
Technical Description of the EXOS 302

High-Performance VME Bus Ethernet Adapter

(Rev. 2 PCB and later)

Don Cohrac

Excelan, Inc.

·,

1. Introduction

This document describes the EXOS 302 network processor board. This is a preliminary docu­
ment which describes what will be included in the initial design.

2. General Description (Hardware Architecture)

The EXOS 302 is a microprocessor-controlled adapter which provides an Ethernet connection
for computers using the VME bus. Architecturally it is compatible with the NX300 network
software. ·

The EXOS 302 operates as a bus master, capable of reading and writing the host memory.
Coordination between the host and the EXOS 302 is accomplished by the establishment of con­
trol blocks in host memory, the passing of values via special registers, and interrupts. The
EXOS 302 operates as a slave to a bus master reading or writing its control registers.

The architecture is represented in Figure 1. Its major features are :

0

0

0

0

0

0

0

INTEL 80286 Microprocessor, 8MHz
INTEL 82586 Ethernet Controller

- IEEE 802.3 Compliance 1 O Base 5
- ETHERNET V1 and V2 Compatibility
- D-type 15-pin transceiver connector

512KB or 1 MB Local Memory
32KB or 64KB Local PROM for 80286 firmware
INTEL 8259A Interrupt Controller
Dual UART for RS232 port and timer
Host bus interface :

- 8- or 16-bit data
- 24- or 32-bit address
- Daisy-chained bus request/grant
- Daisy-chain interrupt structure

o EXOS 202 compatibility mode (24-bit address)

VME HOST BUS

EPROM

80286
MPU

HOST
l/F

.5/1MB
RAM

82586
LANC

File ·1a~ x. la,jai 302pvu" dated Sep 6.1989 13 43

DUART/ f-- RS232C
TIMER.

8259A
PIC

SIA~ to XVCR

·.

. ~ -~

·
~-~~:-_:.

Figure 1. EXOS 302 Block Diagram

3. Functional Descriptiom

3.1. CPU

The processing element of the EXOS 302 is an Intel 80286 microprocessor. operating at an 8
MHz clock ,.rate. It is supported by the 82284 clock chip, 82288 bus controller, and 8259A inter­
rupt controller.

3.2. Memory Address Space

In real mode the 80286 has 1 Mb of memory space, which is allocated as shown in Figure 2. The
local memory appears as the lowest 512KB in the memory space. The host memory is mapped
into the local space, and is limited to a relocatable 128KB. All local 1/0 devices reside in the
80286 110 space (see section 4.1).

The 82586 can access only the dual-ported local memory; it can access the complete 512KB. It
cannot access host· memory.

In protected mode the 80286 can access beyond 1 MB. An additional 512KB is provided at the
beginning of the second megabyte. The 82586 can also access the additional 512KB.

17FFFF

Local
Memory
512KB

100000 PROTECTED MOOE ONLY

OFFFFF NX REAL MODE LIMIT
PROM

OEOOOO

ODFFFF not
ocoooo used
OBFFFF not
OAOOOO used
09FFFF

Host
Memory < ----- This space is divided into
128KB two mapped 64KB windows.

080000
07FFFF

Local
Memory
512KB

000000

FIGURE 2. Memory Map

·.

EXOS 302 EXCELAN CONFIDENTIAL

3.3. Local Memory

- . . Local memory is two blocks of 512KB of dynamic RAM (total 1 MB). The memory is 16 bits

•w ."'•;• ~ _..·

. wide, and is dual-ported to the 80286 and the 82586. It is not accessible from the host bus. The
memory has .. a minimum 1 wait state and maximum 6 wait states for the 82586, with an average
of 3. It has a minimum of zero wait states and a maximum of 7 for the 80286, with an average of
1. Wait states above the minimum are caused by memory or refresh cycles-in-progress. CAS­
before-RAS refresh is used.

The upper 512KB is accessible only when the 80286 is operating in th.~ protected mode and a
control bit is set in the EXOS Status Port (see section 4.1.11).

3.4. EPROM

Two sockets are provided for up to 64KB of EPROM for the 80286 firmware. EPROMs of 16K,
32K or 64K bytes can be used (see section 5.2.2).

3.5. Network Controller

The network controller performs the Ethernet control functions with minimum aid from the 80286.
It consists of an Intel 82586 controller and an 8023A Ethernet Serial Interface chip.

The 80286 and the 82586 communicate via the local memory and the Channel Attention and
network interrupt signals. Essentially the 80286 provides buffer descriptors for receiving and ~

transmitting packets in the local memory, and generates the Channel Attention. Then the 82586
transmits or receives an Ethernet packet between the network and the local memory, and gen­
erates an interrupt to the 80286 when the operation is complete. Synchronization between the
80286 and the 82586 is maintained by means of the Channel Attention and interrupt. Neither the
80286 nor the 82586 can be locked out from accessing memory, so care is required in the
implementation of semaphores. The 82586 documentation from INTEL describes the network
interface and the 80286/82586 protocol in detail.

The 82586 reset signal is a latched bit, and is true upon reset, or by control of the 80286 via the
CPU Control Port. The 82586 should be initialized before enabling the upper memory. Initializa­
tion data for the 82586 must be set up at memory location 007FFF6 (system configuration
pointer) prior to the first assertion of Channel Attention. If the 80586 attempts to fetch the confi­
guration pointer while the upper memory is enabled, it will fetch from location 017FFF6 (address
bit 20 is enabled, and address bit 19 is ignored because of the discontinuity in memory between
512Kand 1M).

The hardware provides two loopback features for confidence test capability. A bit in the CPU
Control Port enables loopback through the transceiver interface chip. The 82586 also has facili­
ties for internal loopback and diagnostics (see Intel documentation).

3.6. DUARTffimer

An RS232C serial port for debug purposes and a periodic interrupt timer are provided by a single
LSI chip, Signetics SCN2681. See section 4.1.1 for details of the implementation.

Printed Seotember 6. 1989 -2- Edited Mar 3. 1988

3.7. Host Interface

3.7.1. VME Bus Conformity

EXOS 302 VME bus conformity is :

EXOS 302

A24 MASTER, O(EO), 016; A24 SLAVE, 0(0)
OR A32 MASTER, O(EO), 016; A24 SLAVE, 0(0)
OR A32 MASTER, O(EO), 016; A32 SLAVE, 0(0)

depending upon jumper configuration.

EXCELAN CONFIDENTIAL

The EXOS 302 as a slave responds to two sets of address modifier codes. The slave bus size
jumper defines which set of codes is valid. These codes are implemented with a PAL, so can
easily be modified.

A24 SLAVE : address modifier codes (hex) 39, 3A, 3D, 3E.
A32 SLAVE : address modifier codes (hex) 09, OA, OD, OE.

3.7.2. Address Generation

The EXOS 302 acts as a bus master to transfer data between its memory and the system
memory over the host bus. The EXOS 302 provides 32 address lines to the host, for a total
addressable memory space of 4 Gigabytes. However, only 128KB is accessible at a time. The
lower sixteen bits from the 80286 are concatenated with sixteen bits from a mapping register to
form the full 32-bit address. Address line 16 from the 80286 selects which of two sixteen-bit
registers is used (see Figure 3). This provides two 64KB windows, each of which can be placed
on any 64KB boundary in the host's address space. The two windows appear as locations
080000-08FFFF and 090000-09FFFF to the 80286 (see Figure 2).

In the 32-bit mode the six address modifier bits, which must be driven by a bus master, are
derived from an address modifier register which is written by the host (see section 4.2).

The EXOS 302 can be jumpered to operate as a 24-bit master, which makes it compatible with
the EXOS 202 host driver and address modifier scheme. The difference from the 32-bit mode,
besides the number of address bits, is the source of the six address modifier bits. In 202 mode
the address modifiers are derived from the low six bits of the upper byte of the mapping register
(see Figure 3).

Note that the EXOS 302 is HARDWARE-configured as either a 32- or 24-bit master. If config­
ured for 32-bit. the address modifier is always driven by the addesss modifier register. 24-bit
memories can be addressed by changing the address modifier register to one valid tor 24-bit
devices. The upper byte of the map reg.iste.r. as, the address rnodifier source in this case, since
the map register is driving sixteen bits of address.

In 24-bit mode the address modifier from the map register is also driven onto the upper address
byte (bits 31-24). According to the VME specification, if the address modifier indicates a 24-bit
address, devices must not decode the upper byte.

The EXOS 302 can do eight- or sixteen-bit data operations. Bytes are automatically swapped by
the hardware (high byte with low, low with high) since it is assumed that any memory device will
present data to the bus in 68000 format.

Edited Mar 9. 1988

·.

EXOS 302 EXCELAN CONFIDENTIAL

enabled if host is 286 data. 286 addresses

I

32bits
I
I
I
I
I
I

24bits
I
I
I
I
I
I

0(0:15)

I
A16

I
. ------+------. - I
IMAP REGISTER +-·

I 16 x 2 I
·-+---------+-·

18 I
I
I
I
I
I
I

.-+----+-. I
I

.------+ I
18

/I\

I ADDRESS!
I MODIFIER I
I REGISTER I
'----+---.

16
. -+---+.

I BUFFER I
'---+--'

·----+----·
\I/

I
VD(0:5)

I
VAM(O:S)

18
. --+---. .--+--- .
I BUFFER I I BUFFER I
·--+---' '--+---·

I I
\I/ \I/

I I
VA (31 : 24) .. VA (2 3 : 16)

FIGURE 3. EXOS 302 Bus Master Address Generation

3.7.3. Slave Ports

A(1: 15)

I
I
I
I
I
I
I
116

.--+--- .
I BUFFER I
·--+---'

I
\I/

I
VA(15:1)

Masters on the host bus can access three 1/0 ports on the EXOS 302. These slave ports are
used for resetting the board, setting the address modifier register, setting the interrupt vector,
and reading or writing program-defined status. These ports are compatible with the EXOS 202
ports, with the addition of the address modifier register.

The EXOS 302 is able to read and write its own ports, except for the interrupt vector, which is
accessible only as an interrupt vector. The address modifier register can be written by the
EXOS 302 under certain circumstances. Before the register is written, its contents are unde­
fined. If the EXOS 302 does a host bus write cycle, it will likely assert a garbage address modif­
ier. This will prevent the EXOS 302 slave machine from responding, and the bus will hang (or
timeout).

The slave bus size can be configured separately from the master size. This allows both 24-bit,
both 32-bit, or 24-bit slave with 32-bit master (slave 32 and master 24 is prohibited by the logic).
This is accomplished by two jµmpers (see section 5.2).

3.7.4. Bus Errors

The bus error signal is not generated by the EXOS 302, since access is only to registers. The
only error that can occur is an incorrect data alignment access by the host (double-byte or
quad-byte). On such an access the EXOS 302 does not generate transfer acknowledge
{DTACK), and a system bus timeout should occur. The EXOS 302 does monitor the bus error
when a master, and an error causes the NMI to the 80286. The NMI is enabled via the CPU
Control Port.

Signals ACFAIL and SYSFAIL are monitored, and while either is asserted the EXOS 302 bus
request is inhibited. If the 80286 requests the bus during this time, it is held in wait.

- 1. Editec: \.1 a: 9. 1988

EXOS 302 EXCELAN CONFIDENTIAL

3.7.5. Burst Mode

The EXOS 302 has a burst mode, which is enabled by a jumper (see section 5.3). It holds the
bus a maximum of 15 microseconds, unless the 80286 stops requesting the bus sooner. This
allows about 20 cycles. Since the bus will be released regularly, the bus clear signal is not mon­
itored. Note that this is not a VME BLOCK operation, wherein the slave increments the address
itself after the first transfer. The EXOS 302 generates an address every cycle. The bus busy
line is simply held true to avoid arbitration for each cycle.

Normally, burst mode will not be effective. However, under certain conditions burst mode may
increase periormance. These are, either singly or in combination : if the bus arbiter has a
request-to-grant latency greater than 200 nanoseconds; if some masters in the system do not
provide early release of busy, thereby preventing pipelined arbitration; if the EXOS 302 is not at
the beginning of the grant daisy-chain.

3. 7.6. Interrupts

The EXOS 302 implements a daisy-chained interrupt structure. All bus interrupts (1-7) are avail­
able. The interrupt level is selected by a jumper. Three other jumpers are used to decode the
interrupt acknowledge. See section 5.2, for .jumper configurations.

The 80286 can issue a host bus interrupt by writing to an internal port (see section 4.1). The
interrupt request is cleared by the hardware during interrupt acknowledge sequence (ROAK).

An interrupt to the EXOS 302 from the host is also available. This interrupt is set when one byte
of data is written to the Comm register in the EXOS 302. See section 4.2.

3.8. Indicators (LED)

The EXOS 302 has three red LEDs to indicate operational status; one for network transmit
activity, one for host bus activity, and one diagnostic LED which is connected to the CPU
Control Register. Figure 4 shows the position of these LEDs on the board.

Network Transmit ETHERNET
Diagnostic - Host Access Connector

I I
I

Component side L L L
of board E E E

D D 0
2 3

Figure 4. LED Positions

. 'i Edited Mar 9. 1988

EXOS 302 EXCELAN CONFIDENTIAL

4. Programming

This section explains the 1/0 ports which are used to control the, operation of the EXOS 302. It
contains two subsections: one for internal control, and one for host bus.

4.1. CPU Internal 1/0

The 1/0 map is shown below. An 1/0 device uses some or all the 1/0 addresses in the range.
When less than all the space is used, data replicates. Since incomplete decoding is used, the
entire 1/0 map from 00-FF repeats to 7FFF.

Note that all the 1/0 devices are 8-bit except for the CPU Configuration/ Status Port. This
means that all 110 addresses are even (except for the upper byte of the Configuration/Status
Port). For the sake of simplicity, all 1/0 devices will be given one wait state.

A caveat using 1/0: the MOS devices (PIC and QUARTS) require recovery time between 1/0
commands. Because of the speed of the 80286, NOP's will be required when accessing these
devices. The details are described in the appropriate sections of this document.

Base Width
Address Type in bits Function

00 Rd!Wr 8 DU ART (2681)
20- reserved
80

88 Write - Channel Attention
90 Rd!Wr 8 CPU Control Register
98 Rd!Wr 16 CPU Status Register
AO Rd1Wr 8 Interrupt Controller (8259A)
BO Write - Schedule Interrupt (software)
B8 Write - Interrupt Host
co Read 8 Ethernet Address PROM
EO Write 16 Address Mapping Registers
ES Write - Local Reset of EXOS 302
ES Read 8 Host data register and interrupt reset
FO Write 16 EXOS 302 Status !

100 00-FF Repeats to FFFF I

FIGURE 3. 1/0 Map

Edited Mar 9. 1988

EXOS 302 EXCELAN CONFIDENTIAL

4.1.1. DUART (Serial port'timer) (Read/Write at OOh)

· · The serial port and timer are implemented using a Signetics SCN2681 Dual Universal Asynchro­
nous Receiver/Transmitter (!) chip. The chart below shows the connection of the chip to the
RS232C port and the 8259A. Specific programming information for the chip can be found in the
Signetics Microprocessor Data Manual (1986). The chip is operated from a· 3.6864 MHz crystal.
The interrupt request is connected to INT2 of the 8259A. Note that the chip is on the upper byte
of the data bus. Therefore its ports are every other odd address. One NOP is required between
successive 1/0 operations to the DUART to satisfy command recovery time.

:;~~~ ~~~:~.
_-,, -· -

-:--:-::.;;.-·-

2681
Pin Function

RXA Receive Data
TXA Transmit Data
IPO Clear to Send
IP4 Data Terminal Ready

OPO Request to Send
OP2 Data Set Ready
OP3 Counter output to INT2

4.1.2. Channel Attention (Write at 88h)

A write to this port (data is irrelevant) generates a pulse to the Channel Attention input of the
82586.

4.1.3. CPU Control Port (Read/Write at 90h)

The CPU Control Port is a latching register used by the 80286 for internal control of the
EXOS 302. All bits are set to zero at power up or reset by the host. The port can be written
and read at 1/0 address 90, and is defined as follows:

Bit Value Function

0 0 Reset 82586 network controller
1 Enable 82586 network controller

1 0 Enable loopback mode of 8023 serial l1F
i 1 Enable normal mode of 8023 serial l/F

2 I 0 Disable NMI (bus parity error/timeout) I
I 1 Enable NM!

3 0 Light diagnostic LED
1 Extinguish diagnostic LED

4 not used
5 not used
6 not used
7 Dia_g_nostic bus control (see section 5.2.3)

Edited Mar 9. 1988

EXOS 302 EXCELAN CONFIDENTIAL

4.1.4. CPU Configuration/Status Port (Read at 98h)

A 16-bit 1/0 port at address 98 is assigned to configuration jumpers and other status bits. These
bits are defined as follows:

Bit Source Function

0 sense Xcvr ~ 12V fuse (O=blown; 1 =ok)
1 sense not used
2 sense not used
3 sense Bus error (O=parity; 1 =spurious)
4 sense Mem size (1=512KB;0=1MB)
5 sense not used
6 sense not used
7 sense CPU Clock (1 =8MHz; O=n/a)

8 J2 Disable CRS check (=0)
9 J3 Ethernet/no SQE test (= 0)

10 J4 Boot (O= from net; 1 =wait for host)
11 JS reserved
12 J6 reserved
13 J7 reserved
14 JS NX Console (= 0)
15 J9 Debugger (=0)

All jumper inputs are pulled up (= 1). An installed jumper is read as a zero (= 0).

4.1.5. Interrupt Controller (PIC) (Read/Write at AOh)

The 8259A Interrupt Controller provides prioritized interrupts to· the 80286. Refer to Intel litera­
ture for operation and description of its 1/0 registers. Note that due to timing constraints
(Intel's - not ours), one no-op is required between successive identical commands, and two no­
ops are required between successive dissimilar commands. This is required to satisfy the chip's
command recovery time. Since the 8259A is a byte device, it uses even addresses AOh & A2h.
Interrupt sources are listed below.

Level Source l
INTO reserved
INT1 Host Data Register/Interrupt
INT2 2681 Output OP3 (Timer)
INT3 82586
INT4 2681 Interrupt (SIO)
INT5
INT6 Scheduling Int
INT?

Printed September 6. 1989 -B Edited Mar 9, 1988

EXOS 302 EXCELAN CONFIDENTIAL

4.1.6. Scheduling Interrupt (Write at BOh)

An access to this port (data is irrelevant) generates an interrupt on INT6 of the 8259A.

4.1.7. EXOS 302 Interrupt (Write at B8h)

A write to this port (data is irrelevant) generates the EXOS 302 interrupt to the host. It also sets
a status bit which appears in the EXOS 302 Status port for the host. The interrupt is cleared by
a reset or interrupt acknowledge. The status bit is cleared by reset or by command from the
host (see section 4.2).

4.1.8. Ethernet Address PROM (Read At CO-OF)

The address PROM contains the Ethernet address and other configuration information. Sixteen
bytes are available for use (even addresses only). A possible format is illustrated below:

Address Contents
co PROM rev level
C2 Byte 5 of address
C4 Byte 4 of address
C6 Byte 3 of address
ca Byte 2 of address
CA Byte 1 of address
cc Byte O of address
CE Product type
DO Hardware rev level
D2·

DD reserved
DE Checksum

The product type for the EXOS 302 is 12 (decimal). The checksum is formed by summing all the
bytes modulo 256 and exclusive or'ing with 55. This procedure ensures that a PROM with all
zeros or all ones will not have a correct checksum.

4.1.9. Extended Address Map Registers (Write at EOh)

Accesses to the host use 24 or 32 addresses, of which the lower 16 come from the 80286. The
upper 16 are provided from one of two 16-bit mapping registers.

When host bus accesses are periormed (addresses 8000-9FFF), address line 16 from the 80286
selects which register is concatenated with the lower 16 addresses. The mapping registers are
loaded by writing data at 1/0 locations EO and E2. The write data must be 16 bits wide. The
lower byte furnishes host address bits· .. 16:::23. The upper byte furnishes bits 24-31 if in 32-bit·
address mode. If jumpered for EXOS 202 compatibility, the upper byte furnishes address
modifier bits 0-5 (register bit 8= address modifier bit 0).

Map Maps Master Map Register Bits
R~ister CPU Addresses Mode 15·8 7-0

EO 8000-8FFF 32-bit A31·24 A23·16
E2 9000·9FFF EXOS202 AM5-0 A23-16

Printea Seotember 6. 1989 ·9 Edited Mar 9. 1988

EXOS 302 EXCELAN CONFIDENTIAL

4.1.10. Host Data Register and Interrupt Reset (Read at E8h)

A read of this port acquires the byte written into Port B when the host set the interrupt to the
EXOS 302. Reading this port clears the interrupt to the 8259A, and clears s~atus bit 3 of Port B.

4.1.11. Local Reset of EXOS 302 (Write at E8h)

A write to this port (data is irrelevant) generates the board reset. This is equivalent to a host
reset, and resets the entire board. The 80286 returns to real mode.

4.1.12. EXOS 302 Status Bytes O and 1 (Write at FOh, Read as Ports A and B)

A 16-bit write-only register at location FOh is available to provide status information to the host
Ports A and B. All bits are software-definable. (Current definition of the status bits is explained
in the Host Interface section.) However, bits 1 and 3 of Port B do not come from this register.
They are derived directly from the hardware, and indicate the state of the EXOS 302 interrupt
and the host interrupt, respectively. Reset clears bits 0-7; bits 8-15 are not cleared.

Bit 1 of the write-only register is used internally to enable the upper 512KB RAM when the
80286 is operated in the protected mode. This, inhibits access to the. upper RAM. When the bit
is set, access is enabled. The bit should be set AFTER the 80286 is in protected mode, because
the extended address bits from the 80286 in real mode are not in a defined state, and may
cause faulty memory operation.

Bit Destination Definition

0 Port B O=diagnostic failed; 1 =passed
1 Memory Control O=disable upper 512K; 1 =enable
2 Port B
3 no connect
4 Port 8 none
5 Port B none
6 Port B 0= loopback passed; 1 = failed
7 Port B none

8-15 Port A none

Bit 3 is not connected to anything internally. Bits 8-15 are all wired directly to Port A. This
register must always be written as a word register; byte operations will trash the other byte.

-1 O· Edited Mar 9. 1988-

EXOS 302 EXCELAN CONFIDENTIAL

4.2. Host Slave Ports

Three ports exist on the EXOS 302 in the host memory-mapped 1/0 space. Two are for status
and control information to/from the EXOS 302. The third is for the host to write the 6-bit address
modifier for 32-bit address. mode.

There are individual compare jumpers for address bits 31-16, and two jumpers to define one of
four combinations for bits 15-7. These four combinations are programmed into a PAL, and
currently are compatible with the EXOS 202 rev F. The slave address configuration is shown
below. (This is a program representation - bit O does not appear on the VMEbus.) Bits 31-24 are
not decoded when in 24-bit slave mode. Bits 6-3 are not decoded, leaving a 128-byte hole
above the base address. These ports must be accessed as byte values.

31 24
aaaa aaaa

Base
Port Offset

A -1

A -:--1
B ..,...3
B ~3

c -5

23 16 15 8
bbbb bbbb

7 0
aaaa aaaa b--- -ppp

Type Function

Read Read Status Byte 1
(extended status}

Write EXOS 302 Reset
Read Read Status Byte O
Write Host Interrupt/Data Write
Write Write Address Modifier Re_gjster

Write Port A Generates a hardware reset of the EXOS 302.

Read Port A Reads the EXOS 302 Status Byte 1 (extended status). All bits are register bits,
and can be set by the EXOS 302 firmware. Contents are indeterminate after
reset. See section 4. 1 .

Write Port B Host Interrupt/Data - Interrupts the 80286 via INT1 of the 8259A and writes a
byte into the Host Data Register. 'fhis also sets the host interrupt status bit,
which is available to the host in the EXOS 302 Status port. The bit is cleared
when the 80286 reads the Host Interrupt/Data Port. This mechanism provides
for handshaking and parameter passing between the EXOS 302 and tile host.

Edited Mar 9. 1988

EXOS 302 EXCELAN CONFIDENTIAL

Read Port B Reads the EXOS 302 Status Byte 0. All the bits are cleared by reset, except bit
3, which is set. All bits are register bits which can be set by the EXOS 302
firmware, except bits 1 and 3, which are interrupt status bits (see section 4.1).

Bit O SeUreset by EXOS 302 firmware. This bit has previously been defined
as Status of the board. When reset, indicates the on-board diagnostic
has failed or is not completed yet.

Bit 1 . Host Interrupt Status - this bit is set by the hardware when the 80286
issues an interrupt to the host. It is cleared by the hardware during the
interrupt acknowledge sequence.

Bit 3 Local Interrupt Status - is set when the host writes into Port B, and is
cleared when the 80286 reads the Host Data Port. On power reset the
state of this bit is undefined. Therefore, the 80286 should read the
Host Data Port before enabling interrupts.

Bit 6 Set/reset by EXOS 302 firmware. This bit has previously been defined
as a qualifer of bit O. When set, indicates a failure of net loopback.

Write Port C A byte is written into the address modifier register in the EXOS 302. Only the
low six bits are valid. This register drives the six address modifier bits during a
bus cycle if the master size is jumpered for 32 bits.

-12 Edited Mar 9. 1988

EXOS 302 EXCELAN CONFIDENTIAL

5. Board Configuration

5.1. Memory Option

An additional 512KB of memory may be installed in sockets U16-U'19. The memory size jumper
in the CPU Status Register must agree with the installed size. The chips must be 256K X 4
DRAMS, 120ns or faster, with GAS-before-RAS refresh capability (TOSHIBA 514256 or
equivalent}.

5.2. Jumpers

5.2.1. CPU Status Register Jumpers

All jumper inputs are pulled up (1). An installed jumper is read as zero (0). Note that these are
only sense jumpers, and have no attect on the hardware, except J3 and J10.

Bit Jumper Function

4 J10 Mem size (1 =512K; 0=1MB)
5 J11 reserved (= 1)
6 J12 reserved (= 1)
7 J13 286 Clock (1 =8MHz; O=n/a)
8 J2 Disable CRS check (=O:
9 J3 V 1 ethernet/no SOE test (= 0)

10 J4 Net Boot (= 0)
11 JS reserved (= 1)
12 J6 reserved (= 1)
13 J7 reserved (= 1)
14 JS NX Console (=O)
15 J9 Debu_gger (= 0)

5.2.2. PROM Size

Two jumpers define the size of the PROMs used for the 80286 firmware.

PROM

I Type J16 J15

27128 1-2 1-2
27256 1-2 2-3
27512 2-3- 2-3

5.2.3. Burst Mode Enable

This jumper enables or disables the burst mode to the host bus.

! Burst
j Function J25

[Enabled 1-2
Disabled 2-3

Edited Mar 9, 1988

EXOS 302 EXCELAN CONFIDENTIAL

5.2.4. Address Configuration Jumpers

There are two sets of address jumpers to configure : one for selecting the host bus address
width (24 or 32 bits) for slave and/or master mode, and one for slave mode decode.

5.2.4.1. Host Address Bus Width

The host address bus width determines how many bits are decoded on a slave cycle, and the
source of the address modifier on a master cycle. Master and slave mode can use different
widths. Note that the master mode cannot be smaller than the slave. However, if the address
modifier register contains a 24-bit modifier, then only 24-bit slaves can respond.

Master Slave Master Slave
Width Width Jumper Jumper
(bits} _(bitsl J44 J46

24 24 ON ON
32 24 OFF ON
32 32 ON OFF
32 32 OFF OFF

5.2.4.2. Slave Address Compare

There are individual compare jumpers for address bits 31-16, and two jumpers to define the
base within 64KB (bits 15-7). The two jumpers select one of four bases which are programmed
into the decode PAL.

The corresponding addresses/jumpers are shown in the two charts below. For the address com­
pare jumpers, an installed jumper is a compare to zero. The four base addresses are compati­
ble with the EXOS202 (rev F). Bits 6-3 are not decoded, leaving a 128-byte hole above the
base address.

Host Address Bits
15-8J7-01 A 31 30 29 28 27 26 25 24 l 23 22 21 20 19 18 17 16

J 26 27 28 29 30 31 32 33 I 34 35 36 37 38 39 40 41 I 42 1 43 j Slave Address Compare Jumpers

00 J 00 OFF OFF

7F I 80 OFF ON

80 00 ON· OFF

FF $0 ON ON

-14- Edited Mar 9. 1988

EXOS 302 EXCELAN CONFIDENTIAL

5.2.5. Interrupt Level and Level Enable

The request jumper and the acknowledge jumpers MUST match for interrupt operation. An
installed jumper is indicated by a 1.

IRQ Request Acknowledge Jumpers
Level Ju~ J54 J55 J56
IRQ1 J47 0 0 1
IRQ2 J48 0 1 0
IRQ3 J49 0 1 1
IRQ4 J50 1 0 0
IRQ5 J51 1 0 1
IRQ6 J52 1 1 0
IRQ7 J53 1 1 1

5.2.6. Bus Request/Grant ln/Gr:ant Out

Request and grant jumpers must be on the same level. One Request jumper is used. One
Grant In and one Grant Out are jumpered to match the request level. The other three Grant Out
lines must be jumpered to daisy-chain the unused Grant In lines back to their respective Grant ~
Out lines.

Request Grant In/Out Jumpers
Level Jumper J68 J67 J66 J65 J64 J63 J62 J61

0 J60 ON ON J65-1 J66-1 J63-1 J64-1 J61-1 J62-1
1 J59 J67-1 J68-1 ON ON J63-1 J64-1 J62-1 J61-1
2 J58 J67-1 J68-1 J65-1 J66-1 ON ON J61-1 J62-1
3 J57 J67-1 J68-1 J65-1 J66-1 J63-1 J64-1 ON ON

5.2. 7. Host Bus Ethernet Connection

The Ethernet signals connected to the 15-pin D-type connector can be jumpered to the host bus
on P2. All jumpers must be installed if used. The ..:..12v is fused (VE- 12V).

Sjg_nal T
I Jum_Qer I Host Pin

VGND J24, P2C-15
VE-12V J17 P2C-16
VTRMT- J18 P2A-13
VTRMT- J19 P2A-14
VRECV7 J20 P2A-15
VRECV- J21 P2A-16
VCLSN+ J22 P2C-13
VCLSN- J23 P2C-14

o .. intt">rl C:..ol"'ltomhor P. 1 QQQ Edited Mar 9. 1988

EXOS 302 EXCELAN CONFIDENTIAL

5.2.8. Dynamic Address Bus Control (Diagnostic only}

The diagnostic jumper J44 is to be used only in the factory with special test equipment which
can short the jumper upon command. The jumper, when shorted, allows the firmware to force
the board from 24-bit mode into 32-bit mode by setting the DIAG24 bit in the CPU Control
Register. This is necessary for testing the address modifier register, since testing will involve
using invalid modifiers, and an invalid modifier will prevent subsequent slave cycles. Testing is
accomplished by 1) forcing 24-bit mode to use address modifier from the map register, 2) writing
the address modifier register with a test value, 3) switching back to 32-bit mode to use the
address modifier register, 4) doing a bus cycle, which is latched in the bus tester, and 5) reading
the latched address modifier value from the bus tester. The master jumper is pulled up, and, if
off, indicates 32-bit mode. The master will follow the slave if the Master jumper is on. This cir­
cuit is shown below. Note that the DIAG24 and SLAVE24 signals are low true, and MASTER32
is high true. The gate is a positive AND. Note that this process cannot force the board into 32-
bit mode if the slave jumper is set for 24-bit mode.

The DIAG24 bit is 0 after reset. The CPU Control Register is a write/read regis.ter. However,
the DIAG24 bit (7) is not read directly. The bit which is read is an AND of the DIAG24 bit and
the DIAG jumper.

- Pullup
+-----+ +-----+

WRT DIAG24- J45 READI
I REG +-----------0 0--+--+------+ REG I
I b7 I I I b7 I
+~----+ I +-----+

I
I \
+----1 \ SLAVE24- MASTER32

J46 BUS24- I ANDl-----------0 0-+---------
+--0 o----+----------1 I J44
I I_/

GND

-16· Edited Mar 9, 1988

EXOS 302 EXCELAN CONFIDENTIAL

6. Connectors

6.1. VME Bus Connectors

The following table shows the EXOS 302 signal assignments for the VME host bus connectors
P1 and P2. Signals not used by the EXOS 302 are designated n/u. Many of the pins on P2 are
not dedicated to any bus signals.

VME BUS PIN ASSIGNMENTS
PIN P1A P1B P1C P2A P2B P2C

1 VOOO VBSY- V008 +SV
2 V001 BCLR- n/u V009 GNO
3 V002 ACF AIL- V010
4 V003 VBGOIN- VD11 VA24
5 V004 VBGOOUT- VD12 VA25
6 VOOS VBG1 IN- V013 VA26
7 V006 VBG10UT- V014 VA27
8 V007 VBG21N- VD15 VA28
9 GNO VBG20UT- GND VA29

10 SYSCLK n/u VBG31N- SYSFAIL- VA30
11 GNO VBG30UT- VB ERR- VA31
12 VDS1- VBRO- SYSRESET- GNO
13 VDSO- VBR1- LWORO- VTRMT~ +SV VCLSN+
14 VWRITE- VBR2- VAM5 VTRMT- 016 n/u VCLSN-
15 GND VBR3- VA23 VRECV~ 017 n/u VGNO
16 VOTACK- VAMO VA22 VRECV- 018 n/u VE-12V
17 GND VAM1 VA21 019 n/u
18 VAS VAM2 VA20 020 n/u
19 GNO VAM3 VA19 021 n/u
20 IACK- GNO VA18 022 n/u
21 IACKIN- SERCLK n/u VA17 023 n/u
22 IACKOUT- SEROAT n/u VA16 GNO
23 VAM5 GNO VA15 024 n/u

I

24 VA07 IRQ7- VA14 025 n1u
25 VA06 IRQ6- VA13 026 n/u
26 VA05 1RQ5- VA12

I I 027 n1u
27 VA04 IRQ4- VA11 028 n/u
28 VA03 IR03- VA10 029 n/u
29 VA02 IR02- - VA09 030 n/U
30 VA01 IRQ1- VA08 031 n/u
31 -12v +5V STBY n/u +12V GNO
32 ..,..5v ..;_5V ..;_5V ~sv

~ ...,
• I I Edited Mar 9. i 988

-..
.-·-~~~?~~:

EXOS 302 EXCELAN CONFIDENTIAL

6.1.1. ETHERNET Connector

The ETHERNET connector P3 is a 15-pin 0-type. The following table gives the pin assign­
ments.

P3

Pin Signal

1 GND
2 CLSN+
3 TRMT+
4 GND
5 RCV+
6 GND
7
8 GND
9 CLSN-

10 TRMT-
11 GND
12 RCV-
13 E-r-12V
14 GND
15

-18 Edited Mar 9, 1988

"•).:-·

EXOS 302 EXCELAN CONFIDENTIAL

6.1.2. SERlt\l PORT HEADER

The following diagrams show the pin orientation and signal assignments for P4, the serial port
header.

Top edge of board, IC side

Pin
Nos. >

25 23 3 1
26 24 4 2

P4
Pin I Signal
1
2
3 RXO
4
5 TXD
6
7 CTS
8
9 RTS

10
11 DTR
12
13 GND
14 DSR
15
16- not
26 used

10

L
E
Os

Edited Mar 9. 1988

PAGE 55,132

COMMENT '

$Header: c:/nx6/s_net/net586/RCS/net586_2.asm 1.3.1.1 91/03/07 10:21:10 karlt Exp Locker: karlt

$Project: NX6 $

$Creator: Steve Grau $

$Locker: karlt $

$Source: c:/nx6/s_net/net586/RCS/net586_2.asm $

(C) Copyright 1988 by Excelan Inc. All Rights Reserved

This software is furnished under contract and may be used and copied
only in accordance with the terms of such contract and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to
any other person. No title to and ownership of the software is hereby
transferred.

$Abstract:

NX6 Intel 82586 Ethernet Controller Driver.

This module contains the transmitter state machines.
$

$Implementation Notes:

The 82586 transmitter driver is implemented using four state machines
to manage the transmit queues and keep the 82586 running at maximum
throughput.

Transmitter Queues

The transmitter contains two queues. The first queue is made up of a circular
list of transmit command blocks (CBLs) and a circular list of transmit buffer
descriptors (TBDs). These structures (CBLs and TBDs) are described in
detail in the 82586 data sheet. The two circular lists do not necessarily
contain the same number of elements. Fragmentation of transmit buffers
requires several TBDs per CBL. So the TBD list should be much longer than
the CBL list. The actual sizes of these lists is configurable at assembly
time. This queue will be referred to as the Transmit Ring.

The second queue is simply a linked list which is used to hold user requests
when there is a resource limitation in the first queue (out of CBLs or out
of TBDs, or both). This queue will be referred to as the Wait Queue.

Transmitter State Machines

There are four transmitter state machi~es. They are:

Enqueue Transmit - (entry points qtx_????)

Handles queing user transmit requests to the appropriate
transmit queue. Also, starts the 82586 transmitting if
it is not already doing so.

Transmit Complete - (entry points ex_????)

Runs on the command complete interrupt, ex bit in the
82586 interrupt status. Notifies, the user when each
transmit completes and frees up the CBL and TBDs used
by the transmit.

Process Wait Queue - (entry points pwq_????)

Transfers transmit requests from the wait queue to the
transmit ring as ring resources become available. Is
run on the same interrupt as the transmit complete
state machine immediately after it finishes.

Transmitter Not Active - (entry points cna_????)

Restarts the 82586 transmitter when it completes a chain
of transmit requests. All requests waiting in the transmit
ring are forwarded to the 82586. Gets invoked by the
command not active (CNA) interrupt from the 82586.

In addition to the state machines there is also a transmit timeout interrupt
that runs of a clock interrupt.

$

$Log: net586_2.asm $
Revision 1.3.1.1 91/03/07 10:21:10 karlt
temporary fix for APPLLO's transmit hang problem

Revision 1.3 89/02/22 09:04:49 steveg
Added new TPS status bit.

Revision 1.2 88/12/09 15:57:31 dauber
added support for concurrent link level

Revision ~.1 88/08/23 08:40:13 steveg
Initial revision

$EndLog$

include nx6.inc
include cfgxxx_x.inc
include cfg_x.inc
include intxxx x.inc
include net586.inc

.186

TEXT SEGMENT

EXT RN
EXT RN
EXTRN
EXT RN

net586 qtx return:NEAR
(,.- -
net586~cna_return:NEAR

net586 ex return:NEAR
net586_pwq_return:NEAR

public ex state
public cna state
public pwq_state
public qtx_state
public p_lst_S86_cbl
public p_lst_rdy_cbl
public p_last_rdy_cbl
public p_lst_free_cbl
public p_lst_tx_wait
public p_last_tx_wait
public p_lst_free_tbd
public p_last_free_tbd
public last tbs off
public last tbs sel
public fragment_count

qtx state machine return pt.
cna state machine return pt.
ex state machine return pt.
pwq state machine return pt.

;**
net586 tx chain - return transmit buffer chain

This function returns the TPS and TBS structures that have been queued
to the driver. The transmit is turned off.

Inputs: none

Outputs: STACK_USER_ES:STACK_SI points to TPS chain
STACK SI ff ff if none returned
STACK AX = 0

The TPS chain is linked by the QUEUE field. The end of the chain
is marked by an offset of ffff.

;**

PUBLIC net586 tx chain
net586 tx chain PROC NEAR

pus hf
cli

Disable transmit timeout.

mov tx_timeout_enable,O

Abort the transmitter.

mov
txc wait cmd:

cmp
je
loop

txc cmd clear:

cx,Offffh

scb.SCB_COMMAND,O
txc cmd clear
txc wait cmd

mov scb.SCB_COMMAND,SCB_CUC_ABORT
CHANNEL ATTENTION

protect

disable the timeout

long timeout

command clear?
yes

abort the transmitter
bang on the 586

rnov
(

mov
si,Offffh assume no buffers
WORD PTR [bp+STACK_SI],si

Check to see if there are any tps's on the tps wait queue.

crnp
jne

pwq_state,OFFSET pwq_wait
txc tx wait done

Get the pointer to first waiting tps.

mov
rnov
rnov
mov

rnov
mov

ax,p_1st_tx_wait
[bp+STACK_SI],ax
ax,p_1st_tx_wait+2
[bp+STACK_USER_ES],ax

si,p_last_tx_wait
es,p_last_tx_wait+2

txc tx wait done:

; tps wait queue active?

get the off set

get selector

get pointer to.last waiter

; check to see if there are any tps's queued to the 82586.

cmp
je

cna_state,OFFSET cna idle
txc_tps_done

Free up the tbds.

mov
mov
mov
mov

bx,OFFSET tbd list
p_last_free_tbd,bx
bx,[bx].TBD_LINK
p_lst_free_tbd,bx

586 transmitting?
no

point anywhere in list
this one is last •••
•• next one is first

Shuffle through the cbls linking tps's together.

mov bx,p_1st_ 586 cbl . get pointer to first cbl - ,

txc cbl _loop:
cmp bx,p_1st_free_cbl all cbls done?
je txc_tps_ done yes

cmp p_1st_free_ cbl,OFFSET p_ 1st free cbl ; any free? - -
jne txc some free yes - -
mov p_ 1st free cbl,bx ; make this the first free one - -

txc some free:

cmp si,Offffh any on the return list?
jne txc_got_some yes

The return chain is empty. Attach the first element.

les
mov
mov
mov
mov
jmp

txc_got_some:

si,DWORD PTR [bx].CBL_TPS_OFF
[bp+STACK_SI],si
[bp+STACK_USER_ES],es
es:[si].TPS_QUEUE,Offffh
bx,[bx].CBL_LINK
txc_cbl_loop

get pointer
write return value

mark end of list
get next CBL

; loop through them

Link the TPS attached to the CBL to the end of the chain.

mov
mov
mov
mov

ax,[bx].CBL_TPS_OFF
es:[si].TPS_QUEUE,ax
ax,[bx).CBL_TPS_SEL
es:[si].TPS_QUEUE+2,ax

get offset
link to previous TPS
get selector

Load pointer to this TPS.

les
mov

mov
jmp

txc_tps_done:

si,DWORD PTR [bx].CBL TPS OFF
es:[si].TPS_QUEUE,Offffh

bx,[bx].CBL_LINK
txc_cbl_loop

load it
mark end of list

get next CBL
loop through them

mov p_lst_rdy_cbl,OFFSET p_lst_rdy_cbl ; invalidate pointers
mov p_last_rdy_cbl,OFFSET p_last_rdy_cbl

mov
mov

ax,p_lst_free_cbl
p_lst_586_cbl,ax

; set 1st 586 cbl pointer

Set new states.

mov
mov
mov
mov

popf
mov
ret

qtx_state,OFFSET qtx_idle
cx_state,OFFSET cx_idle
pwq_state,OFFSET pwq_idle
cna_state,OFFSET cna idle

WORD PTR [bp+STACK_AX],O
restore interrupt state
no error

net586 tx chain ENDP

;**
Enqueue transmit state machine - qtx_????

This state machine is made up of 3 states.

1. qtx_idle - transmitter is currently idle.

The request is processed immediately and handed directly
to the 82586 for transmission. This is the initial state
of this state machine. This state is entered from qtx_ring
when all pending user transmits requests are completed
which is detected in cna_none_queued.

2. qtx_ring - new transmits are being queued into transmit ring.

This is the current state when the 82586 is busy transmitting
a previous request and there are no requests in the wait
queue. States qtx_idle and pwq_wait are responsible for
activating this state.

3. qtx_wait - new transmits are being queued into the wait queue.

This is the current state when the transmit ring has
insufficien~ free resources to hold all transmit requests.

All requests are placed on the wait queue while in this
state. State qtx_ring is responsible for activating this
state.

;**

qtx_state_machine PROC NEAR

;**
; qtx_idle - transmitter is idle
;**

PUBLIC net586_qtx_idle
net586_qtx_idle:

qtx_idle:

; symbol for publication

Get the first free CBL. The state assures that all CBLs are currently
free.

mov bx,p_lst_free_cbl ; get the cbl pointer

Store pointer to user's transmit packet structure TPS in the CBL.

mov
mov

[bx].CBL_TPS_OFF,si
[bx].CBL_TPS_SEL,es

; save pointer to TPS

Clear the TPS status field, and pick up the link fields.

mov es:[si].TPS_STATUS,O clear the status
mov ax,es:(si].TPS_LAST_TBS get the last TBS off set
mov last_tbs_off ,ax store it
mov ax,es:[si].TPS_LAST_TBS+2 get the last TBS selector
mov last tbs sel,ax -
les si,DWORD PTR es:[si].TPS_lST_ TBS ; get pointer to first TBS

Get pointer to first TBD.

mov di,p_lst_free_tbd grab the first tbd

Setup the CBL.

mov [bx].CBL_STATUS,0 ; clear the status
mov [bx].CBL_COMMAND,CBL_CMD XMIT+CBL EL BIT+CBL I BIT
mov [bx].CBL_TBD_OFFSET,di ; pointer to first TBD

Fill in the tbd.

push

qtxi_build tbds:

mov
mov
mov
mov

call

mov

bx

ax,es:[si].TBS_SIZE
[di].TBD_STATUS,ax
dx,es:[si].TBS_BUFFER_PTR
bx,es:[si].TBS_BUFFER_PTR+2

map_S86_state

[di].TBD_ADDR_LO,dx

save the cbl pointer

build the tbds

read the size from the TBS
store the size in the TBD
get the buffer off set
get the buffer selector

call the mapper

store the address ••

Tl)~ fe'LC,~617 iD do -P?zs 17e?tJ -flx wczs f;as-ec(0~
fi;e oh5;erVq_ft017 #lat tJ/p---?te-v«' ./1E' S<ft; ot--:e ~ /-;-

cle s />t?-eaose a/ an {)ter-N//?k? 0 / tJ/J/f./,7,-s-p;,evt_

CLJMl?laMd
'

!ent4 S'atce -lh~ 1-s: ffie C)1)Lj 17hce ~~??/" /Jas #w

f!Ulb1fity -IV Ovel7Jt/k -If«? QM,,,4?~ 4kJ725(" o,/2

.f;cfb ,(7f does 1?trr ~ L~· ;.k &P?u??c~c(h~

~ cfo__arev() , J Af or1'11 ;-j~ ~ezV PIK 1 ?JOU/cf
/)!-of/('- trxf '

~

mov [di].TBD_ADDR_HI,bx •• in the tbd

cmp si,last_tbs_off check for last tbs?
jne qtxi_next_tbs not last, do another
mov ax,es copy selector to ax
cmp ax, last_ tbs_ sel check selector too
jne qtxi_next_tbs not last, do another

This is the last tbs. Set the end of frame bit in the TBD and continue on.

or
jmp

qtxi_next tbs:
les

cmp
je

mov
jmp

[di].TBD_STATUS,TBD_EOF_BIT
qtxi_tbds_done

si,DWORD PTR es:(si].TBS_LINK

di,p_last_free_tbd
qtxi_too_many_frags

di,[di].TBD_LINK
qtxi_build_tbds

qtxi_too_many_frags:

pop bx

set the end of frame bit
continue on

advance to the next tbs
point es:si to new tbs

is this the last tbd?
yes, too many fragments

follow the link
keep looping

cleanup and return error

restore cbl pointer

mov WORD PTR [bp+STACK_AX],NET_FRAG_ERROR ; set the return value
jmp net586_qtx_return ; return

qtxi_tbds done:

pop bx restore the cbl pointer

NEW FIX --~--t6..r;:.Jx2<;k__()_f-_f2l?fUii2U..S f°J- e
although this is perceived as fix for the real cause of the problem,
and it did elongate the up time (without timeout), it inavitably
introduces, or unvails, new and fetal bug(s) which will crash both
the transmit and receive in about 20 minutes with 80% net traffic

push ex
;public patch
;patch:

mov cx,Offffh
;txs_wait_cmd:

cmp scb.SCB_COMMAND,O
je txs cmd clear
loop txs wait cmd

;txs_cmd clear:
pop ex

END NEW FIX ----------------------------------

Setup the SCB and get the 586 started.

mov
mov

scb.SCB CBL OFFSET,bx
scb.SCB_COMMAND,SCB_CUC_START

long timeout

command clear?
yes

pass cbl pointer
start the command unit

CHANNEL ATTENTION

mov
mov

tx_time_count,O
tx_timeout_enable,Offffh

Set new states.

alert the 586

clear the timeout counter
enable the timeout

mov qtx_state,OFFSET qtx_ring in queueing to ring state
mov cx_state,OFFSET cx_transmitting transmit is pending
mov cna_state,OFFSET cna_none_queued ; nothing more queued

mov ax,[bx].CBL_LINK ; advance pointer to next
mov p_lst_free_cbl,ax ; currently free
mov p_last_rdy_cbl,OFFSET p_last_rdy_cbl ; mark none ready

Assuming there was more than one cbl, the last one couldn't have been used.

mov p_lst_586_cbl,bx

Adjust tbd pointer.

mov
mov

ax,[di].TBD_LINK
p_lst_free_tbd,ax

; now belongs to the 586

advance the pointer
store it

di pointing to last used tbd
cmp di,p_last_free_tbd was last tbd used?
jne qtxi_return no, return
mov p_lst_free_tbd,OFFSET p_lst_free tbd ; mark point no good

qtxi_return:

mov
jmp

WORD PTR [bp+STACK_AX],O
net586_qtx_return

set return status

;**
; qtx_ring - queueing to CBL and TBD rings
;**

PUBLIC net586_qtx_ring
net586_qtx_ring:

qtx_ring:

; Get the first free CBL if there is a free one.

mov
cmp
jne
jmp

bx,p_lst free_cbl
bx,OFFSET p_lst_free_cbl
qtxr_got_cbl
qtxr_wait

; symbol for publication

get the cbl pointer
points to self if no more
got a cbl, continue
no cbl, put on wait queue

; Store pointer to user's transmit packet structure TPS in the CBL.

qtxr_got_cbl:

push

mov
mov

bx

[bx].CBL_TPS_OFF,si
[bx].CBL_TPS_SEL,es

save the cbl pointer

save pointer to TPS

Clear the TPS status field, and pick up the link fields.

mov es:(si].TPS_STATUS,O
mov ax,es:[si].TPS_LAST_TBS
mov last_tbs_off ,ax
mov ax,es:[si].TPS_LAST_TBS+2
mov last tbs sel,ax
les si,DWORD PTR es:[si].TPS_lST_TBS

Get pointer to first TBD.

mov
cmp
je

Setup the CBL.

di,p_lst_free_tbd
di,OFFSET p_lst_free_tbd
qtxr_tbd_shortage

;

clear the status
get the last TBS off set
store it
get the last TBS selector

get pointer to first TBS

grab the first tbd
is there one?
nope

mov [bx].CBL_STATUS,O ; clear the status
mov [bx].CBL_COMMAND,CBL_CMD_XMIT+CBL_I_BIT; may not be last cbl
mov [bx].CBL_TBD_OFFSET,di pointer to first TBD

qtxr_build tbds: build the tbds

mov
mov
mov
mov

call

mov
mov

cmp
jne
mov
cmp
jne

ax,es:(si].TBS_SIZE
[di].TBD_STATUS,ax
dx,es:(si].TBS_BUFFER_PTR
bx,es:(si].TBS_BUFFER_PTR+2

map_S86_state

[di].TBD_ADDR_LO,dx
[di].TBD_ADDR_HI,bx

si,last_tbs_off
qtxr_next_tbs
ax,es
ax,last_tbs_sel
qtxr_next_tbs

read the size from the TBS
store the size in the TBD
get the buffer off set
get the buffer selector

call the mapper

store the address •.
•• in the tbd

check for last tbs?
not last, do another
copy selector to ax
check selector too
not last, do another

This is the last tbs. Set the end of frame bit in the TBD and continue on.

or
jmp

qtxr_next tbs:
les

cmp
je

mov
jmp

[di].TBD_STATUS,TBD EOF BIT
qtxr_tbds_done

si,DWORD PTR es:(si].TBS_LINK

di,p_last_free_tbd
qtxr_tbd_shortage

di,[di].TBD_LINK
qtxr_build_tbds

qtxr_tbd_shortage:

pop bx

les si,DWORD PTR [bx].CBL_TPS_OFF

qtxr_wait:

set the end of frame bit
continue on

advance to the next tbs
point es:si to new tbs

is this the last tbd?
yes, tbd shortage

follow the link
keep looping

out of tbds, cleanup

restore cbl pointer

get pointer back to tps

put request on wait queue

mov
mov

mov
mov

p_lst_tx_wait,si
p_lst_tx_wait+2,es

p_last_tx_wait,si
p_last_tx_wait+2,es

Set new states.

mov es:[si].TPS_STATUS,O

mov qtx_state,OFFSET qtx_wait
mov pwq_state,OFFSET pwq_wait

mov WORD PTR [bp+STACK_AX],O
jmp net586_qtx_return

qtxr_tbds done:
pop bx

Set new states.

mov cna_state,OFFSET cna_ring

Adjust pointers.

put request on wait queue

it is the only one

clear the tps status

put queuer into wait mode
transmits in wait queue

set the return value
return

restore the cbl pointer

transmits waiting in ring

; advance pointer to next mov
mov
cmp
jne
mov

ax,[bx).CBL_LINK
p_lst_free_cbl,ax
p_last_rdy_cbl,OFFSET
qtxr_cbls_rdy
p_lst_rdy_cbl,bx

p_last_rdy_cbl ; any ready now?
yes, some are ready

qtxr_cbls_rdy:
mov p_last_rdy_cbl,bx

Check to see if last cbl was used.

; this is first one ready

one just done is now ready

cmp ax,p_lst_S86_cbl ; last cbl used?
jne qtxr_chck_tbd ; no, check tbds
mov p_lst_free_cbl,OFFSET p_lst_free_cbl ; all used, invalidate pointer

qtxr_chck tbd:

Adjust tbd pointer.

mov
mov

ax,[di].TBD_LINK
p_lst_free_tbd,ax

advance the pointer
store it

cmp di,p_last_free_tbd was last tbd used?
jne qtxr_return no, return
mov p_lst_free_tbd,OFFSET p_lst_free_tbd ; mark point no good

qtxr_return:

mov
jmp

WORD PTR [bp+STACK_AX],O
net586_qtx_return

set return status

;**
; qtx_wait - queueing to transmit resource wait queue
;**

PUBLIC net586 qtx wait
net586_qtx_wait: - -

symbol for publication

qtx_wait:

; Put the request at the end of the wait queue.

mov
mov

mov
mov

bx,p_last_tx_wait
ax,p_last_tx_wait+2

p_last_tx_wait,si
p_last_tx_wait+2,es

pick up last pointer

update pointer

Make the last one on the queue point to the new one.

mov
mov
mov
mov

mov
jmp

cx,es
es,ax
es:[bx].TPS_QUEUE,si
es:[bx].TPS_QUEUE+2,cx

WORD PTR [bp+STACK_AX],O
net586_qtx_return

copy new selector
load selector last on queue
set off set
set selector

set return status

qtx_state_machine ENDP

;**
Command (Transmit) Not Active state machine cna ????

This state machine is made up of 3 states.

1. cna_idle - transmitter is currently idle.

Does nothing. This is the initial state. This state is
activated by cna_none_queued.

2. cna_none_queued - transmitter is active, nothing waiting in ring

Switches states to cna_idle and qtx_idle when the 82586
finishes the last transmit requeust. This state is activated
by qtx_idle and cna_ring.

3. cna_ring - transmitter active, transmits waiting in ring

Starts 82586 transmitting next set of transmits when previous
set has finished. This state is activated by qtx_ring and
pwq_wait.

;**

cna state machine PROC NEAR

;**
; cna_idle - transmitter is idle
;**

cna idle EQU net586 cna return ; idle is a do nothing state

;**
; cna_none_queued - transmit pending but nothing new queued
;**

PUBLIC net586_cna_none_queued
net586 cna none_queued:

cna_none_queued:

; Set new states and return.

rnov
rnov
jrnp

cna_state,OFFSET cna idle
qtx_state,OFFSET qtx_idle
net586 cna return

symbol for publication

nothing pending
queuer to idle state
return

;**
; cna_ring - transmit pending, more queued to transmit ring, none waiting
;**

PUBLIC net586_cna_ring
net586_cna_ring:

cna_ring:

rnov bx,p_last_rdy_cbl

Set EL bit in last CBL.

or [bx].CBL_COMMAND,CBL_EL_BIT

; symbol for publication

get pointer to last ready

; mark the end

Setup the cbl link in the SCB and add start to the new SCB command.

Set

rnov
rnov
or

rnov
rnov

ex state

rnov

rnov
cmp
je
rnov
cmp
jne

ax,p_lst_rdy_cbl
scb.SCB_CBL_OFFSET,ax
new scb command,SCB_cuc_ START -
tx_time_count,O
tx timeout enable,Offffh -

to transmitting.

cx_state,OFFSET cx_transmitting

ax,[bx].CBL_LINK
ax,p_lst_rdy_cbl
cnar none free
p_lst_free_cbl,ax
ax,p_lst_S86_cbl
cnar free set

get first ready cbl
pass cbl pointer
start command

clear timeout counter
enable transmit timeout

transmitter is running

next cbl
full circle?
no free buffers
assume it is free
does 586 own it?
no, continue

cnar none free:
rnov p_lst_free_cbl,OFFSET p_lst_free_cbl none free

cnar free set:

Update list pointers.

rnov p_lst_rdy_cbl,OFFSET p_lst_rdy_cbl ; invalidate ready pointers
mov p_last_rdy_cbl,OFFSET p_last_rdy_cbl

Check to see if state has anything is waiting.

cmp pwq_state,OFFSET pwq_wait anything waiting?

je cnar state set ; yes, don't change state
mov cna_state,OFFSET cna none_queued ; no more queued

cnar state set:
jmp net586 cna return

cna state machine ENDP

;**
Process Wait Queue state machine - pwq_????

This state machine is run on the transmit complete interrupt after the
ex (transmit complete) state machine has been run. It is designed to pull
waiting transmits in off of the wait queue and get them into the transmit
ring as resources become available (transmits complete).

1. pwq_idle - no transmit requests are on the wait queue.

Nothing is done. This is the initial state. This state
is activated by state pwq_wait.

2. pwq_wait - transmits are waiting in the wait queue.

Transmit requests are transferred from the wait queue to the
transmit ring as ring resources become available. This
state activated by qtx_ring.

;**

pwq_state_machine PROC NEAR

;**
; pwq_idle - nothing is in the wait queue
;**

pwq_idle EQU net586_pwq_return ; do nothing state

;**
; pwq_wait - transmits waiting on wait queue
;**

PUBLIC net586_pwq_wait
net586_pwq_wait:

pwq_wait:

i Get a CBL.

mov
crop
jne
jmp

pwqw_get_waiter:

les

bx,p_lst_free_cbl
bx,OFFSET p_lst_free_cbl
pwqw_get_waiter
pwqw_waitl

si,DWORD PTR p_lst_tx_wait

; symbol for publication

get first free CBL
are any free?
yes, got one
no, still resource waiting

get first waiting packet

; load pointer

If no CBL's are currently ready, set the pointer to the 1st ready to
this one. Use the pointer to the last ready cbl to indicate if this
has been done. If it doesn't change when we get through processing

then tpere a~e no ready cbls.

cmp p_lst_rdy_cbl,OFFSET p_lst_rdy_cbl ; any ready?
jne pwqw_queue_ring yes, don't change pointer
mov p_lst_rdy_cbl,bx ; set the pointer

Attempt to queue the packet to the transmit ring.

pwqw_queue_ring:

push bx ; save the cbl pointer

Store pointer to user's transmit packet structure TPS in the CBL.

mov
mov

[bx].CBL_TPS_OFF,si
[bx].CBL_TPS_SEL,es

Pick up the TPS link fields.

; save pointer to TPS

mov ax,es:[si].TPS_LAST TBS get the last TBS offset
mov last_tbs_off ,ax store it
mov ax,es:[si].TPS_LAST_TBS+2 get the last TBS selector
mov last_tbs_sel,ax
les si,DWORD PTR es:[si].TPS_lST_TBS ; get pointer to first TBS

mov fragment_count,l

Get pointer to first TBD.

mov
cmp
je

Setup the CBL.

di,p_lst_free_tbd
di,OFFSET p_lst_free_tbd
pwqw_tbd_shortage

; keep count of fragments

grab the first tbd
is there one?
nope

mov [bx].CBL_STATUS,O ; clear the status
mov [bx].CBL_COMMAND,CBL_CMD_XMIT+CBL_I_BIT ; may not be last cbl
mov [bx].CBL_TBD_OFFSET,di pointer to first TBD

pwqw_build_tbds: build the tbds

mov
mov
mov
mov

call

mov
mov

cmp
jne
mov
cmp
jne

ax,es:[si].TBS_SIZE
[di].TBD_STATUS,ax
dx,es:(si].TBS_BUFFER_PTR
bx,es:[si].TBS_BUFFER_PTR+2

map_586_state

[di].TBD_ADDR_LO,dx
[di].TBD_ADDR_HI,bx

si,last_tbs_off
pwqw_next_tbs
ax,es
ax,last_tbs_sel
pwqw_next_tbs

read the size from the TBS
store the size in the TBD
get the buffer off set
get the buffer selector

call the mapper

store the address ••
•• in the tbd

check for last tbs?
not last, do another
copy selector to ax
check selector too
not last, do another

This is the last tbs. Set the end of frame bit in the TBD and continue on.

or [di].TBD_STATUS,TBD_EOF_BIT set the end of frame bit

jmp

pwqw_next_tbs:
les

inc

cmp
je

mov
jmp

pwqw_tbds_done

si,DWORD PTR es:[si].TBS_LINK

fragment_count

di,p_last_free_tbd
pwqw_tbd_shortage

di,[di].TBD_LINK
pwqw_build_tbds

pwqw_tbd_shortage:

pop

les

cmp
jbe
jmp

pwqw_tbds_done:
pop
mov

bx

si,DWORD PTR [bx].CBL_TPS_OFF

fragment_count,NET586_N_TBD
pwqw_wait
pwqw_fragment_error

bx
p_last_rdy_cbl,bx

Adjust 1st tbd pointer.

mov
mov

ax,[di].TBD_LINK
p_lst_free_tbd,ax

continue on

advance to the next tbs
es:si now points to new tbs

got another fragment

is this the last tbd?
yes, tbd shortage

follow the link
keep looping

out of tbds, cleanup

restore cbl pointer

get pointer back to tps

more fragments than TBDs?
no
some still waiting

restore the cbl pointer
CBL just done is now ready

advance the pointer
store it

cmp di,p_last_free_tbd was last tbd used?
jne pwqw_chck_next no
mov p_lst_free_tbd,OFFSET p_lst_free_tbd ; mark point no good

pwqw_chck next:

Pickup the pointer to the TPS out of the CBL.

mov
mov

ax,[bx].CBL_TPS_SEL
si,[bx].CBL_TPS_OFF

selector
off set

See if another packet is on the wait queue. Must compare both selector and
offset with end of queue marker.

cmp
je
jmp

si,p_last_tx_wait
pwqw_chk_selector
pwqw_do_another

pwqw_chk selector:
cmp ax,p_last_tx_wait+2
je pwqw_queue_empty

pwqw_do_another:

; Pick up the next queued item.

mov es,ax

was this last?
maybe, keep checking
no, do another

was this last?
yes

load the selector

• si,DWORD PTR es:[si].TPS_QUEUE

Get another CBL.

mov
mov
cmp
je
jmp

bx,[bx].CBL_LINK
p_lst_free_cbl,bx
bx,p_lst_586_cbl
pwqw_cbls_out
pwqw_queue_ring

get new pointer

advance pointer
assume it is free
586 own this one?
yes, out of cbls
no, queue to ring

pwqw_cbls out: ran out of cbls
mov p_lst_free_cbl,OFFSET p lst_free_cbl ; invalidate pointer

pwqw_wait: leave request on wait queue

mov
mov

pwqw_waitl:

p_lst_tx_wait,si
p_lst_tx_wait+2,es

leave request on wait queue

States don't change. Check to see if any CBLs are ready. No CBLs are
ready if the last ready pointer points to itself.

cmp p_last_rdy_cbl,OFFSET p_last_rdy_cbl any ready?
jne pwqw_some_rdy ; yes

mov p_lst_rdy_cbl,OFFSET p_lst_rdy_cbl ; no, invalidate pointer
jmp net586_pwq_return

pwqw_some_rdy:
mov
jmp

cna_state,OFFSET cna_ring
net586_pwq_return

transmits waiting in ring
all done, return

pwqw_queue_empty: wait queue is now empty

; No more are waiting. Set new states.

mov
mov
mov

mov
mov
cmp
jne

pwq_state,OFFSET pwq_idle
qtx_state,OFFSET qtx_ring
cna_state,OFFSET cna_ring

ax,[bx].CBL_LINK
p_lst_free_cbl,ax
ax,p_lst_586_cbl
pwqw_ptrs_set

no more queued
queue new stuff to the ring
request waiting in ring

; next cbl
assume it is free
does 586 own it?
no, continue

mov p_lst_free_cbl,OFFSET p_lst_free cbl none free

pwqw_ptrs_set:
jmp net586_pwq_return all done, return

pwqw_fragment_error:

A transmit request has been found that has more fragments than there are
tbds. This should never happend since the driver should be configured
with lots of tbds. But, if it did happen it would lock up the transmitter.
Any packets that come through here are pushed back up to the user with an
error so that the transmitter can continue on. This code can't be entered
before all preceeding transmits have completed since the fragment counter
can never exceed the count of tbd's unless all tbds are free. This will

insure
1
that the user gets the packet back in sequence with other transmit

requests.

mov es:[si].TPS_STATUS,TPS_COMP_BIT+TPS_UNSPEC_ERR complete, error

push
push
EXECUTE
pop

si
es
1 APNDG ll_appendage
es

pop si

crop
je

push
push
EXECUTE
pop
pop

pwqw_skip_app:
mov
mov
mov
mov

ax,O
pwqw_skip_app

si
es
1 APNDG tx_appendage
es
si

ax,es:(si].TPS_QUEUE
p_lst_tx_wait,ax
ax,es:(si].TPS_QUEUE+2
p_lst_tx_wait+2,ax

notify link level

was packet link levels?
skip user appendage if so

; notify user

; update pointers •..
••• incase we start over

cmp p_last_rdy_cbl,OFFSET p_last_rdy_cbl ; any ready?
jne pwqw_frag_rdy ; yes

mov p_lst_rdy_cbl,OFFSET p_lst_rdy_cbl ; no, invalidate pointer

pwqw_frag_rdy:
mov ax,es ; copy selector to ax

See if another packet is on the wait queue. Must compare both selector and
offset with end of queue marker. If nothing is waiting, must set new states
and return.

cmp
je
jmp

si,p_last_tx_wait
pwqw_frag_selector
pwq_wait

pwqw_frag_selector:
cmp ax,p_last_tx_wait+2
je pwqw_frag_exit
jmp pwq_wait

pwqw_frag_exit:
mov
jmp

pwq_state,OFFSET pwq_idle
net586_pwq_return

pwq_state_machine ENDP

was this last?
maybe, keep checking
no, start over

was this last?
yes
no, start over

nothing in queue

;**
Command (Transmit) Complete state machine - ex ????

This state machine is made up of 2 states.

1. ex idle - transmitter is currently idle.

Nothing is done in this state. This is the initial state.
States cx_transmitting and the transmit timeout routine
activate this state.

2. cx_transmitting - transmitter is currently transmitting.

Transmits are passed back to the user as they complete.
The transmit status is set appropriately. States qtx idle
and cna_ring are responsible for activating this state.

;**

ex state machine PROC NEAR

;**
; cx_idle - transmitter currently idle
;**

ex idle EQU net586 ex return ; do nothing state

;**
; cx_transmitting - transmitter currently active state
;**

PUBLIC net586_cx_transmitting
net586_cx_transmitting:

cx_transmitting:

mov

ext check:

mov

test
jpz
jmp

bx,p_lst_S86_cbl

cx,[bx].CBL_STATUS

cx,CBL_C_BIT
ext return tbds
ext return

; Free up the tbds.

ext return tbds:

mov di,[bx].CBL_TBD_OFFSET

; symbol for publication

transmitter is transmitting

get pointer to cbl

check the cbl status

get the status

check completion bit
complete, handle it
not complete, exit

; get pointer to tbd

If there were no free tbds then make this into a free tbd.

cmp p_lst_free_tbd,OFFSET p_lst_free_tbd ; any free?
jne cxt_tbd_loop yes
mov p_lst_free_tbd,di ; reset the pointer

ext tbd_loop:

mov
test
jnz
mov
jmp

p_last_free_tbd,di
[di].TBD_STATUS,TBD_EOF BIT
ext tbds returned - -
di,[di].TBD_LINK
cxt_tbd_loop

ext tbds returned:

free this one up
last one in the chain?
all tbds have been returned
link to next one
loop until got 'em all

' .
Determine completion status.

mov
mov

cmp
je

test
jz
or
xor

ext c2:
cmp
je

test
jnz

test
jnz

or
xor

ext c3:
test
jnz

mov

test
jz
or
xor

ext c4:

test
jz
or
xor

ext cs:
add
adc

or
les
mov

ax,TPS_COMP BIT
dx,TPS_OK_BIT

crs_check_flag,O
ext c2

cx,CBL_SlO BIT
ext c2
ax,TPS_NO_CRS_BIT
dx,dx

sqe_check_flag,O
ext c3

cx,CBL_S6 BIT
ext c3

cx,Ofh
ext c3

ax,TPS_SQE BIT
dx,dx

cx,CBL_OK_BIT
ext c4

dx,TPS_UNSPEC ERR

cx,CBL_SS_BIT
ext c4
ax,TPS_CLSN_BIT
dx,dx

cx,CBL_SS_BIT
ext cs
ax,TPS_UNDER_BIT
dx,dx

generic_stats.STS TX COUNT,1
generic_stats.STS_TX_COUNT+2,0

ax,dx
si,DWORD PTR [bx].CBL_TPS_OFF
es:[si].TPS_STATUS,ax

build status in ax
dx cleared if error found

CRS checking?
nope

check carrier sense

set no carrier bit
found an error

SQE checking?
no SQE checking

check SQE bit, should be set
is set, no error

any collisions?
yes, S6 bit meaningless

signal quality error
found an error

error free completion?
yes

assume unspecified error

excessive collisions bit

set the bit
found an error

OMA underrun?

underrun bit
found an error

increment transmit count

or in other bits
get new pointer
write the status

Execute the transmit complete appendage, if one is setup. First, give
link level a chance at the packet. If the packet was sent by link level,
it will return 0 in AX. If this is so, the user appendage should not be
executed.

push bx save bx
EXECUTE 1 APNDG ll_appendage execute the appendage

TfR fto< 0e~ c---S: l0 c/fec I° ~ NK 6. (X .

. Lf l-{ u z-moJ,('j a t:ldc_ on J<fb can ,t11 rertVr ;J

Stnce U>-e c8o28-b) cxued C/tJ~L4~c((S') buf

110 cvVL.trtetLoVL /ufQ{T(Jpf co~ d bQc k ~

l~ ~

U0e> OS{OM(tlo/11 ~~ ~ d1rfttrf See flt<?

Co~~cuJ'. C<;,.) cz/f-er- file &f 6-?f? . Q,;Ct_,o(LAN?

S ~ V4 ~ l; tel 1 fctZ, t:Cf!rJlt_ ,

The dEWt \Jf f o~/C (~ rJflDf'ed cou,,pkre7,

SUice iY- Ra!(! dte5 {/Jorie .

• •

pop

cmp
je

bx

ax,O
cxt_skip_app

push bx
EXECUTE 1 APNDG tx_appendage
pop bx

cxt_skip_app:

restore bx

was this link level's packet
skip user appendage if so

save bx
execute the appendage
restore bx

; If no cbl's are free, this one becomes the 1st free one.

cmp p_1st_free_cbl,OFFSET p_1st_free_cbl ; any free?
jne cxt_advance_ptr yes
mov p_lst_free_cbl,bx ; set new free pointer

cxt_advance_ptr:
mov bx,[bx].CBL_LINK

cmp
je

cmp
je

cmp
je

jmp

bx,p_lst_free_cbl
ext enter idle

bx,p_1st_rdy_cbl
ext enter idle

bx,p_1st 586 cbl
ext enter idle

ext check

Transmitter empty, update state machines.

ext enter idle:
mov

mov

ext return:
mov

mov
jmp

ex state machine

cx_state,OFFSET cx_idle

tx_timeout_enable,O

tx time count,O -
p_ 1st 586 cbl,bx - -
net586 ex return

ENDP

advance to next cbl

was this the last transmit?
yes, no more are queued

hit the ready list

gone full circle?

check if new one is complete

enter idle state

disable the timeout

clear the timeout counter

will be first one next time
jump to return location

;**
net586 xmit timeout - transmitter timeout handler

This module just removes a timed-out transmit from the 82586 transmit ring
and returns it to the user. No attempt is made to revive the 586 if it
has died.

;**

PUBLIC net586 xmit timeout s~ -Ghe j;a___c(;_ 6-f f f'E If\{ (5 (/ (
net586 xmit timeout PROC NEAR ~ I__/

mov
tmout wait cmd:

cmp

cx,Offffh

scb.SCB_COMMAND,O

long timeout V1e_
command clear?

je
loop

tmout cmd clear:

tmout cmd clear
tmout wait cmd

mov scb.SCB COMMAND,SCB CUC START
CHANNEL ATTENTION

mov

mov

tx_time_count, 0
tx_timeout_enable, Offffh

bx,p_lst_S86_cbl

Free up the tbds.

xt return tbds:

mov di,[bx].CBL_TBD_OFFSET

yes

restart the transmitter
bang on the 586

get pointer to cbl

get pointer to tbd

If there were no free tbds then make this first free tbd.

cmp p_lst_free_tbd,OFFSET p_lst_free_tbd ; any free?
jne xt_tbd_loop yes
mov p_lst_free_tbd,di ; reset the pointer

xt tbd loop:

mov
test
jnz
mov
jmp

p_last_free_tbd,di
[di].TBD_STATUS,TBD_EOF_BIT
xt tbds returned - -
di,[di].TBD_LINK
xt_tbd_loop

xt tbds returned:

free this one up
last one in the chain?
all tbds have been returned
link to next one
loop until got 'em all

les si,DWORD PTR [bx].CBL TPS OFF ; get tps pointer
mov es:[si].TPS_STATUS,TPS_COMP_BIT+TPS_TIMEOUT_BIT ; write status

Execute the transmit complete appendage, if one is setup. First, give
link level a chance at the packet. If the packet was sent by link level,
it will return 0 in AX. If this is· so, the user appendage should not be
executed.

push bx
EXECUTE 1 APNDG ll_appendage
pop bx

cmp
je

ax,O
xt_skip_app

push bx
EXECUTE 1 APNDG tx_appendage
pop bx

xt_skip_app:

save bx
execute the appendage
restore bx

was this link level's packet
skip user appendage if so

save bx
execute the appendage
restore bx

; If no cbl's are free, this one becomes the 1st free one.

cmp p_lst_free_cbl,OFFSET p_lst_free_cbl ; any free?
jne xt_advance_ptr ; yes

£!!0V "'
p_ 1st free cbl,bx - --

xt _advance_ptr:
mov bx,[bx].CBL_LINK

crop bx,p_1st_free_cbl
je xt enter idle

crop bx,p_ 1st _rdy_cbl
je xt enter idle

crop bx,p_1st_S86_cbl
je xt enter idle

jmp xt return

xt enter idle:

; Transmitter empty, update state machines.
public xt enter idle

mov

mov

xt return:
mov
mov
ret

cx_state,OFFSET cx_idle

tx_timeout_enable,O

tx_time_count,O
p_1st_S86_cbl,bx

net586 xmit timeout ENDP

TEXT ENDS
END

set new free pointer

advance to next cbl

was this the last transmit?
yes, no more are queued

hit the ready list

gone full circle?

return

enter idle state

disable the timeout

clear the timeout counter
will be first one next time

UPDATE NOTE
NX300 Network Executive

Release 6.2

February 14, 1991

This update note for NX300 Network Executive, Release 6.2 describes
the features of Release 6.2 and lists the fixes that have been made
since previous releases.

If you should have any questions, comments, or suggestions, please
contact:

Customer Service Center
Federal Technology Corporation
207 South Peyton Street
Alexandria, VA 22314
1-800-FON4LAN

FEEDBACK

Your feedback on this product is appreciated. An overall
evaluation form, as well as a problem report form, are included at
the end of this update note. Please complete the evaluation form
and return it to Federal Technology Corporation. Please use the.
problem report as necessary.

DIFFERENCES BETWEEN NX VERSION 5 AND VERSION 6 IN LINK-LEVEL MODE

The transmit buffering area is now 32 Kbytes. All remaining memory
is now used for receive buffering.

NX Version 6 uses approximately 16 Kbytes for internal data area
and 32 Kbytes for transmit buffering. All remaining memory space
is available for receive buffering. The maximum memory used in any
case is limited to 512 Kbytes. Buffers are allocated to hold a
maximum size packet. For 1518-byte Ethernet packets the
approximate board buffering capability is as follows:

Memory Size
128 Kbytes
256~bytes
512 Kbytes

Transmit
Buffers

20
20
20

Receive
Buffers

50
140
310

Part No. 4230202-01, Rev. B

* The number of multicast addresses is no longer configurable.
Sixty-four multicast slots are always configured.

* I/O-mapped and memory-mapped host interrupts are no longer
supported.

* Configuration error codes, fatal error codes, and warning codes
have been changed. The error codes for the two versions of the
NX firmware are mutually exclusive. Status codes in link-level
reply messages remain unchanged.

* The configuration message has been changed. Although the NX
Version 6 configuration message is compatible with that of
Version 5, several changes have been made. The following fields
have become reserved fields in Version 6:

Memory Map Size

Memory Map

NX Movable Block Address

Number of Processes

Number of Mailboxes

Number of Multicast Slots

Host-to-EXOS Message Queue Interrupt Value

EXOS-to-Host Message Queue Interrupt Value

Version 6 of the NX firmware ignores these fields. The request
and reply values of these fields are undefined.

The following fields have recommended specified values in the NX
Version 6 configuration. Other nonspecified values are
supported for compatibility with Version 5 but the use of these
values is discouraged. Version 6 provides the best performance
if the specified values are used.

EXOS Mode = 0

Host Data Format Option = OlOlH

Host Address Mode = 3

Number of Hosts = 1

For the fields Host-to-EXOS Message Queue Interrupt Type and
EXOS-to-Host Message Interrupt Type, option 1 (I/O mapped) and
option 2 (memory mapped) are no longer valid. Option 3 (level
interrupt) and option 4 (bus-vectored interrupt) have been
combined into a single option, option 4 (bus hardware

interrupt). Option 3 is still supported, but its use is not
recommended.

* The NET TRANSMIT reply no longer returns the slot number the
transmit request occurred on. This field in the request/reply
message is now reserved and always returns a value of z~ro.

* The NET TRANSMIT return code lOH is now a general transmit
error that indicates the transmit was unsuccessful.

* A new NET TRANSMIT request (request code OFH) has been added.
This request returns a reply message to the host as soon as
the data in the host buffer have been copied to the EXOS board.
With this form of message, the transmit status is not returned
to the host. Therefore, protocol on the host must detect
transmit failures.

* The network statistics counters no longer stick at their maximum
value. Instead, they roll over and continue counting.

* The loopback error bit available to the host in the status port
is now a generic warning bit. Any warning, inciuding loopback
test failure, causes this bit to be set.

* The debug jumper is now the NX mode jumper. When NX PROMs that
support both Versions 5 and 6 are used, this jumper selects the
mode to run in. Installing the jumper causes Version 6 to run.
Removing the jumper causes Version 5 to run.

UPGRADING TO NX 6.2

If you have an EXOS 301, EXOS 302, or EXOS 304 board installed in
your system, you must replace both EPROMs on the board before you
can use Release 4. O of the LAN Service network software. The
EPROMs you are removing contain Version 5.x of the Network
Executive (NX) firmware. The EPROMs you are replacing them with
contain Version 6.2 of NX (NX 6.2) as well as the latest NX 5.x
firmware for your board (the latter is provided for downward
compatibility).

Follow these steps to upgrade to the NX 6.2 EPROM:

1. Power down your system.

2. Remove the EXOS board from your system.

3. Locate the EPROM marked NX300L and make a note of its
orientation.

4. Remove the EPROM from the board.

5. Insert the new EPROM (NX300L 6.2) in the board. Make sure
it is oriented the same way as the old EPROM.

6. Locate the EPROM marked NX300H and make a note of its
orientation.

7. Remove the EPROM from the board.

a. Insert the new EPROM (NX300H 6.2) in the board. Make sure
it is oriented the same way as the old EPROM.

9. Jumper the EXOS board for 27256 EPROMs, as follows:

Board
EXOS 301
EXOS 302
EXOS 304

Jumpers
J15 1-2 present
J15 2-3 present; J16 1-2 present
J18 1-2 present; J19 1-2 present

10. Insert the NX 6.x select jumper. This jumper selects the
operation mode of NX. The EXOS board operates in NX 6. x mode
when the jumper is present and in NX 5.x mode when the jumper
is absent.

Board Jumpers
EXOS 301 J9 present for NX 6.x mode
EXOS 302 J9 present for NX 6 .x mode
EXOS 304 J9 present for NX 6.x mode

11. Re-insert the EXOS board in the system and reconnect the
Ethernet cables.

12. Power on the system. Ensure that the status LED on the EXOS
board starts flashing at a steady rate approximately 3 seconds
after you power on the system. If the status LED remains lit
constantly, check that you have replaced the NX EPROMs
properly.

