Glide 30 Programming Guide

Programming the 3Dfx Interactive Glide™ Rasterization Library 3.0

Document Release 021
June 1998
Copyright & 1995- 1998 3Dfx Interactive, Inc. All Rights Reserved

3Dfx Interactive, Inc.
4435 Fortran Avenue
San Jose, CA 95134

Proprietary and Confidential Printed Wednesday, August 05, 1998 at 10:30 AM

. S

Trademarks

Glide, Voodoo Graphics, Voodoo Rush, Voodoo?, TexUS, Pixelfx and Texdlfx are trademarks of 3Dfx
Interactive, Inc.

OpenGL isatrademark of Silicon Graphics, Inc.

Autodesk CDK isatrademark of Autodesk, Inc.

MS-DOS and Win32 are trademarks of Microsoft, Inc.

Other product names are trademarks of the respective holders,

Copyright © 1995- 1998 by 3Dfx Interactive, Inc.

All rights reserved. No part of this publication may be reproduced, stored in aretrieval system, or
transmitted, in any form or by any means, without prior written consent.

Table of Contents

Table of Contents
List of Figures
List of Tables

1. An Introduction to Glide
Why Glide?

\Vbodoo

The Rendering Engine

About This Manual

Other Documentation

2. Glide in Style
In this Chapter
Naming and Notational Conventions
The State Machine Model
Coordinate Spaces
Soecifying Vertices
Example 2.1 Defining a vertex layout.
Example 2.2 Re-creating Gr\ertex in Glide 3.0.

Vii

>3

e
FEOo0ww®©e ~ubhNeEPR

=Y
(63}

16

Example 2.3 Creating a vertex definition using clip coordinates, a z buffer, and a fog table indexed by g.16
Example 2.4 Creating a vertex definition using window coordinates and the FOGCOORD extension. 16

Example 2.5 Creating a vertex definition for projected texture mapping.

3. Getting Started
In This Chapter
Sarting Up

Example 3.1 Querying for possible frame buffer configurations.

Example 3.2 The Glide initialization sequence.
Driving Multiple Systems

Example 3.3 Setting a state variable in all graphics subsystems.

Shutting Down
Example 3.4 A minimal Glide program.
The Display Buffer
Masking Writes to the Frame Buffer
Swapping Buffers
Example 3.5 Retrieving the swapping history.
Clearing Buffers
Error Handling

4. Rendering Primitives
In This Chapter
Clipping
Triangles
Points
Example 4.1 A thousand points of light.

17

19
19
19
23
23
24
24
25
25
25
27
27
28
29
29

31
31
31
32
34
34

Copyright © 1995- 1998 3Dfx Interactive, Inc.
Proprietary and Confidential

i
Printed 08/05/98 10:3C

Glide 3.0 Programming Guide

Lines 34
Drawing Sets of Digjoint Points, Lines, and Triangles 35
Drawing Sets of Connected Lines and Triangles 35
Example 4.2 Using triangle continuation. 38
Convex Polygons 39
Example 4.3 Drawing a convex polygon in Glide 3.0. 40
Example 4.4 L’embarras des richesses: The more alternatives, the more difficult the choice. 42
Backface Culling 43
Anti-aliasing 45
Example 4.5 Drawing an anti-aliased triangle. 48
5. Color and Lighting 49
In This Chapter 49
Soecifying Colors 49
Dithering 49
The Color Combine Unit 50
Example 5.1 Drawing a constant color triangle. 54
Example 5.2 Drawing a flat-shaded triangle. 54
Example 5.3 Drawing a smooth-shaded triangle. 55
Example 5.4 Drawing a flat-shaded textured triangle. 55
Example 5.5 Drawing a smooth-shaded textured triangle. 55
Example 5.6 Drawing a smooth-shaded triangle with specular lighting. 56
Example 5.7 Drawing a smooth-shaded textured triangle with specular highlights. 56
Example 5.8 Drawing a smooth-shaded triangle with monochrome diffuse and colored specular lighting.56
Gamma Correction 57
6. Using the Alpha Component 59
In This Chapter 59
Soecifying Alpha 59
The Alpha Combine Unit 59
Alpha Buffering 61
Alpha Blending 62
Example 6.1 Blending two images, part I. 64
Example 6.2 Blending two images, part 11. 64
Example 6.3 A compositing example. 66
7. Depth Buffering 67
In This Chapter 67
Enabling Depth Buffering 67
The Depth Test 68
Fixed Point z Buffering 69
Example 7.1 Configuring a z buffer. 70
Floating Point w Buffering 70
Example 7.2 Configuring a w buffer. 70
Establishing a Depth Bias 71
Example 7.3 Using a depth bias. 71
An Example: Hidden Surface Removal 71
Example 7.4 Hidden surface removal using a z buffer. 72
8. Special Effects 73
In This Chapter 73
Fog 73
Example 8.1 Creating a fog table. 76
Example 8.2 Fogging with g and a fog table. 76
Multi-Pass Fog 77

iv
Printed 08/05/98 10:30 AM

Copyright O 1995- 1998 3Dfx Interactive,
Proprietary and Confide

Table of Contents

Example 8.3 Smple two-pass blending. 79
Example 8.4 Two-pass additive fogging. 80
Example 8.5 Three-pass modulation fogging. 82
Chroma-keying 82
Example 8.6 Smulating a blue-screen with chroma-keying. 83
Alpha Testing 83
Senciling 84
9. Texture Mapping 85
In This Chapter 85
A Look at Texture Mapping and Glide 85
Glide Textures and Texels 86
Texture Filtering 89
Texture Clamping 91
Mipmapping 92
Mipmap Blending 96
Trilinear Filtering 96
LOD Bias 96
Combining Textures 97
Examples of Configuring the Texture Pipeline 100
Example 9.1 Setting up simple (decal) texture mapping. 100
Example 9.2 Applying a modulated (projected) texture. 101
Example 9.3 Using trilinear filtering: mipmap blending with bilinear filtering. 102
Example 9.4 Creating a composite texture. 103
10. Managing Texture Memory 105
In This Chapter 105
Texture Map Formats 105
Narrow Channel Compression 106
The Color Palette 108
Texture Memory 109
Computing the Sze of a Mipmap 109
Figure 10.2 The size of a mipmap depends on the setting of the evenOdd flag. 112
Querying for Available Memory 113
Example 10.1 Will the mipmap fit? 113
Example 10.2 Setting up to load several mipmaps. 113
Downloading Mipmaps 114
I dentifying a Mipmap as the Texel Source 119
Example 10.3 Downloading a texture for decal texture mapping. 119
Example 10.4 Downloading two textures for modulated or composite texture mapping. 120
Example 10.5 Splitting a texture across two TMUSs for trilinear mipmapping. 121
Loading a Mipmap into Fragmented Memory 122
Example 10.6 Using multiple texture base registers. 123
Downloading a Decompression Table or Color Palette 124
Example 10.7 Loading an NCC table. 126
Example 10.8 Loading a color palette. 126
Loading Mipmaps From Disk 126
Example 10.9 Reading a .3DF file. 127
11. Accessing the Linear Frame Buffer 129
In This Chapter 129
Acquiring an LFB Read or Write Pointer 129
Calculating a Pixel Address 131
Reading fromthe LFB 132
Example 11.1 Reading a pixel value from the LFB. 133
Copyright © 1995-1998 3Dfx Interactive, Inc. \Y

Proprietary and Confidential

Printed 08/05/98 10:3C

Glide 3.0 Programming Guide

Reading a Rectangle of Pixels from the LFB 134
Wkiting to the LFB 134
Setting LFB Write Parameters 135
Soecial Effects and Linear Frame Buffer Writes 139

Example 11.2 Enabling specific special effects. 140

Example 11.3 Writing one 565 RGB pixel to the back buffer (RGB ordering). 141

Example 11.4 Writing two 565 RGB pixels to the back buffer (RGB color ordering). 141

Example 11.5 Writing one 888 RGB pixel to the back buffer (ARGB color ordering). 141
Wkiting a Rectangle of Pixelsinto the LFB 142
12. Housekeeping Routines 145
In This Chapter 145
Retrieving Configuration Information 145
Completing Graphics Commands 149
Monitoring System Performance 150
Changing they Origin 152
Enabling Glide Operating Modes 152
Glide Utilities 153
13. Glide Extensions 155
In This Chapter 155
Using Extensions 155
The Chroma-Range Extension 156
Chroma-Ranges and Texels 157
The FOGCOORD Extension 157
The PALETTE6G666 Extension 157
The TEXMIRROR Extension 158
14. Programming Tips and Techniques 161
In This Chapter 161
Avoiding Redundant State Setting 161
Avoiding Screen Clears by Rendering Background Polygons 161
Using LOD Bias To Control Texture Aliasing 161
Linear z Buffering and Coordinate System Ranges 162
Sate Coherency and Contention Between Processes 162
Appendix A A Sample Program 163
Appendix B. Glide State Constants 165
Glossary 169
Index 173
Vi Copyright O 1995- 1998 3Dfx Interactive,

Printed 08/05/98 10:30 AM

Proprietary and Confide

. S

List of Figures

Figure 1.1 System configurations. 3
Figure 1.2 The pixel pipeline. 5
Figure 3.1 Locating the origin. 22
Figure 3.2 Logical layout of the linear frame buffer. 27
Figure 4.1 Secifying a clipping window. 31
Figure 4.2 Pixel rendering. 33
Figure 4.3 \ertex arrays. 36
Figure4.4 Linestrips, triangle strips, and triangle fans. 37
Figure 4.5 Polygons. 39
Figure 4.6 Polygon orientation and the sign of the area. 44
Figure 4.7 Aliased and anti-aliased lines. 45
Figure 4.8 Pixel coverage and lines. 45
Figure 9.1 TMU connectivity. 86
Figure 9.2 Mapping texels onto texture maps in window coordinate systems. 87
Figure 9.3 Mapping texels onto texture maps in clip coordinate systems. 89
Figure 9.4 Point sampling and bilinear filtering. 90
Figure 9.5 Texture clamping. 92
Figure 9.6 Mipmaps. 95
Figure 10.1 The color palette. 109
Figure 10.2 The size of a mipmap depends on the setting of the evenOdd flag. 112
Figure 10.3 Downloading a mipmap. 115
Figure 10.4 Replacing asingle LOD. 117
Figure 10.5 Replacing a few rows of an LOD. 118
Figure 11.1 Reading from and writing to the LFB. 132
Figure 11.2 Frame buffer writes: encoding the location of the origin as the sign of the stridelnBytes. 144
Figure 13.1 The PALETTE666 color palette. 157
Figure 13.2 A GR_TEXTURECLAMP_MIRROR_EXT example. 158
Figure 13.3 Texture clamping. 159
Copyright © 1995- 1998 3Dfx Interactive, Inc. Vii

Proprietary and Confidential Printed 08/05/98 10:30

. S

List of Tables

Table 2.1 Specifying clip coordinate space vertices. 13
Table 2.2 Specifying window coor dinate space vertices. 14
Table 3.1 Specifying a window handle in gr SstWinOpen(). 20
Table 3.2 Frame buffer color formats. 21
Table 3.3 Frame buffer resolution and configuration. 26
Table 4.1 Porting obsolete gr DrawPolygon() commands to Glide 3.0. 41
Table 4.2 The location of the origin affects triangle orientation and the sign of its area. 45
Table 5.1 Configuring the color combine unit. 52
Table 5.2 The color combine function scale factor. 52
Table 5.3 Choosing local and other colors for the color combine unit. 53
Table 5.4 Overriding the local color when the high order bit of aequre IS Set. 57
Table 6.1 Combining functions for alpha. 60
Table 6.2 Scale factors for the alpha combine function. 61
Table 6.3 Specifying local and other alpha values. 61
Table 6.4 Alpha blending factors. 65
Table 7.1 The depth test. 69
Table 8.1 The fog mode shapes the fog equation. 74
Table 8.2 Configuring the fog and alpha blending units for multi-pass fog generation. 78
Table 8.3 Alpha test functions. 84
Table 9.1 Mapping pixels to texture coordinates in texture maps in window coordinate systems. 88
Table 9.3 Texture sizes and shapes. 93
Table 9.4 Texture combine functions. 99
Table 9.5 Scale factors for texture color generation. 99
Table 9.6 The number of TMUs affects texture mapping functionality. 100
Table 10.1 Texture formats. 107
Table 10.2 Glide constants that specify arguments to grTex functions. 110
Table 11.1 Interpreting data read from the LFB. 133
Table 11.2 16-bit LFB data formats. 136
Table 11.3 32-bit LFB data formats. 137
Table 11.4 Color, alpha, and depth sources. 138
Table 11.5 Source data formats for the grLfbWriteRegion() routine. 143
Table 12.1 Selectorsfor grGet(). 147
Table 12.2 Selectorsfor grGetString(). 149
Table 12.3 Selectorsfor grReset(). 152
Table 12.4 Glide operating modes. 153
Table 13.1 Extension and procedure names. 156
Copyright © 1995- 1998 3Dfx Interactive, Inc. iX

Proprietary and Confidential Printed 08/05/98 10:30

1. An Introduction to Glide

The 3Dfx Interactive family of graphics accelerators enables personal computers and low cost video
game platforms to host true 3D entertainment applications. Optimized for real-time texture-mapped 3D
images, the graphics subsystem provides acceleration for advanced 3D features including true-
perspective texture mapping with trilinear mipmapping and lighting, detail and projected texture
mapping, texture anti-aliasing, and high precision subpixel correction. In addition, it supports genera
purpose 3D pixe processing functions, including triangle-based Gouraud shading, depth buffering,
alpha blending, and dithering.

The Glide Rasterization Library is a set of low level rendering functions that serve as a software
“micro-layer” to the graphics hardware, including the 3Dfx Interactive Texelfx ™ and the Pixelfx™
special purpose chips. Glide permits easy and efficient implementation of 3D rendering libraries,
games, and drivers.

Why Glide?
Glide serves three primary purposes.

It relieves programmers from hardware specific issues such as timing, maintaining register
shadows, and working with hard-coded register constants and offsets.

It defines an abstraction of the graphics hardware to facilitate ease of software porting.

It acts as adelivery vehicle for sample source code providing in-depth hardware-specific
optimizations for the graphics hardware.

By abstracting the low level details of interfacing with the graphics hardware into a set of C-callable
functions, Glide allows developers to avoid working with hardware registers and memory directly,
enabling faster development and lower probability of bugs. Glide aso handles mundane and error
prone chores such as initialization and shutdown.

Glide 2.x was designed for up to about 1 million triangles per second. Glide 3.0 is designed for the
next order of magnitude: 1-10 million triangles per second. With the addition of vertex arrays, only one
call need be made to draw a group of triangles. Tight inner loops, command packets, full triangle
setup, and packed RGBA al contribute to being able to transfer and process millions of triangles per
second.

Performance is one of Glide' stop priorities. When decisions are made, performance is always one of
the criteria taken into account, and is aways an important criteria. The god for Glide isto do aslittle
aspossible - it isavery thin API layer above the hardware. One rule of thumb is that Glide should
impose no more than 5% to 10% overhead on an application when compared to what the application
could do if it wrote hardware registers directly.

Copyright © 1995- 1998 3Dfx Interactive, Inc. 1
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Glideis but one part of the 3Dfx Interactive Software Developer’s Kit (SDK), which is designed to
assist developersin creating tools and titles that are optimized for the graphics hardware. The SDK
also includes the Texture Utility Software (TexUS™).

The Glide Utility Library contains utility routines that create fog tables, extensions that do significant
pre-processing before calling Glide routines to access the graphics system, and obsolete routines that
are provided for interim compatibility as Glide devel opment continues.

VVoodoo

The 3Dfx graphics accelerator subsystem, which may be called Voodoo Graphics, Voodoo Rush, or
Voodoo?, depending on it’s age and functionality, sits on the PCI system bus of the host computer. The
entry-level system configuration consists of two 3Dfx Interactive proprietary ASICs, Texelfx and
Pixelfx, and memory. Figure 1.1 shows the entry level configuration as well as several waysto expand
the system and enhance graphics performance. Increasing the number of Texelfx ASICs decreases the
number of passes required to perform various texture mapping techniques. Systems with more than one
3Dfx Interactive graphics subsystem can utilize scanline interleaving to achieve the highest possible
rendering performance.

Glide and the 3Dfx Interactive graphics hardware supports arich set of rendering techniques,
including:

Gouraud shading. The programmer providesinitia red, green, blue, and apha values for each
vertex. Glide calculates the associated gradients and the hardware automatically iterates the color
across the defined triangle.

Texture mapping. The programmer provides initia texture values s'w, t/w, and 1/w for each vertex
and Glide computes the gradients. The hardware performs the proper iteration and perspective
correction for true-perspective texture mapping. During each iteration of row/column walking, a
divison is performed by 1/w to correct for perspective distortion.

Texture mapping with lighting. Texture-mapped rendering can be combined with Gouraud shading
to introduce lighting effects during the texture mapping process. The programmer suppliesinitial
color and texture values, Glide calculates the appropriate gradients, and the hardware performs the
proper calculations to implement the lighting models and texture lookups. A texel is either
modulated (multiplied by), added, or blended to the Gouraud shaded color. The selection of color
modulation or addition is programmable.

Texture space decompression. Texture map compression uses a patent-pending “ narrow channel”
Y AB compression scheme that maps 24-bit RGB values to an 8-bit YAB format with little lossin
precision.

Depth buffering. 3Dfx Interactive graphics accelerators support hardware-accelerated, depth-
buffered rendering with no performance penalty. The depth buffer is implemented in frame buffer
memory: 2 Mbyte systems can utilize a 640x480 double buffered display buffer and a 16-hit z
buffer. To eliminate many of the z aliasing problems typically encountered with 16-bit z buffer
systems, the graphics subsystem allows a floating point representation of the 1/w parameter to be
used as the depth component.

2 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

1. An Introduction to Glide

Figure 1.1 System configurations.

The Pixelfx chip interfaces with the host computer, the linear frame buffer, and the display monitor. It
implements basic 3D primitives including Gouraud shading, alpha blending, depth buffering, dithering, and

fog. The TMU (located on the Texelfx chip) implements true-per spective, detail, and projected texture
mapping, bilinear and trilinear filtering, and level-of-detail mipmapping.

(@ The basic configuration has one Pixelfx chip and one TMU. The advanced texture mapping techniques of detail

texture mapping, projected texture mapping, and trilinear texture filtering are two-pass operations, but thereis no
performance penalty for point-sampled or bilinear-filtered texture mapping with mipmapping.

(b) Atwo TMU configuration allows single pass detail texture mapping, projected texture mapping, or trilinear filtering.

(c) Three TMUs can be chained together to provide single pass rendering of all supported advanced texture mapping

features, including projected texture mapping.

(d) For the highest possible rendering performance, multiple 3Dfx Interactive graphics accelerator subsystems can be

chained together utilizing scanline interleaving to effectively double the rendering rate of a single subsystem.

PCI System Bus

h

PCI System Bus
A

Frame Buffer Frame Buffer
Memory PCI System Bus Memory
2-4 Mbytes 2-4 MBytes
Texture
T M U Memory
4 MBytes
Texture
Pixelfx TMU [Veror Pixelfx I
4 Mbytes
Texture
I Memory
A 4 MBytes
no connect
.
@
Frame
Buffer TMU
Memory
PCI System Bus i
A
—| Pixelfx T™MU
Textt
Frame Buffer Mifnlgs, TMU
Memory T M U 4MBytes
2-4 Mbytes W
T™MU
. Texture i
Pixelfx —» TMU |— Memov
4 MBytes
I T™MU
Texture TMU
— TMU L—1 Memory
4 MBytes
i
monitor TV
* - no connect (C) .

(b

=

Texture

Texture

Texture

= = z
3 3 3
3 3 3
3 3 3

Texture
Memory

Texture

Texture

= z
3 3
3 3
3 3

d

=

Copyright © 1995-1998 3Dfx Interactive, Inc.
Proprietary and Confidential

3

Printed 08/05/98 10:3C

Glide 3.0 Programming Guide

Pixel blending. The hardware supports alpha blending functions that blend incoming source pixels
with current destination pixels with no performance penaty. Alpha buffering is supported, but it is
mutually exclusive with depth buffering and triple buffering. Note that alpha buffering is required
only if destination aphais used in alpha blending; apha blending modes that do not use destination
alpha can be used with depth buffering and triple buffering.

Fog. The 3Dfx Interactive graphics accelerator subsystem supports a 64-entry lookup table to
support atmospheric effects such as fog and haze. When enabled, a 14-hit floating point
representation of 1/wis used to index into the 64-entry lookup table and interpol ate between
entries. The output of the lookup table is a value that represents the level of blending to be
performed between a reference fog color and the incoming pixel.

Chroma-keying. 3Dfx Interactive graphics accelerator supports a chroma-key operation used for
transparent object effects. When enabled, an outgoing pixd is compared with the chroma-key
register. If amatch is detected, the outgoing pixel isinvalidated in the pixel pipeline, and the frame
buffer is not updated.

Color dithering. Numeric operations are performed on 24-bit colors within the graphics
subsystem. However, the final stage of the pixel pipeline dithers the color from 24 bits to 16 bits
before storing it in the display buffer. The 16-bit color dithering alows for the generation of photo-
realistic images without the additional cost of atrue color frame buffer storage area.

The Rendering Engine

The graphics hardware has a very flexible lighting and texture mapping pipeline to support al of the
features described above. Glide abstracts it into three distinct units: the texture combine unit, the color
and alpha combine units, and the special effects unit. The basic architecture isillustrated in Figure 1.2.

4

Copyright O 1995- 1998 3Dfx Interactive,

Printed 08/05/98 10:30 AM Proprietary and Confide

1. An Introduction to Glide

Figure 1.2 The pixel pipeline.

The rendering engine is structured as a pipeline through which each pixel drawn to the screen must pass. The
individual stages of the pixel pipeline modify or invalidate individual pixels based on mode settings. The input
to the pixel pipeline can come from one of four sources: a texture value, an iterated RGBA value, a constant
RGBA value, or data for a frame buffer write. Pixels that pass the chroma-key test go to the color combine
unit where a user-specified lighting function is applied. The special effects unit further modifies the pixel with
alpha and depth testing, fog, and alpha blending operations. The final 24-bit color value is then dithered to
16 bits and written to the frame buffer.

. TMU2 TMU1

]

texture | texture
pipeline i combine unit

|
|
|
|
!
TMUO !
|
|
|
|
|

A 4
dither

| l l iterated RGBA
E — constant RGBA
; combine unit . .
! i ! peees ---linear frame buffer write
i chroma-key ! :
P
' color & alpha | : :
' combine unit | :
|
| |
| v |
| alpha test P
1 special depthtest | I
i glli);i; | effects unit fog L
PP ! » alpha blend :
|
| |
| |
| I
| |

frame buffer

About This Manual

The Glide Programming Guide attempits to introduce a knowledgeable graphics programmer to the
capabilities of the hardware through the Glide interface. The subroutines are introduced in alogical
progression: initialization and termination requirements are first, then simple rendering capabilities,
followed by more and more complex functions. The audience for this manual is the application
programmer who just took delivery on 3Dfx Interactive graphics accelerator and wants to port existing
applications or develop new applications in Glide. The experienced Glide programmer will use the
Glide Reference Manual to research specific Glide functions, but will reach for this manua when
trying out new features.

Copyright © 1995-1998 3Dfx Interactive, Inc. 5
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Chapter 2, Glide in Style, describes data types, data formats, and the programming model used in
Glide and the graphics subsystem.

Chapter 3, Getting Started, describes the display buffers and the initiaization and termination
requirements for Glide and the graphics hardware. It aso includes a very smple but complete program
that clears the screen.

Chapter 4, Rendering Primitives, describes the functions that draw points, lines, triangles, and convex
polygons in both aliased and anti-aliased forms. In addition, clipping and backface culling are
discussed.

Chapter 5, Color and Lighting, describes the functions that control the color and alpha combine unit,
which can produce effects that run the gamut from ssimple Gouraud shading to diffuse ambient lighting
with specular highlights and other complex lighting models.

Chapter 6, Using the Alpha Component, describes the various ways to utilize the alpha channel: alpha
blending, apha buffering, and apha testing.

Chapter 7, Depth Buffering, presents two techniques for depth buffering.

Chapter 8, Special Effects, describes other special rendering effects that can be produced in the pixel
pipeline: atmospheric effects like fog, haze, and smoke; multi-pass alpha-blended fog; transparent
objects implemented with chroma-keying; and alpha masking.

Chapter 9, Texture Mapping, describes the texture pipeline and texture mapping while Chapter 10,
Managing Texture Memory, describes the process of downloading textures into texture memory.

Chapter 11, Accessing the Linear Frame Buffer, describes the Glide functions that provide a path
for reading and writing the frame buffer directly.

Chapter 12, Housekeeping Routines, and Chapter 13, Glide Extensions, describes the routinesin Glide
and the Glide Utilities Library that haven't been discussed already.

Chapter 14, Programming Tips and Techniques, give some hints about how to head off trouble and get
the best performance from your 3Dfx Interactive graphics accelerator.

The Glide Programming Guide concludes with two appendices, one containing a non-trivial example,
and the other summarizing the Glide constants used to set state variables. Thereis also a Glossary of
frequently used terms and a comprehensive Index.

6 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

1. An Introduction to Glide

Other Documentation
Available from 3Dfx Interactive, Inc.:

Glide 3.0 Reference Manual
SST1 Application Notes
TexUSManual

Additional published references.

FOLESO0

OPEN92

OPEN93

PHIG88

SUTH74

WATT92

WILLS83

Foley, J,, A. van Dam, S. Feiner, and J. Hughes, Computer Graphics, Addison-Wedey,
Reading, MA, 1990

OpenGL Architecture Review Board, OpenGL Reference Manual, Addison-Wedey,
Reading, MA, 1992

OpenGL Architecture Review Board with J. Neider, T. Davis, and M. Woo, OpenGL
Programming Guide, Addison-Wedey, Reading, MA, 1992

PHIGS+ Committee, A. van Dam, Chair, “PHIGS+ Functional Description - Revision
3.0". Computer Graphics, 22(3), p. 125-218

Sutherland, I. E. and G. W. Hodgman, “Reentrant Polygon Clipping”, CACM 17(1), p. 32-
42

Watt, A. and M. Watt, Advanced Animation and Rendering Techniques: Theory and
Practice, Addison-Wedey, Reading, MA, 1992

Williams, L., “Pyramidal Parametrics’, SGGRAPH 83, p. 1-11

Online references:

http://www.3dfx.com

http://www.sgi.com/grafica/texmap/index.html

http://reality.sgi.com/Fun/Free_graphics.html

Copyright © 1995-1998 3Dfx Interactive, Inc. 7
Proprietary and Confidential Printed 08/05/98 10:30

2. Glidein Style

In this Chapter

You will learn about:
V¥ the naming conventions for functions, types, and constants.

V¥ the notationa conventions that designate functions, types, variables, parameters, and constantsin
this manual.

V¥ the state machine model that Glide uses to minimize bandwidth to the hardware and increase
graphics performance.

V¥ the functions that save and restore Glide state.

<

the functions that establish aformat for vertex information.

V¥ the congtraints and properties of numerical data representing geometric, color, and texture
coordinates.

Naming and Notational Conventions

Functions are divided into families consisting of routines related in their duties. All Glide functions are
prefixed with gr; al Glide Utility functions use gu as the prefix. The Glide prefix isimmediately
followed by the family name, for example gr DrawTriangle() and gr DrawL ine() are both members of
the gr Draw family. Glide uses the mixed caps convention for function names. When function names
appear in the text of this manual, they are shown in bold face type. Actual function names end with
‘()’; function family names do not.

The internal name for the graphics subsystem is“ SST”. Some function names, type definitions, and
congtants within Glide reflect thisinternal name, which is easier to type than Voodoo Graphics, Voodoo
Rush, or Voodoo®. For example, gr SstWinOpen() initializes the hardware.

Constants are named values that are defined in gl i de.h. The names of constants use al uppercase
letters, asin MAX_NUM SST and GR_TEXTUREFI LTER Bl LI NEAR and are shown in Couri er font when
they appear in the text of this manual.

C specifications for functions and data types are displayed in shaded rectangles throughout this
manual. Glide type definitions are shown in Helvetica type to distinguish them from the C keywords and
primitive types. Glide makes use of enumerated types for function arguments in order to restrict them
to the defined set of values. Enumerated types end with _t, as in GrColorFormat_t.

Glide variable names and function arguments are italicized in both the C specifications and the text.

Code segments use Couri er font.

Copyright © 1995- 1998 3Dfx Interactive, Inc. 9
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

The State Machine M od€l

Glide is state based: rendering “modes’ can be set once and then remain in effect until reset. Parameter
values like areference value for depth comparisons and a specific depth test are set once and are used
whenever depth testing is enabled (until they are given new values). The state machine model alows
users to set modes and reference values only when they change, minimizing the host-to-hardware
transfers.

For example, one of the state variables Glide maintainsis the “current mipmap”, used during texture
mapping. A mipmap is a collection of hierarchically defined texture maps that are loaded into the
texture memory that supports the TMUSs. A stateless model would not retain information about the
contents of the texture memory, so each rendering operation would have to include a texture memory
address.

Sending redundant state information can lead to noticeable performance degradation. For example, if a
system is attempting to render 200,000 triangles per second and the “current mipmap” is sent as a 4-
byte address, bandwidth associated with updating this single state variable can amount to 800K B/sec.
Compound thiswith al of the other state information necessary and the amount of unnecessary data
sent across the system bus can become overwhelming.

Two library functions are used to save and restore state. Use grGet(GR_GLI DE_STATE_SI ZE, ..) to
determine the size of the buffer in which the state will be saved (see Chapter 13).

void gr GlideGet State(void * state)
void gr GlideSetState(const void * state)

orGlideGetState() makes a copy of the current state of Glide in a buffer, state, provided by the user.
The saved state can be restored at some later time with gr GlideSetState(). These routines save and
restore al Glide state, and therefore are expensive to use. If only a small subset of Glide state needsto
be saved and restored, these routines should not be used.

Coordinate Spaces

Glide 3.0 supports two different coordinate spaces: native hardware device coordinates (the only option
in previous versions of Glide), or clip coordinates. The choice is made with the gr Coor dinateSpace()
command.

void gr Coor dinateSpace(GrCoordinateSpaceMode_t mode)

The argument, mode, is either GR_CLI P_COORDS or GR_W NDOW COORDS. Window coordinates are
relative to the origin of the window. Clip coordinates are relative to a viewport defined with the new
command grViewport().

void grViewport(FxI32 x, FxI32 Yy, FxI32 width, FxI32 height)

grViewport() specifies the viewport transformation. The current gr SstOrigin() setting determines
whether x and y specify the upper left corner or the lower left corner. Negative width and height are
alowed and mirror the image about the x or y axis. If (Xaip/W, Yaip/W) represent normalized device
coordinates, then the window coordinates (Xyin, Ywin) &€ computed as:

Xoin = (Xeip/WAL)(Width/2) + x and Y = (Yei/w+1)(height/2) + y

10 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

2. Glidein Style

When using clip coordinates, the gr DepthRange() command specifies the viewport parameters for the
depth component.

void gr DepthRange(FxFloat near, FxFloat far)

If zbuffering, clip-space zisin the range [-w..+w]. After division by w, zisin therange[-1..1] whichis
mapped to the depth buffer according to [near.. far], where [near=0.. far=1] represents the entire range
of the depth buffer. gr DepthRange() isignored unless clip coordinates are being used and z buffering is
enabled.

Choosing a Coor dinate Space

When window coordinates are used, the application performs the coordinate divisions by w, providing
xiw, yiw, ziw, 1w, sw, t/w, and g/w as necessary in the vertex structure (only x/w and y/w are
mandatory). Window coordinates may be less than optimal on future hardware that can perform
perspective division and viewport transformations.

When clip coordinates are used, the division by wis performed automatically. The minimal vertex
specifies x, y, and w. If z buffering is enabled, z should be in the range [- w..+w]; otherwise, z data need
not be given. Glide will automatically compute x/w, y/w, z/w, and L/w, perform vertex snapping on the
results, and then apply the viewport transformation to get window coordinates. Texture coordinates s
andt arein therange [0..1] for all texture sizes and aspect ratios. Glide automatically computes s/w,
t/w, and g/w.

Clip space coordinates are recommended for al new applications. It islikely that future hardware will
perform the viewport transformation and depth range computations to further off-load the CPU.

[} Window coordinate space was the only available option in previous releases of Glide. The
w component should be ported to Glide 3.0 vertices as GR_PARAM Qand stored as 1/w.
All %, y, s, and t components should be multiplied by L/w, asin Glide 2.x.

The GR_PARAM Qvalue is used when using fog mode GR_FOG W TH_TABLE_ON_Q
(formerly GR_FOG W TH_TABLE and GR_FOG W TH_TABLE_ON_ W and when w
buffering (which should properly be renamed to q buffering, but won't be).

PORTING
NOTE

Specifying Vertices

The 3Dfx Interactive graphics accelerator is arendering engine. The user configures the texture and
pixel pipelines (see Figure 1.2) and then sends streams of vertices representing points, lines, triangles,
and convex polygons. (In fact, the hardware renders only triangles; Glide converts points and lines to
triangles and triangul ates polygons as needed.)

Vertices are specified as a collection of parametric values, chosen from the following:
the geometric coordinates (X, v);
the color components (r, g, b, a);
the depth indicator z (for window coordinators), or g (for clip coordinates);

the homogenous coordinates w (distance from the eye, required for clip coordinates) and q (distance
from the projected source);

Copyright © 1995-1998 3Dfx Interactive, Inc. 11
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

the TMU-specific texture coordinates (s, t;), wherei isthe TMU the texel residesin;
the TMU-specific homogeneous coordinate g;, wherei isthe TMU where the value will be used;
if supported, a separate fog table index (q may aso be used to index afog table).

Every vertex must specify values for x and y, but the other parameters are optional and need only be set
if the rendering configuration requires them.

Syntactically, avertex is astructure containing al the parameter values that apply. The vertex

structure may hold additional information of interest to the application as well. The vertex layout is
communicated semantically to Glide by issuing a series of grVertexL ayout() commands, one each of the
parameters included in the vertex structure.

void grVertexL ayout (FxU32param, FxI32offset, FxU32 mode)
grVertexLayout() is called once for each value of param, chosen from the values in the first column of
Table 2.1 or Table 2.2 (there is atable for each coordinate space option).

offset is either the offset in bytes of the parameter data from the vertex pointer. The offset can be either
positive or negative. Align data on word boundaries for optimal performance.

mode is either GR_PARAM ENABLE Or GR_PARAM DI SABLE. Disabling a parameter will potentially cause
it to inherit the last known value. When a parameter is disabled, the offset argument isignored.
Disabling a mandatory parameter like GR_PARAM XY will cause afatal Glide error.

[} The Grvertex structure is no longer necessary, since gr VertexL ayout() alows arbitrary
layouts. Therefore Grvertex structure has been removed. To facilitate porting Glide 2.x
applications, the old vertex structure needs to be defined in the application, and the vertex
layout set accordingly. Example 2.2 shows you how.

PORTING
NOTE

Glide determines whether or not color and texture parameters are required based on other mode settings
such as gr Color Combine(). In addition, s, t, and g values can be inherited in order to reduce gradient
calculations on older hardware. This situation is handled in Glide 3.0 by the addition of the mode
argument to gr VertexL ayout(). If an application wants a TMU-specific value for s, t, or g, the
appropriate parameter will be enabled (GR_PARAM ENABLE) in the vertex layout. Alternatively, if the
application wantsan s, t, or g value to be inherited, it will specify GR_PARAM DI SABLE instead.

The GR_HI NT_STWHI NT hint is obsolete in Glide 3.0: it’s functionality isimplemented
within grVertexLayout() as follows:

[&

Glide2.x: grHints(GR_HI NT_STWH NT, GR_STWH NT_W DI FF_TMJ0);
Glide3.0: grVertexLayout(GR_PARAM Q0,..., GR_PARAM ENABLE);

PORTING Glide 2.x: grHints(GR_HI NT_STVHI NT, GR_STWHI NT_ST_DI FF_TMJ1);
Glide3.0: grVertexLayout(GR_PARAM ST1,..., GR_PARAM ENABLE);

12 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

2. Glidein Style

Table 2.1 Specifying clip coordinate space vertices.
The grVertexLayout() command is called once for each value of param, chosen from the table below.

(if FOGCOORD
extension is supported)

param type sizein |description values usage
bytes
GR_PARAM XY FxFloat 8 xandy In the range Required. Must be at offset 0.
coordinates. [-w.w].
Vertex snapping is no
longer required.
GR_PARAM Z FxFloat 4 z coordinate. In the range When z buffering is enabled.
[- w.w].
GR_PARAM W FxFloat 4 w coordinate. In the range Required.
[1..64K].
GR_PARAM Q FxFloat 4 |Usage dependson |Depth/fog When using fog mode
choice of iterator. RFGWTHTABLE ONQ or w
coordinate space. buffering is enabled. Defaultsto 1
if not defined.
GR_PARAM STn FxFloat 8 sand t coordinates [s, tinrange[0,1] |When texture mapping.
for TMU n. for one repeat of
the texture.
Independent of
aspect ratio.
GR_PARAM On FxFloat 4 q coordinate for When texture mapping with
TMU n. projected textures. Defaults to
GR_PARAM_Q if not defined.
GR_PARAM_A FxFloat 4 lalphavalue. In the range [0..1] | When using alpha blending, alpha
testing, or anti-aliasing.
GR_PARAM RGB FxFloat 12 |RGBtriplet. In the range [0..1] | Choose one of the two color formats.
GR_PARAM_PARGB Fxu32 4 Packed ARGB, one | Each component
byte per isan integer in
component. the range [0..255]
GR_PARAM FOG_EXT |FxFloat 4 Fog table index. flwintherange |When using fog mode

[0..255]

@R FOG WTH TABLE ON FOBOOCRD EXT

Copyright © 1995-1998 3Dfx Interactive, Inc.

Proprietary and Confidential

13
Printed 08/05/98 10:3C

Glide 3.0 Programming Guide

Table 2.2 Specifying window coordinate space vertices.
The grVertexLayout() command is called once for each value of param, chosen from the table below. Note
that GR_PARAM Wis not valid for window coordinate space.

param type sizein |description values usage
bytes
GR_PARAM_XY FxFloat 8 [xandy x/w, y/w in the Required. Must be at offset 0.
coordinates. range
Vertex snappingisno |[- 2048..2047]
longer required.
GR_PARAM Z FxFloat 4 |z coordinate. Stored as 1/z. In | When z buffering is enabled.
the range [0..64K]
GR_PARAM Q FxFloat 4 Usage dependson | L/w Required.
choice of
coordinate space.
GR_PARAM STn FxFloat 8 sand t coordinates |Stored as §/q, t/q | When texture mapping.
for TMU n. in the range
[0..256] for one
repesat of the
texture. Therange
of the smaller

dimensionislimited
by the aspect ratio.

See Chapter 9.
GR_PARAM On FxFloat 4 g coordinate for In the range When texture mapping with
TMU n. [0..255] projected textures. Defaults to
GR_PARAM_Q if not defined or if
disabled.
GR_PARAM_A FxFloat 4 |alphavalue. In the range When using alpha blending, alpha
[0..255] testing, or anti-aliasing.
GR_PARAM RGB FxFloat 12 |RGB triplet. In the range Choose one of the two color formats.
[0..255].
GR_PARAM_PARGB FxuU32 4 Packed ARGB, one | Each component
byte per isan integer in
component. the range
[0..255].
CGR_PARAM FOG _EXT |FxFloat 4 Fog table index. In the range When using fog mode
(if FOGCOORD [0_ _255] . R FOG WTH TABLE ON FOBOCRD EXT

extension is supported)

The application program has control over the order in which the selected parameters occur in the vertex
array. For example, the code segment in Example 2.1 defines a vertex structure that has an (X,y,2)
position and an RGB color. Other examples follow.

14 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

2. Glidein Style

Example 2.1 Defining a vertex layout.
The code fragment below defines a vertex structure as an (x,y,2) position and an RGB color. It continues on to
establish the layout semantically by calling gr\VertexLayout().

Typedef struct {
FxFl oat x, v;
FxFl oat o0o0z;
FxFloat r, g, b;

} nyVertex;

gr Coor di nat eSpace(GR_W NDOW COORDS) ;

gr Vert exLayout (GR_PARAM XY, 0, GR_PARAM ENABLE);
gr Vert exLayout (GR_PARAM Z, 8, GR_PARAM ENABLE);

gr Vert exLayout (GR_PARAM RGB, 12, GR_PARAM ENABLE);

Copyright © 1995-1998 3Dfx Interactive, Inc. 15
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Example 2.2 Re-creating GrVertex in Glide 3.0.
The code segment below defines the vertex structure from previous versions of Glide and shows the
gr\ertexLayout() that may be used to

t ypedef struct{
float x, y, z; /1* X Y, Z*/
float r, g, b; /I* R G B */
fl oat ooz; /* 65535/Z (used for Z-buffering) */
float a; /* Al pha */
fl oat oow; /* 1/ W (used for Whuffering, texturing) */
G TnuVer tex tnuvt x[GLI DE_NUM TMJ] ;
} nyVertex; /* old GVertex */

gr Coor di nat eSpace(GR_W NDOW COORDS) ;

gr Ver t exLayout (GR_PARAM XY, 0, GR_PARAM ENABLE);

gr Vert exLayout (GR_PARAM RGB, 12, GR_PARAM ENABLE)
gr Vert exLayout (GR_PARAM Z, 24, GR_PARAM ENABLE) ;

gr Vert exLayout (GR_PARAM A, 28, GR_PARAM ENABLE) ;

gr Vert exLayout (GR_PARAM W 32, GR_PARAM ENABLE) ;

gr Ver t exLayout (GR_PARAM STO, 36, GR_PARAM_ENABLE) ;

Example 2.3 Creating a vertex definition using clip coordinates, a z buffer, and a fog table indexed by q.
The code fragment below creates a vertex layout that includes x, y, z, w; g, and a packed color.

t ypedef struct{

FxFl oat x, vy, z; /1* X Y, Z*/

FxFl oat w, q; /I W Q*/

FxU32 pCol or; /* packed ARGB */
} nyVertex;

gr Coor di nat eSpace(GR_CLI P_COORDS) ;

gr Ver t exLayout (GR_PARAM XY, 0, GR_PARAM ENABLE);

gr Vert exLayout (GR_PARAM Z, 8, GR_PARAM ENABLE);

gr Vert exLayout (GR_PARAM W 12, GR_PARAM ENABLE)

gr Vert exLayout (GR_PARAM Q 16, GR_PARAM ENABLE) ;

gr Vert exLayout (GR_PARAM PARGB, 20, GR_PARAM_ENABLE) ;

Example 2.4 Creating a vertex definition using window coordinates and the FOGCOORD extension.
The code fragment below creates a vertex layout that includes x, y, g, f, and a packed color.

t ypedef struct{

FxFl oat x, v; /* X, Y */
FxFl oat q; [* Q*/
FxFl oat f; /* fog table index */
FxU32 pCol or; /* packed ARGB */
} nyVertex;

gr Coor di nat eSpace(GR_CLI P_COORDS) ;

gr Ver t exLayout (GR_PARAM XY, 0, GR_PARAM ENABLE);

gr Vert exLayout (GR_PARAM Q 8, GR_PARAM ENABLE) ;

gr Ver t exLayout (GR_PARAM FOG_EXT, 12, GR_PARAM_ENABLE) ;
gr Ver t exLayout (GR_PARAM PARGB, 20, GR_PARAM_ENABLE) ;

16 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

2. Glidein Style

Example 2.5 Creating a vertex definition for projected texture mapping.
The code fragments below creates a vertex layout that includes x, y, w or g (depending on the coordinate
space), a packed color, sand t values for two TMUs and a separate g for TMU L.

t ypedef struct{

FxFl oat x, v; /* X, Y */
FxFl oat q; /* Q*/
FxFl oat f; /* fog table index */
FxU32 pCol or; /* packed ARGB */
} nyVertex;

gr Coor di nat eSpace(GR_CLI P_COORDS) ;

gr Ver t exLayout (GR_PARAM XY, 0, GR_PARAM ENABLE);

gr Ver t exLayout (GR_PARAM Q, 8, GR_PARAM ENABLE);

gr Ver t exLayout (GR_PARAM FOG _EXT, 12, GR_PARAM ENABLE);
gr Ver t exLayout (GR_PARAM PARGB, 20, GR_PARAM ENABLE) ;

Using Morethan One Vertex Layout
Some applications may find it useful to use several vertex layouts during the course of the program.

While only one layout is current at atime, you can save the current one, define and use a new one, then
restore the saved one.

void gr GlideGetVertexL ayout(void *layout)
void gr GlideSetVertexL ayout(void *layout)

grGlideGetVertexL ayout() makes a copy of the current vertex layout established by callsto
grVertexL ayout(). The application can restore the saved layout by calling gr GlideSetVertexL ayout ().
Use gr Get(GR_GLI DE_VERTEXLAYOUT_SI ZE, ..) to determine how much space is needed (and hence,
how big the layout buffer should be).

[} In Glide 3.0, vertices no longer need to be snapped to sub-pixel precision. The newer
platforms perform snapping in hardware; Glide will do it for the older ones. There may be
a dlight performance degradation on platforms (e.g. SST-1 and SST-96) that don’t have
atriangle setup unit.

PORTING
NOTE

Copyright © 1995-1998 3Dfx Interactive, Inc. 17
Proprietary and Confidential Printed 08/05/98 10:30

3. Getting Started

In This Chapter

You will learn how to:

initialize Glide.

configure and initialize the hardware.

manage multiple 3Dfx Interactive graphics accelerators.
terminate cleanly.

manage the display buffers.

4 4 4 € <4 <«

detect and respond to errors.

Starting Up

Glide provides severa functions to initialize Glide and to detect and configure a 3Dfx Interactive
graphics subsystem. Three functions, gr Glidel nit(), gr SstSelect(), and gr SssWinOpen(), initialize Glide
and the hardware and must be called, in the order listed, before calling any other Glide routines (except
the grGet() and gr GetString() calls that detect the presence of 3Dfx Interactive graphics subsystems).
Failing to do thiswill cause the system to operate in an undefined (and, most likely, undesirable) state.

Thefirg initialization function, gr Glidel nit(), sets up the Glide library and thus must be called before
any other Glide functions are executed (with one exception, noted below). It alocates memory, sets up
pointers, and initializes library variables and counters. There are no arguments, and no value is
returned.

void gr Glidel nit(void)

Their is one exception to the rule stated above that gr Glidel nit()must be called before all other Glide
routines. gr Get(GR_NUM _BQARDS, ..) may be caled before gr Glidel nit() to determine the presence or
absence of a graphics subsystem.

The next function caled to initialize the system is gr SstSelect(), which makes a specific graphics
subsystem “current”. It must be called after gr Glidel nit() but before gr SstwinOpen().

void gr SstSelect(int whichSST)

The argument is the ordinal number of the subsystem that will be made active and must be in the range
[0..numBoards], where numBoards is the value returned when gr Get() is called with argument

GR_NUM _BOARDS. If whichSST is outside the proper range of values and the debugging version of Glide
isused, arun-time error is generated. If the release version of Glideis loaded, use of an inappropriate
value for whichSST will result in undefined behavior.

Copyright © 1995- 1998 3Dfx Interactive, Inc. 19
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Thefina initiaization function, gr SstWinOpen(), initializes the currently active graphics subsystem,
specified by the most recent call to gr SstSelect(), to the default state. All hardware specia effects
(depth buffering, fog, chroma-key, alpha blending, alphatesting, etc.) are disabled. All globa state
congtants (the chroma-key reference value, the apha test reference, the constant depth value, the
constant alpha value, the constant color value, etc.) and pixel rendering statistic counters are initialized

to zero.

[&

Significant changes in Glide 3.0 pave the way for full support for windowed
environments, including multiple windows. These changes are because resources are

shared in awindowed environment. When programming a full screen Glide application,
developers assume they have complete ownership of the graphics hardware, when in
reality, it may be shared. Other processes (or the Window system) can appropriate
PORTING resources owned by the Glide application at any time. Maintaining thisillusion of
NOTE complete ownership isimpossible without severe performance penalties. So, instead of
hiding the fact that 2D/3D resources are shared, Glide 3.0 ensures that applications can
endure asynchronous reallocation of 2D/3D resources yet recover completely and

gracefully.

gr SstWinOpen() should be called once per installed graphics subsystem (note that scanline interleaved
subsystems are treated as a single subsystem) and must be executed after gr Glidel nit() and

or SstSelect(). It returns an opague context handle if the initialization was successful and zero
otherwise. Only one context at atime may bein usein Glide 3.0.

GrContext_t gr SstWinOpen(Fxu32

hWin,

GrScreenResolution_t res,
GrScreenRefresh_t refresh,

GrColorFormat_t
GrOriginLocation_t
int

int

)

cFormat,
locateOrigin,
numBuffers,

numAuxBuffers

The arguments to gr SstWinOpen() configure the frame buffer. The first argument, hWin, specifies a
handle for the window in which the graphics will be displayed. The interpretation of hWin depends on
the system environment. DOS applications must specify NULL. Applications run on SST-1 graphics
hardware must specify NULL aswell. Win32 full screen applications running on a SST-96 system must
specify awindow handle; aNULL value for hWin will cause the application’s real window handle (i.e.,
what is returned by Microsoft’s Get Act i veW ndow API) to be used. Since Win32 pure console
applications do not have a window handle, they can be used only with SST-1 and a NULL window
handleisrequired. Finally, Glide Win32 applications that run in awindow may either specify NuLL (if

there is only one window), or the correct hWin, cast to Fxu32.

Table 3.1 Specifying a window handle in gr SstWinOpen().
The interpretation of the hWin argument to gr SstWinOpen() depends on the system environment, as shown

below.
system environment hwin value
DOS NULL
20 Copyright O 1995- 1998 3Dfx Interactive,

Printed 08/05/98 10:30 AM

Proprietary and Confide

3. Getting Started

Win32, full screen NULL or hWin
Win32, pure console NULL (SST-1 only)
Win32 Glide application NULL or hWin (SST-96 only)

The screen resolution and refresh rate are specified in the next two arguments, res and refresh. Both
variables are given values chosen from enumerated types defined in the sst 1vi d.h header file. A
typical application might set resto GR_RESOLUTI ON_640x480 and refresh to GR_REFRESH_60HZ.

While not recommended, the screen resolution may be specified as GR_RESOLUTI ON_NONE on an SST-

96 system. If so, Glide will use the user specified window (see the hWin parameter). The ref parameter
isignored when a Win32 application is running in awindow. Specifying GR_RESOLUTI ON_NONE oOn an

SST-1 system will cause the call to fail.

The fourth argument, cFormat, specifies the packed color RGBA ordering in the frame buffer.
Different software systems assume different byte ordering formats for pixel color data. For the widest
possible compatibility across a wide range of software, Glide provides * byte swizzling,” meaning that
incoming pixels can have their color values interpreted in one of four different formats that are defined
in the enumerated type GrColorFormat_t and are shown in Table 3.2. The color format affects data
written to the linear frame buffer (the subject of Chapter 11) and parameters for the following Glide
functions: grBuffer Clear () (described later in this chapter), gr ChromakeyValue() (described in Chapter
8), grConstantColor Value() (see Chapter 5), and gr FogColor Value() (see Chapter 8).

Table 3.2 Frame buffer color formats.

Glide supports four different color byte orderings: RGBA, ARGB, BGRA, and ABGR. Color byte ordering
determines how user-supplied color values are interpreted. The first column in the table shows the name of the
format, as defined in the enumerated type GrColorFormat_t. The second column in the table shows the byte
ordering of the color components within a 32-bit word.

color format byte ordering

GR_COLORFORNMAT_RGBA red areen blue alpha
GR_COLORFORVAT_ARGB alpha red green blue
GR_COLORFORNMAT_BGRA blue areen red alpha
GR_COLORFORVAT_ABGR alpha blue green red

The fifth parameter to gr SstWinOpen() specifies the location of the screen space origin. If locateOrigin
iISGR_ORI G N_UPPER_LEFT, the screen space origin is in the upper left corner with positive y going
down. GR_ORI G N_LOWER_LEFT places the screen space origin at the lower left corner with positive y
going up. Figure 3.1 shows the two possibilities for locating the origin.

Copyright © 1995-1998 3Dfx Interactive, Inc. 21
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Figure3.1 Locating theorigin.
The 3Dfx Interactive graphics accelerator allows the origin to be in the upper left or lower left corner of the
screen. The choice of coordinate system is be made by passing the appropriate parameter to gr SstWinOpen().

GR_ ORI G N_UPPER_LEFT GR_ ORI G N_LOAER LEFT
(0,0) +X +y t
Y ¢ (0,0) +X

The fina two arguments to gr SstWinOpen() select the buffering options. The first one, numBuffers,
specifies double or triple buffering and is an integer value, either 2 or 3. The other argument,
numAuxBuffers, specifies the number of auxiliary buffers required by an application. The auxiliary
buffers are used for depth or apha buffering. Permitted values are O or 1. For full screen applications,
this parameter allows both SST-1 and SST-96 to validate whether the available video memory will
support the application’s requirements for color and auxiliary buffers at a specified screen resolution.
For awindowed application running on SST-96, this parameter allows an application to run in alarger
3D window if a depth buffer is not necessary (depth and back buffers share the same off-screen video
memory).

If there is not enough memory to support the desired resolution and buffering options, an error will
occur.

Querying for Screen Parameters

Applications that are written to run on avariety of hardware configurations can query for available
resolutions before calling gr SstWinOpen().

typedef struct {
GrScreenResolution_t resolution;
GrScreenRefresh_t refresh;
int numCol or Buffers;
int numAuxBuffers;

} GrResolution;

FxI32 grQueryResolutions(const GrResolution *resTemplate,
GrResolution * output

)

gr QueryResolutions() returns al available frame buffer configurations that match the constraints
specified in the template resTemplate. The congtraints are specified as either GR_QUERY_ANY or a
specific value in each of the four fields in the GrResolution structure. If output is NULL,

22 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

3. Getting Started

gr QueryResolutions() returns the number of bytes required to contain the available resolution
information. The application can then allocate space and call gr QueryResolutions() again to return the
information. This process is demonstrated in Example 3.1.

Example 3.1 Querying for possible frame buffer configurations.
The code fragment below calls grQueryResolutions() twice, the first time to establish the amount of space
required for all the possible configurations, and the second time to actually return the data.

G Resol ution query;
G Resolution *list;
i nt listSize;

/* find all possible nodes that include a z-buffer */
query.resol ution GR_QUERY_ANY;
query.refresh GR_QUERY_ANY;
query. nunCol or Buf fers = GR_QUERY_ANY;

query. numAuxBuf fers 1,

listSize = grQueryResol utions(&query, NULL);
list = malloc(listSize);
gr Quer yResol utions(&query, list);

Example 3.2 The Glide initialization sequence.

This code fragment calls the three Glide functions, in the required order, that initialize the software and the
hardware subsystems. The parameters to gr SstWinOpen() establish a double buffered full-screen frame buffer
with 640" 480 screen resolution and a 60Hz refresh rate. Colors are stored as RGBA, the origin isin the lower
left corner, and there is no auxiliary buffer.

G Cont ext _t gcon;

grdidelnit(void);
gr Sst Sel ect (0);
if ((gcon=(grSst W nOpen(NULL, GR_RESCLUTI ON_640x480, GR_REFRESH_60HZ,
GR_COLORFORMAT_RGBA, GR_ ORI G N_LOVER_LEFT, 2, 0))==0)
printf(“ERROR failed to open graphics context!\n");

When programming afull screen Glide application, the developer has complete ownership of the 3D
hardware and texture ram. Many applications will be developed to run under Windows 95, however,
and must be prepared to restore the graphics state after a period of inactivity.

To gracefully handle the loss of resources (e.g. to another 3D application being scheduled by the
Windows 95 operating system), an application is required to periodically (typically once per frame)
query with gr SelectContext() to determine if Glide' s resources have be reallocated by the system.
context is a context handle returned from a successful call to grwinOpen().

FxBool gr SelectContext(GrContext_t context)

If none of the rendering context’s state and resources have been disturbed since the last call,

gr SelectContext() will return FXTRUE. In this case no special actions by the application are required. If
it returns FXFAL SE, then the application must assume that the rendering state has changed and must be
reestablished (by re-downloading textures, explicitly resetting the rendering state, etc.) before further
rendering commands are issued.

Copyright © 1995-1998 3Dfx Interactive, Inc. 23
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Driving Multiple Systems
Glide supports two forms of multiple graphics subsystem support: multiple subsystems driving
multiple displays and two subsystems driving a single display.

Selecting a Graphics Subsystem

At any given moment, only a single 3Dfx Interactive graphics accelerator is active. The gr SstSelect(),
presented above, activates a specific unit. All Glide functions, with the exception of the gr Glide family
and gr SstSelect(), operate on only the currently active subsystem. Note that the global Glide state is
bound to each graphics subsystem independently. So, to set the constant color in each unit to the same
value, for example, you must write aloop that selects each onein turn and sets the color, as shown in
Example 3.3.

Example 3.3 Setting a state variable in all graphics subsystems.

Each graphics subsystem has its own version of the Glide state variables, including a constant color value
that is used to clear the screen. The constant color is zero by default. The code fragment below cycles through
all the units found by a previous call to grGet(), setting the constant color to black.

int i, n;

= gr Get (GR_NUM BOARDS, sizeof (n), &n)
or (i =0; 0 <n; i++)

~—~ .

grSstSelect(i);
gr Const ant Col orValue(~0); /* only affects SST “i” */

Opening Multiple Graphics Subsystems

gr SstWinOpen() must be called once for each graphics subsystem that will be used. In Glide 3.0, the
current graphics context must be closed (by calling gr SstwinClose(), described below) before

gr SstWinOpen() can be called to open a context for another subsystem. Note that two graphics
subsystems linked together in a scanline interleaving configuration are treated in software asasingle
unit.

Scanline Interleaved Graphics Subsystems

Two 3Dfx Interactive graphics accelerators can be wired together in a configuration known as scanline
interleaving, which effectively doubles rasterization performance. From an application’s perspective,
two graphics subsystems in a scanline-interleaved configuration are treated as if a single subsystem is
installed in the system, including during unit selection, initialization, state management, texture
download, etc.

24 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

3. Getting Started

Shutting Down

Before a new graphics context can be created, the previous one must be closed by calling
gr SstWinClos().

FxBool gr SstWinClose(GrContext_t context)

gr SstWinClose() will fail, returning FXFALSE, if context is not a valid handle to a graphics context.
Otherwise, it returns the state of Glide to the one following gr Glidel nit(), so that gr SstWinOpen() can
be cdlled to open a new context.

After an application has completed using Glide and the graphics subsystem, proper shutdown must be
performed. This alows Glide to de-allocate system resources like memory, timers, address space, and
file handles that were used during program execution.

The function gr GlideShutdown() shuts down Glide and all graphics contexts previousy opened with
gr SstWinOpen(). It should be called only when an application is finished using Glide, and should not be
executed unless gr Glidel nit() and gr SstWinOpen() have aready been called.

void gr GlideShutdown(void)

Example 3.4 shows aminimal Glide program: it executes the four function calls that initialize the
graphics subsystem and then terminates.

Example 3.4 A minimal Glide program.
The complete program below includes the Glide initialization and termination procedure and nothing else.

#i ncl ude <glide. h>
int n;

voi d mai n(voi d)
{ G Context_t context;
grdidelnit(void);
if (! grGet(GR_NUM BOARDS, sizeof(n), &n))
printf(“ERROR. no 3Dfx Interactive G aphics Accelerator!\n”);
gr Sst Sel ect (0) ;
context = grSstWnOpen(NULL, GR_RESCLUTI ON_640x480, GR_REFRESH 60HZ,
GR_COLORFORMAT_RGBA, GR ORI G N_LOWER LEFT, 2, 0);
gr Sst W nCl ose(cont ext);
gr d i deShut down() ;

The Display Buffer

Glide manages severa logica hardware graphics buffers, all of which are based out of the same area of
memory known as the “frame buffer”. Depending on the amount of memory installed on the hardware,
the frame buffer istypically arranged as three logical units: the front buffer, the back buffer, and,
optionally, the auxiliary buffer.

void gr Render Buffer (GrBuffer_t buffer)

Copyright © 1995-1998 3Dfx Interactive, Inc. 25
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

grRender Buffer () selects the buffer for primitive drawing and buffer clears. Valid values are
CGR_BUFFER_FRONTBUFFER and GR_BUFFER_BACKBUFFER,; the default is GR_ BUFFER_BACKBUFFER.

The auxiliary buffer in a 3Dfx Interactive graphics accel erator subsystem can be used either as a depth
buffer, an alpha buffer, or as athird rendering buffer for triple buffering. The auxiliary buffer is not
available on systems with 2MB of frame buffer DRAM running at 800" 600. However, it is always
available on systems with 4MB of frame buffer DRAM installed or with the screen resolution set to
640" 480.

Triple buffering alows an application to continue rendering even when a swap buffer command is
pending. When triple buffering is enabled an application can act asif the hardware is operating in
double buffer mode; intricacies of dealing with the third buffer are hidden from the application by the
hardware. Since the auxiliary buffer can serve only asingle use, depth buffering, alpha buffering, and
triple buffering are mutually exclusive.

An application selects the purpose of the auxiliary buffer implicitly whenever depth buffering, alpha
buffering, or triple buffering are enabled. For example, if gr DepthBuffer M ode() is called with a
parameter other than GR_DEPTHBUFFER_DI SABLE (see Chapter 7), it is assumed that the auxiliary
buffer will be used for depth buffering. Similarly, gr SstWinOpen() enables triple buffering; alpha
buffering is enabled if gr AlphaBlendFunction() selects a destination alpha blending factor (see Chapter
6) or gr ColorMask() enables writes to the alpha buffer. The release build of Glide does not check for
contention of the auxiliary buffer. Unexpected results may occur if the auxiliary buffer is used for more
that one function (e.g., both depth buffering and triple buffering are enabled). The debugging version of
the library will report the contention.

Note that source alpha blending can coexist with depth or triple buffering, but destination alpha
blending cannot.

Table 3.3 Frame buffer resolution and configuration.
The frame buffer can be configured with two or three rendering buffers. In double buffer modes, an alpha or
depth buffer can also be used. The available resolution depends on the amount of installed memory.

frame buffer memory | double buffer mode double buffer mode with | triple buffer mode
16-bit alpha/depth
buffer
2 Mbytes 800 by 600 by 16 640 by 480 by 16 640 by 480 by 16
4 Mbytes 800 by 600 by 16 800 by 600 by 16 800 by 600 by 16

Logical Layout of the Linear Frame Buffer

The frame buffer islogically organized as 1024 scanlines of 16 or 32-bit values, regardless of the
amount of memory installed on the board, and is shown in Figure 3.2. Scanline length, or stride, is
independent of screen resolution and dependent on the graphics hardware. The stride is returned in the
GrLfbinfo_t structure, as described in Chapter 11. The data format within the frame buffer is
programmable and is also described in detail in Chapter 11.

26 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

3. Getting Started

Figure 3.2 Logical layout of the linear frame buffer.

The frame buffer is logically organized as 1024 scanlines of 16 or 32-bit values, regardless of the amount of
memory installed on the board and the screen resolution. The drawable area is a rectangular subset of the
frame buffer; its location depends on the location of the y origin. The remainder of the board’'s memory
(shaded area) is used as an auxiliary buffer that can be utilized as an alpha/depth buffer or as a third display
buffer (triple buffering). Thislogical layout is independent of the user-specified origin location.

stride > < stride

00)

drawable area

1024 1024
pixels pixels

drawable area

©0) M
(@) y originin upper left corner (b) y originin lower Ieft corner

Masking Writesto the Frame Buffer

Writes to the frame buffer and depth buffer can be selectively disabled and enabled. The Glide
functions gr Color M ask() and gr DepthMask() control buffer masking: FXTRUE values alow writes to the
associated buffer, and FXFALSE values disable writes to the associated buffer. Writes to the color and
alpha buffers are controlled by gr Color Mask() whereas writes to the depth buffer are controlled by
grDepthMask() (described in Chapter 7). Note that disabling writes to the alpha planes is the same as
disabling writes to the depth planes, since they both share the same memory.

void gr Color M ask(FxBool rgh, FxBool alpha)
void gr DepthM ask(FxBool enable)

grColorMask() specifies whether the color and/or apha buffers can or cannot be written to during
rendering operations. If rgb is FXFALSE, for example, no change is made to the color buffer regardless
of the drawing operation attempted. The alpha parameter isignored if depth buffering is enabled since
the alpha and depth buffers share memory.

gr DepthM ask() enables writes to the depth buffer.

The value of grColorMask() and gr DepthMask() are ignored during linear frame buffer writesif the
pixel pipdineis disabled (see Chapter 11). The default values are FXTRUE, indicating that the
associated buffers are writable.

Swapping Buffers

In adouble or triple buffered frame buffer, the next scene is rendered in a back buffer while the front
buffer is being displayed. After an image has been rendered, it is displayed with acall to
gr Buffer Swap(), which exchanges the front and back buffers every swaplnterval vertical retraces. If the

Copyright © 1995-1998 3Dfx Interactive, Inc. 27
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

swaplnterval is 0, then the buffer swap does not wait for vertical retrace. If the monitor frequency is 60
Hz, for example, a swaplnterval of 3 results in a maximum frame rate of 20 Hz.

void gr Buffer Swap(int swaplnterval)

A swaplnterval of O may result in visual artifacts, such as ‘tearing’, since a buffer swap can occur
during the middle of a screen refresh cycle. This setting is very useful in performance monitoring
situations, as true rendering performance can be measured without including the time buffer swaps
spend waiting for vertical retrace.

gr Buffer Swap() does not wait for the specified vertical blanking period; instead, it queues the buffer
swap command and returns immediately. If the application is double buffering, the graphics subsystem
will stop rendering and wait until the swap occurs before executing more commands. If the application
istriple buffering and the third rendering buffer is available, then rendering commands will take place
immediately in the third buffer.

A Glide application can poll the hardware using the gr Get() function, described in Chapter 12, with
argument GR_PENDI NG_BUFFERSWAPS, to determine the number of buffers waiting to be viewed,
although thisis generally not necessary.

The maximum value returned is 7, even though there may be more buffer swap requests in the queue.
To minimize rendering latency in response to interactive input, gr Get(GR_PENDI NG_BUFFERSWAPS, ..)
should be called in aloop once per frame until the returned value is less than some small number such
asl, 2, or3.

Synchronizing with Vertical Retrace

Synchronization to vertical retrace is supported with the gr Get() function with argument
GR_VI DEO_POsI TI oN, which returns the vertical and horizontal beam location. Vertical retraceis
indicated by returning O for the vertical position.

Note that an application does not need to explicitly synchronize to vertical retrace if it only wishesto
remove tearing artifacts. gr Buffer Swap() will automatically synchronize to verticd retrace if desired.

Monitoring Swapping Behavior

An application program can examine a history of swapping behavior: each entry shows the number of
vertical retraces that occurred between the display of aframe and its predecessor. A call to
grGet(GR_NUM_SWAP_HI STORY_BUFFER, ..) returns the number of bytes of swapping history
available. A call to grGet(GR_SWAP_HI STORY, ..) returns the 4-byte entries and resets the recording
buffer. Example 3.5shows and example.

Example 3.5 Retrieving the swapping history.
The code fragment below retrieves the swap history since the last time it was retrieved.

FxU32 si zeSwapHst, buff SwapHst [MAXBUFF] ;

gr Get (GR_NUM SWAP_HI STORY_BUFFER, 4, &sizeSwapHst);
gr Get (GR_SWAP_HI STORY, sizeSwapHst << 2, buff SwapHst);

28 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

3. Getting Started

Clearing Buffers

The ability to clear adisplay buffer is fundamental to animation, since the remnants of a previoudly
rendered scene must be reset before a new scene can be rendered. The hardware alows the back buffer
and apha or depth buffer to be cleared smultaneoudly.

A buffer clear fills pixels at twice the rate of triangle rendering or better. Therefore, the performance
cost of clearing the buffer is, worse case, haf the cost of rendering a rectangle. Clearing the buffer is
not necessary when the scene paints a background that covers the entire area.

Buffers are cleared by caling grBuffer Clear (). The area within the buffer to be cleared is defined by

gr ClipWindow(), described in the next chapter. The three parameters specify the values that are used to
clear the display buffer (color), the alpha buffer (alpha), and the depth buffer (depth). Although the
color, alpha, and depth parameters are always specified, the parameters actually used will depend on
the current configuration of the hardware; the irrelevant parameters are ignored.

The depth parameter can be one of the depth constants found by calling gr Get() with argument
GR_ZDEPTH_M N_MAX Or GR_WDEPTH_M N_MAX, or adirect representation of avalue in the depth buffer.
See Chapter 7 for more details.

void gr Buffer Clear (GrColor_t color, GrAlpha_t alpha, FxU32 depth)

Any buffersthat are enabled are automatically and smultaneously cleared by grBuffer Clear (). For
example, if depth buffering is enabled (with gr DepthBuffer M ode(), described in Chapter 7), the depth
buffer is cleared to depth. If alpha buffering is enabled (with gr AlphaBlendFunction(), described in
Chapter 6), the alpha buffer is cleared to alpha. And if writes to the display buffer are enabled (with

gr ColorMask(), described in Chapter 5), then it is cleared to color. If an application does not want a
buffer to be cleared, it should mask off writes to the buffer using gr DepthMask() and gr Color Mask() as

appropriate.

Error Handling

Glide provides afamily of error management functions to assist a devel oper with application
debugging. This family of routines consists of Glide related error management (errors generated by
Glide) and application level error management (errors generated by an application).

The debug build of Glide performs extensive parameter validation and resource checking. When an
error condition is detected, a user-supplied callback function may be executed. This callback function
isinstalled by calling grError SetCallback(). If no callback function is specified, a default error
function that prints an error message to st der r is used.

typedef void (* GrErrorCallbackFnc_t) (const char *string, FxBool fatal)
void grError SetCallback(GrErrorCallbackFnc_t fnc))

The callback function accepts a string describing the error and a flag indicating if the error isfatal or
recoverable. grError SetCallback() is relevant only when using the debugging version of Glide; the
release build of Glide removes all interna parameter validation and error checking so the callback
function will never be called.

Copyright © 1995-1998 3Dfx Interactive, Inc. 29
Proprietary and Confidential Printed 08/05/98 10:30

4. Rendering Primitives

In This Chapter

You will learn how to:

establish a clipping window.

draw apoint, aline, atriangle, or a convex polygon on the screen.
draw sets of points, lines, and trianglesin a single operation.

draw sets of connected lines and trianglesin a single operation.

cull back-facing polygons from the scene.

4 4 4 € <4 <«

draw anti-aliased points, lines, triangles, and convex polygons.

Clipping

The graphics hardware supports per-pixel clipping to an arbitrary rectangle that is defined with the
Glide function gr Clipwindow(). Any pixels outside the clipping window are rejected. Values are
inclusive for minimum x and y values and exclusive for maximum x and y values, as shown in Figure
4.1. The clipping window also specifies the area gr Buffer Clear () will clear. (See Chapter 3.)

Figure4.1 Specifying a clipping window.
The clipping window is defined by two pairs of integers in the range [0..1024) specifying the left and right
edges and the top and bottom edges of the rectangle.

+y t (0,0) +X

(minx, miny)

when the originisin

the upper left corner

|

|

when the originisin i
the lower left corner i
I

of the screen ‘ of the screen
(minx, mny) | L 4
> (maxx, maxy)
(O;O) +X +y v
Copyright © 1995- 1998 3Dfx Interactive, Inc. 31

Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

The gr Clipwindow() routine has four parameters that define the clipping rectangle. The values must be
less than or equal to the current screen resolution and greater than or equal to O; otherwise, they are
ignored. Glide does not perform any geometric clipping outside of supporting a hardware clipping
window. For optimal performance, an application should perform proper geometric clipping before
passing any primitives to Glide. The clipping window should not be used in place of true geometric

clipping.
void gr ClipWindow(FxU32 minX, FxU32 minY, FxU32 maxX, FxU32 maxyY)

The default values for the clip window are the full size of the screen: (0,0,640,480) for 640" 480 mode
and (0,0,800,600) for 800" 600 mode. To disable clipping, smply set the size of the clip window to the
screen size. The clipping window should not be used for genera purpose primitive clipping; since
clipped pixels are processed but discarded, proper geometric clipping should be done by the application
for best performance. The clip window should be used to prevent stray pixels that appear from
imprecise geometric clipping. Note that if pixel pipelineis disabled, clipping is not performed on linear
frame buffer writes (see Chapter 11 for more information).

Triangles
Thetriangle is the basic Glide rendering primitive. The Glide function gr DrawTriangle() renders an

arbitrarily oriented triangle. The arguments, a, b, and ¢, are pointers to vertices whose layout has been
determined by the most recent call to grVertexL ayout(), as described in Chapter 2.

void gr DrawTriangle(const void *a, const void *b, const void *c)

Triangles are rendered with the following filling rules:
Zero areatriangles render zero pixels.
Pixels are rendered if and only if their center lies within the triangle.

A pixel center iswithin atriangleif it isinside al three of the edges. When a pixel center lies exactly
on an edge, it isingde the triangle if the edge is considered to be inside, and outside otherwise. Left
edges are in; right edges are out. Horizontal edges with the smaller y value are in; those with alarger y
value are out.

Figure 4.2 gives an example. Eight triangles are shown, al sharing a common vertex. Only one of the
triangles renders the pixel whose center is the shared vertex. Can you guess which one?

The shared vertex is part of the “right edge” of triangles A, H, G, and F, and hence outside. It is part
of the “top edge” (since the origin isin the lower left) of triangles G, F, E and D, and thus outside them
aswadll. In triangle B, the vertex is on one inside edge and one outside edge and hence is considered to
be outside the triangle. Only in triangle C does the vertex lie on two “inside” edges and thuslies insde
the triangle.

32 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

4. Rendering Primitives

Figure4.2 Pixel rendering.

Which of the eight triangles shown in diagram (a) will render the pixel at the common vertex? In diagram (b),
solid edges are considered to be inside the triangle while dotted edges are outside. The top two diagrams are

drawn with the origin in the lower left corner. The bottom row represents the other possibility: the originisin
the upper left corner. The two pairs of diagrams are mirror images of each other.

ty

>
+X
(a) Which triangles will render the pixel in the
center of the square? (If you like to think of the
origininthe lower left corner, use the top row of
diagrams; if you prefer an origin in the upper
left corner, use the bottom row.)

+X

v

ty

(b) Pixelson solid edges lie inside the triangl€;

pixels on dotted lines do not. A vertex isinside
the triangle (and hence, rendered) if both edges
that radiate fromit are inside the triangle. Thus,

only triangle C will render the center point.

Copyright © 1995-1998 3Dfx Interactive, Inc.
Proprietary and Confidential

33

Printed 08/05/98 10:3C

Glide 3.0 Programming Guide

Points

The Glide function gr DrawPoint() renders a single point to the screen. The point is treated as atriangle
with nearly coincident vertices (that is, avery small triangle) for rendering purposes. If many points
will be rendered, noticeable performance improvement can be achieved by writing pixels directly to the
frame buffer. (gr DrawPoint() sends three vertices per point to the hardware and iterates along three
edges; only one linear frame buffer write per point is required.)

void gr DrawPoint(const void *a)

The argument, a, is a pointer to a vertex whose layout has been determined by the most recent cal to
orVertexL ayout().

Example 4.1 A thousand points of light.

This code fragment clears the screen to black and then draws a thousand random points. By default, the
rendering buffer is set to GR_BUFFER_BACKBUFFER and the color buffer iswritable. The color white is made
by specifying maximal values for red, green, and blue, and a quick way to do that is ~0. Some of the points
will be clipped out: the random number generator selects points with coordinates in the range [0..1024]; the
screen resolution is less than that. By default, the clipping window is set to the screen size.

typedef struct { float x, y; } nyVertex;

int n;
myVertex p;

gr Ver t exLayout (GR_PARAM XY, 0, GR_PARAM ENABLE);

/* clear the back buffer to black */
grBufferCear(0, 0, 0);

/* set color to white */
gr Col or Conbi ne(GR_COMVBI NE_FUNCTI ON_LOCAL, GR_COMBI NE_FACTOR_NONE,

GR_COVBI NE_LOCAL_CONSTANT, GR_COMBI NE_OTHER NONE, FXFALSE) ;
gr Const ant Col or Val ue(~0)

/* generate and draw 1000 random points */
for (n=0; n<1000; n++) {

p.x = (float) (rand() % 1024);

p.y = (float) (rand() % 1024);

gr Dr awPoi nt (&p) ;
}

Lines

The Glide function gr DrawL ing() renders an arbitrarily oriented line segment. Enabled specia effects
(e.g., fog, blending, chroma-key, dithering, etc.) will affect aline’s appearance. The arguments, a and
b, are pointers to vertices whose layout has been determined by the most recent cal to

orVertexL ayout().

void gr DrawL ing(const void *a, const void *b)

34 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

4. Rendering Primitives

Drawing Sets of Digoint Points, Lines, and Triangles

So far, we have talked about rendering commands that take one, two, or three vertex pointers as
arguments and draw a single point, line, or triangle. Two more commands, gr DrawVertexArray() and
gr DrawVertexArrayContiguous(), take an array of vertex pointers or of vertices and draw them
according to a mode argument.

void gr DrawVertexArray(FxU32 mode, FxU32 count, void *pointers[])
void gr DrawVertexArrayContiguous(FxU32 mode, FxU32 count, void *vertex, FxU32 stride)

The first argument, mode, tells how to interpret the list of vertices. Valid values are GR_PO NTS,
GR_LI NES, GR_TRI ANGLES, GR_LI NE_STRI P, GR_TRI ANGLE_STRI P, GR_TRI ANGLE_FAN, Or
GR_POLYGON, or two continuation modes, GR_TRI ANGLE_FAN_CONTI NUE and

GR_TRI ANGLE_FAN_CONTI NUE. In this section, we will discuss the first three modes, which draw
digoint points, lines, and triangles. The other modes are discussed in later sections.

The second argument, count, gives the number of verticesto draw, and the final argument, pointers, is
apointer to an array of pointers to vertices. gr DrawVertexArrayContiguous() assumes that all the
vertices are stored in alinear array addressed by vertex, and that each vertex in the array is stride bytes
long. In both cases, the count vertices are processed in the order given, according to mode.

Figure 4.3 gives a set of points and draws them with six of the modes.

Drawing Sets of Connected Linesand Triangles

A line strip is a sequence of line segments in which each line segment shares an endpoint with the
previous one. A triangle strip is a sequence of triangles in which each triangle (after the first one)
shares two vertices with its predecessor. A triangle fan isastrip in which all triangles have one vertex
in common. (See Figure 4.4.)

Copyright © 1995-1998 3Dfx Interactive, Inc. 35
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Figure4.3 Vertex arrays.
Suppose we have the following points:

Be

Ee

Co

They are stored in alphabetic order in a contiguous array of vertices and drawn with each of the possible
modes, yielding the shapes below:

.

N A Ay

GR_POINTS GR_LINES GR_TRIANGLES
L]
w GR_TRIANGLE_STRIP j GR_TRIANGLE_FAN f

This set of points cannot be drawn in GR_PCOL YGON mode as the resulting polygon would not be convex. An

example later in the chapter uses the indirection of grDraw\VertexArray() to draw a polygon by discarding
points C and E. GR_TRI ANGLE_FAN_CONTI NUE and GR_TRI ANGLE_STRI P_CONTI NUE are
continuation modes and are described |ater.

36 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

4. Rendering Primitives

Figure4.4 Linestrips, triangle strips, and triangle fans.
Thefirst line segment in a line strip provides two vertices. Subsequent line segments require only one new
vertex, since their starting point is the endpoint of the previous one.

Thefirst trianglein a triangle strip provides three vertices. Subsequent trianglesin the strip share two
vertices with their predecessor. All the triangles in a fan share one vertex, the first onein the list.
Furthermore, each triangle shares a second vertex with its predecessor.

When grDrawVertexArray() or grDrawVertexArrayContiguous() is used to draw the triangle aggregate, the
mode argument identifiesit as a strip or fan: the distinction is important because the shared vertices are
handled differently. In a strip, each new vertex replaces the oldest of the previous three vertices. In a fan, the
first vertex remains in use for the whole fan, and each new vertex replaces the oldest of the other two.

V5 V3
V3 VZ
\Y
Vi v s
\%1
V, Ve
VZ Ve
Vo triangle strip triangle fan
linestrip

Copyright © 1995-1998 3Dfx Interactive, Inc. 37

Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Two additiona drawing modes, GR_TRI ANGLE_FAN_CONTI NUE, and

GR_TRI ANGLE_STRI P_CONTI NUE, allow you to interrupt the rendering of atriangle strip or fan to do
computations, then resume where you left off. The use of the continuation modes is subject to the
following restrictions:

grDrawVertexArray(GR_TRI ANGLE_STRI P_CONTI NUE, ..) must follow either a
grDrawVertexArray(GR_TRI ANGLE_STRI P, ..) or

grDrawVertexArray(GR_TRI ANGLE_STRI P_CONTI NUE, ..) command. Similarly,
grDrawVertexArray(GR_TRI ANGLE_FAN_CONTI NUE, ..) must be preceded by either
grDrawVertexArray(GR_TRI ANGLE_FAN, .)) or

grDrawVertexArray(GR_TRI ANGLE_FAN_CONTI NUE, ..).

Intervening commands may not change Glide state. For example, the following sequence is not
valid:

grEnable(GR_AA ORDERED);

grDrawVertexArray(GR_TRI ANGLE_FAN, ..);

grDisable(GR_AA ORDERED); /* Wrong! No state changes between continuations */
grDrawVertexArray(GR_TRI ANGLE_FAN_CONTI NUE, ..);

No intervening rendering commands are alowed. For example, the following sequence is not vaid:

grDrawVertexArray(GR_TRI ANGLE_FAN, ..);
grDrawVertexArray(GR_PO NTS, ..); /* Wrong! No other rendering between continuations */
grDrawVertexArray(GR_TRI ANGLE_FAN_CONTI NUE, ..);

Example 4.2 Using triangle continuation.
The code fragment below draws a triangle strip in three stages.

/* draw two triangles */

gr DrawVer t exArray(GR_TRI ANGLE_STRI P, 4, pointers);

/* continue to draw a triangle strip, using the last two vertices in the
* previous one
*/

gr DrawVer t exArray(GR_TRI ANGLE_STRI P_CONTI NUE, 1, pointers+4);

/* continue to draw one triangle using the last two vertices in the

previous triangle */

gr Dr awVer t exArray(GR_TRI ANGLE_STRI P_CONTI NUE, 1, pointers+5);

This code fragment uses continuation to draw a triangle fan.

/* draw two triangles */

gr DrawVer t exArray(GR_TRI ANGLE_FAN, 4, pointers);

/* continue to draw one triangle using the first vertex and |last vertex
in the previous triangle */

gr Dr awMer t exArray(GR_TRI ANGLE_FAN_CONTI NUE, 1, pointers+4);

/* continue to draw one triangle using the first vertex and |last vertex
in the previous triangle */

gr Dr awMer t exArray(GR_TRI ANGLE_FAN_CONTI NUE, 1, pointers+5);

38 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

4. Rendering Primitives

Convex Polygons

A polygon is a planar area enclosed by a closed loop of line segments, specified by their endpoints.
While the hardware does not render polygons directly, Glide provides a set of polygon rendering
functions that are optimized for the hardware. The polygons rendered by the Glide functions are subject
to some strong restrictions:

The edges of the polygon cannot intersect.

The polygon must be convex, that is, have no indentations. (The glossary at the end of this manual
gives a precise definition of convexity.)

Figure 4.5 shows some examples of both valid and invalid polygons.

Figure4.5 Polygons.
Valid polygons are convex and planar. Invalid polygons have intersecting edges,

indentations, or non-planar coordinates.

Copyright © 1995-1998 3Dfx Interactive, Inc. 39
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Example 4.3 Drawing a convex polygon in Glide 3.0.

The code fragment below assumes that the seven vertices shown below and in Figure 4.3 have been defined in
an array of myVer t ex structures called ver t s. By creating an array of myVer t ex pointers that drop out the
C and E vertices, a convex polygon can be drawn.

B D

T

typedef struct { ...} myVertex;
nyVertex verts[7];

static struct myVertex *vlist[5] = {
verts[0], verts[1],
verts[3].

Verts[5], verts[6] };

gr DrawVer t exArray(GR_POLYGON, 5, vlist);

So why not draw a polygon using all seven vertices? Because the resulting polygon is not convex. Polygons
are rendered as a triangle fan. The illustration below demonstrates the fact that drawing a polygon that is not
convex may yield unexpected results!

Thisisthe polygon created by Glide renders a polygon as a

connecting all seven verticesin order. triangular fan. The shaded areais
The deep indentations of the crown are what is drawn; the lines outline
not convex. what was desired.

[&

Convex polygons are defined by an ordered set of vertices and drawn by calling
grDrawVertexArray(GR_POLYQQON, ..) or
gr DrawVertexArrayContiguous(GR_POLYQQN, ..) in Glide 3.0. Table 4.1 provides

PORTING guidance for porting the polygon rendering routines from Glide 2.x to the new regime.

NOTE

40 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

4. Rendering Primitives

Table4.1 Porting obsolete gr DrawPolygon() commands to Glide 3.0.

Glide 3.0 isthe first release to support grDrawVertexArray(). Sx old routines for drawing polygons have been
made obsolete by grDrawVertexArray(): grDrawPolygon(), gr DrawPlanarPolygon(),
grDrawPolygonVertexList(), grDrawPlanarPolygonVertexList(), grAADrawPolygon(), and
grAADrawPolygonVertexList(). The table below shows how to convert calls to the obsolete routines with calls
to grDrawVertexArray(). It assumes that the old GrVertex structure has been defined both syntactically and
with callsto grVertexLayout().

old new

gr Dr awPl anar Pol ygon(nVerts, ilist, vlist) gr Drawver t exAr r ay (GR_POYGON, nVerts, vlist sorted
according to ilist)

gr Dr awPol ygon(nVerts, ilist, vlist) gr Drawver t exAr r ay (GR_POLYGON, nVerts, vlist sorted

according to ilist)
gr Dr awPl anar Pol ygonVer t exLi st (nVerts, vlist) | gr Dr awVer t exAr r ayCont i guous(GR_POLYGON, nVerts, vlist,
si zeof (G Vertex))

gr Dr awPol ygonVer t exLi st (nVerts, vlist) gr Drawver t exAr r ayCont i guous(GR_POLYGON, nVerts, vlist,
si zeof (G Vertex))
gr AADr awPol ygon(nVerts, vlist) gr Enabl e(AA_ORDERED);

gr Drawver t exAr ray (GR_POLYGON, nVerts, vlist sorted
according to ilist)
gr AADr awPol ygonVer t exLi st (nVerts, vlist) gr Enabl e(AA_ORDERED);

gr Drawver t exAr r ayCont i guous(GR_POLYGON, nVerts, vlist,
si zeof (G Vertex))

Copyright © 1995-1998 3Dfx Interactive, Inc. 41
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Example 4.4 L’embarras desrichesses: The more alternatives, the more difficult the choice.

(Abbé D’ Allainval, 1726). The code fragment below draw three triangles, It initializes an array of eight
vertices, vpool [8], and an array of pointers to them, verts. Veertex vpool[1] is shared by all three of the
triangles; and two of them use vpool[2].

struct vert {
FxFl oat x,y,z,w
FxFl oat s, t;

} vpool [8];

/1 y, z(unused), 1/ w
/1 t/

X,
s/w, t/w

static struct vert *verts[9] = {
vpool +0, vpool +1, vpool +2,
vpool +1, vpool +2, vpool +3,
vpool +7, vpool +1, vpool +5};

N R LR PR
/'l set the scene

gr Coor di nat eSpace(GR_W NDOW COORDS) ;

gr Ver t exLayout (GR_PARAM XY, 0, GR_PARAM ENABLE);

gr Ver t exLayout (GR_PARAM 0, 12, GR_PARAM ENABLE);

gr Ver t exLayout (GR_PARAM STO, 16, GR_PARAM ENABLE);

/'l transform and deposit vertices into vpool
vpool [0] . x = Xx;

vpool [0].y = vy;

vpool [0] .w = oow = 1. 0F/ w;

vpool [0] . s = s*oow,

vpool [0] .t = t*oow,

/1 simlar for other vertices...

Here are three different ways to draw the same three triangles. Method 1: Draw them as three independent
triangles.

static struct vert *verts[9] = {
vpool +0, vpool +1, vpool +2,
vpool +1, vpool +2, vpool +3,
vpool +7, vpool +1, vpool +5};

gr DrawVer t exArray(GR_TRI ANGLES, 9, verts);

Method 2: Draw them as a two triangle strip (remember the shared vertices?) and an independent triangle.

/1 2 meshed triangles and 1 i ndependent traingle
static struct vert *verts[7] = {
vpool +0, vpool +1, vpool +2, vpool +3
vpool +7, vpool +1, vpool +5};

gr Drawer t exArray(GR_TRI ANGLE_STRI P, 4, verts);
gr DrawVer t exArray(GR_TRI ANGLES, 3, verts+4);

Method 3: Draw them using the grDrawTriangle() command.

gr DrawTri angl e(vpool +0, vpool +1, vpool +2);
gr DrawTri angl e(vpool +1, vpool +2, vpool +3);
gr DrawTri angl e(vpool +7, vpool +1, vpool +5);

Method 4: Draw them as a contiguous triangle strip and an independent triangle.

gr Dr awMer t exArr ayCont i guous(GR_TRI ANGLE_STRI P, 4, vpool, sizeof(struct
vert));

gr DrawTri angl e(vpool +7, vpool +1, vpool +5);

42 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

4. Rendering Primitives

Backface Culling

Glide supports backface culling based on the signed area of a polygon. When Glide renders a polygon,
the first step isto divide the polygon into triangles, the hardware rendering primitive. Figure 4.6 shows
apair of triangles whose vertices have been labeled according to the rule given above.

43

Copyright © 1995-1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30

Proprietary and Confidential

Glide 3.0 Programming Guide

Figure 4.6 Polygon orientation and the sign of the area.

The polygons on the |eft are defined relative to an origin in the upper left corner; the ones on the right have
the origin in the lower left corner. Clockwise and counter-clockwise refer to the direction that the vertices are
traversed in alphabetical order.

(0,0 .
v A b
A counter-clockwise orientation / &
positive area
counter-clockwi
orientation
e \ negativearea | p
a clockwise orientation
positive area B clockwise orientation
negative area
B A
C
v (0,0)

The sign of the area of the triangle can be used for backface culling (quickly discarding triangles that
won't be visible on the screen before they are rendered). Because the area must be computed anyway,
thisis a cheap way to cull. However, removing back-facing triangles earlier may be advantageous. For
example, if back face remova is performed before lighting, then the computationally expensive lighting
calculations for invisible triangles can be skipped.

The Glide function gr CullM ode() has one parameter, a mode that can be set to GR_CULL_NONE,
GR_CULL_NEGATI VE, or GR_CULL_P0osI TI VE. When the culling mode is GR_CULL_NONE, the default
value, al polygons are rendered to the screen regardless of their signed area. Otherwise, if the sign of
the area matches the mode, then the triangle is rejected. gr CullM ode() assumes that

GR_CULL_POCSI TI VE corresponds to a counter-clockwise orientation when the origin isin the lower left
corner of the screen, and a clockwise oriented triangle when the origin isin the upper left corner, as
shown in Table4.2.

void gr CullM ode(GrCullMode_t mode)

Note that gr CullM ode() has no effect on points and lines, but does effect the rendering of triangles and
polygons.

44 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

4. Rendering Primitives

Table4.2 Thelocation of the origin affects triangle orientation and the sign of its area.

if the origin location is and the triangle orientation is then the sign of the area is

GR_ ORI G N_LOWNERLEFT clockwise negative

GR_ORI G N_LONERLEFT counter-clockwise positive

GR_ORI G N_UPPERLEFT clockwise positive

GR_ORI G N_UPPERLEFT counter-clockwise negative
Anti-aliasing

If you look closely and critically at lines drawn on the screen, particularly lines that are nearly
horizontal or nearly vertical, they may appear to be jagged. The screen isagrid of pixelsand thelineis
approximated by lighting spans of pixels on that grid. The jaggednessis called aliasing; examples of
aliased lines are shown in Figure 4.7(a). Anti-aliasing techniques reduce the jaggedness, as shown in
Figure 4.7(b), by partially coloring neighboring pixels to smulate partial pixel coverage.

Figure4.7 Aliased and anti-aliased lines.

These lines are drawn at a resolution of 50 pixels/inch in order to exaggerate the jagged edges of the aliased
lines and highlight the widening and blending in the anti-aliased lines. These lines are examples of the
general concepts; if you replicate this drawing on the screen, the results may be different in detail.

L £ et

(a) aliased lines have jagged (b) anti-aliased lines soften the edges
edges by shading surrounding pixels

Figure 4.8 shows an angled line segment one pixel wide, superimposed on a pixel grid. Some pixels are
almost completely covered by the line, while others have only asmall corner involved. Glide' s anti-
aliasing routines compute a coverage value for each pixel and uses that in combination with the source
and destination alpha values to blend the pixel color.

Figure 4.8 Pixel coverage and lines.

Copyright © 1995-1998 3Dfx Interactive, Inc. 45
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

|:| 25-30%
|:| 15-20%
|:|5-10%
|:|O%

(a) Thisangled one-pixel wide line segment (b) The shaded squares are touched by the line segment at
doesn’t cover any pixel completely. the left; the shade of gray filling each sguare represents
the area covered by the line.

Glide draws anti-aliased points, lines, triangles, and polygons by setting up the alphaiterator so that it
represents pixel coverage. You must correctly configure the alpha combine unit (discussed in detail in
Chapter 6) and enable apha blending before using any of the anti-aliased drawing commands. The
code segment in

Previous versions of Glide contained a set of commands to draw anti-aliased primitives.
Only one of these has been retained in Glide 3: grAADrawTriangle(). It operates
independently of the GR_AA_ORDERED mechanism. A description follows.

PORTING
NOTE

Example 4.5 details the proper sequence of Glide commands that must precede the actual anti-aliased
drawing commands. Briefly, you must:

Set the apha combine unit to produce iterated alpha.

Set the alpha blending function. Blending functions are specified for source and destination color
components and for source and destination a pha values, and the choice of function depends on
whether the sceneis rendered front to back or back to front.

Set the alpha value for each vertex. The chosen apha value should represent the transparency of
the object being rendered, with opague objects setting aphato 255. This alphavalue is multiplied
by the pixel coverage to obtain the final apha vaue used for apha blending.

Call grEnable(GR_AA_ ORDERED) to enable anti-aliasing.

Sort the vertices by depth and draw with a gr Draw routine. You cannot draw anti-aliased strips
and fans.

46 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

4. Rendering Primitives

[&
Previous versions of Glide contained a set of commands to draw anti-aliased primitives.
Only one of these has been retained in Glide 3: grAADrawTriangle(). It operates
independently of the GR_AA_ORDERED mechanism. A description follows.
PORTING
NOTE
Copyright © 1995-1998 3Dfx Interactive, Inc. 47

Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Example 4.5 Drawing an anti-aliased triangle.

The alpha combine unit must be configured to produce an iterated alpha value in order to use the Glide anti-
aliasing drawing functions. Consider the following code segment a recipe for success in this chapter; the
alpha combine unit, alpha buffering, and alpha blending are the subject of Chapter 6.

The objects in the picture must be pre-sorted on depth. The alpha blending factors depend on whether the
scene is drawn from front to back or back to front. The first code shows the alpha blending factors if the scene
is drawn from front to back.

/* set al pha conbine unit to produce an iterated al pha */
gr Al phaConbi ne(GR_COMBI NE_SCALE_OTHER, GR_COMVBI NE_FACTOR ONE, GR_LOCAL_NONE,
GR_LOCAL_| NTERATED, FXFALSE);

/* blend col ors based on al pha */
gr Al phaBl endFuncti on(GR_BLEND ALPHA SATURATE, GR BLEND ONE, GR BLEND_
SATURATE, GR_BLEND_ONE) ;

gr Enabl e(GR_AA_ORDERED) ;
/* draw t he scene using the grDraw routines */

Substitute the alpha blending factors shown below if the scene is drawn from back to front.

gr Al phaBl endFuncti on(GR_BLEND_SRC ALPHA, GR_BLEND ONE_M NUS_SRC_ALPHA,
GR_BLEND_ZERO, GR BLEND ZERO);

void grAADrawTriangle (GrVertex *va, GrVertex *vb, GrVertex *\vc,
FxBool aaAB, FxBool aaBC, FxBool aaCA

)

grAADrawTriangle() has three more arguments than its aliased counterpart gr DrawTriangle(). The
arguments, aaAB, aaBC, and aaBC are Boolean vaues that alow the edges of the triangle to be
selectively anti-aliased.

Glide draws atriangle with the specified edges anti-aliased by setting up the aphaiterator so that it
represents pixel coverage. gr AlphaCombine() must select iterated alpha and gr AlphaBlendFunction()
should select GR BLEND SRC_ALPHA, GR_BLEND ONE_M NUS_SCR _ALPHA as the RGB blend functions
and GR_BLEND_ZERO, GR _BLEND_zERO as the apha blend functions if sorting from back to front and
GR BLEND ALPHA SATURATE, GR_BLEND_ONE asthe RGB blend functions and GR_BLEND SATURATE,
GR_BLEND_ONE as the alpha blend functions if sorting from front to back. Opaque anti-aliased
primitives must set alpha=255 in the vertex data. Transparent anti-aliased primitives are drawn by
setting aphato values less than 255; this alpha vaue is multiplied by the pixel coverage to obtain the
final alphavalue for apha blending.

If thereis a steep gradient in a particular color space (i.e., green goes from 255.0 to 0.0 in asmall
number of pixels), then there will be visual anomalies at the edges of the resultant anti-aliased triangle.
The workaround for this ‘feature’ is to reduce the gradient by increasing small color components and
decreasing large ones. This can be demonstrated by changing the values of maxColor and minColor in
t est 25 of the Glide distribution. Note that this ‘feature’ is only present when the color combine mode
includes iterated RGB or apha as one of the parametersin the final color.

48 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

5. Color and Lighting

In This Chapter

You will learn about:

V¥ specifying colors.

configuring the color combine unit that produces shading and lighting effects.
drawing aflat-shaded object.

drawing a smooth-shaded object.

4 4 < 4«

simulating various lighting effects.

Specifying Colors

A color consists of three or four color components: red, green, blue, and optionaly, alpha. The color
component values should be clamped to the range [0..255] where 0 is black and 255 is maximum
intengity.

The color components are packed together into aword to form a color. Glide supports four different
color byte orderings, defined in the enumerated type GrColorFormat_t (See Figure 3.1 for a pictoria
representation). Color byte ordering determines how linear frame buffer writes and color arguments are

interpreted and is established in the call to gr SstWinOpen() when Glide and the graphics hardware are
initialized (see Chapter 3).

The GrColor_t type definition represents a packed color value and is used in routines that set a constant
color: grBuffer Clear () (see Chapter 3), gr ConstantColor Value() (described below), gr FogColorValue()
and gr ChromakeyValue() (both described in Chapter 8).

void gr ConstantColor Value(GrColor_t color)

Glide refersto agloba constant color when performing flat-shaded primitive rendering, set with
gr ConstantColor Value(). The default value is 0x FFFFFFFF.

Vertex colors are specified as individua color components, each stored as an FxFloat value, or as four
bytes packed into a word.

Dithering

The graphics hardware represents color internally as 32-bit quadrupletsin a format specified by the
color format argument passed to gr SstWinOpen() (see Chapter 3). This color is eventually dithered to
16-bit RGB for storage in the frame buffer, then expanded and (optionally) filtered up to 24-bits for
final display. From an application’s perspective, the 32-to-16-bit RGB dithering operation is
transparent.

Copyright © 1995- 1998 3Dfx Interactive, Inc. 49
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Dithering is atechnique for increasing the perceived range of colorsin an image by applying a pattern
to surrounding pixels to modify their color vaues. When viewed from a distance, these colors appear to
blend into an intermediate color that can’t be represented directly. Dithering is similar to the haf-toning
used in black and white publications to produce shades of gray.

void gr Dither M ode(GrDitherMode_t mode)

gr Dither M ode() selects the form of dithering the hardware uses when converting 24-bit RGB values to
the 16-bit RGB color buffer format. Valid values are GR_DI THER DI SABLE, GR_DI THER 2x2, and
GR_DI THER_4x4. GR_DI THER_DI SABLE forces a simple truncation that may result in noticeable

banding. GR_DI THER 2x2 uses a 2x2 ordered dither matrix, and GR_DI THER 4x4 uses a4x4 ordered
dither matrix.

The default dithering mode isGR_DI THER_4x4.

The Color Combine Unit

2 Control of high level rendering functions is managed by three functions, grColor Combineg(),
grAlphaCombine() (see Chapter 6), and grTexCombine() (described in Chapter 9). While the
three routines will be presented individually, settings for one function can potentially affect the

TAKE inputs to the other routines.

NOTE

The color combine unit computes an RGB color for each pixel asit is rendered. User-selected inputs
are added, blended, and/or scaled to produce flat or smooth (Gouraud) shading with optional lighting
effects. The color combine unit computes each RGB color component separately, but all three are
computed using the same formula. The alpha combine unit computes the alpha component and is
discussed in the next chapter.

The color combine unit computes a color component as
c=f*a+b

where c isthe red, green, or blue color component, f is a scale factor, and a and b are sums and
differences of the variousinput choices.

The Glide routine that configures the color combine unit is gr Color Combing(). It specifies the function
that computes the color and selects the inputs.

void gr Color Combine(GrCombineFunction_t func,
GrCombineFactor_t factor,

GrCombineLocal_t local,
GrCombineOther_t other,
FxBool invert

)

Fourteen combining functions are defined in the GrCombineFunction_t enumerated type; one is selected
with func, the first argument to gr Color Combine(). Table 5.1 gives the symbolic names and formulas
for each color combine function.

50 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

5. . Color and Lighting

Thef variable in the combining formulasis defined by factor, the second argument to
gr Color Combine(). The choices for this scale factor are given in Table 5.2. Note that apha values from

the texture combine unit (atequre) OF SPecified by gr AlphaCombine() arguments (& oca @Nd aotner) appEAr
in some of the scale factors.

Copyright © 1995-1998 3Dfx Interactive, Inc. 51
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Table5.1 Configuring the color combine unit.

The first argument to grColorCombine(), func, specifies the color combine function; its value is chosen from
among the symbols list in the left hand column of the table below. The right hand column gives the combining
function that corresponds to each symbolic name. F is a scale factor and is defined by the factor argument to
grColorCombineg(). Cioca @Nd Corner are specified by the third and fourth arguments. Some of the formulas
specify an alpha value, aqcal, that is defined in the grAlphaCombine() function described in the next chapter.

color combine function

computed color

GR_COVBI NE_FUNCTI ON_ZERO 0

GR_COVBI NE_FUNCTT ON_LOCAL Coca

GR_COVBI NE_FUNCTI ON_LOCAL_ALPHA Ao

GR_COVBI NE_FUNCTI ON_SCALE_OTHER F* o
GR_COMBI NE_FUNCTI ON_BLEND OTHER e’
GR_COVBI NE_FUNCTI ON_SCALE_OTHER_ADD_LOCAL % Core + Cous
GR_COVBI NE_FUNCTI ON_SCALE_OTHER_ADD_LOCAL_ALPHA F* Corr + Ao
GR_COVBI NE_FUNCTI ON_SCALE_OTHER_M NUS_LOCAL f* (Comer — Clocal)

GR_COVBI NE_FUNCTT ON_SCALE_OTHER M NUS_LOCAL_ADD_LOCAL
GR_COVBI NE_FUNCTI ON_BLEND

f* (Cother — Ciocat) + Ciocal
0 f* Cother + (1_f) * Clocal

GR_COVBI NE_FUNCTT ON_SCALE_OTHER M NUS_LOCAL_ADD_LOCAL_ALPH
A

f* (Cother — Ciocar) + Aloca

GR_COVBI NE_FUNCTT ON_SCALE_M NUS_LOCAL_ADD LOCAL
GR_COVBI NE_FUNCTI ON_BLEND_LOCAL

f* (— Ciocar) + Cioca
© (1) * Coun

GR_COVBI NE_FUNCTT ON_SCALE_M NUS_LOCAL_ADD LOCAL_ALPHA

f* (= Ciocar) + Qoca

Table 5.2 The color combine function scale factor.

The second argument to grColor Combine(), factor, specifies a scale factor, called f in the formulas delineated
in Table 5.1; its value is chosen from among the symbols listed in the left hand column of the table below. The
right hand column gives the scale factor that corresponds to each symbolic name. Ciocy is Specified by the
third argument to grColorCombine(), aoca and aoiher are defined in the gr AlphaCombine() function
described in the next chapter, and aewure COMes from the texture combine unit, described in Chapter 9.

combine factor scale factor (f)
GR_COMBI NE_FACTOR_NONE unspecified
GR_COVBI NE_FACTOR_ZERO 0
GR_COVBI NE_FACTOR_LOCAL Cocat | 255
GR_COVBI NE_FACTOR_OTHER_ALPHA Aure | 255
GR_COVBI NE_FACTOR_LOCAL_ALPHA A / 255
GR_COVBI NE_FACTOR_TEXTURE_ALPHA Ao/ 255
GR_COVBI NE_FACTOR_ONE 1
GR_COVBI NE_FACTOR_ONE_M NUS_LOCAL 1—Cowm / 255
GR_COVBI NE_FACTOR_ONE_M NUS_OTHER_ALPHA 1—aue / 255
GR_COVBI NE_FACTOR_ONE_M NUS_LOCAL_ALPHA 1— a1 | 255
GR_COVBI NE_FACTOR_ONE_M NUS_TEXTURE_ALPHA 1 — e/ 255
52 Copyright O 1995- 1998 3Dfx Interactive,

Printed 08/05/98 10:30 AM

Proprietary and Confide

5. . Color and Lighting

The third and fourth arguments to gr Color Combine() set values for the Cioea @nd Cotner Variables that
appear in the combining functions; the choices are shown in Table 5.3. Iterated colors are computed by
iterating the colors specified in the vertices passed to drawing functions. The texture color comes from
the texture combine unit (see Chapter 9), and the constant color is set by gr ConstantColor Value()
(described earlier in this chapter).

The func formula computes the red, green, and blue color components. The result of the computation is
clamped to [0..255] and may be bit-wise inverted, based on the final argument to gr Color Combine(),
invert. Inverting the bitsin a color component c is the same as computing (1.0 — ¢) for floating point
valuesin therange [0..1] or (255 — ¢) for 8-bit valuesin the range [0..255].

Table 5.3 Choosing local and other colorsfor the color combine unit.

The third and fourth arguments to gr ColorCombine(), local and other, specify the sources for the ¢,y and
Cother Values that appear in the color combine formulas delineated in Table 5.1; their values are chosen from
among the symbols in the tables below. Iterated colors are computed by iterating the colors specified in the
vertices passed to drawing functions. The texture color comes from the texture combine unit, and the constant
color is set by grConstantColorValue().

local combine source local color (Ciocal)

GR_COVBI NE_LOCAL _NONE unspecified color

GR_COMBI NE_LOCAL _| TERATED iterated vertex color (Gouraud shading)
GR_COVBI NE_LOCAL _CONSTANT constant color

other combine source other color (Cother)

GR_COVBI NE_OTHER_NONE unspecified color

GR_COMBI NE_OTHER_| TERATED iterated vertex color (Gouraud shading)
GR_COMBI NE_OTHER_TEXTURE color from texture map

GR_COVBI NE_OTHER_CONSTANT constant color

The color combine unit computes the source color for the remainder of the rendering pipeine. The
default color combine modeis

gr Color Combine(GR_COVBI NE_FUNCTI ON_SCALE_OTHER,

GR_COVBI NE_FACTOR ONE,

GR_COVBI NE_LOCAL_| TERATED,
GR_COMBI NE_OTHER_| TERATED

FXFALSE); -

A series of examples follows.

Copyright © 1995-1998 3Dfx Interactive, Inc. 53
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Example 5.1 Drawing a constant color triangle.
The code segment below draws a teal colored triangle by setting the constant color and directing the color
combine unit to use it as Cyner- The code assumes that the vertex layout has already been established.

nyVertex a, b, c;

/* set color to teal (assunes ARGB format) */
gr Const ant Col or Val ue((100<<8) + 150);

/* configure color conbine unit for constant color */
gr Col or Conbi ne(GR_COVBI NE_FUNCTI ON_SCALE_OTHER, GR_COVBI NE_FACTOR_ONE,
GR_COVBI NE_LOCAL _ NONE, GR_ COMVBI NE_ OTt HER CONSTANT, FXFALSE)

/* assunes that sone coordinates have been assigned to a, b, and ¢ */
gr DrawTri angl e(&a, &b, &c);

The code segment below will produce the same result as the one above, but it points ¢y t0 the constant color.

nyVertex a, b, c;

/* set color to teal (assunes ARGB format) */
gr Const ant Col or Val ue((100<<8) + 150);

/* configure color conbine unit for constant color */
gr Col or Conbi ne(GR_COVBI NE_FUNCTI ON_LOCAL, GR_COWBI NE_FACTOR_NONE,
GR_COVBI NE_LOCAL _ CONSTANT, GR_ “CovBI NE_ OTt HER_ NONE, FXFALSE)

/* assunes that sone coordinates have been assigned to a, b, and c¢ */
gr DrawTri angl e(&a, &b, &c);

Example 5.2 Drawing a flat-shaded triangle.

The code segment below draws a flat-shaded triangle using the color for vertex A. It sets the constant color to
the vertex color and proceeds as in the previous example. The code assumes that the vertex layout has already
been established.

nyVertex A, B, C

/* set constant color to color of vertex A (assunes ARGB format) */
gr Const ant Col orVal ue((((int)A a)<<24)| | (((int)A r)<<16)||(((int)A g)<<8)|]|(int)
A b);

/* configure color conbine unit for constant color */
gr Col or Conbi ne(GR_COVBI NE_FUNCTI ON_LOCAL, GR_COWBI NE_FACTOR_NONE,
GR_COVBI NE_LOCAL _ CONSTANT, GR_ “CovBI NE_ OTt HER_ NONE, FXFALSE)

/* assunes that sone coordinates have been assigned to a, b, and c¢ */
gr DrawTri angl e(&A, &B, &OC);

Alternatively, you could set the colors of all three vertices to the colorsin Vertex A and proceed as in the next
example.

nyVertex A, B, C

/* set all vertices to sanme color */

1

1

t
a;
r;
g;
b;

e
A
A
A
A

/* configure color conbine unit for iterated colors */
gr Col or Conbi ne(GR_COVBI NE_FUNCTI ON_LOCAL, GR_COWBI NE_FACTOR_NONE,
GR_COVBI NE_LOCAL _ | TERATED, GR_ “CovBI NE_ OTHER NONE, FXFALSE)

/* assunes that sone coordinates have been assigned to a, b, and ¢ */
gr DrawTri angl e(&A, &B, &C);

54

Copyright O 1995- 1998 3Dfx Interactive,

Printed 08/05/98 10:30 AM Proprietary and Confide

5. . Color and Lighting

Example 5.3 Drawing a smooth-shaded triangle.

In this example, a Gouraud-shaded triangle is drawn, with the color blending smoothly from vertex to vertex.
The hardware automatically iterates the colors to achieve the smooth shading. The color combine unit is
configured with ¢y Set to the iterated color components. The code assumes that the vertex layout has already

been established.
nyVertex a, b, c;

/* configure color conbine unit for iterated color */
gr Col or Conbi ne(GR_COVBI NE_FUNCTI ON_LOCAL, GR_COWBI NE_FACTOR_NONE,
GR_COVBI NE_LOCAL _ | TERATED, GR_ “COovBI NE_ OTHER NONE, FXFALSE)

/* assunes that sone coordinates have been assigned to a, b, and c¢ */
gr DrawTri angl e(&a, &b, &c);

Alternatively, cqner Can be directed at the iterated color components.
nyVertex a, b, c;

/* configure color conbine unit for iterated color */
gr Col or Conbi ne(GR_COVBI NE_FUNCTI ON_SCALE_OTHER, GR_COVBI NE_FACTOR_ONE,
GR_COVBI NE_LOCAL _ NONE, GR_ COMVBI NE_ OTHER | TERATED, FXFALSE)

/* assunes that sone coordinates have been assigned to a, b, and c¢ */
gr DrawTri angl e(&a, &b, &c);

Example 5.4 Drawing a flat-shaded textured triangle.
The following code produces a textured flat-shaded triangle using the constant color. The code assumes that

the vertex layout has already been established.
nyVertex a, b, c;

/* set color to teal (assunes ARGB format) */
gr Const ant Col or Val ue((100<<8) + 150);

/* configure color conbine unit for iterated color */
gr Col or Conbi ne(GR_COVBI NE_FUNCTI ON_SCALE_OTHER, GR_COVBI NE_FACTOR_LCOCAL,
GR_COVBI NE_LOCAL _ CONSTANT, GR_ COMBI NE OTHER _ TEXTURE, FXFALSE)

/* assunes that sone coordinates have been assigned to a, b, and ¢ */
gr DrawTri angl e(&a, &b, &c);

Example 5.5 Drawing a smooth-shaded textured triangle.

This example configures the color combine unit for a smoothly shaded textured triangle by directing Cjoca t0
the iterated color and Coher t0 the output from the texture combine unit. The code assumes that the vertex
layout has already been established.

nyVertex a, b, c;
/* configure color conbine unit for iterated color */

gr Col or Conbi ne(GR_COVBI NE_FUNCTI ON_SCALE_OTHER, GR_COWVBI NE_FACTOR_LOCAL,
GR_COVBI NE_LOCAL_| TERATED, GR _COMBI NE_OTHER TEXTURE, FXFALSE);

/* assunes that sone coordinates have been assigned to a, b, and c¢ */
gr DrawTri angl e(&a, &b, &c);

Copyright © 1995-1998 3Dfx Interactive, Inc. 55
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Example 5.6 Drawing a smooth-shaded triangle with specular lighting.
This example produces a textured triangle with specular lighting provided by iterating the RGB color. The
code assumes that the vertex layout has already been established.

nyVertex a, b, c;

/* configure color conbine unit for iterated color */

gr Col or Conbi ne(GR_COVBI NE_FUNCTI ON_SCALE_OTHER_ADD_LOCAL,

GR_COVBI NE_FACTOR_ONE, GR COMVBI NE L(XAL | TERATED, GR_COVBI NE_OTHER_TEXTURE,
FXFALSE) ;

/* assunes that sone coordinates have been assigned to a, b, and c */
gr DrawTri angl e(&a, &b, &c);

Example 5.7 Drawing a smooth-shaded textured triangle with specular highlights.

By using the alpha component to model monochrome specular highlights, you can produce shiny, textured,
smooth-shaded triangles ((texture RGB * iterated RGB) + iterated a). The code assumes that the vertex layout
has already been established.

nyVertex a, b, c;

/* configure color conbine unit for iterated color */

gr Col or Conbi ne(GR_COVBI NE_FUNCTI ON_SCALE_OTHER_ADD_LOCAL_ALPHA,
GR_COVBI NE_FACTOR _ LOCAL, GR_ COMVBI NE_ L(XAL | TERATED,

GR_ COVBI NE_ OTH HER TEXTURE, FXFALSE) ;

/* assunes that sone coordinates have been assigned to a, b, and c¢ */
gr DrawTri angl e(&a, &b, &c);

Example 5.8 Drawing a smooth-shaded triangle with monochrome diffuse and colored specular lighting.
Alternatively, monochrome diffuse lighting and colored specular lighting can be produced by using the alpha
component to model monochrome diffuse lighting and iterated RGB to model colored specular lighting
((texture RGB * iterated a) + iterated RGB). Iterated alpha is chosen to be either @ oy Or agme With a call to
grAlphaCombine() that is not shown here. In the first code segment, iterated alpha is assumed to be available
asaca- The code assumes that the vertex layout has already been established.

nyVertex a, b, c;

/* configure color conbine unit for iterated color */

gr Col or Conbi ne(GR_COVBI NE_FUNCTI ON_SCALE_OTHER_ADD_LOCAL,
GR_COVBI NE_FACTOR _ LOCAL _ALPHA, GR COMVBI NE_ L(XAL | TERATED,
GR COMVBI NE OTHER _ TEXTURE, FXFALSE)

/* assunes that sone coordinates have been assigned to a, b, and c¢ */
gr DrawTri angl e(&a, &b, &c);

Alternatively, iterated alpha can be specified for aqme in grAlphaCombing(). In that case the following
grColorCombine() configuration is needed.

nyVertex a, b, c;

/* configure color conbine unit for iterated color */

gr Col or Conbi ne(GR_COVBI NE_FUNCTI ON_SCALE_OTHER_ADD_LOCAL,
GR_COVBI NE_FACTOR OTHER ALPHA, GR COMVBI NE_ L(XAL | TERATED,
GR COmVBI NE OTHER _ TEXTURE, FXFALSE)

/* assunes that sone coordinates have been assigned to a, b, and ¢ */
gr DrawTri angl e(&a, &b, &c);

56 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

5. . Color and Lighting

Other Color Combine Options

The routine gr AlphaControlsl TRGBL ighting() can be used to specify that if the high order bit of aexure
is 1, then the constant color set by grConstantColor Value() is used instead of the iterated RGB values.
Thisisuseful if aportion of atexture isto appear to be illuminated from behind the surface, instead of
by an external light source.

void gr AlphaControlsl TRGBL ighting(FxBool enable)

When enabled, the normal color combine controls for local color (Ce.a) are overridden, and the most
significant bit of texture alpha (ae«wr) Selects between iterated vertex RGB and the constant color set
by grConstantColorValue(). By default, this apha controlled lighting mode is disabled. Table 5.4 shows
how Cioeq 1S determined.

Table 5.4 Overriding the local color when the high order bit of & eure iS Set.

You can get hybrid effect between smooth and flat shading by using grAlphaControlsl TRGBLighting() to
enable a technique whereby the high order bit of aequre IS USed to switch ¢ between iterated RGB and the
constant color. The state table below shows how the ¢,ocy Value is determined.

when enable is and the high order bit of atequre IS the local color Cioea Will be
FXTRUE 0 iterated RGB

FXTRUE 1 gr ConstantColor Valug()
FXFALSE 0 set by gr Color Combine()
FXFALSE 1 set by gr Color Combine()

Some possible uses for this mode are self-lit texels and specular paint. If atexture contains texels that
represent self-luminous areas, such as windows, then multiplicative lighting can be disabled for these
texels as follows. Choose a texture format that contains one bit of alpha and set the alphafor each texel
to 1if the texd is self-lit. Set the Glide constant color to white and enable alpha-controlled lighting
mode. Finally, set up texture lighting by multiplying the texture color by iterated RGB, where iterated
RGB isthelocal color in the color combine unit. When atexel’s adphais O, the texture color will be
multiplied by the local color, which isiterated RGB. This applies lighting to the texture. When atexel’s
alphais 1, the texture color will be multiplied by the Glide constant color that was previously set to
white, so no lighting is applied.

If the color combine unit is configured to add iterated RGB to atexture for the purpose of a specular
highlight, then texture alpha can be used as specular paint. In this example, the Glide constant color is
set to black and iterated RGB iterates the specular lighting. Where atexel’ s alphais O, the texture color
will be added to iterated RGB and specular lighting is applied to the texture. Where atexel’saphais 1,
the texture color will be added to the Glide constant color that was previously set to black, so no
lighting is applied. The result is that the alpha channel in the texture controls where specular lighting is
applied to the texture and specularity can be painted onto the texture in the alpha channel.

Gamma Correction

By default, Glide does not perform gamma correction (i.e., alinear ramp is used). However, gamma
correction is available. The guGammaCorrectionRGB() function computes a hardware-dependent
gamma correction table.

Copyright © 1995-1998 3Dfx Interactive, Inc. 57
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

void guGammacCorrectionRGB(FxFloat red, FxFloat green, FxFloat blue)

guGammacCorrectionRGB() computes a gamma correction curve for each color component using the
following formula:

Cyarmma = [(Cr/255)V% ™) * 255

The red, green, and blue gamma values are positive floating point numbersin the range [0.0..20.0].
Typica valuesare 1.3t0 2.2. The default valueis 1.0 (i.e. alinear ramp is used).

Whileit is not recommended, an application can cook up its own gamma correction table and download
it to the hardware using grL oadGammarT able&().

void grLoadGammaT able(FxU32 nEntries, const FxU32 *red, const FxU32 *green, const FxU32 *blue)

The first argument, nEntries, is the number of elementsin each of the three arrays of color values. The
other three arguments are pointers to arrays of red, green, and blue values, respectively, that will be
interpolated to generate an output gamma value.

If nEntriesisless than the size of the hardware-dependent gamma table, the first part of the tableis
overwritten by the new values; if nEntriesis greater than the gamma table size, the excess elements are
discarded. The size of the gamma table may be obtained by calling gr Get(GR_GAMVA_TABLE_ENTRI ES).
The entries in the gamma table must be monotonically increasing in each color component or the results
are undefined. It is strongly recommended that guGammaCorrectionRGB() be used instead of
grLoadGammaT able().

[& guGammacCorrectionRGB() is new to Glide 3.0, replacing
grGammaCorrectionValue().grL oadGammaTable() is aso new, and alows an application
to use a customized gamma correction table. However, it is strongly recommended that
guGammacCorrectionRGB() be used instead.

PORTING
NOTE

58 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

6. Using the Alpha Component

In This Chapter

Several different rendering techniques using the alpha component of the color are discussed. You will
learn about:

V¥ specifying adphavalues.
V¥ configuring the alpha combine unit that produces apha values for pixels being rendered.
V¥ using the auxiliary buffer to store alpha values.

V¥ adphablending, atechnique for creating transucent objects in a scene.

V¥ aphatesting, atechnique for accepting or rejecting pixels based on their alpha vaue.

Specifying Alpha

Alphavalues, like the red, green, and blue components of a color, are 8-bit valuesin the range [0..255].
Glide maintains a constant alpha value as part of the constant color described in the previous chapter
that is set with gr ConstantColor Value(). Alphavalues, if used, are part of the user-defined vertex layout
defined with callsto gr VertexL ayout(), as described in Chapters 2 and 4.

The Alpha Combine Unit

2 Control of high level rendering functions is managed by three functions, grColor Combineg(),
grAlphaCombine() (see Chapter 6), and grTexCombine() (described in Chapter 9). While the
three routines are presented individually, settings for one function can potentially affect the

TAKE inputs to the other routines.
NOTE

The apha combine unit is similar to the color combine unit that produces RGB values for the pixel
being rendered. A user-selectable combining function specifies a scale factor, and local and other alpha
values, and aformulafor combining them to produce a new alphavalue. The aoca and aoner iNPULS
selected by the arguments to gr AlphaCombine() can aso be used in the scale factor chosen by

gr Color Combine(), described in the previous chapter.

void gr AlphaCombine(GrCombineFunction_t func,
GrCombineFactor_t factor,
GrCombineLocal_t local,
GrCombineOther _t other,
FxBool invert

Copyright © 1995- 1998 3Dfx Interactive, Inc. 59
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

)

Table 6.1 lists the possible values for func, the first argument to gr AlphaCombine(). The f that appears
inthe formulasin Table 6.1 is ascale factor that is chosen by the second argument, factor. Table 6.2
lists the possible scale factors. ajocq @and aomer are chosen by the third and fourth arguments, local and
other; the candidates are listed in Table 6.3. Aswith gr Color Combine(), the final argument, invert, isa
Boolean that is set if a bit-wise inversion of the computed aphavalue is desired. Inverting the bitsin a
color component c is the same as computing (1.0 — ¢) for floating point color values in the range [0..1]
or (255 —c) for 8-bit color valuesin the range [0..255].

The default a pha combine unit configuration is
gr Al phaConbi ne(GR_COVBI NE_FUNCTI ON_SCALE_OTHER,

GR_COMBI NE_FACTOR_ONE,

GR_COMBI NE_LOCAL_ NONE,

GR_COVBI NE_OTHER_CONSTANT,
FXFALSE

);

Two examples in the previous chapter, Example 5.7 and Example 5.8, use the aoca Or @other ValuE.

Table 6.1 Combining functions for alpha.

The first argument to gr AlphaCombine(), func, specifies the alpha combine function; its value is chosen from
among the symbols list in the left hand column of the table below. The right hand column gives the combining
function that corresponds to each symbolic name. f is a scale factor and is defined by the factor argument to
grAlphaCombine(). aqca @and aqmer are specified by the third and fourth arguments.

combine function computed alpha
GR_COVBI NE_FUNCTI ON_ZERO 0

GR_COVBI NE_FUNCTI ON_LOCAL Alocal

GR_COVBI NE_FUNCTI ON_LOCAL_ALPHA Alocal

GR_COVBI NE_FUNCTI ON_SCALE_OTHER F* Ao
GR_COVBI NE_FUNCTI ON_BLEND_OTHER

GR_COVBI NE_FUNCTT ON_SCALE_OTHER ADD_LOCAL Aore + Ao

GR_COVBI NE_FUNCTT ON_SCALE_OTHER ADD_LOCAL_ALPHA

GR_COVBI NE_FUNCTT ON_SCALE_OTHER M NUS_LOCAL (ot — A1ocm)

f*
f* other T @ocal
f*
f*

GR_COVBI NE_FUNCTT ON_SCALE_OTHER M NUS_LOCAL_ADD_LOCAL

- a —a +a
GR_COVBI NE_FUNCTI ON_BLEND (Bother = Atocar) + Aloca

° f* Aother + (L —F) *

Aocal

GR_COVBI NE_FUNCTT ON_SCALE_OTHER_M NUS_LOCAL_ADD_LOCAL_ALPH [f * (2 e — Broca) + Arocm
A

GR_COVBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD _LOCAL f* (= @oca) + Atoca
GR_COVBI NE_FUNCTI ON_BLEND_LOCAL o (1-f)*a
_ local
GR_COVBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD _LOCAL_ALPHA f* (= Alocat) + Atoca
60 Copyright O 1995- 1998 3Dfx Interactive,

Printed 08/05/98 10:30 AM Proprietary and Confide

6. Using the Alpha Component

Table 6.2 Scalefactorsfor the alpha combine function.

The second argument to gr AlphaCombineg(), factor, specifies a scale factor, called f in the formulas
delineated in Table 6.1; its value is chosen from among the symbols listed in the left hand column of the table
below. The right hand column gives the scale factor that corresponds to each symbolic name. a oy and agther
are defined by the third and fourth arguments to gr AlphaCombine() and a exture COMes from the texture
combine unit, described in Chapter 9.

combine factor scale factor (f)
GR_COVBI NE_FACTOR_NONE unspecified
GR_COMVBI NE_FACTOR_ZERO 0

GR_COVBI NE_FACTOR _LOCAL Alocal | 255
GR_COVBI NE_FACTOR _OTHER_ALPHA Aot | 255
GR_COVBI NE_FACTOR LOCAL_ALPHA Qjoc | 255
GR_COVBI NE_FACTOR _TEXTURE_ALPHA Ao | 255
GR_COVBI NE_FACTOR_ONE 1

GR_COVBI NE_FACTOR_ONE_M NUS_LOCAL 1— e | 255
GR_COVBI NE_FACTOR_ONE_M NUS_OTHER_ALPHA 1—agme / 255
GR_COVBI NE_FACTOR_ONE_M NUS_LOCAL_ALPHA 1—ajoa ! 255
GR_COVBI NE_FACTOR_ONE_M NUS_TEXTURE_ALPHA 1 — Atexure | 255

Table 6.3 Specifying local and other alpha values.

The third and fourth arguments to gr AlphaCombine(), local and other, specify the sources for the a ..y and
ather Values that appear in the alpha combine formulas delineated in Table 6.1 and in the color combine
formulas shown in Table 5.1 and Table 5.2; their values are chosen from among the symbols in the tables
below. Iterated alpha values are computed by iterating the alpha specified in the vertex structures passed to
drawing functions. The texture alpha comes from the texture combine unit, and the constant alpha is set by
grConstantColorValue().

local combine source local alpha (&oca)

GR_COVBI NE_LOCAL_NONE unspecified a

GR_COMBI NE_LOCAL_| TERATED iterated vertex a

GR_COMBI NE_LOCAL_ CONSTANT constant a

GR_COVBI NE_LOCAL_DEPTH high 8 bits from iterated vertex z
other combine source other alpha (ather)

GR_COVBI NE_OTHER_NONE unspecified a

GR_COMBI NE_OTHER | TERATED iterated vertex a

GR_COMBI NE_OTHER_TEXTURE a from texture map

GR_COMBI NE_OTHER _CONSTANT constant a

Alpha Buffering

As pixels are rendered, afull 32-bit RGBA color is maintained internally. At the end of the rendering
pipeling, the 24-bit RGB portion is dithered to 16 bits and stored in the display buffer. The alpha value
component is discarded, unless the auxiliary buffer is being used as an apha buffer.

With apha buffering enabled, the graphics hardware stores an 8-bit alpha value for each pixel in the
auxiliary buffer. To enable apha buffering, set the alpha parameter of gr ColorMask() or blend using a

Copyright © 1995-1998 3Dfx Interactive, Inc. 61
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

function that calls for a destination apha (see the following section for a discussion of alpha blending).
Since the auxiliary buffer can only serve asingle use at atime, depth buffering, apha buffering, and
triple buffering are mutually exclusive. If depth buffering is currently enabled (by calling

gr DepthM ask() with argument FXTRUE), the alpha parameter specified in agrColorMask() call is
ignored.

void gr Color M ask(FxBool rgh, FxBool alpha)

The apha buffer is cleared by calling grBuffer Clear (). If alpha buffering is enabled, then the apha
buffer is cleared using the alpha parameter. The graphics display buffer and apha buffer can be
cleared simultaneoudly.

void gr Buffer Clear (GrColor_t color, GrAlpha_t alpha, FxU32 depth)

In the anti-aliasing discussion in Chapter 4, alphawas used as a pixel coverage value for objects being
rendered. Alpha blending is then used to blur the edge color with the background color and reduce
unsightly “jaggies’.

The fina example in this chapter, Example 6.3, shows another way to use the apha buffer. In this
case, a background scene is drawn with one alpha value, a polygonal cropping window is drawn with a
second alphavalue, and aforeground is mapped into the cropping window by discarding parts of the
new scene that fall outside the cropping window. The example uses the apha combine unit, alpha
buffering, and alpha blending.

Alpha Blending

In Chapter 4, routines to draw anti-aliased points, lines, triangles and polygons were presented. They
use alpha blending to smooth the jagged edges.

[&
Previous versions of Glide contained a set of commands to draw anti-aliased primitives.
Only one of these has been retained in Glide 3: grAADrawTriangle(). It operates
independently of the GR_AA_ORDERED mechanism. A description follows.
PORTING
NOTE

Example 4.5 calls gr AlphaBlendFunction() to configure a pha blending to accomplish anti-aliasing.

Another use for apha blending is to create trand ucent objects in a scene. Without blending, a newly
calculated color value will overwrite any color value already computed for that pixel and stored in the
frame buffer. With blending, the alpha value is used to combine the new color value with the previous
one so that the previous color “ shows through”.

Think of the RGB values of apixel asits color, and the A, or alpha, value as its opacity. Transparent
or tranducent objects have lower opacity values than opague objects. For example, objects seen
through awindow are less defined than those viewed directly, but are still visible (unlike objects behind
asolid wall). The window glass has a color and a small apha vaue that is used to scale the window
color before adding it to the existing color.

62 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

6. Using the Alpha Component

The graphics hardware supports alpha blending of pixels. When alpha blending is enabled, the alpha
value of apixel isused to combine the color vaue of the pixel being processed with that of the pixel
already stored in the frame buffer.

Alphablending alows an application to control the degree to which the two pixels have their colors
blended, i.e., apha blending allows translucent surfaces. The alpha component of a pixel representsits
opacity; transparent or translucent surfaces have lower opacity than opagque ones. An aphavalue of
0x00 corresponds to absolute transparency and an apha value of 0xFF corresponds to absolute

opacity.

When using apha blending for translucency/transparency, a scene must be sorted so that
translucent/transparent surfaces are rendered correctly.

Just as with the color combine and a pha combine functions, the color components can be blended
differently than the alpha component. The blending functions are defined as follows:

Cast ™ (Cgc xfgc) + (Cdst ><fdst)
gt 7 (Qsc XOsc) + (Adst XQust)

where cy¢ iSthe RGB color of the destination pixel, ¢y is the incoming source pixel RGB, and 4. and
fae a@re the source and destination blending factors for the RGB components. Similarly, aqy isthe alpha
value of the destination pixel, aq. is the incoming alpha vaue, and g« and gq are the source and
destination blending factors for the alpha component. Note that the current value of the destination
pixd is used to compute the blended value that will overwrite it. The source of incoming a pha and
color are determined by gr AlphaCombine() and gr Color Combine() respectively. Cqg and a 44 are
clamped to the range [0..255].

The manner in which incoming pixels (source) are combined with the existing pixel (destination) is
defined by two blending factors. These factors are controlled by the Glide function
gr AlphaBlendFunction().

void gr AlphaBlendFunction(GrAlphaBlendFnc_t rgbS cFactor,
GrAlphaBlendFnc_t rgbDestFactor,
GrAlphaBlendFnc_t alphaS cFactor,
GrAlphaBlendFnc_t alphaDestFactor

)

The first two arguments specify blending factors for the RGB components while the third and fourth
arguments give the blending factors for the alpha component. The choices for all source and destination
blending factors are shown in Table 6.4.

Alphablending that requires a destination alphais mutually exclusive of either depth buffering or triple
buffering. Attempting to use GR_BLEND DST_ALPHA, GR_ BLEND ONE_M NUS_DST_ALPHA, or
GR_BLEND_ALPHA_SATURATE when depth buffering or triple buffering are enabled will have undefined
results.

Copyright © 1995-1998 3Dfx Interactive, Inc. 63
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Example 6.1 Blending two images, part I.
In this example, two images are blended so that the final color of each pixel isthe sum of colors from the two

images.

gr Al phaBl endFuncti on(GR_BLEND ONE, GR BLEND ZERO, GR _BLEND_ONE,
GR_BLEND_ZERO) ;
/* draw the first inmage */

gr Al phaBl endFuncti on(GR_BLEND ONE, GR BLEND ONE, GR _BLEND_ONE,
GR_BLEND_ZERO) ;

/* draw t he second i mage */

Example 6.2 Blending two images, part I1.

In this example, two images are blending so that the final color of each pixel is 75% of the first image and
25% of the second. When the second image is drawn, alpha is given a constant value of ¥ by setting the
constant color and pointing the a e in the alpha combine unit to it.

gr Al phaBl endFuncti on(GR_BLEND _ONE, GR BLEND ZERO, GR _BLEND_ ONE,
GR_BLEND_ZERO) ;

/* draw the first inmage */
/* assunes R@&BA format for colors */

gr Const ant Col or Val ue(64) ;

gr Al phaConbi ne(GR_COVBI NE_FUNCTI ON_BLEND OTHER, GR_COMBI NE_FACTOR_ONE,
GR COVBI NE_LOCAL_NONE, GR COMBI NE_OTHER CONSTANT, FXFALSE)

gr Al phaBl endFuncti on(GR_BLEND_SRC ALPHA, GR_BLEND ONE_M NUS_SRC_ALPHA,
GR_BLEND ONE, GR BLEND ZERO);

/* draw t he second i mage */

64 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

6. Using the Alpha Component

Table 6.4 Alpha blending factors.

Four blending factors are specified in the grAlphaBlendFunction(). The rgbSrcFactor and alphaSrcFactor

choices are given in thefirst table. The specified factors are multiplied by the incoming RGBA values from the
color and alpha combine units and added to the product of the destination factors and the alpha values stored
in the alpha buffer. The possible destination factors are shown in the second table.

For alpha source and destination blend function factor parameters, only GR_BLEND ZEROand

GR_BLEND_ONE are supported.

if rgbSrcFactor or alphaSrcFactor is

the source blending factor fg. Or ggc IS

GR_BLEND ZERO

0

GR BLEND ONE 1

GR BLEND DST_COLOR Cosl 255
GR_BLEND_ONE_M NUS_DST_COLOR | 1— uq/255
GR_BLEND_SRC_ALPHA 24255
GR_BLEND_ONE_M NUS_SRC_ALPFA | 1_a_/255
GR BLEND DST_ALPHA a44/255
GR_BLEND_ONE_M NUS_DST_ALPHA [1_a__ /255

GR BLEND_ALPHA_SATURATE

Min(ag/255, 1— a44/255)

if rgbDestFactor or alphaDestFactor is

the destination blending factor fdgt Or Jast is

GR_BLEND ZERO

0

GR BLEND ONE 1
GR_BLEND_SRC_COLOR Cyo/255
GR_BLEND_ONE_M NUS_SRC COLOR | 1— ¢, /255
GR_BLEND_SRC_ALPHA a4/255
GR_BLEND_ONE_M NUS_SRC_ALPHA | 1_4__/255
GR BLEND DST_ALPHA a44/255
GR_BLEND_ONE_M NUS_DST_ALPFA | 1_ g /255

GR BLEND_PREFOG COLOR

Cyc before fog is applied. See the Multi-Pass Fog section in

Chapter 8.

Copyright © 1995-1998 3Dfx Interactive, Inc.

Proprietary and Confidential

65

Printed 08/05/98 10:3C

Glide 3.0 Programming Guide

Example 6.3 A compositing example.

A background scene is drawn with one alpha value, a polygonal cropping window is drawn with a second
alpha value, and a foreground is mapped into the cropping window by discarding parts of the new scene that
fall outside the cropping window. This example uses the alpha combine unit, alpha buffering, and alpha
blending.

/* enabl e the al pha buffer */
gr Col or Mask(FXTRUE, FXTRUE) ;

/* set al pha conbine to generate zero al pha */
gr Al phaConbi ne(GR_COMVBI NE_FUNCTI ON_ZERO, GR_COMBI NE_FACTOR_NONE,
GR_COVBI NE_LOCAL_NONE, GR_COWVBI NE_OTHER NONE, FXFALSE) ;

/* draw background scene */

/* clear out the cropping polygon */

gr Col or Conbi ne(GR_COVBI NE_FUNCTI ON_ZERO, GR_COVBI NE_FACTOR_NONE,
GR_COVBI NE_LOCAL _NONE, GR COMVBI NE OTHER _ NONE, FXFALSE)

gr Al phaConbi ne(GR_COVBI NE_FUNCTI ON_ZERO, GR_COMBI NE_FACTOR_NONE,
GR_COVBI NE_LOCAL _NONE, GR COmVBI NE OTHER _ NONE, FXFALSE)

/* draw croppi ng wi ndow */

/* set alpha blend unit to use destination alpha to select */

/* new pixel or old one */

gr Al phaBl endFunct i on(GR_BLEND DST_ALPHA, GR _BLEND ONE_M NUS_DST_ALPHA,
GR_BLEND_ZERO, GR _BLEND ONE);

/* set color conbine and al pha conbi ne back to defaults */

gr Col or Conbi ne(GR_COVBI NE_FUNCTI ON_SCALE_OTHER, GR_COVBI NE_FACTOR_ONE,
GR_COVBI NE_LOCAL _ | TERATED, GR_ COVBI NE OTHER _ | TERATED, FXFALSE)

gr Al phaConbl ne(GR COMVBI NE_FUNCTI O\l SCALE OTHER, GR_COVBI NE_FACTOR_ONE,
GR_COVBI NE_LOCAL _NONE, GR COMVBI NE or HER CONSTANT, FXFALSE)

/*draw t he foreground scene */

66 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

/. Depth Buffering

In This Chapter

One potential use of the auxiliary buffer is as a 16-bit depth buffer. Each pixel may have an associated
zor g vaue and either one may be used to represent the distance between the pixel and the viewer. A
user-selectable depth test determines when an incoming pixel replaces one previously stored in the
frame buffer. One common use for a depth buffer is pixel-accurate hidden surface removal, allowing
nearer surfaces to obscure surfaces further away regardless of the order they are drawn in.

You will learn how to:

V¥ enable depth buffering.

specify a depth test.

implement a fixed point z buffer.

4 4 <

implement afloating point w buffer.. (It' srealy a*“q buffer” in Glide 3.0 but history demands that
we gtick with the old name.)

V¥ use adepth bias to reduce poke-through artifacts introduced by coplanar polygons.

The type of depth buffering in use is controlled using gr DepthBuffer M ode(). The comparison function
is selected with the function gr DepthBuffer Function(). Writes to the depth buffer are controlled by

gr DepthMask(). Since the auxiliary buffer can serve only asingle use, depth buffering, apha buffering,
and triple buffering are mutually exclusive.

Enabling Depth Buffering
The Glide function gr DepthBuffer M ode() enables and disables depth buffering.

void gr DepthBuffer M ode(GrDepthBufferMode_t mode)

The mode argument specifies the type of depth buffering to be performed. Valid modes are
GR_DEPTHBUFFER_DI SABLE, GR_DEPTHBUFFER_ZBUFFER, GR_DEPTHBUFFER VBUFFER,
GR_DEPTHBUFFER_ZBUFFER_COVPARE_TO Bl AS, OF GR_DEPTHBUFFER_WBUFFER_COVPARE_TO Bl AS.
If GR_DEPTHBUFFER ZBUFFER Of GR_DEPTHBUFFER_ZBUFFER COVPARE_TO BI AS is selected, the depth
buffer is a 16-hit fixed point z buffer. A 16-bit floating point w buffer isused if mode is
GR_DEPTHBUFFER_WBUFFER Or GR_DEPTHBUFFER_WBUFFER_COMPARE_TO BI AS. By default, the depth
buffer mode is GR_DEPTHBUFFER_DI SABLE.

Since apha, depth, and triple buffering are mutually exclusive of each other, enabling depth buffering
when using either the alpha or triple buffer will have undefined resuilts.

If GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO Bl AS Of GR_DEPTHBUFFER_WBUFFER_COVPARE_TO BI AS
is selected, then the bias specified with grDepthBiasL evel() isused as apixel’s depth value for
comparison purposes only. Depth buffer values are compared against the depth bias level, and if the

Copyright © 1995- 1998 3Dfx Interactive, Inc. 67
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

compare passes and the depth buffer mask is enabled, the pixel’ s unbiased depth value is written to the
depth buffer. This mode is useful for clearing beneath cockpits and other types of overlays without
affecting either the color or depth values for the cockpit or overlay.

Consider the following example: the depth buffer is cleared to oxFFFF and a cockpit is drawn with a
depth value of zero. Next, the scene beneath the cockpit is drawn with depth buffer compare function of
GR_CMP_LESS, rendering pixels only where the cockpit is not drawn. To render the next frame, you
need to clear the last scene. If you use grBuffer Clear (), you will remove everything, including the
cockpit. To clear the color and depth buffers underneath the cockpit without disturbing the cockpit, the
areato be cleared is rendered using triangles with the depth bias level set to zero, a depth buffer
compare function of GR_CVP_NOTEQUAL, and a depth buffer mode of
GR_DEPTHBUFFER_ZBUFFER_COVPARE_TO Bl AS Of GR_DEPTHBUFFER WBUFFER_COVPARE_TO BI AS.
All pixels with non-zero depth buffer values will be rendered and the depth buffer will be set to either
unbiased z or g, depending on the mode. Using this method, the color and depth buffers can be cleared
to any desired value beneath a cockpit or overlay without affecting the cockpit or overlay. Sorted
background polygons that cover the visible area can be rendered in this manner, eliminating the need to
clear the whole buffer and then redraw the overlay for each frame. Once the depth buffer is cleared
beneath the cockpit, the depth buffer mode is returned to either GR_DEPTHBUFFER _ZBUFFER Of
GR_DEPTHBUFFER_WBUFFER by calling gr DepthBuffer M ode() and the depth comparison function is
returned to its normal setting (GR_CMP_LESS in this example) by calling gr DepthBuffer Function().

Note that since this mode of clearing is performed using triangle rendering, the fill rate is about one
half that of arectangular clear using gr Buffer Clear (). In the case where sorted background polygons
are used to clear beneath the cockpit, this method should always be faster than the alternative of caling
grBuffer Clear () and then drawing the background polygons. In the case where background polygons
are not used, the two methods:

clearing the buffers with gr Buffer Clear () and then repainting the cockpit, or
clearing beneath the cockpit with triangles and not repainting the cockpit

should be compared and the faster method chosen. Avoiding a cockpit repaint is important: cockpits are
typically rendered with linear frame buffer writes and while the writes are individually fast, the process
can be lengthy if the cockpit covers many pixels.

GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO Bl AS and GR_DEPTHBUFFER _WBUFFER_COMPARE_TO Bl AS
modes are not available in revision 1 of the Pixelfx chip (use gr Get() to obtain the revision number).

When depth buffering is enabled, the gr DepthM ask() routine enables writes to the depth buffer.
void gr DepthM ask (FxBool enable)

If enable is FXFALSE, depth buffer writing is disabled. Otherwise, it is enabled. Initially, writing to the
depth buffer is disabled. Since the apha, depth, and triple buffers share the same memory,
grDepthMask() should be called only if depth buffering is being used.

The depth buffer can be cleared to a specific value with grBuffer Clear (), as described in Chapter 3.
The depth buffer is typically cleared to avaue that is further away from the viewpoint than any object
in the scene.

The Depth Test

gr DepthBuffer Function() specifies the function used to compare each rendered pixel’s depth value with
the depth value present in the depth buffer. The comparison is performed only if depth testing is

68 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

7. Depth Buffering

enabled with gr DepthBuffer M ode(). The choice of depth buffer function is typically dependent upon the
depth buffer mode currently active. The default comparison function is GR_CMVP_LESS.

The single argument, func, specifies the depth comparison function. Table 7.1 lists the valid
comparison functions and the conditions under which a pixel will “pass’ the test and overwrite the
pixd in the frame buffer and depth buffer.

Table 7.1 The depth test.

The func argument to grDepthBuffer Function() can take on any of the values listed in the first column of the
table below. The second column specifies the depth test, and the third column describes the conditions under
which an incoming pixel will “ pass’ the test and overwrite the appropriate location in the frame buffer and
depth buffer.

if funcis the depth comparison is | and the pixel

GR_CMP_NEVER FALSE never passes

GR_CWP_LESS depthpey < depthog passes if the pixel’s depth value is less than the stored
depth value

GR_CVP_EQUAL depthpe, = depthyg passes if the pixel’s depth value is equal to the stored
depth value

GR_CMP_LEQUAL depthay £ depthyg passes if the pixel’s depth value is less than or equal to the
stored depth value

CR_CWP_GREATER | depth,, > depthyq passes if the pixel’s depth value is greater than the stored
depth value

CR_CWP_NOTEQUAL | depthpe, ! depthyq passes if the pixel’s depth value is not equal to the stored
depth value

GR_CMP_GEQUAL depthe, 3 depthyg passes if the pixel’s depth value is greater than or equal to
the stored depth value

GR_CVP_ALVAYS TRUE always passes

Fixed Point z Buffering

When 16-bit linear z buffering is enabled, z values for each pixel are linearly interpolated across a
polygon’s face. Since observer space z values are not linear in screen space, the graphics hardware
must instead interpolate 1/z values, which are linear in screen space. When linear z buffering is
enabled, the graphics hardware interpolates a high precision fixed point 1/z value (provided by the
application), but it stores only the 16-bit integer portion of the 1/z value. This can lead to some
precision problems, and thus an application’s objects and database must be constructed and scaled
carefully to minimize z aliasing. Linear z buffering is enabled by calling gr DepthBuffer M ode() with the
constant GR_DEPTHBUFFER_ZBUFFER.

Copyright © 1995-1998 3Dfx Interactive, Inc. 69
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Example 7.1 Configuring a z buffer.
The following code sequence configures Glide for z buffering:

gr Dept hBuf f er Mode(GR_DEPTHBUFFER ZBUFFER) ;

gr Dept hBuf f er Functi on(GR_CMPFNC _GREATER); // 1/Z decreases as Z
i ncreases!

gr Dept hMask(FXTRUE);

grBufferC ear(0, 0, 0);

Floating Point w Buffering

The graphics hardware can also derive a depth value from the g/w factor computed for texture mapping
and fog. Such an approach has many advantages over linear z buffering, including much greater
dynamic range and less aliasing and accuracy artifacts. The graphics hardware uses a proprietary 16-
bit floating point format for w buffering, however, an application typically does not need to manipulate
this data directly, except when an application must read data directly from the depth buffer and then
convert this depth value to an application dependent format. Floating point w buffering is enabled by
calling gr DepthBuffer M ode() with the constant GR_DEPTHBUFFER_WBUFFER.

Example 7.2 Configuring a w buffer.
The following code sequence configures Glide for w buffering. The depth buffer isinitially cleared to a value
representing the farthest point, so that all objects in the scene are closer to the viewer than empty spaceis.

FxU8 wLi m ts[2];

gr Get (GR_WDEPTH_M N_MAX, 2, *wLi mi t s) ;

gr Dept hBuf f er Mode(GR_DEPTHBUFFER WBUFFER) ;

gr Dept hBuf f er Functi on(GR_ CMP_LESS); // larger Wvalues are farther
away

gr Dept hMask(FXTRUE);

grBufferClear(0, 0, whLimts[1]);

70 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

7. Depth Buffering

Establishing a Depth Bias

When depth buffering coplanar polygons (e.g. when one polygon is used as a “detail” polygon on
another), precision problems with coplanar polygons may result in “poke through” artifactsif the
vertices of the two polygons are not the same. To eliminate the artifacts, an application should apply a
“depth bias” when it renders two coplanar polygons, so that Glide understands which polygon is on top
of the other. gr DepthBiasL evel() alows an application to specify a depth bias.

void gr DepthBiasL evel(FxU32 level)

Specificaly, if two polygons are coplanar but do not share vertices (e.g., a surface detail polygon sits
on top of alarger polygon), the depth bias level should be incremented or decremented as appropriate
for the depth buffer mode and function, per coplanar polygon. For left-handed coordinate systems,
where 0x0000 corresponds to “nearest to viewer” and OxFFFF corresponds “farthest from viewer”,
depth bias levels should be decremented on successive renderings of coplanar polygons. When the
coplanar polygons have been rendered, the depth bias mode should be reset to O.

Example 7.3 Using a depth bias.
In this code segment, an underlying triangle is rendered, a depth biasis established, and then another triangle
isrendered on top of the first one.

/* Render the underlying polygon */
grDrawTri angl e(/* base polygon’'s paraneters */);

/* Render the conposite polygon by first enabling depth bias */
gr Dept hBi asLevel (-1);
grDrawTriangl e(/* conposite polygon's paraneters */);

/* Disable depth bias */
gr Dept hBi asLevel (0);

An Example: Hidden Surface Removal

When a scene is rendered, some of the objects will undoubtedly obscure other objects. If the viewpoint
never changes, you can sort the polygons on z, and draw the scene from back to front.

But what if the viewpoint can change from one frame to the next? Say it’s tracking a cursor controlled
by a mouse. The computation cost of re-sorting the scene for each frame can be prohibitive, depending
on the complexity of the scene. But a z buffer will solve the problem.

You will still need to transform world coordinates to screen coordinates for each object in the scene, but
the transformed vertices can be drawn in any order, without regard to their distance from the viewpoint.

The code segment in Example 7.4 shows the depth buffer in action.

Copyright © 1995-1998 3Dfx Interactive, Inc. 71
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Example 7.4 Hidden surface removal using a z buffer.

The code segment below |eaves out the details of converting a mouse position or movement into a viewpoint
and transforming the world coordinates to new screen coordinates.

/* set up a z buffer and depth test */
gr Dept hBuf f er Mode(GR_DEPTHBUFFER ZBUFFER) ;
gr Dept hBuf f er Functi on(GR_CMPFNC_GREATER); // 1/Z decreases as Z increases!
gr Dept hMask(FXTRUE) ;
while (1) {
/* clear the buffers for each franme */
grBufferC ear(0, 0, 0);

/* get the new viewpoint and transformthe coordinates */
set _vi ewpoi nt _from nouse();
transform coordi nates();

/*draw the objects in the scene */
draw_obj ects();

/* display the frane */
gr Buf f er Swap(1);

72 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

8. Special Effects

In This Chapter

Glide supports several different types of special effects, including fog, chroma-keying, and alpha
testing. Fog simulates atmospheric conditions like fog, mist, smog, or smoke that partialy obscure
distant objects. Chroma-keying can be used to create a blue screen effect, removing al pixelsthat are a
specific color. Alpha masking uses the low order bit of the incoming apha value to invalidate pixels.

You will learn how to:

V¥ produce fog using the alphaiterator.

V¥ create afog table and use it to create atmospheric effects.

V¥ configure the fog and a pha blending units for multi-pass fogging.
V¥ use chroma-keying to smulate a blue screen.
v

use aphatesting to smulate a blue screen.

Fog

Fog is arendering technique that adds realism to computer-generated scenes by making distant objects
appear to fade away. Fog is a general term representing al atmospheric effects: haze, mist, smoke,
smog. It isessential in visual simulations like flight smulators to produce the effect of limited visibility.
When fogging is enabled, distant objects fade into the fog color. Both the fog color and the fog density
(the rate at which objects fade as a function of their distance from the viewer) are programmable.

Glide and the graphics hardware support per-pixel fog blending operations. The fog unit is separate
from the alpha blending unit, so both fog and transparency may be applied simultaneoudly. Fog is
applied after texturing and lighting, and it may improve performance in large smulations. some objects
may be lost in the fog and can be culled before rendering.

Fog is applied after color combining and before a pha blending, as shown in the pixel pipdine flow
diagramin Figure 1.2.

The fog operation blends the fog color (cg) With each rasterized pixel’s post-texturing color (Cin) using
ablending factor f. Factor f isretrieved from a user downloaded fog table indexed with the pixd’s q for
fog component, depending on gr FogM ode(). The fog operation blends a global (crg) With each
rasterized pixel’s color (c,) using a blending factor f. A value of =0 indicates minimum fog density
and a value of f=255 indicates maximum fog density.

The general fog equation is shown below.
Cout = T Crog + (1- f)Cin
The fog mode, set with gr FogM ode(), shapes the fog equation to the situation, as shown in Table 8.1.

void gr FogM ode(GrFogMode_t mode)

Copyright © 1995- 1998 3Dfx Interactive, Inc. 73
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

The mode argument can be one of five values: GR_FOG DI SABLE, GR_FOG W TH_TABLE_ON_Q,
GR_FOG_ADD2, GR_FOG MULT2, or, if supported, GR_FOG W TH_TABLE_ON_FOGCOORD_EXT. The
GR_FOG_ADD2 and GR_FOG MJULT2 modes facilitate multi-pass fogging applications and are used in
conjunction with GR_FOG W TH_TABLE_ON_QOr GR_FOG W TH_TABLE_ON_FOGCOORD EXT.

Table 8.1 Thefog mode shapes the fog equation.

The general form of the fog equation is Coy = f Crog + (1- f)Cin. The mode argument to grFogMode() tailors the
general equation for a specific situation, as shown below. The first three modes are mutually exclusive: choose
one. Modes GR_FOG_ADD2 and GR_FOG_MULT2 are used in tandem with either GR_FOG W TH_TABLE_ON_Q
or GR_FOG W TH_TABLE_ON_FOGCOORD_EXT.

where ¢, isthe color entering the
if mode sets the fog equation is fog unit, coy IS the result of fogging,
Cioq 1S the fog color and

GR_FOG DI SABLE

Cout = Cin
GR_FOG_W TH_TABLE_ON_Q Cout = Frogq) * Crog + frogwy IS COMputed by inter polating
(1- frogq) - Cin between entriesin a fog table
indexed with g.
GR_FCG_WTH_TABLE_ON_FOGCOORD_EXT | = — frogiv-fog] * Crog + frogiv-fog 1S COMputed by interpolating

(1- frogv-tog) * Gin between entriesin a fog table
indexed with v.fog, the
GR_PARAM FOG EXT parameter to
grVertexLayout(). Thismodeisvalid
only when the FOGCOORD
extension is supported. See
grGetString() in Chapter 13.

Cout = T Ciog f is computed from a fog table.

Cout = (1-f)Cin f is computed from a fog table.

GR_FOG MULT2
GR_FOG_ADD2

The fogging factor f is determined by mode. If modeis GR_FOG W TH_TABLE_ON_Q, then f is computed
by interpolating between fog table entries, where the fog table isindexed with a floating point
representation of the pixel’s g component. If modeisGR_FOG W TH_TABLE_ON_FOGCOORD_EXT, then
the fog table isindexed with a special vertex parameter, GR_PARAM FOG_EXT. Fog is applied after color
combining and before alpha blending.

The global fog color (Crog) IS set by calling gr FogColor Value(). The argument, value, is an RGBA color
and is specified in the format defined in the cFormat parameter to gr SstWinOpen() (see Chapter 3).

void gr FogColor Value(GrColor_t value)

Fogging With A Fog Table

The application may supply afog table to the hardware via the function gr FogT able(). To enable table-
based fogging, the fog mode must be set to GR_FOG W TH_TABLE_ON_Q. The number of entriesin the
fog table depends on the hardware and can be retrieved with gr Get(GR_FOG_TABLE_ENTRI ES,..). The
entries are density values of type GrFog_t, an unsigned 8-bit quantity. A value of O indicates minimum

74 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

8. Special Effects

dengity, and 255 indicates maximum density. This density determines the amount of blending that
occurs between the incoming pixel and the global fog color, set by gr FogColor Value(). The order of the
entries within the table corresponds roughly to their distance from the viewer. Entries within the table
are calculated as a function of world g whereworld q @2 , wherei istheindex into the fog table. To
minimize “fog banding”, the graphics hardware linearly blends between adjacent fog levels within the
fog table. The difference between consecutive fog values must be less than 64.

void gr FogT able(const GrFog_t table]])

gr FogTable() downloads a new table of 8-bit values that are logically viewed as fog opacity values
corresponding to various depths. The table entries control the amount of blending between the fog color
and the pixel’s color. A value of 0x00 indicates no fog blending and a value of oxFF indicates complete

fog.

The fog operation blends the fog color (cig) With each rasterized pixel’s color (cin) using ablending
factor f. When gr FogM ode() is set to GR_FOG W TH_TABLE_ON_Q, then the factor f is computed by
interpolating between fog table entries, where the fog table isindexed with a floating point
representation of the pixel’s g component.

Cout = Frogig) = Crog * (1 Fragep) * Cin

The order of the entries within the fog table corresponds roughly to their distance from the viewer. The
exact fog coordinate or g value corresponding to fog table entry i can be found by calling
guFogT ablel ndexTow/() with argument i.

guFogT ablel ndexToW(int i)

guFogT ablelndexTow/() returns the floating point fog coordinate value associated with entry i in afog
table. Because fog table entries are non-linear, it is not straight forward to initialize afog table.
guFogT ablelndexTow/() assists by converting fog table indices to eye-space w, and returns the
following:

pow 2.0, 3.0+(doubl e) (i>>2)) / (8-(i&3))

An exponential fog table can be generated by computing (1-e™")- 255 where k is the fog density and w
isworld distance. It is usually best to normalize the fog table so that the last entry is 255.

Copyright © 1995-1998 3Dfx Interactive, Inc. 75
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Example 8.1 Creating a fog table.
The code fragment below creates storage for a fog table. Then, two different techniques for filling in the

entries are explored.

i nt nFog;
G Fog_t *fog;

gr Get (GR_FOG TABLE_ENTRI ES, 4, &nFog);
fog = (G Fog_t) malloc(nFog * sizeof (GFog_t));

The first code segment shows a linear fog table that has a steep ramp at the beginning and end, with slow
growing valuesin the middle.

int i;

fog [0] = O;

for (i=1; i<12; i++) fog[i]= fog[i-1]+ 12;

for (i=12; i<56; i++) fog[i]= fog[i-1] + 1,

for (i=56; i< nFog-1; i++) fog[i]= fog[i-1] + 7;

f og[nFog- 1] = 255;
The second table is an exponential fog table. It computes q from i using guFogTablel ndexTow() and then
computes the fog table entries as fog[i] = (1-e*")- 255 where k is a user-defined constant, FOG_DENSI TY.
#define FOG DENSITY .5
int i;

for (i=0; i<nFog; i++) {
fog[i] = (1 - exp((- FOG_DENSITY) * guFogTabl el ndexToWi))) * 255;

f og[nFog- 1] = 255;

Example 8.2 Fogging with g and a fog table.
The code segment bel ow assumes that a fog table has been defined. It is loaded using grFogTable&(), a fog
color is defined, and the appropriate fog mode set. All that remainsisto draw the scene.

G Fog_t fog[];
int i;

/* load the fog table */
gr FogTabl e(f og) ;

/* set a fog color - how about snoke? */
gr FogCol or Val ue(0);

/* set node to fog table */
gr Fogvbde(GR_FOG W TH_TABLE_ON Q) ;

/* draw the scene */

[&
In previous versions of Glide, afog table has a constant number of entries, namely
GR_FOG_TABLE_SIZE. The number of entries has become a run-time constant in
Glide 3.0 and isretrieved by calling grGet(GR_FOG_TABLE_ENTRI ES,..). Check your
code for hardcoded numberslike “64” in loops and so forth.
PORTING
NOTE
76 Copyright O 1995- 1998 3Dfx Interactive,

Printed 08/05/98 10:30 AM Proprietary and Confide

8. Special Effects

Generating a Fog Table Automatically
The Glide Utilities Library includes three routines that generate fog tables with different
characteristics.

void guFogGenerateExp(GrFog_t fogTable[], float density)

guFogGener ateExp() generates an exponential fog table according to the equation:

e—dens' ty-w

where w is the eye-space g coordinate associated with the fog table entry. The resulting fog tableis
copied into fogTable. The fog table is normalized (scaled) such that the last entry is maximum fog
(255).

void guFogGenerateExp2(GrFog_t fogTable]], float density)

guFogGener ateExp2() generates an exponentially squared fog table according to the equation:
e—(dens'ty- w) (density- w)

where w is the eye-space g coordinate associated with the fog table entry. The resulting fog tableis
copied into fogTable. The fog table is normalized (scaled) such that the last entry is maximum fog
(255).

void guFogGener atel inear (GrFog_t fogTable[], float near, float far)

guFogGeneratel inear () generates alinear (in eye-space) fog table according to the equation
(w— near)/(far —near)

where w is the eye-space w coordinate associated with the fog table entry. The resulting fog tableis
copied into fogTable. The fog table is clamped so that all values are between minimum fog (0) and

maximum fog (255). Note that guFogGeneratel inear () fog is linear in eye-space wq, not in screen-
space.

Multi-Pass Fog

Specia actions must be taken when applying fog to pixels generated with multi-pass techniques. Recall
from Figure 1.2 that the fog unit is sandwiched between the color combine unit and the apha blending
unit in the pixel pipeline. This ordering facilitates anti-aliasing but may result in repeated fogging of
intermediate values in multi-pass alpha blending applications. Special modes for the fog unit and a
specia apha blending function have been provided to identify and handle this situation.

The GR_FOG_ADD2 and GR_FOG_MULT2 modes, passed as arguments to gr FogM ode(), suppress the first
and second terms, respectively, of the fog equation. In GR_FOG_ADD2 mode, the first term of the fog
equation is suppressed, resulting in a fog equation shown below:

Cout = (1-f)Cin

and no fog is applied. In GR_FOG_MULT2 mode, the second term is suppressed, making the fog equation
effectively:

Cout = T Crog
leaving only the scaled fog color.

Copyright © 1995-1998 3Dfx Interactive, Inc. 77
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

In the gr AlphaBlendFunction() routine, presented in Chapter 6, the GR_BLEND_PREFOG_COLOR factor
selects the pre-fogged value of the pixel as the destination RGBA blending factor.

The following sections present recipes for correctly applying fog to common multi-pass rendering
applications. The generalized fog and blending equations are tailored to the specific situations and are
the starting point for the derivations presented in the text. In case you’ ve forgotten, the genera fog
equation is
Fog(Cin) = fCiog + (1- f)Cin
where ¢, isthe pre-fogged color, and the blending equation is
Cast = fgc + FOQ(Cin) + fast + Cast

where cy¢ IS the value stored in the frame buffer and 4. and fyy are the source and destination blending
factors.

Table 8.2 summarizes the required fog mode and blending factor settings for the multi-pass fog
scenarios presented here. Detailed discussion follows.

Table 8.2 Configuring the fog and alpha blending units for multi-pass fog generation.

The table below describes the proper settings for the fog mode and source and destination alpha blending
factors for three different multi-pass fogging applications. If the fog mode is specified as mode, either
GR_FOG W TH_TABLE_ON_Qor GR_FOG W TH_TABLE_ON_FOGCOORD_EXT, if supported, may be used.

grFogM ode() and simple two pass blending additive blending modulated blending
pass | grAlphaBlendFunction() |a- Fog(c,) + (1- a)- Fog(c,) Fog(Sc) Fog(P c)
parameters
1 | mode mode mode (mode| GR_FOG ADD2)
rgbSr cFactor GR_BLEND_ONE GR_BLEND_ONE GR_BLEND_ONE
rgbDstFactor GR_BLEND_ZERO GR_BLEND_ZERO GR_BLEND_ZERO
2 | mode (mode| GR FOG ADD2) | GR.FOG DI SABLE
thru | rgbS cFactor na GR_BLEND_ONE GR _BLEND DST_COLOR
n- 1 [rgbDstFactor GR_BLEND_ONE GR_BLEND_ZERO
n | mode mode (mode| GR FOG ADD2) | (mode| GR FOG MULT2)
rgbSr cFactor GR _BLEND_SRC_ALPHA GR_BLEND_ONE GR_BLEND_ONE
rgbDstFactor GR_BLEND_ONE_M NUS_SRC_ALPHA [GR_BLEND _ONE GR_BLEND_PREFOG_COLOR
Simple Blends

Simple two-pass blending using a and 1- a can be used to produce translucent fog and requires no
special actions. The goa here isto produce

Cas = @- Fog(cy) + (1- a)- Fog(cy)

where ¢ is the color entering the fog unit from the color combine unit on passi, Fog(c) is the color
output by the fog unit on passi, and cyy isthe color that is stored in the frame buffer. The first pass
will generate and store Fog(c;). The second pass will generate Fog(c,) and blend it with the result of
thefirst pass.

78 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

8. Special Effects

For the first pass, set the fog mode to GR_FOG W TH_TABLE_ON_Q and the source and destination
factors for alphablending to GR_BLEND ONE and GR_BLEND_ZERO, respectively, as shown in Table 8.2
and demonstrated in Example 8.3. After pass one is complete,

Caz = 1-Fog(cy) + O- Cug
= Fog(cy)

For the second pass, specify the source and destination factors for apha blending as
GR_BLEND _SRC ALPHA and GR_BLEND_ONE_M NUS_SRC_ALPHA, respectively. Thus,

Cas = a-Cin + (1- @) Cux
=a-Fog(c,) + (1- a)- Fog(cy)

Note that there is nothing specia about using GR_BLEND_SRC_ALPHA and
GR_BLEND ONE_M NUS_SRC_ALPHA as the blending factors. Any of the blending factorslisted in Table
6.4 can be used.

Example 8.3 Simple two-pass blending.
The code segment below assumes that a fog table has been defined. It loads the table, then sets a fog color.
For thefirst pass, the fog mode is set to use the fog table and the alpha blending function to write fogged
colorsinto the frame buffer. For the second pass, the fog mode and color remain the same, but the blending
factors change blending the newly-generated fogged colors with the previous ones.

const G Fog t fog[];

int i;

/* load the fog table */
gr FogTabl e(f og) ;

/* set a fog color - how about snoke? */
gr FogCol or Val ue(0);

/* set node to fog table */

gr Fogvbde(GR_FOG W TH_TABLE_ON Q) ;

gr Al phaBl endFuncti on(GR_BLEND ONE, GR BLEND ZERO, GR _BLEND_ ONE,
GR_BLEND_ZERO) ;

/* draw the first pass */

/* reconfigure al pha blending for the second pass */
gr Al phaBl endFuncti on(GR_BLEND_SRC ALPHA, GR_BLEND ONE_M NUS_SRC_ALPHA,
GR_BLEND ONE, GR BLEND ZERO);

/* draw t he second pass */

Additive Multi-Pass Fog

The additive case assumes that the results of each pass are being added together, and we wish to fog the
final result:

Cos = FOg(Sci) where ¢ is the color entering the fog unit in passi

Copyright © 1995-1998 3Dfx Interactive, Inc. 79
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Here is the procedure for the two-pass case. This can be generalized to multiple passes by induction.
We wish to obtain:

Cast = FOQ(C1 + Cp) = fCiog + (1-f)(Cy + C2)

For the first pass, choose either GR_FOG W TH_TABLE_ON_Qor

GR_FOG W TH_TABLE_ON_FOGCOORD_EXT (if supported) as the fog mode and set the source and
destination alpha blending factorsto GR_BLEND ONE and GR_BLEND_ZERO, respectively. After the first
pass,

Caz = 1-Fog(cy) + O- Cag
= Fog(cy)

For the second pass, add GR_FOG_ADD? to the fog mode, causing the blended fog term to be suppressed
(if you forget to do this, the cioq term will occur twice). Set the source and destination alpha blending
factorsto GR_BLEND_ONE and GR_BLEND_ONE, respectively. Thus,

Fog(cy) = (1-f)c,
Cas = 1:Cin+ 1 Cay
= (1- f)co + (forg + (1-F)ca)
= fCiog + (1-f)(C1 + C2)

Example 8.4 Two-pass additive fogging.
The code segment bel ow assumes that a fog table has been defined.

const G Fog_ t fog[];
int i;

/* load the fog table */
gr FogTabl e(f og) ;

/* set a fog color - how about snoke? */
gr FogCol or Val ue(0);

/* set node to fog table */

gr Fogvbde(GR_FOG W TH_TABLE_ON Q) ;

gr Al phaBl endFuncti on(GR_BLEND ONE, GR BLEND ZERO, GR _BLEND_ ONE,
GR_BLEND_ZERO) ;

/* draw the first pass */

/* set node to fog table */

gr Fogvbde(GR_FOG W TH_TABLE_ON_Q | GR_FOG_ADD2);

gr Al phaBl endFuncti on(GR_BLEND ONE, GR BLEND ONE, GR _BLEND_ONE,
GR_BLEND_ZERO) ;

/* draw t he second pass */

80 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

8. Special Effects

Modulation Multi-Pass Fog

The modulation case assumes that the results of each pass are being multiplied together, and we wish to
fog the final result:

cas = Fog(P ¢) where ¢ is the color entering the fog unit in passii

This case occurs most commonly when applying light maps to a scene, and it is more complex to
implement than the additive case. Here is the procedure for the three-pass case; it can be generalized by
induction. We wish to obtain:

Cast = FOQ(C1C2C3) = fCrog + (1- F)(C1C2Cs)

For the first pass, choose either GR_FOG W TH_TABLE_ON_Qor

GR_FOG W TH_TABLE_ON_FOGCOORD_EXT (if supported) as the fog mode and OR in GR_FOG_ADD?, as
shown in Table 8.2 and demonstrated in Example 8.5. Set the source and destination a pha blending
factorsto GR_BLEND_ONE and GR_BLEND_ZERO, respectively. After the first pass,

Cas = 1-Fog(cy) + O- Cag
= Fog(cy)
=(1-f)g

For the second pass (and al intermediate passes in the general case), disable fogging

(grFogM ode(GR_FOG DI SABLE)) and set the source and destination alpha blending factors to

GR_BLEND DST_COLOR and GR_BLEND_ZERO, respectively. (Using source and destination factors of
GR_BLEND ZEROand GR BLEND_SRC_COLOR, respectively, will work aswell.) After the second pass we
have:

Cast = Cast* Cin + O- Cygt
= Cya" C2
= (1' f)C]_Cz

For the final pass, enable fogging again, choosing either GR_FOG W TH_TABLE_ON_Qor

GR_FOG W TH_TABLE_ON_FOGCOORD_EXT (if supported), and OR in GR_FOG MJULT2, which causes the
blended pixel term to be suppressed. Set the source and destination alpha blending factors to
GR_BLEND ONE and GR_BLEND PREFOG_COLOR, respectively. Theresult is:

Fog(cs) = fCiog
Cas = 1-FOQ(Cs) + C3* Cast
= fCrog + C3+ (1- f)CiC

= fCrog + (1- f)CiCoCs

Copyright © 1995-1998 3Dfx Interactive, Inc. 81
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Example 8.5 Three-pass modulation fogging.
The code segment bel ow assumes that a fog table has been defined.

const G Fog_ t fog[];
int i;

/* load the fog table */
gr FogTabl e(f og) ;

/* set a fog color - how about snoke? */
gr FogCol or Val ue(0);

/* set fog node and al pha bl ending function for pass 1*/

gr Fogvbde(GR_FOG W TH_TABLE_ON_Q | GR_FOG_ADD2);

gr Al phaBl endFuncti on(GR_BLEND ONE, GR BLEND ZERO, GR _BLEND_ ONE,
GR_BLEND_ZERO) ;

/* draw pass 1 */

/* set fog node and al pha bl ending function for pass 2*/

gr FogMbde(GR_FOG_DI SABLE) ;

gr Al phaBl endFuncti on(GR_BLEND DST_COLOR, GR_BLEND ZERO, GR _BLEND_ONE,
GR_BLEND_ZERO) ;

/* draw pass 2 */

/* set fog npde and al pha bl ending function for final pass */

gr Foghvbde(GR_FOG W TH TABLE_ON_ Q | GR_FOG MULT2);

gr Al phaBl endFuncti on(GR_BLEND ONE, GR BLEND PREFOG COLOR, GR_BLEND_ONFE,
GR_BLEND_ZERO) ;

/* draw pass 3 */

Chroma-keying

When chroma-keying is enabled, color values are compared to aglobal chroma-key reference value set
by gr ChromakeyValug(). If the pixel’s color is the same as the chroma-key reference value, the pixel is
discarded. The chroma-key comparison takes place before the color combine function; the other color
selected by color combine function is the one compared (see gr Color Combine() in Chapter 5). By
default, chroma-keying is disabled.

Chroma-keying is useful for certain types of sprite animation or blue-screening of textures. Only one
color value isreserved for chroma-keyed transparency, while apha blending reserves a variable
number of color bits for transparency.

void gr Chr omakeyM ode(GrChromakeyMode_t mode)

Use gr ChromakeyM ode() to enable or disable chroma-keying. The argument, mode, specifies whether
chroma-keying should be enabled or disabled. Valid values are GR_CHROMAKEY_ENABLE and
GR_CHROVAKEY_DI SABLE.

void gr ChromakeyValue(GrColor_t value)

82 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

8. Special Effects

The function gr ChromakeyValue() sets the globa chroma-key reference value as a packed RGBA value
in the format specified in the cFormat parameter to gr SssWinOpen() (see Chapter 3).

Glide 3.0 introduces the concept of a chroma-range as an extension. The extension capability and the
two chroma-range extensions, one for pixels and one for texels, are described in Chapter 13.

Example 8.6 Simulating a blue-screen with chroma-keying.

A blue screen is a compositing mechanism used in live video where a second scene overlays all the * blue”
pixelsin the first scene. This technique is used to stand a weathercaster in front of a weather map, for
example, and explains why they don’'t wear blue suits or ties! With chroma-keying, pixels of any one specific
color can be discarded, not just blue.

/* draw t he background */
dr aw weat her _map();

/* enabl e chroma-keyi ng */
gr Chr omakeyMode(GR_CHROVAKEY_ENABLE) ;

/*set the reference color - assunes ARG format */
gr Chr onakeyVal ue(OxFF) ;

/* draw the inserted scene - nost of it is blue */
dr aw_weat her man() ;

Alpha Testing

The aphatest function is a technique for accepting or rejecting a pixel based on its alpha value. The
incoming alpha value (the output from the a pha combine unit) is compared with a reference value and
accepted or rejected based on a user-defined comparison function.

One application of the apha compare function is billboarding: if you create a texture with some
transparent and some opague areas, you can indicate the degree of opacity with the aphavaue. Set
alphato zero if the texel istransparent, and to oneif it’'s opague. With a reference alpha value of .5 (or
any number greater than 0) and a “greater than” comparison function, transparent texels are rejected
and the destination pixel is displayed.

Incoming pixels can be rejected based on a comparison between their alpha values and a global apha
test reference value. The nature of the comparison is user definable through the function
grAlphaTestFunction(). Thisis useful for some effects such as partially transparent texture maps. Also,
alphatesting can prevent the depth buffer from being updated for nearly transparent pixels. To disable
alphatesting, set the alphatest function to GR_cvP_ALWAYS. The global alphatest referenceis set viaa
call to gr AlphaT estReferenceValue(). Because apha testing does not require alpha storage (i.e. an apha
buffer), it is always available regardless of the use of depth or triple buffering.

void gr AlphaT estFunction(GrCmpFnc_t func)

The incoming alpha value is compared to the constant al pha test reference value using the function
specified by func. The possible values for func are shown in Table 8.3. Theincoming alphaisthe
output of the apha combine unit (see gr AlphaCombine(), described earlier in this chapter). The
reference value is set with gr AlphaT estRefer enceValue().

void gr AlphaT estRefer enceValue(GrAlpha_t value)

Copyright © 1995-1998 3Dfx Interactive, Inc. 83
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

The incoming alpha value is compared to the value using the function specified by
grAlphaTestFunction(). If the comparison fails, the pixel is not drawn.

Table 8.3 Alpha test functions.
Alpha testing is a technique whereby the incoming alpha value is compared to a reference value and the pixel
is discarded if the test fails. The test is user-selectable; the choices are shown below.

If funcis the comparison function

GR_CMP_NEVER never passes.

CR_CMP_LESS passes if the a value produced by the alpha combine unit is less than the constant
a reference value.

GR_CMP_EQUAL passes if the a value produced by the alpha combine unit is equal to the constant a
reference value.

GR_CMWP_LEQUAL passes if the a value is less than or equal to the constant a reference value.

GR_CMP_GREATER passes if the a value is greater than the constant a reference value.

GR_CWP_NOTEQUAL | passesiif the a value is not equal to the constant a reference value.

GR_CMP_GEQUAL passes if the a value is greater than or equal to the constant a reference value.

GR_CVP_ALVAYS always passes.

Alphatesting is performed on all pixel writes, including those resulting from scan conversion of points,
lines, and triangles, and from direct linear frame buffer writes. Alphatesting isimplicitly disabled
during linear frame buffer writesif the pixel pipeineis bypassed (see Chapter 11).

Stenciling
Stenciling is not directly supported by the graphics family graphics hardware. However, a stencil effect

is possible with depth buffering by setting the depth buffer (using linear frame buffer writes) to its
minimum value in the areas to be stenciled out.

84 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

9. Texture Mapping

In This Chapter

The discussion thus far has described how to produce a polygon that is filled with a solid color or
smoothly shaded from one color to another. This chapter describes the process of filling a polygon with
apattern: abrick wall pattern, for example, or aveined marble texture.

Texture mapping is a technique in which atwo-dimensional image, a texture map, is pasted like wall-
paper onto athree-dimensional surface. This allows for very realistic images without requiring the use
of many small detail polygons. The graphics hardware provides accelerated perspective-correct texture

mapping.

You will learn about:

textures and texels and how they relate to pixels.
magnification and minification.

point sampling and bilinear filters.

texture clamping.

specifying magnification and minification filters and texture clamping options.

4 4 4 € 4 <«

adding, modulating, and blending textures in the texture combine unit.

A Look at Texture Mapping and Glide

A texture map is a square or rectangular array of texture elements, or texels, that are addressed by
(s, t) coordinates. The TMU, or texture mapping unit, contains memory for storing textures, circuitry
to map texels to pixels, and more circuitry to add, scale, and blend texels.

A 3Dfx Interactive graphics subsystem includes at least one TMU and may have as many as three;
Figure 9.1 shows the connectivity. Each TMU will produce an RGBA color from its own texture
memory that will be pairwise combined to produce a texture RGBA color that can be selected as an
input to the color combine and a pha combine units described in Chapters 5 and 6.

Texture memory is described in the next chapter. In this chapter, we assume that textures are aready
loaded into texture memory and concern ourselves with configuring the texel selection function and
using the texture combine unit.

Copyright © 1995- 1998 3Dfx Interactive, Inc. 85
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Figure9.1 TMU connectivity.
A TMU contains texture memory, texture selection circuitry, and a texture combine unit. The texture combine
units have other and local datapaths just like the color and alpha combine units.

(a8 A systemwith one TMU extracts the appropriate texel or texels from texture memory, minifies or magnifies
it, filtersit, and clamps or wraps it according to texture map parameters or local overrides. The texture
combine unit can scale the result.

(b) When the system has two TMUSs they are chained together. The result from one TMU becomes an input to
the texture combine unit of the next one and the texture RGBA that results is a user-sel ectable combination
of the two textures.

() Athree TMU system continues the cascading of texels.

(a) atexturepipeline (b) a texture pipeline with two TMUs (c) atexture pipeline with three TMUs

with one TMU
T T T T T T T T T T T T e I
| | ! .
. TMUO b TMU1L o TMU2
. | Co
: texture b texture b texture
; memory b memory o memory
o - TMU1
: texel o texel LLGIEY o texel
i selection Do selection texture . selection texture
Co memo Lo memor
: local RGBA! bocal RGBA Y L bocal RGBA Y TMUO
, !
. | texel Co texel
: 0 texture oy texture sdlection : o texture selection texture
—>» combine : i—» combine ; 1—» combine memory
i unit P unit bocal RGBA, ! unit bocal RGBA
i . . texel
T i ________ Lo | other RGBA texture o |other RGBA textg‘re selection
! combine - combine I
texture RGBA i unit ; : unit bocal RGBA!
! P
"—'—'—'—'—'—'—'—'—'—'—'—i ''''''' - |other RGBA texture
. combine
texture RGBA !
|
i

texture RGBA

Glide Texturesand Texels

Textures are square or rectangular arrays of data; an individual value within atextureis called a texel
and has an (s, t) address. The sand t texel coordinates are in the range [-32768..32767]. The large
range for s and t alows atexture to be repeated many times across a polygon. A large number of
fraction bits allows for precise s and t representation and iteration even when divided by alarge q
value.

For one repeat of the texture, the choice of coordinate systems determines the properties of sand t.

When Using Window Coor dinates

All sguare texture maps have their origin at (s,t) = (0,0) and their opposite corner at (256,256). Thisis
true even for a1l” 1 texture map. Note that these texture coordinates are before division by g. Texture
coordinate (0.5, 0.5) represents the exact center of the first texel in a 256x256 texture map, and

86 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

9. Texture Mapping

(255.5, 255.5) represents the exact center of the texel in the opposite corner; (256.5, 256.5) wrapsto
the center of the first texel. In general, the center of the first texel in a 2"x2" texture map (where
O£n£8) is at (128/2", 128/2").

Rectangular textures also have their origin at (0, 0). If the rectangular texture is wider than tall (sis
larger than t) then the opposite corner is at (256, n) where n/256=t/s. For example, if the textureis four
times as wide as high, then n=64. Likewise, if the rectangular texture istaller than it iswide, the
opposite corner is at (n, 256) and N/256=g/t. Therefore, the longer texture axis aways has texture
coordinates running from O to 256, while the shorter texture axisis proportionally smaller. Table 9.1
shows the texel coordinates of the first and last pixel for all supported aspect ratios and texture map
dimensions.

Figure 9.2 Mapping texels onto texture maps in window coordinate systems.

The textures shown below all have a 1:2 aspect ratio, and range in size from 32" 64 to 1" 2. In each one, the
texture coordinates (s,t) range from (0,0) to (128,256). Thus, the texels get bigger (in terms of coverage of
coordinate space) as the texture map size decreases. The degenerate case of 1 1 is shown for compl eteness.

256 256 256 256
0 0 0 0
128 128 128 128
32 64 texture 16" 32 texture 8" 16 texture 4’ 8texture
each texel is4 each texel is8 each texel is 16 each texel is 32
texture coordinates texture coordinates texture coordinates texture coordinates
square square square square
256 256 256
0 0 0
128 128 128 256
2 4 texture 1" 2 texture 1" 1texture
each texel is64 each texel is 128 single texel degenerate case
texture coordinates texture coordinates
square square
Copyright © 1995-1998 3Dfx Interactive, Inc. 87

Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Table9.1 Mapping pixelsto texture coordinates in texture maps in window coordinate systems.

The texel coordinate on the long side of a texture map always goes from 0 to 256, regardless of the size of the
texture map. Snce texels are sguare, the texture coordinate on the short side of the texture map is scaled
accordingly: it ranges from O to 256- (the ratio of the short to the long side). The degenerate cases are shaded.

if theaspect ratiois | andthetexturemap sizeis atexel is | thecenter of thefirst texel isat the center of the last texel isat
11 256x256 1x1 (.5, .5) (255.5, 255.5)
(asquare texture) 128x128 2%x2 1,1 (255, 255)
64x%64 4x4 2,2 (254, 254)
32x32 8x8 4, 4) (252, 252)
16x16 16x16 (8, 8) (248, 248)
8x8 32x32 (16, 16) (240, 240)
4x4 64x%64 (32, 32) (224, 224)
2%x2 128x128 (64, 64) (192, 192)
1x1 256x256 (128, 128) (128, 128)
21or12 2:1 1:2 2:1 1:2
(thelong sideis 256x128 128x256 1x1 (.5, .5) (255.5, (127.5,
127.5) 255.5)
twice the length of 128x64 64x%128 2%x2 1,1 (255, 127) (127, 255)
the short side) 64x%32 32x64 4x4 2,2 (254, 126) (126, 254)
32x16 16x32 8x8 4, 4) (252, 124) (124, 252)
16x8 8x16 16x16 (8, 8) (248, 120) (120, 248)
8x4 4x8 32x32 (16, 16) (240, 112) (112, 240)
4x2 2x4 64x64 (32, 32) (224, 96) (96, 224)
2x1 1x2 128x128 (64, 64) (192, 64) (64, 192)
1x1 1x1 (128, 128) (128, 128) (128, 128)
4:1orl4 4.1 1:4 4:1 1:4
(thelongsideis | 256x64 | 64x256 1x1 (:5,.5) (255.5,63.5) | (63.5, 255.5)
four times the 128x32 32x128 2%x2 1,1 (255, 63) (63, 255)
length of the short 64x%16 16x64 4x4 2,2 (254, 62) (62, 254)
side) 32x8 8x32 8x8 4, 4) (252, 60) (60, 252)
16x4 4x16 16x16 (8, 8) (248, 56) (56, 248)
8x2 2x8 32x32 (16, 16) (240, 48) (48, 240)
4x1 1x4 64x%64 (32, 32) (224, 32) (32, 224)
2x1 1x2 (64, 64) (192, 64) (64, 192)
1x1 1x1 (128, 128) (128, 128) (128, 128)
81lor18 8.1 1:8 8:1 1:8
(thelongsideis | 256x32 | 32x256 1x1 (:5,.5) (255.5,31.5) | (31.5, 255.5)
eight timesthe 128x16 16x128 2%x2 1,1 (255, 31) (31, 255)
length of the short 64x8 8x64 4x4 2,2 (254, 30) (30, 254)
side) 32x4 4x32 8x8 4, 4) (252, 28) (28, 252)
16x2 2x16 16x16 (8, 8) (248, 24) (24, 248)
8x1 1x8 32x32 (16, 16) (240, 16) (16, 240)
4x1 1x4 (32, 32) (224, 32) (32, 224)
2x1 1x2 (64, 64) (192, 64) (64, 192)
1x1 1x1 (128, 128) (128, 128) (128, 128)

When Using Clip Coordinates

All sguare texture maps have their origin at (s,t) = (0,0) and their opposite corner at (1,1). Thisistrue
evenfor al 1 texture map. Note that these texture coordinates are before division by g, which is
performed automatically. Rectangular textures also have their origin at (O, 0) and their opposite corner
at (1,1). The center of the first texel in an nxm texture map is at (1/2™*, 1/2™%), and the center of the
texel in the opposite corner isat (1—(1/2™), 1-(1/2™h).

88 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

9. Texture Mapping

Figure 9.3 Mapping texels onto texture maps in clip coordinate systems.

The textures shown below all have a 1:2 aspect ratio, and range in size from 32" 64 to 1" 2. In each one, the
texture coordinates (s;t) range from (0,0) to (1,1). Thus, the texels get bigger (in terms of coverage of
coordinate space) as the texture map size decreases. We have shown square texels and different scales on the s
and t axisto parallel Table 9.1; however, this introduces distortion. The degenerate case of 1" 1 is shown for
compl eteness.

1 1 1 1
0 0 0 0
1 1 1 1
32 64 texture 16" 32 texture 8" 16 texture 4’ 8texture
each texel is each texel is each texedl is each texel is
1/32 by 1/64 1/16 by 1/32 1/8 by 1/16 Yaby 1/8
1 1 1
0 0 0
1 1 1
2 4 texture 1" 2 texture 1" 1texture
each texedl is each texedl is single texel degenerate case
Yoby Vs 1byvs

TextureFiltering

All texture mapping capabilities of the graphics subsystem are handled in the TMU, which includes
logic to support true-perspective texture mapping (dividing every pixd by q), per-pixel level-of-detail
(LOD) mipmapping, and bilinear filtering. Additionally, TMU implements texture mapping techniques
such as detail texture mapping, projected texture mapping, and trilinear filtering. While point sampled
and bilinear filtering are single pass operations, single TMU systems require two passes for trilinear
texture filtering. Multiple TMU systems support trilinear texture filtering as a single-pass operation.
Note that regardless of the number of TMUs in a given graphics system, there is no performance

Copyright © 1995-1998 3Dfx Interactive, Inc. 89
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

difference between point-sampled and bilinear filtered texture-mapped rendering, and no performance
penalty for per-pixel mipmapping or perspective correction.

Texture maps are square or rectangular, but after being mapped to a polygon or surface and
transformed into screen coordinates, the individual texels of atexture map rarely correspond to screen
pixels on a one-to-one basis. Depending on the transformations used and the texture mapping applied, a
single pixel on the screen can correspond to anything from atiny portion of atexel, resulting in
magnification, to alarge collection of texels, resulting in minification. In either caseit is unclear

exactly which texel vaues should be used and how they should be averaged or interpolated.
Consequently, Glide allows an application to choose between two types of filtering: point sampling and
bilinear interpolation.

Figure 9.4 Point sampling and bilinear filtering.

Glide supports two methods of choosing a texel within a texture map. If the pixel maps to less than one texel,
as shown in diagram (a), texture magnification is called. If the pixel maps to more than one texel, as shown in
diagram (b), then minification is required. The user can select between point-sampling and bilinear filtering
during the minification or magnification. When using point sampling, the texel whose (s, t) coordinates are
nearest the center of the pixel is chosen. Bilinear filtering computes a weighted average of the 2 by 2 array of
texels that lie nearest the center of the pixel. The magnification and minification filters are independent: one
can specify point sampling and the other bilinear filtering, or both can be the same.

pixel T(d pixel Txel
K] v [v

F— pixel center qi:— pixel center

|
(&) magnification: (b) minification: (c) point sampled filter: (d) bilinear filter: a weighted
the pixel is smaller the pixel islarger the texel nearest the pixel average of the four texels
than a texel than a texel center nearest the pixel center

Magnification of atexture map occurs when atexture map is“blown up” on screen (see Figure
9.4(a)). For example, if a64” 64 texture map is rendered onto a polygon that covers 128" 128 pixels on
the screen, an average of four pixelswill cover each texd in the texture map, causing noticeable
blockiness. The graphics hardware supports bilinear interpolation of texels that greatly reduces the
blockiness and pixelization of texture magnification.

Minification of atexture map occurs when atexture map is compressed on screen (see Figure 9.4(b)).
For example, if a64” 64 texture map is rendered onto a polygon that only covers 16” 16 pixels on the
screen, an average of 16 texels will cover each pixel on the screen. This leads to disturbing artifacts
known as “texture aliasing” . The graphics hardware remedies this problem by supporting both
mipmapping and filtering.

If a graphics subsystem is performing point sampled filtering, the texel with coordinates nearest the
center of the pixel being rendered is used to generate the color output on the screen (see Figure 9.4(c)).
Point sampling, aso known as nearest neighbor sampling, may result in pixelization and blockiness
during magnification and “texture jerking” during minification.

90 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

9. Texture Mapping

One way of reducing the blockiness of point sampling is by linearly interpolating between the colors of
the texels that are adjacent to the source pixel, which results in a much smoother image than point
sampling (see Figure 9.4(d)). Bilinear interpolation is performed by the graphics hardware with no
incurred additional performance overhead.

Minification and magnification filtering are controlled by the Glide function gr TexFilter M ode() and are
independently selectable.

void gr TexFilter M ode(GrChiplD_t tmu,
GrTextureFilterMode_t minFilterMode,
GrTextureFilterMode_t magFilterMode

)

The first argument, tmu, selects the texture mapping unit that the filter selections apply to. Valid values
are GR_TMJ0, GR_TMUJ1, and GR_TMU2. The minification filter, minFilterMode, can be either
GR_TEXTUREFI LTER_PO NT_SAMPLED Or GR_TEXTUREFI LTER_BI LI NEAR, as can the magnification
filter, magFilterMode. The magnification filter is used when the LOD calculated for a pixel indicates
that the pixel covers less than one texd. Otherwise, the minification filter is used.

Texture Clamping

When texture s and t coordinates have overflowed during a texture mapped rendering operation, the
hardware can either clamp the coordinates to a maximum value or, alternatively, wrap them around.
This choice is up to the devel oper depending on whether tiled or non-tiled texture mapping is desired.
Texture clamping aso allows for interesting effects, for example, out of range s and t coordinates can
be passed with a very small texture in alarge polygon. Such an approach will effectively place the
texture somewhere in the interior of the polygon with the rest of the polygon rendered with the border
color of the texture. This can potentially save texture memory if small composite textures are used on a
predominantly monotone surface, e.g., awindow on the side of a space ship.

Copyright © 1995-1998 3Dfx Interactive, Inc. 91
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Figure 9.5 Texture clamping.

The texture clamp mode specifies what to do when texture coordinates are outside the range of the texture
map. If wrapping is enabled, then texture maps will tile, i.e., values greater than 255 will wrap around to O. If
clamping is enabled, then texture map indices will be clamped to 0 and 255. Both modes should always be set
to GR_TEXTURECLAMP_CLAMP when using projected textures.

Glide 3.0 introduces a texture clamp mode extension, GR_TEXTURECLAMP_M RROR_EXT, that is available if
the TEXMIRROR extension is supported. See Chapter 13 for details and an expanded version of this figure.

ok

The texture on the left is to be mapped onto the rectangle, with
thetexture origin in theinterior of therectangle. The clamp
mode settings for s and t affect the final result, as shown below.

(&) wrap both sand t (b) clamp s, wrap t (c) wrap s, clamp't (d) clamp both sand t

Note that s and t coordinates may be individually wrapped or clamped, as shown in Figure 9.5.

void gr TexClampM ode(GrChipID_t tmu,
GrTextureClampMode_t sClampMode,
GrTextureClampMode_t tClampMode

)

The first argument, tmu, selects the TMU in which the mipmap resides and may be GR_TMJ0, GR_TMUL,
or GR_TM2. The other two arguments set the clamping mode for s and t individually; they may be set
t0 GR_TEXTURECLAMP_CLAMP, GR_TEXTURECLAMP_WRAP, Of, if supported,

GR_TEXTURECLAMP_M RROR_EXT (see the discussion on the TEXMIRROR extension in Chapter 13). If
wrapping is enabled, texture maps will tile: values greater than 255 will wrap around to O. If clamping
is enabled, texture map indices will be clamped to 0 and 255. Both modes should always be set to
GR_TEXTURECLAMP_CLAMP When using projected textures.

Mipmapping

A mipmap is an ordered set of texture maps representing the same texture; each texture map has lower
resolution than the previous one, and istypically derived by filtering and averaging down its
predecessor. LODO is the name given to the texture with the highest resolution in the mipmap, where
LOD standsfor “level of detail”. The LOD1 texture, if defined, is half as high and half as wide, and
defines one-quarter as many texels as LODO. There can be up to nine texture maps in a mipmap.

92 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

9. Texture Mapping

[} The GR_LOD and GR_ASPECT constants have been redefined: the value now represents
the logarithm, base 2, of the largest dimension. In order to call attention to code that used
them, the names have been changed as well, adding “LOG2_", as shown in Table 9.2
above.

PORTING
NOTE

Some code that used the old constants will require modification. For example, a
Glide2.x f or loop that decrements a counter to access larger mipmap levels will

increment the counter in Glide 3.0. Any tables indexed by mipmap level or aspect ratio
must also be examined to seeif changes are required.

Figure 9.6 gives a graphical representation of a complete mipmap. The texture maps can be square or
rectangular, but each one in the mipmap must have the same aspect ratio. See Table 9.2.

The next chapter will describe Glide functions that manage texture memory and load textures and
mipmaps. In this chapter, we will assume that the proper textures are aready |oaded; we will focus on
the texel selection and texture combine capabilities.

Table 9.2 Texture sizes and shapes.

A mipmap can be composed of up to nine textures (the LOD names are shown in column 1) and can be square
or rectangular (the aspect ratios are listed in row 1). All textures within a mipmap must have the same aspect
ratio. The shaded entries in the table below have degenerate aspect ratios. one or both dimensions have been

reduced to one texel.

GR_ASPECT_LOG2_1x1

GR_ASPECT_LO®_2x1
or
GR_ASPECT LOG_1x2

GR_ASPECT_LO®_4x1
or
GR_ASPECT LOG_1x4

GR_ASPECT_LO®2_8x1
or
GR_ASPECT LOG2_1x8

CR_LOD_LOG2_256 | 256%256 256x128 or 128%x256 | 256%x64 or 64%x256 256x%32 or 32x256
CGR_LOD_LOG2_128 1 128%128 128x64 or 64x128 128x32 or 32x128 128x16 or 16x128
CRLOD_LOZ_64 | g4x64 64x32 or 32x64 64%16 or 16x64 64%8 or 8x64
GRLOD_LO&_32 | 32x32 32%16 or 16x32 32%8 or 8x32 32%x4 or 4x32
CRLOD_LOZ_16 |16x16 16x8 or 8x16 16x4 or 4x16 16x2 or 2x16
GRLOD LOZ_ 8 |gx8 8x4 or 4x8 8x2 or 2x8 8x1 or 1x8
CRLOD_LOZ_4 | 4x4 4%2 or 2x4 4x1 or 1x4 4x1 or 1x4
RLOLORZ 2 |2x2 2x1 or 1%x2 2x1 or 1%x2 2x1 or 1%x2

GR LOD LO®_1 1x1 1x1 1x1 1x1

Copyright © 1995-1998 3Dfx Interactive, Inc.
Proprietary and Confidential

93

Printed 08/05/98 10:3C

Glide 3.0 Programming Guide

[} The GR_LOD and GR_ASPECT constants have been redefined: the value now represents
the logarithm, base 2, of the largest dimension. In order to call attention to code that used
them, the names have been changed as well, adding “LO&2_", as shown in Table 9.2
above.

PORTING Some code that used the old constants will require modification. For example, a
NOTE Glide 2.x f or loop that decrements a counter to access larger mipmap levels will
increment the counter in Glide 3.0. Any tables indexed by mipmap level or aspect ratio
must also be examined to seeif changes are required.

94 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

9. Texture Mapping

Figure 9.6 Mipmaps.

A mipmap is an ordered set of texture maps representing the same texture. Each texture map in the set has
lower resolution than the previous one, and is typically derived by filtering and averaging down its
predecessor. GR_LOD_LOG2_256 is the name given to the texture with the highest resolution in the mipmap,
where LOD stands for “ level of detail” . The GR_LOD_LOG2_128 texture is half as high and half as wide, and
defines one-quarter as many texels as its predecessor, and so on. The mipmap can contain up to nine texture
maps, as shown. The texel addresses range from (0,0) to (256,256) in window coordinates, or from (0,0) to
(1,2) in clip coordinates, in all nine textures, as described earlier in the chapter.

GR_LOD_2 GR_LOD_1

GR_LOD_. \‘L
—,’n

GR_LOD_256 GR_LOD_8

GR_LOD_16 —p.

GR_LOD_32

GR_LOD_64

GR_LOD_128

The hardware computes an LOD for every pixel. The integer part of the LOD is used to choose one (or
two) of the textures in the current mipmap; the fractional part is used to blend two mipmap levelsif
desired.

Nearest mipmapping. The mipmap level is chosen based on which mipmap is nearest to a
pixel’s LOD. Nearest mipmapping may suffer from avisua artifact known as *“mipmap
banding” that manifestsitself as visible bands between LOD levels appearing in atexture

mapped image.

Nearest dithered mipmapping. To offset the effects of mipmap banding, the hardware can
dither between adjacent texture maps within a mipmap. This technique, known as nearest
dithered mipmapping, aleviates the effects of mipmap banding to a great extent, at the cost of
performance degradation for larger texture maps.

Copyright © 1995-1998 3Dfx Interactive, Inc. 95
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

void gr TexMipM apM ode(GrChipID_t tmu, GrMipMapMode_t mode, FxBool LODblend)

Mipmapping styleis controlled by gr TexMipMapM ode(). The first argument, tmu, designates the TMU
to modify. The second argument, mode, selects the mipmapping style; valid values are

GR_M PMAP_DI SABLE, GR_M PMAP_NEAREST, and GR_M PMAP_NEAREST_DI THER. The final argument,
LODblend, enables or disables blending between levels of detail in the mipmap. GR_M PMAP_NEAREST
should be used when LODblend is FXTRUE.

Using dithered mipmapping with bilinear filtering results in images amost indistinguishable from
images rendered with trilinear filtering techniques. On the down side, dithering of the mipmap levels
reduces the pesk fill rate by approximately 20% to 30%, depending on the scene being rendered. Since
the presence or absence of mipmap dithering is not very noticeable, it is very hard to determine the
cause of the performance loss. Therefore, Glide disallows this mode by default. An application may
explicitly allow the use of dithered mipmapping by issuing a gr Enable(GR_ALLON M PMAP_DI THER)
command (see Chapter 12).

If you are considering using dithered mipmapping, measure performance with and without it. The
trade-off isthat there may be visible mipmap bands, which can be eliminated by using trilinear
mipmapping. On multiple TMU boards this is a one-pass operation, otherwise it requires two passes.
Alternatively, dithered mipmapping can be allowed but disabled for most polygons and enabled only for
those polygons that require it.

If there is no performance difference with and without dithered mipmapping, but the image quality did
not improve with dithered mipmapping, don’t useit. As you enhance or extend your program, you run
the risk of creating a situation in which performance loss due to dithered mipmapping could occur. It is
best to selectively enable dithered mipmapping just for the polygons that require it.

Mipmap Blending
To reduce the effects of mipmap banding the hardware can perform a weighted blend between adjacent

mipmap levels. This blend is a single pass operation on two TMU configurations and a two-pass
operation on asingle TMU configurations.

Mipmap blending can be performed independently of the type of minification and magnification
filtering being performed. Since mipmap blending is actually aform of texture combining, it is
controlled by proper set up of the texture combine function.

Trilinear Filtering

The combination of bilinear filtering, mipmapping, and mipmap blending is generaly known as
trilinear mipmapping. Trilinear mipmapping provides maximum visual quality by performing inter-
and intraamipmap blending. However, trilinear mipmapping is a two-pass operation on graphics
subsystems with a single TMU. Nearest dithered mipmapping results in nearly the same visua quality
astrilinear texture mapping, however, it is dways a single pass operation and thus achieves consistent
performance across a wider range of hardware.

LOD Bias

LOD hias affects the point at which mipmapping levels change. Increasing values for LOD bias makes
the overall images blurrier or smoother. Decreasing values make the overall images sharper. Selection
of LOD biasis aqualitative judgment that is application and texture dependent. LOD bias can be any

96 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

9. Texture Mapping

value in the range [-8.0..7.75]. However, the hardware will snap LOD bias to the nearest quarter.
Thereisno “best” setting for the LOD bias; it is a very subjective control. Some textures look better if
sharper than “normal,” while otherslook better blurred.

The LOD hiasis controlled with the function gr TexL odBiasValue(). The first argument, tmu, identifies
the TMU to modify; valid values are GR_TMJ0, GR_TMUJL, and GR_TMU2. The second argument, bias, is
a signed floating point value in the range [-8..7.75].

void gr TexL odBiasValue(GrChipID_t tmu, float bias)

gr TexL odBiasValue() changes the current LOD bias value, which allows an application to maintain fine
grain control over the effects of mipmapping, specifically when mipmap levels change. The LOD bias
value is added to the LOD calculated for a pixel and the result determines which mipmap level to use.
An LOD of nis caculated when a pixel covers approximately 2" texels. For example, when a pixel
covers approximately one texel, the LOD is 0; when a pixel covers four texels, the LOD is 1; when a
pixel covers 16 texels, the LOD is 2. Smaller LOD values make increasingly sharper images that may
suffer from aliasing and moiré effects. Larger LOD values make increasingly smooth images that may
suffer from becoming too blurry. The default LOD bias valueis 0.0.

During some specid effects, an LOD bias may help image quality. If an application is not performing
texture mapping with trilinear filtering or dithered mipmapping, then an LOD bias of +.5 generaly
improves image quality by rounding to the nearest LOD. If an application is performing dithered
mipmapping (i.e. gr TexMipMapMode() iSGR_M PMAP_NEAREST_DI THER), then an LOD bias of 0.0 or
+.25 generally improves image quality. An LOD hias value of 0.0 is usually best with trilinear filtering.

Combining Textures

The graphics hardware can combine multiple textures together smultaneoudly. This alows for
interesting effects including detail texturing, projected texturing, and trilinear texture mapping.
Combining two textures requires a single pass with two TMUSs or two passes with asingle TMU.
Combining two textures is controlled with the function gr TexCombine().

Each TMU selects an appropriate texel for the current rendering mode and filtersit (point sampled or
bilinear, as determined by a mipmap’ s associated filtering mode or the most recent call to

gr TexFilter M ode()), then passes the texel on to the texture combine unit. The texture combine unit
combines the filtered texel with the incoming texel from the other TMUSs, according to the user-
selectable formula defined by the most recent gr TexCombine() function. The simplest combine function
is asimple pass-through that implements decal texture mapping. However, more elaborate texture
mapping combinations can be used to implement useful effects such as trilinear mipmapping,
composite texturing, and projected textures.

void gr TexCombine(GrChipID_t tmu,
GrCombineFunction_t rgbFunction,
GrCombineFactor_t rgbFactor,
GrCombineFunction_t alphaFunction,
GrCombineFactor_t alphaFactor,
FxBool rgblnvert,
FxBool alphalnvert

)

The first argument names the TMU to which the rest of the arguments apply. Valid values are
GR_TMJ0, GR_TMUJL, and GR_TMW2. The next two arguments, rgbFunction and rgbFactor, describe the

Copyright © 1995-1998 3Dfx Interactive, Inc. 97
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

combining function and scale factor for the red, green, and blue components produced by the texel
selection circuitry of tmu. Similarly, alphaFunction and alphaFactor define the combining function
and scale factor for the a pha component. Table 9.3 lists the possible combining functions; the scale
factors are detailed in Table 9.4. In both tables, Cioca aNd &,0ca represent the color components
generated by indexing and filtering from the mipmap stored on tmu; Comer aNd aoner represent the
incoming color components from the neighboring TMU (refer to Figure 9.1).

The texture combine units compute the function specified by the rgbFunction and alphaFunction
combine functions and the rgbFactor and al phaFactor combine scale factors on the local filtered texel
and the filtered texel from the upstream TMU. The result is clamped to [0..255], and then a bit-wise
inversion may be applied, controlled by the rgblnvert and alphal nvert parameters. Inverting the bitsin
an 8-bit color component is the same as computing (255 — ¢).

gr TexCombine() also keeps track of required vertex parameters for the rendering routines.
GR_COMBI NE_FACTOR_NONE is provided to indicate that no parameters are required. Currently it isthe
same as GR_COVBI NE_FACTOR_ZERO.

98 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

9. Texture Mapping

Table 9.3 Texture combine functions.

The rgbFunction and alphaFunction argumentsto gr TexCombine() can take on any of the values listed in the
first column. The second and third columns show the computed color or alpha value for each choice. ¢joco and
A 0cal FEPresent the color components generated by indexing and filtering from the mipmap stored on tmu;
Cother @Nd @ e rePresent the incoming color components from the neighboring TMU (refer to Figure 9.1).

texture combine function
(prefixed with GR_COVBI NE_FUNCTI ON)

computed color if specified
as rgbFunction

computed alpha if specified
as alphaFunction

fx Cother T (1 - f) * Ciocal

ZERO 0 0

LOCAL Ciocal Aocal

L(xAL—AL PHA Aocal Aocal

SCALE_OTHER f*c f* g

BLEND_OTHER other other

SCALE_OTHER_ADD_L@AL f* Cother T Ciocal f* other T @jocal

SCALE_OTHER_ADD_LOCAL_ALPHA F* Coer + Aloca F* Aune + Ao

SCALE—OTHER—M NUS—L(xAL f* (Cother — CIocal) f* (aother _ aIocal)

SE@II;IE_OTHER_M NUS_LOCAL_ADD _LOCAL fx (Cother - CIocal) * Ciocal f* (aother - aIocal) + &jocal
o

O f* Agher + (L —T) *

Aocal

SCALE_OTHER M NUS_LOCAL_ADD LOCAL_ALPHA

f* (Cother _ CIocal) + 8ocal

f* (aother _ aIocal) + 8jocal

SCALE_M NUS_LOCAL_ADD _LOCAL
BLEND_L OCAL

f* (_ CIocal) + Ciocal
° (1 — f) * Ciocal

fx (_ aIocal) + &jocal
° (1 _f) * Aocal

SCALE_M NUS_LOCAL_ADD _LOCAL_ALPHA

f* (_ CIocgl) + aIocgl

f* (_alocgl) + aIocgl

Table 9.4 Scalefactorsfor texture color generation.

The rgbFactor and alphaFactor arguments to grTexCombine() can take on any of the values listed in the first
column. The second and third columns show the scale factor that will be used. €joca @Nd a0c4 represent the
color components generated by indexing and filtering from the mipmap stored on tmu; Coner @aNd 8other
represent the incoming color components from the neighboring TMU (refer to Figure 9.1).

If GR_COMBI NE_FACTOR _DETAI L_FACTOR Or GR_COVBI NE_FACTOR_ONE_M NUS_DETAI L_FACTORIis
specified, the scale factor employs the detail blend factor, called b in the table. See the discussion of
grTexDetailControl() in the next section for more information.

If GR_COVBI NE_FACTOR_LOD_FRACTI ON or GR_COVBI NE_FACTOR_ONE_M NUS_LOD_FRACTI ONis

specified, the scale factor employs the fractional part of the computed LOD, called | in the table. See the
discussion about computing an LOD earlier in this chapter for more information.

texture combine factor (prefixed with scale factor f if specified scale factor f if

GR_COMBI NE_FACTOR) as rgbFactor specified as
alphaFactor

NONE unspecified unspecified

ZERO 0 0

LOCAL Ciocal / 255 Qjocal /255

OTHER_ALPHA Aother | 255 Aother / 255

LOCAL_ALPHA Alocal | 255 Qlocal / 255

DETAI L_FACTOR b b

LOD_FRACTI ON | |

ONE 1 1

ONE_M NUS_LOCAL 1 —Cigea / 255 1—ajoca / 255

ONE_M NUS_OTHER_ALPHA 1—agne / 255 1 —agne / 255

ONE_M NUS_LOCAL_ALPHA 1—ajpca / 255 1—a0ca / 255

ONE_M NUS_DETAI L_FACTOR 1-b 1-b

Copyright © 1995-1998 3Dfx Interactive, Inc. 99

Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

[ONE_M NUS_LGD_FRACTT ON [1-1 [1-1 |

Examples of Configuring the Texture Pipeline

The following code examples illustrate how to configure the texture pipeline for different texture
mapping effects. The examples all assume that appropriate textures have been loaded and the
addressing mechanism in the TMU pointsto the right place. This processis described in detail in the
next chapter; the examples are repeated there, with the texture loading segments filled in. The examples
also assume that gr Color Combine() and/or gr AlphaCombine() utilize texture mapping by setting the
scale factor to GR_COVBI NE_FACTOR_TEXTURE_ALPHA Or

GR_COMBI NE_FACTOR_ONE_M NUS_TEXTURE_ALPHA.

The examplesin this chapter attempt to cover most of the texture mapping techniques of interest. Table
9.5 shows the principle texture mapping algorithms and describes the implementation in terms of
available TMUs. We show examples utilizing one or two TMUS, mipmaps split acrosstwo TMUs, and
a two-pass application.

Table9.5 The number of TMUs affects texture mapping functionality.

The number of texture mapping units deter mines the performance of advanced texture mapping rendering. The
table below describes the number of passes required to implement the texture mapping techniques supported
by the graphics subsystem. Note that in a system with three TMUSs, only the most complicated algorithm
(trilinear filtering with mipmapping, projected, and detail textures) requires more than one pass.

texture mapping performance

functionality one TMU two TMUs three TMUs
Point sampling with mipmapping one pass one pass one pass
Bilinear filtering with mipmapping one pass one pass one pass
Bilinear filtering with mipmapping and projected textures two pass one pass one pass
Bilinear filtering with mipmapping and detail textures two pass one pass one pass
Bilinear filtering with mipmapping, projected and detail textures | not supported two pass one pass
Trilinear filtering with mipmapping two pass one pass one pass
Trilinear filtering with mipmapping and projected textures not supported two pass one pass
Trilinear filtering with mipmapping and detail textures not supported two pass one pass
Trilinear filtering with mipmapping, projected, and detail not supported two pass two pass
textures

Configuring the Texture Pipeline for Decal Texture Mapping

The smplest texture mapping technique is decal mapping, which applies a texture to a polygon without
modification. Thefirst two entriesin Table 9.5 are decal mapping, differing only in the choice of
minification and magnification filters. Decal mapping is a single pass operation on all 3Dfx Interactive
graphics accelerator configurations.

Example 9.1 Setting up simple (decal) texture mapping.
The following code sets up the texture pipeline so that a texel is placed into the pixel pipeline without
modification. The code assumes that there is a single TMU, that a texture has already been loaded into texture

100 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

9. Texture Mapping

memory with the texture base address pointing to it, and that the color combine unit is configured to use the
texture color and/or alpha value.

gr TexCombi ne(GR_TMJO, GR_COVBI NE_FUNCTI ON_LOCAL,

GR_COMBI NE_FACTCR_NONE,

GR_COMVBI NE_FUNCTI ON_LOCAL, GR_COwVBI NE_FACTOR_NONE,
FXFALSE, FXFALSE);

Configuring the Texture Pipelinefor Projected Texture Mapping

Interesting spotlight effects are possible by multiplying two texture maps against each other. For
example, one texture map can be an intensity map (e.g., a spotlight) and the other can be a source
texture. Recall that the texture RGBA values from the “ upstream” TMU21 become the other input to
the “downstream” TMUO. In Example 9.2, the spotlight texture is upstream, the source texture is
downstream and the resulting RGBA iequre = RGBAgotiight X RGBAsource-

Example 9.2 Applying a modulated (projected) texture.

The code segment bel ow assumes that the texture maps have already been loaded: an intensity map for the
spotlight in TMUO and a source texture in TMUZL. The resulting texture RGBA is a product of the texels chosen
from the two textures. The color combine unit must be configured to use the output from the texture pipeline.

gr TexConbi ne(GR_TMJUO,
GR COMBI NE_FUNCTI ON_SCALE_OTHER, GR_COMWBI NE_FACTOR_LOCAL,
GR COMVBI NE FUNCTI O\l SCALE OTHER, GR COMVBI NE FACTO? LOCAL,
FXFALSE, FXFALSE);

gr TexConbi ne(GR_TMJL,
GR_COVBI NE_FUNCTI ON_LOCAL, GR_COvBI NE_FACTOR_NONE,
GR COmVBI NE FUNCTI O\l LOCAL, GR COMVBI NE FACTO? NONE,
FXFALSE, FXFALSE);

Configuring the Texture Pipelinefor Trilinear Texture Mapping

When doing standard mipmapping, noticeable banding can occur because of the visible differencesin
mipmap levels. One way around thisis to blend two separate textures within a mipmap based on the
LOD (level of detail) fraction bits. Thisis known as mipmap blending which, in conjunction with
bilinear filtering, is referred to as trilinear texture mapping. To perform trilinear texture mapping the
application must download a texture specifically for use with trilinear mipmapping and then use this
texture only for blended mipmapping operations.

When using texture combining to implement mipmap blending (i.e., trilinear texture mapping),
mipmaps must be created specifically for trilinear texture mapping on each Texelfx chip. The odd levels
must be downloaded to one chip, and the even levels must be downloaded to another chip. The
mipmaps must have the trilinear variable set to FXTRUE (see Chapter 10). The texture combine unit on
the downstream TMU is set differently, depending on whether it holds the even or the odd LODs. The
upstream TMU always uses decal mapping.

If atexture will be used for both trilinear filtering and another combine operation (but not
simultaneoudly), it must be allocated and downloaded twice, once with LODblend set to FXTRUE and
the other time with LODblend set to FXFALSE.

Copyright © 1995-1998 3Dfx Interactive, Inc. 101
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Example 9.3 Using trilinear filtering: mipmap blending with bilinear filtering.

The first code segment shows the texture combine unit configuration for trilinear mipmapping when the even
LODs are stored in TMUO and the odd ones arein TMU1. As usual, the code assumes that the textures are
loaded, the TMU base registers are pointing to them, and the color combine unit is configured to make use of
the resulting RGBA value.

gr TexConbi ne(GR_TMJUO,
GR_COVBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD LCCAL,
GR_COwvBI NE FACTOR _ L(I) FRACTI ON,
GR_COwvBI NE FUNCTI O\l SCALE M NUS_LOCAL_ADD LOCAL,
GR_COwvBI NE FACTOR _ L(I) FRACTI ON,
FXFALSE, FXFALSE)

gr TexCombi ne(GR_TMJL, GR_COVBI NE_FUNCTI ON_LOCAL,

GR_COMBI NE_FACTOR_NONE,
GR_ COMBI NE_FUNCTI ON_LOCAL, GR_COMVBI NE_FACTOR_NONE,
FXFALSE, FXFALSE);

This second code segment gives the proper gr TexCombine() configuration when the situation is reversed: the
odd LODs in the mipmap are on TMUO while the even ones are upstream on TMU1. Note the difference: the
setting of the rgbl nvert and alphal nvert parameters. e make the same assumptions as above.

gr TexConbi ne(GR_TMJUO,
GR_COVBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD LCCAL,
GR_COwvBI NE FACTOR O\IE M NUS L(I) FRACTI ON,
GR_COwvBI NE FUNCTI O\l SCALE M NUS LOCAL_ADD LOCAL,
GR_COwvBI NE FACTOR O\IE M NUS L(I) FRACTI ON,
FXFALSE, FXFALSE)

gr TexCombi ne(GR_TMJL, GR_COWVBI NE_FUNCTI ON_LOCAL,

GR_COMBI NE_FACTOR_NONE,
GR_ COMBI NE_FUNCTI ON_LOCAL, GR_COMVBI NE_FACTOR_NONE,
FXFALSE, FXFALSE);

Configuring the Texture Pipeline for Composite Texturing

When abilinear-filtered texture-mapped surface is viewed closdly, the resulting image may be blurry
and overly soft. A technique known as composite texturing can remedy this blurriness. Composite
texturing blends two textures together based on their LOD values. One texture represents the overall
texture look, and the other texture represents the details that should be seen when the texture is viewed
closely. For example, brick can be represented with atiled brick pattern. As the viewer moves closer to
the wall, pits and cracks in the bricks could begin to appear by blending a separate “ pits and cracks’
texture into the brick based on the LOD value.

The Glide function gr TexDetail Control () manages the various parameters involved when performing
composite texture mapping.

void gr TexDetail Control(GrChipID_t tmu, int detailBias, FxU8 detail Scale, float detailMax)

The first argument specifiesthe TMU to modify; valid values are GR_TMU0, GR_TMUJ1, and GR_TM.2.
The second argument, detail Bias, controls where the blending between the two textures beginsand is
an integer in the range [-32..31]. The detail Scale argument controls the steepness of the blend; valid
values are [0..7]. The scale is computed as 2@ The detail Max argument specifies the maximum
blending that will occur and isin the range [0..1].

102 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

9. Texture Mapping

Detail texturing refers to the effect where the blend between two textures in a texture combine unit is a
function of the LOD calculated for each pixel. gr TexDetailControl() controls how the detail blending
factor, b, is computed from LOD. The detail Bias parameter controls where the blending begins; the
detail Scale parameter controls how fast the detail shows up; and the detailMax parameter controls the
maximum blending that occurs.

b = min(detailMax, max(O, (detailBias-LOD) << detailScale) / 255.0)

where LOD isthe calculated LOD before gr TexL odBiasValue() is added. The detail blending factor is
utilized by calling gr TexCombine() with an rgbFunction of GR_COvBI NE_FUNCTI ON_BLEND and an
rgbFactor of GR_COVBI NE_FACTOR DETAI L_FACTOR to compute:

Cout = D(Caetail texture) + (1-0)(Crrain_ texture)

An LOD of nis caculated when a pixel covers approximately 2" texels. For example, when a pixel
covers approximately one texel, the LOD is 0; when a pixel covers four texels, the LOD is 1; when a
pixel covers 16 texels, the LOD is 2.

Detail blending occursin the downstream TMU. Since the detail texture and main texture typically
have very different computed LODs, the detail texturing control settings depend on which textureisin
the downstream TMU.

Example 9.4 Creating a composite texture.

The code segment below creates a composite texture by adding details to the primary texture as the viewer
approaches. The primary texture isloaded onto TMUO while the detail texture is upstream on TMUL. The
scale factor GR_COWVBI NE_FACTOR_DETAI L_FACTOR creates the composite on TMUO, while TMU1 does

decal mapping.

gr TexConbi ne(GR_TMJUO,
GR_COMVBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD_LOCAL,

GR_COMBI NE_FACTOR_DETAI L_FACTOR,

GR_COVBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD LOCAL,

GR_COMBI NE_FACTOR_DETAI L_FACTOR,

FXFALSE, FXFALSE);

gr TexCombi ne(GR_TMJL, GR_COWBI NE_FUNCTI ON_LOCAL,

GR_COMBI NE_FACTOR_NONE,
GR_COVBI NE_FUNCTI ON_LOCAL, GR_COMBI NE_FACTOR_NONE,
FXFALSE, FXFALSE);

Copyright © 1995-1998 3Dfx Interactive, Inc. 103
Proprietary and Confidential Printed 08/05/98 10:30

10. Managing Texture Memory

In This Chapter

In the last chapter, the routines that control texel selection and texture combining on the TMU were
presented. The discussion assumed that appropriate textures had already been loaded into the texture
memory. This chapter describes the multitude of texture formats that Glide supports and the routines
that download texture maps and manage texture memory.

You will learn about:

V the texture formats supported by Glide, including special formats for compressed textures
and a color palette.

how to allocate memory for all or part of a mipmap.
how to download al or part of a mipmap.
how to designate a specific texture map as the texel source.

how to split a mipmap across two TMUS.

4 4 4 4 <«

how to download and access a fragmented mipmap, one in which successive LODs occupy
non-contiguous texture memory.

<

how to download a color palette or a narrow channel decompression table.

V¥ how to download atexture map from afile.

Texture Map Formats

Texture memory is a valuable and limited resource. Glide supports a multitude of texture formatsin
order to help the application programmer use texture memory wisely. Each format encodes the color
information for each texel in a different way; most compressit in some manner. Texels have either 8 or
16 hits, depending on the texture format, and are expanded to 32 bits before being sent to the texture
combine unit.

Glide uses symbolic names for the texture formats; the name describes the form of encoding for the
color information and the precision. For example:

Texture formats GR_TEXFMI_RGB_332 and GR_TEXFMI_ARGB_8332 use three bits each for red and
green and two bits for blue. An 8-bit alpha isincluded in the latter.

Texture formats GR_TEXFMI_RGB_565, GR_ TEXFMI_ARGB_1555, and GR_TEXFMI_ARGB_4444
provide three different ways to compress three or four 8-bit color component values into 16 bits.
The first format discards alpha and uses five bits for red and blue, and six bits for green. The
second one uses five bits each for red, green, and blue, and saves the extra bit for alpha. The third
format treats all four components equally, using four bits for each.

Copyright © 1995- 1998 3Dfx Interactive, Inc. 105
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Texture formats GR_TEXFMT_I NTENSI TY_8, GR_TEXFMI_ALPHA_| NTENSI TY_44, and
GR_TEXFMI_ALPHA | NTENSI TY_88 contain an intensity value rather than color components and
can model monochrome lighting effects. Example 9.2 in the previous chapter uses an intensity
texture in combination with another to produce a modulated texture.

Texture format GR_TEXFMI_ALPHA_8 contains only an 8-bit alpha value. When the texel is
expanded to a 32-bit ARGB form, the alpha value is used for red, green, and blue as well.

Texture formats GR_TEXFMTI_YI Q 422 and GR_TEXFMI_AYI Q 8422 use a harrow channgl
compression technique to encode the color information. Each TMU has storage for two distinct
decompression tables that trandate the encoded information into 32-bit colors. Narrow channel
compression is described in detail below.

Texture formats GR_TEXFMI_P_8 and GR_TEXFMI_AP_88 implement a color palette, described
below. Each TMU has room for one 256-entry color palette.

Table 10.1 shows all thirteen texture formats, detailing the format of atexe and the expansion to 32
bits for each texture format.

Narrow Channel Compression

The 3Dfx Interactive graphics accelerators provide aform of narrow channel compression that uses a
Y AB color space based on intensity/chrominance information. The compression is based on an
algorithm that compresses a 24-bit RGB value to an 8-bit YAB format with little loss in precision. This
Y AB compression algorithm is especially suited to texture mapping, as textures typically contain very
similar color components. The agorithm is performed by the host CPU, and Y AB compressed textures
are passed to SST-1. The advantages of using compressed textures are increased effective texture
storage space and lower bandwidth requirements to perform texture filtering.

The YAB color space is represented with eight bits per pixel, and, like the GR_TEXTFMI_RGB_332
representation (see Table 10.1), it allocates specific fields in those eight bits to specific components:
four bitsfor Y and two bits each for A and B. For example, if the mapping from RGB to YAB is
accomplished by the following linear matrix transformation,

Y =0.299*red + 0.587*green + 0.114*blue
A = 0.596*red + 0.275*green + 0.321*blue
B = 0.212*red + 0.523*green + 0.311*blue Equation Set 1

itiscaled YIQ compression. Two Glide texture formats utilize Y1Q compression:
GR_TEXTFMI_YI Q 422 and GR_TEXTFMI_AYI Q 8422.

Compression is achieved by quantizing the Y, A, and B space more coarsely than the RGB space (by
allocating fewer bits to each channel in Y AB space) without degrading the quality of the image
substantialy. Also, instead of alocating the same number of bits to each channel (as is done when
compressing RGB values directly), we can alocate more bits to channels carrying more information,
and fewer bits otherwise. For example, when the image is represented in Y1Q space with the equations
above, it is possibleto alocate only 16 distinct valuesto Y, which carries the intensity variationsin the
image, and only 4 distinct values for the | and Q channels, which carry the hue information. Hence, the
origina 24-bit RGB image can be represented in Y1Q space with only eight bits of information,
reducing the space requirements for the texture by afactor of three.

106 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

10. Managing Texture Memory

Table 10.1 Texture formats.
The table bel ow shows the available texture formats and describes how texture data is expanded into 32-bit

RGBA color. It also shows how 32-bit RGBA texture information is derived from the YAB compression texture
formats. Thisis detailed in the Narrow Channel Compression section in this chapter.

symbolic name (prefixed
with GR_TEXFMT_)

compressed form in texture memory

expanded 32-bit ARGB form

RGB_332 alpha red green blue
8-bit RGB I o e B L b
(3-3-2)] 10] ‘ l—gre—en green gem iuue uU? :Hue; ;uuer
gl l:()l4Y22 alpha red green blue
oty bttt W N e i Lo
(4-2-2) Y AlsB 1111111 1 inedYj+nedi+ncdQli | | nod¥]+nodij+ nedQ] | | ined] Y]nod{i}+ ned Q] ;
thl)D'HAA_ISh alpha red green blue
-bit Alpha
e | | BERE e |1 el eed 1] e
;BNJ?TSL TY._t8 alpha red green blue
-oitintensty - VP L IR 111 E
intensity 11111111 intensity intensity | intensity
ALPHA_| NTENSI TY_44 alpha red green blue
8-bit Alpha and Intensity)] . T O T T e e
(4-4) dlbha [iensty | dlpna | alpha | intensity (fintensiy ; [intensity || Cintensity | atensity intensiy |
P_8 alpha red green blue
8-bit Palette
pal ette 11111111 palette red[7:0] palette green[7:0] palette blug[7:0]
ﬁ—f}i’éB alpha red green blue
-bit
(8332 B Ired green IS | A dpha ed | [red | fed| {oreen | green | jgreen fblue; (Blue: {Blue {biuei
AY1 Q 8422 alpha red green blue
16-bit AY1Q T
(8-4-2-2) ghie A I flbha nodfY]sneef 1+ nec{Q]] | neefy]+nodfij+ nodQl | | {nocfY Feneef}+ necfQ)
RGB_‘565 alpha red
16-bit RGB 1 ™ T
(5_6_5) red green 11111111 e g |
ARGB_1555 alpha alpha red
16-bit ARGB |]
(1-5-5-5) red green aaaaaaaa e :
ARGB_4444 alpha red green blue
16-bit ARGB L N [
(4—4-4-4) alpha i | il E —alph—a— ‘ alpha I riuj I “ ra:! i i 7:
';lé Ptll-l?_Al | g;';'\a‘s:IJY_E;E; alpha red green blue
Intensity (8-8) alpha intensity I faha || mesty [nensity | Jtensty
AP_88 alpha red green blue
16-bit Alpha and Palette 1w
(8-8) alpha pa|a-[e Valprha | palette red[7:0] palette green[7:0] palette bluef7:0]
Copyright O 1995-1998 3Dfx Interactive, Inc. 107
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

The decompression from Y1Q to RGB is the inverse of the compression equations above. The RGB
values can be recovered as follows:

red=Y +0.95-A +0.62-B
blue=Y —-0.28-A—-0.64-B
green=Y —1.11.-A+1.73-B Equation Set 2

Implementing these equations in hardware as formulated above is expensive: the Y AB components must
be scaled and two multipliers per component are needed. In addition, when compressed textures are
used in conjunction with bilinear filtering, 24 multipliers are needed, since four texels must be made
available smultaneoudly. But, by rewriting the equations as vectors (shown below) and building a
small lookup table with pre-computed RGB values, the need for multipliersis eliminated, at least in the
decompression circuitry.

(red, green, blue) = (Y, Y, Y) + (0.95-A, —0.28-A, —1.11- A) + (0.62-B, —0.64-B, ~1.73-B) Equation 3

The four entriesin the lookup table for A, then, represent the values of red, green, and blue calculated
for four distinct values of A: —256, -85, 85, and 255. And the four entries in the lookup table for B
represent the RGB values calculated for four distinct values of B. Y isimplemented with alookup table
aswell, but with sixteen distinct entries. Note that the quantized values of Y, A, and B can be any four
values and don't necessarily have to be evenly spaced or cover the full range of values.

Note that the graphics hardware will work with any set of similar compression/decompression
equations: the constants are contained in the table entries and the mechanics of the decompression are
independent of them. The congtants in the equations above are the ones used in Y1Q space and were
chosen to optimize the compression of flesh tones and backgrounds in photographs and videos. Most
computer graphics textures, like terrain, sky, building facades, and so on, are not necessarily aigned
along the orange-blue and purple-green axes of Y1Q space and benefit from a different set of constants.
The 3Dfx Interactive TexUS texture utility software provides routines for generating compressed
textures using the Y1Q equations shown above. It also provides aneural net program that can optimize
the choice of factorsin the equation for a given texture.

The Color Palette

An 8-hit color palette isimplemented in al TMU chips after Revision 0. It is a 256-entry RGB table
that is accessed during rendering by texture formats GR_TEXFMI_P_8 and GR_TEXFMI_AP_88 (See
Table 10.1). These two texture formats store an 8-bit offset into the color palette for each texel in the
texture map. During rendering, four texels are looked up simultaneously, each with an independent 8-
bit address. The process of downloading NCC tables and color palettesis described later in this
chapter.

Glide.30 introduces and color palette extension that provides an aternate palette format containing 6-
bit ARGB entriesinstead of 8-bit RGB entries. It is described in Chapter 13.

108 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

10. Managing Texture Memory

Figure 10.1 The color palette.

TMU Revision 1 provides a color palette. The color palette holds 256 RGB colors that are retrieved during
rendering, with a texture map utilizing one of the two palette texture formats: GR_TEXFMI_P_8 or
GR_TEXFMT_AP_88. The texel in these two formats is an offset into the color palette; GR_TEXFMI_AP_88
appends an alpha value to the palette offset. In addition, see the discussion of the PALETTEG666 extension in
Chapter 13.

256-entry color palette
texture format
GR TEXEMT P 8 red green blue

[—— — [OXFF | red[p] [green[p]] bluefp] |

texture format
GR_TEXFMI_AP_88

IIE—’ _" a | red[p] ‘green[p]| bluelp] ‘

Texture Memory

Each TMU has its own texture memory, which rangesin size from 2MB to 4MB depending on the
system configuration. To download a texture into texture memory, one must complete the following

steps:

STEP1: Determine how much memory isrequired for the texture.

STEP2: Determine the starting address and extent of free space. Is it adequate for the texture? Will a
mipmap level straddle the 2Mbyte boundary in texture memory (thereby causing an error)?

STEP3: Download the texture.

STEP4: Identify the texture as the texel source for subsequent texture mapping operations.

Glide does no texture memory management; rather, it includes several functions that allow the
application to manage it.

Computing the Size of a Mipmap

The Glide functions gr TexCalcM emRequired() and gr TexTextureM emRequired() determine the storage
requirements of a mipmap. The size returned by these functions includes any bytes required to pad the
texture to a hardware-specific alignment boundary, and may be added to the starting address of the
texture to determine the next available location in texture memory.

Both routines use the texture format, aspect ratio, and range of LODs in the mipmap to compute the
size. These vaues are arguments to gr TexCalcM emRequired(); they are extracted from a GrTexInfo
structure that is passed to gr TexTextureM emRequired(). The other difference between the two routines
isthat gr TexTextureMemRequired() has an evenOdd argument and can determine the memory
requirements of a texture that will be split acrosstwo TMUs for trilinear filtering applications (see
Example 9.3 in the previous chapter).

Copyright © 1995-1998 3Dfx Interactive, Inc. 109
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Table 10.2 Glide constants that specify argumentsto grTex functions.
The table below lists the constants used to name the values that can be specified as arguments to functionsin
the grTex family. The first column lists the argument names that are used in the function specifications. The
second column gives the Glide type for the argument. The third column lists the constant name, and the fourth
column gives a description.

If the function and itstypeis then these constants are valid values | and these are the consequences of
argument is named choosing that value.
tmu GrChiplD_t R Selects the target TMU. The
GR_TMU2 constant names it.
smallLOD GrLOD_t %{g{g_igg The number in the constant is the
largeLOD GRLOD LO® 64 largest of the texture. The aspect
thisLOD GR LOD LOG2_32 ratio determines the smaller
GR_LOD_LOG2_16 . .
GR LOD LO®2_8 dimension.
GR_LOD_LOG2_4
GR_LOD LOG2_2
GR LOD LO&2_1
ectRatio GrAspectRatio_t GR_ASPECT_LOG2_8x1 -
asp GROASPECT LOG2 4x1 The constant se_ts the_aspect ratio
GR_ASPECT_LOG2_2x1 of the textures in a mipmap.
GR_ASPECT_LOG2_1x1
GR_ASPECT_LOG2_1x2
GR_ASPECT_LOG2_1x4
GR_ASPECT_LOG2_1x8
format GrTextureFormat_t | GR_TEXFMI_RGB_332 .
GRTEXEMI Y1 O 422 See Table 10.1 for a description
GR_TEXFMI_ALPHA 8 of the texture formats.
GR_TEXFMT_| NTENSI TY_8
GR_TEXFMT_ALPHA_| NTENSI TY_44
GR_TEXFMI_P_8
GR_TEXFMI_ARGB_8332
GR_TEXFMI_AY| Q 8422
GR_TEXFMI_RGB_565
GR_TEXFMI_ARGB_1555
GR_TEXFMI_ARGB_4444
GR_TEXFMT_ ALPHA_| NTENSI TY_88
GR_TEXFMI_AP_88
evenOdd FxU32 GR_M PMAPLEVELMASK_EVEN Even LODsare GR_LOD LOG2_256
GR_M PNMAPLEVELMASK_ODD -
GR_M PMAPLEVELMASK_BOTH GR_LOD_LOR2_64,
GR_LOD LOG2_16, GR_LOD_LOG2_4,
and GR LoD LOG2_1.
Odd LODsareGR_ LOD LOG2_128,
GR_LOD LOG2_32, GR_LOD_LOG_8,
and GR LoD LO®2_2.
range GrTexBaseRange_t | GR_TEXBASE 256 ecifies the base register when
g GR_TEXBASE_128 Sp €9 :
GR_TEXBASE_64 using more than one. A mipmap
GR_TEXBASE 32_TO 1 can be broken into four fragments.
The number in the constant
corresponds to the LOD number.
tableType GrTexTable_t %ﬂgﬂg Each TMU can have two NCC
table GR_TEX_PALETTE tables and a palette. Load them
one at atime with a general
purpose routine.
mipmapMode GrMipMapMode_t | GR M PMAP_DI SABLE Specifies the kind of mipmapping
o GR_M PMAP_NEAREST
GR_M PMAP_NEAREST DI THER to perform.
110 Copyright O 1995- 1998 3Dfx Interactive,

Printed 08/05/98 10:30 AM

Proprietary and Confide

10. Managing Texture Memory

FxU32 gr TexCalcM emRequired(GrLOD _t smallLOD,
GrLOD _t largeLOD,
GrAspectRatio_t aspectRatio,
GrTextureFormat_t format

)

gr TexCalcM emRequired() calculates and returns the amount of memory required by a mipmap of the
specified LOD range, aspect ratio, and format. The first two arguments, smallLOD and largeL OD,
define the range of LODs in the mipmap. The third argument, aspectRatio, specifies the aspect ratio of
the mipmap and the fourth argument, format, gives the texture format. All four arguments are specified
using Glide constants; the choices are listed in Table 10.2.

[} Applications should make no assumptions about texture alignment. Specifically,
applications should not assume that textures are aligned to 8-byte boundaries, as this
could change in future 3Dfx chipsets. In Glide 3.0 the gr Get() selector
GR_TEXTURE_ALI GN has been added so that developers can write code that will

automatically align textures correctly.
PORTING

NOTE

The memory requirements for the mipmap can be computed directly from these four parameters. The
LOD range determines the length of the longest edge of each LOD. The aspect ratio provides away to
compute the length of the shorter edge of the LOD and, hence, the number of texels in the mipmap. The
texture format determines the space requirements for one texel, which can be multiplied by the number
of texelsin order to compute the storage regquirements for the mipmap. The two functions described
here, gr TexCalcM emRequired() and gr TexTextureM emRequired(), will do the calculations.

Many of Glide' s texture management routines make use of the GrTexinfo structure to collect the
mipmap parameters together with the mipmap data.

The GrTexInfo structure has been changed in Glide 3.0:

[&
smallLodLog? is the logarithm base 2 of the largest dimension of the lowest
resolution mipmap. It replaces smallLod. The aspect ratio determines the smaller
dimension.
PORTING - largeLodLog? isthe logarithm base 2 of the largest dimension of the highest
NOTE

resolution mipmap. It replaces largelod.

aspectRatioLog? is the logarithm base 2 of the ratio of width to height. It replaces
aspectRatio. If the aspect ratio is positive, then swill be the larger dimension of the
mipmap; if it is negative, then t will be the larger dimension.

typedef struct {

GrLOD _t smallLodLog2;
GrLOD _t largel odLog2;
GrAspectRatio_t aspectRatioLog2;
GrTextureFormat_t format;
void *data;
Copyright © 1995-1998 3Dfx Interactive, Inc. 111

Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

} GrTexInfo;

FxU32 gr TexTextureM emRequired(FxU32 evenOdd, GrTexInfo *info)

gr TexTextureM emRequired() calculates and returns the number of bytes required to store the texture
described in the structure pointed to by info. The number returned may be added to the starting address
for atexture download to determine the next free location in texture memory.

The range of LODs in the mipmap is defined in the info structure. The other argument, evenOdd,
indicates whether even, odd, or all LODs within the specified range should be used in computing the
space requirements. For example, if the mipmap is used for trilinear filtering, the even LODs are
downloaded and used on one TMU, and the odd LODs on another. evenOdd is specified symbolically:
valid values are GR_M PMAPLEVELMASK_EVEN, GR_M PMAPLEVELMASK_0ODD, and

GR_M PMAPLEVELMASK_BOTH. Figure 10.2 describes the evenOdd flag and even and odd LODs. In
general, an LOD isevenif itssizeis an even power of 2, and odd otherwise. Thus, the even LODs are
GR LOD LOG2_ 256, GR LOD LOG2_64, GR LOD LOG2_16, GR LOD Loz 4, and GR Lob Loz 1. The other LODs
areodd: GR LoD LO®_128, GR LOD_LOG2_32, GR_LOD_LO&_8, and GR LOD LO®2_2.

Figure 10.2 The size of a mipmap depends on the setting of the evenOdd flag.
Suppose we have a GrTexInfo structure with data, as shown below.

i nfo\
smallLodLog2 GR_LOD_L0G2_8
largeLodLog2 GR_LOD_LOG2_128

GR_ASPECT_L0GZ__2x1

GR_TEXFMT_INTENSITY_B

aspectRatiolL.og2,
format

data "I6rR LoD _L0G2_128 I

The size returned by grTexTextureMemRequired() depends on the value of the evenOdd flag, as shown below.

LOD | width | height | number of bytes
GR_LOD_LOG2_128 128 64 213 = 8192 bytes
GR_LOD_LOG2_64 64 32 2" = 2048 bytes
GR_LOD_LOG2_32 32 16 2% = 512 bytes
GR_LOD_LOG2_16 16 8 2" = 128 bytes
GR_LOD_LOG2_8 8 4 2° = 32 bytes

or TexTextureMemRequired(GR_M PMAPLEVELMASK_BOTH, info) returns the sum of the sizesof all 5 LODs.
8192 + 2048 + 512 + 128 + 32 = 10,912 bytes

or TexTextureM emRequired(GR_M PMAPLEVELMASK_ODD, info) returns the sum of the
sizesof theodd LODs: GR LOD LO&_128, GR LOD LO&_32,and GR_ LOD LO&2_8.
8192 + 512 + 32 = 8,736 bytes

or TexTextureM emRequired(GR_M PMAPLEVELMASK_EVEN, info) returns the sum of the
sizes of theeven LODS. GR LOD LOG2_64 and GR_ LOD LOG2_16.

112 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

10. Managing Texture Memory

2048 + 128 = 2,176 bytes

Querying for Available Memory

Two Glide functions, gr TexMinAddress() and gr TexM axAddress() provide initial upper and lower
bounds on texture memory for the specified TMU. They each have one argument, tmu, which selects
the TMU on which to check the memory bounds.

FxU32 gr TexMinAddress(GrChipID_t tmu)
FxU32 gr TexM axAddress(GrChipID_t tmu)

gr TexMinAddress() and gr TexM axAddress() provideinitial values for free space pointersin a Glide
application. Be aware, however, that they always return the same values, regardless of whether any
textures have been downloaded.

gr TexMinAddress() returns the first location in texture memory into which a texture can be loaded.

gr TexMaxAddress() returns the last possible appropriately aligned address that can be used as a
starting address; only the smallest possible texture can be loaded there: the 1x1 texture
GR LOD LOG2_1.

Texture memory management can be ssimple, sophisticated, or somewhere in between, depending on
size and number of textures that will be loaded. The examples below show some straightforward
techniques.

One important restriction must be mentioned: a mipmap level cannot straddle the 2Mbyte boundary in
texture memory. That is, the addresses of the first and last wordsin the level must either both be
greater or both be less than 2 Mbytes (2*). One simple way to work around this limitation is to load
complete mipmaps on one side or the other, depending on the fit, as shown in Example 10.2.

Example 10.1 Will the mipmap fit?
This code segment illustrates a simple scenario where a single mipmap is loaded into an empty texture
memory on TMUO. Since thisisthe only texture that is loaded, there is no need to implement a free list.

FxU32 textureSi ze, startAddress;

textureSi ze = gr TexCal cMenRequi r ed(GR LOD LO&_1, GR LOD LOG2_256,
GR_ASPECT _LO&2_1x1, GR TEXFMI_ARGB 1555

);
start Address = gr TexM nAddr ess(GR_TMJUO0) ;

if (startAddress + textureSize <= gr TexMaxAddress(GR_TMJU))
downl oad_t he_t ext ure;

Example 10.2 Setting up to load several mipmaps.
This code segment gets a little more real than the one above by keeping a pointer to the next available
starting address for mipmaps. To get a starting address for a texture, call the subroutine.

#def i ne TEXVEM 2MB_EDGE 2097152
FxU32 textureSi ze, nextTexture, |astTexture;

Copyright © 1995-1998 3Dfx Interactive, Inc. 113
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

/* these two lines initialize the bounds and shoul d be part */
/* of the initialization code in the main program */
next Texture = gr TexM nAddr ess(GR_TMU0) ;
| ast Texture = gr TexMaxAddr ess(GR_TMJ0)
| ong get Start Address(FxU32 evenOdd, G Texlnfo *info)
{ long start;
textureSi ze = gr TexText ureMenRequi r ed(evenGdd, info);
start = next Texture;

/* check for 2MB edge and space past it if necessary */
if ((start< TEXVMEM 2MB_EDGE) && (start+textureSi ze> TEXVEM 2MB_EDGE))
start = TEXMEM 2MB_EDCGE

next Texture += textureSize;
if (nextTexture <= | astTexture) return start;

el se {
next Texture = start;
return -1;

}

Downloading Mipmaps

Download a mipmap into texture memory with the function gr TexDownloadMipMap(). Replace an
individual mipmap level with gr TexDownloadMipM apL evel(). Replace part of an LOD with
gr TexDownloadMipM apL evelPartial ().

The first argument to all three routines is tmu, which designates the target TMU for the load. Each of
the three routines also provides a startAddress argument that specifies an offset into texture memory
where the texture will be loaded, and an evenOdd argument that indicates which levelsto load
(specified as one of GR_M PMAPLEVELMASK_EVEN, GR_M PMAPLEVELMASK_ODD, Or

GR_M PMAPLEVELMASK_BOTH). startAddress must lie between the vaues returned by

gr TexMinAddress() and gr TexM axAddress() and must be appropriately aligned.

gr TexDownloadMipM ap() expects the mipmap parameters (aspect ratio, texture format, LOD range,
and the texture data) in a GrTexInfo structure; the other two routines have arguments for each
parameter.

Downloading All or Part of a Mipmap
Use gr TexDownloadMipM ap() to load a mipmap.

typedef struct {

GrLOD _t smallLodLog2;
GrLOD _t largelodLog2;
GrAspectRatio_t aspectRatioLog2;
GrTextureFormat_t format;
void *data;

} GrTexinfo;

void gr TexDownloadMipM ap(GrChipID_t tmu, FxU32 startAddress, FxU32 evenOdd, GrTexInfo *info)

114 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

10. Managing Texture Memory

Figure 10.3 Downloading a mipmap.
Suppose we have a GrTexInfo structure with data, as shown below.

info\

GR_LOD_L0G2_8

smallLod
largeLod GR_LOD_L0OG2_128
aspectRatio GR_ASPECT_L0G2_2x1

format] GR_TEXFMT_INTENSITY_8

o
data "[6rR LoD _L0G2_128 I

The three drawings below show startAddress and its relationship to where and what textures are loaded, based
on the evenOdd value. The first grTexDownloadMipMap() call loads all LODs between GR_LOD_LOG2_128
and GR_LOD LO&_8.

y

gr TexDownloadMipM ap(GR_TMUO, startAddress, GR_MIPMAPLEVELMASK_BOTH, info)

TMUO

The second scenario loads only the odd LODs. Recall that the largest dimension of odd LODs is an odd power
of two. Inthiscase, GR LOD LO&_128,GR LOD LO&_32,and GR_LOD LO&X_8 are odd LODs.

gr TexDownloadMipM ap(GR_TMUO, startAddress, GR_MIPMAPLEVELMASK_ODD, info)

TMUO

The final scenario loads only the even LODs. Note that no modification is necessary to the valuesin the

GrTexInfo structure pointed to by info. Glide will skip over the texture data for the odd LODs, only loading
the even ones.

gr TexDownloadMipM ap(GR_TMUO, startAddress, GR_MIPMAPLEVELMASK_EVEN, info)

TMUO

Copyright © 1995-1998 3Dfx Interactive, Inc. 115
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Replacing a Single LOD

One form of smple texture memory management requires only that the application swap mipmaps with
identical memory footprints (i.e., same format, dimensions, and mipmap levels) in and out of the same
texture memory area. Texture replacement is a simple facility for doing texture map animation, and it is
also amethod of doing dynamic texture management: the local texture buffer is split into discrete
texture regions that are updated as needed. To replace a mipmap, use the Glide function

gr TexDownloadMipM ap() with new data. Alternatively, an application can swap out individua mipmap
levels within a mipmap using gr TexDownloadMipM apL evel ().

void gr TexDownloadMipM apL evel(GrChipID_t tmu,
FxU32 startAddress,
GrLOD_t thisLOD,
GrLOD _t largeLOD,
GrAspectRatio_t aspectRatio,
GrTextureFormat_ t format,
FxU32 evenOdd,
void *data

)

gr TexDownloadMipMapL evel () replaces a single mipmap level in a previousy downloaded mipmap
that begins at startAddress. Argument largelL OD specifies the largest (and first) LOD in the
downloaded mipmap; the aspectRatio and format locate the first texel of thisLOD. The data argument
points to the first texel of the new LOD, as shown in Figure 10.4.

116 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

10. Managing Texture Memory

Figure 10.4 Replacing a single LOD.
Suppose a mipmap has been loaded into TMU1 with the following command and data.

gr TexDownloadMipMap(GR_TMJ1,startAddress,GR_M PMAPLEVELMASK_BOTH, info)

info\

GR_LOD_L0G2_8

smallLod
largel od GR_LOD_LOG2_256
aspectRatio GR_ASPECT_L0G2_1x1
format GR_TEXFMT_ARGB_1555
data o— —>»

GR_LOD_L0G2_256

GR_LOD_L0G2_128 I

Toreplace GR_LOD LO&X_128, use the following call to grTexDownloadMipMapL evel ().

gr TexDownloadMipMapL evel (GR_TMU1, startAddress, GR_LOD_128, info® largel.od,
info® aspectRatio, info® format,
GR_MIPMAPLEVELMASK_BOTH, newData)

TMU1

Replacing Part of an LOD

Applications that want to replace one of the large LODsin a mipmap, but aso want to maintain a
snappy frame rate, may opt to replace the LOD afew rows at atime with
gr TexDownloadMipM apL evelPartial ().

void gr TexDownloadMipMapL evelPartial(GrChiplD_t tmu,
FxU32 startAddress,
GrLOD_t thisLOD,
GrLOD _t largeLOD,
GrAspectRatio_t aspectRatio,
GrTextureFormat_t format,
FxU32 evenOdd,
void *data,
int firstRow,
int lastRow
Copyright © 1995-1998 3Dfx Interactive, Inc. 117

Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

)

The first seven arguments to gr TexDownloadMipM apL evel Partial() are the same as those to

gr TexDownloadMipMapL evel(): the tmu that the texture is loaded on, the starting address, the LOD
that will be partidly replaced, the largest LOD in the mipmap, the aspect ratio and texture format of
the downloaded texture, and the evenOdd flag. The data argument points to a stream of texels that will
overwrite those in texture memory, starting at the row firstRow in thisLOD and continuing through
|astRow. To download one row of the texture, use the same vaue for firstRow and lastRow.

Figure 10.5 Replacing a few rows of an LOD.
Suppose a mipmap has been loaded into TMUO with the following command and data.

gr TexDownloadMipMap(GR_TMJO, startAddress, GR_M PMAPLEVELMASK_BOTH, info)

info\

srallLod GR_LOD_L0G2_32
largeL od GR_LOD_L0G2_256
aspectRatio GR_ASPECT_LOG2_8x1
format GR_TEXFMT_AP_88
data — 4

GR_LOD_L0G2_256

GR_LOD_L0G2_128 I

Toreplace GR_LOD LO&_256 in chunks, use a series of calls to grTexDownloadMipMapL evel Partial ():

for (row=0; row<256; r owt+=64)
gr TexDownloadMipM apL evel(GR_TMJ0, startAddress, GR_LOD LOX_256, info® largelodLog?,
info® aspectRatioLog2, info® format, GR_M PMAPLEVELMASK_BOTH, newData, row, row +

63);
neNData\
PO === === == === - oo
startAddress row63
TMUO
B e
118 Copyright O 1995- 1998 3Dfx Interactive,

Printed 08/05/98 10:30 AM Proprietary and Confide

10. Managing Texture Memory

I dentifying a Mipmap as the Texe Source

Thefina step isto register the newly loaded mipmap with the TMU as the source for texels. The Glide
function gr TexSour ce() provides this service.

void gr TexSour ce(GrChiplD_t tmu, FxU32 startAddress, FxU32 evenOdd, GrTexInfo *info)

gr TexSour ce() sets up the area of texture memory that isto be used as a source for subsequent texture
mapping operations. The starting address, specified as argument startAddress, should be the same one
that was used as an argument to gr TexDownloadMipM ap(), or the starting address used for the largest
mipmap level when using gr TexDownloadMipM apL evel().

Here are the three examples from Chapter 9, with additional lines of code to download the appropriate
textures.

Example 10.3 Downloading a texture for decal texture mapping.

The following code sets up the texture pipeline so that a texel is placed into the pixel pipeline without
modification. The code assumes that the color combine unit is configured to use the texture color and/or alpha
value.

FxU32 textureSize, startAddress;

G TexI nfo info;

FxUl6 m prmap[256*256 + 128*128 + 64*64 + 32*32 + 256 + 64 + 16 + 4 +
1];

i nfo.smal | LodLog?2 GR LOD LO&2_1;

i nfo. |l argeLodLog?2 GR_LOD_LO&X2_256;

i nfo. aspect Rati oLog2 = GR_ASPECT_LO&_1x1;
info.format = GR_TEXFMI_1555;

info.data = nm pmap;

textureSi ze = gr TexText ur eMenRequi r ed(GR_M PMAPLEVELMASK _BOTH, &i nf 0);
start Address = gr TexM nAddr ess(GR_TMJUO) ;
if ((startAddress + textureSize)> gr TexMaxAddress(GR_TMJU0)) {
printf(“error: texture too big for TMJO\n");
exit();
}

gr TexDownl oadM pMap(GR_TMJO, start Address, GR_M PVMAPLEVELMASK BOTH,
& nfo);
gr TexSour ce(GR_TMJO, startAddress, GR_M PMAPLEVELMASK BOTH, &i nfo);

gr TexCombi ne(GR_TMJO, GR_COVBI NE_FUNCTI ON_LOCAL,

GR_COMBI NE_FACTOR_NONE,
GR_COVBI NE_FUNCTI ON_LOCAL, GR_COMBI NE_FACTOR_NONE,
FXFALSE, FXFALSE);

Copyright © 1995-1998 3Dfx Interactive, Inc. 119
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Example 10.4 Downloading two textures for modulated or composite texture mapping.
The code segment below loads an intensity map for a spotlight in TMUO and a source texture in TMU1. The
resulting texture RGBA is a product of the texels chosen from the two textures. The color combine unit must be
configured to use the output from the texture pipeline.

FxU32 textureSize[2], startAddress[2];

G TexInfo src, spot;
FxUl6 srcdata[256*256 + 128*128 + 64*64 + 32*32 + 256 + 64 + 16 + 4 +

1];

FxU8 spot dat a[256*256 + 128*128 + 64*64 + 32*32 + 256 + 64 + 16 + 4 +
1];

src.smal | LodLog2 = spot.smallLodLog2 = GR_ LOD LO&X_1;

src. | argeLodLog2 = spot.|largeLodLog?2 = GR_LOD LOG2_256

src. aspect Rati oLog2 = spot. aspect Rati oLog2 =
src.format = GR_TEXFMI_1555;

src.data = srcdata;

spot.format = GR_TEXFMI_I NTENSI TY_S;

spot . data = spotdat a;

textureSi ze[0] = gr TexText ur eMenRequi r ed(GR_M PMAPLEVELNMASK_ BOTH,

&spot) ;

start Address[0] = gr TexM nAddr ess(GR_TMJUO0) ;

if ((startAddress[0] + textureSize[0])> gr TexMaxAddress(GR_TMJ0)) {
printf(“error: spotlight texture too big for TMJIO\n");

exit();
}
textureSi ze[1] = gr TexText ur eMenRequi r ed(GR_M PMAPLEVELNMASK_ BOTH,
&src);

start Address[1] = gr TexM nAddress(GR_TMJA);

if ((startAddress[1] + textureSize[1l])> gr TexMaxAddress(GR_TMJL)) {
printf(“error: source texture too big for TMJ1\n");
exit();

gr TexDownl oadM pMap(GR_TMJO, st art Addr ess[0] , GR_M PVAPLEVELMASK BOTH,
&spot) ;
gr TexSour ce(GR_TMUO, st ar t Addr ess[0] , GR_M PVAPLEVELMASK_BOTH, &spot);
gr TexCombi ne(GR_TMJU0, GR_COMBI NE_FUNCTI ON_SCALE_OTHER,
GR_COMVBI NE_FACTOR LOCAL,
GR_COMVBI NE_FUNCTI ON_SCALE_OTHER, GR_COMBI NE_FACTOR_LOCAL,
FXFALSE, FXFALSE);

gr TexDownl oadM pMap(GR_TMJ1, st art Addr ess[1] , GR_M PVAPLEVELMASK BOTH,

&src);
gr TexSour ce(GR_TMJL, st art Addr ess[1] , GR_M PVMAPLEVELMASK_BOTH, &src);
gr TexConbi ne(GR_TMJL,

GR_COVBI NE_FUNCTI ON_LOCAL, GR_COVBI NE_FACTOR NONE,
GR_COVBI NE_FUNCTI ON_LOCAL, GR COVBI NE_FACTOR NONE,
FXFALSE, FXFALSE);

120 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

10. Managing Texture Memory

Example 10.5 Splitting a texture across two TMUs for trilinear mipmapping.

The first code segment shows the texture combine unit configuration for trilinear mipmapping when the even
LODs are stored in TMUO and the odd ones are in TMUL. The code assumes that the color combine unit is
configured to make use of the resulting RGBA value.

FxU32 textureSize[2], startAddress[2];

G TexInfo tri;

FxUl6 m prmap[256*256 + 128*128 + 64*64 + 32*32 + 256 + 64 + 16 + 4 +
1];

tri.smallLodLog2 = GR LOD LO®R_1;
tri.largeLodLog2 = GR LOD_LOG2_256;
tri.aspectRatioLog2 = GR ASPECT LOG2_1x1;
tri.format = GR_TEXFMI_1555;

tri.data = m pmap;

textureSi ze[0] = gr TexText ur eMenRequi r ed(GR_M PMAPLEVELNMASK_EVEN,

&tri);

start Address[0] = gr TexM nAddr ess(GR_TMJUO0) ;

if ((startAddress[0] + textureSize[0])> gr TexMaxAddress(GR_TMJ0)) {
printf(“error: even LODs of texture too big for TMJO\n");
exit();

}

textureSi ze[1] = gr TexText ur eMenRequi red(GR_M PMAPLEVELMASK _ODD, &tri)

st art Address[1] = gr TexM nAddress(GR_TMJA);

if ((startAddress[1] + textureSize[1l])> gr TexMaxAddress(GR_TMJL)) {
printf(“error: odd LODs of texture too big for TMJI\n");
exit();

gr TexDownl oadM pMap(GR_TMJO, st art Addr ess[0] , GR_M PVAPLEVELMASK_EVEN,
&ri) ;
gr TexSour ce(GR_TMUO, st art Addr ess[0] , GR_M PVAPLEVELMASK_EVEN, &tri);
gr TexCombi ne(GR_TMJUO,

GR_COVBI NE_FUNCTI ON_SCALE_M NUS_ "LOCAL _ADD_LOCAL,

GR COmVBI NE FACTOR _ L(I) FRACTI ON,

GR COMVBI NE FUNCTI O\l SCALE M NUS_LOCAL_ADD LOCAL,

GR COMVBI NE FACTOR _ L(I) FRACTI ON,

FXFALSE, FXFALSE)

gr TexDownl oadM pMap(GR_TMJ1, st art Addr ess[1], GR_M PMAPLEVELMASK CDD,
&ri);
gr TexSour ce(GR_TMJL, st art Address[1], GR_M PVAPLEVELMASK _ODD, &tri);
gr TexConbi ne(GR_TMJL,
GR_COVBI NE_FUNCTI ON_LOCAL, GR_COWBI NE_FACTOR_ “NONE,
GR_ COMBI NE_ FUNCTT ON_ LOCAL, GR_ COVBI NE_FACTOR_NONE,
FXFALSE, FXFALSE);

This second code segment gives the proper gr TexCombine() configuration when the situation is reversed: the
odd LODs in the mipmap are on TMUO while the even ones are upstream on TMU1. Note the difference in the
texture combine unit configuration: the setting of the rgbl nvert and alphal nvert parameters.

FxU32 textureSize[2], startAddress[2];

G TexInfo tri;

FxUl6 m prmap[256*256 + 128*128 + 64*64 + 32*32 + 256 + 64 + 16 + 4 +
1];

tri.small LodLog2 GR LOD LO&2_1;
tri.largeLodLog2 GR_LOD_LOG2_256;
tri.aspectRatioLog2 = GR ASPECT LOG2_1x1;
tri.format = GR_TEXFMI_1555;

tri.data = m pmap;

Copyright © 1995-1998 3Dfx Interactive, Inc. 121
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

textureSi ze[0] = gr TexText ureMenRequi red(GR_M PMAPLEVELMASK_ODD, &tri);

start Address[0] = gr TexM nAddr ess(GR_TMJUO) ;

if ((startAddress[0] + textureSize[0])> gr TexMaxAddress(GR_TMJ0)) {
printf(“error: even LODs of texture too big for TMJO\n");
exit();

}

textureSi ze[1] = gr TexText ur eMenRequi r ed(GR_M PMAPLEVELNMASK_EVEN,

&tri);

start Address[1] = gr TexM nAddress(GR_TMJA);

if ((startAddress[1] + textureSize[1l])> gr TexMaxAddress(GR_TMJL)) {
printf(“error: odd LODs of texture too big for TMJI\n");
exit();

gr TexDownl oadM pMap(GR_TMUO, st art Addr ess[0] , GR_M PMAPLEVELMASK CDD,
&ri);
gr TexSour ce(GR_TMUO, st art Addr ess[0] , GR_M PVAPLEVELMASK _ODD, &tri);
gr TexConbi ne(GR_TMJUO,

GR_COMVBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD_LOCAL,

GR_COMVBI NE_FACTOR_ONE_M NUS_LOD_FRACTI CN,

GR_COMBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD_LOCAL,

GR_COVBI NE_FACTOR _ONE_M NUS_LOD_FRACTI ON,

FXFALSE, FXFALSE);

gr TexDownl oadM pMap(GR_TMJ1, st art Addr ess[1] , GR_M PVAPLEVELMASK_EVEN,
&ri);
gr TexSour ce(GR_TMJL, st art Addr ess[1] , GR_M PVAPLEVELMASK_EVEN, &tri);
gr TexConbi ne(GR_TMJL,
GR_COVBI NE_FUNCTI ON_LOCAL, GR_COMBI NE_FACTOR_NONE,
GR_COVBI NE_FUNCTI ON_LOCAL, GR_COMBI NE_FACTOR_NONE,
FXFALSE, FXFALSE);

L oading a Mipmap into Fragmented Memory

Normally, mipmap levels are stored sequentialy in texture memory. Multi-base addressing alows
mipmap levels to be loaded into different texture memory locations. A mipmap can be split into four
chunks (along pre-defined boundaries), each of which can be loaded in a different location in texture
memory. Four different base addresses are specified for a multi-based texture, one each for

CGR LOD LO& 256, GR LOD LO&G_128, and GR_ LOD LOG2_64, and one for texturesGR_ LOD_LOG2_32
through GR LOD_LOG2_1.

To use multi-base addressing, you must enable it with acall to gr TexMultibase(), download the
mipmap as four smaller mipmaps, and then set up the multi-base addressing by calling
gr TexMultibaseAddress() four times with the four starting addresses. See Example 10.6.

void gr TexM ultibase(GrChipID_t tmu, FxBool enable)

gr TexMultibase() enables or disables multi-base addressing. Multi-base addressing must be enabled
before downloading a multi-based texture, and before rendering using a multi-based texture. Multi-base
addressing must be disabled before downloading or rendering from a texture with a single base address.

You must call gr TexMultibaseAddress() once for each part of afragmented texture with multiple base
addresses. In each case, startAddress should point to the texture memory location for the corresponding

122 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

10. Managing Texture Memory

mipmap level. All of the base addresses for a multi-based texture should be specified before
downloading the texture or rendering from the texture.

void gr TexMultibaseAddress(GrChiplD_t tmu,
GrTexBaseRange_t range,
FxU32 startAddress,
FxU32 evenOdd,
GrTexInfo *info

)

The first argument names the TMU on which the fragmented texture will be loaded. The second
argument, range, tells which fragment this call is about, and is one of four Glide constants:
GR_TEXBASE 256, GR_TEXBASE_128, GR_TEXBASE_64, Or GR_TEXBASE_32_TO 1. Thethird argument,
startAddress, is the starting address for this fragment. Note that gr TexMultibaseAddress() should be
called with avalid starting address before the fragment is downloaded.

The fourth argument, evenOdd, specifies whether the even, the odd, or all textures in the mipmap will
be downloaded on this tmu. If afragment is missing from the mipmap, or if afragment will not be
downloaded on this tmu, then gr TexM ultibaseAddress() need not be called for that fragment.

Callsto gr TexSource() are equivalent to calls to gr TexMultibaseAddress() with the range argument set
to GR_LOD_LOG2_256.

Example 10.6 Using multiple texture base registers.
Supposethat st art isan array of starting addresses that have been obtained from a memory management
routine. (The memory management details are left as an exercise for the reader.) Further suppose that the
block of texture memory pointed to by st art [0] islarge enough for GR_LOD LO&X_256, that the block
pointed to by st art [1] islarge enough for GR_LOD LOG_128, and so on. The array ni pmap pointsto the
four fragments. The |l od array stores the four constants that identify the fragments for convenience in thef or
loop that sets up the multiple base registers and downloads the fragments.

int i;

G TexI nfo info;

FxU32 start[4];

FxU16 m pmap[4][];

G TexBaseRange_t | od[4] =(GR_TEXBASE_256,
GR_TEXBASE 128, GR TEXBASE 64, GR TEXBASE_32_TO 1);

gr TexMul ti base(GR_TMJ0, FX TRUE);

for (i=0; i,4; i++) {

i nfo.smal | LodLog2 = info.largeLodLog2 = lod[i];

info.data = m pmap[i];

gr TexMul ti baseAddress(GR_TMJ0, lod[i], start[i], GR_M PMAPLEVEL_BOTH,
& nfo);

gr TexDownl oadM pMap(GR_TMJO, start[i], GR_M PMAPLEVEL_ BOTH, &i nfo);
}

Copyright © 1995-1998 3Dfx Interactive, Inc. 123
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Downloading a Decompression Table or Color Palette

The texels in mipmaps that use texture formats GR_TEXFMT_YI Q 422 and GR_TEXFMI_AYI Q 8422
must be “decompressed” to 32-bit values before being filtered and combined in the TMU. Texdls that
are stored in texture formats GR_TEXFMI_P_8 and GR_TEXFMI_AP_88 must be looked up in a color
palette to trand ate them to 32-bit color components. The trandation tables must be downloaded to the
same TMU as the textures that use them before texel selection can occur.

Glide maintains two NCC decompression tables and one 256-entry color palette. The NCC table or
color palette must be downloaded before a texture that uses it can be used as the source for texels.
Glide provides aroutine that can download either a color palette or one of the two decompression
tables.

void gr TexDownloadTable(GrTexTable_t tableType, void *data)

gr TexDownloadTable() downloads either an NCC table or a 256-entry color palette. The first argument,
tableType, describes the kind of table to be downloaded and is specified with one of these Glide
constants: GR_TEX_NCC0, GR_TEX_NCC1, GR_TEX_PALETTE, or, if supported,
GR_TEX_PALETTE_6666_EXT (see Chapter 13). The second argument points to the data for the table.

Part of a 256-entry color palette can be downloaded or replaced with the Glide function
gr TexDownloadT ablePartial().

void gr TexDownloadT ablePartial(GrTexTable_t tableType, void *data, int start, int end)
Entries from start up to and including end are downloaded. To download one entry, use the same value
for start and end. Partial downloads of NCC tablesis not supported at this time.

The two table types are discussed separately in the paragraphs that follow. A downloading exampleis
included for each kind.

[} In Glide 2.x, gr TexDownloadT able(), gr TexDownloadT ablePartial(), and gr TexNCCT able()
had an argument, tmu, that has been removed in Glide 3.0. All TMUs share the same
NCC table or color paette. If one TMU isusing a color palette, then none of the others
can use an NCC table. Similarly, if TMU is using a compressed texture (and hence an
NCC table for decompression), none of the other TMUSs can use a texture that requires a
PORTING
NoTe color palette.

Decompression Tables

A texture can be compressed into a Y AB texture with an appropriate decompression table with the help
of the 3Dfx Interactive Texture Utility Software (TexUS). The compressed texture is stored as a 3Dfx
texture map file (.3DF) that can then be loaded using the Glide Utility routine gu3dfL oad(), which is
described later in this chapter. Space for two NCC tables is provided so that they can be swapped on a
per-triangle basis when performing multi-pass rendering without interrupting the rendering process
with table downloading.

124 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

10. Managing Texture Memory

Before a compressed texture can be used as the texd source, one of the two NCC tables must be
designated as the source for decompression operations. The Glide function gr TexNCCT able() should be
called before any rendering operations using the compressed table are initiated.

void gr TexNCCTable(GrNCCTable_t table)

gr TexNCCTable() selects one of the two NCC tables as the current source for decompression
operations. Valid values are GR_TEXTABLE_NCCO and GR_TEXTABLE_NCCL.

Copyright © 1995-1998 3Dfx Interactive, Inc. 125
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Example 10.7 Loading an NCC table.

NCC tables are created by programs in the TexUSlibrary and written to a .3DF file. This code segment uses
gu3dfLoad(), described in the next section, to read the file into memory. Once in memory, the tableis
downloaded to NCC1 in TMUO. Once the table is |oaded, a texture in one of the compressed formats can be
downloaded and used as the texel source.

Gu3df I nfo info;

gu3df Load(“ncctabl e. 3df”, & nfo);
gr TexDownl oadTabl e(GU_TEX NCC1, & nfo.table.nccTable);
gr TexNCCTabl e(GR_TEXTABLE_NCC1) ;

Color Palettes

A color palette is an array of 256 ARGB colors, 8 bits for each component, and 32 bits per entry (refer
back to Figure 10.1). The apha component, in the high order 8 bits, isignored. A second palette
format is introduced in Glide 3.0 and may be used if the PALETTEG666 extension is supported. See
Chapter 13 for more details.

Example 10.8 Loading a color palette.
The following code segment will create a random color palette and download it into TMUO. To use the pal ette,
download a palletized texture (texture formats GR_TEXFMI_P_8 or GR_TEXFMT_AP_88) and configure the
texture and color combine units appropriately.

extern unsigned long I rand(void);

GuTexPal ette pal ette;
int i, j;
/'l create a random 256-entry color palette
for (i=0; i<256; i++)
palette.data[i] = OxOOFFFFFF & |rand();

gr TexDownl oadTabl e(GU_TEX PALETTE, &pal ette);

L oading Mipmaps From Disk
TexUS (3Dfx Interactive' s Texture Utility Software) programs create files in a 3DF file format. These

files may contain mipmaps, decompression tables, or both. A pair of data types and a pair of functions
provide access to .3DF files from Glide.

The data structures are shown below. Gu3dfinfo is the top level structure. It has a pointer to the mipmap
data, and it stores the decompression table or palette if there isone. There is also a Gu3dfHeader
structure that contains all the mipmap characteristics (LOD range, aspect ratio, format, dimensions)
and the amount of memory the mipmap will require.

126 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

10

. Managing Texture Memory

typedef struct {

FxU32 width, height;
int small_lod, large lod;
GrAspectRatio_t aspect_ratio;
GrTextureFormat_t format;

} Gu3dfHeader;

typedef union {
GuNccTable nccTable;
GuTexPalette palette;

} GuTexTable;

typedef struct {
Gu3dfHeader header;
GuTexTable table;
void *data;
FxU32 mem_required;

} Gu3dfinfo;

The procedure for reading a .3DF file from Glide is shown in Example 10.9. The application first calls
gu3dfGetInfo() to fill in the Gu3dfinfo structure pointed to by info.

FxBool gu3dfGetlnfo(const char *filename, Gu3dfinfo *info)

After an application has determined the characteristics of a.3DF mipmap, memory must be allocated
for the mipmap and the address stored in the info® data pointer. Then gu3dfL oad() isinvoked to load
the mipmap from the file into memory. Note that the mipmap must be downloaded into a TMU before it
can be used as a texel source.

FxBool gu3dfL oad(const char *filename, Gu3dfinfo *info)

Both gu3dfGetlnfo() and gu3dfL oad() return FXTRUE if the file specified by filename exists and can be
read; otherwise they return FXFALSE.

Example 10.9 Reading a .3DF file.

The following code segment assumes that “ ni pmap.3df ” contains a properly formatted 3DF file. The code
calls gu3dfGetl nfo() to determine memory requirements, allocates storage for the mipmap using the system
subroutine malloc(), then reads the mipmap into the newly allocated memory by calling gu3dfL oad().

Gu3dfInfo filelnfo;

gu3df Get I nfo(“m pmap. 3df”, &filelnfo);
filelnfo.data = malloc(filelnfo.memrequired);
gu3df Load(“m pmap. 3df”, &filelnfo);

Copyright © 1995-1998 3Dfx Interactive, Inc. 127
Proprietary and Confidential Printed 08/05/98 10:30

11. Accessing the Linear Frame Buffer

In This Chapter

The frame buffer on a graphics subsystem is directly accessible by software as a single linear address
space. This address space is segmented into separate readable and writable areas, and each of these
areasin turn can address any of the three hardware buffers: the front buffer, the back buffer, or the
auxiliary buffer.

You will learn how to:

calculate a pixel address.

acquire an LFB (linear frame buffer) read or write pointer.

read pixel datafrom the color, alpha, or depth buffer.

write pixel datain a user-selectable format to the color apha, or depth buffer.
set constant values for direct writes to the depth and alpha buffers.

enable and disable the pixel pipeline during direct LFB writes.

4 4 4 € <4 <«

Acquiring an LFB Read or Write Pointer

When a Glide application desires direct access to a color or auxiliary buffer, it must lock that buffer in
order to gain access to a pointer in the frame buffer data. This lock may assert a critical code section
which affects process scheduling and precludes the use of GUI debuggers; therefore, time spent doing
direct accesses should be minimized and the lock should be released as soon as possible.

FxBool grLfbL ock(GrLock t type,
GrBuffer_t buffer,
GrLfoWriteMode_t writeMode,
GrOriginLocation_t origin,
FxBool pixel Pipeline,
GrLfbinfo_t *info

)

An application may hold multiple simultaneous locks to various buffers, if the underlying hardware
alowsit. Application software should always check the return value of grLfbL ock(): alock may fail. A
buffer islocked for reads or for writes, as specified in the type parameter.

typeisabit field created by ORing aread/write flag and an idle flag. The read/write flag can be either
GR_LFB_READ_ONLY OF GR_LFB_WRI TE_ONLY. Theidleflag can be either GR_LFB_I DLE or
GR_LFB_NO DLE. The default isGR_LFB_I DLE: the graphics subsystem isidle until the buffer is
unlocked. GR_LFB_NO DLE alows the pixel pipeline to continue operating during the lock: triangle
rendering and buffer clearing operations may be interspersed with frame buffer accesses.

Copyright © 1995- 1998 3Dfx Interactive, Inc. 129
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

3
}{ Using GR_LFB_NO DLE may interfere with sound generation.

TAKE
NOTE

The buffer parameter specifies which Glide buffer to lock; currently supported buffer designations are
GR_BUFFER_FRONTBUFFER, GR_BUFFER_BACKBUFFER, and GR_BUFFER_AUXBUFFER.

If the graphics hardware supports multiple write formats to the linear frame buffer space, an
application may request a particular write format with the writeMode parameter; valid values are listed
below.

GR_LFBWRI TEMODE_565 GR_LFBWRI TEMODE_565_DEPTH
GR_LFBWRI TEMODE_555 GR_LFBWRI TEMODE_555_DEPTH
GR_LFBWRI TEMODE_1555 GR_LFBWRI TEMODE_1555_DEPTH
GR_LFBWRI TEMODE_888 GR_LFBWRI TEMODE_8888
GR_LFBWRI TEMODE_ZA16 GR_LFBWRI TEMODE_ANY

Use GR_LFBWRI TEMODE_ANY when acquiring a read-only LFB pointer or when you want to use the
existing data format. If the data format specified in writeMode is not supported on the target hardware,
the lock will fail. Supported pixel formats are described in Table 11.2 and Table 11.3, later in this
chapter.

If the application specifies GR_LFB_WRI TEMODE_ANY and the lock succeeds, the destination pixel format
isreturned in info.writeMode. This default destination pixel format will aways be the pixel format that
most closely matches the true pixel storage format in the frame buffer. On Voodoo Graphics and
Voodoo Rush, thiswill always be GR_LFBWRI TEMODE_565 for color buffers and

GR_LFBWRI TEMODE_zA16 for the auxiliary buffer. The writeMode argument isignored for read-only
locks.

Some 3Dfx hardware supports a user-specified y origin for LFB writes. An application may request a
particular y origin by passing an origin argument other than GR_ORI G N_ANY. If the origin specified is
not supported on the target hardware, then the lock will fail. If the application specifies

GR_ORI G N_ANY and the lock succeeds, the LFB y origin is returned in info.origin. The default y origin
for LFB writesisGR_ORI G N_UPPER_LEFT; currently supported values are GR_ORI G N_UPPER_LEFT,
GR ORI G N_LOAER_LEFT, and GR_ORI G N_ANY.

Some 3Dfx hardware alows linear frame buffer writes to be processed by the pixel pipeline before
being written into the selected buffer. This feature is enabled by passing a value of FXTRUE in the

pixel Pipeline argument; grLfbL ock() will fail if the underlying hardware is incapable of processing
pixels through the pixel pipeline. When enabled, color, apha, and depth data from the linear frame
buffer write is processed asiif it were generated by the triangle iterators. If the selected writeMode
lacks depth information, then the depth value is derived from grL fbConstantDepth(). If the writeMode
lacks apha information, then the alpha value is derived from grL fbConstantAlpha(). Linear frame
buffer writes through the pixel pipeline may not be enabled for auxiliary buffer locks. The

pixel Pipeline argument isignored for read-only locks.

130 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

11. Accessing the Linear Frame Buffer

The final parameter to grLfbL ock() is a structure of type GrLfbinfo_t. The info.size is used to provide
backward compatibility for future revisions of grLfbL ock() and must be initialized by the user to the
size of the GrLfbinfo_t structure, as shown below. An unrecognized size will cause the lock to fail.

i nfo.size =sizeof (GLfbinfo_t);

Upon successful completion, the rest of the structureisfilled in with information pertaining to the
locked buffer. The GrLfbinfo_t structure is defined as:

typedef struct {

int size;

void *|fbPtr;
FxU32 stridel nBytes;
GrLfoWriteMode_t writeMode;
GrOriginLocation_t origin;

} GrLfbinfo_t;

info.lfbPtr is assigned avalid linear pointer to be used for accessing the requested buffer. The accessis
either read-only or write-only; reading from a write pointer or writing to a read pointer will have
undefined effects on the graphics subsystem. info.stridel nBytes is assigned the byte distance between
scanlines. As described above, info.writeMode and info.origin are filled in with values describing the
settings in use in the currently selected buffer.

A successful call to grLfbLock() will cause the 3D graphics engine to idle. Thisis equivaent to calling

grFinish() and may negatively impact the performance of some applications. Writesto the linear frame

buffer should use grLfbwriteRegion(), described later in this chapter, to interleave ordered linear frame
buffer copies into the 3D command stream as efficiently as possible.

When the application has completed its direct access transactions, the lock is relinquished by calling
grLfbUnlock(), thus restoring 3D and GUI access to the buffer.

FxBool grL fobUnlock(GrLock_t type, GrBuffer_t buffer)

The two parameters, type and buffer, are identical to the first two arguments of the corresponding call
to grLfbLock(). Note that after a successful call to grLfbUnlock(), accessing the info.lfbPtr used in the
grLfbUnlock() call will have undefined results.

An application may not call any Glide routines other than grL fbL ock() and grL fbUnlock() while any
lock is active. Any such callswill result in undefined behavior.

Calculating a Pixel Address

The address of a particular pixel is computed from the (x,y) coordinates and the length of a scanline, a
value that isreturned in the info structure when grLfbL ock() is successful. info.stridel nBytes
represents the number of bytesin arow or scanline. Thus,

addressyy, = y * info.stridelnBytes + x
address of the word containing (X,y) = addressy,)/2 = (y * info.stridel nBytes + x)/2

Thelocation of they origin, set in the call to gr SssWinOpen() (see Chapter 3), determines the mapping
of y addressesinto frame buffer memory. When writing to the LFB, the location of they origin set in
gr SstWinOpen() can be overridden, as described in the discussion of grLfbL ock() that follows.

Copyright © 1995-1998 3Dfx Interactive, Inc. 131
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Reading from the LFB

To read data directly from the linear frame buffer, obtain aread-only LFB pointer by calling

grLfbL ock(), as described in the previous section. All datais read as two 16-bit pixels per 32-bit word.
The default pixel ordering within the 32-bit read is OXRRRRLLLL where the left pixel in the pair isin
the lower 16-bits of the 32-bit word, as shown in Figure 11.1.

Figure 11.1 Reading from and writing to the LFB.

When a 32-bit word is read using the read pointer acquired with a call to grLfbLock(), the bytes are swapped:
the left most pixel isreturned in the low-order half word. When a 32-bit word containing two pixels iswritten
to the LFB, the left most pixel isin the high-order half word. Remember that.

buffer

writePointer ——» e

readPointer > m

When a 32-bit word is read using the read pointer returned in info.lfbPtr, the target buffer determines
how the data should be interpreted. If the locked buffer is a color buffer, the data should be interpreted
astwo RGB colors, each containing a 5-bit red value, a 6-bit green value, and a 5-bit blue value. If the
locked buffer is a depth buffer, then the data contains two depth values, either 16-bit fixed point z
values or 16-bit floating point w values, depending on gr DepthBuffer M ode(). If the locked buffer is an
alpha buffer, then the data contains two 8-bit alpha values, stored in the low order byte of each
halfword. Table 11.1 shows the possible data formats.

The 16-bit floating point format for wis shown in Table 11.1. It has a 4-bit exponent and a 12-bit
mantissa. Like |EEE floating point, aleading 1 value in the MSB of the mantissais hidden. Note that
the w floating point value is unsigned only. The w floating point format convertsto areal number by
using the equation:

1.mantissa * 29%onent

Using this format the minimum depth value is 1.0 (floating point encoding: 0x0000) and the maximum
depth value is 65528.0 (floating point encoding: 0x FFFF).

132 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

11. Accessing the Linear Frame Buffer

Table11.1 Interpreting data read from the LFB.

When a 32-bit word is read using the read pointer acquired with a call to grLfbLock(), the target buffer
determines how the data should be interpreted. If the locked buffer is a color buffer, the data should be
interpreted as two RGB colors, each containing a 5-bit red value, a 6-bit green value, and a 5-bit blue value.
If the locked buffer is a depth buffer, then the data contains two depth values, either 16-bit fixed point z values
or 16-bit floating point q values, depending on grDepthBufferMode(). If the locked buffer is an alpha buffer,
then the data contains two 8-bit alpha values, stored in the low order byte of each halfword.

buffer depth buffer mode color format physical layout of the data
read

GR BUFFER _FRONTBUFFER [jgnored GR_COLORFORVAT_ARGB

GR_BUFFER_BACKBUFFER or red/ green I““

GR_BUFFER_AUXBUFFER GR_COLORFORVAT_RGBA

GR_COLORFORMAT _ABGR
“l“ gfeen N ired

or
GR_COLORFORMAT BGRA

GR_BUFFER_AUXBUFFER GR_DEPTHBUFFER_ZBUFFER ignored

16-bit integer
GR_DEPTHBUFFER_WVBUFFER | 1
- - ignored exp mantissa

Example 11.1 Reading a pixel value from the LFB.

The following code segment reads 10 pixels from the color buffer currently being displayed, starting with the
pixel at (100, 200), and storesthemin the pi x[] array. The read pointer isinitially set to the value returned
inthei nf o structure when the lock was initiated. A byte offset representing (100, 200) is calcul ated,
converted to a word address, and added to the initial value to produce the starting address. The writeM ode,
origin, and pixelPipeline arguments to grLfbLock() are ignored for read-only pointers.

#defi ne BYTESPERPI XEL 2

FxUl6 pi x[10];

G Lfblnfo_t info;
FxU32 *rptr;

int i;

/* get a read pointer */
if (grLfbLock(GR LFB_READ ONLY, GR LFB_FRONTBUFFER, GR _LFB_WRI TEMODE_ANY,
GR_ORI Gl N_ANY, FXFALSE, & nfo)) {

/* add in the word address of the first pixel */

/* (conpute byte offset for (100, 200)/4 */

rptr = info.lfbPtr

rptr += ((*info.stridelnBytes * 200) + 100* BYTESPERPI XEL) >>2;

/*read two pixels at a tinme */

for (i=0; i<10; rptr++) {
pix[i++] = *rptr && OxFFFF;
pi x[i++] = *rptr >>16;

gr Lf bUnl ock(GR LFB_READ ONLY, GR LFB FRONTBUFFER);

Copyright © 1995-1998 3Dfx Interactive, Inc. 133
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Reading a Rectangle of Pixelsfrom the LFB

The grLfbReadRegion() convenience function copies arectangle of pixels from the frame buffer to user
memory as efficiently as possible, performing the buffer locks and unlocks as needed. Note that thisis
the only way to read back from the frame buffer on Scanline Interleaved systems.

FxBool grLfbReadRegion(GrBuffer_t src_buffer,

FxU32 SIC_X,
FxU32 srcLy,
FxU32 src_width,
FxU32 src_height,
FxU32 dst_stride,
void *dst_data

)

A src_width by src_height rectangle of pixelsis copied from the buffer specified by src_buffer, starting
at the location (src_x, src_y). The pixels are copied to user memory starting at dst_data, with a stride
in bytes defined by dst_stride. The frame buffer y origin is always assumed to be at the upper left and
the pixel dataformat is assumed to be GR_LFBWRI TEMODE_565 (see Table 11.2). The dst_stride must
be greater than or equal to src_width * 2.

Writing tothe LFB

To write directly to the linear frame buffer, obtain awrite-only LFB pointer as described above. The
call to grLfbL ock() specifies awriteMode that defines the data format and ay origin location for the
LFB writes. Both of these can be set to default to whatever conditions exist in the buffer. The

pixel Pipeline parameter enables or disables the pixel specia effects pipeline.

The incoming pixel data can be interpreted in many different ways depending on the current linear
frame buffer write mode and color ordering configuration. The source of depth, alpha, and color
information is determined by a combination of the current linear frame buffer write mode and whether
the pixel specid effects pipeline is being bypassed or not. If the selected writeMode lacks depth
information, then the value is derived from grL fbConstantDepth(). If the writeMode lacks alpha
information, then the value is derived from grL fbConstantAlpha(). Linear frame buffer writes through
the pixel pipeline may not be enabled for auxiliary buffer locks. The pixel Pipeline argument isignored
for read only locks.

The procedure for writing to the LFB is as follows:

STEP1: If the pixel pipeline and depth buffering or alpha buffering are enabled, and if the desired
writeMode is lacking depth or apha values, set constant values for depth and/or alpha
with grLfbConstantDepth() and grL fbConstantAlpha().

STEP2: Call grLfbL ock() to get awrite pointer. Specify awrite mode and y origin if desired.
Bypass the pixel pipelineif desired.

STEP3: Writeinto the linear frame buffer using the write pointer.

STEP4: Disable LFB writing and free the buffer by calling gr L fbUnlock().

Each of these steps and the associated Glide functions are addressed in the remainder of this chapter,
accompanied by examples of their use.

134 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

11. Accessing the Linear Frame Buffer

Setting LFB Write Parameters

Before you start writing data into the linear frame buffer, you need to do some set-up work.
There are ten different formats for the data; you must choose one.

A pixel can have red, green, blue, alpha, and depth components, but not all of the data formats
provide values for al five components; you must set constant values for the ones that won't be
provided by the data.

They origin can be different for LFB writes than it is for conventional rendering; set it if you want.

Linear Frame Buffer Write Modes
Data can be written into the LFB in one of several data formats or write modes.

When two 16-hit pixels are written to the hardware as a packed 32-bit value, the pixel located in the
high 16-bitsis written as the leftmost pixel, as shown in Figure 11.1. Thisis endian dependent,
however, the GLI DE_PLATFORM compile time constant automatically allows Glide to configure itself for
the proper endian characteristics. Incoming color data can be interpreted as either RGBA, ARGB,
BGRA, or ABGR. Thisis determined by the cFormat parameter passed to gr SstWinOpen() (see Table
3.2).

The write modes and resulting data formats are shown in Table 11.2 and Table 11.3.

Copyright © 1995-1998 3Dfx Interactive, Inc. 135
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Table 11.2 16-bit LFB data formats.
Three of the LFB data formats write a minimum of 16 bits to the linear frame buffer. The first column in the
table below gives the Glide constant for the write mode. The packing order of the color componentsis
controlled by the cFormat argument to gr SstWinOpen(). The third column shows the packing order for each
write mode and each color format. Table 11.3 gives the layouts for the 32-bit LFB write formats.

LFB write mode

cFormat

physical layout of the color and depth
components

GR_LFBWRI TEMODE_565

GR_COLORFORMAT _ARGB Of

GR_COLORFORMAT_RGBA | i | i) | il |
GR_COLORFORVAT_ABGR or | L L] | 1] |
GR_COLORFORMAT_BGRA
GR_LFBWRI TEMODE_555 GR_COLORFORVAT_ARGB ignored
==
GR_COLORFORVAT_ABGR ignored
|i|m blue 1 green | red |
GR_COLORFORVAT_RGBA ignored
(=1 = [
GR_COLORFORVAT_BGRA ignored
22
GR_LFBWRI TEMODE_1555 GR_COLORFORVAT_ARGB 3pha
|i|m red m| g green 5| : blue
GR_COLORFORVAT_ABGR 3pha
|i|m blue green | red |
GR_COLORFORVAT_RGBA apha
| red | green ’ | blue l
GR_COLORFORVAT_BGRA alpha
| blue green | red |l

with depth buffering enabled

GR_LFBVRI TEMODE_ZA16 ignored |) | | |
with alpha buffering enabled T EEEEE
GR_LFBWRI TEMODE_ZA16 ignored

T

136
Printed 08/05/98 10:30 AM

Copyright O 1995- 1998 3Dfx Interactive,
Proprietary and Confide

11. Accessing the Linear Frame Buffer

Table 11.3 32-bit LFB data formats.
The LFB data formats shown below write a minimum of 32 bits to the linear frame buffer. The first column in
the table below gives the Glide constant for the write mode. The packing order of the color componentsis

controlled by the cFormat argument to gr SstWinOpen(). The third column shows the packing order for each

write mode and each color format. Table 11.2 gives the layouts for the 16-bit LFB write formats.

LFB write mode cFormat physical layout of the color and depth
components

GR_LFBVRI TENDDE_565_DEPTH GR_COLORFORVAT ARG of | = | N | m | T |

GR_COLORFORMAT _RGBA 1iil B dlil :

S o e | =

GR_LFBVRI TENDDE_555_DEPTH GR_COLORFORMAT_ARGB Hed - | | | |
red green blue depth

GR_COLORFORMAT ABGR o :

|i blue green | red | depth |

CR_COLOREORMAT _RGBA — el -

I I

CR_COLOREORVAT BGRA ————na -

(B = TR

GR_LFBVRI TEMODE_1555_DEPTH | GR_COLORFORMAT_ARGB ﬁih | : | | |
red green blue depth

GR_COLORFORVAT ABGR e °

|i| LLT s | [| 1] |

GR_COLORFORVAT _RGBA 5 °

| red | green | blue |l depth |

R COLOREORVAT BGRA e °

| blue | green | red |l depth |

GR_LFBVRI TEMODE_888 GR_COLORFORMAT_ARGB | - ged | - ed - = | == |

GR_COLORFORVAT _ABGR | m | ‘ T a | : ™ |

GR_COLORFORMAT_RGBA | T | BE| bibe | LEL |

GR_COLORFORVAT_BGRA | T | T - | T |

GR_LFBVWRI TEMODE_8888 GR_COLORFORMAT_ARGB | T | 3 T - N | ™ |

GR_COLORFORVAT _ABGR | i | ‘ T n | : ™ |

GR_COLORFORMAT_RGBA | T | BE| bibe | 1 |

GR_COLORFORVAT_BGRA | T T - TN |

Copyright © 1995-1998 3Dfx Interactive, Inc.

Proprietary and Confidential

137

Printed 08/05/98 10:3C

Glide 3.0 Programming Guide

Setting Constant Color, Alpha, and Depth Values

If alinear frame buffer write mode does not provide an apha, depth, or color value, the necessary
value is read from the appropriate constant alpha, color, or depth value. Pixel data written in
GR_LFBWRI TEMODE_1555, for example, contains no depth component, so depth information is pulled
from the constant depth register set by grL fbConstantDepth(). Data written in GR_LFBWRI TEMODE_888
is missing alpha and depth components; the constant alpha register, set by grL fbConstantAlpha(), and
the constant depth register are used.

In GR_LFBWRI TEMODE_DEPTH_DEPTH mode, color information is retrieved from the constant color
register, set by grConstantColor Value() and described in Chapter 5. Note that the color set by

gr CongtantColor Value() iswritten to the color buffer while the depth componentsin the LFB write are
written to the depth buffer. If the pixel pipeline is enabled, only the depth information is written. Table
11.4 details the source of each component for each of the LFB write modes.

Table11.4 Color, alpha, and depth sources.
The following table illustrates where the color, alpha, and depth values come from for each of the different
write modes for LFB writes that go through the pixel pipeline.

Glide constant color source alpha source depth source

GR_LFBWRI TEMODE_565 incoming pixel constant alpha’ constant depth®
GR_LFBWRI TEMODE_0555 incoming pixel constant alpha’ constant depth®
GR_LFBWRI TEMODE_1555 incoming pixel incoming pixel constant depth®
GR_LFBWRI TEMODE_565_DEPTH incoming pixel constant alpha’ incoming pixel
GR_LFBWRI TEMODE_0555_DEPTH incoming pixel constant alpha’ incoming pixel
GR_LFBWRI TEMODE_1555_DEPTH incoming pixel incoming pixel incoming pixel
GR_LFBWRI TEMODE 888 incoming pixel constant alpha’ constant depth®
GR_LFBWRI TEMODE_8888 incoming pixel incoming pixel constant depth®
GR_LFBWRI TEMODE_DEPTH_DEPTH constant color* constant alpha’ incoming pixel

“The constant color is set by grConstantColorValue() and only affects chroma-keying operations, not output.
The constant alpha value is set by grLfbConstantAlpha() and is only used for alpha test operations, not output.
3The constant depth value is set by grLfbConstantDepth() and is only used for depth test operations, not output.

Some linear frame buffer write modes, specifically GR_LFBWRI TEMODE 555, GR_LFBWRI TEMODE_565,
GR_LFBWRI TEMODE_1555, GR_LFBWRI TEMODE_888, GR_LFBWRI TEMODE_8888, and

GR_LFBWRI TEMODE_ALPHA_ALPHA, do not possess depth information. grL foConstantDepth() specifies
the depth value for these linear frame buffer write modes.

void grL fbConstantDepth(FxU32 depth)

This depth value is used for depth buffering and fog operations and is assumed to be in aformat
suitable for the current depth buffering mode. Table 11.1 describes the floating point format used for w
buffering; z buffers use 16-bit fixed point values. The default constant depth value iso.

If alinear frame buffer format contains depth information, then the depth supplied with the linear frame
buffer write is used, and the constant depth value set with grLfbConstantDepth() is ignored.

138 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

11. Accessing the Linear Frame Buffer

Some linear frame buffer write modes, specifically GR_LFBWRI TEMODE 555, GR_LFBWRI TEMODE_888,
GR_LFBWRI TEMODE_555_DEPTH, and GR_LFBWRI TEMODE_DEPTH_DEPTH, do not contain apha
information. grL fbConstantAlpha() specifies the alpha value for these linear frame buffer write modes.

void grLfbConstantAlpha(GrAlpha_t alpha)

Thisalphavalueis used if alphatesting and blending operations are performed during linear frame
buffer writes. The default constant alpha value is 0xFF.

If alinear frame buffer format contains alpha information, then the alpha supplied with the linear frame
buffer write is used, and the constant a pha value set with grL fbConstantAlpha() isignored.

Egtablishing ay Origin
The origin for linear frame buffer writes can be set separately from the origin for other rendering

(points, lines, triangles, buffer clears, etc.). Thisis useful in cases where images have a different origin
than graphics primitives, or where different images have different origins.

The origin argument to gr L fbL ock() is used to establish a separate y origin for LFB writes, either
GR_ORI G N_UPPER_LEFT Or GR_ORI G N_LOAER _LEFT.

Special Effectsand Linear Frame Buffer Writes

Look back to Figure 1.2 in Chapter 1. The pixel pipeline is not bypassed when writing directly to the
linear frame buffer, unless you disable it. In fact, writing to the linear frame buffer is functionally
equivalent to sending individual pixels down the pixel pipeline. Effects such as depth buffering, fog,
chroma-keying, and apha blending are not automatically disabled during LFB writes. As aresult,
unexpected results can occur unless all special effects are disabled, or at least set to a known state.

Disabling All Special Effects

If “pure” unmodified writes to the frame buffer are desired (alaVGA direct access), two mechanisms
can be used to effect this. Thefirst technique isto save the global state by calling gr GlideGet State(),
then disable all specia effects via gr DisableAllEffects(). Specia effects can then be re-enabled
individually; subsequent writes are performed on the linear frame buffer with only the desired effects
enabled. When raw access to the frame buffer is complete, a call to gr GlideSetState() resets the
graphics hardware to its previous state.

void gr GlideGet State(void * state)
void gr DisableAllEffects(void)
void gr GlideSetState(const void * state)

The other option for unmodified writes is enabling a hardware special effects pipeline bypass by setting
the pixel Pipeline parameter to grLfbL ock() to FXFALSE. Thisis useful when rendering overlays or text
directly to the screen and the application does not wish to disable all current effects (such as fog, depth
buffering, etc.) individualy.

Note that if the pixel pipeline is bypassed, then no effects are enabled with the exception of dithering.
Thisincludes clipping to the gr Clipwindow(), so an application must be careful not to write outside of
the visible display. The values of gr ColorMask() and gr DepthM ask() are aso ignored when the pixel
pipelineis bypassed.

Copyright © 1995-1998 3Dfx Interactive, Inc. 139
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Example 11.2 Enabling specific special effects.
The following code fragment illustrates how to save Glide's state, set certain special effects, then restore
Glide's state.

G State state;
G Lfblnfo_t info;

/1 Save the state
grdideGetState(&state);

/'l Selectively enable some effects
gr Chr omakeyMode(GR_CHROVAKEY_ENABLE);
gr FogMbde(GR_FOG W TH _TABLE_ON Q);

if (grLfbLock(GR WRI TE_ONLY, GR BUFFER BACKBUFFER GR LFBWRI TEMODE_ANY,
GR ORI G N_ANY, FXTRUE, & nfo)) {

/'l wite sone pixels using info.lfbPtr
/1 .

gr Lf bUnl ock(GR WRI TE_ONLY, GR BUFFER BACKBUFFER) ;

/! Restore the state
grdideSetState(&state);

What Happens When a Special Effect is Enabled During an LFB Write?

If depth buffering is enabled during linear frame buffer writes, incoming pixel depths are either
retrieved from the incoming pixel or from the constant depth register, depending on the write mode.
Note that this can lead to some very odd effects: rarely will an application wish to depth buffer values
being written to the depth buffer. If depth buffering is not desired, then the application should disable it
by calling gr DepthBuffer M ode() with the parameter GR_DEPTHBUFFER_DI SABLE. Note that depth
biasing is disabled during linear frame buffer writes because of aresource conflict between depth
biasing and linear frame buffer writes.

If alpha testing is enabled during linear frame buffer writes, incoming pixel apha vaues are either
retrieved from the incoming pixel or from the constant alpha register, depending on the write mode. If
alphatesting is not desired, then the application should set the aphatest function to GR_CVP_ALWAYS.

If alpha blending is enabled during linear frame buffer writes, incoming pixel apha vaues are either
retrieved from the incoming pixel or from the constant alpha register, depending on the write mode. If
alpha blending is not desired, then the application should call

grAlphaBlendFunction(GR_BLEND_ONE, GR_BLEND_ZERO, GR_BLEND_ONE, GR_BLEND_ZERO)

All other effects, such as chroma-keying and fog, act the same in linear frame buffer write modes asin
normal rendering operations and are disabled as described in Chapter 8.

Itis possible to directly read from and write to the al pha/depth buffer for various specia effects. To
write directly to the alpha/depth buffer call grLfbL ock() with a buffer parameter of
GR_BUFFER_AUXBUFFER, and then use the newly acquired pointer. When writing to the depth buffer,
incoming values must be in the correct format (16-bit floating point for w buffering or 16-bit integer
for linear z buffering). The 16-bit floating point format used for w buffering is described in Table 11.1.
Remember that if depth buffering is enabled and the application is writing directly to the depth buffer,

140 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

11. Accessing the Linear Frame Buffer

unexpected results may occur since, in essence, the application is depth buffering writes to the depth
buffer.

Example 11.3 Writing one 565 RGB pixel to the back buffer (RGB ordering).

FxUl6 pixel = OxFFFF; // \White pixel
G Lfblnfo_t info;
FxUl16 *ptr;

if (grLfbLock(GR WRI TE_ONLY, GR BUFFER BACKBUFFER GR LFBWRI TEMODE 565,
GR ORI G N_ANY, FXTRUE, & nfo)) {

ptr = info.lfbPtr;
ptr[x + y*info.stridelnBytes] = pixel;
gr Lf bunl ock(GR_WRI TE_ONLY, GR BUFFER_BACKBUFFER) ;

Example 11.4 Writing two 565 RGB pixelsto the back buffer (RGB color ordering).
The significant difference between this example and the last one is the type of the pointer pt r that is used to
access frame buffer memory.

G Lfblnfo_t info;

FxU32 *ptr;

Fx16 whitePi xel, bl ackPi xel ;
FxU32 pi xel ;

whi t ePi xel = OxFFFF;

bl ackPi xel = 0x0000;

/1 This will make the black pixel the leftnpbst of the pair.
pixel = (((FxU32) blackPixel) << 16) | whitePixel;

if (grLfbLock(GR WRI TE_ONLY, GR BUFFER BACKBUFFER GR LFBWRI TEMODE 565,
GR ORI G N_ANY, FXTRUE, & nfo)) {

ptr = info.lfbPtr;
ptr[x + y*info.stridelnBytes] = pixel;
gr Lf bUnl ock(GR_WRI TE_ONLY, GR BUFFER_BACKBUFFER) ;

Example 11.5 Writing one 8388 RGB pixel to the back buffer (ARGB color ordering).

G Lfblnfo_t info;
FxU32 pi xel = OxO0O0FF0000; // Red pi xel

if (grLfbLock(GR WRI TE_ONLY, GR BUFFER BACKBUFFER, GR_LFBWRI TEMODE 888,
GR_ORI G N_ANY, FXTRUE, & nf 9)) {
info.lfbPtr[x + y* info.stridel nBytes] pi xel ;
gr Lf bUnl ock(GR_WRI TE_ONLY, GR_BUFFER_BACKBUFFER) :

}

Copyright © 1995-1998 3Dfx Interactive, Inc. 141
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Writing a Rectangle of Pixelsintothe LFB

The grLfbWriteRegion() convenience function copies a rectangle of pixels from aregion of memory
into the linear frame buffer as efficiently as possible. It performs the buffer locks and unlocks as
needed.

FxBool grL foWriteRegion(GrBuffer_t buffer,
FxU32 xStart,
FxU32 yStart,
GrLfbSrcFmt_t srcFormat,
FxU32 width,
FxU32 height,
FxBool pixelPipline,
FxI32 stridel nBytes,
void *data

The first argument, buffer, specifies the buffer that the data will be copied into; the choices are
GR_BUFFER_FRONTBUFFER, GR_BUFFER_BACKBUFFER, and GR_BUFFER_AUXBUFFER. The next two
parameters, xSart and ySart, specify the starting coordinates in the buffer where the data will be
written. The y origin is assumed to be in the upper left corner of the screen.

The srcFormat argument describes the format of the data; valid values are shown in Table 11.5. The
width and height parameters give the dimensions, in pixels, of the rectangular region to be written to
the LFB, and stridel nBytes specifies how many bytes are in one row of the array. The pixel Pipeline
argument is a Boolean value. If set to FXTRUE, the data is sent through the pixel pipeline on its way to
the LFB. The final argument, data, points to the pixel datain memory.

8 Glide 3.0 introduces a new argument to gr L fbWriteRegion(): pixelPipeline. If isis
FXTRUE, LFB data iswritten through the 3D pixel pipe. Not all hardware supports pixel
pipe writes (e.g. Voodoo Rush) or source formats; grLfowriteRegion() will return
FXFALSE if aninvalid or unsupported operation is attempted.

PORTING
NOTE

Note that stridel nBytes can be a negative number. If data pointsto the pixel closest to the origin, and
stridelnBytes is the length of arow in the array, then the sign of stridel nBytes represents the location of
the origin in the image pointed to by data. A negative stridelnBytesis used if data pointsto the lower
left corner, as shown in Figure 11.2.

Note also that not all hardware supports pixel pipe writes or source formats (e.g., Voodoo Rush).
grLfbwriteRegion() will return FXFALSE if an invalid or unsupported operation is attempted.

142 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

11. Accessing the Linear Frame Buffer

Table11.5 Source data formats for the grLfbWriteRegion() routine.

sour ce data format

description

GR_LFB_SRC_FMI_565

RGB 565 color image

GR_LFB_SRC_FMI_555

RGB 555 color image

GR_LFB_SRC FMI_1555

RGB 1555 color image

GR_LFB_SRC_FMI_888

RGB 888 color image. Each pixel is padded to 32 bits with RGB in the low
order 24 hits.

GR_LFB_SRC_FMI_8888

ARGB 8888 color image

GR_LFB_SRC_FMI_565 DEPTH

RGB 565 and 16-bit depth value packed into each 32-bit element of image

GR_LFB_SRC_FMI_555 DEPTH

RGB 555 and 16-bit depth value packed into each 32-bit element of image

GR_LFB_SRC FMI_1555 _DEPTH

RGB 1555 and 16-bit depth value packed into each 32-bit element of image

GR_LFB_SRC FMI_ZA16

Two 16-bit depth or alpha values. Alpha values are stored into odd bytes.

GR_LFB_SRC FMI_RLELG6

A 16-bit RLE Encoded image: each pixel has al6-bit signed count and a 16-
bit color. Negative counts are currently ignored.

Copyright © 1995-1998 3Dfx Interactive, Inc.

Proprietary and Confidential

143
Printed 08/05/98 10:3C

Glide 3.0 Programming Guide

Figure 11.2 Frame buffer writes: encoding the location of the origin as the sign of the stridel nBytes.

If the image you want to write into the linear frame buffer is defined with the origin in the lower left corner,
you can use a negative stridel nBytes to compute addresses, as shown in part (a) below. If the originisin the
upper left corner, use a positive stridel nBytes, as shown in part (b). The bottom half of each diagram shows
the pixel copy in progress.

(@). (b).

corner and is negative. left corner and stridel nBytes

data —__ «— stridelnBytes —

data » - >
<+— | stridelnBytes| —»

0,0 0,0
. width ———> . width ——
1 s el
' height =11 height

(xSart, yStart) (xStart,/ yStart)

addressyy) = data + (x + y*stridel nBytes)

Thus, arectangle of srcFormat pixels pointed to by data and defined by width, height, and

stridel nBytes will be copied into buffer at the location (xStart, yStart). Note that not al 3Dfx graphics
subsystems support al source image formats; grL fbwriteRegion() will fail if the source format is not
supported.

144 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

12. Housekeeping Routines

In This Chapter

Glide provides a collection of routines that return information about the system, the software, and the
scene being rendered.

You will learn how to:

V retrieve system configuration information: the current version of Glide, the number of SST
subsystems present, the size of the display screen, fog table or gamma correction table, the
minimum and maximum va ues for the depth buffer.

V¥ answer system status questions: How full isthe FIFO? How many pixels entering the pixel pipeline
are actualy drawn? What is the swap rate?

V¥ make surethat al pending graphics commands have been executed.
V¥ change the location of they origin.
V¥ enable and disable Glide operating modes.

Retrieving Configuration I nformation
The gr Get() routine retrieves the values of selected Glide state variables that are numbers.

FxI32 grGet(FxU32 pname, FxU32 plength, FxI32 * params)

or Get() retrieves the values of selected Glide state variables. The first argument, pname, tells Glide
which environmental parameters to return. The possible values are shown in Table 12.1. The other
arguments describe the buffer in which the values are returned: plength isthe length, in bytes, of the
buffer and paramsis a pointer to it.

If successful, grGet() returns the number of bytes written into the params buffer. If grGet() fails, it
returns O; the contents of the params array are unchanged. Possible reasons for failure include invalid
Glide context, an invalid pname, and NULL params.

or Get() replaces awhole bunch of APIs:

& Outwiththeold In with the new:
gr Buffer NumPending() or Get(GR_PENDI NG_BUFFERSWAPS, ..)
orGlideGetVersion() orGetString(GR_VERSI ON, ..)
gr SstlsBusy() orGet(GR_I S_BUSY, ..)
PORTING grSStPerfStatS() nget(GR_STATS_PI XEL_*,)
NOTE gr SstQueryBoards() or Get(GR_NUM_BOARDS, ..)
or SstQueryHar dwar &) orGet(*, ..), grGetString(*, ..)
gr SstScreenHeight() or Get(GR_VI EWPORT, ..)
gr SstScreenWidth() or Get(GR_VI EWPORT, ..)
Copyright © 1995- 1998 3Dfx Interactive, Inc. 145

Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

gr SstStatus() orGet(GR_I S_BUSY, ..), grGet(*, ..)
grSstVideoLing() orGet(GR_VI DEO PGS, ..)
or SstVRetraceOn() orGet(GR_VI DEO PGS, ..) when O isreturned
Constants:
GR_WDEPTHVALUE_NEAREST grGet(GR_WDEPTH M N_MAX, ..)
GR_WDEPTHVALUE_FARTHEST grGet(GR_WDEPTH M N_MAX, ..)
GR_ZDEPTHVALUE_NEAREST grGet(GR_ZDEPTH M N_MAX, ..)
GR_ZDEPTHVALUE_FARTHEST grGet(GR_ZDEPTH M N_MAX, ..)

146 Copyright O 1995- 1998 3Dfx Interactive,

Printed 08/05/98 10:30 AM Proprietary and Confide

12. Housekeeping Routines

Table12.1 Selectorsfor grGet().

The pre-defined constants in the first column can be used as the first argument to grGet(). The other three
columns describe the data that will be used if the chosen selector is used.

selector encoded in pname

number
of values
returned

number
of bytes
returned

description of value(s) returned in params

GR Bl TS_DEPTH

1

4

The number of bits of depth (zor g) in the frame
buffer.

GR BI TS_RGBA

4

16

The number of bits each of red, green, blue,
alphain the frame buffer. If there is no separate
alphabuffer (e.g. on the SST-1 the depth buffer
can be used as an apha buffer), 0 is returned for
the alpha bits.

GR BI TS_GAMVA

The number of bits for each channel in the
gammatable. If gamma correction is not
available, grGet() will fail, and the params array
is unmodified.

GR_FI FO_FULLNESS

How full the FIFO is, as a percentage. The value
isreturned in two forms: 1.24 fixed point and a
hardware-specific format.

GR_FOG TABLE_ENTRI ES

The number of entriesin the hardware fog table.
For VVoodoo Graphics, the value is 64.

GR_GAMVA_TABLE_ENTRI ES

The number of entries in the hardware gamma
table. Returns FXFALSE if it is not possible to
mani pulate gamma (e.g. on a Macronix card, or
in windowed mode).

GR _GLI DE_STATE SIZE

Size of buffer, in bytes, needed to save Glide
state. See gr GlideGetState().

GR_GLI DE_VERTEXLAYOUT_SI ZE

Size of buffer, in bytes, needed to save the
current vertex layout. See
grGlideGetVertexL ayout().

GR 1 S_BUSY

N

Returns FxFALSE if idle, FXTRUE if busy.

GR_LFB_PI XEL_PI PE

Returns FXTRUE if LFB writes can go through the
3D pixel pipe, FXFALSE otherwise.

GR_MAX_TEXTURE_SI ZE

The width of the largest texture supported on this
configuration (e.g. Voodoo Graphics returns
256).

GR_MAX_TEXTURE_ASPECT_RATI O

The logarithm base 2 of the maximum aspect
ratio supported for power-of-two, mipmap-able
textures (e.g. Voodoo Graphics returns 3).

GR_MVEMORY_FB

The total number of bytes per Pixelfx chip if a
non-UMA configuration is used, else 0. In non-
UMA configurations, the total FB memory is
GR_MEMORY_FB* GR_NUM FB.

GR_MVEMORY_TMU

The total number of bytes per Texelfx chipif a
non-UMA configuration is used, else FXFALSE. In
non-UMA configurations, the total usable texture
memory iS GR_MEMORY_TMJ* GR_NUM TM.

GR_MVENMORY_UNA

The total number of bytesif aUMA
configuration, else 0.

Copyright © 1995-1998 3Dfx Interactive, Inc.

Proprietary and Confidential

147
Printed 08/05/98 10:3C

Glide 3.0 Programming Guide

Table 12.1 Selectorsfor grGet(). (continued)
The pre-defined constants in the first column can be used as the first argument to grGet(). The other three
columns describe the data that will be used if the chosen selector is used.

selector encoded in pname number number | description of value(s) returned in params
of values | of bytes
returned | returned
GR_NON_PO/ER_OF_TWO_TEXTURES 1 4 Returns FXTRUE if this configuration supports
textures with arbitrary width and height (up to
the maximum). Note that only power-of-two
textures may be mipmapped. Not implemented
intheinitial release of Glide 3.0.

CGR_NUM_BOARDS 1 4 The number of installed boards supported by
Glide. Valid before a call to gr SstWinOpen().
GR_NUM FB 1 4 The number of Pixelfx chips present. This

number will always be 1 except for SLI
configurations.

GR_NUM_SWAP_HI STORY_BUFFER 1 4 Number of entriesin the swap history buffer.
Each entry is 4 bytes long.

GR_NUM_TMU 1 4 The number of Texelfx chips per Pixelfx chip.
For integrated chips, the number of TMUs is
returned.

GR_PENDI NG_BUFFERSWAPS 1 4 The number of buffer swaps pending.

CGR_REVI S| ON_FB 1 4 The revision of the Pixelfx chip(s).

CR_REVI S| ON_TMJ 1 4 The revision of the Texelfx chip(s).

GR_STATS_LI NES 1 4 The number of lines drawn.

GR_STATS_PI XELS_AFUNC_FAI L 1 4 The number of pixels that failed the alpha
function test.

GR_STATS_PI XELS_CHROMA_FAI L 1 4 The number of pixels that failed the chroma
key (or range) test.

GR_STATS_PI XELS_DEPTHFUNC_FAI L 1 4 The number of pixels that failed the depth
buffer test.

GR_STATS_PI XELS_I N 1 4 The number of pixels that went into the pixel
pipe.

GR_STATS_PI XELS_QUT 1 4 The number of pixels that went out of the pixel
pipe.

GR_STATS_PQOI NTS 1 4 The number of points drawn.

GR_STATS_TRI ANGLES_I N 1 4 The number of triangles received.

GR_STATS_TRI ANGLES_OUT 1 4 The number of triangles drawn.

GR_SWAP_HI STORY 1 4 The swapHistory buffer contents. The i™ 4-byte

entry counts the number of vertical syncs
between the (current frame —i)" frame and its
predecessor. If swapHistory is not implemented
(e.g. on Voodoo Graphics and Voodoo Rush),
gr Get() will fail, and the params array is
unmodified.

Use grGet(GR_NUM SWAP_HI STORY_BUFFER, ..) to
determine the number of entries in the buffer.
GR_SUPPORTS_PASSTHRU 1 4 Returns FXTRUE if pass through mode is
supported. See gr Enable().

148 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

12. Housekeeping Routines

Table 12.1 Selectorsfor grGet(). (continued)
The pre-defined constants in the first column can be used as the first argument to grGet(). The other three
columns describe the data that will be used if the chosen selector is used.

selector encoded in pname number number | description of value(s) returned in params
of values | of bytes
returned | returned
GR_TEXTURE_ALI GN 1 4 Alignment boundary for textures. For example, if
textures must be 16-byte aligned, 0x10 would be
returned.
GR_VI DEQ_PCSI TI ON 2 8 Vertical and horizontal beam location. Vertical
retrace isindicated by y == 0.
GR_VI EWPCRT 4 16 X, y, width, height of the viewport.
GR_VIDEPTH_M N_MAX 2 8 Minimum and maximum allowable w buffer
values.
GR_ZDEPTH M N_MAX 2 8 Minimum and maximum allowable z buffer
values.

The gr GetString() routine returns environmental parameters that are character strings.

const char *gr GetString(FxU32 name)

or GetString() returns a pointer to the string selected by the name argument, or NULL if nameis
invalid.

Table 12.2 Selectorsfor grGetString().

selector specified inname | description

GR_EXTENSI ON Returns a space-separated list of Glide extension names (the extension
names themselves do not contain spaces). If no extensions are supported, a
single space “ “ is returned.

GR_HARDWARE Returns one of “Voodoo Graphics’, “Voodoo Rush”, “Voodoo2”, or
“Banshee”. Other types may be added in the future.

GR_RENDERER “Glide”.

GR_VENDCR The vendor, “3Dfx Interactive’ .

GR_VERSI ON The Glide version. For example, “3.0-alpha’.

Completing Graphics Commands

When a Glide user issues a command that provides data or state to the hardware, the command is
gueued and will be executed some time later, in the order issued. Two commands allow the user to force
the completion of outstanding commands.

void grFinish(void)

Copyright © 1995-1998 3Dfx Interactive, Inc. 149
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Calling grFinish() forces al previoudy issued Glide commands to complete: it does not return until all
effects from previous commands are fully realized on the screen. grFinish() should be used judicioudy
asit can have severe performance impactsif called to frequently.

void grFlush(void)

Calling grFlush() forces al previoudy issued commands to begin execution, guaranteeing they will
complete in finite time. However, they may not al be completed upon return. Use gr Flush() to
guarantee command completion upon return.

Glide 3.0 isthe first release to support grFlush(). It isano-op in current hardware because commands
are not buffered (they are FIFOed, and the FIFO is guaranteed to drain). Future hardware designs may
utilize a buffer rather than a FIFO; in that case, this command will become necessary. Developers
interested in writing upward-compatible software should start using them now.

The Glide 2.x routine gr Sstidle() has been replaced by grFinish().

PORTING
NOTE

Monitoring System Performance

The graphics hardware maintains a set of counters that collect statistics about the fate of pixels as they
move through the pixd pipeline. Glide returns the current values of these counters with gr Get(); the
counters can be reset by calling gr Reset(), described below.

In order to account for every pixel counted and saved in pixelsOut, one must use the following
equation:

pixelsOut = LfbWritePixels + buffer Clear Pixels + (pixelsln — depthFuncFail — chromaFail — aFuncFail)

The pixel counters are accessed with gr Get() selectors similar to the variable names used in the
equations. GR_STATS_PI XELS_OUT, GR_STATS_PI XELS_| N, GR_STATS_DEPTHFUNC_FAI L,
GR_STATS_CHROVA FAI L, and GR_STATS_AFUNC FAI L. bufferClearPixels represents the number of
pixels written as aresult of callsto grBuffer Clear() and can be calculated as:

buffer ClearPixels = (# of times the buffer was cleared)* (clip window width) * (clip window height)

In addition to the pixdl statistics, grGet() will return the number of points drawn (GR_STATS_PQO NTS),
the number of lines drawn (GR_STATS_LI NES), the number of triangles started

(GR_STATS_TRI ANGLES_| N) and the number of triangles actually drawn (GR_STATS_

TRI ANGLES_QUT).

or Get() does not wait for the system to be idle, and hence does not include statistics for commands that
are still in the FIFO. Call grFinish() to empty the FIFO.

The counters are reset by calling grReset() with the appropriate selector. The hardware counters are
only 24-bits wide, so regular calls to grReset() are required to avoid overflow.

150 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

12. Housekeeping Routines

void gr Reset(FxU32 what)

orReset() resets statistic counters. The argument what is one of the selectors listed in Table 12.3.

The Glide 2.x routine gr SstResetPer fStats() has been replaced by
grReset(GR_STATS_PI XELS, ..).

PORTING
NOTE

Copyright © 1995-1998 3Dfx Interactive, Inc. 151
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Table 12.3 Selectorsfor grReset().

what selector description

CR_STATS_PI XELS Reset all the pixel statistic counters.

GR_STATS_PO NTS Reset all the point statistic counters.

GR_STATS_LI NES Reset all the line statistic counters,

CR_STATS_TRI ANGLES Reset all the triangle statistic counters.

GR_VERTEX_PARAMETERS Reset all grVertexLayout() parameter offsets to zero and all modes
{0 GR_PARAM DI SABLE.

Changing they Origin
Thelocation of they originisinitialy established as part of the gr SstWinOpen() cal in the Glide
initialization sequence. Theinitia setting can be overridden later on by calling gr SstOrigin().

void gr SstOrigin(GrOriginLocation_t origin)

The argument, origin, specifies the direction of the y coordinate axis. GR_ORI G N_UPPER_LEFT places
the screen space origin at the upper left corner of the screen with positive y going down.
GR_ORI G N_LOWER _LEFT places the screen space origin at the lower left corner of the screen with

positive y going up.

Enabling Glide Operating M odes
Several operating modes can be selectively enabled and disabled by the application programmer:

Anti-aliasing. Vertices must be sorted by depth. When enabled, points, lines, and triangles are anti-
aliased. This mode is ignored when drawing strips and fans.

Shameless plug. When enabled, the 3Dfx Interactive power shield logo is blended into each frame
drawn. Good for trade shows.

Video smoothing. When enabled and with hardware support,

Allow nearest dithered mipmapping. When enabled, the application is alowed to enable nearest
dithered mipmapping, atechnique that alleviates the effects of mipmap banding at the cost of
performance degradation for larger texture maps. Use it only if you can live with the poor
performance. Note that you must actually enable nearest dithered mipmapping by calling

or TexMipMapM ode().

Use grEnable() and grDisable() to select these operating modes.

void gr Enable(GrEnableMode_t mode)
void gr Disable(GrEnableMode_t mode)

The single argument to both routinesis one of the mode selectors shown in Table 12.4.

152 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

12. Housekeeping Routines

[} Mogt of the functionality of the old gr SstOpen() command was implemented in
gr SstWinOpen(). The smoothing_mode argument, however, has been replaced by
grReset(GR_VI DEO_SMOOTHI NG, ..).

Theold grHints(GR_HI NT_ALLOW M PMAP_DI THER) functionality is now implemented
PORTING asgrEnable(GR_ALLON M PMAP_DI THER).

NOTE

Table 12.4 Glide operating modes.

mode description default
GR _AA_ORDERED An anti-aliasing method that requires objects to be sorted | disabled
by depth. This mode appliesto all primitives except strips
and fans.
CR_ALLON.M PMAP_DI THER | Allow GR_ M PMAP_NEAREST DI THER mode. By default, | disabled
this mode cannot be enabled with gr TexMipM apM ode()
because of the performance impact. Note that this does
not actually set mipmap dithering; gr TexMipM apM ode()
must still be called.
GR_PASSTHRU Pass through mode. When enabled, the graphics frame depends on
buffer will displayed. When disabled, the VGA frame system

buffer is displayed. (This feature replaces the now-
obsolete gr SstControl() API).

Pass through mode is not supported by all hardware
configurations. Use gr Get(GR_SUPPORTS_PASSTHRU, ..)
to determine whether or not pass through mode is
supported on the current system.

configuration

GR_SHAMELESS_PLUG The 3Dfx power shield shameless plug is blended into disabled
each displayed frame if the mode is enabled.
GR_VI DEO_SMXOTHI NG Video smoothing mode. If the hardware does not support | enabled

video smoothing, this mode is a no-op.

Glide Utilities

Glide 3.0 defines six utility commands in the glideutl.h header file. Four help generate fog tables and
are described in Chapter 8. The other two define and read files of frame buffer data and are described

in Chapter 11.

Copyright © 1995-1998 3Dfx Interactive, Inc.

Proprietary and Confidential

153

Printed 08/05/98 10:3C

Glide 3.0 Programming Guide

[} Glide 3.0 make along list of utility routines disappear: most of these are remnants of
Glide 1.0 that have no possible use any more:
guAADrawTriangleWithClip() guTexGetCurrentMipMap()
guAlphaSour ce() guTexGetMipM apl nfo()
. guColor CombineFunction() guTexMemQueryAvail()

NOTE guDrawTriangleWithClip() guTexMemReset()
guDrawPolygonVertexListWithClip() guTexDownloadMipM ap()
guEncodeRLE16() guTexDownloadMipMapL evel ()
guEndianSwapBytes() guTexSour ce()
guEndianSwapWor ds() guTexCreateColorMipMap()
guTexAllocateM emory() guFbReadRegion()
guTexChangeAttributes() guFbWriteRegion()

guTexCombineFunction()

154 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

13. Glide Extensions

In This Chapter

Glide 3.0 introduces a mechanism for adding hardware, operating system, and application specific
extensions to the Glide Library. A Glide application calls gr GetString() to determine if agiven
extension is available on the current system configuration. If it is, gr GetProcAddress() returns an entry
point. By convention, extension procedure names end with “_EXT”.

In this chapter, you will discover:
V¥ amechanism for identifying and executing extensions.

V¥ achromaranging extension that allows arange of color vaues (instead of asingle value) to be
used as the chroma-key.

an extension that implements chroma-ranging on texels.
an extension that allows afog coordinate to be included in each vertex.
an extension that allows an ARGB color palette to be used.

4 4 < 4«

an extension that allows textures to be mirrored as they are repetitively applied.

Using Extensions

Calling the procedure gr GetString(GR_EXTENSI ON, ..) returns a space-delimited list of the names of
extensions that are available for the current system configuration. In general, newer hardware (like
Voodoo?), supports all of the extensions while older hardware (like Voodoo Graphics and Voodoo Rush)
support none of them. A single space is returned if no extensions are supported by the current
hardware.

Some of the extensions increase the available modes for existing commands. Others introduce new
commands; these are shown in the last column of Table 13.1. To access one of the procedures
associated with a supported extension, use gr GetProcAddress() to retrieve a pointer to it. Table 13.1
lists the extensions that may be present in Glide 3.0.

GrProc gr GetProcAddress(char * procName)

Copyright © 1995- 1998 3Dfx Interactive, Inc. 155
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Table 13.1 Extension and procedure names.

This table lists the names of Glide extensions. If the current system configuration supports the extension, its
name isincluded in the string returned by grGetString(GR_EXTENSI QN, ..). If an extension is supported,
entry points for the procedures that implement it can be accessed through calls to grGetProcAddress(). These
extensions are not available on systems with Vbodoo Graphics and Voodoo Rush hardware.

extension name description associated procedure names
CHROMARANGE | Chroma-range feature in the pixel pipeline is supported. gr ChromaRangeM odeExt(
)gr ChromaRangeExt()
TEXCHROMA Chroma-range feature in the texture mapping unit is gr TexChromaM odeExt()
supported. gr ChromaRangeExt()
FOGCOORD GR_FOG_PARAMVvertex parameter in grVertexLayout() is
supported.
PALETTEG6666 GR_TEXTABLE PALETTE 6666 format is supported.
TEXMIRROR GR_TEXTURECLAMP_M RROR_EXT mode in
gr TexClampM ode() is supported.

The Chroma-Range Extension

Chapter 8 described the chroma-key operation: away to screen out all pixels that match a designated
color. Glide 3.0 introduces chroma-ranging, a generalization of the single chroma-key color to arange
of colors. The chroma-range extension is available only with hardware support. Use

gr GetString(GR_EXTENSI ON, ..) and search for the sub-string “CHROMARANGE” to query for
availability of this extension. If the chroma-range extension is present, the entry points may be
retrieved via gr GetProcAddress().

Two routines implement the chroma-range extension: gr ChromaRangeM odeExt() enables and disables
the mode and gr ChromaRangeExt() establishes the chroma-range and the match criteria.

void gr Chr omaRangeM odeExt(GrChromakeyMode_t mode)

gr ChromaRangeM odeExt() enables and disables chroma-range checking. The mode argument can be
one of two values. GR_CHROVARANGE_DI SABLE Or GR_CHROVARANGE _ENABLE.

Chroma-keying must be enabled (using gr ChromakeyM ode()) before gr ChromaRangeM odeExt() is
executed, and it will remain enabled after chroma-ranging is disabled. You can disable both modes by
disabling chroma-keying.

void gr ChromaRangeExt(GrColor_t colorQ, GrColor_t colorl, FxU32 mode)

grChromaRangeExt() sets the global chroma-range reference values as order-insensitive packed RGB
values. The color format for color0 and color1 should be the same one as specified in the cFormat
parameter to gr SstWinOpen() (see Chapter 3). The order in which chroma-range values are specified
for a particular color component isirrelevant, i.e. the { color0, colorl} pairs

{(130,36,87), (150,38,92)} and {(150,36,92), (130,38,87)} are equivalent.

The mode argument determines the match criteria for the chromatest. Only one value for mode is
supported in Glide 3.0: GR_CHROVARANGE_RGB_ALL. In thismode, the { colorQ, colorl} pair defines
an inclusive range, i.e., the range falling between the minimum and maximum pair values. If al

156 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

13. Glide Extensions

components of the incoming pixel color fall within their respective ranges, the chroma test succeeds and
the pixel isinvalidated.

The chroma-range comparison uses the other color specified in the configuration of the color combine
unit, and is performed between colors with 24-bit.

Chroma-Ranges and Texels

If grGetString(GR_EXTENSI ON) returns the sub-string “ TEXCHROMA”, then chroma-ranges for each
TMU can be specified. The entry points for the two routines that implement the TEXCHROMA
extension, gr TexChromaM odeExt() and gr TexChromaRangeExt(), may be retrieved via

or GetProcAddress().

void gr TexChromaM odeExt(GrChipID_t tmu, GrChromakeyMode_t mode)

gr TexChromaM odeExt() enables or disables chroma-ranging in the designated tmu (GR_TMU0, GR_TMJL,
or GR_TMJ). The mode argument is either GR_TEXCHROVA_ENABLE or GR_TEXCHROVA DI SABLE.

void gr TexChromaRangeExt(GrChiplD_t tmu,
GrColor_t colorO,
GrColor_t colorl,

GrTexChromakeyMode t mode

)

gr TexChromaRangeExt () sets the chroma-range values for the TMU specified by tmu. The colorO and
color1 arguments behave like those for pixel chroma-ranging, described in the previous section.

The mode parameter determines the way the color ranges are used in the texel chromatest. Only one
valueis currently supported, GR_TEXCHROVARANGE _RGB_ALL_EXT. In this mode, each color
component pair defines an inclusive range, i.e., the range falling between the minimum and maximum
pair values. If all components of the incoming pixel color fall within their ranges, the chroma test
succeeds and the pixel isinvalidated.

The FOGCOORD Extension

If the FOGCOORD extension is supported, the GR_PARAM FOG_EXT parameter can be declared as
part of avertex layout (see grVertexLayout() in Chapter 2). The fog coordinate is used to index afog
tablein GR_FOG W TH_FOGTABLE_ON_FOGCOORD_EXT mode. See Chapter 8 for more details.

The PALETTEG6666 Extension

Glide 3.0 introduces another color palette format with the PALETTEG666 extension. The new format
stores a 24-bit ARGB color (6 bits per component) in the palette rather than the 24-bit RGB value of th
standard palette. The PALETTE6666 format is used in conjunction with texture format
GR_TEXFMI_P_8 (see Table 10.1 for more information about texture formats).

Figure 13.1 The PALETTEG66 color palette.

The PALETTEG6666 color palette holds 256 ARGB colors. Each entry is 24 bits wide, with 6 bits allocated to
each of the color components. A palette entry is retrieved when rendering with a texture map utilizing texture
format GR_TEXFMI_P_8. The texel is an offset into the color palette.

Copyright © 1995-1998 3Dfx Interactive, Inc. 157
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

The resulting color is a 32-bit quantity with each 6-bit color component expanded to 8 bits as shown below.

PALETTEG6666 color palette

alpha red green blue

texture format

GR TEXFMI_P_8

~m— NN

The 6-bit color components from the color palette become 8-
bit fields in the resulting color by replicating the two high-
order bits.

alpha

red green

blue

il |

The TEXMIRROR Extension

If the TEXMIRROR extension is supported, another texture clamping mode is available:
GR_TEXTURECLAMP_M RROR_EXT. Figure 13.2 shows the effect of repetitively applying the texture
with mirroring in both the s and t directions. Figure 13.3 shows how mirror mode interacts with the

other two texture clamping modes, described in Chapter 9.

Figure13.2 A GR_TEXTURECLAMP_MIRROR_EXT example.

The illustrations below show a texture mapping with three different rangesfor sand t and the texture

clamping mode for both coordinates set to GR_TEXTURECLAMP_M RROR_EXT. Clip coordinate spaceis used

for this example.

ABC

the texture map, with s
and tintherange[0..1]

ABC DN

NRC 9%

mirrored in both
directions as applied to
texelsin therange[0..2]

ABC

A\~

ABC

A\~

Jk A5C

28 NRC

Jabk 45C

287 NRG

811N

28V

IEVN

&V

mirrored in both directions as
applied to texelsin the range

[0..4]

158
Printed 08/05/98 10:30 AM

Copyright O 1995- 1998 3Dfx Interactive,
Proprietary and Confide

13. Glide Extensions

Figure 13.3 Texture clamping.
The texture clamp mode specifies what to do when texture coordinates are outside the range of the texture

map. If wrapping is enabled, then texture maps will tile, i.e., values greater than 255 will wrap around to O. If
clamping is enabled, then texture map indices are clamped to 0 and 255. Both modes should always be set to

GR_TEXTURECLAMP_CLANMP when using projected textures.

Glide 3.0 introduces a texture clamp mode extension, GR_TEXTURECLAMP_M RROR_EXT, that is available if
the TEXMIRROR extension is supported. See Chapter 13 for details and an expanded version of this figure.

The texture on the left isto be
mapped onto the rectangle, with
thetexture origin in theinterior of
therectangle. The clamp mode
settings for s and t affect the final
result, as shown below.

EE

wrap both sand t clamp s, wrap t mirror s, wrapt
wrap s, clampt clamp both sand t mirror s, clamp t
H N
wrap s, mirror t clamp s, mirror t mirror both sand t
Copyright © 1995-1998 3Dfx Interactive, Inc. 159

Proprietary and Confidential Printed 08/05/98 10:30

14. Programming Tips and Techniques

In This Chapter
This chapter is a collection of short programming tips. You will read about:

V¥ avoiding redundant state changes.
minimizing screen clears.
controlling texture aliasing artifacts with an LOD bias.

precision compression artifacts that can arise when z buffering.

4 4 <4 4«

state coherency and contention between processes.

Avoiding Redundant State Setting

If an application depth sorts al the polygons in a scene, the arbitrary order in which polygons are
rendered can potentialy cause an immense amount of redundant state information to be passed to the
hardware. Thisis adifficult problem to solve, however, the following guidelines should assist when
attempting to efficiently maintain state:

Use material libraries to clump together attributes into “materials’. Change states en masse
whenever a new material becomes current, but only change the current material when necessary.

Use intelligent object rendering code that renders similar triangles (in terms of State attributes)
together to minimize unnecessary state updates.

Avoiding Screen Clears by Rendering Background Polygons

If an application does not need to clear the alpha or depth buffers, it can forego clearing the display
buffer by rendering large background polygons first. For example, aflight smulator will typically
render large sky and ground polygons that will effectively cover the entire screen, removing the need to
clear the display buffer.

Using LOD Bias To Control Texture Aliasing

LOD calculations computed for mipmapping can be biased to finely control the point at which mipmap
levels are crossed. The LOD hias for atexture is specified by calling gr TexL odBiasValue(). For
bilinear, blended, mipmapped, non-mipmap dithered, non-mipmap-interpolated textures, an LOD bias
value of 0.5 istypically sufficient. For bilinear, blended, mipmapped, mipmap interpolated textures, an
LOD bias value of —-3/8 istypically sufficient.

However, the choice of an LOD bias value is highly dependent on the frequency of atexture. If textures
arefairly high in frequency, then alarger LOD bias may be required to reduce texture aliasing
artifacts.

Copyright © 1995- 1998 3Dfx Interactive, Inc. 161
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

Linear z Buffering and Coordinate System Ranges

The graphics hardware supports linear z buffering by storing the 16-bit whole part of any z values
passed to the hardware. A side effect of thisisthat the precision of the z buffer tends to be concentrated
very close to the viewer. Therefore z buffer “poke through” may occur as aresult of the compression of
precision close to the viewer.

State Coherency and Contention Between Processes

Neither the graphics hardware nor Glide handle resource contention management in multithreaded or
multitasking environments. Thus, an application that has multiple threads or processes accessing Glide
and/or the graphics hardware must maintain state coherency and perform context management
manually using some form of mutual exclusion management.

162 Copyright O 1995- 1998 3Dfx Interactive,
Printed 08/05/98 10:30 AM Proprietary and Confide

- A SAMpPle Program

/*

** Copyright (c) 1995-8, 3Dfx Interactive, Inc.

** Al Rights Reserved

* %

** This is UNPUBLI SHED PROPRI ETARY SOURCE CCDE of 3Dfx Interactive, Inc.;
** the contents of this file may not be disclosed to third parties, copied
or

** duplicated in any form in whole or in part, without the prior witten
** perm ssion of 3Dfx Interactive, Inc.

* %

** RESTRI CTED RI GHTS LEGEND:

** Use, duplication or disclosure by the Government is subject to
restrictions

** as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data
** and Conputer Software clause at DFARS 252.227-7013, and/or in simlar or
** successor clauses in the FAR, DOD or NASA FAR Suppl enent. Unpublished -
** rights reserved under the Copyright Laws of the United States.

* %

** $ld: test05.c,v 1.1 1995/06/30 06:47:04 garynct Exp $

*/

#i fdef __DOS

#i ncl ude <coni o. h>
#endi f

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <mat h. h>

#i ncl ude <glide. h>

typedef struct {
float x, vy;
float r, g, b, a;
} nyVertex;

FxI 32 nunBoar ds=0;
G Context _t win;

void main(void)
{ float color = 255.0;

puts("\ nTESTO5:");

puts("renders a Gouraud-shaded triangle");
#ifdef __DOS__

puts("press a key to continue");

getch();
#endi f

grdidelnit();
gr Get (GR_NUM BOARDS, 1, &nunboards)

if (nunBoards==0)
grErrorSet Cal | back("main: grGet(GR_NUM BOARDS) returned 0!", FXTRUE)

/* Select SST 0 and open up the hardware */
grSstSelect(0) ;
if (!'(w n=grSstWnOpen(NULL, GR_RESOLUTI ON_640x480, GR REFRESH 60Hz,

Copyright © 1995- 1998 3Dfx Interactive, Inc. 163
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

gr Error Set Cal | back("nain:

/# establish the vertex |ayout
gr Coor di nat eSpace(GR_W NDOW COORDS) ;

GR_COLORFORMAT_ABGR, GR ORI G N_LOWER LEFT, 2, 0
grSst WnQpen failed!'", FXTRUE);

gr Ver t exLayout (GR_PARAM XY, 0, GR_PARAM ENABLE);

gr Ver t exLayout (GR_PARAM RGB, 8,
gr Ver t exLayout (GR_PARAM A, 20

while (1)
myVertex vtxl1,

grBufferClear(0, O,
guCol or Conbi neFunct i

vt x1l.x = 160;
vtxl.y = 120;
vtxl.r = color;
vtxl.g = O;
vtxl.b = O;
vtxl.a = 0O;

vt x2. x = 480;
vt x2.y = 180;
vtx2.r = 0O;

vt x2.g = color;
vtx2.b = 0;

vt x2.a = 128;
vt x3.x = 320;
vt x3.y = 360;
vtx3.r = 0O;
vtx3.g = 0;
vtx3.b = col or;
vt x3.a = 255;

gr DrawTri angl e(&vt x1,
grBufferSwap(1);

#i fdef __DOS__
getch();
br eak;

#endi f

}
gr d i deShut down() ;
}

&t x2, &t x3);

GR_PARAM ENABLE) ;

GR_WDEPTHVALUE_FARTHEST) ;
on(GR_COLORCOMBI NE_| TRGB) ;

164
Printed 08/05/98 10:30 AM

Copyright O 1995- 1998 3Dfx Interactive,
Proprietary and Confide

—ae. Gllde State Constants

This following table shows the Glide constants that define values for modes, functions, and other Glide
State variables.

if the Glide typeis and the argument name | then these constants are valid values for | and these are the consequences of
is something like the argument choosing that value.
GR_M PMAPLEVELMASK_EVEN !)
Fxus2 e\(fanOddMask R M PMAPLEVELMASK COD Selects mipmaps for loading. Even LODs
oddven GR_M PMAPLEVELMASK_BOTH areGR_LOD_LO®_256,
GR LOD LO®2_64,GR LOD_LOR_16,
GR LOD LO®2_4,and GR LOD_LO=_1.
Odd LODsare GR_LCD_LOG2_128,
GR LOD LO®_32,GR LOD LOZ_8, and
R LOD LOR2_2
GrAlphaBlendFnc_t rgbSrcFactor GR BLEND ZERO sets alphablending factors
rgbDestFactor GR_BLEND_SRC_ALPHA
GR_BLEND_SRC _COLOR
alphaSrcFactor GR BLEND DST COLOR
alphaDestFactor GR BLEND DST_ALPHA
GR_BLEND_ONE

GR_BLEND ONE_M NUS_SRC_ALPHA
GR_BLEND ONE_M NUS_SRC_COLOR
GR_BLEND ONE_M NUS_DST_COLOR
GR_BLEND ONE_M NUS_DST_ALPHA
GR_BLEND_RESERVED 8
GR_BLEND_RESERVED 9
GR_BLEND _RESERVED A
GR_BLEND _RESERVED B
GR_BLEND_RESERVED C
GR_BLEND_RESERVED D
GR_BLEND _RESERVED E
GR_BLEND_ALPHA_SATURATE
GR_BLEND PREFOG COLOR
GrAspectRatio_t aspectRatio GR_ASPECT_LO=_8x1 sets the aspect ratio of the texturesina
GR_ASPECT_LO®_4x1 mipmap
GR_ASPECT_LO®_2x1
GR_ASPECT_LO®_1x1
GR_ASPECT_LO®_1x2
GR_ASPECT_LO®_1x4
GR_ASPECT LO®_1x8
GrBuffer_t buffer GR_BUFFER_FRONTBUFFER
- GR_BUFFER_BACKBUFFER
GR_BUFFER_AUXBUFFER
GR_BUFFER_DEPTHBUFFER
GR_BUFFER_AL PHABUFFER
GR_BUFFER_TRI PLEBUFFER
GrChiplD_t tmu @}Rﬁf Selectsthe target TMU. The constant
R M2 namesit.

GrChromakeyMode_t mode CR_CHROVAKEY_DI SABLE
GR_CHROVAKEY_ENABLE
GrCmpFnc_t func GR_COWP_NEVER
GR_CWP_LESS
GR_CVP_EQUAL
GR_CWP_LEQUAL
GR_CVWP_GREATER
GR_CMP_NOTEQUAL
GR_CVP_GEQUAL
GR_CWP_ALVAYS
GrColorFormat_t cFormat CR_COLORFCORVAT_ARGB
GR_COLORFORMAT_ABGR
GR_COLORFORMAT_RGBA
GR_COLORFORMAT_BGRA

Copyright © 1995- 1998 3Dfx Interactive, Inc. 165
Proprietary and Confidential Printed 08/05/98 10:30

Glide 3.0 Programming Guide

if the Glide typeis

and the argument name
is something like

then these constants are valid values for the
argument

and these are the conseguences of
choosing that value

GrCombineFactor_t

factor
rgbFactor
alphaFactor

GR_COMBI NE_FACTOR_ZERO
GR_COMBI NE_FACTOR_NONE

GR_COMBI NE_FACTOR_LOCAL

GR_COMBI NE_FACTOR_OTHER_ALPHA
GR_COMBI NE_FACTOR_LOCAL_ALPHA
GR_COMBI NE_FACTOR_TEXTURE_ALPHA
GR_COMBI NE_FACTOR_DETAI L_FACTCR
GR_COMBI NE_FACTOR_LOD_FRACTI ON
GR_COMBI NE_FACTOR_ONE

GR_COMBI NE_FACTOR_CNE_M NUS_LQCAL

chooses a combine factor for the
color combine, alpha combine, or
texture combine units

GR_COVBI NE_FACTOR_ONE_M NUS_OTHER_ALPHA
GR_OOVBI NE_FACTOR_ONE_M NUS_LOCAL_ALPHA
GR_COVBI NE_FACTOR_ONE_M NUS_TEXTURE_ALPHA
GR_COVBI NE_FACTOR_ONE_M NUS_DETAI L_FACTCR
GR_COVBI NE_FACTOR ONE_M NUS_LOD FRACTI ON

GrCombineFunction_t factor GR_COVBI NE_FUNCTI ON_ZERO chooses a

. GR_COVBI NE_FUNCTI ON_NONE combining
rgbFunction GR_COMBI NE_FUNCTI ON_LOCAL fanctiont
alphaFunction GR_COVBI NE_FUNCTI ON_LOCAL_ALPHA unction tor

GR_COMVBI NE_FUNCTI ON_SCALE_OTHER the color
GR_COVBI NE_FUNCTI ON_BLEND_OTHER combine,
GR_COVBI NE_FUNCTI ON_SCALE_OTHER _ADD_LOCAL apha
GR_COVBI NE_FUNCTI ON_SCALE_OTHER _ADD_LOCAL_ALPHA combine, or
GR_COVBI NE_FUNCTI ON_SCALE_OTHER M NUS_LOCAL texture
GR_COVBI NE_FUNCTI ON_SCALE_OTHER M NUS_LOCAL_ADD_LCCAL :
GR_COVBI NE_FUNCTI ON_BLEND combine
GR_OOVBI NE_FUNCTI ON_SCALE_OTHER_M NUS_LOCAL_ADD LOCAL_ALPHA | units
GR_COVBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD_LOCAL
GR_COVBI NE_FUNCTI ON_BLEND_LOCAL
GR_COVBI NE_FUNCTI ON_SCALE_M NUS_LOCAL_ADD LOCAL_ALPHA

GrCombineLocal_t local g_wVBCDVB: $ tmm_lcgfs%;ﬁ? chooses alocal alphaor RGB source
GR COVBI NE_LOCAL _NONE for_ color, apha, or texture combine
GR_COMBI NE_LOCAL_DEPTH units

GrCombineOther_t other GR_COMBI NE_OTHER | TERATED chooses an apha or RGB source for
GR COVBI NE_CTHER TEXTURE the “other” value in the color, alpha,
GR_COVBI NE_OTHER_OONSTANT bi it
GR_OOVBI NE_OTHER NONE or texture combine units

GrCullMode_t mode GR CULL_DI SABLE Do back-facing polygons have

negative or positive area?

GrDepthBufferMode_t mode

GR_DEPTHBUFFER DI SABLE
GR_DEPTHBUFFER_ZBUFFER
GR_DEPTHBUFFER_WBUFFER

GR_DEPTHBUFFER_ZBUFFER _COVPARE_TO BI AS
GR_DEPTHBUFFER WBUFFER COVPARE TO B AS

chooses a depth buffering algorithm

GrDitherMode_t mode

GR_DI THER DI SABLE
GR_DI THER 2x2
DI THER 4x4

Wanna dither?

GrFogMode_t mode

0G WTH_ TABLE_ON Q

R
GR F
GR F
GR_FOG W TH_TABLE_ON_FOGCOORD_EXT
GR F
R

enables and characterizes fogging

GrLfbWriteMode_t mode

GR_LFBWRI TENDDE_565
GR_LFBVWR TEMODE_555
GR_LFBWRI TEMODE_1555
GR_LFBVWR TEMODE_888
GR_LFBVWR TEMODE_8888
GR_LFBVWRI TEMODE_565_DEPTH
GR_LFBVWRI TEMODE_555_DEPTH
GR_LFBWRI TEMODE_1555_DEPTH
GR_LFBVWRI TEMODE_DEPTH_DEPTH
GR_LFBVWRI TEMODE_ALPHA_ALPHA

GrLOD_t smallLOD

largeLOD
thisLOD

3
88
iR

éé
|
OJO)
N B

) LOG2_16

56568558
S{RRRAR

Specifiesthe largest dimension of
the texture. The aspect ratio
determines the smaller dimension.

GrMipMapMode_t mipmapMode

mode

NAP D SABLE
MAP_NEAREST
MAP_NEAREST DI THER

EEE EEEEEEEE)

==L
U3

specifies the kind of mipmapping to
perform

166
Printed 08/05/98 10:30 AM

Copyright O 1995- 1998 3Dfx Interactive,

Proprietary and Confide

Appendix C. Glide State Constants

GrNCCTable_t

table

GR_NCCTABLE_NCCD
GR_NCCTABLE_NCCL

chooses an NCC tablefor usein
decompressing texels

Copyright © 1995-1998 3Dfx Interactive, Inc.

Proprietary and Confidential

167
Printed 08/05/98 10:3C

Glide 3.0 Programming Guide

If the Glide typeis and the argument name | then these constants are valid values for and these are the consequences of
is something like the argument choosing that value
GrOriginLocation_t iai GR ORI G N_UPPER _LEFT setslocation of origin
Ioc;aFeOngm GR ORI G N_LONER _LEFT g
origin
GrSmoothingMode_t sMo CGR_SMOOTHI NG _DI SABLE enables/disables 24-smoothing filter
othMode GR_SMOOTHI NG ENABLE 9
GrTexBaseRange_t GR _TEXBASE_256 Specifies which base register when usin
range GR_TEXBASE 128] & 9
GR_TEXBASE_64 more than one. A mipmap can be broken
GR_TEXBASE 32 TO 1 into four fragments. The number in the
constant corresponds to the LOD
number.
GrTexTable_t GR_TEX_NCCO Each TMU can have two NCC tables
- tableType GRTEX NG _
table GR_TEX_PALETTE and a palette. Load them one at atime
with ageneral purpose routine.
GrTextureClampMode_t CR_TEXTURECLAMP_W\RAP Clamp or wrap at the edges of atexture?
sClampMode GR_TEXTURECLAMP_CLAMP P *® 9
tClampMode
GrTextureFilterMode_t inFi GR_TEXTUREFI LTER PO NT_SAMPLED chooses minification and magnification
B mmFI.l terMode GR_TEXTUREFI LTER BI LI NEAR filters %
magFilterMode
GR_TEXFMI_RGB_332 -
GrTextureFormat_t format R TEXEMT Y1 Q 422 see Table 10.1 for adescription of the
GR_TEXFMI_ALPHA 8 texture formats
GR_TEXFMT_I NTENSI TY_8
GR_TEXFMI_ALPHA | NTENSI TY_44
GR_TEXFMT_P_8
GR_TEXFMI_ARGB_8332
GR_TEXFMT_AYI Q 8422
GR_TEXFMI_RGB_565
GR_TEXFMI_ARGB_1555
GR_TEXFMT_ARGB_4444
GR_TEXFMT_ ALPHA | NTENSI TY_88
GR TEXFMTI_AP 88

The types below are used in three Glide Utilities Library functions that present higher level views of the
texture, color, and a pha combine units.

if the Glide typeis

and the argument
name is something
like

then these constants are valid values for the argument

and these are the
consequences of
choosing that value

t

GR_TEXTURECOVBI NE_DECAL
GR_TEXTURECOVBI NE_OTHER
GR_TEXTURECOVBI NE_ADD
GR_TEXTURECOVBI NE_MULTI PLY
GR_TEXTURECOVBI NE_SUBTRACT
GR_TEXTURECOVBI NE_DETAI L
GR_TEXTURECOVBI NE_DETAI L_OTHER
GR_TEXTURECOVBI NE_TRI LI NEAR_CDD
GR_TEXTURECOVBI NE_TRI LI NEAR_EVEN
GR_TEXTURECOVBI NE_CNE

GrAlphaSource_t mode GR_ALPHASOURCE_CC_ALPHA chooses an alpha source
GR_ALPHASOURCE_| TERATED_ALPHA for aphaand color
GR_ALPHASOURCE_TEXTURE_ALPHA .
GR_ALPHASOURCE_TEXTURE_ALPHA TI MES_| TERATED ALPHA | ©0mbing
GrColorCombineFnc_t | function GR_COLORCOMBI NE_ZERO chooses a color
GR_COLORCOVBI NE_CCRGB combining function
GR_COLOROOMVBI NE_| TRGB
GR_COLORCOVBI NE_| TRGB_DELTAO
GR_COLORCOVBI NE_DECAL_TEXTURE
GR_COLORCOMVBI NE_TEXTURE_TI MES_CCRGB
GR_COLORCOVBI NE_TEXTURE_TI MES_| TRGB
GR_COLORCOVBI NE_TEXTURE_TI MES_| TRGB_DELTAO
GR_COLORCOVBI NE_TEXTURE_TI MES_| TRGB_ADD_ALPHA
GR_COLORCOVBI NE_TEXTURE_TI MES_ALPHA
GR_COLORCOVBI NE_TEXTURE_TI MES_ALPHA_ADD | TRGB
GR_COLORCOVBI NE_TEXTURE_ADD_| TRGB
GR_COLORCOVBI NE_TEXTURE_SUB_| TRGB
GR_COLORCOVBI NE_CCRGB_BLEND_| TRGB_ON_TEXALPHA
GR_COLORCOMVBI NE_DI FF_SPEC_A
GR_COLORCOVBI NE_DI FF_SPEC B
GR_COLORCOVBI NE_ONE
GrTextureCombineFnc_ | function GR_TEXTURECOVBI NE_ZERO chooses atexture

combining function

168

Printed 08/05/98 10:30 AM

Copyright O 1995- 1998 3Dfx Interactive,
Proprietary and Confide

Glossary

aliasing

alpha

ambient light

animation

anti-aliasing

API
ASIC

back face culling

bilinear filtering

Rendering artifacts that occur when a continuous function is discretely
sampled or sub-sampled. Two common types of aliasing are polygona
aliasing and texture aliasing. Polygonal aliasing is arendering artifact that
occurs when rasterization applies color to a pixel without considering how
much of the pixel is covered by the triangle. Along the edges of the
triangle, only a portion of the pixel is likely to be covered by the triangle.
An diased triangle will have jagged edges. Texture aliasing is a rendering
artifact that occurs when a texture map is not sampled frequently enough
or when the texel area covered by a pixel is not accounted for. See anti-
aliasing.

The A in an RGBA color. The alpha component is never displayed. Itisa
multiplier used to describe transparency and controls the blending of
overlapping colors. See blending.

One of the components of alighting model. Ambient light ssemsto come
from al directions rather than from a specific source. Back lighting in a
room is an example. It scattersin al directions after striking a surface, as
does diffuse light. See diffuse, emitted, and specular light.

Generating and displaying a scene as the viewpoint and/or objects change
position to give theillusion of motion.

Techniques for eliminating aliasing. For polygona aliasing, a rendering
technique that accounts for fractional coverage of a pixel when assigning
it acolor, thereby reducing or eiminating the jagged edges that
characterize an aliased rendering. For texture aliasing, a rendering
technique that accounts for the areas of texels covered by a pixel. See
aliasing.

Application program interface.

Application-specific integrated circuit.

The process of eliminating back facing triangles. A triangle has two sides,
front and back, with only one side visible at atime. The sign of the area of
the triangle determines which side is visible and can be used to eliminate
back facing triangles before they are rendered.

A technique for choosing the texd color to apply to a pixel during texture
mapping. The weighted average of the four texels nearest the pixel center
is used.

blending When two triangles overlap in screen space, a decision must be made
about the color of the pixelsin the overlapping area. Blending isa
Copyright © 1995- 1998 3Dfx Interactive, Inc. 169

Proprietary and Confidential

Printed 08/05/98 10:3C

Glide 3.0 Programming Guide

chroma-key

clamp

clipping

depth bias

depth buffer

diffuse light

dithering

double buffering

technique for reducing the two colors to one, usualy as alinear
interpolation of the two candidates.

A technique for removing pixels of a specific color, used to implement a
“blue screen”.

Forcing a value to lie within a specified range of values.

Elimination of those portions of a scene that are outside the clipping
rectangle defined by calling gr Clipwindow().

A congtant that is added to the calculated depth of a pixel.

One possible use of the auxiliary buffer. It stores a depth value for each
pixel. Subsequent pixels can be accepted or discarded based on a depth
test.

One of the components of alighting model. Diffuse light comes from a
single source, but it is scattered equally in al directions when it strikes a
surface. See ambient, emitted, and specular light.

A technique for increasing the perceived range of colorsin an image by
applying a pattern to surrounding pixels to modify their color values.
When viewed from a distance, these colors appear to blend into an
intermediate color that can’t be represented directly. Dithering is similar to
the haf-toning used in black and white publications to produce shades of
gray.

Using two color buffers: a scene is rendered in one buffer while the
previoudy rendered scene in the other buffer is displayed. When the
rendering is complete, the two buffers are swapped and the rendering of
the next scene can begin in the buffer that is no longer being displayed.
See single buffering, triple buffering, and frame buffer.

EDO DRAM Extended-data-out dynamic random access memory.

emitted light One of the components of alighting model. Emitted light comes from an
object and is unaffected by other light sources. Lamps, headlights, and
candles are examples. See ambient, diffuse, and specular light.

FBI Frame buffer interface.

FIFO Firstin, first out. A list data structure in which new entries are added at
the end of theligt.

flat shading Coloring atriangle with asingle, constant color. See Gouraud shading.

fog A rendering technique that smulates atmospheric effects such as haze,
fog, and smog by fading object colors to a background color based on
distance from the viewer.

frame buffer The memory used to hold pixels. In an SST system, the frame buffer is
accessed by the FBI chip and can be used for up to three color buffers. In
single or double buffer mode, the auxiliary buffer can optionally be used
as an apha buffer or a depth buffer.

170 Copyright O 1995- 1998 3Dfx Interactive,

Printed 08/05/98 10:30 AM

Proprietary and Confide

Glossary

Gouraud shading

homogeneous coordinates

LOD

magnification

minification

mipmap

PCI system bus

pixel

point sampling

rendering

RGBA
single buffering

specular light

subpixel correction

texel

texture

texture coordinates

Colors are assigned to the vertices of atriangle and linearly interpolated
across the triangle to produce a smooth variation in color. Also called
smooth shading. See flat shading.

(%, ¥, z, w). The w coordinate is a scaled positive depth vaue used during
perspective projection, perspective texture mapping, and depth buffering.
Some graphics systems do not use homogeneous coordinates; in these
instances the z depth value can be used in lieu of the w coordinate,
assuming that the z value is positively increasing into the screen.

Level of detail. See mipmap.

If atexture-mapped screen pixel is smaller than atexel, magnification
techniques are used. See mipmayp and minification.

If atexture-mapped screen pixel islarger than atexel, minification
techniques are used. See mipmap and magnification.

A pyramidal organization of gradually smaller, filtered sub-textures or an
individual texture map within the set, that is used for anti-aliased texture

mapping.

The busin a PC that connects the host CPU and the peripheral devices,
including the SST-1 board.

Picture e ement.

In the context of SST-1 texture mapping, choosing the texel nearest the
pixel center.

The process of converting trianglesinto bits in the frame buffer, applying
texture mapping, alpha blending, depth buffering, etc. Rendering is what
SST-1 does.

Red, green, blue, and alpha
Rendering into the color buffer asit is being displayed.

One of the components of alighting model. Specular light comes from a
specific direction and bounces off surfaces in a preferred direction as well.
It models the shininess of a surface. See ambient, diffuse, and emitted
light.

Adjusting the vertex parameter values (x, y, z, w, s, t, red, green, blue,
and alpha) to lie at the center of the pixel rather than somewhere else. The
result is very accurate rendering.

Texture el ement.

A one- or two-dimensional image that is used to modify the color of a
triangle and add realism to the scene. You might map a brick texture onto
a set of triangles that represents awall, for example.

(s, t). Texture coordinates can be specified over any range of values.
However, the SST-1 hardware expects texture coordinates in the range
[2'°..2"%-1] where [0..256] represents one replication of atexture map.

Copyright © 1995-1998 3Dfx Interactive, Inc. 171

Proprietary and Confidential

Printed 08/05/98 10:3C

Glide 3.0 Programming Guide

texture mapping

texture memory

TMU
triangle

trilinear filtering

triple buffering

The process of applying atexture to atriangle.

Memory used for storing textures. On an SST graphics system, this
memory is part of TMU.

Texture Mapping Unit.
The SST-1 system’ s rendering primitive.

A technique for blending texels between two levels of detail to avoid
mipmap banding.

One possible use of the auxiliary buffer. Three drawing buffers are in use,
one being displayed, one waiting to be displayed, and one being rendered
into.

vertex One of the corners of atriangle. It has x and y coordinates and a set of
attributes: an RGBA color, az vaue indicating depth, s and t coordinates
for texture mapping, and aw coordinate for perspective correction.

172 Copyright O 1995- 1998 3Dfx Interactive,

Printed 08/05/98 10:30 AM

Proprietary and Confide

| ndex

Bold face page numbers indicate an example of use.

A

advanced filtering - 3, 89, 96, 100

aliasing - 2, 45, 167

alphablending - 1, 3, 4, 5, 6, 20, 27, 46, 48, 59, 62, 63,
66, 73, 74, 79, 82, 137, 138, 163, 169

alpha buffer - 27, 28, 168

alpha buffering - 6, 27, 28, 30, 48, 61, 62, 65, 66, 67,
83, 127

alpha combine unit - 4, 6, 46, 48, 50, 59, 60, 62, 64, 65,
66, 83, 84, 85, 86, 165

alpha compare function - 83

alphatesting - 5, 6, 20, 59, 73, 83, 137, 138

anti-aliasing - 1, 6, 31, 45, 46, 48, 62, 150, 151, 167,
169

aspect ratio - 93

atmospheric effects - 168. See fog.

auxiliary buffer - 26, 27, 28, 59, 61, 67, 168, 170

D

decompression table - 105, 106, 124, 125

depth bias - 67, 71, 138, 168

depth buffer - 2, 28

depth buffering - 1, 3, 4, 6, 20, 27, 28, 30, 62, 63, 67,
68, 69, 70, 71, 83, 84, 127, 131, 136, 137, 138, 139,
159, 164, 168, 169

depth test - 5, 10, 67, 68, 69, 72, 136, 168

dithering - 1, 3, 4, 5, 34, 49, 50, 61, 95, 96, 97, 137,
159, 164, 168

double buffering - 23, 27, 168

E

EDO DRAM - 168
even and odd LODs - 109, 110, 112, 114, 115, 116, 117,
118, 119, 123, 163

B

backface culling - 6, 43, 44

bilinear filter - 85, 90, 100, 101, 102

bilinear filtering - 3, 89, 96, 108, 167

billboarding - 83

blending equation - 78

blending factor - 48, 63, 65, 73, 75, 78, 79, 80, 81, 103
blue screen - 73, 168

C

cFormat - 20, 21, 74, 83, 133, 134, 135, 154, 163

chroma-key - 4, 5, 73, 136, 168

chroma-keying - 6, 73, 82, 83, 137, 138

clearing behind an overlay - 68

clipping - 168

clipping window - 31, 32, 34

cockpit bit - 68

color byte ordering - 21, 49

color combine unit - 5, 49, 50, 52, 53, 54, 55, 56, 57,
59, 85, 100, 101, 102, 119, 120, 121, 125

color component - 49, 50, 106, 168

color palette - 105, 106, 107, 108, 109, 124, 125, 155

convex polygon - 6, 11, 31, 39, 40

coordinate - 86, 169, 170

culling - 73, 167

F
FBI - 3, 168
FIFO - 168

flat shading - 168, 169

floating point format - 2, 4

fog-3,4,5,6,20,34, 70, 73, 74, 75, 76, 77, 79, 80, 82,
136, 137, 138, 164, 168

fog color - 73

fog density - 73, 77

fog equation - 73, 74, 77, 78

fog mode - 74, 76, 78, 79, 80, 81, 82

fog table - 73, 77

frame buffer memory - 27

G

Glide- 1

Gouraud shading - 1, 2, 3, 168, 169

grAADrawTriangle() - 48

GrAlpha_t - 30, 62, 83, 137

GrAlphaBlendFnc _t - 63, 163

grAlphaBlendFunction() - 27, 30, 48, 62, 63, 64, 65, 66,
78, 79, 80, 82, 138

grAlphaCombing() - 48, 50, 51, 52, 56, 59, 60, 61, 63,
64, 66, 83, 100

grAlphaControlsI TRGBLighting() - 57

grAlphaTestFunction() - 83, 84

grAlphaTestReferenceValueg() - 83

GrAspectRatio_t - 110, 111, 114, 116, 117, 126, 163

Copyright © 1995- 1998 3Dfx Interactive, Inc.
Proprietary and Confidential

173
Printed 08/05/98 10:3C

GrBuffer_t - 127, 129, 140

grBufferClear() - 21, 30, 31, 34, 49, 62, 68, 70, 72, 148,
162

grBufferNumPending() - 143

grBufferSwap() - 28, 29, 72, 162

GrChiplD_t - 91, 92, 96, 97, 102, 110, 113, 114, 116,
117, 119, 122, 123, 163

grChromakeyMode() - 82, 138

GrChromakeyMode t - 82, 163

grChromakeyValug() - 21, 49, 82, 83

grChromaRangeExt() - 154

grChromaRangeM odeExt() - 154

grClipWindow() - 30, 31, 32, 137, 168

GrCmpFnc_t - 83, 163

grColorCombine() - 34, 50, 51, 52, 53, 54, 55, 56, 57,
59, 60, 63, 66, 100

GrColorFormat_t - 9, 20, 21, 49, 163

grColorMask() - 27, 28, 30, 61, 66, 137

GrCombineFactor_t - 50, 59, 97, 164

GrCombineFunction_t - 50, 59, 97, 164

GrCombineloca_t - 50, 59, 164

GrCombineOther_t - 50, 59, 164

grConstantColorValue() - 21, 25, 34, 49, 53, 54, 55, 57,
59, 61, 64, 136

GrContext_t - 24

grCoordinateSpace() - 10, 15, 16, 17, 162

grCullMode() - 44

GrCullMode t - 44, 164

grDepthBiasLevel() - 67

grDepthBiasLevel() - 71

grDepthBufferFunction() - 67, 68, 69, 70, 72

grDepthBufferMode() - 27, 30, 67, 69, 70, 72, 130, 131,
138

grDepthMask() - 28, 30, 62, 67, 68, 70, 72, 137

grDepthRange() - 11

grDisable() - 150

grDisableAllEffects() - 137

grDitherMode() - 50

GrDitherMode _t - 50, 164

grDrawLing() - 9, 34

grDrawPoint() - 34

grDrawTriangle() - 9, 32, 42, 48, 54, 55, 56, 71, 162

grDrawVertexArray() - 35, 37, 38, 40, 41, 42

grDrawV ertexArrayContiguous() - 35, 42

grEnable() - 41, 46, 48, 96, 150

grErrorSetCallback() - 30, 161

grFinish() - 129, 147, 148

grFinish(). - 148

grFlush() - 148

GrFog_t - 75, 76, 77, 79, 80, 82

grFogColorValue() - 21, 49, 74, 75, 76, 79, 80, 82

grFogMode() - 74, 75, 76, 77, 79, 80, 81, 82, 138

grFogTable() - 74, 75, 76, 79, 80, 82

grGet() - 19, 25, 26, 29, 30, 68, 76, 143, 145, 146, 147,
148, 161

grGetProcAddress() - 153, 154, 155

grGetString() - 147, 153, 154, 155

grGlideGetState() - 10, 137, 138

grGlideGetVersion() - 143

grGlidelnit() - 19, 20, 24, 26, 161

grGlideSetState() - 10, 137, 138

grGlideShutdown() - 26, 162

grLfbConstantAlpha() - 128, 132, 136, 137

grLfbConstantDepth() - 128, 132, 136

GrLfbinfo_t - 127, 129, 138, 139

grLfbLock() - 127, 128, 129, 130, 131, 132, 137, 138,
139

grLfbReadRegion() - 132

GrLfbSrcFmt_t - 140

grLfbUnlock() - 129, 131, 132, 138, 139

GrLfbWriteMode_t - 127, 129

grLfbWriteRegion() - 129, 140, 141, 142

grLoadGammaTable() - 58

GrLock_t - 127, 129

GrLOD _t - 110, 111, 114, 116, 117, 164

GrMipMapMode _t - 96, 110, 164

GrNCCTable t - 124

GrOriginLocation_t - 20, 127, 129, 165

grQueryResolutions() - 24

grRenderBuffer() - 27

grReset() - 148

GrScreenRefresh t - 20

GrScreenResolution_t - 20

grSelectContext() - 24

grSstidle() - 148

grSstIsBusy() - 143

grSstOpen() - 151

grSstOrigin() - 10, 150

grSstPerfStats() - 143

grSstQueryBoards() - 143

grSstQueryHardware() - 143

grSstResetPerfStats() - 149

grSstScreenHeight() - 143

grSstScreenWidth() - 143

grSstSelect() - 19, 20, 24, 25, 26, 161

grSstStatus() - 144

grSstVideoLing() - 144

grSstVRetraceOn() - 144

grSstWinClose() - 25, 26

grSstWinOpen() - 9, 19, 20, 21, 23, 24, 25, 26, 27, 49,
74, 83, 129, 133, 134, 135, 150, 151, 154

GrTexBaseRange t - 110, 123, 165

grTexCacMemRequired() - 109, 111, 113, 114

grTexChromaModeExt() - 155

grTexClampMode() - 92

grTexCombing() - 50, 59, 97, 98, 99, 100, 101, 102,
103, 119, 120, 121, 122

grTexDetail Control() - 99, 102

grTexDownloadMipMap() - 114, 115, 116, 119, 120,
121, 122, 123

grTexDownloadMipMapLevel() - 114, 116, 117, 118,
119

grTexDownloadMipMapL evel Partial () - 114, 117, 118

grTexDownloadTable() - 124, 125

grTexDownloadTablePartia () - 124

grTexFilterMode() - 91, 97

GrTexInfo - 109, 111, 112, 114, 115, 119, 120, 121, 123

grTexLodBiasValug() - 97, 103, 159

174
Printed 08/05/98 10:30 AM

Copyright O 1995- 1998 3Dfx Interactive,
Proprietary and Confide

Glossary

grTexMaxAddress() - 113, 114, 119, 120, 121, 122

grTexMinAddress() - 113, 114, 120, 121, 122

grTexMipMapMode() - 96, 97, 150, 151

grTexMultibase() - 122

grTexMultibaseAddress() - 122, 123

grTexNCCTable() - 124, 125

grTexSource() - 119, 120, 121, 122, 123

GrTexTable t - 110, 124, 165

grTexTextureMemRequired() - 109, 111, 112, 119, 120,
121, 122

GrTextureClampMode t - 92, 165

GrTextureFilterMode t - 91, 165

GrTextureFormat_t - 110, 111, 114, 116, 117, 126, 165

GrVertex - 48

grVertexLayout() - 12, 13, 14, 15, 16, 17, 32, 34, 41,
59, 150, 162

grViewport() - 10

gu3dfGetinfo() - 126

Gu3dfHeader - 125, 126

Gu3dfinfo - 125, 126

gu3dfLoad() - 124, 125, 126

guFogGenerateExp() - 77

guFogGenerateExp2() - 77

guFogGenerateLinear() - 77

guFogTablelndextoW() - 76

guFogTablelndexToW() - 75, 76

guGammaCorrectionRGB() - 57, 58

GuNccTable - 126

GuTexPalette - 125, 126

GuTexTable - 126

nearest dithered - 95, 150, 151
mist - Seefog
multi-passfog - 77

N

narrow channel compression - See NCC
Narrow Channel Compression (NCC) - 2
NCC table - 108, 110, 124, 125, 164, 165

O
opacity - 62, 83

H

haze - See fog
homogeneous coordinate - 169

idleflag - 127
iterated alpha - 46, 48, 56
iterated RGB - 5, 56, 57

L

level of detail (LOD) - 3, 89, 92, 95, 169
lighting - 1, 2, 5, 73, 167, 168, 169
diffuse - 56, 167, 168, 169
maps - 81
specular - 56, 57
linear frame buffer
layout - 28
writing - 5, 136
LOD bias - 96

P

PCI bus - 2, 169
performance - 2, 3, 4, 73, 89, 95, 96, 100, 129, 150
number of TMUs and - 100
perspective correction - 2, 170
perspective distortion - See perspective correction
pixel center - 167, 169
pixel pipeline - 4, 5, 6, 11, 73, 100, 119, 127, 136, 137,
143, 148
point sampling - 3, 85, 89, 90, 97, 100, 169
porting note
anti-aliasing - 46, 47, 62
gamma correction - 58
grHints() - 12, 151
grSstidle() replaced by grFinish() - 148
GrVertex structure - 12
LOD and aspect ratio names - 93, 94, 111
obsolete utility routines - 152
palettes and compression tables - 124
performance stetistics - 149
pixel Pipe argument to grL fbWriteRegion() - 140
gandw-11
rendering polygons - 40
routines made obsolete by grGet() - 143
size of fog table - 76
texture alignment - 111
vertex snapping - 17
windowed environments - 20

Q

g coordinate - 77

R

read/write flag - 127
RGB iterators - 5, 56
RGBA iterators - 5

M

magnification - 85, 86, 90, 91, 96, 100, 165, 169
minification - 85, 86, 90, 91, 96, 100, 165, 169
mipmapping - 1, 3, 89, 92, 95, 96, 100

nearest - 95

S

sand t coordinates - 91, 92, 170
scanline interleaving - 2, 3, 25
screen resolution - 27, 28
single buffering - 168, 169

Copyright © 1995-1998 3Dfx Interactive, Inc.
Proprietary and Confidential

175
Printed 08/05/98 10:3C

smog - Seefog

smoke - See fog

smoothing filter - 165

special effects unit - 5

state coherency - 159, 160
stenciling - 84

subpixel correction - 1, 169
system configuration - 2, 3, 27, 96

T

texel - 2, 57, 83, 86, 88, 90, 92, 95, 108, 167, 169, 170
texel center - 90
texel selection - 85, 93, 98, 105, 124
TexelFx - See TMU
texture
composite - 91, 102, 103, 120
decal - 97, 100, 101, 103, 119
detail - 100
projected - 92, 100
rectangular - 87, 93
square - 93
texture alpha - 57, 61
texture axis - 87
texture clamping - 85, 91, 92, 157
texture combine unit - 4, 5, 51, 52, 53, 55, 61, 85, 86,
96, 97, 98, 101, 102, 105, 121, 164
texture coordinate - 86, 87, 88, 169
texture format - 57, 105, 106, 107, 108, 109, 110, 111,
114, 118, 123, 125, 165
texture mapping - 1, 2, 3, 89, 96, 100, 106, 167, 169,
170
detail - 3, 89, 100
projected - 1, 3, 89, 100
true-perspective - 1, 2, 89
texture memory - 107, 170
2 Mbyte boundary - 109, 113

texture pipeline - 6, 100, 101, 119, 120

texture space decompression - See Narrow Channel
Compression

TMU - 3, 89, 96, 100, 170

translucence - 62

transparence - 4, 62, 83

triangle
areaof - 44, 167
vertex - 170

triangle strips and fans - 35

trilinear filtering - 170. Seetrilinear mipmapping.

trilinear mipmapping - 1, 3, 89, 96, 97, 100, 101, 102,
109, 112, 121

triple buffering - 4, 23, 27, 28, 29, 62, 63, 67, 68, 83,
168, 170

Vv

video smoothing - 151

W

w buffer - 67, 70, 136, 138
w coordinate - 169, 170

Y

y origin, location of - 21, 22, 23, 28, 32, 44, 45, 128,
129, 132, 133, 137, 140, 150

Y AB compression - 2, 106, 107, 108

Y1Q compression - 106, 108

Z
zbuffer - 2, 67, 69, 70, 71, 72, 136, 138, 159, 160

176
Printed 08/05/98 10:30 AM

Copyright O 1995- 1998 3Dfx Interactive,
Proprietary and Confide

