
CHAMELEON 32

MTOS-UX MANUAL

Version 3.2

TEKELEC
26580 Agoura Road

Calabasas. California
. 91302

.. ~

Copyright@ 1990, Tekelec .

. All Rights reserved.

This document in whole or in part, may not be copied, photocopied, reproduced, translated or reduced
to any electronic medium or machine-readable form without prior written consent from TEKELEC.
Tekelec'" is a registered trademark of TEKELEC.
Chameleon'" is a •. registered trademark of TEKELEC.

;)

J)

WARNING

This manual contains documentatioh for those MTOS-UX Operating
System functions that are relevant to the Chameleon 32 user. This
documentation is being provided to you for· your information only.
Tekelec does not warrant that this product will meet Customer's
requirements or that the operation or· use of this product will be
uninterrupted or error-free or that errors in programming by the.
Customer will be corrected as a result of the use of this product by
Customer. There are no other warranties express or implied, including,
but not limited to, any implied warranties of merchantability or fitness
for a particular purpose.

Note The functions described in this. manual are
recommended for. experienced users who want to
take advantage of the mUlti-taSking· capability of
the operating system. You need to have extensive
knowledge of the C programming language and the
Chameleon 32 architecture to use these functions
effectively.

Memory management functions and driver service interface functions
are provided through the C library and are not included in this
document. Information about these functions can be found in the
Chameleon 32 C Manual.

Note:

,

I/O C libraries (except the window interface library) are not re­
entrant, unless. they are protected by semaphores or other
means of synchronization. Therefore, they can only be used
by one task in one program. This is illustrated below.

Program 1 EJ • • • •

Program Task 1
{

}
• • • • • EJ •

Program n

Task 2
{

}

Correct .Needs Protection

"

."

" ~",,-

(""'::~
", .'~

n~,:J

(' ... 7

TABLE OF CONTENTS

PREFACE
CHAPTER 1: INTRODUCTION

Introduction .:.. 1-1
Manual Overview 1-2
Summary of Features 1-3
C Integers :..... 1-7
Case Sensitivity:. 1-7'

'. CHAPTER 2: TASKS AND MULTI-TASKING
Introduction .. 2-1
Basic Concepts ... 2-1

. Task States .. 2-1
Priority ... 2-2
A Task as a C Function 2-3

. Iaskin!# ..:... 2-3
t:xample I ask ... , . '.. 2-7

CHAPTER 3: INVOKING TASK SERVICES
Introduction· .. 3-1
Standard I/O Functions 3-1

i)

Value Returned by Service Functions 3-3
Idle Time Monitor Tasks , 3-3
Get System Identification .. : ., ; 3-4

CHAPTER 4: PAUSE AND CANCEL PAUSE
Introduction .. 4-1
Pause for a Given Interval 4-1
Pause for Minimum Interval :.. 4-3
Synchronization. for Exact Time Intervals 4-3
Cancel Pause•......................... 4_4

CHAPTER 5: TIME OF DAY CLOCK/CALENDAR
Introduction .. 5-1
Set Clock/Calendar 5-1
Get (Read) Clock/Calendar 5-2
Synchronization with TOO 5-3
Get System Time ,...... '5-3

CHAPTER 6: TASK CONTROL DATA
Introduction .. 6-1
Task Names: Key and Identifier :............. 6-2
Attributes•.............. ,. : : . " 6-2
Transient/Durable Flag•............ :............... 6-3
System/Application Task Flag 6-3
Relocatable/Absolute Program Flag 6-4
Subpart Flag :....................................... 6-4
Local/Global Task Specifier 6-5
Language Code ... 6-6

)) Inherent Priority •.. 6-6

TOC-/

TABLE OF CONTENTS

Co-processor Use Flags 6-6
Entry Point ... 6-7
Length of Stack ... 6-7

.. Length of Uninitialized Data 6-7
Address of ·Initialized Data 6-8
Automatic Priority Change Parameters ~ 6-8
Pointer to Program File :.................................... 6-9

CHAPTER 7: TASK MANAGEMENT
. IntroduCtion. .. '7-1

Create Task ... 7-1
Get Task Identifier 7-3
Start Task . ~ 7-3
Get Address of Data 7 -5
Set Task Priority ,..................... 7-6
Terminate Task. .. 7-6
Terminating with Automatic Restart alter Given Interval 7-7
Terminating via a Signal 7-9
Delete Task .. 7-9

CHAPTER 8: EVENT FLAGS
Introduction .. 8-1
Description .. ,' : . .. 8-1
Create Global Event Flag Group 8-2
Immediately Set'Reset Event Flags 8-3
Wait for Event Flags 8-4
Set Event Flags after Given Interval 8-5
Delete Global Event Flag Group 8-6
Immediately Set'Reset Local EFs of Given Task 8-7
Summary of Values Returned by EFG Functions 8-8

CHAPTER 9: SEMAPHORES AND CONTROLLED SHARED VARIABLES
Introduction .. 9-1
Semaphores ... 9-1
Create Semaphore :.......................... 9-2
Wait for Semaphore ,.................. 9-2
Deadly Embrace ... ,...................................... 9-4
Release Semaphore ;........................ 9-5
Delete Semaphore :......................... 9-5
Controlled Shared Variables ;........................... 9-6

, -,.. Create a Group of Controlled Shared Variables 9-7
Wait for Exclusive Access to Controlled Shared Variables 9-8
Release Controlled Shared Variables ;................. 9-9
Wait for Function of Controlled Shared Variables to be True 9-9

.... Delete a Group of Controlled Shared Variables 9-11
':. :~ .. ,

, f'

TOC-2

TABLE OF CONTENTS.

CHAPTER 10: SIGNALS
Introduction ... 10-1

. Set Response to Signal•. :., ,. "10-2
Get Response to Signal 10-3
Send Signal ~ '.' .. 10-4
Send Signal after Given Interval _ 10-5
Pause for Signal ... 10-5
Structure of a Signal Subprogram '. 10-6
Detailed Handling of Single and Multiple Signals 10-7
Cancel Pending Signals 10-8
Application Notes , ; .. ,............... 10-8
Signal Usage (Table) 10-9

CHAPTER 11: MESSAGE BUFFERS AND MAILBOXES
Introduction .. .
Typical Use of Message Buffer
Create Message Buffer
Get Identifier of Message Buffer
Post Message to Buffer
Get Message from Buffer
Delete Message Buffer
Using. a Message Buffer To Grant Exclusive Access
Mailboxes vs. Message Buffers
Open/Create Mailbox•.................. ..
Send Message to Mailbox
Receive Message from Mailbox
Close Mailbox ~ .. .
Delete Mailbox

.Using a Mailbox as a Pipe
Activating Service Tasks

APPENDIX A: SUPERVISOR SERVICES SUMMARY

11-1
11-2
11-2
11-3
11-4
11-4
11-5
11-5 .
11-6
11-8
11-9

11-10
11-11
11-12
11-12
11-13

Introduction A-1
canpauO (continue given task, if it is paused for time interval) A-3
cansigO (cancel pending signals of requesting taSk) A-4
clsmbxO (close mailbox). A-5
crcsvO (create group of controlled shared variables) A-6
crefgO (create group of global event flags) A-7
crmsbO (create message buffer) A-8
crs.emO (create counting semaphore) A-9
crtskO (create task) ,................................ A-10
dlcsvO (delete group of controlled shared variables) A-11
dlefgO (delete group of event flags) A-12
dlmbxO (delete mailbox) A-13
dlmsbO (delete.message buffer) A-14
dlsemO (delete semaphore) A-15
dltskO (delete requesting task) A-16

TOC-3

TABLE OF CONTENTS

getdadO (get address of data segments of requesting task) A-17
getidnO (get MTOS-UX identification data) A·18
getimeO (get number of ms since system was started) , A-19
getkeyO (get key of given task) A-20
getmsbO . (get identifier of message buffer) ,......... A~21
getmsnO (get message from buffer--return if not available) A-22
getmswO (get message from buffer--wait if message not available) ., Ac23
getsigO (get response to given signal) A-24
gettidO (get identifier of task with given key) A-25
gettodO (get time of day clock/calendar string) , A-26
getuidO (get identifier of unit with given key) A-27
opnmbxO (open mailbox, creating it if it does not exist) A-28
pauseO (pause for given time interval) A-29
pausigO (pause until signal arrives) A-30
putmsbO (post message to the beginning of buffer) A-31
putmseO post message to the end of buffer) ,.......... A-32
rcvmbxO (received first available message from mailbox) A-33
rlscsvO (release group of controlled shared variables) A-34
rlssem() (release semaphore) A-35
setptyO (set current priority of given task) , A-36
setsigO (set response to one or more signals) A-37
setstcO (install given unit as standard console requesting ta,sk) A-38
settodO (set time of day clock/calendar) A-39
sgiefgO (set event flags after given interval of time) Ac40
sgisigO· (send specified signal after given interval of time) A-41

. sndmbxo (send message to mailbox) A-42
sndsigO (send signal to one task or group of tasks) A-43
srsefgO (immediately set or reset event flags) .,............... A-44
srslefO (immediately set or reset local event flags of given task) A-45
startO (start given task) A-46
syntodO (wait for g.iven time of day) A-48
trmrstO (terminate task with automatic restart after interval of time) .. A-49
tstartO (start given task and transfer coordination to new task) A-50
usecsvO (wait for exclusive control over group

of controlled shared variables) A-51
waiefgO (wait until event flags are set) ,.. A-52
waicsvO (wait for function of controlled shared variables to be true) .. A-53
waisemO (wait for given counting semaphore to be free) A-54

APPENDIX B: ERROR CODES 8-1

APPENDIX C:MTOS-UX DEMONSTRATION USAGE C-1

TOC-4

I
J

CHAPTER 1:
INTRODUCTION

)) .

)

.))

Introduction

Manual
Overview

TEKELEC

CHAPTER ONE:
INTRODUCTION

MTOS-UX is the Chameleon real-time operating system. It
includes low level facilities for task creation and
synchronization. The Chameleon C Development system
offers higher layers of services. Access to the lower layers of
the operating system compliments the C library and allows
more power and control over the applications.

Subsequent chapters of this manual concentrate on the
system commands that can be invoked from within a task. No
prior knowledge of real-time operating systems is assumed or
required. Many examples are given to show how to use the
various services to solve practical problems tnat arise in real-
time applications. .

8/1/90

Chameleon 32 MTOS-UX Manual Introduction

Summary Of
Features

TEKELEC

While the details are reserved for subsequent chapters, a
summary of MTOS-UX features may provide a useful guide.

Tasks

The basic organization of an MTOS-UX task is that of a
standard C function.

Task Control:

A task may create another task. This involves converting an
executable code module into a runable program. The code
may have to be loaded from a mass storage device, or may
already be in memory.

Overall memory provides the only limit to the number of tasks
that may be created. This allows the application to be divided
into as many concurrent component programs as the user.
wishes. At every instant these task programs are either:

• Executing on a processor
• Waiting their turn to execute'
• Blocked until a requested service is completed
• . Sleeping until needed

Each task has a priority that determines which task gets a
resource (such as a processor) and which must wait. There
are 256 priority levels, with limit to the number of tasks at each
level.

MTOS-UX distinguishes two general classes of tasks:
"durable" and "transient". A durable task may be started and
restarted any number of times. If the selected "target" task is
already running when a start request is issued, the request
can be queued until the target is available. Each start request
may set the priority at which the target will start running, may
pass run-time parameters, and may set the way in which the
requester will coordinate with the target. A durable task
remains within the system until a specific request is issued to
delete it.

In contrast, a transient task is created, runs until it terminates
and then is automatically deleted. This cycle may be repeated
as needed. Normally, transient tasks perform special
functions that are not part of the routine operation of the
system. A task may change the priority of another task. A
task may change its own priority, terminate and delete itself.

1·2 8/1/90

J)

J)

Chameleon 32 MTOS-UX Manual Introduction

TEKELEC

Task Coordination via Start

A task, "A", that starts another task, "8", may coordinate with
the start or the termination of "8". If "A" waits for "8" to
terminate, "8" may pass a return argument back to "A".

Task Coordination via Event Flags

MTO$-UX contains groups of binary variables called "event
flags". The application programmer assigns a logical meaning
to each bit, such as "the machine is up to speed", or "the
data is ready". Any task may set, reset, or wait for the flags
within a group. The wait can be for AND or OR combinations
of individual flags. This provides "wait for all" or "wait for any"
coordination. When an event flag is set, all tasks that are
waiting for the flag continue in parallel. To allow event flags to
be used as alarm clocks, a task may request that event flags
be set after a given time interval.

Task Coordination ria Semaphores

Through counting semaphores, a task may gain and relinquish
. exclusive control over shared data or code. This permits

several ta,sks to work with the same alterable data, or to
execute the same non-reentrant code without fear of
interference.· Only one task at a time can gain access to the
data or code.

Task Coordination via Controlled Shared Variables

Controlled shared variables (CSVs) are an extension of the
semaphore concept CSVs permit a task to wait until a given
condition among certain variables is true and then to continue
with exclusive control over those variables.

Event flags, semaphores and controlled shared variables may
be created when needed and deleted when not needed.

i.
Signals

A signal is sent to a task when the task causes a fault·
exception (such as a reference to non-existent memory or the
execution of an unimplemented operation code). The default
response to the signal, if the optional MTOS-UX Debugger is
in .place, is to halt the task as if a breakpoint had been
reached. If the Debugger has not been installed, the default is
to terminate the task. There is a separate signal .for each
major class of fault.

1-3 8/1/90

Chameleon 32 MTOS-UX Manual Introduction

TEKELEC

A task may change its response to an individual signal. It may
ignore the signal or execute a given subprogram_

One task may send a signal to another. A task can pause
until a signal is received. This provides a direct means of
synchronizing two tasks, and of sending private, binary
messages between tasks. A task can request that it be sent a
singla after a given time interval.

Communication Among Tasks , I
Tasks can send and receive messages via message.
exchanges (mailboxes and message buffers). Any number of
tasks can use an exchange as either senders or receivers.
Mailboxes and message buffers can be created and deleted.

Logical Input and Output

Tasks may use the MTOS file system to save and retrieve
information. Seryices include open, close, read, write, 'create,
rename and dele~e a file or directory. .

i

1-4 8/1/90

Chameleon· 32 MTOS-UX Manual Introduction

»

TEKELEC

Physical Input and Output

Peripheral units and memory may also be accessed directly at
the physical level. The functions generally available are:
reserve the unit, read (input), write (output) alid. release the
unit. Special functions,. such as format and page eject, are
provided as needed. .

The standard UNIX-like C functions, "such asprintf, getchar
and putchar, may be used directly to obtain formatted and
character-oriented I/O, with the system console as the target
device. Both the portable C and UNIX-like file fUnctions are
provided to MTOS users.

Time Management

A task may pause for a speCified interval. or "forever". The
specified interval can be as short as 1 ms or as long as 255
days. Another task may' cancel the. pause. Pause/cancel
pause may be used as a very specific way for two tasks to
coordinate. A durable task may terminate with automatic
restart after a given "interval.

Time-at-Day Management

MTOS-UX maintains a time-of-day clock/calendar string. Any
task may set and read this ASCII string. A task may wait until
a given time-of-day' string is matched, with "don't care" as a
possible element. This permits a task to pause until 30
minutes after the next hour or until the beginning of the next
day.

Unitorm Coordination Modes

Some MTOS-UX services, such as peripheral I/O, may not be
finished immediately. With such services a task is given four
choices:

• Wait for the service to be completed
• Continue without direct knowledge of when completion

occurs
• Continue but set event flag as a completion indicator
• Continue but send signal sent as a completion indicator

The maximum wait for the service to be completed can be
limited to a given time interval. That interval can be zero to
provide a "fail unless immediately available" restriction.

1-5 8/1/90

Chameleon 32 MTOS-UX Manual Introduction

C Integers

Case Sensitivity

TEKELEC

The exact meaning of certain te" rlS in Hje C language depend
upon the target processor. As used in this manual, "long
integer" means a variable large enough to contain an address
(a pointer), a 32-bit quantity. The term "short integer" means
a 16-bit word. An unqualified "integer" is a: variable at least Hi
bits long, possibly longer. .

For clarity and readability; examples in this guide have been
written primarily in lower case lor the C language. Include files
are described by upper case code. Many compilers and
assemblers, are case sensitive. If this is the situation, be sure
to convert to the proper case when using examples derived
from this manual.

1-6 8/1/90

.... , ,-.:,.. '

CHAPTER 2:

TASKS AND MULTI-TASKING

)) ,

!)

I

I

\
I

))

Introduction

Basic Concepts

Task States

TEKELEC

CHAPTER TWO:
TASKS AND MULTI-TASKING

This chapter introduces the basic concepts of an operating
system, a task and a multi-tasking operating system. Task
states and task priority are described. The overall structure of
a task as a computer program is given. Rnally, the general
rules for dividing a real-time application into individual tasks
are set out '

An operating system (OS) is a program that resides in memory
along with the user-written application code. The OS makes
the entire system: (1) more efficient in time by permitting
several activities to proceed concurently, (2) more efficient in
memory space by providing centralIzed common services,
such as timekeeping, input and output, and (3) more capable
by providing services that are beyond the limited scope of

. individual user programs ..

A multi-tasking OS, in particular, enables the user to divide an
application into separate, individual programs called tasks. A
task is a program that can be run as an independent entity. It
has its own set of register values, including program counter
and stack pointer.

Finally, a real-time executive or kernel is a particular kind of
multi-tasking OS which has been specifically designed to fulfill
the special needs of real-time applications. These needs

. include very fast response to external interrupts and a rich set
of facilities for intertask coordination, communication and
synchronization. A real-time executive need not support
editors, compilers, assemblers, linkers and similar programs
since they are rarely if ever part of a real-time application.
MTOS-UX is a real-time executive.

The ability of a task to run as a separate program does not
imply that it is executing at all times. Often it is not. At any·
given instant, each task in the system will be in one of four
states: OORMANT, BLOCKED, READY or RUNNING.

2·1 8/1/90

Chameleon 32 MTOS-UX Manual Tasks and Multi-tasking

Priority

TEKELEC

A DORMANT task is totally inactive because it never started,
or it has run and terminated. A DORMANT task may be
started by another task, or by the OS in response to some
external event, such as an unrequested peripheral interrupt.

A BLOCKED task is currently active, but is temporarily unable
to continue executing. There are several BLOCKED states,
depending upon the typ~ of blockage. Generally, .. thetas!<:is
either waiting for some shared facility to become available,
waiting for a requested service to be completed, or waiting for
some internal event, such as the· receipt of a coordination (go
ahead) indication from another task. While a task is merely
waiting for its turn on the Central Processing Unit (CPU) it is
not considered BLOCKED. A BLOCKED task does not
compete for use of the CPU since it is not ready to proceed.

A RUNNING task is presently using a CPU. There is only one
RUNNING task for each CPU in the system.

The READY tasks are those which could use the CPU if it
were available.

Tasks have various properties which the OS uses to control
task activities and to allocate limited resources, such as CPU
time, shared memory and access to peripherals. The state of
a task is one of its properties. Another is its priority.

The priority is a number which measures the relative
importance of the task. MTOS-UX uses 256 levels. A task at
level 255 is most urgent, while a task at level 0 is least urgent.
Priorities are dynamic; a task may request MTOS-UX to
change its priority or that of another task. MTOS-UX itself
never spontaneously changes a task's priority, even if the task
has been waiting to execute lor a long time.

The current priority is used to resolve all disputes among
tasks. When tasks are queued internally waiting for a shared
facility, the queue is always in descending priority order. For
tasks of equal priority, it is first -come-first -served.

Access to the CPU is no exception; the highest priority task
that is ready to use a CPU gets to use it (becomes the
RUNNING task). If there are two or more READY tasks at the
same highest level, they share execution time in round-robin
fashion. However, the round-robin sharing is an internal
processing. There is no guarantee that tasks of equal priority
will get equal execution time.

2-2 8/1/90

}

))

))

Chameleon 32 MTOS-UX Manual Tasks and Multi-tasking

A Task As A
C Function

.,', to·.,;;..· •• -"

Tasking

TEKELEC·

A task is written in C, with the general form of a function
subprogram. For example, if the task name is typtsk· the
program may be defined as:

typtsk (arg)
long int arg;

{ .

!" task code here *j
}

The variable arg is called the run-time argument. When one
task starts another using the MTOS-UX start function, the
requester supplies the value of this argument. There are no
requirements as to the meaning of argo Often, it is the
address of a structure containing a variety of parameters.
MTOS-UX makes no assumptions about the nature of the
argument, or about the form of any structure to which it might
point. The value of the argument is simply assigned to arg
when the target task starts.

If the task does not make use of the run-time argument, arg
may be omitted entirely:

typts.k 0
{

!" task code here *j
}

Multi-tasking is mandatory for a real-time application in which
external events, such as the asynchronous arrival of new
information, must interrupt ongoing activities, such as the
analysis of old information. As a result, one of the most
essential--and most difficult--aspects of application design is
the actual division of the functional work load into tasks.
Proper tasking is essential since a poor division can be difficult
to code and debug initially, inefficient in time and memory
when it does run, and awkward to maintain and modify
thereafter. Tasking is also difficult since it is based on
judgement gained primarily through experience.

2-3 8/1/90

Chameleon 32 MTOS.UX Manual Tasks' and Multi·tasking

TEKELEC

To illustrate the design process, consider the following set of
functions for a prototype control application:

Main Functions

•

•

•

•

•

Detect random, transient data signals--
If Type A, analyze and store attributes on disk
If Type B,analyze and save attributes in memory

generate routine control actions

prepare and print an hourly summary report

maintain a visual panel display showing the status of key
signals

respond to various inquiries entered on the system
console

Emergency Functions

•

•

safeguard system upon detection of a power failure

generate special control actions upon detection of a
safety violation

This illustrative system must scan a set of inputs for certain
data. Since the inputs appear at random and may be of short
duration, scanning must be frequent and quick.

There are two types of data, A and B. When detected, both
must be analyzed further. The analysis of Type A involves
access to disk files, but does not require any further data
inputs; the analysis of Type B requires additional data inputs to
be read, but does not involve the disk. Analyzing either type
may take longer than the duration of the data signals or the
interval between them.

8/1/90

J)

Chameleon 32.MTOS-UX Manual . Tasks and Multi-tasking

TEKELEC

Certain data configurations lead to routine control actions
(outputs). In addition, the status of critical data must appear
on a visual display panel. Once an hour a standard report (log)
must be prepared and output to a printer. However, the
display or report can be delayed if other processing becomes
very active.

The system must also respond to requests from a system
console. While most requests can be executed immediately,
some. require extensive analysis' and many minutes of
processing.

Translating a particular set of overall functional needs (such
as those described above) into individual tasks is a specific
problem requiring a specific solution. Nevertheless, there are
some general principles:

, I
Each main (functionally distinct) activity should be
assigned to at least one separate task. Do not complicate
a task by including several separate and functionally
independent jobs. Here good judgement is indispensable
since most tasks are interdependent.

. Separating main functions into different tasks is especially
important because changes inevitably become necessary.
You do not want to rewrite every task just because one
function has to be modified.

Similarly, for ease of system development and maintenance,
closely related functions should be kept in the same task. For
instance, scanning land detecting both Type A and B data
should be in one ta~k. .

Subfunctions that require different response or processing
times should be divided into separate tasks. In the
example, the initial detection and capture of the transient data
must be started promptly and finished quickly or the data
could be lost. In contrast, the subsequent extensive analysis
of the data can be delayed somewhat. Thus, the overall
function "capture and analyze data" is partitioned into
separate tasks: "capture the data and store them in a buffer"
and "analyze the stored data".

Subfunctions of different importance should be put into
separate tasks. This lets more important activities interrupt
less important ones. For example, the analysis of Type A data
(more important) should be separated from the. analysis of
Type B data (less important).

2-5 8(1/90

Chameleon 32 MTOS-UX Manual Tasks and Multi-tasking

TEKELEC

Functions started by different mechanisms (such as different
interrupts) must be in separate tasks. This ensures rapid
response to interrupts. As an example, suppose the system
had just one task for .all emergency processing. Suppose
further that this task already had been started by a safety
violation when a power failure occurs. Since the task is busy,
it cannot be restarted immediately to resp6rlCi- to-the power
failure. Unless you complicate the processing of safety
violations by frequent checks for power failure, the system
may shut down before the power failure interrupt is ever
serviced. .

A task arrangement for the illustrative application is shown
below.

I
Task Priority Started by Purpose

INITSK
CAPDAT

ANALDA
ANALDB
GENCTL

PRPLOG
PRPPAN
CNSINP

REQAUX
i

PWRFLR

EMRCTL

140
100

90
80
110

40
20
60

80

240

200

startup
INITSK

CAPDAT
CAPDAT
CAPDAT

INITSK
INITSK
console

CNSINP

power fail

safety

2-6

Perform initialization
Capture transient external
data.
Analyze Type A ·data
Analyze Type B data
Generate routine control
actions
Prepare hourly report (log)
Maintain panel display
Input and execute console
requests input
Request auxiliary data on
console
Perform power failure
shutdown interrupt
Generate emergency
control actions violation
interrupt

8/1/90

)

. Chameleon 32 MTOS-UX Manual Tasks and Multi-tasking

Example Task
Program

TEKELEC

The following example demonstrates a procedure for creating
and using tasks in. MTOS-UX. It creates two tasks that
transmit and received 0.921/0.931 messages over the Basic
Rate Interface. The example includes four program files:

• -mairisYm.h

• tcd.c

• main.c

• task.c

Contains .. the global definitions used. in the·-"'o
other programs, such as keyboard values,
screen attributes, and procotol-specific
parameters, timers, and message types.

Allocates memory for two tasks.

Contains the function main() which creates the
two tasks, allocates memory for message
buffers, and manages the use of the message
buffers.

Tests the multi-tasking capability of MTOS-UX
by transmitting messages two and from the
two tasks.

The remaining pages in this chapter contains the code of the
four files described above.

2·7 8i1190

· Chameleon 32 MTOS-UX Manual Tasks and Multi-tasking

I···•................
File name: main,c
Description: This file contains the function ma;n() which creates the two tasks,

allocates memory for message buffers, and manages the use of the message buffers .
..•..•.......... ~ /

#include ~MTOSUX.h"

#include "mainsym.h"

long int stb-uf1.stblJf2:

typedef struct
{

byte row;
byte col;
long int recKey;

, on9 int sendKey;
long int endKey;

} TASKINIT;

TASKINIT tl. t2;

e'tern int testTaskl().testTask2();
e~tern struct ted taskTcdl,taskTcd2;

main()
{
long int idl,idZ,rec,msbresl,msbres2,msbend;
int sresult,r,c;

/. Format main window. ./
disablecur(_stdvt);
printf(CLEAR);
printf(YELLOW);

printf(POS_CUR,3,12);
printf("······ TEST MTOS-UX MULTI-TASKING

printf(POS_CUR.14.40);
printf("--------------------------------------");

printf(POS_CUR.l0.40);
printf("TASK1:");

printf(POS_CUR.12.40);
printf("REC: ");
printf(POS_CUR.13. 40);
printf("SND: ");

printf(POS_CUR.15.40);
printf("TASK2::);

printf(POS_CUR,17.40);
printf("REC: ");
printf(POS_CUR.18.40);

TEKELEC 2-8

...... ") ;

8/1/90

))

))

Chameleon 32 MTOS-UX Manual

printf("SND: ");

r = 10;

c = 5:

j* Init task1 window position. */

tl.row 11;
t1.col = 4Q;

/* In;t taskZ window position. */

tZ. row 16:
t2_col = 40:

/* Specify task entry points. */

taskTcdl.ep (long int) testTaskl:
taskTcd2.ep = (long int) testTask2;

/* Create message buffers */

msbend = crmsb('ENDB' ,MSBGBL+ 50L):
if msbend BADPRM) printf('END Buffer: BADPRM"):
if (msbend == QUEFUl) printf('END Buffer: QUEFUL'):

msbresl = crmsb('BUFI' ,MSBGBL+2L):
if (msbresl BADPRM) printf("Message
if (msbresl == QUoFUL) pr; ntf("Message

msbres2 = crmsb('BUF2' ,MSBGBL+2L):
if (msbres2 BADPRM). printf('Message

.if (msbres2 == QUEFUL) printf("Message

t1.sendKey 'BUFl' :
tl.recKey 'BUF2' :
t 1. endKey I ENDS' ;

t2.sendKey 'BUF2' :
t2. recKey 'aUF!' ;

tZ. end Key I ENOS.' ;

/* Create taskl. */

idl = crtsk(&taskTcdl):
printf(RED):
printf(POS_CUR,r++,c):
if ((idl & OxFFFFOOOO) == OxFFFFOOOO)

printf("Taskl create error");

buffer! :
buffer1:

buffer2:
buffer2 :

else printf("Taskl creation successful");

;* Create taskl. *j

id2 = crtsk(&taskTcd2):
printf(RED):
printf(POS_CUR,r++,c):
if ((id2 & OxFFFFOOOO ==' OxFFFFOOOO)

TEKELEC 2-9

BADPRM") :
QUEFUL"):

BADPRM'):
QUEFUL") :

Tasks and Multi-tasking

8/1190

Chameleon 32 MTOS-UX Manual

printf("Task2 create error");
else printf("Task2 creation successful"):

It Start task!. .;
sresult = start(idl,INHPTY,&tl,&stbufl,CTUNOC);
printf(REO);
printf(POS_CUR,r++,c);
if (sresult BAOPRM printf{ "Task,! not started
if (sresult QUEFUl printf("Task,l not 5 ~':'r'tod·

if (sr'esul t TIMOUT printf("Task! not started

/. Start task,2. */

sresult = start(id2,INHPTY,&t2,&stbuf2,CTUNOC);
printf(REO);
printf(POS_CUR,r++,c);

BAOPRM\n");
{lUE Fill'·,!.,",} ','
TIMOUT\n") ;

if (sresult BADPRM printf("Task.2 not started BADPRM\n"):

if (sresult QUEFUL printf("Task,2 not started QUEFUL\n");
if (sresult TIMOUT printf("Task.2 not started TIMOUT\n"):

/. Display exit and reset screen.
getmsw(msbend,&rec);
printf(POS_CUR,r++,c);

. printf("'l:c[31mTASK 2 dying ... \n",Oxlb);
getmsw(msbend,&rec);
printf(POS_CUR,r++,c);
printf("'l:c[3ImTASK I dying ... \n" ,Oxlb);
printf(POS_CUR,r,c);
printf(""%'c[31mMain dying .. ,\n",Oxlb};
while(getch(_stdvt) != FlO);
dlmsb(msbresl);
dlmsb(msbres2) ;
dlmsb(msbend);
printf(ClEAR) ;
printf(RESET) ;
return(Ol) ;
} /. end main ./

TEKELEC

./

2-10

Tasks and Multi-tasking

8/1/90

.Chameleon 32 MTOS-UX Manual Tasks. and Multi-tasking

) , .•••••.....••.••...•......•.............•...•.•••.•.. .•......•..•.. ~•...•.•.•.....
• File name: task,c
• Description: This file tests the multi-tasking capability of MTOS-UX by

transmitting messages two and from the two tasks .
....•••••••.....••••.••.•....... ~•.............. /

#include <MTOSUX.h>
#include "mainsym.h"

extern char -malloc{):

typedef struct

{
byte row;
byte col;
long int recKey;

long int sendKey;

long int endKey;
} TASKINIT;

typedef struct
{

byte c010r[6];
byte poseS];
byte text[SO];

} DISPLAY;

.char ·el r
char ·pos

testTaskl(t)
TASKI NIT ot;
(
byte
long int
int
DISPLAY

".[3.m " . , .
".[Xd;%df" ;

·send;
rae;

result:
dsp;

1* Init taskl window. *j

strcpy(dsp.color,clr);
strcpy(dsp.pos,pos);
dsp.co10r[O] Oxlb;
dsp.co10r[3] 'Z';
dsp.pos[O] Oxlb;

strcpy(dsp.text,"TEST TASK 1 IS RUNNING.");

printf({byte *) &dsp,t-)row++,t->col)~
t-)col = t-)col + 6;'

/* Open message buffers. */

t->recKey = crmsb(t->recKey, MSBGBL + 2L};
t-)sendKey
t-)endKey

TEKELEC

crmsb(t->sendKey, MSBGBL + 2L);
crmsb(t-)endKey, MSBGBL + 50L);

2-11 8/1/90

Chameleon 32 .. MTOS,UX Manual

/- Send message to task..2. */

send = (byte *) malloc(20);
strcpy(send, "From 1 to 2 It);

result = putmse(t-)sendKey. (long int) send);
switch(result)

{
case NOERR: strcpy(dsp.text, "From 1 to 2");

break;
case QI.'=FUL: strcpy(ds~.text, "QUEFUL on TASKl to TASK2"):

break.;

case BADPRM: strcpy(dsp.text, "BADPRM on TASKl to TASK2"):
break;

}

printf((byte .) &dsp,t->row+l.t->col);

;* Receive message from task.2. */

result = getmsw(t->recKey. &rec};
swi tch (result)

{
case NOERR: strcpy(dsp.text,(byte *} reel;

break.;
case BADPRM:strcpy(dsp.text,"BAOPRM on TASK! from TASK2"):

break;

}

printf«byte *) &dsp,t->row,t->col);
free((byte 0) rec);
send' (byte 0) malloc(4);
putmse(t->endKey, (long inti send);
}

testTask2(t)
TASKINIT °t;

{
byte ·send;
long int ree;
int result;
OISPLAY dsp;

'* Init task. window. */
strcpy(dsp.color,clr):
strcpy(dsp.pos,pos);
dsp.color[O] Oxlb;
dsp.color[3] = '6';
dSp.pos[O] = Oxlb;
strcpy(dsp.text,"TEST TAsK 2 IS RUNNING");
printf((byte .) &dsp,t-)row++.t-)col);
t->col = t->col + 6;

/. Open message buffers. ./
t->recKey = crmsb(t->recKey, MSBGBL+2L);
t - >sendKey c rmsb (t - > sendKey, .~SBGBL +2L) ;
t->endKey • crmsb(t->endKey, MSBGBL + 50L);

TEKELEC 2-12

.Tasks and Multi-tasking

8/1,'90

)

')-)

-_ .Chameleon 32 MTOS-UX Manual

j" Receive message from task1. */

result = getmsw(t-)recKey, &rec);

switch(result}
{
case NOERR: strcpy(dsp-.text.(byte *) reel;

break:
case BADPRM:strcpy(dsp.text,"BADPRM on TASK2 from -TASK!")-·;

break;

}

printf((byte *) &dsp,t-)row,t->col):
free((byte 0) rec);

j* Send message to taskl. ./
send = (byte 0) malloc(20);
strcpy(send,"From 2 to 1"):
result = putmse(t-)sendKey, (long int) send);
switch(result)

{
case NOERR: strcpy(dsp.text.uFrom 2 to

break;·

case QUEFUL:strcpy(dsp.text,"QUEFUL on
break;

case BADPRM: strcpy(dsp. text. "BAOPRM on
break;

}

printf{ (byte .) &dsp,t-)row+l,t-)col);
-send- = (byte 0) malloc(4);
putmse(t->endKey, (byte 0) send);

}

TEKELEC

1") ;

TASK2

TASK2

to TASK!");

to TASK1");

2-13

Tasks and Multi-tasking

8/1/90

Chameleon 32 MTOS-UX Manual

-

I···
• File name: mainSym.h
• Description: This file conta'ins the globa1 symbols .
•• j

I' TIMERS AND CONSTANTS SPECIFIC TO LAPQ SETUP ./

#define T200 10
#define T203 20
#define N201 260
#defi ne N200 10
#define WI NOOW_SIZE 3
#define MOOULUS
#define CONFIG Ox02

I' PARAMETERS FOR
#define INTERFACE

THE INITIATION OF THE COMMUNICATION PROCESSOR .• /
2

#define STATION o
#define ENCOOE o
#defi ne BITRATE (unsigned 10ng)16000

/. SAPI
#define
#define
#def;ne

/. TEl
IIdefine

VALUES ./
CONTROL
PACKET
MNGMT

VALUES ./

BC

o
16
63

127

/. GENERAL USEFUL SYMBOLS ./
extern 10n9 _stdvt.getch();
#define byte unsigned char

#define STOP 0

#define CONT
#define TRUE -I

#define FALSE 0
#define YES
#define ~O 0

#def i ne MOO(x.y) (x % y)
#def; ne ANO &&

TEKELEC 2-14

Tasks and Multi-tasking

8/1/90

J

J)

))

Chameleon 32 MTOS-UX Manual

Hdefine
#define

OR
NONE

/, TYPEDEF DEFINITIONS'/
typedef struct

{
int type;

int tei;
int sap;;

} LINK;

extern LINK linksA[];
exte rn LINK linksB[];

II
-1

/' KEYBOARD CDDE DEFINITIONS ,/
#define Fl OxBl
#define F2 Ox82
#define F3 Ox83
#define F4 Ox84
#define F5 0)(.85

#define F6 Ox86
#define F7 Ox87
#define F8 Ox88
Hdefine F9 Ox89
#define FlO Ox8.
#define keyO Ox30
#define keyl Ox31
#define key2 Ox32
#define key3 Ox33
#define key4 Ox34
#define key5 Ox35
#define key6 Ox36
#define key7 Ox37
#define keyS Ox38
#define key9 Ox39
#define UP OxOb
#define DDWN OxOa
ifdefine RIGHT OxOc
#define LEFT Ox08
#define RTN OxOd
#define DELETE Ox7f

/' SCREEN COMMAND MACRO '/
#define setScr(x) printf(x);fflush(stdout);

/' COLOR COMMANDS ,/
#define BLACK "%c(30m" ,O<1b
#define RED "%c[31m" ,Oxlb
#define GREEN "%c[32m",Oxlb
#define YELLOW "%c[33m", Ox lb

#define BLUE "%c[34m" ,Oxlb
#define MAGENTA "%c[35m" ,O:db

#define CYAN "%c[36m" ,Oxlb

TEKELEC 2-15

Tasks and Multi-tasking

8/1/90

Chameleon 32 MTOS-UX Manual

#define WHITE "%c[37m",Oxlb
#def 1 ne BBlACK "%c[40m",Oxlb
#define BRED "%c[41m",Oxlb
#define BGREEN "%c[42m",Oxlb

#define BYEllOW "Xc(43m",Oxlb

#define BBlUE "%c[44m".O~lb

#define BMAGENTA n%c[45m" • Oxlb

#define BCYAN "%c[46m",Oxlb
#define BI,:!HITE. "%c(47m",Oxlb

/, SCREEN ATTRIBUTES ,/

#define RESET "%c[Om",Oxlb
#define HIGHLIGHT "%c[lm" .Oxlb
#define UNDERLINE "%c[4m", Oxlb

#define BLINK "%c[5m",Qxlb
#define REVERSE "%c[7m" ,Ox:b

/' SCfEEN COMMANDS '/

#define POS_CUR "lc[ld;%dl",Oxlb
#define DEl_EOl "le[OK", Oxlb .
#define DEL_EOS ""X.c[OJ",Oxlb
#define CLEAR "lc[2J",Oxlb

/' PORT DEfINITIONS ,/
#deline PORTA 0
#define PORTB

j' CHAMELEON fUNCTION
#defi ne MONITOR
#define SIMNT
',define SIMTE

/' LINK LAYER STATE,
#define fR_DISC 0
#define LINK_REQ 1
#define REJECT 2
#define LINK_DISC 3
#deline INfO_TRANSf 4
#define LOCAL_BUSY 5
#define REMOTE_BUSY
#define L_R_BUSY 7

#defi ne R_NOT_RESP B

1

MODE
1
2
3.

'/

6

/, CHANNEL ATTRIBUTE '/

#define SYSTEM 1

#define MILLIWAT 2
"define CODEC 3
#define EXTERNAL 4

#define IDLE 5

,/

/' DEfINITION fOR UI fRAME
#define UI Ox03
#define MEl OxOI
#define IDREQ OxO 1

TEKELEC

,/

Tasks and Multi-tasking

2-16 8/1/90

Chameleon 32 MTOS-UX Manual Tasks and Multi-tasking

J #define IDASS Ox02
Ndefine IDDENY Ox03
#define IDCHK Ox04
#define IDCHKACK Ox05
#define IDREL Ox06
#define IOCONF 0,07

f* DEFINITION FOR LAYER 3 MESSAGE TYPE ~i

#define PO Ox08
Ndefine ALERT OXOI
#define CALLPROC OX02
#define CONN OX07
#define CONNACK OXOf
#define PROG OX03
#def;ne SETUP OX05
#define SETUPACK OXOd
#define RESUME OX26
#define RESUMEACK OX2e
#define RESREJ OX22
#define SUSP OX25
#define SUSPACK OX2d
#define SUSPREJ OX2.1
Hdefine USERINFO OX20
Ndefine DISC .OX45
#define RELEA OX4d
#define RELCOMP OX5a
#define REST OX46
#define RESTACK. OX4e
#define CONGCON OX79
#define INFO OX7b
#define NOTI FY OX6e
#define STAT OX7d
#define STATENQ OX75

f* DEFINITION FOR LAYER 3 TIMER AND OTHERS *f

#define T302 10
#define T303 10
#define T305 10
#def; ne T306 10
#define T308 10
#define T310 10
#define T312 10

1)

T£K£L£C 2-17 8/1/90

Chameleon 32 MTOS-UX Manual

j ••• •••••••••••••••

• File name: tcd,c

• Description: This file contains task declarations .
.. /

'include <MTOSUX.h>
'include ·.ainsy •. h'

'define TASK1
'define TASK,Z

'TASi j,

'TASZ'

struct ted taskTcdl
{ TASK!,

ABS+TRN+APP,
-1,

C,
150,
0,
OL,
lDOOL,
DL,
DL,
0,
"d· 9

"0-'·,

DL
};

struct ted taskTcd2
{ TASK2,

ABS+TRN+APP,
-1,

C,
100,

0,
OL,
lOOOl,
OL,
Dl,
O.
'\~' .
'\0' .

DL
};

TEKELEC 2-18

Tasks and Multi-tasking

8/1/90

CHAPTER 3:·

INVOKING TASK SERVICES

)

J)

Introduction

Standard I/O
Functions

TEKELEC

CHAPTER THREE
INVOKING TASK SERVICES

One, of the main· purposes of an operating system is to
provide services to the tasks that run under it. For a task
written in C, a service is requested by calling a specific
function, This may be illustrated with some simple calls for
peripheral input and output, and for a pause.

Many tasks must communicate with the external world, for
example, to write a message ona console, to read data from
a keyboard, to generate a report on a printer. This involves
input from or output to a peripheral unit. Other examples of
peripheral 110 are the storage and retrieval of disk data, and
the manipulation of analog data via AID and D/A converters.

Since C is a convenient language in which to write tasks, the
standard input and output library functions, such as getchar,
putchar and printf, are provided for use with MTOS-UX. (Refer
to the Chameleon 32 C Manual for more information about
these functions.)

3·1 8/1/90

.Chameleon 32 MTOS-UX Manual Invoking Task Services

TEKELEC

A simple MTOS-UX task to output a fixed message could be:

smptskO
{

}

printf("\n\rWelcome to MTOS-UX\n\r");
return(OL);

In this case, the C compiler stores the message text within the
program code region and generates a pointer to it as the
value of the argument

The return statement is not mandatory; the compiler
automatically creates the equivalent However, using an
explicit return is considered good practice.

As another example, a text echo task could be:

echoO
{

}

#include "mtosux.h"
char ch;
while ((ch = getchar()) ! = EOF)

putchar(ch);
return(OL);

3-2 8/1/90

! ')

))

Chameleon 32 MTOS-UX Manual Invoking Task Services

Value Returned
By Service Functions

Idle Time
Monitor Tasks

TEKELEC

MTOS-UX service functions normally return a success/failure
.indicator. For example,· all standard I/O functions return the
error value BADPRM if there is no system console. (Literals,
such as BADPRM, are defined in the header file mtosux.h.)
With this in mind, the echo task becomes:

echoO
{

}

#include "mtosux.h"
char ch;
while (((ch = getchar()) ! = BADPRM) && (ch ! = EOF))

putchar(ch);
return(OL);

Since many service functions also return a value under normal
circumstances, the exception values have been chosen to be
easily distinguished_ For the current case, the normal range
for getchar is OxOOOO to Ox007F, while BADPRM is OxFFFF.
All error values are (sign-extended) negative integers.

As another simple demonstration, we offer the following pair of
tasks, tlytsK and rpttsk:

#include "mtosux.h"

external int scalar;
external long inttally;

tlytskO

rpttskO

{ r This tally task must be the only one to run at priority a
-Ill; for (;;)

{
for (scalar = 0; scalar < 60; + + scalar);
+ + tally I' Value of tally shows how long tlytsk has run 'I;
}
}

{ I' This report task must run at a fairly high priority so that
pause is a proper 1 minute 'I;

{

}
}

for (;;)

scalar = tally = a i' reset counters 'J; .
pause (1 + MIN) I' pause 1 minute 'I;
printf("\n1rSystem idle tally for last minute was d" ,tally);

8/1190

... Chameleon 32 MTOS-UX Manual Invoking Task Services

.. Get System
Identification

TEKELEC

The reporting task resets the counters and then pauses for
one minute, using the MTOS-UX pause service. Since the
tally task has the lowest priority, it runs only when there are no
other tasks ready to use the CPU. As a result, the value that
tally reaches is a measure of the overall idle time. This is
reported when rpttsk wakes up at the end of each minute .

MTOS-UX contains an ASCII string of system identification
data. It may be copied into a user buffer via:

int getidn (idnbuf)
char 'idnbuf;

The function returns with NOE.RR unless there is a problem
writing into the buffer. For write errors, the return value is
BADPRM and the error signal, 26, is sent to the task_

The buffer receives a 33-byte, null-terr(1inated string of the
form:

"\r\nMTOS-UX/68K MP V1.4 [171 086]\r\n"

. The data in square brackets is the last edit date: DDIMMIYY.
The field MP is replaced by SP.

3-4 8/1/90

CHAPTER 4:

PAUSE AND CANCEL PAUSE

.• ~

))

I

))
,"

0) .

Introduction

Pause For A
Given Interval

TEKELEC

CHAPTER FOUR:
PAUSE AND CANCEL PAUSE

MTOS-UX maintains an internal millisecond clock that is used
to support time-dependent services, such as pause and
terminate-with-future-restart. The basic clock period is
installation-dependent, with 5 ms as the normal value. Periods
as low as 1 ms are easily provided, but with an increase in
overhead.

The period sets the "granularity" of the internal clock. For
example, with a value of 5 ms, the millisecond counter
remains constant for 5 ms and then increases 'by 5. As a
result, although a service request will accept an interval of 3
ms, it could take as long as 5 ms to recognize that the .time
has elapsed.

A pause request is used to efficiently delay task processing for
a specified interval. During the pause the CPU is
automatically used for other work. In C, the form of the

. request is:

int pause (interval)
long int interval;

In pause, as in all other requests that require an interval
specification, the'low-order 11 bits of the argument are used.
The information is further subdivided into two fields:

interval = iunits[10-8] + inum[7 -0]

Values in square brackets indicate bit positions, numbered
right to left. Separate groups of bits are used for each field so
that the components can be independently summed. The
field iunits selects the time units, (1 to 7), and inurn gives the
number of such units (0 to 255). The literals to be used for
iunits and their equivalent numerical values are:

MS ms 1 • 256
TMS ten ms 2' 256
HMS hundred ms 3' 256
SEC seconds 4' 256
MIN minutes 5' 256
HRS hours 6' 256
DAY days 7' 256

4-1 8/1/90

Chamele0n 32 MTOS-UX Manual Pause and Cancel Pause

TEKELEC

No scaling is needed for inurn.

When the interval is zero, there is no limit to the wait, so that
the pause could last forever. However, a pause can be
cancelled by another task. Thus, an interval of zero really
means "pause until cancelled". The literal NOEND may be
used to m.?ke \nis .case explicit.

If inurn is not zero when iunits is zero, a parameter error
results.

For success, the pause function returns either:

NOERR

TIMCAN

The specified interval ran to completion

The pause was cancelled (by canpau)

The failure values are either:

BADPRM Bits 11 to 15 are not 0

QUEFUL The service could not be completed for lack
of internal resources

Some examples of the pause function as called in Care:

status = pause(250 + MS);

status = pause(SEC + 1);

status = pause(NOEND) r pause until cancelled */;

Some intervals can be composed in two ways, for example,
250 + MS or 25 + TMS. The result is the same. Nevertheless,
there is slightly less internal processing whenever MS is used
as the units code.

4-2 8/1/90

j

Chameleon 32 MTOS-UX Manual Pause and Cancel Pause

Pause For
Minimum Time
Interval

Synchronization
For Exact Time
Intervals

TEKELEC

In some real-time systems, there is a task which must run on
every clock tick. That task ohen has the job of sampling input
data for changes. '.", .. w .. _ _.,. _~.

A common structure for such a task is as an initialization
section (which is entered just once) followed by a cyclic
section. The cyclic section ends with a pause for a minimum
interval and a branch back to itself: ,

samptsk 0
{

r initialization section *j

}

for (;;)
{

}

I

/* cyclic section *j
pause(NXTICK);

The literal NXTICK produces MS + 1. Because of the
granularity of the real-time clock, a 1. ms pause is always
cancelled at the next clock tick (for' any value of the clock
period). The value MS + 0 does not work, however, since for
an interval of zero there is no pause at all.

It is sometimes necessary to separate two events, such as the
generation of two outputs ("A" and "B"), by a given interval,
say 250 ms. A straightforward approach would be:

output" A". pause(250 + MS). output" 8"

However, because of the granularity of the clock, the pause
interval is usually shorter than expected. (On the average half
the current clock period is already over when a pause is
issued. Thus, the average pause is half a clock period too
short.) .

When accurate intervals are required, it is best to first
synchronize to the start of a clock period by issuing a· pause
for 1 ms. The sequence would then be:

pause(NXTICK), output "A". pause(250 + MS). output "8"

4-3 8/1/90

.. Chameleon 32 MTOS-UX Manual Pause and Cancel Pause

Cancel Pause

• I

TEKELEC

When a pause ends, the task status changes from blocked to
ready. If there are tasks of higher priority, the actual
resumption of task execution may be further delayed.
Consequently, if a task needs an exact interval, it also needs a
very high priority.

Pause/cancel-pause can be used to coordinate task activity
using the following approach:

• One task, P, issues a pause for an indefinite time using
pause(NOEND)

• Another task, M, cancels that pause when it wants Pto
continuel

By using a definite interval for the pause, you can provide a
limit in case the expected event that the monitor task M is
seeking never occurs. Task Pcan use the value returned by
pause to determine if M cancelled the pause (value TIMCAN)
or the maximum wait time was reached (value zero).

The format of the cancel-pause request in Cis:

int canpau (tid)
long int tid;

tid is the identifier of the target task. For an invalid tid, the
function returns a failure value BADPRM. For success,
canpau returns NOERR if the specified task was paused, or
NOTOUT if the task was not paused.

The target of a cancel-pause is expected to be paused, that
is, to have invoked pause. A task that uses pausig to wait for
a signal· or trmrst to pause and then restart, is placed in a
different type of blocked state, and may not be resumed by
cancel-pause.

4-4 8:1.90

)

CHAPTER 5:

TIME OF DAY CLOCK/CALENDAR

}

i)

))

Introduction

Set Clock!
Calendar

TEKELEC

CHAPTER FIVE:
TIME OF DAY CLOCK/CALENDAR

In addition to the internal millisecond counter described in
Chapter Four, MTOS-UX maintains· a time of "day (TOO)
clock/calendar. The information is available as a String, with
the following 21 characters of fixed-field; ASCfI,encoded data:

DD MMM YYYY HH:MM:SS\O

where:

DD = day in month, starting at 01
MMM = abbreviated month name: JAN, FEB,

MAR, APR, MAY, JUN, JUL, AUG, SEP,
OCT, NOV,.DEC

yyyy = year
HH = hour, 00 to 23
MM = minute, 00 to 59
SS = second, 00 to 59

A sample string is:

11 NOV 1918 11 :00:00

The values within the string may be set from a task coded in C
by issuing:

int settod (todstg)
char "todstg;

todstg points to a buffer containing a null-terminated string of
the form shown above. The characters are taken as 7-level
ASCII; the high-order bit is discarded prior to use.

If the format of the string is not valid (for example, the month
name" does not exactly match one of the three-character
abbreviations), the function fails and settod returns a value of
BADPRM. A successful invocation returns avalue of NOERR.

The valid field delimiters are blank, colon, or any character
greater than Ox1 F (hexadecimal 1 F).

5·1 8/1/90

Chameleen 32 MTOS-UX Manual '. Time of Day Clock/Calendar

Get (Read)
Clock/Calendar

TEKELEC

The clock/calendar string is typically composed in read-write
memory by the initialization task after determining the required
data from a user. Using ipltod as the name of the string, the
call would then be: .

settod(ipltod);

Once set, the string is automati8ally advanced each second.
It is assumed that the settod is issued at the beginning of the
given second. .

The TOO string may be set and reset at will by any task. This
has no effect upon outstanding pauses, timed restarts and
other interval-based time processing. (Such processing
involves the millisecond counter, not the TOO string.)

The current clock/calendar string may be read by issuing:

int gettod (todbfr)
char 'todbfr;

The entire string (including the terminal nUll) is copied into the
read-write buffer whose address is given by todbfr. The string
is guaranteed to be consistent; the clock/calendar is not
permitted to change during the copy.

The following C task outputs the clock/calendar every second:

cctask ()
{ .

char ccstg[21] I" clock/calendar string 'j;
while (pause(SEC + 1) = = 0) I" pause 1 second 'j

{
gettod(ccstg) r get time 'j;
printf("\n\rs" ,ccstg) I" output to std console 'j;

}
return(O);

}

5-2 8/1190

\
}

· .. -. Chameleon 32 MTOS-UX Manual Time of Day Clock/Calendar

Synchronization
With TOO

Get System Time

TEKELEC

Certain tasks, typically those which produce periodic reports
and summaries, must be synchronized with the clock portion
of the TOO clock/calendar string. MTOS-UX has a straight­
forward mechanism to perform this type of synchronization:

int syntod (synstg)
char *synstg;

synstg is the address of a null-terminated string of the form
HHMMSS. Each character is either 0 - 9, or ? (match any).
where HH does not exceed 23, and MM or 88 do not exceed
59.

After invoking the service, the task is blocked until the given
time string matches the TOO clock/calendar. This is a simple
pattern match. Thus, if a wait for "103000" is issued at
"103001", the task will wait until the next day. The string
"??1500" waits for 15 mi[1utes after the hour, while the string
"????OO" waits for the beginning of the next minute. The
function returns a NOERR upon a successful call.

After the wait ends; the task becomes Ready. Actual
execution does not begin until the task is the highest priority
Ready task.

The function syntod is often invoked at the beginning of the
repeated section of a cyclic task.

MTOS-UX maintains a tally of the number of ms since the
system was started. This 6-byte field may be copied into a
given user buffer via:

int getime (msbuf)
struct timer
{
short int u2 /* upper 2 bytes of time interval *1;
long int [4 /* [ower 4 bytes of time interval *1;

} msbuf;

The function returns with NOERR unless there is a problem
writing into the buffer. For write errors, the return value is
BAOPRM and the error signal, 26, is sent to the task.

The 6-byte value is guaranteed to be consistent, even if a
clock interrupt occurs while the copy is being made.

5-3 8/1/90

, ,

))
/

CHAPTER 6:

TASK CONTROL DATA

)

Introduction

))

TEKELEC

CHAPTER SIX:
TASK CONTROL DATA

A task is a dynamic object that is created as needed in order
to perform part of an application. The creation, in turn, is
based on certain static data, which is known collectively as the
Task Control Data (TCO). The formal definition of the TCO as
a C structure is:

struct tcd
long int
char
char
char
char
short int
long int
long int
long int
long int
short int .
char
char
char

};

{
. key

attr
Iclgbl
lang
ipr
copr
(*ep)O
stklen
udalen
ida
apct
apci
apcl
*pgmfil

I" key *1;
I" attributes *1;
I" local/global task specifier *1;
I" language code *1;
I" inherent priority *1;
I" coprocessor use flags *1;
I" entry point *1;
I" length of stack *1;
I" len of uninit data, if abs *1;
I" addr of initialized data, if abs *1;
I" auto priority change:time interval *1;
I" increment *1;
I" limit *1;
I" ptr to name of pgm file, if rei *1;

The creation of tasks from the TCO is discussed in the next
chapter. The remainder of this chapter is devoted to the
components of a TCO.

6-1 8/1/90

. Chameleon 32 MTOS-UX Manual Task Control Data

Task Names:
Key And Identifier

Attributes

TEKELEC

Every task has two names:

• Task Identifier (TID) is a long word pointer that is the
effective internal name by which a task is referenced in
task-related services_ TIDs make references efficient
since MTOS-UX does not have to search a table in order
to find tasks_ The TID is assigned by MTOS-UX when
the task is created and then remains fixed until the task
is deleted_ When a task goes dormant, it does not lose
its TID.

• Key is a 4-byte field that is the external name by which a
task can determine the TID (using the gettid service call).
Normally, the key is 4 printable ASCII characters, such
as 'INIT'. Nevertheless, MTOS-UX treats the key as an
arbitrary binary string. The key is a fixed property that is
assigned by the user. Duplication of keys is not
permitted. The Key for a system task al'Nays begins witI',
.SY; therefore, appplication tasks should not use these
initial characters. .

Every task has the following static binary attributes that
influence how MTOS-UX handles service requests:

• Transient/Durable Flag
• System/Application Task Flag
• Relocatablel Absolute Program Flag
• Subpart Flag

These attributes are described on the following page.

6-2 8/1/90

Chameleon 32 MTOS-UX Manual Task Control Data

Transient!
Durable Flag

MTOS-UX makes a distinction between tasks that are created
to be run once and then discarded, and tasks that are to be
created once and then run repeatedly_ The first are usually""

, . utilities tha1 are reqtiested via specific operator commands
entered through a console. They perform special services that
are not normally part of the main real-time application. To
emphasize the transitory nature of such tasks, they are called
transient.

The second type of task forms the mainstay of a system that
is dedicated to a single real-time application. These are the
tasks that are likely to be created during an initialization phase.
of the application, and then remain forever. These tasks are
referred to as durable since then are not truly permanent, and
can be deleted.

The distinction between transient and durable is a permanent
attribute of a task known as the Transient/Durable Flag. The
T/D Flag changes how certain requests are treated. For.
example, a transient task is automatically deleted after it
terminates. In contrast, the function dltsk must be invoked in
order to de.lete a durable task.

System/ Appl ication
Task Flag

TEKELEC

These system tasks are available to run under MTOS-UX:

• Error Reporter (' .sYE')
• Debugger (' .SYD')
• Loader (' .SYL')

The Error Reporter must be included; the others are optional.
The system tasks are very general in that they do not depend
upon the application being performed. In contrast, the user­
written application tasks carry out the specific requirements for
which the equipment is intended.

System tasks perform functions that require privileges which
might be undesirable to grant to application tasks. For
example, system tasks have access to all available memory,
even when there is a Memory Management Unit to shield
MTOS-UX code and data from the tasks. The Debugger has a
private set of services that enable it to set Breakpoints and to
alter the way tasks are scheduled for execution.

The System/Application Flag indicates the class into which
task falls.

6-3 8/1/90

Chameleon .32 MTOS-UX Manual Task Control Data

Relocatablel
Absolute Program
Flag

Subpart Flag

TEKELEC

Task code can be run either from a region allocated within a
Transient Program Area (TPA) or from some fixed region
outside of the TPA (We are considering here only the code
and any fixed initialized data portions of the task; the stack and
any uninitiaiized data are always all,ocated within a.1 PA.)·(he
Relocatable/Absolute Program Flag indicates which is the
case, with relocatable programs always going into a TPA

It is possible to use crtsk to create several independent tasks,
each of which executes the same program code. (Each task
would have a unique key.) Normally, such code would be
relocatable, but it need not be. All that is required to form two
or more tasks from an absolute program module is to make
the code re-entrant and to have each task use a separate data
area. Since the un initialized data area is allocated for each
task, it is automatically separate.

Commonly, transient programs are relocatable, but there is no
requirement for this.

Often, a program module contains the code and any' initial
data for a single task. In this case, the Subpart Flag is set to
o to indicate that the task being created is not a subpart of its
creator.

MTOS-UX also permits a group of tasks to be linked together
so they can directly share data and subprogram code. The
result is a single module with several entry points, one per
task. Such a module is loaded once on behalf of all its tasks.
A similar multiple-task arrangement can occur with absolute
programs that are burned into ROM.

When creating multiple tasks, one of them is arbitrarily
selected to be the parent; it is created first. If it is relocatable,
then the entire module (containing its code and that of the
other mutually-linked tasks) is loaded into an aliocated code
segment. In any case, the shared uninitialized data segment
is allocated on behalf of all the linked tasks. The Subpart Flag
must be 0 in the TCD that describes the parent.

The parent then creates the remaining tasks (the children).
The. Subpart Flag must be 1 in each child's TCD. The
RelocatableiAbsolute Program Flag and the Local/Global Task
Specifier of the parenLare propagated to the child; the other
TCD values are taken as gillen. The pOinter.19 the program
file is not used for the child and may be O.

6-4 8/1/90

)

))

.Chameleon 32 MTOS-UX Manual Task Control Data

Local/Global
Task Specifier

TEKELEC

The effect of setting the Subpart Flag is to link the parent and
ihe children internally. When one of the tasks is deleted, its
code and data segments are not deallocated until both the
parent and all of the children are also deleted_

For multiprocessor installations, a task is designated as either
global or local. A global task can execute on any available
CPU; a local task is restricted to run exclusively on a given
CPU_

The Local/Global Task Specifier (LGTS) shows if the task is
local or global. The value -1 is used for global tasks and for
non-multiprocessor installations_

For a local task, the processor number (0 to N - 1) is stored in
the low-order 4 bits of the· LGTS. (N is the number of
processors available in the system_) Normally, local tasks
store their uninitialized data in an area allocated from the TPA
of the same local processor. This is specified by a 0 in Bit 5
of the LGTS. If Bit 5 is a 1, the uninitialized data will be stored
in the Global TPA. This permits su.ch data to be shared with
other tasks, and to be accessed directly by peripheral
read/write or mailbox send/receive requests.

Similarly, if the task is relocatable, bit 6 determines if the
initialized data is to be stored in the Local (0) or Global (1)
TPA. For an absolute file, the initialized data is assumed to be
already stored, so that bit 6 is not examined. bit 7 must be 0
for a local task_

The code and any (fixed) initialized data for a global task can
be either in a global memory or in the local memory of each
processor. The first uses less. memory. The latter gives
faster performance since the task does not have to contend
with other- users of the main memory (bus contention is
reduced). If the task is created by MTOS-UX from a
relocatable file, the code and initialized data are always placed
within the TPA_ No matter where the code and initialized data
reside, the stack and uninitialized data are always in the Global
TPA.

6-5 8/1/90

Chameleon 32 MTOS-UX Manual Task Control Data

Language Code

Inherent Priority

Co-processor
Use Flags

TEKELEC

The code and initialized data for a local task can also be in
either global memory or the local memory of the designated
processor_ The latter gives faster performance and is
normally used. If the task is created by MTOS-UX from a
relocatable file, the code and initialized data are always placed
within the local TPA. No matter where the code and initialized
data reside, the stack and uninitiaJized data are always in the
local TPA.

Tasks are initialized in accordance with the requirements of
their source language. The Language Code parameter for
Chameleon 32 C indicates if the task should be initialized as
an assembler or C program.

The language code refers only to register and stack
initialization. Declaring a task to be written in a high-level
language does not preclude its calling an assembler
subprogram.

The Inherent Priority (IPR) generally indicates the relative
importance of the task. The range is from 255 for the most
urgent tasks to o for the least urgent. The IPR may be
selected as a default priority when starting the task.

Tasks may use various co-processors that are often available
in particular hardware systems. The most common are the
arithmetic co-processors:

• 68881 Floating-point chip for the 68020
• 32081 Floating Point Unit for the 32xxx
• 80x8? Numeric Data Processor for the 80x86

The parameter copr is a set of 16 bits, each of which indicates
whether or not a particular co-processor is ever used by the
task. The most-significant bit (left-most) refers to the
arithmetic co-processor; the meaning of the other bits is
installation-dependent. A value of 1 means that the co­
processor may be in use by the task, while a 0 means that the
co-processor is not installed, or is never used by the task.

6-6 8/1;90

I

))

. Chameleon.32 MTOS-UX Manual Task Control Data

Entry Point

Length of Stack

The Entry Point (EP) is the starting address of the task. For a
reiocatable task, the EP is an offset relative to the beginning of
the code section. For an absolute task, the EP is an absolute

. address.

For a relocatable task, EP may be set to -1 to indicate that·
the entry point is to be taken from a special record within the
program file.

The user specifies the length of the stack (in bytes) via stklen.
The actual stack is rounded up to the next multiple of the TPA
block size. .

MTOS-UX does not use the task stack for either interrupt
processing or context saving. Thus, it is not necessary to
increase the estimated stack length in order to account for
MTOS-UX. However, the CPU may store information on the
task stack when an interrupt occurs.

The maximum number of bytes stored is:

- 68000108 = 6
-68010/20 = 58

These values must be added to the normal task requirements
for subprogram calls and data.

For a relocatable taSk, stklen may be set to -1 to indicate that
the stack length is to be taken from a special record within the
program file.

Length of
Uninitialized Data

TEKELEC

For an absolute program, the user must specify the length (in
bytes) of any uninitialized data (udalen). If udalen is not 0,
MTOS-UX allocates an area within the TPA for the data. The
allocated area may be larger since the given length is rounded
up to the next multiple of the TPA block size.

For a relocatable program, the required length is taken from
the program file. Parameter udalen is expected to be O.

No corresponding register load is made; however, the address
is used by the Loader to resolve references to labels within
the uninitialized data segment.

6-7 811!90

Chameleon 32 MTOS-UX Manual Task Control Data

Address Of
Initialized Data

Some tasks make use of data with given initial values, or
tables of information with fixed values. These would constitute
the Initialized Data Segment of the task.

~or an absolute file, the address of the data mu:::t be' :;;;'!':::1 in
parameter ida. A value of 0 means that there is no initialized
data.

For a relocatable module, the length and text of this segment
is given in the program file and no further specification is
needed. Thus, ida is expected to be O. No corresponding
register load is made; however, the address is used by the
Loader to resolve references to labels within the initialized
data segment.

Automatic Priority
Change Parameters

TEKELEC

There are four parameters which jointly specify the Automatic­
Priority-Change feature:

• Time units code
• Number of units
• Change increment
• Priority limit

If the feature is selected (by specifying a non-zero time
interval) then at the end of each interval, the increment is
algebraically added to the current priority, provided the priority
is not already at or past the given limit. The increment may
be positive to raise the priority of a task.

This can be used to help a low-priority task that has been
waiting a long time for services. The increment may also be
negative to lower priority. This might be used to penalize a
task that has been executing for a long time.

6-8 8/1i90

)

'. Chameleon 32 MTOS-UX Manual Task Control Data

Pointer To
Program File

TEKELEC

For a relocatable program, the final parameter (pgmfil) is a
pointer to a null-terminated string containing the name of the

",program. file. The string has either a file name or an .".
accessible directory path leading to the file.

When the Relocatable/Absolute Program Flag is set to
relocatable, pgmfil must not be zero. Furthermore, within the

• I program file, all unresolved address references must be
relative to at most three origins: one for the Code Segment,
one for the Initialized Data Segment and one for the
Uninitialized Data Segment. -

An absolute program IT)ay also reside in a program file. In this
case, all code and data addresses have already been
resolved to absolute values (outside of the TPA). !f the code
is to be loaded into RAM, the file pointer must not be zero.

Finally, an absolute program may be permanently burned into
ROM or loaded by some mechanism external to MTOS-UX.
This is indicated by setting the file pointer to zero.

As noted earlier, when the Subpart Flag is set in the attribut~s
byte, pgmfil is not used and may be zero.

6-9 8/1/90

!

CHAPTER 7:

TASK MANAGEMENT

))

)

\\ ,II"

Introduction

. Create Task

TEKELEC

CHAPTER SEVEN:
TASK MANAGEMENT

Task management encompasses creating, starting and
terminating tasks, as well as determining or changing certain
task properties, such as current priority .

Tasks must be created before they can be run. In C, the call
to create a task is:

long int crtsk (tcdptr)
struct tcd "tcdptr;

The argument, tcdptr, is a pointer to the TCD, which has the
same content and form as that used within USEOSI. The
definition of ted as a C structure can be incorporated into the
requesting task by including the file mtosux.h.

As an example, the following. section of the application
Initialization task creates two data scanning tasks:

#include "mtosux.h"
#define SCN1 Ox53434E31
#define SCN2 Ox53434E32

long int sc1 entO, sc2entO I" entry point of tasks */;

struct tcd scntcd[2] = {SCN1 ,ASS + APL,-1 ,C,230,Ox8000,
sc1 ent,512,0,0,SEC + 1,10,250,0 .
SCN2,ASS + APL,-1 ,ASM ,210,0, .
sc2ent,100,0,0,0,0,0,0};

The function checks that there is not already a task with the
given key. If there is, the warning value DUPTSK is returned
by the function. The parameter-error signal (26) is not sent for
a duplicate task.

When there is no duplication of keys and a file name is given,
MTOS-UX attempts to locate the program module in the file
system and then perform the load .. If the file cannot be found,
or does not have the form of an object module, the function
returns with an error value. Failure also occurs if the
relocatability of the object code is not consistent with the
Relocation/Absolute Code Flag of the TCD,. or the space
needed to hold the relocatable module cann9t be allocated.

7 ·1 8/1/90

Chameleon 32 MTOS-UX Manual Task Management

TEKELEC

Once loading is completed, MTOS-UX checks the TCD
parameters. A crtsk request will fail if any of the. parameters is
improper. Because of the large number of parameters
involved, different error codes are used to hel p find the
specific failure. The literals are:

• BADLNG (bad language code) ..
• BADTIM (bad time interval unit code)
• BADPRC (bad processor specified in local/global task

parameter)

The first error detected sets the code. Each error code has
OxFFFF as the upper word; a non-error result never has that
value as the upper word. Thus, a general test for any error is:

if (scntid[O] = = DUPTSK)
{ !" task already exists OJ

if ~(Scntid[O] & OxFFFFOOOO)
{ !" other error *j

}

OxFFFFOOOO)

The parameter-error signal is sent if any of these errors is
detected.

For a valid TCD, MTOS-UX seeks to allocate two areas within
the TPA: one for the stack and another for the uninitialized
data. A block is also allocated (from a separate, internal pool)
for the dynamic data required to control each task. The
address of that block (which is called the Task Control Block
or TCB) becomes the identifier of the task. The identifier of
the task is returned as the value of the function.

At times, there will not be enough room in the TPA for the load
or stack. The create function then fails. No r~quest queuing
has been provided in order to reduce the possibility of system
deadlock. It is the responsibility of the calling task to resubmit
the request.

If the function fails for any reason after a code module has
been loaded, the load is abandoned.

7-2 8/1/90

)

Chameleon 32 MTOS-UX Manual Task Management

Get Task
Identifier

Start Task

TEKELEC

A successful invocation of crtsk provides the identifier of the
task_ If another task wishes to obtain the identifier, it may
invoke:

).~.. '-", .~" ..
long...Lnt- gettid ,(key};,
long int key; ,

If key is non-zero, it specifies the task whose identifier is
sought. A zero value returns the identifier of the calling task.
If there is no task matching the ,given non-zero key, the
function returns BADPRM and signal 26 is sent. .

As an example:

scntid[1] = gettid(SCN2);

A task is set dormant as soon as it is created. A separate
request is needed to start it running. In C, this function is:

int start (tid,ptY,arg,stabfr,qual)
long int tid,ptY,arg:stabfr,qual;

The task to be started is specified by tid, The value must be
the identifier returned by a previous call of crtsk or gettid. The
task referenced by tid is known as the target of the start call.
Any task that knows the identifier can start a task; it need not
be the task that created the target.

The argument pty determines the priority with which the target
task will start running when it begins because of this request.
The word is composed of two component fields:

pty = pbasis[9-8] + pvalue[7 -0]

If pbasis is set to the literal INHPTY, then ttie inherent priority
of the target is used. For CURPTY, MTOS-UX uses the
current priority of the requesting task. The larger of the
requester's current priority and the target's inherent priority is
selected for LRGPTY. , Finally, for GVNPTY, the value given in
the pvalue field is taken. The default (for pty equal zero) is
LRGPTY.

The target task becomes READY immediately if it is dormant
when start is invoked. Otherwise, the start request is queued
until the target terminates and can be restarted. Available
memory provides the only limitation to the number of requests
that can be queued to a task.,

7-3 8/1 :90

. .chameleon 32 MTOS-UX Manual Task Management

TEKELEC

If the internal facilities for queuing have already been
exhausted, then the request fails immediately, returning the
value QUEFUL. The priority with which the task will start also
sets the order of the queue: high-priority restarts go ahead of
low-priority ones. For equal priority it's first-come-first-served.
Once the task starts, however, it is allowed to run to
completion; a restart request (no matter how high its priority)
ne':erint9~fGres with the . execution of a task (no matter h<Jw
low its current priority).

The parameter arg is a long-word value to be passed to the
target task as a run-time argument. There is no structure
imposed upon argo '

The next argument, stabfr, is the address of a status buffer.
The values that may be stored in the buffer depend upon the
coordination mode selected via qual.

As with other requests, the qualifier, qual, determines how the
function should behave if the service cannot be completed
immediately. It also establishes the mode of coordination
between the calling task and the completion of the service.
The long-word qual is composed of the standard three
coordination components plus an end-of-service basis
selector:

qual = cbasis[17] + cmode[16-11] + lunits[10,8] + Inum[7-0]

If cbasis is set to the literal CST ART, then the service is
considered completed for the purposes of coordination when
the target task starts because of the current request. If the
literal CTERM is used instead, the service is not completed
until the target starts because of the current request, and then
terminates. CST ART has the value 0 and thus is the default if
no value is given.

All four of the standard alternatives for cmode are supported.
For WAIFIN the calling task is blocked until the service is
finished. When the caller continues, the value of the function
is NOERR for success. For failure, the return value rnay be
BADPRM (tid or lunits is improper) or TIMOUT (the wait is
limited and the target cannot even be started within the
selected interval). For failure, the status buffer receives the
error code, sign extended to a long word. For success, the
buffer is cleared when cbasis is CSTART.

7-4 8/1190

\,

)

1)

'\
Y

. Chameleon-32 MTOS-UX Manual Task Management

Get Address
Of Data

TEKELEC

When cbasis is CTERM, the buffer receives the long status
word that the target presented when it requested termination
(Section 8.7.1), or the equivalent value created when a signal
forced termination. With the other coordination modes
(CTUNOC, CLEFn, CSIGn) the function always returns without
delay. Possible tunctiony.aJ~~~. are .BA.P'PRM,)"IMOUT"a.o..d_
QUEFUL (target task is busy. arid 'interna~ qtJelling Jacilities, are'
exhausted). TIMOUT occurs only if the wait-limit provision has
been invoked. A value of NOERR means either the request
has been successfully completed immediately, or the request
has been accepted and is queued .

. As usual, for CLEFn the selected local event flag is first reset
to 0 and then set to 1 when the service is completed. For
CSIGn the selected signal is sent upon completion.

The wait-limit feature available within start works in the usual
manner when coordination is based on the start of the target
task. When the basis is task termination, the limit applies only
to starting the task. If the task has not even been started
when the given interval elapses, the request is cancelled and
a timeout is reported. However, if the task has started but not
termli ,ated at the end of the interval, the target is permitted to
proceed and the timeout is ignored.

An example of a start-task request in Cis:

start(scntid[O],GVNPTY + 100,&data,&stabuf,WAIFIN + 250 + MS + CTERM);

When a task starts execution, most of·its properties are left as
they were when the task was first created, or a::; they were
after the last termination. The only changes are that the stack
pointer is set to the top of the stack, the program counter is
set to the entry point of the program, the last start time is set
to the current time, and the current priority is set to the value
given in the start-task request. The local event flag group
values and the actions to be taken when signals arrive are not
changed.

The addresses of the initialized and uninitialized data for the
requesting task may be determined by issuing the C function:

long int getdad (buf)
long int 'but;

The addresses of the data sections are returned within the
given buffers, with the address of the initialized data section
going into buf[O].

7-5 8/1190

Chameleon 32. MTOS-UX Manual Task Management

Set Task Priority

Terminate Task

TEKELEC

When a start-task request is issued, it specifies the priority at
which the target task is to begin. For MTOS-UX, priorities are
unsigned and range from 255 (most urgent) to 0 (least urgent).
Once the task is started, it can change its own priority (or that
of another task) through the C system call:

unsigned short int setpty (tid,basis,value)
long int tid, basis, value;

The argument tid is the identifier of the task whose priority is
to be changed, or zero to change the priority of the requesting
task. If basis is USEVAL then the priority is set to the low­
order byte of value. For ADDVAL, the signed number value is
added to the current priority and the result limited to the range
o to 255.

Upon success, setpty returns with the new value of the
priority. (Values above 127 are not sign-extended.) If tid is
neither 0 nor a valid task identifier, the function ·returns an
error value BADPRM (OxFFFF).

Some examples are:

newp12 = setpty(tsk12,ADDVAL.-10L) I" deer pr of "task 12" by 10 "I;

setpty(OL, USEVAL,120L) I" set own priority to 120 "I;

If the target task is blocked, a priority change will not become
effective until the task becomes Ready.

A task can terminate, as follows:

• It can implicitly call exit by performing a return statement
• It can be killed by receiving a signal
• It can issue a terminate with automatic restart request,

trmrst

The following describes what happens when the task T
terminates:

If T was started by start using basis CTERM, first:

• The starter is continued (for WAIFIN)
• The local event flag is set (for CLEFn)
• The signal is sent (for CSIGn)

7-6 8/190

i
J

Chameleon 32MTOS-UX-Manual ·Task Management

Next, MTOS-UX determines if any requests have been queued
to restart T, and if so, the one with highest priority is now
honored. If there. are no restart requests and T is a transient
task or it was marked for deletion, the deletion is performed.
Otherwise, T goes DORMANT.

When. a.taslctenuinates (for whatever reason):.

- All memory allocated from a memory pool remains
allocated

- All reserved semaphores and peripheral units remain
reserved .

- All open files remain open
- All outstanding requests for memory allocations,

semaphores, peripheral I/O and mailbox message
transfer remain queued

-I All created semaphores, mailboxes, event flag groups
and tasks remain in existence

MTOS-UX does not attempt to find all of the facilities taken by
a task and give them back. A task must clean up for itself.
Failure to release reserved semaphores and units would
prevent any other tasks from ever using these resources and
could permanently disable some tasks.

Terminating With
Automatic Restart
After Given
Interval

TEKELEC

Certain tasks are inherently cyclic in nature. For example, one
task might be called every five milliseconds to scan a set of
inputs for changes and another task might be called every
eight hours to prepare and print a shift summary report.

There are several ways to implement a cyclic task. One way
is to issue a pause or a wait-for-given-time-of-day request, and
then jump to the beginning of the program. Another is to have
the task request that it be restarted after a given time interval
when after termination. This latter facility is available through
trmrst, using the format:

trmrst (retarg,intrvl)
long int retarg,intrvl;

intrvl is composed of three non-overlapping fields:

intrvl = rbasis[15] + runits[10-8] + rnum[7 -0]

run its and mum determine the restart time interval:· runits is
the units selector (MS to DAY) and mum is the number of

. such units (0 to 255).

7-7 8; 1 :90

Chameleon 32 MTOS-UX Manual . Task Management

TEKELEC

The rbasis field indicates if the restart interval is to be added
to the last scheduled time for the task (= STRTIM), or to the
current, i.e. termination, time (= TRMTIM). The starting time is
normally used for cyclic tasks and is the default.

A call to trmrst never returns. Instead, the task pauses for the
specified' interval, an'd then begins at the initial entry point.
Thus, the use of trmrst is roughly equivalent to a pause
followed by a jump to the entry point.

The two major differences are that Irmrst completes any
coordination with the task that started the terminating task, and
that trmrst resets certain dynamic variables, such as the .stack
painter. The current priority is not changed; the task restarts
at the same level of importance. If intrv! is invalid, the task
restarts immediately ..

Note that the last start time is the time the task first became
ready, not the time it actually began procE;lssing. If there were
higher priority ready tasks, the actual start may have been
delayed. Furthermore, suppose a task is to be restarted every
5 minutes based on start time. Assume further that the task
started on schedule at 11 :00 but did not issue the trmrst until
11 :07. Upon termination, the task immediately restarts (since
11 :07 is past the next restart time of 11 :05). If the task
terminates before 11:10, it will wait until then to restart; if it
terminates after 11:10, it will again restart, without wait, trying to
catch up.

While a task is waiting to restart itself, it is blocked and not
dormant Such a task cannot be restarted by another task
(although other tasks may still queue restarts). This point is
normally moot, however, since it would be unusual for a cyclic
task to have restart requests posted to it.

The pause generated by calling trmrst may not be cancelled
by another task via canpau. As a result, it is not valid to
specify a time interval code of zero, as would be the case for
trmrst(FOREVER). In such cases, the task will restart
immediately. The speCial call trmrst(NXTICK) is valid and
provides a restart at the next time tick.

7-8 8/1/90

I
;

:)

J)
/

Chameleon 32 MTOS-UX Manual Task Management

Terminating Via
A Signal

Deiete Task

TEKELEC

Signals may be sent to a task when a special condition is
detected (such as attempting to execute an illegal instruction),
or when a valid request for service is finished. One response ..• '"
to a signal is to tefminate the tasJ;,.

When the signal does terminate the task, it is treated as
though the task had issued an'exit with retarg set to:

-16"(signal number + 1)

Thus, the equivalent retarg is OxFFFFFFFO for Signal 0, and
OxFFFFFEOO for Signal 31. None of the standard error values
use this range.

When. a durable task is no longer needed, it may de.lete itself
by issuing the call: .

dltsk (retarg)
long int retarg;

The re"targ is the analog of the argument presented to exit.

A request for deletion is considered to have an implicit call of
exit(retarg) preceeding it. Thus, the coordination aspects of.
exit are performed ahead of the deletion. If there are no
unsatisfied restart requests pending, then the task is deleted:
the space occuppied by the code, data and stack are released
and the task identifier is made available for reuse. If there are
restarts already queued, then the task is marked internally as
deletion-requested and the highest priority restart request is
honored.. Deletion is finally performed when the task
completes the last restart request and would normally go
dormant. A task marked for deletion may restart itself via
trmrst. There is never a return from d/tsk.

Only a durable task would normally call dltsk. If a transient
task requests deletion it is treated as a call of exit(retarg). This
latter case is not considered an error.

7-9 8/1/90

, Chameleon 32MTOS,UX Manual Task Management

TEKELEC

A task can delete itself, There are no provisions for one task
to delete another.

When a task is deleted (by an explicit call of d/tsk for a durable
task, or by a termination for a transient task), its stack and
'internally allocated data regions are released for reuse by
other tasks, -.

A problem could occur with service requests that are still
queued at the time of the deletion. If the stack and data
regions are released and a queued request finishes, a value
could be stored in a buffer whose space now belongs to some
other task. To prevent this, MTOS-UX delays the
reassignment of task space until ali outstanding service
requests are completed.

7-10 8/1.'90

)

CHAPTER 8:1
[

EVENT FLAGS

J)

I I

Introduction

Description

TEKELEC

CHAPTER EIGHT:
EVENT FLAGS

In order'" tosimptHy the design, implementation and
maintenance of application code, each task should be an
independent program that is responsible for a specific jOb. In
practice, however, tasks usually become highly intertwined
since they share a common overall objective, use the same
hardware, respond to the Same set of inputs and control the
same set of outputs. Thus, coordination and synchronization
of tasks is essential.

MTOS-UX is a rich system in that it provides many different
methods for task coordination. Some of the major
mechanisms are via:

Depending upon context, some methods are equivalent and
can be used interchangably; others are unique and must be
used to achieve the desired type of coordination.

Within MTOS-UX there are discrete, binary variables called
event flags. Each flag may be independently set to 1 or reset
to O. The event flags are arranged in groups of 16. Group 0
is local to a task; each task has its own set of 16 flags that
ordinarily are not referenced by other tasks. The remaining
groups are global and are available to all tasks.

8·1 8/1/90

- Chameleon 32 MTOS-UX Manual Event Flags

Create Global
Event Flag
Group

TEKELEC

Throughout MTOS-UX, all 16-bit arrays (such as the event
flags) are stored in successive bits of a word, from left to right.
Thus, event flag 0 is stored in the leftmost. bit of the high-order
byte, event flag 1 is stored in the next bit. This continues
through event flag 7, which is stored in the right-most bit of the
high-order byte. Event flag 8 is stored in the left-most bit of
the low-order byte and event flag 15 is stored in the right­
mo-'-'t bit of the. low-order byte.

In other words, event flag 0 is masked by Ox8000 while event
flag 15 is masked by Ox0001. The literals EFO to EF15 have
been equated to the corresponding masks. Masks, being 16-
bit quantities, are denoted as a C "short integer".

Task coordination is achieved through six service functions:

• crefg create global event flag group

• srsefg immediately set/reset event flags

• waiefg wait for event flags to be set

• sgiefg set event flags after given interval

• srslef immediately set/reset local EFs of given task

• dlefg delete global event flag. group

To give a simple example of the use of event flags, a task
might first reset one of the event flags, and then issue a wait
until that flag is set. Some time in the future, a coordinating
task can set the event flag to continue the waiting task. The
assignment· of individual event flags for the purpose of
coordination is left completely to the user.

Every task comes with its own local event flag group (EFG)
which can neither be created nor deleted. In contrast, global
EFGs must be created.· The C function to do this is:

long int crefg (key)
long int key;

8-2 8/1:S0

)

Chameleon 32 MTOS-UX Manual Event Flags

key is the key associated with the group_ Often the key is four
printable ASCII characters, but it is taken as an arbitrary,
binary pattern_ If an event flag group with the given key
already exists, then the group identifier is returned as the
value of the function_ . For a new key, MTOS-UX attempts to
create the group. If successful, the identifier is again returned..
In the unlikely case that·' hot e[1oug!:t internal fa'ciJities. are~"
currently available to do the creation, the function returns the
error code QUEFUL. Note that queuing the request is not
possible, since there are no facilities to create the group.

The key permits tasks to share a group even if there is no
direct communication between the sharers. Each task issues
crefg with the same key. The first request creates the group
and supplies the identifier to the task. Subsequent requests
do not create a new group, but just inform the task of the
identifier.

The group is created with ali flags reset.

The following example is typical:

#define PMP1 Ox504D5031

if ((pm1 gid = crefg(PMP1)) - - QUEFUL) ...

Immediately Set!
Reset Event Flags

TEKELEC

The C function to immediately set or reset (clear) the EFs
within a global group (or the local group of the task issuing the
request) is:

long int srsefg (gid,opmask)
long int gid,opmask;

gid is the identifier of an existing global EFG or is zero to
change the caller's local values_

opmask is the sum of an operation selector and a mask.
Literals for the operation are:

EFSET (= set to 1)
EFRST (== reset to 0)

The latter is the default. The mask selects the particular flags
to be altered. The literals for the mask are EFO to EF15 and
EFALL, which means "all of them".

8-3

,,_ .. Chameleon 32. MTOS~UX Manual Event Flags

Wait For
Event Flags

TEKELEC

Some examples are:

srsefg(Ol,EFSET + EF1 + EF5);

srsefg(Ol,EFRST + EFAll);

srsefg(Ol,EFAll,.-EF15) r = reset all but flag 15 "I;

srsefg(pm1 gid,EFSET + EF8 + EF9);
If gid is valid, the function returns the final value of the group
in the lower-order 16-bits of a long integer. The high-order 16-
bits contain NOERR.

If gidis invalid, the function returns BADPRM as the high-order
word, and OxFFFF as the low-order word. Thus, a typical test
for success is:

long int result r result returned by function "I;
short int curval r current value of group "I;

if ((result = srsefg(pm1 gid,Ol)) > = Ol)
{ r success *1

curval = result;

efse
{ r failure "I

}

In format, the C function to wait for event flags mirrors that of
the immediate set/reset:

long int waiefg (gid,opmask,interval)
long int gid,opmask,interval;

The gid has the usual meaning and carries the usual penalty
for errors. The mask portion of opmask is also the same.
There are two possible operations:

EFAND is used when all specified flags must be set in
order to resume the caller (AND-test). This is the
default.

EFOR is used when any of the flags may be set in order
to resume (OR-test).

8-4 8,1'90

)

.Chameleon 32 MTOS-UX Manual Event Flags

Set Event Flags
After Given
Interval

TEKELEC

If the selected condition is valid already, the task continues
without wait. Otherwise, it waits until the condition is true or
the interval is exhausted. The interval may be NOEND, a '
given number of time units or IMONL Y (0 ms).

When the function resumes, the high-order 16 bits of the
return vaiJ.J.e-indicates .!be overall results: NO ERR, BADPRM;
TIMOUT or QlJEFUL. The low-order 16 bits contain the image
of the group, as in srsefg. .

A typical call is:

pmival = waiefg(pm1 gid,EFAND + EF2 + EF5,20 + S1::C);

Note that for a mask of 0, the function. always returns
immediately for either type of test. Thus, one way to
determine the current value of a group is:

curvaJ = waiefg(pm1gid,OL,OL);

The C function sgiefg permits a task to set the event flags
within a global group (or its own local group) after a given time
interval. This provides an alarm clock facility. At some point
within a task, a timer is started by invoking sgiefg. The task
then continues with process.ing that may take a variable
amount of time. When that processing is completed, the task
issues waiefg to wait until the alarm clock event flag is set.

MTOS-UX blocks the task until the remainder of the alarm
clock interval' runs out. This mechanism permits a task to
initiate action after a predetermined time interval, and yet to
use part of the wait for further work.

Since waiefg can be used to wait for an OR-ed combination of
flags, the alarm clock can be also used to limit the wait. Say,
a, task wishes. to wait for an event that is indicated by setting
EF 1. It would like to. continue even if the event does not
occur after 100 seconds. EF 0 within that group is available.
The task issues sgiefg to set EF 0 after the 100 seconds. It
then wait for EF 1 or O. The value returned by the wait can be
used to determine which EF caused th.e task to resume.

The format of the set-EF-after-given-interval function is:

int sgiefg (gid,mask,interval)
long int gid,mask,interval;

8-5 8:1'90

Chameleon 32 MTOS-UX Manual Event Flags

Delete Global
Event Flag Group

TEKELEC

As in the other event flag services, gid is either the identifier
of a global event flag group, or 0 to select the caller's local
group. The flags involved are indicated by mask. The
structure of interval is exactly the same as that· used for a
pause. An example is:

sgiefg(pm 1 gid,EFO, 1 00 + SEC)

Setting another timer with exactly- t.he same .gidand mask
cancels the previous one. If the new interval is 0. (with any
valid time units) no new timer is started. Otherwise, the timing
begins afresh with the new interval. .

The function returns NOERR when.it successfully starts a new
timer, TIMCAN when it resets or cancels ·an old one, BADPRM
for a bad gid, or time units code. and OUEFUL if a new timer
cannot be started for lack of internal facilities.

When a global event flag group is no longer needed, it may be
deleted by invoking:

int dlefg (gid)
long int gid;.

If gid is not the identifier of a global event flag, the function
returns a failure value of BADPRM. The function returns
NOERR for success.

A problem arises in deleting an EFG that is being used by
several tasks: how to know when the last task is finished with
the group so that it can be removed .. While there may not be
a completely general solution, the following is a method that
should handle most common cases.

In order to make the method work, d/efg does not immediately
delete the group if there are either any tasks waiting for the
EFG, or any outstanding timers. If there are, the EFG is
internally marked "deletion-requested". Actual removal does
not occur until there are no more tasks waiting or timers
active. In the interim, all EF functions may be applied
normally.

It is recommended that ttie following pair of requests be· used
to delete an EFG that has been created for temporary use:

sgiefg (gid,OL,1 + HR) I" start a bogus timer 'I;
dlefg (gid) I" delete EFG when the timer is done 'I;

8-6 8/1/90

)

Chameleon 32 MTOS~UX Manual Event Flags

Immediately Set!
Reset Local EFs
Of Given Task

TEKELEC

The one hour would be replaced by some (over) estimate of
how long it might be until the group is no longer needed. The
group remains "alive" for that interval and then vanishes.

Note that this section applies only to global groups. A local
group is an integral part of, a task, and cannot be deleted.

The local event flags are normally the private domain of a task
and are not:disturbed by other tasks. However, to provide the
greatest possible flexibility, MTOS-UX does permit a task to
access and change even the local flags of another task.
Presumably, tasks are being designed to cooperate on a
common goal,' rather than to confuse each other. The C
function toimrnediately setor reset the event flagss within the
local group of the selected task is:

long int srslef (tid,opmask)
long int tid,opmask;

As always, tid is either the identifier of an existing task or 0 to
select the caller. The treatment of a bad tid is the same as
that for a bad gid. The use of opmask is the same as in
srsefg. The value returned by the function is also the same,
i.e. a results flag and a copy of the group after the selected
operation. A simple example is:

tsk31ef = srslef(tsk3id;OL);

8·7 8/1/90

. . Chameleon 32 MTOS-UX Manual Event Flags

Summary Of
Values Returned
By EFG Functions

The following shows the values. that can be returned by each
EFG service request:

TEKELEC

gid value; OUEFUL (long) qefg .

srsefg}
srslef}

NOERR (bits 31-16), value of group (15-0)
BADPRM (bits 31-16), OxFFFF (15-0)

.waiefg NOERR (bits 31-16), value of group (15-0)

. TIMOUT (bits 31-16), value of group (15-0)
.OUEFUL (bits 31-16), value of group (15-0)
. BADPRM (bits 31-16), OxFFFF (15-0)

sgiefg NOERR; TIMCAN; BADPRM (int)

dlefg NOERR; BADPRM (int)

8-8 8/1/90

)

CHAPTER 9:

SEMAPHORES AND
CONTROLLED SHARED VARIABLES

\
j CHAPTER NINE:

SEMAPHORES AND CONTROLLED SHARED
VARIABLES

Introduction

Semaphore

TEKELEC

In many applications tasks must share a common set of data
or section of code. Typical of shared data is a table that is
read by one task and updated by another. While the data is
being read, the update task must be blocked; while the data is
being updated the reader task must be blocked. Examples of
shared code are any. non-reentrant subprograms that could be
called by different tasks.

Such shared data and code are sometimes called "critical"
regions. Not every shared resource is critical, however. A
fixed data table would not be critical. Nor would a ree·ntrant
subprogram. A region is critical if it is shared and is (or can
be) altered as part of its normal use.

Critical regions must be protected by guaranteeing o'ne-task­
at-a-time access. MTOS-UX provides two different facilities to
achieve such mutual exclusion: the semaphore (SF) and the
controlled shared variable (CSV). Since the SF is the simpler,
its use will be described first.

A semaphore (SF) is an internal long-word counter. If the
counter is zero, the SF is free or available; otherwise, it is busy
or in use. When a SF is created,it is initialized to zero.

A separate SF is assigned to each critical region. It is
possible to use one SF to protect several regions, but this
usually leads to excessive contention delays. Prior to using
the critical region, every task must invoke waisem to wait for
the corresponding SF to be free. If another task already has
taken that SF, the new task waits. Queuing is based on the
current priority of the waiting tasks. Upon exit, the current
us.er must relinquish control to the next waiting task.

A simple way to protect critical subprograms is to make the
first statement a wait-for-SF and the last statement before
returning a release-SF. This places all control aspects
completely within the subprogram. As a result, a caller does
not have to know that the subprogram is critical.

9-1 8/1/90

Chameleon 32 MTOS-UX Manual Semaphores and Controlied Shared Variables

Create
Semaphore

Wait For
Semaphore

TEKELEC

The C function to create a SF is:

long int crsem (key)
long int key;

ks)/ is the external name associated with the semaphul'".
Although it is usually four printable ASCII characters, the key is
taken as an arbitrary, binary pattern. If a semaphore with the
given key already exists, the function returns the SF identifier.
Otherwise, the SF is created and its identifier is returned. Only
in the unlikely case of not having any internal resources
remaining does crsem fail. The value QUEFUL is then
returned.

A typical call is:

#define SF34 Ox53463334

if ((s34id = crsem(SF34)) = = QUEFUL) ...

The wait-for-semaphore.function is:

int waisem (sid,stabfr,qual)
long int sid:stabfr,qual;

sid must be the identifier of an existing SF, as returned by
crsem. Otherwise, the function returns a failure value of
BADPRM. Failure values are also stored within the status
buffer addressed by. stabfr.

The qualifier, qual, is the sum of the standard three
coordination fields. Thus:

waisem(s34id,&stabf,wAIFIN + 10 + SEC)

waits up to 10 seconds for the SF pointed to by s34id, while:

waisem(s34id,&stabf,CLEF2 + 1 + MIN)

waits no more than 1 minute for that SF and sets local event
flag 2 as a completion indicator.

9-2 8/1/90

, ,'Chameleon,32 MTOS"UX Manual . "Semaphores and Controlled Shared Variables

TEKELEC

The task waits only if another task already has taken the SF. If
the SF is already taken by the calling task, then the count
within the SF is incremented by one and the task continues
without wait. The count is zero when the SF is first created
and when the SF is free. The count is stored internally as a
long integer.

. .. ,,,- .. ~
The status buffer receives the status value: NOERR, BADPRM,
TIMOUT or QUEFUL.

There is valu~ in providing counting semaphores, as oppqsed
to' just binary 1 s. (A binaty SF has two states: in-use and
free.) In a complex application, it may be necessary to protect
the same critical region in several parts of a task, say, in the
main body of the code, and in some utility sub"programs.
Each part of the task needs the protection of the SF. With a
binary SF, it would be necessary for the task to know if it
already has reserved the SF, and when it is safe to release it.
With a counting SF, each part that uses the critical region is
bracketed by waisem and rlsem (release semaphore). Upon
exiting from the last of these nested brackets, the SF count
returns to 0, and the SF is automatici"y freed.

There is an essential dilference between event flags and
semaphores, even though both are used to achieve
coordination between concurrent task. If several tasks are
waiting for the sa,me EF and it is set, then ALL those tasks
continue simultaneously. If several tasks are waiting for the
same SF and it is released, only one task (the one with the
highest priority) continues; the others continue to wait.

The semaphore provided by MTOS-UX is similar to, but not
exactly the same as the semaphore proposed by Dijkstra
["Cooperating Sequential Processes", Technological
University, Eindhoven, Netherlands, 1965 reprinted in F.
Genuys (ed.), "Programming Languages", Academic Press,
New York,1968].

The MTOS-UX waisem is close to Dijkstra's P or wait; MTOS's
rlssem is close to Dijkstra's V or signal. The difference is that
when a Dijkstra semaphore is created, a non-negative number
s is aSSigned to the SF. Thereafter, s can increase or
decrease (down to 0) via P and V. i,

8/1/90

... __ _ Chameleon 32 MTOS-UX Manual Semaphores-and Controlled ShareEl-Var.iables

Deadly Embrace

TEKELEC

The action of Pis:

if (s > 0) then _os else block task on SF

while the action of V is:

if (any tasks are blocked on SF) then release 1 task else + + s

A Dijkstra SF maintains only the tally, $, and the list of blocked
tasks; it does not record the current "owner" of the SF (as
does MTOS-UX)_ Thus, a Dijkstra. SF perl;l1its $ tasks to
proceed into a critical region_ These could i be $ different
tasks, the same task s times, or any other combination that
sums to s .. MTOS-UX permits the same task to proceed any
number of times, but blocks all other tasks.

There is no limit on the number of semaphores that a task can
reserve and the number of wait-for-SF requests it can have
outstanding. Thus, a task may wait for one SF while it has
reserved another. But beware the "deadly embrace". To
illustrate this ~henomenqn suppose that task "0" has reserved
SF "SFN1" and seeks SF "SFN2". Task "E" already has SF
"SFN2" and seeks. SF "SFN1". This results in a deadlock, or
deadly embrace.

In principle, the solution is easy: have all tasks which seek
multiple semaphores always seek them in the same order. In
complex cases, this may not be easy to arrange.

Deadly embraces can also arise from other combinations of
limited resources. A task which has a SF and is seeking a
memory pool allocation can deadlock with a task that has a
large portion of the memory and is waiting for that SF.

In order to reduce the effects of a deadly embrace, try to
avoid unlimited waits. And when you fail to obtain one of the
needed resources, relinquish other limited resources and then
try again.

9-4 8/1/90

Chameleon 32 MTOS-UX Manual Semaphores and Controlled Shared Variables

Release
Semaphore

Delete
Semaphore

TEKELEC

The function:

int rlssem (sid)
long int sid;

decreases the use count of the semaphore whose descriptor
is sid and releases it to the next user if the count becomes
zero. If sid is not a SF currently held by the calling task, then
the function· returns a failure value of BADPRM. Two values
represent success: 0 (NOERR) means that the· SF was
released and is now free while 1 (NOTFRE) means that the SF
is still held since the count has not been reduced to O.

For best overall performance a SF should be released as soon
as possible. When a task .terminates, the semaphores that it
still has reserved are NOT automatically released.

In a dedicated real-time application it is likely that control
structures, such as semaphores, would be created by an
initialization task and then remain forever. In contrast, the
semaphores created by a transient program are not likely to
be permanent. Thus, MTOS-UX provides a mechanisrn to
delete a semaphore once it is no longer needed:

int dlsem (sid)
long int sid;

If sid is not the identifier of a SF, the fun'ction returns a failure
value of BADPRM. The function returns NOERR for success.

Usually, the SF is not in use when it is deleted. If it is in use,
the delete request is discarded, and the function returns the
warning value NOTFRE. Each task that uses a non-permanent
SF should delete the SF before 'It exits. Cor- respondingly,
the wait request for a non-permanent SF should be coded as:

while (waisem(sid,&stabf,WAIFIN) ! = NOERR)
sid = crsem(key);

With the wait call coded in this way, there is no harm in issuing
superfluous deletes, since the SF will be re-created if it
doesn't exist.

9·5 8/1/90

Chameleon 32 MTOS,UX Manual Semaphores and .Controlled Shared Variables

Controiied
Shared Variables

TEKELEC

Note that what works for semaphores cannot be a general
solution to the problem of deleting temporary structures. A SF
is special in that .it does not store any .information when not in
use. Event flag groups, in contrast, cannot be so casually
deleted and re-created since they each contain 16 bits of
information, even when no task is actively waiting for them.

. In most real-time applications, a set of tasks must share a
group of alterable variables, without interference from each
other. As has already been seen, a semaphore can be used
to grant each task exclusive access to the group. Between
the time a task continues after (successfully) waiting for the SF
and the time that task releases the SF, the task is said to be
within the critical region associated with the SF. MTOS-UX
guarantees that only one task at a time is within the critical
region. .

In some cases, a task must also be blocked until a certain
relation exists among the group variables. For example, if the
group contains. binary variables (akin to event flags), the task
might have to be blocked until a given set of variables are ali
set. Thus, the task might have to leave the critical region so
that other tasks can use and change the variables, but. then
re"enter the critical region when the desired .. relation is true
(see conditional critical regions in Per Brinch Hanson's
"Operating System Principles", Prentice-Hall, Englewood
Cliffs, N. J., 1973).

MTOS-UX includes five service calis that make it efficient to
handle this type of coordination:

crcsv

usecsv

waicsv

rlscsv

dlcsv

Create a group of contro.lled shared variables

Wait for exclusive access to a group of
controlied shared variables

Wait for given function of controlied shared
variables to be TRUE

Release exclusive access to a group of
controlied shared variables

Delete a group of controlied shared variables

9-6 8/1/90

Chameleon 32, MTOS-UX,Manual " Semaphores and, Controlled Shared Variables

) Create A Group
Of Controlled
Shared Variables

TEKELEC

A request to create a set of controlled shared variables takes
the form: '

long ir'it crcsv (keY,len)
long int key,len;

key is the key associated with the group of variables. Often
the key is four printable ASCII characters, but it is taken as an
arbitrary binary pattern. len is the overall length of the
variables, in bytes. An example of the create call is:

struct meas
{
int temp[40]
int pres[40]
};

'j' temperature, deg F 'f;
I' pressure, psia 'f;

static struct meas 'lpgid f4dentifier of group = addr of first variable 'f;

#define TPDA Ox54504441 J' key = 'TPDA' 'J

tpgid = (struct meas i crcsv(TPDA,(long) sizeof(struct r:neas));

If a group with the given key already exists, then the group
identifier is returned as the, value of the function when the
current and original lengths match. When they do not match,
BADPRM is returned and the SVC Parameter Error signal is
.sent. For a new key, MTOS-l,)X attempts to cr,eate the group,
If successful, the identifier is again returned. If there is not
enough internal memory currently available to do the creation,
the function returns the error code QUEFUL.

, ,

The group identifier is also the address of the first variable.
The group is created with all variables initialized to O. The
required space is taken from the Global TPA.

8/1/90

Chameleon 32 MTOS-UX Manual Semaphores'and Controlled Shared Variables

Wait For
Exclusive Access
To Controlled
Shared Variables

TEKELEC

The function:

int usecsv (gid,interval)
long int gid,interval;

indicates that the requesting task wishes exclusive access to
the controlled variables within group gid. If the group does not
exist, usecsv returns BADPRM and sends the SVC Parameter
Error signal. If the task already has exclusive access to the
grol1P. the return value is DUPTSK (duplicate task request).
The' specified interval, the return value is NOERR. Finally, if
the group remains unavailable during the given interval, the
requ~st is cancelled and the return value is TIMOUT.

Once exclusive access is granted, the task may freely and
safely use and change the group variables. Recall that the
group identifier is also the address of the first of the variables.

Continuing the example introduced on .the previous page:

if (usecsv(tpgid,2 + SEC) >= 0)
{ . .
tempchg = tpgid->temp[12]- tpgid->temp[9];
tpgid- > pres[12] = 40;

}

9-8 811/90

j)

))

Chameleon 32 MTOS·UX Manual .Semaphores andControlied Shared Variables

Release Controlled
Shiued Variables

When a task no longer needs its exclusive access to a group
of CSVs, it must issue a release request, using the format:

int rlscsv (gid)
long .int gid;

gid identifies the group, with the usual consequences for
giving a bad· parameter. Once released, the task must not
alter any of the variables, even though MTOS-UX does not
have the ability to enforce this rule.

Calls to waicsv and rlscsv mark the entry into and exit from the
critical region for the group, in a way analogous to waisem and
rlssem. When a task terminates, there is no automatic
release. Failure to release a group of CSVs is an application
error which cannot be detected by MTOS-UX.

Wait For Function
Of Controlled
Shared Variables
To Be True

TEKELEC

The C function to wait for a certain relation among CSVs to be
true is:

int waicsv (gid,bfun,interval)
long int gid,interval;
int ("bfun) 0;

gid identifies the variables group. bfun supplies the address
of the evaluation function. interval is the maximum time to wait
before returning from waicsv. If the interval is NOEND, the
service can never timeout. Possible return values are:

NOERR Success
• TIMOUT bfun is never TRUE during the specified

interval
• QUEFUL The timer cannot be allocated
• BADPRM The group does not exist

As always, the Error signal is sent when there is no such
group.

When called, bfun is presented with a pOinter to the group
variables as its only argument. The function must return an
integer value of zero if the task is to continue or non-zero if the
task is to be blocked. No task-level service calls (SVCs) are
permitted within bfun.

9·9 8/1/90

" Chameleon 32 MTOS-UX Manual,' Semaphores and Controlled Shared Variables

TEKELEC

As a convenience for the user, the wait service call may be
made even if the task is not currently in the critical region for
the group. In this case, there is an implicit usecsv call with the
same maximum time interval. Any, time spent satisfying the
implicit usecsv is taken away from the waicsv.

The evaluation function is called first when waicsv is invoked,
or after the implicit usecsv returns succesfully. If the task is to
be blocked, bfun will be called again each time a task'ieaves
the critical region via rlscsv or waicsv. If more than one task
could be unblocked ,because its evaluation function is true,
only the highest-priority task will be continued at that point.
The others will have to wait until the region is available again.

Whether or not a task had exclusive access to the group
originally, it loses this privilege while it is blocked and regains
it when the task becomes unblocked when the evaluation
function was satisfied. However, it does not have access
upon a timeout or other unsuccessful return. Thus, the
application must have the following overall structure:

[usecsv() ;]

if (waicsvO - - NOERR)
{

rlscsv();
}

9-10 811190

!)

.Chameleon 32_MTOS,UX Manual ... Semaphores and. Controlled Shared Variables

Delete A Group
Of Controlled
Shared Variables

TfKfLfC

When a group of controlled shared variables is no longer
needed by any task, it may be deleted by invoking: ,..

int dlcsv (gid)
long int gid;

If gid is not the identifier of a group of' controlled shared
variables, the function returns a failure value' of BADPRM and
receives the Error signal. The function returns NOERR for
success.

The same problem arises in deleting a group of CSVs as in
deleting a group of Global. Event Flags: how to know when the
last task is finished with the group so that it can be removed.
The same solution is used. Thus, dlcsv does not immediately
delete the group if there are any tasks waiting because of
waicsv. If there are, the group is internally marked "deletion­
requested"'1 Actual re!moval does not occur until there are no
more tasks waiting. In the interim, all CSV functions may be
applied normally. .

I.

9-11 8/1/90

J

CHAPTER 10:

SIGNALS

)

Introduction

))

TEKELEC

CHAPTER 10:
SIGNALS

',"" ..
A signal is a software interrupt that may be handled at the task
level. There are four modes of use:

• Error recovery
MTOS-UX automatically sends a signal to a task when
the task generates an error exception, such as an
arithmetic overflow.

• Debugging

•

A signal is sent after the execution of a breakpoint. A
different signal is sent after the execution of any
instruction for which the trace flag is set in the task's
status register. These signals may be used to invoke the
Debugger, or may be handled by the task itself.

Coordination
A task may elect to have a signal sent as the completion
indicator for a requested service.

• Communication
A task can send a signal to another task, or to a group of
tasks, as a means of communication.

There are 32 signals, numbered 0 to 31. As shown in Figure
10-1 on page 10-9. Signal 31 forces termination (kills the
task). Signals 16 - 30 are reserved for debugging and error
recovery. Within this group, the meaning of certain error
signals is hardware-dependent.

Signals 2 - 15 are available for end-of-service indicators. An
attempt to use a signal above 15 for coordination is rejected.
Any task can send Signals 0 to 15 (or 31) to any task,
including itself.

Signals 0 - 1 are reserved for the Chameleon 32 system.

10·1 8/1/90

Chameleon 32 MTOS-UX Manual Signals

Set Response
To Signal

TEKELEC

There are four possible responses that a task can make when
it receives a signal:

• It can ignore it
• It can terminate
• It can perform a subprogram
• It can become blocked

In the last case, the Debugger is started to handle the signal
and unblock the task.

Most often, the task will perform a subprogram, which is both
asynchronous and isolated. Asynchronous is mentioned since
the signal is often sent at random with respect to the main
execution path of the task. (The task may not even be running
when the signal is sent.) The subprogram is isolated in the
sense that the main execution path is interrupted, the
subprogram is performed, and then (usually) the main path is
continued.

In MTOS-UX the response to a signal does not occur until the
task becomes Ready. Normally, signals arriving while a task is
Blocked or Dormant are held. However, a termination signal
(31) arriving while a task is Dormant is discarded. The only
exception occurs when the task is blocked waiting for a signal.

When a task is first created, the default response is to ignore
Signals 0 to 15 and terminate for Signal 31. If the optional
Debugger task has been installed, then the default for the
error signals (15 to 30) is to become blocked and start the
Debugger to unblock it.· If the Debugger is not present, the
default is to print an error message on the System Console via
the Error Logger task (if present), and· then terminate the
errant task.

The function setsig can be used to alter (or reset) the
response to a particular set of signals. The C definition of the
function is:

int setsig (sigmsk,resp)
long int sigmsk;
int ('resp) ();

10-2 8/1/90

,
j

!

') ! ,

Chameleon 32 MTOS-UX Manual Signals

Get Response
To Signal

TEKELEC

The signals of interest are selected by sigmsk, using one bit
per signal, left to right A value of Ox80000000 selects only
Signal O. The literals SIGO to SIG31 may be combined to
select the appropriate bit or bits. The coordination mode
literals, CSIGO to CSIG15, may not be used.

The desired response is. indicated by resp Four literals are
recognized:

• SIGIGN (ignore)
• SIGBLK (become blocked if the Debugger is present;

terminate if not)
• SIGTRM (terminate)
• SIGDFL (reinstate the default)

Any other value is assumed to be the address of a function to
be executed upon receipt of the signal.

The value returned by a successful cali of setsig is NOERR.
BADPRM indicates that the change was rejected because the
function address was ori an odd boundary or not accessible
by the task.

Some examples of the call are:

. setsig(SIGALL,SIGDFL);

int dbgtrcO,dbgbrkO;
setsig(SIG16,dbgtrc);
setsig(SIG27,dbgbrk);

It is convenient at times to determine the response to a utility.
For example, a utility may wish to process arithmetic faults
itself and then restore the original response. The function
getsig can be used to capture the current response to a
particular signal. The C definition of the function is:

(*getsig (sig)) 0
1I0ng int sig;

The signal of interest is given by sig. For any value out of the
range 0 to 31 ,the function returns BADPRM. With a valid
signal index, the current response is returned as the value of
the function.

10-3 8/1/90

Chameleon 32 MTOS-UX Manual Signals

Send Signal

TEKELEC

A sample call is:

respf3 = setsig(3L);

Note that sig for Signal 3 is 3, not SIG3 (which is Ox10000000).

A task can send a signal tly invoking the C function:

int sndsig (tid,sig)
long int. tid;
long int sig;

Normally, tid is the identifier of the task to receive. the signal.
A task can send a signal to itself. For the special value 0, the
signal is sent to all other application tasks in the system. This
might be used to terminate all tasks prior to shutting down the
computer. Similarly, for the special value -1, the signal is sent
to any other tasks which are sharing code or data). It is not
deemed an error if there are no such tasks".

The signal to be sent is designated by sig. Proper values are
o to 15, and 31.

Examples are:

sndsig(-1 L,3L);

sndsig(tsk4id,15L);

10·4 8/1/90

)

Chameleon 32 MTOS-UX Manual Signals

Send Signal After
Given Interval

Pause For
Signal

TEKELEC

A task Can have a specified signal sent to itself after a given
interval via the'C function:

. int sgisig (sig,interval)
long int sig,interval;

The signal to be sent is specified by sig. Proper values are 0
. to 15, and 31. interval is given in the usual way .

. . Examples are:

sgisig(3L,2 + MIN);

sgisig(15L,50 + MS);

Often, the response to a signal sent by sgisig is the execution
of an asynchronous subprogram. In this way, a single task
can carry out a primary activity, and periodically perform some
auxiliary work (via the signal-invoked subprogram).

A task can pause until a 'signal arrives by calling the C
function:

int pausig (interval)
long int interval;

The pause is limited to the interval specified by interval.
NOEND is valid. The first signal to arrive cancels the pause.
The function returns the signal number (0 to 31), TIMOUT or
BADPRM. The signal pause cannot be cancelled by canpau.

Note that the pause is cancelled even if the response is to
ignore the signal.

Commonly, pausig would be used prior to termination if a task
still has not received all of its expected coordination signals. If

. five different signals are expected, pausig' would have to be
issued five times.

10·5 8/1/90

Chameleon 32 MTOS-UX Manual Signals

Structure Of A
Signal
Subprogram

TEKELEC

Wt)en coded in C, a signal response subprogram has the
general structure:

sigsub(sigblk)
struct scf *sigblk 1* ptr to signal data block */;
{

[retumO;]
}

sigblk is a pointer to a signal context frame that is used to
transmit parameters to signal subprograms, debuggers and

. error loggers.

When the signal is generated. during the processing of a
service request issued by the target task, the exception type is
1 and the SVC return value indicates the value to be returned
. from the request. Otherwise, these values reflect the context
at the last time the task was interrupted.

Usually, the data within the frame is for information only; it is
not altered by the task receiving the frame. However, this
need not be so. A task (or more commonly the Debugger)
may alter frame data, such as register values. Be careful if
the data is altered: when the task returns from the signal
subprogram it will continue using the values within the frame.
The following fields may not be changed: fsn, tti, et, pi, Isn and
lsI.

At the entry point of a signal subprogram, all registers (except
the stack pointer) have been saved, but still retain the values
of the interrupted task code. Upon exit, the values are
restored by MTOS-UX; the subprogram need not be
concerned with preservation of registers. The stack may be
used, but should be restored by the task prior to exit.

A signal subprogram is an extension of the main task; it has
the same privileges and restrictions as that task. Any task
service available to the main task code, may be called by the
subprogram. In particular, Signals can be sent and setsig can
be invoked.

10-6 8i1/90

))

Chameleon 32 MTOS-UX Manual Signals

Detailed
Handling Of
Single And
Multiple Signals

TEKELEC

The· subprogram may exit by executing an explicit return
statement, or by reaching the end of the subprogram. (In the
latter case, the compiler supplies the return.) If an exit or
trmrst is called, the task terminates without completing the
interrupted main task code. .

. A signal starts at signal level O. When a signal arrives, its
level is compared with the task's signal level. If the new signal
is of the same or lower level, its arrival is noted, but no action
is taken. In this case, if the same signal is already pending,
the new one is effectively ignored, no matter what the
response is supposed to be. Furthermore,1 the response
action is not yet examined, so that the signal remains pending
even if the response is currently to ignore the signal.

If a signal arrives with a level greater than the current signal
level of the task, then the new signal is processed
immediately. The status of the task is examir)ed. If Dormant,
the signal is ignored. If the task is paused waiting for a signal, .
the pause is cancelled making the task Ready. If Blocked, the
signal is noted in the task's pending signals variable, and
further action is deferred until the task becomes Ready.

For a Ready taSk, the response for the signal is examined.
For SIGIGN, no further action is taken. For SIGTRM, the task
is terminatecd. For SIGBLK, if the Debugger is present, the
task is blocked and the Debugger is started (passing to it the
same b.lock that a signal subprogram would receive). For
SIGBLK without a Debugger, the error/signal block is passed
to the Error Logger task (if present) and then the. errant task is
terminated. Finally, for the remaining possibility, execute a
signal subprogram, the task context (status register, program
counter, general registers and signal level) are saved on the
task stack, the task signal level is raised to that of the new
signal, and the subprogram entry point becomes the new
program counter.

When the signal processing. is postponed because the level of
the incoming signal is too low, the above steps are carried out
when the processing unnests to the required level. Similarly,
when a task which was Blocked becomes Ready,any pending
signal processing is continued.

When a task terminates, with or without a timed restart, all
pending signals are automatically cancelled.

10-7 8/1190

Chameleon-32 MTOS,UX Manual Signals

Cancel Pending
Signals

Application
Notes

TEKELEC

Under certain conditions, the execution of a single task
instruction can generate more than one signal. In such cases,
the signal with the higher level is processed first, and the other
remain!:; pending: It i--nay be useful in these cases to avoid
processing the second signal, using the service call:

long int cansig (mask)
long int mask;

This discards the pending signals selected by mask, and.
returns the image of the signals that still remain pending. The
call cansig(O) returns the image of the task's pending signals
without cancelling any of them.! The call cansig(SIGALL)
cancels all signals and returns O.

_ Both local event flags and signals can be used to achieve
delayedcoordinatioh with the end of a requested service.
Event flags are--normally used when there will be a point within
the program at which the task must wait for the service to be
completed. At that point, the task issues a waiefg.
Furthermore, the task can wait for an AND or OR combination
:of up to 16 different flags (within .one group).

Signals are normally used when the end-of-service processing
is independent of the remainder of the task program. A typical
sequence is: the task allocates an area from a memory pool,
builds a message and then outputs the message to a mailbox
or pipe. When the message is transferred, the response must
be to deallocate the block, no matter what else the task is
doing. For this, signal coordination is ideal.

In many ways, the coordination pairs pauselcanpau and
pausiglsndsig are equivalent. However, since different signals
can be sent to the paused taSk, the second pair can have an
additional element of information (0 to 16).

10--8 8/1190

Chameleon 32 MTOS-UX Manual Signals

Table 10-1: Signal Usage

No. Level Use Within MTOS-UX Default'

R~~~'i0ed
~., . .~~, •• ",c';',

-1)-5 1 SIGIGN
6-15 1 Available, for coordination SIGIGN
16 2 Trace (single step) SIGBLK
17 3 (unassigned) SIGBLK
18 3 Coprocessor fault SIGBLK
19 3 Arithmetic exception. such as divide by 0 SIGBLK
20 3 (unassigned) SIGBLK
21 3 (unassigned) SIGBLK
22 3 (unassigned) SIGBLK
23 3 Unimplemented software interrupt SIGBLK
24 3 Illegal instruction SIGBLK
25 3 Privilege violation SIGBLK
26 3 Bad parameter in seNice call SIGBLK
27 4 Breakpoint reached SIGBLK
28 5 Memory access error, such as writing to ROM SIGBLK
29 5 Boundary error SIGBLK
30 6 Stack overflow SIGBLK-
31 7 Terminate ("kill task") SIGTRM

" !)
(') SIGIGN = Ignore
SIGBLK = Become blocked if the Debugger is present; terminate if

not
SIGTRM = Terminate

(j Cannot be changed to run subprogram or ignore.

I)

TEKELEC 10-9 8/1/90

)

CHAPTER 11·:

MESSAGE BUFFERS AND MAILBOXES

1)

!)

CHAPTER ELEVEN:
MESSAGE BUFFERS AND MAILBOXES

Introduction

TEKELEC

MTOS-UX permits tasks great freedom to communicate and
coordinate by passing messages to each other. The task
sending the message does not specify the receiving task
directly. Instead, the sender posts the message to an
independent object, a message buffer or a mailbox, and the

. receiver obtains the message from that object.

The message buffer is the quickest and easiest mechanism
for passing messages. It will be described first. The mailbox
provides additional facilities and will be covered later in this
chapter. .

A message buffer (MSB) is a place to which a message may
be sent and from which a message may .be received. The
number of MSBs and the kinds of messages transferred are
completely up to the user; MTOS-UX imposes no restrictions
of its own.

A MSB message is always a single long integer (four bytes).
Often the message is the address of a structure containing the
parameters of some work to be done. However, the content
of the message is not significant to MTOS-UX; the value is
transferred without regard to its possible meaning.

A message buffer is a storage device; when there is no
receiver immediately available, the 4-byte message is copied
into the buffer. The maximum number of messages is
specified when the buffer is created. A task that attempts to
post a message to a full buffer is given a failure return value of
QUEFUL. Similarly, when a task receives a message the four
bytes are removed from storage.

After a task posts a message, it always continues without
coordination. The only option at the send end is whether the
message should be placed at the end of the buffer (FIFO) or
at the beginning of the buffElr {LIFO} in case there is no task
already waiting to receive the message. A MSB message
does not have a priority.

A task seeking a message at an empty MSB can either wait
for the next message to arrive, or continue and be notified that
no message is currently available. These wait options enable
tasks to coordinate their activities.

;,., 8/1/90

Chameleon 32 MTOS-UX Manual "Message Buffers and Mailboxes

Typical Use Of
Message Buffer

Create Message
Buffer

TEKELEC

To illustrate the use of message buffers, consider an
application in which there are four tasks that produce blocks of
parameters. Each block must be expanded into a formal
report that is to be output to one of two identical printers. It is
not important to specify the printer to be used for a given
report. It is important that a printer not be idle while a block of
pamfnE:1en::i" is'Q:''''Ciilabie~' "'.' .~. ,',. '

Each producer task allocates a work area from a memory
pool, builds a parameter block in the area and then sends the
address of the area as a message to a certain MSB. The
producer does not wait for the message to be received and
thus is immediately available to prepare the next block.

Two tasks are used to do the report generation and printing.
Each task executes the same re-entrant code, but has its own
dedicated printer. A printer task seeks the address of a
parameter block as a message from the same MSB. (If there
is no message queued, it waits.) When the printing is
completed, the printer task returns the work area to its pool
and then seeks the next message in an endless loop.

Thus the MSB provides an orderly way to coordinate the
producers and printers. Specifically, it allows the producer to
send work to the next free printer, without knowing which
printer it is. "

The parameter blocks need not all be of the same size or
come from the same pool. Usually,. they are not. Part of the
parameter block can specify the length of the work area and
the identity of the pool.

A MSB must be created before any task can use it. The C
function to do this is:

long int crmsb (key,attr)
long int keY,attr;

key is the key associated with the message buffer. A pattern
unique among MSBs is required. The attributes parameter,
attr, is the sum of two components: a. global/local specifier
(gls) and a size or capacity specifier. The choices for the gls
are:

• MSBGBL for a global buffer
• M$BLCO for a buffer local to processor 0 (default)

11-2 8/1/90

j

))

Chameleon ,32 MTOS-UX Manual 'Message Buffers and Mailboxes

Get Identifier
Of Message
Buffer

TEKELEC

The size specifier indicates the maximum .number of
messages that can be stored. The low-order 13 bits are used
so that the highest value is 8191. Zero defaults to 64.

Some typical calls are:.

#define MSBO·Qx4Q5.34230,,",,"· " , i"."'f~

#define MSB1 Ox4D53"4231 .
'"'

#define MSB2 Ox4D534232

msbidO = crmsb(MSBO,50L);

msbid1 ,=" crmsb(MSB1 ,MSBGBL + 200);

if ((msbici2 = crmsb(MSB2,MSBLC2 + 500)) = = QUEFUL) ...

As with ,an event flag group, if an MSB with the given key does
not already. exist, it is created by this request. The only return
values. are the MSB identifier for success and QUEFUL or

"BADPRM for failure. The successful return value does not
distinguish an MSB that already existed from one that was just
created. '

The buffer is created within a TPA. The global TPA is used
for single CPU systems and for multiple CPU systems when
MSBGBL is given. If a local buffer is specified, the
corresponding local TPA must already exist. An MSB is
created empty.

A local message buffer must be created, used and deleted on
the processor specified in its attributes field. The advantage
of a local buffer is red.uced traffic over the backplane. The
advantage of a global buffer is universal access by all tasks.

Any C task can determine the identifier of a message buffer
from the key via:

long int getmsb (key)
long int key;

11-3 8/1/90

Chameleon, 32 MTOS-UX Manual Message Buffers and Mailboxes

Post Message
To Buffer

Get Message
From Buffer

TEKELEC

The C functions to post a message to a buffer are:

int putms~ (msbid,msg)
long int msbid,msg;

int putrrisb (msbid,msg)
long int msbid,msg;

The buffer, is selected by msbid_ If msbid is invalid the call
returns with an error value of BADPRM and sends the error

, signal.' The 4-byte message is given by msg.

. If ;there is no receiver immediately available, the message is
,stored in the buffer. The first function places the message
after any others that are already queued; the second places it
before any others. The "normal" case is putmse, which
provides FIFO buffering. If there is no room left in the buffer,
the value QUEFUL is returned, but no signal is sent.

Note that the message buffer facility has been designed
primarily for speed.' Thus, there are no provisions for
message priority or coordination at the send end. Applications
needing these features can find them in the mailbox services
that are described later in this chapter.

A corresponding pair of C functions is used to get a message
from a buffer: '

int getmsw (msbid,dstadr)
, long int msbid:dstadr;

int getmsn (msbid,dstadr)
long int msbid:dstadr;

Parameter msbid must be the identifier of an MSB; otherwise
an error is generated. The address of the buffer to receive
the message is given by dstadr. With the first function the

'task will be blocked until a message is available_ With the
second, if no message is already queued, the return value is
MBEOF. Thus, getmsw is "get a message with wait" and
getmsn is "get a message with no wait".

For getmsw, tasks waiting for a message are queued first­
come-first-served. There is no limit to the number of tasks
that may be queued waiting for messages.

11-4 8/1 /90

I)

Chameleon 32 MTOS-UX Manual Message Buffers and Mailboxes

Delete Message
Buffer

Using A Message
Buffer To Grant
Exclusive Access

TEKELEC

A MSB may be deleted by invoking:

int dlmsb (msbid)
long int msbid;

If msbid is not the identifier of a buffer, the function returns a
failure value of BADPRM. The value for success is NOERR.

Usually, the MSB is not being used when it is deleted.
However, if there. are any queued messages or pending
receive requests, then the buffer is marked deletion pending,
but it is not removed until activity ceases. New requests will
still be honored while the buffer is awaiting deletion.

A message buffer can be used to achieve exclusive access to
a critical region, as an alternative to the semaphores
described in the previous chapter. A buffer is created and
theh primed by sending it one dummy message. Thereafter,
whenever a task needs access to the variables, it requests to
receive that message with wait. Since there is only one
message, only one task at a time could proceed; all others
queue up at the buffer. Sending the message back to the
buffer enables the next task to use the variables.

The idea is easily generalized for cases that can permit
access by more than one task at a time. To give a concrete
example, suppose there are four independent and equivalent
channels on a certain piece of equipment. Several tasks wish
to use a channel, but do not care which one is provided. A
buffer is created to handle the assignment of channels. The
creating task initially fills the MB with four messages, each
containing a channel number (say, 0 to 3). Now a task waits
for a message granting it permission to use one of the
channels, and eventually returns the message to release the
channel to the next user.

11-5 8/1/90

Chameleon 32 MTOS-UX Manual .Message Buffers and Mailboxes

Mailboxes vs.
Message Buffers

TEKELEC

While message buffers are versatile enough to solve many
problems that arise in real-time applications, there are often
cases in which a stronger facility is required. MTOS-UX
mailboxes provide full coordination at both the send and
receive ends, arbitrary message length, unlimited queuing and
256 !ev0ls of message priority.

In some situations, it is possible to fabricate the features. of the
MTOS-UX mailbox by linking several simple buffers through a
complex arrangement of calls. Nevertheless, there are two
major disadvantages for creating strong facilities at the task
level from simple operating system services:

• Such creations often have to be very complex in order to
avoid subtle bugs that arise if a task is interrupted by a
higher priority task in the middle of a sequence of calls.

• The use of many simple calls usually results in far
greater overhead than making one complex call, even
though the complex call, taken by itself, is longer than
anyone simple call.

As with a message buffer, a mailbox (MBX) is a place t.o which
a message may be sent and from which a message may be
received. The number of MBXs and the kinds of messages
transferred are completely up to the user.

A MBX message can be a record containing any number of
characters. The content of the record is not significant; the
bytes are transferred as an unstructured string. Thus, a
record may be a block of text to be processed, a set of data
to be reduced; or even the address and length of the real text
or data, as stored in a memory pool.

A· task receiving a MBX message may specify an input buffer
shorter than the incoming. message. This is considered
normal. The message is truncated, with the excess text
discarded. In any case, receiving a message always
consumes it; that is, removes it completely from the MBX.

After a task sends a message, it has the option of continuing,
or waiting until the message is received. Similarly, a task
seeking a message at a MaX that presently has no messages
can either continue, or wait for the next message to arrive.
These wait options enable tasks to coordinate their activities.

MaX messages have a priority. If there is no receiver waiting,
more important (higher priority) messages are stored in a
queue ahead of less important ones. For messages of equal
priority it's first-in-first-out.

11·6 8/1/90

i
J

. Chameleon 32·MTOS-UX Manual Message Buffers and Mailboxes

TEKELEC

There is no corresponding priority for receivers. When a task
waits for a M8X message, it's strictly first-come-first-served. It
is assumed that all receivers are identical so that there is no
need for priority ordering of the wait queue.

A mailbox is also a buffer: a storage device with a send end, a
receive end and storage in betw'e:en. ,. However, the.::storage is';''''"
used to hold only the parameters of unfulfilled send or receive
requests. The content of a message is not copied until a
receiver is available and then it is transferred directly into the
receiver's buffer. The sender may choose to send a message
and then continue without waiting for a task to receive it.
Nevertheless, because there is no internal storage of text, the
sender cannot alter the area containing the message until it is
transfered to the receiver.

The differences between a message buffer and a mailbox are
summarized below.

FEATURE
MESSAGE

MAILBOX
BUFFER

Length of message 4 bytes any

Store message? yes . no

Maximum number? . yes no

Message priority? no yes

Coordination for send? none general

Coordination for receive? WAIFIN general

Speed? faster slower

11-7 8/1/90

Chameleon ·32 MTOS-UX Manual Message Buffers and Mailboxes

Open/Create
Mailbox

TEKELEC

A MBX must be opened before it can be used. The C function
to do this is:

long int opnmbx (key,mode)
long int key,mode;

key is the external name (4 bytes). mode is the intended
manner of use, as follows:

• MBRCV (= 0) for receiving

• MBSND (= 1) for sending

A task may make both types of open (without any requirement
for an intervening close) if it intends to both send and receive
messages with the same target MBX. A typical call is:

#define MB03 Ox4D423033

if ((mb3id = opnmbx(MB03,MBRCV)) = = QUEFULj ...

If a MBX with the given key does not already exist, it is
created by this request. The only return values are the MBX
identifier for success, BADPRM for an incorrect mode and
QUEFUL for failure. The return value does not distinguish a
MBX that already existed from one that was just created. A
MBX is created empty (no senders or receivers waiting).

Each time a MBX is opened, a tally within the control data for
the MBX is incremented, and each time the MBX is closed the
tally is decremented.

There are separate tallies for send and receive opens.
However, the identity of the task making the request is not
saved. As a result, it is not necessary for each task that uses
a MBX to have opened it. All that is required is that the
current tally of opens minus closes be greater than zero for
the mode of use.

Furthermore, it is unusual, but not wrong, for a task to issue an
open for a MBX which it has already opened. When a task is
terminated or deleted, its open MBXs are not automatically
closed.

11·8 811190

I)

Chameleon 32_ MTOS-UX Manual . Message- Buffers and Mailboxes

Send Message
To Mailbox.

TEKELEC

The C function to send a message to a mailbox is:

int sndmbx (mbid,srcadr,prty,stabfr,qual) .
long int mbid,prty:stabfr,qual;
char. 'srcadr;_~,_

The mailbox is selected by mbid, which. must be the identifier
of a MBX that has been opened for sending (and not
subsequently closed). If mbid is invalid, the call returns with
an error value of BADPRM.

srcadr is a pointer to the message. The length of the text (in
bytes) is supplied in the first four bytes, followed directly by
the text. A length of zero is accepted. Placement of
messages on word boundaries considerably improves the
speed of this service call.

If there is no receiver immediately available, and IMONL Y was
not specified, the parameters of the request are queued. If
prty is non-zero, the message is queued in priority order
based on prty. If prty is 0, the message goes immediately to
the end of the queue. - As a result, if priority is not an issue, all
messages. should use a value of 0 for fastest processing.

The parameter stabfr is a pointer to a long integer buffer' into
which the transfer status can be stored. qual is the
coordination/service limit qualifier, specifying the cmode, lunits
andlnum fields.

. i
If the transfer is made, the status buffer contains NOERR. For
failure, the buffer has BADPRM, TIM OUT or QUEFUL. Some
examples are:

• To send the 7-byte text "MTOS-UX" with unlimited wait
and priority 1 00: .

sndmbx (mb3id. "\O\O\O\7MTOS-UX", 1 OOL,&status ,WAIFI N);

• To send the same text with a wait limited to 1 hour; force
message to end of queue (priority 0):

sndmbx (mb3id,"\O\O\O\7MTOS-UX",OL.&status,1 + HRS);

• To send the text within string msgstg with 255 priority,
continue, and set LEF 0 when done:

sndmbx (mb3id,&msgstg,255L.&status,CLEFO);

When sending a message to a MBX it is not necessary that
any task currently have the box opened for receiving.

11-9 8/1190

• J •

Chameleon 32 MTOS-UX Manual Message Buffers and Mailboxes

. Receive Message
From Mailbox

A similar C function is used to receive a message· from a
mailbox:

int rcvmbx (mbid,dstadr,stabfr,qual)
long int mbid,*stabfr,qual;
char *dstadr;

mbid is the identifier of a MBX open for receiving. dstadr is
the address of the buffer to receive the message. The
maximum size of the text (in bytes) is specified in the first four
bytes of the buffer. The actual buffer should be four bytes

. longer than the maximum text size.

TEKELEC

The transfer is limited to the smaller of the length of the
message content and length of the receiving area. The actual !

number of bytes transferred is stored in the first four bytes of
the area. However, the area need not be on a word boundary.

If the area is longer than the message, the unused portion of
the area is not cleared. If the message is longer than the
area, the unused portion is discarded. Neither case is
considered an error. A text length of zero is valid and
provides coordination without text transfer.

qual is the coordination/service limit qualifier. stabfr is a
pointer to a buffer into which the status can be stored.

Coordination for rcvmbx is similar· to that used for sndmbx.
The only difference is that all receivers are assumed to have
equal priority .so that the wait queue is strictly FIFO. Two
examples are: .

To receive up to 125 bytes into rcvstr, with unlimited wait:

struct MB125 {long int tsiz;
char txt[125l} rcvstr;

rcvstr.tsiz = 125 /* set max len *1;
rcvmbx (mb2id,rcvstr,&status,WAIFIN);

To fill rcvstr, continue, and set LEF 15 when done:

rcvmbx (mb2id,&rcvstr,&status,CLEF15);

"-'0 8/1190

1
I

l)

l)

Chameleon 32 MTOS-UX Manual Message-Suffers and Mailboxes

Close Mailbox

TEKELEC

If there is a message available when the receive is issued
then the function returns immediately with status NOERR.
Otherwise, the task is expected to wait or not, as specified in
the coordination qualifier. However, when the MBX is being
used as a private conduit (pipe) between tasks, it is important
to be able to distinguish a MBX that is temporarily empty from
one that is permanently in thaL stat6-. - In the._ first case, it
makes sense to wait for a message; in the second it does not.
Towards this end, if the MBX was once opened for sending
and is currently not opened in that mode, then an unsatisfied
receive request is not queued. Instead, it r.eturns immediately
with "at end of file" (MBEOF) status. This applies for all
values of the coordination qualifier.

A MBX that is currently open in a given mode can be closed
via the C command:

int clsmbx (mbid,mode)
long int mbid,mode;

A valid close decrements the opens-remaining tally for the
given mode. If the new tally is still one or more, the function
returns NOTFRE to indicate that there are other opens still
outstanding.

If there are no more opens left for the given mode, the
function returns 0 (= NOERR). When that happens for the
send mode and there are receive requests queued, then the
receive queue is purged. The unsatisfied receive requests are
given the status' MBEOF. It is assumed in this case that there
will not be any more messages posted to the MBX. Purging a
request constitutes completion for purposes of coordination.
The corresponding actions are not taken for send requests
when there are no receivers.

For a close in either mode, if the MBX has already been
opened for both sending and receiving, and is -now not opened
in any mode, and there are no requests queued, then the MBX
is deleted. The rationale for delaying the deletion until the
MBX is opened at least once for receiving is simple: all
senders. may produce and post all of their messages and
close the MBX before the receivers start execution.

When a task terminates or is deleted, its open MBXs are not
automatically closed. As a result, MBXs can remain in
existence (using limited internal resources) if they are not
specifically closed before a task terminates.

11-11 8/1/90

Chameleon 32 MTOS-UX Manual Message Buffers and Mailboxes

Delete Mailbox

Using A Mailbox
As A Pipe

TEKELEC

A MBXmay be deleted by invoking:

int dlmbx (mbid)
long int mbid;

If mbid is not. the' iC;&;itifier of' c:: ;;nailbox, the function returns a
failure value of BADPRM. The value for success is NO ERR.

To understand the main purpose of dlmbx consider the
Command Unelnterpreter (ClI). Often the Cli starts sets of
tasks that communicate via MBXs. If one of these tasks were
to terminate before it had a chance to close a MBX, the MBX
would remain forever. The Cli can issue dlmbx to purge such
MBXs ..

Usually, the MBX is not being used when it is deleted. If there
are any send or receive requests pending, then the requests
are purged, with error status MBDL T.

A pipe is a connection between two tasks, arranged so that
the output of one task becomes the input to the other. Under
UNIX a pipe is implemented via the file system; under MTOS­
UX a pipe can be achieved using a MBX.

The following suggests one method to create a mailbox pipe.
Many variations are possible.

A sender task ("S") issues an opnmbx with a key, say 'PS/R',
and mode MBSND. When "S".wishes to output some text, it
uses alloc to obtain a pool area large enough to house the
text. (Typically the area is larger than needed because of the
granularity of a pool allocation.) The text is stored. "s" then
posts a message containing the address and length of the
allocated area to the pipe MBX. The priority is 0 so that
messages proceed FIFO. No coordination is used; "s"
continues. When there is no more output, "s" closes the
MBX.

11-12 8/1/90

.. Chameleon.32 MTOS-UX Manual . Message Buffers and Mailboxes

A receiver task ("R") issues a corresponding opnmbx with
identical. key and .mode MBRCV. "R" seeks a message from
the pipe MBX with unlimited wait. When "R" continues, it has
either the address of the pool area or the MBEOF status. In
the former case, it uses the text, deallocates the pool area
and then repeats the loop. In the latter case, it also closes the
MBX,4o' delete:'itr ... ,,,~.'1~~ . ,""'"

Activating Service
Tasks

TEKELEC

Two methods are available for organizing a service task ("8")
that does work specified by a block of parameters. In the first,
the task is arranged as a loop: it seeks the block of
parameters at a mailbox, does the required work and then
cycles back to seek another block at the MBX. For this case,
a task requests the service provided by "8" by sending a
message to the MBX.

In the alternate method, the service is requested by starting
"8" with the address of the parameters as the· restart
argument. "8" becomes active, does the service and then
terminates to be available for the next request.

Both methods are similar in that several tasks can invoke the
services of "8" and assign a priority to the units of work (block
of parameters). Furthermore, there can be as many copies of .
"8" as are needed to handle the work. However, in several
ways these methods are significantly different.

With the mailbox approach, when there are multiple copies of
"8", load leveling occurs automatically, since as soon as an
"8" finishes it seeks the next available unit of work. With the
start-task method, the user must assign a ·unit of work to a
specific copy of "8". Thus, one copy might have many
unsatisfied requests queued while the other copies are idle.

The use of a mailbox is also more general since the transfer
of the parameters message can proceed via a network. When
only the address of the block is supplied (via the restart
argument) the parameters must be directly accessible to "8".
On the other hand, if the parameters block is very long and
happens to be directly accessible, then communicating the
address is more efficient than transferring the entire block.

The main advantage of using start-task is that it is easy to
coordinate with the termination of "8" and thus to know when
the service has been completed. With MBX messages, the
coordination is limited to the transfer of the parameters block
and thus to the start of the service. Indirect methods (such as
having "8" set a given global event flag) must be used to
determine when the service is finished.

11-13 8/1/90

· APPENDIX A:

SUPERVISOR SERVICES SUMMARY

l)
/

))

.. Chameleon 32· MTOS-UX Manual App. A: Supervisor Services Summary

APPENDIX A: SUPERVISORY SERVICES SUMMARY

Introduction This appendix provides a summary of the Supverisory
Services. The available functions are listed below with a brief
description. Each function is described in more detail
following the brief listing.

FUNCTION DESCRIPTION PAGE

canpauO
cansigO
clsmbxO
crcsvO
crefgO

. crmsbO
crsemO
crtskO
dlcsvO
dlefgO.
dlmbxO
dlmsbO
dlsemO
dltskO
getdadO
getidnO
getimeO
getkeyO
getmsbO
getmsnO
getmswO
getsigO
gettidO
gettodO
getuid()
opnmbxO
pauseO
pausigO
putmsbO
putmseO
rcvmbxO
rlscsvO
rlssemO
setptyO
setsigO
setstcO
settodO
sgiefgO
sgisigO

TEKELEC

continue given task, if it is paused for time interval A-3
cancel pending signals of requesting task A-4
close mailbox•......................... A-5
create group of controlled shared variables A-6
create group of global event flags A-7
create message buffer A-8
create counting semaphore A-9
create task ' ... , A-10
delete group of controlled shared variables A-11
delete group of event flags A-12
delete mailbox A-13
delete message buffer A-14
delete semaphore A-15
delete requesting task A-16
get address of data segments of requesting task A-17
get MTOS-UX identification data A-18
get number of ms since system was started A-19
get key of given task ... ;..................... A-20
get identifier of message buffer , A-21
get message from buffer--return if not available A-22
get message from buffer--wait if not available. A-23
get response to given signal A-24
get identifier of task with given key A-25
get time of day clock/calendar string A-26
get identifier of unit with given key A-27
open mailbox, creating it if it does not exist ... :..... A-28
pause for given time interval A-29
pause until signal arrives A-30
post message to the beginning of buffer A-31
post message to the end of buffer A-32
received first available message from mailbox A-33
release group of controlled shared variables A-34
release semaphore A-35

. set current priority of given task A-36
set response to one or more signals A-37
install given unit as standard console requesting task ., A-38
set time of day clock/calendar , A-39
set event flags after given interval of time .. ' , A-40
send specified signal after given interval of time. A-41

A-1 8/1/90

8hameleon 32 MTOS-UX Manual .App_A: Supervisor Services Summary

FUNCTION

sndmbx()
sndsigO
srsefgO
srslefO
start()s
syntodO
trmrstO
tstartO
usecsvO

waiefgO
waicsvO
waisemO

TEKELEC

DESCRIPTION

send message to mailbox
send signal to one task or group of tasks
immediately set or reset event flags
immediately set or reset local event·flags of given task
tart given task
wait for given time of day
terminate task with auto restart after time interval
start task and transfer coordination to new task
wait for exclusive control over group

of controlled shared variables
wait until event flags are set
wait for controlled shared variables to be true
wait for given counting semaphore to be free

A-2

PAGE

A-42
A-43
A-44
A-45
A-46
A-48
A-49
A-50

A-51
A-52
A-53
A-54

8/1;90

)

))

Chameleon 32 MTOS-UX Manual App. A:· Superv.isor Services Summary

CANCEL PAUSE

DESCRIPTION

REFERENCE
• I

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

CO[1tlnue €liven task if it is paased for time interval.

Page 4-4

int canpau(tid)
long inttid;

tid = task identifiert

NOERR

NOTOUT

BADPRM

Task was paused.

Task was not paused.

tid is invalid.

result = canpau(scntid);

if (canpau(logtid) = = NOTOUT) ...

A-3 8/1/90

Chameleon 32 MTOS-UX Manual . App, A: Supervisor Services Summary

CANCEL PENDING SIGNALS

DESCRIPTION·

REFERENCE
I

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Cancel pending signals of requesting task.

Page 10-8

long int cansig(mask)
long intmask;

I

mask = signals to be cancelled (SIGALL for all).

Image of signals that remain still pending.

cansig(SIGALL);

siglft = cansig(SIG16+SIG17);

pendsg = cansig(OL);

A-4 8/1/90

}

))
;

J)

Chameleon 32 MTOS-UX Manual App. A: Supervisor Services Summary

CLOSE MAILBOX

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

•

TEKELEC

Close mailbox.

Page 11-11

. int clsmbx(mbid,mode)
long intmbid,mode;

mbid = mailbox identifier.

mode = type of close (MBRCV, MBSND).

NOERRM

NOTFREM

BADPRM

B has no more opens left for given mode.

B has 1 or for more opens left for given mode.

mbid or mode is invalid.

if (c1smbx(mbOid,MBSND) = = NOTFRE) ...

A-5 8/1··90

Chameleon 32.MTOS-UX Manual App.·A:, Supervisor Services Summary

. CREATE CONTROLLED SHARED VARIABLES

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

...
TEKELEC

Create group of controlled shared. variables.

Page 9-7

long int crcsv(key,len)
long intkey,lem; ..

key = external name of group.

len = length of group (bytes).

Identifier if group is successfully created or already exists.

BADPRM

QUEFUL

Parameter is invalid.

Insufficient internal resources to create group.

#define TPDA Ox54504441

struct meas
{

};

int temp[40];
int pres[40];

struct meas "tpgid /" identifier of group = addr of first variable */;

tpgid = (struct meas *) crcsv(TPDA,(long) sizeof(struc meas»;

A-6 8/1/90

)

)\ .)
-~r

Chameleon 32 MTOS-UX Manual App. A: Sopervisor Services Summary

CREATE EVENT FLAGS

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Create group of (global) event flags.

Page 8-2

long int crefg(key)
long intkey;

key = external name of group.

Identifier if pool is successfully created or already exists.

QUEFUL Insufficient internal resources to create group.

#define PMP1 Ox504D5031

pmp1 id = crefg(PMP1);

A-7 8i1/90

Chameleon 32 MTOS-UX Manual _ App. A:. Supervisor Services Summary

CREATE MESSAGE BUFFER

DESCRiPTiON

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Create message buffer.

Page 11-2

long in! crmsb(key,attr)
long intkey,attr;

key = external name of buffer.

attr = gls + maxmsg

gls global/local specifier (MSBGBL, MSGLCQ, ... ,MSGLCF)

maxmsg maximum number of messages to be stored (1 to
8191) .

Identifier if buffer is successfully created or already exists.

Invalid parameter found. BADPRM

QUEFUL Insufficient internal resources to create buffer.

#define MSBO Ox4D534230
#define MSB1 Ox4D534231
#define MSB2 Ox4D534232

m$bidO = crmsb(MSBO,50L)/* single CPU system 0/;
msbid1 = crmsb(MSB1 ,MSBGBL + 200);
if ((msbid2 = crmsb(MSB2,MSBLC2 + 500)) = = QUEFUL) ...

A-8 8/1/90

)

Chameleon 32 MTOS-UX Manual . App. A: Supervisor' Services Summary

CREATE SEMAPHORE

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Create (counting) semaphore ..

Page 9-2

long int crsem(key)
long intkey;

key = external name of semaphore.

"~-""~

Identifier if semaphore is successfully created or already
exists.

BADPRM

QUEFUL

Parameter error found.

Insufficient internal resources to create
semaphore.

#define SF34 Qx53463334

if ((s34id = crsem(SF34)) = = QUEFUL) ...

A-9

Chameleon 32 MTOS-UX Manual App. A: Supervisor -Services Summary

CREATE TASK

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Create task.

Page 7-3

long int crtsk(tcdptr) .
struct tcd*tcd ptr;

tcdptr = address of task parameters (tcd).

Identifier if task is successfully created.

Task already exists.

Bad language code found in tcd.

Bad time interval code found in tcd.

DUPTSK

BAD LNG

BADTIM

BADPRC

QUEFUL

Bad processor index found in tcd.

Insufficient internal resources to create task.

scntid = crtsk(&scntcd);

if ((scntid & OxFFFFOOOO) = = OxFFFFOOOO)
{r tcd error found 'II

}

A-10 8/1/90

)

I)
, I

))

Chameleon 32 MTOS"UX Manual .. '. App. A: Supervisor. Services Summary

DELETE CONTROLLED SHARED VARIABLES

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Delete group of controlled shared variables.

Page 9-11

int dlcsv(csvid)
long intcsvid;

csvid = group identifier.

NOERR Group successfully deleted.

BADPRM csvid is invalid.

result = dlcsv(tpgid);

A-ll 8/1/90

Chameleon 32 MTOS-UX·Manual App, A; Supervisor Services Summary

DELETE EVENT FLAGS

D'=SCI=!!PT!ON.

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Delete a group of event flags,

Page 8-6

int dlefg(gid)
long intgid;

gid = group identifier,

NOERR

BADPRM

Group successfully deleted,

gid is invalid,

result =. dlefg(pmp1 id);

A-12 8/1 '90

)

. Chameleon 32 MTOS-UX Manual • ,·App. A, Supervisor .. Services Summary

DELETE MAILBOX

DESCRIPTION

REFERENCE

C FUNCTION

;l>

PARAMETERS

RETURNS.

EXAMPLES

TEKELEC

Delete mailbox. .

Page 11-12

. intdlmbx(mbid)
.Iong intmbid;

mbid = mailbox identifier.

NOERR

BADPRM

Mailbox successfully deleted.

mbid is invalid.

result = dlmbx(mb3id);

A-13 8/1/90

,···,Chameleon 32 MTOS-UX Manual ,,' App. A: Supervisor Services' Summary

DELETE MESSAGE BUFFER

DESCRiPTION

REFERENCE'

C FUNCTION

j'

PARAMETERS

RETURNS

EXAMPLES

TEKELEC .

. Delete message buffer.

Page 11-5

int dlmsb(msbid)
long intmsbid;

msbid = buffer identifier.

NOERR

BADPRM

Buffer successfully deleted.

msbid is invalid.

result = dlmsb(msbid1);

A-14 ' 8/1/90

)}
.'

Chameleon 32 MTOS·UX Manual .• App .. A,Supervisor Services Summary

DELETE SEMAPHORE

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Delete semaphore.

Page 9-5

int dlsem(sid)
long intsid;

sid = semaphore identifier.

NOERR

BADPRM

Semaphore successfully deleted.

sid is invalid.

result = dlsem(s34id);'

A·15 811/90

. ·.c. Chameleon 32 MTOS-UX Manual App .. A:. Supervisor SEirvices Summary

DELETE TASK

. DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Delete requesting task .

Page 7-12

int dltsk(retarg)
long intretarg;

retarg = argument (value) to be returned to task that started
task being deleted.

dltsk does not return.

dltsk(OLj;

dltsk(result);

A-16 8/1.'90

)

. Chameleon 32. MTOS-UX Manual App . .A: Supervisor Services Summary

GET ADDRESS OF DATA SEGMENTS

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

. TEKELEC

Get address of initialized and un initialized data segments of
requesting task_

, I

Page 7-8

long int getdad(buf)
long int"buf;

buf = address of buffer to receive segment addresses.

I
NOERR

BADPRM

long int *buf[2];

getdad(buf);

I .

Data successfully copied_

Unable to write into buf.

A-17 8/1190

.' ·Chameleon 32 MTOS-UX Manual .;... , . App. A: Supervisor Services Summary

GET SYSTEM IDENTIFICATION

DESCRIPTiON

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Get MTOS-UX identification data.

Page 3-4

int getidn(idnbuf)
char"idnbuf;

idnbuf = address of 33-byte buffer to rbceive null-terminated
string of form:

"\r\nMTOS-UX/68K MP V1.3 [200586j\r\n"

NOERR

BADPRM

char mtosid[33j;

getidn(mtosid);

String successfully copied.

Unable to write into idnbuf.

A-18 8/1/90

\
)

Chameleon 32. MTOS-UX Manual _ -- App.A; Supervisor Services Summary

GET SYSTEM TIME

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Get number of ms since system was started.

Page 5-3

int getime(msbfr)
char"msbfr;

" -,.~.

msbfr = address of 6-byte buffer to receive time value.

Value successfully copied. . NOERR

BADPRM Unable to write into msbfr (on clock master
processor).

char mstime[6];

getime(mstime);

A-19 811190

Chameleon 32 MTOS-UX Manual .. App. A:-Supervisor Services Summary

GET TASK KEY

DESCRIPTION

REFERENCE

C FUNCTION

RETURNS

EXAMPLES

TEKELEC

Get key of given task.

Page 3-3

long int getkey(tid)
long inttid;

key (external name) if task exists.

BADPRM Task does not exist.

t3key = getkey(t3id);

A-20 8/1190

J

)) ,

Chameleon 32 MTOS-UX Manual .. App. A: Supervisor Services Summary

GET IDENTIFIER OF MESSAGE BUFFER

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Get identifier of message buffer.

Page 11-3

long int getmsb(key)
long intkey;

key = external name of message buffer.

Identifier if buffer exists.

BADPRM Buffer does not exist.

#define MSB2 Ox4D534232

msbid2 = getmsb(MSB2);

A-21 8/1/90

... Chameleon,32 MTOS-UX Manual App. A:. Supervisor Services Summary

GET MESSAGE FROM BUFFER WITHOUT WAIT

'. DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Get 4-byte message from buifel; . Return immediately, if
message is not available.

Page 11-4

int getmsn(msbid,dstadr)
long intmsbid:dstadr;

msbid = buffer identifier.

dstadr = address of 4-byte area to receive message.

NOERR

MBEOF

BADPRM

Message successfully copied.

No message available.

Parameter error found.

if (getmsn(msbid1,&nework) = = MBEOF) ...

A-22 81190

,
!

Chameleon .32.MTOS-UX Manual .. App. A:. Supervisor Services -Summary

GET MESSAGE FROM BUFFER WITH WAIT

DESCRIPTION

REFERENCE

C FUNCTION
r.

PARAMETERS

RETURNS

EXAMPL.ES

TEKELEC

Get 4-byte message from buffer. Wait if message is not
immediately available.

Page 11 c4

int getmsw(msbid,dstadr)
long intmsbid:dstadr;

msbid = buffer identifier.

dstadr = address of 4-byte area to receive message.

NOERR

BADPRM

Message successfully copied.

Buffer does not exist.

getmsw(msbid1,&nework);

A-23 8/1190

Chameleon 32.MTOS-UX Manual App. :A;: Super.visor Services· Summary

GET SIGNAL RESPONSE

DESCRIPTION

REFERENCE

C FUNCTION··

PARAMETERS

RETURNS.

EXAMPLES

TEKELEC

Gel response t6 given signal.

Page 10-3

('getsigO) (sig)
··Iong intsig;

sig = signal number (0 to 31)

address of response procedure, or

SIGBLK (if task is to become blocked)

SIGIGNif (task is to ignore signal)

SIGTRMif (task is to terminate)

sigres = getsig(18L);

A-24 8/1/90

!)

" . Chameleon 32 MTOS-UX. Manual. . . App. A! . .supervisor Serviees Summary

GET TASK IDENTIFIER

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Get identifier of task with given key.

Page 7-5

long int gettid(key)
long intkey;

key = external name of task.

Identifier of task if it exists.

BADPRM Task does not exist.

#define SCN2 Ox53434E32

sc2id = gettid(SCN2);

A·25 8/1/90

". Chameleon 32 MTOS-UX Manual ,'App. A: Supervisor Services Summary

GET TIME OF DAY

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Get time of day clock/calendar string.

Page 5-2

int gettod(todbfr)
char 10dbfr;

todbfr is the address of a 21-byte area to receive the TOD
. string. See settod for format of string.)

NO ERR

BADPRM

String successfully copied.

Unable to copy string.

char ccstg[21];

gettod(ccstg);

A-26 8/1/90

l)

Chameleon 32 MTOS-UX Manual App. A: Supervisor Services Summary

GET UNIT IDENTIFIER

DESCRIPTION

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Get identifier of unit with given key.

long int getuid(key)
long int key;

key is the external name of the unit.

Identifier of unit if it exists.

BADPRM Unit does no! exist.

#define SYSC Ox53595343

scnuid = getuid(SYSC);

A-27 8/1/90

· Chameleon 32 MTOS-UX Manual , App. A:. Supervisor Services Summary

OPEN MAILBOX

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Open mailbox, creating it if it does not already exist.

Page 11-8

long int opnmbx(key,mode)
long int key,mode;

key is the exter7al name of the mailbox

mode = MBRRCV (for receiving)
MBRS.ND (for sending)

Identifier if mailbox is successfully created or already exists.

BADPRM if mode is incorrect.

QUEFUL if insufficient internal resources to process request.

#define MB03 Ox4D423033

if ((mb3id = opnmbx(MB03,MBRCV)) = = QUEFUL) ...

,A-28 811/90

))

)) ,

Chameleon 32. MTOS-UX Manual . App. A: Supervisor Services Summary

PAUSE

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Pause for given time mterva!':,

Page 4-1

int pause(interval)
long int interval;

interval = iunits + inurn

.. ,~

iunits:time units (MS, TMS, HMS, SEC, MIN, HRS, DAY)

inurn: number of such units (0 to 255)

interval can also be NOEND for "pause until· cancelled" or
NXTICK for "pause until next clock tick".

Specified interval ran to completion ..

Pause cancelled by canpau.

iunits field not correct.

NOERR

TIMCAN

BADPRM

QUEFUL Pause could not be performed for lack of
internal resourses.

result = pause(250 + MS);

result = pause(25 + TMS);

result = pause(SEC + 1);

pause(NOEND);

A-29 8/1/90

. Chameleon.32 M:rOS-UX Manual . App. A: .. Supervisor Services Summary

PAUSE UNTIL SIGNAL ARRIVES

. DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

r-3use unli, ::;ignaiarrives .

Page 10-5

int pausig(interval)
long int interval;

interval = iunits + inum

iunits:time units (MS, TMS, HMS, SEC, MIN, HRS,DAY)

inum: number of such units (0 to 255)

interval can also be NOEND for "paus~ until cancelled".

signal number (0 to 31).

iunits field not correct. BADPRM

TIMOUT

QUEFUL

Signal did not arrive within given interval.

Pause could not be performed for lack of
internal resourses.

result = pausig(250 + MS);

signum = pausig(NOEND);

A-30 8/1 '90

)

l)

Chameleon 32 MTOS-UX Manual App.· A: Supervisor Services Summary

POST MESSAGE TO BEGINNING OF BUFFER

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Post 4-byte message to the beginning of buffer.

Page 11-4'

int putmsb(msbid,msg)
long int msbid,msg;

msbid = buffer identifier.

msg = 4-byte message.

, I
,

NOERR Messa4e transf~;ed to waiting task or stored
in buffer.

QUEFUL

BADPRM

No task waiting and no room left in buffer.

Buffer does not exist.

result = putmsb(msb03,Ox1234L);

result = putmsb(msbid1,newmsg);

A-31 811.'90

Chameleon 32 MTOS-UX Manual App:' A:. Supervisor, Services Summary

POST MESSAGE TO END OF BUFFER

O:SCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Post 4-byte message to the end of butfer.

Page 11-4

int putmse(msbid,msg)
long int msbid,msg;

msbid = buffer identifier.

msg = 4-byte message.

NO ERR MesJage transfered to waiting task
in buffer.

or stored

QUEFUL

BADPRM

No task waiting and no room left in buffer.

Buffer does not exist.

result = putmse(msbid1,Ox5678L);

result = putmse(msbid1,nextmsg);

A-32 8/1/90

,
j

I)

!)

.' Chameleon 32_MTOS-UX Manual - ·.App. A:-.-Super-visor·Services Summary

RECEIVE MESSAGE FROM MAILBOX

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Receive first available message from mailbox.

"Page 11-10

int rcvmbx(mbid,dstadr,stabfr,qual)
long int mbid,stabfr,qual;
char "dstadr;

mbid = mailbox identifier.

dstadr = address of area to receive message.

stabfr = address of long word buffer to receive status of
request.

qual = cmode + lunits + Inum

.cmode: coordination mode (WAIFIN, CLEFn, CSIGn; n = 0 to
15)

lunits: time units for wait limit (MS, TMS, HMS, SEC, MIN,
HRS, DAY)

Inum: number of such units (0 to 255)

lunits + Inum may be replaced by IMONL Y (to return TIMOUT
if message not available immediately).

if lunits + Inum is zero then there is no wait limit.

NOERR
BADPRM
MBEOF
QUEFUL

TIMOUT

Request successfully queued or completed.
Parameter· error found.
Mailbox not open at send end.
Insufficient internal resources to process
request.
Message did not become available within
maximum specified interval.

rcvmbx(mb3id,nxtmsg,&result,WAIFIN + 2 +SEC);

rcvmbx(mb3id,newmsg,&result,CLEF1);

A-33 8/l'90

Chameleon.32 MTOS-.UX Manual . ·App.· A:' Supervisor .. Services Summary

RELEASE CONTROLLED SHARED VARIABLES

'. DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

. Release group of controlled shared variables.

Page 9-9

int rlscsv(csvid)
long int csvid;

csvid = group identifier.

Group has been released. NOERR

BADPRM Group does not exist or is not reserved to
requesting task.

result = rlscsv(tpgid);

A-34 8/1/90

I
J

Chameleon 32 MTOS-UX Manual App. A: Supervisor- Services Summary

RELEASE SEMAPHORE

DESCRIPTION -

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Release semaphore.

Page 9-5

int rlssem(slid)
long int slid;

slid = semaphore identifier.

NOERR Semaphore in-use tally has been decremented, and
if now 0, semaphore has been released.

BADPRM Semaphore does not exist or is not reserved to
requesting task.

result = rlssem(s34id);

A-35 811/90

- _ Chameleon 32 MTOS-UX Manual App. A:. Superviso, Services Summary

SET TASK PRIORITY

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Set current priority of given t'?sk.

Page 7-9

unsigned short int setpty(tid,basis, value)
long int tid, basis, value;

tid = task identifier (0 = requesting task).

basis = USEVAL (use given value)
ADDVAL (add given value).

value = value to be used or added.

new value of priority (0 to 255).
BADPRM Parameter error found.

result = setpty(tsk12,USEVAL,120L);

curpty = setpty(OL,ADDVAL,OL);

A-36 811.'SO

J)

Chameleon 32 MTOS-UX Manual ·App .. A: Supervisor Services Summary

SET RESPONSE TO SIGNAL

DESCFUfl,TlelN-·"'··· Set response to one or more signals.

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Page 10-2

int setsig(sigmsk,resp)
long intsigmsk;
int ('resp) ();

sigmsk = mask to select signals can form from 81GO to 81G31
or 8IGALL.

resp = address of response subprogram
81GIGN (ignore signal) .
81GBLK (become blocked)
81GTRM (terminate)
81GDFL (reinstate default)

NOERR Response' successfully set.

BADPRM Parameter error found.

setsig(SIGALL,8IGDFL);

setsig(SIG16,&dbgtrc);

A-37.

<

8,'190

· ... Chameleon 32 MTOS-UX Manual .. App. A:' Stlpervisor' Services Summary

SET STANDARD CONSOLE

DESCRIPTION

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Install given unit as standard console of requesting a task.

int setstc(uid)
long int uid;

uid = unit identifier.

NOERR

BADPRM

Standard console successfully set

Unit does not exist

#define SYSC Ox53595343

setstc(getuid(SYSC)) ;

A-38 8:1 190

))

: Chameleon 32 .. MTOS-UX Manual App: -A:. Supervisor -Services Summary

SET TIME OF DAY

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Set time of day clock/calendar.

Page 5-1

int settod(todstg)
char"todstg;

todstg = address of null-terminated TOO string of the form

"DO MMM YYYY HH:MM:SS"

DO = day of month, starting at 01
MMM = abbreviated month name (JAN, FEB, ... ,DEC)
YYYY= year

. HH = hour (00 to 23)'
MM = minute (00 to 59)
SS = second (00 to 59)

NOERR

BADPRM

No errors found in string.

. Format of string is not valid.

settod("11 NOV 1918 11 :00:00");

result = settod(date);

A-39

..... Chameleon 32:MTOS-UX Manual . App. A: .Supervisor'Serviees Summary

SET EVENT FLAGS AFTER GIVEN INTERVAL

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Set event flags after given interval of time.

Page 8-5

long int sgiefg(gid,mask,interval)
long intgid,mask,interval;

gid = identifier of group.

mask = mask to seiect flags can form from EFO to EF31 or
EFALL.

interval = iunits + inum

iunit: (~S, TM$, HMS, SEC, MIN, HRS, DAY)

inum: number of such units (0 to 255)

No parameter errors found.

Previous timer was reset or cancelled.

Parameter error found.

NOERR

TIMCAN

BADPRM

QUEFUL Request could not be performed for lack of
internal resourses.

result = sgiefg(pmp1 id,EFO + EF6,100 + SEC);

A-40 8/1/90

j

J)

Chameleon 32 ,MTOS,UX Manual App. A: .Supervisor Services Summary

SEND SIGNAL AFTER GIVEN INTERVAL

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Send specified signal after given interval. of time.

Page 10-5

int sgisig(sig,interval)
int sig,interval;

sig = signal number (0 to 15 or 31).

interval =; iunits + inum

iunits: time units (MS, TMS, HMS, SEC, MIN, HRS, DAY)

inum: number of such units (0 to 255)

No parameter errors' fo[!nd.

Previous timer was reset or cancelled.

parame1er error found.

NOERR

TIMCAN

BADPRM

QUEFUL Request could not be performed for lack of
internal resourses.

result = sgisig(3L,2 + MIN);

A-41 8/1/90,

Chameleon 32 MTOS-UX Manual . App. A:-.SupervisoLServices Summary

SEND MESSAGE TO MAILBOX

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Send message to mailbox.

Page 11-9

int sndmbx(mbid,srcadr,prty,stabfr,qual)
long intmbid,prty,stabfr,qual;
char*srcadr;

mbid = mailbox identifier.

srcadr = address of message (with length in first 4 bytes).

prty = message priority

stabfr = address of long word buffer to receive status of
request

qual = cmode + lunits + Inum

cmode coordination mode (CTUNOC, WAIFIN, CLEFn,

lunits: time units for wait limit (MS, TMS, HMS, SEC,MIN,
HRS, DAY) I

Inum: number of such units (0 to 255)

lunits + Inum may be replaced by IMONL Y (to return TIMOUT
if message not available immediately)_

if lunits + Inum is zero then there is no wait limit

NOERR
BADPRM
QUEFUL

TIMOUT

Request successfully queued or completed.
Parameter error found.
No receiver available and no internal
resources available to queue request
Receiver did not become available within
maximum specified interval.

sndmbx(mbOid,newmsg,O,&result,WAIFIN + 2 + SEC);

A-42 8/1/90

J)

))

Chameleon 32 MTOS-UX Manual _ App. A:· Supervisor Services Summary

SEND SIGNAL

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Send signal to one task or group .of tasks.

Page 10-4

int sndsig(tid,sig)
long int tid,sig;

tid = identifier of task to receive signal
o to send signal to all other application tasks

-1 to send signal to any other tasks which are
sharing code or data.

sid = signal number (0 to 15, or 31).

NOERR

BADPRM

Signal successfully sent.

Parameter error found.

sndsig(-1 L,31 L);

sndsig(tsk4id,15L);

A·43 8/1 '90

· --Chameleon ·32 MTOS-UX Manual ··App. A:·:Supervisor Services Summary

SET IRESET EVENT FLAGS

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Immediately set or reset event flags.

Page 8-3

long int srsefg(gid,opmask)
intgid,opmask;

gid = group identifier (0 = local group of requesting task).

opmask = op + mask

op: EFSET (set) or EFRST (reset)

mask: flag selection composed from EFO to EF15 or EFALL

final value of group (with high-order bits cleared).

BADPRM Parameter error found.

srsefg(OL,EFRST + EFALL);

value = srsefg(OL,EFRST + EF1 + EF5)

curlef = srsefg(OL,EFSET + OL);

value = srsefg(pmp1 id,EFSET + EF8);

A-44 8/1 90

)

\)

l)

Chameleon 32 MTOS-UX Manual App .. -A: Supervisor Services Summary

SET/RESET LOCAL EVENT FLAGS OF GIVEN TASK

IlESCRIPTION .. . Immediately set or reset local eve'nt flags of given task.

REFERENCE Page 8-7

C FUNCTION long int srslef(tid,opmask)
long int tid,opmask;

PARAMETERS tid = task identifier (0 = requesting task).

opmask= op + mask:

RETURNS

EXAMPLES

TEKELEC

op: EFSET (set) or EFRST (reset)

. mask: flag selection composed from EFO to EF15 or IEFAll.

final value of group (with high-order bits. cleared).

BADPRM Parameter erro:r found.

srslef(Ol,EFRST + EFAll);

value = srslef(scntsk,EFSET + EF1 + EF5)

curlef = srslef(Ol,EFSET + Ol);

A·45

___ , __ Chameleon 32- MTOS-UX Manual App_ -A: _S~pervisor Services Summary

START TASK

DESCRIPTION

-- REFERENCE

C FUNCTION

PARAMETERS

TEKELEC

Start given task.

Page 7-5

int start(tid,pty,arg,stabfr,qual.)
long int tid,ptY,arg,*stabfr,qual;

tid = task identifier.

pty = pbasis + pvalue

pbasis: basis of computing priority at which task starts:

INHPTY (use inherent priority of target task)
CURPTY (use current priority of requesting tas~)
LRGPTY (use larger of inherent prio~ity of requesting task
& current priority of requesting task)
GVNPTY (use priority given in pvalue). .

arg = argument to be presented _ to task when it starts.

stabfr = address - of long word buffer to receive status of
request.

qual = cbasis + cmode + lunits + Inum

cbasis (coordination basis):

CSTART (end request when target task starts)
CTERM (end request when target task terminates).

cmode: coordination mode (CTUNOC, WAIFIN, CLEFn,
CSIGn; n = 0 to 15)

lunits:time units for wait limit (MS, TMS, HMS, SEC, MIN, HRS,
DA~ i -

Inum: number of such units (0 to 255) -

lunits + Inum may be replaced by IMONL Y (to return TIMOUT
- if task not currently dormant).

-if lunits + Inum is zero then there is no wait limit.

A-46 8/1--90

!

:)

J)

.Chameleon 32 MTOS-UX Manual .. App. A:- Supervisor Services Summary

RETURNS

EXAMPLES

TEKELEC

NOERR

BADPRM

QUEFUL

TIMOUT

Request successfully queued or completed.

Parameter error found.

Insufficient internal resources to process
request.
Task could not be started within maximum
specified interval.

start(scntid,GVNPTY + 100,&data,&stabuf,
WAIFIN + 2 + SEC + CTERM);

A-47 8/1/90

.. - ··Chameleon· 32. MTOS-UX Manual .. App.'A Supervisor·Services Summary

SYNCHRONIZE WITH TIME OF DAY

;k DESCRIPT!ON ... - .Wa.it lor·g:ventime of day,·

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Page 5-3

int syntod(synstg)
char 'synstg;

synstg = address of null-terminated match string of
the"HHMMSS"

HH = hour (00 to 23, or ?? to match any hour)
MM = minute (00 to 59, or ?? to match any minute)
SS = second (00 to 59, or ?? to match any second)

NOERR

BADPRM

No errors detected in string.

Format of string is not valid.

result = syntod("??1500");

syntod(nxthr);

A-48 8/1 90

l)

J)

Chameleon 32 MTOS-UX Manual .App; A,"Supervisor. Services Summary

TERMINATE TASK WITH RESTART AFTER GIVEN INTERVAL

DESCRIPTION

REFERENCE

C FUNCTION.

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Terminate . requesting task ·""'ith-· automatic 'resta:rt"'aftetgilJ~tl· ;.
interval of time.

Page .7~11

long int trmrst(retarg,intrvlj
long int retarg,intrvl;

retarg = argument (value) to be returned to task that started
task being terminated.

intrvl = rbasis + iunits + inum

rbasis: STRTIM (add interval to last start time)
TRMTIM (add interval to termination time).

iunits: 'time units (MS, TMS, HMS, SEC, MIN, HRS, DAY)

inum: number of such units (0 to 255)

interval can also be NXTICK for "until next clock tick".

trmrst does not return.

trmrst(OL,STRTIM + 1 + HOUR);

A-49

: ·.Chamelet:m 32 MTOS-UX Manual . ·App. A:.S.upervisnr Services Summary

.0"

TRANSFER START OF TASK

DESCRIPTION'

CFUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Start given task and transfer coordination to new task.

int tstart(tid)
long int tid;

tid = task identifier.

For success, tstart does not return.

BADPRM tid is invalid.

tstart(fstask);

A-50. 81 90

l)

J)

· Chameleon ·32 MTOS-UX Manual App .. A:.Supervisor Services Summary

USE CONTROLLED SHARED VARIABLES

DESCRIPTION ...

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

WaiL for exclusive control· over group of controliedshared
variables.

Page 9-6

int usecsv(csvid,ihterval)
long intcsvid,interval;

csvid = group identifier.

interval = iunits + inum

iunits: time units (MS, TMS, HMS, SEC, MIN, HRS, DAY)

inum: number of such units (0 to 255)

interval can also be NOEND for "forever".

Group is available. NOERR

DUPTSK Duplicate I task request· (task already has
group).

BADPRM

QUEFUL.

TIMOUT

Parameter error found.

Service could not be performed for lack of
internal resources.

Group did not become available within given
interval.

result = rlscsv(tpgid,1 0 + SEC);

rlscsv(tpgid,NOEND);

A·51 8.1 90

· . Chameleon 32 MTOS-UX. Manual ... App., A: Sup.ervisor Services Summary

WAIT FOR EVENT FLAGS

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Wait until event flags are set.

Page 8-4

long int waiefg(gid,opmask,interval)
intgid,opmask,interval;

gid = group identifier (0 = local group of requesting task).

opmask = op + mask:

op EFAND (wait for all bits to be set)
EFOR (wait for any bits to be set)

I

mask = mask to select flags can form from EFO to EF31 or
EFALL.

interval = iunlts + inum

iunits: time units (MS, TMS, HMS, SEC, MIN, HRS, DAY)

inum: number of such units (0 to 255)
!

final value of group (with high-order bits cleared).

Parameter error found. BADPRM

QUEFUL Service could not be performed for lack of
internal resources.

TIMOUT Group did not become available within given
interval.

pmival = waiefg(pmlgid,EFAND + EF2 + EF5,20 + SEC);

waiefg(pmp1 id,EF1)1" can use default for 1 flag 'I;

curlef = waiefg(OL,OL);

A-52 811/90

))

· .-. Chameleon 32· MTOS-UX Man'ual App ... A:·.Supervisor Services Summary

WAIT FOR FUNCTION OF CONTROLLED SHARED VARIABLES TO BE
TRUE

DESCRIPTION

REFERENCE

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Wait. for function of controlled shared variables to be true and
then continue with exclusive use of the CSV.

Page 9-9

int waicsv(csvid,bfun,interval)
long intcsvid,interval;
int (*bfun) 0;

csvid = group identifier.

bfun = function that returns TRUE (non-zero) only when wait
is to end.

interval = iunits + inum

iunits: time units (MS, TMS, HMS, SEC, MIN, HRS, DAY)

inum: number of such units (0 to 255)

NOERR

BADPRM
TIMOUT

QUEFUL

Function was true, or became true within
specified interval.
Group does not exist.
Function did not become true within given
interval.
Service could not be performed for lack of
internal resourses.

int tstfnO r declare test function */;

result = waicsv(tpgid,&tstfn,200 + MS);

tstfn(csvars)
struct meas~csvars;

{

}

if (csvars- > pres[20] < 200)
return(O)

else
return(1)

A-53

r keep waiting 'I;

r end wait */;

8/1 190

Chameleon 32 MTOS-UX Manual ... App,'-A:.Supervisor Servic·es Summary

-

WAIT FOR SEMAPHORE

DESCRIPTION

REFERENCE·

C FUNCTION

PARAMETERS

RETURNS

EXAMPLES

TEKELEC

Wait for given (counting) semaphore to be free.

int waisem(sid,stabfr,qual)
long intsid,*stabfr,qual;

sid = semaphore identifier.

stabfr = address of long word buffer to receive status of
request.

qual = cmode + lunits + Inurn

cmode coordination mode (WAIFIN, CLEFn, CSIGn; n = 0
to 15)

lunits: time units for wait limit. (MS, TMS, HMS,SEC, MIN,
HRS, DAY)

Inum: number of such units (0 to 255)

lunits + Inum may be replaced by IMONL Y (to return

TIMOUT if semaphore not available immediately).

if lunits + Inum is zero then there is no wait limit.

NOERR

BADPRM

QUEFUL

TIMOUT

Request successfully queued or completed.

Parameter error found.

Insufficient internal resources to process
request.

Semaphore did not become available within
ma:ximum specified interval.

waisem(s34id,&result,CLEF5 + 200 + MS);

•
A-54 8/1 '90

\
I

J)

))

APPENDIX 8:

ERROR CODES

J)

))

APPENDIX B:
ERROR CODES FROM DIAGNOSTIC PROGRAM

File: emptst.e

TEKELEC

Code

1001

1002
1003

1004
1005
1006
1007
1008
1009

1010
1011
1012
1013
1014
1015
1016
1017
1018.

1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035

Meaning

crcmp with block size > pool did not return
BADPRM
BADPRM on crcmp did not send Signal 26
crcmp without room for 2 blocks did not return
BADPRM
BADPRM on crcmp did not send Signal 26
crcmp with block size 0 did not return BADPRM
BADPRM on crcmp did not send Signal 26
crcmp with block size 2-64 did not return BADPRM
BADPRM on crcmp did not send Signal 26
crcmp with nonexistant memory did not return
BADPRM
BADPRM on crcmp did not send Signal 26
crcmp 1 with valid parameters returned an error
crcmp 2 with valid parameters returned an error
crcmp with different keys returned same identifier
getcmp with invalid key did not return BADPRM
BADPRM on getcmp did not send Signal 26
getcmp got different identifier than crcmp
getcmp got different identifier than crcmp
alloc with number of bytes > size of pool did not
return BADPRM
BADPRM on alloc did not send Signal 26
alloc with invalid identifier did not return BADPRM
BADPRM on alloc did not send Signal 26
alloc returned incorrect value
alloc did not return TIMOUT when unsatisfied
dalloc with invalid identifier did not return BADPRM
BADPRM on dalloe did not send Signal 26
dalloc of bit map block did not return BADPRM
BADPRM on dalloc did not send Signal 26
dlcmp with valid identifier did not return NOERR
dalloc of deleted pool did not return BADPRM
BADPRM on dlcmp did not send Signal 26
dlcmp with global TPA did not return BADPRM
BADPRM on dlcmp did not send Signal 26
dlcmp with invalid identifier did not return BADPRM
BADPRM on dlcmp did not send Signal 26 .
dlcmp with valid identifier did not return NOERR

8-1 8!1/90

Chameleon 32 MTOS-UX Manual

File: csvtstc

TEKELEC

Code

1101
1102
1103
1104
1105

.1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

.. Appendix 8: Error Codes.

Meaning

QUEFUl reported by crcsv
Duplicate CSV creates reported different values
Different CSV creates reported same value
CSV3 create caused error
Create with different lengths did not return BADPRM
BADPRM on crcsv did not send Signal 26
dlcsv (id1) did not ri=f.lort NOERR
dlcsv (id2) did not report NOERR .
dlcsv (id3) did not report NOERR
CSV create with odd length returns error
CSV create with length one returns error
CSV create with length 0 returns value
BADPRM on crcsv length 0 did not send Signal 26
CSV create with length FFOOOO returns value
dlcsv (id1) did not report NOERR .
dlcsv (id2) did not report NOERR
dlcsv(100l) did not report BADPRM
BADPRM on dlcsv(100l) did not send Signal 26
CSV1 create caused error
VTST1 was not created properly
Different tasks returned different identifier
usecsv(100l) did not report BADPRM
BADPRM .on usecsv did not send Signal 26
usecsv(id1) did not report NOERR
usecsv(id1) again did not report DUPTSK
rlscsv(100l) did not report BADPRM
BADPRM on rlscsv(100l) did not send Signal 26
rlscsv(id1) did not report NOERR
VTST1 was not created properly
usecsv(id1) did not report TIMOUT
rlscsv used by other task did not return BADPRM
BADPRM on rlscsv other task did not send Signal .
26
waicsv' with bad identifier did not report BADPRM
BADPRM on waicsv did not send Signal 26
waicsv with false function did not TIMOUT
waicsv with true function did not NOERR
rlscsv(id1) did not report NOERR
dlcsv (id1) did not report NOERR
CSEF Event Flag Create caused error
VTST3 was not created properly
VTST 4 was not created properly
VTST5 was not created properly
The. three tasks did not function correctly
CSV create of varsid returns error
dlcsy (varsid) did not report NOERR

. dlefg (csefid) did not report NOERR
CSV1 create caused error
usecsv(idtest) did not report NOERR
rlscsv{idtest) did not report NOERR
CSV create of varsid returns error

8-2 8/1/90

)

)

)

Chameleon 32·MTOS-UX Manual

File: efgtst_c

TEKELEC

1150
1151
1152
1153

Code
. .".~ '.""" t:JI:f,or

1201
1202
1203 .
1204.
1205
1206
1207.
1208 .
1209 .
1210
1211
1212
1213

'1214'
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235

. 1236

C, .• Appendix· Bi Error Codes.

rlscsv(varsid) did not report NOERR
CSV create of varsid returns error
CSV create of varsid returns error
rlscsv(varsid) did not report NOERR

Meaning

QUEFUL reported by crefg
Duplicate EFG creates reported different values
Different'EFG creates reported same value
EFG3 create caused QUEFUL
dlefg did not report NOERR
waiefg did not report error on bad identifier
srsefg returned an error .

'. waiefg after timeout did not return TIMOUT
. ETST1 was not created properly
Setting global EF did not restart waiting task
Create failed
dlefg did not report NOERR
dlefg did not report NOERR
waiefg after dlefg returned an error
dlefg on deleted EF did not report BADPRM
QUEFUL reported by crefg
Error in srsefg setting mask
Error in srsefg resetting mask
dlefg reported BADPRM
QUEFUL reported by crefg
Error in srsefg setting mask
Error in srsefg resetting mask
dlefg reported BADPRM
QUEFUL reported by crefg
Error in srsefg setting mask
dlefg reported BADPRM
QUEFUL reported by crefg
Error in srsefg resetting mask
dlefg reported BADPRM
Error in srsefg setting mask
Error in srsefg resetting mask
dlefg reported BADPRM
ETST2 was not created properly
Setting local EF did not restart waiting task
ETST3 was not created properly
Resetting the local EF of another task did not work

8-3 8/1 '90

.. Chameleon 32 MTOS-UX Manual

File: fixtst.c

File: mbxtst.c

TEKELEC

Code

1301
1302
1303 .

1304 .
)305
1.306
1307
1308
1309

. j310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326

Code

1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417

. 1418
1419

. Appendix B: Error Codes

Meaning

crfbp with block size 0 did not returri BADPRM
BADPRM on crfbp did not send Signal 26
crfbp with nonexistant memory did not return
BADPRM

.' BADPRM or. crfbp did not send Signal 26
crfbp 1 with valid parameters returned error
crfbp 2 with valid parameters returned error
crfbp with different keys returned same identifier
getfbp with invalid key did not return BADPRM
getfbp with invalid key did not send Signal 26
getfbp got different identifier than crfbp
getfbp got different identifier than crfbp
alofbp with TPA specified did not return BADPRM
BADPRM on alofbp did not send Signal 26
alofbp with invalid identifier did not return BADPRM
BADPRM on alofbp did not send Signal 26
alofbp returned incorrect value
dalfbp with invalid identifier did not return BADPRM
BADPRM on dalfbp did not send Signal 26
dalfbp of TPA did not return BADPRM
BADPRM on dalfbp did not send Signal 26
dlfbp with valid identifier did not return NOERR
dalfbp of deleted pool did not return BADPRM
BADPRM on dlfbp did not send Signal 26
dlfbp with invalid identifier did not return BADPRM
BADPRM on dlfbp did not send Signal 26
dlfbp with valid identifier did not return NOERR

Meaning

QUEFUL reported by crmsb
Different MSB creates reported same value
putmse with bad identifier did not return BADPRM
BADPRM on putmse did not send Signal 26
putmsb with bad identifier did not return BADPRM
BADPRM on putmsb did not send Signal 26
getmsw with bad identifier did not return BADPRM
BADPRM on getmsw did not send Signal 26
getmsn with bad ideritifier did not return BADPRM
BADPRM on getmsn did not send Signal 26
dlmsb with bad identifier did not return BADPRM
BADPRM on dlmsb did not send Signal 26
putmsb 10L did not return NOERR
putmse 20L did not return NOERR
putmsb 30L did not return NO ERR .
getmsw did not return NOERR.
message 30L was not read
getmsw did not return NOERR
message 10L was not read

B·4 8 "90

Chameleon 32 MTOS-UX Manual

, I

TEKELEC

1420
1421
1422
1423
1424
1425
1426

\ 1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
14:P7
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472

Appendix B: Error Codes.

getmsw did not return NOERR
message 20L was not read
getmsn did not return MBEOF
QUEFUL not reported on putmsb 100 messages
dlmsb MSB1 did not return NOERR
getmsw did not return NOERR
message was not read
Gettin€J last message did not delete message buffer
QUEFUL reported by crmsb (2nd time) ..
QUEFUL not reported after 100 messages queued
dlmsb MSB1 did not return NO ERR
getmsw did not return NOERR
message was not read
Getting last message did not delete message buffer
QUEFUL reported by crmsb (3rd time)
QUEFUL not reported on putmsb 100 messages
dlmsb MSB1 did not return NOERR
getmsn did not return NOERR

-message was not read
Getting last message did not delete message butter
QUEFUL reported by crmsb (4th time)
QUEFUL not reported after 1.00 messages queued
dlmsb MSB1 did not return NO ERR
getmsn did not return NOERR
Message was not read
Getting last message did not delete
dlmsb MSB2 did not return NOERR
QUEFUL reported by crmsb (5th time)
QUEFUL not expected
getmsn did not return NOERR
QUEFUL not expected
getmsn did not return NOERR
Not enough TPA to run this test
QUEFUL reported by crmsb (6th time)
dlmsb MSB1 did not return NOERR
QUEFUL reported by opnmbx
Different MB creates reported same value
QUEFUL reported by opnmbx MB03
Bad transfer of message 2
Bad transfer of message 1
MBEOF did not set EF
MBDL T did not set EF
QUEFUL reported by opnmbx MB04 send
Mailbox not sent correctly
Mailbox not sent correctly
Mailbox not sent correctly
Mailbox not sent correc11y
Mailbox not sent correctly
Message at odd address not sent correctly
Message with length 0 not sent correctly
missed QUEFUL
missed QUEFUL
QUEFUL not detected
Wrong data detected

B-5 81 90

.. : ... Chameieon.32 MTOS-UX·Manuai , "Appendix B: Error Codes

File: pautst!c

File: piotst.c

TEKELEC

::.:0 .

1473
1474
1475
1476
1477
1478
1479
1480
1481

. 1482
1483
1484
1485
1486
1487
1488

Code

Bad signal number .
Bad processor index
Bad last signal number
Bad last .signal level
Bad signal. nUmber
Bad processor index
Bad lastsignaLnumber
Bad last signal level
QUEFUL reporter), by. QP\lmbx MB04 send
waiefg error .
Message incorrect
waiefg error status
. Bad transfer of odd addr
Bad transfer of length 0
Bad transfer of length 0
dlmsb diq not return NO ERR

Meaning

1501 'NOEND + 5' does not return BADPRM
1502 BADPRM on pause did not send Signal 26
1503 canpau with bad identifier does not return BADPRM
1504 BADPRM on canpau did not send Signal 26
1505 PTST1 was not created properly
1506 canpau did not return NOERR
1507 PTST2 was not created properly
1508 canpau did not detect the task was not paused
1509 PTST3 was not created properly
1510 canpau did not return NOERR
1511 TIMCAN was not returned. on NOEND pause
1512 TIMCAN was not returned on 4 + SEC pause

Code Meaning

1601 Can not read with default prompt
1602 Bad status from read with default prompt
1603 Bad tally from read with default prompt
1604 Can not read with given prompt
1605 Bad status from read with given prompt
1606 Bad tally from read with given prompt
1607 Can not write
1608 Bad status from write
1609 Bad tally from write
1610 Bad status from PIORSV
1611 Bad status froinPIORSV expected RSVERR
1612 . Bad status from PIORLS expected 0
1613 Bad status from PIORLS expected RSVERR
1614 Did not get BADPRM on PIORSV + PREEMP
1615 Did not get BADPRM on PIORLS + PREEMP
1616 Can not read single character
1617 Can not write ms3prm
1618 Can not write ms4prm

B-6 811 90

Chameleon 32 MTOS-UX Manual Appendix B: Error Codes ,.-

1619 Can not,write ms2prm
1620 Can not writems1 prm
1621 TIMOUT'status not returned on PIORE1
1622 Bad statu;S0f11 PIOWRI expected NOERR
1623 Bad statLis'qn2 Pl0WRI expected NO ERR
1624 Bad status on '3 PIOWRI expected NOERR
1625,. Bad status On 4 PIOWRI expected NOERR

, -"""""';·1626' 7'i"i"""ean'not read single character
1627 Either PIORE1 or PIOWRI did not work
1628 Bad status on PIOWR1 expected NOERR
1629 . Can not write to system printer
1630 Bad status on PIOWRI to printer

File: semtst.c Code Meaning

.1701 QUEFUL reported by crsem
1702 Different SF creates reported the same value
1703 waisem did not report error on bad identifier
1704 waisem had error on good call #1
1705 waisem reported error on good call #2
1706 rlssem. did not report NOTFRE
1707 ,dlsem did not report NOTFRE
1708 rlssem did not report NOERR
1709 dlsem did not report NOERR

l)
File: sigtst.c Code Meaning

1801 ,Bad signal number
1802 Bad last sigrial number
1803 Bad last signal level
1804 All signals did not arrive "
1805 Wrong number of signals

Fil.e: todtst.c Code Meaning

1901 Undetected error in syntod (240000L)
1902 Undetected error in syntod (236000L)
1903 Undetected error in syntod (????6?)
1904 Undetected error in settod 20 FEM 1985
1905 Error in syntod with ("??OOOO")
1906 Error in syntod with (" 120000")
1907 Error in syntod with ("?????1 ")
1908 Error in syntod with ("000000")
1909 Error in syntod with ("2?????")
1910 Error in syntod with ("??????")
1911 Error in syntod with (" ???? 4?")
1912 Bad parameter did not send Signal 26

J) File: tsktst.c Code Meaning

TEKELEC B·7

· Chameleon 32·.MTOS-UX Manual

.-,.

TEKELEC

2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045

.,. Appendix B: Error Codes

DUPTSK status on first creation of a task
Error creating a task
gettid could not find a valid task
crtsk and gettid returned different identifiers
DUPTSK status was not returned
Bad Language error did not send Signal 26
Bad Language error did not return BADLNG
Bad Local/Global flag error did not send Signal 26
Bad Local/Global flag error did not return BADPRC
Bad Time Unit error did not send Signal 26
Bad Time Unit error did not return BADTIM
gettid on non-existant task did not return BAD RPM
gettid on non-existant task did not send Signal 26
gettid(OL) does not return correct tid
start on deleted task did not return BAD RPM
start on deleted task did not send Signal 26
gettid on deleted task did not return BADRPM
gettid on deleted task did not send Signal 26
Error creating a task
contsk with bad identifier did not return BADRPM
contsk with bad identifier did not send Signal 26
Valid contsk did not return NOERR
Trying to clear contsk did not return NOERR
contsk did not start the task
contsk did not call turn off int routine
contsk did not start itself with task identifier of 0
setpty with bad identifier did not return BADRPM
setpty with bad identifier did not send Signal 26
setpty USEVAL 213 did not work on current task
setpty ADDVAL 25 did not work on current task
setpty ADDVAL -50 did not work on current task
setpty ADDVAL 100 did not work on current task
setpty ADDVAL -125 did not work on current task
setpty ADDVAL -140 did not work on current task
setpty USEVAL 200 did not work on current task
setpty USEVAL 200 did not work on another task
setpty ADDVAL 25 did not work on another task
setpty ADDVAL -80 did not work on another task
setpty ADDVAL -150 did not work on another task
setpty ADDVAL 195 did not work on another task
setpty ADDVAL 66 did not work on another task
incorrect return arg expected 1234
Initialized data address was not passed correctly
Run-time argument was not passed correctly
Run-time argument not passed correctly (contsk)

B-8 8'1 90

J)

j: r"::1/:i2:" ~ ..

t,:',li': (.,;;')C: ~~"

"<:::'C,q f".r;,~\

,,,' :,~!.J';f~~': ~~;::- ';-,

, ';: '20.s~)c,r',(,~.

'l.?'ck;·\~,>~~-, ':("
'" ~(,j:::.;"!';::: r/'

;;< 1,:,"

.. : ,::.'

APPENDIX C:

MTOS-UX DEMONSTRATION

,

-.

" .. -.f
:' ,i':
3C>.:;S2S,--:-"'
":'.; bStdl.:~t,"'

"r ••• ,'

.)

, .. :

.\. !",

.I)

,). ,

. Chameleon 32 MTOS-UX Manual - App C: _ MTOS-UX Demonstration

APPENDIX C: MTOS-UX DEMONSTRATION USAGE

Introduction

TEKELEC

The included software package is an example of how a multi­
tasking environment is implemented under MTOS-UX .

.In this example there are 5 tasks. These, along with a brief
description of each task, are as follows:

1) CO: . This task is responsible for the initiation of the
i/o ports, creation and start-up of the other tasks,
creation of all message buffers and cle.an up at
shut down. (CO stands for coordinator)

2) PORT: This task polls all the i/o ports initiated in this
system: AUX.2, Basic Rate port A, Basic Rate
port B and the keyboard. When it detects
something at one of these ports it notifies the
specified task.

3) DSP: This task displays the strings other tasks request
to have displayed. In this example each string
displayed on the screen is also sent out on

. AUX.2 by DSP_

4) MA 1: This task is the analysis task for basic rate port
. A. MA 1 receives the buffer received on port A
from 'PORT' it then does what it wants with this
buffer and sends the display request (or send
on AUX.2) of what it chooses to 'DSP'. In this
example MA1 only notifies 'DSP' of a message
receipt. This can however easily be expanded to
suit another need.

5) MA2: This task does the same as the above only it·
interacts with port B.

C-1 8 1 90

. Chameleon 32..MTOS-UX.Manual App C:- MTOS-UX-Demonstration

nCdt;l ":". "

.. ..., .. ,'

2:'::' 'C';!

sri';
,-'

n '.. ~: ··~.1 t.

: .. : .. , ,', .

.. ---'---'# '-'--. ---.--.-.-.~ '
There are 14 files included in this package. They are as
follows:

:',:a;'rt;:::~ ·sd 1c!.1G"j :>!~ "
CO.C:"1~'_':·~' f'\o:lMi'lOO€l~f Uie 'CO' task (mainO)

portc the body of the 'PORT' task
. 'I>ir~i::: 'i' i:';8j"r)~qfi-0' G·ii1 ::) :,"':': ,;,,"),,-rT' ,

.... ?S~:~2),:;;r;~i:.,-,rmi€l;R8a¥ ~f;ln~ P$P. task

ma~.)r' ·T ••. tOO bOGies'ef "MA l' and 'MA2'

utiLc send and receive functions used by all tasks

.. Iinkcom.c initratiorl1t!Jnctions for basic rate setup

. ,," ",_links,c ":. :<, _ .. <?:9nfigurati('Yh of link connections needed
~;.r ,r~:' ;,;,.,:1 .):::,.-: •. ' ?:~.1 S(] J: ':

. :,'·b··,· ,tcd,c ; •. ·:C,SG"iriWationstructures for each task2

mainsym.h global and useful symbols

tos.h events and corresponding structures task
."'c' :';. i .. :>' v .:",: .. initiati6n·structures

.• i ... · :. -
·paval.h .• ;, :.'. symbols used to initiate AUX drivers

, .. -I>;" 1:·1 S ,- ;;:.:.. ,',', :.

. err.o - e;rror:handling functions
'b ,:';t..;~:. \:. d .. r',);.I,~;·. ..;.,::",n,' t " ..

makefile
:~l' . ~'.

sw.doc the documentation you are now reading
~", : .•... ;. -

It should be nbted tha~ "each ·t-ask started by 'CO' receives a
pointer to a structu.ie where it finds its configuration
information. . .

Each task also starts by initiating itself (the initiation function to
be found at the end of .each task file) and exchanging
START_'REQ and START_. CONF messages with 'CO'.

The following configuration information will help you to start-up
in your environment.

TEK'Et"EC' " .'-' ' -. __ . --- ·-.---·-c:2'· 8.1 '90

t.' ,.

)

))

))

Configuration

... -: ..

,",,,

.'

~ '.' t ' :.;..

Two files must be edited to match your environment before
:~ :l:.unr]ng !his iel)8~tration program .. : These are:

j;,?~j 1'~q(~·G.C:r1t i.> '{bod ed1 :':"),:';.'

,~ TIW co.p f.i!~~an9Jes the initiation of the basic rate p'pr:ts ~
,. '.' ""'by ca:nlrig ai\:lndlo'n named.setup(}. _. .

," . r A set4;p(e$.BI.4JI.~'., ... , ... , ... ,nL.power);

.. 'j'~ : setiJp,(P0.Rj]::B,.:\, ... , ... ,:.' .. lnt,;'power);

'. The paravne.-tefn<l! power sMuld be set to the value
required by tile TE'S used. The Chameleon Basic· Rate
Library explaj~~;tne meaning ofihl:! different values .

2.
... .' 0.1:3 Isd~)!Q

links.c
l:J 'loS 21'·:-' ';1\,~~ (.?(,.I

The linj<s.c -fij.e·oSpecifies which links are' to be handled in
this particular case. The structure linksA defines the links

'" on· PQrt.:A,2diliJksB defines .• the, links on port B. The
structure must be terminated with the link

.c. NONE,N"ONE;NONE. Thel"'structure (defined .in
mainsym.h) has the following appearance:

--. tji..",,~,~· :"",

typedef struct
:,{ ... ,:."'t:.;: ... ·1:..::):): :~<"~; ,,'~

int type; ("specifies whether the TEl value has to be set
"j

.. ,,-' . '< int te,i;,:;{' TEl ~alue': ~Ic 1;' .){',,', ,

.2. " lint sapi;-.- t1 SAPtvalue 'li,~:r (
.'} LINK; ,i.:)'jP, ,-.;,;;

, .. ,,~.,: ~;':" . '.' \;1; yri ;:~,; ,'" :;. <_,;;.',';-:: :.,,' ';j (-i 2:.

·~.,i;~ ,'c. -':)f,:;::;- ~,.'; "~:.r-,0: £.;""'" ~. ;>"1:.':: 3c1
. -:. •....

~,. ,p, .' ";':'n. ;-\' r!C'::'.~"'Lp·:;'"·-g· .. '

_ ,;'::.1' ;'.

'-'-'-'~'-'-'--'~''''''~-'- .~ .. ~-- ,-

----------------......".--------------:; ..).",~..., . .l;""~/_";
,:,'.",

TEKELEC C-3 8/1/90

