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e, AN Introduction to Glide

Voodoo Graphicsisthe first video subsystem that enables personal computers and low cost video game
platforms to host true 3D entertainment applications. Optimized for real-time texture-mapped 3D images,
the Voodoo Graphics subsystem provides accel eration for advanced 3D features including true-
perspective texture mapping with trilinear mipmapping and lighting, detail and projected texture
mapping, texture anti-aliasing, and high precision subpixel correction. In addition, it supports general
purpose 3D pixel processing functions, including triangle-based Gouraud shading, depth buffering, alpha
blending, and dithering.

The Glide Rasterization Library isaset of low level rendering functions that serve as a software “micro-
layer” to the Voodoo Graphics family of graphics hardware, including the 3Dfx Interactive Texelfx ™
and the Pixelfx™ special purpose chips. Glide permits easy and efficient implementation of 3D rendering
libraries, games, and drivers.

Why Glide?
Glide serves three primary purposes:

It relieves programmers from hardware specific issues such as timing, maintaining register shadows,
and working with hard-coded register constants and offsets.

It defines an abstraction of the Voodoo Graphics hardware to facilitate ease of software porting.

It acts as addlivery vehicle for sample source code providing in-depth hardware-specific
optimizations for the Voodoo Graphics hardware.

By abstracting the low level details of interfacing with the Voodoo Graphics hardware into a set of C-
callable functions, Glide allows developersto avoid working with hardware registers and memory
directly, enabling faster development and lower probability of bugs. Glide also handles mundane and
error prone chores such asinitialization and shutdown.

Glideis but one part of the 3Dfx Interactive Software Developer’s Kit (SDK), which is designed to assist
developersin creating tools and titles that are optimized for the Voodoo Graphics hardware. Other
components of the SDK include the Game Controller Interface (GCI) Library and the Texture Utility
Software (TexUS™).

Glideis not afull featured graphics API such as OpenGL ™, PHIGS, or the Autodesk CDK ™: it does not
provide high level 3D graphics operations such as transformations, display list management, or light
source shading. Glide specifically implements only those operations that are natively supported by the
Voodoo Graphics hardware. In general, Glide does not implement any functions that do not directly
access a Voodoo Graphics subsystem’s memory or registers.

The Glide Utility Library contains utility routines create fog tables, extensions that do significant pre-
processing befare calling Glide routines to access the graphics system, and obsol ete routines that are
provided for interim compatibility as Glide development continues.

Copyright O 1995- 1997 3Dfx Interactive, Inc. 1
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The Glide library can be linked with an application with or without debugging aids. The debug version
has error checking and parameter validation, which may cause performance degradation. When an
application isinitially developed and debugged it should use the debugging version of Glide. After
development is complete the release build of Glide is employed for optimum performance.

Voodoo Graphics

The Voodoo Graphics subsystem sits on the PCI system bus of the host computer. The entry-level system
configuration consists of two 3Dfx Interactive proprietary ASICs, Texelfx and Pixelfx, and memory.
Figure 1.1 shows the entry level configuration as well as several ways to expand the system and enhance
graphics performance. Increasing the number of Texelfx ASICs decreases the number of passes required
to perform various texture mapping techniques. Systems with more than one Voodoo Graphics subsystem
can utilize scanline interleaving to achieve the highest possible rendering performance.

Glide and the Voodoo Graphics hardware supports arich set of rendering techniques, including

Gouraud shading. The programmer providesinitia red, green, blue, and alpha values for each vertex.
Glide calculates the associated gradients and the hardware automatically iterates the color across the
defined triangle.

Texture mapping. The programmer providesinitial texture values s/w, t/w, and L/w for each vertex
and Glide computes the gradients. The hardware performs the proper iteration and perspective
correction for true-perspective texture mapping. During each iteration of row/column walking, a
division is performed by 1/w to correct for perspective distortion.

Texture mapping with lighting. Texture-mapped rendering can be combined with Gouraud shading to
introduce lighting effects during the texture mapping process. The programmer suppliesinitial color
and texture values, Glide cal cul ates the appropriate gradients, and the hardware performs the proper
calculations to implement the lighting models and texture lookups. A texel is either modulated
(multiplied by), added, or blended to the Gouraud shaded color. The selection of color modulation or
addition is programmable.

Texture space decompression. Texture map compression uses a patent-pending “narrow channel”
YAB compression scheme that maps 24-bit RGB values to an 8-bit YAB format with little lossin
precision.

Depth buffering. VVoodoo Graphics supports hardware-accel erated, depth-buffered rendering with no
performance penalty. The depth buffer isimplemented in frame buffer memory: 2 Mbyte systems can
utilize a 640x480 double buffered display buffer and a 16-bit z buffer. To eliminate many of the z
aliasing problems typically encountered with 16-bit z buffer systems, the Voodoo Graphics subsystem
allows afloating point representation of the 1/w parameter to be used as the depth component.

2 Copyright O 1995- 1997 3Dfx Interactive, Inc.
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Figure 1.1 Voodoo Graphics system configurations.

The Pixelfx chip interfaces with the host computer, the linear frame buffer, and the display monitor, and implements

basic 3D primitives including Gouraud shading, alpha blending, depth buffering, dithering, and fog. The TMU

(located on the Texelfx chip) implements texture mapping, including true-perspective, detail, and projected texture

mapping, bilinear and trilinear filtering, and level-of-detail mipmapping.

(a) The basic configuration has one Pixelfx chip and one TMU. The advanced texture mapping techniques of detail texture
mapping, projected texture mapping, and trilinear texture filtering are two-pass operations, but there is no performance
penalty for point-sampled or bilinear-filtered texture mapping with mipmapping.

(b) A two TMU configuration allows single pass detail texture mapping, projected texture mapping, or trilinear filtering.

(c) Three TMUs can be chained together to provide single pass rendering of all supported advanced texture mapping features,
including projected texture mapping.

(d) For the highest possible rendering performance, multiple Voodoo Graphics subsystems can be chained together utilizing
scanline interleaving to effectively double the rendering rate of a single subsystem.
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Pixel blending. The hardware supports alpha blending functions that blend incoming source pixels
with current destination pixels with no performance penalty. Alpha buffering is supported, but is
mutually exclusive with depth buffering and triple buffering. Note that alpha buffering is required
only if destination alphais used in apha blending; alpha blending modes that do not use destination
alpha can be used with depth buffering and triple buffering.

Fog. The Voodoo Graphics subsystem supports a 64-entry lookup table to support atmospheric
effects such as fog and haze. When enabled, a 14-hit floating point representation of 1/w is used to
index into the 64-entry lookup table and interpol ate between entries. The output of the lookup tableis
avaluethat represents the level of blending to be performed between a reference fog color and the
incoming pixel.

Chroma-keying. \ oodoo Graphics supports a chroma-key operation used for transparent object
effects. When enabled, an outgoing pixel is compared with the chroma-key register. If amatchis
detected, the outgoing pixel isinvalidated in the pixel pipeline, and the frame buffer is not updated.

Color dithering. Numeric operations are performed on 24-bit colors within the Voodoo Graphics
subsystem. However, the final stage of the pixel pipeline dithers the color from 24 bitsto 16 bits
before storing it in the display buffer. The 16-bit color dithering allows for the generation of photo-
realistic images without the additional cost of atrue color frame buffer storage area.

4 Copyright O 1995- 1997 3Dfx Interactive, Inc.
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The Rendering Engine

The Voodoo Graphics hardware has a very flexible lighting and texture mapping pipeline to support all of
the features described above. Glide abstracts it into three distinct units: the texture combine unit, the
color and al pha combine units, and the special effects unit. The basic architecture isillustrated in Figure
1.2.

Figure 1.2 The pixel pipeline.

The rendering engine is structured as a pipeline through which each pixel drawn to the screen must pass. The
individual stages of the pixel pipeline modify or invalidate individual pixels based on mode settings. The input to the
pixel pipeline can come from one of four sources: a texture value, an iterated RGBA value, a constant RGBA value,
or data for a frame buffer write. Pixels that pass the chroma-key test go to the color combine unit where a user-
specified lighting function is applied. The special effects unit further modifies the pixel with alpha and depth testing,
fog, and alpha blending operations. The final 24-bit color value is then dithered to 16 bits and written to the frame

buffer.
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About This Manual

The Glide 2.2 Programming Guide attempts to introduce a knowledgeable graphics programmer to the
capabilities of the Voodoo Graphics subsystem through the Glide interface. The subroutines are
introduced in alogical progression: initialization and termination requirements are first, then ssimple
rendering capabilities, followed by more and more complex functions. The audience for this manual is
the application programmer who just took delivery on a VVoodoo Graphics subsystem and wants to port
existing applications or develop new applications in Glide. The experienced Glide programmer will use
the Glide Reference Manual to research specific Glide functions, but will reach for this manual when
trying out new features.

Chapter 2, Glide in Style, describes data types, data formats, and the programming model used in Glide
and the Voodoo Graphics subsystem.

Chapter 3, Getting Started, describes the display buffers and the initialization and termination
reguirements for Glide and the graphics hardware and includes a very simple but complete program that
clears the screen.

Chapter 4, Rendering Primitives, describes the functions that draw points, lines, triangles, and convex
polygons in both aliased and anti-aliased forms. In addition, clipping and backface culling are discussed.

Chapter 5, Color and Lighting, describes the functions that control the Voodoo Graphics color and apha
combine unit, which can produce effects that run the gamut from simple Gouraud shading to diffuse
ambient lighting with specular highlights and other complex lighting models.

Chapter 6, Using the Alpha Component, describes the various ways to utilize the alpha channel: alpha
blending, alpha buffering, and alpha testing.

Chapter 7, Depth Buffering, presents two techniques for depth buffering.

Chapter 8, Special Effects, describes other special rendering effects that can be produced in the pixel
pipeline: atmospheric effects like fog, haze, and smoke; multi-pass alpha-blended fog; transparent objects
implemented with chroma-keying; and alpha masking.

Chapter 9, Texture Mapping, describes the texture pipeline and texture mapping while Chapter 10,
Managing Texture Memory, describes the process of downloading textures into texture memory.

Chapter 11, Accessing the Linear Frame Buffer, describes the Glide functions that provide a path for
reading and writing the frame buffer directly.

Chapter 12, Housekeeping Routines, and Chapter 13, Glide Utilities, describes the routinesin Glide and
the Glide Utilities Library that haven’t been discussed already.

Chapter 14, Programming Tips and Technigues, give some hints about how to head off trouble and get
the best performance from your Voodoo Graphics hardware.

The Glide Programming Guide concludes with two appendices, one containing a non-trivial example,
and the other summarizing the Glide constants used to set state variables. Thereis also a Glossary of
frequently used terms and a comprehensive Index.

6 Copyright O 1995- 1997 3Dfx Interactive, Inc.
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In this Chapter
You will learn about;:

v the naming conventions for functions, types, and constants

v the notational conventions that designate functions, types, variables, parameters, and constants in this
manual

v the state machine model that Glide uses to minimize bandwidth to the hardware and increase
graphics performance

v thefunctions that save and restore Glide state
Vv the Grvertex structure that holds the coordinates and parameters that define a vertex

v the constraints and properties of numerical data representing geometric, color, and texture
coordinates

Naming and Notational Conventions

Functions are divided into families consisting of routines related in their duties. All Glide functions are
prefixed with gr; al Glide Utility functions use gu as the prefix. The Glide prefix isimmediately
followed by the family name, for example grDrawTriangle() and grDrawPolygon() are both parts of the
grDraw family. Glide uses the mixed caps convention for function names. When function names appear
in the text of this manual, they will be shown in bold face type. Actual function names end with ‘()’;
function family names do not.

The internal name for the Voodoo Graphics subsystem is“SST-1"or “SST”. Some function names, type
definitions, and constants within Glide reflect thisinternal name, which is easier to type than Voodoo
Graphics. For example, grSstWinOpen() initializes the hardware.

Constants are named values that are defined in gl i de.h. The names of constants use all uppercase |etters,
asin MAX_NUM SST and GR_TEXTUREFI LTER BI LI NEAR and will be shown in Couri er font when they
appear in the text of this manual.

C specifications for functions and data types will be displayed in shaded rectangles throughout this
manual. Glide type definitions are shown in Helvetica type to distinguish them from the C keywords and
primitive types. Glide makes use of enumerated types for function arguments in order to restrict them to
the defined set of values. Enumerated types end with _t, asin GrColorFormat_t.

Glide variable names and function arguments will be italicized in both the C specifications and the text.

Code segments use Cour i er font.

Copyright O 1995- 1997 3Dfx Interactive, Inc. 9
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The State Machine Model

Glideis state based: rendering “modes’ can be set once and then remain in effect until reset. Parameter
values like areference value for depth comparisons and a specific depth test are set once and will be used
whenever depth testing is enabled (until they are given new values). The state machine model allows
users to set modes and reference values only when they change, minimizing the host-to-hardware
transfers.

For example, one of the state variables Glide maintainsis the “ current mipmap”, used during texture
mapping. A mipmap is a collection of hierarchically defined texture maps that are loaded into the texture
memory that supports the TMUs. A stateless model would not retain information about the contents of
the texture memory, so each rendering operation would have to include a texture memory address.

Sending redundant state information can lead to noticeabl e performance degradation. For example, if a
system is attempting to render 200,000 triangles per second and the “current mipmap” is sent as a 4-byte
address, bandwidth associated with updating this single state variable can amount to 800K B/sec.
Compound thiswith all of the other state information necessary and the amount of unnecessary data sent
across the system bus can become overwhelming.

Two library functions are used to save and restore state.

void grGlideGetState( GrState * state )
void grGlideSetState( const GrState *state )

grGlideGetState() makes a copy of the current state of the current Voodoo Graphics subsystem in a
GrState structure state provided by the user. The saved state can be restored at some later time with
grGlideSetState(). These routines save and restore all Glide state, and therefore are expensive to use. If
only asmall subset of Glide state needs to be saved and restored, these routines should not be used.

Specifying Vertices

Voodoo Graphicsis arendering engine. The user configures the texture and pixel pipelines (see Figure
1.2) and then sends streams of vertices representing points, lines, triangles, and convex polygons. (In
fact, the hardware renders only triangles; Glide converts points and lines to triangles and triangul ates
polygons as needed.)

Vertices are specified in the Grvertex data structure, shown below and defined in gl i de.h. Up to ten
parameters can be used to specify a point:

the geometric coordinates (x, y, z, w) where x and y indicate a screen location, z indicates depth, and
w is the homogeneous coordinate

the color components (r, g, b, a)
the texture coordinates (s, )

Note that the Grvertex structure has a spot for z, but actually usesits reciprocal (ooz, for “one over z").
Similarly, 1/w is stored in the variable oow. And, s/w and t/w are stored in the structure (as sow and tow)
rather than s and ¢, because the scaled values are the ones actually used by the Voodoo Graphics system.
These values need to be computed only once for each vertex, regardless of how many trianglesinclude
the vertex.

The Grvertex structure also includes a small array of GrTmuVvertex data structures, one for each TMU
present in the system, and each of the array elements contains private oow, sow, and fow variables. Each

10 Copyright O 1995- 1997 3Dfx Interactive, Inc.
Printed 07/30/97 7:52 AM Proprietary and Confidential



Chapter 2. Glide in Style

TMU and the Pixelfx chip each have their own copy of 1/w, s/w, and #/w. Normally, they will all be the
same. However, projected textures have a different w value than non-projected textures. Projected
textures iterate g/w where w is the homogeneous distance from the eye and ¢ is the homogeneous
distance from the projected source.

typedef struct {
float oow; /* Uw*/
float sow; * slw texture coordinate */
float tow; [* tlw texture coordinate */

} GrTmuVertex;

typedef struct {
float x, y, z; * x, y, z of screen space. Z isignored */
float ooz; /* alinear function of 1/z (used for z buffering) */
float oow; /* 1w (used for w buffering) */
float r, g, b, a; [* red, green, blue, and alpha ([0..255.0]) */
GrTmuVertex tmuvtx[ GLIDE_NUM_TMUJ;

} GrVertex;

Every vertex must specify values for x and y, but the other parameters are optional and need only be set if
the rendering configuration requires them. Table 2.1 lists some typical rendering operations and the
vertex parameters they use.

Table 2.1 Vertex parameter requirements depend on the rendering function being performed.

The x and y coordinates must be specified for every vertex, regardless of the rendering function being performed.
The other parameters stored in the GrVertex structure are optional and need to be supplied only if required for the
desired computation. The table below details the values required by the rendering functions implemented by Glide
and the Voodoo Graphics hardware.

Rendering function required variables | expected values see Chapter
all vertices, all rendering functions | x, y —2048 to +2047 4
Gouraud shading r,g, b 0to 255.0 5
alpha blending/testing a 0t0 255.0 6
non-projected texture mapping tmuvtx[0].oow, | Lw wherew isin the range [1..65535] 9
tmuvix[0] .sow, slw where s isin the range [0..256.0]
tmuvix[0] .tow tlw where ¢ is in the range [0..256.0]
projected texture mapping tmuvtx[0].oow, 1w where 1/w isin the range [-4096..61439] 9

tmuvtx[0] .sow, slw where s/w isin the range [-32768..32767]
tmuvix[0] .tow tlw where t/w isin the range [-32768..32767]

tmuvix[1].0ow, q/w where g/w isin the range [-4096..61439]
slw where s/w isin the range [-32768..32767]
tlw where t/w isin the range [-32768..32767]

tmuvix[1].sow,
tmuvtx[1].tow

linear z buffering 00z 1/z where 1/z isin the range [0..65535] 7
w buffering oow 1/w where w isin the range [ 1..65535] 7
fog with iterated alpha a [0..255.0] 8
fog with iterated z 00z 1/z where 1/z isin the range [0..65535] 8
fog with table oow 1/w where w isin the range [1..65535] 8
Copyright O 1996 3Dfx Interactive, Inc. 11
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Numerical Data

The Voodoo Graphics hardware can accept vertex datain either fixed point or floating point formats.
However, Glide provides only afloating point interface, since RISC and Pentium processors are
optimized for floating point calculations. If you are porting a fixed point application to the Voodoo
Graphics system, plan to convert al your datato floating point representation as part of the porting
process.

The Grvertex structure contains single-precision, |EEE 754 32-bit floating point values.

Geometric Coordinates

Thex and y coordinates are specified in pixel unitsin the range [-2048..2047]. The pixel coordinate (0.5,
0.5) represents the exact center of thefirst visible pixel on the screen.

The ooz coordinate should be assigned a value that islinear in screen space. That is, it should be alinear
function of 1/w that can be scaled and translated such that it increases or decreases with distance from the
viewer. The valid range for ooz valuesis[0..65535]. To minimize z aliasing this range should be mapped
to the smallest possible range of eye coordinates. For example, if w eye coordinates are within the range
[2..15] and 1/w isin the range [1/2..1/15] then the mapping would be approximately

1/z = 151214.6/w — 10080.9
where w iseyew and ooz isthe value iterated in the Voodoo Graphics subsystem.

The w coordinate is a scaled positive depth value used during perspective projection, perspective texture
mapping, and depth buffering. Some graphics systems do not use homogeneous coordinates; in these
instances the z depth value can be used in lieu of the w coordinate, assuming that the z value is positively
increasing into the screen. The range of w is[1..65535].

Glide and Voodoo Graphics actually use the reciprocal of the homogeneous coordinate, 1/w. The valid
range for 1/w is [-4096..61439]. Normally, the homogeneous coordinate is clipped to a positive range of
[1, far] and so itsreciprocal isin the range [1..1/far]. Negative values should be avoided.

Each TMU and the Pixelfx chip each have their own L/w. Normally, the valuesin all the chips will be the
same. However, projected textures have a different w value than non-projected textures. Projected
textures iterate g/w where w is the homogeneous distance from the eye and ¢ is the homogeneous
distance from the projected source. In this case, g/w has avalid range of [4096..61439].

The L/w value in Pixelfx is used only for fog calculations and w buffering, and is not used for texture
mapping. It can be scaled differently than the 1/w values sent to the TMUs. The fog table spans arange in
L/w from [1/65535..1]. If w buffering is enabled, the w buffer spansarange in 1/w from [1/65528..1].
Therefore, scale the 1/w value in Pixelfx such that the range [1/65535..1] encompasses all that is
interesting in the scene.

Colors

The color components are in the range [0..255] where 0 is black and 255 is maximum intensity. Colors
should be clamped to this range.

Glide supports four different color byte orderings: RGBA, ARGB, BGRA, and ABGR. Color byte
ordering determines how linear frame buffer writes and color arguments passed to the constant color
functions (see Chapter 5) areinterpreted. Color ordering is established when Glide and the Voodoo
Graphics system areinitialized (see Chapter 3).
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When theterms “RGB” and “RGBA” appear in this manual, they typically refer to any color system that
represents red, green, blue, and optionally, alpha, as separate components, regardless of the byte order or
component width. The exceptions will be clearly recognizable in discussions about specific color
resolution and format.

Texture Coordinates

Glide uses texture coordinates in the range [-32768..32767] and refers to them as (s,¢) pairs, similar to
the naming convention of OpenGL. A texture contains texels with (s,f) coordinates in the range
[0..256.0]; the texture may be replicated many times to cover a surface by mapping the texture
coordinates modulo 256 to atexel in the texture. The Voodoo Graphics subsystem iterates s/w and ¢#/w, so
s and t must be divided by w (or multiplied by oow) before storing them in the Grvertex structure.

Thew term iterated by the SST-1 is actually 1/w or the reciprocal of the homogeneous coordinate. The
valid range for 1/w is[-4096..61439]. Normally, the homogeneous coordinate is clipped to a positive
range of [1..far] and so itsreciprocal isin the range [1..1/far]. Negative values should be avoided. Each
TMU hasitsown s, ¢, and w values. Normally, they will be the same as the w in the Pixelfx. However, in
certain cases they will be different. For example, projected textures have a different w value than non-
projected textures. Projected textures iterate g/w where w is the homogeneous distance from the eye and
g isthe homogeneous distance from the projected source. In this case, g/w has avalid range of
[-4096..61439].

Mipmapping [WILL83] isamethod of organizing several pre-filtered texture maps into asingle logical
entity used for anti-aliased texture mapping. The term mipmap is sometimes used to describe a pyramidal
organization of gradually smaller, filtered sub-textures or an individual texture map within such an
organization. Glide adopts the original convention that defines the term mipmap to mean the entire group
of textures that comprise asingle pyramidal data structure. Individual textures within a mipmap are
referred to as mipmap levels.
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e (etting Started

In This Chapter
You will learn how to:

initialize Glide

configure and initialize the hardware

manage multiple Voodoo Graphics subsystems
terminate cleanly

manage the display buffers

4 4 4 4 4 <«

detect and respond to errors

Starting Up

Glide provides several functionsto initialize Glide and to detect and configure a Voodoo Graphics
subsystem. Two routines, grSstQueryHardware() and grSstQueryBoards() detect the presence of Voodoo
Graphics subsystems. Three functions, grGlidelnit(), grSstSelect(), and grSstWinOpen(), initialize Glide
and the hardware and must be called, in the order listed, before calling any other Glide routines (except
grSstQueryHardware() and grSstQueryBoards()). Failing to do thiswill cause the system to operatein an
undefined (and, most likely, undesirable) state.

typedef struct {

int num_sst;

GrSstConfig_t SSTS[MAX_NUM SST];
} GrHwConfiguration;

FxBool grSstQueryBoards( GrHwConfiguration * AiwConfig )
FxBool grSstQueryHardware( GrHwConfiguration * ~wConfig )

grSstQueryBoards() determines the number of installed Voodoo Graphics subsystems and stores this
number in AwConfig® num_sst. No other information is stored in the structure at thistime;
grSstQueryHardware() can be called after grGlidelnit() to fill in the rest of the structure.
grSstQueryBoards() is the only Glide routine that can be called before grGlidelnit(); it does not change the
state of any hardware, nor does it render any graphics.

grSstQueryHardware() detects the presence of one or more Voodoo Graphics subsystems and determines
how they are configured. It should be called immediately after grGlidelnit() but before any other Glide
functions.
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grSstQueryHardware() returns a Boolean value: FXTRUE indicates that at |east one Voodoo Graphics
subsystem was found. The argument, ~wConfig, iS a pointer to a structure that will be filled in with
information about the number and configurations of the Voodoo Graphics subsystems it found.

Note that when two Voodoo Graphics subsystems are configured as a single scanline-interleaved system,
they are viewed by Glide and an application as a single subsystem.

Thefirst initialization function, grGlidelnit(), Sets up the Glide library and thus must be called before any
other Glide functions are executed. It allocates memory, sets up pointers, and initializes library variables
and counters. There are no arguments, and no value is returned.

void grGlidelnit( void)

The next function called to initialize the system is grSstSelect(), which makes a specific Voodoo Graphics
subsystem “current”. It must be called after grSstQueryHardware() and grGlidelInit() but before
grSstWinOpen().

void grSstSelect( int whichSST')

The argument is the ordinal number of the subsystem that will be made active and must be in the range
[O..hawconfig.num_sst] where hwConfig is the structure that holds the system configuration information
returned by the preceding call to grSstQueryHardware(). If whichSST is outside the proper range of
values and the debugging version of Glideis used, arun-time error will be generated. If the release
version of Glide isloaded, use of an inappropriate value for whichSST will result in undefined behavior.

The final initialization function, grSstWinOpen(), initializes the currently active Voodoo Graphics
subsystem, specified by the most recent call to grSstSelect(), to the default state. All hardware special
effects (depth buffering, fog, chroma-key, alpha blending, alphatesting, etc.) are disabled. All global
state constants (the chroma-key reference value, the alphatest reference, the constant depth value, the
constant alpha value, the constant color value, etc.) and pixel rendering statistic counters areinitialized to
0.

grSstWinOpen() should be called once per installed Voodoo Graphics subsystem (note that scanline
interleaved subsystems are treated as a single Voodoo Graphics subsystem) and must be executed after
grGlidelnit(), grSstQueryHardware() and grSstSelect(). It returns FXTRUE if the initialization was
successful and FXFALSE otherwise.

FxBool grSstWinOpen( FxU32 hwnd,
GrScreenResolution_t  res,
GrScreenRefresh_t refresh,
GrColorFormat_t cFormat,
GrOriginLocation_t locateOrigin,
int numBuffers,
int numAuxBuffers

)

The arguments to grSstWinOpen() configure the frame buffer. The first argument, win, specifies a handle
for the window in which the graphics will be displayed. The interpretation of win depends on the system
environment. DOS applications must specify NULL. Applications run on SST-1 graphics hardware must
specify NULL aswell. Win32 full screen applications running on a SST-96 system must specify a window
handle; aNuLL value for win will cause the application’s real window handle (i.e. what is returned by
Microsoft's Get Act i veW ndow API) to be used. Since Win32 pure console applications do not have a
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window handle, they can be used only with SST-1 and aNuLL window handleis required. Finally, Glide
Win32 applications that run in awindow may either specify NULL (if there is only one window), or the
correct win, cast to Fxu32.

Table 3.1 Specifying a window handle in grSstWinOpen().
The interpretation of the win argument to grSstWinOpen() depends on the system environment, as shown below.

System environment win value

DOS NULL

Win32, full screen NULL or win

Win32, pure console NULL (SST-1 only)

Win32 Glide application NULL or win (SST-96 only)

The screen resolution and refresh rate are specified in the next two arguments, res and refresh. Both
variables are given values chosen from enumerated types defined in the sst 1vi d. h header file. A typical
application might set res to GR_RESOLUTI ON_640x480 and refresh to GR_REFRESH_60HZ.

The screen resolution can be specified as GR_RESOLUTI ON_NONE on an SST-96 system. If so, Glide will
use the user specified window (see the hwnd parameter). The ref parameter isignored when a Win32
application isrunning in awindow. Specifying GR_RESOLUTI ON_NONE on an SST-1 system will cause the
cal tofall.

The fourth argument, cFormat, specifies the packed color RGBA ordering in the frame buffer. Different
software systems assume different byte ordering formats for pixel color data. For the widest possible
compatibility across a wide range of software, Glide provides “byte swizzling,” meaning that incoming
pixels can have their color valuesinterpreted in one of four different formats that are defined in the
enumerated type GrColorFormat_t and are shown in Table 3.2. The color format affects data written to the
linear frame buffer (the subject of Chapter 11) and parameters for the following Glide functions:
grBufferClear() (described later in this chapter), grChromakeyValue() (described in Chapter 8),
grConstantColorValue() (See Chapter 5), and grFogColorValue() (See Chapter 8).
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Table 3.2 Frame buffer color formats.

Glide supports four different color byte orderings: RGBA, ARGB, BGRA, and ABGR. Color byte ordering
determines how user-supplied color values are interpreted. The first column in the table shows the name of the
format, as defined in the enumerated type GrColorFormat_t. The second column in the table shows the byte ordering

of the color components within a 32-bit word.

color format byte ordering
GR_COLORFORVAT_RGBA red green blue alpha

31 24 23 16 15 8 7 0
GR_COLORFORVAT_ARGB alpha red green blue

31 24 23 16 15 8 7 0
GR_COLORFORVAT_BGRA blue green red alpha

31 24 23 16 15 8 7 0
GR_COLORFORVAT_ABGR alpha blue green red

31 24 23 16 15 8 7 0

The fifth parameter to grSstWinOpen() specifies the location of the screen space origin. If locateOrigin is
GR_CRI @ N_UPPER_LEFT, the screen space origin isin the upper left corner with positive y going down.
GR_ORI G N_LOAER_LEFT places the screen space origin at the lower left corner with positive y going up.
Figure 3.1 shows the two possibilities for locating the origin.

Figure 3.1 Locating the origin.

The Voodoo Graphics hardware allows the origin to be in the upper left or lower left corner of the screen. The
choice of coordinate system must be made when first initializing Glide and a Voodoo Graphics subsystem by passing

the appropriate parameter to grSstWinOpen().
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The final two arguments to grSstWinOpen() Select the buffering options. The first one, numBuffers,
specifies double or triple buffering and is an integer value, either 2 or 3. The other argument,
numAuxBuffers, specifies the number of auxiliary buffers required by an application. The auxiliary
buffers are used for depth or apha buffering. Permitted values are 0 or 1. For full screen applications,
this parameter allows both SST-1 and SST-96 to validate whether the available video memory will
support the application’ s requirements for color and auxiliary buffers at a specified screen resolution. For
awindowed application running on SST-96, this parameter allows an application to run in alarger 3D
window if adepth buffer is not necessary (depth and back buffers share the same off-screen video
memory).

If there is not enough memory to support the desired resolution and buffering options, an error will occur.

Example 3.1 The Glide initialization sequence.

This code fragment calls the four Glide functions, in the required order, that initialize the software and the hardware
subsystems. The parameters to grSstWinOpen() establish a double buffered full-screen frame buffer with 640 480
screen resolution and a 60Hz refresh rate. Colors are stored as RGBA, the origin is in the lower left corner, and
there is no auxiliary buffer.

G HwConfi guration hweconfi g;

grdidelnit(void);
if (grSstQeryHardware(&weonfig)) ({
gr Sst Sel ect (0) ;
gr Sst W nOpen( NULL, GR_RESOLUTI ON_640x480, GR_REFRESH 60HZ,
GR_COLORFORMAT_RGBA, GR ORIG N_LOWER LEFT, 2, 0);

s
el se printf(“ERROR no Voodoo Graphics!\n");

Driving Multiple Systems

Glide supports two forms of multiple Voodoo Graphics subsystem support: multiple Voodoo Graphics
subsystems driving multiple displays and two Voodoo Graphics subsystems driving a single display.

Selecting Voodoo Graphics Units

At any given moment, only a single Voodoo Graphics subsystem is active. The grSstSelect(), presented
above, activates a specific unit. All Glide functions, with the exception of the grGlide family and
grSstSelect(), operate on only the currently active Voodoo Graphics subsystem. Note that the global Glide
state is bound to each Voodoo Graphics independently. So, to set the constant color in each Voodoo
Graphics unit to the same value, for example, you must write aloop that selects each onein turn and sets
the color, as shown in Example 3.2.
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Example 3.2 Setting a state variable in all Voodoo Graphics subsystems.

Each Voodoo Graphics subsystem has its own version of the Glide state variables, including a constant color value
that will be used to clear the screen. The constant color is zero by default. The code fragment below cycles through
all the Voodoo Graphics units found by a previous call to grSstQueryHardware(), setting the constant color to
black.

G HaConfi gurati on hweconfi g;
for (I =0; | < hwonfig.numsst; [++)

grSstSelect( | );
gr Constant Col orValue( ~0 ); /* only affects SST “I” */

}

Opening Multiple Voodoo Graphics Units

grSstWinOpen() must be called once for each Voodoo Graphics subsystem that will be used. Note that
two Voodoo Graphics subsystems linked together in a scanline interleaving configuration are treated in
software as a single VVoodoo Graphics subsystem.

Scanline Interleaved Voodoo Graphics Units

Two Voodoo Graphics subsystems can be wired together in a configuration known as scanline
interleaving, which effectively doubles rasterization performance. From an application’s perspective, two
Voodoo Graphics subsystemsin a scanline-interleaved configuration are treated as if a single Voodoo
Graphics subsystem isinstalled in the system, including during Voodoo Graphics selection, initialization,
state management, texture download, etc.

Shutting Down

After an application has completed using Glide and the Voodoo Graphics subsystem, proper shutdown
must be performed. This allows Glide to de-all ocate system resources like memory, timers, address space,
and file handles that were used during program execution.

The function grGlideShutdown() shuts down Glide and all Voodoo Graphics subsystems previously
opened with grSstWinOpen(). It should be called only when an application is finished using Glide, and
should not be executed unless grGlidelnit() and grSstWinOpen() have aready been called.

void grGlideShutdown( void )

Example 3.3 shows aminimal Glide program: it executes the four function calls that initialize the
Voodoo Graphics subsystem and then terminates.
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Example 3.3 A minimal Glide program.
The complete program below includes the Glide initialization and termination procedure and nothing else.

#i ncl ude <glide. h>
G HwConfi gurati on hw,

voi d mai n(voi d)
{
grdidelnit(void);
if (! G SstQeryHardware(&w)) printf(“ERROR no Voodoo G aphics!\n");
gr Sst Sel ect (0) ;
gr Sst W nOpen( NULL, GR_RESOLUTI ON_640x480, GR REFRESH 60HZ, GR_COLORFORMAT_RGBA
GR ORI G N_LONER_LEFT, 2, 0);
grd i deShut down() ;

The Display Buffer

Glide manages several logical hardware graphics buffers, al of which are based out of the same area of
memory known as the “frame buffer”. Depending on the amount of memory installed on the hardware,
the frame buffer istypically arranged as three logical units: the front buffer, the back buffer, and,
optionally, the auxiliary buffer.

void grRenderBuffer( GrBuffer_t buffer )

grRenderBuffer() Selects the buffer for primitive drawing and buffer clears. Valid values are
GR_BUFFER_FRONTBUFFER and GR_BUFFER_BACKBUFFER,; the default is GR_BUFFER_BACKBUFFER.

The auxiliary buffer in a Voodoo Graphics subsystem can be used either as a depth buffer, an alpha
buffer, or as athird rendering buffer for triple buffering. The auxiliary buffer is not available on systems
with 2MB of frame buffer DRAM running at 800" 600. However, it is always available on systems with
4MB of frame buffer DRAM installed or with the screen resolution set to 640 480.

Triple buffering allows an application to continue rendering even when a swap buffer command is
pending. When triple buffering is enabled an application can act asif the hardware is operating in double
buffer mode; intricacies of dealing with the third buffer are hidden from the application by the hardware.
Since the auxiliary buffer can serve only a single use, depth buffering, a pha buffering, and triple
buffering are mutually exclusive.

An application selects the purpose of the auxiliary buffer implicitly whenever depth buffering, alpha
buffering, or triple buffering are enabled. For example, if grDepthBufferMode() is called with a parameter
other than GR_DEPTHBUFFER_DI SABLE (see Chapter 7), it is assumed that the auxiliary buffer will be used
for depth buffering. Similarly, grSstWinOpen() enables triple buffering; alpha buffering is enabled if
grAlphaBlendFunction() Selects a destination alpha blending factor (see Chapter 6) or grColorMask()
enables writes to the alpha buffer. The release build of Glide does not check for contention of the
auxiliary buffer. Unexpected results may occur if the auxiliary buffer isused for more that one function
(e.g. both depth buffering and triple buffering are enabled). The debugging version of the library will
report the contention.

Note that source alpha blending can coexist with depth or triple buffering, but destination alpha blending
cannot.
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Table 3.3 Frame buffer resolution and configuration.
The frame buffer can be configured with two or three rendering buffers. In double buffer modes, an alpha or depth
buffer can also be used. The available resolution depends on the amount of installed memory.

Frame buffer double buffer mode double buffer mode with | triple buffer mode
memory 16-bit alpha/depth buffer

2 Mbytes 800 by 600 by 16 640 by 480 by 16 640 by 480 by 16
4 Mbytes 800 by 600 by 16 800 by 600 by 16 800 by 600 by 16

Logical Layout of the Linear Frame Buffer

The frame buffer islogically organized as 1024 scanlines of 16 or 32-bit values, regardless of the amount
of memory installed on the board, and is shown in Figure 3.2. Scanline length, or stride, isindependent of
screen resolution and dependent on the graphics hardware. The stride is returned in the GrLfbinfo_t
structure, as described in Chapter 11. The data format within the frame buffer is programmable and is
also described in detail in Chapter 11.

Figure 3.2 Logical layout of the linear frame buffer.

The frame buffer is logically organized as 1024 scanlines of 16 or 32-bit values, regardless of the amount of memory
installed on the board and the screen resolution. The drawable area is a rectangular subset of the frame buffer, its
location depends on the location of the y origin. The remainder of the board s memory (shaded area) is used as an
auxiliary buffer that can be utilized as an alpha/depth buffer or as a third display buffer (triple buffering). This
logical layout is independent of the user-specified origin location.

< stride > —— stride —»

0,0

drawable area

1024 1024
pixels pixels

drawable area

v 00 ,

(a) y origin in upper left corner (b) y origin in lower left corner

Masking Writes to the Frame Buffer

Writes to the frame buffer and depth buffer can be selectively disabled and enabled. The Glide functions
grColorMask() and grDepthMask() control buffer masking: FXTRUE values allow writes to the associated
buffer, FXFALSE values disable writes to the associated buffer. Writes to the color and a pha buffers are
controlled by grColorMask() whereas writes to the depth buffer are controlled by grDepthMask()
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(described in Chapter 7). Note that disabling writes to the alpha planes is the same as disabling writes to
the depth planes since they both share the same memory.

void grColorMask( FxBool rgb, FxBool alpha )
void grDepthMask( FxBool enable )

grColorMask() specifies whether the color and/or alpha buffers can or cannot be written to during
rendering operations. If rgb is FXFALSE, for example, no change is made to the color buffer regardless of
the drawing operation attempted. The alpha parameter isignored if depth buffering is enabled since the
alphaand depth buffers share memory.

grDepthMask() enables writes to the depth buffer.

The value of grColorMask() and grDepthMask() are ignored during linear frame buffer writes if the pixel
pipelineis disabled (see Chapter 11). The default values are FXTRUE, indicating that the associated buffers
are writable.

Swapping Buffers

In adouble or triple buffered frame buffer, the next scene will be rendered in aback buffer while the
front buffer is being displayed. After an image has been rendered, it is displayed with acall to
grBufferSwap(), which exchanges the front and back buffersin the Voodoo Graphics subsystem after
swaplnterval vertical retraces. If the swapinterval is O, then the buffer swap does not wait for vertical
retrace. If the monitor frequency is 60 Hz, for example, aswapinterval of 3 results in a maximum frame
rate of 20 Hz.

void grBufferSwap( int swapinterval )

A swaplnterval of O may result in visual artifacts, such as ‘tearing’, since a buffer swap can occur during
the middle of a screen refresh cycle. This setting is very useful in performance monitoring situations, as
true rendering performance can be measured without including the time buffer swaps spend waiting for
vertical retrace.

grBufferSwap() does not wait for the specified vertical blanking period; instead, it queues the buffer swap
command and returns immediately. If the application is double buffering, the Voodoo Graphics subsystem
will stop rendering and wait until the swap occurs before executing more commands. If the applicationis
triple buffering and the third rendering buffer is available, then rendering commands will take place
immediately in the third buffer.

A Glide application can poll the Voodoo Graphics subsystem using the grBufferNumPending() function to
determine the number of buffers waiting to be viewed, although thisis generally not necessary.

int grBufferNumPending( void)

grBufferNumPending() returns the number of queued buffer swap requests. The maximum value returned
is 7, even though there may be more buffer swap requests in the queue. To minimize rendering latency in
response to interactive input, grBufferNumPending() should be called in aloop once per frame until the
returned value is less than some small number such as 1, 2, or 3.
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Synchronizing with Vertical Retrace

Synchronization to vertical retrace is supported with the grSstVRetraceOn() and grSstVideoLine()
functions. grSstVRetraceOn() returns FXTRUE if the monitor isin vertical retrace and FXFALSE otherwise.

FxBool grSstVRetraceOn( void)

grSstVideoLine() returns the current line number of the display beam. This number is 0 during vertical
retrace and increases as the display beam progresses down the screen. There are a small number of video
lines that are not displayed at the top of the screen: the vertical backporch. Thus, grSstVideoLine() returns
asmall positive number when the display beam is at the top of the screen; as the beam goes off the
bottom of the screen, the line number may exceed the number returned by grSstScreenHeight().

FxU32 grSstVideoLine( void)

The Glide 2.1 release was the first release to include grSstVideoLine(). Earlier versions used
grSstVRetraceTicks(), Nnow obsolete.

Note that an application does not need to explicitly synchronizeto vertical retraceif it only wishesto
remove tearing artifacts. grBufferSwap() will automatically synchronize to vertical retrace if desired.

Clearing Buffers

The ability to clear adisplay buffer is fundamental to animation, since the remnants of a previously
rendered scene must be reset before a new scene can be rendered. The Voodoo Graphics hardware alows
the back buffer and alpha or depth buffer to be cleared simultaneously.

A buffer clear fills pixels at twice the rate of triangle rendering, therefore the performance cost of
clearing the buffer is half the cost of rendering a rectangle. Clearing the buffer is not necessary when the
scene paints a background that covers the entire area.

Buffers are cleared by calling grBufferClear(). The area within the buffer to be cleared is defined by
grClipWindow(), described in the next chapter. The three parameters specify the values that will be used
to clear the display buffer (color), the apha buffer (alpha), and the depth buffer (depth). Although the
color, alpha, and depth parameters are always specified, the parameters actually used will depend on the
current configuration of the hardware; the irrelevant parameters are ignored.

The depth parameter can be one of the constants GR_ZDEPTHVALUE_NEAREST, GR_ZDEPTHVALUE_FARTHEST,
GR_WDEPTHVALUE _NEAREST, GR_WDEPTHVALUE_FARTHEST, or a direct representation of avalue in the depth
buffer. See Chapter 7 for more details.

void grBufferClear( GrColor_t color, GrAlpha_t alpha, FXU16 depth )

Any buffers that are enabled are automatically and simultaneously cleared by grBufferClear(). For
example, if depth buffering is enabled (with grDepthBufferMode(), described in Chapter 7), the depth
buffer will be cleared to depth. If alphabuffering is enabled (with grAlphaBlendFunction(), described in
Chapter 6), the alpha buffer will be cleared to alpha. And if writes to the display buffer are enabled (with
grColorMask(), described in Chapter 5), then it will be cleared to color. If an application does not want a
buffer to be cleared, it should mask off writes to the buffer using grDepthMask() and grColorMask() as

appropriate.
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Error Handling

Glide provides afamily of error management functionsto assist a developer with application debugging.
Thisfamily of routines consists of Glide related error management (errors generated by Glide) and
application level error management (errors generated by an application).

The debug build of Glide performs extensive parameter validation and resource checking. When an error
condition is detected, a user-supplied callback function may be executed. This callback functionis
installed by calling grErrorSetCallback(). If no callback function is specified, adefault error function that
prints an error message to st der r isused.

void grErrorSetCallback( void (*function)(const char *string, FxBool fatal) )

The callback function accepts a string describing the error and aflag indicating if the error isfatal or
recoverable. grErrorSetCallback() is relevant only when using the debugging version of Glide; the release
build of Glide removes all internal parameter validation and error checking so the callback function will
never be called.
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«ers IRENAeEring Primitives

In This Chapter
You will learn how to:

v establish aclipping window

v draw apoint, aline, atriangle, or a convex polygon on the screen
v cull back-facing polygons from the scene
v

draw an anti-aliased point, line, triangle, or convex polygon

The GrVertex Structure

The Grvertex structure, first presented in Chapter 2, collects together all the parameters that define a
vertex. In this chapter, only the x and y coordinates will be discussed; the other parameters are called into
play in later chapters.

typedef struct {
float x, y, z; * x, y, z of screen space. Z isignored */
float ooz; [* 65535/z (used for z buffering) */
float oow; /* Uw (used for w buffering) */
float r, g, b, a; [* red, green, blue, and alpha ([0..255.0]) */
GrTmuVertex tmuvix[ GLIDE_NUM_TMUJ;

} GrVertex;

The x and y coordinates are 32-bit floating point values that represent the position of the vertex in screen
space. While the Voodoo Graphics hardware renders only triangles, Glide provides functions to draw
points, lines, and polygons as well astriangles.

When a point, line, triangle, or polygon is rendered, its appearance will reflect the current state of the
rendering pipeline. That is, if texture mapping is enabled, then the point, line, triangle, or polygon will be
texture mapped. Similarly, alpha blending, fogging, color, and lighting effects, chroma-keying, and other
specia effectswill contribute to the appearance of any and all geometric shapes drawn while they are
enabled.

Clipping

The Voodoo Graphics hardware supports per-pixel clipping to an arbitrary rectangle defined with the
Glide function grClipWindow(). Any pixels outside the clipping window are rejected. Values are
inclusive for minimum x and y values and exclusive for maximum x and y values, as shown in Figure 4.1.
The clipping window also specifies the area grBufferClear() will clear. (See Chapter 3.)
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Figure 4.1 Specifying a clipping window.
The clipping window is defined by two pairs of integers in the range [0..1024) specifying the left and right edges
and the top and bottom edges of the rectangle.
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The grClipWindow() routine has four parameters that define the clipping rectangle. The values must be
less than or equal to the current screen resolution and greater than or equal to O; otherwise, they will be
ignored. Glide does not perform any geometric clipping outside of supporting a hardware clipping
window. For optimal performance, an application should perform proper geometric clipping before
passing any primitivesto Glide. The clipping window should not be used in place of true geometric

clipping.

void grClipWindow( FxU32 minX, FXU32 minY, FXU32 maxX, FxU32 maxY')

The default values for the clip window are the full size of the screen: (0,0,640,480) for 640" 480 mode
and (0,0,800,600) for 800" 600 mode. To disable clipping, ssimply set the size of the clip window to the
screen size. The Voodoo Graphics subsystem’ s clipping window should not be used for general purpose
primitive clipping; since clipped pixels are processed but discarded, proper geometric clipping should be
done by the application for best performance. The Voodoo Graphics subsystem’s clip window should be
used to prevent stray pixels that appear from imprecise geometric clipping. Note that if pixel pipelineis
disabled, clipping is not performed on linear frame buffer writes (see Chapter 11 for more information).

Triangles

Thetriangle isthe basic Glide rendering primitive. The Glide function grDrawTriangle() renders an
arbitrarily oriented triangle with vertices a, b, and ¢ to the screen.

void grDrawTriangle( const GrVertex *a, const GrVertex *b, const GrVertex *c )

Triangles are rendered with the following filling rules:
Vv zero areatriangles render zero pixels

v pixelsarerendered if and only if their center lies within the triangle

A pixel center iswithin atriangleif itisinside all three of the edges. When a pixel center lies exactly on
an edge, itisinside the triangle if the edge is considered inside, and outside otherwise. Left edgesarein,
right edges are out. Horizontal edges with the smaller y value are in; those with alarger y value are out.
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Figure 4.2 gives an example. Eight triangles are shown, all sharing a common vertex. Only one of the
triangles renders the pixel whose center isthe shared vertex. Can you guess which one?

The shared vertex is part of the “right edge” of triangles A, H, G, and F, and hence outside. It is part of
the “top edge” (sincethe origin isin the lower |eft) of triangles G, F, E and D, and thus outside them as
well. In triangle B, the vertex is on one inside edge and one outside edge and hence is considered outside
thetriangle. Only in triangle C does the vertex lie on two “inside” edges and thus liesinside the triangle.

Clipping a Triangle

Recall from the clipping window discussion above that the hardware clipping implemented by Voodoo
Graphicsis at the end of the rendering pipeline: a pixel will incur al the rendering cost only to be
discarded just before being written to the frame buffer. An alternative solution is to use host bandwidth to
clip the triangle and process only the pixels that will be displayed. The Glide Utility Library provides just
such afunction. guDrawTriangleWithClip() uses Sutherland-Hodgman clipping [SUTH74] to clip the
triangle to the rectangle specified by grClipwindow() and then draws the resulting polygon.

void guDrawTriangleWithClip( const GrVertex *a, const GrVertex *b, const GrVertex *c )
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Figure 4.2 Pixel rendering.

Which of the eight triangles shown in diagram (a) will render the pixel at the common vertex? In diagram (b), solid
edges are considered inside the triangle while dotted edges are outside. The top row of diagrams are drawn with the
origin in the lower left corner. The bottom row represent the other possibility: the origin is in the upper left corner.
The two pairs of diagrams are mirror images of each other.

ty
A B
H C
G D
F E
+x g
(a) Which triangles will render the pixel in (b) Pixels on solid edges lie inside the
the center of the square? (If you like to triangle; pixels on dotted lines do not.
think of the origin in the lower left A vertex is inside the triangle (and
corner, use the top row of diagrams; if hence, rendered) if both edges that
you prefer an origin in the upper left radiate from it are inside the triangle.
corner, use the bottom row.) Thus, only triangle C will render the
center point.
+x
F E
G D
H C
A B
ty
v
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Points

The Glide function grDrawPoint() renders a single point to the screen. The point will be treated asa
triangle with nearly coincident vertices (that is, avery small triangle) for rendering purposes. If many
points will be rendered, noticeable performance improvement can be achieved by writing pixels directly
to the frame buffer. (srDrawPoint() sends three vertices per point to the hardware and iterates along three
edges; only one linear frame buffer write per point is required.)

void grDrawPoint( const GrVertex *a )

Example 4.1 A thousand points of light.
This code fragment clears the screen to black and then draws a thousand random points. By default, the rendering
buffer is set to GR_BUFFER_BACKBUFFER and the color buffer is writable. The color white is made by specifying
maximal values for red, green, and blue, and a quick way to do that is ~0. Some of the points will be clipped out: the
random number generator selects point with coordinates in the range [0..1024), the screen resolution is less than
that. By default, the clipping window is set to the screen size.

int n;

G Vertex p;

/* clear the back buffer to black */
grBufferC ear(0, 0, 0);

/* set color to white */
gr Col or Conbi ne( GR_COMBI NE_FUNCTI ON_LOCAL, GR_COMBI NE_FACTOR_NONE,

GR_COMBI NE_LOCAL_CONSTANT, GR_COMBI NE_OTHER NONE, FXFALSE ) ;
gr Const ant Col or Val ue(~0)

/* generate and draw 1000 random poi nts */
for (n=0; n<1000; n++) {
p.x = (float) (rand() % 1024);

p-y = (float) (rand() % 1024);
gr Dr awPoi nt (p) ;
t

Lines
The Glide function grDrawLine() renders an arbitrarily oriented line segment. Enabled special effects
(e.g. fog, blending, chroma-key, dithering, etc.) will affect aline’'s appearance.

void grDrawLine( const GrVertex *a, const GrVertex *b )

Convex Polygons

A polygon is aplanar area enclosed by a closed loop of line segments, specified by their endpoints.
While the Voodoo Graphics hardware does not render polygons directly, Glide provides a set of polygon
rendering functions that are optimized for the hardware. The polygons rendered by the Glide functions
are subject to some strong restrictions:

The edges of the polygon cannot intersect.
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The polygon must be convex, that is, have no indentations. (The glossary at the end of this manual
gives a precise definition of convexity.)

Figure 4.3 shows some examples of both valid and invalid polygons.

Figure 4.3 Polygons.
Valid polygons are convex and planar. Invalid polygons have intersecting edges,

indentations, or non-planar coordinates.

The convex polygons rendered by Glide are assumed to be planar in coordinate space. Two polygon
rendering routines, (grDrawPlanarPolygon() and grDrawPlanarPolygonVertexList()), require that the
rendering parameters (r, g, b, a, ooz, oow, sow, tow) be planar as well. None of the polygon rendering
functions do any geometric clipping.

void grDrawPlanarPolygon( int nVerts, int ilist/], const GrVertex viist[] )
void grDrawPolygon( int nVerts, int ilist[], const GrVertex viist[] )

grDrawPlanarPolygon() and grDrawPolygon() both render a convex polygon with nVerts vertices. The
second argument, ilist, isan array of indicesinto thelist of vertices provided in the third argument. This
level of indirection in specifying verticesis useful if you need to pre-process the list to do geometric
clipping or hidden surface removal. The preprocessor can create the ilist for you rather than copying
selected vertices to anew list.

grDrawPlanarPolygon() assumes that the vertex parameters for the polygon are planar. Parameter
gradients will be calculated only once for the entire polygon, thus reducing the number of calculations
significantly.
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Another pair of polygon rendering functions defined in Glide, grDrawPlanarPolygonVertexList() and
grDrawPolygonVertexList(), are functionally equivalent to grDrawPlanarPolygon () and grDrawPolygon(),
respectively. The difference between the two pairs of routines is the way the vertices are specified.

void grDrawPlanarPolygonVertexList( int nVerts, const GrVertex viist[] )
void grDrawPolygonVertexList( int nVerts, const GrVertex viist/] )

Thereisno level of indirection in grDrawPlanarPolygonVertexList() and grDrawPolygonVertexList(). The
i" vertex of the polygon passed to these routinesis viist/I], assuming that Of/<nVerts, whereas the ;"
vertex of a polygon passed to grDrawPlanarPolygon () OF grDrawPolygon() iS viist[ilist[I]].

Backface Culling

Glide supports backface culling based on the signed area of a polygon. When Glide renders a polygon,
thefirst step isto divide the polygon into triangles, the rendering primitive of the Voodoo Graphics
hardware. Figure 4.4 shows a pair of triangles whose vertices have been labeled according to the rule
given above.

Figure 4.4 Polygon orientation and the sign of the area.

The polygons on the left are defined relative to an origin in the upper left corner; the ones on the right have the
origin in the lower left corner. Clockwise and counter-clockwise refer to the direction that the vertices are traversed
in alphabetical order.

(0,0 R
d " 4 b
C . . . a
A counter-clockwise orientation
positive area
counter-clockwise
orientation
e negative area b
a clock-wise orientation
positive area B clock-wise orientation
negative area
B
A
C
v (0,0)

The sign of the area of the triangle can be used for backface culling (quickly discarding triangles that
won't be visible on the screen before they are rendered). Because the area must be computed anyway, this
is acheap way to cull. However, removing back-facing triangles earlier may be advantageous. For
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example, if back face removal is performed before lighting, then the computationally expensive lighting
calculations for invisible triangles can be skipped.

The Glide function grCullMode() has one parameter, a mode that can be set to GR_CULL_NONE,
GR_CULL_NEGATI VE, or GR_CULL_PosI TI VE. When the culling mode is GR_CULL_NONE, the default value,
all polygons are rendered to the screen regardless of their signed area. Otherwise, if the sign of the area
matches the mode, then the triangle is rejected. grCullMode() assumesthat GR_CULL_PGCsI Tl VE
corresponds to a counter-clockwise orientation when the origin isin the lower left corner of the screen,
and a clockwise oriented triangle when the origin isin the upper left corner, as shown in Table 4.1.

void grCullMode( GrCullMode_t mode )

Note that grCullMode() has no effect on points and lines, but does effect the rendering of triangles and
polygons.

Table 4.1 The location of the origin affects triangle orientation and the sign of its area.

If the origin location is and the triangle orientation is then the sign of the area will be
GR_ ORI G N_LONERLEFT clockwise negative
GR_ORIG N_LONERLEFT counter-clockwise positive
GR_ORI G N_UPPERLEFT clockwise positive
GR_ ORI G N_UPPERLEFT counter-clockwise negative

Anti-aliasing

If you look closely and critically at lines drawn on the screen, particularly linesthat are nearly horizontal
or nearly vertical, they may appear to be jagged. The screen isagrid of pixelsand thelineis
approximated by lighting spans of pixels on that grid. The jaggednessis called aliasing; examples of
aliased lines are shown in Figure 4.5(a). Anti-aliasing techniques reduce the jaggedness, as shown in
Figure 4.5(b), by partially coloring neighboring pixelsto simulate partial pixel coverage.
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Figure 4.5 Aliased and anti-aliased lines.

These lines are drawn at a resolution of 50 pixels/inch in order to exaggerate the jagged edges of the aliased lines
and highlight the widening and blending in the anti-aliased lines. These lines are examples of the general concepts;
if you replicate this drawing on a Voodoo Graphics screen, the results may be different in detail.

o

(a) aliased lines have jagged (b) anti-aliased lines soften the edges
edges by shading surrounding pixels

Figure 4.6 shows an angled line segment one pixel wide, superimposed on a pixel grid. Some pixels are
almost completely covered by the line, while others have only a small corner involved. Glide's anti-
aliasing routines compute a coverage value for each pixel and uses that in combination with the source
and destination alpha values to blend the pixel color.

Figure 4.6 Pixel coverage and lines.

I 55
[ 50%
[ 25-30%
[ ]15-20%

(a) This angled one-pixel wide line segment (b) The shaded squares are touched by the line segment at
doesn t cover any pixel completely. the lefi; the shade of gray filling each square represents
the area covered by the line.

Glide draws anti-aliased points, lines, triangles, and polygons by setting up the aphaiterator so that it
represents pixel coverage. You must correctly configure the alpha combine unit (discussed in detail in
Chapter 6) and enable alpha blending before using any of the anti-aliased drawing commands. The code
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segment in Example 4.2 details the proper sequence of Glide commands that must precede the actual
anti-aliased drawing commands. Briefly, you must

Set the alpha combine unit to produce iterated alpha.

Set the alpha blending function. Blending functions are specified for source and destination color
components and for source and destination apha values, and the choice of function depends on
whether the scene will be rendered front to back or back to front.

Set the alpha value for each vertex. The chosen alpha value should represent the transparency of the
object being rendered, with opague objects setting alphato 255. This alphavalue will be multiplied
by the pixel coverage to obtain the final alpha value used for alpha blending.

Call a grAADraw or guAADraw function. The six functions are as shown below.

void grAADrawPoint( GrVertex *p )

void grAADrawLine( GrVertex *va, GrVertex *vb )

void grAADrawTriangle( GrVertex *va, GrVertex *vb, GrVertex *ve, FxBool aa4B, FxBool aaBC, FxBool aaCA )
void grAADrawPolygon( int nVerts, const int ilist/], const GrVertex viist[] )

void grAADrawPolygonVertexList( int nVerts, const GrVertex viist[] )

void guAADrawTriangleWithClip( const GrVertex *va, const GrVertex *vb, const GrVertex *vc )

grAADrawPoint() renders the point as four pixels, each blended according to the computed pixel
coverage.
Lines drawn with grAADrawLine() Will be somewhat “fatter” than expected.

grAADrawTriangle() has three more arguments than its aliased counterpart grDrawTriangle(). The
arguments, aaAB, aaBC, and aaBC are Boolean values that allow the edges of the triangle to be
selectively anti-aliased.

grAADrawPolygon() and grAADrawPolygon VertexList() draw convex polygons with anti-aliased edges.

guAADrawTriangleWithClip() performs 2D clipping on the specified triangle, and draws the resultant
polygon with grAADrawPolygonVertexList(). All edges of the clipped triangle will be anti-aliased.
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Example 4.2 Drawing an anti-aliased triangle.
The alpha combine unit must be configured to produce an iterated alpha value in order to use the Glide anti-

aliasing drawing functions. Consider the following code segment a recipe for success in this chapter; the alpha
combine unit, alpha buffering, and alpha blending are the subject of Chapter 6.

The objects in the picture must be pre-sorted on depth. The alpha blending factors depend on whether the scene is

drawn from front to back or back to front. The first code shows the alpha blending factors if the scene is drawn from
front to back.

/* set al pha conbine unit to produce an iterated al pha */
gr Al phaConbi ne( GR_COVBI NE_SCALE_OTHER, GR _COMVBI NE_FACTOR ONE, GR_LOCAL_NONE,
GR_LOCAL_| NTERATED, FXFALSE);

/* blend col ors based on al pha */

gr Al phaBl endFuncti on(GR BLEND  ALPHA SATURATE, GR BLEND ONE, GR BLEND_  SATURATE,
GR BLEND_ONE) ;

/* draw the scene using the gr AADraw routines */

Substitute the alpha blending factors shown below if the scene is drawn from back to front.

G Al phaBl endFunct i on(GR_BLEND SRC ALPHA, GR BLEND ONE_M NUS_SRC ALPHA,
GR BLEND_ZERO, GR BLEND ZERO);
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wees COlOr and Lighting

In This Chapter
You will learn about:

v specifying colors

configuring the color combine unit that produces shading and lighting effects
drawing a flat-shaded object

drawing a smooth-shaded object

4 4 4 <«

simulating various lighting effects

Specifying Colors
A color consists of three or four color components: red, green, blue, and optionally, alpha. The color

component values should be clamped to the range [0..255] where 0 is black and 255 is maximum
intensity.

The color components are packed together into aword to form a color. Glide supports four different color
byte orderings, defined in the enumerated type GrColorFormat_t (see Figure 3.1 for apictorial
representation). Color byte ordering determines how linear frame buffer writes and color arguments are
interpreted and is established in the call to grSstWinOpen() when the Glide and VVoodoo Graphics systems
areinitialized (see Chapter 3).

The GrcColor_t type definition represents a packed color value and is used in routines that set a constant
color: grBufferClear() (See Chapter 3), grConstantColorValue() (described below), grFegColorValue() and
grChromakeyValue() (both described in Chapter 8).

void grConstantColorValue( GrColor_t color )

Gliderefersto aglobal constant color when performing flat-shaded primitive rendering, set with
grConstantColorValue(). The default value is 0x FFFFFFFF.

Vertex colors are specified in the Grvertex structure as individual color components, since the Voodoo
Graphics system will iterate and compute slopes for each color individually.

Dithering

The Voodoo Graphics hardware represents color internally as 32-bit quadruplets in aformat specified by
the color format argument passed to grSstWinOpen() (see Chapter 3). This color is eventually dithered to
16-bit RGB for storage in the frame buffer, then expanded and (optionally) filtered up to 24-bits for final
display. From an application’s perspective, the 32-to-16-bit RGB dithering operation is transparent.
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Dithering is atechnique for increasing the perceived range of colorsin an image by applying a pattern to
surrounding pixels to modify their color values. When viewed from a distance, these colors appear to
blend into an intermediate color that can’'t be represented directly. Dithering is similar to the half-toning
used in black and white publications to produce shades of gray.

void grDitherMode( GrDitherMode_t mode )

grDitherMode() selects the form of dithering the Voodoo Graphics subsystem uses when converting 24-
bit RGB valuesto the 16-bit RGB color buffer format. Valid values are GR_DI THER DI SABLE,

GR_DI THER 2x2, and GR_DI THER 4x4. GR_DI THER_DI SABLE forces a simple truncation that may result in
noticeable banding. GR_DI THER 2x2 uses a 2x2 ordered dither matrix, and GR_DI THER_4x4 uses a4x4
ordered dither matrix.

The default dithering modeis GR_DI THER 4x4.

The Color Combine Unit

Note: Control of high level rendering functions is managed by three functions, grColorCombine(),
grAlphaCombine() (see Chapter 6), and grTexCombine() (described in Chapter 9). While the three routines
will be presented individually, settings for one function can potentially affect the inputs to the other
routines.

The color combine unit computes an RGB color for each pixel asit isrendered. User-selected inputs are
added, blended, and/or scaled to produce flat or smooth (Gouraud) shading with optional lighting effects.
The color combine unit computes each RGB color component separately, but all three are computed
using the same formula. The apha combine unit computes the alpha component and is discussed in the
next chapter.

The color combine unit computes a color component as
c=f*a+b

where ¢ isthe red, green, or blue color component, f'is a scale factor, and a and b are sums and
differences of the various input choices.

The Glide routine that configures the color combine unit is grColorCombine(). It specifies the function
that computes the color and selects the inputs.

void grColorCombine( GrCombineFunction_t func,
GrCombineFactor_t factor,

GrCombineLocal_t local,
GrCombineOther_t other,
FxBool invert

)

Fourteen combining functions are defined in the GrCombineFunction_t enumerated type; one is selected
with func, the first argument to grColorCombine(). Table 5.1 gives the symbolic names and formulas for
each color combine function.

The fvariable in the combining formulasis defined by factor, the second argument to grColorCombine().
The choicesfor this scale factor are given in Table 5.2. Note that alpha values from the texture combine
UnNit (& exe) Or Specified by grAlphaCombine() arguments (a,.,; and a,.,) appear in some of the scale
factors.
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Table 5.1 Configuring the color combine unit.

The first argument to grColorCombine(), func, specifies the color combine function; its value is chosen from among
the symbols list in the left hand column of the table below. The right hand column gives the combining function that
corresponds to each symbolic name. F is a scale factor and is defined by the factor argument to grColorCombine().
Ciocar and Coper are specified by the third and fourth arguments. Some of the formulas specify an alpha value, @9

that is defined in the grAlphaCombine() function described in the next chapter.

Color combine function

computed color

GR_COMVBI NE_FUNCTI ON_ZERO 0
GR_COMVBI NE_FUNCTI ON_LOCAL Clocal
GR_COVBI NE_FUNCTI ON_LOCAL_ALPHA Qocal
GR_COMBI NE_FUNCTI ON_SCALE_OTHER 1 Cother

GR_COMBI NE_FUNCTI ON_BLEND OTHER

GR_COVBI NE_FUNCTI ON_SCALE_OTHER ADD_LOCAL

*
f Cother + Clocal

GR_COVBI NE_FUNCTI ON_SCALE_OTHER ADD_LOCAL_ALPHA

*
f Cother + alocal

GR_COVBI NE_FUNCTI ON_SCALE_OTHER M NUS_LOCAL

f* (Cother - Clocal)

GR_COVBI NE_FUNCTI ON_SCALE_OTHER M NUS_LOCAL_ADD_LOCAL
GR_COMBI NE_FUNCTI ON_BLEND

f* (Cother - Clocal) + Clocal
0 f* Cother + (1 _ﬂ * Clocal

GR_COVBI NE_FUNCTI ON_SCALE_OTHER M NUS_LOCAL_ADD LOCAL_ALPHA

f* (Cother - Clocal) + alocal

GR_COVBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD_LOCAL
GR_COMBI NE_FUNCTI ON_BLEND_LOCAL

f* (_ Clocal) + Ciocal
0 (1 _ﬂ * Clocal

GR_COVBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD_LOCAL_ALPHA

f* (_ Cloczll) + aloctll

Table 5.2 The color combine function scale factor.

The second argument to grColorCombine(), factor, specifies a scale factor, called fin the formulas delineated in
Table 5.1, its value is chosen from among the symbols listed in the left hand column of the table below. The right
hand column gives the scale factor that corresponds to each symbolic name. C,eq is specified by the third argument
to grColorCombine(), a,c, and 8y, are defined in the grAlphaCombine() function described in the next chapter,

and Qe comes from the texture combine unit, described in Chapter 9.

Combine factor scale factor (f)
GR_COVBI NE_FACTOR_NONE unspecified
GR_COMBI NE_FACTOR_ZERO 0

GR_COVBI NE_FACTOR_LOCAL Crocar | 255
GR_COVBI NE_FACTOR_OTHER_ALPHA a,,. | 255
GR_COVBI NE_FACTOR_LOCAL_ALPHA a,., | 255
GR_COVBI NE_FACTOR _TEXTURE_ALPHA Qe | 255
GR_COMBI NE_FACTOR_ONE 1

GR_COVBI NE_FACTOR_ONE_M NUS_LOCAL 1—cy.,l 255
GR_COVBI NE_FACTOR _ONE_M NUS_OTHER ALPHA 1-a,, /255
GR_COVBI NE_FACTOR _ONE_M NUS_LOCAL_ALPHA 1-a,. /255
GR_COVBI NE_FACTOR_ONE_M NUS_TEXTURE_ALPHA 1-a,, /255
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The third and fourth arguments to grColorCombine() set values for the ¢;,..; and ¢, variables that appear
in the combining functions; the choices are shown in Table 5.3. Iterated colors are computed by iterating
the colors specified in Grvertex structures passed to drawing functions. The texture color comes from the
texture combine unit (see Chapter 9), and the constant color is set by grConstantColorValue() (described
earlier in this chapter).

The func formula computes the red, green, and blue color components. The result of the computation is
clamped to [0..255] and may be bit-wise inverted, based on the final argument to grColorCombine(),
invert. Inverting the bitsin a color component ¢ is the same as computing (1.0 —¢) for floating point
valuesin therange [0..1] or (255 — ¢) for 8-bit valuesin the range [0..255].

Table 5.3 Choosing local and other colors for the color combine unit.

The third and fourth arguments to grColorCombine(), local and other, specify the sources for the cj,cq and Cyger
values that appear in the color combine formulas delineated in Table 5.1, their values are chosen from among the
symbols in the tables below. Iterated colors are computed by iterating the colors specified in GrVertex structures
passed to drawing functions. The texture color comes from the texture combine unit, and the constant color is set by
grConstantColorValue().

Local combine source local color (Cloeq)

GR_COWVBI NE_LOCAL_NONE unspecified color

GR_COMBI NE_LOCAL _| TERATED iterated vertex color (Gouraud shading)
CR_COMVBI NE_LOCAL_ CONSTANT constant color

other combine source other color (cyper)

GR_COVBI NE_OTHER_NONE unspecified color

GR_COMBI NE_OTHER _| TERATED iterated vertex color (Gouraud shading)
GR_COMBI NE_OTHER_TEXTURE color from texture map

CR_COMBI NE_OTHER_CONSTANT constant color

The color combine unit computes the source color for the remainder of the rendering pipeline. The
default color combine mode is

grColorCombine( GR_COVBI NE_FUNCTI ON_SCALE_OTHER
GR_COMBI NE_FACTOR_ONE,
GR_COMBI NE_LOCAL_[ TERATED,
GR_COMBI NE_OTHER | TERATED

FXFALSE )

A series of examplesfollows.
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Example 5.1 Drawing a constant color triangle.
The code segment below draws a teal colored triangle by setting the constant color and directing the color combine
unit to use it as Coser

G Vertex a, b, c;

/* set color to teal (assumes ARGB format)
gr Const ant Col or Val ue( (100<<8) + 150 );

/* configure color conbine unit for constant color */
gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER, GR_COWVBI NE_FACTOR_ONE,
GR_COMBI NE_LOCAL_NONE, GR_COMBI NE_OTHER_CONSTANT, FXFALSE) ;

/* assunes that sone coordi nates have been assigned to a, b, and c */
gr DrawTri angl e( &, &b, &c);
The code segment below will produce the same result as the one above, but it points ¢, to the constant color.

G Vertex a, b, c;

/* set color to teal (assumes ARGB fornmat)
gr Const ant Col or Val ue( (100<<8) + 150);

/* configure color conbine unit for constant color */
gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_LOCAL, GR_COVBI NE_FACTOR_NONE,
GR_COVBI NE_LOCAL_CONSTANT, GR _COWVBI NE_OTHER NONE, FXFALSE);

/* assunes that sone coordi nates have been assigned to a, b, and c */
gr DrawTri angl e( &, &b, &c);

Example 5.2 Drawing a flat-shaded triangle.
The code segment below draws a flat-shaded triangle using the color for vertex A. It sets the constant color to the
vertex color and proceeds as in the previous example.

GVertex A B, C

/* set constant color to color of vertex A (assumes ARGB format) */
gr Const ant Col or Val ue((((int)A a)<<24) || (((int)A r)<<16)||(((int)A g)<<8)|]|(int)
A b);

/* configure color conbine unit for constant color */
gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_LOCAL, GR_COVBI NE_FACTOR_NONE,
GR_COwVBI NE_LOCAL _ CONSTANT, CGR_ _COMBI NE_ o)1 HER _ NONE, FXFALSE)

/* assunes that sone coordi nates have been assigned to a, b, and c */
gr DrawTri angl e( &A, &B, &O);

Alternatively, you could set the colors of all three vertices to the colors in Vertex A and proceed as in the next
example.

GVertex A B, C

/* set all vertices to sanme color */
B.a =Ca=Aa;
B.r =Cr =Ar;
B.g=Cg=Aq0;
B.b = Cb = Ab;

/* configure color conbine unit for iterated colors */
gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_LOCAL, GR_COVBI NE_FACTOR_NONE,
GR_COVBI NE_LOCAL_| TERATED, GR_ _COMBI NE_ OTHER NONE, FXFALSE)

/* assunes that sone coordi nates have been assigned to a, b, and c */
gr DrawTri angl e( &A, &B, &O);
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Example 5.3 Drawing a smooth-shaded triangle.

In this example, a Gouraud-shaded triangle will be drawn, with the color blending smoothly from vertex to vertex.
The hardware automatically iterates the colors to achieve the smooth shading. The color combine unit is configured
With Cjeqr Set to the iterated color components.

G Vertex a, b, c;

/* configure color conbine unit for iterated color */
gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_LOCAL, GR_COVBI NE_FACTOR_NONE,
GR_COMBI NE_LOCAL_| TERATED, GR_COMBI NE_OTHER NONE, FXFALSE)

/* assunes that sone coordi nates have been assigned to a, b, and c */
gr DrawTri angl e( &, &b, &c);

Alternatively, ¢, can be directed at the iterated color components.

G Vertex a, b, c;

/* configure color conbine unit for iterated color */
gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER, GR_COWVBI NE_FACTOR_ONE,
GR_COMBI NE_LOCAL_NONE, GR_COMBI NE_OTHER | TERATED, FXFALSE)

/* assunes that sone coordi nates have been assigned to a, b, and c */
gr DrawTri angl e( &, &b, &c);

Example 5.4 Drawing a flat-shaded textured triangle.
The following code produces a textured flat-shaded triangle using the constant color.

G Vertex a, b, c;

/* set color to teal (assumes ARGB format)
gr Const ant Col or Val ue( (100<<8) + 150);

/* configure color conbine unit for iterated color */
gr Col or Conbi ne( GR_COMVBI NE_FUNCTI ON_SCALE_OTHER, GR_COMBI NE_FACTOR_LOCAL,
CGR_COMVBI NE_LOCAL_ CONSTANT, GR_ COMVBI NE_OTHER TEXTURE, FXFALSE)

/* assunes that sone coordi nates have been assigned to a, b, and c */
grDrawTri angl e( &, &b, &c);

Example 5.5 Drawing a smooth-shaded textured triangle.
This example configures the color combine unit for a smoothly shaded textured triangle by directing cjycq to the
iterated color and c ., to the output from the texture combine unit.

G Vertex a, b, c;
/* configure color conbine unit for iterated color */

gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER, GR_COVBI NE_FACTOR _LOCAL,
GR_COMBI NE_LOCAL_| TERATED, GR _COMVBI NE_OTHER TEXTURE, FXFALSE);

/* assunes that sone coordi nates have been assigned to a, b, and c */
gr DrawTri angl e( &, &b, &c);
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Example 5.6 Drawing a smooth-shaded triangle with specular lighting.
This example produces a textured triangle with specular lighting provided by iterating the RGB color.

G Vertex a, b, c;

/* configure color conbine unit for iterated color */
gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER ADD LOCAL, GR _COWVBI NE_FACTOR_ONE,
GR_COMBI NE_LOCAL_| TERATED, GR _COMVBI NE_OTHER TEXTURE, FXFALSE);

/* assunes that sone coordi nates have been assigned to a, b, and c */
gr DrawTri angl e( &, &b, &c);

Example 5.7 Drawing a smooth-shaded textured triangle with specular highlights.
By using the alpha component to model monochrome specular highlights, you can produce shiny, textured, smooth-
shaded triangles ((texture RGB * iterated RGB) + iterated a).

G Vertex a, b, c;

/* configure color conbine unit for iterated color */

gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER _ADD_LOCAL_ALPHA,
GR_COMBI NE_FACTOR_LOCAL, GR_COMBI NE_LOCAL_| TERATED, GR_COMBI NE_OTHER TEXTURE,
FXFALSE) ;

/* assunes that sone coordi nates have been assigned to a, b, and c */
gr DrawTri angl e( &, &b, &c);

Example 5.8 Drawing a smooth-shaded triangle with monochrome diffuse and colored specular lighting.
Alternatively, monochrome diffuse lighting and colored specular lighting can be produced by using the alpha
component to model monochrome diffuse lighting and iterated RGB to model colored specular lighting ((texture
RGB * iterated @) + iterated RGB). Iterated alpha is chosen to be either @,y.q OF @y With a call to
grAlphaCombine() that is not shown here. In the first code segment, iterated alpha is assumed to be available as

Qjocal-

G Vertex a, b, c;

/* configure color conbine unit for iterated color */

gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER_ADD_LOCAL,
GR_COMBI NE_FACTOR_LOCAL_ALPHA, GR_COMBI NE_LOCAL_| TERATED,
GR_COMBI NE_OTHER TEXTURE, FXFALSE);

/* assunes that sone coordi nates have been assigned to a, b, and c */
gr DrawTri angl e( &, &b, &c);

Alternatively, iterated alpha can be specified for @y, in grAlphaCombine(). In that case the following
grColorCombine() configuration is needed.

G Vertex a, b, c;

/* configure color conbine unit for iterated color */

gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER_ADD_LOCAL,
GR_COMBI NE_FACTOR_OTHER_ALPHA, GR_COMBI NE_LOCAL_| TERATED,
GR_COMBI NE_OTHER TEXTURE, FXFALSE);

/* assunes that sone coordi nates have been assigned to a, b, and c */
gr DrawTri angl e( &, &b, &c);
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Other Color Combine Options

The routine grAlphaControlsITRGBLighting() can be used to specify that if the high order bit of a ... IS
1, then the constant color set by grConstantColorValue() is used instead of the iterated RGB values. This
isuseful if aportion of atexture isto appear to be illuminated from behind the surface, instead of by an
external light source.

void grAlphaControlsI TRGBLighting( FxBool enable )

When enabled, the normal color combine controls for local color (c,..;) are overridden, and the most
significant bit of texture alpha (a......) Selects between iterated vertex RGB and the constant color set by
grConstantColorValue(). By default, this apha controlled lighting mode is disabled. Table 5.4 shows how
Ciocar 1S determined.

Table 5.4 Overriding the local color when the high order bit of &,y IS Set.

You can get hybrid effect between smooth and flat shading by using grAlphaControlsITRGBLighting() to enable a
technique whereby the high order bit of @ ey is used to switch ¢y, between iterated RGB and the constant color.
The state table below shows how the ¢y value is determined.

When enable is and the high order bit of Qe is the local color cjyeq will be
FXTRUE 0 iterated RGB

FXTRUE 1 grConstantColorValue()
FXFALSE 0 set by grColorCombine()
FXFALSE 1 set by grColorCombine()

Some possible uses for this mode are self-lit texels and specular paint. If a texture contains texels that
represent self-luminous areas, such as windows, then multiplicative lighting can be disabled for these
texels as follows. Choose atexture format that contains one bit of apha and set the alphafor each texel
to 1if the texel is self-lit. Set the Glide constant color to white and enable alpha-controlled lighting
mode. Finally, set up texture lighting by multiplying the texture color by iterated RGB, where iterated
RGB isthe local color in the color combine unit. When atexel’s alphais O, the texture color will be
multiplied by the local color, which isiterated RGB. This applies lighting to the texture. When atexel’s
alphais 1, the texture color will be multiplied by the Glide constant color that was previously set to
white, so no lighting is applied.

If the color combine unit is configured to add iterated RGB to a texture for the purpose of a specular
highlight, then texture al pha can be used as specular paint. In this example, the Glide constant color is set
to black and iterated RGB iterates the specular lighting. Where atexel’saphais O, the texture color will
be added to iterated RGB and specular lighting is applied to the texture. Where atexel’saphais 1, the
texture color will be added to the Glide constant color that was previously set to black, so no lighting is
applied. The result isthat the alpha channel in the texture controls where specular lighting is applied to
the texture and specularity can be painted onto the texture in the alpha channel.

Gamma Correction

By default, Glide does not perform gamma correction (i.e. alinear ramp is used), however, gamma
correction is available. A gamma value can be passed to the hardware using the Glide function
grGammaCorrectionValue().
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void grGammaCorrectionValue( float value )

grGammaCorrectionValue() sets the gamma correction value used during video refresh. Gammais a

positive floating point value from 0.0 to 20.0. Typical valuesare 1.3to 2.2. The default valueis1.0 (i.e. a
linear ramp is used).

The displayed RGB value (RGBy,mn.) is computed from the RGB value read from the frame buffer
(RGBy;) according to the following equation:

RGBgamma = [(RGbe/ZSS)I/gamma]* 255
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e, USING the Alpha Component

In This Chapter

Several different rendering technigques using the alpha component of the color are discussed. You will
learn aboult:

specifying alphavalues
configuring the apha combine unit that produces alpha values for pixels being rendered
using the auxiliary buffer to store alpha values

alphablending, atechnique for creating translucent objects in a scene

4 4 4 4 <«

alphatesting, atechnique for accepting or rejecting pixels based on their alpha value

Specifying Alpha

Alphavalues, like the red, green, and blue components of a color, are 8-bit values in the range [0..255].
Glide maintains a constant alpha value as part of the constant color described in the previous chapter that
is set with grConstantColorValue(). Alpha values associated with vertices are set in the Grvertex structure,
along with the geometric coordinates and other parameters.

The Alpha Combine Unit

Note: Control of high level rendering functions is managed by three functions, grAlphaCombine(),
grColorCombine() (see Chapter5), and grTexCombine() (described in Chapter 9). While the three routines
will be presented individually, settings for one function can potentially affect the inputs to the other
routines.

The alpha combine unit is similar to the color combine unit that produces RGB values for the pixel being
rendered. A user-selectable combining function specifies a scale factor, and local and other alpha values,
and aformulafor combining them to produce a new aphavalue. The a,,.; and a,., inputs selected by
the arguments to grAlphaCombine() can also be used in the scale factor chosen by grColorCombine(),
described in the previous chapter.

void grAlphaCombine( GrCombineFunction_t func, GrCombineFactor_t factor,
GrCombineLocal_t local, GrCombineOther_t other,
FxBool invert

)

Table 6.1 lists the possible values for finc, the first argument to grAlphaCombine(). The f'that appearsin
the formulasin Table 6.1 is ascale factor that is chosen by the second argument, factor. Table 6.2 lists
the possible scale factors. a,,.; and a,., are chosen by the third and fourth arguments, local and other;
the candidates are listed in Table 6.3. Aswith grColorCombine(), the final argument, invert, isaBoolean
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that is set if abit-wiseinversion of the computed aphavalue is desired. Inverting the bitsin a color
component ¢ is the same as computing (1.0 —¢) for floating point color valuesin the range [0..1] or
(255 —¢) for 8-bit color valuesin the range [0..255].

The default alpha combine unit configuration is

gr Al phaConbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER,
GR_COMBI NE_FACTOR_ONE,
GR_COMBI NE_LOCAL_ NONE,
GR_COMBI NE_OTHER_CONSTANT,
FXFALSE

)

Two examples in the previous chapter, Example 5.7 and Example 5.8, use the a;,..; Or @, value.

Table 6.1 Combining functions for alpha.

The first argument to grAlphaCombine(), func, specifies the alpha combine function, its value is chosen from
among the symbols list in the left hand column of the table below. The right hand column gives the combining
function that corresponds to each symbolic name. F is a scale factor and is defined by the factor argument to
grAlphaCombine(). ;. and @4, are specified by the third and fourth arguments.

Combine function computed alpha
GR_COMBI NE_FUNCTI ON_ZERO 0
GR_COMBI NE_FUNCTI ON_LOCAL Aol
GR_COVBI NE_FUNCTI ON_LOCAL_ALPHA Qoeal
GR_COMBI NE_FUNCTI ON_SCALE_OTHER £* aun
GR_COVBI NE_FUNCTI ON_BLEND OTHER omer
GR_COMBI NE_FUNCTI ON_SCALE_OTHER _ADD_LOCAL £ Qoiior + Qoeal
GR_COVBI NE_FUNCTI ON_SCALE_OTHER ADD LOCAL_ALPHA £* Qor + Aot
GR_COMBI NE_FUNCTI ON_SCALE_OTHER M NUS_LOCAL £* (Bosier — Atocad)
GR_COMBI NE_FUNCTI ON_SCALE_OTHER M NUS_LOCAL_ADD LOCAL £* @osier — Atoca) + Atogar
GR_COMBI NE_FUNCTI ON_BLEND O £* Ay + (1—f) * Ape
GR_COMBI NE_FUNCTI ON_SCALE_OTHER M NUS_LOCAL_ADD LOCAL_ALPHA £* (@uior — Bioead) + Atocat
GR_COMBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD LOCAL £* (= Qo) + locar
GR_COVBI NE_FUNCTI ON_BLEND LOCAL ° (1 f)"i“ a
_ local
GR_COMBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD LOCAL_ALPHA £* (= Qo) + Qoeat
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Table 6.2 Scale factors for the alpha combine function.

The second argument to grAlphaCombine(), factor, specifies a scale factor, called fin the formulas delineated in
Table 6.1, its value is chosen from among the symbols listed in the left hand column of the table below. The right
hand column gives the scale factor that corresponds to each symbolic name. @yeq and 8,4, are defined by the third

and fourth arguments to grAlphaCombine() and a oxy,r. comes from the texture combine unit, described in Chapter
9.

Combine factor scale factor (f)
GR_COVBI NE_FACTOR_NONE snspecified
GR_COVBI NE_FACTOR _ZERO 0

GR_COVBI NE_FACTOR_LOCAL an.] 255
GR_COVBI NE_FACTOR_OTHER_ALPHA 2, | 255
GR_COVBI NE_FACTOR_LOCAL_ALPHA 2] 255
GR_COVBI NE_FACTOR_TEXTURE_ALPHA . ] 255
GR_COVBI NE_FACTOR_ONE 1

GR_COVBI NE_FACTOR_ONE_M NUS_LOCAL 1-a,. /255
GR_COVBI NE_FACTOR_ONE_M NUS_OTHER ALPHA 1-a,,, /255
GR_COVBI NE_FACTOR_ONE_M NUS_LOCAL_ALPHA 1—a,., /255
GR_COVBI NE_FACTOR_ONE_M NUS_TEXTURE_ALPHA 1-a,., |25

Table 6.3 Specifying local and other alpha values.

The third and fourth arguments to grAlphaCombine(), local and other, specify the sources for the 8,pcq and @,per
values that appear in the alpha combine formulas delineated in Table 6.1 and in the color combine formulas shown
in Table 5.1 and Table 5.2; their values are chosen from among the symbols in the tables below. Iterated alpha
values are computed by iterating the alpha specified in GrVertex structures passed to drawing functions. The texture
alpha comes from the texture combine unit, and the constant alpha is set by grConstantColorValue().

Local combine source

local alpha (3pca)

GR_COVBI NE_LOCAL_NONE unspecified a
GR_COVBI NE_LOCAL_I| TERATED iterated vertex a
GR_COVBI NE_LOCAL _ CONSTANT constant a

GR_COVBI NE_LOCAL_DEPTH

high 8 bits from iterated vertex z

other combine source

other alpha (3,e)

GR_COVBI NE_OTHER _NONE

unspecified a

GR_COVBI NE_OTHER [ TERATED

iterated vertex a

GR_COVBI NE_OTHER TEXTURE

a from texture map

GR_COVBI NE_OTHER_CONSTANT

constant a

Alpha Buffering

As pixels arerendered, afull 32-bit RGBA color is maintained internally. At the end of the rendering
pipeline, the 24-bit RGB portion is dithered to 16 bits and stored in the display buffer. The alphavalue
component will be discarded, unless the auxiliary buffer is being used as an apha buffer.

With alpha buffering enabled, the Voodoo Graphics hardware stores an 8-bit alpha value for each pixel in
the auxiliary buffer. To enable alpha buffering, set the alpha parameter of grColorMask() or blend using a
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function that calls for a destination alpha (see the following section for a discussion of alpha blending).
Since the auxiliary buffer can only serve asingle use at atime, depth buffering, alpha buffering, and
triple buffering are mutually exclusive. If depth buffering is currently enabled (by calling grDepthMask()
with argument FXTRUE), the alpha parameter specified in a grColorMask() call isignored.

void grColorMask( FxBool rgb, FxBool alpha )

The alphabuffer is cleared by calling grBufferClear(). If alpha buffering is enabled, then the alpha buffer
will be cleared using the alpha parameter. The graphics display buffer and alpha buffer can be cleared
simultaneously.

void grBufferClear( GrColor_t color, GrAlpha_t alpha, FXU16 depth )

In the anti-aliasing discussion in Chapter 4, alphawas used as a pixel coverage value for objects being
rendered. Alpha blending is then used to blur the edge color with the background color and reduce
unsightly “jaggies’.

The final examplein this chapter, Example 6.3, shows another way to use the alpha buffer. In this case, a
background scene is drawn with one alpha value, a polygonal cropping window is drawn with a second
alphavalue, and aforeground is mapped into the cropping window by discarding parts of the new scene
that fall outside the cropping window. The example uses the alpha combine unit, alpha buffering, and
alpha blending.

Alpha Blending

In Chapter 4, routines to draw anti-aliased points, lines, triangles and polygons were presented. They use
alpha blending to smooth the jagged edges. Example 4.2 calls grAlphaBlendFunction() to configure alpha
blending to accomplish anti-aliasing.

Another use for aphablending is to create translucent objects in a scene. Without blending, a newly
calculated color value will overwrite any color value already computed for that pixel and stored in the
frame buffer. With blending, the alpha value is used to combine the new color value with the previous
one so that the previous color “shows through”.

Think of the RGB values of apixel asits color, and the A, or apha, value asits opacity. Transparent or
translucent aobjects have lower opacity values than opaque objects. For example, objects seen through a
window are less defined than those viewed directly, but are still visible (unlike objects behind a solid
wall). The window glass has a color and a small apha value that will be used to scale the window color
before adding it to the existing color.

The Voodoo Graphics hardware supports apha blending of pixels. When alpha blending is enabled, the
alphavalue of apixel is used to combine the color value of the pixel being processed with that of the
pixel aready stored in the frame buffer.

Alpha blending allows an application to control the degree to which the two pixels have their colors
blended, i.e. apha blending allows trand ucent surfaces. The apha component of a pixel representsits
opacity; transparent or translucent surfaces have lower opacity than opague ones. An alphavalue of 0x00
corresponds to absolute transparency and an alpha value of 0xFF corresponds to absol ute opacity.

When using a pha blending for translucency/transparency a scene must be sorted so that
tranglucent/transparent surfaces are rendered correctly.
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Just as with the color combine and alpha combine functions, the color components can be blended
differently than the alpha component. The blending functions are defined as follows:

Cdst 1 (csrc xfsrc) + (cdst xfdst)

adst - (asrc xgsrc) + (adst xgdst)

where ¢, isthe RGB color of the destination pixel, c,,.. isthe incoming source pixel RGB, and f,. and f,;
are the source and destination blending factors for the RGB components. Similarly, a4 isthe alphavalue
of the destination pixel, a,,. isthe incoming aphavalue, and g,,. and g, are the source and destination
blending factors for the al pha component. Note that the current value of the destination pixel is used to
compute the blended value that will overwrite it. The source of incoming alpha and color are determined
by grAlphaCombine() and grColorCombine() respectively. C,,; and a4, will be clamped to the range
[0..255].

The manner in which incoming pixels (source) are combined with the existing pixel (destination) is
defined by two blending factors. These factors are controlled by the Glide function
grAlphaBlendFunction().

void grAlphaBlendFunction( GrAlphaBlendFnc_t rgbSrcFactor,
GrAlphaBlendFnc_t rgbDestFactor,
GrAlphaBlendFnc_t alphaSrcFactor,
GrAlphaBlendFnc_t alphaDestFactor

)

The first two arguments specify blending factors for the RGB components while the third and fourth
arguments give the blending factors for the al pha component. The choices for all source and destination
blending factors are shown in Table 6.4.

Alpha blending that requires a destination alphais mutually exclusive of either depth buffering or triple
buffering. Attempting to use GR_BLEND DST_ALPHA, GR_ BLEND_ONE_M NUS_DST_ALPHA, Or

GR_BLEND ALPHA_SATURATE When depth buffering or triple buffering are enabled will have undefined
results.

Example 6.1 Blending two images, part I.
In this example, two images are blended so that the final color of each pixel is the sum of colors from the two
images.
G Al phaBl endFunct i on( GR_BLEND ONE, GR_BLEND ZERO, GR BLEND ONE, GR BLEND ZERO);
/* draw the first inmage */

gr Al phaBl endFuncti on(GR _BLEND _ONE, GR BLEND ONE, GR BLEND ONE, GR BLEND ZERO);

/* draw t he second inmage */
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Example 6.2 Blending two images, part I1.

In this example, two images are blending so that the final color of each pixel is 75% of the first image and 25% of
the second. When the second image is drawn, alpha is given a constant value of % by setting the constant color and
pointing the a,y,., in the alpha combine unit to it.

G Al phaBl endFunct i on( GR_BLEND ONE, GR BLEND ZERO, GR BLEND ONE, GR _BLEND ZERO);
/* draw the first inage */
/* assunes RGBA format for colors */

gr Const ant Col or Val ue(64) ;

gr Al phaConbi ne( GR_COVBI NE_FUNCTI ON_BLEND_OTHER, GR_COMBI NE_FACTOR ONE,
GR_COVBI NE_LOCAL_NONE, GR_COVBI NE_OTHER CONSTANT, FXFALSE):

gr Al phaBl endFuncti on( GR_BLEND_SRC ALPHA, GR _BLEND ONE_M NUS_SRC _ALPHA,
GR _BLEND ONE, GR_BLEND ZERO);

/* draw the second i nmage */

Table 6.4 Alpha blending factors.

Four blending factors are specified in the grAlphaBlendFunction(). The rgbSrcFactor and alphaSrcFactor choices
are given in the first table. The specified factors will be multiplied by the incoming RGBA values from the color and
alpha combine units and added to the product of the destination factors and the alpha values stored in the alpha
buffer. The possible destination factors are shown in the second table.

For alpha source and destination blend function factor parameters, Voodoo Graphics supports only
GR_BLEND_ZERO and GR_BLEND_ONE.

If rgbSrcFactor or alphaSrcFactor is

the source blending factor {,. or g, is

GR_BLEND_ZERO 0

GR BLEND_ONE 1

GR BLEND_DST_COLOR 41255

GR BLEND_ONE_M NUS_DST_COLOR 1- ¢, /255

GR BLEND_SRC _ALPHA a,,/255

GR _BLEND_ONE_M NUS_SRC_ALPHA 1-a, /255
GR BLEND_DST_ALPHA a,/255

GR BLEND_ONE_M NUS_DST_ALPHA 1-a,, /255

GR BLEND_ALPHA SATURATE

min( a,,/255, 1— a,is,/255 )

if rgbDestFactor or alphaDestFactor is

the destination blending factor £y, or g4 is

GR_BLEND_ZERO 0
GR_BLEND _ONE 1

GR BLEND_SRC COLOR ¢y 255
GR BLEND_ONE_M NUS_SRC_COLOR 1-c. /255
GR BLEND_SRC _ALPHA a.,./255
GR _BLEND_ONE_M NUS_SRC_ALPHA 1-a, /255
GR BLEND_DST_ALPHA a,/255
GR BLEND_ONE_M NUS_DST_ALPHA 1-a,,/255

GR BLEND_PREFOG COLOR

¢, before fog is applied. See the Multi-Pass Fog section in Chapter 8.
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Example 6.3 A compositing example.

A background scene is drawn with one alpha value, a polygonal cropping window is drawn with a second alpha
value, and a foreground is mapped into the cropping window by discarding parts of the new scene that fall outside
the cropping window. The example uses the alpha combine unit, alpha buffering, and alpha blending.

/* enabl e the al pha buffer */
gr Col or Mask( FXTRUE, FXTRUE) ;

/* set al pha conbine to generate zero al pha */
gr Al phaConbi ne( GR_COVBI NE_FUNCTI ON_ZERO, GR_COVBI NE_FACTOR _NONE,
GR_COMBI NE_LOCAL_NONE, GR_COVBI NE_OTHER NONE, FXFALSE);

/* draw background scene */

/* clear out the cropping pol ygon */

gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_ZERO, GR_COVBI NE_FACTOR_NONE,
GR_COMBI NE_LOCAL_NONE, GR_COVBI NE_OTHER NONE, FXFALSE);

gr Al phaConbi ne( GR_COVBI NE_FUNCTI ON_ZERO, GR_COMBI NE_FACTOR_NONE,
GR_COMBI NE_LOCAL_NONE, GR_COVBI NE_OTHER NONE, FXFALSE);

/* draw croppi ng wi ndow */

/* set al pha blend unit to use destination al pha to select */

/* new pixel or old one */

gr Al phaBl endFuncti on(GR_BLEND DST_ALPHA, GR BLEND ONE_M NUS_DST_ALPHA,
GR_BLEND ZERO, GR BLEND ONE);

/* set color conbine and al pha conbi ne back to defaults */

gr Col or Conbi ne( GR_COVBI NE_FUNCTI ON_SCALE_OTHER, GR_COWVBI NE_FACTOR_ONE,
GR_COMBI NE_LOCAL_| TERATED, GR_COMBI NE_OTHER | TERATED, FXFALSE);

gr Al phaConbi ne( GR_COVBI NE_FUNCTI ON_ SCALE_OTHER, GR_COMBI NE_FACTOR_ONE,
GR_COMBI NE_LOCAL_NONE, GR_COVBI NE_OTHER_CONSTANT, FXFALSE) ;

/*draw t he foreground scene */
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e, DEpth Buffering

In This Chapter

One potential use of the auxiliary buffer is as a 16-bit depth buffer. Each pixel may have an associated
1/z and L/w value (ooz and oow in the Grvertex structure) and either one may be used to represent the
distance between the pixel and the viewer. A user-sel ectable depth test determines when an incoming
pixel replaces one previoudly stored in the frame buffer. One common use for a depth buffer is pixel-
accurate hidden surface removal, allowing nearer surfaces to obscure surfaces further away regardless of
the order they are drawn in.

You will learn how to:
enable depth buffering
specify adepth test

implement afixed point z buffer

4 4 4 <«

implement a floating point w buffer
v use adepth bias to reduce poke-through artifacts introduced by coplanar polygons

The type of depth buffering in use is controlled using grDepthBufferMode(). The comparison function is
selected with the function grDepthBufferFunction(). Writes to the depth buffer are controlled by
grDepthMask(). Since the auxiliary buffer can serve only a single use, depth buffering, apha buffering,
and triple buffering are mutually exclusive.

Enabling Depth Buffering
The Glide function grDepthBufferMode() enables and disables depth buffering.

void grDepthBufferMode( GrDepthBufferMode_t mode )

The mode argument specifies the type of depth buffering to be performed. Valid modes are
GR_DEPTHBUFFER DI SABLE, GR_DEPTHBUFFER_ZBUFFER, GR_DEPTHBUFFER_WBUFFER,
GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO BI AS, Or GR_DEPTHBUFFER_WBUFFER_COMPARE_TO BI AS. If
GR_DEPTHBUFFER_ZBUFFER Of GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO BI AS is selected, the depth buffer
isa16-hit fixed point z buffer. A 16-bit floating point w buffer is used if mode is

GR_DEPTHBUFFER _WBUFFER Of GR_DEPTHBUFFER_WBUFFER_COMPARE_TO BI AS. By default, the depth buffer
mode iS GR_DEPTHBUFFER DI SABLE.

Since alpha, depth, and triple buffering are mutually exclusive of each other, enabling depth buffering
when using either the alpha or triple buffer will have undefined results.

If GR_DEPTHBUFFER_ZBUFFER_COVPARE_TO Bl AS Or GR_DEPTHBUFFER_WBUFFER_COVPARE_TO BI ASiS
selected, then the bias specified with grDepthBiasLevel() is used as a pixel’s depth value for comparison
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purposes only. Depth buffer values are compared against the depth biaslevel and if the compare passes
and the depth buffer mask is enabled, the pixel’ s unbiased depth value is written to the depth buffer. This
mode is useful for clearing beneath cockpits and other types of overlays without affecting either the color
or depth values for the cockpit or overlay.

Consider the following example: the depth buffer is cleared to oxFFFF and a cockpit is drawn with a
depth value of zero. Next, the scene beneath the cockpit is drawn with depth buffer compare function of
GR_CMP_LESS, rendering pixels only where the cockpit is not drawn. To render the next frame, you need
to clear the last scene. If you use grBufferClear(), you will remove everything, including the cockpit. To
clear the color and depth buffers underneath the cockpit without disturbing the cockpit, the areato be
cleared is rendered using triangles with the depth bias level set to zero, a depth buffer compare function
of GR_CWP_NOTEQUAL, and a depth buffer mode of GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO BI AS Of
GR_DEPTHBUFFER WBUFFER_COVPARE_TO BI AS. All pixels with non-zero depth buffer values will be
rendered and the depth buffer will be set to either unbiased z or w, depending on the mode. Using this
method, the color and depth buffers can be cleared to any desired value beneath a cockpit or overlay
without affecting the cockpit or overlay. Sorted background polygons that cover the visible area can be
rendered in this manner, eliminating the need to clear the whole buffer and then redraw the overlay for
each frame. Once the depth buffer is cleared beneath the cockpit, the depth buffer mode is returned to
either GR_DEPTHBUFFER_ZBUFFER O GR_DEPTHBUFFER_WBUFFER by calling grDepthBufferMode() and the
depth comparison function is returned to its normal setting (GR_cvP_LESS in this example) by calling
grDepthBufferFunction().

Note that since this mode of clearing is performed using triangle rendering, the fill rate is about one half
that of arectangular clear using grBufferClear(). In the case where sorted background polygons are used
to clear beneath the cockpit, this method should always be faster than the alternative of calling
grBufferClear() and then drawing the background polygons. In the case where background polygons are
not used, the two methods:

clearing the buffers with grBufferClear() and then repainting the cockpit, and
clearing beneath the cockpit with triangles and not repainting the cockpit

should be compared and the faster method chosen. Avoiding a cockpit repaint is important: cockpits are
typically rendered with linear frame buffer writes and while the writes are individually fast, the process
can be lengthy if the cockpit covers many pixels.

GR_DEPTHBUFFER_ZBUFFER_COVPARE_TO BI AS and GR_DEPTHBUFFER_VBBUFFER_COVPARE_TO BI AS modes
are not availablein revision 1 of the Pixelfx chip (use grSstQueryHardware() to obtain the revision
number).

When depth buffering is enabled, the grDepthMask() routine enables writes to the depth buffer.

void grDepthMask( FxBool enable )

If enable is FXFALSE, depth buffer writing is disabled. Otherwise, it is enabled. Initialy, writing to the
depth buffer is disabled. Since the a pha, depth, and triple buffers share the same memory, grDepthMask()
should be called only if depth buffering is being used.

The depth buffer can be cleared to a specific value with grBufferClear(), as described in Chapter 3. The
depth buffer istypicaly cleared to avalue that is further away from the viewpoint than any object in the
scene.
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The Depth Test

grDepthBufferFunction() specifies the function used to compare each rendered pixel’ s depth value with
the depth value present in the depth buffer. The comparison is performed only if depth testing is enabled
with grDepthBufferMode(). The choice of depth buffer function is typically dependent upon the depth
buffer mode currently active. The default comparison function is GR_CvP_LESS.

void grDepthBufferFunction( GrCmpFnc_t func )

The single argument, func, specifies the depth comparison function. Table 7.1 lists the valid comparison
functions and the conditions under which a pixel will “pass’ the test and overwrite the pixel in the frame
buffer and depth buffer.

Table 7.1 The depth test.

The func argument to grDepthBufferFunction() can take on any of the values listed in the first column of the table
below. The second column specifies the depth test and the third column describes the conditions under which an
incoming pixel will pass the test and overwrite the appropriate location in the frame buffer and depth buffer.

if func is the depth comparison is | and the pixel

GR_COMP_NEVER FALSE never passes

GR_OWP_LESS depth,,.,, < depth,;; passes if the pixel s depth value is less than the stored depth
value

GR_CWP_EQUAL depth,.,, = depth,;; passes if the pixel s depth value is equal to the stored depth
value

GR_CGWP_LEQUAL depth,.,, £ depth,;, passes if the pixel s depth value is less than or equal to the
stored depth value

CR_CWP_GREATER | depth,,,, > depth,, passes if the pixel s depth value is greater than the stored depth
value

GR_CGWP_NOTEQUAL [ depth,,, * depth, passes if the pixel s depth value is not equal to the stored depth
value

GR_CVP_GEQUAL depth,.,, 3 depth,;, passes if the pixel s depth value is greater than or equal to the
stored depth value

GR_CWP_ALVAYS TRUE always passes

Fixed Point 7 Buffering

When 16-bit linear z buffering is enabled, z values for each pixel are linearly interpolated across a
polygon’s face. Since observer space z values are not linear in screen space, the Voodoo Graphics
hardware must instead interpolate 1/z values, which are linear in screen space. When linear z buffering is
enabled, the Voodoo Graphics hardware interpolates a high precision fixed point 1/z value (provided by
the application), but stores only the 16-bit integer portion of the 1/z value. This can lead to some
precision problems, and thus an application’ s objects and database must be constructed and scaled
carefully to minimize z aliasing. Linear z buffering is enabled by calling grDepthBufferMode() With the
constant GR_DEPTHBUFFER_ZBUFFER.
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If z buffering is enabled, Glide expects 1/z values to be passed in the ooz element of the Grvertex structure
used by the various grDraw functions. The ooz values take the form (d + f /z); the values of scalarsd and
f should be chosen so that ooz isin the range [0..65535] in order to use the full range of the z buffer.

Example 7.1 Configuring a 7 buffer.
The following code sequence configures Glide for z buffering:

gr Dept hBuf f er Mode( GR_DEPTHBUFFER ZBUFFER ) ;

gr Dept hBuf f er Functi on( GR_CMPFNC_GREATER ); // 1/Z decreases as Z increases!
gr Dept hMask( FXTRUE );

grBufferCl ear(0, 0, 0);

Floating Point w Buffering

The Voodoo Graphics hardware can aso derive a depth value from the 1/w factor computed for texture
mapping and fog. Such an approach has many advantages over linear z buffering, including much greater
dynamic range and less aliasing and accuracy artifacts. The Voodoo Graphics hardware uses a proprietary
16-bit floating point format for w buffering, however, an application typically does not need to
manipulate this data directly, except when an application must read data directly from the depth buffer
and then convert this depth value to an application dependent format. Floating point w buffering is
enabled by calling grDepthBufferMode() with the constant GR_DEPTHBUFFER_WBUFFER.

The value stored in the depth buffer when w buffering is enabled is actually not the 1/w value used during
texture mapping, but an approximation of the reciprocal of 1/w, in effect recovering w from L/w during
the depth buffering phase. This should be transparent to an application unless the application needs to
read depth information back from the depth buffer.

Example 7.2 Configuring a w buffer.
The following code sequence configures Glide for w buffering. The depth buffer is initially cleared to a value
representing the farthest point, so that all objects in the scene will be closer to the viewer than empty space is.

gr Dept hBuf f er Mode( GR_DEPTHBUFFER VBUFFER ) ;

gr Dept hBuf f er Function( GR_ CMP_LESS ); // larger Wvalues are farther away
gr Dept hMask( FXTRUE );

grBufferd ear (0, 0, GR WDEPTHVALUE_FARTHEST) ;
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Establishing a Depth Bias

When depth buffering coplanar polygons (e.g. when one polygon is used as a“ detail” polygon on
another), precision problems with coplanar polygons may result in “poke through” artifactsif the vertices
of the two polygons are not the same. To eliminate the artifacts, an application should apply a“depth
bias’ when it renders two coplanar polygons, so that Glide understands which polygon is on top of the
other. grDepthBiasLevel() allows an application to specify a depth bias.

void grDepthBiasLevel( FxI16 level )

Specificaly, if two polygons are coplanar but do not share vertices, e.g. a surface detail polygon sits on
top of alarger polygon, the depth bias level should be incremented or decremented as appropriate for the
depth buffer mode and function, per coplanar polygon. For left-handed coordinate systems, where 0x0000
corresponds to “ nearest to viewer” and 0xFFFF corresponds “farthest from viewer”, depth bias levels
should be decremented on successive renderings of coplanar polygons. When the coplanar polygons have
been rendered, the depth bias mode should be reset to 0.

Example 7.3 Using a depth bias.
In this code segment, an underlying polygon is rendered, a depth bias is established, and then another polygon is
rendered on top of the first one.

/* Render the underlying polygon */
gr DrawPol ygon( /* base polygon’s paraneters */ );

/* Render the conposite polygon by first enabling depth bias */
gr Dept hBi asLevel ( -1 );
gr DrawPol ygon( /* conposite polygon's paraneters */ );

/* Disable depth bias */
gr Dept hBi asLevel ( 0 );

An Example: Hidden Surface Removal

When a sceneis rendered, some of the objects will undoubtedly obscure other objects. If the viewpoint
never changes, you can sort the polygons on z, and draw the scene from back to front.

But what if the viewpoint can change from one frame to the next? Say it’ stracking a cursor controlled by
amouse. The computation cost of re-sorting the scene for each frame can be prohibitive, depending on
the complexity of the scene. But az buffer will solve the problem.

You will still need to transform world coordinates to screen coordinates for each object in the scene, but
the transformed vertices can be drawn in any order, without regard to their distance from the viewpoint.

The code segment in Example 7.4 shows the depth buffer in action.
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Example 7.4 Hidden surface removal using a z buffer.
The code segment below leaves out the details of converting a mouse position or movement into a viewpoint and
transforming the world coordinates to new screen coordinates.

/* set up a z buffer and depth test */

gr Dept hBuf f er Mode( GR_DEPTHBUFFER ZBUFFER ) ;

gr Dept hBuf f er Functi on( GR_CMPFNC_GREATER ); // 1/Z decreases as Z increases!
gr Dept hMask( FXTRUE ) ;

while (1) {
/* clear the buffers for each franme */
grBufferCl ear(0, 0, 0);

/* get the new viewpoint and transformthe coordinates */
set _vi ewpoi nt _from nmouse();
transform coordi nates();

/*draw t he objects in the scene */
draw_obj ects();

/* display the frame */
gr Buf f er Swap(1);
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e Speclal Effects

In This Chapter

Glide supports several different types of special effects, including fog, chroma-keying, and alpha testing.
Fog simulates atmospheric conditions like fog, mist, smog, or smoke that partially obscure distant
objects. Chroma-keying can be used to create a blue screen effect, removing all pixelsthat are a specific
color. Alpha masking uses the low order bit of the incoming alphavalue to invalidate pixels.

You will learn how to:

v produce fog using the alpha iterator

create afog table and use it to create atmospheric effects
configure the fog and a pha blending units for multi-pass fogging
use chroma-keying to simulate a blue screen

use alphatesting to simulate a blue screen

Fog

Fog is arendering technique that adds realism to computer-generated scenes by making distant objects
appear to fade away. Fog is ageneral term representing all atmospheric effects: haze, mist, smoke, smog.
It isessential in visua simulations like flight simulators to produce the effect of limited visibility. When
fogging is enabled, distant objects fade into the fog color. Both the fog color and the fog density (the rate
at which aobjects fade as a function of their distance from the viewer) are programmable.

Glide and the Voodoo Graphics hardware support per-pixel fog blending operations. The fog unit is
separate from the alpha blending unit, so both fog and transparency may be applied simultaneously. Fog
is applied after texturing and lighting, and may improve performance in large simulations: some objects
may be lost in the fog and can be culled before rendering.

Fog is applied after color combining and before alpha blending, as shown in the pixel pipeline flow
diagramin Figure 1.2.

The fog operation blends the fog color (c,,.) with each rasterized pixel’s post-texturing color (c;,) using a
blending factor f. Factor fisretrieved from the high order bits of the iterated apha value or from a user
downloaded fog table indexed with the pixel’s 1/w component. The fog operation blends a global (cy,,)
with each rasterized pixel’s color (c;,) using a blending factor f. A value of f=0 indicates minimum fog
density and a value of =255 indicates maximum fog density.

The general fog equation is shown below.
Cuut :fcjbg + (1'f)cin
The fog mode, set with grFogMode(), shapes the fog equation to the situation, as shown in Table 8.1.
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void grFogMode( GrFogMode_t mode )

The mode argument can be one of five values: GR_FOG DI SABLE, GR_FOG W TH_| TERATED_ALPHA,
GR FOG W TH_TABLE, GR_FOG ADD2, Oor GR_FOG MJLT2. Thelast two modes have been created to facilitate
multi-pass fogging applications and are used in conjunction with GR_FOG W TH_| TERATED ALPHA oOr

GR FOG W TH_TABLE.

Table 8.1 The fog mode shapes the fog equation.
The general form of the fog equation is Coy = f Crog + (1- f)Cin. The mode argument to grFogMode() tailors the
general equation for a specific situation, as shown below. The first three modes are mutually exclusive: choose one.
Modes GR_FOG_ADD2 and GR_FOG_MULT2 are used in tandem with either GR_FOG_WITH_ITERATED_ALPHA or

GR_FOG_WITH_TABLE.

if mode sets

the fog equation is

where C,, is the color entering the
fog unit, C,,, is the result of fogging,
Cr S the fog color and

GR_FOG DI SABLE

Cuut = Ci

GR_FOG W TH_| TERATED ALPHA

Cuut = ai C{/‘ag + (1' ai)cin

a; is the high order byte of the
iterated alpha value

GR FOG W TH TABLE

Cout = frogiul * Crog + (1= frogin1) * Cin

Soguw) is computed by interpolating
between entries in a fog table
indexed with w

GR_FOG_ADD2 Cour = (1-f)Ciy [ can be either the high order byte
of iterated alpha or computed from
the fog table

GR_FOG_MULT2 Cout = f Cog fcan be either the high order byte

of iterated alpha or computed from
the fog table

The fogging factor fis determined by mode. If modeisGR_FOG W TH_| TERATED_ALPHA, then fis equal to
the integer bits of iterated alpha. If mode is GR_FOG W TH_TABLE, then fis computed by interpolating
between fog table entries, where the fog table is indexed with afloating point representation of the
pixel’sw component. Fog is applied after color combining and before al pha blending.

The global fog color (C,) is set by calling grFogColorValue(). The argument, value, is an RGBA color
and is specified in the format defined in the cFormat parameter to grSstWinOpen() (See Chapter 3).

void grFogColorValue( GrColor_t value )
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Fogging With Iterated Alpha

To fog with iterated alpha, the fog mode must be set to GR_FOG W TH_| TERATED_ALPHA. In this mode the
high order eight bits of the value produced by the alphaiterator are used as the fog blending factor . The
fog equation becomes

Cuut = ai C{/‘ag + (1' ai)cin

Example 8.1 presents a code segment that adds iterated a phafog to a scene.

Example 8.1 Fogging with iterated alpha.
The following code segment demonstrates fogging with iterated alpha. No setup is required beyond specifying a fog
color and fog mode.

/* fog is white...color is ARGB format */

gr FogCol or Val ue( OxFFFFFF);
gr Foghbde( GR_FOG_W TH_I TERATED_ALPHA) ;

/* vertices have al pha values that grow as the object gets nore indistinct */
dr aw_obj ect s();

Fogging With A User Specified Fog Table

The application may supply afog table to the hardware via the function grFogTable(). To enable table-
based fogging, the fog mode must be set to GR FOG W TH_TABLE. This fog table should consist of 64
density values of type GrFog_t, which is an unsigned 8-bit quantity. A value of 0 indicates minimum
density, and 255 indicates maximum density. This density determines the amount of blending that occurs
between the incoming pixel and the global fog color, set by grFogColorValue(). The order of the entries
within the table corresponds roughly to their distance from the viewer. Entries within the table are
calculated as a function of world w where world w @2"* where i is the index into the fog table and

(O £i<64). Tominimize “fog banding”, the Voodoo Graphics hardware linearly blends between adjacent
fog levels within the fog table. The difference between consecutive fog values must be less than 64.

void grFogTable( const GrFog_t table[GR_FOG TABLE SI ZE] )

grFogTable() downloads a new table of 8-bit values that are logically viewed as fog opacity values
corresponding to various depths. The table entries control the amount of blending between the fog color
and the pixel’s color. A value of 0x00 indicates no fog blending and a value of oxFF indicates complete
fog.

The fog operation blends the fog color (c;,,) with each rasterized pixel’s color (c;,) using ablending
factor /. When grFogMode() IS set to GR_FOG W TH_TABLE, then the factor fis computed by interpolating
between fog table entries, where the fog table is indexed with afloating point representation of the
pixel’sw component.

Cout =ﬁog[w] ' %g + (1' ﬁog[w]) * Cin

The order of the entries within the fog table corresponds roughly to their distance from the viewer. The
exact world w corresponding to fog table entry i can be found by calling guFogTableIndexToW() with
argument 7.

Copyright O 1996 3Dfx Interactive, Inc. 65
Proprietary and Confidential Printed 07/30/97 7:52 AM



Glide 2.2 Programming Guide

guFogTableIndexToW(int i)

guFogTableIndexToW() returns the floating point eye-space w value associated with entry i in afog table.
Because fog table entries are non-linear in w, it isnot straight forward to initialize afog table.
guFogTableIndexToW() assists by converting fog table indices to eye-space w, and returns the following:

pow 2.0, 3. 0+(double)(i>>2)) / (8-(i&3))

An exponential fog table can be generated by computing (1-™")- 255 where k is the fog density and w is
world distance. It is usually best to normalize the fog table so that the last entry is 255.

Example 8.2 Creating a fog table.
The two code segments below each create a fog table. The first code segment shows a linear fog table that has a
steep ramp at the beginning and end, with slow growing values in the middle.

const GrFog_t fog[63];

int i;

fog [0] = 0;

for (i=1; i<12; i++) fog[i]= fog[i-1]+ 12;
for (i=12; i<56; i++) fog[i]= fog[i-1] + 1;
for (i=56; i<63; i++) fog[i]= fog[i-1] + 7;

fog[63] = 255;

The second table is an exponential fog table. It computes w from i using guFogTableIndexToW() and then computes

the fog table entries as fog[i]=(1 e™).- 255 where k is a user-defined constant, FOG_DENSITY.
#define FOG DENSITY .5
const GrFog_t fog[ GR_FOG TABLE_SI ZE] ;
int i;

for (i=0; i<GR_FOG TABLE_SIZE; i++) {
fog[i] = (1 - exp((- FOG_DENSITY) * guFogTabl el ndexToWi))) * 255;

fog[ GR_FOG TABLE_SI ZE] = 255;

Example 8.3 Fogging with 1/w and a fog table.
The code segment below assumes that a fog table has been defined. It is loaded using grFogTable(), a fog color is
defined, and the appropriate fog mode set. All that remains is to draw the scene.

const GrFog_t fog[ GR_TABLE_SI ZE] ;

int i;

/* load the fog table */
gr FogTabl e(fog) ;

/* set a fog color - how about snoke? */
gr FogCol or Val ue(0);

/* set node to fog table */
gr FogMbde( GR_FOG_W TH_TABLE) ;

/* draw t he scene */
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Generating a Fog Table Automatically
The Glide Utilities Library includes three routines that generate fog tables with different characteristics.

void guFogGenerateExp( GrFog_t fogTable/GR_FOG_TABLE_SI ZE/, float density )

guFogGenerateExp() generates an exponential fog table according to the equation:

—density- w
e ly

where w is the eye-space w coordinate associated with the fog table entry. The resulting fog table is
copied into fogTable. The fog table is normalized (scaled) such that the last entry is maximum fog (255).

void guFogGenerateExp2( GrFog_t fogTuble/GR_FOG_TABLE_SI ZE/, float density )

guFogGenerateExp2() generates an exponentially squared fog table according to the equation:
e—(density- w) (density- w)

where w is the eye-space w coordinate associated with the fog table entry. The resulting fog tableis
copied into fogTable. The fog table is normalized (scaled) such that the last entry is maximum fog (255).

void guFogGenerateLinear( GrFog_t fogTuble/GR_FOG_TABLE_SI ZE/, float nearW, float farW')

guFogGenerateLinear() generates alinear (in eye-space) fog table according to the equation
(w —nearMI( farW nearw)

where w is the eye-space w coordinate associated with the fog table entry. The resulting fog tableis
copied into fogTable. The fog table is clamped so that all values are between minimum fog (0) and
maximum fog (255). Note that guFogGenerateLinear() fog is linear in eye-space w, not in screen-space.

Multi-Pass Fog

Special actions must be taken when applying fog to pixels generated with multi-pass techniques. Recall
from Figure 1.2 that the fog unit is sandwiched between the color combine unit and the a pha blending
unit in the pixel pipeline. This ordering facilitates anti-aliasing but may result in repeated fogging of
intermediate values in multi-pass alpha blending applications. Special modes for the fog unit and a
specia apha blending function have been provided to identify and handle this situation.

The GR_FOG _ADD2 and GR_FOG MULT2 modes, passed as arguments to grFegMode(), suppress the first and
second terms, respectively, of the fog equation. In GR_FOG_ADD2 mode, the first term of the fog equation
is suppressed, resulting in afog equation shown below:

Cuut = (1'f)cin

and no fog isapplied. In GR_FOoG_MULT2 mode, the second term is suppressed, making the fog equation
effectively:

Cout :fcfog
leaving only the scaled fog color.

In the grAlphaBlendFunction() routine, presented in Chapter 6, the GR_BLEND PREFOG_COLCR factor
selects the pre-fogged value of the pixel as the destination RGBA blending factor.
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The following sections present recipes for correctly applying fog to common multi-pass rendering
applications. The generalized fog and blending equations are tailored to the specific situations and are the
starting point for the derivations presented in the text. In case you’ ve forgotten, the general fog equation

IS

factors.

FOg(C,-n) :fgbg + (1'f)cin
where ¢, isthe pre-fogged color, and the blending equation is

Cdst :f;rc - Fog(cin) +_ﬂlst ) Cdst
where ¢, is the value stored in the frame buffer and f;,. and £, are the source and destination blending

Table 8.2 summarizes the required fog mode and blending factor settings for the multi-pass fog scenarios
presented here. Detailed discussion follows.

Table 8.2 Configuring the fog and alpha blending units for multi-pass fog generation.
The table below describes the proper settings for the fog mode and source and destination alpha blending factors
for three different multi-pass fogging applications. If the fog mode is specified as mode, either

GR_FOg_WITH_TABLE or GR_FOG_WITH_ITERATED_ALPHA may be used.

n- 1 | rgbDstFactor

grFogMode() and simple two pass blending additive blending modulated blending
pass | grAlphaBlendFunction() | a- Fog(c;) + (1- a)- Fog(cs) Fog(Sc) Fog(Pc)
parameters
1 |mode mode mode (mode | GR FOG_ADD2)
rgbSrcFacior GR_BLEND_ONE GR_BLEND _ONE GR_BLEND_ONE
rabDstFactor GR_BLEND ZERO GR_BLEND ZERO GR_BLEND ZERO
2 mode (mode | GR_FOG ADD2) GR_FOG DI SABLE
thru [ rgbSrcFacior e GR_BLEND_ONE GR_BLEND_DST_COLOR
GR_BLEND_ONE GR_BLEND ZERO

n | mode mode (mode | GR_FOG ADD?2) (mode | GR FOG MULT2)
rebSrcFactor GR_BLEND_SRC_ALPHA GR_BLEND_ONE GR_BLEND_ONE
rebDstFactor GR_BLEND_ONE_M NUS_SRC ALPHA | GR BLEND ONE GR BLEND_PREFOG_COLOR

Simple Blends

Simple two-pass blending using a and 1- a can be used to produce translucent fog and requires no
specia actions. The goal here isto produce

Case = @+ Fog(C;) + (1- a)- Fog(c)

where ¢; is the color entering the fog unit from the color combine unit on pass i, Fog(c;) is the color
output by the fog unit on pass i, and ¢, is the color that is stored in the frame buffer. The first pass will
generate and store Fog(c;). The second pass will generate Fog(c,) and blend it with the result of the first

pass.
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For thefirst pass, set the fog mode to GR_FOG W TH_TABLE and the source and destination factors for
alphablending to GR_BLEND ONE and GR_BLEND_ZERO, respectively, as shown in Table 8.2 and
demonstrated in Example 8.4. After pass one is complete,

Cit = 1- Fog(c;) + 0- Cyyt
= Fog(c)

For the second pass, specify the source and destination factors for alpha blending as
GR_BLEND_SRC_ALPHA and GR_ BLEND _ONE_M NUS_SRC_ALPHA, respectively. Thus,

Cdst = a- Cin + (1' a)' Cst
= a-Fog(c;) + (1-a)- Fog(c))

Note that there is nothing special about using GR_BLEND_SRC_ALPHA and
GR_BLEND_ONE_M NUS_SRC_ALPHA asthe blending factors. Any of the blending factorslisted in Table 6.4
can be used.

Example 8.4 Simple two-pass blending.

The code segment below assumes that a fog table has been defined. It loads the table, then sets a fog color. For the
first pass, the fog mode is set to use the fog table and the alpha blending function to write fogged colors into the
frame buffer. For the second pass, the fog mode and color remain the same, but the blending factors change
blending the newly-generated fogged colors with the previous ones.

const GrFog_t fog[ GR_TABLE_SI ZE] ;
int i;

/* load the fog table */
gr FogTabl e(fog) ;

/* set a fog color - how about snoke? */
gr FogCol or Val ue(0);

/* set node to fog table */
gr FogMbde( GR_FOG_W TH_TABLE) ;
gr Al phaBl endFuncti on(GR_BLEND ONE, GR BLEND ZERO, GR BLEND ONE, GR BLEND ZERO);
/* draw the first pass */
/* reconfigure al pha blending for the second pass */
gr Al phaBl endFuncti on(GR_BLEND_SRC ALPHA, GR BLEND ONE_M NUS_SRC_ALPHA,
GR _BLEND ONE, GR BLEND ZERO);

/* draw t he second pass */

Additive Multi-Pass Fog
The additive case assumes that the results of each pass are being added together, and we wish to fog the
final result:

Cae = Fog(Sc;) where ¢; is the color entering the fog unit in pass i
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Here is the procedure for the two-pass case. This can be generalized to multiple passes by induction. We
wish to obtain:

Case = Fog(C; + C5) = fCpe + (1-f)(C; + C2)

For thefirst pass, choose either GR_FOG W TH_TABLE Or GR_FOG W TH_| TERATED_ALPHA as the fog mode
and set the source and destination alpha blending factorsto GR_BLEND_ONE and GR_BLEND_ZEROQ,
respectively. After the first pass,

1. Fog(c;) + 0-Cyy
Fog(c))
= fCug + (1-f)C

For the second pass, add GR_FOG_ADD? to the fog mode, causing the blended fog term to be suppressed (if
you forget to do this, the c,,, term will occur twice). Set the source and destination al pha blending factors
to GR_BLEND_ONE and GR_BLEND_ONE, respectively. Thus,

Fog(c;) = (1-f)c

Cust = Locin+ L-cyy
(I- ez + (fepe + (1-£)C)
= feue + (1-£)(C; + C))

Cast

Example 8.5 Two-pass additive fogging.

The code segment below assumes that a fo table has been defined.
const GrFog_t fog[ GR_TABLE_SI ZE] ;
int i;

/* load the fog table */
gr FogTabl e(foqg) ;

/* set a fog color - how about snoke? */
gr FogCol or Val ue(0);

/* set node to fog table */

gr Fogvbde( GR_FOG_W TH_TABLE) ;

gr Al phaBl endFuncti on(GR_BLEND ONE, GR BLEND ZERO, GR BLEND ONE, GR BLEND ZERO);
/* draw the first pass */

/* set node to fog table */

gr Fogvbde( GR_FOG W TH TABLE | GR FOG ADD2) ;

gr Al phaBl endFuncti on(GR_BLEND ONE, GR BLEND ONE, GR BLEND ONE, GR BLEND ZERO);

/* draw t he second pass */
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Modulation Multi-Pass Fog

The modulation case assumes that the results of each pass are being multiplied together, and we wish to
fog the final result:

Cus = Fog(P ¢) where ¢; is the color entering the fog unit in pass i

This case occurs most commonly when applying light mapsto a scene, and is more complex to
implement than the additive case. Here is the procedure for the three-pass case; it can be generalized by
induction. We wish to obtain:

Case = F0g(C/CsC3) = fCpe + (1-f)( C/CC3)

For thefirst pass, choose either GR_FOG W TH_TABLE Or GR_FOG W TH_| TERATED_ALPHA as the fog mode
and OR in GR_FOG_ADD2, as shown in Table 8.2 and demonstrated in Example 8.6. Set the source and
destination alpha blending factorsto GR_BLEND ONE and GR_BLEND_ZERO, respectively. After the first
pass,

1. Fog(c;) + 0-Cyy
Fog(c))
= (1-Nc

For the second pass (and all intermediate passes in the general case), disable fogging
(grFogMode(GR_FOG DI SABLE)) and set the source and destination alpha blending factors to

GR_BLEND DST_CO.OR and GR_BLEND_ZERO, respectively. (Using source and destination factors of
GR_BLEND ZEROand GR_BLEND SRC COLOR, respectively, will work as well.) After the second pass we
have:

Cast

Cist = Cdst* Cin T 0- Cdst
= Cust C2
= (1-fec

For the final pass, enable fogging again, choosing either GR_FOG W TH_TABLE or

GR_FOG W TH_| TERATED ALPHA , and OR in GR_FOG MULT2, which causes the blended pixel term to be
suppressed. Set the source and destination alpha blending factors to GR_BLEND_ONE and
GR_BLEND_PREFOG_COLCR, respectively. Theresult is:

Fog(Cs) = fCpg
Cue = 1-Fog(C;) + Cs- cuy
= fCug * C3- (1- f)CiC;

= foog + (1_I)C1C2C3
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Example 8.6 Three-pass modulation fogging.
The code segment below assumes that a fog table has been defined.

const GrFog_t fog[ GR_TABLE_SI ZE] ;
int i;

/* load the fog table */
gr FogTabl e(foqg) ;

/* set a fog color - how about snoke? */
gr FogCol or Val ue(0);

/* set fog nopde and al pha bl ending function for pass 1*/
gr Fogvbde( GR_FOG W TH TABLE | GR FOG ADD2) ;
gr Al phaBl endFuncti on(GR_BLEND ONE, GR BLEND ZERO, GR BLEND ONE, GR BLEND ZERO);

/* draw pass 1 */

/* set fog nopde and al pha bl ending function for pass 2*/

gr FogMbde( GR_FOG_DI SABLE) ;

gr Al phaBl endFuncti on(GR_BLEND DST_COLOR, GR_BLEND ZERO, GR _BLEND_ ONE,
GR_BLEND_ZERO) ;

/* draw pass 2 */

/* set fog node and al pha bl ending function for final pass */

gr Fogvbde( GR_FOG W TH TABLE | GR_FOG MIULT2);

gr Al phaBl endFuncti on(GR_BLEND ONE, GR BLEND PREFOG COLOR, GR BLEND ONE,
GR_BLEND_ZERO) ;

/* draw pass 3 */

Chroma-keying

When chroma-keying is enabled, color values are compared to a global chroma-key reference value set
by grChromakeyValue(). If the pixel’s color is the same as the chroma-key reference value, the pixel is
discarded. The chroma-key comparison takes place before the color combine function; the other color
selected by color combine function is the one compared (see grColorCombine() in Chapter 5). By default,
chroma-keying is disabled.

Chroma-keying is useful for certain types of sprite animation or blue-screening of textures. Only one
color value is reserved for chroma-keyed transparency, while alpha blending reserves a variable number
of color bitsfor transparency.

void grChromakeyMode( GrChromakeyMode_t mode )

Use grChromakeyMode() to enable or disable chroma-keying. The argument, mode, specifies whether
chroma-keying should enabled or disabled. Valid values are GR_CHROVAKEY_ENABLE and
GR_CHROVAKEY_DI SABLE.

void grChromakeyValue( GrColor_t value )
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The function grChromakeyValue() Sets the global chroma-key reference value as a packed RGBA valuein
the format specified in the cFormat parameter to grSstWinOpen() (See Chapter 3).

Example 8.7 Simulating a blue-screen with chroma-keying.

A blue screen is a compositing mechanism used in live video where a second scene overlays all the blue pixels in
the first scene. This technique is used to stand a weathercaster in front of a weather map, for example, and explains
why they don t wear blue suits or ties! With chroma-keying, pixels of any one specific color can be discarded, not
just blue.

/* draw t he background */
dr aw_weat her _nmap();

/* enabl e chroma-keying */
gr Chr onakeyMdde( GR_CHROVAKEY_ENABLE) ;

/*set the reference color - assunes ARGB format */
gr Chr onakeyVal ue( OxFF) ;

/* draw the inserted scene - nbst of it is blue */
dr aw_weat her man() ;

Alpha Testing

The alphatest function is a technique for accepting or rejecting a pixel based on its alphavalue. The
incoming al pha value (the output from the al pha combine unit) is compared with a reference value and
accepted or rejected based on a user-defined comparison function.

One application of the alpha compare function is billboarding: if you create a texture with some
transparent and some opaque areas, you can indicate the degree of opacity with the alpha value. Set alpha
to zero if the texel istransparent, and to oneif it's opaque. With areference alphavalue of .5 (or any
number greater than 0) and a“ greater than” comparison function, transparent texels will be rejected and
the destination pixel will be displayed.

Incoming pixels can be rejected based on a comparison between their alpha values and a global aphatest
reference value. The nature of the comparison is user definable through the function
grAlphaTestFunction(). Thisis useful for some effects such as partially transparent texture maps. Also,
alphatesting can prevent the depth buffer from being updated for nearly transparent pixels. To disable
alphatesting, set the alphatest function to GR_cvP_ALwWAYS. The global alphatest referenceis set viaa
call to grAlphaTestReferenceValue(). Because a pha testing does not require a pha storage (i.e. an apha
buffer), it is always available regardless of the use of depth or triple buffering.

void grAlphaTestFunction( GrCmpFnc_t func)

The incoming alpha value is compared to the constant al pha test reference value using the function
specified by func. The possible values for func are shown in Table 8.3. The incoming aphais the output
of the alpha combine unit (see grAlphaCombine(), described earlier in this chapter). The reference value
is set with grAlphaTestReferenceValue().

void grAlphaTestReferenceValue( GrAlpha_t value )
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The incoming alphavalue is compared to the value using the function specified by
grAlphaTestFunction(). |f the comparison fails, the pixel is not drawn.
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Table 8.3 Alpha test functions.
Alpha testing is a technique whereby the incoming alpha value is compared to a reference value and the pixel is
discarded if the test fails. The test is user-selectable; the choices are shown below.

if func is the comparison function

GR_CWP_LESS passes if the a value produced by the alpha combine unit is less than the constant a
reference value

GR_OMP_EQUAL

passes if the a value produced by the alpha combine unit is equa to the constant a
reference value

GR_CMP_LEQUAL

passes if the a value is less than or equal to the constant a reference value

GR CWP_GREATER

passes if the a value is greater than the constant a reference value

GR_OVP_NOTEQUAL

passes if the a value is not equal to the constant a reference value

GR_CVP_GEQUAL

passes if the a value is greater than or equal to the constant a reference value

GR_CWP_ALVAYS

always passes

Alphatesting is performed on all pixel writes, including those resulting from scan conversion of points,
lines, and triangles, and from direct linear frame buffer writes. Alphatesting isimplicitly disabled during
linear frame buffer writesif the pixel pipeline is bypassed (see Chapter 11).

Stenciling

Stenciling is not directly supported by the Voodoo Graphics family graphics hardware. However, a stencil
effect is possible with depth buffering by setting the depth buffer (using linear frame buffer writes) to its
minimum value in the areas to be stenciled out.
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In This Chapter

The discussion thus far has described how to produce a polygon that isfilled with a solid color or
smoothly shaded from one color to another. This chapter describes the process of filling a polygon with a
pattern: abrick wall pattern, for example, or aveined marble texture.

Texture mapping is a technique in which atwo-dimensional image, a texture map, is pasted like wall-
paper onto athree-dimensiona surface. This allows for very realistic images without requiring the use of
many small detail polygons. The Voodoo Graphics hardware provides accel erated perspective-correct
texture mapping.

You will learn abouit:

textures and texels and how they relate to pixels
magnification and minification

point sampling and bilinear filters

texture clamping

specifying magnification and minification filters and texture clamping options

4 4 4 4 4 <«

adding, modulating, and blending textures in the texture combine unit

A Look at Texture Mapping and Glide

A texture map is asguare or rectangular array of texture elements, or texels, that are addressed by (s, 7)
coordinates. The TMU, or texture mapping unit, contains memory for storing textures, circuitry to map
texelsto pixels, and more circuitry to add, scale, and blend texels.

A Voodoo Graphics subsystem includes at least one TMU and may have as many asthree. Figure 9.1
shows the connectivity. Each TMU will produce an RGBA color from its own texture memory that will
be pairwise combined to produce a texture RGBA color that can be selected as an input to the color
combine and a pha combine units described in Chapters 5 and 6.

Texture memory is described in the next chapter. In this chapter, we assume that textures are already
loaded into texture memory and concern ourselves with configuring the texel selection function and using
the texture combine unit.
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Figure 9.1 TMU connectivity.
A TMU contains texture memory, texture selection circuitry, and a texture combine unit. The texture combine units
have other and local datapaths just like the color and alpha combine units.
(a) A system with one TMU extracts the appropriate texel or texels from texture memory, minifies or magnifies it,
filters it, and clamps or wraps it according to texture map parameters or local overrides. The texture combine
unit can scale the result.

(b) When the system has two TMUs they are chained together. The result from one TMU becomes an input to the
texture combine unit of the next one and the texture RGBA that results is a user-selectable combination of the
two textures.

(c) A three TMU system continues the cascading of texels.

(a) a texture pipeline  (b) a texture pipeline with two TMUs (¢) a texture pipeline with three TMUs
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Glide Textures and Texels

Textures are square or rectangular arrays of data; an individual value within atextureis called a texel and
has an (s, ) address. The s and ¢ texel coordinates are in the range [-32768..32767] and must be divided
by w before storing them in a Grvertex structure as oow (one over w), sow (s over w) and tow (¢ over w).
Thelarge range for s and ¢ allow atexture to be repeated many times across a polygon. A large number of
fraction bits allow for precise s and ¢ representation and iteration even when divided by alarge w value.

Each TMU in the system maintains its own oow, sow, and tow variables. The Grvertex structure reflects
this architecture by keeping oow, sow, and tow in an array, tmuvtx, that isindexed by the TMU number.
Normally, they will all be the same. However, projected textures have a different w value than non-
projected textures. Projected textures iterate g/w where w is the homogeneous distance from the eye and
g isthe homogeneous distance from the projected source.
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typedef struct {
float oow;
float sow; [* s/w texture coordinate */
float zow; [* tlw texture coordinate */
} GrTmuVertex;
typedef struct {
float x, y, z; * x, y, z of screen space. z isignored */
float ooz;
float oow; /* 1w (used for w buffering) */
float r, g, b, a; [* red, green, blue, and alpha ([0..255.0]) */
GrTmuVertex tmuvtx[ GLIDE_NUM_TMUJ;
} GrVertex;

By default, Glide assumes that all w coordinates (oow) in the Grvertex structure are identical, and that all
s and ¢ coordinates (sow and fow) are also identical. These assumptions significantly reduce the amount
of time spent computing gradients for s, 7, and w, and transferring data to the graphics hardware. If these
assumptions are false, however, the application must aert Glide that specific values in the Grvertex
structure are different and that gradients need to be computed for these values. The grHints() routineis
provided for this purpose.

void grHints( GrHints_t hintType, FXU32 hintMask )

grHints() informs Glide of special conditions regarding optimizations and operation. Each hintType
controls adifferent optimization or mode of operation. The GR_HI NT_STWHI NT hint type controls stw
parameter optimization and specifies Glide' s source for the parameter values. Hints of a given type are
ORed together into a hintMask.

Thereisan implicit ordering of TMUs within Glide, starting with TMUOQ, followed by TMU1, and
TMUZ2. By default, Glide reads sow and tow values from the Grvertex structure for the first TMU that is
active. Whenever s and ¢ coordinates are read, they are transmitted to all subsequent TMUs. For example,
if texturing is activein TMU1 but not active in TMUQ, then sow and tow values are read from tmuvix/1]
and broadcast to TMU1 and TMUZ2. Once sow and fow values are read, they will not be read again unless
ahint is specified. If one of the subsequent units has a unique or different parameter value, then a hint
must be used. If ahint is specified, the parameter value will be read again and sent to the specified unit
and all other unitsfollowing it.

Hints are also used to help Glide find w coordinates. The rule for the w coordinate is very simple: the w
coordinate is read from the Grvertex structure and broadcast to all TMUs unlessaw hint is specified. If a
w hint is specified and if w buffering or table-based fog is enabled, then tmuvix/].oow structure
corresponding to the TMU mentioned in hintMask is read and broadcast to all subsequent TMUs.

The hintMask for GR_HI NT_STWHI NT hintsis created by ORing together the stw hints that are shown in
Table9.1.
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Table 9.1 The stw hints.

The grHints() function alerts Glide to situations that differ from the norm. The stw hints indicate that the sow, tow,
and oow values in the tmuvtx arrays are not the same as the ones in the GrVertex itself. A hintMask is composed by
ORing together a collection of the hints listed below.

hint description

GR_STWHI NT_ST_DI FF_TMJ0 s and ¢ for TMUO are different than previous values
GR_STWHI NT_ST_DI FF_TMJL s and ¢ for TMU1 are different than previous values
GR_STWHI NT_ST_DI FF_TMJ2 s and ¢ for TMU2 are different than previous values
GR_STVH NT_W DI FF_TMJ0 w for TMUQ is different than previous w values
GR_STWHI NT_W DI FF_TMJ1 w for TMUL is different than previous w values
GR_STVH NT_W DI FF_TMJ2 w for TMU2 is different than previous w values

Texel Coordinate Systems

All square texture maps have their origin at (s,¢) = (0,0) and their opposite corner at (256,256). Thisis
true even for a1l 1 texture map. Note that these texture coordinates are before division by w. Texture
coordinate (0.5, 0.5) represents the exact center of the first texel in a 256x256 texture map and

(255.5, 255.5) represents the exact center of the texel in the opposite corner; (256.5, 256.5) wraps to the
center of the first texel. In general, the center of the first texel in an 2"x2" texture map (where OEn£8) is
at (128/2", 128/2").

Rectangular textures also have their origin at (0, 0). If the rectangular textureis wider than tall (s islarger
than ) then the opposite corner is at (256, n) where n/256=t/s. For example, if the textureis four times as
wide as high, then n=64. Likewise, if the rectangular texture istaller than it is wide, the opposite corner
isat (n, 256) and n/256=s/t. Therefore, the longer texture axis always has texture coordinates running
from O to 256, while the shorter texture axisis proportionally smaller. Table 9.2 shows the texel
coordinates of the first and last pixel for all supported aspect ratios and texture map dimensions.
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Figure 9.2 Mapping texels onto texture maps.

The textures shown below all have a 1:2 aspect ratio, and range in size from 32" 64 to 1" 2. In each one, the texture
coordinates (s,t) range from (0,0) to (128,256). Thus, the texels get bigger (in terms of coverage of coordinate
space) as the texture map size decreases. The degenerate case of 1" 1 is shown for completeness.

256 256 256 256
0 0 0 0
128 128 128 128
32" 64 texture 16" 32 texture 8 16 texture 4 8 texture
each texel is 4 each texel is 8 each texel is 16 each texel is 32
texture coordinates texture coordinates texture coordinates texture coordinates
square square square square
256 256 256
0 0 0
128 128 128 256
2" 4 texture 1" 2 texture 1" 1 texture
each texel is 64 each texel is 128 single texel degenerate case
texture coordinates texture coordinates
square square

All texture mapping capabilities of the Voodoo Graphics subsystem are handled in the TMU, which
includes logic to support true-perspective texture mapping (dividing every pixel by w), per-pixe level-of-
detail (LOD) mipmapping, and bilinear filtering. Additionally, TMU implements texture mapping
techniques such as detail texture mapping, projected texture mapping, and trilinear filtering. While point
sampled and bilinear filtering are single pass operations, single TMU systems require two passes for
trilinear texture filtering. Multiple TMU systems support trilinear texture filtering as a single-pass
operation. Note that regardless of the number of TMUs in a given Voodoo Graphics system, thereisno
performance difference between point-sampled and bilinear filtered texture-mapped rendering, and no
performance penalty for per-pixel mipmapping or perspective correction.
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Table 9.2 Mapping pixels to texture coordinates in texture maps.

The texel coordinate on the long side of a texture map always goes from 0 to 256, regardless of the size of the texture
map. Since texels are square, the texture coordinate on the short side of the texture map is scaled accordingly: it
ranges from 0 to 256- (the ratio of the short to the long side). The degenerate cases are shaded.

if the aspect ratio is | and the texture map size is a texel is the center of the first texel is at the center of the last texel is at
11 256x256 1x1 (.5, .5) (255.5, 255.5)
(a square texture) 128x128 2x2 1,1 (255, 255)
64x64 4x4 (2,2 (254, 254)
32x32 8x8 4, 4) (252, 252)
16x16 16x16 (8, 8) (248, 248)
8x8 32x32 (16, 16) (240, 240)
4x4 64x64 (32, 32) (224, 224)
2x2 128x128 (64, 64) (192, 192)
1x1 256x256 (128, 128) (128, 128)
2:1or1:2 2:1 1:2 2:1 1:2
(the long side is 256x128 128%x256 1x1 (.5, .5) (255.5, 127.5) | (127.5, 255.5)
twice the length of 128x64 64x128 2x2 1,1 (255, 127) (127, 255)
the short side) 64x32 32x64 4x4 (2,2 (254, 126) (126, 254)
32x16 16x32 8x8 4, 4) (252, 124) (124, 252)
16x8 8x16 16x16 (8, 8) (248, 120) (120, 248)
8x4 4x8 32x32 (16, 16) (240, 112) (112, 240)
4x2 2x4 64x64 (32, 32) (224, 96) (96, 224)
2x1 1x2 128x128 (64, 64) (192, 64) (64, 192)
1x1 1x1 (128, 128) (128, 128) (128, 128)
4:1or 14 4:1 1:4 4:1 1:4
(the long side is 256%x64 64%256 1x1 (.5, .5) (255.5, 63.5) (63.5, 255.5)
Jour times the 128x32 32x128 2x2 1,1 (255, 63) (63, 255)
length of the short 64x16 16x64 4x4 (2,2 (254, 62) (62, 254)
side) 32x8 8x32 8x8 4, 4) (252, 60) (60, 252)
16x4 4x16 16x16 (8, 8) (248, 56) (56, 248)
8x2 2x8 32x32 (16, 16) (240, 48) (48, 240)
4x1 1x4 64x64 (32, 32) (224, 32) (32, 224)
2x1 1x2 (64, 64) (192, 64) (64, 192)
1x1 1x1 (128, 128) (128, 128) (128, 128)
81lor1.8 8:1 1:8 8:1 1:8
(the long side is 256%x32 32x256 1x1 (.5, .5) (255.5, 31.5) (315, 255.5)
eight times the 128x16 16x128 2x2 1,1 (255, 31) (31, 255)
length of the short 64x8 8x64 4x4 (2,2 (254, 30) (30, 254)
side) 32x4 4x32 8x8 4, 4) (252, 28) (28, 252)
16x2 2x16 16x16 (8, 8) (248, 24) (24, 248)
8x1 1x8 32x32 (16, 16) (240, 16) (16, 240)
4x1 1x4 (32, 32) (224, 32) (32, 224)
2x1 1x2 (64, 64) (192, 64) (64, 192)
1x1 1x1 (128, 128) (128, 128) (128, 128)
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Texture Filtering

Texture maps are square or rectangular, but after being mapped to a polygon or surface and transformed
into screen coordinates, the individual texels of atexture map rarely correspond to screen pixelson a
one-to-one basis. Depending on the transformations used and the texture mapping applied, asingle pixel
on the screen can correspond to anything from atiny portion of atexel, resulting in magnification, to a
large collection of texels, resulting in minification. In either case it is unclear exactly which texel values
should be used and how they should be averaged or interpolated. Consequently, Glide allows an
application to choose between two types of filtering: point sampling and bilinear interpolation.

Figure 9.3 Point sampling and bilinear filtering.

Glide supports two methods of choosing a texel within a texture map. If the pixel maps to less than one texel, as
shown in diagram (a), texture magnification is called. If the pixel maps to more than one texel, as shown in diagram
(b), then minification is required. The user can select between point-sampling and bilinear filtering during the
minification or magnification. When using point sampling, the texel whose (s, t) coordinates are nearest the center
of the pixel is chosen. Bilinear filtering computes a weighted average of the 2 by 2 array of texels that lie nearest the
center of the pixel. The magnification and minification filters are independent: one can specify point sampling and
the other bilinear filtering, or both can be the same.

. texel . texel
pixel pixel
M v [« v
Hf— pixel center qd_—— pixel center
(a) magnification: (b) minification: (c) point sampled filter: (d) bilinear filter: a weighted
the pixel is smaller the pixel is larger the texel nearest the pixel average of the four texels
than a texel than a texel center nearest the pixel center

Magnification of atexture map occurs when atexture map is “blown up” on screen (see Figure 9.3(a)).
For example, if a64” 64 texture map is rendered onto a polygon that covers 128" 128 pixels on the
screen, an average of four pixelswill cover each texel in the texture map, causing noticeable blockiness.
The Voodoo Graphics hardware supports bilinear interpolation of texelsthat greatly reduces the
blockiness and pixelization of texture magnification.

Minification of atexture map occurs when atexture map is compressed on screen (see Figure 9.3(b)). For
example, if a64” 64 texture map is rendered onto a polygon that only covers 16” 16 pixels on the screen,
an average of 16 texelswill cover each pixel on the screen. Thisleadsto disturbing artifacts known as
“texture aliasing”. The Voodoo Graphics hardware remedies this problem by supporting both
mipmapping and filtering.

If aVoodoo Graphics subsystem is performing point sampled filtering, the texel with coordinates nearest
the center of the pixel being rendered is used to generate the color output on the screen (see Figure
9.3(c)). Point sampling, also known as nearest neighbor sampling, may result in pixelization and
blockiness during magnification and “texture jerking” during minification.

One way of reducing the blockiness of point sampling is by linearly interpolating between the colors of
the texels that are adjacent to the source pixel, which results in a much smoother image than point
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sampling (see Figure 9.3(d)). Bilinear interpolation is performed by the Voodoo Graphics hardware with
no incurred additional performance overhead.

Minification and magnification filtering are controlled by the Glide function grTexFilterMode() and are
independently selectable.

void grTexFilterMode( GrChiplD_t tmu,
GrTextureFilterMode_t minFilterMode,
GrTextureFilterMode_t magFilterMode

)

The first argument, tmu, selects the texture mapping unit that the filter selections apply to. Valid values
are GR_TMU0, GR_TMUL, and GR_TMJ2. The minification filter, minFilterMode, can be either
GR_TEXTUREFI LTER_PO NT_SAMPLED Or GR_TEXTUREFI LTER_BI LI NEAR, as can the magnification filter,
magFilterMode. The magnification filter is used when the LOD calculated for apixel indicates that the
pixel coverslessthan one texel. Otherwise, the minification filter is used.

Texture Clamping

When texture s and ¢ coordinates have overflowed during a texture mapped rendering operation, the
hardware can either clamp the coordinates to a maximum value or, alternatively, wrap them around. This
choice is up to the developer depending on whether tiled or non-tiled texture mapping is desired. Texture
clamping also alows for interesting effects, for example, out of range s and ¢ coordinates can be passed
with avery small texture in alarge polygon. Such an approach will effectively place the texture
somewhere in the interior of the polygon with the rest of the polygon rendered with the border color of
the texture. This can potentialy save texture memory if small composite textures are used on a
predominantly monotone surface, e.g., awindow on the side of a space ship.

Figure 9.4 Texture clamping.

The texture clamp mode specifies what to do when texture coordinates are outside the range of the texture map. If
wrapping is enabled, then texture maps will tile, i.e., values greater than 255 will wrap around to 0. If clamping is
enabled, then texture map indices will be clamped to 0 and 255. Both modes should always be set to
GR_TEXTURECLAMP_CLAMP when using projected textures.

The texture on the left is to be mapped onto the rectangle, with
the texture origin in the interior of the rectangle. The clamp
mode settings for s and t affect the final result, as shown below.

(b) clamp s, wrap ¢ (c) wraps, clamp¢ (d) clamp both s and ¢
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Note that s and ¢ coordinates may be individually wrapped or clamped, as shown in Figure 9.4.

void grTexClampMode( GrChiplD_t tmu,
GrTextureClampMode_t sClampMode,
GrTextureClampMode_t tClampMode

)

The first argument, tmu, selects the TMU in which the mipmap resides and may be GR_TMJ0, GR_TMJ1, Or
GR_TMX2. The other two arguments set the clamping mode for s and ¢ individually; they may be set to
either GR_TEXTURECLAMP_CLAMP OF GR_TEXTURECLAMP_WRAP. If wrapping is enabled, texture maps will
tile: values greater than 255 will wrap around to 0. If clamping is enabled, texture map indices will be
clamped to 0 and 255. Both modes should always be set to GR_TEXTURECLAMP_CLAMP When using
projected textures.

Mipmapping

A mipmap is an ordered set of texture maps representing the same texture; each texture map has lower
resolution than the previous one, and istypically derived by filtering and averaging down its predecessor.
LODO is the name given to the texture with the highest resolution in the mipmap, where LOD stands for
“level of detail”. The LOD1 texture, if defined, is half as high and half as wide, and defines one-quarter
as many texels as LODO. There can be up to nine texture maps in a mipmap. Figure 9.5 gives a graphical
representation of a complete mipmap. The texture maps can be square or rectangular, but each onein the
mipmap must have the same aspect ratio. See Table 9.3.

The next chapter will describe Glide functions that manage texture memory and load textures and
mipmaps. In this chapter, we will assume that the proper textures are already loaded; we will focus on the
texel selection and texture combine capabilities.

Table 9.3 Texture sizes and shapes.

A mipmap can be composed of up to nine textures (the LOD names are shown in column 1) and can be square or
rectangular (the aspect ratios are listed in row 1). All textures within a mipmap must have the same aspect ratio.
The shaded entries in the table below have degenerate aspect ratios: one or both dimensions have been reduced to
one texel.

GR_ASPECT 2x1 or GR_ASPECT 4x1 or GR_ASPECT_8x1 or
GR_ASPECT_1x1 GR_ASPECT 1x2 GR_ASPECT 1x4 GR_ASPECT 1x8
CGR_LOD_256 | 256x256 256x128 or 128x256 | 256%64 or 64%256 256%32 or 32%256
GRLOD_128 | 128x128 128%x64 or 64x128 128x32 or 32x128 128%16 or 16x128
GR_LOD 64 | 64x64 64x32 or 32x64 64x16 or 16x64 64x8 or 8%64
GRLOD 32 | 32x32 32x16 or 16x32 32x8 or 8x32 32x4 or 4%32
RLOD 16 | 16x16 16%8 or 8x16 16x4 or 4x16 16%2 or 2x16
RLOD 8 | 8x8 8x4 or 4%8 8x2 or 2%8 8x1 or 1x8
GRLOD_4 | 4x4 4%2 or 2%4 4x1 or 1x4 4x1 or 1x4
RLOD 2 2x2 2x1 or 1x2 2x1 or 1x2 2x1 or 1x2
GR LOD 1 1x1 1x1 1x1 1x1
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Figure 9.5 Mipmaps.

A mipmap is an ordered set of texture maps representing the same texture. Each texture map in the set has lower

resolution than the previous one, and is typically derived by filtering and averaging down its predecessor.

GR_LOD_256 is the name given to the texture with the highest resolution in the mipmap, where LOD stands for
level of detail . The GR_LOD_128 texture is half as high and half as wide, and defines one-quarter as many texels

as its predecessor, and so on. The mipmap can contain up to nine texture maps, as shown. The texel addresses range

from (0,0) to (256,256) in all nine textures, as described in Table 9.2.

GRLOD 2 GRLOD 1
GR_LOD_4

N

GR_LOD 256 GR LOD 8 ]

—
GR LOD 16 —».

GR_LOD_32

GR_LOD 64

GR_LOD_128

The hardware computes an LOD for every pixel. The integer part of the LOD is used to choose one (or

two) of the texturesin the current mipmap; the fractional part is used to blend two mipmap levelsif
desired.

Nearest mipmapping. The mipmap level is chosen based on which mipmap is nearest to a pixel’s
LOD. Nearest mipmapping may suffer from avisual artifact known as “mipmap banding” that
manifests itself as visible bands between LOD levels appearing in a texture mapped image.

Nearest dithered mipmapping. To offset the effects of mipmap banding, the hardware can dither
between adjacent texture maps within a mipmap. This technique, known as nearest dithered
mipmapping, aleviates the effects of mipmap banding to a great extent, at the cost of
performance degradation for larger texture maps.
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void grTexMipMapMode( GrChiplID_t tmu, GrMipMapMode_t mode, FxBool LODblend)

Mipmapping style is controlled by grTexMipMapMode(). The first argument, tmu, designates the TMU to
modify. The second argument, mode, selects the mipmapping style; valid values are GR_M PMAP_DI SABLE,
GR_M PMAP_NEAREST, and GR_M PMAP_NEAREST_DI THER. The final argument, LODblend, enables or
disables blending between levels of detail in the mipmap. GR_M PMAP_NEAREST should be used when
LODblend 1S FXTRUE.

Using dithered mipmapping with bilinear filtering results in images amost indistinguishable from images
rendered with trilinear filtering techniques. On the down side, dithering of the mipmap levels reduces the
peak fill rate by approximately 20% to 30%, depending on the scene being rendered. Since the presence
or absence of mipmap dithering is not very noticeable, it is very hard to determine the cause of the
performance loss. Therefore, Glide disallows this mode by default. To allow

GR_M PMAP_NEAREST_DI THER mode to be used, call grHints().

void grHints( GrHints_t hintType, FXU32 hintMask )

grHints() informs Glide of special conditions regarding optimizations and operation. Each AintType
controls adifferent optimization or mode of operation. Hints of a given type are ORed together into a
hintMask. The default hintMask is 0x00.

The GR_HI NT_ALLOWN M PMAP_DI THER hint type controls whether or not GR_M PMAP_NEAREST_DI THER
mode can be used. If hintMask is zero, then GR_M PMAP_NEAREST DI THER mode cannot be enabled with
grTexMipMapMode(). Thisisthe default. To alow GR_M PMAP_NEAREST DI THER mode to be used,
specify anon-zero hintMask with the hint, as shown below

grHi nts( GR_H NT_ALLOW M PVAP_DI THER, 1);

If you are considering using dithered mipmapping, measure performance with and without it. The trade-
off isthat there may be visible mipmap bands, which can be eliminated by using trilinear mipmapping.
On multiple TMU boards this is a one-pass operation, otherwise it requires two passes. Alternatively,
dithered mipmapping can be allowed but disabled for most polygons and enabled only for those polygons
that requireit.

If there is no performance difference with and without dithered mipmapping, but the image quality did
not improve with dithered mipmapping, don’t use it. As you enhance or extend your program, you run the
risk of creating a situation in which performance loss due to dithered mipmapping could occur. It is best
to selectively enable dithered mipmapping just for the polygons that requireit.

Mipmap Blending
To reduce the effects of mipmap banding the hardware can perform aweighted blend between adjacent

mipmap levels. This blend is a single pass operation on two TMU configurations and a two-pass
operation on asingle TMU configurations.

Mipmap blending can be performed independently of the type of minification and magnification filtering
being performed. Since mipmap blending is actually aform of texture combining, it is controlled by
proper set up of the texture combine function.
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Trilinear Filtering

The combination of bilinear filtering, mipmapping, and mipmap blending is generaly known as trilinear
mipmapping. Trilinear mipmapping provides maximum visual quality by performing inter- and intra-
mipmap blending. However, trilinear mipmapping is atwo-pass operation on Voodoo Graphics
subsystems with asingle TMU. Nearest dithered mipmapping resultsin nearly the same visual quality as
trilinear texture mapping, however, it is always a single pass operation and thus achieves consistent
performance across awider range of hardware.

LOD Bias

Glide allows an application to control an arbitrary factor known as LOD bias; it affects the point at which
mipmapping levels change. Increasing values for LOD bias makes the overall images blurrier or
smoother. Decreasing values make the overall images sharper. Selection of LOD biasis aqualitative
judgment that is application and texture dependent. LOD bias can be any value in the range [-8.0..7.75].
However, the hardware will snap LOD biasto the nearest quarter. Thereisno “best” setting for the LOD
bias; it isavery subjective control. Some textures look better if sharper than “normal,” while others ook
better blurred.

The LOD biasis controlled with the function grTexLodBiasValue(). The first argument, tmu, identifies the
TMU to modify; valid values are GR_TMJ0, GR_TMJL, and GR_TM2. The second argument, bias, isa
signed floating point value in the range [-8..7.75].

void grTexLodBiasValue( GrChiplD_t tmu, float bias )

grTexLodBiasValue() changes the current LOD bias value, which allows an application to maintain fine
grain control over the effects of mipmapping, specifically when mipmap levels change. The LOD bias
valueis added to the LOD calculated for apixel and the result determines which mipmap level to use. An
LOD of # is calculated when a pixel covers approximately 2" texels. For example, when a pixel covers
approximately onetexel, the LOD is 0; when apixel coversfour texels, the LOD is 1; when a pixel
covers 16 texels, the LOD is 2. Smaller LOD values make increasingly sharper images that may suffer
from aliasing and moiré effects. Larger LOD values make increasingly smooth images that may suffer
from becoming too blurry. The default LOD bias valueis 0.0.

During some specia effects, an LOD bias may help image quality. If an application is not performing
texture mapping with trilinear filtering or dithered mipmapping, then an LOD bias of +.5 generally
improves image quality by rounding to the nearest LOD. If an application is performing dithered
mipmapping (i.e. grTexMipMapMode() iSGR_M PMAP_NEAREST_DI THER), then an LOD bias of 0.0 or +.25
generally improves image quality. An LOD bias value of 0.0 isusually best with trilinear filtering.

Combining Textures

The Voodoo Graphics hardware can combine multiple textures together simultaneously. This allows for
interesting effects including detail texturing, projected texturing, and trilinear texture mapping.
Combining two textures requires a single pass with two TMUSs or two passes with asingle TMU.
Combining two texturesis controlled with the function grTexCombine().

Each TMU selects an appropriate texel for the current rendering mode and filtersit (point sampled or
bilinear, as determined by a mipmap’ s associated filtering mode or the most recent call to
grTexFilterMode()), then passes the texel on to the texture combine unit. The texture combine unit
combines the filtered texel with the incoming texel from the other TMUSs, according to the user-
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selectable formula defined by the most recent grTexCombine() function. The simplest combine function is
a simple passthru that implements decal texture mapping. However, more elaborate texture mapping
combinations can be used to implement useful effects such as trilinear mipmapping, composite texturing,
and projected textures.

void grTexCombine( GrChipID_t tmu,
GrCombineFunction_t rgbFunction,
GrCombineFactor_t rgbFactor,
GrCombineFunction_t alphaFunction,
GrCombineFactor_t alphaFactor,
FxBool rgblnvert,
FxBool alphalnvert

)

The first argument names the TMU to which the rest of the arguments apply. Valid values are GR_TM0,
GR_TMUJ1, and GR_TMU2. The next two arguments, rgbFunction and rgbFactor, describe the combining
function and scale factor for the red, green, and blue components produced by the texel selection
circuitry of tmu. Similarly, alphaFunction and alphaFactor define the combining function and scale
factor for the alpha component. Table 9.4 lists the possible combining functions; the scale factors are
detailed in Table 9.5. In both tables, ¢, and a,,.; represent the color components generated by indexing
and filtering from the mipmap stored on tmu; ¢,y and a,. represent the incoming color components
from the neighboring TMU (refer to Figure 9.1).

The texture combine units compute the function specified by the rgbFunction and alphaFunction
combine functions and the rgbFactor and alphaFactor combine scale factors on the local filtered texel
and the filtered texel from the upstream TMU. Theresult is clamped to [0..255], and then a bit-wise
inversion may be applied, controlled by the rgbInvert and alphalnvert parameters. Inverting the bitsin an
8-hit color component is the same as computing (255 — ¢).

grTexCombine() also keeps track of required vertex parameters for the rendering routines.
GR_COMVBI NE_FACTOR_NONE is provided to indicate that no parameters are required. Currently it isthe
same as GR_COVBI NE_FACTOR_ZERO.

Copyright O 1996 3Dfx Interactive, Inc. 89
Proprietary and Confidential Printed 07/30/97 7:52 AM



Glide 2.2 Programming Guide

Table 9.4 Texture combine functions.

The rgbFunction and alphaFunction arguments to grTexCombine() can take on any of the values listed in the first
column. The second and third columns show the computed color or alpha value for each choice. iy and apcar
represent the color components generated by indexing and filtering from the mipmap stored on tmu; ¢,y and @,
represent the incoming color components from the neighboring TMU (refer to Figure 9.1).

texture combine function

(prefixed with GR_COVBI NE_FUNCTI ON )

computed color if specified as
rgbFunction

computed alpha if specified
as alphaFunction

ZERO 0 0
LOCAL Clocal QAjocal

L (I‘AL_AL PHA a/ocal a-loca/
SCALE_OTHER oo *gq
BLEND OTHER I Coter * 8o

SCALE_OTHER ADD_LOCAL

*
.f Cother + Clocal

*
f Qosher + Qjocal

SCALE_OTHER ADD_LOCAL_ALPHA

*
f Cother + Qocal

f* a-other + a-loca/

SCALE_OTHER M NUS_LOCAL

f* (Cother —_ Clocal)

f* (aother - alucal)

BLEND

SCALE_OTHER M NUS_LOCAL_ADD_LOCAL

f* (Cm‘her - cloca/) + Clocal
° f* Cother (1 _f) * Clocal

f* (aother - a/ocal) + Qjocal
° f* Qopher + (1 _f) * Qocal

SCALE_OTHER M NUS_LOCAL_ADD_LOCAL_ALPHA

f* (Cm‘her - cloca/) + Qiocal

f* (aother — a/ocal) + Qocal

BLEND LOCAL

SCALE_M NUS_LOCAL_ADD LOCAL

f* (_ Clocal) + Ciocal
0 (1 _f) * Clocal

f* (_ alucal) + Qjocar
° (1 _.f) * Qocal

SCALE_M NUS_LOCAL_ADD LOCAL_ALPHA

f* (_ Clocgl) + alocﬁl

f* (_alocgl) + alocﬁl

Table 9.5 Scale factors for texture color generation.

The rgbFactor and alphaFactor arguments to grTexCombine() can take on any of the values listed in the first
column. The second and third columns show the scale factor that will be used. cjyeq; and @,,.q epresent the color
components generated by indexing and filtering from the mipmap stored on tmu; C,gye, and 8.,y represent the
incoming color components from the neighboring TMU (refer to Figure 9.1).
IfGR_COMBINE_FACTOR_DETAIL_FACTOR or GR_COMBINE_FACTOR_ONE_MINUS_DETAIL_FACTOR is specified,
the scale factor employs the detail blend factor, called b in the table. See the discussion of grTexDetailControl() in
the next section for more information.

IfGR_COMBINE_FACTOR_LOD_FRACTION or GR_COMBINE_FACTOR_ONE_MINUS_LOD_FRACTION is specified, the

scale factor employs the fractional part of the computed LOD, called | in the table. See the discussion about
computing an LOD earlier in this chapter for more information.

texture combine factor (prefixed with scale factor f if specified scale factor f if specified
CR _COMBI NE_FACTOR ) as rgbFactor as alphaFactor
NONE unspecified unspecified
ZERO 0 0

LOCAL Cloca// 255 alocall 255
OTHER_ALPHA Augner | 255 Aopher | 255
L(IZAL_AL PHA AJocal | 255 Qjocal /255
DETAI L_FACTCR b b

LOD_FRACTI ON | |

ONE 1 1

ONE_M NUS_LOCAL 1—cpea ! 255 1—au! 255
ONE_M NUS_OTHER_ALPHA 1 —aype | 255 1—a,m. | 255
ONE_M NUS_LOCAL_ALPHA 1—ay,..! 255 1 -8/ 255
ONE_M NUS_DETAI L_FACTOR 1-b 1-b

ONE_M NUS_LOD_FRACTI ON 1-1 1—]|
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Examples of Configuring the Texture Pipeline

The following code examplesillustrate how to configure the texture pipeline for different texture
mapping effects. The examples all assume that appropriate textures have been loaded and the addressing
mechanism in the TMU points to the right place. This processis described in detail in the next chapter;
the examples will be repeated there, with the texture loading segments filled in. The examples also
assume that grColorCombine() and/or grAlphaCombine() utilize texture mapping by setting the scale
factor to GR_COVBI NE_FACTOR_TEXTURE_ALPHA Or GR_COMVBI NE_FACTOR_ONE_M NUS_TEXTURE_ALPHA.

The examplesin this chapter attempt to cover most of the texture mapping techniques of interest. Table
9.6 shows the principle texture mapping algorithms and describes the implementation in terms of
available TMUs. We show examples utilizing one or two TMUs, mipmaps split across two TMUs, and a
two-pass application.

Table 9.6 The number of TMUs affects texture mapping functionality.

The number of texture mapping units determines the performance of advanced texture mapping rendering. The table
below describes the number of passes required to implement the texture mapping techniques supported by the
Voodoo Graphics subsystem. Note that in a system with three TMUs, only the most complicated algorithm (trilinear
filtering with mipmapping, projected, and detail textures) requires more than one pass.

Texture Mapping Voodoo Graphics Performance
Functionality One TMU Two TMUs Three TMUs
Point sampling with mipmapping one pass one pass one pass
Bilinear filtering with mipmapping one pass one pass one pass
Bilinear filtering with mipmapping and projected textures two pass one pass one pass
Bilinear filtering with mipmapping and detail textures two pass one pass one pass
Bilinear filtering with mipmapping, projected and detail textures not supported two pass one pass
Trilinear filtering with mipmapping two pass one pass one pass
Trilinear filtering with mipmapping and projected textures not supported two pass one pass
Trilinear filtering with mipmapping and detail textures not supported two pass one pass
Trilinear filtering with mipmapping, projected, and detail textures | not supported two pass two pass

Configuring the Texture Pipeline for Decal Texture Mapping

The simplest texture mapping technique is decal mapping, which applies a texture to a polygon without
modification. Thefirst two entriesin Table 9.6 are decal mapping, differing only in the choice of
minification and magnification filters. Decal mapping is a single pass operation on all Voodoo Graphics
configurations.

Example 9.1 Setting up simple (decal) texture mapping.
The following code sets up the texture pipeline so that a texel is placed into the pixel pipeline without modification.
The code assumes that there is a single TMU, that a texture has already been loaded into texture memory with the
texture base address pointing to it, and that the color combine unit is configured to use the texture color and/or
alpha value.

gr TexConbi ne( GR_ TMJ0, GR_COMBI NE_FUNCTI ON_LOCAL, GR_COMBI NE_FACTOR NONE,

GR_COVBI NE_FUNCTI ON_LOCAL, GR_COMBI NE_FACTOR_NONE,
FXFALSE, FXFALSE );
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Configuring the Texture Pipeline for Projected Texture Mapping

Interesting spotlight effects are possible by multiplying two texture maps against each other. For
example, one texture map can be an intensity map (e.g. a spotlight) and the other can be a source texture.
Recall that the texture RGBA values from the “ upstream” TMU1 become the other input to the
“downstream” TMUO. In Example 9.2, the spotlight texture is upstream, the source textureis
downstream and the resulting RGBA oxure = RGBA g 0rign X RGBA jource-

Example 9.2 Applying a modulated (projected) texture.

The code segment below assumes that the texture maps have already been loaded: an intensity map for the spotlight
in TMUO and a source texture in TMUI. The resulting texture RGBA is a product of the texels chosen from the two
textures. The color combine unit must be configured to use the output from the texture pipeline.

gr TexConbi ne( GR_TMJO,
GR_COMBI NE_FUNCTI ON_SCALE_OTHER, GR_COMBI NE_FACTOR LOCAL,
GR_COMBI NE_FUNCTI ON_SCALE_OTHER, GR_COMBI NE_FACTOR_LOCAL,
FXFALSE, FXFALSE );

gr TexConbi ne( GR_TMJL,
GR_COMBI NE_FUNCTI ON_LOCAL, GR_COMBI NE_FACTOR_NONE,
GR_COMBI NE_FUNCTI ON_LOCAL, GR_COMBI NE_FACTOR_NONE,
FXFALSE, FXFALSE );

Configuring the Texture Pipeline for Trilinear Texture Mapping

When doing standard mipmapping, noticeable banding can occur because of the visible differencesin
mipmap levels. One way around thisis to blend two separate textures within a mipmap based on the LOD
(level of detail) fraction bits. Thisis known as mipmap blending which, in conjunction with bilinear
filtering, isreferred to astrilinear texture mapping. To perform trilinear texture mapping the application
must download a texture specifically for use with trilinear mipmapping and then use this texture only for
blended mipmapping operations.

When using texture combining to implement mipmap blending (i.e. trilinear texture mapping), mipmaps
must be created specifically for trilinear texture mapping on each Texelfx chip. The odd levels must be
downloaded to one chip and the even levels must be downloaded to another chip, and the mipmaps must
have the trilinear variable set to FXTRUE (see Chapter 10). The texture combine unit on the downstream
TMU is set differently, depending on whether it holds the even or the odd LODs. The upstream TMU
always uses decal mapping.

If atexture will be used for trilinear filtering and another combine operation (but not simultaneoudly), it
must be allocated and downloaded twice, once with LODblend set to FXTRUE and the other time with
LODblend set to FXFALSE.
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Example 9.3 Using trilinear filtering: mipmap blending with bilinear filtering.

The first code segment shows the texture combine unit configuration for trilinear mipmapping when the even LODs
are stored in TMUO and the odd ones are in TMU1. As usual, the code assumes that the textures are loaded, the
TMU base registers are pointing to them, and the color combine unit is configured to make use of the resulting
RGBA value.

gr TexConbi ne( GR_TMJO,
GR_COMVBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD LOCAL,
GR_COMBI NE_FACTOR_LOD_FRACTI ON,
GR_COMBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD LOCAL,
GR_COMBI NE_FACTOR_LOD_FRACTI ON,
FXFALSE, FXFALSE);

gr TexConbi ne( GR_TMJL, GR_COVBI NE_FUNCTI ON_LOCAL, GR_COMBI NE_FACTOR_NONE,
GR_COMBI NE_FUNCTI ON_LOCAL, GR_COVBI NE_FACTOR_NONE,
FXFALSE, FXFALSE );

This second code segment gives the proper grTexCombine() configuration when the situation is reversed. the odd
LOD:s in the mipmap are on TMUQ while the even ones are upstream on TMUI. Note the difference: the setting of
the rgblInvert and alphalnvert parameters. We make the same assumptions as above.

gr TexComnbi ne( GR_TMJO,
GR_COMBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD LOCAL,
GR_COMBI NE_FACTOR_ONE_M NUS_LOD_FRACTI ON,
GR_COMBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD LOCAL,
GR_COMBI NE_FACTOR_ONE_M NUS_LOD_FRACTI ON,
FXFALSE, FXFALSE);

gr TexConbi ne( GR_TMJL, GR_COVBI NE_FUNCTI ON_LOCAL, GR_COMBI NE_FACTOR_NONE,
GR_COMBI NE_FUNCTI ON_LOCAL, GR_COVBI NE_FACTOR_NONE,
FXFALSE, FXFALSE );

Configuring the Texture Pipeline for Composite Texturing

When a bilinear-filtered texture-mapped surface is viewed closely, the resulting image may be blurry and
overly soft. A technique known as composite texturing can remedy this blurriness. Composite texturing
blends two textures together based on their LOD values. One texture represents the overall texture ook,
and the other texture represents the details that should be seen when the texture is viewed closely. For
example, brick can be represented with atiled brick pattern. Asthe viewer moves closer to the wall, pits
and cracks in the bricks could begin to appear by blending a separate “ pits and cracks’ texture into the
brick based on the LOD value.

The Glide function grTexDetailControl() manages the various parameters involved when performing
composite texture mapping.

void grTexDetailControl( GrChiplID_t tmu, int detailBias, FXU8 detailScale, float detailMax )

The first argument specifies the TMU to modify; valid values are GR_TMU0, GR_ TMJL, and GR_ TM2. The
second argument, detailBias, controls where the blending between the two textures beginsand is an
integer in the range [-32..31]. The detailScale argument controls the steepness of the blend; valid values
are[0..7]. The scale is computed as 2°“'*““*_ The detailMax argument specifies the maximum blending
that will occur and isin the range [0..1].
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Detail texturing refers to the effect where the blend between two texturesin a texture combine unitisa
function of the LOD calculated for each pixel. grTexDetailControl() controls how the detail blending
factor, b, is computed from LOD. The detailBias parameter controls where the blending begins; the
detailScale parameter controls how fast the detail shows up; and the detailMax parameter controls the
maximum blending that occurs.

b = min( detailMax, max( 0, (detailBias—LOD) << detailScale ) [ 255.0)

where LOD isthe calculated LOD before grTexLodBiasValue() is added. The detail blending factor is
utilized by calling grTexCombine() with an rgbFunction of GR_COVBI NE_FUNCTI ON_BLEND and an
rgbFactor Of GR_COVBI NE_FACTOR DETAI L_FACTOR to compute:

Cout = b(cdetail texture) + (1_b) (cmainitexture)

An LOD of # is calculated when a pixel covers approximately 2° texels. For example, when a pixel
covers approximately onetexel, the LOD is O; when apixel coversfour texels, the LOD is 1; when a
pixel covers 16 texels, the LOD is 2.

Detail blending occursin the downstream TMU. Since the detail texture and main texture typically have
very different computed LODs, the detail texturing control settings depend on which textureisin the
downstream TMU.

Example 9.4 Creating a composite texture.

The code segment below creates a composite texture by adding details to the primary texture as the viewer
approaches. The primary texture is loaded onto TMUQ while the detail texture is upstream on TMUI. The scale
factor GR_COMBINE_FACTOR_DETAIL_FACTOR creates the composite on TMUO, while TMU1 does decal mapping.

gr TexComnbi ne( GR_TMJO,
GR_COWVBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD LOCAL,

GR_COMBI NE_FACTCR _DETAI L_FACTOR,

GR_COMBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD LOCAL,

GR_COMBI NE_FACTCR _DETAI L_FACTOR,

FXFALSE, FXFALSE);

gr TexConbi ne( GR_TMUL, GR_COVBI NE_FUNCTI ON_LOCAL, GR COVBI NE_FACTOR NONE,
GR_COMBI NE_FUNCTI ON_LOCAL, GR_COMBI NE_FACTOR NONE,
FXFALSE, FXFALSE );
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In This Chapter

In the last chapter, the routines that control texel selection and texture combining on the TMU were
presented. The discussion assumed that appropriate textures had already been loaded into the texture
memory. This chapter describes the multitude of texture formats that Glide supports and the routines that
download texture maps and manage texture memory.

You will learn about:

v thetexture formats supported by Glide, including special formats for compressed textures
and a color palette

how to alocate memory for al or part of amipmap
how to download al or part of a mipmap
how to designate a specific texture map as the texel source

how to split a mipmap across two TMUs

4 4 4 «4 4«

how to download and access a fragmented mipmap, one in which successive LODs occupy
non-contiguous texture memory

<

how to download a color palette or a narrow channel decompression table

v how to download atexture map from afile

Texture Map Formats

Texture memory is avaluable and limited resource. Glide supports a multitude of texture formats in order
to help the application programmer use texture memory wisely. Each format encodes the color
information for each texel in adifferent way; most compressit in some manner. Texels have either 8 or
16 hits, depending on the texture format, and are expanded to 32 bits before being sent to the texture
combine unit.

Glide uses symbolic names for the texture formats; the name describes the form of encoding for the color
information and the precision. For example,

Texture formats GR_TEXFMI_RGB_332 and GR_TEXFMI_ARGB_8332 use three bits each for red and
green and two bitsfor blue. An 8-bit alpha isincluded in the |atter.

Texture formats GR_TEXFMI_RGB_565, GR_TEXFMI_ARGB_1555, and GR_TEXFMI_ARGB_4444 provide
three different ways to compress three or four 8-bit color component valuesinto 16 bits. The first
format discards a/pha and uses five bits for red and blue, and six bits for green. The second one uses
five bits each for red, green, and blue, and saves the extra bit for alpha. The third format treats all
four components equally, using four bits for each.
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Texture formats GR_TEXFMI_| NTENSI TY_8, GR_TEXFMI_ALPHA_| NTENSI TY_44 and
GR_TEXFMI_ALPHA_| NTENSI TY_88 contain an intensity value rather than color components and can
model monochrome lighting effects. Example 9.2 in the previous chapter uses an intensity texture in
combination with another to produce a modulated texture.

Texture format GR_TEXFMI_ALPHA_8 contains only an 8-bit alpha value. When the texel is expanded
to a32-bit ARGB form, the alpha value is used for red, green, and blue as well.

Texture formats GR_TEXFMI_YI Q 422 and GR_TEXFMI_AYI Q 8422 use a narrow channel compression
technique to encode the color information. Each TMU has storage for two distinct decompression
tables that translate the encoded information into 32-bit colors. Narrow channel compressionis
described in detail below.

Texture formats GR_TEXFMI_P_8 and GR_TEXFMI_AP_88 implement a color palette, described bel ow.
Each TMU has room for one 256-entry color palette.

Table 10.1 shows all thirteen texture formats, detailing the format of atexel and the expansion to 32 bits
for each texture format.

Narrow Channel Compression

The Voodoo Graphics system provides aform of narrow channel compression that uses a YAB color
space based on intensity/chrominance information. The compression is based on an algorithm that
compresses a 24-bit RGB value to an 8-bit YAB format with little lossin precision. ThisYAB
compression algorithm is especially suited to texture mapping, as textures typically contain very similar
color components. The algorithm is performed by the host CPU, and YAB compressed textures are passed
to SST-1. The advantages of using compressed textures are increased effective texture storage space and
lower bandwidth requirements to perform texture filtering.

The YAB color space is represented with eight bits per pixel, and, like the GR_TEXTFMI_RGB_332
representation (see Table 10.1), it allocates specific fields in those eight bits to specific components: four
bitsfor Y and two bits each for A and B. For example, if the mapping from RGB to YAB is accomplished
by the following linear matrix transformation,

Y =0.299*red + 0.587* green + 0.114* blue
A = 0.596* red + 0.275* green + 0.321* blue
B = 0.212*red + 0.523* green + 0.311* blue Equation Set 1

itiscaled YIg compression. Two Glide texture formats utilize YIQ compression: GR_TEXTFMI_YI Q 422
and GR_TEXTFMT_AYI Q 8422.

Compression is achieved by quantizing the Y, A, and B space more coarsely than the RGB space (by
allocating fewer bitsto each channel in YAB space) without degrading the quality of the image
substantially. Also, instead of allocating the same number of bits to each channel (as is done when
compressing RGB values directly), we can allocate more bits to channels carrying more information, and
fewer bits otherwise. For example, when the image is represented in Y1Q space with the equations above,
itispossibleto allocate only 16 distinct valuesto Y, which carries the intensity variations in the image,
and only 4 distinct values for the 1 and Q channels, which carry the hue information. Hence, the original
24-bit RGB image can be represented in Y1Q space with only eight bits of information, reducing the
space requirements for the texture by a factor of three.
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Table 10.1 Texture formats.

The table below shows the available texture formats and describes how texture data is expanded into 32-bit RGBA
color. It also shows how 32-bit RGBA texture information is derived from the YAB compression texture formats. This
is detailed in the Narrow Channel Compression section in this chapter.

symbolic name (prefixed
with GR_TEXFMT_) compressed form in texture memory expanded 32-bit ARGB form
RGB_332 alpha red green blue
8-bit RGB .
(3-3-2) red | green H 11111111
7 5 4 2 1 0
YIQazz alpha red green blue
8-bit YIQ
(4-2-2) Y Al B 1111111 1 incelYitneelll+ neelQl: | : nec[Yl+nee[Il+ nee[Q] i | inee[Y]+nce[l]+ neelQ] :
7 4 3 2 1 0 31 24 23 16 15 8 7 0
';L:H':l—lsh alpha red green blue
-bit Alpha
I | 1] II — I .......... I II”"‘ I .......... Ti—
7 o 31 24 23 16 15 [ 0
I'NTENSI TY_8 alpha red green blue
8-bit Intensity I ...........................
intensity 1111111 1I"""".‘,'.'z;.§n's'iiy'"""i II intensity I imtensity :
7 0 31 24 23 16 15 8 7 0
ALPHA | NTENSI TY_44 green
8-bit Alpha and Intensity 1 = IRE R R
(4-4) alpha | intensity intensity : | intensity | intensiry - | i
7 4.3 o 31 24 23 16 15 8 7 0
P_8 alpha red green blue
8-bit Palette I
palette 11111111 palette red[7:0] palette green|7:0] palette blue[7:0]
7 0 31 24 23 16 15 8 7 0
']A?G[)B—ii? éB alpha red green blue
-bit
(8-3-3-2) I alpha Ired green E
15 8 7 5 4 2 10
AYI Q 8422 alpha red green blue
16-bitayie |\ FEEETT T LT T 1IFEE
(8-4-2-2) alpha Y AlB | apha i | meelYI+nee[I}+ nee[Q] | : nec[Y]+nee[I}+ nee[Q]
15 8 7 4 3 2 10 31 24 23 16 15 8 7 0
RGB_565
16-bit RGB
(5-6-5) green
15 11 10 5 4 0
ARGB_1555 alpha
16-bit ARGB
(1-5-5-5) green
15 14 10 9 5 4 0 31 24 23 16 15 8 7 0
ARGB_4444 green blue
16-bit ARGB
(4-4-4-4) alpha d green e
15 12 11 8 7 4 3 0 31 24 23 16 15 8 7 0
ALPHA_I NTENSI TY_88 alpha red green blue
16-bit Alpha and ‘
Intensity (8-8) alpha intensity BREEs [ Fopid ! I {1 | |
15 8 7 0 31 24 23 16 15 8 7 0
AP_88 red green blue
16-bit Alpha and Palette
(8-8) alpha palette palette red|7:0] palette green(7:0] palette blue(7:0]
15 8 7 0 31 24 23 16 15 8 7 0
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The decompression from Y1Q to RGB is the inverse of the compression eguations above. The RGB
values can be recovered as follows:

red=Y +0.95-A +0.62:B
blue=Y —0.28-A-0.64-B
green=Y —111-A+173-B Equation Set 2

Implementing these equations in hardware as formulated above is expensive: the YAB components must
be scaled and two multipliers per component are needed. In addition, when compressed textures are used
in conjunction with bilinear filtering, 24 multipliers are needed, since four texels must be made available
simultaneously. But, by rewriting the equations as vectors (shown below) and building a small lookup
table with pre-computed RGB values, the need for multipliersis eliminated, at least in the decompression
circuitry.

(red, green, blue) = (Y, Y,Y) +(0.95-A,-0.28- A, -1.11- A) + (0.62- B, —0.64- B, —1.73- B) Equation 3

The four entriesin the lookup table for A, then, represent the values of red, green, and blue calculated for
four distinct values of A: —256, —85, 85, and 255. And the four entriesin the lookup table for B represent
the RGB values calculated for four distinct values of B. Y isimplemented with alookup table as well, but
with sixteen distinct entries. Note that the quantized values of Y, A, and B can be any four values and
don’'t necessarily have to be evenly spaced or cover the full range of values.

Note that the Voodoo Graphics hardware will work with any set of similar compression/decompression
equations: the constants are contained in the table entries and the mechanics of the decompression are
independent of them. The constants in the equations above are the ones used in Y1Q space and were
chosen to optimize the compression of flesh tones and backgrounds in photographs and videos. Most
computer graphics textures, like terrain, sky, building facades, and so on, are not necessarily aligned
along the orange-blue and purple-green axes of Y1Q space and benefit from a different set of constants.
The 3Dfx Interactive TexUS texture utility software provides routines for generating compressed textures
using the Y1Q equations shown above. It aso provides a neural net program that can optimize the choice
of factors in the equation for a given texture.

The Color Palette (not implemented in TMU Revision ()

An 8-bit color palette isimplemented in all TMU chips after Revision 0. It is a 256-entry RGB table that
is accessed during rendering by texture formats GR_TEXFMI_P_8 and GR_TEXFMT_AP_88 (see Table 10.1).
These two texture formats store an 8-bit offset into the color palette for each texel in the texture map.
During rendering, four texels are looked up simultaneously, each with an independent 8-bit address. The
process of downloading NCC tables and color palettesis described later in this chapter.
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Figure 10.1 The color palette.

TMU Revision I provides a color palette. The color palette holds 256 RGB colors that are retrieved during
rendering, with a texture map utilizing one of the two palette texture formats: GR_TEXFMT_P_8 or
GR_TEXFMT_AP_88. The texel in these two formats is an offset into the color palette; GR_TEXFMT_AP_88 appends
an alpha value to the palette offset.

256-entry color palette

texture format red  green  blue
GR_TEXFMI_P_8

E—} —}‘ OxFF ‘ red[p] |green[p]‘ blue[p] ‘

texture format
GR_TEXFMI_AP_88

‘ a | 0—*—? —P‘ a ‘ red[p] |green[p]‘ blue[p]‘

Texture Memory

Each TMU hasits own texture memory, which rangesin size from 2MB to 4MB depending on the system
configuration. To download a texture into texture memory, one must complete the following steps:

0 Determine how much memory is required for the texture.

0 Determine the starting address and extent of free space. Isit adequate for the texture? Will a mipmap level
straddle the 2Mbyte boundary in texture memory (thereby causing an error)?

O Download the texture,

O Identify the texture as the texel source for subsequent texture mapping operations.

Glide does no texture memory management; rather, it includes several functions that allow the
application to manage it.

Computing the Size of a Mipmap

The Glide functions grTexCaleMemRequired() and grTexTextureMemRequired() determine the storage
reguirements of a mipmap. Textures must start on an 8-byte boundary in memory. The size returned by
these functions includes any bytes required to pad the texture to an 8-byte boundary, and may be added to
the starting address of the texture to determine the next available location in texture memory.

Both routines use the texture format, aspect ratio, and range of LODs in the mipmap to compute the size.
These values are arguments to grTexCalcMemRequired(); they are extracted from a GrTexInfo structure
that is passed to grTexTextureMemRequired(). The other difference between the two routinesis that
grTexTextureMemRequired() has an evenOdd argument and can determine the memory requirements of a
texture that will be split across two TMUs for trilinear filtering applications (see Example 9.3 in the
previous chapter).
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Table 10.2 Glide constants that specify arguments to grlex functions.
The table below lists the constants used to name the values that can be specified as arguments to functions in the
grTex family. The first column lists the argument names that are used in the function specifications. The second
column gives the Glide type for the argument. The third column lists the constant name, and the fourth column gives

a description.

If the function and its type is then these constants are valid values | and these are the consequences of choosing
argument is named that value.
tmu GrChiplD_t $—$m Selects the target TMU. The constant
GR_TMJ2 names it.
smallLOD GrLOD_t g—t%—igg The number in the constant is the
largeLOD GRLCD 64 largest of the texture. The aspect ratio
thisLOD GR_LOD 32 determines the smaller dimension.
GR_LOD 16
GR LOD 8
GR_LOD 4
GR LOD 2
GR LOD 1
aspectRatio GrAspectRatio_t GR_ASPECT_8x1 j
4 p _ R ASPECT 4x1 The cons.tant sefs the aspect ratio of the
GR_ASPECT 2x1 textures in a mipmap.
GR_ASPECT_1x1
GR_ASPECT_1x2
GR_ASPECT_1x4
GR_ASPECT_1x8
ormat GrTextureFormat_t | GR_TEXFMI_RGB_332 X inti
S - | R TBEM Y G 422 See Table 10.1 for a description of the
GR_TEXFMI_ALPHA 8 textureformats.
GR_TEXFMI_| NTENSI TY_8
GR_TEXFMI_ALPHA_| NTENSI TY_44
GR_TEXFMI_P_8
GR_TEXFMI_ARGB_8332
GR_TEXFMI_AYI Q 8422
GR_TEXFMI_RGB_565
GR_TEXFMI_ARGB_1555
GR_TEXFMI_ARGB_4444
GR_TEXFMI_ ALPHA | NTENSI TY_88
GR_TEXFMI_AP_88
ovenOdd FxU32 GR_M PVAPLEVELVASK_EVEN
GR"M PMAPLEVELMASK_ODD Even LODs are GR_LOD_256,
GR_M PMAPLEVELMASK_BOTH GR_LOD_64, GR_LOD_16, GR_LOD_4, and
GR_LOD_1.
Odd LODs are GR_LOD_128,
GR_LOD_32, GR_LOD_8, and GR_LOD_2.
range GrTexBaseRange_t | GR_TEXBASE 256 Specifies the base register when using
GR_TEXBASE_128 ,
GR_TEXBASE_64 more than one. A mipmap can be
GR_TEXBASE 32_TO 1 broken into four fragments. The
number in the constant corresponds to
the LOD number.
tableType GrTexTable_t $—$§—% Each TMU can have two NCC tables
table GR_TEX_PALETTE and a palette. Load them one at a time
with a general purpose routine.
mipmapMode GrMipMapMode_t | GR_ M PMAP_DI SABLE Specifies the kind of mipmapping to
node GR_M PVAP_NEAREST
GR_M PMAP_NEAREST DI THER perform.
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FxU32 grTexCalcMemRequired(GrLOD_t smallLOD,
GrLOD _t largeLOD,
GrAspectRatio_t aspectRatio,
GrTextureFormat_t format

)

grTexCalcMemRequired() calculates and returns the amount of memory required by a mipmap of the
specified LOD range, aspect ratio, and format. The first two arguments, smallLOD and largeLOD, define
the range of LODs in the mipmap. The third argument, aspectRatio, specifies the aspect ratio of the
mipmap and the fourth argument, format, gives the texture format. All four arguments are specified using
Glide constants; the choices are listed in Table 10.2.

The memory requirements for the mipmap can be computed directly from these four parameters. The

L OD range determines the length of the longest edge of each LOD. The aspect ratio provides away to
compute the length of the shorter edge of the LOD and hence the number of texels in the mipmap. The
texture format determines the space requirements for one texel, which can be multiplied by the number of
texelsin order to compute the storage requirements for the mipmap. The two functions described here,
grTexCaleMemRequired() and grTexTextureMemRequired(), will do the calculations.

Many of Glide'stexture management routines make use of the GrTexInfo structure to collect the mipmap
parameters together with the mipmap data.

typedef struct {
GrLOD _t smallLod,
GrLOD _t largeLod,;
GrAspectRatio_t aspectRatio;,
GrTextureFormat_t format;
void *data,

}  GrTexinfo;

FxU32 grTexTextureMemRequired( FxU32 evenOdd, GrTexInfo *info )

grTexTextureMemRequired() calculates and returns the number of bytes required to store the texture
described in the structure pointed to by info. The number returned may be added to the starting address
for atexture download to determine the next free location in texture memory.

The range of LODs in the mipmap is defined in the info structure. The other argument, evenOdd,
indicates whether even, odd, or all LODs within the specified range should be used in computing the
space requirements. For example, if the mipmap is used for trilinear filtering, the even LODs will be
downloaded and used on one TMU, and the odd LODs on another. evenOdd is specified symbolically:
valid values are GR_M PVMAPLEVELMASK _EVEN, GR_M PMAPLEVELMASK_ODD, and

GR_M PMAPLEVELMASK_BOTH. Figure 10.2 describes the evenOdd flag and even and odd LODs. In general,
an LOD iseven if itssizeis an even power of 2, and odd otherwise. Thus, the even LODs are GR LoD 256,
GR_LOD 64, GR LOD 16, GR LoD 4, and &R Lop 1. The other LODs are odd: Gr Lob 128, GR LOD 32, GR LOD 8,
and GrR LoD 2.
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Figure 10.2 The size of a mipmap depends on the setting of the evenOdd flag.
Suppose we have a GrTexInfo structure with data as shown below.

info\

smallLod GR_LOD 8
largeLod CGR_LOD_128
aspectRatio GR_ASPECT_2x1
format GR_TEXFMT_| NTENSI TY_8

Y >

data | 4 >
GR LOD_ 128 I

The size returned by grTexTextureMemRequired() depends on the value of the evenOdd flag, as shown below.

LOD I width I height I number of bytes
GR_LOD_128 128 64 213 = 8192 bytes
GR_LOD_64 64 32 2" = 2048 bytes
GR_LOD_32 32 16 2% = 512 bytes
GR_LOD_16 16 8 27 = 128 bytes
GR_LOD_8 8 4 2° = 32 bytes

[lgrTexTextureMemRequired(GR_M PMAPLEVELMASK_BOTH, info) returns the sum of the sizesof all 5
LODs.

8192+ 2048 + 512 + 128 + 32 = 10,912 bytes

[1 grTexTextureMemRequired(GR_M PMAPLEVELMASK_ODD, info) returns the sum of the sizes
of theodd LODs; GR LOD 128, GR_LOD 32, and GR_LCD 8.
8192 + 512 + 32 = 8,736 bytes

[l grTexTextureMemRequired(GR_M PMAPLEVELMASK_EVEN, info) returns the sum of the
sizes of theeven LODs: GR_ LOD 64 and GR_LOD 16.
2048 + 128 = 2,176 bytes

Querying for Available Memory

Two Glide functions, grTexMinAddress() and grTexMaxAddress() provide initial upper and lower bounds
on texture memory for the specified TMU. They each have one argument, tmu, which selectsthe TMU on
which to check the memory bounds.

FxU32 grTexMinAddress( GrChiplD_t tmu )
FxU32 grTexMaxAddress( GrChiplD_t tmu )

grTexMinAddress() and grTexMaxAddress() provide initial values for free space pointersin a Glide
application. Be aware, however, that they always return the same values, regardless of whether any
textures have been downloaded.
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grTexMinAddress() returns the first location in texture memory into which atexture can be loaded.

grTexMaxAddress() returns the last possible 8-byte aligned address that can be used as a starting address;
only the smallest possible texture can be loaded there: the 1x1 texture GR_L0D_1.

Texture memory management can be smple, sophisticated, or somewhere in between, depending on size
and number of textures that will be loaded. The examples below show some straightforward techniques.

One important restriction must be mentioned: a mipmap level cannot straddle the 2Mbyte boundary in
texture memory. That is, the addresses of the first and last words in the level must either both be greater
or both be less than than 2 Mbytes (2°). One simple way to work around this limitation is to load
complete mipmaps on one side or the other, depending on the fit, as shown in Example 10.2.

Example 10.1 Will the mipmap fit?
This code segment illustrates a simple scenario where a single mipmap will be loaded into an empty texture memory
on TMUO. Since this is the only texture that will ever be loaded, there is no need to implement a free list.

FxU32 textureSi ze, startAddress;
textureSi ze = grTexCal cMenRequi red( GR_LOD 1, GR _LOD256, GR_ASPECT_1x1,

GR_TEXFMI_ARGB_1555 );
start Address = gr TexM nAddr ess( GR_TMU0) ;

if (startAddress + textureSize <= gr TexMaxAddr ess(GR_TMJ0))
downl oad_t he_t exture;

Example 10.2 Setting up to load several mipmaps.
This code segment gets a little more real than the one above by keeping a pointer to the next available starting
address for mipmaps. To get a starting address for a texture, call the subroutine.

#defi ne TEXVEM 2MB_EDGE 2097152
FxU32 textureSi ze, nextTexture, |astTexture;

/* these two lines initialize the bounds and should be part */
/* of the initialization code in the main program */
next Texture = gr TexM nAddr ess( GR_TMU0) ;
| ast Texture = gr TexMaxAddr ess( GR_TMJ0)
| ong get Start Address(FxU32 evenOdd, G TexInfo *info)
{ long start;
textureSi ze = gr TexText ureMenRequi r ed(evenQdd, info);
start = nextTexture;

/* check for 2MB edge and space past it if necessary */
if ((start< TEXMEM 2MB_EDGE) && (start+textureSi ze> TEXMEM 2MB_EDGE) )
start = TEXMEM 2MB_EDGE

next Texture += textureSi ze;
if (nextTexture <= lastTexture) return start;

el se {
next Texture = start,;
return -1;
}
}
Copyright O 1996 3Dfx Interactive, Inc. 103

Proprietary and Confidential Printed 07/30/97 7:52 AM



Glide 2.2 Programming Guide

Downloading Mipmaps

Download a mipmap into texture memory with the function grTexDownloadMipMap(). Replace an
individual mipmap level with grTexDownloadMipMapLevel(). Replace part of an LOD with
grTexDownloadMipMapLevelPartial().

The first argument to all three routines is tmu, which designates the target TMU for the load. Each of the
three routines also provides a startAddress argument that specifies an offset into texture memory where
the texture will be loaded, and an evenOdd argument that indicates which levelsto load (specified as one
of GR_M PMAPLEVELMASK_EVEN, GR_M PMAPLEVELMASK_CDD, Of GR_M PMAPLEVELNMASK_BOTH). startAddress
must lie be between the values returned by grTexMinAddress() and grTexMaxAddress() and must be 8-
byte aligned.

grTexDownloadMipMap() expects the mipmap parameters (aspect ratio, texture format, LOD range, and
the texture data) in a GrTexInfo structure; the other two routines have arguments for each parameter.

Downloading All or Part of a Mipmap
Use grTexDownloadMipMap() to load a mipmap.

typedef struct {
GrLOD _t smallLod,
GrLOD _t largeLod;
GrAspectRatio_t aspectRatio;,
GrTextureFormat_t format;
void *data;

}  GrTexinfo;

void grTexDownloadMipMap( GrChipID_t tmu, FxU32 startAddress, FXU32 evenOdd, GrTexInfo *info )
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Figure 10.3 Downloading a mipmap.
Suppose we have a GrTexInfo structure with data as shown below.

info\

smallLod GR_LOD 8
largeLod CGR_LOD_128
aspectRatio GR_ASPECT_2x1
format GR_TEXFMT_| NTENSI TY_8

data ® >
GR LOD_ 128 I

The three drawings below show startAddress and its relationship to where and what textures are loaded, based on
the evenOdd value. The first grTexDownloadMipMap() call loads all LODs between GR_LOD_128 and GR_LOD_8.

grTexDownloadMipMap( GR_TMJO, startAddress, GR_M PMAPLEVELMASK_BOTH, info )

TMUO

The second scenario loads only the odd LODs. Recall that the largest dimension of odd LODs is an odd power of
two. In this case, GR_LOD_128, GR_LOD_32, and GR_LOD_8 are odd LOD:s.

grTexDownloadMipMap( GR_TMW, startAddress, GR_M PMAPLEVELMASK_ODD, info )

TMUO

The final scenario loads only the even LODs. Note that no modification is necessary to the values in the GrTexInfo
structure pointed to by info. Glide will skip over the texture data for the odd LODs, only loading the even ones.

grTexDownloadMipMap( GR_TMW, startAddress, GR_M PMAPLEVELMASK_EVEN, info )

TMUO
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Replacing a Single LOD

One form of simple texture memory management requires only that the application swap mipmaps with
identical memory footprints (i.e. same format, dimensions, and mipmap levels) in and out of the same
texture memory area. Texture replacement is a simple facility for doing texture map animation, and it is
also amethod of doing dynamic texture management: the local texture buffer is split into discrete texture
regions that are updated as needed. To replace a mipmap use the Glide function grTexDownloadMipMap()
with new data. Alternatively, an application can swap out individual mipmap levels within a mipmap
using grTexDownloadMipMapLevel().

void grTexDownloadMipMapLevel( GrChipID_t tmu,
FxU32 startAddress,
GrLOD_t thisLOD,
GrLOD_t largeLOD,
GrAspectRatio_t aspectRatio,
GrTextureFormat t  format,
FxU32 evenOdd,
void *data

)

grTexDownloadMipMapLevel() replaces a single mipmap level in a previously downloaded mipmap that
begins at startAddress. Argument largeLOD specifies the largest (and first) LOD in the downloaded
mipmap; the aspectRatio and format |ocate the first texel of thisLOD. The data argument points to the
first texel of the new LOD, as shown in Figure 10.4.
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Figure 10.4 Replacing a single LOD.
Suppose a mipmap has been loaded into TMUI with the following command and data.

grTexDownloadMipMap(GR_TMJL startAddress,GR_M PMAPLEVELMASK_BOTH, info)

info\

smallLod GRLOD8

largeLod GR_LOD_256

aspectRatio GR_ASPECT_1x1

format GR_TEXFMI_ARGB_1555
data ® q

"R LoD 256

GR_LOD 128 I

To replace GR_LOD_128, use the following call to grTexDownloadMipMapLevel().

grTexDownloadMipMapLevel( GR_TMJL, startAddress, GR_LOD_128, info® largeLod,
info® aspectRatio, info® format,
GR_M PMAPLEVELMASK_BOTH, newData )

Replacing Part of an LOD

Applications that want to replace one of the large LODs in a mipmap, but also want to maintain a snappy
frame rate, may opt to replace the LOD afew rows at atime with grTexDownloadMipMapLevelPartial().

void grTexDownloadMipMapLevelPartial( GrChiplD_t tmu,
FxU32 startAddress,
GrLOD _t thisLOD,
GrLOD _t largeLOD,
GrAspectRatio_t aspectRatio,
GrTextureFormat_t format,
FxU32 evenQOdd,
void *data,
int firstRow,
int lastRow

)
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The first seven arguments to grTexDownloadMipMapLevelPartial() are the same as those to
grTexDownloadMipMapLevel(): the rmu that the texture is loaded on, the starting address, the LOD that
will be partially replaced, the largest LOD in the mipmap, the aspect ratio and texture format of the
downloaded texture, and the evenOdd flag. The data argument points to a stream of texels that will
overwrite those in texture memory, starting at the row firstRow in thisLOD and continuing through
lastRow. To download one row of the texture, use the same value for firstRow and lastRow.

Figure 10.5 Replacing a few rows of an LOD.
Suppose a mipmap has been loaded into TMUO with the following command and data.

grTexDownloadMipMap(GR_TMU, startAddress, GR_M PMAPLEVELMASK_BOTH, info)
info\

smallLod
largeLod

GR_LOD_32
GR_LOD_256
GR_ASPECT_8x1
GR_TEXFMI_AP_88

aspectRatio

format
data

ol
4

"R LoD 256

GR_LOD 128 I

To replace GR_LOD_256 in chunks, use a series of calls to grTexDownloadMipMapLevelPartial():

for (row=0; row256; r ow+=64)
grTexDownloadMipMapLevel( GR_TMJO, startAddress, GR_LOD_256, info® largelLod,
info® aspectRatio, info® format, GR_M PMAPLEVELMASK_BOTH, newData, row, row + 63);

newData \

startAddress

TMUO

|
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Identifying a Mipmap as the Texel Source

Thefinal step isto register the newly loaded mipmap with the TMU as the source for texels. The Glide
function grTexSource() provides this service.

void grTexSource( GrChiplD_t tmu, FXU32 startAddress, FXU32 evenOdd, GrTexInfo *info )

grTexSource() Sets up the area of texture memory that isto be used as a source for subsequent texture
mapping operations. The starting address specified as argument startAddress should be the same one that
was used as an argument to grTexDownloadMipMap(), or the starting address used for the largest mipmap
level when using grTexDownloadMipMapLevel().

Here are the three examples from Chapter 9, with additional lines of code to download the appropriate
textures.

Example 10.3 Downloading a texture for decal texture mapping.
The following code sets up the texture pipeline so that a texel is placed into the pixel pipeline without modification.
The code assumes that the color combine unit is configured to use the texture color and/or alpha value.

FxU32 textureSi ze, startAddress;
G Texl nfo info;
FxUl6 m prmap[256*256 + 128*128 + 64*64 + 32*32 + 256 + 64 + 16 + 4 + 1];

info.small Lod = GR_LOD _1;
info.largeLod = GR_LOD 256;
info.aspectRati o = GR_ASPECT_1x1;
info.format = GR_TEXFMI_1555;
info.data = m prap;

textureSi ze = gr TexText ur eMenRequi r ed( GR_M PMAPLEVELMASK BOTH, &i nfo); .
start Address = gr TexM nAddress(GR_TMU0) ; .
if ((startAddress + textureSize)> gr TexMaxAddress(GR_TMI0)) {
printf(“error: texture too big for TMJO\n");
exit();
}

gr TexDownl oadM pMap( GR_TMJO, startAddress, GR_M PMAPLEVELMASK BOTH, &i nfo);
gr TexSour ce( GR_TMJ0, startAddress, GR_M PVAPLEVELMASK BOTH, &i nfo);

gr TexCombi ne( GR_TMJ0, GR_COVBI NE_FUNCTI ON_LOCAL, GR _COMBI NE_FACTOR NONE,
GR_COVBI NE_FUNCTI ON_LOCAL, GR_COMBI NE_FACTOR_NONE,
FXFALSE, FXFALSE );
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Example 10.4 Downloading two textures for modulated or composite texture mapping.

The code segment below loads an intensity map for a spotlight in TMUO and a source texture in TMUI. The
resulting texture RGBA is a product of the texels chosen from the two textures. The color combine unit must be
configured to use the output from the texture pipeline.

FxU32 textureSize[2], startAddress[2];

G TexInfo src, spot;

FxUl6 srcdata[ 256*256 + 128*128 + 64*64 + 32*32 + 256 + 64 + 16 + 4 + 1];
FxU8 spot dat a[ 256*256 + 128*128 + 64*64 + 32*32 + 256 + 64 + 16 + 4 + 1];

src.smal | Lod spot.smal | Lod GR_LOD 1;

src. | argelLod spot . | argelLod GR_LOD 256;

src. aspectRati o = spot.aspectRati o = GR_ASPECT_1x1;
src.format = GR_TEXFMI_1555;

src.data = srcdat a;

spot.format = GR_TEXFMI_I| NTENSI TY_S;

spot . data = spotdat a;

textureSi ze[ 0] = gr TexText ureMenRequi r ed( GR_M PVMAPLEVELMASK BOTH, &spot);

start Address[ 0] = gr TexM nAddr ess( GR_TMU0) ;

if ((startAddress[0] + textureSize[0])> gr TexMaxAddress(GR TMJ0)) {
printf(“error: spotlight texture too big for TMJO\n");
exit();

}

textureSi ze[ 1] = gr TexText ureMenRequi r ed( GR_M PMAPLEVELMASK BOTH, &src);

start Address[ 1] = gr TexM nAddress(GR_TMJ1) ;

if ((startAddress[1] + textureSize[1])> gr TexMaxAddress(GR TMJ1)) {
printf(“error: source texture too big for TMJ1\n");
exit();

gr TexDownl oadM pMap( GR_TMJUO, st art Addr ess[ 0] , GR_M PMAPLEVELMASK_BOTH, &spot);

gr TexSour ce( GR_TMJO, st art Addr ess[ 0] , GR_M PMAPLEVELMASK BOTH, &spot);

gr TexConbi ne( GR_TMJ0, GR _COVBI NE_FUNCTI ON_SCALE_OTHER, GR _COWVBI NE_FACTOR LOCAL,
GR_COMVBI NE_FUNCTI ON_SCALE_OTHER, GR_COWVBI NE_FACTOR _LOCAL,
FXFALSE, FXFALSE );

gr TexDownl oadM pMap( GR_TMJ1, st art Addr ess[ 1], GR_M PMAPLEVELMASK_BOTH, &src);
gr TexSour ce( GR_TMJ1, st art Addr ess[ 1] , GR_M PVMAPLEVELMASK BOTH, &src);
gr TexConbi ne( GR_TMJ1, GR _COVBI NE_FUNCTI ON_LOCAL, GR_COVBI NE_FACTOR_NONE,
GR_COMVBI NE_FUNCTI ON_LOCAL, GR_COVBI NE_FACTOR_NONE,
FXFALSE, FXFALSE );
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Example 10.5 Splitting a texture across two TMUSs for trilinear mipmapping.

The first code segment shows the texture combine unit configuration for trilinear mipmapping when the even LODs
are stored in TMUO and the odd ones are in TMUI. The code assumes that the color combine unit is configured to
make use of the resulting RGBA value.

FxU32 textureSize[2], startAddress[2];
G TexInfo tri;
FxUl6 m prmap[256*256 + 128*128 + 64*64 + 32*32 + 256 + 64 + 16 + 4 + 1];

tri.small Lod GR_LOD 1;
tri.largeLod GR_LOD _256;
tri.aspectRati o = GR _ASPECT 1x1;
tri.format = GR_TEXFMI_1555;
tri.data = m pmap;

textureSi ze[ 0] = gr TexText ureMenRequi r ed( GR_M PMAPLEVELMASK _EVEN, &tri);

start Address[ 0] = gr TexM nAddr ess( GR_TMU0) ;

if ((startAddress[0] + textureSize[0])> gr TexMaxAddress(GR TMJ0)) {
printf(“error: even LODs of texture too big for TMJO\n");
exit();

}

textureSi ze[ 1] = gr TexText ur eMenRequi r ed( GR_M PMAPLEVELMASK_CODD, &tri) ;

start Address[ 1] = gr TexM nAddress(GR_TMJ1) ;

if ((startAddress[1] + textureSize[1])> gr TexMaxAddress(GR TMJ1)) {
printf(“error: odd LODs of texture too big for TMJ1\n");
exit();

gr TexDownl oadM pMap( GR_TMUO, st art Addr ess[ 0] , GR_M PMAPLEVELMASK_EVEN, &tri) ;
gr TexSour ce( GR_TMJO, st art Addr ess[ 0], GR_M PMAPLEVELMASK_EVEN, &tri);
gr TexCombi ne( GR_TMJUO,

GR_COMBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD LOCAL,

GR_COMBI NE_FACTOR_LOD_FRACTI ON,

GR_COMBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD LOCAL,

GR_COMBI NE_FACTOR_LOD_FRACTI ON,

FXFALSE, FXFALSE);

gr TexDownl oadM pMap( GR_TMJ1, st art Address[ 1], GR_M PMAPLEVELMASK _ODD, &tri);
gr TexSour ce( GR_TMJ1, st art Address[ 1], GR_M PMAPLEVELMASK _ODD, &tri);
gr TexConbi ne( GR_TMJ1, GR _COVBI NE_FUNCTI ON_LOCAL, GR_COVBI NE_FACTOR_NONE,
GR_COMBI NE_FUNCTI ON_LOCAL, GR_COVBI NE_FACTOR_NONE,
FXFALSE, FXFALSE );

This second code segment gives the proper grTexCombine() configuration when the situation is reversed. the odd
LOD:s in the mipmap are on TMUQ while the even ones are upstream on TMUI. Note the difference in the texture
combine unit configuration. the setting of the rgbInvert and alphalnvert parameters.

FxU32 textureSize[2], startAddress[2];
G TexInfo tri;
FxUl6 m prmap[256*256 + 128*128 + 64*64 + 32*32 + 256 + 64 + 16 + 4 + 1];

tri.smalllLod = GR_LOD 1;
tri.largeLod = GR LOD_256;
tri.aspect Ratl 0 = GR_ASPECT 1x1;
tri.format GR_TEXFMI_1555;
tri.data = m'prrap;

textureSi ze[ 0] = gr TexText ureMenRequi r ed( GR_M PVAPLEVELMASK_ODD, &tri);

start Address[ 0] = gr TexM nAddr ess( GR_TMU0) ;

if ((startAddress[0] + textureSize[0])> gr TexMaxAddress(GR TMJ0)) {
printf(“error: even LODs of texture too big for TMJO\n");
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exit();
}

textureSi ze[ 1] = gr TexText ureMenRequi r ed( GR_M PVAPLEVELMASK _EVEN, &tri);

start Address[1] = gr TexM nAddress(GR_TMJ1) ;

if ((startAddress[1] + textureSize[1l])> gr TexMaxAddress(GR TMJ)) {
printf(“error: odd LODs of texture too big for TMJI\n");
exit();

gr TexDownl oadM pMap( GR_TMUO, st art Addr ess[ 0], GR_M PMAPLEVELMASK _ODD, &tri);
gr TexSour ce( GR_TMUO, st ar t Addr ess[ 0] , GR_M PMAPLEVELMASK_CDD, &tri);
gr TexConbi ne( GR_TMJUO,

GR COVBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD LOCAL,

GR COVBI NE_FACTOR _ O\IE M NUS LCD FRACTI ON,

GR COVBI NE_FUNCTI C]\l SCALE M NUS LOCAL_ADD LOCAL,

GR COVBI NE_FACTOR _ O\IE M NUS LCD FRACTI ON,

FXFALSE, FXFALSE)

gr TexDownl oadM pMap( GR_TMUJ1, st art Addr ess[ 1], GR_M PMAPLEVELMASK _EVEN, &tri);
gr TexSour ce( GR_TMUL, st ar t Addr ess[ 1] , GR_M PMAPLEVELMASK_EVEN, &tri);
gr TexConbi ne( GR_TMJ1, GR_COMBI NE_ FUNCTI ON_LOCAL, GR_ COMVBI NE - FACTOR_NONE,
GR COMVBI NE_ FUNCTI C]\l LOCAL, GR COMBI NE_ FACTO? NONE,
FXFALSE, FXFALSE );

Loading a Mipmap into Fragmented Memory

Normally, mipmap levels are stored sequentially in texture memory. Multi-base addressing allows
mipmap levels to be loaded into different texture memory locations. A mipmap can be split into four
chunks (along pre-defined boundaries), each of which can be loaded in a different location in texture
memory. Four different base addresses are specified for a multi-based texture, one each for GR_L0D 256,
GR_LOD 128, and GR_LOD_64, and one for textures GR_LOD_32 through GR_L0D 1.

To use multi-base addressing, you must enable it with a call to grTexMultibase(), download the mipmap
as four smaller mipmaps, and then set up the multi-base addressing by calling grTexMultibaseAddress()
four times with the four starting addresses. See Example 10.6.

void grTexMultibase( GrChipID_t tmu, FxBool enable )

grTexMultibase() enables or disables multi-base addressing. Multi-base addressing must be enabled
before downloading a multi-based texture, and before rendering using a multi-based texture. Multi-base
addressing must be disabled before downloading or rendering from atexture with asingle base address.

You must call grTexMultibaseAddress() once for each part of a fragmented texture with multiple base
addresses. |n each case, startAddress should point to the texture memory location for the corresponding
mipmap level. All of the base addresses for a multi-based texture should be specified before downloading
the texture or rendering from the texture.
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void grTexMultibaseAddress( GrChiplD_t tmu,
GrTexBaseRange_t range,
FxU32 startAddress,
FxU32 evenQOdd,
GrTexInfo *info
)

The first argument names the TMU on which the fragmented texture will be loaded. The second
argument, range, tells which fragment this call is about, and is one of four Glide constants:
GR_TEXBASE_256, GR_TEXBASE_128, GR_TEXBASE_64, Of GR_TEXBASE_32_TO 1. The third argument,
startAddress, is the starting address for this fragment. Note that grTexMultibaseAddress() should be called
with avalid starting address before the fragment is downl oaded.

The fourth argument, evenOdd, specifies whether the even, the odd, or all textures in the mipmap will be
downloaded on this tmu. If afragment is missing from the mipmap, or if afragment will not be
downloaded on this tmu, then grTexMultibaseAddress() need not be called for that fragment.

Cadllsto grTexSource() are equivalent to calls to grTexMultibaseAddress() With the range argument set to
GR_LOD_256.

Example 10.6 Using multiple texture base registers.
Suppose that start is an array of starting addresses that have been obtained from a memory management routine.
(The memory management details are left as an exercise for the reader.) Further suppose that the block of texture
memory pointed to by start[0] is large enough for GR_LOD_256, that the block pointed to by start[1] is large
enough for GR_LOD_128, and so on. The array mipmap points to the four fragments. The 1od array stores the four
constants that identify the fragments for convenience in the ¥or loop that sets up the multiple base registers and
downloads the fragments.

int i;

G TexInfo info;

FxU32 start[4];

FxUL6 mi prmap[4][];

G TexBaseRange t | od[ 4] =( GR TEXBASE 256, GR TEXBASE 128, GR TEXBASE 64,
GR_TEXBASE 32_TO 1);

gr TexMul ti base(GR_TMJ0, FX TRUE);

for (i=0; i,4; i++) {
info.small Lod = info.largeLod = lod[i];
info.data = mpmap[i];
gr TexMul ti baseAddress(CGR_TMJ0, lod[i], start[i], GR_M PMAPLEVEL_ BOTH, &i nfo);
gr TexDownl oadM pMap(GR_TMJ0, start[i], GR_M PVMAPLEVEL BOTH, &i nfo);
}

Downloading a Decompression Table or Color Palette

The texels in mipmaps that use texture formats GR_TEXFMI_YI Q 422 and GR_TEXFMI_AYI Q 8422 must be
“decompressed” to 32-bit values before being filtered and combined in the TMU. Texels that are stored
in texture formats GR_TEXFMI_P_8 and GR_TEXFMI_AP_88 must be looked up in a color palette to translate
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them to 32-bit color components. The translation tables must be downloaded to the same TMU as the
textures that use them before texel selection can occur.

Each TMU has room for two NCC decompression tables and one 256-entry color palette. The NCC table
or color palette must be downloaded before a texture that uses it can be used as the source for texels.
Glide provides aroutine that can download either a color palette or one of the two decompression tables.

void grTexDownloadTable( GrChiplD_t tmu, GrTexTable_t tableType, void *data )

grTexDownloadTable() downloads either an NCC table or a 256-entry color paletteto a TMU. Thefirst
argument names the TMU on which the table will be loaded. The second argument, fableType, describes
the kind of table that will be downloaded and is specified with one of three Glide constants:
GR_TEX_NCCD, GR_TEX_NCC1, Or GR_TEX_PALETTE. The third argument points to the datafor the table,
which must be of type GuNccTable Or GuTexPalette.

Part of a 256-entry color palette can be downloaded or replaced with the Glide function
grTexDownloadTablePartial().

void grTexDownload TablePartial( GrChiplD_t tmu, GrTexTable_t tableType, void *data, int start, int end )

Entries from szart up to and including end are downloaded. To download one entry, use the same value
for start and end. Partial downloads of NCC tablesis not supported at this time.

The two table types are discussed separately in the paragraphs that follow. A downloading exampleis
included for each kind.

Decompression Tables

A texture can be compressed into a YAB texture with an appropriate decompression table with the help of
the 3Dfx Interactive Texture Utility Software (TexUS). The compressed texture is stored as a 3Dfx
texture map file (.3DF) that can then be loaded using the Glide Utility routine gu3dfLoad(), which is
described later in this chapter. Space for two NCC tablesis provided so that they can be swapped on a
per-triangle basis when performing multi-pass rendering without interrupting the rendering process with
table downloading.

Glide represents NCC decompression tables with the GuNccTable data structure, shown below.

typedef struct {
FxUS8 YRGB[16];
FxI16 iRGB[4][3];
FxI16 qRGB[4][3];
FxU32 packed_data[12];

}  GuNccTable;

Before a compressed texture can be used as the texel source, one of the two NCC tables must be
designated as the source for decompression operations. The Glide function grTexNCCTable() should be
called before any rendering operations using the compressed table are initiated.

void grTexNCCTable( GrChiplD_t tmu, GrNCCTable_t table)

grTexNCCTable() selects one of the two NCC tables on rmu as the current source for decompression
operations. Valid values are GR_TEXTABLE_NCCO and GR_TEXTABLE_NCCI.
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Example 10.7 Loading an NCC table.

NCC tables are created by programs in the TexUS library and written to a . 3DF file. This code segment uses
gu3dfLoad(), described in the next section, to read the file into memory. Once in memory, the table is downloaded to
NCC1 in TMUQ. Once the table is loaded, a texture in one of the compressed formats can be downloaded and used
as the texel source.

Gu3dfInfo info;

gu3df Load(“ncctabl e. 3df”, &i nfo);
gr TexDownl oadTabl e( GR_TMJ0, GU_TEX _NCC1, &i nfo.table.nccTable);
gr TexNCCTabl e( GR_TMJ0, GR _TEXTABLE_NCC1);

Color Palettes

A color paetteisan array of 256 ARGB colors, 8 bits for each component, 32 bits per entry (refer back
to Figure 10.1). The alpha component, in the high order 8 bits, isignored. It is defined using the Glide
structure GuTexPalette, Shown below.

typedef struct {
FxU32 data[256];
} GuTexPalette;

Example 10.8 Loading a color palette.
The following code segment will create a random color palette and download it into TMUQ. To use the palette,
download a palletized texture (texture formats GR_TEXFMT_P_8 or GR_TEXFMT_AP_88) and configure the texture
and color combine units appropriately.

extern unsigned long Irand( void);

GuTexPal ette palette;
int i, j;
/1 create a random 256-entry color palette
for (i=0; i<256; i++)
palette.data[i] = OxOOFFFFFF & |rand();

gr TexDownl oadTabl e( GR_TMJ0, GU _TEX PALETTE, &palette);

Loading Mipmaps From Disk

TexUS (3Dfx Interactive’' s Texture Utility Software) programs create filesin a 3DF file format. These
files may contain mipmaps, decompression tables, or both. A pair of datatypesand a pair of functions
provide access to . 3DF files from Glide.

The data structures are shown below. Gu3dfinfo isthe top level structure. It has a pointer to the mipmap
data, and stores the decompression table or palette if thereisone. There is also a GusdfHeader structure
that contains all the mipmap characteristics (LOD range, aspect ratio, format, dimensions) and the
amount of memory the mipmap will require.
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typedef struct {
FxU32 width, height,
int small_lod, large lod,
GrAspectRatio_t aspect_ratio;
GrTextureFormat_t format;

} Gu3dfHeader;

typedef union {
GuNccTable ncclable;
GuTexPalette palette;

} GuTexTable;

typedef struct {
Gu3dfHeader header;
GuTexTable table;
void *data;
FxU32 mem_required,
}  Gu3dfinfo;

The procedure for reading a. 3DF file from Glide is shown in Example 10.9. The application first calls
gu3dfGetInfo() to fill in the Gu3dfinfo structure pointed to by info.

FxBool gu3dfGetInfo( const char *filename, Gu3dfinfo *info )

After an application has determined the characteristics of a.3DF mipmap, memory must be allocated for
the mipmap and the address stored in the info® data pointer. Then gu3dfLoad() isinvoked to load the
mipmap from the file into memory. Note that the mipmap must be downloaded into a TMU before it can
be used as a texel source.

FxBool gu3dfLoad( const char *filename, Gu3dfinfo *info )

Both gu3dfGetlInfo() and gu3dfLoad() return FXTRUE if the file specified by filename exists and can be
read; otherwise they return FXFALSE.

Example 10.9 Reading a .3DF file.

The following code segment assumes that mipmap.3d¥ contains a properly formatted 3DF file. The code calls
gu3dfGetlnfo() to determine memory requirements, allocates storage for the mipmap using the system subroutine
malloc(), then reads the mipmap into the newly allocated memory by calling gu3dfLoad().

@u3dfInfo filelnfo;
gu3df Get I nfo(“m pmap. 3df”, &filelnfo);

filelnfo.data = nmalloc(filelnfo.memrequired);
gu3df Load(“m pmap. 3df”, &filelnfo);
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e, ACCesSING the Linear Frame Buffer

In This Chapter

The frame buffer on a Voodoo Graphics subsystem is directly accessible by software asa single linear
address space. This address space is segmented into separate readable and writable areas, and each of

these areas in turn can address any of the three hardware buffers: the front buffer, the back buffer, or the
auxiliary buffer.

You will learn how to:

calculate a pixel address

acquire an LFB (linear frame buffer) read or write pointer

read pixel datafrom the color, alpha, or depth buffer

write pixel datain a user-selectable format to the color apha, or depth buffer
set constant values for direct writes to the depth and alpha buffers

4 4 4 4 4 <«

enable and disable the pixel pipeline during direct LFB writes

WARNING: The linear frame buffer interface was extensively modified in the Glide 2.2 release. The

following routines are now obsolete. grLfbBegin(), grLfbEnd(), grLfbGetReadPtr(), grLfbGetWritePtr(),
grLfbBypassMode(), grLfbWriteMode(), and grLfbOrigin().

Acquiring an LFB Read or Write Pointer

When a Glide application desires direct accessto a color or auxiliary buffer, it must lock that buffer in
order to gain access to a pointer in the frame buffer data. Thislock may assert a critical code section
which affects process scheduling and precludes the use of GUI debuggers; therefore, time spent doing
direct accesses should be minimized and the lock should be released as soon as possible.

FxBool grLfbLock( GrlLock_t type,
GrBuffer_t buffer,
GrLfbWriteMode_t writeMode,
GrOriginLocation_t origin,
FxBool pixelPipeline,
GrLfbInfo_t *info
)

An application may hold multiple simultaneous locks to various buffers, if the underlying hardware
alowsit. Application software should always check the return value of grLfbLock(): alock may fail. A
buffer islocked for reads or for writes, as specified in the fype parameter.
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type isabit field created by ORing aread/write flag and an idle flag. The read/write flag can be either
GR_LFB_READ ONLY and GR_LFB_WRI TE_ONLY. Theidle flag can be either GR_LFB_I DLE or

GR_LFB_NO DLE. The default isGR_LFB_I DLE: the graphics subsystem will be idle until the buffer is
unlocked. GR_LFB_Na DLE allows the pixel pipeline to continue operating during the lock: triangle
rendering and buffer clearing operations may be interspersed with frame buffer accesses.

WARNING: using GR_LFB_NOIDLE may interfere with sound generation.
The buffer parameter specifies which Glide buffer to lock; currently supported buffer designations are
GR_BUFFER_FRONTBUFFER, GR_BUFFER_BACKBUFFER, and GR_BUFFER_AUXBUFFER.

If the graphics hardware supports multiple write formats to the linear frame buffer space, an application
may request a particular write format with the writeMode parameter; valid values are listed below.

GR_LFBWRI TEMODE_565 GR_LFBWRI TEMODE_565_DEPTH
GR_LFBWRI TEMODE_555 GR_LFBWRI TEMODE_555_DEPTH
GR_LFBWRI TEMODE_1555 GR_LFBWRI TEMODE_1555_DEPTH
GR_LFBWRI TEMODE_888 GR_LFBWRI TEMODE_8888
GR_LFBWRI TEMODE_ZA16 GR_LFBWRI TEMODE_ANY

Use GR_LFBWRI TEMODE_ANY wWhen acquiring aread-only LFB pointer or when you want to use the
existing data format. If the data format specified in writeMode is not supported on the target hardware,
the lock will fail. Supported pixel formats are described in Table 11.2 and Table 11.3, later in this
chapter.

If the application specifies GR_LFB_WRI TEMODE_ANY and the lock succeeds, the destination pixel format
will be returned in info.writeMode. This default destination pixel format will always be the pixel format
that most closely matches the true pixel storage format in the frame buffer. On Voodoo Graphics and
Voodoo Rush, thiswill always be GR_LFBWRI TEMODE 565 for color buffers and GR_LFBWRI TEMODE_ZA16
for the auxiliary buffer. The writeMode argument isignored for read-only locks.

Some 3Dfx hardware supports a user-specified y origin for LFB writes. An application may request a
particular y origin by passing an origin argument other than GR_ORI G N_ANY. If the origin specified is not
supported on the target hardware, then the lock will fail. If the application specifies GR_ ORI G N_ANY and
the lock succeeds, the LFB y origin will be returned in info.origin. The default y origin for LFB writesis
GR_ORI @ N_UPPER_LEFT; currently supported values are GR_ ORI G N_UPPER_LEFT,

GR ORI G N_LOWER_LEFT, and GR_ORI Gl N_ANY.

Some 3Dfx hardware allows linear frame buffer writes to be processed by the pixel pipeline before being
written into the selected buffer. This feature is enabled by passing a value of FXTRUE in the pixelPipeline
argument; grLfbLock() will fail if the underlying hardware is incapable of processing pixels through the
pixel pipeline. When enabled, color, alpha, and depth data from the linear frame buffer write will be
processed asif it were generated by the triangle iterators. If the selected writeMode lacks depth
information, then the depth value is derived from grLfbConstantDepth(). If the writeMode lacks alpha
information, then the alpha value is derived from grLfbConstantAlpha(). Linear frame buffer writes
through the pixel pipeline may not be enabled for auxiliary buffer locks. The pixelPipeline argument is
ignored for read-only locks.

118 Copyright O 1995- 1997 3Dfx Interactive, Inc.
Printed 07/30/97 7:52 AM Proprietary and Confidential



Chapter 11. Accessing the Linear Frame Buffer

Thefinal parameter to grLfbLock() iS astructure of type GrLfbinfo_t. The info.size is used to provide
backward compatibility for future revisions of grLfbLock() and must be initialized by the user to the size
of the GrLfbinfo_t structure, as shown below. An unrecognized size will cause the lock to fail.

info.size=sizeof ( GLfblnfo_t);

Upon successful completion, the rest of the structure will befilled in with information pertaining to the
locked buffer. The GrLfbinfo_t structure is defined as:

typedef struct {
int size;
void *IfbPtr;
FxU32 stridelnBytes;,
GrLfbWriteMode_t writeMode;
GrOriginLocation_t origin;

} GrLfbinfo_t;

info.lfbPtr isassigned avalid linear pointer to be used for accessing the requested buffer. The accessis
either read-only or write-only; reading from a write pointer or writing to aread pointer will have
undefined effects on the graphics subsystem. info.stridelnBytes is assigned the byte distance between
scanlines. As described above, info.writeMode and info.origin are filled in with values describing the
settings in usein the currently selected buffer.

A successful call to grLfbLock() will cause the 3D graphicsenginetoidle. Thisis equivalent to calling
grSstldle() and may negatively impact the performance of some applications. Writes to the linear frame
buffer should use grLfbWriteRegion(), described later in this chapter, to interleave ordered linear frame
buffer copies into the 3D command stream as efficiently as possible.

When the application has completed its direct access transactions, the lock is relinquished by calling
grLfbUnlock(), thus restoring 3D and GUI access to the buffer.

FxBool grLfbUnlock( GrLock_t type, GrBuffer_t buffer )

The two parameters, 1ype and buffer, are identical to the first two arguments of the corresponding call to
grLfbLock(). Note that after a successful call to grLfbUnlock(), accessing the info.lfbPtr used in the
grLfbUnlock() call will have undefined results.

An application may not call any Glide routines other than grLfbLock() and grLfbUnlock() while any lock
isactive. Any such callswill result in undefined behavior.

Calculating a Pixel Address

The address of a particular pixel is computed from the (x,y) coordinates and the length of a scanline, a
value that isreturned in the info structure when grLfbLock() is successful. info.stridelnBytes represents
the number of bytesin arow or scanline. Thus,

address ., =y * info.stridelnBytes + x
address of the word containing (x,y) = address,/2 = (v * info.stridelnBytes + x)/2

The location of they origin, set in the call to grSstWinOpen() (see Chapter 3), determines the mapping of
y addresses into frame buffer memory. When writing to the LFB, the location of the y origin set in
grSstWinOpen() can be overridden, as described in the discussion of grLfbLock() that follows.
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Reading from the LFB

To read data directly from the linear frame buffer, obtain aread-only LFB pointer by calling grLfbLock(),
as described in the previous section. All dataisread as two 16-bit pixels per 32-bit word. The default
pixel ordering within the 32-bit read is OXRRRRLLLL where the left pixel in the pair isin the lower 16-
bits of the 32-bit word, as shown in Figure 11.1.
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Figure 11.1 Reading from and writing to the LFB.

When a 32-bit word is read using the read pointer acquired with a call to grLfbLock(), the bytes are swapped.: the
left most pixel is returned in the low-order half word. When a 32-bit word containing two pixels is written to the
LFB, the left most pixel is in the high-order half word. Remember that.

T I
buffer
writePointer ————»p m
readPointer *mw

When a 32-bit word is read using the read pointer returned in info.lfbPtr, the target buffer determines
how the data should be interpreted. If the locked buffer is a color buffer, the data should be interpreted as
two RGB colors, each containing a 5-bit red value, a 6-bit green value, and a 5-bit blue value. If the
locked buffer is a depth buffer, then the data contains two depth values, either 16-hbit fixed point z values
or 16-bit floating point w values, depending on grDepthBufferMode(). |f the locked buffer is an apha
buffer, then the data contains two 8-bit alpha values, stored in the low order byte of each halfword. Table
11.1 shows the possible data formats.

The 16-bit floating point format for w is shown in Table 11.1. It has a 4-bit exponent and a 12-bit
mantissa. Like IEEE floating point, aleading 1 valuein the MSB of the mantissais hidden. Note that the
w floating point value is unsigned only. The w floating point format converts to areal number by using
the equation:

l.mantissa * 277"

Using this format the minimum depth value is 1.0 (floating point encoding: 0x0000) and the maximum
depth value is 65528.0 (floating point encoding: 0xFFFF).
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Table 11.1 Interpreting data read from the LFB.

When a 32-bit word is read using the read pointer acquired with a call to grLfbLock(), the target buffer determines
how the data should be interpreted. If the locked buffer is a color buffer, the data should be interpreted as two RGB
colors, each containing a 5-bit red value, a 6-bit green value, and a 5-bit blue value. If the locked buffer is a depth
buffer, then the data contains two depth values, either 16-bit fixed point 7 values or 16-bit floating point w values,
depending on grDepthBufferMode(). If the locked buffer is an alpha buffer, then the data contains two 8-bit alpha
values, stored in the low order byte of each halfword.

buffer depth buffer mode color format physical layout of the data read
GR_BUFFER_FRONTBUFFER | jgnored GR_COLORFORMAT_ARGB or
GR_BUFFER_BACKBUFFER GR_COLORFORMAT_RGBA red green | blue

GR_BUFFER_AUXBUFFER

GR_COLORFORMAT_ABGR or
GR_COLORFORMAT_BGRA blue|| green | |red

GR_BUFFER_AUXBUFFER | GR DEPTHBUFFER_ZBUFFER | ignored
16-bit integer

GR_DEPTHBUFFER_VBUFFER [ ignored )
exp mantissa

GR BUFFER_AUXBUFFER | jgnored ignored
ignored alpha

Example 11.1 Reading a pixel value from the LFB.

The following code segment reads 10 pixels from the color buffer currently being displayed, starting with the pixel at
(100, 200), and stores them in the pix[1 array. The read pointer is initially set to the value returned in the info
structure when the lock was initiated. A byte offset representing (100, 200) is calculated, converted to a word
address, and added to the initial value to produce the starting address. The writeMode, origin, and pixelPipeline
arguments to grLfbLock() are ignored for read-only pointers.

#def i ne BYTESPERPI XEL 2

FxUl6 pi x[ 10];

G Lfblnfo_t info;
FxU32 *rptr;

int i;

/* get a read pointer */
if ( grLfbLock( GR_ LFB_READ ONLY, GR_LFB_FRONTBUFFER, GR_LFB_ VRl TEMCDE_ANY,
GR_ ORI G N_ANY, FXFALSE, &info)) {

/* add in the word address of the first pixel */

/* (conpute byte offset for (100,200)/4 */

rptr = info.lfbPtr

rptr += ((*info.stridelnBytes * 200) + 100* BYTESPERPI XEL) >>2;

/*read two pixels at a tine */
for (i=0; i<10; rptr++) {
pi x[i++] = *rptr && OXFFFF;
pi x[i++] = *rptr >>16;

}
gr Lf bUnl ock( GR_LFB_READ ONLY, GR LFB_FRONTBUFFER );
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Reading a Rectangle of Pixels from the LFB

The grLfbReadRegion() convenience function copies arectangle of pixels from the frame buffer to user
memory as efficiently as possible, performing the buffer locks and unlocks as needed. Note that thisis
the only way to read back from the frame buffer on Scanline Interleaved systems.

FxBool grLfbReadRegion( GrBuffer_t src_buffer,

FxU32 Src_X,
FxU32 sre_y,
FxU32 src_width,
FxU32 src_height,
FxU32 dst_stride,
void *dst data

)

A src_width by src_height rectangle of pixelsis copied from the buffer specified by src_buffer, starting
at the location (src_x, src_y). The pixels are copied to user memory starting at dst data, with astridein
bytes defined by dst stride. The frame buffer y origin is always assumed to be at the upper left and the
pixel dataformat isassumed to be GR_LFBWRI TEMODE_565 (see Table 11.2). The dst _stride must be
greater than or equal to src_width * 2.

Writing to the LFB

To write directly to the linear frame buffer, obtain awrite-only LFB pointer as described above. The call
to grLfbLock() specifies awriteMode that defines the dataformat and ay origin location for the LFB
writes. Both of these can be set to default to whatever conditions exist in the buffer. The pixelPipeline
parameter enables or disables the pixel special effects pipeline.

Previous versions of Glide contained explicit routines to set the write mode and LFB origin and to enable
or bypass the pixel pipeline: grLfbWriteMode(), grLfbOrigin(), and grLfbBypassMode(). These routines
are obsolete in Glide 2.2 and later versions.

The incoming pixel data can be interpreted in many different ways depending on the current linear frame
buffer write mode and color ordering configuration. The source of depth, apha, and color information is
determined by a combination of the current linear frame buffer write mode and whether the pixel special
effects pipeline is being bypassed or not. If the selected writeMode lacks depth information, then the
valueis derived from gr Lf bConst ant Dept h. If the writeMode lacks aphainformation, then the valueis
derived from gr Lf bConst ant Al pha. Linear frame buffer writes through the pixel pipeline may not be
enabled for auxiliary buffer locks. The pixelPipeline argument isignored for read only locks.

The procedure for writing to the LFB is as follows:

STEP1: If the pixel pipeline and depth buffering or alpha buffering are enabled, and if the desired
writeMode is lacking depth or alpha values, set constant values for depth and/or alpha with
grLfbConstantDepth() and grLfbConstantAlpha().

STEP2: Call grLfbLock() to get awrite pointer. Specify awrite mode and y origin if desired. Bypass the
pixel pipelineif desired.

STEP3: Writeinto the linear frame buffer using the write pointer.

STEPA4: Disable LFB writing and free the buffer by calling grLfbUnlock().

Each of these steps and the associated Glide functions are addressed in the remainder of this chapter,
accompanied by examples of their use.
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Setting LFB Write Parameters
Before you start writing data into the linear frame buffer, you need to do some set-up work.

There are ten different formats for the data; you must choose one.

A pixel can have red, green, blue, apha, and depth components, but not all of the data formats
provide values for al five components; you must set constant values for the ones that won't be
provided by the data.

They origin can be different for LFB writes than it isfor conventional rendering; set it if you want.

Linear Frame Buffer Write Modes
Data can be written into the LFB in one of several dataformats or write modes:

When two 16-bit pixels are written to the hardware as a packed 32-bit value, the pixel located in the high
16-bitsiswritten as the leftmost pixel, as shown in Figure 11.1. Thisis endian dependent, however, the
GLI DE_PLATFCRMcompile time constant automatically allows Glide to configure itself for the proper
endian characteristics. Incoming color data can be interpreted as either RGBA, ARGB, BGRA, or
ABGR. Thisis determined by the cFormat parameter passed to grSstWinOpen() (See Table 3.2).

The write modes and resulting data formats are shown in Table 11.2 and Table 11.3.
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Table 11.2 16-bit LFB data formats.

Three of the LFB data formats write a minimum of 16 bits to the linear frame buffer. The first column in the table
below gives the Glide constant for the write mode. The packing order of the color components is controlled by the
cFormat argument to grSstWinOpen(). The third column shows the packing order for each write mode and each
color format. Table 11.3 gives the layouts for the 32-bit LFB write formats.

with depth buffering enabled

LFB write mode cFormat physical layout of the color and depth components
GR_LFBWRI TEMODE_565 GR_COLORFORMAT_ARGB or | | | I )
GR_COLORFORVAT_RGBA I Ll _ 0
CR_COLORFORNVAT_ABGR or | 1 I I 1 |
GR_COLORFORVAT_BGRA i Ll _ I
GR_LFBWRI TEMODE_555 GR_COLORFORVAT_ARGB ignored
|i| R 2 | )
GR_COLORFORVAT_ABGR ignored
|i| LE s | e |
GR_COLORFORVAT_RGBA ignored
| LU e | biud H
GR_COLORFORVAT_BGRA ignored
| LE s | e H
GR_LFBWRI TEMODE_1555 GR_COLORFORVAT_ARGB ajpha
i| AN | )
GR_COLORFORMAT_ABGR ajpha
N
GR_COLORFORVAT_RGBA alpha
| LU e | biud |l
GR_COLORFORVAT_BGRA alpha
| LE s | e |i
GR_LFBVRI TEMCDE_ZA16 ignored
with alpha buffering enabled | fgnored | |1 |
GR_LFBVRI TEMCDE_ZA16 ignored

| depth |
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Table 11.3 32-bit LFB data formats.

The LFB data formats shown below write a minimum of 32 bits to the linear frame buffer. The first column in the
table below gives the Glide constant for the write mode. The packing order of the color components is controlled by
the cFormat argument to grSstWinOpen(). The third column shows the packing order for each write mode and each
color format. Table 11.2 gives the layouts for the 16-bit LFB write formats.

LFB write mode

cFormat

physical layout of the color and depth components

GR_LFBVWRI TEMODE_565_DEPTH

GR_COLORFORMAT_ARGB or

GR_COLORFORMAT_RGBA

I

depth |

31 27 26 21 20 16 15 0

GR_COLORFORMAT_ABGR or

GR_COLORFORMAT_BGRA

| blue | green | red depth |

a1 27 26 21 20 16 15 o0

GR_LFBVWRI TEMODE_555_DEPTH

GR_COLORFORMAT_ARGB

i%vnured

1 e

green | blue depth |

3l 30 26 25 21 20 16 15 o

GR_COLORFORMAT_ABGR

ignored

|l| LI e | I | |1 |
GR_COLORFORNVAT_RGBA ignored
| FE] e | s H depth |
GR_COLORFORNVAT_BGRA ignored
| LE s | aa | deph |
GR_LFBWRI TEMODE_1555_DEPTH GR_COLORFORNVAT_ARGB ajpha
I red green I blue depth |

3l 30 26 25 21 20 16 15 o

GR_COLORFORMAT_ABGR

ajpha

GR_LFBWRI TEMODE_888

GR_LFBWRI TEMODE_8888

|lL blue green | red | depth |

31 30 26 25 21 20 16 15 0
GR_COLORFORMAT_RGBA alpha

I dpth |

31 a0 2% 25 21 20 1 15 o
GR_COLORFORMAT_BGRA alpha

[ e | oo | deth |

31 30 2% 25 21 20 1 15 o
GR_COLORFORMAT_ARGB

| ignored I red | green | blue |

B 24 23 16 15 5 7 o
GR_COLORFORMAT_ABGR

| ignored I blue | green | red |

B 24 23 16 15 5 7 0
GR_COLORFORMAT_RGBA

| red I green | blue | ignored |

B 26 23 16 15 5 7 0
GR_COLORFORMAT_BGRA

| blue I green | red | ignored |

B 24 23 16 15 5 7 0
GR_COLORFORMAT_ARGB

| alpha I red | green | blue |

B 24 23 16 15 5 7 o
GR_COLORFORMAT_ABGR

| alpha I blue | green | red |

B 24 23 16 15 5 7 0
GR_COLORFORMAT_RGBA

| red I green | blue | alpha |

B 24 23 16 15 5 7 0
GR_COLORFORMAT_BGRA

| blue I green | red | alpha |

24 23

16 15 8 7 o
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Setting Constant Color, Alpha, and Depth Values

If alinear frame buffer write mode does not provide an alpha, depth, or color value, the necessary value
is read from the appropriate constant alpha, color, or depth value. Pixel datawritten in

GR_LFBWRI TEMODE_1555, for example, contains no depth component, so depth information is pulled from
the constant depth register set by grLfbConstantDepth(). Data written in GR_LFBWRI TEMODE_888 iS
missing a pha and depth components; the constant alpha register, set by grLfbConstantAlpha(), and the
constant depth register are used.

In GR_LFBWRI TEMODE_DEPTH_DEPTH mode, color information is retrieved from the constant color register,
set by grConstantColorValue() and described in Chapter 5. Note that the color set by
grConstantColorValue() Will be written to the color buffer while the depth components in the LFB write
are written to the depth buffer. If the pixel pipelineis enabled, only the depth information will be written.
Table 11.4 details the source of each component for each of the LFB write modes.

Table 11.4 Color, alpha, and depth sources.
The following table illustrates where the color, alpha, and depth values come from for each of the different write
modes for LFB writes that go through the pixel pipeline.

Glide constant color source alpha source depth source

GR_LFBWRI TEMODE_565 incoming pixel constant alpha’ constant depth’
GR_LFBWRI TEMODE_0555 incoming pixel constant alpha’ constant depth’
GR_LFBWRI TEMODE_1555 incoming pixel incoming pixel constant depth’
GR_LFBWRI TEMODE_565_DEPTH incoming pixel constant alpha’ incoming pixel
GR_LFBWRI TEMODE_0555_DEPTH incoming pixel constant alpha’ incoming pixel
GR_LFBWRI TEMODE_1555_DEPTH incoming pixel incoming pixel incoming pixel
GR_LFBWRI TEMODE_888 incoming pixel constant alpha’ constant depth’
GR_LFBWRI TEMODE_8888 incoming pixel incoming pixel constant depth’
GR_LFBWRI TEMODE_DEPTH_DEPTH constant color’ constant alpha’ incoming pixel

'The constant color is set by grConstantColorValue() and only affects chroma-keying operations, not output.

?The constant alpha value is set by grLfbConstantAlpha() and is only used for alpha test operations, not output.

*The constant depth value is set by grLfbConstantDepth() and is only used for depth test operations, not output.

Some linear frame buffer write modes, specifically GR_LFBWRI TEMODE_555, GR_LFBWRI TEMODE_565,
GR_LFBWRI TEMODE_1555, GR_LFBWRI TEMODE_888, GR_LFBWRI TEMODE_8888, and

GR_LFBWRI TEMODE_ALPHA_ALPHA, do not possess depth information. grLfbConstantDepth() specifies the
depth value for these linear frame buffer write modes.

void grLfbConstantDepth( FxU16 depth )

This depth value is used for depth buffering and fog operations and is assumed to be in aformat suitable
for the current depth buffering mode. Table 11.1 describes the floating point format used for w buffering;
z buffers use 16-bit fixed point values. The default constant depth valueiso.

If alinear frame buffer format contains depth information, then the depth supplied with the linear frame
buffer write is used, and the constant depth value set with grLfbConstantDepth() iS ignored.
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Some linear frame buffer write modes, specifically GR_LFBWRI TEMODE_555, GR_LFBWRI TEMODE_888,
GR_LFBWRI TEMODE 555_DEPTH, and GR_LFBWRI TEMODE_DEPTH_DEPTH, do not contain alphainformation.
grLfbConstantAlpha() specifies the alpha value for these linear frame buffer write modes.

void grLfbConstantAlpha( GrAlpha_t alpha )

Thisalphavalueis used if aphatesting and blending operations are performed during linear frame buffer
writes. The default constant alphavalue is OxFF.

If alinear frame buffer format contains alpha information, then the alpha supplied with the linear frame
buffer write is used, and the constant alpha value set with grLfbConstantAlpha() iS ignored.

Establishing a y Origin
The origin for linear frame buffer writes can be set separately from the origin for other rendering (points,

lines, triangles, buffer clears, etc.). Thisis useful in cases where images have a different origin than
graphics primitives, or where different images have different origins.

The origin argument to grLfbLock() is used to establish a separate y origin for LFB writes, either
GR_ORI G N_UPPER_LEFT OF GR_ORI G N_LOAER_LEFT.

Special Effects and Linear Frame Buffer Writes

Look back to Figure 1.2 in Chapter 1. The pixel pipeline is not bypassed when writing directly to the
linear frame buffer, unless you disable it. In fact, writing to the linear frame buffer is functionally
equivalent to sending individual pixels down the pixel pipeline. Effects such as depth buffering, fog,
chroma-keying, and alpha blending are not automatically disabled during LFB writes. As aresullt,
unexpected results can occur unless all special effects are disabled, or at least set to a known state.

Disabling All Special Effects

If “pure” unmodified writes to the frame buffer are desired (alaVGA direct access), two mechanisms
can be used to effect this. The first technique isto save the global state by calling grGlideGetState(), then
disable all special effects via grDisableAllEffects(). Specia effects can then be re-enabled individually;
subsequent writes are performed on the linear frame buffer with only the desired effects enabled. When
raw access to the frame buffer is complete, acall to grGlideSetState() resets the graphics hardware to its
previous state.

void grGlideGetState( GrState * state )
void grDisableAllEffects( void )
void grGlideSetState( const GrState *state )

The other option for unmodified writesis enabling a hardware specia effects pipeline bypass by setting
the pixelPipeline parameter to grLfbLock() to FXFALSE. Thisis useful when rendering overlays or text
directly to the screen and the application does not wish to disable all current effects (such as fog, depth
buffering, etc.) individualy.

Note that if the pixel pipelineis bypassed, then no effects are enabled with the exception of dithering.
Thisincludes clipping to the grClipWindow(), S0 an application must be careful not to write outside of the
visible display. The values of grColorMask() and grDepthMask() are also ignored when the pixel pipeline
is bypassed.
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Example 11.2 Enabling specific special effects.
The following code fragment illustrates how to save Glide s state, set certain special effects, then restore Glide s
state.

G State state;
G Lfblnfo_t info;

/1 Save the state
grdideGetState( &state );

/1 Selectively enable sonme effects
gr Chr onakeyMdde( GR_CHROVAKEY_ENABLE ) ;
gr Fogvbde( GR_FOG W TH_TABLE );

if ( grLfbLock( GR WRI TE_ONLY, GR BUFFER BACKBUFFER, GR LFBWRI TEMODE_ANY,
GR ORI G N_ANY, FXTRUE, & nfo)) {

/1l wite sone pixels using info.lfbPtr
...

gr Lf bUnl ock( GR_WRI TE_ONLY, GR BUFFER BACKBUFFER) ;
}

/!l Restore the state
grdideSetState( &state );

What Happens When a Special Effect is Enabled During an LFB Write?

If depth buffering is enabled during linear frame buffer writes, incoming pixel depths are either retrieved
from the incoming pixel or from the constant depth register, depending on the write mode. Note that this
can lead to some very odd effects: rarely will an application wish to depth buffer values being written to
the depth buffer. If depth buffering is not desired, then the application should disable it by calling
grDepthBufferMode() with the parameter GR_DEPTHBUFFER_DI SABLE. Note that depth biasing is disabled
during linear frame buffer writes because of aresource conflict between depth biasing and linear frame
buffer writes.

If alpha testing is enabled during linear frame buffer writes, incoming pixel alpha values are either
retrieved from the incoming pixel or from the constant a pha register, depending on the write mode. If
alphatesting is not desired, then the application should set the alphatest function to GR_CvP_ALWAYS.

If alpha blending is enabled during linear frame buffer writes, incoming pixel aphavalues are either
retrieved from the incoming pixel or from the constant a pha register, depending on the write mode. If
alphablending is not desired, then the application should call

grAlphaBlendFunction(GR_BLEND_ONE, GR_BLEND_ZERO, GR_BLEND_ONE, GR_BLEND_ZERO)

All other effects, such as chroma-keying and fog, act the samein linear frame buffer write modes asin
normal rendering operations and are disabled as described in Chapter 8.

It is possible to directly read from and write to the al pha/depth buffer for various special effects. To write
directly to the a pha/depth buffer call grLfbLock() with a buffer parameter of GR_BUFFER_AUXBUFFER, and
then use the newly acquired pointer. When writing to the depth buffer, incoming values must be in the
correct format (16-bit floating point for w buffering or 16-bit integer for linear z buffering). The 16-bit
floating point format used for w buffering is described in Table 11.1. Remember that if depth buffering is
enabled and the application iswriting directly to the depth buffer, unexpected results may occur since, in
essence, the application is depth buffering writes to the depth buffer.
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Example 11.3 Writing one 565 RGB pixel to the back buffer (RGB ordering).

FxUl6 pixel = OxFFFF; // \Wite pixel
G Lfblnfo_t info;
FxUl6 *ptr;

if ( grLfbLock( GR WRI TE_ONLY, GR BUFFER BACKBUFFER, GR LFBWRI TEMODE_565,
GR_ORIG N_ANY, FXTRUE, & nfo)) {

ptr = info.lfbPtr
ptrix + y* |nfo strl del nBytes] = pi xel;
grLf bUnl ock(GR_VRI TE_ONLY, GR BUFFER _BACKBUFFER) ;

Example 11.4 Writing two 565 RGB pixels to the back buffer (RGB color ordering).
The significant difference between this example and the last one is the type of the pointer ptr that is used to access
[frame buffer memory.

G LfbInfo_t info;

FxU32 *ptr;

Fx16 whitePi xel, bl ackPi xel;
FxU32 pi xel ;

whi t ePi xel = OxFFFF;

bl ackPi xel = 0x0000;

/1 This will make the black pixel the leftnost of the pair.
pixel = ( ( ( FxU32 ) blackPixel ) << 16 ) | whitePixel;

if ( grLfbLock( GR WRI TE_ONLY, GR BUFFER BACKBUFFER GR _LFBWRI TEMODE_565,
GR_ORIG N_ANY, FXTRUE, & nfo)) {

ptr = info.lfbPtr
ptrix + y* |nfo st rldel nByt es] = pi xel;
gr Lf bUnl ock( GR_ WRI TE_ONLY, GR_BUFFER_BACKBUFFER) ;

Example 11.5 Writing one 888 RGB pixel to the back buffer (ARGB color ordering).

G Lfblnfo_t info;
FxU32 pi xel = O0xO0FF0000; // Red pi xel

if ( grLfbLock( GR.WRI TE_ONLY, GR BUFFER BACKBUFFER, GR _LFBWRI TEMODE 888,
GR_ORI G N_ANY, FXTRUE, & nfo)) {
info.lfbPtr[x + y* info.stridelnBytes] = pixel;
gr Lf bUnl ock(GR_VRI TE_ONLY, GR BUFFER _BACKBUFFER) ;

}
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Writing a Rectangle of Pixels into the LFB

The grLfbWriteRegion() convenience function copies a rectangle of pixels from aregion of memory into
the linear frame buffer as efficiently as possible. It performs the buffer locks and unlocks as needed.

FxBool grLfbWriteRegion( GrBuffer_t buffer, FxU32 xStart, FxU32 yStart,
GrLfbSrcFmt_t srcFormat, FxXU32 width, FXU32 height, FxI32 stridelnBytes,
void *data

)

The first argument, buffer, specifies the buffer that the data will be copied into; the choices are
GR_BUFFER_FRONTBUFFER, GR_BUFFER_BACKBUFFER, and GR_BUFFER_AUXBUFFER. The next two
parameters, xStart and yStart, pecify the starting coordinates in the buffer where the data will be written.
They origin is assumed to be in the upper left corner of the screen.

The sreFormat argument describes the format of the data; valid values are shown in Table 11.5. The
width and height parameters give the dimensions, in pixels, of the rectangular region to be written to the
LFB and strideInBytes specifies how many bytes are in one row of the array. The final argument, data,
points to the pixel datain memory.

Note that stridelnBytes can be a negative number. If data pointsto the pixel closest to the origin, and
strideInBytes isthe length of arow in the array, then the sign of stridelnBytes represents the location of
the origin in the image pointed to by data. A negative stridelnBytes is used if data pointsto the lower left
corner, as shown in Figure 11.2.

Table 11.5 Source data formats for the grLfbWriteRegion() routine.

source data format description

GR_LFB_SRC_FMI_565 RGB 565 color image

GR_LFB_SRC_FMI_555 RGB 555 color image

GR_LFB_SRC_FMI_1555 RGB 1555 color image

GR_LFB_SRC FMr_888 RGB 888 color image. Each pixel is padded to 32 bits with RGB in the low
order 24 bits.

GR_LFB_SRC_FMI_8888 ARGB 8888 color image

GR_LFB_SRC_FMI_565_DEPTH | RGB 565 and 16-bit depth value packed into each 32-bit element of image
GR_LFB_SRC_FMI_555_DEPTH | RGB 555 and 16-bit depth value packed into each 32-bit element of image
GR_LFB_SRC_FMI_1555_DEPTH | RGB 1555 and 16-bit depth value packed into each 32-bit element of image
GR_LFB_SRC_FMI_ZA16 Two 16-bit depth or alpha values. Alpha values are stored into odd bytes.
GR_LFB_SRC FMI_RLE16 A 16-bit RLE Encoded image: each pixel has al6-bit signed count and a 16-
bit color. Negative counts are currently ignored.
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Figure 11.2 Frame buffer writes: encoding the location of the origin as the sign of the strideInBytes.

If the image you want to write into the linear frame buffer is defined with the origin in the lower left corner, you can
use a negative strideInBytes to compute addresses, as shown in part (a) below. If the origin is in the upper left
corner, use a positive stridelnBytes, as shown in part (b). The bottom half of each diagram shows the pixel copy in
progress.

(a). The origin of the image is in the lower left (b). The origin of the image is in the upper
corner and stridelnBytes is negative. left corner and strideInBytes is positive.

+— stridelnBytes —»

data
it
S . S v

data > - >
+— | stridelnBytes | —»

0,0 0,0
. width —» . width —»
g ﬂﬂ&ﬁ‘;\ height

(xStart, yStart) (xS tart,/ yStart)

address,) = data + (x + y*strideInBytes)

Thus, arectangle of srcFormat pixels pointed to by data and defined by width, height, and stridelnBytes
will be copied into buffer at the location (xStart, yStart). Note that not all 3Dfx graphics subsystems
support all source image formats; grLfbWriteRegion() will fail if the source format is not supported.
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In This Chapter

Glide provides a collection of routines that return information about the system, the software, and the
scene being rendered.

You will learn how to

v retrieve additional system configuration information: the current version of Glide, the number of SST
subsystems present, the size of the display screen

change the location of the y origin
check the system status

utilize two display monitors

4 4 4 <«

monitor system performance by learning the fate of pixelsin the pixel pipeline

Retrieving Configuration Information

The first three chapters of this manual present some routines that retrieve and use system configuration
information. The remaining routines are presented here.

Which Glide Release?

When your customer service representative asks you which version of Glide you are using, you might
whip up alittle program that calls grGlideGetVersion().

void grGlideGetVersion( char version[80] )

A null-terminated string that describes the Glide version isreturned in version. For example, the string
“Glide Version 2.2" isreturned by the Glide software described in this manual.

How Big a Screen?

grSstScreenHeight() and grSstScreenWidth() return the height and width in pixels, respectively, of the
current SST display buffer.

int grSstScreenHeight( void )

int grSstScreenWidth( void )
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Changing the y Origin
Thelocation of the y originisinitially established as part of the grSstWinOpen() call in the Glide
initialization sequence. The initial setting can be overridden later on by calling grSstOrigin().

void grSstOrigin( GrOriginLocation_t origin )

The argument, origin, specifies the direction of the y coordinate axis. GR_ORI G N_UPPER_LEFT placesthe
screen space origin at the upper left corner of the screen with positive y going down.
GR_ORI G N_LOAER_LEFT places the screen space origin at the lower left corner of the screen with positive

y going up.

Checking System Status
Three Glide routines help you determine the status of the Voodoo Graphics hardware.

void grSstldle( void)
FxBool grSstIsBusy( void)

grSstldle() blocks until the Voodoo Graphics subsystem isidle. The system is busy when either the
hardware FIFO is not empty or the graphics engine is busy.

The other routine, grSstIsBusy(), iS non-blocking. It returns FXTRUE if the Voodoo Graphics subsystem is
busy, and FXFALSE otherwise.

You can also look at the contents of the status register in the Voodoo Graphics system by calling
grSstStatus().

FxU32 grSstStatus( void )

grSstStatus() returns a 32-bit unsigned integer containing the contents of the status register. The bits
within this register are defined in Figure 12.1.
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Figure 12.1 The Voodoo Graphics status register.
displayed buffer

SST busy
TMU busy
reserved Pixelfx busy
\:ertical retrace
buffer
sw]z;zs memory FIFO free space ;r(i S}If;(e)
pending
31 30 28 27 121110 9 8 7 6 5 0
bit description
5.0 PCI FIFO free space (0x3F=FIFO empty)
6 Vertical retrace (O=vertical retrace active; 1=vertical retrace inactive).
7 Pixelfx graphics engine busy (O=engine idle; 1=engine busy)
8 TMU busy (O=engine idle; 1=engine busy)
9 Voodoo Graphics busy (0=idle; 1=busy)
11:10 Displayed buffer (O=buffer 0; 1=buffer 1, 2=auxiliary buffer; 3=reserved)
27:12 Memory FIFO free space (0x FFFF=FIFO empty)
30:28 Number of swap buffer commands pending
31 PCI interrupt generated (not implemented)

Utilizing Two Displays
grSstControlMode() should be called when switching between the VGA and the Voodoo Graphics display

for things like an attract mode, introductory video clips, etc. Use this routine instead of initializing and
shutting down Glide.

void grSstControlMode( GrSstControlMode_t mode)

grSstControlMode() determines whether the VGA display or Voodoo Graphics display isvisible,
depending on the value of mode, which can assume one of four values: GR_CONTROL_ACTI VATE,
GR_CONTROL_DEACTI VATE, GR_CONTROL_RESI ZE, Or GR_CONTROL_MOVE. Thefirst two values apply to all
systems. When GR_CONTROL_ACTI VATE is specified, the Voodoo Graphics frame buffer will be displayed
in full screen mode. On SST-96 systems, the video tile is enabled. If mode iS GR_CONTROL_DEACTI VATE,
the 2D VGA frame buffer is displayed. On SST-96 systems, the video tileis disabled.

GR_CONTROL_RESI ZE isignored under DOS, SST-1, and SST-96 in full screen mode. For windowed Glide
applications, this call resizes the back buffers and auxiliary buffers, and is typically made by Win32
applications in response to WM _SI ZE messages. The grSstControlMode() call may fail if thereis not
enough offscreen video memory to accommodate the resized buffers.

GR_CONTROL_MOVE isignored under DOS, SST-1, and SST-96 in full screen mode. For windowed Glide
applications, this call is used to validate the location and clip region associated with the front buffer
when the user moves awindow, and is typically made by Win32 applications in response to W _MovE
messages. This call may fail if underlying DirectDraw implementation fails.

On SST-1, since the 2D and 3D graphics exist on different devices (and frame buffers), activating or
deactivating pass through does not require you to repaint either the 2D or 3D graphics. On the SST-96,
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the application is responsible for repainting the 2D graphics or 3D graphics when you use
GR_CONTROL_ACTI VATE Of GR_CONTROL_DEACTI VATE.

Monitoring System Performance

The Voodoo Graphics hardware maintains a set of five counters that collect statistics about the fate of
pixels as they move through the pixel pipeline. Glide provides access to these counters through the
GrSstPerfStats_t structure and grSstPerfStats().

typedef struct GrSstPerfStats_s {

FxU32 pixelsin; [* # pixels processed (minus buffer clears) */

FxU32 chromaFail, [* # pixels not drawn due to chroma key test failure */
FxU32 zFuncFail, [* # pixels not drawn due to depth test failure */

FxU32 aFuncFail, [* # pixels not drawn due to aphatest failure */

FxU32 pixelsOut, [* # pixels drawn (including buffer clears and LFB writes) */

} GrSstPerfStats_t;

void grSstPerfStats( GrSstPerfStats_t *pStats )

In order to account for every pixel counted and saved in pixelsOut, one must use the following equation:
pixelsOut = LfbWritePixels + bufferClearPixels + (pixelsin — zFuncFail — chromaFail — aFuncFail)

bufferClearPixels represents the number of pixelswritten as aresult of callsto grBufferClear() and can
be calculated as:

bufferClearPixels = (# of times the buffer was cleared)* (clip window width) * (clip window height)

grSstPerfStats() does not wait for the system to be idle, and hence does not include statistics for
commands that are still in the FIFO. Call grSstldle() to empty the FIFO.

All five counters are reset whenever grSstResetPerfStats() is caled. The hardware counters are only
24-bitswide, so regular callsto grSstResetPerfStats() are required to avoid overflow. Alternatively,
counter overflows can be detected and accounted for without calling grSstResetPerfStats().

void grSstResetPerfStats( void )
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In This Chapter

The Glide Utility Library isaset of utility functions that are built on top of the lower-level Glide routines
presented in the preceding chapters. Many are convenience routines that provide higher-level services:
functional descriptions of color, apha, and texture combine functions, texture memory management
services, and so on. Some of the Glide Utility Library functions have already been described: the routines
to clip and draw trianglesin Chapter 4, the functions that create fog tablesin Chapter 8, or the functions
that download mipmaps and decompression tables from . 3DF filesin Chapter 10.

In this chapter, you will discover
v adifferent way to configure the color combine, alpha combine, and texture combine units
v adifferent way to manage texture memory

v ahigher level way to read and write the linear frame buffer

A Higher Level Color Combine Function

Chapter 4 introduced the grColorCombine() function; it provides alow-level way to configure the color
combine unit. The guColorCombineFunction() provides a higher level mechanism for controlling common
rendering modes without manipulating individual registers within the hardware.

void guColorCombineFunction( GrColorCombineFunction_t function )

The argument, function, specifies one of fourteen color combine functions. Table 13.1 lists the Glide
constants that define the color combine function and the effects than can be achieved with that function.
The default color combine function is undefined, so an application must set the color combine function
before executing any rendering commands. Refer to the guColorCombineFunction() page in the Glide 2.2
Reference Manual for more information.
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Table 13.1 Color combine functions.

function effect

GR_COLORCOVBI NE_ZERO 0x00 (black) for each component
GR_COLORCOMBI NE_I TRGB Gouraud shading
GR_COLORCOMBI NE_DECAL_TEXTURE texture

GR_COLORCOMBI NE_TEXTURE_TT NES_CCRGB

flat-shaded texture using the constant color set by
grConstantColorValue() as the shading value

GR_COLORCOMBI NE_TEXTURE_TT NES | TRGB

Gouraud-shaded texture

GR_COLORCOMBI NE_TEXTURE_TT NES | TRGB_ADD_ALPHA

Gouraud-shaded texture + alpha

GR_COLORCOVBI NE_TEXTURE_TI NES_ALPHA

texture * alpha

GR_COLORCOVBI NE_TEXTURE_ADD_[ TRGB

texture + iterated RGB

GR_COLORCOVBI NE_TEXTURE_SUB_[ TRGB

texture — iterated RGB

GR_COLORCOVBI NE_CCRGB

flat shading using the constant color set by
grConstantColorValue()

GR_COLORCOVBI NE_CCRGB_BLEND_[ TRGB_ON_TEXALPHA

blend between constant color and iterated RGB
using an alphatexture, where alpha of 0 and 1
correspond to constant color and iterated RGB
respectively

GR_COLORCOMBI NE_DI FE_SPEC_A

texture * a + iterated RGB

GR_COLORCOVBI NE_DI FF_SPEC B

texture * iterated RGB + a

GR_COLORCOVBI NE_ONE

0x FF (white) for each component

A Higher Level Alpha Combine Function

guAlphaSource() is a higher level interface to the Voodoo Graphics alpha combine unit than

grAlphaCombine(), which was presented in Chapter 6.

void guAlphaSource( GrAlphaSourceMode_t mode )

The alpha combine unit has two configurable inputs and one output. The output of the alpha combine
unit gets fed into the alpha testing and blending units. The selection of the a,,.,, input is important

because it is used in the color combine unit.

The following table describes how a,,..; and output alpha are computed based on the mode.

Table 13.2 Alpha combine unit modes.

mode

output Qjocal

GR_ALPHASOURCE_CC_ALPHA

constant color a constant color a

GR_ALPHASOURCE | TERATED ALPHA

iterated vertex a iterated vertex a

GR_ALPHASOURCE_TEXTURE_ALPHA

texture a° none

GR_ALPHASOURCE_TEXTURE_ALPHA_TI MES I TERATED ALPHA

texture @ * iterated " | iterated vertex a

" Constant color a isthe value passed to grConstantColorValue().
* I texture has no apha component, texture a is 255.

138
Printed 07/30/97 7:52 AM

Copyright O 1995- 1997 3Dfx Interactive, Inc.

Proprietary and Confidential




Chapter 13. Glide Utilities

A Higher Level Texture Combine Function

Configuring the Glide texture pipeline consists of setting up a mipmap source and configuring the texture
combine function on each TMU. Mipmap sources are established by downloading mipmaps and naming
them as the current texel source.

Chapter 9 presented a collection of Glide functionsthat configure the texture combine units;, Chapter 10
talked about managing texture memory and downloading mipmaps. Most of the memory management
details were left to the application.

The Glide Utilities Library includes some higher level routines that configure the texture combine unit on
afunctional level and that provides increased memory management functionality.

guTexCombineFunction() specifies the function used when combining textures on #mu with incoming
textures from the neighboring TMU. Texture combining operations allow for interesting effects such as
detail and projected texturing as well asthe trilinear filtering of LOD blending.

void guTexCombineFunction( GrChiplD_t tmu, GrTextureCombineFnc_t function )

The following table describes the avail able texture combine functions and their effects. c,,..; represents
the color components generated by indexing and filtering from the mipmap stored on tmu, and ¢, ..
represents the incoming color components from the neighboring TMU. Typically, the texture combine
function on the neighboring TMU operatesin GR_TEXTURECOMBI NE_DECAL (just pass the texel through)
mode.

Table 13.3 Texture combine functions.

texture combine function result effect

GR_TEXTURECOMBI NE_ZERO 0 0x00 per component

GR_TEXTURECOVBI NE_DECAL oo decal texture

GR_TEXTURECOVBI NE_OTHER Cother pass through

GR_TEXTURECOVBI NE_ADD Cother T Clocal additive texture

GR_TEXTURECOVBI NE_MULTT PLY Cotor - Clovar modulated texture

GR_TEXTURECOVBI NE_SUBTRACT Comer  Clocal subtractive texture

GR_TEXTURECOMVBI NE_DETAI L blend (¢oper, Ciocal) composite textures with composite on
selected TMU

GR_TEXTURECOMVBI NE_DETAI'L_OTHER blend (Comer, Clocal) composite textures with composite on
neighboring TMU

GR_TEXTURECOVBI NE_TRI LI NEAR_ODD | blend (Copers Ciocar) LOD blended textures with odd levels
on selected TMU

GR_TEXTURECOVBI NE_TRI LI NEAR_EVEN | hlend (Coppers Ciocar) LOD blended textures with even levels
on selected TMU

GR_TEXTURECOWVBI NE_ONE 255 O0x FF per component

guTexCombineFunction() also keeps track of which TMUSs require texture coordinates for the rendering
routines. Many combining functions that simultaneously use both ¢,,., and ¢, .. can be computed with two
passes on asingle TMU system by using the frame buffer to store intermediate results and the alpha
blender to combine the two partial results.
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Allocating Texture Memory

WARNING: You cannot mix and match grTex and guTex commands. Do not use the functions described
here in conjunction with grlexMinAddress(), grTexMaxAddress(), grTexNCCTable(), grTexSource(),
grTexDownloadTable(), grTexDownloadMipMapLevel(), grTexDownloadMipMap(), grTexMultiBase(), and
grTexMultibaseAddress().

Before downloading a mipmap, an application must first allocate some memory for it. Thisis done using
guTexAllocateMemory(), Which returns a handle to an allocated mipmap storage area within a specific
TMU.

GrMipMapld_t guTexAllocateMemory( GrChiplD_t fmu,
FxU8 oddEvenMask,
int width,
int height,
GrTextureFormat_t format,
GrMipMapMode_t mipmapMode,
GrLOD_t smallLOD,
GrLOD_t largeLOD,
GrAspectRatio_t aspectRatio,
GrTextureClampMode_t sClampMode,
GrTextureClampMode_t tClampMode,
GrTextureFilterMode_t minFilterMode,
GrTextureFilterMode_t magFilterMode,
float LODbias,
FxBool LODblend

)

The arguments are similar to those for routines in Chapter 10; refer to Table 10.2 for a summary of the
possible values. The memory will be alocated on tmu. The height and width of the largest mipmap level
are specified, and, in combination with oddEvenMask, format, smallLOD, largel.OD, and aspect ratio,
are used to compute the amount of memory required.

oddEvenMask is used to selectively download LOD levels when LOD blending is to be used. Correct
usage is to allocate and download the even levels onto one TM U, and the odd levels onto another, both
with the LODblend parameter set to FXTRUE. Then the texture combine mode for the lower numbered
TMU isset to GR_TEXTURECOVBI NE_TRI LI NEAR_ODD Or GR_TEXTURECOMBI NE_TRI LI NEAR_EVEN depending
on whether the odd levels or the even levels were downloaded to it.

All the parameters that define the texel selection process when this mipmap is downloaded are also
included in the call: mipmapMode, sClampMode, tClampMode, minFilterMode, magFilterMode,
LODbias, and LODblend. See Chapter 9 for more details.

If memory could not be allocated, avalue of GR_NULL_M PMAP_HANDLE is returned. Mipmap handles
cannot be shared across multiple Voodoo Graphics subsystems, i.e. atexture must be allocated and
downloaded multiple times if an application wishes to use it across multiple Voodoo Graphics
subsystems.

The amount of unallocated texture memory can be determined with the Glide function
guTexMemQueryAvail(), which returns the amount of unallocated memory in bytes for the specified TMU
in the currently active Voodoo Graphics subsystem. Only memory that was allocated with
guTexAllocateMemory() iS taken into account.
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FxU32 guTexMemQueryAvail( GrChipID_t tmu )

Resetting Texture Memory

Instead of elaborate memory recovery mechanisms, it is sometimes easier to download textures until
there is no more room, then clear texture memory and start over with new textures. For example, agame
with obvious breaks between levels can avoid complex texture memory management by clearing out
texture memory whenever the player entersanew “level”. To reset the texture memory, call
guTexMemReset(). After suTexMemReset() iS called, all texture map handles associated with the reset
Voodoo Graphics subsystem are invalidated.

void guTexMemReset( void )

Downloading Textures

After the memory has been allocated, guTexDownloadMipMap() and guTexDownloadMipMapLevel() can
be used to download complete mipmaps or individual levels, respectively.

void guTexDownloadMipMap( GrMipMapld_t mipmapID, const void *src, const GuNccTable * NCCrable)

guTexDownloadMipMap() downloads an entire mipmap to an area of texture memory previously allocated
with guTexAllocateMemory() and pointed to by mipmapID. The data to be downloaded must have the
pixel format and aspect ratio associated with mipmaplID. 1f the texture uses an NCC decompression table,
NCCtable isapointer toit. Thisisonly valid for 8-bit compressed textures |oaded with gu3dfLoad().

void guTexDownloadMipMapLevel( GrMipMapld_t mipmapID, GrLOD _t lod, const void **src )

guTexDownloadMipMapLevel() downloads a single mipmap level within a mipmap to an area of texture
memory previously allocated with guTexAllocateMemory() and updates *src to point to the next mipmap
level. The data to be downloaded must be of the same pixel format and aspect ratio as mipmapID and
must be of the correct size for lod, the LOD that is being downloaded.

guTexSource makes current a mipmap for the TMU it resides on. Each TMU has one current mipmap. In
systems with multiple TMUs, multiple mipmap sources are combined by the texture combine function
and the output of the final combine is passed on to the pixel shading pipeline. By default, all the TMUs
have null texture handles associated with them.

void guTexSource( GrMipMapld_t mipmapID )

Changing Mipmap Attributes

When amipmap is made current, all of its attributes take effect. Some of these attributes can be
temporarily overridden with grTexClampMode(), grTexFilterMode(), grTexLodBiasValue(), and
grTexMipMapMode(). Note, however, that these routines do not change the mipmayp’s attribute, only the
current mode of the rendering hardware.

guTexChangeAttributes() changes some of the attributes of a mipmap. This allows a section of texture
memory to be reused without resetting all of texture memory. Upon success, FXTRUE is returned, else
FXFALSE is returned.
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For projected textures, the clamp modes, sClampMode and tClampMode, should aways be set to
GR_TEXTURECLANP_CLANP.

FxBool guTexChangeAttributes( GrMipMapld_t mipmapID,
int width,
int height,
GrTextureFormat_t format,
GrMipMapMode_t mipmapMode,
GrLOD_t smallLOD,
GrLOD_t largeLOD,
GrAspectRatio_t aspectRatio,
GrTextureClampMode_t sClampMode,
GrTextureClampMode_t tClampMode,
GrTextureFilterMode_t minFilterMode,
GrTextureFilterMode_t magFilterMode

Retrieving Information about Mipmaps

guTexGetCurrentMipMap() returns the handle of the currently active mipmap on a selected TMU. Each
TMU has one currently active mipmap. Mipmaps are made current with guTexSource().

GrMipMapld_t *guTexGetCurrentMipMap ( GrChipID_t tmu )
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guTexGetMipMaplInfo() allows an application to retrieve information about a mipmap.

Proprietary and Confidential

typedef struct {
int sst; [* SST where this texture map was stored */
FxBool valid,; [* set when this table entry is allocated */
int width, height;
GrAspectRatio_t aspect_ratio; [* aspect ratio of the mipmap. */
void *data,; [* actual texture data */
GrTextureFormat_t format, /* format of the texture table */
GrMipMapMode_t mipmap_mode; /*mipmap mode for this texture */
GrTextureFilterMode_t  magfilter _mode; [* filtering to be used when magnified */
GrTextureFilterMode_t  minfilter_mode; [* filtering to be used with minified */
GrTextureClampMode_t s _clamp_mode; /* how this texture should be clamped in s */
GrTextureClampMode_t ¢ clamp_mode; /* how this texture should be clamped in t */
FxU32 tLOD; /* Register value for tLOD register */
FxU32 tTextureMode; /* Register value for tTextureMode register */

/* not including non-texture specific bits */

FxU32 lod_bias; /* LOD bias of the mipmap in preshifted 4.2 */
GrLOD _t lod_min, lod_max; [* largest and smallest levels of detall g/
int tmu; /* tmu on which this texture resides */
FxU32 odd_even_mask; /* mask specifying levels on this tmu */
FxU32 tmu_base_address; [* base address (in TMU memory) of this texture */
FxBool trilinear:; /* should we blend by lod? g/
GuNccTable ncc_table; /* NCC compression table (optional) */
GrMipMaplnfo;

GrMipMaplnfo * guTexGetMipMapInfo( GrMipMapld_t mipmapID )
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s, PrOgramming Tips and Techniques

In This Chapter
This chapter isa collection of short programming tips. You will read about:

snapping vertex coordinates to agrid to avoid anomalies when rendering very small triangles
avoiding redundant state changes

minimizing screen clears

controlling texture aliasing artifacts with an LOD bias

precision compression artifacts that can arise when z buffering

4 4 4 4 4 <

state coherency and contention between processes

Floating Point Vertex Snapping and Area Calculations

Glide srasterization primitives, such as grDrawTriangle(), perform area calculations in order to determine
parameter gradients, facedness, etc. A potential inconsistency may arise between Glide's and the Voodoo
Graphics hardware' s perception of area and vertex values when Glide' s floating point values change

upon conversion to the hardware’ s fixed point <12.4> representation. This typically only occurs with
very small triangles, however, in certain cases this may cause the hardware to begin rendering outside of
atriangle and in the wrong direction, leading to anomalies such as long horizontal stripes on the screen
and very long rendering times.

To avoid this problem, software should “snap” verticesto .0625 resolution before passing them to Glide,
but after they have been projected. On most processors, snapping can be performed by adding alarge
number (2') to the vertices then subtracting this same large number, which in effect normalizes the value
to aknown range and precision.

Example 14.1 Snapping coordinates to .0625 resolution.

const float vertex_snapper = ( float ) ( 3L << 18 );

vertex. X += vertex_snapper;

vertex.x -= vertex_snapper;
vertex.y += vertex_snapper;
vertex.y -= vertex_snapper;

The only caveat isthat an Intel FPU must be configured to operate in 24-bit precision so that temporaries
are not immediately promoted to a higher precision internal to the FPU. Thisis accomplished by masking
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off the precision control bitsin the floating point control world. The assembly code in Example 14.2
performs this function.

Example 14.2 Masking off precision control bits on Intel processors.

finit ; initialize the FPU

fwai t wait for operation to conplete

fstcw [ nenvar] store FPU control word to nemvar

fwai t wait for operation to conplete

nov eax, [nemvar] nove menvar to a register

and eax, Offfffcffh mask of f precision bits to set to 24-bit precision
nmov [ menvar], eax save control word to menory

fldcw [ nenvar] |l oad control word back to FPU

fwai t wait for operation to conplete

The same effect can be realized by multiplying by 16, casting to al ong to truncate off trailing bits, then
dividing by 16.0 to reconvert back to floating point, as shown in Example 14.3. Thisisnot an ideal
solution, but it is portable and simple to implement. Note that this solution is very inefficient and should
never be used in production code.

Example 14.3 A portable way to snap coordinates to .0625 resolution.
Note that this solution is very inefficient and should never be used in production code.

I ong tnp;

tnp = vertex.x * 16; /1 increase by 4 bits, truncate off the rest
tnp = vertex.y * 16; /1 increase by 4 bits, truncate off the rest
vertex.x = tnp / 16.0; /1l renmove extra 4 bits, convert back to float
vertex.y =tnp / 16.0; /1l remove extra 4 bits, convert back to float

Avoiding Redundant State Setting

If an application depth sorts all the polygonsin a scene, the arbitrary order in which polygons are
rendered can potentially cause an immense amount of redundant state information to be passed to the
hardware. Thisis adifficult problem to solve, however, the following guidelines should assist when
attempting to efficiently maintain state:

use material libraries to clump together attributes into “ materials’. Change states en masse whenever
anew material becomes current, but only change the current material when necessary.

use intelligent object rendering code that renders similar triangles (in terms of state attributes)
together to minimize unnecessary state updates

Avoiding Screen Clears by Rendering Background Polygons

If an application does not need to clear the apha or depth buffers, it can forego clearing the display
buffer by rendering large background polygons first. For example, aflight ssmulator will typically render
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large sky and ground polygons that will effectively cover the entire screen, removing the need to clear the
display buffer.

Using LOD Bias To Control Texture Aliasing

LOD calculations computed for mipmapping can be biased to finely control the point at which mipmap
levels are crossed. The LOD bias for atexture is specified by calling grTexLodBiasValue(). For bilinear,
blended, mipmapped, non-mipmap dithered, non-mipmap-interpolated textures, an LOD bias value of 0.5
istypically sufficient. For bilinear, blended, mipmapped, mipmap interpolated textures, an LOD bias
value of =3/8 istypically sufficient.

However, the choice of an LOD bias valueis highly dependent on the frequency of atexture. If textures
arefairly high in frequency, then alarger LOD bias may be required to reduce texture aliasing artifacts.

Linear z Buffering and Coordinate System Ranges

The Voodoo Graphics hardware supports linear z buffering by storing the 16-bit whole part of any z
values passed to the hardware. A side effect of thisisthat the precision of the z buffer tendsto be
concentrated very close to the viewer. Therefore z buffer “poke through” may occur as aresult of the
compression of precision close to the viewer.

State Coherency and Contention Between Processes

Neither the Voodoo Graphics hardware nor Glide handle resource contention management in
multithreaded or multitasking environments. Thus, an application that has multiple threads or processes
accessing Glide and/or the Voodoo Graphics hardware must maintain state coherency and perform
context management manually using some form of mutual exclusion management.
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wean. A Sample Program

/*

** Copyright (c) 1995, 3Dfx Interactive, Inc.

** Al Rights Reserved.

* %

** This is UNPUBLI SHED PROPRI ETARY SOURCE CODE of 3Dfx Interactive, Inc.;

** the contents of this file may not be disclosed to third parties, copied or
** duplicated in any form in whole or in part, without the prior witten

** perm ssion of 3Dfx Interactive, Inc.

* %

** RESTRI CTED Rl GHTS LEGEND:

** Use, duplication or disclosure by the Governnent is subject to restrictions
** as set forth in subdivision (¢)(1)(ii) of the Rights in Technical Data

** and Conputer Software clause at DFARS 252.227-7013, and/or in simlar or
** successor clauses in the FAR, DOD or NASA FAR Suppl enent. Unpublished -

** rights reserved under the Copyright Laws of the United States.

* %

** $ld: test05.c,v 1.1 1995/06/30 06:47: 04 garynct Exp $

*/

#i fdef _ DOS

#i ncl ude <coni o. h>
#endi f

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <math. h>
#i ncl ude <glide. h>

G HwConfi guration hweconfi g;

void main( void)
{ float color = 255.0;

puts( "\ nTESTO05:" );

puts( "renders a Gouraud-shaded triangle" );
#ifdef _ DOS_

puts( "press a key to continue" );

getch();
#endi f

grdidelnit();

if ( !grSstQeryHardware( &weonfig ) )
grErrorSet Cal | back( "main: grSstQueryHardware failed!'", FXTRUE );

/* Select SST 0 and open up the hardware */

grSstSelect( 0);

if ( !grSstWnOpen( NULL, GR RESOLUTI ON 640x480, GR REFRESH 60Hz,
GR_COLORFORMAT _ABGR, GR ORI GIN_LOWER LEFT, 2, 0)
grErrorSetCal | back( "main: grSstWnQOpen failed!'", FXTRUE );

while (1) {
G Vertex vtxl, vtx2, vtx3;

grBufferC ear( 0, 0, GR WDEPTHVALUE_FARTHEST );
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guCol or Conbi neFuncti on( GR_COLORCOMBI NE_I TRGB );

vt x1.
vt x1.
vt x1.
vt x1.
vt x1.
vt x1.
vt x2.
vt x2.
vt x2.
vt x2.
vt x2.
vt x2.
vt x3.
vt x3.
vt x3.
vt x3.
vt x3.
vt x3.
gr DrawTr i

D oQ T X20DQ TS X00oQ - X

#i fdef _ DOS
getch();
br eak;

#endi f

160;
120;
col or;
0,

0,

0,
480;
180;
0,

col or;
0,
128;
320;
360;
0,

0,

col or;
255;

angl e( &vtx1, &vtx2, &tx3 );

grBufferSwap( 1 );
DCS

}
grd i deShut down() ;

}
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This following table shows the Glide constants that define values for modes, functions, and other Glide

state variables.

If the Glide type is

and the argument name
is something like

then these constants are valid values for the
argument

and these are the consequences of
choosing that value.

GR_BLEND_ONE
GR_BLEND_ONE_M NUS_SRC_ALPHA
GR_BLEND_ONE_M NUS_SRC_COLOR
GR_BLEND_ONE_M NUS_DST_COLOR
GR_BLEND_ONE_M NUS_DST_ALPHA
GR_BLEND_RESERVED 8
GR_BLEND_RESERVED_9
GR_BLEND_RESERVED_A
GR_BLEND_RESERVED_B
GR_BLEND_RESERVED _C
GR_BLEND_RESERVED D
GR_BLEND_RESERVED_E
GR_BLEND_ALPHA_SATURATE
GR_BLEND_PREFOG COLOR

Fxu32 evenOdd g_m Emgtggtméﬁ_%’\‘ Selects mipmaps for loading. Even
oddEvenMask GR_M PMAPLEVELMASK_BOTH LODs are GR_LOD_256,
GR_LOD_64, GR_LOD_16,
GR_LOD_4, and GR_LOD_1.
Odd LODs are GR_LOD_128,
GR_LOD_32, GR_LOD_8, and
GR_LOD_2.
GrAlphaBlendFnc_t rgbSrcFactor GR_BLEND_ZERO Sets alpha blending factors.
) GR_BLEND_SRC_ALPHA
rgbDestFactor GR BLEND SRC COLOR
alphaSrcFactor GR_BLEND_DST_COLOR
alphaDestFactor GR_BLEND_DST_ALPHA

GrAspectRatio_t

aspectRatio

GR_ASPECT 8x1
GR_ASPECT 4x1
GR_ASPECT 2x1
GR_ASPECT_1x1
GR_ASPECT_1x2
GR_ASPECT_1x4
GR_ASPECT 1x8

Sets the aspect ratio of the textures
in a mipmap.

GrBuffer_t

buffer

GR_BUFFER_FRONTBUFFER
GR_BUFFER_BACKBUFFER
GR_BUFFER_AUXBUFFER
GR_BUFFER_DEPTHBUFFER
GR_BUFFER_ALPHABUFFER
GR_BUFFER_TRI PLEBUFFER

GrChiplD_t

tmu

&R_TMD
GR_TMUL
GR_TMJR2

Selects the target TMU. The
constant names it.

GrChromakeyMode_t

mode

GR_CHROVAKEY_DI SABLE
GR_CHROVAKEY_ENABLE

GrCmpFnc_t

func

GR_CVP_NEVER
GR_CMP_LESS
GR_CVP_EQUAL
GR_CMP_LEQUAL
GR_CVP_GREATER
GR_CVP_NOTEQUAL
GR_CMP_GEQUAL
GR_CVP_ALWAYS

GrColorFormat_t

cFormat

GR_COLORFORMAT_ARGB
GR_COLORFORMAT_ABGR
GR_COLORFORMAT_RGBA
GR_COLORFORMAT_BGRA
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If the Glide type is

and the argument name
is something like

then these constants are valid values for the
argument

and these are the consequences of
choosing that value.

GrCombineFactor_t

factor
rgbFactor
alphaFactor

GR_COVBI NE_FACTOR_ZERO
GR_COVBI NE_FACTOR_NONE

GR_COVBI NE_FACTOR_LOCAL

GR_COVBI NE_FACTOR_OTHER_ALPHA

GR_COVBI NE_FACTOR_LOCAL_ALPHA

GR_COVBI NE_FACTOR_TEXTURE_ALPHA

GR_COVBI NE_FACTOR_DETAI L_FACTOR

GR_COVBI NE_FACTOR_LOD_FRACTI ON

GR_COVBI NE_FACTOR_ONE

GR_COVBI NE_FACTOR_ONE_M NUS_LOCAL

GR_COVBI NE_FACTOR_ONE_M NUS_OTHER ALPHA
GR_COVBI NE_FACTOR_ONE_M NUS_LOCAL_ALPHA
GR_COVBI NE_FACTOR_ONE_M NUS_TEXTURE_ALPHA
GR_COVBI NE_FACTOR_ONE_M NUS_DETAI L_FACTOR
GR_COVBI NE_FACTOR_ONE_M NUS_LOD_FRACTI ON

Chooses a combine factor for the
color combine, alpha combine, or
texture combine units.

GrCombineFunction_t

factor
rgbFunction
alphaFunction

GR_COVBI NE_FUNCTT ON_ZERO
GR_COVBI NE_FUNCTI ON_NONE

GR_COVBI NE_FUNCTI ON_LOCAL

GR_COVBI NE_FUNCTI ON_LOCAL_ALPHA

GR_COVBI NE_FUNCTI ON_SCALE_OTHER

GR_COVBI NE_FUNCTI ON_BLEND_OTHER

GR_COVBI NE_FUNCTI ON_SCALE_OTHER_ADD_L OCAL

GR_COVBI NE_FUNCTI ON_SCALE_OTHER_ADD_LQOCAL __
GR_COVBI NE_FUNCTI ON_SCALE_OTHER_M NUS_L OCAL
GR_COVBI NE_FUNCTI ON_SCALE_OTHER_M NUS_LOCAL_ADD_L OCAL

GR_COMBI NE_FUNCTI ON_BLEND

GR_COMBI NE_FUNCTI ON_SCALE_OTHER M NUS_LOCAL_ADD_LOCAL_ALPHA

GR_COMBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD_
GR_COMBI NE_FUNCTI ON_BLEND_L OCAL

GR_COVBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD_

Chooses a
combining
Sfunction
for the
color
combine,
alpha
combine,
or texture
combine
units.

ALPHA

LOCAL
LOCAL_ALPHA

GrCombineLocal_t

local

GR_COVBI NE_LOCAL_T TERATED
GR_COVBI NE_LOCAL_CONSTANT
GR_COVBI NE_LOCAL_NONE
GR_COVBI NE_LOCAL_DEPTH

Chooses a local alpha or RGB
source for color, alpha, or texture
combine units.

GrCombineOther_t

other

GR_COVBI NE_OTHER | TERATED
GR_COVBI NE_OTHER_TEXTURE
GR_COVBI NE_OTHER_CONSTANT
GR_COVBI NE_OTHER_NONE

Chooses an alpha or RGB source
for the other value in the color,
alpha, or texture combine units.

GrCullMode_t

mode

GR_CULL_DI SABLE
GR_CULL_NEGATI VE
GR_CULL_POSI TI VE

Do back-facing polygons have
negative or positive area?

GrDepthBufferMode_t

mode

GR_DEPTHBUFFER DI SABLE
GR_DEPTHBUFFER_ZBUFFER
GR_DEPTHBUFFER_WBUFFER
GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO BI AS
GR_DEPTHBUFFER_WBUFFER_COMPARE_TO BI AS

Chooses a depth buffering
algorithm.

GrDitherMode_t

mode

GR_DI THER DI SABLE
GR_DI THER 2x2
GR DI THER 4x4

Wanna dither?

GrFogMode_t

mode

FOG DI SABLE
FOG W TH_| TERATED_ALPHA
FOG W TH_TABLE
 FOG_MULT2

GR_FOG_ADD2

GR |
GR_
GR_
GR_

Enables and characterizes
Jogging.

GrLfbWriteMode_t

mode

GR_LFBVRI TEMODE 565
GR_LFBVRI TEMODE_555
GR_LFBWRI TEMODE_1555
GR_LFBVRI TEMODE_888
GR_LFBWRI TEMODE_8888
GR_LFBWRI TEMODE_565_DEPTH
GR_LFBWRI TEMODE_555_DEPTH
GR_LFBWRI TEMODE_1555_DEPTH
GR_LFBWRI TEMODE_DEPTH_DEPTH
GR_LFBVRI TEMODE_ALPHA_ALPHA

GrLOD_t

smallLOD
largeLOD
thisLOD

Specifies the largest dimension of
the texture. The aspect ratio
determines the smaller dimension.

GrMipMapMode_t

mipmapMode
mode

Specifies the kind of mipmapping
to perform.

GrNCCTable_t

table

Chooses an NCC table for use in

decompressing texels.
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If the Glide type is

and the argument name
is something like

then these constants are valid values for the
argument

and these are the consequences of
choosing that value.

GR_TEXFMI_YI Q 422
GR_TEXFMI_ALPHA 8

GR_TEXFMI_| NTENSI TY_8
GR_TEXFMI_ALPHA_| NTENSI TY_44
GR_TEXFMI_P_8
GR_TEXFMI_ARGB_8332
GR_TEXFMI_AYI Q 8422
GR_TEXFMI_RGB_565
GR_TEXFMI_ARGB_1555
GR_TEXFMI_ARGB_4444
GR_TEXFMI_ ALPHA_| NTENSI TY_88

GR_TEXFMI_AP_88

GrOriginLocation_t i GR_ ORI G N_UPPER_LEFT Sets locati igin.
g _ loc'afeOrlgln GR_CRI G N_LOWER LEFT ets location of origin.
origin
GrSmoothingMode_t GR_SMOOTHI NG_DI SABLE Enables/disables 24- thi
g | smoothMode RS H NG ENABLE ﬁlntzzr es/disables 24-smoothing
GrTexBaseRange_t GR_TEXBASE_256 Speci, hich base register wh
ge_| range R TEXEASE 128 p?czﬁes which base register when
GR TEXBASE 64 using more than one. A mipmap
GR_TEXBASE 32_TO 1 can be broken into four fragments.
The number in the constant
corresponds to the LOD number.
GrTexTable_t GR_TEX_NCCOO Each TMU can have two NCC
- tablelype GR_TEX_NCCL tables and a palette. Load them
table GR_TEX_PALETTE Sapareie.
one at a time with a general
purpose routine.
GrTextureClampMode_t GR_TEXTURECLAMP_WRAP Clamp or wrap at the edges of a
pMode t f sClampMode GR_TEXTURECLAMP_CLAP P orwrap ges of
tClampMode lexture:!
GrTextureFilterMode_t inki GR_TEXTUREFI LTER POl NT_SAMPLED Chooses minification and
-t | minFilterMode GR_TEXTUREFI LTER BI LI NEAR ses minifl
magFilterMode magnification filters.
GrTextureFormat_t format GR_TEXFMI_RGB_332 See Table 10.1 for a description of

the texture formats.

The types below are used in three Glide Utilities Library functions that present higher level views of the

texture, color, and alpha combine units.

If the Glide type is

and the argument name
is something like

then these constants are valid values for the argument

and these are the
consequences of
choosing that value.

GR_TEXTURECOVBI NE_DECAL
GR_TEXTURECOMBI NE_OTHER
GR_TEXTURECOMBI NE_ADD
GR_TEXTURECOVBI NE_MULTI PLY
GR_TEXTURECOWVBI NE_SUBTRACT
GR_TEXTURECOWVBI NE_DETAI L
GR_TEXTURECOMBI NE_DETAI L_OTHER
GR_TEXTURECOMBI NE_TRI LI NEAR_ODD
GR_TEXTURECOMBI NE_TRI LI NEAR_EVEN
GR_TEXTURECOVBI NE_ONE

GrAlphaSource_t mode GR_ALPHASQURCE_CC_ALPHA Chooses an alpha
GR_ALPHASOURCE_| TERATED_ALPHA
GR_ALPHASOURCE_TEXTURE_ALPHA source for alpha and
GR_ALPHASOURCE_TEXTURE_ALPHA_TI MES_| TERATED ALPHA | color combing.
GrColorCombineFnc_t | function GR_COLORCOMBI NE_ZERO Chooses a color
GR_COLORCOMBI NE_CCRGB . .
GR_COLORCOMBI NE_| TRGB combining function.
GR COLORCOMVBI NE | TRGB_DELTAO
GR COLORCOMVBI NE DECAL_TEXTURE
GR COLORCOMVBI NE TEXTURE Tl MES_CCRGB
GR COLORCOMVBI NE TEXTURE Tl I\/ES | TRGB
GR COLORCOMVBI NE TEXTURE Tl I\/ES | TRGB_DELTAO
GR COLORCOMVBI NE TEXTURE Tl I\/ES |TRGB ADD_ALPHA
GR COLORCOMVBI NE TEXTURE Tl I\/ES ALPHA
GR COLORCOMVBI NE TEXTURE Tl I\/ES ALPHA_ADD_| TRGB
GR_COLORCOVBI NE_TEXTURE_ADD _| TRGB
GR_COLORCOVBI NE_TEXTURE_SUB_| TRGB
GR_COLORCOVBI NE_CCRGB_BLEND_| TRGB_ON_TEXALPHA
GR_COLORCOVBI NE_DI FF_SPEC_A
GR_COLORCOVBI NE_DI FF_SPEC_B
GR_COLORCOVBI NE_ONE
GrTextureCombineFnc_t | function GR_TEXTURECOMBI NE_ZERO Chooses a texture

combining function
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Glossary

aliasing

alpha

ambient light

animation

anti-aliasing

API
ASIC
back face culling

bilinear filtering

blending

Rendering artifacts that occur when a continuous function is discretely
sampled or sub-sampled. Two common types of aiasing are polygonal
aliasing and texture aliasing. Polygonal aliasing is arendering artifact that
occurs when rasterization applies color to a pixel without considering how
much of the pixdl is covered by the triangle. Along the edges of the triangle,
only a portion of the pixel islikely to be covered by the triangle. An aliased
triangle will have jagged edges. Texture aliasing is arendering artifact that
occurs when atexture map is not sampled frequently enough or when the
texel area covered by apixel isnot accounted for. See anti-aliasing.

The A in an RGBA color. The alpha component is never displayed. Itisa
multiplier used to describe transparency and controls the blending of
overlapping colors. See blending.

One of the components of alighting model. Ambient light seemsto come
from all directions rather than from a specific source. Back lighting in a
room is an example. It scattersin all directions after striking a surface, as
does diffuse light. See diffuse, emitted, and specular light.

Generating and displaying a scene as the viewpoint and/or objects change
position to give theillusion of motion.

Techniques for eliminating aliasing. For polygonal aliasing, arendering
technique that accounts for fractional coverage of a pixel when assigning it a
color, thereby reducing or eliminating the jagged edges that characterize an
aliased rendering. For texture aliasing, a rendering technique that accounts
for the areas of texels covered by a pixel. See aliasing.

Application program interface.
Application-specific integrated circuit.

The process of eliminating back facing triangles. A triangle has two sides,
front and back, with only one side visible at atime. The sign of the area of
the triangle determines which side is visible and can be used to eliminate
back facing triangles before they are rendered.

A technique for choosing the texel color to apply to a pixel during texture
mapping. The weighted average of the four texels nearest the pixel center is
used.

When two triangles overlap in screen space, a decision must be made about
the color of the pixelsin the overlapping area. Blending is a technique for
reducing the two colorsto one, usually as alinear interpolation of the two
candidates.
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chroma-key

clamp

clipping

depth bias
depth buffer

diffuse light

dithering

double buffering

EDO DRAM

emitted light

FBI
FIFO

flat shading
fog

frame buffer

Gouraud shading

A technique for removing pixels of a specific color, used to implement a
“blue screen”.

Forcing avalueto lie within a specified range of values.

Elimination of those portions of a scene that are outside the clipping
rectangle defined by calling grClipWindow().

A constant that is added to the calculated depth of apixel.

One possible use of the auxiliary buffer. It stores a depth value for each
pixel. Subsequent pixels can be accepted or discarded based on a depth test.

One of the components of alighting model. Diffuse light comes from a
single source, but is scattered equally in al directions when it strikesa
surface. See ambient, emitted, and specular light.

A technique for increasing the perceived range of colorsin an image by
applying a pattern to surrounding pixels to modify their color values. When
viewed from a distance, these colors appear to blend into an intermediate
color that can’'t be represented directly. Dithering is similar to the half-toning
used in black and white publications to produce shades of gray.

Using two color buffers: asceneis rendered in one buffer while the
previously rendered scene in the other buffer is displayed. When the
rendering is complete, the two buffers are swapped and the rendering of the
next scene can begin in the buffer that is no longer being displayed. See
single buffering, triple buffering, and frame buffer.

Extended-data-out dynamic random access memory.

One of the components of alighting model. Emitted light comes from an
object and is unaffected by other light sources. Lamps, headlights, and
candles are examples. See ambient, diffuse, and specular light.

Frame buffer interface.

Firstin, first out. A list data structure in which new entries are added at the
end of thelist.

Coloring atriangle with asingle, constant color. See Gouraud shading.

A rendering technique that simulates atmospheric effects such as haze, fog,
and smog by fading object colorsto a background color based on distance
from the viewer.

The memory used to hold pixels. In an SST system, the frame buffer is
accessed by the FBI chip and can be used for up to three color buffers. In
single or double buffer mode, the auxiliary buffer can optionally be used as
an alphabuffer or a depth buffer.

Colors are assigned to the vertices of atriangle and linearly interpolated
across the triangle to produce a smooth variation in color. Also called
smooth shading. See flat shading.
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Glossary

homogeneous coordinates (x,y, z, w). The w coordinate is a scaled positive depth value used during

LOD

magnification

minification

mipmap

PCI system bus

pixel

point sampling

rendering

RGBA
single buffering
specular light

subpixel correction

texel

texture

texture coordinates

texture mapping

texture memory

™U

perspective projection, perspective texture mapping, and depth buffering.
Some graphics systems do not use homogeneous coordinates; in these
instances the z depth value can be used in lieu of the w coordinate, assuming
that the z value is positively increasing into the screen.

Level of detail. See mipmap.

If atexture-mapped screen pixel is smaller than atexel, magnification
techniques are used. See mipmap and minification.

If atexture-mapped screen pixel islarger than atexel, minification
techniques are used. See mipmap and magnification.

A pyramidal organization of gradually smaller, filtered sub-textures or an
individual texture map within the set, that is used for anti-aliased texture
mapping.

The busin aPC that connects the host CPU and the peripheral devices,
including the SST-1 board.

Picture element.

In the context of SST-1 texture mapping, choosing the texel nearest the pixel
center.

The process of converting triangles into bits in the frame buffer, applying
texture mapping, apha blending, depth buffering, etc. Rendering is what
SST-1 does.

Red, green, blue, and alpha.
Rendering into the color buffer asit is being displayed.

One of the components of alighting model. Specular light comes from a
specific direction and bounces off surfacesin a preferred direction aswell. It
model s the shininess of a surface. See ambient, diffuse, and emitted light.

Adjusting the vertex parameter values (x, y, z, w, s, t, red, green, blue, and
alpha) to lie at the center of the pixel rather than somewhere else. The result
is very accurate rendering.

Texture element.

A one- or two-dimensional image that is used to modify the color of a
triangle and add realism to the scene. You might map a brick texture onto a
set of triangles that represents awall, for example.

(s, t). Texture coordinates can be specified over any range of values.
However, the SST-1 hardware expects texture coordinates in the range
[—2%..2"°-1] where [0..256] represents one replication of atexture map.

The process of applying atextureto atriangle.

Memory used for storing textures. On an SST graphics system, this memory
ispart of TMU.

Texture Mapping Unit.
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triangle The SST-1 system’ s rendering primitive.

trilinear filtering A technique for blending texels between two levels of detail to avoid
mipmap banding.

triple buffering One possible use of the auxiliary buffer. Three drawing buffers are in use,
one being displayed, one waiting to be displayed, and one being rendered
into.

vertex One of the corners of atriangle. It has x and y coordinates and a set of

attributes: an RGBA color, az value indicating depth, s and ¢ coordinates for
texture mapping, and aw coordinate for perspective correction.
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Index

Bold face page numbers indicate an example of use.

A

advanced filtering - 3, 81, 87, 91

diasing - 2, 12, 34, 35, 155

aphablending - 1, 3, 4, 5, 6, 11, 16, 21, 27, 35, 36, 37, 49,
52, 55, 63, 64, 69, 72, 128, 129, 151, 157

alpha buffer - 22, 156

aphabuffering - 6, 21, 22, 23, 24, 37, 51, 52, 54, 55, 57,
74,117

alpha combine unit - 5, 6, 35, 36, 37, 40, 49, 50, 52, 54, 55,
63, 74,75, 77, 78, 138, 153

alpha compare function - 74

alpha iterator - 63, 65

aphatesting - 5, 6, 16, 49, 63, 74, 128, 129, 138

anti-aliasing - 1, 6, 13, 27, 34, 35, 36, 37, 52, 155, 157

aspect ratio - 85

atmospheric effects - 156. See fog.

attract mode - 135

auxiliary buffer - 21, 22, 49, 51, 57, 135, 156, 158

B

back buffer - 135

backface culling - 6, 33

bilinear filter - 77, 83, 91, 92, 93

bilinear filtering - 3, 81, 87, 88, 98, 155

billboarding - 74

blending equation - 68

blending factor - 37, 53, 54, 63, 65, 67, 68, 69, 70, 71, 94
blue screen - 63, 156

C

cFormat - 16, 17, 64, 73, 124, 125, 126, 151

chroma-key - 4, 5, 63, 127, 156

chroma-keying - 6, 27, 63, 72, 74, 128, 129

clearing behind an overlay - 58

clipping - 156

clipping window - 27, 28, 29, 31

cockpit bit - 58

color byte ordering - 12, 17, 18, 39

color combine unit - 5, 39, 40, 41, 42, 43, 44, 45, 46, 49,
77,91, 92, 93, 109, 110, 111, 115, 137, 138

color component - 10, 12, 39, 40, 96, 156

color palette - 95, 96, 97, 98, 99, 113, 114, 115

convex polygon - 6, 10, 27, 32, 36

coordinate - 78, 157, 158

culling - 63, 155

D

decompression table - 95, 96, 114, 115, 137, 141

depth bias - 57, 61, 129, 156

depth buffer - 2, 22

depth buffering - 1, 3,
57, 58, 59, 60, 61, 7.
152, 156, 157

depth test - 5, 10, 57, 58,

dithering - 1, 3, 4, 5, 31,
152, 156

double buffering - 19, 22, 156

I

, 6,12, 16, 21, 22, 23, 24, 52, 53,
, 75,117,122, 127, 128, 129, 146,

N

a

9, 62, 127, 136, 156
9, 40, 51, 86, 87, 88, 128, 147,

W

E

EDO DRAM - 156
even and odd LODs - 99, 100, 101, 102, 103, 104, 105,
106, 107, 108, 109, 113, 151

F
FBI - 3, 156
FIFO - 156

flat shading - 156

floating point format - 2, 4

fog - 3,4,5,6,11, 12, 16, 27, 31, 60, 63, 64, 65, 66, 67,
69, 70, 72, 127, 128, 129, 137, 152, 156

fog color - 63

fog density - 63, 66, 67

fog equation - 63, 64, 65, 67, 68

fog mode - 63, 64, 65, 66, 68, 69, 70, 71, 72

fog table - 12, 63, 67

frame buffer memory - 22

front buffer - 135

full screen mode - 135

G

Glide - 1

Gouraud shading - 1, 2, 3, 156
GR_BLEND_PREFOG_COLOR - 54, 67, 68, 71, 72, 151
grAADrawLineg() - 36

grAADrawPoint() - 36

grAADrawPolygon() - 36
grAADrawPolygonVertexList() - 36
grAADrawTriangle() - 36

GrAlpha_t - 24, 52, 74, 128

GrAlphaBlendFnc_t - 53, 151
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grAlphaBlendFunction() - 21, 24, 37, 52, 53, 54, 55, 67,
69, 70, 72

grAlphaCombine() - 37, 40, 41, 45, 49, 50, 51, 53, 54, 55,
74,91, 138

grAlphaControlsl TRGBLighting() - 46

grAlphaTestFunction() - 74

grAlphaTestReferenceValue() - 74

GrAspectRatio_t - 100, 101, 104, 106, 107, 116, 140, 142,
143, 151

GrBuffer_t - 117, 119, 131

grBufferClear() - 58

grBufferClear() - 17, 24, 27, 31, 39, 52, 58, 60, 62, 136

grBufferNumPending() - 23

grBufferSwap() - 23, 24, 62

GrChiplD_t - 84, 85, 87, 88, 89, 93, 100, 102, 104, 106,
107, 109, 112, 113, 114, 139, 140, 141, 142, 151

grChromakeyMode() - 72, 129

GrChromakeyMode t - 72, 151

grChromakeyVaue() - 17, 39, 72, 73, 74

grClipwindow() - 24, 27, 28, 29, 128, 156

GrCmpFnc_t - 59, 74, 151

grColorCombine() - 31, 40, 41, 42, 43, 44, 45, 46, 49, 53,
55, 91, 137

GrColorFormat_t - 9, 16, 17, 18, 39, 151

grColorMask() - 21, 22, 23, 24, 51, 55, 128

GrCombineFactor_t - 40, 49, 89, 152

GrCombineFunction_t - 40, 49, 89, 152

GrCombineLocal _t - 40, 49, 152

GrCombineOther_t - 40, 49, 152

grConstantColorValue() - 17, 31, 39, 42, 43, 44, 46, 49, 51,
54,127,138

grCullMode() - 34

GrCullMode t - 34, 152

grDepthBiasLevel() - 57

grDepthBiasLevel() - 61

grDepthBufferFunction() - 57, 58, 59, 60, 62

grDepthBufferMode() - 21, 24, 57, 59, 60, 62, 121, 122,
129

grDepthMask() - 22, 23, 24, 52, 57, 58, 60, 62, 128

grDisableAllEffects() - 128

grDitherMode() - 40

GrDitherMode t - 40, 152

grDrawLineg() - 31

grDrawPlanarPolygon () - 33

grDrawPlanarPolygon() - 32

grDrawPlanarPolygonVertexList() - 32, 33

grDrawPoint() - 31

grDrawPolygon() - 9, 32, 33, 61

grDrawPolygonVertexList() - 33

grDrawTriangle() - 9, 28, 36, 43, 44, 45, 145

grErrorSetCallback() - 25

GrFog_t - 65, 66, 67, 69, 70, 72

grFogColorValue() - 17, 39, 64, 65, 66, 69, 70, 72

grFogMode - 65

grFogMode() - 65, 66, 67, 69, 70, 71, 72, 129

grFogTable() - 65, 66, 69, 70, 72

grGammaCorrectionValue() - 46, 47

grGlideGetState() - 10, 128, 129

grGlideGetVersion() - 133

grGlidelnit() - 15, 16, 20, 149

grGlideSetState() - 10, 128, 129

grGlideShutdown() - 20, 21, 150

grHints() - 79, 87

GrHwConfiguration - 15, 19, 20, 21, 149

grLfbBypassMode() - 123

grLfbConstantAlpha() - 118, 123, 127, 128

grLfbConstantDepth() - 118, 123, 127

GrLfbInfo_t - 117, 119, 129, 130

grLfbLock() - 117, 118, 119, 120, 121, 122, 123, 128, 129,
130

grLfbOrigin() - 123

grLfbReadRegion() - 123

GrLfbSrcFmt_t - 131

grLfbUnlock() - 119, 122, 123, 129, 130

grLfbWriteMode() - 123

GrLfbWriteMode t - 117, 119

grLfbWriteRegion() - 119, 131, 132

GrLock_t - 117,119

GrLOD_t - 100, 101, 104, 106, 107, 140, 141, 142, 143,
152

GrMipMapMode t - 87, 100, 140, 142, 143, 152

GrNCCTable t - 114

GrOriginLocation_t - 16, 117, 119, 153

grRenderBuffer() - 21

grSstControlMode() - 135

grSstidie() - 119, 134, 136

grSstisBusy() - 134

grSstorigin() - 134

grSstPerfStats() - 136

GrSstPerfStats t - 136

grSstQueryHardware() - 15, 16, 20, 58

grSstResetPerfStats() - 136

grSstScreenHeight() - 24, 133

grSstScreenWidth() - 133

grSstSelect() - 15, 16, 19

grSstStatus() - 134

grSstVideoLing() - 24

grSstVRetraceOn() - 24

orSstVRetraceTicks() - 24

grSstWinOpen() - 9, 15, 16, 18, 19, 20, 21, 39, 64, 73, 119,
124, 125, 126, 134

GrState - 129

GrTexBaseRange t - 100, 113, 153

grTexCalcMemReguired() - 99, 101, 103

grTexClampMode() - 141

grTexCombine() - 40, 49, 88, 89, 90, 91, 92, 93, 94, 109,
110, 111, 112

grTexDetail Control () - 90, 93, 94

grTexDownloadMipMap() - 104, 105, 106, 109, 110, 111,
112,113, 140

grTexDownloadMipMapLevel() - 104, 106, 107, 108, 109,
140

grTexDownloadMipMapL evel Partial () - 104, 107, 108

grTexDownloadTable() - 114, 115, 140

grTexDownloadTablePartial () - 114

grTexFilterMode() - 84, 88, 141

GrTexInfo - 99, 101, 102, 103, 104, 105, 109, 110, 111,
113
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11. Accessing the Linear Frame Buffer

grTexLodBiasValue() - 88, 94, 141, 147 L
grTexMaxAddress() - 102, 103, 104, 109, 110, 111, 112,
140 level of detail (LOD) - 3, 81, 85, 86, 157
grTexMinAddress() - 102, 103, 104, 109, 110, 111, 112, lighting - 1, 2, 5, 45, 63, 155, 156, 157
140 diffuse - 45, 155, 156, 157
grTexMipMapMode() - 87, 88, 141 maps - 71
grTexMultibase() - 112 specular - 45, 46
grTexMultibaseAddress() - 112, 113, 140 linear frame buffer
orTexNCCTable() - 114, 115 layout - 22
grTexSource() - 109, 110, 111, 112, 113, 140 writing - 5, 127
GrTexTable t - 100, 114, 153 LOD bias - 88
grTexTextureMemRequired() - 99, 101, 102, 109, 110,
111, 112 M
GrTextureClampMode _t - 85, 140, 142, 143, 153
GrTextureFilterMode t - 84, 140, 142, 143, 153 magnification - 77, 78, 83, 84, 87, 91, 153, 157
GrTextureFormat_t - 100, 101, 104, 106, 107, 116, 140, minification - 77, 78, 83, 84, 87, 91, 153, 157
142, 143, 153 mipmapping - 1, 3, 81, 85, 86, 88, 91
GrTmuVertex - 10, 11, 27, 79 nearest - 86
GrVertex - 9, 10, 11, 12, 13, 27, 28, 29, 31, 32, 33, 36, 39, nearest dithered - 86
42,43, 44, 45, 49, 51, 57, 60, 78, 79, 149 mist - See fog
gu3dfGetinfo() - 116 multi-pass fog - 67
Gu3dfHeader - 115, 116
Gu3dfinfo - 115, 116 N
gu3dfLoad() - 114, 115, 116, 141
gUAADrawTriangleWithClip() - 36 narrow channel compression - See NCC
guAlphaSource() - 138 Narrow Channel Compression (NCC) - 2
guColorCombineFunction() - 137 NCC table - 98, 100, 114, 115, 140, 141, 143, 152, 153
guDrawTriangleWithClip() - 29
guFogGenerateExp() - 67 0]
guFogGenerateExp2() - 67
guFogGeneratelinear() - 67 opacity - 52, 74
guFogTablelndexToW() - 65, 66
GuNccTable - 114, 116, 141, 143 P
guTexAllocateMemory() - 140, 141
guTexChangeAttributes() - 141 PCI bus - 2, 157
guTexCombineFunction() - 139 performance - 2, 3, 4, 63, 81, 86, 87, 88, 91, 119
guTexDownloadMipMap() - 141 number of TMUs and - 91
guTexDownloadMipMapLevel() - 141 perspective correction - 2, 158
guTexGetCurrentMipMap() - 142 perspective distortion - See perspective correction
guTexMen’]QueryAvaK) . 140 plxel center - 12, 155, 157
guTexMemReset() - 141 pixel pipeline - 4, 5, 6, 10, 63, 91, 109, 117, 127, 128, 133,
GuTexPalette - 114, 115, 116 136
guTexSource - 141, 142 pixel units - 12
GuTexTable - 116 point sampling - 3, 77, 81, 83, 88, 91, 157
projected textures - See texture mapping
H
R
haze - See fog
homogeneous coordinate - 12, 13, 157 read/writeflag - 118
homogeneous distance ¢ - 11, 12, 13, 78 repainting windows - 136
RGB iterators - 5, 45
Ji RGBA iterators - 5
idleflag - 118 S
iterated alpha - 11, 36, 37, 45, 63, 64, 65
iterated RGB - 5, 45, 46, 138 s and ¢ coordinates - 84, 85, 158
scanlineinterleaving - 2, 3, 20
screen resolution - 22
single buffering - 156, 157
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smog - See fog

smoke - See fog

smoothing filter - 153

specia effectsunit - 5

state coherency - 145, 147

status register - 134

stenciling - 75

subpixel correction - 1, 157
system configuration - 2, 3, 22, 87

T

texel - 2, 46, 74, 78, 80, 82, 83, 85, 86, 98, 155, 157, 158
texel center - 83
texel selection - 77, 85, 89, 95, 114, 140
TexelFx - See TMU
texture
composite - 84, 93, 94, 110, 139
decal - 89, 91, 92, 94, 109, 139
detail - 91
projected - 11, 12, 13, 85, 91
rectangular - 80, 85
square - 85
texture alpha - 46, 51
texture axis - 80
texture clamping - 77, 84, 85
texture combine unit - 5, 40, 41, 42, 44, 51, 77, 78, 87, 88,
89, 92, 93, 94, 95, 111, 137, 139, 152
texture coordinate - 78, 80, 157
texture format - 46, 95, 96, 97, 98, 99, 100, 101, 104, 108,
113, 115, 153
texture mapping - 1, 2, 3, 12, 81, 88, 91, 96, 155, 157, 158
detail - 3,81, 91
projected - 1, 3, 11, 12, 13, 78, 81, 91
true-perspective - 1, 2, 81
texture memory - 97, 157
2 Mbyte boundary - 99, 103
texture pipeline - 6, 91, 92, 109, 110, 139

texture space decompression - See Narrow Channel
Compression

TMU - 3, 12, 13, 81, 87, 88, 91, 157

translucence - 52

transparence - 4, 52, 74

triangle
areaof - 33, 155
vertex - 158

trilinear filtering - 158. See trilinear mipmapping.

trilinear mipmapping - 1, 3, 81, 87, 88, 89, 91, 92, 93, 99,
101, 111, 139

triple buffering - 4, 19, 21, 22, 23, 52, 53, 57, 58, 74, 156,
158

|4
videotile - 135

w

w buffer - 11, 12, 27, 57, 60, 79, 127, 129
w coordinate - 12, 13, 67, 157, 158

X

x coordinate - 12

Y

y coordinate - 12

y origin, location of - 18, 22, 29, 33, 34, 118, 119, 123,
124, 128, 131, 134

YaB compression - 2, 96, 97, 98

Y1Q compression - 96, 98

Z

z buffer - 2, 11, 27, 57, 59, 60, 61, 62, 127, 129, 145, 147
z coordinate - 12
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