary. When the
last byte is written, the EXOS 204 reads and interprets the configuration message. If
the address for the initialization message is not valid, then the EXOS 204 will display an
error code on the status LED (see Section 11).

When the EXOS 204 has finished processing the configuration message, it writes a
completion code into the appropriate field of the message. Any value other than OFFH
indicates completion; the value O indicates successful configuration. Other values
denote specific errors in configuration (see Section 4.4.3). Normally, configuration
should complete within 2 seconds, but network bootstrap might take longer, depending
on circumstance. NX 200 also returns a few parameters to the host in the configuration
message, notably its version number and a map of available memory.

Once configuration is complete, the memory space occupied by the configuration
message can be used for any other purpose. After configuration, communication
between the host and the EXOS 204 is carried out solely by means of message queues,
described in Section 4.5.

4.4. Configuration Message Format

Figure 4-4 shows the format of the configuration request/reply message. This is used
identically by either a host system or a network bootstrap server. The following
paragraphs explain the individual fields in detail. Note that reply values other than the
completion code field itself are defined only if configuration is successful.

4.4.1. Reserved Field

The first field is reserved for use by NX 200. Its value in the request message must be
1, and its return value is undefined.

4.4.2. EXOS Version Code Field

The EXOS version code field is undefined in the request message. In the reply
message, it returns version codes for NX 200 and the EXOS 204 in the form X. Y and
A.B, respectively. These are expressed as ASCII digits, one per byte in the order X-Y­
A-8, starting from the lower address.

4.4.3. Configuration Completion Code Field

The completion code field must be OFFH in the request message. The EXOS 204
signals that configuration is complete, and returns the completion code, by writing one of
the following codes into this field:

OOH successful completion.

A4H invalid operation mode.

ASH invalid host data format test pattern. This occurs when NX 200 cannot
find any reasonable conversion to derive the expected data pattern from
that supplied in the test pattern. In practice, this might imply that the

4-7

EXOS 204: Initialization and Host Interface

Length Offset

1) 2 0

2) 4 2

3) 6

4) 7

5) 2 8

6) 3 10

7) 13

8) 1 4

9) 1 5

10) 32 1 6

11) 4 48

12) 52

13) 53

14) 54

15) 55

Field Name Request Reply

I Reserved I undefined
I

--------------------------------1
EXOS Version Code undefined see text

I
I

--------------------------------!
Configuration Completion Code I OFFH see text

--------------------------------!
EXOS Operation Mode I see text preserved

--------------------------------!
Host Data Format Option I see text see text

I
!--------------------------------!

EXOS Context I zero see text
I
I

--------------------------------!
Host Address Mode I see text see text

--------------------------------!
Reserved I zero undefined

--------------------------------!
Memory Map Size I zero see text

--------------------------------1
' Test Pattern/Memory Map see text see text

1--------------------------------1
I NX Movable Block Address I see text see text
I I
I I
I I
1--------------------------------1
I Number of Processes I see text see text
1--------------------------------1
I Numb e r o f Ma i I b o x e s I s e e t e x t s e e t e x t
1--------------------------------1
I Number of Mu I t i cast SI o ts I see text see text
1--------------------------------1
I Number of Hosts I see text preserved
1--------------------------------1

continued on next page

Figure 4-4: Configuration Request/Reply Message

4-8

EXOS 204: Initialization and Host Interface

Length Offset Field Name Request Reply

16) 4

17) 2

18)

19)

20) 4

21) 4

22) 2

23)

24)

25) 4

Agure 4-4a:

.... continued from previous page

1--------------------------------1
56 I Host-to-EXOS Message Queue I see text preserved

I Base Address I
I I
I I
--------------------------------!

60 Host-to-EXOS Message Queue I see text preserved
Header Address I

--------------------------------1
62 Host-to-EXOS MO Interrupt Type I see text preserved

--------------------------------!
63 Host-to-EXOS MO Int . Value I see text preserved

--------------------------------!
64 Host-to-EXOS Message Queue I see text preserved

Interrupt Address I
I
I

--------------------------------!
68 I EXOS-to-Host Message Queue see text preserved

I Base Address
I
I I
1--------------------------------1

72 I EXOS-to-Host Message Queue I see text preserved
I Header Address I
1--------------------------------1

74 I EXOS-to-Host MO Interrupt Type I see text preserved
1--------------------------------1

75 I EXOS-to-Host MO Int . Value I see text preserved
1--------------------------------1

76 I EXOS-to-Host Message Queue I see text preserved
I Interrupt Address I
I I
I I

l<------------1 byte - - - - - - - - - - - ->I

Configuration Request/Reply Message (continued)

host has given the EXOS 204 the wrong address for the configuration
message.

4-9

EXOS 204: Initialization and Host Interface

A 7H invalid configuration message format. This may occur if reserved fields
contain an improper value. In practice, this error message may indicate
that the host has given the EXOS 204 the wrong address for the
configuration message.

ASH invalid movable block address.

A9H invalid number of processes.

MH invalid number of mailboxes.

ABH invalid number of address slots.

ACH invalid number of hosts.

ADH invalid host message queue parameter. NX 200 returns this error if it
detects any inconsistency in the message queue specifications. This
might include a bad interrupt type, invalid segment address, bad linking
of the message queue buffers, etc.

AEH insufficient memory for movable data block.

AFH net boot failed.

The codes defined above will also be displayed on the status LED if configuration is not
successful.

4.4.4. EXOS 204 Operation Mode Field

The EXOS 204 operation mode field determines the mode in which the EXOS 204 is to
be used. Three different modes are supported:

O Link Level Controller Mode. This mode brings the Ethernet Data Link
interface out to the host interface. No software is down-loaded. It would
typically be used when the EXOS 204 is substituted for the traditional
non-programmable Ethernet controller board. For details, see Section 5.

1 Front-End Mode, down-load from the host. In this mode the EXOS 204
is used as a front-end processor. Higher level software is down-loaded
by the host.

2 Front-End Mode, down-load from the net. In this mode the EXOS 204 is
used as a front-end processor and higher level software is down-loaded
from the network. For details, see Section 10.

All other values for the mode are reserved and their effects are not defined. If the
EXOS 204 is already in the process of network bootstrap (meaning that the configuration
message has been received from a bootstrap server) then only mode 2 is permitted.

4.4.5. Host Data Order Option Field

The host data order option field enables the host data order conversion option (see
Section 4.2). Because the byte order of the host CPU will not be known before
initialization, this field is actually treated as two one-byte fields. The host should load
the same value into each sub-field in the request message. This value is defined
bitwise:

Bit 0: Deduce Format Bit. If 0, NX 200 will apply the conversions currently
in force. If the board has not been previously configured, then the
default conversion will be in force, meaning that no format

4-10

EXOS 204: Initialization and Host Interface

conversions are applied to data read from the host. If this bit is 1,
then NX 200 examines a constant data pattern written by the host in
the configuration message's test pattern/memory map field, and
deduces what format conversion are necessary to interpret various
data types stored in the host CPU's native format.

Bits 1-7: Reserved. These bits must be 0 in the request message.

When initialized, NX 200 examines this field first, and interprets all other fields in the
configuration message accordingly. This field is undefined in the reply message.

4.4.6. EXOS Context

This 3-byte field returns the EXOS context information. In the request message the
value of this field must be zero. In the reply message, the middle byte (offset 11)
returns the context value; the other two bytes are undefined. For the EXOS 204 the
context value must be 04.

4.4. 7. Host Address Mode Field

The host address mode field determines how NX 200 will interpret addresses which refer
to objects in host memory. It is defined bitwise:

Bit 0: Set Mode Bit. If 0, NX 200 will use the address mode currently in
force. If the board has not been previously configured, then the
default mode will be in force, meaning that NX 200 will interpret all
addresses as 80186-style segmented addresses. If this bit is 1, then
the next bit determines the new address mode.

Bit 1: Address Mode Bit. The value O selects segmented address mode.
The value 1 selects absolute address mode.

Bits 2-7: Reserved. These bits must be zero in the request message.

This field is undefined in the reply message.

4.4.8. Reserved Field

This field is reserved for future use. Its value in the request message must be 0. Its
value in the reply message is undefined.

4.4.9. Memory Map Size Field

The memory map size field must be 0 in the request message. In the reply message, it
returns the number of segments available in EXOS 204 memory for user software. This
field contains a valid value only if the EXOS 204 is configured in mode 1 or mode 2.

4.4.10. Test Pattern/Memory Map Field

The test pattern/memory map field serves different purposes in the request and reply
messages. In the request message, it must contain the test pattern described in Section
4.2, stored in the host CPU's native format.

In the reply message, the test pattern/memory map field contains a map of memory
available for user software on the EXOS 204. This map consists of up to 4 segment
descriptors, where the actual number is indicated by the last field. Each segment
descriptor specifies a memory segment in terms of the lowest address and the highest
address included within the segment. Each address is four bytes long, in the

4-11

EXOS 204: Initialization and Host Interface

segmented format. The lower bound is given first, then the upper bound. This field
contains a valid value only if the EXOS 204 is configured in mode 1 or mode 2. If the
optionl 128K of RAM between 20000H and 3FFFFH is either absent or is malfunctioning,
then the map will not contain this segment.

4.4.11. NX 200 Movable Block Address Field

The NX 200 movable block address field can be used to redefine the location of NX
200's movable data area, described in Section 6.2. If the EXOS 204 is configured in
mode O, this field must be OFFFFH, OFFFFH. In modes 1 or 2, the value OFFFFH,
OFFFFH specifies that the default location be used. If a non-default address is specified,
the segment base must be 0. The offset must place the entire block either between
200H and 3FFH, or between 1 OOOH and OFFFFH.

In the reply message, this field returns the actual address of the NX 200 movable data
area. The reply value is not defined in mode 0.

4.4.12. Number of Processes Field

The number of processes field configures the maximum number of processes which NX
200 will support. If the EXOS 204 is configured in mode 0, this field must be OFFH. In
modes 1 or 2, the value OFFH specifies that the current value be used. The default
value, after reset, is 12. Optionally, a value between 1 and 128 can be specified. In the
reply message, this field returns the actual number of processes which NX 200 will
support. The reply value is not defined in mode 0.

4.4.13. Number of Mailboxes Field

The number of mailboxes field configures the maximum number of mailboxes which NX
200 will support. Note that this number does not include system mailboxes. If the
EXOS 204 is configured in mode 0, this field must be OFFH. In modes 1 or 2, the value
OFFH specifies that the current value be used. The default value, after reset, is 16.
Optionally, a value between 1 and 128 can be specified. In the reply message, this field
returns the actual number of mailboxes which NX 200 will support. The reply value is
not defined in mode O.

4.4.14. Number of Multicast Slots Field

The number of multicast slots field configures the maximum number of multicast address
slots which NX 200 will support. Note that this number does not include the physical,
broadcast, universal, or null slots, which are permanently allocated. The value OFFH
specifies that the current value be used. The default value, after reset, is 8. Optionally,
a value between O and 252 can be specified. In the reply message, this field returns the
actual number of address slots which NX 200 will support.

4.4.15. Number of Hosts Field

The number of hosts field specifies the number of host CPUs on the Unibus interface.
Permissible values depend on the mode of operation. In all modes, the value OFFH will
retain the value currently in force. Upon first configuration, the default value is 1. In
operation modes O and 1, only the value 1 may otherwise be specified. However in
mode 2 (network bootstrap), this field can be either O or 1. If O, then the host message
queues are undefined and the configuration message fields pertaining to them will not be
examined. Its value is preserved in the reply message.

4-12

EXOS 204: Initialization and Host Interface

4.4.16. Host-to-EXOS Message Queue Base Address Field

The host-to-EXOS message queue base address field specifies the base address of the
shared memory which contains the queue data structures for transferring messages
from the host to the EXOS 204 (see Section 4.5). Addresses for all message queue
data structures are 16-bit offsets, calculated relative to this base. NX 200's
interpretation of this base address depends on the host address mode selected (see
Sections 3.9 and 4.4. 7).

In segmented mode, this field must contain an 8086-style segmented address, stored
according to the convention described for the longword data type (lower-order 16 bits
contain the offset, higher-order 16 bits contain the segment). The offset value of this
address must be O; therefore the segment begins on some even 16-byte address
boundary.

In absolute mode this field contains a 18-bit absolute memory address, also stored as a
longword. The lower-order 18 bits contain the address; the remaining high-order 14 bits
are reserved and must be 0. Furthermore, the lower-order 4 bits of the address must
also be 0, so that the segment begins on some even 16-byte address boundary.

This field's value is preserved in the reply message.

4.4.17. Host-to-EXOS Message Queue Header Address Field

The host-to-EXOS message queue header address field specifies the offset of the
queue header. This offset must be calculated relative to the base address specified for
the host-to-EXOS message queue. Its value in the reply message is preserved.

4.4.18. Host-to-EXOS Message Queue Interrupt Type Field

The host-to-EXOS message queue interrupt type field specifies the type of interrupt
which the EXOS 204 will use to alert the host of a change in the status of the Host-to­
EXOS 204 message queue. Options are:

0 no interrupt. The host polls the message queues.

undefined.

2 memory mapped. The EXOS 204 writes a specified value at the
specified memory address.

3 undefined.

4 bus-vectored interrupt.

The value of this field is preserved in the reply message.

4.4.19. Host-to-EXOS Message Queue Interrupt Value Field

The host-to-EXOS message queue interrupt value field is defined only for memory
mapped interrupt type. If interrupt type 2 is selected, then this value will be written to
the specified memory address when an interrupt is asserted. The value of this field is
preserved in the reply message.

4.4.20. Host-to-EXOS Message Queue Interrupt Address Field

The host-to-EXOS message queue interrupt address field is defined only memory
mapped and bus-vectored interrupt type. If interrupt type 2 is selected, then it contains a
Unibus memory address, which NX 200 will interpret according to the host address

4-13

EXOS 204: Initialization and Host Interface

mode. If interrupt type 4 is selected, then the first word contains an interrupt vector;
contents of the second word are undefined. The value of this field is preserved in the
reply message.

4.4.21. EXOS-to-Host Message Queue Base Address Field

The EXOS-to-host message queue base address field specifies the base address of the
shared memory which contains the queue data structures for transferring messages
from the EXOS 204 to the host (see Section 4.5). This is exactly equivalent to the
host-to-EXOS message queue base address field (see Section 4.4.16). Its value in the
reply message is preserved.

4.4.22. EXOS-to-Host Message Queue Header Address Field

The EXOS-to-host message queue header address field specifies the offset of the
queue header. This offset must be calculated relative to the base address specified for
the EXOS-to-host message queue. Its value in the reply message is preserved.

4.4.23. EXOS-to-Host Message Queue Interrupt Type Field

The EXOS-to-host message queue interrupt type field specifies the type of interrupt
which the EXOS 204 will use to alert the host of a change in the status of the EXOS
204-to-host message queue. Options are:

0 no interrupt. The host polls the message queues.

undefined.

2 memory mapped. The EXOS 204 writes a specified value at the
specified memory address.

3 undefined.

4 bus-vectored interrupts.

The value of this field is preserved in the reply message.

4.4.24. EXOS-to-Host Message Queue Interrupt Value Field

The EXOS-to-host message queue interrupt value field is defined only for memory
mapped interrupt type. If interrupt type 2 is selected, then this value will be written to
the specified memory address when an interrupt is asserted. The value of this field is
preserved in the reply message.

4.4.25. EXOS-to-Host Message Queue Interrupt Address Field

The EXOS-to-host message queue interrupt address field is defined only for memory
mapped and bus-vectored interrupt types. If interrupt type 2 is selected, then it
contains a Unibus memory address, which NX 200 will interpret according to the host
address mode. If interrupt type 4 is selected, then the first word contains an interrupt
vector; contents of the second word are undefined. The value of this field is preserved
in the reply message.

4.5. Message Queue Format

Once the EXOS 204 is configured, message queues in shared memory serve all further
communications with the host. This includes software down-load, link level controller
mode service requests, and communication with down-loaded protocol code. Two

4-14

EXOS 204: Initialization and Host Interface

message queues are maintained by the NX 200 firmware, one for each direction of
transfer. This section describes the format of the data structures which compose a
message queue. Following sections describe how these must be initialized, and then
the protocol which ensues after configuration.

Each message queue necessarily includes one queue header and a singly-linked,
circular list of message buffers. The required queue header belongs to the EXOS 204; it
reads and modifies its value during message exchange. The host may read it, but must
not modify it. The EXOS 204 queue header and all message buffers must lie within a
single 64K area of memory, called the queue segment.

Message queue data structures are described here as viewed by NX 200. The
configuration message provides NX 200 with the queue segment base and the offset
address of the queue header, for each queue. NX 200 regards the queue header value
and link field values as 16-bit offsets calculated relative to the queue segment base. As
long as this view is preserved for NX 200, users are perfectly free to augment these
data structures in any manner necessary to implement the desired mechanisms for the
host message handling software.

Figure 4-5 shows the format of a message buffer, and the following paragraphs describe
the individual fields in detail.

4.5.1. Link Field

The link field is the address of the next buffer in the circular queue. This address must
be an offset calculated relative to the queue segment base specified in the configuration
message. This field is static and should not be changed after configuration.

4.5.2. Reserved Field

This field is reserved. It must be initialized with the value 0, and set to O in Host-to­
EXOS messages. Its value in reply message is undefined.

4.5.3. Status Field

The status field is used to implement the message protocol, and is defined bit by bit:

Bit 0: Owner bit. If 0 then the buffer is owned by the host; if 1 then the
buffer is owned by the EXOS 204. The host may alter a message
buffer only while it has ownership.

Bit 1 : Done bit. The EXOS 204 sets this to O along with the owner bit
every time it passes a buffer to the host. Host software can use the
done bit to distinguish between buffers newly received from the
EXOS 204 and buffers it has already processed.

Bit 2: Overflow Bit. The EXOS 204 sets this bit to 1 if an EXOS-to-Host
message had to be truncated because the host buffer's Data Field
was shorter than the message sent.

Bits 3-7: undefined. These bits are reserved for the EXOS 204, and should
not be used for any purpose by the host.

4-15

EXOS 204: Initialization and Host Interface

Length Offset Field Name

1) 2 0 I Link

I I
1--------------------------------1

2) 2 I Reserved I
1------------------- ·------------1

3) 3 I Status I
1--------------------------------1

4) 2 4 I Length I
I I
1--------------------------------1

5) n 6 Data

l<------------1 byte------------>I

Figure 4-5: Message Buffer Format

4.5.4. Length Field

The length field specifies the number of bytes in the data field. The maximum length of
the data field is a matter of agreement between the host and the user software on the
EXOS 204. There is no restriction on the size of the data field as long as the buffers
satisfy the queue segment constraints. Most applications will transfer small amounts of
control information via messages, and use direct memory access to move larger data
buffers.

In Host-to-EXOS messages, set this field's value before passing the message to the
EXOS. In EX OS-to-Host messages, this field tells the host how many valid bytes were
written into the data field. The host must reset its value to the data field's size before
returning a buffer to the EXOS.

4.5.5. Data Field

The data field contains the actual message data passed between the host and the
EXOS 204. NX 200 does not interpret its contents in any way - it is exactly equivalent
to the data field in messages as seen by processes on the EXOS 204 (see Section 8).

4.6. Message Queue Initialization

The host must initialize the message queues and the queue headers prior to configuring
the EXOS 204. Figure 4-6 shows the relation between queue headers and message
queue buffers at initialization time for a typical implementation. In each queue, the host
and EXOS 204 queue headers should point to the same buffer.

4-16

EXOS 204: Initialization and Host Interface

HOST-TO-EXOS MESSAGE QUEUE EXOS-TO-HOST MESSAGE QUEUE

Q HEADER !MESSAGE I
BUFFER

~
I I
IMESSAGE I

BUFFER

~
'

MESSAGE I
BUFFER

EXOS 204
Q HEADER

.,_E_X_O_S-20-4-Jl-i_

Q HEADER I MESSAGE
BUFFER I

I I

h
!MESSAGE I

BUFFER

h
I
MESSAGE
BUFFER

Figure 4-6: Message Queue Data Structures at Initialization Time

For each queue, the link fields should be initialized to form a circular, singly-linked list.
This ring structure should not be modified after configuration. Each queue may contain
an arbitrary number of buffers, so long as at least one is supplied. The reserved field of
all message buffers in both queues should be set to 0.

In the host-to-EX OS queue the status field of all buffers should contain the value 02H,
which indicates that they are owned by the host. The length and data fields are not
defined at initialization.

In the EXOS-to-host queue the status field of all buffers should contain the value 03H,
which indicates that they are owned by the EXOS 204. The length field of each buffer
should not exceed the size of the data buffer. Note that the length field must be
initialized to accommodate the length of the largest message expected from the EXOS
204, or the message will be truncated upon reception. The data field is not defined at
initialization.

Figure 4-7 is a snapshot of an example EXOS-to-host message buffer queue at the time
of initialization. This example assumes a PDP-11 host system, where the EXOS 204 is
configured in the segmented host address mode. The configuration message describing
the queue is also shown in part. Data structures are shown as vectors containing
hexadecimal byte values. The Unibus physical address of each data structure is shown
to the left (slightly above the location), and its name to the right. According to the
configuration message in this example, writing the value 40H at memory location

4-17

HOST
Q HEADER

10000H

10044H
OOH
OOH
OOH
20H

10048H
D2H
14H

1004AH
02H

1004BH
40H

1004CH
44H
20H
OOH
10H

12044H

EXOS 204: Initialization and Host Interface

Co n f i g u r a t i o n
Message

Queue Base Address

Q ueue H d ea er Add ress

Interrupt Type

Interrupt Value

Interrupt Address

M emery-mapped
Interrupt
Loe at ion

214D2H -

215D2H

215D4H

215D5H

215D6H

215D8H
I

215F8H '
I

216D2H
~

216D4H

216D5H

216D6H

216D8H
I

216F8H I

I

217D2H --......

217D4H

217D5H

217D6H

217D8H

217F8H

Figure 4-7: Example EXOS-to-Host Message Queue, at Initialization

4-18

D2H
15H

D2H
16H

OOH

03H

20H
OOH

I
I

I

D2H
17H

OOH

03H

20H
OOH

I
I

I

D2H
15H

OOH

03H

20H
OOH

Queue Segment
Base

Q ueue H d ea er

Link Field

--
Reserved Field

Status Field

Length Field

Data Field

Link Field

Reserved Field

Status Field

Length Field

Data Field

Link Field

Reserved Field

Status Field

Length Field

Data Field

EXOS 204: Initialization and Host Interface

12044H will interrupt the host. NX 200 will assert this interrupt when the status of the
EXOS-to-host message queue changes, as described in the following section. The
circular message queue shown here contains three buffers of equal length, each
providing a 32-byte data field. The queue header points to one of the buffers, arbitrarily
chosen, at its link field address.

4.7. Message Queue Protocol

This section describes the protocol which NX 200 follows in sending messages to, and
receiving messages from, the host processor. As it happens, host software can follow
the same procedure, so that the exchange is symmetrically defined. The description
below assumes such an implementation, but certainly other methods are possible, within
the constraints of NX 200's behavior.

In a typical implementation, the host system and the EXOS 204 each maintain private
queue headers for both queues (see Figure 4-6). The EXOS 204's host-to-EXOS
message queue's header points to the message buffer which NX 200 will receive next.
The EXOS 204's EXOS-to-host message queue's header points to the message buffer
which NX 200 will send to next. NX 200 maintains these queue headers after
configuration. Although the EXOS 204 queue headers are kept in host memory, after
initialization the host should not refer to these. Similarly, the EXOS 204 will not refer to
the host's own queue headers. Host queue headers may be of any format (16-bit offset,
32-bit virtual address, array index, etc.) which is most convenient to the host software.

For the host-to-EXOS queue, the host's queue header should always point to the next
buffer in which the host will send a message. The EXOS 204's queue header will
always point to the next buffer in which the EXOS 204 will look for a message. Both
pointers will always move sequentially through the message queue. Note that unless a
message arrives on the next buffer, the EXOS will not scan any further jn the queue~
This means that the host should always write the message in the next buffer where the
EXOS expects it to be rather than in any arbitrary position in the queue. During the
course of message processing, the host's queue header may end up several buffers
ahead of the EXOS 204's queue header, but should never "lap" it from behind. Any
difference between the headers represents buffers which the EXOS 204 has not yet
consumed.

For the EXOS-to-host queue, the host's queue header should always point to the next
buffer in which the host will look for a message. The EXOS 204's queue header will
always point to the next buffer in which the EXOS 204 will send a message. As above,
both pointers will always move sequentially through the message queue. Note that
unless the next buffer is available to the EXOS 204, it will not scan any further to find a
free buffer to write the message. This means that the EXOS will always write the
message in the next buffer where the host expects it to be rather than in any arbitrary
position in the queue. During the course of message processing, the EXOS 204's
queue header may end up several buffers ahead of the host's queue header, but again,
should never "lap" it from behind. Any difference between the headers represents
buffers which the host has not yet consumed.

4. 7.1. Host-to-EXOS Message Transfer

Host software can transfer messages to the EXOS 204 using the following steps:

1) Test the owner bit of the buffer to which the host queue header points.
If the EXOS 204 still owns this buffer, then wait until it is returned (either
poll the owner bit, or wait for the interrupt which accompanies each
buffer turnover event).

4-19

EXOS 204: Initialization and Host Interface

2) Advance the host queue header, so that it now points to the next buffer
in the queue.

3) Load the message into the data field of the current buffer, and set the
length field appropriately.

4) Set the current buffer's owner bit, so that the buffer now belongs to the
EXOS 204.

5) Interrupt the EXOS 204 by writing to port B, to notify it that a new
message is available.

The EXOS 204 can process more than one message from the host upon receiving a
single interrupt. Therefore it is important that the host change the buffer's owner bit only
after preparing the other fields. Otherwise, if the EXOS 204 is still processing a previous
interrupt from the host, it may consume a half-baked message. Note that the host may
prepare more than one message buffer at a time, and send a single interrupt, if sufficient
buffers are available.

When the EXOS 204 receives an interrupt from the host, it will:

1) Examine the owner bit of the buffer to which its own queue header
points. If the buffer belongs to the EXOS 204, then it will process it, as
described in the following steps. (Otherwise, the interrupt could mean
that the host is returning an EXOS-to-host message buffer, or could be
spurious.)

2) Load the link field of the current buffer into its queue header, so that it
now points to the next buffer in the queue.

3) Extract the message from the current buffer. If there is no consumer for
this data (no receive request on the NX 200's host interface mailbox),
then wait.

4) Reset the current buffer's owner bit, so that the buffer is returned to the
host. Set the buffer's done bit too.

5) Interrupt the host to notify it that a buffer has been returned. The type of
interrupt is specified by the configuration message. Repeat from step 1,
until the owner bit shows that no new messages are pending.

Note that the interrupt described in step 5 is the same interrupt which the host waits
upon when no message buffers are available.

4.7.2. EXOS-to-Host Message Transfer

When the EXOS 204 has a message to transfer to the host, NX 200 will:

1) Test the owner bit of the buffer to which its queue header points. If the
buffer belongs to the EXOS 204, then process it, as described in the
following steps. Otherwise, wait for an interrupt from the host which
indicates that a buffer has been returned (NX 200 can process other
jobs in the mean time).

2) Load the link field of the current buffer into its queue header, so that it
now points to the next buff er in the queue.

3) Load the message into the data field of the current buffer, and set the
length field to the length actually transferred (it will not exceed data field

4-20

EXOS 204: Initialization and Host Interface

length). If the data field was too short for the message, then it sets the
overflow bit.

4) Reset the current buffer's owner bit, so that the buffer now belongs to
the host. Set the buffer's done bit to 0.

5) Interrupt the host to notify it that a new message is available. The type
of interrupt is specified by the configuration message.

When the host receives an interrupt from the EXOS 204, it can:

1) Examine the owner bit of the buffer to which the host queue header
points. If the buffer belongs to the host, then it should process it, as
described in the following steps. (Otherwise, the interrupt could mean
that the EXOS 204 is returning a host-to-EXOS message buffer, or could
be spurious.)

2) Advance the host's own queue header, so that it now points to the next
buffer in the queue.

3) Extract the message from the current buffer. It may check the overflow
bit to be certain that the entire message was sent. If there is no
consumer for this data, then wait.

4) Set the length field to the size of the data field.

5) Set the current buffer's owner bit, so that the buffer is returned to the
EXOS 204.

6) Interrupt the EXOS 204 by writing to port B, to notify it that a message
buffer has been returned. Repeat from step 1, until the owner bit shows
that no new messages are pending.

While the host is processing an interrupt, the EXOS 204 may in the meantime write
more messages into the queue. The host may elect to process these messages in
addition to the message associated with the interrupt being serviced. Note', however,
that at least one interrupt will remain pending, so that when interrupts are re-enabled,
the host will be again interrupted by the EXOS 204, although the corresponding
message would have already been processed.

Although the above description assumes that the EXOS 204 is programmed to interrupt
the host to signal message queue events, the host also has the option of simply polling
the message queue.

4.8. Down-Loading Software from the Host

Normally, if the EXOS 204 is configured in mode 1, host software would then down-load
and run higher level protocol software. Two message formats are provided for this
purpose, one to copy user code and data to the EXOS 204, and another to start code
execution. For each message the EXOS 204 sends a corresponding reply message
which confirms the completion of the request.

4.8.1. Host Down-Load Request

The host can copy code to any location in EXOS 204 memory which is normally
available to the user. The down-load request copies buffers up to 64K-1 each in size, in
any order, without modification. NX 200 does not protect the user area against un­
intentional overlays. Figure 4-8 shows the format of the down-load request/reply
message, and the following paragraphs describe the individual fields in detail.

4-21

EXOS 204: Initialization and Host Interface

4.8.1.1. Reserved Field

The first field is reserved for use by NX 200, and must be set to 0. Its value in the reply
message is undefined.

4.8.1.2. User Id Code Field

The user id code field is not interpreted by the EXOS 204, and is returned unmodified in
the reply message. It can be used to establish a correspondence between request and
reply messages.

4.8.1.3. Request Code Field

The request code field defines the request. Its value in the request message must be 0.
This value is preserved in the reply message.

Length Offset Field Name Request Reply

1) 2 0 I Reserved for NX Usage I zero undefined

I I
1--------------------------------1

2) 4 2 I User Id Code I undefined preserved
I I
I I
I I
1--------------------------------1

3) 6 I Request Code I OOH preserved
1--------------------------------1

4) 7 I Return Code I undefined see text
1--------------------------------1

5) 2 8 I Data Length I see text see text
I I
1--------------------------------1

6) 4 10 I Source Address I see text undefined
I I
I I
I I
1--------------------------------1

7) 4 14 I De s t i n a t i o n Address I see text undefined
I I
I I
I I

l<------------1 byte------------>!

Figure 4-8: EXOS 204 Down-Load Request/Reply Message

4-22

EXOS 204: Initialization and Host Interface

4.8.1.4. Return Code Field

The reply code field is undefined in the request message. In the reply message, it
reports the status of the down-load request:

O successful completion.

A3H destination memory block overlaps the memory reserved for NX 200, no
copy done.

A 1 H invalid request, the EXOS 204 is not in front end mode.

4.8.1.5. Data Length Field

The data length field specifies the number of bytes to be copied into EXOS 204 memory.
This may be any value between 0 and 64K-1. In the reply message, this field returns
the number of bytes actually copied.

4.8.1.6. Source Address Field

The source address field specifies the starting address in shared memory from which to
copy the user code image. This may be either a segmented or an absolute address,
depending on the host address mode option. Its value in the reply message is
undefined.

4.8.1. 7. Destination Address Field

The destination address field specifies the starting address in EXOS 204 memory to
which the user code image will be copied. This must be a segmented address. Its
value in the reply message is undefined.

4.8.2. Start Execution Request

After down-loading protocol software, the host processor starts it executing with a single
start execution request message. Once this command has been issued and the reply
received, the EXOS 204 does not itself process any more messages. Instead, all
messages sent to the EXOS 204 will be queued up for user processes running under
the NX 200 kernel.

The start execution request specifies the location at which execution of user code
begins. User code is entered as a single process with priority 255 and infinite time slice.
All registers except for the PC and stack pointer are undefined. The initial process stack
is provided from the NX 200 data area and is guaranteed to be at least 1 OOH bytes
deep. The process is free to switch to a bigger stack if desired. In all other respects, it
is a normal process, as defined in Section 6.4.

Figure 4-9 shows the format of the start execution request/reply message, and the
following paragraphs describe the individual fields in detail.

4.8.2.1. Reserved Field

The first field is reserved for use by NX 200, and must be initialized as 0. Its value in
the reply message is undefined.

4-23

1)

2)

3)

EXOS 204: Initialization and Host Interface

Length Offset

2 0

4 2

6

Field Name

I Reserved for NX Usage
I
!--------------------------------
! Use r I d Code
I
I
!--------------------------------
! Request Code
!--------------------------------

Request Reply

zero undefined

undefined preserved

02H preserved

4) 7 ! Return Code undefined see text
!--------------------------------

5) 4 8 ! St a r t i n g Add r es s I see t ex t p r es e r v e d
I I
I I
I I

l<------------1 byte------------>!

Figure 4-9: EXOS 204 Start-Execution Request/Reply Message

4.8.2.2. User Id Code Field

The user id code field is not interpreted by the EXOS 204, and is returned unmodified in
the reply message. It can be used to establish a correspondence between request and
reply messages.

4.8.2.3. Request Code Field

The request code field defines the request. Its value in the request message must be 2.
This value is preserved in the reply message.

4.8.2.4. Return Code Field

The reply code field is undefined in the request message. In the reply message, it
reports the status of the start execution request.

O successful completion.

A2H invalid starting address, execution not started.

A 1 H invalid request, the EXOS 204 is not in front end mode.

4.8.2.5. Starting Address Field

The starting address field specifies the initial value of the initial process's program
counter. This must be a segmented address. Its value is preserved in the reply
message.

4-24

5. LINK LEVEL CONTROLLER MODE

In the link level controller mode, the EXOS 204 provides a standard Ethernet Data Link
interface to the host system. The host system selects link level controller mode at
initialization time, by specifying operation mode 0 in the configuration message (see
Section 4.4.4). The host does not then down-load software; instead the EXOS 204
runs firmware which brings NX 200's on-board Ethernet driver out to the host interface.
The host can then access all Ethernet functions by exchanging request and reply
messages with the EXOS 204 via the message protocol described in Section 4.5. The
EXOS 204 uses its RAM primarily to buffer packets in both directions between the
network and the host.

Link level controller mode functionality is very similar to the NX 200 Ethernet interface
for EXOS 204-resident software, described in Section 7. Because the underlying
objects and capabilities of this mode are identical, they will not be described here in the
same detail. Instead, this section concentrates on the format and usage of request
messages.

5.1. The Controller Mode Interface

After the EXOS 204 has been initialized in mode 0, the host sends commands as
request messages in the host-to-EXOS queue. When a request is completed, the
EXOS 204 places a reply message in the EXOS-to-host queue. These queues may be
arbitrarily long, and can be used to pipeline Ethernet operations. Figure 5-1 shows how
messages are encapsulated in the message queue buffers.

In link level controller mode, the EXOS 204 honors six request messages:

TRANSMIT
RECEIVE

NET_MODE
NET_ADDRS
NET_RECV
NET_STSTCS

send packet from host memory onto Ethernet
receive packet from Ethernet into host memory

read/modify the net mode
read/modify an address slot
enable/disable receive on an address slot
read/clear the network statistics

The first two requests above correspond to the transmit and receive messages which
on-board software would send to the Ethernet system process under NX 200 (see
Sections 7.1 and 7.2). The latter four requests correspond exactly to the NX 200 calls
by the same name which on-board software would use (see Section 9).

Figure 5-2 shows conceptually how requests are processed by the EXOS 204.
According to the message queue protocol, as soon as the host software has placed a
request message in a host-to-EXOS message queue buffer, it interrupts the EXOS 204.
When interrupted, the EXOS 204 reads the requests from the queue and buffers them in
its on-board memory.

A request is said to be outstanding once it has been read from the host request queue,
and until the corresponding reply message has been written to the host reply queue.
The EXOS 204 can buffer up to 32 outstanding request messages. Additional requests
will remain in the host request queue until buffers are made available by request
completion in the EXOS 204. This should be noted when designing host software, since
certain implementations could become deadlocked by outstanding requests. In
particular, receive requests remain outstanding at least until a packet is received from
the network. In general, no more than 32 receive requests should be made at any time.

5-1

EXOS 204: Link Level Controller Mode

REQUEST/REPLY MESSAGE BUFFER

I Link Field I
I

-----------------------------!
Reserved Field I

-----------------------------!
Status Field I

-----------------------------!
Length Field I

I
-----------------------------!
Data Field I I I

1----------1
I I

I
I
I
I
I
I
I
I
I

REQUEST/REPLY MESSAGE

I Reserved Field I
I I
1-----------------------------1
I Use r I D Code F i e I d I
I I
I I
!-----------------------------!
I Request Code Field I
1-----------------------------1
I Return Code Field I
1-----------------------------1
I Request-Specific Fields ... I

Figure 5-1: Encapsulation of Request/Reply Message in Message Buffer

Note that in link level controller mode, the EXOS 204 will buffer incoming packets (that
pass address filtering) even if no receive requests have been submitted.

As shown by Figure 5-2, the EXOS 204 effectively places different request messages in
separate internal queues and processes them asynchronously, according to their type.
Network management requests are generally processed immediately, and transmit
requests are processed as fast as the Ethernet Data Link protocol permits. Receive
requests remain outstanding until packets arrive on the Ethernet, unless received
packets are already buffered up in the EXOS 204.

The EXOS 204 sends reply messages back to the host immediately upon request
completion, which is not necessarily the order in which they are accepted. In order to
ensure a certain sequence of operations among requests of different types, a request
should be issued only after the reply message for the preceding operation in the
sequence has been received. Each request message carries a 32-bit user id field which
is not interpreted by the EXOS 204 and which is returned unmodified in the reply
message. This field can be used for any purpose, for example, to establish a
correspondence between a request and its reply message.

5-2

EXOS 204: Link Level Controller Mode

HOST SYSTEM MEMORY

L
RECEIVE

~ REQUEST ... RECEIVE BUF-....
FER {EMPTY)

TRANSMIT
REQUEST PACKET {TO RECEIVE BUF-

BE SENT) FER {FILLED)

NET ~T

IPACKET (HAS 1~ REQUEST
BEEN SENT)

EXOS OMA READ EXOS OMA ~ITE

TRANSMIT
BUFFERS (4)

RECEIVE
BUFFERS (32)

NET ~T
REQUEST

NET'v\ORK MGMT
REQST HANDLER

EXOS 204 ON-BOARD MEMORY

TRANSMIT
REQUEST

TRANSMIT
REQST HANDLER

RECEIVE
REQUEST

RECEIVE
REQST HANDLER

Figure 5-2: Link Level Controller Mode Request Processing Scheme

5-3

NET MGMT
REPLY

RECEIVE
REPLY

TRANSMIT
REPLY

SCME
REPLY

EXOS 204: Link Level Controller Mode

The remainder of this section specifies the format of the requesUreply messages for
each request. Where these requests map directly into NX 200 calls (see Section 9), the
figures also mention the corresponding CPU registers, if any, in parentheses (request,
reply).

In addition to the error codes defined for NX 200 calls, any request may return the
general error code OA 1 H if (a) the request message is shorter than the specified length,
(b) an invalid request code is used, or (c) the EXOS 204 is not initialized in link level
controller mode.

5.2. TRANSMIT Request/Reply Message

To transmit a packet on the Ethernet, host software sends a transmit request message
to the EXOS 204. This message contains pointers to an Ethernet packet in host
memory. Packets are prepared for transmission in standard Ethernet data link layer
frame format, as described in Section 7.1. Host software should prepare the address
and type fields. Packets should not include preamble or CRC fields, which are prepared
by EXOS 204 hardware. If it serves the purposes of host software, the packet may be
composed of up to eight disjoint blocks in host memory.

The EXOS 204 enqueues transmit requests, and completes packet transmission without
any intervention from the host. When the EXOS 204 accepts a transmit request, it
gathers the packet (or packet fragments) from host memory, and assembles the packet
in an internal transmission buffer. Four such buffers are allocated in link level controller
mode, and transmission requests are pipelined - if more than four transmit requests are
pending, the packet is not necessarily read from host memory immediately upon
acceptance of a new request. This is unlikely, unless the network is very heavily loaded.

If the EXOS 204 is in off net mode (described in Section 7.3) then transmit requests will
be enqueued, but will remain outstanding until the EXOS 204 is put back in an on net
mode. If the EXOS 204 is taken off net during a transmission, then the current
transmission will first be completed. If the net disable option is selected (see Section
7.4), then transmission will appear to complete normally, but nothing is actually sent on
the Ethernet.

An alternate form of the transmit request is provided in link level controller mode only.
This is transmit with self-receive, and is selected by the request code OEH (instead of
OCH). When this form of the transmit request is used, transmission occurs just as with
a normal transmit request, but also generates a received packet - if the destination
address passes the established address filtering. Address filtering is performed
according to normal procedure for incoming packets with one difference: in imperfect
filtering mode, multicast packets are always self-received.

Transmit requests are dispatched in the order they are received from the host system.
When the request is completed, the EXOS 204 modifies the request message according
to the status of the transmission and returns it to the host as a reply message. Until the
reply message is received through the EXOS-to-host message queue, the indicated
Ethernet packet belongs to the EXOS 204 and should not be modified.

Figure 5-3 shows the format of the Ethernet transmit requesUreply message, and the
following paragraphs describe its individual fields in detail.

5.2.1. Reserved Field

The first field is reserved for use by NX 200, and must be set to 0. Its value in the reply
message is undefined.

5-4

EXOS 204: Link Level Controller Mode

Length Offset Field Name Request Reply

1) 2 0 I Reserved for NX Usage I zero undefined
I I
1--------------------------------1

2) 4 2 I Use r I d Code I u n def i n e d p res e r v e d

3) 6

4) 7

5) 8

6) 9

7) 2 10

8) 4 1 2

n)

I
I
I

--------------------------------1
Request Code I

--------------------------------!
Return Code I

--------------------------------1
Address Slot I

--------------------------------1
Number of Data Blocks I

--------------------------------1
Data Block Length I

I I
1--------------------------------1
I Data Block Address I
I I
I I
I I
1--------------------------------1

(The two fields above may
appear up to eight times, as
specified by the Number of
Data Blocks parameter)

l<------------1 byte------------>I

Figure 5-3: TRANSMIT Request/Reply Message

5.2.2. User Id Code Field

see text preserved

undefined see text

undefined see text

see text preserved

see text preserved

see text preserved

The user id code field is not interpreted by the EXOS 204, and is returned unmodified in
the reply message. It can be used to establish a correspondence between request and
reply messages.

5-5

EXOS 204: Link Level Controller Mode

5.2.3. Request Code Field

The request code field defines the request:

OCH transmit.

OEH transmit with self-receive.

This field's value is preserved in the reply message.

5.2.4. Return Code Field

The return code field value in undefined in the request message. In the reply message,
it reports the status of the transmission request:

OOH successful transmission, no retry.

01 H successful transmission, 1 retry.

02H successful transmission, more than 1 retry.

08H (applicable for Version 2.0 transceivers only.) indicates the absence
of SOE TEST signal during the lnertrame Spacing interval. This
return code is OR-able with all other return codes except 40H and
OA 1 h. A jumper option is available to disable this check. (See
Section 11 .)

10H transmission failed, excessive collisions.

20H no Carrier Sense signal detected during transmission.

40H transmission failed, transmit length not in range.

OA 1 H failed, the EXOS 204 is not in controller mode.

5.2.5. Address Slot Field

The address slot field is an index into the address slot array. Its value in the request
message is undefined. In the reply message, it contains the address slot number by
which this packet would be received by this station. For instance, the value 255
indicates that the packet was broadcasted, and should be auto-received. Or, if the
packet was transmitted to this stations own address, the value would be 253. A zero
value means that no slot matched - this packet would not be received by this station.

5.2.6. Number of Data Blocks Field

The number of data blocks field specifies the number of data length/data address field
pairs that follow this field in the request message. Each pair describes one block, where
a packet may occupy up to eight disjoint blocks in shared memory. This field's value is
preserved in the reply message.

5.2.7. Data Block Length Field

The data block length field specifies the length in bytes of the data block whose address
follows. The sum of all data block length fields should be the total packet length. This
value does not include the preamble or CRC fields, which are appended by EXOS 204
hardware. In the reply message, this field's value is preserved.

5-6

EXOS 204: Link Level Controller Mode

5.2.8. Data Block Address Field

The data address field specifies the address of a data block in shared memory, where
up to eight blocks compose a packet. Note that the packet, as handed over to the
EXOS 204, does not include a preamble, so that the address of the first block will point
to the first byte of the packet's destination field. The data address field is preserved in
the reply message.

5.3. RECEIVE Request/Reply Message

Host software receives a packet on the Ethernet by sending an Ethernet receive request
message to the EXOS 204. This message contains pointers to a packet buffer in host
memory. If the EXOS 204 has already received a packet from the Ethernet, then it will
copy the packet into the host buffer. Otherwise the request will not complete until a
packet is received.

Received packets are returned to the host in standard Ethernet data link layer frame
format, as described in Section 7.1. Address, type, and CRC fields are included, but not
the preamble. The EXOS 204 performs address and CRC checks in hardware. If it
serves the purposes of host software, the packet buffer may comprise up to eight
disjoint blocks in host memory.

The EXOS 204 will receive packets from the Ethernet according to several criteria. One
is the mode of operation, which determines whether to listen at all, and which categories
of address to accept. Another factor is the address filter, which determines the physical
address, and up to 252 active multicast addresses. The last factor to consider is the
options mask, which defines acceptable errors in received packets. Subsequent
sections describe these factors in more detail.

When a packet on the Ethernet satisfies the criteria for reception, the EXOS 204
receives and buffers the packet in its own memory. In link level controller mode, EXOS
204 provides 32 full-size on-board packet buffers which are chained in controller
hardware. Therefore it can receive 32 Ethernet packets back-to-back, with minimal
interframe spacing, even when no receive requests from the host are pending.

When reception is complete, the EXOS 204 modifies the request message according to
the status of the reception and returns it as a reply message. Receive requests are
queued up and dispatched in the order received. Until the reply message is received
through the EXOS-to-host message queue, the indicated buffer belongs to the EXOS
204 and should not be used.

Figure 5-4 shows the format of the Ethernet receive request/reply message, and the
following paragraphs describe its individual fields in detail.

5.3.1. Reserved Field

The first field is reserved for use by NX 200, and must be set to 0. Its value in the reply
message is undefined.

5.3.2. User Id Code Field

The user id code field is not interpreted by the EXOS 204, and is returned unmodified in
the reply message. It can be used to establish a correspondence between request and
reply messages.

5-7

EXOS 204: Link Level Controller Mode

Length Offset Field Name Request Reply

1) 2 0 I Reserved for NX Usage I zero undefined
I I
!--------------------------------!

2) 4 2 I User Id Code I undefined preserved
I
I
I
!--------------------------------

3) 6 ! Request Code OOH preserved
!--------------------------------

4) 7 ! Return Code undefined see text
!--------------------------------

5) 8 ! Address Slot undefined see text
!--------------------------------

6) 9 ! Number of Buffer Blocks see text preserved

7) 2 10

!--------------------------------
! Buffer Block Length
I
!--------------------------------

see text see text

8) 4 1 2 ! Buffer Block Address
I

see text preserved

n)

I
I I
!--------------------------------!

(The two fields above may
appear up to eight times, as
specified by the Number of
Buffer Blocks parameter)

l<------------1 byte------------>I

Figure 5-4: RECEIVE Request/Reply Message

5.3.3. Request Code Field

The request code field defines the request. Its value in the Ethernet receive request
message must be OOH. This value is preserved in the reply message.

5.3.4. Return Code Field

The return code field value in undefined in the request message. In the reply message,
it reports the status of the receive request:

OOH packet received with no error.

04H packet received longer than buffer supplied, truncated.

5-8

EXOS 204: Link Level Controller Mode

1 OH packet received with alignment error.

20H packet received with CRC error.

40H no packet received, buffer supplied was less than 64 bytes.

OA 1 H failed, the EXOS 204 is not in controller mode.

Note that packets with errors are actually received only if the network mode is set
appropriately.

5.3.5. Address Slot Field

The address slot field is an index into the address slot array. Its value in the request
message is undefined. In the reply message, it contains the address slot number which
matched the destination address of the packet received. If the controller is in
promiscuous mode, then this field will return the universal address slot, whether or not
any address matched. If the controller is not in perfect filtering mode, then this field will
return the universal address slot when any multicast packet is received.

5.3.6. Number of Buffer Blocks Field

The number of buffer blocks field specifies the number of buffer length/buffer address
field pairs that follow this field in the request message. Each pair describes one block,
where a buffer may consist of up to eight disjoint blocks in shared memory. This field's
value is preserved in the reply message.

5.3.7. Buffer Block Length Field

The buffer block length field specifies the length in bytes of the buffer block whose
address follows. The sum of all buffer block length fields should be the total packet
length. The length does not include the preamble but must include 4 bytes for the frame
check sequence (CRC) field. In order to receive the longest possible Ethernet packet,
the buffer must be at least 1518 bytes long. Minimum size is 64 bytes, which will fit the
shortest possible Ethernet packet.

In the reply message, the buffer length field total returns the number of bytes actually
received, plus 4 bytes for the CRC field. Note that the CRC value is not actually written
back. Also, if the buffer supplied was smaller than the packet received, then the excess
bytes are truncated, and the buffer length will not give the true length of the packet.

5.3.8. Data Address Field

The data address field specifies the address of a buffer block in shared memory, where
up to eight blocks compose a buffer. Note that the packet returned by the EXOS 204
does not include a preamble, so that the address of the first block will point to the first
byte of the packet's destination field. The data address field is preserved in the reply
message.

5.4. NET _MODE Request/Reply Message

The NET _MODE request is used to read/write the network controller mode and options
mask objects. For details of these, see Sections 7.3 and 7.4. Figure 5-5 shows the
format of the NET _MODE requesUreply message, and the following paragraphs describe
its individual fields in detail.

5-9

EXOS 204: Link Level Controller Mode

Length Offset Field Name Request Reply

-------- --- - -- -- --- - -- - - - -- - ... ---- -
1) 2 0 I Reserved for NX Usage zero undefined

I
1--------------------------------1

2) 4 2 I User Id Code undefined preserved
I
I
I I
1--------------------------------1

3) 6 I Request Code I OSH preserved
1--------------------------------1

4) 7 I Return Code (- - , AL) I undefined see text
1--------------------------------1

5) 8 I Request Mask (DL, - -) I see text undefined
1--------------------------------1

6) 9 I Opt ions Mask (CL.CL) I see text see
1--------------------------------1

7) 1 0 I Mode (DH.DH) I see text see

l<------------1 byte------------>I

Figure 5·5: NET _MODE Request/Reply Message

5.4.1. Reserved Field

The first field is reserved for use by NX 200, and must be set to 0. Its value in the reply
message is undefined.

5.4.2. User Id Code Field

The user id code field is not interpreted by the EXOS 204, and is returned unmodified in
the reply message. It can be used to establish a correspondence between request and
reply messages.

5.4.3. Request Code Field

The request code field defines the request. Its value in the NET_MODE request
message must be 08H. This value is preserved in the reply message.

5.4.4. Return Code Field

The return code field is undefined in the request message. In the reply message, it
reports the status of the NET _MODE request:

O successful completion.

OA 1 H failed, the EXOS 204 is not in controller mode.

5-10

text

text

EXOS 204: Link Level Controller Mode

5.4.5. Request Mask Field

The request mask field is defined as follows:

01 write request bit.

02 read request bit.

Read and write can be requested simultaneously (mask = 03). Other bits in the mask
must be 0, or effects are undefined.

The request mask's value in the reply message is undefined.

5.4.6. Options Mask Field

The options mask field defines several available controller options. Available options are
defined by the following bit OR-able values:

1 OH alignment error - enables reception of packets even if the number of
bits received is not a multiple of 8.

20H CRC error - enables reception of packets even if the CRC check
fails.

80H net disable - disables the Ethernet controller so that packets are not
received or transmitted on the Ethernet. However, transmit requests
are still processed by NX 200, and to user processes appear to
complete successfully if an on net mode is selected.

All other bits are undefined and must be 0. This parameter is required only if a write is
requested. If the read bit in the request mask of the request message was set, then this
field returns the options mask prior to the request. Otherwise its value in the reply
message is undefined.

5.4. 7. Mode Field

The mode field specifies the new mode of the Ethernet controller. Possible values are:

OOH disconnect from the net.

01 H connect to net, perfect filter for multicast addresses.

02H connect to net, only hardware filter for multicast addresses.

03H connect to net, receive all packets {promiscuous mode).

This parameter is required only if a write is requested. If the read bit in the request
mask of the request message was set, then this field returns the net mode prior to the
request. Otherwise its value in the reply message is undefined.

5.5. NET _ADDRS Request/Reply Message

The NET _ADDRS request is used to read/write an address in a specified address slot.
For information about address slots, see Section 7.5.

If a network address to be written is invalid, the write does not occur, and the address in
the slot prior to the request is preserved. Writing an address into a slot disables
reception on that slot. The NET _RCV request must be explicitly used to re-enable
reception on the slot.

5-11

EXOS 204: Link Level Controller Mode

Figure 5-6 shows the format of the NET _ADDRS request/reply message, and the
following paragraphs describe its individual fields in detail.

II Length Offset Field Name Request Reply

- - - - - - - --- - - - ---- ------ --------- --
1) 2 0 Reserved for NX Usage I zero undefined

I
--------------------------------!

2) 4 2 User Id Code I undefined preserved
I
I
I

--------------------------------!
3) 6 Request Code I 09H preserved

--------------------------------!
4) 7 Return Code (- - , AL) I undefined see text

--------------------------------!
5) 8 Request Mask (DL,DL) I see text see text

--------------------------------!
6) 9 Address Slot (DH, - -) I see text preserved

--------------------------------!
7) 6 10 Net Address (• ES+D I . - -) I see text see

I
I
I

l<------------1 byte------------>I

Rgure 5·6: NET _ADDRS Request/Reply Message

5.5.1. Reserved Field

The first field is reserved for use by NX 200, and must be set to 0. Its value in the reply
message is undefined.

5.5.2. User Id Code Field

The user id code field is not interpreted by the EXOS 204, and is returned unmodified in
the reply message. It can be used to establish a correspondence between request and
reply messages.

5.5.3. Request Code Field

The request code field defines the request. Its value in the NET _ADDRS request
message must be 09H. This value is preserved in the reply message.

5-12

text

EXOS 204: Link Level Controller Mode

5.5.4. Return Code Field

The return code field is undefined in the request message. In the reply message, it
reports the status of the NET _ADDRS request:

O successful completion.

001 H the specified slot does not exist or access is not permitted.

OD3H improper address. Multicast slots can only take multicast addresses
and the physical slot can only take a physical address. Attempting to
write the broadcast slot (number 255) results in this error.

OA 1 H failed, the EXOS 204 is not in controller mode.

5.5.5. Request Mask Field

The request mask field is defined in the request message as follows:

01 write request bit.

02 read request bit.

Read and write can be requested simultaneously (mask = 03). Other bits in the
mask must be 0, or effects are undefined.

In the reply message, if bit 3 (mask value 8) is set, then the address slot contained a
valid address prior to this request. Otherwise the slot was empty. All other bits are
undefined. This result is defined only if a read was requested.

5.5.6. Address Slot Field

The address slot field designates the address slot which is to be accessed. This can be
the physical address slot (253) or any multicast address slot (between 1 and the limit
defined by configuration).

This field's value is preserved in the reply message.

5.5. 7. Net Address Field

The net address field, if a write is requested, should contain a valid network address to
be written in the specified slot. In the reply message, if a read was requested, and the
slot was not empty, then this field returns the net address in the specified slot prior to
this request. Otherwise it is undefined.

5.6. NET _RECV Request/Reply Message

This request is used to read/alter the receive status of an address slot (see Section 7.5).
Figure 5-7 shows the format of the NET _RECV request/reply message, and the
following paragraphs describe its individual fields in detail.

5.6.1. Reserved Field

The first field is reserved for use by NX 200, and must be set to 0. Its value in the reply
message is undefined.

5-13

EXOS 204: Link Level Controller Mode

II Length Offset Field Name Request Reply

----·-----------------------------
1) 2 0 I Reserved for NX Usage zero undefined

I
!--------------------------------!

2) 4 2 I User Id Code I undefined preserved
I I
I I
I I
!--------------------------------!

3) 6 I Request Code I OAH preserved
1--------------------------------1

4) 7 I Return Code (- - , AL) I undefined see text
!--------------------------------!

5) 8 I Request Mask (DL, DL) I see text see text
1--------------------------------1

6) 9 I Address Slot (DH, - -) i see text preserved

l<------------1 byte------------>!

Figure 5-7: NET _RECV Request/Reply Message

5.6.2. User Id Code Field

The user id code field is not interpreted by the EXOS 204, and is returned unmodified in
the reply message. It can be used to establish a correspondence between request and
reply messages.

5.6.3. Request Code Field

The request code field defines the request. Its value in the NET _RECV request
message must be OAH. This value is preserved in the reply message.

5.6.4. Return Code Field

The return code field is undefined in the request message. In the reply message, it
reports the status of the NET _RECV request:

0

OD1H

OD2H

OA1H

successful completion.

the specified slot does not exist or access is not permitted.

the specified slot was empty.

failed, the EXOS 204 is not in controller mode.

5-14

EXOS 204: Link Level Controller Mode

5.6.5. Request Mask Field

The request mask field is defined in the request message as follows:

01 write request bit.

02 read request bit.

04 enable receive bit.

Read and write can be requested simultaneously (mask = 03). Other bits in the
mask must be 0, or effects are undefined.

If the write bit in the request mask is set, then reception on the designated address slot
will be enabled or disabled, depending on the value of the enable receive bit.

In the reply message, if bit 2 (mask value 4) is set, then receive was enabled for this slot
prior to this request. Otherwise it was disabled. All other bits are undefined. This result
is defined only if a read was requested.

5.6.6. Address Slot Field

The address slot field designates the address slot which this request will work on. This
can be the physical address slot (253), the broadcast slot (255), or any multicast
address slot (between 1 and the limit defined by configuration).

This field's value is preserved in the reply message.

5.7. NET_STSTCS Request/Reply Message

This request reads/resets the statistics objects (see Section 7.6). If the read bit is set in
the request mask, then a specified number of statistics objects, starting at the objects
index field, are copied into the array specified by the buffer address field. Note that the
statistics copied into host memory are defined only after the reply message has been
received.

If the write bit is set in the request mask, then the number of objects specified by the
number of objects field, starting with the object specified by the objects index, are reset
to zero. If the objects index field is out of range, then no objects are read/reset.

Figure 5-8 shows the format of the NET _STSTCS request/reply message, and the
following paragraphs describe its individual fields in detail.

5. 7.1. Reserved Field

The first field is reserved for use by NX 200, and must be set to 0. Its value in the reply
message is undefined.

5.7.2. User Id Code Field

The user id code field is not interpreted by the EXOS 204, and is returned unmodified in
the reply message. It can be used to establish a correspondence between request and
reply messages.

5.7.3. Request Code Field

The request code field defines the request. Its value in the NET _STSTCS request
message must be OBH. This value is preserved in the reply message.

5-15

EXOS 204: Link Level Controller Mode

Length Offset Field Name Request Reply

1) 2 0 I Reserved for NX Usage zero undefined
I I
!--------------------------------!

2) 4 2 I User Id Code I undefined preserved
I I
I I
I I
!--------------------------------!

3) 6 I Request Code I OBH preserved
!--------------------------------!

4) 7 I Re tu r n Code (- - . AL) I undefined see text
!--------------------------------!

5) 8 I Re q u es t Mas k (DL , - -) I see text undefined
!--------------------------------!

6) 9 I Reserved I zero undefined
1--------------------------------1

7) 2 1 0 I Number of Objects (CX.CX) I see text see text
I i
!--------------------------------!

8) 2 12 I Ob j e c t s I n d e x (S I . - -) I see text preserved
I I
I -· - - - - I

9) 4 14 I Buffer Address (*ES+DI ,--) I see text preserved
I I
I I
I I

l<------------1 byte------------>I

Figure 5-8: NET_STSTCS Request/Reply Message

5.7.4. Return Code Field

The return code field is undefined in the request message. In the reply message, it
reports the status of the NET _STSTCS request:

successful completion. 0

OA1H failed, the EXOS 204 is not in controller mode.

5. 7 .5. Request Mask Field

The request mask field is defined in the request message as follows:

01 write request bit.

02 read request bit.

5-16

EXOS 204: Link Level Controller Mode

Read and write can be requested simultaneously (mask = 03). Other bits in the
mask must be 0, or effects are undefined.

The read request copies the specified portion of the statistics array into the specified
buffer. The write request resets the specified portion of the statistics array. If both read
and write are requested, the read is done first. This field is undefined in the reply
message.

5. 7.6. Reserved Field

This field must be zero in the request message. Its value in the reply message is
undefined.

5.7.7. Number of Objects Field

The number of objects field specifies how many statistics objects are to be read/reset.
In the reply message, this field returns the number of objects that were actually
read/reset. If the number requested exceeds the bounds of the statistics array, it will be
truncated.

5.7.8. Objects Index Field

The objects index field specifies the starting place in the statistics array at which objects
will be read/reset. Its value is preserved in the reply message.

5.7.9. Buffer Address Field

The buffer address field specifies the address of the buffer in shared memory to which
the requested portion of the statistics object array will be copied, if a read request was
made. This field is defined only if a read is requested. Its value is preserved in the
reply message.

5-17

(blank page)

6. THE NX 200 PROGRAMMING ENVIRONMENT

This section provides information necessary to write higher-level software to run under
the NX 200 kernel on an EXOS 204 Ethernet front-end processor. The first few sections
describe environmental considerations, such as memory allocation, which commonly
affect software design. Subsequent sections explain the abstract objects and operations
implemented in NX 200.

6.1. Overview

All programs for the Excelan Ethernet network processor board (EXOS 204) run on an
Intel 80186 CPU under an EPROM-resident multi-tasking operating system kernel (NX
200). Programs can be written in any language for the 80186 and can be located
anywhere in the memory available to the user. They can be down-loaded either from
the host or over the network. The procedure for down-loading programs is described in
Section 4.8 of this manual.

NX 200's multi-tasking environment facilitates the structured implementation of high-level
protocol software, as a set of cooperating processes. Facilities include mechanisms for
process synchronization, interprocess communication, scheduling, and clock-based
functions. None of the hardware devices on the board, viz., the clock, the Host interface
or the Ethernet controller, require direct access by user processes. Instead, NX 200 has
built-in drivers which provide suitable abstractions of the devices, so that programs
developed for the EXOS 204 are independent of actual hardware implementation.

All functions of NX 200 are accessed by means of NX/200 calls executed by an INT n
instruction, where n defines the desired function. Parameters to the calls are generally
passed in CPU registers. However, it is easy to write interface libraries to permit NX
calls to be made from programs written in high level languages such as C, PASCAL,
etc.

6.2. Memory Organization

The 80186 provides an address space of 1 Mbyte, accessible in 64K segments, on 16-
byte bounds. Figure 6-1 shows how this address space is allocated on the EXOS 204,
under the default configuration of NX 200. The default configuration provides a given
number of objects, such as mailboxes and process table entries. This allocation
(specified in Section 4.4) should be sufficient for most applications. However, the
allocation of objects under NX 200 can be changed at initialization time, with a
corresponding effect on RAM allocation. The following paragraphs explain the use of
EXOS 204 memory in detail.

6.2.1. Interrupt Vector Table

In the default configuration, NX 200 allocates 512 bytes for the interrupt vector table,
providing 128 entries of 4 bytes each. Of these, 32 interrupt vectors are available for
user definition. If more are required, the interrupt vector table may be reconfigured to its
full size of 1024 bytes. Interrupt allocation is explained below in more detail.

6.2.2. Movable NX 200 Data Area

The movable NX 200 data area is the memory required for data structures which NX
200 associates with objects. User software should not access this memory area
directly.

The length of the movable data area depends on the maximum number of objects
supported, which is configured during NX 200 initialization (see Section 4). It can be

6-1

EXOS 204: The NX 200 Programming Environment

computed by the expression 16*(P+M)+8*A bytes, where P is the number of
processes, M is the number of the mailboxes and A is the number of address slots. In
the default configuration this area is 512 bytes long, occupying locations 200H through
3FFH.

Address

FFFFFH

3FFFFH

1 FFFFH

OOFFFH

003FFH

001FFH

00000

Function

Reserved Address Space

Optional Dual-ported RAM

(Model 3) or

Res e r v e d (Mode I 2)

I I
!--------------------------------!

I Dual-Ported User RAM I

I I
!--------------------------------!

I Fixed NX 200 Data Area I
I I
I I
I I
I I
I I
!--------------------------------!

I Movable NX 200 Data Area I
!--------------------------------!

I Interrupt Vector Table I

l<------------1 byte------------>!

Figure 6-1: Default EXOS 204 Memory Allocation

Size

COOOOH (768 Kbyte)

20000H (128 Kbyte)

1FOOOH (124 Kbyte)

OOCOOH (3 Kbyte)

00200H (1/2 Kbyte)

00200H (1 /2 Kbyte)

If NX 200 is reconfigured such that this area requires more than 512 bytes, or if
locations 200H to 3FFH are needed for an expanded interrupt vector table, then this
area can be moved to any memory area between 1 OOOH and OFFFFH.

6.2.3. Fixed NX 200 Data Area

NX 200 uses this memory area for data structures that are not dependent on its
configuration. It is always 3 Kbytes long and occupies locations 400H through OFFFH.
It cannot be moved. User software should not directly access the fixed data area.

6-2

EXOS 204: The NX 200 Programming Environment

6.2.4. Dual-Ported User RAM

128 Kbytes of RAM on the EXOS 204, from location O to 1FFFFH, is dual-ported
between the 80186 CPU and the Ethernet controller hardware. Of this, 124 Kbytes
between 1000H and 1FFFFH, are entirely available in the default configuration for the
purposes of down-loaded user software. If the movable data area must be moved from
its default location, then some small portion of this RAM will become unavailable for user
software. NX 200 requires that all message buffers (used for communicating data
between processes, host, and network) lie in dual-ported user RAM.

6.2.5. Optional Dual-Ported RAM

On the EXOS 204 Model 3 only, additional 128 Kbytes of RAM, from location 20000H to
3FFFFH is also available for the purposes of down-loaded software.

6.2.6. Reserved Address Space

The address range 20000H-FFFFFH on the Model 2, or 40000H-FFFFFH on the Model
3, is reserved. The effects of access to this area by user software are not defined.

Other than those described above, NX 200 imposes no restrictions on how memory is
used. Users can link and load their programs in any manner they please. NX 200 does
not define any buffer management services; users may choose the optimum scheme for
individual applications.

6.3. Interrupt Types

The 80186 CPU provides 256 interrupt types, each of which corresponds to a 4-byte
interrupt vector table entry.
NX 200 allocates these as follows:

0-31 reserved/dedicated by Intel.

32-63 device interrupts (used by NX 200).

64-95 NX 200 calls.

96-127 available to user software by default.

128-255 available to user software by reconfiguration.

User software should not modify interrupt vectors for types 0-95. In the default
configuration, types 96-127 are available for user definition. If more interrupt types are
required, then the movable data area can be relocated (see Section 4.3.11), making
types 128-255 available.

NX 200 provides all interrupt service routines necessary for EXOS 204 hardware and
the host interface. Therefore it is unlikely that user applications would require hardware
interrupt service routines. However, it may be convenient to use the user-definable
interrupt types as an interface between user software modules. If this is done, then the
software interrupt service routines should be sure to re-enable interrupts immediately
upon entry.

6.4. Processes

NX 200 supports processes as they are usually understood: a program in execution.
Processes can be freely created and deleted. At any one time the number of processes
cannot exceed a maximum number defined by the configuration of NX 200 (see Section
4.4.12).

6-3

EXOS 204: The NX 200 Programming Environment

6.4.1. Process Address Space

NX 200 does not impose any memory protection between processes. All processes
share the same 1-Mbyte address space, allowing them to communicate via shared
memory. However, the context of each process includes the segment register file of the
80186. Thus each process can independently choose its own direct address space.
The 80186 memory addressing architecture permits shared-text processes and dynamic
relocation of code modules.

6.4.2. Process-id

Each process is identified by a unique one-word integer called its process-id. This
number is used to refer to processes in all NX 200 calls. The process-id of a process
which has been deleted is not re-used until at least 255 additional processes have been
created after the deletion. Applications which create and delete processes very
frequently should beware of this fact. The process-id O is a special id and always refers
to the process currently running. Thus a process can refer to itself by using 0 instead of
its actual id in an NX 200 call. When a process is first created its id is available in one
of its CPU registers, as specified in the PROC_CREATE call description. A process can
also find its own id by executing a read-only call (such as PROC_PRIOR), specifying 0
as the process-id parameter. All NX 200 calls always return the actual process-id even
if O was used as an input parameter.

6.4.3. Process Stack

The stack address of a new process is supplied as a parameter to the PROC_CREATE
call, by the process invoking this call. Note that NX 200 creates the first process, and
allocates its stack within the fixed NX 200 data area (see Section 6.2). Stack areas can
be allocated anywhere in memory. When deciding stack size, the user should be aware
that NX 200 does not maintain any separate system stack for a process. When NX 200
services interrupts, it uses the stack of the process running when the interrupt occurs.
In order to prevent stack overflows it is recommended that user process stack size be
such that at least 64 bytes of the stack is always available for NX 200 interrupt service
routines.

6.4.4. Process Scheduling

Four parameters visible to user software drive NX 200's process scheduling algorithm:

priority
time slice
time count
sleep count

All but time count are explicitly set when a process is created, and can be examined or
modified by any process subsequently. Time count can be examined, but its value is
implicitly determined by time slice.

Priority is a number between O and 255 where 0 is the lowest priority. NX 200
maintains a logically separate scheduling queue of processes for each priority level.
Process priority remains constant, unless modified by an explicit call to PROC_PRIOR.

Time slice is a number between O and 255 which determines the amount of CPU time
that a process can use before its position in the scheduling queue is re-evaluated.
Implementation is as follows. Time count is initialized with the value of time slice, and
counts down at the rate of 20 milliseconds, but only while the process is actually

6-4

EXOS 204: The NX 200 Programming Environment

running. When time count reaches 0, the process is put at the end of its scheduling
queue, and time count is reinitialized with time slice. A process's time slice remains
constant, unless modified by an explicit call to PROC_ TIMSLC. A value of -1 for time
slice is considered infinity.

Sleep count is a number between 0 and 64K-1 that represents the amount of real time
which must elapse before the process becomes eligible to use the CPU. A process
having a non-zero sleep count is said to be sleeping and a process with a sleep count of
zero is said to be runnable. Sleep count also counts down at a rate of 20 milliseconds,
and a value of -1 is considered infinity. By definition, however, the sleep count counts
down only while the process is not running. When sleep count reaches zero, it remains
zero and the process becomes runnable.

The scheduling parameters are used to implement a pre-emptive round robin scheduling
algorithm as follows. Whenever scheduling occurs, the CPU is given to the first
runnable process in the highest priority scheduling queue. Scheduling occurs on every
tick of the NX 200 clock (20 milliseconds), and whenever some scheduling parameter
changes. For instance, if during the execution of a process some other process with a
higher priority becomes runnable, then the CPU is immediately given to the higher
priority process without changing the position or time slice count of the pre-empted
process. Similarly, if the sleep count of a running or a runnable process is set to a non­
zero value either by an explicit NX 200 call or by an implicit side effect of some other NX
200 call, then the process is put to sleep without changing its time slice count or position
in its priority queue.

It should be noted from the above discussion that a runnable process cannot have a
non-zero sleep count. Thus setting the sleep count of a process to zero makes it
runnable, and setting it non-zero suspends the process. The PROC_SLPCNT call can
be used by any process to alter the sleep count of any process. The new value
overwrites the previous value of the sleep count, which is forgotten. By choosing an
appropriate value for sleep count, a process can be delayed, suspended or resumed.
As such, no separate calls for these capabilities are included in NX 200.

It should also be noted that if an infinite time slice is given to all processes then the
scheduling policy reduces to a priority-based event driven scheduling algorithm.
Running all processes at equal priority besides reduces the policy even further, to strictly
event-driven scheduling.

6.4.5. Implicit Scheduling Factors

When a user process makes an NX 200 kernel call, it is locked until the call completes.
Therefore the process will not be pre-empted by another user process unless the kernel
call itself blocks the calling process. For instance, a MLBX_RECV call might cause re­
scheduling before it completes, if no message is queued on the indicated mailbox. On
the other hand, a MEM_READ or MEM_WRITE will always exclude other user
processes until it completes.

NX 200 interrupt service routines will always interrupt any user process, and will
interrupt each other according to this priority scheme:

O) Clock Tick
1) Ethernet Transmit Completion
2) Ethernet Receive Completion
3) Host Interface Event

where 0 is the highest priority. Note that any of these events can cause re-scheduling of
user processes. For instance, an Ethernet Receive completion might place an Ethernet

6-5

EXOS 204: The NX 200 Programming Environment

receive reply message on a reply mailbox, and therefore reset the sleep count of a
process enqueued there.

6.5. Mailboxes

Interprocess communication and synchronization is supported primarily by mailboxes. A
mailbox, like a process, is an object that can be created and deleted. The maximum
number of mailboxes that can exist at any given time is defined by the configuration of
NX 200 (see Section 4.4.13).

6.5.1. Mailbox-id

Each mailbox is identified by a unique one word integer called its mailbox-id. This
number is used to refer to mailboxes in all NX 200 calls. When a mailbox is deleted its
id is not re-used until at least 255 mailboxes have been created. Applications which
create and delete mailboxes very frequently should beware of this fact.

6.5.2. Messages

A mailbox provides the facility to transfer messages between processes. A message is
a memory-resident data structure with an arbitrary format, except for a mandatory 32-bit
link field at its beginning. NX 200 uses the link field to chain messages. They must
reside within the address range 0-0FFFFH in EXOS 204 memory.

Since all processes share the same address space, messages are not copied by
mailbox operations. Instead, pointers to messages are sent and received through the
mailbox. It is the responsibility of the sending process to maintain the message data
intact until the receiving process no longer requires it. The user must devise some
scheme to ensure coordinated use of message data structures.

6.5.3. Null Messages

The null message is a special case which is identified by a null pointer and does not
have any data associated with it. They are used strictly for process synchronization
purposes, and can share a mailbox with regular messages. Note that null messages
cannot be differentiated from one another.

6.5.4. Sending and Receiving Messages

The sending and receiving of messages through a mailbox is fully synchronized. Each
mailbox has a message queue and a process queue. When a mailbox is created (using
the MLBX_CREATE call) the process queue is empty and the message queue contains
a specified number of null messages.

A message is sent to a mailbox by the MLBX_SEND call. When a regular message is
sent it is appended after all other regular messages in the message queue but in front of
all the null messages, if any. A null message is always appended after all the regular
messages in the queue. Thus regular messages are delivered on a first-in first-out basis
while null messages are delivered if and only if there are no regular messages in the
queue.

A message is received from the mailbox by the MLBX_RECV call. A process receives
the first message from the message queue if it is not empty. Otherwise, the process is
appended to the end of the process queue and its sleep count is set to the value
specified as a parameter to the MLBX_RECV call. Recall that if the sleep count of a
process is nonzero the process is blocked until it counts down to zero. A subsequent
MLBX_SEND call removes the first waiting process from the process queue, hands it the

6-6

EXOS 204: The NX 200 Programming Environment

message and unblocks it by setting its sleep count to zero. When the unblocked
process resumes execution, the MLBX_RECV call which blocked the process returns
with a completion code indicating success.

If the sleep count of a blocked process co~nts down to zero or is explicitly set to zero by
a PROC_SLPCNT call then the process is forced to unblock even if no message has
arrived. In this case the unblocked process returns from the MLBX_RECV call with a
nonzero completion code indicating the time out condition.

It should be noted from the above discussion that a process blocks on a mailbox only
when the sleep count of the process is non-zero. Thus if a process executes a
MLBX_RECV call with the sleep count parameter equal to zero, then the process will not
block even if no messages are available. By choosing an appropriate value of the sleep
count parameter, a process can test the availability of a message without blocking,
block unconditionally until a message arrives, or block for a finite specified amount of
time waiting for the message to arrive.

6.5.5. Mailboxes as Semaphores

The notion of null messages allows the mailbox to be used as a conventional
semaphore. If only null messages are used then the MLBX_SEND call is equivalent to
the V operation and the MLBX_RECV call is equivalent to the P operation. Thus a
mailbox can be used both for synchronizing a producer-consumer relationship or for
mutual exclusion.

6.6. Process Locks

Using the mailbox for mutual exclusion may be a little more expensive than desired for
simple cases such as updating a single variable. NX 200 provides the process lock as a
simpler, alternate mechanism for mutual exclusion. A lock, when in effect, causes
scheduling to be suspended. The call PROC_LOCK puts a lock in effect and the call
PROC_UNLOCK removes a lock. Lock calls can be nested up to 32K deep; before a
process is unlocked, unlock calls must balance lock calls. If a process with locks in
effect makes an NX 200 call which can potentially cause the process to sleep then all
locks are removed regardless of whether the process actually went to sleep or not.

The process executing a lock call excludes all other process from running and thus
imposes a stronger condition than the mailbox mechanism, which excludes only the
processes that intend to use the critical section. On the other hand, the lock call
executes faster than the mailbox calls, and a lock does not consume memory resource
as does a mailbox object. The lock call cannot be used for a producer-consumer type of
synchronization. For mutual exclusion the users can select the mechanism which best
suits the application.

Both mailboxes and locks provide mutual exclusion between processes; however,
interrupts are not excluded. As such the only way to share a critical section between a
process and an interrupt service routine is to disable interrupts for the duration of the
critical section. Programmers usually need not be concerned with this fact, since all
necessary interrupt handlers are included in NX 200. In general the user programs
should not disable interrupts.

6.7. System Mailboxes

Certain NX 200 services are asynchronous by nature, such as sending and receiving
messages with Ethernet or the host. All such system services are provided in a
conceptual sense by system processes. These are like user processes in that they
execute asynchronously, but they have no process-id or visible scheduling parameters.

6-7

EXOS 204: The NX 200 Programming Environment

User processes access system process services by sending a request message to a
special "system mailbox" associated with the desired service.

System mailboxes are created by NX 200 during initialization and are not included in the
number of user mailboxes specified by the configuration of NX 200. The set of mailbox­
ids for regular mailboxes is disjoint with the set of mailbox-ids for system mailboxes. NX
200 designates the following system mailbox-ids:

0001H Host
0009H Ethernet

Request messages are sent through the system mailbox using the MLBX_SEND call.
After completing the request, the system service returns the reply message to the reply
mailbox specified in the request message. After sending a request message, a process
can continue to run or wait until the reply message is returned. The request message,
once sent, should not be modified until the reply message is received. The user process
can receive the reply message from the reply mailbox using the MLBX_RECV call.

The formats of request messages and their corresponding reply messages are defined
by each individual service. All messages, however, have a standard header. Figure 6-2
shows this header, and the following paragraphs explain each field in detail.

Length Offset

1) 4 0

2) 2 4

3) 6

4) 7

Field Name Request Reply

I Link undefined undefined

I
I
I I
1--------------------------------1
I Rep I y Ma i I box I see t ex t see t ex t

I I
1--------------------------------1
I Re q u e s t Cod e I s e e t e x t s e e t e x t

1--------------------------------1
I Return Code I see text see text

1--------------------------------1
Additional Fields Defined by

Individual System Processes

l<------------1 byte------------>!

Figure 6-2: Standard Header for System Messages

6-8

EXOS 204: The NX 200 Programming Environment

6. 7 .1. Link Field

The link field is required by NX 200 at the beginning of all messages. Its request and
reply values are both undefined. NX 200 uses this field for chaining messages.

6. 7.2. Reply Mailbox Field

The reply mailbox field specifies the mailbox to which the request message is returned
after the completion of the requested service. System mailboxes cannot be used as
reply mailboxes.

6. 7.3. Request Code Field

The request code field specifies the service to be performed, typically read or write.

6.7.4. Return Code Field

The return code field is the result of the request filled in by the system process. The
actual values for the request and return codes are defined by individual system services.

6.8. The Clock Device

NX 200's abstraction of the clock device is a simple 64-bit counter, incremented in real
time every 20 milliseconds. On reset the counter is set to zero. Processes can set the
clock counter to any value at any time with the TIME_SET call, and read it at any time
with the TIME_GET call. The clock counter can be used for any purpose required by the
user application. For example, it may be used as a time-of-day clock by setting it to the
current time.

Note this model of the clock provides no facility to the user for interrupting after a
specified interval of time. This clock-related function has been incorporated directly in
NX 200's multi-tasking model by the sleep count parameter, which can be used to delay
a process or force a blocked process to unblock after a specified interval of time.

6-9

(blank page)

7. THE NX 200 ETHERNET INTERFACE

The NX 200 Ethernet interface consists of two parts: a system process which sends
and receives packets, and several NX 200 kernel calls which serve network
management functions. This section describes all necessary details of the Ethernet
system process, and describes the functionality of the network management calls. For
further details about NX 200 call format, see Section 9.

User processes send Ethernet transmit and receive requests to the Ethernet system
process via the Ethernet system mailbox (0009H). The transmit request describes the
location of a packet to transmit, while the receive request describes a buffer in which to
store an incoming packet. In both cases, the request names a reply mailbox, to which
the system process sends a reply message when the request completes. Requests
may be enqueued without limit, and will be processed asynchronously. Transmit
requests are serviced as rapidly as the Data Link protocol permits, and return a failure
only in the event of excess collisions. Receive requests return a reply message only
when an incoming packet satisfies all specified address filtering.

Network management functions determine the Ethernet controller's mode, define which
addresses to accept, and gather network statistics. All of these are defined in terms of
abstract objects, accessed only via the appropriate NX 200 calls. In each call, a request
mask parameter determines whether the request will read or write (or read and write) a
value to/from a given object. This approach simplifies access to network management
function, and insulates the functions from specific implementation methods.

7.1. Ethernet Transmit Request

In order to send a packet on the Ethernet, a process sends a service request message
to the Ethernet system mailbox. When transmission is complete, the request message
(modified according to the status of the transmission) is returned to a reply mailbox
designated by the requesting process. The request message does not contain the
actual data to be sent, but rather a pointer to the packet. Any number of messages can
be sent to the Ethernet system process; they will be queued up and dispatched in the
order received. Until the reply message is received, the message and packet belong to
the Ethernet process, and should not be modified.

Transmit requests are serviced immediately, unless the controller is in off net mode
(see Section 7.3). When a NET _MODE call places the controller off net, any
transmission underway will complete, but any enqueued requests will remain enqueued.
When off net, new transmit requests may still be enqueued. When the controller is
restored to an on net mode, transmission resumes.

If the net disable option is selected, (see Section 7.4) then transmission will appear to
proceed normally, but nothing is actually transmitted on the Ethernet.

Packets are prepared for transmission in standard Ethernet data link layer frame format,
as shown in Figure 7-1. However, the packet need not include a frame check sequence
(CRC) field. This, and the preamble, are generated by EXOS 204 hardware.

Figure 7-2 shows the format of an Ethernet transmit request/reply message. Its fields
are explained in detail below.

7.1.1. Link Field

The link field is required by NX 200 at the beginning of all messages. Its request and
reply values are both undefined. NX 200 uses this field for chaining messages.

7-1

EXOS 204: The NX 200 Ethernet Interface

Length Offset

1) 6 0

2) 6 6

3) 2 12

4) n 14

5) 4 14+n

Field Name

De s t i n a t i o n I
I
I
I
I

I I
1--------------------------------1
I Source I
I I
I I
I
I
I I
1-------- ------------------------1
I Type I
I I
1--------------------------------1

Data (Ieng th i s n , where
46 <= n <= 1500 bytes)

!--------------------------------!
I Frame Check Sequence I
I (generated by EXOS 204 H/W)
I
I

l<------------1 byte------------>!

Figure 7-1: Ethernet Packet Format

7.1.2. Reply Mailbox Field

Request Reply

The reply mailbox field identifies the mailbox to which the reply message is returned
after completion of the request. In the request message, this must identify an existing
user mailbox. Its value in the reply message is the Ethernet system mailbox id.

7.1.3. Request Code Field

The request code field defines the request; in this case, to send a packet, its value in
the request message must be 0. The reply message preserves this value.

7-2

EXOS 204: The NX 200 Ethernet Interface

Length Off set Field Name Request Reply

1) 4 0 I Link undefined undefined

I
I I
1--------------------------------1

2) 2 4 I Rep I y Mai I box I see text see text
I I
!--------------------------------!

3) 6 I Request Code I zero preserved
!--------------------------------!

4) 7 I Return Code I undefined see text
!--------------------------------!

5) 8 I Address Slot I undefined see text
1--------------------------------1

6) 9 I Reserved I zero undefined
1--------------------------------1

7) 2 10 I Data Length I see text undefined
I I
!--------------------------------!

8) 4 1 2 I Data Address I see text preserved
I
I
I

l<------------1 byte------------>I

Figure 7-2: Ethernet Transmit Request/Reply Message

7.1.4. Return Code Field

The return code field value in undefined in the request message. In the reply message,
it reports the status of the transmission request:

OOH successful transmission, no retry.

01 H successful transmission, 1 retry.

02H successful transmission, more than 1 retry.

08H (applicable for Version 2.0 transceivers only.) indicates the absence of SOE
TEST signal during the lnerframe Spacing interval. This error code is OR­
able with all other return codes except 40H. A jumper option is available to
disable this check.

1 OH transmission failed, excessive collisions.

20H no Carrier Sense signal detected during transmission.

40H transmission failed, transmit length not in range.

7-3

EXOS 204: The NX 200 Ethernet Interface

7 .1.5. Address Slot Field

The address slot field is an index into the address slot array (see Section 7.5). Its value
in the request message is undefined. In the reply message, it contains the address slot
number by which this packet would be received by this station. For instance, the value
255 indicates that the packet was broadcasted, and should be auto-received. Or, if the
packet was transmitted to this station's own address, the value would be 253. A zero
value means that no slot matched - this packet would not be received by this station.

7.1.6. Reserved Field

This field is reserved for future use. In the request message, its value must be 0. In the
reply message, its value is undefined.

7.1. 7. Data Length Field

The data length field is the length, in bytes, of the packet to be transmitted. This value
does not include the preamble or CRC fields, which are appended by EXOS 204
hardware. In the reply message, the data length field's value is undefined.

7.1.8. Data Address Field

The data address field is the address of the packet to be transmitted. This is an
segmented address (see Section 3.9); the first word is an offset, the second word a
segment base address. The EXOS 204 requires that the packet start at an even
boundary and lie entirely within the address range 1000H-OFFFFH. Additionally, the
segment base address must be 0. Note that the packet, as handed over to the Ethernet
process, does not include a preamble, so that the address will point to the first byte of
the packet's destination field. The data address field's value is preserved in the reply
message.

7.2. Ethernet Receive Request

In order to receive a packet on the Ethernet, a process sends a service request
message to the Ethernet System mailbox. The request message does not contain the
actual buffer to be filled, but rather a pointer to the buffer. When reception is complete,
the request message (modified according to the status of the reception) is returned to a
reply mailbox designated by . the requesting process. Once the reply message is
received, the buffer belongs to the receiving process. Receive requests are not
necessarily dispatched in the order they are received by the Ethernet system process.

The EXOS 204 manages receive buffer descriptors in hardware; it can receive packets
back-to-back with minimum interframe spacing as long as sufficient receive requests
have been enqueued. For most applications, it is recommended that at least two
receive buffers be made available at all times. This allows time for the EXOS CPU to
screen out undesired packets (such as spurious network bootstrap protocol messages,
or multicast packets which passed the hardware filter) which would otherwise tie up a
single-buffered implementation. By queutng up a fairly large number of receive buffers,
protocols can create a large "receive window" and realize substantial performance
improvements.

Receive requests return a reply message to a designated reply mailbox only after an
incoming packet satisfies the receive address filtering criteria. When a NET _MODE call
(see Section 9) places the controller off net, any receive underway will complete, but
any enqueued requests will remain enqueued. Packets arriving on the Ethernet will be
ignored (not placed into receive buffers). When off net, new receive requests may still
be enqueued.

7-4

EXOS 204: The NX 200 Ethernet Interface

If the net disable option is selected, (see Section 7.4) then incoming traffic is ignored,
and receive requests will not return a reply message until the controller is re-enabled.

If the EXOS 204 was initialized in network bootstrap mode, once the network bootstrap
session is completed, it will not pass messages of the network bootstrap type to
software running under NX 200. This prevents any spurious network bootstrap
messages from interfering with successfully-installed protocol software on the EXOS
204.

Received packets are in standard Ethernet data link layer frame format, as shown in
Figure 7-1. The frame check sequence (CRC) field is included.

Figure 7-3 shows the format of an Ethernet receive requesUreply message, which is
very much like the transmit request/reply message. Its fields are explained in detail
below.

Length Offset Field Name Request Reply

1) 4 0 I Link undefined undefined

I
I
I I
1--------------------------------1

2) 2 4 I Rep I y Mai I box I see text see text
I I
1--------------------------------1

3) 6 I Request Code I preserved
1--------------------------------1

4) 7 I Return Code I undefined see text
1--------------------------------1

5) 8 I Address Slot I undefined see text
1--------------------------------1

6) 9 I Reserved I zero undefined
1--------------------------------1

7) 2 1 0 I Bu f f e r Length I see text see text
I I
1--------------------------------1

8) 4 1 2 I Bu f f e r Address I see text preserved
I I
I I
I I

l<------------1 byte------------>I

Figure 7-3: Ethernet Receive Request/Reply Message

7-5

EXOS 204: The NX 200 Ethernet lntertace

7 .2.1. Link Field

The link field is required by NX 200 at the beginning of all messages. Its request and
reply values are both undefined. NX 200 uses this field for chaining messages.

7.2.2. Reply Mailbox Field

The reply mailbox field identifies the mailbox to which the request message is returned
after completion of the request. In the request message, this must identify an existing
user mailbox. Its value in the reply message is the Ethernet system mailbox id.

7.2.3. Request Code Field

The request code field defines the request; in this case, to receive a packet, its value in
the request message must be 1. The reply message preserves this value.

7 .2.4. Return Code Field

The return code field value in undefined in the request message. In the reply message,
it reports the status of the receive request:

OOH packet received with no error.

04H packet received longer than buffer supplied, truncated.

10H packet received with alignment error.

20H packet received with CRC error.

40H no packet received, buffer supplied was less than 64 bytes.

Note that packets with errors are actually received only if the network mode is set
appropriately.

7 .2.5. Address Slot Field

The address slot field is an index into the address slot array (see Section 7.5). Its value
in the request message is undefined. In the reply message, it contains the address slot
number which matched the destination address of the packet received. If the controller
is in promiscuous mode, then this field will return the universal address slot, whether or
not any address matched. If the controller is not in pertect filtering mode, then this field
will return the universal address slot when any multicast packet is received.

7.2.6. Reserved Field

This field is reserved for future use. In the request message, its value must be 0. In the
reply message, its value is undefined.

7.2.7. Buffer Length Field

The buffer length field is the length, in bytes, of the receive buffer. The length does not
include the preamble but must include 4 bytes for the frame check sequence (CRC)
field. In order to receive the longest possible Ethernet packet, the buffer must be at
least 1518 bytes long. Minimum size is 64 bytes, which will fit the shortest possible
Ethernet packet.

7-6

EXOS 204: The NX 200 Ethernet Interface

In the reply message, the buffer length field returns the number of bytes actually
received, plus 4 bytes for the CRC field. Note that the CRC value is not actually written
back. Also, if the buffer supplied was smaller than the packet received, then the excess
bytes are truncated, and the buffer length will not give the true length of the packet.

7.2.8. Buffer Address Field

The data address field is the buffer to receive a packet. This is an segmented address
(see Section 3.9); the first word is an offset, the second word a segment base address.
The EXOS 204 requires that the buffer start at an even boundary and lie entirely within
the address range 1000H-1 FFFFH. Additionally, the segment base address must be 0.
Note that the packet returned by the Ethernet process does not include a preamble field,
so that the address will point to the first byte of the buffer's destination field. The buffer
address field's value is preserved in the reply message.

7.3. Ethernet Controller Modes

The Ethernet controller provides several optional modes of operation which essentially
define filtering criteria for packets to be received. Processes can read and modify the
controller's mode with the NET _MODE call, which selects one of four mutually exclusive
modes:

O off net - the EXOS 204 is disconnected from the net. No transmission or
reception of packets takes place. Note, however, that any transmission or
reception in progress is completed before the network is actually
disconnected. Transmit and receive requests can still be enqueued, and
network management functions will be serviced.

on net, perfect filtering - the EXOS 204 is connected to the Ethernet.
Multicast packets are received if and only if their destination addresses
match one of the specified multicast addresses. A two level filter is
employed - the first level in hardware, which rejects a large fraction of the
unwanted messages, and the second level in software, which traps the
balance.

2 on net, imperfect filtering - the EXOS 204 is connected to the Ethernet.
Only the hardware filter is used to select the desired multicast packets. It is
possible to receive spurious multicast packets, which fall through the
hardware filter.

3 on net, promiscuous mode - the EXOS 204 is connected to the Ethernet. All
packets are received regardless of their destination address.

When the EXOS 204 is reset the controller comes up in mode 0 - disconnected. The
user has to explicitly set the desired mode, with the NET _MODE call.

7.4. Ethernet Controller Option Mask

This object defines various options, useful for testing and diagnostic purposes. Available
options are defined by the following bit OR-able values:

1 OH alignment error - enables reception of packets even if the number of bits
received is not a multiple of 8.

20H CRC error - enables reception of packets even if the CRC check fails.

7-7

EXOS 204: The NX 200 Ethernet Interface

80H net disable - disables the Ethernet controller so that packets are not received
or transmitted on the Ethernet. However, transmit requests are still
processed by NX 200, and to user processes appear to complete
successfully if an on net mode is selected.

When reception of flawed packets is enabled, the actual error in a bad packet can be
determined from the return code field in the receive reply message.

7.5. Address Slots

Address slots identify the destination addresses for which packets on the Ethernet
should be received by this station. Each slot holds a single six-byte Ethernet address.
Reception can be enabled or disabled individually for each slot.

Slots are identified by a unique number between 0 and 255. They are designated for
certain purposes, according to this number, as follows:

0

1-252

253

254

255

the null slot

multicast address slots

physical address slot

universal address slot

broadcast address slot

The actual number of multicast address slots is configurable. The default number, and
the details of configuring NX 200, are given in Section 4.4.14.

Every EXOS 204 is permanently assigned a physical address from within a contiguous
block of Ethernet physical addresses allocated to Excelan. This address is unique over
all Ethernets. When the EXOS 204 is reset, the physical address is copied from
EPROM into the physical address slot, where it can be read and modified.

Processes can read and write most address slots with the NET _ADDRS call, and enable
or disable reception for any slot with the NET _RECV call. Only valid multicast
addresses may be written in multicast address slots. Only a valid physical address may
be written in the physical address slot. The address in the broadcast slot cannot be
changed. Note that writing an address in a slot disables reception on the slot - an
explicit NET _RECV call must then be made in order to enable reception. Enabling or
disabling reception on an address slot does not affect the address contained in it.

When the EXOS 204 is initialized, all multicast address slots are empty. The physical
address slot (number 253) contains the station's unique Ethernet address. The
broadcast slot (number 255) contains the broadcast address. On initialization, reception
is enabled on the physical and the broadcast slots.

Address slot numbers are used as short identifiers for the network addresses contained
in the corresponding slots. For instance, when a packet is received, the receive reply
message returns the address slot number whose address matched the destination
address of the packet. Thus, a slot 253 would indicate that the packet arrived for the
physical address - and a slot 255 would indicate a broadcast packet. The universal slot
254 is returned if the network is in promiscuous mode, or if a multicast message is
received in imperfect filtering mode.

7-8

EXOS 204: The NX 200 Ethernet Interface

7 .&. Net Statistics

The EXOS 204 supports network management functions by gathering statistics on
network operations. The statistics appear to the user as an array of longword (32-bit)
objects. Each object represents a counter that keeps a tally of events or some other
value of interest, as described below. When an event counter reaches its maximum
value, further counting on the object is inhibited until it is reset.

Not all 32 bits of an object are necessarily used. The number of bits used by each
object is included in the description of the objects below. The used bits are always the
least significant bits of the object. The bits unused by an object are undefined, and may
take any value.

Processes can read and reset objects with the NET _STSTCS call. An object is referred
to by its index in the array, where the index to the first object is 0. Multiple objects may
be accessed in a single call, if they are contiguous. Resetting an object changes its
value to 0. Resetting the EXOS 204 resets all statistics objects - otherwise they are
continuously maintained.

Statistics objects are listed below by index number, with a complete description.

O Frames Sent No Errors - a 32-bit counter that counts the number of frames
successfully transmitted with or without retries.

1 Frames Aborted Excess Collisions - a 32-bit counter that counts the number
of transmissions that were aborted because 16 collisions were encountered.

2 SOE TEST error - a 32-bit counter that counts the number of those
transmitted frames which encountered heartbeat absence error. (This object
applicable for Ethernet Version 2.0 transceivers onfy. A jumper option is
available to disable this feature. (See Section 11.)

3 Undefined - reserved for future use.

4 Frames Received No Errors - a 32-bit counter that counts the number of
error-free frames received.

5 Frames Received Alignment Error - a 32-bit counter that counts the number
of frames received with an alignment error i.e. frames that are not an exact
multiple of an 8 bits in length. This statistic is maintained whether or not
reception with alignment errors is enabled in the options mask (see Section
7.4).

6 Frames Received CRC Error - a 32-bit counter that counts the number of
frames received which had CRC errors. This statistic is maintained whether
or not reception with CRC errors is enabled in the options mask (see Section
7.4).

7 Frames lost - a 32-bit counter that counts the number of frames which would
normally have been received but were lost because no receive buffers were
available.

7-9

(blank page)

8. THE NX 200 HOST INTERFACE

User software on the EXOS 204 communicates with the host through a system process
in the NX 200 kernel, which transmits and receives messages to and from the host
processor. Access to this process is through a system mailbox associated with the host
interface (0001 H). NX 200 also provides the MEM_READ and MEM_WRITE calls which
access shared Unibus memory directly. This section describes these facilities as seen
by a process on the EXOS 204. For information about initializing and using the
message interface from the host processor, see Section 4.5.

Messages are commonly used to synchronize a producer-consumer relationship with the
host, and to exchange information with objects in host memory which are unknown to
processes on the EXOS 204. Typically, messages contain control information and
pointers to data buffers in host memory, which can then be directly transferred. This
approach allows user processes running on the EXOS 204 to assemble a data packet
from scattered locations in host memory - which saves the host having to copy scattered
blocks into one contiguous buffer for transfer in a message.

8.1. Host Transmit Request

In order to transfer a message to the host, a process sends a service request message
to the system mailbox associated with the host. When the transfer is complete, the
request message (modified according to the status of the transfer) is returned to a reply
mailbox designated by the requesting process. Any number of messages can be sent to

· the host interface system process; they will be queued up and dispatched in the order
received. Until the reply message is received, the message belongs to the system
process and should not be modified.

Figure 8-1 shows the format of a host transmit request/reply message. Its fields are
explained in detail below.

8.1.1. Link Field

The link field is required by NX 200 at the beginning of all messages. Its request and
reply values are both undefined. NX 200 uses this field for chaining messages.

8.1.2. Reply Mailbox Field

The reply mailbox field identifies the mailbox to which the request message is returned
after completion of the request. In the request message, this must identify an existing
user mailbox. Its value in the reply message is the host interface system mailbox id.

8.1.3. Request Code Field

The request code field defines the request; in this case, to transmit a message, its value
in the request message must be 0. The reply message preserves this value.

8-1

EXOS 204: The NX 200 Host Interface

Length Offset Field Name Request Reply

----·-----------------------------
1) 4 0 Link I undefined undefined

I
I

I I
1--------------------------------1

2) 2 4 I Rep I y Mai I box I see text see text
I I
1--------------------------------1

3) 6 I Request Code I zero preserved
--------------------------------1

4) 7 Return Code I undefined see text
--------------------------------!

5) 2 8 Data Length I see text see text
I

--------------------------------!
6) n 10 Data see text preserved

l<------------1 byte------------>!

Figure 8-1: Host Transmit Request/Reply Message

8.1.4. Return Code Field

The return code field value in undefined in the request message. In the reply message,
it reports the status of the transmission request:

OOH Successful transfer.

04H Transfer failed, host's receive buffer was shorter than the transmit length.
Should this occur, the host still receives the message, but it is truncated.

8.1.5. Data Length Field

The data length field is the length, in bytes, of the data field to be transferred. Zero is a
valid value. In the reply message, this field returns the number of bytes actually
transferred.

8.1.6. Data Field

The data field is the actual message to be sent in the transmit request. The data can be
any number of bytes as long as it lies entirely within the address range 0-0FFFFH. The
format of this data is defined entirely by the user. If the host data order conversion
option is selected, NX 200 will apply any conversion needed for the byte string data
type. The data field's contents are preserved in the reply message.

8-2

EXOS 204: The NX 200 Host Interface

8.2. Host Receive Request

In order to receive a message from the host, a process sends a service request
message to the system mailbox associated with the host interface. When reception is
complete, the request message (modified according to the status of the reception) is
returned to a reply mailbox designated by the requesting process. Receive requests are
queued up and dispatched in the order they are received by the host interface system
process. Once the reply message is received, the buffer belongs to the receiving
process.

Figure 8-2 shows the format of an host receive request/reply message, which is very
much like the transmit request/reply message. Its fields are explained in detail below.

Length Offset Field Name Request Reply

1) 4 0 I Link undefined undefined

I
I
I I
!--------------------------------!

2) 2 4 I Reply Mai I box I see text see text
I I
!--------------------------------!

3) 6 I Request Code I preserved
!--------------------------------!

4) 7 I Return Code I undefined see
1--------------------------------1

5) 2 8 I Data Length I see text see
I I
!--------------------------------!

6) n 10 Data undefined see

l<------------1 byte------------>I

Figure 8·2: Host Receive Request/Reply Message

8.2.1. Link Field

The link field is required by NX 200 at the beginning of all messages. Its request and
reply values are both undefined. NX 200 uses this field for chaining messages.

8.2.2. Reply Mailbox Field

The reply mailbox field identifies the mailbox to which the request message is returned
after completion of the request. In the request message, this must identify an existing
user mailbox. Its value in the reply message is the host interface system mailbox id.

8-3

text

text

text

EXOS 204: The NX 200 Host Interface

8.2.3. Request Code Field

The request code field defines the request; in this case, to receive a message, its value
in the request message must be 1. The reply message preserves this value.

8.2.4. Return Code Field

The return code field value in undefined in the request message. In the reply message,
it reports the status of the transmission request:

OOH Successful transfer.

04H Transfer failed, receive buffer was shorter than the buffer sent by the host.
Should this occur, the EXOS 204 still receives the message, but it is
truncated.

8.2.5. Data Length Field

The data length field is the length, in bytes, of the buffer supplied in this message. Zero
is a valid value. In the reply message, this field returns the number of bytes actually
transferred. Zero is a possible value.

8.2.6. Data Field

The data field is the buffer into which data from the host will be copied. It can be any
number of bytes as long as it lies entirely within address range 0-0FFFFH. The format
of this data is defined by the user. If the host data order conversion option is selected,
NX 200 will apply any conversion needed for the byte string data type.

8.3. Direct Access to Host System Memory

The EXOS 204 accesses Unibus memory by mapping part of its own CPU's address
space into Unibus memory addresses. This is the underlying mechanism which NX 200
uses to implement the message transfer functions described above. User software can
directly utilize this direct memory access mechanism without sacrificing portability by
using NX 200's MEM_READ and MEM_WRITE calls.

These calls take an address in EXOS 204 memory, an address in host memory, and a
data transfer length. NX 200 performs the appropriate mapping and executes the
transfer. If the host data order conversion option is enabled, NX 200 will apply any
conversion needed for the byte string data type. ·

8.4. Host Data Order Conversion

For the convenience of protocol software running on the EXOS 204, NX 200 provides
calls which convert data between the host system's ordering and the 80186 CPU's
native ordering. These calls, CVT _WORD and CVT _LWORD, work in conjunction with
the host data order conversion option (see Section 4.2). By incorporating the calls in
EXOS-resident software, the user's software can be made independent of data ordering,
both on the host system, and on the EXOS 204.

When the host data conversion option is enabled, NX 200 sets up the CVT _WORD and
CVT _LWORD calls according to the test pattern which the host system presents in the
configuration message. User software running on the EXOS 204 can then use these
calls to convert word and longword data objects passed through the data field in the
standard host message queue, or via the MEM_READ and MEM_WRITE calls. Note
that byte string conversion, if required, is done implicitly by the primitive transfer
operations. CVT _WORD and CVT _LWORD do not repeat that conversion.

8-4

9. NX 200 KERNEL CALL REFERENCE

This section defines the specific format and usage of NX 200 kernel calls. User
software running on the EXOS 204 should access all NX 200 services through these
requests. For more information about the function of NX 200 kernel calls, see Sections
6, 7, and 8.

Processes request NX 200 services through an INT n instruction, where n is the type of
the desired call. Parameters are generally passed in registers, although some
parameters can be pointers to other parameters in memory. Passing parameters in
registers facilitates writing interfaces for different high level languages, which may have
different calling conventions.

Most calls return a completion code in the register AL. A negative completion code
implies an error, and a zero or positive value implies success. Unless otherwise stated,
only the registers used for passing parameters and results are modified.

The following list summarizes the NX 200 calls, which are grouped according to the
abstract objects on which they operate.

PROC_CREATE
PROC_DELETE
PROC_SLPCNT
PROC_PRIOR
PROC_ TIMSLC
PROC_STATUS
PROC_LOCK
PROC_UNLOCK

MLBX_CREATE
MLBX_DELETE
MLBX_SEND
MLBX_RECV

TIME_ GET
TIME_SET

NET_MODE
NET_ADDRS
NET_RECV
NET_STSTCS

MEM_READ
MEM_WRITE

CVT_WORD
CVT_LWORD

VERSION

create a process.
delete a process.
read/write sleep count of a process.
read/write priority of a process.
read/write time slice of a process.
read status of a process.
lock a process.
unlock a process.

create a mailbox.
delete a mailbox.
send a message to a mailbox.
receive a message from a mailbox.

get the time.
set the time.

read/write the net mode.
read/write the net address in a slot.
enable/disable receive for a slot.
read/clear network statistics.

read system memory.
write system memory

convert data order of word operand.
convert data order of longword operand.

return EXOS 204 version number.

9-1

EXOS 204: NX 200 Kernel Call Reference

The remainder of this section describes the NX 200 calls individually, in the order given
above. A standard format is used, as follows:

CALL NAME INTERRUPT TYPE

Parameters:

specification of the call parameters.

Results:

specification of the call results.

Description:

specification of the call's purpose and effects.

9-2

EXOS 204: NX 200 Kernel Call Reference

PROC_CREATE INT64

Parameters:

BX: the offset part of the starting address of the new process.

ES: the segment part of the starting address of the new process.

CX: the initial sleep count for the new process. A value of -1 (OFFFFH)
is considered infinity.

DL: priority of the new process (O is the lowest, 255 is the highest).

DH: time slice of the new process in ticks of 20 milliseconds. A value of
-1 (OFFH) is equivalent to an infinite time slice.

SI: the offset part of the address of the top of the stack for the new
process.

DI: the segment part of the address of the top of the stack for the new
process.

Results:

AL: completion code:

O successful.

OFOH failed, maximum number of processes allowed already
exists.

AH: undefined.

BX: process-id of the new process, valid only if call is successful.

9-3

EXOS 204: NX 200 Kernel Call Reference

Description:

This call creates a new process with the specified parameters and returns its
process-id. Note that the stack area can be allocated anywhere in user
memoryi; this area should not be used for any other purpose. The stack
pointer specified should point to the top of the new process stack. The initial
CPU register values for the new process are defined as follows:

AX: undefined.

BX: process-id of the process.

CX: undefined.

DX: undefined.

SP: offset for process top-of-stack (parameter SI).

BP: undefined.

SI: undefined.

DI: undefined.

CS: segment base for process code (parameter ES).

OS: undefined.

SS: segment base for process stack (parameter DI).

ES: undefined.

IP: offset for starting address (parameter BX).

FLAGS: interrupts enabled, rest undefined.

The successful completion of this call invokes an immediate scheduling
decision. Thus if a process spawns another process with a zero initial sleep
count and a higher priority than its own, control will be passed immediately to
the new process at its starting address, before the calling process returns
from the call.

9-4

EXOS 204: NX 200 Kernel Call Reference

PROC_DELETE INT65

Parameters:

BX: process-id (O implies calling process).

Results:

AL: completion code:

o successful deletion.

OF1 H specified process does not exist.

AH: undefined.

Description:

The specified process is deleted if it exists. It is the responsibility of the
programmer to ensure that no harmful effects of deleting the process will
occur (e.g. a process owning a critical section should not be deleted etc.). If
the process being deleted was waiting in a mailbox it is first removed from
the mailbox's process queue. If a process has invoked locks, and deletes
itself, then any locks are removed.

9-5

EXOS 204: NX 200 Kernel Call Reference

PROC_SLPCNT INT66

Parameters:

BX: process-id (0 implies the calling process).

CX: new sleep count for the process, in ticks of 20 milliseconds. The
value -1 (OFFFFH) represents infinity. This parameter is required
only if a write is requested.

DL: request mask:

Results:

01 write request bit.

02 read request bit.

Read and write can be requested simultaneously (DL = 03). Other
bits in mask must be 0, or effects are undefined.

AL: completion code:

O successful completion.

OF1 H failed, specified process does not exist.

AH: undefined.

BX: process-id of the specified process, not destroyed if the call fails.

CX: sleep count of the process just prior to this call. This result is
defined only if the request mask (DL) had the read bit set and the
call was successful.

Description:

This call is used to read/write the sleep count of the specified process. If the
write bit in the request mask (DL) is set then the current value of the sleep
count is replaced by the specified new sleep count (CX). If the read bit in the
request mask (DL) is set, then the the value of the sleep count prior to this
call is returned.

If modified, the new value of sleep count is put into effect immediately and
thus may invoke rescheduling. If the sleep count of a blocked process is
changed to 0 then it is unblocked even if the process was waiting for a
message to arrive at some mailbox. This call can be used to delay, suspend
or resume a process by setting the sleep count to non-zero, infinity, or zero
respectively.

If this call changes the sleep count of the running process to non-zero then
any locks in effect are canceled, regardless of errors.

9-6

EXOS 204: NX 200 Kernel Call Reference

PROC_PRIOR INT67

Parameters:

BX: process-id (0 implies the calling process).

DH: new priority of the process (required only if write is requested), The
lowest priority is O and the highest priority is 255.

DL: request mask:

Results:

01 write request bit.

02 read request bit.

Read and write can be requested simultaneously (DL = 03). Other
bits in mask must be 0, or effects are undefined.

AL: completion code:

0 successful completion.

OF1 H failed, specified process does not exist.

AH: undefined.

BX: process-id of the specified process, if the call succeeds. Otherwise
its value before the call is preserved.

DH: priority the process prior to this call. This result is defined onJy if the
request mask (DL) had the read bit set and the call was successful.

Description:

This call is used to read/write the priority of the specified process. If the
write bit in the request mask (DL) is set, then the current priority of the
process is replaced by the new specified priority (DH). If the read bit in the
request mask is set, then the priority of the process prior to this call is
returned. If modified, the new value of priority is put into effect immediately
and re-scheduling is invoked. Thus if a process is lowering its own priority
and a process with equal or higher priority is runnable, the call may not
immediately return.

9-7

EXOS 204: NX 200 Kernel Call Reference

PROC_ TIMSLC INT68

Parameters:

BX: process-id (0 implies the calling process).

DL: request mask:

O 1 write request bit.

02 read request bit.

Read and write can be requested simultaneously (DL = 03). Other
bits in mask must be 0, or effects are undefined.

DH: new time slice of the process (required only if write is requested) in
ticks of 20 milliseconds. A value of -1 (OFFH) represents infinity.

Results:

AL: completion code:

O successful completion.

OF1 H failed, specified process does not exist.

AH: undefined.

BX: process-id of the specified process if the call succeeds, otherwise
not destroyed.

DL: time count the process prior to this call. This result is defined only if
the request mask (DL) had the read bit set and the call was
successful.

DH: time slice the process prior to this call. This result is defined only if
the request mask (DL) had the read bit set and the call was
successful.

Description:

This call is used to read/write the time slice and time count parameters of the
specified process. If the write bit of the request mask is set then the current
time slice and the current time count parameters are replaced by the
specified new time slice. If the read bit was set in the request mask then the
values of the time slice and time count parameters are returned. Note that
time count is the process parameter which counts down, whereas the time
slice parameter is used to initialize time count every time it reaches zero. If
modified, the new value of time slice is put into effect immediately and thus
affects the duration after which a rescheduling will be invoked due to the
process exhausting its time slice.

9-8

PROC_STATUS

Parameters:

BX:

Results:

AL:

AH:

EXOS 204: NX 200 Kernel Call Reference

process-id (O implies the calling process).

completion code:

0 successful completion.

OF1 H specified process does not exist.

the status of the process:

O process running, not locked.

process running, locked.

2 process runnable.

3 process blocked.

BX: process-id of the specified process, not destroyed if call fails.

Description:

This call returns the status of the specified process.

9-9

INT69

EXOS 204: NX 200 Kernel Call Reference

PROC_LOCK INT70

Parameters:

none.

Results:

AL: completion code:

O successful completion.

AH: undefined.

Description:

This call causes scheduling decisions to be suspended until a corresponding
PROC_UNLOCK call is executed. A lock is said to be in effect for the
duration of suspension. This call, in conjunction with PROC_UNLOCK, can
be used to exclude other processes in critical sections. A process can nest
locks up to 32K levels deep. To unlock the process, each PROC_LOCK call
should be matched by a corresponding PROC_UNLOCK call - in a manner
similar to open and close parentheses. Any attempt to exceed the nesting
limit of 32K will result in an undefined action.

If a process having locks in effect executes a call that can potentially cause
the process to block, then all locks in effect are removed. Examples of such
calls are MLBX_RECV with a non-zero sleep count or a PROC_SLPCNT call
that sets the sleep count of the calling process to non-zero.

9-10

EXOS 204: NX 200 Kernel Call Reference

PROC_UNLOCK INT71

Parameters:

none.

Results:

AL: completion code:

O successful completion.

AH: undefined.

Description:

This call removes the effect of a single PROC_LOCK call. If, as the result of
this call, no more locks are pending, then scheduling is resumed in a normal
way. If any events occurred during the locked state that required a
rescheduling, then rescheduling is invoked immediately. Every PROC_LOCK
call should be matched by a corresponding PROC_UNLOCK call. A
PROC_UNLOCK call is a no-op if no locks are in effect.

9-11

EXOS 204: NX 200 Kernel Call Reference

MLBX_CREATE INT72

Parameters:

BX: must be -1 (OFFFFH), else effect is undefined.

CX: initial number of null messages, must be a non-negative number.

Results:

AL: completion code:

O successful completion.

OEOH failed, maximum number of mailboxes allowed already
exists.

OE2H failed, less then zero number of initial null messages.

AH: undefined.

BX: id of the new mailbox if call successful, otherwise undefined.

Description:

This call creates a new mailbox and returns its id. The specified number of
null messages are enqueued in the mailbox. Note that if the mailbox is being
used as a semaphore, then this allows creating a semaphore with a specified
initial count. The process and regular message queues are always empty
when initialized.

9-12

EXOS 204: NX 200 Kernel Call Reference

MLBX_DELETE INT73

Parameters:

BX: mailbox-id.

Results:

AL: completion code:

0 successful deletion.

OE 1 H failed, specified mailbox does not exist.

AH: undefined.

BX: undefined, not destroyed if the call fails.

Description:

The specified mailbox is deleted. If any processes are blocked on this
mailbox, then they are unblocked and resumed with the appropriate error
code. Any unreceived messages in the mailbox are lost. It is the
programmer's responsibility to ensure that deleting a mailbox has no harmful
effects. The user should not delete a system mailbox.

9-13

EXOS 204: NX 200 Kernel Call Reference

MLBX_SEND INT74

Parameters:

BX: mailbox-id.

SI: offset part of the message address. OFFFFH specifies a null
message.

ES: segment part of the message address. This must be 0, or effect is
undefined.

Results:

AL: completion code:

O successful completion.

OE 1 H failed, specified mailbox does not exist.

OE4H failed, invalid request for a system mailbox.

OESH failed, improper buffer (message buffer segment not 0).

AH: undefined.

Description:

This call sends the specified message to the specified mailbox. If one or
more processes are waiting in the mailbox then the first process is unblocked
and resumed, having received this message. If a process is unblocked then
a rescheduling is invoked immediately.

The message must lie entirely within the address range 0-0FFFFH. The first
field of the message should be a 32-bit link field available for use by NX 200.
If the specified mailbox is a system mailbox then the message must be
formatted according to the specifications of the corresponding system
process.

A regular message is appended at the end of all other regular messages in
the mailbox but in front of all null messages, if any. A null message is
appended at the end of all messages in the mailbox. If only null messages
are used then this call is equivalent to a V operation on a semaphore.

9-14

EXOS 204: NX 200 Kernel Call Reference

MLBX_RECV INT75

Parameters:

BX: mailbox-id.

CX: sleep count, in ticks of 20 milliseconds. A value of -1 (OFFFFH)
represents infinity.

Results:

AL: completion code:

0 successful.

OE 1 H failed, specified mailbox does not exist.

OCOH failed, specified sleep count exhausted.

OE3H failed, the mailbox is being deleted.

AH: undefined.

SI: offset of the message address if the call is successful, otherwise
undefined. A value of -1 (OFFFFH) indicates a null message.

ES: segment part of the message address if the call is successful,
otherwise undefined. NX 200 always returns 0.

Description:

If the mailbox's message queue contains any messages, either regular or
null, then this call returns the address of the first message in the queue.

If there are no pending messages and the sleep count is non-zero, then the
calling process is blocked and appended at the end of the mailbox's process
queue. The sleep count of the process is set to the specified value. When a
message becomes available, the call returns its address, as above. If the
sleep count of the blocked process counts down to zero, or is explicitly set to
zero by a PROC_SLPCNT call, before it receives a message, then the
process is unblocked and returns from this call with the error code OCOH.

Note that if the sleep count was specified to be zero then the process
effectively does not block and returns immediately with the error code OCOH.
By specifying the sleep count to be infinity, finite non-zero, or zero, a process
can choose to wait forever, wait for a finite time interval, or not wait at all to
receive a message.

If this call is made with a non-zero sleep count, then any locks in effect are
canceled, regardless of any errors the call may return.

9-15

EXOS 204: NX 200 Kernel Call Reference

TIME_ GET INT76

Parameters:

CX: number of 16-bit words of clock value to be returned.

DI: offset part of the memory buffer address to which the clock value
will be copied.

ES: segment part of the memory buffer address to which the clock value
will be copied.

Results:

AL: completion code:

O successful.

AH: undefined.

CX: number of words actually copied.

Description:

This call copies the specified number of 16-bit words of the clock value into
the specified memory buffer. The least significant word of the clock occupies
the lowest address of the buffer. If the specified number of words to be
copied is more than the actual number of the words in the clock, then the
extra buffer remains unused. The clock is a 64-bit counter that is
incremented every 20 milliseconds. When the EXOS 204 is reset, the clock
is initialized as zero.

9-16

EXOS 204: NX 200 Kernel Call Reference

TIME_SET INT77

Parameters:

CX: number of words to be written.

DI: offset part of the memory buffer address from which the new clock
value will be copied.

ES: segment part of the memory buffer address from which the new
clock value will be copied.

Results:

AL: completion code:

O successful.

AH: undefined.

CX: number of words actually written.

Description:

This call copies the specified number of words from the specified buffer into
the clock counter, starting from the least significant word. If the specified
number of words to copy is greater than the number of words in the clock,
then the remainder are not used. The clock is a 64-bit counter that is
incremented every 20 milliseconds.

9-17

EXOS 204: NX 200 Kernel Call Reference

NET_MODE INT78

Parameters:

CL: options mask, which defines various controller options. Available
options are defined by the following bit OR-able values:

1 OH alignment error - enables reception of packets even if the
number of bits received is not a multiple of 8.

20H CRC error - enables reception of packets even if the CRC
check fails.

80H net disable - disables the Ethernet controller so that
packets are not received or transmitted on the Ethernet.
However, transmit requests are still processed by NX 200,
and to user processes appear to complete successfully if
an on net mode is selected.

All other bits are undefined and must be 0. This parameter is
required only if a write is requested.

DL: request mask:

01 write request bit.

02 read request bit.

Read and write can be requested simultaneously (DL = 03). Other
bits in mask must be 0, or effects are undefined.

DH: the new mode of the Ethernet controller. Possible values are:

Results:

OOH off net. Disconnect from the net.

01 H on net, perfect filtering. Connect to net, perfect filter for
multicast addresses.

02H on net, imperfect filtering. Connect to net, only hardware
filter for multicast addresses.

03H on net, promiscuous mode. Connect to net, receive all
packets.

This parameter is required only if a write is requested.

AL: completion code:

0 successfu I.

AH: undefined.

CL: options mask prior to this call. This result is defined only if the
request mask (DL) had the read bit set.

DH: mode prior to this call. This result is defined only if the request
mask (DL) had the read bit set.

9-18

EXOS 204: NX 200 Kernel Call Reference

Description:

This call is used to read/write the network controller mode and options mask
parameters. If the write bit in the request mask (DL) is set, then the
specified mode is written. Only the modes defined above should be used.
Other modes are reserved for Excelan and their effects are not defined. The
options mask defines the errors that are acceptable for the packets. If the
read bit in the request mask is set then the mode and options mask of the
controller prior to this call are returned.

9-19

EXOS 204: NX 200 Kernel Call Reference

NET_ADDRS INT79

Parameters:

DL: request mask:

01 write request bit.

02 read request bit.

Read and write can be requested simultaneously (DL = 03). Other
bits in mask must be 0, or effects are undefined.

DH: address slot number. Designates the address slot which this
request will work on. This can be the physical address slot (253) or
any multicast address slot (between 1 and the limit defined by
configuration).

DI: offset part of the address of a six byte array. If a write is requested,
then this array must contain the network address to be written.

ES: segment part of the address of a six byte array described above.

Results:

AL: completion code:

O successful completion.

OD1 H the specified slot does not exist or access is not permitted.

OD3H improper address. Multicast slots can oniy take multicast
addresses and the physical slot can only take a physical
address. Attempting to write the broadcast slot (number
255) results in this error.

AH: undefined.

DL: If bit 3 (mask value 8) is set, then the address slot contained a valid
address prior to this call, otherwise the slot was empty. All other
bits are undefined. This result is valid only if a read was requested.

Description:

This call is used to read/write an address in the specified address slot. If the
write bit is set in the request mask, then the network address is copied into
the specified slot from the array whose address is specified in DI, ES. If the
read bit was set in the request mask then the network address in the
specified address slot prior to this call is copied into the array whose address
is specified in DI, ES. The address read is valid only if the slot was not
empty prior to this call (DL). If a network address to be written is invalid, the
write does not occur, and the address in the slot prior to the call is preserved.
Writing an address into a slot disables receive on that slot. The call
NET _RECV must be explicitly used to enable receive on the slot.

Address slot 253 is reserved for the physical address and address slot 255 is
reserved for the broadcast address. Thus the user can find the physical
address by reading the address in slot 253.

9-20

EXOS 204: NX 200 Kernel Call Reference

NET_RECV INTSO

Parameters:

DL: request mask:

01 write request bit.

02 read request bit.

04 enable receive bit.

Read and write can be requested simultaneously (DL = 03). Other
bits in mask must be 0, or effects are undefined.

DH: address slot number. Designates the address slot which this
request will work on. This can be the physical address slot (253),
the broadcast slot (255), or any multicast address slot (between 1
and the limit defined by configuration).

Results:

AL: completion code:

O successful completion.

001 H the specified slot does not exist or access is not permitted.

OD2H the address slot is empty.

AH: undefined.

DL: If bit 2 (mask value 4) is set, then the receive was enabled for this
slot prior to this call, otherwise it was disabled. All other bits are
undefined. This result is defined only if read was requested.

Description:

This call is used to read/alter the receive status of an address slot. If the
write bit is set in the request mask, then the receive is enabled or disabled
depending on bit 2 of the request mask. If bit 2 (mask = 4) is set, then
receive is enabled, otherwise it is disabled. If the read bit was set in the
request mask then the receive status of the address slot prior to this call is
returned.

9-21

EXOS 204: NX 200 Kernel Call Reference

NET_STSTCS INT 81

Parameters:

DL: request mask:

01 write request bit.

02 read request bit.

Read and write can be requested simultaneously (DL = 03). Other
bits in mask must be 0, or effects are undefined.

CX: number of objects to be read/reset.

SI: index into the statistics objects array.

DI: offset part of the buffer address to which the statistics objects are to
be copied.

ES: segment part of the buffer address to which the statistics objects
are to be copied.

Results:

AL: completion code.

O: successful.

CX: the actual number of objects read/reset.

Description:

This call reads/resets the statistics objects. Net statistics are an array of 32-
bit objects, described in Section 7.6. If the read bit is set in the request
mask then the statistics objects starting at the index specified by SI are
copied into the array specified by DI, ES. The number of objects to be
copied is specified in CX. If the write bit is set in the request mask, then the
number of objects specified by CX, starting at the index specified by SI, are
reset to zero. The actual number of objects read/reset is returned in CX. If
the index specified in SI is out of range, then no objects are read/reset.

9-22

EXOS 204: NX 200 Kernel Call Reference

MEM_READ INT82

Parameters:

CX: number of bytes to be read. This number must be less than or
equal to 64K-16.

DX: high-order word of the address in system memory.

SI: low-order word of the address in system memory.

DI: offset part of the address in EXOS 204 memory.

ES: segment part of the address in EXOS 204 memory.

Results:

AL: completion code:

0 successful.

AH: undefined.

Description:

This call copies the specified number of bytes from the specified address in
system memory to the specified address in EXOS 204 memory. If the host
data order conversion option is selected (see Section 4.2), then any required
conversion for the byte string data type will be done.

Note that this call may potentially block the user process, and as a result, all
locks in effect would be removed.

9-23

EXOS 204: NX 200 Kernel Call Reference

MEM_WRITE INT83

Parameters:

CX: number of bytes to be written. This number must be less than or
equal to 64K-16.

DX: high-order word of the address in system memory.

SI: low-order word of the address in system memory.

DI: offset part of the address in EXOS 204 memory.

ES: segment part of the address in EXOS 204 memory.

Results:

AL: completion code:

O successfu I.

AH: undefined.

Description:

This call copies the specified number of bytes from the specified address in
EXOS 204 memory to the specified address in system memory. If the host
data order conversion option is selected (see Section 4.2), then any required
conversion for the byte string data type will be done.

Note that this call may potentially block the user process, and as a result, all
locks in effect would be removed.

9-24

EXOS 204: NX 200 Kernel Call Reference

VERSION INT84

Parameters:

none.

Results:

AL: always 0.

AH: undefined for NX Version numbers less than 4.0; EXOS context
otherwise.

CX: version of NX 200.

DX: version of the EXOS 204 hardware.

Description:

This call returns the version number of the EXOS 204 hardware and NX 200.
Version numbers have the form X.Y, where the lower byte (CL or DL)
contains the ASCII value of X and the higher byte (CH or DH) contains the
ASCII value of Y.

If the NX 200 version number returned in CX is less than 4.0, then AH
contents are undefined. If the NX 200 version number returned in CX is
equal to or greater than 4.0, then AH contains the EXOS context. For EXOS
204 the context value is 04.

9-25

EXOS 204: NX 200 Kernel Call Reference

CVT_WORD INT85

Parameters:

BX: word operand to be converted.

Results:

BX: converted word operand.

Description:

If the host data order conversion option (see Section 4.2) is selected, then
this call performs any required conversion for the word data type. It converts
a word in the host system's native ordering to the 80186 CPU's native
ordering, and vice versa. The only conversion relevant to this data type is
byte swapping; its necessity is determined by the same test pattern which
enables conversion for message queue data structures. CVT _WORD
assumes that any conversion required for the byte string data type has
already been performed on the operand. If the host data order conversion
option is not selected, then the operand is returned without modification.

9-26

EXOS 204: NX 200 Kernel Call Reference

CVT_LWORD INT86

Parameters:

BX: first word of longword operand to be converted.

DX: second word of longword operand to be converted.

Results:

BX: first word of converted longword operand.

DX: second word of converted longword operand.

Description:

If the host data order conversion option (see Section 4.2) is selected, then
this call performs any required conversion for the longword data type. It
converts a longword in the host system's native ordering to the 80186 CPU's
native ordering, and vice versa. Possible conversions are word swapping,
byte swapping, or both. Note that all possible conversions are symmetrical,
and reflexive. Therefore the order of first and second word parameters to
this call is not important, as long as user software treats the result
consistently.

Necessary conversions are determined by the same test pattern which
enables conversion for message queue data structures. CVT _LWORD
assumes that any conversion required for the byte string data type has
already been performed on the operand. If the host data order conversion
option is not selected, then the operand is returned without modification.

9-27

(blank page)

10. INITIALIZING AND DOWN-LOADING FROM THE ETHERNET

The EXOS 204 can be configured and down-loaded from its Ethernet interface in a
manner quite similar to initialization by a host processor. This permits its use as a
system master where the system's design does not include another CPU card, or it
provides a convenient way to bootstrap diskless workstations. NX 200 firmware
includes a simple protocol which supports the network bootstrap function. This section
describes the network bootstrap protocol and provides information sufficient to
implement a corresponding bootstrap server.

Network bootstrap is initiated either by a jumper option (see Section 11) upon reset, or
explicitly by a host system during configuration (see Section 4.4.4). In either case, the
EXOS 204:

1) finds a network bootstrap server on the Ethernet.

2) builds up a session with the boot server.

3) processes commands, including configuration and software down-load,
received from the boot server.

4) executes the down-loaded code.

The network bootstrap protocol is based on request and reply messages which are
encapsulated in standard Ethernet packets. The Ethernet type field identifies net boot
packets as belonging to an Excelan protocol type. Another sub-type field designates the
EXOS 204 network bootstrap protocol specifically.

10.1. Network Bootstrap Protocol Description

Figure 10-1 shows a state diagram of the network bootstrap protocol, both for client (the
EXOS 204) and for boot server. In this diagram, states are represented as capitalized
names enclosed in circles. State transitions appear as solid lines, with an arrow at one
end to indicate the direction of the transition. Ethernet messages are shown as broken
double lines, with the name of the message imbedded. An arrow at one end indicates
the direction of transmission. Reception of an Ethernet message defines an event, and
usually triggers a state transition. Note that transmission by one party does not
guarantee reception by the other.

Whenever the event driving a state transition is a timeout, the line includes a C language
expression in parentheses, such as "(f<FR)," or "(f>=FR)." The lower-case identifiers
to the left in such an expression are counters, and refer to the number of timeouts of
this kind which have occurred so far, while the upper-case constants to the right refer to
the maximum number of retries permitted for this timeout. When a timeout occurs, the
state transition taken will be that for which the expression is true. The counters are
initialized and modified according to specific events, usually packet transmission or
arrival. The appropriate action is shown as a C language statement enclosed in curly
braces below the associated event. For example, "{f+ + }" increments the FIND request
counter whenever the client transmits that message.

EXOS 204 states, shown to the left of the diagram, are as follows:

RESET denotes that the EXOS 204 has been reset, but has not yet attempted a
network bootstrap.

FIND REPLY WAIT denotes that the EXOS 204 has sent one or more find request
messages, and not yet received a reply to the most recent one.

10-1

EXOS 204: Initializing and Down-Loading from the Ethernet

SELECT REPLY WAIT denotes that the EXOS 204 has sent one or more SELECT
request messages, and not yet received a reply to the most recent one.

COMMAND REQUEST WAIT denotes that the EXOS 204 has received a SELECT
reply message, and is now awaiting a command request message from the
selected boot server.

EXECUTE denotes that the EXOS 204 has received a valid execute request
message, and sent the corresponding reply message. It now begins to execute
the code which has presumably been down-loaded by the boot server.

ABORT denotes that the network bootstrap attempt has failed, after exhausting a
specified number of retries (16 by default). The EXOS 204 displays an error code
on the status LED until it is reset.

Boot server states for a straightforward implementation (shown to the right of the
diagram) are as follows:

BOOT REQUEST WAIT denotes that the boot server is prepared to build a boot
session with some EXOS 204 client. In this state, it responds both to find request
and SELECT request messages.

COMMAND REPLY WAIT denotes that the boot server has received a SELECT
request message, and sent back a SELECT reply message, thereby establishing a
boot session with some EXOS 204 client. The boot server proceeds directly to
send a command request message, and then awaits a command reply message
from the client associated with this session.

State transitions occur only in response to some asynchronous event. In the network
boot protocol, two basic types of event occur: arrival of a message on the Ethernet, or a
timeout while waiting for some message. An exception is the START NETBOOT event,
which actually encompasses two circumstances (neither of which involves Ethernet
messages) that can initiate the network bootstrap procedure.

The network bootstrap protocol is based on three general types of request message.
For each request message, the protocol defines a reply message whose format is
identical. These message pairs are as follows:

1) The EXOS 204 broadcasts the FIND request message to discover the
existence and address of bootstrap servers on the network. All bootstrap
servers which receive this message send back a FIND reply message.

2) The EXOS 204 sends the SELECT request message to the one bootstrap
server which it wants to control the subsequent bootstrap process. The
selected bootstrap server acknowledges its readiness to perform this role by
sending back the SELECT reply message.

3) The bootstrap server can use several different COMMAND request
messages to configure the EXOS 204, down-load code, up-load its memory
contents, and begin execution. For each request, the EXOS 204 returns a
COMMAND reply message to the bootstrap server.

A normal network bootstrap (where no packets are lost, all necessary resources are
available, and nobody crashes) proceeds as follows, from the EXOS 204's point of view:

1) The EXOS 204 initiates the network bootstrap procedure upon either a
hardware or software reset, if the net boot jumper is selected. If the net boot
jumper is not selected, it can still initiate a network bootstrap upon

10-2

EXOS 204: Initializing and Down-Loading from the Ethernet

EXOS 204 STATES

f =find request retries

FR = f i n d r e t r y I i m i t = 1 6

s =select request retries

SR = s e I e c t r e t r y I i m i t = 1 6
c =command request retries

CR = command re t r y I i mi t

==SELECT=REPLY===~

{c=O}

==COMMAND~REPLY==

{c=O}

c<CR)
(c>=CR)---...,

--....i exec)------

BOOT SERVER STATES

Figure 10-1: State Diagram of Network Bootstrap Protocol

10-3

EXOS 204: Initializing and Down-Loading from the Ethernet

initialization by the host system. In any case, it gets the ball rolling by
broadcasting a FIND request message. This message contains:

a) the version number of the network bootstrap protocol which the EXOS
204 supports.

b) the number of buffers available on the EXOS 204 to receive incoming
network bootstrap COMMAND request messages.

c) the length of the buffers described above.

d) the Ethernet address of the EXOS 204 (this is a separate field from the
standard Ethernet source address field).

e) a message ID, which uniquely identifies the request message.

f) a timeout parameter, which tells the boot servers how long the EXOS
204 will wait for a reply message before re-trying or giving up.

g) a configuration message, which describes the current configuration of
the EXOS 204. This is nearly identical to the configuration reply
message returned during initialization by a host system (see Section
4.4).

After sending the request message, the EXOS 204 enters the FIND REPLY
WAIT state.

2) Before its FIND reply timeout expires, the EXOS 204 should receive a FIND
reply message from at least one qualified bootstrap server. If more than one
is received, the EXOS 204 selects the first to arrive, and discards
subsequent FIND reply messages. This message provides the following
information:

a) the Ethernet address of the bootstrap server (as above, this is a
separate field from the standard Ethernet source address field).

b) a timeout parameter, which specifies how long the EXOS 204 should
wait for the boot server's SELECT reply message.

Immediately upon receiving a legitimate FIND reply message, the EXOS 204
sends a SELECT request message to the bootstrap server whose address
was contained in the reply message. This tells the designated bootstrap
server that it is responsible for bootstrapping this EXOS 204 client. The
SELECT request message contains exactly the same information as the
FIND request message, except possibly for the timeout parameter. The
EXOS 204 specifies its current effective timeout value in this field. After
sending the SELECT request message, the EXOS 204 enters the SELECT
REPLY WAIT state.

3) Before its SELECT reply timeout expires, the EXOS 204 should receive a
SELECT reply message from the selected bootstrap server. This contains
the same information as the FIND reply message, except possibly for the
timeout parameter, which now tells the EXOS 204 how long to wait before
giving up on receiving a COMMAND request message from the boot server.
Reception of the SELECT reply message establishes a bootstrap session,
and the EXOS 204 enters the COMMAND REQUEST WAIT state.

4) Before its COMMAND request timeout expires, the EXOS 204 should receive
a COMMAND request message from the selected bootstrap server. When a

10-4

EXOS 204: Initializing and Down-Loading from the Ethernet

command arrives, the EXOS 204 processes the command and returns a
COMMAND reply message to the bootstrap server, informing it of the
command's result. After sending the reply message, the EXOS 204 normally
returns to the COMMAND REQUEST WAIT state. However, if the command
was an EXECUTE request, the bootstrap session is terminated (as far as the
EXOS 204 is concerned) and the EXOS/204 proceeds to execute the code
which has presumably been down-loaded.

While the description above specifies exactly how the EXOS 204 will behave during a
network bootstrap session, the bootstrap server's behavior is largely up to its
implementor. The network bootstrap protocol is implemented with a typical bootstrap
server model in mind, such as is shown in the state diagram. A real boot server might
support more than one boot session simultaneously; the diagram shows only the context
of a single boot session.

Note also that this diagram describes only the case where the EXOS 204 provides just
one receive buffer for processing net boot commands. Therefore it assumes that only
one command may be outstanding. Future releases of NX 200 may permit pipelined
boot command processing by supplying multiple buffers. While this model for a boot
server will still work when more buffers are available, it will not derive any performance
advantage. At any rate, from the boot server's point of view, net boot proceeds as
follows:

1) The bootstrap server starts in the BOOT REQUEST WAIT state, awaiting the
arrival of either a FIND request message or a SELECT request message.
Upon reception of a FIND request message, the boot server examines
relevant information in this message, such as the protocol version. If the
boot server decides that it can service the client which the request identifies,
.it sends back a FIND reply message to the address contained in the request.
This message tells the client the boot server's address and how long a
timeout it should use when waiting for subsequent messages from the boot
server. The boot server then returns to the BOOT REQUEST WAIT state.

2) When the bootstrap server receives a SELECT request message, it records
the information it will need to boot the client, and returns a SELECT reply
message. Once again, this contains a timeout parameter which tells the
client how long to wait for subsequent messages. At this point, a bootstrap
session has been established, so far as the boot server is concerned.

3) After sending a SELECT reply message, the bootstrap server proceeds
immediately to send COMMAND request messages to the client. After
sending any COMMAND request message, the bootstrap server enters the
COMMAND REPLY WAIT state.

4) Before its COMMAND reply timeout expires, the bootstrap server should
receive a COMMAND reply message. It then sends the next COMMAND
request message and re-enters the COMMAND REPLY WAIT state.
However, if the COMMAND reply message was that of an execute request,
then the bootstrap session is terminated and the boot server returns to the
BOOT REQUEST WAIT state.

The description so far. of the network bootstrap protocol has been simplified somewhat
by ignoring considerations such as spurious messages or lost packets. However, these
things can happen. Therefore, the protocol provides mechanisms which can
accommodate errors during, and ensure completion of, the network bootstrap process.

10-5

EXOS 204: Initializing and Down-Loading from the Ethernet

Once the boot server's address is established, the EXOS 204 will ignore messages from
other sources. Another general principle the EXOS 204 obeys is to ignore any message
types it does not expect in its current state. For instance, COMMAND request
messages will have no effect if the EXOS 204 is still in the SELECT REPLY WAIT state.
A straightforward boot server implementation would also follow these rules.

The network bootstrap protocol uses a timeout/retry mechanism to recover from lost
messages and various catastrophic circumstances. In any state where the EXOS 204 is
waiting for some message to arrive, if the message does not arrive within some
specified real-time interval (3000 milliseconds by default), the EXOS 204 will timeout.
Depending on circumstance, it may then abort or retry, possibly entering a different
state. The EXOS 204 maintains two counters which help determine the appropriate
action. The FIND request counter is reset by the START NETBOOT event, and is
incremented every time a FIND request message is transmitted. The SELECT request
counter is reset when a FIND reply message is received, and is incremented every time
a SELECT request message is transmitted. State transitions which occur on timeout
events are described below, according to the state before timeout:

FIND REPLY WAIT: When a timeout occurs, the EXOS 204 normally transmits
another FIND request message and returns to the FIND REPLY WAIT state.
However, if the FIND request counter shows that 16 FIND request messages have
already been sent, then the net boot attempt is aborted and the EXOS 204 enters
the ABORT state. The EXOS/204 will then display the appropriate error code on
its status LED (see Section 11). If the net boot was instigated by a host system,
then the appropriate error code is also written into the configuration message's
completion code field in host memory (see Section 4.4.3).

SELECT REPLY WAIT: When a timeout occurs, the EXOS 204 normally transmits
another SELECT request message and returns to the SELECT REPLY WAIT
state. However, if the SELECT request counter shows that 16 SELECT request
messages have already been sent, then the EXOS 204 transmits another FIND
request message and returns to the FIND REPLY WAIT state. If the FIND request
counter also shows that 16 FIND request messages have already been sent, then
the net boot attempt is aborted, as above.

COMMAND REQUEST WAIT: When a timeout occurs, the EXOS 204 normally
transmits another FIND request message and returns to the FIND REPLY WAIT
state. However, if the FIND request counter shows that 16 FIND request
messages have already been sent, then the net boot attempt is aborted, as
described above.

Timeout processing in the bootstrap server is up to the implementor. In the typical
implementation which the state diagram describes, only the COMMAND REPLY WAIT
state can generate a timeout event. The timeout period, and the number of retries
allowed, are dependent on the implementation. Typically, the timeout period multiplied
by the number of retries allowed should not greatly exceed the EXOS 204's COMMAND
REQUEST WAIT timeout (which can be specified by the boot server in the SELECT
reply message).

During a network bootstrap attempt, it is possible that either the client or server could
receive messages generated during some prior network bootstrap attempt gone awry.
For instance, if the SELECT reply message is lost, then a boot server would still assume
that a session had been established, and would persist in retrying on its first COMMAND
request message. Meanwhile, the EXOS 204 might have established a new boot
session. Some means is needed to distinguish between messages belonging to the

10-6

EXOS 204: Initializing and Down-Loading from the Ethernet

legitimate boot session and the defunct boot session. For this purpose, the network
bootstrap protocol supports the concept of message IDs and, once a session is
established, session IDs.

The EXOS 204 generates a message ID field for both FIND request and SELECT
request messages. This ID guards the EXOS 204 against spurious message reception
up to the point that a network bootstrap session is established. The EXOS 204's
message ID generation algorithm guarantees that it will be unique in each and every
message from the time the board is reset until it is reset again. Furthermore, the field
contains a random component which makes makes ID collision very unlikely even after a
reset occurs. As described above, the boot server is expected to copy the message ID
from FIND and SELECT request messages into their corresponding reply messages.

When the boot server establishes a session (by returning the SELECT reply message),
it is responsible for creating a unique 12-byte session ID value, which it passes to the
EXOS 204 in the SELECT reply message. In all subsequent COMMAND request
messages, the boot server should write this value into the first 12 bytes of the 16-byte
message ID field. When the EXOS 204 receives a COMMAND request message, it
ignores it unless the first 12 bytes of the message ID field agree with the value it
received in the SELECT reply message. When the EXOS 204 prepares a reply
message, it copies the entire message ID field from the corresponding request
message. The remaining 4 bytes at the end of the ID field can be used for any purpose
which suits the boot server - typically message serialization.

10.2. Data Transmission Order

This section defines the order of transmission for data objects which are known to the
network bootstrap protocol implemented by NX 200. Network bootstrap servers must
obey these conventions when transmitting messages to the EXOS 204, and should
observe them when interpreting messages received from the EXOS 204.

The fields defined by the Ethernet specification for the standard data link layer frame
format (destination address, source address, type, and frame check sequence) are, of
course, transmitted in their standard order. The Ethernet specification also defines how
the contents of a packet's data field (which contains all network bootstrap message
contents) are to be transmitted, but only in terms of bit significance. For each byte in a
packet's data field, the Least Significant Bit (LSB) is transmitted first, and the Most
Significant Bit (MSG) last.

The byte ordering of multi-byte data objects in network bootstrap messages is defined
solely by the network bootstrap protocol. This follows a simple rule. All data objects are
transmitted as though stored in memory according to the 80186 CPU's native order, and
then transmitted one byte at a time, starting at the lower memory address. This is the
transmission order which naturally occurs when the network bootstrap protocol is
implemented on the EXOS 204. When implementing a bootstrap server based on a
different CPU architecture, programmers should be careful to observe this ordering.

Note that the EXOS 204 host data order conversion option does not apply to the
contents of network bootstrap messages. However, the option may be enabled as usual
by the CONFIGURE request message. Simply set up the test pattern field as it would
have been written by the system being bootstrapped. Data conversion will then work on
all messages passed between the client EXOS 204 and its host processor. The rest of
the CONFIGURE request message, and all other messages, will still be interpreted
according to 80186 data ordering.

10-7

EXOS 204: Initializing and Down-Loading from the Ethernet

10.3. Network Bootstrap Protocol Message Header

Network bootstrap request and reply messages share a common header format, shown
in Figure 10-2. The following paragraphs describe its individual fields in detail.

10.3.1. Subtype Field

The subtype field identifies specific Excelan protocol types. The network bootstrap
protocol's type is O; all request and reply messages must contain this value.

10.3.2. Message ID Field

The message ID field is used before a session is established to associate request
messages with the corresponding reply messages. The EXOS 204 generates unique
message ID numbers for the FIND and SELECT request messages, and the boot server
simply copies these numbers into the corresponding reply messages. Once a session is
established, this field identifies all request and reply messages as belonging to that
session, and can be used to serialize messages. The boot server generates the session
ID number used in all subsequent COMMAND request and reply messages. The
following sections will explain this field in more detail.

Length Offset Field Name Request Reply

----------- .. --------------------- -
1) 2 0 I Subtype 1080H preserved

I I
I -------------------------------- I

2) 16 2 Message ID see text see text

I - .. - - - - -- --- ------ .. ------ ... ---- .. -- I
3) 1 8 I Request Code see text preserved

I - - - -- - - - --- -- -- - -- --- - - - .. -- - --- - I
4) 1 9 I Rep I y Code I undefined see text

!-------------------------------- I
5) 2 20 I Message Length I see text see text

I ----- - -- -- - - - .. -- ----- - - -- ---- - I
6) n 22 Request-Speci f i c Fields. see text see text

l<------------1 byte------------>I

Figure 10-2: Network Bootstrap Protocol Request/Reply Message Header

10-8

EXOS 204: Initializing and Down-Loading from the Ethernet

10.3.3. Request Code Field

The request code field identifies the particular request or reply contained in a network
bootstrap message. Values are as follows:

0 DOWNLOAD
1 UPLOAD
2 EXECUTE
3 CONFIGURE
4 FIND
5 SELECT

The same code is used for both request and reply messages. They are distinguished
from each other by context.

10.3.4. Reply Code Field

The reply code field returns the result of a request. It must be 0 in request messages.
Its meaning in reply messages will be explained in the individual message descriptions
below.

10.3.5. Message Length Field

The message length field defines the number of bytes beyond its own position in the
Ethernet packet containing the request or reply message. As usual, this should not
include the CRC field's length.

10.3.6. Request-Specific Fields

Beyond the message length field, the remainder of each request message is defined
according to the purpose of the request. These fields are described below, in the
individual message descriptions.

10.4. Message Encapsulation

Request and reply messages are encapsulated in the data field of a standard Ethernet
packet, as shown in Figure 10-3.

The EXOS 204 places the physical address of a boot server in the destination address
field, except in the FIND request message, where it contains the Ethernet broadcast
address. The boot server should always place the physical address of a client EXOS
204 in the destination address field.

The source address field always contains the physical address of the party which sent
the message.

10-9

EXOS 204: Initializing and Down-Loading from the Ethernet

ETHERNET PACKET

I De s t i n a t i o n
1-----------------------------1
I Source I
1-----------------------------1
I Type I
!-----------------------------!
I Data I

I I
1-----------------------------1
I Frame Check Sequence I

I I
\----------!
I I

I
I
I
I
I
I

Figure 10·3: Encapsulation of Request/Reply Message

REQUEST1REPLY MESSAGE

I Subtype I
1-----------------------------1
I Message ID I
1-----------------------------1
I Request Code I
1-----------------------------1
I Reply Code I
!-----------------------------!
I Message Length I
!-----------------------------!
I Re q u es t -Spec i f i c F i e I d s . . . I

The type field should always contain the Excelan protocol type, which in Ethernet
parlance is:

80-10

The value above is given in hexadecimal notation, and should be transmitted left-most
byte first. On the EXOS 204 itself, this is equivalent to storing the 16-bit value 1080H in
the 80186 CPU's native order.

The following sections describe the individual request and reply messages, including a
detailed description of the data fields unique to each request. The diagrams for these
messages do not show the individual Ethernet fields or the standard message header
fields. Offset addresses shown for the messages are calculated from the beginning of
the standard message header (at the subtype field).

10.5. FIND and SELECT Request/Reply Messages

The FIND and SELECT request messages are described together here because their
format, shown in Figure 10-4, is identical. The EXOS 204 broadcasts the FIND request
message to identify bootstrap servers, which return a FIND reply message to the client's
physical address. The EXOS 204 then sends the SELECT request message to the
physical address of a boot server, telling it to bootstrap the EXOS 204. The boot server
acknowledges this with a SELECT reply message. The following paragraphs describe
the individual fields in detail. Unless otherwise stated, each field's function is identical in
FIND and SELECT messages.

10-10

EXOS 204: Initializing and Down-Loading from the Ethernet

Length Offset Field Name Request Reply

1) 22 0 Standard Message Header Fields see text see text

!--------------------------------!
2) 2 22 I Protocol Version I preserved

I I
1--------------------------------1

3) 2 24 I Number of Buffers I preserved

I I
1--------------------------------1

4) 2 26 I Buffer Length I 512 preserved

I I , ________________________________ ,
5) 6 28 I Station ID I see text see text

I I
I I
I I
I I
I I
!--------------------------------!

6) 12 34 Se s s i on ID u n def i n e d see text

!----------------------------·-·---!
7) 2 46 I Rec e i v e Wa i t Ti me o u t I see t ex t see t ex t

I I
!--------------------------------!

8) 80 48 Configuration Message see text

(in request messages on I y)

l<------------1 byte------------>!

Figure 10-4: Network Bootstrap AND/SELECT Request/Reply Message

10.5.1. Standard Message Header Fields

The EXOS 204 writes a unique value into the message ID field in each request
message. The boot server should return this same value in the reply message, enabling
the EXOS 204 to associate the two.

The request code field's value in the FIND request is 4, in the SELECT request 5. The
boot server should return the same value in the reply message.

The reply code field should be 0 in both request and reply messages.

The message length field contains the value 106 in the request messages. Its value in
the reply message should be 26.

10-11

EXOS 204: Initializing and Down-Loading from the Ethernet

10.5.2. Protocol Version Field

The protocol version field contains the revision level of the network bootstrap protocol
supported by the EXOS 204. Boot servers can examine this field to check that they are
compatible with the client's version. It is interpreted as a simple 16-bit numeric value.
The current boot protocol version is 1 for all EXOS boards. The boot server should
preserve this value in the reply message.

10.5.3. Number of Buffers Field

The number of buffers field tells the boot server how many buffers the client EXOS 204
provides for processing COMMAND requests. This determines how many outstanding
requests the boot server should allow at any time. Its current value is 1. The boot
server should preserve this value in the reply message.

10.5.4. Buffer Length Field

The buffer length field specifies the length of the EXOS 204's receive buffer. This
determines the maximum size COMMAND request packets the EXOS 204 can receive,
excluding the 4-byte CRC field. Its current value is 508 bytes. The boot server should
preserve this value in the reply message.

10.5.5. Station ID Field

The station ID field contains the physical address, in standard Ethernet format, of the
party to which a message pertains. While this is normally the same as a packet's
source address field, this is not necessarily the case. A bootstrap server might place a
different boot server's address in this field in order to "hand off" a boot session. The
EXOS 204 examines this field in FIND and SELECT reply messages to determine the
boot server's physical address. The boot server should examine this field to determine
the client's physical address, as well. The EXOS 204 will always place its effective
physical address in this field.

10.5.6. Session ID Field

The session ID field is undefined in the FIND request and reply messages. It is also
undefined in the SELECT request message. In the SELECT reply message, the boot
server should return a unique value in this field which identifies the boot session just
established. The EXOS 204 will then accept COMMAND request messages only if the
first 12 bytes of their message ID field matches this value.

10.5.7. Receive Wait Timeout Field

The receive wait timeout field is used to negotiate the timeout interval which the EXOS
204 observes when waiting for some message from the boot server. It is specified in
milliseconds, but the EXOS 204 will round it up to the next 20-millisecond interval if it is
not an even multiple of 20. In the FIND request message, the EXOS 204 declares the
current value, which is 3000 milliseconds by default. The default value is in force after a
reset, and is reinstated whenever the EXOS 204 performs a FIND request retry.
Therefore the EXOS 204 will timeout and retry if it has not received a FIND reply
message within 3 seconds after sending the FIND request.

The boot server can specify a different value in the FIND reply message, and the EXOS
204 will copy this value (subject to rounding) into the SELECT request message. In the
SELECT reply message, the boot server can once again specify a different value. In
either reply message, the value OFFH selects the current value. If the value specified is

10-12

EXOS 204: Initializing and Down-Loading from the Ethernet

0, then the EXOS 204 will not timeout, but will wait indefinitely. This is useful for
debugging purposes.

10.5.8. Configuration Message Field

The configuration message field is defined only for the FIND and SELECT request
messages. The reply messages do not include this field and the boot server need not
allocate space for it in the message length field. Its format is exactly identical to the
configuration message described in Section 4.4; it should be interpreted as though it
were a configuration reply message. It describes the current configuration of the EXOS
204, which will express all the default values if the board has just been reset. If the
board has been configured previously (which may occur if initialized by a host system)
then it will reflect any modifications made since reset time.

Also included in this field is the EXOS Context information which indicates the EXOS
200 series controller board in use at the requesting end. For the EXOS 204 the Context
value is 04. A boot server must check this field to assure that the value indicates a
product that the boot server is designed to serve.

10.6. DOWNLOAD Request/Reply Message

The bootstrap server can use the DOWNLOAD request message to down-load code and
data to the EXOS 204's RAM. Any area of memory normally available to the user can
be used. Figure 10-5 shows the format of the request message, and the following
paragraphs describe its individual fields in detail.

10.6.1. Standard Message Header Fields

The boot server should write the session ID into the first 12 bytes of the message ID
field in each request message. The remaining 4 bytes may be used for any purpose
which suits the boot server. In the reply message, the EXOS 204 will preserve this
entire field's value.

The request code field's value for the DOWNLOAD request is 0. The EXOS 204
returns the same value in the reply message.

The reply code field should be 0 in the request message. In the reply message, it
reports the status of the DOWNLOAD request.

0 successful completion.

A3H destination memory block overlaps the memory reserved for NX 200, no
copy done.

A 1 H invalid request.

The message length field will depend on the length of the data field in the request
message. Its value in the reply message is 10.

10.6.2. Load Length Field

The load length field specifies the length of the data field in the request message. In the
reply message, this field returns the number of bytes actually down-loaded into EXOS
204 memory.

10-13

EXOS 204: Initializing and Down-Loading from the Ethernet

Length Offset

1) 22 0

2) 2 22

3) 4 24

4) 4 28

5) n 32

Field Name Request

: Standard Message Header Fields : see text

!--------------------------------!
I Load Length I see text

I I
!--------------------------------!
I Re s e r v e d z e r o

I
I
I I
!--------------------------------!
I EXOS Down-Load Address I see text

I I
I I
I I
1--------------------------------1
: Data see text

: (in request message only)

l<------------1 byte------------>!

Figure 10·5: Network Bootstrap DOWNLOAD Request/Reply Message

10.6.3. Reserved Field

Reply

see text

see text

undefined

preserved

The reserved field should contain zeros in the request message. Its value is undefined
in the reply message.

10.6.4. EXOS Down-Load Address Field

The EXOS down-load address field specifies the address in EXOS 204 memory to which
the data should be transferred. Note that, as with all addresses referring to locations in
EXOS memory, this should be a segmented address in the 8086 style. Its value is
preserved in the reply message.

10.6.5. Data Field

In the request message, the data field contains the data to be down-loaded. Given the
current receive buffer size of 508 bytes, the maximum size of this field is 462 bytes.
The data field is not defined in the reply message, nor should space be allocated for it
there.

10.7. UPLOAD Request/Reply Message

The bootstrap server can use the UPLOAD request to read data from the EXOS 204's
RAM. It is similar to the DOWNLOAD request, except that the data field is defined for
the reply message instead of the request message. Figure 10-6 shows the format of the
request message, and the following paragraphs describe its individual fields in detail.

10-14

EXOS 204: Initializing and Down-Loading from the Ethernet

Length Offset Field Name Request Reply

1) 22 0 Standard Message Header Fields see text see text

I -------------------------------- I
2) 2 22 I Load Length I see text see text

I I
I --------------------------------!

3) 4 24 I Reserved I zero undefined
I I
I I
I
!--------------------------------

4) 4 28 I EXOS Up-load Address see text preserved
I
I
I
I --------------------------------

5) n 32 Data see
(in reply message only)

l<------------1 byte - - - - - - - - - - - ->I

Figure 10-6: Network Bootstrap UPLOAD Request/Reply Message

10. 7.1. Standard Message Header Fields

The boot server should write the session ID into the first 12 bytes of the message ID
field in each request message. The remaining 4 bytes may be used for any purpose
which suits the boot server. In the reply message, the EXOS 204 will preserve this
entire field's value.

The request code field's value for the UPLOAD request is 1. The EXOS 204 returns
the same value in the reply message.

The reply code field should be O in the request message. In the reply message, it
reports the status of the UP LOAD request:

O successful completion.

A3H specified memory does not exist, no copy done.

A 1 H invalid request.

The message length field's value in the request message should be 10. Its value in
the reply message will depend on the length of the data field.

10-15

text

EXOS 204: Initializing and Down-Loading from the Ethernet

1O.7.2. Load Length Field

The load length field in the request message specifies the number of bytes to be read
from the EXOS 204's memory. In the reply message, this field returns the number of
bytes actually read from EXOS 204 memory.

10. 7.3. Reserved Field

The reserved field should contain zeros in the request message. Its value in the reply
message is undefined.

10.7.4. EXOS Up-load Address Field

The EXOS up-load address field in the request message specifies the address in EXOS
204 memory from which to read data. In the reply message, its value is preserved.

1o.7.5. Data Field

The data field is not defined in the request message, nor should space be allocated for it
there. In the reply message, the data field contains the data read from EXOS memory.
As in the DOWNLOAD command, this is constrained by the current receive buffer size
of 508 bytes; its maximum size is 462 bytes.

10.8. CONFIGURE Request/Reply Message

The bootstrap server can use the CONFIGURE request to modify the EXOS 204's
configuration, just as the host would at initialization time (see Section 4.4). Normally, a
boot server performs configuration with its first COMMAND request message, before
down-loading software; after configuration the contents of user memory on the EXOS
204 is not defined. However, configuration is not mandatory; if neglected, all
configuration options will retain their current values, or the default values if the board has
not been cpnfigured since reset. Figure 10-7 shows the format of the request message,
and the following paragraphs describe its individual fields in detail.

Length Offset Field Name Request Reply

1) 22 0 : Standard Message Header Fields : see text see text

1--------------------------------1
2) 80 22 Configuration Message see text see text

(in request messages on I y)

l<------------1 byte------------>I

Figure 10·7: Network Bootstrap CONFIGURE Request/Reply Message

10-16

EXOS 204: Initializing and Down-Loading from the Ethernet

10.8.1. Standard Message Header Fields

The boot server should write the session ID into the first 12 bytes of the message ID
field in each request message. The remaining 4 bytes may be used for any purpose
which suits the boot server. In the reply message, the EXOS 204 will preserve this
entire field's value.

The request code field's value for the CONFIGURE request is 3. The EXOS 204
returns the same value in the reply message.

The reply code field should be O in the request message. In the reply message, its
value is the same as the configuration message's Completion Code field.

The message length field's value in the request message should be 80. This value is
preserved in the reply message.

10.8.2. Configuration Message Field

The configuration message field is exactly equivalent to the configuration message
described in Section 4.4. There are some slight semantic differences which apply to net
boot mode. For instance, in the request message, the number of hosts field may be 0.
If so, then all the following fields, which specify host message queue parameters, are
undefined. The EXOS operation mode field must always be set to 2, for net boot mode.
In the reply message, it will always return this value.

10.9. EXECUTE Request/Reply Message

The boot server can use the EXECUTE request message to start execution of code it
has down-loaded to the EXOS 204. Once the EXOS 204 receives this command, it will
ignore all network bootstrap type packets. The initial process runs exactly the same as
one initialized by a host system (see Section 4.8).

Figure 10-8 shows the format of the EXECUTE request/reply message, and the
following paragraphs explain its individual fields in detail.

Length Offset Field Name Request Reply

1) 22 0 : Standard Message Header Fields : see text see text

1--------------------------------1
2) 4 22 I St a r t i n g Add res s I see text preserved

I I
I I

I

l<------------1 byte------------>!

Figure 10-8: Network Bootstrap EXECUTE Request/Reply Message

10-17

EXOS 204: Initializing and Down-Loading from the Ethernet

10.9.1. Standard Message Header Fields

The boot server should write the session ID into the first 12 bytes of the message ID
field in each request message. The remaining 4 bytes may be used for any purpose
which suits the boot server. In the reply message, the EXOS 204 will preserve this
entire field's value.

The request code field's value for the EXECUTE request is 2. The EXOS 204 returns
the same value in the reply message.

The reply code field should be 0 in the request message. In the reply message, it
reports the status of the EXECUTE request:

O successful completion.

A 1 H invalid request.

A2H invalid starting address.

The message length field's value in both the request and reply messages should be 4.

10.9.2. Starting Address Field

The starting address field specifies the initial value of the initial process's program
counter. Its value is preserved in the reply message.

10-18

11. HARDWARE REFERENCE

Most hardware-dependent aspects of EXOS 204 implementation are hidden by NX 200,
ensuring that high-level software written for the EXOS 204 will be portable to future
products. This section provides all necessary hardware interface and configuration
information. Theory of operation is deliberately omitted.

NOTE

Before installing the EXOS 204, the jumper connecting the pins CA 1 and
CB1 on the Unibus backpanel must be removed. Otherwise, the EXOS
204 will not function properly.

11.1. Access to EXOS 204 Components

Appendix A shows the EXOS 204's layout, and the locations of accessible components.
For development purposes, the following components are socketed:

80186 CPU
two 16K EPROMs

The EXOS 204 provides several jumpers to select addresses and options. Tables 11-1
and 11-2 contain quick reference to jumper functions, by number. Subsequent sections
explain the jumpers in more detail.

The EXOS 204 includes four Light Emitting Diodes (LEDs) to communicate status
information. These LEDs are designated as DS1, DS2, DS3. and DS4. DS1-DS3
located in adjacent positions at the top center of the board, seen from the component
side, and can easily be seen while the board is installed. DS4 is located towards the
upper left hand corner of the board. Figure 11-1 briefly shows their individual locations
and functions. Subsequent sections explain the LEDs in more detail.

11.2. Unibus Interface

The EXOS 204 Ethernet Front-End Processor is built on a single quad-sized (10.44" by
8.9") Unibus board which occupies one Unibus SPC slot. It presents one DC load on
the Unibus.

11.2.1. Unibus Compliance

The EXOS 204 conforms to Unibus specifications as a 16-bit bus master. Compliance
is as follows:

8-bit or 16-bit transfers,
18-bit addressing,
bus-vectored interrupts.

11.2.2. Unibus Memory Access

The EXOS 204 generates 18-bit memory addresses to access the entire 256 Kbytes of
Unibus memory.

Note that the EXOS 204's own memory is not accessible from the Unibus.

11-1

EXOS 204: Hardware Reference

Table 11-1 : Quick Reference to Jumper Options

jumper function (when jumper is Installed) factory setting

J2 Invoke the EPROM resident Monitor program

on power-up or reset Absent

J3 OMA with burst capability presend Installed

J4 Disable SOE (Heartbeat) check Installed

J6 Used in conjunction with J9; specifies Absent

available RAM:

J& J9 RAM
Absent Absent 128K (factory setting)

Installed Absent 256K

Absent Installed Reserved

Installed Installed Reserved

J7 Boot from network Absent

J9 See description under J6. Absent

J12 27256 user EPROMS Absent

J13 2764 or 27128 user EPROMs Installed

J14 27256 Kernel EPROMs Absent

J15 2764 or 27128 Kernel EPROMs Installed

J16 (3 jumpers) bits 10-12 of 1/0 port address Absent J16-2;

(Installed = O: absent = 1.) others installed.

J17-1 Select OMA burst length Installed

J17-2 Select OMA burst length Absent

J17-1 J17-2 burst-length

Installed Installed 2

Installed Absent 4

Absent Installed 8

Absent Absent 16

J17-3 Enable bus timeout Absent

J18 (8 jumpers) bits 2-9 of 1/0 port address All installed (O)

J19 Configure Unibus interrupt levels**

J20 Configure Unibus interrupt levels0

** See Table 11-3 for details.

11.2.3. Unibus 1/0 Access

The EXOS 204 can access the full 8K Unibus 1/0 address space. However, it does not
normally generate any 1/0 commands, unless requested by user software.

The EXOS 204 presents two read/write 1/0 ports to the Unibus. Their functions are
documented in Section 4.1. Port A's address is fully jumper-selectable, at any even
word address in the 1/0 address range 760000 to 777774 (Octal) corresponding to
3FE800 to 3FE802 (Hexadecimal). Port B's address is the address of port A plus 2.

11-2

EXOS 204: Hardware Reference

/---
DS4 DS1 DS2 DS3

0

I I
I I

Unibus Cycle Status LED (2)

Figure 11·1 : Quick Reference to Status LEDs

o _o __ o_

I I I I I I
I I I I I I

Unibus Cycle Status LED (1)

Et he r n e t T r an sm i t S t a t u s LED

NX 200 Status LED

The Unibus addresses of 1/0 ports A and B are word addresses. For selection of an
address, each of the 8 jumpers in J18 and each of the 3 jumpers in J16 must be
appropriately selected. Address bits O and 1 are not selectable - they are always
zero. Also, address bits 13 thru 17 are not selectable; they are always 1. As shipped
from the factory, except J16-2, all jumpers are installed. Consequently the Unibus
addresses 764000 and 764002 (Octal) are selected for 1/0 ports A and B respectively.

11.2.4. Unibus Interrupt Mechanism

The EXOS 204 can assert bus-vectored interrupts on the Unibus. Interrupt request
priority level is jumper-selectable in the range from level 4 thru 7. Factory setting is for
level 5.

The EXOS 204 can also be initialized to generate memory-mapped interrupts to the
host. The host interrupts the EXOS 204 by writing to an 1/0 port (see Section 4.1).

11.2.5. Unibus Priority Resolution

When several devices contend for bus mastership, the Unibus system grants control to
the device physically closest to the processor module. Accordingly, the EXOS 204
should be installed closer to or farther from the processor module depending on the
priority desired. The EXOS 204 uses the Unibus NPR line to transfer data to and from
the host memory.

11-3

EXOS 204: Hardware Reference

11.2.6. OMA Burst Length Selection

The EXOS 204 permits setting of OMA burst setting of 2, 4, 8, or 16 words per bus
grant. Jumpers J17-1 and J17-2 set the OMA burst length as follows:

J17·1
Installed
Installed
Absent
Absent

J17·2
Installed
Absent
Installed
Absent

burst-length
2
4 (default setting)
8
16

Table 11-2: Interrupt Priority Set-Up Table

!--!

I I J2o I J19 I

I l<-----------BUS GRANT----------->l<--BUS REQUEST-->!

1----------1---------------------------------1-----------------1
I I 1s 15 14 13 12 11 10 9 I 8 1 s 5 I

I I o o o o o o o o I o o o o I

I LEVEL 4 I I I

I I o o o---o o---o o---o I o o o o I

I I 1 2 3 4 5 6 1 811 2 3 4 I
1----------1---------------------------------1-----------------1
I I 16 15 14 13 12 11 10 9 I 8 7 6 5 I
I I o o o o o o o o I o o o o I
I LEVEL 5 I I I
I (DEFAULT) I o---o o o o---o o---o I o o o o I
I I 1 2 3 4 s 6 1 8 I 1 2 3 4 I
1----------1---------------------------------1-----------------1
I I 16 15 14 13 12 11 10 9 I 8 7 6 s I
I I o o o o o o o o I o o o o I
I LEVEL 6 I I I
I I o---o o---o o o o---o I o o o o I
I I 1 2 3 4 s 6 7 811 2 3 4 I
1----------1---------------------------------1-----------------1
I I 16 15 14 13 12 11 10 9 I 8 1 s 5 I
I I o o o o o o o o I o o o o I
I LEVEL 7 I I I
I I o---o o---o o---o o o I o o o o I
I I 1 2 3 4 s 6 7 811 2 3 4 I
I - - - - - - - - - - I - I - - - - - - - - - - - - - - - -· - I

11.2.7. Unibus Error Interrupt Option

When Jumper J17-3 is present, the bus controller interrupts the 80186 if an error is
detected on the Unibus; during the time the EXOS 204 is acting as the bus master (error
is either bus timeout or parity error during read). When this jumper is not in and a bus
error occurs, the bus hangs up, no interrupt is issued, and the LED DS4 lights up. (See
also Section 11.2.8.)

11-4

EXOS 204: Hardware Reference

11.2.8. Unibus Cycle Status LED

The Light Emitting Diodes (LEDs) in positions DS3 and DS4 on the EXOS 204
indicates that a Unibus cycle is in progress as follows. If DS4 is constantly lit, then the
EXOS 204 has probably attempted to access a non-existent address on the Unibus. In
general, this condition points toward a user software bug. Note that this applies only if
the bus time-out feature is not selected by J17-3. If DS3 is constantly lit and DS4 is not
lit, then most likely the EXOS 204 is unable to get OMA grant from the Unibus.

11.3. Ethernet Interface

Integrated with a standard Ethernet transceiver, the EXOS 204 performs all specified
Ethernet physical and link level functions.

11.3.1. Ethernet Compliance

The EXOS 204 conforms fully to Ethernet specification, version 1.0, published
September 30, 1980, and to Ethernet specifications version 2.0 published November,
1980, by DEC, Intel, and Xerox.

11.3.2. Ethernet Functions

Functions implemented on the EXOS 204 board include:

serial/parallel and parallel/serial conversion.

physical and multicast address recognition.

packet framing and unframing.

Manchester encoding and decoding.

preamble generation and removal.

carrier sense and deference.

collision detection and enforcement.

backoff and retry timing.

frame check sequence (CRC) generation and verification.

alignment and length error detection and handling.

11.3.3. Ethernet Address Recognition

The EXOS 204 recognizes physical, multicast, and broadcast addresses without user
software intervention. A very efficient multicast address filter, implemented in hardware,
greatly reduces the overhead of multicast address recognition. The multicast address
filter can be disabled, so that all multicast addresses are accepted. The EXOS 204 also
provides a promiscuous mode, in which it accepts all addresses.

Each EXOS 204 board has a unique 48-bit Ethernet address, stored in a PROM. This is
the board's physical address by def a ult, but the effective physical address resides in
RAM, and may be modified by user software.

11-5

EXOS 204: Hardware Reference

11.3.4. Ethernet Operation Timing

The EXOS 204 can receive successive frames with minimum interframe spacing (9.6
microseconds). It can also receive immediately after transmitting, or vice versa, with
minimum interframe spacing, and without losing data.

11.3.5. Ethernet Packet Buffering

Under NX 200 firmware control, the EXOS 204 can buffer an arbitrary number of both
receive and transmit packets. The actual number of available buffers depends on
application criteria. User software can select both buffer size and location, anywhere
between 01000H and 1 FFFFH in the EXOS 204's dual-ported memory.

Ethernet controller hardware can chain up to 32 receive packet buffers, and receive as
many packets, without CPU intervention. Transmit packets are chained by NX 200
firmware, and transmitted with minimal delay.

11.3.6. Ethernet Error Handling

The EXOS 204 can be selectively enabled to receive packets normally rejected due to
CRC and alignment errors.

11.3.7. Ethernet Transmit Status LED

The EXOS 204 lights an LED at position DS2 while transmitting on the Ethernet.

11.3.8. Ethernet Transceiver Connector

The EXOS 204 board's Ethernet connector is a 16-pin IDH type which mates with a 16
pin IDC type connector. Pinouts are defined as per Ethernet specifications. The
connectors are keyed, and pin number 1 can also be identified by an arrow on the
connector. Note that it is still possible to insert the connector backwards. In order to
ground the transceiver cable shield, pin number 1 must be connected to the host system
chassis ground. A terminal connected to pin 1 is provided on the board for that purpose.

11.4. On-Board Processing Capabilities

The EXOS 204 is designed to facilitate the implementation of higher level
communications protocols on its own processor. The major elements of this front-end
processor are:

an 8 MHz 80186 CPU, clock speed 8 MHz.

128K of dual-ported RAM, 124K available for user software.

optionally, an additional 128K of dual-ported RAM.

NX 200 OS kernel, residing in two 16-Kbyte EPROMs.

Access to RAM is subject to wait states; net effective throughput is equivalent to an
80186 running at 5 MHz or faster, without wait states. Access to EPROM does not incur
any wait states.

The NX 200 kernel provides a real-time, multi-tasking environment for the
implementation of higher level protocols on the EXOS 204. It is supported by clock
timer and interrupt controller chips. NX 200 implements consistent and portable access
methods for the Ethernet and host interfaces. In addition, it executes self-diagnostics,
and can optionally drive the EXOS 204 as an intelligent link level controller, in which
case the user is not required to down-load protocol software.

11-6

EXOS 204: Hardware Reference

11.5. Firmware Configuration Options

Jumpers J7 selects NX 200 firmware options as follows:

If J7 is installed, the EXOS 204 will attempt to down-load software from the
Ethernet after self-test is complete. If not installed, the EXOS 204 will await
initialization from the host after self-test is complete.

11.6. Self· Test Operation

When the EXOS 204 is reset by the Unibus INIT/ line or by host software (see Section
4.3), NX 200 firmware runs comprehensive diagnostic tests on EXOS 204 components.
These tests complete within 2 seconds, whereupon the board is ready for configuration.
If the tests fail, this is reported to the host via an 1/0 port (see Section 4.1).

11.6.1. NX 200 Status LED

Test progress and status are also reported via an LED at position DS1. On EXOS 204
reset this LED is lit, and remains lit constantly while self tests are in progress. When
self tests are complete, the LED flashes evenly until the EXOS 204 is initialized by the
host or from the Ethernet. After initialization, LED DS1 turns off.

If diagnostics indicate a hardware problem, then the LED will be lit constantly, or
communicate an error code by flashing long and short pulses. Software errors during
the process of configuration can also result in an error code display. Error codes are 8-
bit numbers, and are presented bit-by-bit, starting with the most significant bit. A long
pulse is a 1 bit, and a short pulse is a O bit. The error code is continuously repeated,
with a pause in between to demarcate the starting point. Table 11-3 specifies all
defined error codes for the EXOS 204.

11-7

EXOS 204: Hardware Reference

Table 11-3: Self-Diagnostic and Configuration Error Codes

Hex Code Pulse Code Explanation of Error Code

AOH
A4H

ASH
A7H
ASH

A9H
AAH
ABH
ACH
ADH

AEH
AFH

BOH
B1H
B2H
B3H
B4H
B5H
B6H
B7H
B8H

B9H
BAH
BBH
BCH
BDH

invalid address for configuration message.

invalid operation mode parameter.

invalid host data format test pattern.

invalid configuration message format.

invalid movable data block parameter.

invalid number of processes parameter.

invalid number of mailboxes parameter.

invalid number of address slots parameter.

invalid number of hosts parameter.

invalid host queue parameter.

improper objects allocation.

net boot failed.

checksum on NX 200 EPROMs failed.

memory test failed for 0-128K.

memory test failed for 128K up to the highest address.

counter test failed.

interrupts test failed.

transmission test failed.

receive test failed.

local loopback data path test failed.

CRC test failed.

checksum on physical address PROM failed.

system error.

Ethernet chip initialization failed.

Ethernet chip self-test failed.

Ethernet chip resource counter failed.

11-8

EXOS 204: Hardware Reference

11. 7. General Specifications

The following are general specifications for the EXOS 204.

Power Requirement:

Operating Environment:

1/0 Register Addresses:

+SVDC @ 5.0 Amp Max
+ 15VDC@ 0.6 Amp Max (for transceiver
and SBX connector)
-1 SVDC @ 0. 1 Amp Max (for SBX connector only)

Temperature: 5 to 50 degrees C
Humidity: o to 90% without condensation

Jumper-selectable (from 760000 to 777774
in increments of 2 (octal)).

Factory setting:
Port A : 764000, Port B : 764002

Interrupt Vector Address: Software programmable.

Interrupt Priority Level: Jumper selectable (BR4, BAS, BR6, or BR7).

Data Transfer: Direct Memory Access (OMA) with jumper
selectable burst size (2, 4, 8 or 16 word
per NPR) for all word-aligned data.

Unibus Timeout: 16 micro-sec after MSYN asserted and no SSYN
returning (jumper selectable).

Unibus Loading: AC - 2 DEC unit loads
DC - 1 DEC unit load

Physical Size: 1 6-layer DEC quad-sized PCB

11-9

(blank page)

J9

J7

J6

~ User __..
EPROMs

0

Ull2

J18

J16

J17

uu
OC580

"ff
0 0
0 0
0 0
0 0
0 0
0 0

Kernel
EPROMs

ooooooooooooooooooa
0000 000000000000000000

: :
3

~
5

: ~=c~20: g:~: 00 • 0 0 0 0
0 0 000 0 0 0
0 0 000 0 0 0
00 0 0 0 0 0

0 0 0 0 0 0
0 000 0 0 0

Oo 0
U58 ~

-~·
0 0 0
0 0
0 0
0 0
• 0
0 0
0 0
0 0
0 0

•

J13
J12

J20

)>
iJ
iJ
rn
z
a
x
~

()
0
s:
iJ
0
z
rn
z
-i
r
0
()
)>
-i
6
z

rn
x
0
(j)

N
0
~

(blank page)

2180 Fortune Drive
San Jose. CA 95131

(408) 945-9526

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	A-01
	A-02
	xBack

