
EXOS/101
ETHERNET FRONT-END PROCESSOR

REFERENCE MANUAL

Exce1an, Inc.
2180 Fortune Drive
San Jose, CA 95131

August 1, 1983

HOTICE

This document reflects the features and .pecifications of the EXOS/IOI, and
the &X/IOI firmware version 2.n. Excelan, Inc. reserves the right to make
changes and ~provements in features and apecifications at any tiae without
prior notice or obligation.

The following are trademarks or equipment designations of Excelan, Inc.:

EXOS
EXOS/IOI
NX
&X/lOl

Ethernet is a trademark of Xerox Corporation.

Multibus is a trademark of Intel Corporation.

Copyright C 1982 by Excelan Inc. All rights reserved. No part of this docu­
ment may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or oth­
erwise, without the prior permission of Excelan.

BlDS/IOI: Preface

PREFACE

This document describes the EXOS/IOI Ethernet Front-End Processor board. It
covers information necessary to integrate the EXOS/IOI in a Multibus-based
system, and to design software both for the host and the BIOS/IOI. Ethernet
and Multibus are described in readily available documents; this manual makes
no special effort to explain these standards.

By design, the EXOS/IOI's operating system kernel (XX/IOl) insulates user pro­
tocol software from hardware implementation details. This approach simplifies
software design, and facilitates portability to future products which will
take advantage of VLSI Ethernet controllers. Therefore this manual primarily
describes the XX/IOI kernel, with reference to hardware design only where
necessary. It is intended only as a reference manual, and does not undertake
to explain the product's design philosophy. Separate manuals, available from
Excelan, discuss the concepts which guided the design of the EXOS/lOl.

Section 1 of this manual outlines the principle features of the EXOS/lOl.

Section 2 is a guide to useful references.

Section 3 describes conventions and restrictions which are crucial to success­
ful application of the EXOS/IOI.

Section 4 describes initialization of the EXOS/IOI, including software down­
load from the host.

Section 5 discusses using the EXOS/IOI as an intelligent link level con­
troller. In this mode, no software is down-loaded, so that only glancing
reference to sections 6 through 9 will be necessary.

Sections 6, 7, and 8 describe the XX/lOI firmware, which provides support for
software down-loaded to the EXOS/IOI. Section 6 describes the real-time, mul­
titasking OS kernel services, and describes the programming environment aboard
the EXOS/lOI. Sections 7 and 8 cover the Ethernet and host interface facili­
ties, which are implemented in XX/IOI. They are broken out into separate
chapters because NX/IOl's design makes them conceptually detachable.

Section 9 defines the XX/IOI kernel calls, and is intended for ready reference
once XX/IOI services are understood functionally.

Section 10 describes the EXOS/IOI's network bootstrap protocol, which can be
used to automatically down-load software to the EXOS/I0l over the ,Ethernet at
initialization time.

Section 11 provides necessary information about EXOS/IOI hardware.

- i -

EXOS/101: Contents

TABLE OF CONTENTS

1. INTRODUCTION 1

1.1. Overview 1
1.2. EXOS/101 Hardware Description 2
1.3. HI/101 Firmware Description 6

2. REFERENCES 10

3. NOTATIONS AND CONVENTIONS 11

3.1. Number Base 11
3.2. Data Object Terminology 11
3.3. Message Format Specification 11
3.4. Procedural Specifications 11
3.5. Bit Position and Value Specifications 12
3.6. Data Storage Order 12
3.7. Integration with 68000-Based Systems 13
3.8. Data Alignment 13
3.9. Memory Address Format 13
3.10. Shared Multibus Memory Access Restrictions 15

4. INITIALIZATION AND HOST INTERFACE 16

4.1. Hardware Communications Facilities 17
4.2. Host Data Order Conversion Option 18
4.3. Reset and Configuration Procedure 20
4.4. Configuration Message Format 23
4.5. Message Queue Format 31
4.6. Message Queue Initialization 33
4.7. Message Queue Protocol 34
4.8. Down-Loading Software from the Bost 38

5. LINK LEVEL CONTROLLER MODE 42

5.1. The Controller Mode Interface 42
5.2. TRANSMIT Request/Reply Message 46
5.3. RECEIVE Request/Reply Message 49
5.4. NET_MODE Request/Reply Message 52
5.5. NET_ADDRS Request/Reply Message 55
5.6. NET_RECV Request/Reply Message 58
5.7. NET_STSTCS Request/Reply Message 60

6. THE HI/101 PROGRAMMING ENVIRONMENT 63

6.1. Overview 63
6.2. Memory Organization 63
6.3. Interrupt Types 65
6.4. Processes 66
6.5. Mailboxes 68

- ii -

EXOS/101: Contents

6.6. Process Locks
6.7. System Mailboxes
6.8. The Clock Device

7. THE lallOl EmEUET IITERFACE

7.1. Ethernet Transmit Request
7.2. Ethernet Receive Request
7.3. Ethernet Controller Hodes
7.4. Ethernet Controller Option Mask
7.5. Address Slots
7.6. Net Statistics

8. THE n/101 BOST INTERFACE

8.1. Bost Transmit Request
8.2. Bost Receive Request
8.3. Direct Access to Host System Memory
8.4. Bost Data Order Conversion

9. n/101 KERNEL CALL REFERENCE

10. INITIALIZING AND DOWN-LOADING FROM THE BTRERNET

10.1.
10.2.
10.3.
10.4.
10.5.
10.6.
10.7.
10.8.
10.9.

Network Bootstrap Protocol Description
Data Transmission Order
Network Bootstrap Protocol Message Header
Message Encapsulation
FIND and SELECT Request/Reply Messages
DOWNLOAD Request/Reply Message
UPLOAD Request/Reply Message
CONFIGURE Request/Reply Message
EXECUTE Request/Reply Message

11. HARDWARE REFERENCE

11.1.
11.2.
11.3.
11.4.
11.5.
11.6.
11.7.
11.8.

Access to EXOS/101 Components
Multibus Interface
Ethernet Interface
On-Board Processing Capabilities
Firm.are Configuration Options
Self-Test Operation
Power Requirements
Operating Environment

- iii -

70
70
72

73

73
76
79
80
80
81

83

83
85
86
86

88

116

116
123
123
125
126
129
131
132
133

135

135
135
138
140
141
141
141
142

EXOS/lOl: Contents

APPENDICES

APPENDIX A: EXOS/lOl Component Location

FIGURES

Figure 1-1: An EXOS/lOl Front-End Processor Mode Implementation 2
Figure 1-2: EXOS/lOl Block Diagram 3
Figure 1-3: .x/101 Software Architecture 6
Figure 3-1: Mapping of Segmented Address into Longword Data Type 14
Figure 3-2: Mapping of Absolute Address into Longword Data Type 14
Figure 4-1: Host Data Order Conversion Option Test Pattern 19
Figure 4-2: Host Data Format Test Pattern Initialization 20
Figure 4-3: Typical Reset and Configuration Procedure 22
Figure 4-4: Configuration Request/Reply Message 24
Figure 4-5: Message Buffer Format 32
Figure 4-6: Message Queue Data Structures at Initialization Time 34
Figure 4-7: Example EXOS-to-Rost Message Queue, at Initialization 35
Figure 4-8: EXOS/lOl Down-Load Request/Reply Message 39
Figure 4-9: EXOS/lOl Start-Execution Request/Reply Message 40
Figure 5-1: Encapsulation of Request/Reply Message in Message Buffer 43
Figure 5-2: Link Level Controller Mode Request Processing Scheme 44
Figure 5-3: TRANSMIT Request/Reply Message 46
Figure 5-4: RECEIVE Request/Reply Message 49
Figure 5-5: NET_MODE Request/Reply Message 52
Figure 5-6: NET_ADDRS Request/Reply Message 55
Figure 5-7: NET_RECV Request/Reply Message 58
Figure 5-8: NET_STSTCS Request/Reply Message 60
Figure 6-1: Default EXOS/lOl Memory Allocation 64
Figure 6-2: Standard Header for System Messages 71
Figure 7-1: Ethernet Packet Format 74
Figure 7-2: Ethernet Transmit Request/Reply Message 75
Figure 7-3: Ethernet Receive Request/Reply Message 78
Figure 8-1: Rost Transmit Request/Reply Message 84
Figure 8-2: Host Receive Request/Reply Message 85
Figure 10-1: State Diagram of Network Bootstrap Protocol 118
Figure 10-2: Network Bootstrap Protocol Request/Reply Message Header 124
Figure 10-3: Encapsulation of Request/Reply Message 126
Figure 10-4: Network Bootstrap FIND/SELECT Request/Reply Message 127
Figure 10-5: Network Bootstrap DOWNLOAD Request/Reply Message 130
Figure 10-6: Network Bootstrap UPLOAD Request/Reply Message 131
Figure 10-7: Network Bootstrap CONFIGURE Request/Reply Message 133
Figure 10-8: Network Bootstrap EXECUTE Request/Reply Message 134
Figure 11-1: Quick Reference to Jumper Options 136
Figure 11-2: Port Address, Interrupt Level, HI/lOl Option Jumpers 137
Figure 11-3: Quick Reference to Status LEDs 138
Figure 11-4: Self-Diagnostic and Configuration Error Codes 142

- iv -

~. INTRODUCTION

This section provides an overview of the EXOS/lOl's features and specifica­
tions, and describes its principal modes of operation.

1.~. Oyerview

The EXOS/lOl is a high-performance, front-end communications processor that
connects a Multibus system to an Ethernet local area network. It implements
the complete Ethernet Data Link Level interface, with significant functional
extensions, on a single Multibus board. In addition, the EXOS/lOl can support
high-level network protocols on-board, thereby offloading this burden from the
host CPU.

The EXOS/lOl is directly managed by an on-board 8088 CPU, which runs the
HI/lOl operating system, stored in a 16 Kbyte EPROM. A host system controls
the EXOS/lOl primarily though command and reply messages located in memory
accessible from the Multibus. HI/lOl firmware interprets the command messages
and generates the replies.

HI/lOl provides two basic modes of operation, selected at initialization time.
Link level controller mode is useful for applications where host-resident pro­
tocol software has already been developed, or where it is otherwise not feasi­
ble to down-load high-level protocols to run on the EXOS/lOl. Instead, NX/lOl
firmware brings the EXOS/lOl's Data Link controller functions out to the host
interface. The host system obtains Data Link services through standard
request/reply messages; the EXOS/lOl's RAM is entirely available for buffer­
ing packets.

In front-end processor mode, the host system down-loads protocol software to
the EXOS/lOl at initialization time (or the EXOS/lOl bootstraps itself from
the Ethernet). This software then uses HI/lOl's real-time, multi-tasking pro­
cess management services and I/O drivers to control the EXOS/lOl's Ethernet
interface and manage communications with the host system. Standard protocol
modules for the EXOS/lOl, such as the DARPA TCP/IP protocols, are available
from Excelan. Figure 1-1 shows such an implementation in relation to the ISO
Open Systems Integration model.

Alternately, users can develop, or port, their own protocols to run on the
EXOS/lOl under HI/lOl. This manual contains all information required to write
software for the EXOS/lOl. HI/lOl is designed to greatly facilitate this pro­
cess.

First, HI/lOl provides a set of parameterized mechanisms that reduce the
development effort required for implementation of high level protocol
software. This is accomplished by offering a multitasking environment and
integrated drivers that provide high level primitives for the functions asso­
ciated with the Ethernet controller, the host link, and the clock.

Another objective of HI/lOl is to hide the implementation details of EXOS/lOl
hardware from user software by providing suitable abstractions for all facili­
ties. Thus, user software written to HI/lOl specifications will be directly
compatible with future Excelan products that exploit LSI technology for the
network controllers.

- 1 -

ISO LAYERS

-7 APPLICATION

6 PRESENTATION

5 SESSION -
4 TBANSPORT

3 NETWORK

2 DATA LINK]
1 PHYSICAL

EXOS/I0l: Introduction

~

....
~

[

BOST SYSTEK •
MEMORY

EXOS/lOI

nONT=-END
PROTOCOL
PROCESSOR

ETHERNET
DATA LINK
CONTROLLER

ETHERNET
TRANSCEIVER

Figure 1-1: An ~/lOl Front-~ Processor Mode Implepentation

1.1. EXOS/lOl Hardware Description

BOST
SYSTEM
CPU

Figure 1-2 shows a block diagram of the EXOS/lOI. Architecturally, the
EXOS/lOI consists of two loosely-coupled elements: an Ethernet Data Link
Level controller, and a microprocessor-based protocol processing engine.
These components communicate with each other through an internal bus and 64
Kbytes of dual-ported RAM. Components of the protocol processing engine
occupy the left half of the block diagram; the Ethernet controller occupies
the right half.

The EXOS/lOl implements the Ethernet Data Link protocol almost entirely in a
bipolar finite state machine. Functions such as address recognition, CRC

- 2 -

EXOS/101: Introduction

8088
CPU
and
SUPPORT
CHIPS

NETWORK INTERFACE CONTROL (FINITE STATE MACHINE)

HOST
BUS
INTER­
FACE

16
KBYTE
EPROM

64 KBYTE
DUAL­
PORTED
RAM

64 KBYTE
SINGLE­
PORTED
RAM
(OPTION)

Figure 1-2: EXOS/101 Block Diagram

BUFFER
MANAGEMENT

TRANS­
MIT

ENCODE

CRC
CHECK &
GENER­
ATE

LOOP­
BACK
BUFFER

ADDRESS
RECOGNITION

RECEIVE

DECODE

ETHERNET TRANSCEIVER INTERFACE

check. and buffer chaining are managed in hardware. so that the 8088 CPU is
fully available for front-end processing applications. The protocol process­
ing engine is supported by either 64K (Modell) or l28K (Model 2) of RAM. a
counter !timer circuit. and an interrupt contro ller. A 16 Kbyte EPROM contains
Excelan's NX/l01 firmware. which includes self-diagnostic tests, an operating
system kernel, and network bootstrap code.

1.1.1. Principal Features

o 12 by 6.75-inch card requires just one Multibus slot.

o On-board 8 MHz 8088 microprocessor (6.67 MHz clock) and 64 Kbytes of RAM
(128 Kbytes on Model 2) support high-level network protocols on-board.

- 3 -

EXOS/IOI: Introduction

o Dual-ported memory allows concurrent, full-speed access by network
hardware and on-board processor.

o Can receive successive frames with minimum interframe spacing (9.6
microsec.). Can receive immediately after transmitting, or vice versa,
with minimum interframe spacing and without losing data.

o Hardware recognition of physical, broadcast, and 252 multicast addresses,
in addition to promiscuous mode.

o Hardware-supported buffer chaining allows buffering of up to 32 received
frames without any CPU intervention. Allocation of buffers, both loca­
tion and size, is completely under software control.

o Time domain reflectometry (TDR) function helps diagnose cable faults.
Resolution is 100 nsec.

~.l.l. Ethernet Compatibility

The EXOS/IOl conforms fully with Ethernet version 1.0 specification published
by DEC, Intel and Xerox on September 30, 1980. Integrated with a standard
Ethernet transceiver, it provides all Data Link and physical layer services.

~.l.l. Multibus Compatibility

The EXOS/IOI conforms with IEEE 796 (Multibus) specifications, as an 8-bit
master. Compliance is D8 M24 116 VO L (8-bit transfers, 24-bit addressing,
and non-bus vectored interrupts).

~.l.!. Multibus Interface

The EXOS/IOI can access the entire Multibus system memory space (16 Mbyte) and
the full 64K I/O space, as an 8-bit bus master. An additional one-byte com­
munication path is provided from the Multibus to the EXOS processor via an I/O
port. This can be used during initialization to transmit the address of a
communication area in the shared Multibus memory.

The EXOS/IOI and host processors can interrupt each
erates non-bus vectored interrupts to interrupt the
can be set from INTO to INT7, via jumper selection.
status bit, in case interrupt polling is required.
EXOS/IOI processor by writing to an I/O port.

~.1.1. Ethernet Functions

other. The board gen­
host. Interrupt priority
The EXOS/IOI provides a

The host can interrupt the

The EXOS/IOI performs all physical and Link Level Ethernet functions except
for transceiver functions. These include:

o serial/parallel and parallel/serial conversion.

o address recognition.

- 4 -

EXOS/lOl: Introduction

o framing and unframing of messages.

o Manchester encoding and decoding.

o preamble generation and removal.

o carrier sense and deference.

o collision detection and enforcement, including jamming, backoff timing
and retry.

o FCS (CRC) generation and verification.

o error detection and handling.

1.1.!. Address Recognition

Each board has a unique 48-bit Ethernet address, which is stored in EPROM
(host software can override this address at run time). Recognition of physi­
cal, broadcast and multicast addresses is fully supported. Up to 252 multi­
cast addresses can be assigned to a station; a very efficient filtering
scheme reduces processing overhead. The EXOS/lOl also provides a promiscuous
mode, in which it accepts all addresses.

1.1.1. Frame Format

Link level frames are formatted as per the Ethernet specification, with 64
bits of synchronizing sequence (preamble), destination address (48 bits),
source address (48 bits), message type (16 bits), data (46 to 1500 bytes) and
FCS (32 bits). The preamble is generated and removed in hardware. Generation
and checking of the Frame Check Sequence (FCS) is also handled in hardware.

1.1.!. Error Handling

The EXOS/lOl handles all Ethernet error conditions, including CRC, alignment,
and length errors. Packets containing these errors can optionally be
received.

1.1.1. High Level Protocol Support

On-board processing power supports execution of higher level communications
protocols, beyond the Ethernet link level. The elements of this programming
environment are:

o 8 Mhz 8088 CPU, operating at 6.67 KHz.

o 64K dual-ported RAM (plus 64K single-ported RAM on Model 2).

o 16 Kbytes of EPROM, containing NX/lOl firmware.

o clock timer circuit and interrupt controller.

Firmware supplied with the board (the NX/lOl Network Executive) provides sim­
plified Ethernet and host interface device drivers, and a multi-tasking

- 5 -

EXOS/IOl: Introduction

environment for high-level network protocols.

DOWN-LOADED
SOFTWARE

n:/lOl KERNEL
INTERFACE

n:/lOl KERNEL
FIRMWARE
MODULES

EXOS/lOl
HARDWARE
MODULES

BOST SYSTEM
INTERFACE
DRIVER

BOST BUS
INTERFACE

BIGB-LEVEL
PROTOCOL
PROCESSES

REAL-TIME
MULTI-TASK
PROCESS
SUPPORT

PROTOCOL
PROCESSING
ENGINE

Figure !-~: n:/lOl Software Architecture

1.1. NX/I01 Firmware Description

ETHERNET
DATA LINK
DRIVER

DATA LINK
CONTROLLER

NX/I01 resides in EPROM memory, which appears at the high end of the 1M byte
address space of the 8088. n:/lOl data structures use 4K of the RAM space;
the rest is available for higher level software.

1.1.1. Principle Features

o Self-diagnostics for testing the integrity of EXOS/lOI hardware.

o Booting process that allows higher level software to be down-loaded
either from the host or from the network.

o A real-time kernel that provides a multi-tasking environment, enabling
the protocol software to be constructed in a structured manner as a set
of cooperating processes.

o Device drivers for the Ethernet controller and host computer interface.
Access through message queues simplifies pipelined communications.

- 6 -

ElOS/IOI: Introduction

o Supports network management functions by collecting network statistics.

o Allows the EXOS/IOI to be used as a s~ple Data Link controller, giving
direct access to the network without down-loading any software.

~.~.z. Initialization

On reset the HI/IOI firmware performs a series of self tests which confirm
hardware integrity. In case of failure, the firmware communicates diagnostic
codes through an LED display. After successful completion of the tests, the
ElOS/IOI either boots itself from the Ethernet, or awaits initialization by
the host system, depending on a jumper option on the board.

If the jumper selects initialization by a host system, the host then uses a
configuration message to select IX/IOI's mode of operation, and specify
several other parameters. It can down-load software directly, tell HI/IOI to
boot itself from the Ethernet, or select link level controller mode. If ini­
tialization includes down-loading software, then IX/IOI spawns a process and
enters the front-end processor mode of operation. The following sections
describe the execution environment for software which is down-loaded to the
ElOS/IOI.

~.~.3. Multi-tasking support

EX/IOI includes a real-time kernel that implements a multi-tasking environment
for construction of higher level software in a structured manner. This kernel
is fast by design, and imposes very little overhead. It supports two types of
object - processes and mailboxes. The number supported of either object is
configurable at start-up time.

A process is a unit of execution in the conventional sense. All processes
share the same memory address space and can thus communicate via shared
memory. Other than for HI/IOI's reserved memory there are no restrictions on
how memory is used. Processes access IX/IOI functions by executing the 8088's
INT n instruction, where n identifies the service being requested.

A priority-based preemptive round robin scheduling algorithm allocates CPU
time among processes. As many as 256 priority levels are supported, and the
highest priority runnable process will always be scheduled. Among processes
of the same priority, CPU time is allocated in time slices. A time slice is
either infinity, or between I and 254 ticks, where each tick is 20 mil­
liseconds. Any process can examine and change the priority and time slice of
any process. Whether a process is runnable is determined solely by a sleep
count, from 0 to 64K, and driven by the same clock as the time slice. Through
this parameter, any process can suspend, delay or resume any process.

Interprocess communication and synchronization are implemented with mailboxes.
Messages sent or received from the mailboxes can be either null or pointers to
buffers in the common memory. Message buffer format is arbitrary except for
the first field, which NX/IOl uses to chain the messages in the mailbox queue.
Sending and receiving of messages is fully synchronized. A process executing
a receive calIon a mailbox csn specify the maximum time interval it is wil­
ling to wait. Waiting is implemented with the sleep count mechanism described
above. If the specified time expires before a message arrives the process is

- 7 -

EXOS/lOl: Introduction

resumed and given an error code instead of a message. If only DUll messages
are used, then the mailbox is identical to a conventional semaphore. The
receive operation in this case is equivalent to the P operation and the send
operation is equivalent to the V operation. The mailbox can be thus used as a
synchronization mechanism both for a producer-consumer relationship and a
critical section.

In addition to the aailbox, the IX/lOl has a simpler and more efficient syn­
chronization mechanism intended for short critical sections: the process lock.
This operation postpones scheduling decisions until a corresponding unlock is
executed, thereby excluding all other processes from running. Calls to lock
can be nested up to 32K levels deep.

1.1.4. D.!. Clock

IX/lOl's clock driver provides the abstraction of a 64-bit clock with a reso­
lution of 20 milliseconds. Processes can read or set the time at will. On
initialization the clock is set to zero.

1.1.2. Host Interface

IX/lOI provides a uniform interface to the host regardless of the nature of
the actual hardware host interface. The abstraction of the host is presented
as a mailbox and read/write operations on host memory. The mailbox acts as a
source and sink for messages and also provides synchronization between the
processes on the host and the processes on the EXOS/lOl.

This interface appears to host system software as two circular queues of mes­
sage buffers, one for each direction of transfer. Sending a message to the
IX/lOl host mailbox causes the message to be transferred to the host memory,
where it can be read by the host processes. Similarly, receiving a message
from the host mailbox causes any messages placed in the host memory by host
processes to be transferred to the EXOS/lOI process.

Apart from transferring data by means of messages, processes on the EXOS/IOI
can also directly read and write the the host memory by means of IX/IOl calls.
The contents of messages sent and received from the host is not interpreted by
the IX/IOI, and is strictly a matter of protocol between the host and the user
software.

1.1.!. Ethernet Interface

The Ethernet interface also appears as a special dedicated mailbox. An
EXOS/lOl process sends a packet over the Ethernet by sending the packet's
address in a message to the special mailbox. The packet is formatted accord­
ing to the Ethernet specifications. The preamble and CRe are generated by the
hardware automatically and need not be supplied by the user. After the packet
is transmitted a reply message is returned to a user-specified mailbox,
returning the packet buffer. Similarly, packets are received from the Ether­
net by sending an empty buffer's address in a message to the special mailbox.
When the Ethernet controller receives a message, it is stored in the buffer
and a reply message is returned to the user-specified mailbox.

Packets arriving over the Ethernet are filtered based on the destination

- 8 -

EXOS/IOI: Introduction

address. Only those packets whose destination address matches one of
addresses specified by the user are received. The address filter is imple­
mented in hardware, but for multicast addresses, it is not perfect. Therefore
NX/IOI supplements the hardware filter with a somewhat slower Boftware filter
which completes the filtering of multicast addresses.

The user specifies receive addresses by means of address slots. Each slot
carries one destination address. The user can selectively enable/disable
receive on address slots. One address slot is reserved for the physical
address and one slot is reserved for the broadcast address. The remaining
address slots contain multicast addresses only. The number of multicast
address slots is defined by the configuration of the NX/lOl.

The Ethernet controller can operate in one of several possible modes select­
able by the user. Specifically, the user can disconnect the controller from
the network, disable/enable the software multicast address filter, enable to
receive all packets from the network (promiscuous mode), and reject/accept
packets received with errors.

The network management functions are supported by the EXOS/lOl by keeping a
tally of various events such as the number of packets transmitted/received,
packet errors etc. A Time Domain Reflectometry function is also available, to
aid system designers and integrators locate faults in the Ethernet cable.

l.l.l. Ethernet Link Level Controller Mode

If the EXOS/lOl is to be used in link level controller mode, then most of the
description above of NX/lOI can be disregarded. In this mode, the host does
not down-load any code to the board. Instead, the host sends command requests
to the board which drive the Ethernet interface described above. When a
request completes, the EXOS/lOl returns a reply message. Transmit and receive
commands can be pipe1ined -- NX/lOl uses the 64 Kbytes of dual-ported RAM for
buffering packets.

- 9 -

EXOS/101: References

1.. REFERENCES

The EXOS/101 conforms to the following specification:

[11 DEC, Intel, and Xerox Corporations, "The Ethernet: A Local Area Betwork:
Data Link Layer and Physical Layer Specifications," Document no.
T588.B/1080/15K, Intel Corp. (September 1980).

The EXOS/101 conforms to the Multibus specification:

[2] Intel Corp., Intel Multibus Specification, Order Number 9800683-04, Intel
Corp., (1982).

The EXOS/101 supports front-end processing of user-written higher-level proto­
cols, on an 8088 CPU:

[3] Intel Corp., iAPX 88 Book, Document No. C-257/781/75K/RRD, Intel .£2D..,
(1981) •

The following reference describes the C language, which is used for procedural
specifications in this manual:

[4] Kernighan, B.W. and Ritchie, D.M, The & Programming Language, Prentice­
Hall, Englewood Cliffs, New Jersey (1978).

The following reference describes the ISO Open Systems Model:

[5] International Organization for Standardization (ISO), "Reference Model of
Open Systems Interconnection," Document no. ISO/TC97/SC16 N227 (June
1979).

- 10 -

EXOS/IOl: Notations and Conventions

1. NOTATIONS AND CONVENTIONS

This section describes notations and conventions followed throughout this
manual. Any restrictions specified here are applicable to all situations
unless otherwise specified. The contents of this section should be carefully
read first since the constraints mentioned here will not always be repeated in
following sections.

1.1. Number Base

All numbers in this manual are decimal unless postfixed with the letter H, in
which case they are hexadecimal.

1.1.. Data Object Terminology

The following terms are used to describe data objects of various sizes:

byte:
word:
longword:

8 bits
16 bits
32 bits

1.1. Message Format Specification

The EXOS/IOI provides access to some of its services by means of request/reply
message pairs. Message formats are specified both in figures and descriptive
paragraphs. The figures show the order of data fields, field length, offset
from the message beginning, and include a brief description of the field's
purpose. Descriptive paragraphs, keyed to the order of fields in the message,
provide all necessary details not supplied in the figures.

One column in the message figures, labeled "Request," specifies what value, if
any, the field should have in the request message. Another column, labeled
"Reply," specifies what value, if any, the reply message returns. When some
definite value is specified for a field in a request message, this value must
be used, or undefined effects may occur. If a field is designated as "unde­
fined" then it can have any arbitrary value. In the reply message, a field
designated as "preserved" will return the same value as was supplied in the
original request message. Where more comment is required, the entry "see
text," directs the reader to a paragraph labeled with the same index as the
field.

1.!. Procedural Specifications

Where it is necessary to describe a procedure, this manual uses the C program­
ming language. Where appropriate, the language has been adapted in the style
of pseudo-code. Such departures from the formal specification of Care
denoted by enclosure in right-angle brackets, as in this example:

- 11 -

EXOS/IOI: Notations and Conventions

init_toxq 0 {
for (i-Oj i<QLEN; i++) {

}
}

toxq[i].link - <16-bit offset of ne~t buffer address>;
toxq[i).rsrvd - OJ
toxq[i].status - TOXINITSTAT;
toxq[i).length - TOXDATALENj
<initialize any user-specified fields>;

1.i. Bit Position ~ Value Specifications

When any data object is described in terms of separate bit fields, the Least
Significant Bit (LSB) is designated as bit 0 and the Most Significant Bit
(MSB) as bit n, where the object's size is n+l bits. For instance. bit 7 is
the MSB of an 8-bit data object.

For programming convenience, bit fields are often described in terms of their
OR-maskable numeric value instead of their position, as described above. For
instance. if the description of a request mask reads:

01 write request bit.

02 read request bit.

then a write is specified by bit 0 and a read by bit 1. The value 03 speci­
fies both read and write.

I.!. ~ Storage Order

Many applications of the EXOS/IOl require the consideration of two different
programming environments: that of software on the EXOS/IOl itself, and that
of software on a host computer which communicates with the EXOS/IOI. In
either environment. it is crucial that user software store data objects which
are known to NX/lOI firmware in the order which HI/lOI expects - and that the
programmer understand how NX/IOl stores data objects which are known to user
software.

In the EXOS/10I's own memory address space, NX/IOI always interprets data in
the 8088 CPU's native order. This means that in any data object of more than
one byte. the most significant byte is stored at the higher memory address.
For instance. a memory dump of the 32-bit value 0103070FR stored at EXOS/IOI
memory address IC83R would appear as follows:

IC83: OF
IC84: 07
IC8S: 03
IC86: 01

In the Multibus memory address space shared between the EXOS/IOl and the host
system, HI/IOl can interpret data either in the 8088 CPU's native order, or

- 12 -

EXOS/lOl: Notations and Conventions

optionally in the host system CPU's native order. This is controlled by the
host data order conversion option, described fully in section 4.2. If the
conversion option is not enabled, then any data objects in host memory which
HI/lOl interprets must appear to the EXOS/lOl in the 8088 CPU's native order.

If the conversion option is enabled, then IX/lOl will automatically translate
between its native order and the host CPU's native order when it reads and
writes data to and from the host's memory. It decides what conversions are
necessary by exam1n1ng a constant pattern in host memory at initialization
time. Conversions work independently on three data types: byte strings,
words, and longwords.

Note that because HI/lOl must know the data type to apply the appropriate
conversion, the word and longword conversion are applied only to data objects
which NX/lOl itself interprets, such as configuration information or Ethernet
Data Link protocol parameters. Other data objects, such as an Ethernet
packet's data field, are subject only to the byte string conversion applied to
any data transferred between host memory and EXOS/lOl memory.

1.1. Integration with 68000-Based Systems

The host data order conversion for the byte string data type is intended pri­
marily to accomodate microcomputer designs using the 68000 microprocessor
(such as those based on the Stanford University Network (SUN) workstation
design.) One idiosyncrasy of such processor implementations is that they
invert bit 0 of the memory address when performing byte-wide memory operations
on the Multibus. This has a more complex effect than a simple byte swap on a
word data type. For example, a byte quantity written at logical address 0003H
appears at physical address 0002H in Multibus memory. The EXOS/lOl automati­
cally compensates for this peculiarity when the host data order conversion
option is enabled. It will invert bit 0 of host memory addresses, if
required, on all Multibus memory access operations.

1.!. Data Alignment

The EXOS/lOl requires special data alignment in only one instance. The confi­
guration message (see section 4.4) must begin on an even logical address in
host memory. All data structures defined by NX/lOl firmware are designed so
that they can be efficiently supported by processors and high-level languages
which require even alignment of word and longword data types.

While the EXOS/lOl does not generally require even alignment, this practice is
still recommended, in order to obtain the best performance from future
software-compatible products which utilize a l6-bit data bus.

1.1. Memory Address Format

All memory addresses are 32-bit objects unless otherwise specified. They are
stored in memory in the same order as the longword data type. When NX/lOl's
host data order conversion option is enabled, it will apply the same conver­
sions to addresses stored in shared memory.

The interpretation of memory addresses by NX/lOl depends on context. Any
address which refers to a location in EXOS/lOl memory, whether the address

- 13 -

EXOS/IOI: Notations and Conventions

value itself is stored in IXOS/IOI memory or in host memory, is always inter­
preted as a segmented address. This term refers to the 8088 CPU's native
address format. A segmented address consists of a 16-bit segment base and a
16-bitoffset address. At run time, the 8088 forms a 20-bi.t absolute address
by shifting the segment base left by four places (multiply by 16) and adding
the offset to the result. Therefore a segmented address can access 1 Mbyte of
memory. Figure 3-1 shows how a segmented address is mapped into the longword
data type.

BIT
NUMBER

3 210
1 098 7 6 5 4 3 2 1 098 7 6 543 2 I 098 7 654 3 210
-+-

I SEGMENT BASE I OnSET ADDRESS I
-+-

Figure 3-1: Mapping of Segmented Address ..i.D.t2. Longword J!I!Jl ~

When a segmented address is stored in EXOS/IOl memory, it appears in the fol­
lowing order:

Byte 0: Offset, low order
Byte I: Offset, high order
Byte 2: Segment, low order
Byte 3: Segment, high order

Storage order in the host system memory should appear the same to the EXOS/IOI
unless the host data order conversion option is enabled, in which case it
should appear in the host CPU's native order for the longword data type.

The interpretation of addresses which refer to host system memory locations
depends on the EXOS/IOl's host address mode option. In segmented mode, they
are interpreted in the same manner as addresses referring to EXOS/I0l memory
locations. This restricts access to a 1 Mbyte range of host system memory,
from ooooon to OFFFFFH. In order to provide access to the full 16 Mbyte Mul­
tibus memory address space, the NX/I0l also provides an absolute host address
mode. An absolute address is a simple 24-bit physical memory address, mapped
into the longword data type as shown in figure 3-2.

BIT
NUMBER

3 210
1 098 7 6 543 2 1 098 7 6 543 2 1 098 7 6 543 2 I 0
-+-

I RESERVED I ABSOLUTE ADDRESS I
-+-

Figure 3-2: Mapping of Absolute Address into Longword Data ~

As shown in the figure, the most significant 8 bits are reserved, and should
be set to O. When an absolute address is stored in EXOS/I01 memory, it
appears in the following order:

- 14 -

EXOS/IOI: Notations and Conventions

Byte 0: least significant byte
Byte 1: somewhat significant byte
Byte 2: most significant byte
Byte 3: reserved. must be 0

Storage order in the host system memory should appear the same to the EXOS/IOI
unless the host data order conversion option is enabled. in which case it
should appear in the host CPU's native order for the longword data type.

1.10. Shared Multibus Memory Access Restrictions

It is the user's responsibility to ensure that a specified Multibus memory
address exists in functional memory. The EXOS/IOI does not time out if no
memory response is received on the Multibus. To aid diagnostics a Multibus
Status LED is provided. Its location on the EXOS/IOI is shown in section 11.
When this LED is lit. the EXOS/IOI is accessing the Multibus. Thus if the LED
is constantly lit then most likely the EXOS/IOI has been given a non-existent
address and is stuck waiting for the response.

The EXOS/IOI can access data structures anywhere in the 16 Mbyte Multibus
memory space. It accesses this address space by dynamically mapping a half­
Mbyte window of its own CPU's address space into Multibus memory. The mapping
is at even half-Mbyte boundaries: 0-07FFFFH. 080000H-OFFFFFB, IOOOOOH-
17FFFFB. and so on. User software does not perform either the mapping or the
data transfer; it simply gives addresses to NX/lOI firmware. which effects the
transfer. In general. NX/I0l will automatically perform any re-mapping
required to transfer data structures which straddle the half-Mbyte bounds.
However. for reasons of efficiency, one type of data structure (the host mes­
sage queues) may not straddle these boundaries. This will be noted in their
description in section 4.5.

- 15 -

EXOS/10l: Initialization and Host Interface

4. INITIALIZATION ~ JQll INTERFACE

This section contains information pertinent to the design of bost-resident
software, such as an I/O driver, which communicates with the EXOS/lOl when it
is installed in a Multibus-based system. The host interface can be broken
down into two aspects, the initialization procedure, and the co .. unication
method used subsequently. Initialization refers to the process which begins
upon resetting the EXOS/10l, and concludes either with entering the Link Level
Controller mode, or with the execution of down-loaded software. During the
process of initialization, the host system sets up the host message queue data
structures. The host message queue protocol, defined by NX/lOl firmware, uses
these queues for all further communications between the host processor and the
EXOS/lOl.

The following paragraphs give an overview of the initialization process:

1) The host system resets the EXOS/10l, which then executes self­
diagnostics. If the diagnostics fail, then the EXOS/lOl displays an
error code on the NX/lOl status LED (see section 11) until reset
again. If the diagnostics pass, then the KlOS/lOl awaits configura­
tion by the host.

2) The host system passes the EXOS/lOl the address of a configuration
message in host memory. The KlOS/lOl examines this message, and
modifies some fields according to the results of configuration. If
configuration is unsuccessful, then the EXOS/lOl again displays an
error code on the NX/lOl status LED until reset. If the configura­
tion message is valid, then the KlOS/lOl enters one of three modes,
as specified by the message's operation mode field.

3) Initialization for each of the three different modes proceeds as
follows:

a) In Link Level Controller Mode, the EXOS/lOl begins to execute
firmware which brings NX/I0l's Ethernet Data Link driver inter­
face out to the host system interface. No software is down­
loaded; instead the host system passes Data Link commands to
the board, and receives replies, through the standard host mes­
sage queue protocol. This mode is described fully in section
5.

b) In Front-End Mode 1, the host system proceeds to down-load
software to the KlOS/lOl, by passing down-load request messages
through the standard host message queue protocol. When the
software has been down-loaded, it passes an execute request to
the board, which then begins to execute the down-loaded
software. Subsequent actions depend entirely on the software
which has been installed, although the host message queue pro­
tocol remains in place.

c) In Front-End Mode 2, the EXOS/I0l proceeds to bootstrap itself
from the Ethernet interface, as described in section 10.
Depending on how the bootstrap server configures the EXOS/lOl,
it may still communicate with the host system through the

- 16 -

EXOS/IOI: Initialization and Host Interface

standard host message queue protocol. Network bootstrap is
quite 8~ilar in many ways to initialization by a host proces­
sor; the configuration message described in this section is
exactly identical.

4.1. Hardware Communications Facilities

Communication between the host processor and the EXOS/IOI is conducted via a
coordinated exchange of interrupts, I/O instructions, and data transfers
through shared memory on the Multibus. The following sections define these
primitive channels of communication which are used during the process of ini­
tialization and, subsequently, to ~plement the message queue protocol.

4.1.1. Host Access !2. the EXOS/IOI

The host's means of active access to the EXOS/IOI are solely through two I/O
ports, named port A and port B here for the sake of reference. These ports
are accessed over the Multibus, and can be both read and written. Their
addresses are selected by jumpers on the EXOS/IOI, described in section 11.

The effects of reading and writing ports A and B are summarized below:

Read A:

Read B:

resets the EXOS/lOI (see section 4.3).

returns the EXOS/IOI status byte:

Bit 0:

Bit I:

Bit 2:

Bit 3:

(Error Bit) when 0, indicates a fatal error in EXOS/IOI.
When the EXOS/IOI is reset, this bit is 0, but will be set
to I if the self test completes successfully. If this bit
is not set within 2 seconds, then the EXOS/IOl has failed
the self diagnostics.

(Interrupt Bit) is set whenever the EXOS/lOI asserts a
Multibus level interrupt. This is useful when an inter­
rupt line is shared and polling is required. An I/O write
to port A clears this bit. The interrupt bit is defined
only when level interrupts are selected.

undefined.

(Ready Bit) when 0, indicates that the EXOS/IOI is ready
to accept a byte written into port B. When 1, the
EXOS/IOI has not yet read the byte last written into port
B.

Bits 4-7: undefined.

Write A: causes the EXOS/IOI to drop the interrupt line, when it has asserted
a non bus-vectored interrupt on the Multibus. This also clears the
interrupt bit in port B. The value written is arbitrary, and is not
accessible to software on the EXOS/IOI.

- 17 -

EXOS/IOl: Initialization and Host Interface

Write B: interrupts the EXOS/I0l CPU, and communicates a I-byte value. This
is the only way to communicate a value to the EXOS/lOl other than
through shared memory.

The EXOS/IOl functions as a master on a Multibus system. It can access the
full 16-Mbyte memory address space and 64K I/O address apace, and interrupt
the host processor. User software on the EXOS/I0l does not directly control
these resources. Instead, it calls NX/lOl's host interface driver, described
in section 8.

In general, data is transferred between the host and the EXOS/lOI via shared
memory, which may be any portion of system memory accessible to both proces­
sors on the Multibus. The EXOS/I0l's 8088 CPU performs the transfer by dynam­
ically mapping part of its own address space into the Multibus memory address
space, and executing a block transfer instruction. Note that the EXOS/lOl's
on-board memory cannot be shared; it is not directly accessible by the host
processor.

The EXOS/I0l can interrupt the host either through I/O addresses, memory
addresses, or the Multibus interrupt lines. The type which will be used is
selected at initialization time. Memory and I/O-mapped interrupt addresses
are configured by software; the interrupt line is selectable by means of a
jumper option, described in section II. Unless I/O-mapped interrupts are
selected, the NX/I0l firmware will not normally generate I/O operations on the
Multibus. User software on the EXOS/lOl can use I/O instructions to control
other peripheral cards.

4.1. Host Data Order Conversion Option

The host data order conversion option determines whether the EXOS/IOl will
interpret data read from host memory according to its own native ordering, or
according to the host CPU's native ordering. This option is selected by a
field in the configuration message (see section 4.4.5). If enabled, then the
NX/lOl inspects a known data pattern in the configuration message, written in
the host CPU's native order. It determines what conversions are necessary to
make this pattern appear in the order it expects, for several different data
types: byte array, word array, and longword. NX/I0l will then apply the
appropriate conversion to all data objects subsequently read from host memory.

For the byte array data type, NX/lOI knows how to convert data stored accord­
ing to the SUN design's byte addressing idiosyncrasies. This means that it
will invert the least significant address bit when addressing host system
memory, to reverse the effects of common 68000 CPU board designs. For the
word data type, NX/I01 can swap bytes if necessary. For the longword data
type, NX/lOl can swap words, swap bytes, or both. Therefore I/O driver
software for any reasonably normal host CPU can store data objects in its
native order, and leave conversion up to the EXOS/lOl.

Naturally, the EXOS/lOl must know the type of a data object to apply the
appropriate conversion. All data objects described in this section are known
to NX/lOl, except for the actual contents of messages between the host and the
EXOS/lOl. NX/lOl does apply the byte array conversion (if necessary) to

- 18 -

EXOS/IOI: Initialization and Rost Interface

message contents, and to all data transferred. How the contents of messages
should be further interpreted is the function of user-level software running
on the EXOS/IOl. For instance, the firmware which drives the Link Level Con­
troller Mode (see section 5) runs at user level under RX/IOI, and converts
word and longword data objects which are known to itself, but not to HI/IOI.
NI/lOI assists this process by providing kernel calls (see section 8.4) which
convert word and longword data types as required by the host data order
conversion option.

Whether or not the host data order conversion option is enabled, the host sys­
tem must still write the required data pattern in the configuration message.
This pattern occupies 12 bytes of the 32-byte test pattern/memory map field
(see section 4.4.10). It should be initialized as shown in figure 4-1. Note
that while the relative position of subfields in the test pattern is speci­
fied, the order of bytes within those subfields is dependent on the host CPU
architecture. Figure 4-2 shows how this pattern might be initialized in the C
language, both statically and dynamically.

Length Offset

1)

2)

3)

4)

5)

6)

1

1

1

1

2

2

7) 4

8) 20

o

1

2

3

4

6

8

12

Sub-Field Name Value

Byte 0 1 OlR
--------------------------------1

Byte 1 1 03B
--------------------------------1

Byte 2 07B

Byte 3

Word 0

Word 1

I Longword
1
I
I
1--------------------------------
: Reserved

1<------------1 byte------------>1

OFH

0103R

070FH

0103070FB

zero

Figure !-~: Host Data Order Conversion Option Test Pattern

Note that memory addresses, regardless of the host address mode, are stored
and interpreted as the longword data type. For instance, the longword test
pattern can also be regarded as a memory address in the host's native format

- 19 -

KAU5/lUl: Initialization and Host Interface

for the absolute address Ol03070FR (if absolute address mode is selected) or
for segment 070FR, offset Ol03H (if segmented mode is selected).

If n/lOl cannot make any sense of the test pattern presented by the host,
then initialization is aborted, and the appropriate error code displayed on
the status LED.

1* constants for test pattern *1
#define BYTEO OxOI
#define BYTEI Ox03
#define BYTE2 Ox07
#define BYTE3 OxOF
#define WORDO OxOl03
#define WORDI Ox070F
#define DWORD OxOl03070F

1* static initialization of test pattern *1
struct tstptrn {

char byteptrn[4];
short wordptrn[2];
long lwordptrn;
char rsrvd[20];

struct tstptrn tp - {
BYTEO, BYTEI, BYTE2, BYTE3,
WORDO, WORD I ,
DWORD,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

1* dynamic initialization of test pattern */
initptrn 0
{

}

register int i;
tp.byteptrn[O] = BYTEOj
tp.byteptrn[l] = BYTEI;
tp.byteptrn[2] - BYTE2;
tp.byteptrn[3] - BYTE3;
tp.wordptrn[O] - WORDO;
tp.wordptrn[l] - WORDl;
tp.lwordptrn = DWORDj
for (i-O; i<20; i++) tp.rsrvd[i] = 0;

Figure 4-2: Host Data Format ~ Pattern Initialization

4.1. Reset and Configuration Procedure

This section describes initialization by a host system up to the completion of
configuration. Figure 4-3 shows a typical procedure which implements as much.

- 20 -

EXOS/IOl: Initialization and Host Interface

The EXOS/IOI is reset by the Multibus INIT signal, or whenever port A is read
from the Multibus. Bost 80ftware 8hould use the latter method to be sure. On
reset the EXOS/IOI performs a series of 8elf tests to confirm hardware
integrity. While these tests run, the HI/IOI status LED (see section 11) will
remain lit constantly. When self-diagnostics complete 8uccessfully, the
EXOS/IOI sets the error bit in I/O port B and flashes the status LED at regu­
lar intervals.

If the error bit is not set within 2 .econds of reset, the host .. y assume
that self-diagnostics turned up a problem. In this case, the EXOS/IOI repeat­
edly reports an error code through the HI/IOI status LED (for error code
values, see section 11). The EXOS/lOl will remain in this .tate until reset
again.

A jumper option, described in .ection 11, determines how initialization will
proceed after reset and self-diagnostics. If the jumper selects network
bootstrap, then the EXOS/IOI will attempt to down-load software over the Eth­
ernet (see section 10). Otherwise the EXOS/lOI awaits configuration by the
host processor.

The host configures the EXOS/lOl by passing it the address of a configuration
message, located in shared memory. This message establishes various HI/IOl
parameters and selects among several modes of operation. Parameters include
memory allocation for HI/IOI objects, the address of HI/IOI's movable data
area in EXOS/I0l memory, and the location of message queues in shared memory.
Among the optional operation modes, the host can select network bootstrap.
This will proceed as though the net boot jumper option had been installed,
except that NX/IOI will first note the contents of the host configuration mes­
sage. Other configuration options include host data order conversion and the
host address mode.

The host processor communicates the address of the configuration message to
the EXOS/IOI by writing a sequence of 8 bytes into port B. Each byte should
be written after checking that the ready bit of the EXOS/IOl's port B is
clear. This ensures that the EXOS/I01 is ready to accept the next address
byte. The first four bytes of the sequence must be Fl-FF-OO-OO (sent from
left to right). The next four bytes are the configuration message's absolute
Multibus memory address (least significant byte first). The configuration
message must be aligned on a even address boundary. When the last byte is
written, the EXOS/lOl reads and interprets the configuration message. If the
address for the initialization message is not valid, then the EXOS/IOl will
display an error code on the status LED (see section 11).

When the EXOS/lOl has finished processing the configuration message, it writes
a completion code into the appropriate field of the message. Any value other
than OFFR indicates completion; the value 0 indicates successful configura­
tion. Other values denote specific errors in configuration (see section
4.4.3). Normally, configuration should complete within 2 seconds, but network
bootstrap might take longer, depending on circumstance. NX/I01 also returns a
few parameters to the host in the configuration message, notably its version
number and a map of available memory.

Once configuration is complete, the memory space occupied by the configuration
message can be used for any other purpose. After configuration, communication

- 21 -

&KOS/lOl: Initialization and Host Interface

extern read-POrt(Port_Hum) /* returns value read from port Port_Hum */
extern write-port(Port_Num, Val) /* writes Val to port Port~Num */
extern start_clock() /* starts an interval timer */
extern clock() /* returns the current value of the interval timer */

/* bit value definitions for status byte read from port B */
#define ERROR_BIT 1
#define READY_BIT 8
#define ERRNON 0

struct { /* configuration message */
short reserved;
char version[4];
char comp_code;

<etc ••• >

char init addrs[S] - {OxFF, OxFF, 0, 0, <absolute address of init msg> };
/* see se~tion 3.9 for absolute address format */

initialize () {

}

< set up init_msg and the message queues (see section 4.6) >;

read-port(A); /* reset the EXOS/lOl */

start_clock(); /* start timer, clock counts real time */

/* wait until self test completes */
while «read-port(B) & ERROR_BIT) -= 0) {

if (clock() > 2_SBCONDS) {
return (malfunctionin&-board);

}
}

/* write the configuration message address */
for (i~O; i<S; i++) {

}

while «read-port(B) & READY_BIT) == 1);
write-port(B,init_addrs[i);

/* wait for the reply message */
while (init_msg.comp_code -- OxFF);

/* ensure no errors */
if (init_msg.comp_code 1- BRRNON)

return (error);
else

return (success);

Figure !-l: Typical Reset and Configuration Procedure

- 22 -

EXOS/IOI: Initialization and Host Interface

between the host and the EXOS/lOI is carried out Bolely by means of message
queues, described in section 4.5.

4.4. Configuration Message Format

Figure 4-4 shows the format of the configuration request/reply Beslage. This
is used identically by either a host system or a network bootstrap server.
The following paragraphs explain the individual fields in detail. Rote that
reply values other than the completion code field itself are defined only if
configuration is successful.

4.4.1. Reserved Field

The first field is reserved for use by NI/IOl. Its value in the request mes­
sage must be I, and its return value is undefined.

4.4.1. EXOS Version Code Field

The EXOS version code field is undefined in the request message. In the reply
message, it returns version codes for NI/IOI and the EXOS/lOI in the form X.Y
and A.B, respectively. These are expressed as ASCII digits, one per byte in
the order X-Y-A-B, starting from the lower address.

4.4.1. Configuration Completion Code Field

The completion code field must be OFFH in the request message. The EXOS/lOI
aignals that configuration is complete, and returns the completion code, by
writing one of the following codes into this field:

OOH successful completion.

A4H invalid operation mode.

ASH invalid host data format test pattern. This occurs when NX/IOI can­
not find any reasonable conversion to derive the expected data pat­
tern from that supplied in the test pattern. In practice, this
might imply that the host has given the EXOS/lOl the wrong address
for the configuration message.

A7Hinvalid configuration message format. This may occur if reserved
fields contain an improper value. In practice, this error message
may indicate that the host has given the EXOS/IOl the wrong address
for the configuration message.

ASH invalid movable block address.

A9H invalid number of processes.

AAH invalid number of mailboxes.

ABH invalid number of address slots.

- 23 -

EXOS/I0l: Initialization and Bost Interface

Length Offset

1) 2

2) 4

3) 1

4) 1

5) 2

6) 3

7) 1

8) 1

9) 1

10) 32

11) 4

12) 1

13) 1

14) 1

15) 1

o

2

6

7

8

10

13

14

15

16

48

52

53

54

55

Field ~ Request Reply

--------, --------------------------
1 Reserved 1 undefined
1 1
1--------------------------------1
1 EXOS Version Code 1 undefined see text
1 1
1 1
1 1
1--------------------------------1 1 Configuration Completion Code 1 OFFB see text
1--------------------------------1
f EXOS Operation Mode 1 see text preserved
1--------------------------------1
I Bost Data Format Option 1 see text see text
1 1
1--------------------------------1
/ Reserved 1 zero undefined
1 1
1 1
1--------------------------------1
1 Bost Address Mode 1 see text see text
1--------------------------------1
I Reserved 1 zero undefined
1--------------------------------1 I Memory Map Size 1 zero see text
1--------------------------------1

Test Pattern/Memory Map see text see text

--------------------------------1
NX Movable Block Address 1 see text see text

1
1
1

--------------------------------1
Number of Processes 1 see text see text

--------------------------------1
Humber of Mailboxes 1 see text see text

--------------------------------1
1 Humber of Multicast Slots 1 see text see text

1--------------------------------/
/ Humber of Bosts / see text preserved
1--------------------------------1
continued on next page ••••

Figure !-4: Configuration Request/Reply Message

- 24 -

EXOS/I0l: Initialization and Host Interface

Length Offset Field Name Request Reply

•••• continued from previous page

1--------------------------------16) 4 56 1 Host-to-EXOS Message Queue see text preserved
1 Base Address
1
1
1--------------------------------

17) 2 60 1 Host-to-EXOS Message Queue see text preserved
1 Header Address
1--------------------------------

18) 1 62 1 Host-to-EXOS HQ Interrupt Type see text preserved
1--------------------------------

19) 1 63 t Host-to-EXOS MQ Int. Value
1--------------------------------

see text preserved

20) 4 64 1 Host-to-EXOS Message Queue see text preserved
I Interrupt Address
I
1
1- --------------------------

21) 4 68 1 EXOS-to-Host Message Queue see text preserved
I Base Address
I
1
1--------------------------------

22) 2 72 I EXOS-to-Host Message Queue see text preserved
1 Header Address
1-------------------------------

23) 1 74 1 EXOS-to-Host MQ Interrupt Type see text preserved
1--------------------------------

24) 1 75 1 EXOS-to-Host MQ Int. Value see text preserved
1--------------------------------

25) 4 76 EXOS-to-Host Message Queue see text preserved
Interrupt Address

1<------------1 byte------------>1

Figure !-4a: Configuration Request/Reply Message (continued)

ACH invalid number of hosts.

ADH invalid host message queue parameter. NX/lOl returns this error if
it detects any inconsistency in the message queue specifications.
This might include a bad interrupt type, invalid segment address,
bad linking of the message queue buffers, etc.

- 25 -

EXOS/lOl: Initialization and Host Interface

ARH insufficient memory for movable data block.

AFR net boot failed.

The codes defined above will also be displayed on the status LED if configura­
tion is not successful.

4.4.4. EXOS/lOl Operation Mode Field

The EXOS/lOl operation mode field determines the mode in which the EXOS/lOl is
to be used. Three different modes are supported:

o Link Level Controller Mode. This mode brings the Ethernet Data Link
interface out to the host interface. No software is down-loaded.
It would typically be used when the EXOS/lOl is substituted for the
traditional non-programmable Ethernet controller board. For
details. see section 5.

1 Front-End Mode, down-load from the host. In this mode the EXOS/lOl
is used as a front-end processor. Higher level software is down­
loaded by the host.

2 Front-End Mode. down-load from the net. In this mode the EXOS/lOl
is used as a front-end processor and higher level software is down­
loaded from the network. For details. see section 10.

All other values for the mode are reserved and their effects are not defined.
If the EXOS/lOl is already in the process of network bootstrap (meaning that
the configuration message has been received from a bootstrap server) then only
mode 2 is permitted.

!.4.1. Host Data Order Option Field

The host data order option field enables the host data order conversion option
(see section 4.2). Because the byte order of the host CPU will not be known
before initialization. this field is actually treated as two one-byte fields.
The host should load the same value into each sub-field in the request mes­
sage. This value is defined bitwise:

Bit 0: Deduce Format Bit. If 0, NX/lOl will apply the conversions
currently in force. If the board has not been previously con­
figured, then the default conversion will be in force, De an ing
that no format conversions are applied to data read from the
host. If this bit is I, then NX/lOl examines a constant data
pattern written by the host in the configuration message's test
pattern/memory map field, and deduces what format conversion
are necessary to interpret various data types stored in the
host CPU's native format.

Bits 1-7: Reserved. These bits must be 0 in the request message.

When initialized, NX/lOl examines this field first, and interprets all other
fields in the configuration message accordingly. This field is undefined in
the reply message.

- 26 -

EXOS/lOl: Initialization and Host Interface

4.4.1. Reserved Field

This field is reserved for future use. Its value in the request message must
be all zeros. Its value in the reply message is undefined.

4.4.1. Host Address Mode Field

The host address mode field determines how NX/lOl will interpret addresses
which refer to objects in host memory. It is defined bitwise:

Bit 0:

Bit I:

Set Mode Bit. If 0, NX/IOI will use the address mode currently
in force. If the board has not been previously configured,
then the default mode will be in force, meaning that RX/lOl
will interpret all addresses as 8086-style segmented addresses.
If this bit is 1, then the next bit determines the new address
mode.

Address Mode Bit. The value 0 selects segmented address mode.
The value 1 selects absolute address mode.

Bits 2-7: Reserved. These bits must be zero in the request message.

This field is undefined in the reply message.

4.!.!. Reserved Field

This field is reserved for future use. Its value in the request message must
be O. Its value in the reply message is undefined.

4.!.1. Memory Map Size Field

The memory map size field must be 0 in the request message. In the reply mes­
sage, it returns the number of segments available in EXOS/lOl memory for user
software. This field contains a valid value only if the EXOS/lOl is config­
ured in mode I or mode 2.

4.! • .!Q.. Test Pattern/Memory Map Field

The test pattern/memory map field serves different purposes in the request and
reply messages. In the request message, it must contain the test pattern
described in section 4.2, stored in the host CPU's native format.

In the reply message, the test pattern/memory map field contains a map of
memory available for user software on the EXOS/IOl. This map consists of up
to 4 segment descriptors, where the actual number is indicated by the last
field. Each segment descriptor specifies a memory segment in terms of the
lowest address and the highest address included within the segment. Each
address is four bytes long, in the segmented format. The lower bound is given
first, then the upper bound. This field contains a valid value only if the
EXOS/lOl is configured in mode I or mode 2. If the optional 64K of RAM
between 10000H and IFFFFR is either absent or is malfunctioning, then the map
will not contain this segment.

- 27 -

EXOS/10l: Initialization and Bost Interface

4.4.11. ~/lOl Movable Block Address Field

The NX/lOl movable block address field can be used to redefine the location of
IX/10l's movable data area, described in section 6.2. If the EXOS/lOl is con­
figured in mode 0, this field must be OFFFFH, OFFFFH. In modes 1 or 2, the
value OFFFFH, OFFFFH specifies that the default location be used. If a non­
default address is specified, the segment base must be O. The offset must
place the entire block either between 200B and 3FFH, or between 1000B and
OFFFFH.

In the reply message, this field returns the actual address of the NX/lOl mov­
able data area. The reply value is not defined in mode O.

4.!.1!. Number of Processes Field

The number of processes field configures the maximum number of processes which
NX/lOl will support. If the EXOS/lOl is configured in mode 0, this field must
be OFFH. In modes 1 or 2, the value OFFH specifies that the current value be
used. The default value, after reset, is 12. Optionally, a value between 1
and 128 can be specified. In the reply message, this field returns the actual
number of processes which NX/I01 will support. The reply value is not defined
in mode O.

4.4.~. Number of Mailboxes Field

The number of mailboxes field configures the maximum number of mailboxes which
NX/lOl will support. Note that this number does not include system mailboxes.
If the EXOS/I0l is configured in mode 0, this field must be OFFH. In modes 1
or 2, the value OFFH specifies that the current value be used. The default
value, after reset, is 16. Optionally, a value between 1 and 128 can be
specified. In the reply message, this field returns the actual number of
mailboxes which NX/I0l will support. The reply value is not defined in mode
O.

4.4.14. Number of Multicast Slots Field

The number of multicast slots field configures the maximum number of multicast
address slots which NX/I0l will support. Note that this number does not
include the physical, broadcast, universal, or null slots, which are per­
manently allocated. If the EXOS/I01 is configured in mode 0, this field must
be OFFH. In modes 1 or 2, the value OFFH specifies that the current value be
used. The default value, after reset, is 8. Optionally, a value between 0
and 252 can be specified. In the reply message, this field returns the actual
number of address slots which NX/I01 will support. The reply value is not
defined in mode O.

4.4.]2. Number of Hosts Field

The number of hosts field specifies the number of host CPUs on the Multibus
interface. Permissible values depend on the mode of operation. In all modes,
the value OFFH will retain the value currently in force. Upon first confi­
guration, the default value is 1. In operation modes 0 and 1, only the value
1 may otherwise be specified. However in mode 2 (network bootstrap), this
field can be either 0 or 1. If 0, then the host message queues are undefined

- 28 -

EXOS/10l: Initialization and Host Interface

and the configuration DeS sage fields pertaining to them will not be examined.
Its value is preserved in the reply message.

4.4.~. Host-~-EXOS Hessage Queue Base Address Field

The bost-to-EXOS message queue base address field specifies the base address
of the shared memory which contains the queue data structure. for transferring
messages from the host to the EXOS/10l (see section 4.5). Addresses for all
message queue data structures are l6-bit offsets, calculated relative to this
base. NX/10l's interpretation of this base address depends on the host
address mode selected (see sections 3.9 and 4.4.7).

In segmented mode, this field must contain an 8086-style segmented address,
stored according to the convention described for the longword data type
(lower-order 16 bits contain the offset, higher-order 16 bits contain the seg­
ment). The offset value of this address must be 0; therefore the segment
begins on some even l6-byte address boundary. Note that this format is suffi­
cient only to describe a 20-bit address, or 1 Hbyte of host memory.

In absolute mode this field contains a 24-bit absolute memory address, also
stored as a longword. The lower-order 24 bits contain the address; the
remaining high-order 8 bits are reserved and must be O. Furthermore, the
lower-order 4 bits of the address must also be 0, so that the segment begins
on some even l6-byte address boundary. This format can describe 16 Hbytes of
host memory.

This field's value is preserved in the reply message.

4.4.12. Host-to-~ Message Queue Header Address Field

The host-to-EXOS message queue header address field specifies the offset of
the queue header. This offset must be calculated relative to the base address
specified for the host-to-EXOS message queue. Its value in the reply message
is preserved.

4.4.]&. Host-~-EXOS Message Queue Interrupt ~ Field

The host-to-EXOS message queue interrupt type field specifies the type of
interrupt which the !KOS/10l will use to alert the host of a change in the
status of the Host-to-EXOS/10l message queue. Options are:

o no interrupt. The host polls the message queues.

1 I/O mapped. The !KOS/lOl writes a specified value at the specified
I/O port address.

2 memory mapped. The EXOS/lOl writes a specified value at the speci­
fied memory address.

3 level interrupt. The EXOS/101 raises one of the Hultibus interrupt
lines. The line is selectable by jumpers described in section 11.
Note that the interrupt remains asserted until the host explicitly
clears it, by writing to the !KOS/10l's port A (see section 4.1).

- 29 -

EXOS/IOl: Initialization and Host Interface

If interrupt type 3 is selected, then the EXOS/IOI will set the interrupt bit,
readable from port B, whenever it asserts a level interrupt. This bit is not
defined when other interrupt types are selected.

The value of this field is preserved in the reply Dessage.

4.4.11. Bost-~-~ Message Queue Interrupt Value Field

The host-to-EXOS message queue interrupt value field is defined only for I/O
mapped or memory mapped interrupt types. If these interrupt types are
selected, then this value will be written to the specified I/O port or memory
address when ·an interrupt is asserted. The value of this field is preserved
in the reply message.

4.4.20. Host-to-~ Message Queue Interrupt Address Field

The host-to-EXOS message queue interrupt address field is defined only for I/O
mapped or memory mapped interrupt types. If interrupt type I is selected,
then it contains an 8 or 16-bit Multibus I/O port address in the first word,
and the remaining word is undefined. If interrupt type 2 is selected, then it
contains a Multibus memory address, which NX/IOI will interpret according to
the host address mode. The value of this field is preserved in the reply mes­
sage.

4.4.~. EXOS-~-Host Message Queue Base Address Field

The EXOS-to-host message queue base address field specifies the base address
of the shared memory which contains the queue data structures for transferring
messages from the EXOS/I01 to the host (see section 4.5). This is exactly
equivalent to the host-to-EXOS message queue base address field (see section
4.4.16). Its value in the reply message is preserved.

4.4.22. I!Q!-~-~ Message Queue Header Address Field

The EXOS-to-host message queue header address field specifies the offset of
the queue header. This offset must be calculated relative to the base address
specified for the EXOS-to-host message queue. Its value in the reply message
is preserved.

4.4.23. EXOS-~-Host Message Queue Interrupt ~ Field

The EXOS-to-host message queue interrupt type field specifies the type of
interrupt which the EXOS/IOI will use to alert the host of a change in the
status of the EXOS/IOl-to-host message queue. Options are:

o no interrupt. The host polls the message queues.

I I/O mapped. The EXOS/lOl writes a specified value at the specified
I/O port address.

2 memory mapped. The EXOS/101 writes a specified value at the speci­
fied memory address.

- 30 -

EXOS/IOI: Initialization and Bost Interface

3 level interrupt. The EXOS/IOl raises one of the Multibus interrupts
lines. The line is selectable by jumpers described in section 11.
Bote that the interrupt remains asserted until the host explicitly
clears it, by writing to the EXOS/lOl's port A (see section 4.1).

If interrupt type 3 is selected, then the EXOS/lOl will set the interrupt bit,
readable from port B, whenever it asserts a level interrupt. This bit is not
defined when other interrupt types are selected. The value of this field is
preserved in the reply Dessage.

4.4.24. ~-~-Bost Message Queue Interrupt Value Field

The EXOS-to-host message queue interrupt value field is defined only for I/O
mapped or memory mapped interrupt types. If these interrupt types are
selected, then this value will be written to the specified I/O port or memory
address when an interrupt is asserted. The value of this field is preserved
in the reply message.

4.4.11. l!Qi-to-Bost Message Queue Interrupt Address Field

The EXOS-to-host message queue interrupt address field is defined only for I/O
mapped or memory mapped interrupt types. If interrupt type 1 is selected,
then it contains an 8 or 16-bit Multibus I/O port address in the first word,
and the remaining word is undefined. If interrupt type 2 is selected, then it
contains a Multibus memory address, which RX/lOI will interpret according to
the host address mode. The value of this field is preserved in the reply mes­
sage.

4.1. Message Queue Format

Once the EXOS/lOI is configured, message queues in shared memory serve all
further communications with the host. This includes software down-load,
packet exchange, and link level controller functions. Two message queues are
maintained by the NX/lOI firmware, one for each direction of transfer. This
section describes the format of the data structures which compose a message
queue. Following sections describe how these must be initialized, and then
the protocol which ensues after configuration.

Eacb message queue necessarily includes one queue header and a singly-linked,
circular list of DeS sage buffers. The required queue header belongs to the
EXOS/lOl; typically the bost will maintain its own, separate queue header for
eacb queue. The EXOS/lOI queue header and all message buffers must lie within
a single 64K area of memory, called the queue segment. Furthermore, each
queue must lie entirely within the half-Mbyte mapping boundaries described in
section 3.10.

Message queue data structures are described here as viewed by NX/IOI. The
configuration message provides NX/!Ol with the queue segment base and the
offset address of the queue header, for each queue. NX/lOI regards all
address fields in the queue data structures as 16-bit offsets calculated rela­
tive to the queue segment base. As long as this view is preserved for RI/IOI,
users are perfectly free to augment tbese data structures in any manner neces­
sary to ~plement the desired abstractions for the bost software.

- 31 -

EXOS/101: Initialization and Host Interface

Figure 4-5 shows the format of a message buffer, and the following paragraphs
describe the individual fields in detail.

Length Offset Field Name

1) 2 0 Link 1
1

--------------------------------1
2) 1 2 Reserved 1

--------------------------------1
3) 1 3 Status 1

--------------------------------1
4) 2 4 Length 1

1
--------------------------------1

5) n 6 Data

1<------------1 byte------------>/

Figure !-1: Message Buffer Format

4.1 • .1. Link Field

The link field is the address of the next buffer in the circular queue. This
address must be an offset calculated relative to the queue segment base speci­
fied in the configuration message. This field is static and should not be
changed after configuration.

4.1.1. Reserved Field

This field is reserved. It must be initialized with the value O.

4.1.1. Status Field

The status field is used to implement the message protocol, and is defined bit
by bit:

Bit 0:

Bit 1:

Owner bit. If 0 then the buffer is owned by the host; if 1
then the buffer is owned by the EXOS/lOl. The host may alter a
message buffer only while it has ownership.

Done bit. The EXOS/101 sets this to 0 along with the owner bit
every time it passes a buffer to the host. Bost software can
use the done bit to distinguish between buffers newly received
from the EXOS/101 and buffers it has already processed.

- 32 -

Bit 2:

EXOS/IOI: Initialization and Bost Interface

Overflow Bit. The EXOS/lOl sets this bit to 1 if the message
had to be truncated because the host receive buffer was shorter
than the message sent.

Bits 3-7: undefined. These bits are reserved for the EXOS/IOl, and
should not be used for any purpose by the host.

4.1.4. Length Field

The length field specifies the number of bytes in the data field. The maximum
length of the data field is a matter of agreement between the host and the
user software on the EXOS/lOl. There is no restriction on the size of the
data field as long as the buffers satisfy the queue segment constraints. Most
applications will transfer small amounts of control information via messages,
and use direct memory access to move larger data buffers.

4.1.1. Data Field

The data field contains the actual message data passed between the host and
the EXOS/IOl. NX/IOI does not interpret its contents in any way - it is
exactly equivalent to the data field in messages as seen by processes on the
EXOS/lOl (see section 8). However, if the host data order conversion option
is enabled, and SUN-style address bit inversion is required, this conversion
will be applied to the contents of the data field.

4.1. Message Queue Initialization

The host must initialize the message queues and the queue headers prior to
configuring the EXOS/IOl. Figure 4-6 shows the relation between queue headers
and message queue buffers at initialization time for a typical implementation.
In each queue, the host and &lOS/lOl queue headers should point to the same
buffer.

For each queue, the link fields should be initialized to form a circular,
singly-linked list. This ring structure should not be modified after confi­
guration. Each queue may contain an arbitrary number of buffers, so long as
at least one is supplied. The reserved field of all message buffers in both
queues should be set to O.

In the host-to-EXOS queue the status field of all buffers should contain the
value 02B, which indicates that they are owned by the host. The length and
data fields are not defined at initialization.

In the EXOS-to-host queue the status field of all buffers should contain the
value 03B, which indicates that they are owned by the EXOS/lOI. The length
field of each buffer should not exceed the size of the data buffer. Note that
the length field must be initialized to accommodate the length of the largest
message expected from the EXOS/IOl, or the message will be truncated upon
reception. The data field is not defined at initialization.

Figure 4-7 is a snapshot of an example EXOS-to-host message buffer queue at
the time of initialization. This example assumes an 8086-based host system,
where the EXOS/IOI is configured in the segmented host address mode. The con­
figuration message describing the queue is also shown in part. Data

- 33 -

EXOS/lOl: Initialization and Host Interface

HOST-TO-EXOS MESSAGE QUEUE

D
~OST ~ EXOS/lOl
Q HEADER ,MESSAGE I Q HEADER

BUFFER

~
,MESSAGE
BUFFER

~
MESSAGE

'BUFFER

EXOS-TO-HOST MESSAGE QUEUE

EXOS/lOl ~~OST
Q HEADER IMESSAGE I Q HEADER

BUFFER

I I

h
I MESSAGE
BUFFER

I

h
IMESSAGE
BUFFER

I

Figure 4-i: Message Queue Data Structures At Initialization Time

structures are shown as vectors containing hexadecimal byte values. The Mul­
tibus physical address of each data structure is shown to the left (slightly
above the location), and its name to the right. According to the configura­
tion message in this example, writing the value 40H at memory location OE2044H
will interrupt the host. HI/lOl will assert this interrupt when the status of
the EXOS-to-host message queue changes, as described in the following section.
The circular message queue shown here contains three buffers of equal length,
each providing a 32-byte data field. The queue header points to one of the
buffers, arbitrarily chosen, at its link field address.

4.1. Message Queue Protocol

This section describes the protocol which NX/lOl follows in sending messages
to, and rece1v1ng messages from, the host processor. As it happens, host
software can follow the same procedure, so that the exchange is symmetrically
defined. The description below assumes such an implementation, but certainly
other methods are possible, within the constraints of NX/lOl's behavior.

In a typical implementation, the host system and the EXOS/lOl each maintain
private queue headers for both queues. The EXOS/lOl's host-to-EXOS message
queue's header points to the message buffer which NX/lOl will receive next.
The EXOS/lOl's EXOS-to-h08t message queue's header points to the message
buffer which NX/lOl will send to next. NX/lOl maintains these queue headers
after configuration. Although the EXOS/lOl queue headers are kept in host

- 34 -

EXOS/I0l: Initialization and Host Interface

EOOOOR .r---.... , Configuration
1 Hessage

Queue Base Address E0044R
OOR
OOB
OOR
FOR

FOOOOH I •
E0048R

E004AH

E004BH

E004CR

D2H
14R

Queue Reader Address F14D2R [J[J
------------------~.~ D2R
Interrupt Type ~ 15R

02R

40R

44R
20R
OOB
EOB

E2044R

Interrupt Value ~
Interrupt Address

Hemory-mapped
Interrupt
Location

F15D4R

F15D5R

F15D6H

FI5D8R

F15F8R

F16D2H

F16D4R

F16D5H

F16D6H

F16D8B .

F16F8B

F17D2R

F17D4H

F17D5B

F17D6H

I ,

•
I

F17D8B

F17F8H I

D2R
16R

OOB

03R

20B
OOH

D2B
17R

OOR

03H

20R
OOB

D2B
15B

OOH

03B

20B
OOR

• •

• J

Oueue Segment
Base

Queue Header

L1Dk F1eld

-
Reserved Field

Status Field

Length Field

Data Field

Link Field

Reserved Field

Status Field

Length Field

Data Field

Link Field

Reserved Field

Status Field

Length Field

Data Field

Figure !-l: Example !!Q!-~-!2!! Hessage Queue, At Initialization

- 35 -

EXOS/I01: Initialization and Host Interface

memory, after initialization the host should not refer to these.
the EXOS/lOl will not refer to the host's own queue headers.

Similarly,

For the host-to-EXOS queue, the host's queue header should always point to the
next buffer in which the host will send a message. The EXOS/I01's queue
header will always point to the next buffer in which the EXOS/lOl will look
for a message. Both pointers will always move sequentially through the mes­
sage queue. During the course of message processing, the host's queue header
may end up several buffers ahead of the EXOS/I01's queue header, but should
never "lap" it from behind. Auy difference between the headers represents
buffers which the EXOS/lOl has not yet consumed.

For the EXOS-to-host queue, the host's queue header should always point to the
next buffer in which the host will look for a message. The EXOS/I01's queue
header will always point to the next buffer in which the EXOS/lOl will send a
message. As above, both pointers will always move sequentially through the
message queue. During the course of message processing, the EXOS/IOI's queue
header may end up several buffers ahead of the host's queue header, but again,
should never "lap" it from behind. Auy difference between the headers
represents buffers which the host has not yet consumed.

4.1..1.. Host-to-EXOS Message Transfer

Host software can use the following sequence of steps to transfer messages to
the EXOS/I01:

1) Test the owner bit of the buffer to which the host queue header
points. If the EXOS/lOl still owns this buffer, then wait until it
is returned (either poll the owner bit, or wait for the interrupt
which accompanies each buffer turnover event).

2) Load the link field of the current buffer into the queue header, so
that it now points to the next buffer in the queue.

3) Load the message into the data field of the current buffer, and set
the length field appropriately.

4) Change the current buffer's owner bit, so that the buffer now
belongs to the EXOS/lOl.

5) Interrupt the EXOS/lOl by writing to port B, to notify it that a new
message is available.

The EXOS/lOl can process more than one message from the host upon receiving a
single interrupt. Therefore it is important that the host change the buffer's
owner bit only after preparing the other fields. Otherwise, if the EXOS/lOl
is still processing a previous interrupt from the host, it may consume a
half-baked message. Note that the host may prepare more than one message
buffer at a time, and send a single interrupt, if sufficient buffers are
available.

When the EXOS/lOl receives an interrupt from the host, it will:

- 36 -

EXOS/IOI: Initialization and Host Interface

1) Examine the owner bit of the buffer to which the EXOS/IOI queue
header points. If the buffer belongs to the EXOS/IOI, then it will
process it, as described in the following steps. (Otherwise, the
interrupt could mean that the host is returning an EXOS-to-host mes­
sage buffer, or could be spurious.)

2) Load the link field of the current buffer into the queue header, so
that it now points to the next buffer in the queue.

3) Extract the message from the current buffer. If there is no consu­
mer for this data (no receive request on the NX/IOI's host interface
mailbox), then wait.

4) Turn over the current buffer's owner bit, so that the buffer is
returned to the host. Set the buffer's done bit to O.

5) Interrupt the host to notify it that a buffer has been returned.
The type of interrupt is specified by the configuration message.
Repeat from step 1, until the owner bit shows that no new messages
are pending.

Note that the interrupt described in step 5 is the same interrupt which the
host waits upon when no message buffers are available.

4.1.1. ~-~-~ Message Transfer

When the EXOS/I0I has a message to transfer to the host, NX/IOI will:

1) Test the owner bit of the buffer to which the EXOS/IOI queue header
points. If the buffer belongs to the EXOS/IOI, then process it, as
described in the following steps. Otherwise, wait for an interrupt
from the host which indicates that a buffer has been returned
(NX/iOl can process other jobs in the mean time).

2) Load the link field of the current buffer into the queue header, so
that it now points to the next buffer in the queue.

3) Load the message into the data field of the current buffer, and set
the length field appropriately.

4) Change the current buffer's owner bit, so that the buffer now
belongs to the host. Set the buffer's done bit to O.

5) Interrupt the host to notify it that a new message is available.
The type of interrupt is specified by the configuration message.

When the host receives an interrupt from the EXOS/IOl, it can:

1) Examine the owner bit of the buffer to which the host queue header
points. If the buffer belongs to the host, then it should process
it, as described in the following steps. (Otherwise, the interrupt
could mean that the EXOS/IOI is returning a host-to-EXOS message
buffer, or could be spurious.)

- 37 -

EXOS/lOl: Initialization and Host Interface

2) Load the link field of the current buffer into the queue header, so
that it now points to the next buffer in the queue.

3) Bxtract the message from the current buffer. If there is no consu­
mer for this data, then wait.

4) Turn over the current buffer's owner bit, so that the buffer is
returned to the EXOS/I0l.

5) Interrupt the EXOS/lOI by writing to port B, to notify it that a
message buffer has been returned. Repeat from step 1, until the
owner bit shows that no new messages are pending.

Note that whenever the host receives a non bus-vectored interrupt from the
EXOS/lOI, it should write to the EXOS/lOl's port A before processing any mes­
sage queue events. This causes the BXOS/lOl to drop its interrupt line, per­
mitting the host to recognize another interrupt. During the host's interrupt
service routine, it is assumed that further interrupts from the BXOS/lOI are
disabled, but that the host's interrupt controller will still buffer one
interrupt from the BXOS/lOl until leaving the service routine and re-enabling
interrupts at that level.

The BXOS/lOI will assert an interrupt whether or not the host has cleared its
interrupt line - therefore interrupts may merge together, so far as the host
can tell. This is why the host should be prepared, whenever it receives an
interrupt, to process multiple messages and/or buffers returned by the
EXOS/lOl. Furthermore, the host should be prepared to receive a spurious
interrupt from the BXOS/I0l.

Although the above description assumes that the BXOS/I0l is programmed to
interrupt the host to signal message queue events, the host also has the
option of simply polling the message queue.

4.!. R2lm.-Loading Software from the Host

Normally, if the EXOS/lOl is configured in mode 1, host software would then
down-load and run higher level protocol software. Two message formats are
provided for this purpose, one to copy user code and data to the EXOS/I01, and
another to start code execution. For each message the EXOS/IOI sends a
corresponding reply message which confirms the completion of the request.

4.! • .!. ~ Down-Load Request

The host can copy code to any location in BXOS/lOl memory which is normally
available to the user. The down-load request copies buffers up to 64K-I each
in size, in any order, without modification. NI/lOl does not protect the user
area against un-intentional overlays. Figure 4-8 shows the format of the
down-load request/reply Dessage, and the following paragraphs describe the
individual fields in detail.

4.! • .!.!. Reserved Field

The first field is reserved for use by NI/IOI, and must be set to O. Its
value in the reply message is undefined.

- 38 -

EXOS/lOl: Initialization and Rost Interface

Length Offset Field Name Request Reply

1) 2 0 1 Reserved for IX Usage 1 zero undefined

1 1
1--------------------------------1

2) 4 2 1 User Id Code 1 undefined preserved
1 1
1 1
1 1
1--------------------------------1

3) 1 6 1 Request Code I OOR preserved
1--------------------------------

4) 1 7 I Return Code undefined see text

5) 2 8 Data Length see text see text

6) 4 10 Source Address see text undefined

4 14 Destination Address see text undefined

1<------------1 byte------------>1

Figure 4-!: EXOS/lOl Down-Load Request/Reply Message

The user id code field is not interpreted by the EXOS/lOl, and is returned
unmodified in the reply message. It can be used to establish a correspondence
between request and reply messages.

4.1.1.1. Request Code Field

The request code field defines the request. Its value in the request message
must be O. This value is preserved in the reply message.

4.1.1.4. Return Code Field

The reply code field is undefined in the request message. In the reply mes­
sage, it reports the status of the down-load request:

- 39 -

EXOS/lOl: Initialization and Rost Interface

o successful completion.

AlR destination memory block overlaps the memory reserved for IX/lOl, no
copy done.

AIR invalid request, the EXOS/lOl is not in front end .ode.

!.!.!.2. Data Length Field

The data length field specifies the DUmber of bytes to be copied into EXOS/lOl
memory. This may be any value between 0 and 64lC-l. In the reply message,
this field returns the number of bytes actually copied.

4.!.!.!. Source Address Field

The source address field specifies
which to copy the user code image.
lute address, depending on the host
reply message is undefined.

the starting address in shared memory from
This may be either a segmented or an abso­
address mode option. Its value in the

4.!.!.1. Destination Address Field

The destination address field specifies the starting address in BXOS/lOI
memory to which the user code image will be copied. This must be a segmented
address. Its value in the reply message is undefined.

4.!.1. Start Execution Request

Length Offset Field I!!!!!. Request Reply

1) 2 0 I Reserved for IX Usage zero undefined

J
1--------------------------------

2) 4 2 User Id Code undefined preserved

I---------------~----------------
3) 1 6 J Request Code OOR preserved

1--------------------------------
4) 1 7 I Return Code undefined see text

1--------------------------------
5) 4 8 Starting Address see text preserved

1<-------1 byte----------> I

Figure 4-1: EXOS/lOl Start-Execution Request/Reply Message

- 40 -

EXOS/IOI: Initialization and Rost Interface

After down-loading protocol software, the host processor starts it executing
with a single start execution request Delsage. Once this command has been
issued and the reply received, the EXOS/IOI does not itself procels any more
wessages. Instead, all .essagel lent to the EXOS/lOI will be queued up for
user procellel running under the IX/IOI kernel.

The start execution requelt specifiel the location at which execution of user
code beginl. User code is entered as a lingle procell with priority 255 and
infinite time slice. All registers except for the PC and stack pointer are
undefined. The initial process stack is provided from the IX/IOI data area
and is guaranteed to be at least IOOR bytes deep. The process is free to
switch to a bigger stack if desired. In all other respects, it is a normal
process, as defined in section 6.4.

Figure 4-9 shows the format of the start execution request/reply message, and
the following paragraphs describe the individual fields in detail.

4.!.1.~. Reserved Field

The first field is reserved for use by NX/IOI, and must be initialized as O.
Its value in the reply Dessage is undefined.

The user id code field is not interpreted by the EXOS/IOI, and is returned
unmodified in the reply message. It can be used to establish a correlpondence
between request and reply Dessages.

4.!.1.1. Request Code Field

The request code field defines the request. Its value in the request message
must be 2. This value is prelerved in the reply Dessage.

4.!.1.4. Return Code Field

The reply code field is undefined in the request message. In the reply mes­
sage, it reports the status of the start execution request.

o successful completion.

A2R invalid starting address, execution not started.

AIR invalid request, the EXOS/10l is not in front end mode.

4.!.1.2. Starting Address Field

The starting address field specifies the initial value of
process's program counter. This must be a segmented address.
preserved in the reply melsage.

- 41 -

the initial
Its value is

aAV~/£U£; ~~K ~evel ~on~roller KOde

1. ~ LEVEL CONTROLLER !12M

In the link level eontroller mode, the EXOS/lOl provides a standard Ethernet
Data Link interface to the host system. The host system selects link level
eontroller mode at initialization time, by specifying operation mode 0 in the
eonfiguration Dessage (see section 4.4.4). The host does not then down-load
softwarej instead the EXOS/I0l runs firmware which brings BX/IOl's on-board
Ethernet driver out to the host interface. The host ean then aceess all Eth­
ernet functions by exehanging request and reply messages with the EXOS/I01 via
the message protocol described in seetion 4.5. The EXOS/lOl uses its RAM pri­
marily to buffer packets in both directions between the network and the host.

Link level eontroller mode functionality is very similar to the NX/I01 Ether­
net interface for EXOS/lOl-resident software, described in section 7. Because
the underlying objects and capabilities of this mode are identical, they will
not be described here in the same detail. Instead, this section concentrates
on the format and usage of request messages.

1.1. The Controller Mode Interface

After the EXOS/I01 has been initialized in mode 0, the host sends eommands as
request messages in the host-to-EXOS queue. When a request is completed, the
EXOS/101 places a reply message in the EXOS-to-host queue. These queues may
be arbitrarily long, and can be used to pipeline Ethernet operations. Figure
5-1 shows how messages are encapsulated in the message queue buffers.

In link level controller mode, the EXOS/101 honors six request messages:

TRANSMIT
RECEIVE

NET_MODE
NET_ADDRS
NET_RECV
NET_STSTCS

send packet from host memory onto Ethernet
receive packet from Ethernet into host memory

read/modify the net mode
read/modify an address slot
enable/disable receive on an address slot
read/clear the network statistics

The first two requests above correspond to the transmit and receive messages
which on-board software would send to the Ethernet system process under NI/I01
(see sections 7.1 and 7.2). The latter four requests eorrespond exactly to
the NI/10l calls by the same name which on-board software would use (see sec­
tion 9).

Figure 5-2 shows conceptually how requests are processed by the EXOS/101.
According to the message queue protocol, as soon as the host software has
placed a request message in a host-to-EXOS message queue buffer, it interrupts
the EXOS/lOI. When interrupted, the EXOS/I01 reads the requests from the
queue and buffers them in its on-board memory.

A request is said to be outstanding once it has been read from the host
request queue, and until the corresponding reply message has been written to
the host reply queue. The EXOS/I01 can buffer up to 32 outstanding request
messages. Additional requests will remain in the host request queue until
buffers are made available by request completion in the EXOS/101. This should

- 42 -

EXOS/IOl: Link Level Controller Mode

REQUEST /B.EPLY MESSAGE BUFFER

-------------------------------I Link Field
I

Reserved Field

Status Field

Length Field

Data Field

REQUEST/B.EPLY MESSAGE

I Reserved Field
1 1
1-----------------------------1 1 /User ID Code Field I
1 1
1 I
1 I
1-----------------------------1
1 Request Code Field 1
1-----------------------------1
1 Return Code Field I
1-----------------------------1
1 Request-Specific Fields... 1

I L. ______________________________ _

Figure 5-1: Encapsulation of Request/Reply Message in Message Buffer

be noted when designing host software, since certain implementations could
become deadlocked by outstanding requests. In particular, receive requests
remain outstanding at least until a packet is received from the network. In
general, no more than 32 receive requests should be made at any time. Note
that in link level controller mode, the EXOS/lOl will buffer incoming packets
(that pass address filtering) even if no receive requests have been submitted.

As shown by figure 5-2, the EXOS/lOl effectively places different request mes­
sages in separate internal queues and processes them asynchronously. according
to their type. Network management requests are generally processed immedi­
ately, and transmit requests are processed as fast as the Ethernet Data Link
protocol permits. Receive requests remain outstanding until packets arrive on
the Ethernet, unless received packets are already buffered up in the EXOS/lOl.

The EXOS/lOl sends reply messages back to the host immediately upon request
completion, which is not necessarily the order in which they are accepted. In
order to ensure a certain sequence of operations among requests of different
types, a request should be issued only after the reply message for the preced­
ing operation in the sequence has been received. Each request message carries

- 43 -

L ,.------.

-
....

i-

RECEIVE
REQUEST

TRANSMIT
REQUEST

EXOS/IOl: Link Level Controller Mode

HOST SYSTEM MEMORY

PACKET (TO
BE SENT)

-IRECElVE BUF-I
FER (EMPTY)

RECEIVE BUF-
FER (FILLED)

IBETHGMTh REPLY

RECEIVE
REPLY -

NET MGMT
REQUEST

TRANSMIT

I
PACKET (BAS ~.-------------' REPLY

,BEEN SENT) .

EXOS DMA READ EXOS DMA WRITE

TRANSMIT RECEIVE
BUFFERS (4) BUFFERS (32)

NET MGMT
REQUEST

NETWORK MGKT
REQST HANDLER

EXOS/lOl ON-BOARD MEMORY

TRANSMIT
REQUEST

TRANSMIT
REQST HANDLER

RECEIVE
REQUEST

RECEIVE
REQST HANDLER

~ ____ ~f I~ ____ ~

Figure 1-1: Link ~ Controller Mode Request Processing Scheme

a 32-bit user id field which is not interpreted by the EXOS/lOl and which is
returned unmodified in the reply message. This field can be used for any pur­
pose, for example, to establish a correspondence between a request and its
rep 1y message.

-44-

EXOS/IOl: Link Level Controller Mode

The remainder of this section specifies the format of the request/reply mes­
sages for each request. Where these requests map directly into NX/lOl calls
(see section 9), the figures also mention the corresponding CPU registers, if
any, in parentheses (request, reply).

In addition to the error codes defined for NX/IOl calls, any
return the general error code OAlH if (a) the request message is
the specified length, (b) an invalid request code is used, or (c)
is not initialized in link level controller mode.

- 45 -

request may
shorter than
the EXOS/lOl

EXOS/101: Link Level Controller Mode

2.~. TRANSMIT Request/Reply Message

Length Offset

1) 2 o

2) 4 2

3) 1 6

4) 1 7

5) 1 8

6) 1 9

7) 2 10

8) 4 12

n)

Field ~ Request Reply

/ Reserved for NX Usage zero undefined
1 /
1--------------------------------1
/ User Id Code 1 undefined preserved
/ /
1 1
1 1
1--------------------------------1
/ Request Code /
/--------------------------------/ 1 Return Code 1
1--------------------------------1
1 Address Slot /
1--------------------------------/
/ Humber of Data Blocks /
/--------------------------------1
/ Data Block Length 1
/ 1
/--------------------------------1
/ Data Block Address /
1 1
/ /
1 1

1--------------------------------/
(The two fields above may
appear up to eight times, as
specified by the Humber of
Data Blocks parameter)

1<------------1 byte------------> 1

see text preserved

undefined see text

undefined see text

see text preserved

see text preserved

see text preserved

Figure 5-3: TRANSMIT Request/Reply Message

To transmit a packet on the Ethernet, host software sends a transmit request
message to the EXOS/101. This message contains pointers to an Ethernet packet
in host memory. Packets are prepared for transmission in standard Ethernet
data link layer frame format, as described in section 7.1. Host software
should prepare the address and type fields. Packets should not include pream­
ble or CRC fields, which are prepared by EXOS/101 hardware. If it serves the
purposes of host software, the packet may be composed of up to eight disjoint
blocks in host memory.

The EXOS/101 enqueues transmit requests, and completes packet transmission
without any intervention from the host. When the EXOS/101 accepts a transmit
request, it gathers the packet (or packet fragments) from host memory, and

- 46 -

EXOS/lOl: Link Level Controller Mode

assembles the packet in an internal transmission buffer. Four such buffers
are allocated in link level controller mode, and transmission requests are
pipelined - if more than four transmit requests are pending, the packet is not
necessarily read from host memory immediately upon acceptance of a new
request. This is unlikely, unless the network is very heavily loaded.

If the EXOS/lOl is in off net mode (described in section 7.3) then transmit
requests will be enqueued, but will remain outstanding until the EXOS/lOl is
put back in an on net mode. If the EXOS/lOl is taken off net during a
transmission, then the current transmission will first be completed. If the
net disable option is selected (see section 7.4), then transmission will
appear to complete normally, but nothing is actually sent on the Ethernet.

An alternate form of the transmit request is provided in link level controller
mode only. This is transmit with self-receive, and is selected by the request
code ORR (instead of OCR). When this form of the transmit request is used,
transmission occnrs just as with a normal transmit request, but also generates
a received packet - if the destination address passes the established address
filtering. Address filtering is performed according to normal procedure for
incoming packets with one difference: in imperfect filtering mode, multicast
packets are always self-received.

Transmit requests are dispatched in the order they are received from the host
system. When the request is completed, the EXOS/lOl modifies the request mes­
sage according to the status of the transmission and returns it to the host as
a reply message. Until the reply message is received through the EXOS-to-host
message queue, the indicated Ethernet packet belongs to the EXOS/lOl and
should not be modified.

Figure 5-3 shows the format of the Ethernet transmit request/reply message,
and the following paragraphs describe its individual fields in detail.

2.1.~. Reserved Field

The first field is reserved for use by XX/lOl, and must be set to O. Its
value in the reply message is undefined.

The user id code field is not interpreted by the EXOS/lOl, and is returned
unmodified in the reply message. It can be used to establish a correspondence
between request and reply messages.

2.1.1. Request Code Field

The request code field defines the request:

OCR transmit.

ORR transmit with self-receive.

This field's value is preserved in the reply message.

- 47 -

EXOS/IOI: Link Level Controller Mode

i.l.4. R.eturn Code Field

The return code field value in undefined in the request message. In the reply
message, it reports the status of the transmission request:

OOR successful transmission, no retry.

OIR 8uccessful transmission, 1 retry.

02R successful transmission, more than 1 retry.

lOR transmission failed, excessive collisions.

40R transmission failed, transmit length not in range.

OAlR failed, the EXOS/IOl is not in controller mode.

1.1.1. Address Slot Field

The address slot field is an index into the address slot array. Its value in
the request message is undefined. In the reply message, it contains the
address slot number by which this packet would be received by this station.
For instance, the value 255 indicates that the packet was broadcasted, and
should be auto-received. Or, if the packet was transmitted to this stations
own address, the value would be 253. A zero value means that no slot matched
- this packet would not be received by this station.

1.1.1. Number of Data Blocks Field

The number of data blocks field specifies the number of data length/data
address field pairs that follow this field in the request message. Each pair
describes one block, where a packet may occupy up to eight disjoint blocks in
shared memory. This field's value is preserved in the reply message.

i.l.I. Data Block Length Field

The data block length field specifies the length in bytes of the data block
whose address follows. The sum of all data block length fields should be the
total packet length. This value does not include the preamble or CR.C fields,
which are appended by EXOS/IOI hardware. In the reply message, this field's
value is preserved.

i.l.!. Data Block Address Field

The data address field specifies the address of a data block in shared memory,
where up to eight blocks compose a packet. Note that the packet, as handed
over to the EXOS/IOI, does not include a preamble, so that the address of the
first block will point to the first byte of the packet's destination field.
The data address field is preserved in the reply message.

- 48 -

EXOS/101: Link Level Controller Mode

1.1. RECEIVE Request/Reply Message

Length Offset

1) 2 o

2) 4 2

3) 1 6

4) 1 7

5) 1 8

6) 1 9

7) 2 10

8) 4 12

n)

Field Name Request Reply

Reserved for NX Usage 1 zero undefined
1

--------------------------------1
User Id Code 1 undefined preserved

1
1
1

--------------------------------1
Request Code 1

--------------------------------1
Return Code 1

--------------------------------1
Address Slot 1

--------------------------------1
Number of Buffer Blocks 1

--------------------------------1
Buffer Block Length J

1
--------------------------------1
Buffer Block Address 1

1
1
1

--------------------------------1
(The two fields above may
appear up to eight times, as
specified by the Number of
Buffer Blocks parameter)

1<----------1 byte------------>1

ODH preserved

undefined see text

undefined see text

see text preserved

see text see text

see text preserved

Figure 5-4: RECEIVE Request/Reply Message

Host software receives a packet on the Ethernet by sending an Ethernet receive
request message to the EXOS/101. This message contains pointers to a packet
buffer in host memory. If the EXOS/101 has already received a packet from the
Ethernet, then it will copy the packet into the host buffer. Otherwise the
request will not complete until a packet is received.

Received packets are returned to the host in standard Ethernet data link layer
frame format, as described in section 7.1. Address, type, and CRC fields are
included, but not the preamble. The EXOS/101 performs address and CRC checks
in hardware. If it serves the purposes of host software, the packet buffer
may comprise up to eight disjoint blocks in host memory.

- 49 -

~U~/lUl: Link Level Controller Mode

The EXOS/lOl will receive packets from the Ethernet according to several cri­
teria. One is the mode of operation, which determines whether to listen at
all, and which categories of address to accept. Another factor is the address
filter, which determines the physical address, and up to 252 active multicast
addresses. The last factor to consider is the options mask, which defines
acceptable errors in received packets. Subsequent sections describe these
factors in more detail.

When a packet on the Ethernet satisfies the criteria for reception, the
EXOS/IOI receives and buffers the packet in its own memory. In link level
controller mode, EXOS/IOI provides 32 full-size on-board packet buffers which
are chained in controller hardware. Therefore it can receive 32 Ethernet
packets back-to-back, with minimal interframe spacing, even when no receive
requests from the host are pending.

When reception is complete, the EXOS/lOl modifies the request message accord­
ing to the status of the reception and returns it as a reply message. Receive
requests are queued up and dispatched in the order received. Until the reply
message is received through the host-to-EXOS message queue, the indicated
buffer belongs to the EXOS/IOI and should not be used.

Figure 5-4 shows the format of the Ethernet receive request/reply message, and
the following paragraphs describe its individual fields in detail.

1.1.1. Reserved Field

The first field is reserved for use by NX/IOl, and must be set to O. Its
value in the reply message is undefined.

1.1.1. User Id Code Field

The user id code field is not interpreted by the EXOS/IOI, and is returned
unmodified in the reply message. It can be used to establish a correspondence
between request and reply messages.

1.1.1. Request Code Field

The request code field defines the request. Its value in the Ethernet receive
request message must be ODH. This value is preserved in the reply message.

1.1.4. Return Code Field

The return code field value in undefined in the request message. In the reply
message, it reports the status of the receive request:

OOH packet received with no error.

04H packet received longer than buffer supplied, truncated.

lOB packet received with alignment error.

20B packet received with CRC error.

- 50 -

EXOS/IOl: Link Level Controller Mode

40H DO packet received, buffer supplied was less than 64 bytes.

OA1H failed, the EXOS/101 is not in controller mode.

Note that packets with errors are actually received only if the network mode
is set appropriately.

1.1.1. Address Slot Field

The address slot field is an index into the address slot array. Its value in
the request message is undefined. In the reply message, it contains the
address slot number which matched the destination address of the packet
received. If the controller is in promiscuous mode, then this field will
return the universal address slot, whether or not any address matched. If the
controller is not in perfect filtering mode, then this field will return the
universal address slot when any multicast packet is received.

1.1.!. Number of Buffer Blocks Field

The number of buffer blocks field specifies the number of buffer length/buffer
address field pairs that follow this field in the request message. Each pair
describes one block, where a buffer may consist of up to eight disjoint blocks
in shared memory. This field's value is preserved in the reply message.

1.1.1. Buffer Block Length Field

The buffer block length field specifies the length in bytes of the buffer
block whose address follows. The sum of all buffer block length fields should
be the total packet length. The length does not include the preamble but must
include 4 bytes for the frame check sequence (CRC) field. In order to receive
the longest possible Ethernet packet, the buffer must be at least 1520 bytes
long. Minimum size is 64 bytes, which will fit the shortest possible Ethernet
packet. Additionally, the total buffer length must be a multiple of 8 bytes;
otherwise NX/101 will reduce the buffer length to next lower multiple of
eight.

In the reply message, the buffer length field total returns the number of
bytes actually received, including 4 bytes for the CRC field. Note that if
the buffer supplied was smaller than the packet received, then the excess
bytes are truncated, and the buffer length will not give the true length of
the packet.

1.1.!. Data Address Field

The data address field specifies the address of a buffer block in shared
memory, where up to eight blocks compose a buffer. Note that the packet
returned by the EXOS/101 does not include a preamble, so that the address of
the first block will point to the first byte of the packet's destination
field. The data address field is preserved in the reply message.

- 51 -

£&U5/1Ul: Link Level Controller Hade

1.4. BET MODE Request/Reply Message

I Length Offset Field Name Request Reply

1) 2 o Reserved for HX Usage zero undefined

----------------------1
2) 4 2 User Id Code undefined preserved

1--------------------------------1
3) 1 6 1 Request Code OSR preserved

1 ----------------------------1
4) 1 7 1 Return Code (-.AL) 1 undefined see text

1------------------------------1
5) 1 S 1 Request Mask (DL.-) 1 see text undefined

1-------------------------------1
6) 1 9 I Options Mask (CL.CL) 1 see text see text

1--------------------------------1
7) 1 10 1 Mode (DR.DR) 1 see text see text

1<------------1 byte------------>1

Figure 5-5: BET HODE Request/Reply Message

The RET_HODE request is used to read/write the network controller mode and
options mask objects. For details of these. see sections 7.3 and 7.4. Figure
5-5 shows the format of the BET_HODE request/reply Dessage. and the following
paragraphs describe its individual fields in detail.

1.4.1. Reserved Field

The first field is reserved for use by HI/101. and must be set to O. Its
value in the reply message is undefined.

The user id code field is not interpreted by the EXOS/IOI. and is returned
unmodified in the reply message. It can be used to establish a correspondence
between request and reply Dessages.

1.!.1. Request Code Field

The request code field defines the request. Its value in the BET_MODE request
message must be OSR. This value is preserved in the reply Dessage.

- 52 -

EXOS/lOl: Link Level Controller Mode

1.4.4. Return Code Field

The return code field is undefined in the request message. In the reply mes­
sage, it reports the status of the NET_MODE request:

o successful completion.

OAlH failed, the EXOS/lOl is not in controller mode.

1.4.1. Request Mask Field

The request mask field is defined as follows:

01 write request bit.

02 read request bit.

Read and write can be requested simultaneously (mask - 03).
in the mask must be 0, or effects are undefined.

Other bits

The request mask's value in the reply message is undefined.

1.~.!. Options Mask Field

The options mask field defines several available controller options.
able options are defined by the following bit OR-able values:

Avail-

10H alignment error - enables reception of packets even if the number of
bits received is not a mUltiple of 8.

20H CRC error - enables reception of packets even if the CRC check
fails.

80H net disable - disables the Ethernet controller so that packets are
not received or transmitted on the Ethernet. However, transmit
requests are still processed by NX/lOl, and to user processes appear
to complete successfully if an on net mode is selected.

All other bits are undefined and must be O. This parameter is required only
if a write is requested. If the read bit in the request mask of the request
message was set, then this field returns the options mask prior to the
request. Otherwise its value in the reply message is undefined.

1.4 • .1. Mode Field

The mode field specifies the new mode of the Ethernet controller.
values are:

OOH disconnect from the net.

OlH connect to net, perfect filter for multicast addresses.

- 53 -

Possible

EXOS/IOI: Link Level Controller Mode

02H connect to net. only hardware filter for multicast addresses.

03H connect to net, receive all packets (promiscuous mode).

This parameter is required only if a write is requested. If the read bit in
the request mask of the request message was set, then this field returns the
net mode prior to the request. Otherwise its value in the reply Bessage is
undefined.

- 54 -

EXOS/IOI: Link Level Controller Mode

~.~. NET ADDaS Request/Reply Message

Length Offset

1) 2 o

2) 4 2

3) 1 6

4) 1 7

5) 1 8

6) 1 9

7) 6 10

Field ~ Request Reply

Reserved for HI Usage 1 zero undefined
1

--------------------------------1
User Id Code 1 undefined preserved

1
1
1

--------------------------------1
Request Code 1 09H preserved

--------------------------------1
Return Code (--,AL) 1 undefined see text

--------------------------------1
Request Mask (DL,DL) 1 see text see text

--------------------------------1
Address Slot (DH,--) 1 see text preserved

--------------------------------1
I Net Address (*ES+DI,--) 1 see text see text
1 1
1 1
1 1
1 1
1 1

1<------------1 byte------------>I

Figure ~-i: NET ADDRS Request/Reply Message

The NET_ADDRS request is used to read/write an address in a specified address
slot. For information about address slots, see section 7.5.

If a network address to be written is invalid, the write does not occur, and
the address in the slot prior to the request is preserved. Writing an address
into a slot disables reception on that slot. The NET_RCV request must be
explicitly used to re-enable reception on the slot.

Figure 5-6 shows the format of the NET~DRS request/reply message, and the
following paragraphs describe its individual fields in detail.

1.1.1. Reserved Field

The first field is reserved for use by HI/IOI, and must be let to O. Its
value in the reply message is undefined.

- 55 -

1.1.1. User Id Code Field

The user id code field is not interpreted by the BlOS/lOl, and is returned
unmodified in the reply Dessage. It can be used to establish a correspondence
between request and reply Dessages.

1.1.~. Request Code Field

The request code field defines the request. Its value in the RET_AnDRS
request message must be 09H. This value is preserved in the reply message.

1.1.4. Return Code Field

The return code field is undefined in the request message. In the reply mes­
sage, it reports the status of the RET_AnDRS request:

o successful completion.

ODlH the specified slot does not exist or access is not permitted.

OD3H improper address. Multicast slots can only take multicast addresses
and the physical slot can only take a physical address. Attempting
to write the broadcast slot (number 255) results in this error.

OAlH failed, the EXOS/lOl is not in controller mode.

1.1.1. Request Mask Field

The request mask field is defined in the request message as follows:

01 write request bit.

02 read request bit.

Read and write can be requested simultaneously (mask - 03).
in the mask must be 0, or effects are undefined.

Other bits

In the reply message, if bit 3 (mask value 8) is set, then the address slot
contained a valid address prior to this request. Otherwise the slot was
empty. All other bits are undefined. This result is defined only if a read
was requested.

1.1.'!. Address Slot Field

The address slot field designates the address slot which is to be accessed.
This can be the physical address slot (253) or any multicast address slot
(between 1 and the limit defined by configuration).

This field's value is preserved in the reply message.

1.1.1. Net Address Field

The net address field, if a write is requested, should contain a valid network
address to be written in the specified slot. In the reply message, if a read

- 56 -

EXOS/IOl: Link Level Controller Mode

was requested, and the slot was not empty, then this field returns the net
address in the specified slot prior to this request. Otherwise it is unde­
fined.

•

- 57 -

AAU~/lUl: Link Level Controller Mode

1.1. NET RECV Request/Reply Message

Length Offset

1)

2)

3)

4)

5)

6)

2

4

1

1

1

1

o

2

6

7

8

9

Field l!!!!!t Request Reply

Reserved for NX Usage 1 zero undefined
I

--------------------------------1
User Id Code 1 undefined preserved

1
1
1

--------------------------------1
Request Code 1 OAR preserved

--------------------------------1
Return Code (--,AL) 1 undefined see text

--------------------------------1
Request Mask (DL,DL) 1 see text see text

--------------------------------1
Address Slot (DB,--) 1 see text preserved

1<------------1 byte------------>I

Figure 5-1: NET RECV Request/Reply Message

This request is used to read/alter the receive status of an address slot (see
section 7.5).

Figure 5-7 shows the format of the NET_RECV request/reply message, and the
following paragraphs describe its individual fields in detail.

1.1.1. Reserved Field

The first field is reserved for use by NX/IOl, and must be set to O. Its
value in the reply message is undefined.

The user id code field is not interpreted by the EXOS/IOl, and is returned
unmodified in the reply message. It can be used to establish a correspondence
between request and reply messages.

1.1.1. Request Code Field

The request code field defines the request. Its value in the NET_RECV request
message must be OAR. This value is preserved in the reply message.

- 58 -

EXOS/10l: Link Level Controller Mode

i.1.4. Return Code Field

The return code field is undefined in the request message. In the reply mes­
sage, it reports the atatus of the NET_RECV request:

o successful completion.

OD1H the specified slot does not exist or access is not permitted.

OD2H the specified slot was empty.

OA1H failed, the EXOS/lOl is not in controller mode.

i.1.2. Request Mask Field

The request mask field is defined in the request message as follows:

01 write request bit.

02 read request bit.

04 enable receive bit.

Read and write can be requested simultaneously (mask - 03).
in the mask must be 0, or effects are undefined.

Other bits

If the write bit in the request mask is set, then reception on the designated
address slot will be enabled or disabled, depending on the value of the enable
receive bit.

In the reply message, if bit 2 (mask value 4) is set, then receive was enabled
for this slot prior to this request. Otherwise it was disabled. All other
bits are undefined. This result is defined only if a read was requested.

i.1.1. Address Slot Field

The address slot field designates the address slot which this request will
work on. This can be the physical address slot (253), the broadcast slot
(255), or any multicast address slot (between 1 and the limit defined by con­
figuration).

This field's value is preserved in the reply message.

- 59 -

EXOS/IOI: Link Level Controller Mode

1·1· NET STSTCS Reguest/Re2l1 Message

Length Offset Field ~ Reguest Re2h

1) 2 0 Reserved for BX Usage I zero undefined

1
--------------------------------1 2) 4 2 User Id Code 1 undefined preserved

1
1
1

--------------------------------1
3) 1 6 Request Code 1 OBR preserved

--------------------------------1
4) 1 7 Return Code (-,AL) 1 undefined see text

--------------------------------1
5) 1 8 Request Mask (DL,--) 1 see text undefined

--------------------------------1 6) 1 9 Reserved 1 zero undefined
--------------------------------1

7) 2 10 Number of Objects (ex,ex) 1 see text see text
1

--------------------------------1
8) 2 12 Objects Index (SI,--) I see text preserved

1
1--------------------------------1

9) 4 14 1 Buffer Address <*ES+DI,--) 1 see text preserved
1 1
1 1
1 J

1<------------1 byte------------>I

Figure 5-!: NET STSTCS Reguest/Re2ly Message

This request reads/resets the statistics objects (see section 7.6). If the
read bit is set in the request mask, then a specified number of statistics
objects, starting at the objects index field, are copied into the array speci­
fied by the buffer address field. Note that the statistics copied into host
memory are defined only after the reply message has been received.

If the write bit is set in the request mask, then the number of objects speci­
fied by the number of objects field, starting with the object specified by the
objects index, are reset to zero. If the objects index field is out of range,
then no objects are read/reset.

Figure 5-8 shows the format of the NET_STSTCS request/reply message, and the
following paragraphs describe its individual fields in detail.

- 60 -

EXOS/lOl: Link Level Controller Mode

1.1.1. Reserved Field

The first field is reserved for use by IX/lOl, and must be set to O. Its
value in the reply message is undefined.

1.1.1. User Id Code Field

The user id code field is not interpreted by the EXOS/lOl, and is returned
unmodified in the reply message. It can be used to establish a correspondence
between request and reply messages.

1.1.1. Request Code Field

The request code field defines the request. Its value in the NET_STSTCS
request message must be OBH. This value is preserved in the reply message.

1.1.4. Return Code Field

The return code field is undefined in the request message. In the reply mes­
sage, it reports the status of the NET_STSTCS request:

o successful completion.

OA1H failed, the EXOS/lOl is not in controller mode.

1.1.2. Request Mask Field

The request mask field is defined in the request message as follows:

01 write request bit.

02 read request bit.

Read and write can be requested simultaneously (mask = 03).
in the mask must be 0, or effects are undefined.

The read request copies the specified portion of the statistics
specified buffer. The write request resets the specified
statistics array. If both read and write are requested, the
first. This field is undefined in the reply message.

1.1.!. Reserved Field

Other bits

array into the
portion of the
read is done

This field must be zero in the request message. Its value in the replymes­
sage is undefined.

1.1.1. Number of Objects Field

The number of objects field specifies how many statistics objects are to be
read/reset. In the reply message, this field returns the number of objects
that were actually read/reset. If the number requested exceeds the bounds of
the statistics array, it will be truncated.

- 61 -

EXOS/IOl: Link Level Controller Mode

1.1.~. Objects Index Field

The objects index field specifies the starting place in the statistics array
at which objects will be read/reset. Its value is preserved in the reply mes­
sage.

1.1.~. Buffer Address Field

The buffer address field specifies the address of the buffer in shared memory
to which the requested portion of the statistics object array will be copied,
if a read request was made. This field is defined only if a read is
requested. Its value is preserved in the reply message.

- 62 -

EXOS/lOl: The XX/lOl Programming Environment

1. m n/lOl PROGRAMMING ENVIB.ONMENT

This section provides information necessary to write higher-level software to
run under the ax/lOl kernel on an EXOS/lOl Ethernet front-end processor. The
first few sections describe environmental considerations, such as memory allo­
cation, Which commonly affect software design. Subsequent sections explain
the abstract objects and operations implemented in ax/lOl.

1.1. Overview

All programs for the Excelan Ethernet network processor board (EXOS/lOl) run
on an Intel 8088 CPU under an EPROM-resident multi-tasking operating system
kernel (n/lOl). Programs can be written in any language for the 8088 and can
be located anywhere in the memory available to the user. They can be down­
loaded either from the host or over the network. The procedure for down­
loading programs is described in section 4.8 of this manual.

HI/lOl's multi-tasking environment facilitates the structured implementation
of high-level protocol software, as a set of cooperating processes. Facili­
ties include mechanisms for process synchronization, interprocess communica­
tion, scheduling, and clock-based functions. Hone of the hardware devices on
the board, viz., the clock, the Host interface or the Ethernet controller,
require direct access by user processes. Instead, XX/lOl has built-in drivers
which provide suitable abstractions of the devices, so that programs developed
for the EXOS/lOl are independent of actual hardware implementation.

All functions of HI/lOl are accessed by means of HI/lOl calls executed by an
INT n instruction, Where n defines the desired function. Parameters to the
calls are generally passed in CPU registers. However, it is easy to write
interface libraries to permit HI calls to be made from programs written in
high level languages such as C, PASCAL, etc.

1.1. Memory Organization

The 8088 provides an address space of 1 Mbyte, accessible in 64K segments, on
16-byte bounds. Figure 6-1 shows how this address space is allocated on the
EXOS/101, under the default configuration of HI/l01. The default configura­
tion provides a given number of objects, such as mailboxes and process table
entries. This allocation (specified in section 4.4) should be sufficient for
most applications. However, the allocation of objects under HI/lOl can be
changed at initialization time, with a corresponding effect on RAM allocation.
The following paragraphs explain the use of EXOS/lOl memory in detail.

6.1.1. Interrupt Vector Table

In the default configuration, NX/lOl allocates 512 bytes for the interrupt
vector table, providing 128 entries of 4 bytes each. Of these, 32 interrupt
vectors are available for user definition. If more are required, the inter­
rupt vector table may be reconfigured to its full size of 1024 bytes. Inter­
rupt allocation is explained below in more detail.

- 63 -

EXos/lOl: The Hl/lOl Programming Environment

Address

FFFFFH

lFFFFH

OFFFFH

OOFFFH

003FFH

OOlFFH

00000

Function

Reserved Address Space

Single-Ported RAM (Model 2)
or

Reserved (Modell)

--------------------------------1
Dual-Ported User RAM

. .
/

--------------------------------1 Fixed Hl/lOl Data Area 1
/
I
/
1
1

--------------------------------/
Kovable Hl/lOl Data Area /

1--------------------------------/
1 Interrupt Vector Table /

/<------------1 byte------------>1

Figure 6-1: Default ~/lOl Kemorv Allocation

1.1..1.. Kovable n/lOl Data Area

FOOOOH (960~byte)

10000H (64 Kbyte)

OFOOOH (60 Kbyte)

OOCOOH (3 Kbyte)

00200H (1/2 Kbyte)

00200H (1/2 Kbyte)

The movable Hl/lOl data area is the memory required for data structures which
Nl/lOl associates with objects. User software should not access this memory
area directly.

The length of the movable data area depends on the maximum number of objects
supported, which is configured during Hl/lOl initialization (see section 4).
It can be computed by the expression l6*(P+M)+8*A bytes, where P is the number
of processes, M is the number of the mailboxes and A is the number of address
slots. In the default configuration this area is 512 bytes long, occupying
locations 200H through 3FFH.

If Nl/lOl is reconfigured such that this area requires more than 512 bytes, or
if locations 200H to 3FFH are needed for an expanded interrupt vector table,
then this area can be moved to any memory area between 1000H and OFFFFH.

- 64 -

EXOS/lOl: The NX/lOl Programming Environment

NX/IOI uses this memory area for data structures that are not dependent on its
configuration. It is always 512 bytes long and occupies locations 400H
through OFFFH. It cannot be moved. User 80ftware 8hould not directly access
the fixed data area •

.1.1..4. Dual-Ported User BAM

64 Kbytes of BAM on the EXOS/lOl, from location 0 to OFFFFH, is dual-ported
between the 8088 CPU and the Ethernet controller hardware. Of this, 60 Kbytes
between 1000H and OFFFFH, are entirely available in the default configuration
for the purp08es of down-loaded U8er software. If the movable data area must
be moved from its default location, then 80me small portion of this BAM will
become unavailable for user software. NX/lOl requires that all message
buffers (used for communicating data between processes, host, and network) lie
in dual-ported user BAM.

~.1..1. Single-Ported RAM

On the EXOS/IOI Model 2 only, another 64 Kbytes of BAM, from location 10000H
to IFFFFH is also available for the purposes of down-loaded software. This
differs from the dual-ported user BAM only in that it may not be used for mes­
sage buffers.

~.1..1. Reserved Address Space

The address range 10000H-FFFFFH on the Modell, or 20000H-FFFFFH on the Model
2, is reserved. The effects of access to this area by user software are not
defined.

Other than those described above, NX/iOl imposes no restrictions on how memory
is used. Users can link and load their programs in any manner they please.
HI/iOl does not define any buffer management services; users may choose the
optimum scheme for individual applications.

!.~. Interrupt Types

The 8088 CPU provides 256 interrupt types, each of which corresponds to a 4-
byte interrupt vector table entry.
HI/IOl allocates these as follows:

0-31 reserved/dedicated by Intel.

32-63 device interrupts (used by NX/lOl).

64-95 HI/lOl calls.

96-127 available to user software by default.

128-255 available to user software by reconfiguration.

User software should not modify interrupt vectors for types 0-95. In the
default configuration, types 96-127 are available for user definition. If

- 65 -

EXOS/lOl: The NX/lOl Programming Environment

more interrupt types are required, then the movable data area can be relocated
(see section 4.3.11), making types 128-255 available.

XX/lOl provides all interrupt service routines necessary for EXOS/lOl hardware
and the host interface. Therefore it is unlikely that user applications would
require hardware interrupt service routines. However, it .. y be convenient to
use the user-definable interrupt types as an interface between user software
modules. If this is done, then the software interrupt service routines should
be sure to re-enable interrupts immediately upon entry.

!.4. Processes

NX/lOl supports processes as they are usually understood: a program in execu­
tion. Processes can be freely created and deleted. At anyone time the
number of processes cannot exceed a maximum number defined by the configura­
tion of NX/lOl (see section 4.4.12).

!.!.!. Process Address Space

HI/lOl does not impose any memory protection between processes. All processes
share the same I-Mbyte address space, allowing them to communicate via shared
memory. However, the context of each process includes the segment register
file of the 8088. Thus each process can independently choose its own direct
address space. The 8088 memory addressing architecture permits shared-text
processes and dynamic relocation of code modules.

~.4.1. Process-id

Each process is identified by a unique one-word integer called its process-ide
This number is used to refer to processes in all NX/10l calls. The process-id
of a process which has been deleted is not re-used until at least 255 addi­
tional processes have been created after the deletion. Applications which
create and delete processes very frequently should beware of this fact. The
process-id 0 is a special id and always refers to the process currently run­
ning. Thus a process can refer to itself by using 0 instead of its actual id
in an NX/lOl call. When a process is first created its id is available in one
of its CPU registers, as specified in the PROC_CREATE call description. A
process can also find its own id by executing a read-only call (such as
PROC_PRIOR), specifying 0 as the process-id parameter. All NX/lOl calls
always return the actual process-id even if 0 was used as an input parameter.

~.4.1. Process Stack

The stack address of a new process is supplied as a parameter to the
PROC_CREATE call, by the process invoking this call. Note that NX/lOl creates
the first process, and allocates its stack within the fixed NX/lOl data area
(see section 6.2). Stack areas can be allocated anywhere in memory. When
deciding stack size, the user should be aware that NX/lOl does not maintain
any separate system stack for a process. When NX/lOl services interrupts, it
uses the stack of the process running when the interrupt occurs. In order to
prevent stack overflows it is recommended that user process stack size be such
that at least 64 bytes of the stack is always available for IX/lOl interrupt
service routines.

- 66 -

EXOS/lOl: The NX/lOl Programming Environment

!.4.4. Process Scheduling

Four parameters visible to user software drive NX/lOl's process scheduling
algorithm:

priority
time slice
time count
sleep count

All but time count are explicitly set when a process is created, and can be
examined or modified by any process subsequently. Time count can be examined,
but its value is implicitly determined by time slice.

Priority is a number between 0 and 255 where 0 is the lowest priority. NX/lOl
maintains a logically separate scheduling queue of processes for each priority
level. Process priority remains constant, unless modified by an explicit call
to PROC_PRIOR.

Time slice is a number between 0 and 255 which determines the amount of CPU
time that a process can use before its position in the scheduling queue is
re-eva1uated. Implementation is as follows. Time count is initialized with
the value of time slice, and counts down at the rate of 20 milliseconds, but
only while the process is actually running. When time count reaches 0, the
process is put at the end of its scheduling queue, and time count is reini­
tia1ized with time slice. A process's time slice remains constant, unless
modified by an explicit call to PROC_TIMSLC. A value of -1 for time slice is
considered infinity.

Sleep count is a number between 0 and 64K-1 that represents the amount of real
time which must elapse before the process becomes eligible to use the CPU. A
process having a non-zero sleep count is said to be sleeping and a process
with a sleep count of zero is said to be runnab1e. Sleep count also counts
down at a rate of 20 milliseconds, and a value of -1 is considered infinity.
By definition, however, the sleep count counts down only while the process is
not running. When sleep count reaches zero, it remains zero and the process
becomes runnab1e.

The scheduling parameters are used to implement a pre-emptive round robin
scheduling algorithm as follows. Whenever scheduling occurs, the CPU is given
to the first runnab1e process in the highest priority scheduling queue.
Scheduling occurs on every tick of the NX/101 clock (20 milliseconds), and
whenever some scheduling parameter changes. For instance, if during the exe­
cution of a process some other process with a higher priority becomes runn­
able, then the CPU is immediately given to the higher priority process without
changing the position or time slice count of the pre-empted process. Simi­
larly, if the sleep count of a running or a runnable process is set to a non­
zero value either by an explicit NX/IOl call or by an implicit side effect of
some other NX/IOl call, then the process is put to sleep without changing its
time slice count or position in its priority queue.

It should be noted from the above discussion that a runnable process cannot
have a non-zero sleep count. Thus setting the sleep count of a process to
zero makes it runnable, and setting it non-zero suspends the process. The

- 67 -

EXOS/10I: The NX/IOI Programming Environment

PROC_SLPCNT call can be used by any process to alter the sleep count of any
process. The new value overwrites the previous value of the sleep count,
which is forgotten. By choosing an appropriate value for sleep count, a pro­
cess can be delayed, suspended or resumed. As such, no separate calls for
these capabilities are included in HI/lOl.

It should also be noted that if an infinite time slice is given to all
processes then the scheduling policy reduces to a priority-based event driven
scheduling algorithm. Running all processes at equal priority besides reduces
the policy even further, to strictly event-driven scheduling.

~.!.2. Implicit Scheduling Factors

When a user process makes an HI/IOI kernel call, it is locked until the call
completes. Therefore the process will not be pre-empted by another user pro­
cess unless the kernel call itself blocks the calling process. For instance,
a HLBX_RECV call might cause re-scheduling before it completes, if no message
is queued on the indicated mailbox. On the other hand, a HEM_READ or
HEM_WRITE will always exclude other user processes until it completes.

HI/IOl interrupt service routines will always interrupt any user process, and
will interrupt each other according to this priority scheme:

0) Clock Tick
1) Ethernet Transmit Completion
2) Ethernet Receive Completion
3) Host Interface Event

where 0 is the highest priority. Note that any of these events can cause re­
scheduling of user processes. For instance, an Ethernet Receive completion
might place an Ethernet transmit reply message on a reply mailbox, and there­
fore reset the sleep count of a process enqueued there.

~.2. Mailboxes

Interprocess communication and synchronization is supported primarily by mail­
boxes. A mailbox, like a process, is an object that can be created and
deleted. The maximum number of mailboxes that can exist at any given time is
defined by the configuration of HI/IOI (see section 4.4.13).

~ • .2.1. Mailbox-id

Each mailbox is identified by a unique one word integer called its mailbox-ide
This number is used to refer to mailboxes in all NX/IOI calls. When a mailbox
is deleted its id is not re-used until at least 255 mailboxes have been
created. Applications which create and delete mailboxes very frequently
should beware of this fact.

~ • .2.1. Messages

A mailbox provides the facility to transfer messages between processes. A
message is a memory-resident data structure with an arbitrary format, except
for a mandatory 32-bit link field at its beginning. HI/IOI uses the link
field to chain messages. They must reside within the address range O-OFFFFH

- 68 -

EXOS/IOl: The NX/lOl Programming Environment

iu EXOS/lOl memory.

Since all processes share the same address space, messages are not copied by
mailbox operations. Instead, pointers to DeS sages are sent and received
through the mailbox. It is the responsibility of the sending process to main­
tain the DeS sage data intact until the receiving process DO longer requires
it. The user must devise some scheme to ensure coordinated use of message
data structures.

! . ..2,.1.. Null Messages

The null DeS sage is a special case which is identified by a null pointer and
does not have any data associated with it. They are used strictly for process
synchronization purposes, and can share a mailbox with regular messages. Note
that null messages cannot be differentiated from one another.

i . ..2,.4. Sending and Receiving Messages

The sending and receiving of messages through a mailbox is fully synchronized.
Each mailbox has a message queue and a process queue. When a mailbox is
created (using the KLBX_CREATE call) the process queue is empty and the mes­
sage queue contains a specified number of null messages.

A message is sent to a mailbox by the MLBX_SEND call. When a regular message
is sent it is appended after all other regular messages in the message queue
but in front of all the null messages, if any. A null message is always
appended after all the regular messages in the queue. Thus regular messages
are delivered on a first-in first-out basis while null messages are delivered
if and only if there are no regular messages in the queue.

A message is received from the mailbox by the MLBX_RECV call. A process
receives the first message from the message queue if it is not empty. Other­
wise, the process is appended to the end of the process queue and its sleep
count is set to the value specified as a parameter to the MLBX_RECV call.
Recall that if the sleep count of a process is nonzero the process is blocked
until it counts down to zero. A subsequent MLBX_SEND call removes the first
waiting process from the process queue, hands it the message and unblocks it
by setting its sleep count to zero. When the unblocked process resumes execu­
tion, the KLBX_RECV call which blocked the process returns with a completion
code indicating success.

If the sleep count of a blocked process counts down to zero or is explicitly
set to zero by a PROC_SLPCNT call then the process is forced to unblock even
if no message has arrived. In this case the unblocked process returns from
the MLBX_RECV call with a nonzero completion code indicating the time out con­
dition.

It should be noted from the above discussion that a process blocks on a mail­
box only when the sleep count of the process is non-zero. Thus if a process
executes a MLBX_RECV call with the sleep count parameter equal to zero, then
the process will not block even if no messages are available. By choosing an
appropriate value of the sleep count parameter, a process can test the avai­
lability of a message without blocking, block unconditionally until a message
arrives, or block for a finite specified amount of time waiting for the

- 69 -

EXOS/lOl: The HI/lOl Programming Environment

message to arrive.

1.1.1. Mailboxes.u. Semaphores

The notion of null messages allows the mailbox to be used as a conventional
semaphore. If only null messages are used then the MLBX_SEND call is
equivalent to the V operation and the MLBX_RECV call is equivalent to the P
operation. Thus a mailbox can be used both for synchronizing a producer­
consumer relationship or for mutual exclusion.

1.!. Process Locks

Using the mailbox for mutual exclusion may be a little more expensive than
desired for simple cases such as updating a single variable. HI/lOl provides
the process lock as a simpler, alternate mechanism for mutual exclusion. A
lock, when in effect, causes scheduling to be 8uspended. The call PROC_LOCK
puts a lock in effect and the call PROC UNLOCK removes a lock. Lock calls can
be nested up to 32K deep; before a-process is unlocked, unlock calls must
balance lock calls. If a process with locks in effect makes an HI/lOl call
which can potentially cause the process to sleep then all locks are removed
regardless of whether the process actually went to sleep or not.

The process executing a lock call excludes all other process from running and
thus imposes a stronger condition than the mailbox mechanism, which excludes
only the processes that intend to use the critical section. On the other
hand, the lock call executes faster than the mailbox calls, and a lock does
not consume memory resource as does a mailbox object. The lock call cannot be
used for a producer-consumer type of synChronization. For mutual exclusion
the users can select the mechanism which best suits the application.

Both mailboxes and locks provide mutual exclusion between processes; however,
interrupts are not excluded. As such the only way to share a critical section
between a process and an interrupt service routine is to disable interrupts
for the duration of the critical section. Programmers usually need not be
concerned with this fact, since all necessary interrupt handlers are included
in HI/lOl. In general the user programs should not disable interrupts.

1.1. System Mailboxes

Certain HI/lOl services are asynchronous by nature, such as sending and
recelvlng messages with Ethernet or the host. All such system services are
provided in a conceptual sense by system processes. These are like user
processes in that they execute asynchronously, but they have no process-id or
visible scheduling parameters. User processes access system process services
by sending a request message to a special "system mailbox" associated with the
desired service.

System mailboxes are created by NX/lOl during initialization and are not
included in the number of user mailboxes specified by the configuration of
HI/lOl. The set of mailbox-ids for regular mailboxes is disjoint with the set
of mailbox-ids for system mailboxes. NX/lOl designates the following system
mailbox-ids:

- 70 -

000lR
0009R

EXOS/101: The NX/101 Programming Environment

Rost
Ethernet

Request Bessages are sent and received through a system mailbox with the regu­
lar MLBX_SEND and MLBX~ECV calls. After sending a request Bessage, a process
can continue to run or wait until the message is returned. The request mes­
aage, once sent, should not be modified until the reply message is received.

The formats of request messages and their corresponding reply messages are
defined by each individual service. All messages, however, have a standard
header. Figure 6-2 shows this header, and the following paragraphs explain
each field in detail.

Length Offset

1)

2)

3)

4)

4

2

1

1

o

4

6

7

Field Name Request Reply

Link I undefined undefined
I
I
I

--------------------------------1
Reply Mailbox I see text see text

1
--------------------------------1
Request Code 1 see text see text

--------------------------------1
Return Code 1 see text see text

--------------------------------1
Additional Fields Defined by
Individual System Processes

1<------------1 byte------------>1

Figure 6-1: Standard Reader for System Messages

&'.1.1.. Link Field

The link field is required by NX/lOl at the beginning of all messages. Its
request and reply values are both undefined. NX/lOl uses this field for
chaining messages.

&'.1.1. Reply Mailbox Field

The reply mailbox field specifies the mailbox to which the request message is
returned after the completion of the requested service. System mailboxes can­
not be used as reply mailboxes.

- 71 -

EXOS/lOl: The Hl/lOl Programming Environment

1.1.1. Request Code Field

The request code field specifies the service to be perf,ormed, typically read
or write.

1.1.4. Return Code Field

The return code field is the result of the request filled in by the system
process. The actual values for the request aud return codes are defined by
individual system services •

.§. • .!. ~ Clock Device

Hl/lOl's abstraction of the clock device is a simple 64-bit counter, incre­
mented in real time every 20 milliseconds. On reset the counter is set to
zero. Processes can set the clock counter to auy value at auy time with the
TIME_SET call, and read it at any time with the TIME_GET call. The clock
counter can be used for auy purpose required by the user application. For
example, it may be used as a time-of-day clock by setting it to the current
time.

Hote this model of the clock provides no facility to the user for interrupting
after a specified interval of time. This clock-related function has been
incorporated directly in Hl/lOl's multi-tasking model by the sleep count
parameter, which can be used to delay a process or force a blocked process to
unblock after a specified interval of time.

- 72 -

EXOS/IOI: The HI/IOI Ethernet Interface

I. THE HI/IOI ETHERNET INTERFACE

The HI/IOI Ethernet interface consists of two parts: a system process which
sends and receives packets, and several HI/IOI kernel calls which serve net­
work management functions. This section describes all necessary details of
the Ethernet system process, and describes the functionality of the network
management calls. For further details about NX/IOI call format, see section
9.

User processes send Ethernet transmit and receive requests to the Ethernet
system process via the Ethernet system mailbox (0009H). The transmit request
describes the location of a packet to transmit, while the receive request
describes a buffer in which to store an incoming packet. In both cases, the
request names a reply mailbox, to which the system process sends a reply mes­
sage when the request completes. Requests may be enqueued without limit, and
will be processed asynchronously. Transmit requests are serviced as rapidly
as the Data Link protocol permits, and return a failure only in the event of
excess collisions. Receive requests return a reply message only when an
incoming packet satisfies all specified address filtering.

Network management functions determine the Ethernet controller's mode, define
which addresses to accept, and gather network statistics. All of these are
defined in terms of abstract objects, accessed only via the appropriate NX/IOI
calls. In each call, a request mask parameter determines whether the request
will read or write (or read and write) a value to/from a given object. This
approach simplifies access to network management function, and insulates the
functions from specific implementation methods.

1.1. Ethernet Transmit Request

In order to send a packet on the Ethernet, a process sends a service request
message to the Ethernet system mailbox. When transmission is complete, the
request message (modified according to the status of the transmission) is
returned to a reply mailbox designated by the requesting process. The request
message does not contain the actual data to be sent, but rather a pointer to
the packet. Any number of messages can be sent to the Ethernet system pro­
cess; they will be queued up and dispatched in the order received. Until the
reply message is received, the message and packet belong to the Ethernet pro­
cess, and should not be modified.

Transmit requests are serviced immediately, unless the controller is in off
net mode (see section 7.3). When a NET_MODE call places the controller off
net, any transmission underway will complete, but any enqueued requests will
remain enqueued. When off net, new transmit requests may still be enqueued.
When the controller is restored to an on net mode, transmission resumes.

If the net disable option is selected, (see section 7.4) then transmission
will appear to proceed normally, but nothing is actually transmitted on the
Ethernet.

Packets are prepared for transmission in standard Ethernet
frame format, as shown in figure 7-1. However, the packet
frame check sequence (CRC) field. This, and the preamble,
EXOS/IOI hardware.

- 73 -

data link layer
need not include a
are generated by

Length Offset

1) 6 o

2) 6 6

3) 2 12

4) n 14

5) 4 14+n

EXOS/101: The NX/101 Ethernet Interface

Field ~

1 Destination
1
1
1
1 1
1 1
1--------------------------------1 1 Source 1
1 1
1 1
1 1
1 1
1 1
1--------------------------------1
1 Type 1
/ /
/--------------------------------1

Data (length is n, where
46 <m n <= 1500 bytes)

. .
/--------------------------------1
1 Frame Check Sequence 1
1 (generated by EXOS/101 B/W) 1
1 /
I 1

/<------------1 byte------------>1

Request

Figure 7-~: Ethernet Packet Format

Reply

Figure 7-2 shows the format of an Ethernet transmit request/reply message.
Its fields are explained in detail below.

1.1.1. Link Field

The link field is required by NX/101 at the beginning of all messages. Its
request and reply values are both undefined. NX/IOl uses this field for
chaining messages.

1.1.1. Reply Mailbox Field

The reply mailbox field identifies the mailbox to which the request message is
returned after completion of the request. In the request message, this must

- 74 -

EXOS/lOl: The HI/l01 Ethernet Interface

Length Offset

1)

2)

3)

4)

5)

6)

7)

8)

4

2

1

1

1

1

2

4

o

4

6

7

8

9

10

12

Field Name

----_._-----------------------------
1 Link
1
1
1
1--------------------------------
1 Reply Mailbox
1

Request Code

Return Code

Address Slot

--------------------------------1
Reserved 1

--------------------------------1
Data Length 1

1
--------------------------------1
Data Address 1

1
1
1

1<------------1 byte------------>1

Figure 7-2: Ethernet Transmit Request/Reply Message

Request Reply

undefined undefined

see text see text

zero preserved

undefined see text

undefined see text

zero undefined

see text undefined

see text preserved

identify an existing user mailbox. Its value in the reply message is the Eth­
ernet system mailbox ide

2.1.1. Request Code Field

The request code field defines the request; in this case, to send a packet,
its value in the request message must be O. The reply message preserves this
value.

2.1 • .!. Return Code Field

The return code field value in undefined in the request message. In the reply
message, it reports the status of the transmission request:

OOR successful transmission, no retry.

01R successful transmission, 1 retry.

- 75 -

EXOS/IOl: The NX/lOl Ethernet Interface

02R successful transmission, more than 1 retry.

lOR transmission failed, excessive collisions.

40R transmission failed, transmit length not in range.

1.1.2. Address Slot Field

The address slot field is an index into the address slot array (see section
7.5). Its value in the request message is undefined. In the reply message,
it contains the address slot number by which this packet would be received by
this station. For instance, the value 255 indicates that the packet was
broadcasted, and should be auto-received. Or, if the packet was transmitted
to this station's own address, the value would be 253. A zero value means
that no slot matched - this packet would not be received by this station.

1.1.1. Reserved Field

This field is reserved for future use. In the request message, its value must
be O. In the reply message, its value is undefined.

1.1.1. ~ Length Field

The data length field is the length, in bytes, of the packet to be transmit­
ted. This value does not include the preamble or eRe fields, which are
appended by EXOS/lOl hardware. In the reply message, the data length field's
value is undefined.

I.l.!. Data Address Field

The data address field is the address of the packet to be transmitted. This
is an segmented address (see section 3.9); the first word is an offset, the
second word a segment base address. The EXOS/lOl requires that the packet lie
entirely within the address range lOOOR-OFFFFR. Additionally, the segment
base address DUst be O. Note that the packet, as handed over to the Ethernet
process, does not include a preamble, so that the address will point to the
first byte of the packet's destination field. The data address field's value
is preserved in the reply message.

1.1. Ethernet Receive Request

In order to receive a packet on the Ethernet, a process sends a service
request message to the Ethernet System mailbox. The request message does not
contain the actual buffer to be filled, but rather a pointer to the buffer.
When reception is complete, the request message (modified according to the
status of the reception) is returned to a reply mailbox designated by the
requesting process. Once the reply message is received, the buffer belongs to
the receiving process. Receive requests are not necessarily dispatched in the
order they are received by the Ethernet system process.

The EXOS/lOl manages receive buffer descriptors in hardware; it can receive
packets back-to-back with m1n1mum interframe spacing as long as sufficient
receive requests have been enqueued. For most applications, it is recommended
that at least two receive buffers be made available at all times. This allows

- 76 -

EXos/lOl: The HI/lOl Ethernet Interface

time for the EXOS CPU to screen out undesired packets (such as spurious net­
work bootstrap protocol messages, or multicast packets which passed the
hardware filter) which would otherwise tie up a single-buffered ~plementa­
tion. By queuing up a fairly large number of receive buffers, protocols can
create a large "receive window" and realize substantial performance ~prove­
ments.

Receive requests return a reply message to a designated reply mailbox only
after an incoming packet satisfies the receive address filtering criteria.
When a NET_MODE call (see section 9) places the controller off ~, any
receive underway will complete, but any enqueued requests will remain
enqueued. Packets arr1v1ng on the Ethernet will be ignored (not placed into
receive buffers). When off net, new receive requests may still be enqueued.

If the net disable option is selected, (see section 7.4) then incoming traffic
is ignored, and receive requests will not return a reply message until the
controller is re-enabled.

If the Exos/lOl was initialized in network bootstrap mode, once the network
bootstrap session is completed, it will not pass messages of the network
bootstrap type to software running under HI/lOl. This prevents any spurious
network bootstrap messages from interfering with successfully-installed proto­
col software on the EXOS/lOl.

Received packets are in standard Ethernet data link layer frame format, as
shown in figure 7-1. The frame check sequence (CRC) field is included.

Figure 7-3 shows the format of an Ethernet receive request/reply message,
which is very much like the transmit request/reply message. Its fields are
explained in detail below.

1.1.1. Link Field

The link field is required by Nx/lOl at the beginning of all messages. Its
request and reply values are both undefined. NX/lOl uses this field for
chaining messages.

1.1.1. Reply Mailbox Field

The reply mailbox field identifies
returned after completion of the
identify an existing user mailbox.
ernet system mailbox ide

1.1.1. Request Code Field

the mailbox to which the request message is
request. In the request message, this must
Its value in the reply message is the Eth-

The request code field defines the request; in this case, to receive a packet,
its value in the request message must be 1. The reply message preserves this
value.

I.!.!. Return Code Field

The return code field value in undefined in the request message. In the reply
message, it reports the status of the receive request:

- 77 -

EXOS/10l: The NX/10l Ethernet Interface

Length Offset Field ~ Request Reply

1) 4 0 Link 1 undefined undefined

I
1
1

--------------------------------1
2) 2 4 Reply Mailbox 1 see text see text

1
--------------------------------1

3) 1 6 Request Code I 1 preserved

4) 1 7 Return Code undefined see text

5) 1 8 Address Slot undefined see text

6) 1 9 Reserved zero undefined
/--------------------------------

7) 2 10 / Buffer Length see text see text
I
1--------------------------------

8) 4 12 1 Buffer Address see text preserved
I
/
1

1<------------1 byte------------>1

Figure 7-1: Ethernet Receive Request/Reply Message

OOH packet received with no error.

04H packet received longer than buffer supplied, truncated.

10H packet received with alignment error.

20H packet received with CRC error.

40H no packet received, buffer supplied was less than 64 bytes.

Note that packets with errors are actually received only if the network mode
is set appropriately.

1.1.1. Address Slot Field

The address slot field is an index into the address slot array (see section
7.5). Its value in the request message is undefined. In the reply message,
it contains the address slot number which matched the destination address of
the packet received. If the controller is in promiscuous mode, then this

- 78 -

EXOS/lOl: The HI/lOl Ethernet Interface

field will return the universal address slot, whether or not any address
matched. If the controller is not in perfect filtering mode, then this field
will return the universal address slot when any multicast packet is received.

I.l.!. Reserved Field

This field is reserved for future use. In the request message, its value must
be O. In the reply message, its value is undefined.

1.1.1. Buffer Length Field

The buffer length field is the length, in bytes, of the receive buffer. The
length does not include the preamble but must include 4 bytes for the frame
check sequence (CRC) field. In order to receive the longest possible Ethernet
packet, the buffer must be at least 1520 bytes long. Minimum size is 64
bytes, which will fit the shortest possible Ethernet packet. Additionally,
the buffer length must be a multiple of 8 bytes; otherwise NX/lOl will reduce
the buffer length to next lower multiple of eight.

In the reply message, the buffer length field returns the number of
actually received, including 4 bytes for the CRC field. Note that
buffer supplied was smaller than the packet received, then the excess
are truncated, and the buffer length will not give the true length
packet.

I.l.!. Buffer Address Field

bytes
if the
bytes

of the

The data address field is the buffer to receive a packet. This is an seg­
mented address (see section 3.9); the first word is an offset, the second word
a segment base address. The EXOS/lOl requires that the buffer lie entirely
within the address range 1000H-OFFFFH. Additionally, the segment base address
must be O. Note that the packet returned by the Ethernet process does not
include a preamble field, so that the address will point to the first byte of
the buffer's destination field. The buffer address field's value is preserved
in the reply message.

1.1. Ethernet Controller Modes

The Ethernet controller provides several optional modes of operation which
essentially define filtering criteria for packets to be received. Processes
can read and modify the controller's mode with the NET_MODE call, which
selects one of four mutually exclusive modes:

o off net - the EXOS/lOl is disconnected from the net. No transmis­
sion or reception of packets takes place. Note, however, that any
transmission or reception in progress is completed before the net­
work is actually disconnected. Transmit and receive requests can
still be enqueued, and network management functions will be ser­
viced.

1 on net, perfect filtering - the EXOS/lOl is connected to the Ether­
net. Multicast packets are received if and only if their destina­
tion addresses match one of the specified multicast addresses. A
two level filter is employed - the first level in hardware, which

- 79 -

EXOS/lOI: The HI/lOl Ethernet Interface

rejects a large fraction of the unwanted messages, and the second
level in software, which traps the balance.

2 on net, imperfect filtering - the EXOS/IOI is con.nected to the Eth­
ernet. Only the hardware filter is used to select the desired mul­
ticast packets. It is possible to receive spurious .alticast pack­
ets, which fall through the hardware filter.

3 on net, promiscuous mode - the EXOS/10l is connected to the Ether­
net. All packets are received regardless of their destination
address.

When the EXOS/10l is reset the controller comes up in mode 0 disconnected.
The user has to explicitly set the desired mode, with the NET_MODE call.

2.4. Ethernet Controller Option Mask

This object defines various options, useful for testing and diagnostic pur­
poses. Available options are defined by the following bit OR-able values:

10H alignment error - enables reception of packets even if the number of
bits received is not a multiple of B.

20H CRC error - enables reception of packets even if the CRC check
fails.

BOH net disable - disables the Ethernet controller so that packets are
not received or transmitted on the Ethernet. However, transmit
requests are still processed by HI/10I, and to user processes appear
to complete successfully if an on net mode is selected.

When reception of flawed packets is enabled, the actual error in a bad packet
can be determined from the return code field in the receive reply message.

1.1. Address Slots

Address slots identify the destination addresses for which packets on the Eth­
ernet should be received by this station. Each slot holds a single six-byte
Ethernet address. Reception can be enabled or disabled individually for each
slot.

Slots are identified by a unique number between 0 and 255. They are desig­
nated for certain purposes, according to this number, as follows:

o the nu1l slot

1-252 multicast address slots

253 physical address slot

254 universal address slot

- BO -

EXOS/lOl: The NX/lOl Ethernet Interface

255 broadcast address slot

The actual number of multicast address slots is configurable. The default
number, and the details of configuring NX/101, are given in section 4.4.14.

Every EXOS/lOl is permanently assigned
tiguous block of Ethernet physical
address is unique over all Ethernets.
cal address is copied from EPROM into
be read and modified.

a physical address from within a con­
addresses allocated to Excelan. This

When the EXOS/10l is reset, the physi­
the physical address slot, where it can

Processes can read and write most address slots with the NET_ADDRS call, and
enable or disable reception for any slot with the NET_RECV call. Only valid
multicast addresses may be written in multicast address slots. Only a valid
physical address may be written in the physical address slot. The address in
the broadcast slot cannot be changed. Note that writing an address in a slot
disables reception on the slot - an explicit HET_RECV call must then be made
in order to enable reception. Enabling or disabling reception on an address
slot does not affect the address contained in it.

When the EXOS/101 is initialized, all multicast address slots are empty. The
physical address slot (number 253) contains the station's unique Ethernet
address. The broadcast slot (number 255) contains the broadcast address. On
initialization, reception is enabled on the physical and the broadcast slots.

Address slot numbers are used as short identifiers for the network addresses
contained in the corresponding slots. For instance, when a packet is
received, the receive reply message returns the address slot number whose
address matched the destination address of the packet. Thus, a slot 253 would
indicate that the packet arrived for the physical address - and a slot 255
would indicate a broadcast packet. The universal slot 254 is returned if the
network is in promiscuous mode, or if a multicast message is received in
imperfect filtering mode.

I.!. Net Statistics

The EXOS/lOl supports network management functions by gathering statistics on
network operations. The statistics appear to the user as an array of two-word
(32-bit) objects. Each object represents a counter that keeps a tally of
events or some other value of interest, as described below. When an event
counter reaches its maximum value, further counting on the object is inhibited
until it is reset.

Not all 32 bits of an object are necessarily used. The number of bits used by
each object is included in the description of the objects below. The used
bits are always the least significant bits of the object. The bits unused by
an object are undefined, and may take any value.

Processes can read and reset objects with the HET_STSTCS call. An object is
referred to by its index in the array, where the index to the first object is
O. Multiple objects may be accessed in a single call, if they are contiguous.
Resetting an object changes its value to O. Resetting the EXOS/lOl resets all
statistics objects - otherwise they are continuously maintained.

- 81 -

Included in the statistics array is a Time Domain Reflectometer. The TDR
function aids system designers and installers locate faults in the Ethernet
cable. Shorts and opens in the cable manifest themselves in reflections,
causing persistent spurious collisions. The TDR object contains the time
delay between the start of transmission and the detection of a collision, in
units of 100 nanoseconds, for the last transmission that encountered a colli­
sion.

Statistics objects are listed below by index number, with a complete descrip­
tion.

o Frames Sent No Errors - a 32-bit counter that counts the number of
frames successfully transmitted with or without retries.

1 Frames Aborted Excess Collisions - a 32-bit counter that counts the
number of transmissions that were aborted because 16 collisions were
encountered.

2 Undefined - reserved for future use.

3 Time Domain Reflectometer - a 16-bit object that remembers the delay
between the start of the last transmission that encountered an
excess collision and the detection of that collision. The delay is
counted in units of 100 nanoseconds.

4 Frames Received No Errors - a 32-bit counter that counts the number
of error-free frames received.

5 Frames Received Alignment Error - a 32-bit counter that counts the
number of frames received with an alignment error i.e. frames that
are not an exact multiple of an 8 bits in length. This statistic is
maintained whether or not reception with alignment errors is enabled
in the options mask (see section 7.4).

6 Frames Received CRC Error - a 32-bit counter that counts the
of frames received which had CRC errors. This statistic
tained whether or not reception with CRC errors is enabled
options mask (see section 7.4).

number
is main­
in the

7 Frames lost - a 32-bit counter that counts the number of frames
which would normally have been received but were lost because no
receive buffers were available.

- 82 -

EXOS/lOl: The HI/lOl Host Interface

!. THE HI/IOl HOST INTERFACE

User software on the EXOS/lOl communicates with the host through a system pro­
cess in the HI/lOl kernel, which transmits and receives messages to and from
the host processor. Access to this process is through a system mailbox asso­
ciated with the host interface (OOOlH). HI/lOl also provides the HEM_READ and
HEM_WRITE calls which access shared Multibus memory directly. This section
describes these facilities as seen by a process on the EXOS/lOl. For informa­
tion about initializing and using the message interface from the host proces­
sor, see section 4.5.

Messages are commonly used to synchronize a producer-consumer relationship
with the host, and to exchange information with objects in host memory which
are unknown to processes on the EXOS/IOI. Typically, messages contain control
information and pointers to data buffers in host memory, which can then be
directly transferred. This approach allows user processes running on the
EXOS/lOl to assemble a data packet from scattered locations in host memory -
which saves the host having to copy scattered blocks into one contiguous
buffer for transfer in a message.

! . .!. Host Transmit Request

In order to transfer a message to the host, a process sends a service request
message to the system mailbox associated with the host. When the transfer is
complete, the request message (modified according to the status of the
transfer) is returned to a reply mailbox designated by the requesting process.
Any number of messages can be sent to the host interface system process; they
will be queued up and dispatched in the order received. Until the reply mes­
sage is receiv~dt the message belongs to the system process and should not be
modified.

Figure 8-1 shows the format of a host transmit request/reply message. Its
fields are explained in detail below.

! . .! • .!. Link Field

The link field is required by HI/IOI at the beginning of all messages. Its
request and reply values are both undefined. HI/IOI uses this field for
chaining messages.

! . .!.~. Reply Mailbox Field

The reply mailbox field identifies
returned after completion of the
identify an existing user mailbox.
interface system mailbox ide

! . .!.1. Request Code Field

the mailbox to which the request message is
request. In the request message, this must
Its value in the reply message is the host

The request code field defines the request; in this case, to transmit a mes­
sage, its value in the request message must be O. The reply message preserves
this value.

- 83 -

EXOS/101: The NX/101 Host Interface

I Length Offset Field ~ Request Reply

1) 4 0 Link I undefined undefined

I
1
I

------------------------------1
2) 2 4 Reply Mailbox 1 see text see text

1
-------------------------------1

3) 1 6 Request Code 1 zero preserved
--------------------------------1

4) 1 7 Return Code 1 undefined see text
--------------------------------1

5) 2 8 Data Length 1 see text see text
1 1
1--------------------------------1

6) n 10 . Data see text preserved .

1<----------1 byte------------>I

Figure !-l: ~ Transmit Request/Reply Message

1.1..4. Return Code Field

The return code field value in undefined in the request message. In the reply
message, it reports the status of the transmission request:

OOH Successful transfer.

04H Transfer failed, host's receive buffer was shorter than the transmit
length. Should this occur, the host still receives the message, but
it is truncated.

1.1..1. Data Length Field

The data length field is the length, in bytes, of the data field to be
transferred. Zero is a valid value. In the reply message, this field returns
the number of bytes actually transferred.

1 • .!.~. Data Field

The data field is the actual message to be sent in the transmit request. The
data can be any number of bytes as long as it lies entirely within the address
range O-OFFFFH. The format of this data is defined entirely by the user. If
the host data order conversion option is selected, NX/101 will apply any
conversion needed for the byte string data type. The data field's contents
are preserved in the reply message.

- 84 -

EXOS/lOl: The NX/lOl Host Interface

1.1,. Host Receive Request

In order to receive a message from the host, a process sends a service request
mellage to the system mailbox associated with the host interface. When recep­
tion is complete, the request message (modified according to the status of the
reception) is returned to a reply mailbox designated by the requesting pro­
cess. Receive requests are queued up and dispatched in the order they are
received by the host interface system process. Once the reply DeS sage is
received, the buffer belongs to the receiving process.

Figure 8-2 shows the format of an host receive request/reply message, which is
very much like the transmit request/reply Blellage. Its fields are explained
in detail below.

Length Offset Field Name Request Reply

1) 4 0 Link 1 undefined undefined

1
1
1

--------------------------------1
2) 2 4 Reply Mailbox I see text see text

1
--------------------------------1

3) 1 6 Request Code I 1 preserved
--------------------------------1

4) 1 7 Return Code 1 undefined see text
--------------------------------1

5) 2 8 Data Length I see text see text
1

--------------------------------1
6) n 10 . Data undefined see text

1<------------1 byte------------>1

Figure !-!: Host Receive Request/ReplI Message

1.1,.1.. Link Fie ld

The link field is required by NX/10l at the beginning of all messages. Its
request and reply values are both undefined. NX/lOl uses this field for
chaining messages.

1.1.1. ReplI Mailbox Field

The reply mailbox field identifies the mailbox to which the request message is
returned after completion of the request. In the request message, this must
identify an existing user mailbox. Its value in the reply message is the host

- 85 -

EXOS/I01: The NX/I0l Rost Interface

interface system mailbox ide

8.1.1. Request Code Field

The request code field defines the request; in this case, to receive a mes­
sage, its value in the request message must be 1. The reply message preserves
this value.

!.l.!. Return Code Field

The return code field value in undefined in the request message. In the reply
message, it reports the status of the transmission request:

OOR Successful transfer.

04R Transfer failed, receive buffer was shorter than the buffer sent by
the bost. Should this occur, the EXOS/lOl still receives the mes­
sage, but it is truncated.

!.1.1. Data Length Field

The data length field is the length, in bytes, of the buffer supplied in this
message. Zero is a valid value. In the reply message, this field returns the
number of bytes actually transferred. Zero is a possible value.

!.l.!. Data Field

The data field is the buffer into which data from the host will be copied. It
can be any number of bytes as long as it lies entirely within address range
O-OFFFFR. The format of this data is defined by the user. If the host data
order conversion option is selected, NX/lOl will apply any conversion needed
for the byte string data type.

!.1. Direct Access !2. Rost System Memory

The EXOS/lOl accesses Multibus memory by mapping part of its own CPU's address
space into Multibus memory addresses. This is the underlying mechanism which
NX/lOl uses to implement the message transfer functions described above. User
software can directly utilize this direct memory access mechanism without sac­
rificing portability by using NI/lOl's HEM_READ and HEM_WRITE calls.

These calls take an address in EXOS/lOl memory, an address in host memory, and
a data transfer length. NX/I0l performs the appropriate mapping and executes
the transfer. If the host data order conversion option is enabled, HI/lOl
will apply any conversion needed for the byte string data type.

!.4. Rost Data Order Conversion

For the convenience of protocol software running on the EXOS/I0l, HI/lOl pro­
vides calls which convert data between the host system's ordering and the 8088
CPU's native ordering. These calls, CVT_WORD and CVT_LWORD, work in conjunc­
tion with the host data order conversion option (see section 4.2). By incor­
porating the calls in EXOS-resident software, the user's software can be made
independent of data ordering, both on the host system, and on the EXOS/I0l.

- 86 -

EXOS/IOl: The XX/IOI Bost Interface

When the host data eonversion option is enabled, XX/IOI sets up the CVT WORD
and CVT_LWORD ealls aceording to the test pattern which the host system
presents in the configuration message. User software running on the EXOS/lOl
ean then use these ealls to convert word and longword data objects passed
through the data field in the standard host meaaage queue, or via the HEM_READ
and HEM_WRITE calls. Note that byte atring conversion, if required, is done
implicitly by the primitive transfer operations. CVT_WORD and CVT_LWORD do
not repeat that conversion.

- 87 -

~V~IAVA; ftA/~U~ ~erne! ~al! Reference

!l,. n/IOI KERNEL CALL BEFERENCE

This section defines the specific format and usage
User software running on the EXOS/IOI should
through these requests. For more information about
kernel calls, see sections 6, 7, and 8.

of n/lOI kernel calls.
access all n/lOI services

the function of n/IOl

Processes request n/IOI services through an INT n instruction, where n is the
type of the desired call. Parameters are generally passed in registers,
although some parameters can be pointers to other parameters in memory. Pass­
ing parameters in registers facilitates writing interfaces for different high
level languages, which may have different calling conventions.

Host calls return a completion code in the register AL. A negative completion
code ~plies an error, and a zero or positive value ~plies success. Unless
otherwise stated, only the registers used for passing parameters and results
are modified.

The following list summarizes the NI/IOI calls, which are grouped according to
the abstract objects on which they operate.

PROC_CREATE
PROC_DELETE
PROC_SLPCNT
PROC_PRIOR
PROC_TIHSLC
PROC_STATUS
PROC_LOCK
PROC_UNLOCK

HLBX_CREATE
HLBX_DELETE
HLBX_SEND
HLBX_RECV

TIME_GET
TIME_SET

NET_MODE
NETflDRS
NET_RECV
NET_STSTCS

HEM_READ
HEM_WRITE

CVT_WORD
CVT_LWORD

VERSION

create a process.
delete a process.
read/write sleep count of a process.
read/write priority of a process.
read/write time slice of a process.
read status of a process.
lock a process.
unlock a process.

create a mailbox.
delete a mailbox.
send a ~ssage to a mailbox.
receive a message from a mailbox.

get the time.
set the time.

read/write the net mode.
read/write the net address in a slot.
enable/disable receive for a slot.
read/clear network statistics.

read system memory.
write system memory

convert data order of word operand.
convert data order of longword operand.

return EXOS/IOl version number.

- 88 -

EXOS/IOI: NX/lOl Kernel Call Reference

The remainder of this section describes the RX/IOI calls individually, in the
order given above. A standard format is used, as follows:

CALL 1WIE IRTEB.B.UPT TYPE

Parameters:

specification of the call parameters.

Results :

specification of the call results.

Description:

specification of the call's purpose and effects.

- 89 -

EXOS/IOI: IX/IOl Kernel Call Reference

Parameters:

IX: the offset part of the starting address of the new process.

IS: the segment part of the starting address of the new process.

CX: the initial sleep count for the new process. A value of -1 (OFFFFR)
is considered infinity.

DL: priority of the new process (0 is the lowest, 255 is the highest).

DB: time slice of the new process in ticks of 20 milliseconds. A value
of -1 (OFFU) is equivalent to an infinite time slice.

SI: the offset part of the address of the top of the stack for the new
process.

Dl: the segment part of the address of the top of the stack for the new
process.

Results:

AL: completion code:

o successful.

OFOB failed, maximum number of processes allowed already exists.

AU: undefined.

IX: process-id of the new process, valid only if call is successful.

- 90 -

EXOS/101: NX/101 Kernel Call Reference

Description:

This call creates a new process with the specified parameters and returns
its process-id. Note that the stack area can be allocated anywhere in
user memory. The stack pointer specified should point to the top of the
new process stack. The initial CPU register values for the new process
are defined as follows:

AX: undefined.

BX: process-id of the process.

ex: undefined.

DX: undefined.

SP: offset for process top-of-stack (parameter SI).

BP: undefined.

SI: undefined.

DI: undef ined.

es: segment base for process code (parameter ES).

D8: undefined.

S8: segment base for process stack (parameter DI).

E8: undefined.

IP: offset for starting address (parameter BX).

FLAGS: interrupts enabled, rest undefined.

The successful completion of this call invokes an immediate scheduling
decision. Thus if a process spawns another process with a zero initial
sleep count and a higher priority than its own, control will be passed
immediately to the new process at its starting address, before the cal­
ling process returns from the call.

- 91 -

EXOS/IOI: NX/IOI Kernel Call Reference

Parameters:

BX: process-id (0 implies calling process).

Results:

AL: completion code:

o successful deletion.

OFIH specified process does not exist.

An: undefined.

Description:

The specified process is deleted if it exists. It is the responsibility
of the programmer to ensure that no harmful effects of deleting the pro­
cess will occur (e.g. a process owning a critical section should not be
deleted etc.). If the process being deleted was waiting in a mailbox it
is first removed from the mailbox's process queue. If a process has
invoked locks, and deletes itself, then any locks are removed.

- 92 -

EXOS/lOl: XX/lOl Kernel Call Reference

Parameters:

BX: process-id (0 implies the calling process).

CX: new sleep count for the process, in ticks of 20 milliseconds. The
value -1 (OFFFFH) represents infinity. This parameter is required
only if a write is requested.

DL: request mask:

Results :

01 write request bit.

02 read request bit.

Read and write can be requested simultaneously (DL • 03).
bits in mask must be 0, or effects are undefined.

AL: completion code:

o successful completion.

OFlH failed, specified process does not exist •

.AU: undefined.

Other

BX: process-id of the specified process, not destroyed if the call
fails.

CX: sleep count of the process just prior to this call. This result is
defined only if the request mask (DL) had the read bit set and the
call was successful.

Description:

This call is used to read/write the sleep count of the specified process.
If the write bit in the request mask (DL) is set then the current value
of the sleep count is replaced by the specified new sleep count (ex). If
the read bit in the request mask (DL) is set, then the the value of the
sleep count prior to this call is returned.

If modified, the new value of sleep count is put into effect immediately
and thus may invoke rescheduling. If the sleep count of a blocked pro­
cess is changed to 0 then it is unblocked even if the process was waiting
for a message to arrive at some mailbox. This call can be used to delay,
suspend or resume a process by setting the sleep count to non-zero,
infinity, or zero respectively.

If this call changes the sleep count of the running process to non-zero
then any locks in effect are canceled, regardless of errors.

- 93 -

EXOS/I0l: NX/I0l Kernel Call Reference

Parameters:

BX: process-id (0 implies the calling process).

DB: new priority of the process (required only if write is requested).
The lowest priority is 0 and the highest priority is 255.

DL: request mask:

Results:

01 write request bit.

02 read request bit.

Read and write can be requested simultaneously (DL • 03).
bits in mask must be 0. or effects are undefined.

AL: completion code:

o successful completion.

OFIB failed. specified process does not exist.

AU: undefined.

BX: process-id of the specified process, if the call succeeds.
wise its value before the call is preserved.

Other

Other-

DB: priority the process prior to this call. This result is defined
only if the request mask (DL) had the read bit set and the call was
successful.

Description:

This call is used to read/write the priority of the specified process.
If the write bit in the request mask (DL) is set, then the current prior­
ityof the process is replaced by the new specified priority (DB). If
the read bit in the request mask is set, then the priority of the process
prior to this call is returned. If modified, the new value of priority
is put into effect immediately and re-scheduling is invoked. Thus if a
process is lowering its own priority and a process with equal or higher
priority is runnable, the call may not immediately return.

- 94 -

EXOS/I0l: NX/I0l Kernel Call Reference

Parameters:

IX: process-id (0 fmplies the calling process).

DL: request mask:

01 write request bit.

02 read request bit.

Read and write can be requested simultaneously (DL - 03).
bits in mask must be 0, or effects are undefined.

Other

DB: new time slice of the process (required only if write is requested)
in ticks of 20 milliseconds. A value of -1 (OlFH) represents infin­
ity.

Results:

AL: completion code:

o successful completion.

OllB failed, specified process does not exist.

AH: undefined.

BX: process-id of the specified process if the call succeeds, otherwise
not destroyed.

DL: time count the process prior to this call. This result is defined
only il ~e request mask (DL) had the read bit set and the call was
successful.

DB: time slice the process prior to this call. This result is defined
only if the request mask (DL) had the read bit set and the call was
successful.

Description:

This call is used to read/write the time slice and time count parameters
of the specified process. If the write bit of the request mask is set
then the current time slice and the current time count parameters are
replaced by the specified new time slice. If the read bit was set in the
request mask then the values of the time slice and time count parameters
are returned. Bote that time count is the process parameter which counts
down, whereas the tfme slice parameter is used to initialize time count
every time it reaches zero. If modified, the new value of time slice is
put into effect immediately and thus affects the duration after which a
rescheduling will be invoked due to the process exhausting its time
slice.

- 95 -

~V~/~V~. aA/~U~ AerneL ~aLl Reference

PRoe_STATUS INT 69

Parameters:

IX: process-id (0 implies the calling process).

Results:

AL: completion code:

o successful completion.

OFlH specified process does not exist.

AH: the status of the process:

0 process running, not locked.

1 process running, locked.

2 process runnable.

3 process blocked.

IX: process-id of the specified process, not destroyed if call fails.

Description:

This call returns the status of the specified process.

- 96 -

EXOS/IOI: HI/IOI Kernel Call Reference

Parameters:

none.

Results:

AL: completion code:

o successful completion.

AH: undefined.

Description:

This call causes scheduling decisions to be suspended until a correspond­
ing PROC_UNLOCK call is executed. A lock is said to be in effect for the
duration of suspension. This call. in conjunction with PROC_UNLOCK. can
be used to exclude other processes in critical sections. A process can
nest locks up to 32K levels deep. To unlock the process. each PROC_LOCK
call should be matched by a corresponding PROC_UNLOCK call - in a manner
similar to open and close parentheses. Any attempt to exceed the nesting
limit of 32K will result in an undefined action.

If a process having locks in effect executes a call that can potentially
cause the process to block. then all locks in effect are removed. Exam­
ples of such calls are MLBX_RECV with a non-zero sleep count or a
PROC_SLPCNT call that sets the sleep count of the calling process to
non-zero.

- 97 -

EXOS/lOl: NI/lOl Kernel Call Reference

Parameters:

none.

Results:

AL: completion code:

o successful completion.

AH: undefined.

Description:

This call removes the effect of a single PROC_LOCK call. If, as the
result of this call, no more locks are pending, then scheduling is
resumed in a normal way. If any events occurred during the locked state
that required a rescheduling, then rescheduling is invoked immediately.
Every PROC_LOCK call should be matched by a corresponding PROC_UNLOCK
call. A PROC_UNLOCK call is a no-op if no locks are in effect.

- 98 -

EXOS/lOl: HI/lOl Kernel Call Reference

Parameters:

IX: must be -1 (OFFFFH), else effect is undefined.

CX: initial number of null messages, must be a non-negative DUmber.

Results:

AL: completion code:

o successful completion.

OEOR failed, maximum number of mailboxes allowed already exists.

OE2R failed, less then zero number of initial null messages.

Ali: undefined.

IX: id of the new mailbox if call successful, otherwise undefined.

Description:

This call creates a new mailbox and returns its ide The specified number
of null messages are enqueued in the mailbox. Note that if the mailbox
is being used as a semaphore, then this allows creating a semaphore with
a specified initial count. The process and regular message queues are
always empty when initialized.

- 99 -

EXOS/IOl: NX/IOI Kernel Call Reference

Parameters:

BX: mailbox-ide

Results:

AL: completion code:

o successful deletion.

OEIH failed, specified mailbox does not exist.

AU: undefined.

BX: undefined, not destroyed if the call fails.

Description:

The specified mailbox is deleted.
mailbox, then they are unblocked
code. Any unreceived messages in
programmer's responsibility to
harmful effects. The user should

If any processes are blocked on this
and resumed with the appropriate error
the mailbox are lost. It is the

ensure that deleting a mailbox has no
not delete a system mailbox.

- 100 -

EXOS/101: NX/101 Kernel Call Reference

Parameters:

BX: mailbox-ide

SI: offset part of the message address. OFFFFH specifies a null mes­
sage.

ES: segment part of the message address. This must be 0, or effect is
undefined.

Results:

AL: completion code:

o successful completion.

OE1H failed, specified mailbox does not exist.

OE4H failed, invalid request for a system mailbox.

OE5H failed, improper buffer (message buffer segment not 0).

AU: undefined.

Description:

This call
or more
unblocked
unblocked

sends the specified message to the specified mailbox. If one
processes are waiting in the mailbox then the first process is
and resumed, having received this message. If a process is
then a rescheduling is invoked immediately.

The message must lie entirely within the address range O-OFFFFH.
first field of the message should be a 32-bit link field available
use by NX/I01. If the specified mailbox is a system mailbox then
message must be formatted according to the specifications of
corresponding system process.

The
for
~e

the

A regular message is appended at the end of all other regular messages in
the mailbox but in front of all null messages, if any. A null message is
appended at the end of all messages in the mailbox. If only null mes­
sages are used then this call is equivalent to a V operation on a sema­
phore.

- 101 -

&&08/101: XX/lOl Kernel Call Reference

Parameters:

BX: mailbox-ide

CX: sleep count, in ticks of 20 milliseconds. A value of -1 (OFFFFH)
represents infinity.

Results:

AL: completion code:

o successful.

OE1R failed, specified mailbox does not exist.

OCOR failed, specified sleep count exhausted.

OE3R failed, the mailbox is being deleted.

AB: undefined.

SI: offset of the message address if the call is successful, otherwise
undefined. A value of -1 (OFFFFR) indicates a null message.

ES: segment part of the message address if the call is successful, oth­
erwise undefined. HI/lOI always returns O.

Description:

If the mailbox's message queue contains any messages, either regular or
null, then this call returns the address of the first message in the
queue.

If there are no pending messages and the sleep count is non-zero, then
the calling process is blocked and appended at the end of the mailbox's
process queue. The sleep count of the process is set to the specified
value. When a message becomes available, the call returns its address,
as above. If the sleep count of the blocked process counts down to zero,
or is explicitly set to zero by a PROC_SLPCNT call, before it receives a
message, then the process is unblocked and returns from this call with
the error code OCOR.

Note that if the sleep count was specified to be zero then the process
effectively does not block and returns immediately with the error code
OCOR. By specifying the sleep count to be infinity, finite non-zero, or
zero, a process can choose to wait forever, wait for a finite time inter­
val, or not wait at all to receive a message.

If this call is made with a non-zero sleep count, then any locks in
effect are canceled, regardless of any errors the call may return.

- 102 -

£lOS/lOl: NX/lOl Kernel Call Reference

Parameters:

cx: number of 16-bit words of clock value to be returned.

DI: offset part of the memory buffer address to which the clock value
will be copied.

ES: segment part of the memory buffer address to which the clock value
will be copied.

Results:

AL: completion code:

o successful.

AH: undefined.

ex: number of words actually copied.

Description:

This call copies the specified number of l6-bit words of the clock value
into the specified memory buffer. The least significant word of the
clock occupies the lowest address of the buffer. If the specified number
of words to be copied is more than the actual number of the words in the
clock, then the extra buffer remains unused. The clock is a 64-bit
counter that is incremented every 20 milliseconds. When the £lOS/IOl is
reset, the clock is initialized as zero.

- 103 -

AAU~/~U~; nA/~U~ ~ernel ~all Reference

Parameters:

cx: number of words to be written.

D1: offset part of the memory buffer address from which the new clock
value will be copied.

ES: segment part of the memory buffer address from which the new clock
value will be copied.

Results:

At: completion code:

o successful.

AB: undefined.

ex: number of words actually written.

Description:

This call copies the specified number of words from the specified buffer
into the clock counter, starting from the least significant word. If the
specified number of words to copy is greater than the number of words in
the clock, then the remainder are not used. The clock is a 64-bit
counter that is incremented every 20 milliseconds.

- 104 -

EXOS/IOI: NX/lOl Kernel Call Reference

Parameters:

CL: options mask, which defines various controller options.
options are defined by the following bit OR-able values:

Available

lOR alignment error - enables reception of packets even if the
number of bits received is not a mUltiple of 8.

20R eRC error - enables reception of packets even if the CRC check
fails.

80R net disable - disables the Ethernet controller so that packets
are not received or transmitted on the Ethernet. However,
transmit requests are still processed by HI/IOI, and to user
processes appear to complete successfully if an on net mode is
selected.

All other bits are undefined and must be O.
required only if a write is requested.

This parameter is

DL: request mask:

01 write request bit.

02 read request bit.

Read and write can be requested simultaneously (DL - 03).
bits in mask must be 0, or effects are undefined.

Other

DB: the new mode of the Ethernet controller. Possible values are:

Results:

OOB off net. Disconnect from the net.

OIB on net, perfect filtering. Connect to net, perfect filter for
multicast addresses.

02B on net, imperfect filtering. Connect to net, only hardware
filter for multicast addresses.

OlB on net, promiscuous mode. Connect to net, receive all packets.

This parameter is required only if a write is requested.

AL: completion code:

o successful.

AU: undefined.

- 105 -

EXOS/lOl: XX/l01 Kernel Call Reference

CL: options mask prior to this call. This result is defined only if the
request mask (DL) had the read bit set.

DB: mode prior to this call. This result is defined only if the request
mask (DL) had the read bit set.

Description:

This call is used to read/write the network controller .ode and options
mask parameters. If the write bit in the request mask (DL) is set, then
the specified mode is written. Only the modes defined above should be
used. Other modes are reserved for Excelan and their effects are not
defined. The options mask defines the errors that are acceptable for the
packets. If the read bit in the request mask is set then the mode and
options mask of the controller prior to this call are returned.

- 106 -

EXOS/10l: HI/lOl Kernel Call Reference

Parameters:

DL: request mask:

01 write request bit.

02 read request bit.

Read and write can be requested simultaneously (DL - 03).
bits in mask must be 0, or effects are undefined.

Other

DB: address slot number. Designates the address slot which this request
will work on. This can be the physical address slot (253) or any
multicast address slot (between 1 and the limit defined by confi­
guration) •

DI: offset part of the address of a six byte array. If a write is
requested, then this array must contain the network address to be
written.

ES: segment part of the address of a six byte array described above.

Results:

AL: completion code:

o successful completion.

ODlR the specified slot does not exist or access is not permitted.

OD3R improper address. Multicast
addresses and the physical
address. Attempting to write
results in this error.

AH: undef ined.

slots can only take multicast
slot can only take a physical

the broadcast slot (number 255)

DL: If bit 3 (mask value 8) is set, then the address slot contained a
valid address prior to this call, otherwise the slot was empty. All
other bits are undefined. This result is valid only if a read was
requested.

Description:

This call is used to read/write an address in the specified address slot.
If the write bit is set in the request mask, then the network address is
copied into the specified slot from the array whose address is specified
in DI, ES. If the read bit was set in the request mask then the network
address in the specified address slot prior to this call is copied into
the array whose address is specified in DI, ES. The address read is
valid only if the slot was not empty prior to this call (DL). If a net­
work address to be written is invalid, the write does not occur, and the

- 107 -

EXOS/10l: HI/10l Kernel Call Reference

address in the slot prior to the call is preserved. Writing an address
into a slot disables receive on that slot. The call NET_RECV must be
explicitly used to enable receive on the slot.

Address slot 253 is reserved for the physical address and address slot
255 is reserved for the broadcast address. Thus the user can find the
physical address by reading the address in slot 253.

- 108 -

EXOS/101: NX/lOl Kernel Call Reference

Parameters:

DL: request mask:

01 write request bit.

02 read request bit.

04 enable receive bit.

Read and write can be requested simultaneously (DL - 03).
bits in mask must be 0, or effects are undefined.

Other

DB: address slot number. Designates the address slot which this request
will work on. This can be the physical address slot (253), the
broadcast slot (255), or any multicast address slot (between 1 and
the limit defined by configuration).

Results :

At: completion code:

o successful completion.

OD1B the specified slot does not exist or access is not permitted.

OD2B the address slot is empty.

AH: undefined.

DL: If bit 2 (mask value 4) is set, then the receive was enabled for
this slot prior to this call, otherwise it was disabled. All other
bits are undefined. This result is defined only if read was
requested.

Description:

This call is used to read/alter the receive status of an address slot.
If the write bit is set in the request mask, then the receive is enabled
or disabled depending on bit 2 of the request mask. If bit 2 (mask - 4)
is set, then receive is enabled, otherwise it is disabled. If the read
bit was set in the request mask then the receive status of the address
slot prior to this call is returned.

- 109 -

EXOS/I01: NX/I01 Kernel Call Reference

Parameters:

DL: request mask:

01 write request bit.

02 read request bit.

Read and write can be requested simultaneously (DL = 03).
bits in mask must be 0, or effects are undefined.

CX: number of objects to be read/reset.

SI: index into the statistics objects array.

Other

DI: offset part of the buffer address to which the statistics objects
are to be copied.

ES: segment part of the buffer address to which the statistics objects
are to be copied.

Results:

At: completion code.

0: successful.

cx: the actual number of objects read/reset.

Description:

This call reads/resets the statistics objects. Net statistics are an
array of 32-bit objects, described in section 7.6. If the read bit is
set in the request mask then the statistics objects starting at the index
specified by SI are copied into the array specified by DI, ES. The
number of objects to be copied is specified in CX. If the write bit is
set in the request mask, then the number of objects specified by CX,
starting at the index specified by SI, are reset to zero. The actual
number of objects read/reset is returned in cx. If the index specified
in SI is out of range, then no objects are read/reset.

- 110 -

EXOS/IOI: NX/IOI Kernel Call Reference

~_~ I~82

Parameters:

ex: number of bytes to be read.

DX: high-order word of the address in system memory.

81: low-order word of the address in system memory.

Dl: offset part of the address in EXOS/IOI memory.

ES: segment part of the address in EXOS/lOl memory.

Results:

AL: completion code:

o successful.

AH: undefined.

Description:

This call copies the specified number of bytes from the specified address
in system memory to the specified address in EXOS/lOl memory. If the
host data order conversion option is selected (see section 4.2), then any
required conversion for the byte string data type will be done.

- 111 -

EXOS/IOl: NX/101 Kernel Call Reference

Parameters:

cx: number of bytes to be written.

DX: high-order word of the address in system memory.

SI: low-order word of the address in system memory.

DI: offset part of the address in EXOS/lOl memory.

ES: segment part of the address in EXOS/101 memory.

Results:

AL: completion code:

o successful.

AH: undefined.

Description:

This call copies the specified number of bytes from the specified address
in EXOS/101 memory to the specified address in system memory. If the
host data order conversion option is selected (see section 4.2), then any
required conversion for the byte string data type will be done.

- 112 -

EXOS/lOl: NX/lOl Kernel Call Reference

Parameters:

BX: word operand to be converted.

Results:

BX: converted word operand.

Description:

If the host data order conversion option (see section 4.2) is selected,
then this call performs any required conversion for the word data type.
It converts a word in the host system's native ordering to the 8088 CPU's
native ordering, and vice versa. The only conversion relevant to this
data type is byte swapping; its necessity is determined by the same test
pattern which enables conversion for message queue data structures.
CVT_WORD assumes that any conversion required for the byte string data
type has already been performed on the operand. If the host data order
conversion option is not selected, then the operand is returned without
modification.

- 113 -

AAV~/~V~; ~A/~U~ ~erne! ~all Reference

Parameters:

IX: first word of longword operand to be converted.

DX: second word of longword operand to be converted.

Results:

IX: first word of converted longword operand.

DX: second word of converted longword operand.

Description:

If the host data order conversion option (see seetion 4.2) is selected,
then this call performs any required conversion for the longword data
type. It converts a longword in the host system's native ordering to the
8088 CPU's native ordering, and vice versa. Possible conversions are
word swapping, byte swapping, or both. Note that all possible conver­
sions are symmetrical, and reflexive. Therefore the order of first and
second word parameters to this call is not important, as long as user
software treats the result consistently.

Necessary conversions are determined by the same test pattern which
enables conversion for message queue data structures. CVT_LWORD assumes
that any conversion required for the byte string data type has already
been performed on the operand. If the host data order conversion option
is not selected, then the operand is returned without modification.

- 114 -

EXOS/IOI: HI/IOI Kernel Call Reference

VERSION INT 84

Parameters:

none.

Results:

AL: always O.

AH: undefined.

CX: version of NX/lOl.

DX: version of the EXOS/lOl hardware.

Description:

This call returns the version number of the EXOS/lOl hardware and NX/lOl.
Version numbers have the form X.Y, where the lower byte (CL or DL) con­
tains the ASCII value of X and the higher byte (CR or DR) contains the
ASCII value of Y.

- 115 -

EXOS/I0l: Initializing and Down-Loading from the Ethernet

10. INITIALIZING Mm DOWN-LOADING FROM m. ETHERNET

The EXOS/lOI can be configured and down-loaded from its Ethernet interface in
a manner quite similar to initialization by a host processor. This permits
its use as a system master where the system's design does not include another
CPU card, or it provides a convenient way to bootstrap diskless workstations.
NX/I0l firmware includes a simple protocol which supports the network
bootstrap function. This section describes the network bootstrap protocol and
provides information sufficient to implement a corresponding bootstrap server.

Network bootstrap is initiated either by a jumper option (see section 11) upon
reset, or explicitly by a host system during configuration (see section
4.4.4). In either case, the EXOS/I0l:

1) finds a network bootstrap server on the Ethernet.

2) builds up a session with the boot server.

3) processes commands, including configuration and software down-load,
received from the boot server.

4) executes the down-loaded code.

The network bootstrap protocol is based on request and reply messages which
are encapsulated in standard Ethernet packets. The Ethernet type field iden­
tifies net boot packets as belonging to an Excelan protocol type. Another
sub-type field designates the EXOS/IOI network bootstrap protocol specifi­
cally.

10.1. Network Bootstrap Protocol Description

Figure 10-1 shows a state diagram of the network bootstrap protocol, both for
client (the EXOS/I01) and for boot server. In this diagram, states are
represented as capitalized names enclosed in circles. State transitions
appear as solid lines, with an arrow at one end to indicate the direction of
the transition. Ethernet messages are shown as broken double lines, with the
name of the message imbedded. An arrow at one end indicates the direction of
transmission. Reception of an Ethernet message defines an event, and usually
triggers a state transition. Note that transmission by one party does not
guarantee reception by the other.

Whenever the event driving a state transition is a timeout, the line includes
a C language expression in parentheses, such as "(f<FR)," or "(f>-FR)." The
lower-case identifiers to the left in such an expression are counters, and
refer to the number of timeouts of this kind which have occurred so far, while
the upper-case constants to the right refer to the maximum number of retries
permitted for this timeout. When a timeout occurs, the state transition taken
will be that for which the expression is true. The counters are initialized
and modified according to specific events, usually packet transmission or
arrival. The appropriate action is shown as a C language statement enclosed
in curly braces below the associated event. For example, "{f++}" increments
the FIND request counter whenever the client transmits that message.

- 116 -

EXOS/IOI: Initializing and Down-Loading from the Ethernet

EXOS/IOI states, shown to the left of the diagram, are as follows:

RESET denotes that the EXOS/IOI has been reset, but has not yet attempted
a network bootstrap.

FIND REPLY WAIT denotes that the EXOS/IOI has sent one or more find
request messages, and not yet received a reply to the most recent one.

SELECT REPLY WAIT denotes that the EXOS/IOI has sent one or more SELECT
request messages, and not yet received a reply to the most recent one.

COMMAND REQUEST WAIT denotes that the EXOS/lOI has received a SELECT
reply message, and is now awaiting a command request message from the
selected boot server.

EXECUTE denotes that the EXOS/IOI has received a valid execute request
message, and sent the corresponding reply message. It now begins to exe­
cute the code which has presumably been down-loaded by the boot server.

ABORT denotes that the network bootstrap attempt has failed, after
exhausting a specified number of retries (16 by default). The EXOS/IOI
displays an error code on the status LED until it is reset.

Boot server states for a straightforward implementation (shown to the right of
the diagram) are as follows:

BOOT REQUEST WAIT denotes that the boot server is prepared to build a
boot session with some EXOS/IOl client. In this state, it responds both
to find request and SELECT request messages.

COMMAND REPLY WAIT denotes that the boot server has received a SELECT
request message, and sent back a SELECT reply message, thereby establish­
ing a boot session with some EXOS/IOl client. The boot server proceeds
directly to send a command request message, and then awaits a command
reply message from the client associated with this session.

State transitions occur only in response to some asynchronous event. In the
network boot protocol, two basic types of event occur: arrival of a message
on the Ethernet, or a timeout while waiting for some message. An exception is
the START NET BOOT event, which actually encompasses two circumstances (neither
of which involves Ethernet messages) that can initiate the network bootstrap
procedure.

The network bootstrap protocol is based on three general types of request mes­
sage. For each request message, the protocol defines a reply message whose
format is identical. These message pairs are as follows:

1) The EXOS/IOI broadcasts the FIND request message to discover the
existence and address of bootstrap servers on the network. All
bootstrap servers which receive this message send back a FIND reply
message.

- 117 -

EXOS/10l: Initializing and Down-Loading from the Ethernet

nOS/10l STATES

~START NETBOOT
{f=O,s-O}

f - find request retries
FR • find retry limit • 16
s - select request retries
SR = select retry limit • 16
c • command request retries
CR = command retry limit

= =-FIND==REQUEST=-"
{f++}

==FIND=REPLY====-
{saO}

=-SELECT-REQUEST-"
{s++}

-SELECT-REPLY.:==
{c=O}

~COMHAND=REQUEST==
{c++}

exec>-----

BOOT SERVER STATES

Figure 10-1: State Diagram of Network Bootstrap Protocol

- 118 -

EXOS/101: Initializing and Down-Loading from the Ethernet

2) The EXOS/I01 sends the SELECT request message to the one bootstrap
server which it wants to control the subsequent bootstrap process.
The selected bootstrap server acknowledges its readiness to perform
this role by sending back the SELECT reply message.

3) The bootstrap server can use several different COMMAID request mes­
sages to configure the EXOS/IOl, down-load code, up-load its memory
contents, and begin execution. For each request, the EXOS/101
returns a COMMAND reply message to the bootstrap server.

A normal network bootstrap (where no packets are lost, all necessary resources
are available, and nobody crashes) proceeds as follows, from the EXOS/IOl's
point of view:

1) The EXOS/I01 initiates the network bootstrap procedure upon either a
hardware or software reset, if the net boot jumper is selected. If
the net boot jumper is not selected, it can still initiate a network
bootstrap upon initialization by the host system. In any case, it
gets the ball rolling by broadcasting a FIND request message. This
message contains:

a) the version number of the network bootstrap protocol which the
EXOS/I01 supports.

b) the number of buffers available on the EXOS/I01 to receive
incoming network bootstrap COMMAND request messages.

c) the length of the buffers described above.

d) the Ethernet address of the EXOS/I01 (this is a separate field
from the standard Ethernet source address field).

e) a message ID, which uniquely identifies the request message.

f) a timeout parameter, which tells the boot servers how long the
EXOS/101 will wait for a reply message before re-trying or giv­
ing up.

g) a configuration message, which describes the current configura­
tion of the EXOS/101. This is nearly identical to the confi­
guration reply message returned during initialization by a host
system (see section 4.4).

After sending the request message, the EXOS/101 enters the FIND
REPLY WAIT state.

2) Before its FIND reply timeout expires, the EXOS/I01 should receive a
FIND reply message from at least one qualified bootstrap server. If
more than one is received, the EXOS/101 selects the first to arrive,
and discards subsequent FIND reply messages. This message provides
the following information:

- 119 -

EXOS/IOI: Initializing and Down-Loading from the Ethernet

a) the Ethernet address of the bootstrap server (as above, this is
a separate field from the standard Ethernet source address
field).

b) a timeout parameter, which specifies how long the EXOS/IOI
should wait for the boot server's SELECT reply message.

Immediately upon recelvlng a legitimate FIND reply wessage, the
EXOS/IOI sends a SELECT request message to the boot. trap server
whose address was contained in the reply message. This tells the
designated bootstrap .erver that it is responsible for bootstrapping
this EXOS/IOI client. The SELECT request message contains exactly
the same information as the FIND request message, except possibly
for the timeout parameter. The EXOS/IOI specifies its current
effective timeout value in this field. After sending the SELECT
request message, the EXOS/IOI enters the SELECT REPLY WAIT state.

3) Before its SELECT reply timeout expires, the EXOS/IOI should receive
a SELECT reply message from the selected bootstrap server. This
contains the same information as the FIND reply message, except pos­
sibly for the timeout parameter, which now tells the EXOS/IOI how
long to wait before giving up on receiving a COMMAND request message
from the boot server. Reception of the SELECT reply message estab­
lishes a bootstrap session, and the EXOS/IOI enters the COMMAND
REQUEST WAIT state.

4) Before its COMMAND request timeout expires, the EXOS/IOI should
receive a COMMAND request message from the selected bootstrap
server. When a command arrives, the EXOS/IOI processes the command
and returns a COMMAND reply message to the bootstrap server, inform­
ing it of the command's result. After sending the reply message,
the EXOS/IOI normally returns to the COMMAND REQUEST WAIT state.
However, if the command was an EXECUTE request, the bootstrap ses­
sion is terminated <as far as the EXOS/IOI is concerned) and the
EXOS/IOI proceeds to execute the code which has presumably been
down-loaded.

While the description above specifies exactly how the EXOS/IOI will behave
during a network bootstrap session, the bootstrap server's behavior is largely
up to its implementor. The network bootstrap protocol is implemented with a
typical bootstrap server model in mind, such as is shown in the .tate diagram.
A real boot server might support more than one boot session simultaneously;
the diagram shows only the context of a single boot session.

Note also that this diagram describes only the case where the EXOS/IOI pro­
vides just one receive buffer for processing net boot commands. Therefore it
aSSumes that only one command may be outstanding. Future releases of NX/IOI
may permit pipe lined boot command processing by supplying multiple buffers.
While this model for a boot server will still work when .ore buffers are
available, it will not derive any performance advantage. At any rate, from
the boot server's point of view, net boot proceeds as follows:

- 120 -

EXOS/lOl: Initializing and Down-Loading from the Ethernet

1) The bootstrap server starts in the BOOT REQUEST WAIT state, awaiting
the arrival of either a FIND request message or a SELECT request
message. Upon reception of a FIND request message, the boot server
examines relevant information in this message, such as the protocol
version. If the boot server decides that it can service the client
which the request identifies, it sends back a FIND reply message to
the address contained in the request. This message tells the client
the boot server's address and how long a timeout it .hould use when
waiting for subsequent messages from the boot .erver. The boot
server then returns to the BOOT REQUEST WAIT state.

2) When the bootstrap server receives a SELECT request message, it
records the information it will need to boot the client, and returns
a SELECT reply message. Once again, this contains a timeout parame­
ter which tells the client how long to wait for subsequent messages.
At this point, a bootstrap session has been established, so far as
the boot server is concerned.

3) After sending a SELECT reply message, the bootstrap server proceeds
immediately to send COMMAND request messages to the client. After
sending any COMMAND request message, the bootstrap server enters the
COMMAND REPLY WAIT state.

4) Before its COMMAND reply timeout expires, the bootstrap server
should receive a COMMAND reply message. It then sends the next COM­
MAND request message and re-enters the COMMAND REPLY WAIT state.
However, if the COMMAND reply message was that of an execute
request, then the bootstrap session is terminated and the boot
server returns to the BOOT REQUEST WAIT state.

The description so far of the network bootstrap protocol has been simplified
somewhat by ignoring considerations such as spurious messages or lost packets.
However, these things can happen. Therefore, the protocol provides mechanisms
which can accommodate errors during, and ensure completion of, the network
bootstrap process.

Once the boot server's address is established, the EXOS/lOI will ignore mes­
sages from other sources. Another general principle the EXOS/lOl obeys is to
ignore any message types it does not expect in its current state. For
instance, COMMAND request messages will have no effect if the EXOS/IOI is
still in the SELECT REPLY WAIT state. A straightforward boot server implemen­
tation would also follow these rules.

The network bootstrap protocol uses a timeout/retry mechanism to recover from
lost messages and various catastrophic circumstances. In any state where the
EXOS/IOI is waiting for some message to arrive, if the message does not arrive
within some specified real-time interval (3000 milliseconds by default), the
EXOS/l01 will timeout. Depending on circumstance, it may then abort or retry,
possibly entering a different state. The EXOS/IOI maintains two counters
which help determine the appropriate action. The FIND request counter is
reset by the START NET BOOT event, and is incremented every time a FIND request
message is transmitted. The SELECT request counter is reset when a FIND reply
message is received, and is incremented every time a SELECT request message is
transmitted. State transitions which occur on timeout events are described

- 121 -

EXOS/lOl: Initializing and Down-Loading from the Ethernet

below, according to the state before timeout:

FIND REPLY WAIT: When a timeout occur., the EXOS/I0l normally transmits
another FIND request message and returns to the FIND REPLY WAIT state.
However, if the FIND request counter shows that 16 PIND request messages
have already been sent, then the net boot attempt is aborted and the
EXOS/I0l enters the ABORT state. The EXOS/I0l will then display the
appropriate error code on its status LED (see section 11). If the net
boot was instigated by a host system, then the appropriate error code is
also written into the configuration message's completion code field in
host memory (see section 4.4.3).

SELECT REPLY WAIT: When a timeout occurs, the EXOS/I0l normally
transmits another SELECT request message and returns to the SELECT REPLY
WAIT state. However, if the SELECT request counter shows that 16 SELECT
request messages have already been sent, then the EXOS/I0l transmits
another PIND request message and returns to the FIND REPLY WAIT state.
If the FIND request counter also shows that 16 PIND request messages have
already been sent, then the net boot attempt is aborted, as above.

COMMAND REQUEST WAIT: When a timeout occurs, the EXOS/I01 normally
transmits another FIND request message and returns to the PIND REPLY WAIT
state. However, if the PIND request counter shows. that 16 FIND request
messages have already been sent, then the net boot attempt is aborted, as
described above.

Timeout processing in the bootstrap server is up to the implementor. In the
typical implementation which the state diagram describes, only the COMMAND
REPLY WAIT state can generate a timeout event. The timeout period, and the
number of retries allowed, are dependent on the implementation. Typically,
the timeout period multiplied by the number of retries allowed should not
greatly exceed the EXOS/I0l's COMMAND REQUEST WAIT timeout (which can be
specified by the boot server in the SELECT reply message).

During a network bootstrap attempt, it is possible that either the client or
server could receive messages generated during some prior network bootstrap
attempt gone awry. For instance, if the SELECT reply message is lost, then a
boot server would still assume that a session had been established, and would
persist in retrying on its first COMMAND request message. Meanwhile, the
EXOS/I01 might have established a new boot session. Some means is needed to
distinguish between messages belonging to the legitimate boot session and the
defunct boot session. Por this purpose, the network bootstrap protocol sup­
ports the concept of message IDs and, once a session is established, session
IDs.

The EXOS/lOl generates a message ID field for both FIND request and SELECT
request messages. This ID guards the EXOS/lOl against spurious message recep­
tion up to the point that a network bootstrap session is established. The
EXOS/IOl's message ID generation algorithm guarantees that it will be unique
in each and every message from the time the board is reset until it is reset
again. Furthermore, the field contains a random component which makes makes
ID collision very unlikely even after a reset occurs. As described above, the
boot server is expected to copy the message ID from FIND and SELECT request
messages into their corresponding reply messages.

- 122 -

EXOS/lOl: Initializing and Down-Loading from the Ethernet

When the boot server establishes a session (by returning the SELECT reply mes­
sage), it is responsible for creating a unique l2-byte session ID value, which
it passes to the EXOS/lOl in the SELECT reply message. In all subsequent COM­
MAND request messages, the boot server should write this value into the first
12 bytes of the l6-byte message ID field. When the EXOS/lOl receives a COM­
HAND request message, it ignores it unless the first 12 bytes of the message
ID field agree with the value it received in the SELECT reply message. When
the EXOS/lOl prepares a reply message, it copies the entire .e. sage ID field
from the corresponding request message. The remaining 4 bytes at the end of
the ID field can be used for any purpose which suits the boot server - typi­
cally message serialization.

10.1. ~ Transmission Order

This section defines the order of transmission for data objects which are
known to the network bootstrap protocol implemented by NX/l01. Network
bootstrap servers must obey these conventions when transmitting messages to
the EXOS/l01, and should observe them when interpreting messages received from
the EXOS/101.

The fields defined by the Ethernet specification for the standard data link
layer frame format (destination address, source address, type, and frame check
sequence) are, of course, transmitted in their standard order. The Ethernet
specification also defines how the contents of a packet's data field (which
contains all network bootstrap message contents) are to be transmitted, but
only in terms of bit significance. For each byte in a packet's data field,
the Least Significant Bit (LSB) is transmitted first, and the Most Significant
Bit (MSG) last.

The byte ordering of multi-byte data objects in network bootstrap messages is
defined solely by the network bootstrap protocol. This follows a simple rule.
All data objects are transmitted as though stored in memory according to the
8088 CPU's native order, and then transmitted one byte at a time, starting at
the lower memory address. This is the transmission order which naturally
occurs when the network bootstrap protocol is implemented on the EXOS/10l.
When implementing a bootstrap server based on a different CPU architecture,
programmers should be careful to observe this ordering.

Note that the EXOS/101 host data order conversion option does not apply to the
contents of network bootstrap messages. However, the option may be enabled as
usual by the CONFIGURE request message. Simply set up the test pattern field
as it would have been written by the system being bootstrapped. Data conver­
sion will then work on all messages passed between the client EXOS/10l and its
host processor. The rest of the CONFIGURE request message, and all other mes­
sages, will still be interpreted according to 8088 data ordering.

~.d. Network Bootstrap Protocol Message Header

Network bootstrap request and reply messages share a common header format,
shown in figure 10-2. The following paragraphs describe its individual fields
in detail.

- 123 -

nOS/101: Initializing and Down-Loading from the Ethernet

Length Offset Field Name Request Reply

1) 2 0 J Subtype J 1080R preserved

J J

1--------------------------------1
2) 16 2 · Message ID see text see text · · · 1--------------------------------1
3) 1 18 1 Request Code J see text preserved

1--------------------------------1
4) 1 19 1 Reply Code 1 undefined see text

1--------------------------------1
5) 2 20 J Message Length J see text see text

1--------------------------------1
6) n 22 · Request-Specific Fields ••• see text see text ·

1<------------1 byte------------>1
Figure 10-2: Network Bootstrap Protocol Request/Reply Message Reader

10.1.1. Subtype Field

The subtype field identifies specific Excelan protocol types. The network
bootstrap protocol's type is 0; all request and reply messages must contain
this value.

10.1.1. Message ID Field

The message ID field is used before a session is established to associate
request messages with the corresponding reply messages. The nOS/101 gen­
erates unique message ID numbers for the FIND and SELECT request messages, and
the boot server simply copies these numbers into the corresponding reply mes­
sages. Once a session is established, this field identifies all request and
reply messages as belonging to that session, and can be used to serialize mes­
sages. The boot server generates the session ID number used in all subsequent
COMMAND request and reply messages. The following sections will explain this
field in more detail.

10.1.1. Request Code Field

The request code field identifies the particular request or reply contained in
a network bootstrap message. Values are as follows:

- 124 -

EXOS/101: Initializing and Down-Loading from the Ethernet

o DOWNLOAD
1 UPLOAD
2 EXECUTE
l CONFIGURE
4 FIND
5 SELECT

The same code is used for both request and reply messages.
tinguished from each other by context.

They are dis-

lQ.l.4. Reply Code Field

The reply code field returns the result of a request. It must be 0 in request
messages. Its meaning in reply messages will be explained in the individual
message descriptions below.

lQ.l.1. Message Length Field

The message length field defines the number of bytes beyond its own position
in the Ethernet packet containing the request or reply message. As usual,
this should not include the CRC field's length.

lQ.l.!. Request-Specific Fields

Beyond the message length field, the remainder of
defined according to the purpose of the request.
below, in the individual message descriptions.

10.4. Message Encapsulation

each request message is
These fields are described

Request and reply messages are encapsulated in the data field of a standard
Ethernet packet, as shown in figure 10-3.

The EXOS/101 places the physical address of a boot server in the destination
address field, except in the FIND request message, where it contains the Eth­
ernet broadcast address. The boot server should always place the physical
address of a client EXOS/lOl in the destination address field.

The source address field always contains the physical address of the party
which sent the message.

- 125 -

EXOS/I01: Initializing and Down-Loading from the Ethernet

ETHERNET PACKET

/ Destination /
/-----------------------------/
/ Source 1
/-----------------------------/
1 Type /
1-----------------------------1
/ Data /

/ /
/-----------------------------/
/ Frame Check Sequence 1

/ /
/--------/
1 /

/
1
1
1
/
1
1
1

REQUEST/REPLY MESSAGE

1 Subtype 1
/-----------------------------/
1 Hessage ID /
1-----------------------------/
/ Request Code 1
1-----------------------------/
1 Reply Code 1
1-----------------------------1
1 Hessage Length 1
1-----------------------------1
1 Request-Specific Fields... 1

Figure 10-3: Encapsulation of Request/Reply Hessage

The ~ field should always contain the Excelan protocol type, which in Eth­
ernet parlance is:

80-10

The value above is given in hexadecimal notation, and should be transmitted
left-most byte first. On the EXOS/I01 itself, this is equivalent to storing
the 16-bit value 1080H in the 8088 CPU's native order.

The following sections describe the individual request and reply messages,
including a detailed description of the data fields unique to each request.
The diagrams for these messages do not show the individual Ethernet fields or
the standard message header fields. Offset addresses shown for the messages
are calculated from the beginning of the standard message header (at the sub­
type field).

10.1. FIND and SELECT Request/Reply Messages

The FIND and SELECT request messages are described together here because their
format, shown in figure 10-4, is identical. The EXOS/101 broadcasts the FIND
request message to identify bootstrap servers, which return a FIND reply mes­
sage to the client's physical address. The EXOS/I01 then sends the SELECT
request message to the physical address of a boot server, telling it to
bootstrap the EXOS/101. The boot server acknowledges this with a SELECT reply
message. The following paragraphs describe the individual fields in detail.

- 126 -

EXOS/101: Initializing and Down-Loading from the Ethernet

Unless otherwise stated, each field's function is identical in FIND and SELECT
messages.

Length Offset

1) 22 o

2) 2 22

3) 2 24

4) 2 26

5) 6 28

6) 12 34

7) 2 46

8) 80 48

Field ~ Request Reply

Standard Message Header Fields: see tezt see text . .
--------------------------------1
Protocol Version 1 1 preserved

1
--------------------------------1
Number of Buffers 1 1 preserved

1
--------------------------------1
Buffer Length 1 512 preserved

1
--------------------------------1
Station ID 1 see text see tezt

1
1
1
1
1

--------------------------------1
Session ID undefined see text

--------------------------------1
Receive Wait Timeout 1 see tezt see text

1
--------------------------------1
Configuration Message see text
(in request messages only)

1<------------1 byte------------>1

Figure 10-4: Network Bootstrap FIND/SELECT Request/Reply Message

10.1.1. Standard Message Header Fields

The EXOS/I01 writes a unique value into the message ID field in each request
message. The boot server should return this same value in the reply message,
enabling the EXOS/10l to associate the two.

The request code field'L value in the FIND request is 4, in the SELECT request
5. The boot server should return the lame value in the reply melsage.

The reply code field should be 0 in both request and replymeslages.

The message length field contains the value 106 in the request messages. Its

- 127 -

EXOS/IOI: Initializing and Down-Loading from the Ethernet

value in the reply message should be 26.

The protocol version field contains the reV1S10n level of the network
bootstrap protocol supported by the EXOS/IOI. Boot servers can examine this
field to check that they are compatible with the client's ~ersion. It is
interpreted as a simple 16-bit numeric ~alue. The current protocol version is
1. The boot server should preserve this value in the reply .essage.

The number of buffers field tells the boot server how many buffers the client
EXOS/IOI provides for processing COMMAND requests. This determines how many
outstanding requests the boot server should allow at any time. Its current
value is 1. The boot server should preserve this valUe in the reply message.

The buffer length field specifies the length of the EXOS/IOI's receive buffer.
This determines the maximum size COMMAND request packets the EXOS/IOI can
receive, excluding the 4-byte CRC field. Its current value is 508 bytes. The
boot server should preserve this value in the reply message.

The station ID field contains the physical address, in standard Ethernet for­
mat, of the party to which a message pertains. While this is normally the
same as a packet's source address field, this is not necessarily the case. A
bootstrap server might place a different boot server's address in this field
in order to "hand off" a boot session. The EXOS/IOl examines this field in
FIND and SELECT reply messages to determine the boot server's physical
address. The boot server should examine this field to determine the client's
physical address, as well. The EXOS/IOI will always place its effective phy­
sical address in this field.

J&.1.!. Session ID Field

The session ID field is undefined in the FIND request and reply messages. It
is also undefined in the SELECT request message. In the SELECT reply message,
the boot server should return a unique value in this field which identifies
the boot session just established. The EXOS/IOI will then accept COMMAND
request messages only if the first 12 bytes of their message ID field matches
this value.

10.1.1. Receive Wait Timeout Field

The receive wait timeout field is used to negotiate the timeout interval which
the EXOS/IOI observes when waiting for some message from the boot server. It
is specified in milliseconds, but the EXOS/IOI will round it up to the next
20-millisecond interval if it is not an even mUltiple of 20. In the FIND
request message, the EXOS/IOI declares the current value, which is 3000 mil­
liseconds by default. The default value is in force after a reset, and is
reinstated whenever the EXOS/IOI performs a FIND request retry. Therefore the

- 128 -

EXOS/IOI: Initializing and Down-Loading from the Ethernet

EXOS/IOI will timeout and retry if it has not received a FIND reply message
within 3 seconds after sending the FIND request.

The boot server can specify a different value in the FIND reply Dessage, and
the EXOS/lOl will copy this value (subject to rounding) into the SELECT
request message. In the SELECT reply Dessage, the boot server can once again
specify a different value. In either reply message, the value OFFH selects
the current value. If the value specified is 0, then the EXOS/IOI will not
timeout, but will wait indefinitely. This is useful for debugging purposes.

lQ.1.!. Configuration Message Field

The configuration message field is defined only for the FIND and SELECT
request messages. The reply messages do not include this field and the boot
server need not allocate space for it in the message length field. Its format
is exactly identical to the configuration message described in section 4.4;
it should be interpreted as though it were a configuration reply message. It
describes the current configuration of the EXOS/IOl, which will express all
the default values if the board has just been reset. If the board has been
configured previously (which may occur if initialized by a host system) then
it will reflect any modifications made since reset time.

10.!. DOWNLOAD Request/Reply Message

The bootstrap server can use the DOWNLOAD request message to down-load code
and data to the EXOS/IOI's RAM. Any area of memory normally available to the
user can be used. Figure 10-5 shows the format of the request message, and
the following paragraphs describe its individual fields in detail.

10.!.1. Standard Message Reader Fields

The boot server should write the session ID into the first 12 bytes of the
message ID field in each request message. The remaLnLng 4 bytes may be used
for any purpose which suits the boot server. In the reply message, the
EXOS/lOl will preserve this entire field's value.

The request code field'~ value for the DOWNLOAD request is O.
returns the same value in the reply message.

The EXOS/I01

The reply code field should be 0 in the request message. In the reply mes­
sage, it reports the status of the DOWNLOAD request.

o successful completion.

AlR destination memory block overlaps the memory reserved for NX/lOl, no
copy done.

AIR invalid request.

The message length field will depend on the length of the data field in the
request message. Its value in the reply message is 10.

- 129 -

EXOS/101: Initializing and Down-Loading from the Ethernet

Length Offset Field ~ Request Reply

1) 22 0 Standard Message Beader Fields . see text see text .

--------------------------------1
2) 2 22 Load Length see text see text

3) 4 24 Reserved zero undefined

1--------------------------------
4) 4 28 1 EXOS Down-Load Address

1
see text preserved

1
I
1--------------------------------

5) n 32 : Data see text
: (in request message only)

1<------------1 byte------------>1

Figure 10-1: Network Bootstrap DOWNLOAD Request/Reply Message

10 • .,2.1. Load Length Field

The load length field specifies the length of the data field in the request
message. In the reply message. this field returns the number of bytes actu­
ally down-loaded into EXOS/101 memory.

10.!.1,. Reserved Field

The reserved field should contain zeros in the request message. Its value is
undefined in the reply message.

!Q..!.!. EXOS Down-Load Address Field

The EXOS down-load address field specifies the address in EXOS/101 memory to
which the data should be transferred. Note that, as with all addresses refer­
ring to locations in EXOS memory. this should be a segmented address in the
8086 style. Its value is preserved in the reply message.

In the request message, the data field contains the data
Given the current receive buffer size of 508 bytes, the
field is 462 bytes. The data field is not defined in the
should space be allocated for it there.

- 130 -

to be down-loaded.
maximum size of this
reply message, nor

EXOS/101: Initializing and Down-Loading from the Ethernet

10.1. UPLOAD Request/Reply Message

The bootstrap server can use the UPLOAD request to read data from the
EXOS/101's RAM. It is similar to the DOWNLOAD request, except that the data
field is defined for the reply message instead of the request .elsage. Figure
10-6 shows the format of the request message, and the following paragraphs
describe its individual fields in detail.

Length Offset Field Name Request Reply

1) 22 0 · Standard Message Header Fields · see text see text · · · · --------------------------------1
2) 2 22 Load Length 1 see text see text

1
--------------------------------1

3) 4 24 Reserved 1 zero undefined
1
1
1

--------------------------------1
4) 4 28 EXOS Up-load Address 1 see text preserved

I
I
1

--------------------------------1
5) n 32 · Data see text

· (in reply message only) · ----------------------------------
1<------------1 byte------------>1

Figure 10-i: Network Bootstrap UPLOAD Request/Reply Message

10.1.1. Standard Message Header Fields

The boot server should write the session ID into the first 12 bytes of the
message ID field in each request message. The rema1n1ng 4 bytes may be used
for any purpose which suits the boot server. In the reply message, the
EXOS/101 will preserve this entire field's value.

The request code field'~ value for the UPLOAD request is 1.
returns the same value in the reply message.

The EXOS/10l

The reply code field is should be 0 in the request message. In the reply mes­
sage, it reports the status of the UPLOAD request:

o successful completion.

- 131 -

64U~/1Ul: Initializing and Down-Loading from the Ethernet

A3B specified Demory does not exist, no copy done.

AlB invalid request.

The message length field'L value in the request Dessage should be 10. Its
value in the reply message viII depend on the length ·of the data field.

ll.1.1. Load Length Field

The load length field in the request message specifies the DUmber of bytes to
be read from the EXOS/I0l's .emory. In the reply message, this field returns
the DUmber of bytes actually read from EXOS/I01 memory.

10.1.1. Reserved Field

The reserved field should contain zeros in the request message. Its value in
the reply message is undefined.

ll.1.4. 1m! ~-load Address Field

The EXOS up-load address field in the request message specifies the address in
EXOS/lOI memory from which to read data. In the reply message, its value is
preserved.

The data field is not defined in the request message, nor should space be
allocated for it there. In the reply message, the data field contains the
data read from EXOS memory. As in the DOWNLOAD command, this is constrained
by the current receive buffer size of 508 bytes; its maximum size is 462
bytes.

ll.!. CONFIGUl.E Reguest/Reply Message

The bootstrap server can use the CONFIGURE request to modify the KIOS/IOI's
configuration, just as the host would at initialization time (see section
4.4). Normally, a boot server performs configuration with its first COMMAND
request message, before down-loading software; after configuration the con­
tents of user memory on the EXOS/lOI is not defined. However, configuration
is not mandatory; if neglected, all configuration options will retain their
current values, or the default values if the board has not been configured
since reset. Figure 10-7 shows the format of the request message, and the
following paragraphs describe its individual fields in detail.

10.!.1. Standard Message Beader Fields

The boot server should write the session ID into the first 12 bytes of the
message ~ field in each request message. The rema1n1ng 4 bytes may be used
for any purpose which suits the boot server. In the reply message, the
EXOS/IOl will preserve this entire field's value.

The request code field'L value for the CONFIGURE request is 3.
returns the same value in the reply message.

- 132 -

The EXOS/lOI

EXOS/101: Initializing and Down-Loading from the Ethernet

Length Offset Field Name Request Reply

1) 22 o : Standard Message Header Fields: see text see text

1--------------------------------1
2) 80 22 : Configuration Message see text see text

: (in request messages only)

1<------------1 byte------------>1

Figure 10-1: Network Bootstrap CONFIGURE Request/Reply Message

The reply code field should be 0 in the request message. In the reply mes­
sage, its value is the same as the configuration message's Completion Code
field.

The message length field'~ value in the request message should be 80. This
value is preserved in the reply message.

1Q.~.1. Configuration Message Field

The configuration message field is exactly equivalent to the configuration
message described in section 4.4. There are some slight semantic differences
which apply to net boot mode. For instance, in the request message, the
number of hosts field may be O. If so, then all the following fields, which
specify host message queue parameters, are undefined. The EXOS operation mode
field must always be set to 2, for net boot mode. In the reply message, it
will always return this value.

10.1. EXECUTE Request/Reply Message

The boot server can use the EXECUTE request message to start execution of code
it has down-loaded to the EXOS/I01. Once the EXOS/IOl receives this command,
it will ignore all network bootstrap type packets. The initial process runs
exactly the same as one initialized by a host system (see section 4.8). Fig­
ure 10-8 shows the format of the EXECUTE request/reply message, and the fol­
lowing paragraphs explain its individual fields in detail.

10.1.1. Standard Message Header Fields

The boot server should write the session ID into the first 12 bytes of the
message ID field in each request message. The rema1n1ng 4 bytes may be used
for any purpose which suits the boot server. In the reply message, the
EXOS/101 will preserve this entire field's value.

The request code field'~ value for the EXECUTE request is 2.
returns the same value in the reply message.

The reply code field should be 0 in the request message.

- 133 -

The EXOS/101

In the reply

EXOS/I0l: Initializing and Down-Loading from the Ethernet

I Length Offset Pield Name Request Reply

----------------_
1) 22 0 Standard Hessage Reader Fields see text lee text

---------------------------1
2) 4 22 Starting Address see text preserved

1<------------1 byte------------>1

Pigure 10-8: Betwork Bootstrap EXECUTE Request/Reply Hessage

message, it reports the status of the EXECUTE request:

o luccelsful completion.

AIR invalid request.

A2R invalid starting address.

The message length field'A value in both the request and reply messages should
be 4.

j!.1.1. Starting Address Field

The starting address field specifies the initial value of the initial
process's program counter. Its value is preserved in the reply message.

- 134 -

EXOS/lOl: Hardware Reference

ll.. IlAl.DWARE REFERENCE

Most hardware-dependent aspects of IXOS/lOl implementation are hidden by
RI/10l, ensuring that high-level software written for the IXOS/lOl will be
portable to future products. This section provides all necessary hardware
interface and configuration information. Theory of operation is deliberately
omitted.

ll..!. Access to .I!Q§,/lOl Components

Appendix A shows the EXOS/lOI's layout, and the locations of accessible com­
ponents. For development purposes, the following components are socketed:

8088 CPU
16K EPROM

The EXOS/I0l provides several jumpers to select addresses and options. Figure
11-1 is a quick reference to jumper functions, by number. Jumpers installed
as shipped from the factory are marked with an asterisk in this table. Most
jumpers are located in two blocks near the bottom center of the board. Figure
11-2 shows relative locations and functions for these jumpers. Subsequent
sections explain the jumpers in more detail.

The EXOS/lOl includes three Light Emitting Diodes (LEDs) to communicate status
information. These are located in adjacent positions at the top left side of
the board, seen from the component side, and can easily be seen while the
board is installed. Figure 11-3 briefly shows their individual locations and
functions. Subsequent sections explain the LEDs in more detail.

ll..l. Hultibus Interface

The EXOS/lOI Ethernet Front-End Processor is built on a .ingle 12" by 6.75"
Hultibus board. It presents one TTL (LS) load on the Multibus.

ll..l.!. Multibus Compliance

The EXOS/IOl conforms to Multibus specifications as an 8-bit bus master. IEEE
796 compliance is MASTER DB M24 116 VO L:

8-bit transfers.
24-bit addressing.
non-bus vectored interrupts.

ll..l.l. Hultibus Memory Access

The EXOS/lOI can generate either 20 or 24-bit memory addresses, to access
either 1 Mbyte, or 16 Mbytes, of Multibus memory. Jumper JU29 selects 24-bit
addressing. If not installed, the 4 highest order address bits (on the J2
connector) are tri-stated. When enabled, these bits are driven dynamically by
RI/lOl firmware. As shipped from the factory, JU29 is in.talled.

Note that the EXOS/I0l's own memory is not accessible from the Multibus.

- 135 -

jumper

JUI
JU2
JU3
JU4
JUS
JU6
JU7
JU8
JU9
JUIO
JUll
JUI2
JU13
JU14
JU15
JUI6
JU17
JUI8
JU19 *
JU20
JU21
JU22
JU23
JU24
JU25
JU26
JU27
JU29 *
JU30 *

EXOS/IOI: Hardware Reference

function (when jumper is installed)

I/O address bit 8 - 1 (JU16 not installed)
I/O address bit 1 - 1
I/O address bit 9 • 1 (JU16 not installed)
I/O address bit 2 - 1
I/O address bit 10 - 1 (JU16 not installed)
I/O address bit 3 - 1
I/O address bit 11 - 1 (JUI6 not installed)
I/O address bit 4 • 1
I/O address bit 12 • 1 (JU16 not installed)
I/O address bit 5 - 1
I/O address bit 13 • 1 (JU16 not installed)
I/O address bit 6 • 1
I/O address bit 14 • 1 (JU16 not installed)
I/O address bit 7 • 1
I/O address bit 15 - 1 (JUI6 not installed)
select 8-bit I/O address
select interrupt level 7 (lowest priority)
select interrupt level 6
select interrupt level 5
select interrupt level 4
select interrupt level 3
select interrupt level 2
select interrupt level 1
select interrupt level 0 (highest priority)
reserved, do not install
network bootstrap
test for upper 64K BAM
enable 24-bit addressing
connect IPRO/ to Hultibus interface

Figure 11-1: Quick Reference !2 Jumper Options

ll.l.l. Multibus 1/90 Access

The EIOS/I01 can access the full 64K Multibus I/O address space. However, it
does not normally generate any I/O commands, unless requested by user
software.

The EXOS/IOI presents two read/write I/O ports to the Multibus. Their func­
tions are documented in section 4.1. Port A's address is fully jumper­
selectable, at any even address. The port address can be either 8 or 16 bits
in length. Port I's address is the address of port A plus 1. (Note that
68000 CPU boards such as the SUN design typically invert the least significant
address bit, so that ports A and 1 are logically reversed as seen by host sys­
tem software.)

For jumper functions and locations, see figures 11-1 and 11-2. An installed
I/O address jumper selects a 1 in its corresponding address bit position.
JU16 selects 8-bit port addressing when installed; otherwise the port address

- 136 -

EXOS/101: Hardware Reference

---- ----
Port Address Bit 8 IJU1 I IJU2 I -- Port Address Bit 1

1--1 1--1
Port Address Bit 9 IJU3 I IJU4 I -- Port Address Bit 2

1--- 1--1
Port Address Bit 10 IJU5 IJU6 I Port Address Bit 3

I- I-I
Port Address Bit 11 IJU7 IJU8 I Port Address Bit 4

1-- 1--1
Port Address Bit 12 IJU9 IJU101 --- Port Address Bit 5

1-- I-I
Port Address Bit 13 IJUll IJU121 --- Port Address Bit 6

1--- 1--1
Port Address Bit 14 IJU13 IJU141 --- Port Address Bit 7

1-- I-I
Port Address Bit 15- IJU15 IJU161 --- Select 8-bit Port Address

------ -----

Interrupt Level 7 ---- IJU17 I

I--
Interrupt Level 6 ---- IJU1S

1----
Interrupt Level 5 ------ IJU19

1---
Interrupt Level 4 --- IJU20

I--
Interrupt Level 3 ----- IJU21

1-- ----
Interrupt Level 2 ---- IJU22 IJU251 --- Reserved

1--- 1---1
Interrupt Level 1 ----- I JU23 I JU26 I --- Down-Load from Ethernet

I- I-I
Interrupt Level 0 --- IJU24 IJU27 I ---- Optional RAM Installed

------ -----

Figure ll-l: Port Address, Interru~t Level, ~ NX/lOl O~tion Jum~ers

is 16 bits. Jumpers for port address bits 8 through 15 are ignored if JU16 is
installed. Address bit 0 is not selectable - it is always 0 for port A, and 1
for port B. As shipped from the factory, no port address jumpers are
installed. Consequently the port addresses are 16 bits long: OOOOH for port
A, and 0001H for port B.

11.1.4. Multibus Interru~t Access

The EXOS/I01 can assert non-bus vectored interrupts on the Multibus.
rupt priority is jumper-selectable in the range from INTO to INT7. For
functions and locations, see figures 11-1 and 11-2. An installed
selects the corresponding interrupt level. Only one interrupt level

- 137 -

Inter­
jumper
jumper
jumper

£XUS/lUl: Hardware Reference

/--
/ DS1 DS2 DS3

000

TTTTTT
I I I I I I

I
I
I
I
I
I
I
I
J
I
I

I
I
I
I

------ Multibus Cycle Status LED

Ethernet Transmit Status LED
I

IX/101 Status LED

Figure 11-3: Quick Reference ~ Status LEDs

should be installed, or malfunction will result. As shipped from the factory,
jumper JU19 is installed. Consequently interrupt level 5 is selected.

The EXOS/101 can also be initialized to generate memory-mapped or I/O mapped
interrupts to the host. The host interrupts the EXOS/101 by writing to an I/O
port (see section 4.1).

11.1.2. Multibus Priority Resolution

As a bus master, the EXOS/101 requests and releases the bus for each command.
It executes the command immediately upon obtaining the bus, and releases the
bus immediately upon the command's completion. Therefore its bus load is
dependent only on the performance of the Multibus slave being accessed (typi­
cally host memory).

The EXOS/101 is compatible with either parallel or serial priority resolution
schemes. Some Multibus implementations require the disconnection of the BPRO/
line when parallel resolution is employed. Jumper JU30 on the EXOS/101 con­
nects this signal to the bus interface, and may be removed if required. As
shipped from the factory, JU30 is installed.

11.1.!. Multibus Cycle Status LED

The Light Emitting Diode (LED) in position DS3 on the EXOS/101 indicates that
a multibus cycle is in progress, when lit. If lit steadily, then the EXOS/IOl
has probably attempted to access a non-existent or bad memory address on the
Multibus. In general, this condition points toward a user software bug.

11.1. Ethernet Interface

Integrated with a standard Ethernet transceiver, the EXOS/101 performs all
specified Ethernet physical and link level functions.

- 138 -

EXOS/lOl: Hardware Reference

11.1.1. Ethernet Compliance

The EXOS/lOl conforms fully to Ethernet specification, version 1.0, published
September 30, 1980, by DEC, Intel, and Xerox.

11.1.1. Ethernet Functions

Functions implemented on the EXOS/lOl board include:

serial/parallel and parallel/serial conversion.

physical and multicast address recognition.

packet framing and unframing.

Manchester encoding and decoding.

preamble generation and removal.

carrier sense and deference.

collision detection and enforcement.

backoff and retry timing.

frame check sequence (CRC) generation and verification.

alignment and length error detection and handling.

In addition to the standard Ethernet functions, the EXOS/lOl implements a Time
Domain Reflectometer with 100 ns resolution. Its measurements are included
among the network statistics maintained by the IX/lOl kernel.

11.1.1. Ethernet Address Recognition

The EXOS/lOl recognizes physical, multicast, and broadcast addresses without
user software intervention. A very efficient multicast address filter, imple­
mented in hardware, greatly reduces the overhead of multicast address recogni­
tion. The multicast address filter can be disabled, so that all multicast
addresses are accepted. The EXOS/lOl also provides a promiscuous mode, in
which it accepts all addresses.

Each EXOS/lOl board has a unique 48-bit Ethernet address, stored in EPROM.
This is the board's physical address by default, but the effective physical
address resides in RAM, and may be modified by user software.

11.1.~. Ethernet Operation Timing

The EXOS/lOl can receive successive frames with m1n~um interframe spacing
(9.6 microseconds). It can also receive immediately after transmitting, or
vice versa, with minimum interframe spacing, and without losing data.

- 139 -

EXOS/lOl: Hardware Reference

l!.~.1. Ethernet Packet Buffering

Vader HI/lOl firmware control, the EXOS/lOl can buffer an arbitrary number of
both receive and transmit packets. The actual number o~ available buffers
depends on application criteria. User software can select both buffer size
and location, anywhere between 01000H and OFFFFR in the EXOS/IOl's dual-ported
memory.

Ethernet controller hardware can chain up to 32 receive packet buffers, and
receive as many packets. without CPU intervention. Transmit packets are
chained by HI/lOl firmware. and transmitted with minimal delay.

l!.~.!. Ethernet Error Handling

The BXOS/lOl can be selectively enabled to receive packets normally rejected
due to CRC and alignment errors.

l!.~.1. Ethernet Transmit Status LED

The BXOS/lOl lights an LED at position DS2 while transmitting on the Ethernet.

!!.~.!. Ethernet Transceiyer Connector

The EXOS/lOl board's Ethernet connector is a l6-pin IDH type which mates with
a 16 pin IDC type connector. Pinouts are defined as per Ethernet specifica­
tions. The connectors are keyed. and pin number 1 can also be identified by
an arrow on the connector. Note that it is still possible to insert the con­
nector backwards. In order to ground the transceiver cable shield. pin number
1 DUst be connected to the host system chassis ground. A terminal connected
to pin 1 is provided on the board for that purpose.

!!.4. .2!!,-Board Processing Capabilities

The EXOS/lOl is designed to facilitate the implementation of higher level com­
munications protocols on its own processor. The major elements of this
front-end processor are:

an 8 KHz 8088 CPU. clock speed 6.67 KHz.

64K of dual-ported RAM. 60K available for user software.

optionally. an addition 64K of single-ported RAM.

HI/lOl OS kernel. residing in l6-Kbyte EPROM.

Access to RAM is subject to wait states; net effective throughput is
equivalent to an 8088 running at 5 MHz or faster, without wait states. Access
to EPROM does not incur any wait states.

The HI/lOl kernel provides a real-time, multi-tasking environment for the
implementation of higher level protocols on the EXOS/101. It is supported by
clock timer and interrupt controller chips. HI/lOl implements consistent and
portable access methods for the Ethernet and host interfaces. In addition, it
executes self-diagnostics. and can optionally drive the EXOS/l01 as an

- 140 -

EXOS/lOl: Hardware Reference

intelligent link level controller, in which case the user is not required to
down-load protocol software.

11.1. Firmware Configuration Options

Jumpers JU25, JU26, and JU27 select IX/lOl firmware options as follows:

JU25

JU26

reserved for Excelan, must not be installed.

if installed, the EXOS/lOl will attempt to down-load software from
the Ethernet after self-test is complete. If not installed, the
EXOS/lOl will await initialization from the host after self-test
is complete.

JU27 will cause self-diagnostics to abort initialization, and display
an error code, if the upper 64K of RAM is not installed, or mal­
functions.

11.!. Self-Test Operation

When the EXOS/lOl is reset by the Hultibus INIT/ line or by host software (see
section 4.3), IX/lOl firmware runs comprehensive diagnostic tests on EXOS/lOl
components. These tests complete within 2 seconds, whereupon the board is
ready for configuration. If the tests fail, this is reported to the host via
an I/O port (see section 4.1).

11.!.1. n/lOl Status LED

Test progress and status are also reported via an LED at position DSI. On
EXOS/lOl reset this LED is lit, and remains lit constantly while self tests
are in progress. When self tests are complete, the LED flashes evenly until
the EXOS/lOI is initialized by the host or from the Ethernet. After initiali­
zation, LED DSI is turned off.

If diagnostics indicate a hardware problem, then the LED will be lit con­
stantly, or communicate an error code by flashing long and short pulses.
Software errors during the process of configuration can also result in an
error code display. Error codes are 8-bit numbers, and are presented bit-by­
bit, starting with the most significant bit. A long pulse is a 1 bit, and a
short pulse is a 0 bit. The error code is continuously repeated, with a pause
in between to demarcate the starting point. Figure 11-4 specifies all defined
error codes for the EXOS/lOI.

11.1. Power Requirements

- 141 -

£AUS/IUI: Hardware Reference

Hex Code Pulse Code Explanation of Error Code

AOH
A4H
ASH
A7H
A8H
A9H
AAlI
ABH
ACH
ADH
AEH
AFH
BOH
BIH
B2H
B3H
B4H
B5H
B6H
B7H
B8H
B9H
BAH

· · . .- ..
-.-. .-.-· .. --
-.-.
-.-.
-.-. -.-. · . -.--
-.-. --..
-.-. --.-
-.-.
-.-.
-.-
-.-- ...
-.- .. -.
-.-- .. ---.- .- ..
-.-- .-.-
-.--
-.-- .--
-.- - ...
-.- - .. -
-.-- -.-.

invalid address for configuration !Iessage.
invalid operation mode parameter.
invalid host data format test pattern.
invalid configuration message format.
invalid movable data block parameter.
invalid number of processes parameter.
invalid number of mailboxes parameter.
invalid number of address slots parameter.
invalid number of hosts parameter.
invalid host queue parameter.
improper objects allocation.
net boot failed.
checksum on HI/I01 EPROM failed.
memory test failed for 0-64K.
memory test failed for 64K-128K.
counter test failed.
interrupts test failed.
transmission test failed.
receive test failed.
local loopback data path test failed.
CRe test failed.
checksum on physical address EPROM failed.
system error.

Figure 11-4: Self-Diagnostic and Configuration Error Codes

5.6 A at +5 Volts
0.5 A at +12 Volts

!l.!. Operating EnvirOnment

Temperature: 5 to 55 degrees C
Humidity: o to 90% without condensation

- 142 -

.I!Q§./101 COMPONENT LOCATION

Ethernet
Connector

(l6-pin
IDC type)

EXOS/IOl: Appendix A

Jelll

I ~ III
mIK-li

I~ Iii
JAS2

I~ Iii
7 ...

- 143 -

--I!

Jel61

71f!J1A

111'!11

,

Jell!

IQJ
7A1.!IZ

I~
JIf!J1~

1;1
JAI.Sl!17

•
8088
CPU

16-Kbyte
EPROM

I-Xl .-tAN
"Excellence in Locc' NetwCYk Technology"

2180 Fortune DTive
San Jose. CA 95131

(408) 945-9526

29 November 1983

Attention
Systems Programmers Responsible for Integration

of the
EXOS/lOl Ethernet Front-End Processor

Please find enclosed a Document Change Notice pertaining to
the EXOS/10l Ethernet Front-End Processor Reference Manual
dated August 1, 1983. Please be sure that this information
is communicated to all appropriate persons in your
organization.

Changes described by the enclosed DCN reflect errors in the
most recent manual revision, and do not imply that product
functionality has been changed. Any changes listed here
will be incorporated in the next revision of the manual. In
the mean time, it is suggested that extant copies be marked
to reflect these changes, or that the DeN be attached to
these manuals.

Note that at least one error corrected by this DeN could
cause failure of software written according to the original
specif ica tion.

If you have any questions about this DeN, or about the
EXOS/IOl in general, please call me at (408) 945-9526 X230

;:;~p~
George Powers
Marketing Support Engineer

I-Xl '--IAN
"Excellence In Local Network Technology"

2180 Fortune Drive
San Jose. CA 95131

(408) 945-9526

Document Change Notice No ••••••••••••••••••••••••••••••• 0001

DCN Release Date •••••••••••••••••••••••••••• 29 November 1983

Document Affected:

Name: Exos/10l Ethernet Front-End Processor Reference
Manual

Date: August 1, 1983

Changes are listed below, according to their order in the
affected document.

l) Figure 4-3

Contained the following, improper C language source
statement:

while «read_port(B) & READY_BIT) == 1)1

Actually, this statement should be:

while (read_port(B) & READY_BIT) 1

Note that the former version of this statement is
effectively an infinite loop.

2) Section 4.4.6 (also affects Figure 4-4):

Stated that the value of the reserved field (at an
offset of six bytes) in the configuration request
message should contain the value O.

Actually, the first byte of this field should contain
the value 1 (bit 0 is set) in the request message.
The other two bytes should still be set to O. In the
reply message, all bytes of this field are still
undefined.

Note that improper initialization of this field can
cause undefined (and undesirable) results. In
particular, some (but not all) Revision D, Model B
boards may cease to operate about 20 minutes after
being initialized in front end mode. If a board
flashes the OBAH error code (see Figure 11-4) on its
Status LED, this is the most likely cause.

I--xl '-IAN

3) section 4.4.15

"Excellenre in Local Network Technology"

2180 Fortune Drive
San Jose. CA 95131

(408) 945·9526

Stated that the default value for the number of hosts
parameter in the configuration request message is 1.

Actually, the default value (effective upon first
configuration when the value OFFH is supplied in the
request message) is O.

4) Figure 10-2

Showed a request value of lOaOH for the Subtype field
in the net boot message header.

Actually, the correct value of this field is 0 (lOaOH
is the proper value for the Ethernet ~ field in net
boot packets).

