
Proprietary and Confidential Printed Wednesday, August 05, 1998 at 10:30 AM

Glide 3.0 Programming Guide
Programming the 3Dfx Interactive Glide™ Rasterization Library 3.0

Document Release 021
June 1998

Copyright  1995−1998 3Dfx Interactive, Inc. All Rights Reserved

3Dfx Interactive, Inc.
4435 Fortran Avenue
San Jose, CA 95134

Trademarks
Glide, Voodoo Graphics, Voodoo Rush, Voodoo2, TexUS, Pixelfx and Texelfx are trademarks of 3Dfx
Interactive, Inc.
OpenGL is a trademark of Silicon Graphics, Inc.
Autodesk CDK is a trademark of Autodesk, Inc.
MS-DOS and Win32 are trademarks of Microsoft, Inc.
Other product names are trademarks of the respective holders.

Copyright © 1995−1998 by 3Dfx Interactive, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, without prior written consent.

Copyright  1995−1998 3Dfx Interactive, Inc. iii
Proprietary and Confidential Printed 08/05/98 10:30 AM

Table of Contents

Table of Contents iii

List of Figures vii

List of Tables ix

1. An Introduction to Glide 1
Why Glide? 1
Voodoo 2
The Rendering Engine 4
About This Manual 5
Other Documentation 7

2. Glide in Style 9
In this Chapter 9
Naming and Notational Conventions 9
The State Machine Model 10
Coordinate Spaces 10
Specifying Vertices 11

Example 2.1 Defining a vertex layout. 15
Example 2.2 Re-creating GrVertex in Glide 3.0. 16
Example 2.3 Creating a vertex definition using clip coordinates, a z buffer, and a fog table indexed by q.16
Example 2.4 Creating a vertex definition using window coordinates and the FOGCOORD extension. 16
Example 2.5 Creating a vertex definition for projected texture mapping. 17

3. Getting Started 19
In This Chapter 19
Starting Up 19

Example 3.1 Querying for possible frame buffer configurations. 23
Example 3.2 The Glide initialization sequence. 23

Driving Multiple Systems 24
Example 3.3 Setting a state variable in all graphics subsystems. 24

Shutting Down 25
Example 3.4 A minimal Glide program. 25

The Display Buffer 25
Masking Writes to the Frame Buffer 27
Swapping Buffers 27

Example 3.5 Retrieving the swapping history. 28
Clearing Buffers 29
Error Handling 29

4. Rendering Primitives 31
In This Chapter 31
Clipping 31
Triangles 32
Points 34

Example 4.1 A thousand points of light. 34

Glide 3.0 Programming Guide

iv Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Lines 34
Drawing Sets of Disjoint Points, Lines, and Triangles 35
Drawing Sets of Connected Lines and Triangles 35

Example 4.2 Using triangle continuation. 38
Convex Polygons 39

Example 4.3 Drawing a convex polygon in Glide 3.0. 40
Example 4.4 L’embarras des richesses: The more alternatives, the more difficult the choice. 42

Backface Culling 43
Anti-aliasing 45

Example 4.5 Drawing an anti-aliased triangle. 48

5. Color and Lighting 49
In This Chapter 49
Specifying Colors 49
Dithering 49
The Color Combine Unit 50

Example 5.1 Drawing a constant color triangle. 54
Example 5.2 Drawing a flat-shaded triangle. 54
Example 5.3 Drawing a smooth-shaded triangle. 55
Example 5.4 Drawing a flat-shaded textured triangle. 55
Example 5.5 Drawing a smooth-shaded textured triangle. 55
Example 5.6 Drawing a smooth-shaded triangle with specular lighting. 56
Example 5.7 Drawing a smooth-shaded textured triangle with specular highlights. 56
Example 5.8 Drawing a smooth-shaded triangle with monochrome diffuse and colored specular lighting.56

Gamma Correction 57

6. Using the Alpha Component 59
In This Chapter 59
Specifying Alpha 59
The Alpha Combine Unit 59
Alpha Buffering 61
Alpha Blending 62

Example 6.1 Blending two images, part I. 64
Example 6.2 Blending two images, part II. 64
Example 6.3 A compositing example. 66

7. Depth Buffering 67
In This Chapter 67
Enabling Depth Buffering 67
The Depth Test 68
Fixed Point z Buffering 69

Example 7.1 Configuring a z buffer. 70
Floating Point w Buffering 70

Example 7.2 Configuring a w buffer. 70
Establishing a Depth Bias 71

Example 7.3 Using a depth bias. 71
An Example: Hidden Surface Removal 71

Example 7.4 Hidden surface removal using a z buffer. 72

8. Special Effects 73
In This Chapter 73
Fog 73

Example 8.1 Creating a fog table. 76
Example 8.2 Fogging with q and a fog table. 76

Multi-Pass Fog 77

Table of Contents

Copyright  1995-1998 3Dfx Interactive, Inc. v
Proprietary and Confidential Printed 08/05/98 10:30 AM

Example 8.3 Simple two-pass blending. 79
Example 8.4 Two-pass additive fogging. 80
Example 8.5 Three-pass modulation fogging. 82

Chroma-keying 82
Example 8.6 Simulating a blue-screen with chroma-keying. 83

Alpha Testing 83
Stenciling 84

9. Texture Mapping 85
In This Chapter 85
A Look at Texture Mapping and Glide 85
Glide Textures and Texels 86
Texture Filtering 89
Texture Clamping 91
Mipmapping 92
Mipmap Blending 96
Trilinear Filtering 96
LOD Bias 96
Combining Textures 97
Examples of Configuring the Texture Pipeline 100

Example 9.1 Setting up simple (decal) texture mapping. 100
Example 9.2 Applying a modulated (projected) texture. 101
Example 9.3 Using trilinear filtering: mipmap blending with bilinear filtering. 102
Example 9.4 Creating a composite texture. 103

10. Managing Texture Memory 105
In This Chapter 105
Texture Map Formats 105
Narrow Channel Compression 106
The Color Palette 108
Texture Memory 109
Computing the Size of a Mipmap 109

Figure 10.2 The size of a mipmap depends on the setting of the evenOdd flag. 112
Querying for Available Memory 113

Example 10.1 Will the mipmap fit? 113
Example 10.2 Setting up to load several mipmaps. 113

Downloading Mipmaps 114
Identifying a Mipmap as the Texel Source 119

Example 10.3 Downloading a texture for decal texture mapping. 119
Example 10.4 Downloading two textures for modulated or composite texture mapping. 120
Example 10.5 Splitting a texture across two TMUs for trilinear mipmapping. 121

Loading a Mipmap into Fragmented Memory 122
Example 10.6 Using multiple texture base registers. 123

Downloading a Decompression Table or Color Palette 124
Example 10.7 Loading an NCC table. 126
Example 10.8 Loading a color palette. 126

Loading Mipmaps From Disk 126
Example 10.9 Reading a .3DF file. 127

11. Accessing the Linear Frame Buffer 129
In This Chapter 129
Acquiring an LFB Read or Write Pointer 129
Calculating a Pixel Address 131
Reading from the LFB 132

Example 11.1 Reading a pixel value from the LFB. 133

Glide 3.0 Programming Guide

vi Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Reading a Rectangle of Pixels from the LFB 134
Writing to the LFB 134
Setting LFB Write Parameters 135
Special Effects and Linear Frame Buffer Writes 139

Example 11.2 Enabling specific special effects. 140
Example 11.3 Writing one 565 RGB pixel to the back buffer (RGB ordering). 141
Example 11.4 Writing two 565 RGB pixels to the back buffer (RGB color ordering). 141
Example 11.5 Writing one 888 RGB pixel to the back buffer (ARGB color ordering). 141

Writing a Rectangle of Pixels into the LFB 142

12. Housekeeping Routines 145
In This Chapter 145
Retrieving Configuration Information 145
Completing Graphics Commands 149
Monitoring System Performance 150
Changing the y Origin 152
Enabling Glide Operating Modes 152
Glide Utilities 153

13. Glide Extensions 155
In This Chapter 155
Using Extensions 155
The Chroma-Range Extension 156
Chroma-Ranges and Texels 157
The FOGCOORD Extension 157
The PALETTE6666 Extension 157
The TEXMIRROR Extension 158

14. Programming Tips and Techniques 161
In This Chapter 161
Avoiding Redundant State Setting 161
Avoiding Screen Clears by Rendering Background Polygons 161
Using LOD Bias To Control Texture Aliasing 161
Linear z Buffering and Coordinate System Ranges 162
State Coherency and Contention Between Processes 162

Appendix A A Sample Program 163

Appendix B. Glide State Constants 165

Glossary 169

Index 173

Copyright  1995−1998 3Dfx Interactive, Inc. vii
Proprietary and Confidential Printed 08/05/98 10:30 AM

List of Figures

Figure 1.1 System configurations. 3
Figure 1.2 The pixel pipeline. 5
Figure 3.1 Locating the origin. 22
Figure 3.2 Logical layout of the linear frame buffer. 27
Figure 4.1 Specifying a clipping window. 31
Figure 4.2 Pixel rendering. 33
Figure 4.3 Vertex arrays. 36
Figure 4.4 Line strips, triangle strips, and triangle fans. 37
Figure 4.5 Polygons. 39
Figure 4.6 Polygon orientation and the sign of the area. 44
Figure 4.7 Aliased and anti-aliased lines. 45
Figure 4.8 Pixel coverage and lines. 45
Figure 9.1 TMU connectivity. 86
Figure 9.2 Mapping texels onto texture maps in window coordinate systems. 87
Figure 9.3 Mapping texels onto texture maps in clip coordinate systems. 89
Figure 9.4 Point sampling and bilinear filtering. 90
Figure 9.5 Texture clamping. 92
Figure 9.6 Mipmaps. 95
Figure 10.1 The color palette. 109
Figure 10.2 The size of a mipmap depends on the setting of the evenOdd flag. 112
Figure 10.3 Downloading a mipmap. 115
Figure 10.4 Replacing a single LOD. 117
Figure 10.5 Replacing a few rows of an LOD. 118
Figure 11.1 Reading from and writing to the LFB. 132
Figure 11.2 Frame buffer writes: encoding the location of the origin as the sign of the strideInBytes. 144
Figure 13.1 The PALETTE666 color palette. 157
Figure 13.2 A GR_TEXTURECLAMP_MIRROR_EXT example. 158
Figure 13.3 Texture clamping. 159

Copyright  1995−1998 3Dfx Interactive, Inc. ix
Proprietary and Confidential Printed 08/05/98 10:30 AM

List of Tables

Table 2.1 Specifying clip coordinate space vertices. 13
Table 2.2 Specifying window coordinate space vertices. 14
Table 3.1 Specifying a window handle in grSstWinOpen(). 20
Table 3.2 Frame buffer color formats. 21
Table 3.3 Frame buffer resolution and configuration. 26
Table 4.1 Porting obsolete grDrawPolygon() commands to Glide 3.0. 41
Table 4.2 The location of the origin affects triangle orientation and the sign of its area. 45
Table 5.1 Configuring the color combine unit. 52
Table 5.2 The color combine function scale factor. 52
Table 5.3 Choosing local and other colors for the color combine unit. 53
Table 5.4 Overriding the local color when the high order bit of αtexture is set. 57
Table 6.1 Combining functions for alpha. 60
Table 6.2 Scale factors for the alpha combine function. 61
Table 6.3 Specifying local and other alpha values. 61
Table 6.4 Alpha blending factors. 65
Table 7.1 The depth test. 69
Table 8.1 The fog mode shapes the fog equation. 74
Table 8.2 Configuring the fog and alpha blending units for multi-pass fog generation. 78
Table 8.3 Alpha test functions. 84
Table 9.1 Mapping pixels to texture coordinates in texture maps in window coordinate systems. 88
Table 9.3 Texture sizes and shapes. 93
Table 9.4 Texture combine functions. 99
Table 9.5 Scale factors for texture color generation. 99
Table 9.6 The number of TMUs affects texture mapping functionality. 100
Table 10.1 Texture formats. 107
Table 10.2 Glide constants that specify arguments to grTex functions. 110
Table 11.1 Interpreting data read from the LFB. 133
Table 11.2 16-bit LFB data formats. 136
Table 11.3 32-bit LFB data formats. 137
Table 11.4 Color, alpha, and depth sources. 138
Table 11.5 Source data formats for the grLfbWriteRegion() routine. 143
Table 12.1 Selectors for grGet(). 147
Table 12.2 Selectors for grGetString(). 149
Table 12.3 Selectors for grReset(). 152
Table 12.4 Glide operating modes. 153
Table 13.1 Extension and procedure names. 156

Copyright  1995−1998 3Dfx Interactive, Inc. 1
Proprietary and Confidential Printed 08/05/98 10:30 AM

1. An Introduction to Glide

The 3Dfx Interactive family of graphics accelerators enables personal computers and low cost video
game platforms to host true 3D entertainment applications. Optimized for real-time texture-mapped 3D
images, the graphics subsystem provides acceleration for advanced 3D features including true-
perspective texture mapping with trilinear mipmapping and lighting, detail and projected texture
mapping, texture anti-aliasing, and high precision subpixel correction. In addition, it supports general
purpose 3D pixel processing functions, including triangle-based Gouraud shading, depth buffering,
alpha blending, and dithering.

The Glide Rasterization Library is a set of low level rendering functions that serve as a software
“micro-layer” to the graphics hardware, including the 3Dfx Interactive Texelfx ™ and the Pixelfx™
special purpose chips. Glide permits easy and efficient implementation of 3D rendering libraries,
games, and drivers.

Why Glide?
Glide serves three primary purposes:

• It relieves programmers from hardware specific issues such as timing, maintaining register
shadows, and working with hard-coded register constants and offsets.

• It defines an abstraction of the graphics hardware to facilitate ease of software porting.

• It acts as a delivery vehicle for sample source code providing in-depth hardware-specific
optimizations for the graphics hardware.

By abstracting the low level details of interfacing with the graphics hardware into a set of C-callable
functions, Glide allows developers to avoid working with hardware registers and memory directly,
enabling faster development and lower probability of bugs. Glide also handles mundane and error
prone chores such as initialization and shutdown.

Glide 2.x was designed for up to about 1 million triangles per second. Glide 3.0 is designed for the
next order of magnitude: 1-10 million triangles per second. With the addition of vertex arrays, only one
call need be made to draw a group of triangles. Tight inner loops, command packets, full triangle
setup, and packed RGBA all contribute to being able to transfer and process millions of triangles per
second.

Performance is one of Glide’s top priorities. When decisions are made, performance is always one of
the criteria taken into account, and is always an important criteria. The goal for Glide is to do as little
as possible - it is a very thin API layer above the hardware. One rule of thumb is that Glide should
impose no more than 5% to 10% overhead on an application when compared to what the application
could do if it wrote hardware registers directly.

Glide 3.0 Programming Guide

2 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Glide is but one part of the 3Dfx Interactive Software Developer’s Kit (SDK), which is designed to
assist developers in creating tools and titles that are optimized for the graphics hardware. The SDK
also includes the Texture Utility Software (TexUS™).

The Glide Utility Library contains utility routines that create fog tables, extensions that do significant
pre-processing before calling Glide routines to access the graphics system, and obsolete routines that
are provided for interim compatibility as Glide development continues.

Voodoo
The 3Dfx graphics accelerator subsystem, which may be called Voodoo Graphics, Voodoo Rush, or
Voodoo2, depending on it’s age and functionality, sits on the PCI system bus of the host computer. The
entry-level system configuration consists of two 3Dfx Interactive proprietary ASICs, Texelfx and
Pixelfx, and memory. Figure 1.1 shows the entry level configuration as well as several ways to expand
the system and enhance graphics performance. Increasing the number of Texelfx ASICs decreases the
number of passes required to perform various texture mapping techniques. Systems with more than one
3Dfx Interactive graphics subsystem can utilize scanline interleaving to achieve the highest possible
rendering performance.

Glide and the 3Dfx Interactive graphics hardware supports a rich set of rendering techniques,
including:

• Gouraud shading. The programmer provides initial red, green, blue, and alpha values for each
vertex. Glide calculates the associated gradients and the hardware automatically iterates the color
across the defined triangle.

• Texture mapping. The programmer provides initial texture values s/w, t/w, and 1/w for each vertex
and Glide computes the gradients. The hardware performs the proper iteration and perspective
correction for true-perspective texture mapping. During each iteration of row/column walking, a
division is performed by 1/w to correct for perspective distortion.

• Texture mapping with lighting. Texture-mapped rendering can be combined with Gouraud shading
to introduce lighting effects during the texture mapping process. The programmer supplies initial
color and texture values, Glide calculates the appropriate gradients, and the hardware performs the
proper calculations to implement the lighting models and texture lookups. A texel is either
modulated (multiplied by), added, or blended to the Gouraud shaded color. The selection of color
modulation or addition is programmable.

• Texture space decompression. Texture map compression uses a patent-pending “narrow channel”
YAB compression scheme that maps 24-bit RGB values to an 8-bit YAB format with little loss in
precision.

• Depth buffering. 3Dfx Interactive graphics accelerators support hardware-accelerated, depth-
buffered rendering with no performance penalty. The depth buffer is implemented in frame buffer
memory: 2 Mbyte systems can utilize a 640×480 double buffered display buffer and a 16-bit z
buffer. To eliminate many of the z aliasing problems typically encountered with 16-bit z buffer
systems, the graphics subsystem allows a floating point representation of the 1/w parameter to be
used as the depth component.

1. An Introduction to Glide

Copyright  1995-1998 3Dfx Interactive, Inc. 3
Proprietary and Confidential Printed 08/05/98 10:30 AM

Figure 1.1 System configurations.
The Pixelfx chip interfaces with the host computer, the linear frame buffer, and the display monitor. It
implements basic 3D primitives including Gouraud shading, alpha blending, depth buffering, dithering, and
fog. The TMU (located on the Texelfx chip) implements true-perspective, detail, and projected texture
mapping, bilinear and trilinear filtering, and level-of-detail mipmapping.

(a) The basic configuration has one Pixelfx chip and one TMU. The advanced texture mapping techniques of detail
texture mapping, projected texture mapping, and trilinear texture filtering are two-pass operations, but there is no
performance penalty for point-sampled or bilinear-filtered texture mapping with mipmapping.

(b) A two TMU configuration allows single pass detail texture mapping, projected texture mapping, or trilinear filtering.
(c) Three TMUs can be chained together to provide single pass rendering of all supported advanced texture mapping

features, including projected texture mapping.
(d) For the highest possible rendering performance, multiple 3Dfx Interactive graphics accelerator subsystems can be

chained together utilizing scanline interleaving to effectively double the rendering rate of a single subsystem.

PCI System Bus

Pixelfx TMU

Frame Buffer
Memory

2-4 Mbytes

Texture
Memory

4 Mbytes

no connect

(a)

PCI System Bus

Pixelfx

TMU

TMU

no connect

Texture
Memory
4 MBytes

Texture
Memory

4 MBytes

Frame Buffer
Memory

2-4 MBytes

(b)

Pixelfx

TMU

TMU

TMU

no connect

PCI System Bus

Texture
Memory

4 MBytes

Frame Buffer
Memory

2-4 Mbytes

Texture
Memory

4 MBytes

Texture
Memory

4 MBytes

(c)

TMU

TMU

TMU

PCI System Bus

Pixelfx

Pixelfx

TMU

TMU

TMU

Frame
Buffer

Memory

Texture
Memory

(d)

Texture
Memory

Texture
Memory

Texture
Memory

Texture
Memory

Texture
Memory

Frame
Buffer

Memory

monitor TV
monitor TV

monitor TV
monitor TV

Glide 3.0 Programming Guide

4 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

• Pixel blending. The hardware supports alpha blending functions that blend incoming source pixels
with current destination pixels with no performance penalty. Alpha buffering is supported, but it is
mutually exclusive with depth buffering and triple buffering. Note that alpha buffering is required
only if destination alpha is used in alpha blending; alpha blending modes that do not use destination
alpha can be used with depth buffering and triple buffering.

• Fog. The 3Dfx Interactive graphics accelerator subsystem supports a 64-entry lookup table to
support atmospheric effects such as fog and haze. When enabled, a 14-bit floating point
representation of 1/w is used to index into the 64-entry lookup table and interpolate between
entries. The output of the lookup table is a value that represents the level of blending to be
performed between a reference fog color and the incoming pixel.

• Chroma-keying. 3Dfx Interactive graphics accelerator supports a chroma-key operation used for
transparent object effects. When enabled, an outgoing pixel is compared with the chroma-key
register. If a match is detected, the outgoing pixel is invalidated in the pixel pipeline, and the frame
buffer is not updated.

• Color dithering. Numeric operations are performed on 24-bit colors within the graphics
subsystem. However, the final stage of the pixel pipeline dithers the color from 24 bits to 16 bits
before storing it in the display buffer. The 16-bit color dithering allows for the generation of photo-
realistic images without the additional cost of a true color frame buffer storage area.

The Rendering Engine
The graphics hardware has a very flexible lighting and texture mapping pipeline to support all of the
features described above. Glide abstracts it into three distinct units: the texture combine unit, the color
and alpha combine units, and the special effects unit. The basic architecture is illustrated in Figure 1.2.

1. An Introduction to Glide

Copyright  1995-1998 3Dfx Interactive, Inc. 5
Proprietary and Confidential Printed 08/05/98 10:30 AM

Figure 1.2 The pixel pipeline.
The rendering engine is structured as a pipeline through which each pixel drawn to the screen must pass. The
individual stages of the pixel pipeline modify or invalidate individual pixels based on mode settings. The input
to the pixel pipeline can come from one of four sources: a texture value, an iterated RGBA value, a constant
RGBA value, or data for a frame buffer write. Pixels that pass the chroma-key test go to the color combine
unit where a user-specified lighting function is applied. The special effects unit further modifies the pixel with
alpha and depth testing, fog, and alpha blending operations. The final 24-bit color value is then dithered to
16 bits and written to the frame buffer.

texture
combine unit

color & alpha
combine unit

chroma-key

dither

alpha test

depth test

fog

alpha blend

special
effects unit

frame buffer

iterated RGBA

constant RGBA

linear frame buffer write

texture
combine unit

TMU2 TMU1

TMU0
texture

pipeline

pixel
pipeline

About This Manual
The Glide Programming Guide attempts to introduce a knowledgeable graphics programmer to the
capabilities of the hardware through the Glide interface. The subroutines are introduced in a logical
progression: initialization and termination requirements are first, then simple rendering capabilities,
followed by more and more complex functions. The audience for this manual is the application
programmer who just took delivery on 3Dfx Interactive graphics accelerator and wants to port existing
applications or develop new applications in Glide. The experienced Glide programmer will use the
Glide Reference Manual to research specific Glide functions, but will reach for this manual when
trying out new features.

Glide 3.0 Programming Guide

6 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Chapter 2, Glide in Style, describes data types, data formats, and the programming model used in
Glide and the graphics subsystem.

Chapter 3, Getting Started, describes the display buffers and the initialization and termination
requirements for Glide and the graphics hardware. It also includes a very simple but complete program
that clears the screen.

Chapter 4, Rendering Primitives, describes the functions that draw points, lines, triangles, and convex
polygons in both aliased and anti-aliased forms. In addition, clipping and backface culling are
discussed.

Chapter 5, Color and Lighting, describes the functions that control the color and alpha combine unit,
which can produce effects that run the gamut from simple Gouraud shading to diffuse ambient lighting
with specular highlights and other complex lighting models.

Chapter 6, Using the Alpha Component, describes the various ways to utilize the alpha channel: alpha
blending, alpha buffering, and alpha testing.

Chapter 7, Depth Buffering, presents two techniques for depth buffering.

Chapter 8, Special Effects, describes other special rendering effects that can be produced in the pixel
pipeline: atmospheric effects like fog, haze, and smoke; multi-pass alpha-blended fog; transparent
objects implemented with chroma-keying; and alpha masking.

Chapter 9, Texture Mapping, describes the texture pipeline and texture mapping while Chapter 10,
Managing Texture Memory, describes the process of downloading textures into texture memory.

Chapter 11, Accessing the Linear Frame Buffer, describes the Glide functions that provide a path
for reading and writing the frame buffer directly.

Chapter 12, Housekeeping Routines, and Chapter 13, Glide Extensions, describes the routines in Glide
and the Glide Utilities Library that haven’t been discussed already.

Chapter 14, Programming Tips and Techniques, give some hints about how to head off trouble and get
the best performance from your 3Dfx Interactive graphics accelerator.

The Glide Programming Guide concludes with two appendices, one containing a non-trivial example,
and the other summarizing the Glide constants used to set state variables. There is also a Glossary of
frequently used terms and a comprehensive Index.

1. An Introduction to Glide

Copyright  1995-1998 3Dfx Interactive, Inc. 7
Proprietary and Confidential Printed 08/05/98 10:30 AM

Other Documentation
Available from 3Dfx Interactive, Inc.:

Glide 3.0 Reference Manual
SST1 Application Notes
TexUS Manual

Additional published references:

FOLE90 Foley, J., A. van Dam, S. Feiner, and J. Hughes, Computer Graphics, Addison-Wesley,
Reading, MA, 1990

OPEN92 OpenGL Architecture Review Board, OpenGL Reference Manual, Addison-Wesley,
Reading, MA, 1992

OPEN93 OpenGL Architecture Review Board with J. Neider, T. Davis, and M. Woo, OpenGL
Programming Guide, Addison-Wesley, Reading, MA, 1992

PHIG88 PHIGS+ Committee, A. van Dam, Chair, “PHIGS+ Functional Description - Revision
3.0”. Computer Graphics, 22(3), p. 125-218

SUTH74 Sutherland, I. E. and G. W. Hodgman, “Reentrant Polygon Clipping”, CACM 17(1), p. 32-
42

WATT92 Watt, A. and M. Watt, Advanced Animation and Rendering Techniques: Theory and
Practice, Addison-Wesley, Reading, MA, 1992

WILL83 Williams, L., “Pyramidal Parametrics”, SIGGRAPH 83, p. 1-11

Online references:

http://www.3dfx.com

http://www.sgi.com/grafica/texmap/index.html

http://reality.sgi.com/Fun/Free_graphics.html

Copyright  1995−1998 3Dfx Interactive, Inc. 9
Proprietary and Confidential Printed 08/05/98 10:30 AM

2. Glide in Style

In this Chapter
You will learn about:

t the naming conventions for functions, types, and constants.

t the notational conventions that designate functions, types, variables, parameters, and constants in
this manual.

t the state machine model that Glide uses to minimize bandwidth to the hardware and increase
graphics performance.

t the functions that save and restore Glide state.

t the functions that establish a format for vertex information.

t the constraints and properties of numerical data representing geometric, color, and texture
coordinates.

Naming and Notational Conventions
Functions are divided into families consisting of routines related in their duties. All Glide functions are
prefixed with gr; all Glide Utility functions use gu as the prefix. The Glide prefix is immediately
followed by the family name, for example grDrawTriangle() and grDrawLine() are both members of
the grDraw family. Glide uses the mixed caps convention for function names. When function names
appear in the text of this manual, they are shown in bold face type. Actual function names end with
‘()’; function family names do not.

The internal name for the graphics subsystem is “SST”. Some function names, type definitions, and
constants within Glide reflect this internal name, which is easier to type than Voodoo Graphics, Voodoo
Rush, or Voodoo2. For example, grSstWinOpen() initializes the hardware.

Constants are named values that are defined in glide.h. The names of constants use all uppercase
letters, as in MAX_NUM_SST and GR_TEXTUREFILTER_BILINEAR and are shown in Courier font when
they appear in the text of this manual.

C specifications for functions and data types are displayed in shaded rectangles throughout this
manual. Glide type definitions are shown in Helvetica type to distinguish them from the C keywords and
primitive types. Glide makes use of enumerated types for function arguments in order to restrict them
to the defined set of values. Enumerated types end with _t, as in GrColorFormat_t.

Glide variable names and function arguments are italicized in both the C specifications and the text.

Code segments use Courier font.

Glide 3.0 Programming Guide

10 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

The State Machine Model
Glide is state based: rendering “modes” can be set once and then remain in effect until reset. Parameter
values like a reference value for depth comparisons and a specific depth test are set once and are used
whenever depth testing is enabled (until they are given new values). The state machine model allows
users to set modes and reference values only when they change, minimizing the host-to-hardware
transfers.

For example, one of the state variables Glide maintains is the “current mipmap”, used during texture
mapping. A mipmap is a collection of hierarchically defined texture maps that are loaded into the
texture memory that supports the TMUs. A stateless model would not retain information about the
contents of the texture memory, so each rendering operation would have to include a texture memory
address.

Sending redundant state information can lead to noticeable performance degradation. For example, if a
system is attempting to render 200,000 triangles per second and the “current mipmap” is sent as a 4-
byte address, bandwidth associated with updating this single state variable can amount to 800KB/sec.
Compound this with all of the other state information necessary and the amount of unnecessary data
sent across the system bus can become overwhelming.

Two library functions are used to save and restore state. Use grGet(GR_GLIDE_STATE_SIZE,…) to
determine the size of the buffer in which the state will be saved (see Chapter 13).

void grGlideGetState(void *state)

void grGlideSetState(const void *state)

grGlideGetState() makes a copy of the current state of Glide in a buffer, state, provided by the user.
The saved state can be restored at some later time with grGlideSetState(). These routines save and
restore all Glide state, and therefore are expensive to use. If only a small subset of Glide state needs to
be saved and restored, these routines should not be used.

Coordinate Spaces
Glide 3.0 supports two different coordinate spaces: native hardware device coordinates (the only option
in previous versions of Glide), or clip coordinates. The choice is made with the grCoordinateSpace()
command.

void grCoordinateSpace(GrCoordinateSpaceMode_t mode)

The argument, mode, is either GR_CLIP_COORDS or GR_WINDOW_COORDS. Window coordinates are
relative to the origin of the window. Clip coordinates are relative to a viewport defined with the new
command grViewport().

void grViewport(FxI32 x, FxI32 y, FxI32 width, FxI32 height)

grViewport() specifies the viewport transformation. The current grSstOrigin() setting determines
whether x and y specify the upper left corner or the lower left corner. Negative width and height are
allowed and mirror the image about the x or y axis. If (xclip/w, yclip/w) represent normalized device
coordinates, then the window coordinates (xwin, ywin) are computed as:

xwin = (xclip/w+1)(width/2) + x and ywin = (yclip/w+1)(height/2) + y

2. Glide in Style

Copyright  1995-1998 3Dfx Interactive, Inc. 11
Proprietary and Confidential Printed 08/05/98 10:30 AM

When using clip coordinates, the grDepthRange() command specifies the viewport parameters for the
depth component.

void grDepthRange(FxFloat near, FxFloat far)

If z buffering, clip-space z is in the range [-w..+w]. After division by w, z is in the range [-1..1] which is
mapped to the depth buffer according to [near.. far], where [near=0.. far=1] represents the entire range
of the depth buffer. grDepthRange() is ignored unless clip coordinates are being used and z buffering is
enabled.

Choosing a Coordinate Space

When window coordinates are used, the application performs the coordinate divisions by w, providing
x/w, y/w, z/w, 1/w, s/w, t/w, and q/w as necessary in the vertex structure (only x/w and y/w are
mandatory). Window coordinates may be less than optimal on future hardware that can perform
perspective division and viewport transformations.

When clip coordinates are used, the division by w is performed automatically. The minimal vertex
specifies x, y, and w. If z buffering is enabled, z should be in the range [−w..+w]; otherwise, z data need
not be given. Glide will automatically compute x/w, y/w, z/w, and 1/w, perform vertex snapping on the
results, and then apply the viewport transformation to get window coordinates. Texture coordinates s
and t are in the range [0..1] for all texture sizes and aspect ratios. Glide automatically computes s/w,
t/w, and q/w.

Clip space coordinates are recommended for all new applications. It is likely that future hardware will
perform the viewport transformation and depth range computations to further off-load the CPU.

PORTING
NOTE

Window coordinate space was the only available option in previous releases of Glide. The
w component should be ported to Glide 3.0 vertices as GR_PARAM_Q and stored as 1/w.
All x, y, s, and t components should be multiplied by 1/w, as in Glide 2.x.

The GR_PARAM_Q value is used when using fog mode GR_FOG_WITH_TABLE_ON_Q
(formerly GR_FOG_WITH_TABLE and GR_FOG_WITH_TABLE_ON_W) and when w
buffering (which should properly be renamed to q buffering, but won’t be).

Specifying Vertices
The 3Dfx Interactive graphics accelerator is a rendering engine. The user configures the texture and
pixel pipelines (see Figure 1.2) and then sends streams of vertices representing points, lines, triangles,
and convex polygons. (In fact, the hardware renders only triangles; Glide converts points and lines to
triangles and triangulates polygons as needed.)

Vertices are specified as a collection of parametric values, chosen from the following:

• the geometric coordinates (x, y);

• the color components (r, g, b, a);

• the depth indicator z (for window coordinators), or q (for clip coordinates);

• the homogenous coordinates w (distance from the eye, required for clip coordinates) and q (distance
from the projected source);

Glide 3.0 Programming Guide

12 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

• the TMU-specific texture coordinates (si, ti), where i is the TMU the texel resides in;

• the TMU-specific homogeneous coordinate qi, where i is the TMU where the value will be used;

• if supported, a separate fog table index (q may also be used to index a fog table).

Every vertex must specify values for x and y, but the other parameters are optional and need only be set
if the rendering configuration requires them.

Syntactically, a vertex is a structure containing all the parameter values that apply. The vertex
structure may hold additional information of interest to the application as well. The vertex layout is
communicated semantically to Glide by issuing a series of grVertexLayout() commands, one each of the
parameters included in the vertex structure.

void grVertexLayout (FxU32 param, FxI32 offset, FxU32 mode)

grVertexLayout() is called once for each value of param, chosen from the values in the first column of
Table 2.1 or Table 2.2 (there is a table for each coordinate space option).

offset is either the offset in bytes of the parameter data from the vertex pointer. The offset can be either
positive or negative. Align data on word boundaries for optimal performance.

mode is either GR_PARAM_ENABLE or GR_PARAM_DISABLE. Disabling a parameter will potentially cause
it to inherit the last known value. When a parameter is disabled, the offset argument is ignored.
Disabling a mandatory parameter like GR_PARAM_XY will cause a fatal Glide error.

PORTING
NOTE

The GrVertex structure is no longer necessary, since grVertexLayout() allows arbitrary
layouts. Therefore GrVertex structure has been removed. To facilitate porting Glide 2.x
applications, the old vertex structure needs to be defined in the application, and the vertex
layout set accordingly. Example 2.2 shows you how.

Glide determines whether or not color and texture parameters are required based on other mode settings
such as grColorCombine(). In addition, s, t, and q values can be inherited in order to reduce gradient
calculations on older hardware. This situation is handled in Glide 3.0 by the addition of the mode
argument to grVertexLayout(). If an application wants a TMU-specific value for s, t, or q, the
appropriate parameter will be enabled (GR_PARAM_ENABLE) in the vertex layout. Alternatively, if the
application wants an s, t, or q value to be inherited, it will specify GR_PARAM_DISABLE instead.

PORTING
NOTE

The GR_HINT_STWHINT hint is obsolete in Glide 3.0: it’s functionality is implemented
within grVertexLayout() as follows:

Glide 2.x: grHints(GR_HINT_STWHINT, GR_STWHINT_W_DIFF_TMU0);
Glide 3.0: grVertexLayout(GR_PARAM_Q0,…, GR_PARAM_ENABLE);

Glide 2.x: grHints(GR_HINT_STWHINT, GR_STWHINT_ST_DIFF_TMU1);
Glide 3.0: grVertexLayout(GR_PARAM_ST1,…, GR_PARAM_ENABLE);

2. Glide in Style

Copyright  1995-1998 3Dfx Interactive, Inc. 13
Proprietary and Confidential Printed 08/05/98 10:30 AM

Table 2.1 Specifying clip coordinate space vertices.
The grVertexLayout() command is called once for each value of param, chosen from the table below.

param type size in
bytes

description values usage

GR_PARAM_XY FxFloat 8 x and y
coordinates.
Vertex snapping is no

longer required.

In the range
[−w..w].

Required. Must be at offset 0.

GR_PARAM_Z FxFloat 4 z coordinate. In the range
[−w..w].

When z buffering is enabled.

GR_PARAM_W FxFloat 4 w coordinate. In the range
[1..64K].

Required.

GR_PARAM_Q FxFloat 4 Usage depends on
choice of
coordinate space.

Depth/fog
iterator.

When using fog mode
GR_FOG_WITH_TABLE_ON_Q or w
buffering is enabled. Defaults to 1
if not defined.

GR_PARAM_STn FxFloat 8 s and t coordinates
for TMU n.

s, t in range [0,1]
for one repeat of
the texture.
Independent of

aspect ratio.

When texture mapping.

GR_PARAM_Qn FxFloat 4 q coordinate for
TMU n.

When texture mapping with
projected textures. Defaults to
GR_PARAM_Q if not defined.

GR_PARAM_A FxFloat 4 alpha value. In the range [0..1] When using alpha blending, alpha
testing, or anti-aliasing.

GR_PARAM_RGB FxFloat 12 RGB triplet. In the range [0..1]
GR_PARAM_PARGB FxU32 4 Packed ARGB, one

byte per
component.

Each component
is an integer in
the range [0..255]

Choose one of the two color formats.

GR_PARAM_FOG_EXT

(if FOGCOORD
extension is supported)

FxFloat 4 Fog table index. f/w in the range
[0..255]

When using fog mode
GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT

Glide 3.0 Programming Guide

14 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Table 2.2 Specifying window coordinate space vertices.
The grVertexLayout() command is called once for each value of param, chosen from the table below. Note
that GR_PARAM_W is not valid for window coordinate space.

param type size in
bytes

description values usage

GR_PARAM_XY FxFloat 8 x and y
coordinates.
Vertex snapping is no

longer required.

x/w, y/w in the
range
[−2048..2047]

Required. Must be at offset 0.

GR_PARAM_Z FxFloat 4 z coordinate. Stored as 1/z. In
the range [0..64K]

When z buffering is enabled.

GR_PARAM_Q FxFloat 4 Usage depends on
choice of
coordinate space.

1/w Required.

GR_PARAM_STn FxFloat 8 s and t coordinates
for TMU n.

Stored as s/q, t/q
in the range
[0..256] for one
repeat of the
texture. The range
of the smaller
dimension is limited

by the aspect ratio.
See Chapter 9.

When texture mapping.

GR_PARAM_Qn FxFloat 4 q coordinate for
TMU n.

In the range
[0..255]

When texture mapping with
projected textures. Defaults to
GR_PARAM_Q if not defined or if
disabled.

GR_PARAM_A FxFloat 4 alpha value. In the range
[0..255]

When using alpha blending, alpha
testing, or anti-aliasing.

GR_PARAM_RGB FxFloat 12 RGB triplet. In the range
[0..255].

GR_PARAM_PARGB FxU32 4 Packed ARGB, one
byte per
component.

Each component
is an integer in
the range
[0..255].

Choose one of the two color formats.

GR_PARAM_FOG_EXT

(if FOGCOORD
extension is supported)

FxFloat 4 Fog table index. In the range
[0..255].

When using fog mode
GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT

The application program has control over the order in which the selected parameters occur in the vertex
array. For example, the code segment in Example 2.1 defines a vertex structure that has an (x,y,z)
position and an RGB color. Other examples follow.

2. Glide in Style

Copyright  1995-1998 3Dfx Interactive, Inc. 15
Proprietary and Confidential Printed 08/05/98 10:30 AM

Example 2.1 Defining a vertex layout.
The code fragment below defines a vertex structure as an (x,y,z) position and an RGB color. It continues on to
establish the layout semantically by calling grVertexLayout().

Typedef struct {
FxFloat x, y;
FxFloat ooz;
FxFloat r, g, b;

} myVertex;

grCoordinateSpace(GR_WINDOW_COORDS);
grVertexLayout(GR_PARAM_XY, 0, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_Z, 8, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_RGB, 12, GR_PARAM_ENABLE);

Glide 3.0 Programming Guide

16 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Example 2.2 Re-creating GrVertex in Glide 3.0.
The code segment below defines the vertex structure from previous versions of Glide and shows the
grVertexLayout() that may be used to

typedef struct{
 float x, y, z; /* X, Y, Z */
 float r, g, b; /* R, G, B */
 float ooz; /* 65535/Z (used for Z-buffering) */
 float a; /* Alpha */
 float oow; /* 1/W (used for W-buffering, texturing) */
 GrTmuVertex tmuvtx[GLIDE_NUM_TMU];
} myVertex; /* old GrVertex */

grCoordinateSpace(GR_WINDOW_COORDS);
grVertexLayout(GR_PARAM_XY, 0, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_RGB, 12, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_Z, 24, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_A, 28, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_W, 32, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_ST0, 36, GR_PARAM_ENABLE);

Example 2.3 Creating a vertex definition using clip coordinates, a z buffer, and a fog table indexed by q.
The code fragment below creates a vertex layout that includes x, y, z, w, q, and a packed color.

typedef struct{
 FxFloat x, y, z; /* X, Y, Z */
 FxFloat w, q; /* W, Q */
 FxU32 pColor; /* packed ARGB */
} myVertex;

grCoordinateSpace(GR_CLIP_COORDS);
grVertexLayout(GR_PARAM_XY, 0, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_Z, 8, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_W, 12, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_Q, 16, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_PARGB, 20, GR_PARAM_ENABLE);

Example 2.4 Creating a vertex definition using window coordinates and the FOGCOORD extension.
The code fragment below creates a vertex layout that includes x, y, q, f, and a packed color.

typedef struct{
 FxFloat x, y; /* X, Y */
 FxFloat q; /* Q */
 FxFloat f; /* fog table index */
 FxU32 pColor; /* packed ARGB */
} myVertex;

grCoordinateSpace(GR_CLIP_COORDS);
grVertexLayout(GR_PARAM_XY, 0, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_Q, 8, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_FOG_EXT, 12, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_PARGB, 20, GR_PARAM_ENABLE);

2. Glide in Style

Copyright  1995-1998 3Dfx Interactive, Inc. 17
Proprietary and Confidential Printed 08/05/98 10:30 AM

Example 2.5 Creating a vertex definition for projected texture mapping.
The code fragments below creates a vertex layout that includes x, y, w or q (depending on the coordinate
space), a packed color, s and t values for two TMUs and a separate q for TMU1.

typedef struct{
 FxFloat x, y; /* X, Y */
 FxFloat q; /* Q */
 FxFloat f; /* fog table index */
 FxU32 pColor; /* packed ARGB */
} myVertex;

grCoordinateSpace(GR_CLIP_COORDS);
grVertexLayout(GR_PARAM_XY, 0, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_Q, 8, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_FOG_EXT, 12, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_PARGB, 20, GR_PARAM_ENABLE);

Using More than One Vertex Layout

Some applications may find it useful to use several vertex layouts during the course of the program.
While only one layout is current at a time, you can save the current one, define and use a new one, then
restore the saved one.

void grGlideGetVertexLayout(void *layout)

void grGlideSetVertexLayout(void *layout)

grGlideGetVertexLayout() makes a copy of the current vertex layout established by calls to
grVertexLayout(). The application can restore the saved layout by calling grGlideSetVertexLayout().
Use grGet(GR_GLIDE_VERTEXLAYOUT_SIZE,…) to determine how much space is needed (and hence,
how big the layout buffer should be).

PORTING
NOTE

In Glide 3.0, vertices no longer need to be snapped to sub-pixel precision. The newer
platforms perform snapping in hardware; Glide will do it for the older ones. There may be
a slight performance degradation on platforms (e.g. SST-1 and SST-96) that don’t have
a triangle setup unit.

Copyright  1995−1998 3Dfx Interactive, Inc. 19
Proprietary and Confidential Printed 08/05/98 10:30 AM

3. Getting Started

In This Chapter
You will learn how to:

t initialize Glide.

t configure and initialize the hardware.

t manage multiple 3Dfx Interactive graphics accelerators.

t terminate cleanly.

t manage the display buffers.

t detect and respond to errors.

Starting Up
Glide provides several functions to initialize Glide and to detect and configure a 3Dfx Interactive
graphics subsystem. Three functions, grGlideInit(), grSstSelect(), and grSstWinOpen(), initialize Glide
and the hardware and must be called, in the order listed, before calling any other Glide routines (except
the grGet() and grGetString() calls that detect the presence of 3Dfx Interactive graphics subsystems).
Failing to do this will cause the system to operate in an undefined (and, most likely, undesirable) state.

The first initialization function, grGlideInit(), sets up the Glide library and thus must be called before
any other Glide functions are executed (with one exception, noted below). It allocates memory, sets up
pointers, and initializes library variables and counters. There are no arguments, and no value is
returned.

void grGlideInit(void)

Their is one exception to the rule stated above that grGlideInit()must be called before all other Glide
routines. grGet(GR_NUM_BOARDS,…) may be called before grGlideInit() to determine the presence or
absence of a graphics subsystem.

The next function called to initialize the system is grSstSelect(), which makes a specific graphics
subsystem “current”. It must be called after grGlideInit() but before grSstWinOpen().

void grSstSelect(int whichSST)

The argument is the ordinal number of the subsystem that will be made active and must be in the range
[0..numBoards], where numBoards is the value returned when grGet() is called with argument
GR_NUM_BOARDS. If whichSST is outside the proper range of values and the debugging version of Glide
is used, a run-time error is generated. If the release version of Glide is loaded, use of an inappropriate
value for whichSST will result in undefined behavior.

Glide 3.0 Programming Guide

20 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

The final initialization function, grSstWinOpen(), initializes the currently active graphics subsystem,
specified by the most recent call to grSstSelect(), to the default state. All hardware special effects
(depth buffering, fog, chroma-key, alpha blending, alpha testing, etc.) are disabled. All global state
constants (the chroma-key reference value, the alpha test reference, the constant depth value, the
constant alpha value, the constant color value, etc.) and pixel rendering statistic counters are initialized
to zero.

PORTING
NOTE

Significant changes in Glide 3.0 pave the way for full support for windowed
environments, including multiple windows. These changes are because resources are
shared in a windowed environment. When programming a full screen Glide application,
developers assume they have complete ownership of the graphics hardware, when in
reality, it may be shared. Other processes (or the Window system) can appropriate
resources owned by the Glide application at any time. Maintaining this illusion of
complete ownership is impossible without severe performance penalties. So, instead of
hiding the fact that 2D/3D resources are shared, Glide 3.0 ensures that applications can
endure asynchronous reallocation of 2D/3D resources yet recover completely and
gracefully.

grSstWinOpen() should be called once per installed graphics subsystem (note that scanline interleaved
subsystems are treated as a single subsystem) and must be executed after grGlideInit() and
grSstSelect(). It returns an opaque context handle if the initialization was successful and zero
otherwise. Only one context at a time may be in use in Glide 3.0.

GrContext_t grSstWinOpen(FxU32 hWin,
GrScreenResolution_t res,
GrScreenRefresh_t refresh,
GrColorFormat_t cFormat,
GrOriginLocation_t locateOrigin,
int numBuffers,
int numAuxBuffers

)

The arguments to grSstWinOpen() configure the frame buffer. The first argument, hWin, specifies a
handle for the window in which the graphics will be displayed. The interpretation of hWin depends on
the system environment. DOS applications must specify NULL. Applications run on SST-1 graphics
hardware must specify NULL as well. Win32 full screen applications running on a SST-96 system must
specify a window handle; a NULL value for hWin will cause the application’s real window handle (i.e.,
what is returned by Microsoft’s GetActiveWindow API) to be used. Since Win32 pure console
applications do not have a window handle, they can be used only with SST-1 and a NULL window
handle is required. Finally, Glide Win32 applications that run in a window may either specify NULL (if
there is only one window), or the correct hWin, cast to FxU32.

Table 3.1 Specifying a window handle in grSstWinOpen().
The interpretation of the hWin argument to grSstWinOpen() depends on the system environment, as shown
below.

system environment hWin value
DOS NULL

3. Getting Started

Copyright  1995-1998 3Dfx Interactive, Inc. 21
Proprietary and Confidential Printed 08/05/98 10:30 AM

Win32, full screen NULL or hWin
Win32, pure console NULL (SST-1 only)
Win32 Glide application NULL or hWin (SST-96 only)

The screen resolution and refresh rate are specified in the next two arguments, res and refresh. Both
variables are given values chosen from enumerated types defined in the sst1vid.h header file. A
typical application might set res to GR_RESOLUTION_640x480 and refresh to GR_REFRESH_60HZ.

While not recommended, the screen resolution may be specified as GR_RESOLUTION_NONE on an SST-
96 system. If so, Glide will use the user specified window (see the hWin parameter). The ref parameter
is ignored when a Win32 application is running in a window. Specifying GR_RESOLUTION_NONE on an
SST-1 system will cause the call to fail.

The fourth argument, cFormat, specifies the packed color RGBA ordering in the frame buffer.
Different software systems assume different byte ordering formats for pixel color data. For the widest
possible compatibility across a wide range of software, Glide provides “byte swizzling,” meaning that
incoming pixels can have their color values interpreted in one of four different formats that are defined
in the enumerated type GrColorFormat_t and are shown in Table 3.2. The color format affects data
written to the linear frame buffer (the subject of Chapter 11) and parameters for the following Glide
functions: grBufferClear() (described later in this chapter), grChromakeyValue() (described in Chapter
8), grConstantColorValue() (see Chapter 5), and grFogColorValue() (see Chapter 8).

Table 3.2 Frame buffer color formats.
Glide supports four different color byte orderings: RGBA, ARGB, BGRA, and ABGR. Color byte ordering
determines how user-supplied color values are interpreted. The first column in the table shows the name of the
format, as defined in the enumerated type GrColorFormat_t. The second column in the table shows the byte
ordering of the color components within a 32-bit word.

color format byte ordering

GR_COLORFORMAT_RGBA red

2431 16

green

23 815 0

alpha

7

blue

GR_COLORFORMAT_ARGB alpha

2431 16

red

23 815 0

blue

7

green

GR_COLORFORMAT_BGRA blue

2431 16

green

23 815 0

alpha

7

red

GR_COLORFORMAT_ABGR alpha

2431 16

blue

23 815 0

red

7

green

The fifth parameter to grSstWinOpen() specifies the location of the screen space origin. If locateOrigin
is GR_ORIGIN_UPPER_LEFT, the screen space origin is in the upper left corner with positive y going
down. GR_ORIGIN_LOWER_LEFT places the screen space origin at the lower left corner with positive y
going up. Figure 3.1 shows the two possibilities for locating the origin.

Glide 3.0 Programming Guide

22 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Figure 3.1 Locating the origin.
The 3Dfx Interactive graphics accelerator allows the origin to be in the upper left or lower left corner of the
screen. The choice of coordinate system is be made by passing the appropriate parameter to grSstWinOpen().

+y

+x(0,0)

GR_ORIGIN_UPPER_LEFT

+y

+x(0,0)

GR_ORIGIN_LOWER_LEFT

The final two arguments to grSstWinOpen() select the buffering options. The first one, numBuffers,
specifies double or triple buffering and is an integer value, either 2 or 3. The other argument,
numAuxBuffers, specifies the number of auxiliary buffers required by an application. The auxiliary
buffers are used for depth or alpha buffering. Permitted values are 0 or 1. For full screen applications,
this parameter allows both SST-1 and SST-96 to validate whether the available video memory will
support the application’s requirements for color and auxiliary buffers at a specified screen resolution.
For a windowed application running on SST-96, this parameter allows an application to run in a larger
3D window if a depth buffer is not necessary (depth and back buffers share the same off-screen video
memory).

If there is not enough memory to support the desired resolution and buffering options, an error will
occur.

Querying for Screen Parameters

Applications that are written to run on a variety of hardware configurations can query for available
resolutions before calling grSstWinOpen().

typedef struct {
GrScreenResolution_t resolution;
GrScreenRefresh_t refresh;
int numColorBuffers;
int numAuxBuffers;

} GrResolution;

FxI32 grQueryResolutions(const GrResolution *resTemplate,
GrResolution *output

)

grQueryResolutions() returns all available frame buffer configurations that match the constraints
specified in the template resTemplate. The constraints are specified as either GR_QUERY_ANY or a
specific value in each of the four fields in the GrResolution structure. If output is NULL,

3. Getting Started

Copyright  1995-1998 3Dfx Interactive, Inc. 23
Proprietary and Confidential Printed 08/05/98 10:30 AM

grQueryResolutions() returns the number of bytes required to contain the available resolution
information. The application can then allocate space and call grQueryResolutions() again to return the
information. This process is demonstrated in Example 3.1.

Example 3.1 Querying for possible frame buffer configurations.
The code fragment below calls grQueryResolutions() twice, the first time to establish the amount of space
required for all the possible configurations, and the second time to actually return the data.

GrResolution query;
GrResolution *list;
int listSize;

/* find all possible modes that include a z-buffer */
query.resolution = GR_QUERY_ANY;
query.refresh = GR_QUERY_ANY;
query.numColorBuffers = GR_QUERY_ANY;
query.numAuxBuffers = 1;

listSize = grQueryResolutions(&query, NULL);
list = malloc(listSize);
grQueryResolutions(&query, list);

Example 3.2 The Glide initialization sequence.
This code fragment calls the three Glide functions, in the required order, that initialize the software and the
hardware subsystems. The parameters to grSstWinOpen() establish a double buffered full-screen frame buffer
with 640×480 screen resolution and a 60Hz refresh rate. Colors are stored as RGBA, the origin is in the lower
left corner, and there is no auxiliary buffer.

GrContext_t gcon;

grGlideInit(void);
grSstSelect(0);
if ((gcon=(grSstWinOpen(NULL,GR_RESOLUTION_640x480,GR_REFRESH_60HZ,

GR_COLORFORMAT_RGBA,GR_ORIGIN_LOWER_LEFT, 2, 0))==0)
printf(“ERROR: failed to open graphics context!\n”);

When programming a full screen Glide application, the developer has complete ownership of the 3D
hardware and texture ram. Many applications will be developed to run under Windows 95, however,
and must be prepared to restore the graphics state after a period of inactivity.

To gracefully handle the loss of resources (e.g. to another 3D application being scheduled by the
Windows 95 operating system), an application is required to periodically (typically once per frame)
query with grSelectContext() to determine if Glide’s resources have be reallocated by the system.
context is a context handle returned from a successful call to grWinOpen().

FxBool grSelectContext(GrContext_t context)

If none of the rendering context’s state and resources have been disturbed since the last call,
grSelectContext() will return FXTRUE. In this case no special actions by the application are required. If
it returns FXFALSE, then the application must assume that the rendering state has changed and must be
reestablished (by re-downloading textures, explicitly resetting the rendering state, etc.) before further
rendering commands are issued.

Glide 3.0 Programming Guide

24 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Driving Multiple Systems
Glide supports two forms of multiple graphics subsystem support: multiple subsystems driving
multiple displays and two subsystems driving a single display.

Selecting a Graphics Subsystem

At any given moment, only a single 3Dfx Interactive graphics accelerator is active. The grSstSelect(),
presented above, activates a specific unit. All Glide functions, with the exception of the grGlide family
and grSstSelect(), operate on only the currently active subsystem. Note that the global Glide state is
bound to each graphics subsystem independently. So, to set the constant color in each unit to the same
value, for example, you must write a loop that selects each one in turn and sets the color, as shown in
Example 3.3.

Example 3.3 Setting a state variable in all graphics subsystems.
Each graphics subsystem has its own version of the Glide state variables, including a constant color value
that is used to clear the screen. The constant color is zero by default. The code fragment below cycles through
all the units found by a previous call to grGet(), setting the constant color to black.

int i, n;

n = grGet(GR_NUM_BOARDS, sizeof(n), &n) ;
for (i = 0; i < n; i++)
{

grSstSelect(i);
grConstantColorValue(~0); /* only affects SST “i” */

}

Opening Multiple Graphics Subsystems

grSstWinOpen() must be called once for each graphics subsystem that will be used. In Glide 3.0, the
current graphics context must be closed (by calling grSstWinClose(), described below) before
grSstWinOpen() can be called to open a context for another subsystem. Note that two graphics
subsystems linked together in a scanline interleaving configuration are treated in software as a single
unit.

Scanline Interleaved Graphics Subsystems

Two 3Dfx Interactive graphics accelerators can be wired together in a configuration known as scanline
interleaving, which effectively doubles rasterization performance. From an application’s perspective,
two graphics subsystems in a scanline-interleaved configuration are treated as if a single subsystem is
installed in the system, including during unit selection, initialization, state management, texture
download, etc.

3. Getting Started

Copyright  1995-1998 3Dfx Interactive, Inc. 25
Proprietary and Confidential Printed 08/05/98 10:30 AM

Shutting Down
Before a new graphics context can be created, the previous one must be closed by calling
grSstWinClose().

FxBool grSstWinClose(GrContext_t context)

grSstWinClose() will fail, returning FXFALSE, if context is not a valid handle to a graphics context.
Otherwise, it returns the state of Glide to the one following grGlideInit(), so that grSstWinOpen() can
be called to open a new context.

After an application has completed using Glide and the graphics subsystem, proper shutdown must be
performed. This allows Glide to de-allocate system resources like memory, timers, address space, and
file handles that were used during program execution.

The function grGlideShutdown() shuts down Glide and all graphics contexts previously opened with
grSstWinOpen(). It should be called only when an application is finished using Glide, and should not be
executed unless grGlideInit() and grSstWinOpen() have already been called.

void grGlideShutdown(void)

Example 3.4 shows a minimal Glide program: it executes the four function calls that initialize the
graphics subsystem and then terminates.

Example 3.4 A minimal Glide program.
The complete program below includes the Glide initialization and termination procedure and nothing else.

#include <glide.h>

int n;

void main(void)
{ GrContext_t context;

grGlideInit(void);
if (! grGet(GR_NUM_BOARDS, sizeof(n), &n))

printf(“ERROR: no 3Dfx Interactive Graphics Accelerator!\n”);
grSstSelect(0) ;
context = grSstWinOpen(NULL, GR_RESOLUTION_640x480, GR_REFRESH_60HZ,

GR_COLORFORMAT_RGBA, GR_ORIGIN_LOWER_LEFT, 2, 0);
grSstWinClose(context);
grGlideShutdown();

}

The Display Buffer
Glide manages several logical hardware graphics buffers, all of which are based out of the same area of
memory known as the “frame buffer”. Depending on the amount of memory installed on the hardware,
the frame buffer is typically arranged as three logical units: the front buffer, the back buffer, and,
optionally, the auxiliary buffer.

void grRenderBuffer(GrBuffer_t buffer)

Glide 3.0 Programming Guide

26 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

grRenderBuffer() selects the buffer for primitive drawing and buffer clears. Valid values are
GR_BUFFER_FRONTBUFFER and GR_BUFFER_BACKBUFFER; the default is GR_BUFFER_BACKBUFFER.

The auxiliary buffer in a 3Dfx Interactive graphics accelerator subsystem can be used either as a depth
buffer, an alpha buffer, or as a third rendering buffer for triple buffering. The auxiliary buffer is not
available on systems with 2MB of frame buffer DRAM running at 800×600. However, it is always
available on systems with 4MB of frame buffer DRAM installed or with the screen resolution set to
640×480.

Triple buffering allows an application to continue rendering even when a swap buffer command is
pending. When triple buffering is enabled an application can act as if the hardware is operating in
double buffer mode; intricacies of dealing with the third buffer are hidden from the application by the
hardware. Since the auxiliary buffer can serve only a single use, depth buffering, alpha buffering, and
triple buffering are mutually exclusive.

An application selects the purpose of the auxiliary buffer implicitly whenever depth buffering, alpha
buffering, or triple buffering are enabled. For example, if grDepthBufferMode() is called with a
parameter other than GR_DEPTHBUFFER_DISABLE (see Chapter 7), it is assumed that the auxiliary
buffer will be used for depth buffering. Similarly, grSstWinOpen() enables triple buffering; alpha
buffering is enabled if grAlphaBlendFunction() selects a destination alpha blending factor (see Chapter
6) or grColorMask() enables writes to the alpha buffer. The release build of Glide does not check for
contention of the auxiliary buffer. Unexpected results may occur if the auxiliary buffer is used for more
that one function (e.g., both depth buffering and triple buffering are enabled). The debugging version of
the library will report the contention.

Note that source alpha blending can coexist with depth or triple buffering, but destination alpha
blending cannot.

Table 3.3 Frame buffer resolution and configuration.
The frame buffer can be configured with two or three rendering buffers. In double buffer modes, an alpha or
depth buffer can also be used. The available resolution depends on the amount of installed memory.

frame buffer memory double buffer mode double buffer mode with
16-bit alpha/depth
buffer

triple buffer mode

2 Mbytes 800 by 600 by 16 640 by 480 by 16 640 by 480 by 16

4 Mbytes 800 by 600 by 16 800 by 600 by 16 800 by 600 by 16

Logical Layout of the Linear Frame Buffer

The frame buffer is logically organized as 1024 scanlines of 16 or 32-bit values, regardless of the
amount of memory installed on the board, and is shown in Figure 3.2. Scanline length, or stride, is
independent of screen resolution and dependent on the graphics hardware. The stride is returned in the
GrLfbInfo_t structure, as described in Chapter 11. The data format within the frame buffer is
programmable and is also described in detail in Chapter 11.

3. Getting Started

Copyright  1995-1998 3Dfx Interactive, Inc. 27
Proprietary and Confidential Printed 08/05/98 10:30 AM

Figure 3.2 Logical layout of the linear frame buffer.
The frame buffer is logically organized as 1024 scanlines of 16 or 32-bit values, regardless of the amount of
memory installed on the board and the screen resolution. The drawable area is a rectangular subset of the
frame buffer; its location depends on the location of the y origin. The remainder of the board’s memory
(shaded area) is used as an auxiliary buffer that can be utilized as an alpha/depth buffer or as a third display
buffer (triple buffering). This logical layout is independent of the user-specified origin location.

1024
pixels

stride

drawable area

(0,0)

1024
pixels

stride

drawable area

(0,0)

(a) y origin in upper left corner (b) y origin in lower left corner

Masking Writes to the Frame Buffer
Writes to the frame buffer and depth buffer can be selectively disabled and enabled. The Glide
functions grColorMask() and grDepthMask() control buffer masking: FXTRUE values allow writes to the
associated buffer, and FXFALSE values disable writes to the associated buffer. Writes to the color and
alpha buffers are controlled by grColorMask() whereas writes to the depth buffer are controlled by
grDepthMask() (described in Chapter 7). Note that disabling writes to the alpha planes is the same as
disabling writes to the depth planes, since they both share the same memory.

void grColorMask(FxBool rgb, FxBool alpha)

void grDepthMask(FxBool enable)

grColorMask() specifies whether the color and/or alpha buffers can or cannot be written to during
rendering operations. If rgb is FXFALSE, for example, no change is made to the color buffer regardless
of the drawing operation attempted. The alpha parameter is ignored if depth buffering is enabled since
the alpha and depth buffers share memory.

grDepthMask() enables writes to the depth buffer.

The value of grColorMask() and grDepthMask() are ignored during linear frame buffer writes if the
pixel pipeline is disabled (see Chapter 11). The default values are FXTRUE, indicating that the
associated buffers are writable.

Swapping Buffers
In a double or triple buffered frame buffer, the next scene is rendered in a back buffer while the front
buffer is being displayed. After an image has been rendered, it is displayed with a call to
grBufferSwap(), which exchanges the front and back buffers every swapInterval vertical retraces. If the

Glide 3.0 Programming Guide

28 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

swapInterval is 0, then the buffer swap does not wait for vertical retrace. If the monitor frequency is 60
Hz, for example, a swapInterval of 3 results in a maximum frame rate of 20 Hz.

void grBufferSwap(int swapInterval)

A swapInterval of 0 may result in visual artifacts, such as ‘tearing’, since a buffer swap can occur
during the middle of a screen refresh cycle. This setting is very useful in performance monitoring
situations, as true rendering performance can be measured without including the time buffer swaps
spend waiting for vertical retrace.

grBufferSwap() does not wait for the specified vertical blanking period; instead, it queues the buffer
swap command and returns immediately. If the application is double buffering, the graphics subsystem
will stop rendering and wait until the swap occurs before executing more commands. If the application
is triple buffering and the third rendering buffer is available, then rendering commands will take place
immediately in the third buffer.

A Glide application can poll the hardware using the grGet() function, described in Chapter 12, with
argument GR_PENDING_BUFFERSWAPS, to determine the number of buffers waiting to be viewed,
although this is generally not necessary.

The maximum value returned is 7, even though there may be more buffer swap requests in the queue.
To minimize rendering latency in response to interactive input, grGet(GR_PENDING_BUFFERSWAPS,…)
should be called in a loop once per frame until the returned value is less than some small number such
as 1, 2, or 3.

Synchronizing with Vertical Retrace

Synchronization to vertical retrace is supported with the grGet() function with argument
GR_VIDEO_POSITION, which returns the vertical and horizontal beam location. Vertical retrace is
indicated by returning 0 for the vertical position.

Note that an application does not need to explicitly synchronize to vertical retrace if it only wishes to
remove tearing artifacts. grBufferSwap() will automatically synchronize to vertical retrace if desired.

Monitoring Swapping Behavior

An application program can examine a history of swapping behavior: each entry shows the number of
vertical retraces that occurred between the display of a frame and its predecessor. A call to
grGet(GR_NUM_SWAP_HISTORY_BUFFER,…) returns the number of bytes of swapping history
available. A call to grGet(GR_SWAP_HISTORY,…) returns the 4-byte entries and resets the recording
buffer. Example 3.5shows and example.

Example 3.5 Retrieving the swapping history.
The code fragment below retrieves the swap history since the last time it was retrieved.

FxU32 sizeSwapHst, buffSwapHst[MAXBUFF];

grGet(GR_NUM_SWAP_HISTORY_BUFFER, 4, &sizeSwapHst);
grGet(GR_SWAP_HISTORY, sizeSwapHst << 2, buffSwapHst);

3. Getting Started

Copyright  1995-1998 3Dfx Interactive, Inc. 29
Proprietary and Confidential Printed 08/05/98 10:30 AM

Clearing Buffers
The ability to clear a display buffer is fundamental to animation, since the remnants of a previously
rendered scene must be reset before a new scene can be rendered. The hardware allows the back buffer
and alpha or depth buffer to be cleared simultaneously.

A buffer clear fills pixels at twice the rate of triangle rendering or better. Therefore, the performance
cost of clearing the buffer is, worse case, half the cost of rendering a rectangle. Clearing the buffer is
not necessary when the scene paints a background that covers the entire area.

Buffers are cleared by calling grBufferClear(). The area within the buffer to be cleared is defined by
grClipWindow(), described in the next chapter. The three parameters specify the values that are used to
clear the display buffer (color), the alpha buffer (alpha), and the depth buffer (depth). Although the
color, alpha, and depth parameters are always specified, the parameters actually used will depend on
the current configuration of the hardware; the irrelevant parameters are ignored.

The depth parameter can be one of the depth constants found by calling grGet() with argument
GR_ZDEPTH_MIN_MAX or GR_WDEPTH_MIN_MAX, or a direct representation of a value in the depth buffer.
See Chapter 7 for more details.

void grBufferClear(GrColor_t color, GrAlpha_t alpha, FxU32 depth)

Any buffers that are enabled are automatically and simultaneously cleared by grBufferClear(). For
example, if depth buffering is enabled (with grDepthBufferMode(), described in Chapter 7), the depth
buffer is cleared to depth. If alpha buffering is enabled (with grAlphaBlendFunction(), described in
Chapter 6), the alpha buffer is cleared to alpha. And if writes to the display buffer are enabled (with
grColorMask(), described in Chapter 5), then it is cleared to color. If an application does not want a
buffer to be cleared, it should mask off writes to the buffer using grDepthMask() and grColorMask() as
appropriate.

Error Handling
Glide provides a family of error management functions to assist a developer with application
debugging. This family of routines consists of Glide related error management (errors generated by
Glide) and application level error management (errors generated by an application).

The debug build of Glide performs extensive parameter validation and resource checking. When an
error condition is detected, a user-supplied callback function may be executed. This callback function
is installed by calling grErrorSetCallback(). If no callback function is specified, a default error
function that prints an error message to stderr is used.

typedef void (*GrErrorCallbackFnc_t) (const char *string, FxBool fatal)

void grErrorSetCallback(GrErrorCallbackFnc_t fnc))

The callback function accepts a string describing the error and a flag indicating if the error is fatal or
recoverable. grErrorSetCallback() is relevant only when using the debugging version of Glide; the
release build of Glide removes all internal parameter validation and error checking so the callback
function will never be called.

Copyright  1995−1998 3Dfx Interactive, Inc. 31
Proprietary and Confidential Printed 08/05/98 10:30 AM

4. Rendering Primitives

In This Chapter
You will learn how to:

t establish a clipping window.

t draw a point, a line, a triangle, or a convex polygon on the screen.

t draw sets of points, lines, and triangles in a single operation.

t draw sets of connected lines and triangles in a single operation.

t cull back-facing polygons from the scene.

t draw anti-aliased points, lines, triangles, and convex polygons.

Clipping
The graphics hardware supports per-pixel clipping to an arbitrary rectangle that is defined with the
Glide function grClipWindow(). Any pixels outside the clipping window are rejected. Values are
inclusive for minimum x and y values and exclusive for maximum x and y values, as shown in Figure
4.1. The clipping window also specifies the area grBufferClear() will clear. (See Chapter 3.)

Figure 4.1 Specifying a clipping window.
The clipping window is defined by two pairs of integers in the range [0..1024) specifying the left and right
edges and the top and bottom edges of the rectangle.

+y

+x(0,0) +y

+x(0,0)

(minx, miny)

(maxx, maxy)
(minx, miny)

(maxx, maxy)

when the origin is in
the lower left corner

of the screen

when the origin is in
the upper left corner
of the screen

Glide 3.0 Programming Guide

32 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

The grClipWindow() routine has four parameters that define the clipping rectangle. The values must be
less than or equal to the current screen resolution and greater than or equal to 0; otherwise, they are
ignored. Glide does not perform any geometric clipping outside of supporting a hardware clipping
window. For optimal performance, an application should perform proper geometric clipping before
passing any primitives to Glide. The clipping window should not be used in place of true geometric
clipping.

void grClipWindow(FxU32 minX, FxU32 minY, FxU32 maxX, FxU32 maxY)

The default values for the clip window are the full size of the screen: (0,0,640,480) for 640×480 mode
and (0,0,800,600) for 800×600 mode. To disable clipping, simply set the size of the clip window to the
screen size. The clipping window should not be used for general purpose primitive clipping; since
clipped pixels are processed but discarded, proper geometric clipping should be done by the application
for best performance. The clip window should be used to prevent stray pixels that appear from
imprecise geometric clipping. Note that if pixel pipeline is disabled, clipping is not performed on linear
frame buffer writes (see Chapter 11 for more information).

Triangles
The triangle is the basic Glide rendering primitive. The Glide function grDrawTriangle() renders an
arbitrarily oriented triangle. The arguments, a, b, and c, are pointers to vertices whose layout has been
determined by the most recent call to grVertexLayout(), as described in Chapter 2.

void grDrawTriangle(const void *a, const void *b, const void *c)

Triangles are rendered with the following filling rules:

• Zero area triangles render zero pixels.

• Pixels are rendered if and only if their center lies within the triangle.

A pixel center is within a triangle if it is inside all three of the edges. When a pixel center lies exactly
on an edge, it is inside the triangle if the edge is considered to be inside, and outside otherwise. Left
edges are in; right edges are out. Horizontal edges with the smaller y value are in; those with a larger y
value are out.

Figure 4.2 gives an example. Eight triangles are shown, all sharing a common vertex. Only one of the
triangles renders the pixel whose center is the shared vertex. Can you guess which one?

The shared vertex is part of the “right edge” of triangles A, H, G, and F, and hence outside. It is part
of the “top edge” (since the origin is in the lower left) of triangles G, F, E and D, and thus outside them
as well. In triangle B, the vertex is on one inside edge and one outside edge and hence is considered to
be outside the triangle. Only in triangle C does the vertex lie on two “inside” edges and thus lies inside
the triangle.

4. Rendering Primitives

Copyright  1995-1998 3Dfx Interactive, Inc. 33
Proprietary and Confidential Printed 08/05/98 10:30 AM

Figure 4.2 Pixel rendering.
Which of the eight triangles shown in diagram (a) will render the pixel at the common vertex? In diagram (b),
solid edges are considered to be inside the triangle while dotted edges are outside. The top two diagrams are
drawn with the origin in the lower left corner. The bottom row represents the other possibility: the origin is in
the upper left corner. The two pairs of diagrams are mirror images of each other.

(a) Which triangles will render the pixel in the
center of the square? (If you like to think of the
origin in the lower left corner, use the top row of
diagrams; if you prefer an origin in the upper
left corner, use the bottom row.)

B

C

D

EF

A

H

G

(b) Pixels on solid edges lie inside the triangle;
pixels on dotted lines do not. A vertex is inside
the triangle (and hence, rendered) if both edges
that radiate from it are inside the triangle. Thus,
only triangle C will render the center point.

B

C

D

EF

G

H

A

+x

+y

B

C

D

EF

A

H

G

B

C

D

EF

G

H

A

+x

+y

Glide 3.0 Programming Guide

34 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Points
The Glide function grDrawPoint() renders a single point to the screen. The point is treated as a triangle
with nearly coincident vertices (that is, a very small triangle) for rendering purposes. If many points
will be rendered, noticeable performance improvement can be achieved by writing pixels directly to the
frame buffer. (grDrawPoint() sends three vertices per point to the hardware and iterates along three
edges; only one linear frame buffer write per point is required.)

void grDrawPoint(const void *a)

The argument, a, is a pointer to a vertex whose layout has been determined by the most recent call to
grVertexLayout().

Example 4.1 A thousand points of light.
This code fragment clears the screen to black and then draws a thousand random points. By default, the
rendering buffer is set to GR_BUFFER_BACKBUFFER and the color buffer is writable. The color white is made
by specifying maximal values for red, green, and blue, and a quick way to do that is ~0. Some of the points
will be clipped out: the random number generator selects points with coordinates in the range [0..1024]; the
screen resolution is less than that. By default, the clipping window is set to the screen size.

typedef struct { float x, y; } myVertex;

int n;
myVertex p;

grVertexLayout(GR_PARAM_XY, 0, GR_PARAM_ENABLE);

/* clear the back buffer to black */
grBufferClear(0, 0, 0);

/* set color to white */
grColorCombine(GR_COMBINE_FUNCTION_LOCAL, GR_COMBINE_FACTOR_NONE,

GR_COMBINE_LOCAL_CONSTANT, GR_COMBINE_OTHER_NONE,FXFALSE);
grConstantColorValue(~0)

/* generate and draw 1000 random points */
for (n=0; n<1000; n++) {

p.x = (float) (rand() % 1024);
p.y = (float) (rand() % 1024);
grDrawPoint(&p);

}

Lines
The Glide function grDrawLine() renders an arbitrarily oriented line segment. Enabled special effects
(e.g., fog, blending, chroma-key, dithering, etc.) will affect a line’s appearance. The arguments, a and
b, are pointers to vertices whose layout has been determined by the most recent call to
grVertexLayout().

void grDrawLine(const void *a, const void *b)

4. Rendering Primitives

Copyright  1995-1998 3Dfx Interactive, Inc. 35
Proprietary and Confidential Printed 08/05/98 10:30 AM

Drawing Sets of Disjoint Points, Lines, and Triangles
So far, we have talked about rendering commands that take one, two, or three vertex pointers as
arguments and draw a single point, line, or triangle. Two more commands, grDrawVertexArray() and
grDrawVertexArrayContiguous(), take an array of vertex pointers or of vertices and draw them
according to a mode argument.

void grDrawVertexArray(FxU32 mode, FxU32 count, void *pointers[])

void grDrawVertexArrayContiguous(FxU32 mode, FxU32 count, void *vertex, FxU32 stride)

The first argument, mode, tells how to interpret the list of vertices. Valid values are GR_POINTS,
GR_LINES, GR_TRIANGLES, GR_LINE_STRIP, GR_TRIANGLE_STRIP, GR_TRIANGLE_FAN, or
GR_POLYGON, or two continuation modes, GR_TRIANGLE_FAN_CONTINUE and
GR_TRIANGLE_FAN_CONTINUE. In this section, we will discuss the first three modes, which draw
disjoint points, lines, and triangles. The other modes are discussed in later sections.

The second argument, count, gives the number of vertices to draw, and the final argument, pointers, is
a pointer to an array of pointers to vertices. grDrawVertexArrayContiguous() assumes that all the
vertices are stored in a linear array addressed by vertex, and that each vertex in the array is stride bytes
long. In both cases, the count vertices are processed in the order given, according to mode.

Figure 4.3 gives a set of points and draws them with six of the modes.

Drawing Sets of Connected Lines and Triangles
A line strip is a sequence of line segments in which each line segment shares an endpoint with the
previous one. A triangle strip is a sequence of triangles in which each triangle (after the first one)
shares two vertices with its predecessor. A triangle fan is a strip in which all triangles have one vertex
in common. (See Figure 4.4.)

Glide 3.0 Programming Guide

36 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Figure 4.3 Vertex arrays.
Suppose we have the following points:

B

C

D

E

A

F

G

They are stored in alphabetic order in a contiguous array of vertices and drawn with each of the possible
modes, yielding the shapes below:

GR_POINTS GR_LINES GR_TRIANGLES

GR_LINE_STRIP GR_TRIANGLE_STRIP GR_TRIANGLE_FAN

This set of points cannot be drawn in GR_POLYGON mode as the resulting polygon would not be convex. An
example later in the chapter uses the indirection of grDrawVertexArray() to draw a polygon by discarding
points C and E. GR_TRIANGLE_FAN_CONTINUE and GR_TRIANGLE_STRIP_CONTINUE are
continuation modes and are described later.

4. Rendering Primitives

Copyright  1995-1998 3Dfx Interactive, Inc. 37
Proprietary and Confidential Printed 08/05/98 10:30 AM

Figure 4.4 Line strips, triangle strips, and triangle fans.
The first line segment in a line strip provides two vertices. Subsequent line segments require only one new
vertex, since their starting point is the endpoint of the previous one.

 The first triangle in a triangle strip provides three vertices. Subsequent triangles in the strip share two
vertices with their predecessor. All the triangles in a fan share one vertex, the first one in the list.
Furthermore, each triangle shares a second vertex with its predecessor.

When grDrawVertexArray() or grDrawVertexArrayContiguous() is used to draw the triangle aggregate, the
mode argument identifies it as a strip or fan: the distinction is important because the shared vertices are
handled differently. In a strip, each new vertex replaces the oldest of the previous three vertices. In a fan, the
first vertex remains in use for the whole fan, and each new vertex replaces the oldest of the other two.

triangle strip triangle fan

V1

V2

V3

V4

V0

V5

V0

V1

V2

V3

V4
V5

V6

line strip

V0

V1

V2

V3

V4

V5

V6

V7

V8

V9
V10

V11

Glide 3.0 Programming Guide

38 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Two additional drawing modes, GR_TRIANGLE_FAN_CONTINUE, and
GR_TRIANGLE_STRIP_CONTINUE, allow you to interrupt the rendering of a triangle strip or fan to do
computations, then resume where you left off. The use of the continuation modes is subject to the
following restrictions:

• grDrawVertexArray(GR_TRIANGLE_STRIP_CONTINUE,…) must follow either a
grDrawVertexArray(GR_TRIANGLE_STRIP,…) or
grDrawVertexArray(GR_TRIANGLE_STRIP_CONTINUE,…) command. Similarly,
grDrawVertexArray(GR_TRIANGLE_FAN_CONTINUE,…) must be preceded by either
grDrawVertexArray(GR_TRIANGLE_FAN,…) or
grDrawVertexArray(GR_TRIANGLE_FAN_CONTINUE,…).

• Intervening commands may not change Glide state. For example, the following sequence is not
valid:

grEnable(GR_AA_ORDERED);
grDrawVertexArray(GR_TRIANGLE_FAN,…);
grDisable(GR_AA_ORDERED); /* Wrong! No state changes between continuations */
grDrawVertexArray(GR_TRIANGLE_FAN_CONTINUE,…);

• No intervening rendering commands are allowed. For example, the following sequence is not valid:

grDrawVertexArray(GR_TRIANGLE_FAN,…);
grDrawVertexArray(GR_POINTS,…); /* Wrong! No other rendering between continuations */
grDrawVertexArray(GR_TRIANGLE_FAN_CONTINUE,…);

Example 4.2 Using triangle continuation.
The code fragment below draws a triangle strip in three stages.

/* draw two triangles */
grDrawVertexArray(GR_TRIANGLE_STRIP, 4, pointers);
/* continue to draw a triangle strip, using the last two vertices in the
 * previous one
 */
grDrawVertexArray(GR_TRIANGLE_STRIP_CONTINUE, 1, pointers+4);
/* continue to draw one triangle using the last two vertices in the
previous triangle */
grDrawVertexArray(GR_TRIANGLE_STRIP_CONTINUE, 1, pointers+5);

This code fragment uses continuation to draw a triangle fan.

/* draw two triangles */
grDrawVertexArray(GR_TRIANGLE_FAN, 4, pointers);
/* continue to draw one triangle using the first vertex and last vertex
in the previous triangle */
grDrawVertexArray(GR_TRIANGLE_FAN_CONTINUE, 1, pointers+4);
/* continue to draw one triangle using the first vertex and last vertex
in the previous triangle */
grDrawVertexArray(GR_TRIANGLE_FAN_CONTINUE, 1, pointers+5);

4. Rendering Primitives

Copyright  1995-1998 3Dfx Interactive, Inc. 39
Proprietary and Confidential Printed 08/05/98 10:30 AM

Convex Polygons
A polygon is a planar area enclosed by a closed loop of line segments, specified by their endpoints.
While the hardware does not render polygons directly, Glide provides a set of polygon rendering
functions that are optimized for the hardware. The polygons rendered by the Glide functions are subject
to some strong restrictions:

• The edges of the polygon cannot intersect.

• The polygon must be convex, that is, have no indentations. (The glossary at the end of this manual
gives a precise definition of convexity.)

Figure 4.5 shows some examples of both valid and invalid polygons.

Figure 4.5 Polygons.
Valid polygons are convex and planar.

Invalid polygons have intersecting edges,
indentations, or non-planar coordinates.

Glide 3.0 Programming Guide

40 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Example 4.3 Drawing a convex polygon in Glide 3.0.
The code fragment below assumes that the seven vertices shown below and in Figure 4.3 have been defined in
an array of myVertex structures called verts. By creating an array of myVertex pointers that drop out the
C and E vertices, a convex polygon can be drawn.

B

C

D

E

A

F

G

typedef struct { … } myVertex;
myVertex verts[7];

static struct myVertex *vlist[5] = {
verts[0], verts[1],
verts[3].
Verts[5], verts[6] };

grDrawVertexArray(GR_POLYGON, 5, vlist);

So why not draw a polygon using all seven vertices? Because the resulting polygon is not convex. Polygons
are rendered as a triangle fan. The illustration below demonstrates the fact that drawing a polygon that is not
convex may yield unexpected results!

This is the polygon created by
connecting all seven vertices in order.
The deep indentations of the crown are
not convex.

Glide renders a polygon as a
triangular fan. The shaded area is
what is drawn; the lines outline
what was desired.

PORTING
NOTE

Convex polygons are defined by an ordered set of vertices and drawn by calling
grDrawVertexArray(GR_POLYGON,…) or
grDrawVertexArrayContiguous(GR_POLYGON,…) in Glide 3.0. Table 4.1 provides
guidance for porting the polygon rendering routines from Glide 2.x to the new regime.

4. Rendering Primitives

Copyright  1995-1998 3Dfx Interactive, Inc. 41
Proprietary and Confidential Printed 08/05/98 10:30 AM

Table 4.1 Porting obsolete grDrawPolygon() commands to Glide 3.0.
Glide 3.0 is the first release to support grDrawVertexArray(). Six old routines for drawing polygons have been
made obsolete by grDrawVertexArray(): grDrawPolygon(), grDrawPlanarPolygon(),
grDrawPolygonVertexList(), grDrawPlanarPolygonVertexList(), grAADrawPolygon(), and
grAADrawPolygonVertexList(). The table below shows how to convert calls to the obsolete routines with calls
to grDrawVertexArray(). It assumes that the old GrVertex structure has been defined both syntactically and
with calls to grVertexLayout().

old new
grDrawPlanarPolygon(nVerts, ilist, vlist) grDrawVertexArray(GR_POYGON, nVerts, vlist sorted

according to ilist)
grDrawPolygon(nVerts, ilist, vlist) grDrawVertexArray(GR_POLYGON, nVerts, vlist sorted

according to ilist)
grDrawPlanarPolygonVertexList(nVerts, vlist) grDrawVertexArrayContiguous(GR_POLYGON, nVerts, vlist,

sizeof(GrVertex))
grDrawPolygonVertexList(nVerts, vlist) grDrawVertexArrayContiguous(GR_POLYGON, nVerts, vlist,

sizeof(GrVertex))
grAADrawPolygon(nVerts, vlist) grEnable(AA_ORDERED);

grDrawVertexArray(GR_POLYGON, nVerts, vlist sorted
according to ilist)

grAADrawPolygonVertexList(nVerts, vlist) grEnable(AA_ORDERED);
grDrawVertexArrayContiguous(GR_POLYGON, nVerts, vlist,

sizeof(GrVertex))

Glide 3.0 Programming Guide

42 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Example 4.4 L’embarras des richesses: The more alternatives, the more difficult the choice.
 (Abbé D’Allainval, 1726). The code fragment below draw three triangles, It initializes an array of eight
vertices, vpool[8], and an array of pointers to them, verts. Vertex vpool[1] is shared by all three of the
triangles; and two of them use vpool[2].

struct vert {
 FxFloat x,y,z,w; // x,y,z(unused),1/w
 FxFloat s,t; // s/w,t/w
} vpool[8];

static struct vert *verts[9] = {
vpool+0, vpool+1, vpool+2,
vpool+1, vpool+2, vpool+3,
vpool+7, vpool+1, vpool+5};

//---
// set the scene
grCoordinateSpace(GR_WINDOW_COORDS);
grVertexLayout(GR_PARAM_XY, 0, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_Q0, 12, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_ST0, 16, GR_PARAM_ENABLE);

// transform and deposit vertices into vpool
vpool[0].x = x;
vpool[0].y = y;
vpool[0].w = oow = 1.0F/w;
vpool[0].s = s*oow;
vpool[0].t = t*oow;
// similar for other vertices…

Here are three different ways to draw the same three triangles. Method 1: Draw them as three independent
triangles.

static struct vert *verts[9] = {
vpool+0, vpool+1, vpool+2,
vpool+1, vpool+2, vpool+3,
vpool+7, vpool+1, vpool+5};

grDrawVertexArray(GR_TRIANGLES, 9, verts);

Method 2: Draw them as a two triangle strip (remember the shared vertices?) and an independent triangle.

// 2 meshed triangles and 1 independent traingle
static struct vert *verts[7] = {

vpool+0, vpool+1, vpool+2, vpool+3
vpool+7, vpool+1, vpool+5};

grDrawVertexArray(GR_TRIANGLE_STRIP, 4, verts);
grDrawVertexArray(GR_TRIANGLES, 3, verts+4);

Method 3: Draw them using the grDrawTriangle() command.

grDrawTriangle(vpool+0, vpool+1, vpool+2);
grDrawTriangle(vpool+1, vpool+2, vpool+3);
grDrawTriangle(vpool+7, vpool+1, vpool+5);

Method 4: Draw them as a contiguous triangle strip and an independent triangle.

grDrawVertexArrayContiguous(GR_TRIANGLE_STRIP, 4, vpool, sizeof(struct
vert));
grDrawTriangle(vpool+7, vpool+1, vpool+5);

4. Rendering Primitives

Copyright  1995-1998 3Dfx Interactive, Inc. 43
Proprietary and Confidential Printed 08/05/98 10:30 AM

Backface Culling
Glide supports backface culling based on the signed area of a polygon. When Glide renders a polygon,
the first step is to divide the polygon into triangles, the hardware rendering primitive. Figure 4.6 shows
a pair of triangles whose vertices have been labeled according to the rule given above.

Glide 3.0 Programming Guide

44 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Figure 4.6 Polygon orientation and the sign of the area.
The polygons on the left are defined relative to an origin in the upper left corner; the ones on the right have
the origin in the lower left corner. Clockwise and counter-clockwise refer to the direction that the vertices are
traversed in alphabetical order.

(0,0)

A

B

C

clockwise orientation
positive area

a

b

c

d

e

counter-clockwise
orientation

negative area

(0,0)

C

B
A

clockwise orientation
negative area

b

c
d

acounter-clockwise orientation
positive area

The sign of the area of the triangle can be used for backface culling (quickly discarding triangles that
won’t be visible on the screen before they are rendered). Because the area must be computed anyway,
this is a cheap way to cull. However, removing back-facing triangles earlier may be advantageous. For
example, if back face removal is performed before lighting, then the computationally expensive lighting
calculations for invisible triangles can be skipped.

The Glide function grCullMode() has one parameter, a mode that can be set to GR_CULL_NONE,
GR_CULL_NEGATIVE, or GR_CULL_POSITIVE. When the culling mode is GR_CULL_NONE, the default
value, all polygons are rendered to the screen regardless of their signed area. Otherwise, if the sign of
the area matches the mode, then the triangle is rejected. grCullMode() assumes that
GR_CULL_POSITIVE corresponds to a counter-clockwise orientation when the origin is in the lower left
corner of the screen, and a clockwise oriented triangle when the origin is in the upper left corner, as
shown in Table 4.2.

void grCullMode(GrCullMode_t mode)

Note that grCullMode() has no effect on points and lines, but does effect the rendering of triangles and
polygons.

4. Rendering Primitives

Copyright  1995-1998 3Dfx Interactive, Inc. 45
Proprietary and Confidential Printed 08/05/98 10:30 AM

Table 4.2 The location of the origin affects triangle orientation and the sign of its area.

if the origin location is and the triangle orientation is then the sign of the area is
GR_ORIGIN_LOWERLEFT clockwise negative
GR_ORIGIN_LOWERLEFT counter-clockwise positive
GR_ORIGIN_UPPERLEFT clockwise positive
GR_ORIGIN_UPPERLEFT counter-clockwise negative

Anti-aliasing
If you look closely and critically at lines drawn on the screen, particularly lines that are nearly
horizontal or nearly vertical, they may appear to be jagged. The screen is a grid of pixels and the line is
approximated by lighting spans of pixels on that grid. The jaggedness is called aliasing; examples of
aliased lines are shown in Figure 4.7(a). Anti-aliasing techniques reduce the jaggedness, as shown in
Figure 4.7(b), by partially coloring neighboring pixels to simulate partial pixel coverage.

Figure 4.7 Aliased and anti-aliased lines.
These lines are drawn at a resolution of 50 pixels/inch in order to exaggerate the jagged edges of the aliased
lines and highlight the widening and blending in the anti-aliased lines. These lines are examples of the
general concepts; if you replicate this drawing on the screen, the results may be different in detail.

(a) aliased lines have jagged
edges

(b) anti-aliased lines soften the edges
by shading surrounding pixels

Figure 4.8 shows an angled line segment one pixel wide, superimposed on a pixel grid. Some pixels are
almost completely covered by the line, while others have only a small corner involved. Glide’s anti-
aliasing routines compute a coverage value for each pixel and uses that in combination with the source
and destination alpha values to blend the pixel color.

Figure 4.8 Pixel coverage and lines.

Glide 3.0 Programming Guide

46 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

85%

50%

25-30%

15-20%

5-10%

0%

(a) This angled one-pixel wide line segment
doesn’t cover any pixel completely.

(b) The shaded squares are touched by the line segment at
the left; the shade of gray filling each square represents
the area covered by the line.

Glide draws anti-aliased points, lines, triangles, and polygons by setting up the alpha iterator so that it
represents pixel coverage. You must correctly configure the alpha combine unit (discussed in detail in
Chapter 6) and enable alpha blending before using any of the anti-aliased drawing commands. The
code segment in

PORTING
NOTE

Previous versions of Glide contained a set of commands to draw anti-aliased primitives.
Only one of these has been retained in Glide 3: grAADrawTriangle(). It operates
independently of the GR_AA_ORDERED mechanism. A description follows.

Example 4.5 details the proper sequence of Glide commands that must precede the actual anti-aliased
drawing commands. Briefly, you must:

• Set the alpha combine unit to produce iterated alpha.

• Set the alpha blending function. Blending functions are specified for source and destination color
components and for source and destination alpha values, and the choice of function depends on
whether the scene is rendered front to back or back to front.

• Set the alpha value for each vertex. The chosen alpha value should represent the transparency of
the object being rendered, with opaque objects setting alpha to 255. This alpha value is multiplied
by the pixel coverage to obtain the final alpha value used for alpha blending.

• Call grEnable(GR_AA_ORDERED) to enable anti-aliasing.

• Sort the vertices by depth and draw with a grDraw routine. You cannot draw anti-aliased strips
and fans.

4. Rendering Primitives

Copyright  1995-1998 3Dfx Interactive, Inc. 47
Proprietary and Confidential Printed 08/05/98 10:30 AM

PORTING
NOTE

Previous versions of Glide contained a set of commands to draw anti-aliased primitives.
Only one of these has been retained in Glide 3: grAADrawTriangle(). It operates
independently of the GR_AA_ORDERED mechanism. A description follows.

Glide 3.0 Programming Guide

48 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Example 4.5 Drawing an anti-aliased triangle.
The alpha combine unit must be configured to produce an iterated alpha value in order to use the Glide anti-
aliasing drawing functions. Consider the following code segment a recipe for success in this chapter; the
alpha combine unit, alpha buffering, and alpha blending are the subject of Chapter 6.

The objects in the picture must be pre-sorted on depth. The alpha blending factors depend on whether the
scene is drawn from front to back or back to front. The first code shows the alpha blending factors if the scene
is drawn from front to back.

/* set alpha combine unit to produce an iterated alpha */
grAlphaCombine(GR_COMBINE_SCALE_OTHER, GR_COMBINE_FACTOR_ONE, GR_LOCAL_NONE,

GR_LOCAL_INTERATED, FXFALSE);

/* blend colors based on alpha */
grAlphaBlendFunction(GR_BLEND_ ALPHA_SATURATE, GR_BLEND_ONE, GR_BLEND_
SATURATE, GR_BLEND_ONE);

grEnable(GR_AA_ORDERED);
/* draw the scene using the grDraw routines */

Substitute the alpha blending factors shown below if the scene is drawn from back to front.

grAlphaBlendFunction(GR_BLEND_SRC_ALPHA, GR_BLEND_ONE_MINUS_SRC_ALPHA,
GR_BLEND_ZERO, GR_BLEND_ZERO);

void grAADrawTriangle (GrVertex *va, GrVertex *vb, GrVertex *vc,
FxBool aaAB, FxBool aaBC, FxBool aaCA

)

grAADrawTriangle() has three more arguments than its aliased counterpart grDrawTriangle(). The
arguments, aaAB, aaBC, and aaBC are Boolean values that allow the edges of the triangle to be
selectively anti-aliased.

Glide draws a triangle with the specified edges anti-aliased by setting up the alpha iterator so that it
represents pixel coverage. grAlphaCombine() must select iterated alpha and grAlphaBlendFunction()
should select GR_BLEND_SRC_ALPHA, GR_BLEND_ONE_MINUS_SCR_ALPHA as the RGB blend functions
and GR_BLEND_ZERO, GR_BLEND_ZERO as the alpha blend functions if sorting from back to front and
GR_BLEND_ALPHA_SATURATE, GR_BLEND_ONE as the RGB blend functions and GR_BLEND_SATURATE,
GR_BLEND_ONE as the alpha blend functions if sorting from front to back. Opaque anti-aliased
primitives must set alpha=255 in the vertex data. Transparent anti-aliased primitives are drawn by
setting alpha to values less than 255; this alpha value is multiplied by the pixel coverage to obtain the
final alpha value for alpha blending.

If there is a steep gradient in a particular color space (i.e., green goes from 255.0 to 0.0 in a small
number of pixels), then there will be visual anomalies at the edges of the resultant anti-aliased triangle.
The workaround for this ‘feature’ is to reduce the gradient by increasing small color components and
decreasing large ones. This can be demonstrated by changing the values of maxColor and minColor in
test25 of the Glide distribution. Note that this ‘feature’ is only present when the color combine mode
includes iterated RGB or alpha as one of the parameters in the final color.

Copyright  1995−1998 3Dfx Interactive, Inc. 49
Proprietary and Confidential Printed 08/05/98 10:30 AM

5. Color and Lighting

In This Chapter
You will learn about:

t specifying colors.

t configuring the color combine unit that produces shading and lighting effects.

t drawing a flat-shaded object.

t drawing a smooth-shaded object.

t simulating various lighting effects.

Specifying Colors
A color consists of three or four color components: red, green, blue, and optionally, alpha. The color
component values should be clamped to the range [0..255] where 0 is black and 255 is maximum
intensity.

The color components are packed together into a word to form a color. Glide supports four different
color byte orderings, defined in the enumerated type GrColorFormat_t (see Figure 3.1 for a pictorial
representation). Color byte ordering determines how linear frame buffer writes and color arguments are
interpreted and is established in the call to grSstWinOpen() when Glide and the graphics hardware are
initialized (see Chapter 3).

The GrColor_t type definition represents a packed color value and is used in routines that set a constant
color: grBufferClear() (see Chapter 3), grConstantColorValue() (described below), grFogColorValue()
and grChromakeyValue() (both described in Chapter 8).

void grConstantColorValue(GrColor_t color)

Glide refers to a global constant color when performing flat-shaded primitive rendering, set with
grConstantColorValue(). The default value is 0xFFFFFFFF.

Vertex colors are specified as individual color components, each stored as an FxFloat value, or as four
bytes packed into a word.

Dithering
The graphics hardware represents color internally as 32-bit quadruplets in a format specified by the
color format argument passed to grSstWinOpen() (see Chapter 3). This color is eventually dithered to
16-bit RGB for storage in the frame buffer, then expanded and (optionally) filtered up to 24-bits for
final display. From an application’s perspective, the 32-to-16-bit RGB dithering operation is
transparent.

Glide 3.0 Programming Guide

50 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Dithering is a technique for increasing the perceived range of colors in an image by applying a pattern
to surrounding pixels to modify their color values. When viewed from a distance, these colors appear to
blend into an intermediate color that can’t be represented directly. Dithering is similar to the half-toning
used in black and white publications to produce shades of gray.

void grDitherMode(GrDitherMode_t mode)

grDitherMode() selects the form of dithering the hardware uses when converting 24-bit RGB values to
the 16-bit RGB color buffer format. Valid values are GR_DITHER_DISABLE, GR_DITHER_2x2, and
GR_DITHER_4x4. GR_DITHER_DISABLE forces a simple truncation that may result in noticeable
banding. GR_DITHER_2x2 uses a 2x2 ordered dither matrix, and GR_DITHER_4x4 uses a 4x4 ordered
dither matrix.

The default dithering mode is GR_DITHER_4x4.

The Color Combine Unit

TAKE
NOTE

Control of high level rendering functions is managed by three functions, grColorCombine(),
grAlphaCombine() (see Chapter 6), and grTexCombine() (described in Chapter 9). While the
three routines will be presented individually, settings for one function can potentially affect the
inputs to the other routines.

The color combine unit computes an RGB color for each pixel as it is rendered. User-selected inputs
are added, blended, and/or scaled to produce flat or smooth (Gouraud) shading with optional lighting
effects. The color combine unit computes each RGB color component separately, but all three are
computed using the same formula. The alpha combine unit computes the alpha component and is
discussed in the next chapter.

The color combine unit computes a color component as

c = f * a + b

where c is the red, green, or blue color component, f is a scale factor, and a and b are sums and
differences of the various input choices.

The Glide routine that configures the color combine unit is grColorCombine(). It specifies the function
that computes the color and selects the inputs.

void grColorCombine(GrCombineFunction_t func,
GrCombineFactor_t factor,
GrCombineLocal_t local,
GrCombineOther_t other,
FxBool invert

)

Fourteen combining functions are defined in the GrCombineFunction_t enumerated type; one is selected
with func, the first argument to grColorCombine(). Table 5.1 gives the symbolic names and formulas
for each color combine function.

5. . Color and Lighting

Copyright  1995-1998 3Dfx Interactive, Inc. 51
Proprietary and Confidential Printed 08/05/98 10:30 AM

The f variable in the combining formulas is defined by factor, the second argument to
grColorCombine(). The choices for this scale factor are given in Table 5.2. Note that alpha values from
the texture combine unit (αtexture) or specified by grAlphaCombine() arguments (αlocal and αother) appear
in some of the scale factors.

Glide 3.0 Programming Guide

52 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Table 5.1 Configuring the color combine unit.
The first argument to grColorCombine(), func, specifies the color combine function; its value is chosen from
among the symbols list in the left hand column of the table below. The right hand column gives the combining
function that corresponds to each symbolic name. F is a scale factor and is defined by the factor argument to
grColorCombine(). clocal and cother are specified by the third and fourth arguments. Some of the formulas
specify an alpha value, αα local, that is defined in the grAlphaCombine() function described in the next chapter.

color combine function computed color
GR_COMBINE_FUNCTION_ZERO 0
GR_COMBINE_FUNCTION_LOCAL clocal

GR_COMBINE_FUNCTION_LOCAL_ALPHA αlocal

GR_COMBINE_FUNCTION_SCALE_OTHER
GR_COMBINE_FUNCTION_BLEND_OTHER

f * cother

GR_COMBINE_FUNCTION_SCALE_OTHER_ADD_LOCAL f * cother + clocal

GR_COMBINE_FUNCTION_SCALE_OTHER_ADD_LOCAL_ALPHA f * cother + αlocal

GR_COMBINE_FUNCTION_SCALE_OTHER_MINUS_LOCAL f * (cother – clocal)
GR_COMBINE_FUNCTION_SCALE_OTHER_MINUS_LOCAL_ADD_LOCAL
GR_COMBINE_FUNCTION_BLEND

f * (cother – clocal) + clocal

≡ f * cother + (1 – f) * clocal

GR_COMBINE_FUNCTION_SCALE_OTHER_MINUS_LOCAL_ADD_LOCAL_ALPH
A

f * (cother – clocal) + αlocal

GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL
GR_COMBINE_FUNCTION_BLEND_LOCAL

f * (– clocal) + clocal

≡ (1 – f) * clocal

GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL_ALPHA f * (– clocal) + αlocal

Table 5.2 The color combine function scale factor.
The second argument to grColorCombine(), factor, specifies a scale factor, called f in the formulas delineated
in Table 5.1; its value is chosen from among the symbols listed in the left hand column of the table below. The
right hand column gives the scale factor that corresponds to each symbolic name. Clocal is specified by the
third argument to grColorCombine(), αα local and ααother are defined in the grAlphaCombine() function
described in the next chapter, and αα texture comes from the texture combine unit, described in Chapter 9.

combine factor scale factor (f)
GR_COMBINE_FACTOR_NONE unspecified
GR_COMBINE_FACTOR_ZERO 0
GR_COMBINE_FACTOR_LOCAL clocal / 255
GR_COMBINE_FACTOR_OTHER_ALPHA αother / 255
GR_COMBINE_FACTOR_LOCAL_ALPHA αlocal / 255
GR_COMBINE_FACTOR_TEXTURE_ALPHA αtexture / 255
GR_COMBINE_FACTOR_ONE 1
GR_COMBINE_FACTOR_ONE_MINUS_LOCAL 1 – clocal / 255
GR_COMBINE_FACTOR_ONE_MINUS_OTHER_ALPHA 1 – αother / 255
GR_COMBINE_FACTOR_ONE_MINUS_LOCAL_ALPHA 1 – αlocal / 255
GR_COMBINE_FACTOR_ONE_MINUS_TEXTURE_ALPHA 1 – αtexture / 255

5. . Color and Lighting

Copyright  1995-1998 3Dfx Interactive, Inc. 53
Proprietary and Confidential Printed 08/05/98 10:30 AM

The third and fourth arguments to grColorCombine() set values for the clocal and cother variables that
appear in the combining functions; the choices are shown in Table 5.3. Iterated colors are computed by
iterating the colors specified in the vertices passed to drawing functions. The texture color comes from
the texture combine unit (see Chapter 9), and the constant color is set by grConstantColorValue()
(described earlier in this chapter).

The func formula computes the red, green, and blue color components. The result of the computation is
clamped to [0..255] and may be bit-wise inverted, based on the final argument to grColorCombine(),
invert. Inverting the bits in a color component c is the same as computing (1.0 – c) for floating point
values in the range [0..1] or (255 – c) for 8-bit values in the range [0..255].

Table 5.3 Choosing local and other colors for the color combine unit.
The third and fourth arguments to grColorCombine(), local and other, specify the sources for the clocal and
cother values that appear in the color combine formulas delineated in Table 5.1; their values are chosen from
among the symbols in the tables below. Iterated colors are computed by iterating the colors specified in the
vertices passed to drawing functions. The texture color comes from the texture combine unit, and the constant
color is set by grConstantColorValue().

local combine source local color (clocal)
GR_COMBINE_LOCAL_NONE unspecified color
GR_COMBINE_LOCAL_ITERATED iterated vertex color (Gouraud shading)
GR_COMBINE_LOCAL_CONSTANT constant color

other combine source other color (cother)
GR_COMBINE_OTHER_NONE unspecified color
GR_COMBINE_OTHER_ITERATED iterated vertex color (Gouraud shading)
GR_COMBINE_OTHER_TEXTURE color from texture map
GR_COMBINE_OTHER_CONSTANT constant color

The color combine unit computes the source color for the remainder of the rendering pipeline. The
default color combine mode is

grColorCombine(GR_COMBINE_FUNCTION_SCALE_OTHER,
GR_COMBINE_FACTOR_ONE,
GR_COMBINE_LOCAL_ITERATED,
GR_COMBINE_OTHER_ITERATED

FXFALSE);

A series of examples follows.

Glide 3.0 Programming Guide

54 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Example 5.1 Drawing a constant color triangle.
The code segment below draws a teal colored triangle by setting the constant color and directing the color
combine unit to use it as cother. The code assumes that the vertex layout has already been established.

myVertex a, b, c;

/* set color to teal (assumes ARGB format) */
grConstantColorValue((100<<8) + 150);

/* configure color combine unit for constant color */
grColorCombine(GR_COMBINE_FUNCTION_SCALE_OTHER, GR_COMBINE_FACTOR_ONE,

GR_COMBINE_LOCAL_NONE, GR_COMBINE_OTHER_CONSTANT, FXFALSE);

/* assumes that some coordinates have been assigned to a, b, and c */
grDrawTriangle(&a, &b, &c);

The code segment below will produce the same result as the one above, but it points clocal to the constant color.

myVertex a, b, c;

/* set color to teal (assumes ARGB format) */
grConstantColorValue((100<<8) + 150);

/* configure color combine unit for constant color */
grColorCombine(GR_COMBINE_FUNCTION_LOCAL, GR_COMBINE_FACTOR_NONE,

GR_COMBINE_LOCAL_CONSTANT, GR_COMBINE_OTHER_NONE, FXFALSE);

/* assumes that some coordinates have been assigned to a, b, and c */
grDrawTriangle(&a, &b, &c);

Example 5.2 Drawing a flat-shaded triangle.
The code segment below draws a flat-shaded triangle using the color for vertex A. It sets the constant color to
the vertex color and proceeds as in the previous example. The code assumes that the vertex layout has already
been established.

myVertex A, B, C;

/* set constant color to color of vertex A (assumes ARGB format) */
grConstantColorValue((((int)A.a)<<24)||(((int)A.r)<<16)||(((int)A.g)<<8)||(int)
A.b);

/* configure color combine unit for constant color */
grColorCombine(GR_COMBINE_FUNCTION_LOCAL, GR_COMBINE_FACTOR_NONE,

GR_COMBINE_LOCAL_CONSTANT, GR_COMBINE_OTHER_NONE, FXFALSE);

/* assumes that some coordinates have been assigned to a, b, and c */
grDrawTriangle(&A, &B, &C);

Alternatively, you could set the colors of all three vertices to the colors in Vertex A and proceed as in the next
example.

myVertex A, B, C;

/* set all vertices to same color */
B.a = C.a = A.a;
B.r = C.r = A.r;
B.g = C.g = A.g;
B.b = C.b = A.b;

/* configure color combine unit for iterated colors */
grColorCombine(GR_COMBINE_FUNCTION_LOCAL, GR_COMBINE_FACTOR_NONE,

GR_COMBINE_LOCAL_ITERATED, GR_COMBINE_OTHER_NONE, FXFALSE);

/* assumes that some coordinates have been assigned to a, b, and c */
grDrawTriangle(&A, &B, &C);

5. . Color and Lighting

Copyright  1995-1998 3Dfx Interactive, Inc. 55
Proprietary and Confidential Printed 08/05/98 10:30 AM

Example 5.3 Drawing a smooth-shaded triangle.
In this example, a Gouraud-shaded triangle is drawn, with the color blending smoothly from vertex to vertex.
The hardware automatically iterates the colors to achieve the smooth shading. The color combine unit is
configured with clocal set to the iterated color components. The code assumes that the vertex layout has already
been established.

myVertex a, b, c;

/* configure color combine unit for iterated color */
grColorCombine(GR_COMBINE_FUNCTION_LOCAL, GR_COMBINE_FACTOR_NONE,

GR_COMBINE_LOCAL_ITERATED, GR_COMBINE_OTHER_NONE, FXFALSE);

/* assumes that some coordinates have been assigned to a, b, and c */
grDrawTriangle(&a, &b, &c);

Alternatively, cother can be directed at the iterated color components.

myVertex a, b, c;

/* configure color combine unit for iterated color */
grColorCombine(GR_COMBINE_FUNCTION_SCALE_OTHER, GR_COMBINE_FACTOR_ONE,

GR_COMBINE_LOCAL_NONE, GR_COMBINE_OTHER_ITERATED, FXFALSE);

/* assumes that some coordinates have been assigned to a, b, and c */
grDrawTriangle(&a, &b, &c);

Example 5.4 Drawing a flat-shaded textured triangle.
The following code produces a textured flat-shaded triangle using the constant color. The code assumes that
the vertex layout has already been established.

myVertex a, b, c;

/* set color to teal (assumes ARGB format) */
grConstantColorValue((100<<8) + 150);

/* configure color combine unit for iterated color */
grColorCombine(GR_COMBINE_FUNCTION_SCALE_OTHER, GR_COMBINE_FACTOR_LOCAL,

GR_COMBINE_LOCAL_CONSTANT, GR_COMBINE_OTHER_TEXTURE, FXFALSE);

/* assumes that some coordinates have been assigned to a, b, and c */
grDrawTriangle(&a, &b, &c);

Example 5.5 Drawing a smooth-shaded textured triangle.
This example configures the color combine unit for a smoothly shaded textured triangle by directing clocal to
the iterated color and cother to the output from the texture combine unit. The code assumes that the vertex
layout has already been established.

myVertex a, b, c;

/* configure color combine unit for iterated color */
grColorCombine(GR_COMBINE_FUNCTION_SCALE_OTHER, GR_COMBINE_FACTOR_LOCAL,

GR_COMBINE_LOCAL_ITERATED, GR_COMBINE_OTHER_TEXTURE, FXFALSE);

/* assumes that some coordinates have been assigned to a, b, and c */
grDrawTriangle(&a, &b, &c);

Glide 3.0 Programming Guide

56 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Example 5.6 Drawing a smooth-shaded triangle with specular lighting.
This example produces a textured triangle with specular lighting provided by iterating the RGB color. The
code assumes that the vertex layout has already been established.

myVertex a, b, c;

/* configure color combine unit for iterated color */
grColorCombine(GR_COMBINE_FUNCTION_SCALE_OTHER_ADD_LOCAL,
GR_COMBINE_FACTOR_ONE, GR_COMBINE_LOCAL_ITERATED, GR_COMBINE_OTHER_TEXTURE,
FXFALSE);

/* assumes that some coordinates have been assigned to a, b, and c */
grDrawTriangle(&a, &b, &c);

Example 5.7 Drawing a smooth-shaded textured triangle with specular highlights.
By using the alpha component to model monochrome specular highlights, you can produce shiny, textured,
smooth-shaded triangles ((texture RGB * iterated RGB) + iterated α). The code assumes that the vertex layout
has already been established.

myVertex a, b, c;

/* configure color combine unit for iterated color */
grColorCombine(GR_COMBINE_FUNCTION_SCALE_OTHER_ADD_LOCAL_ALPHA,

GR_COMBINE_FACTOR_LOCAL, GR_COMBINE_LOCAL_ITERATED,
GR_COMBINE_OTHER_TEXTURE, FXFALSE);

/* assumes that some coordinates have been assigned to a, b, and c */
grDrawTriangle(&a, &b, &c);

Example 5.8 Drawing a smooth-shaded triangle with monochrome diffuse and colored specular lighting.
Alternatively, monochrome diffuse lighting and colored specular lighting can be produced by using the alpha
component to model monochrome diffuse lighting and iterated RGB to model colored specular lighting
((texture RGB * iterated α) + iterated RGB). Iterated alpha is chosen to be either αlocal or αother with a call to
grAlphaCombine() that is not shown here. In the first code segment, iterated alpha is assumed to be available
as αlocal. The code assumes that the vertex layout has already been established.

myVertex a, b, c;

/* configure color combine unit for iterated color */
grColorCombine(GR_COMBINE_FUNCTION_SCALE_OTHER_ADD_LOCAL,

GR_COMBINE_FACTOR_LOCAL_ALPHA, GR_COMBINE_LOCAL_ITERATED,
GR_COMBINE_OTHER_TEXTURE, FXFALSE);

/* assumes that some coordinates have been assigned to a, b, and c */
grDrawTriangle(&a, &b, &c);

Alternatively, iterated alpha can be specified for αother in grAlphaCombine(). In that case the following
grColorCombine() configuration is needed.

myVertex a, b, c;

/* configure color combine unit for iterated color */
grColorCombine(GR_COMBINE_FUNCTION_SCALE_OTHER_ADD_LOCAL,

GR_COMBINE_FACTOR_OTHER_ALPHA, GR_COMBINE_LOCAL_ITERATED,
GR_COMBINE_OTHER_TEXTURE, FXFALSE);

/* assumes that some coordinates have been assigned to a, b, and c */
grDrawTriangle(&a, &b, &c);

5. . Color and Lighting

Copyright  1995-1998 3Dfx Interactive, Inc. 57
Proprietary and Confidential Printed 08/05/98 10:30 AM

Other Color Combine Options

The routine grAlphaControlsITRGBLighting() can be used to specify that if the high order bit of αtexture

is 1, then the constant color set by grConstantColorValue() is used instead of the iterated RGB values.
This is useful if a portion of a texture is to appear to be illuminated from behind the surface, instead of
by an external light source.

void grAlphaControlsITRGBLighting(FxBool enable)

When enabled, the normal color combine controls for local color (clocal) are overridden, and the most
significant bit of texture alpha (αtexture) selects between iterated vertex RGB and the constant color set
by grConstantColorValue(). By default, this alpha controlled lighting mode is disabled. Table 5.4 shows
how clocal is determined.

Table 5.4 Overriding the local color when the high order bit of αα texture is set.
You can get hybrid effect between smooth and flat shading by using grAlphaControlsITRGBLighting() to
enable a technique whereby the high order bit of αtexture is used to switch clocal between iterated RGB and the
constant color. The state table below shows how the clocal value is determined.

when enable is and the high order bit of αtexture is the local color clocal will be
FXTRUE 0 iterated RGB
FXTRUE 1 grConstantColorValue()
FXFALSE 0 set by grColorCombine()
FXFALSE 1 set by grColorCombine()

Some possible uses for this mode are self-lit texels and specular paint. If a texture contains texels that
represent self-luminous areas, such as windows, then multiplicative lighting can be disabled for these
texels as follows. Choose a texture format that contains one bit of alpha and set the alpha for each texel
to 1 if the texel is self-lit. Set the Glide constant color to white and enable alpha-controlled lighting
mode. Finally, set up texture lighting by multiplying the texture color by iterated RGB, where iterated
RGB is the local color in the color combine unit. When a texel’s alpha is 0, the texture color will be
multiplied by the local color, which is iterated RGB. This applies lighting to the texture. When a texel’s
alpha is 1, the texture color will be multiplied by the Glide constant color that was previously set to
white, so no lighting is applied.

If the color combine unit is configured to add iterated RGB to a texture for the purpose of a specular
highlight, then texture alpha can be used as specular paint. In this example, the Glide constant color is
set to black and iterated RGB iterates the specular lighting. Where a texel’s alpha is 0, the texture color
will be added to iterated RGB and specular lighting is applied to the texture. Where a texel’s alpha is 1,
the texture color will be added to the Glide constant color that was previously set to black, so no
lighting is applied. The result is that the alpha channel in the texture controls where specular lighting is
applied to the texture and specularity can be painted onto the texture in the alpha channel.

Gamma Correction
By default, Glide does not perform gamma correction (i.e., a linear ramp is used). However, gamma
correction is available. The guGammaCorrectionRGB() function computes a hardware-dependent
gamma correction table.

Glide 3.0 Programming Guide

58 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

void guGammaCorrectionRGB(FxFloat red, FxFloat green, FxFloat blue)

guGammaCorrectionRGB() computes a gamma correction curve for each color component using the
following formula:

Cgamma = [(Cfb/255)1/gamma]*255

 The red, green, and blue gamma values are positive floating point numbers in the range [0.0..20.0].
Typical values are 1.3 to 2.2. The default value is 1.0 (i.e. a linear ramp is used).

While it is not recommended, an application can cook up its own gamma correction table and download
it to the hardware using grLoadGammaTable().

void grLoadGammaTable(FxU32 nEntries, const FxU32 *red, const FxU32 *green, const FxU32 *blue)

The first argument, nEntries, is the number of elements in each of the three arrays of color values. The
other three arguments are pointers to arrays of red, green, and blue values, respectively, that will be
interpolated to generate an output gamma value.

If nEntries is less than the size of the hardware-dependent gamma table, the first part of the table is
overwritten by the new values; if nEntries is greater than the gamma table size, the excess elements are
discarded. The size of the gamma table may be obtained by calling grGet(GR_GAMMA_TABLE_ENTRIES).
The entries in the gamma table must be monotonically increasing in each color component or the results
are undefined. It is strongly recommended that guGammaCorrectionRGB() be used instead of
grLoadGammaTable().

PORTING
NOTE

guGammaCorrectionRGB() is new to Glide 3.0, replacing
grGammaCorrectionValue().grLoadGammaTable() is also new, and allows an application
to use a customized gamma correction table. However, it is strongly recommended that
guGammaCorrectionRGB() be used instead.

Copyright  1995−1998 3Dfx Interactive, Inc. 59
Proprietary and Confidential Printed 08/05/98 10:30 AM

6. Using the Alpha Component

In This Chapter
Several different rendering techniques using the alpha component of the color are discussed. You will
learn about:

t specifying alpha values.

t configuring the alpha combine unit that produces alpha values for pixels being rendered.

t using the auxiliary buffer to store alpha values.

t alpha blending, a technique for creating translucent objects in a scene.

t alpha testing, a technique for accepting or rejecting pixels based on their alpha value.

Specifying Alpha
Alpha values, like the red, green, and blue components of a color, are 8-bit values in the range [0..255].
Glide maintains a constant alpha value as part of the constant color described in the previous chapter
that is set with grConstantColorValue(). Alpha values, if used, are part of the user-defined vertex layout
defined with calls to grVertexLayout(), as described in Chapters 2 and 4.

The Alpha Combine Unit

TAKE
NOTE

Control of high level rendering functions is managed by three functions, grColorCombine(),
grAlphaCombine() (see Chapter 6), and grTexCombine() (described in Chapter 9). While the
three routines are presented individually, settings for one function can potentially affect the
inputs to the other routines.

The alpha combine unit is similar to the color combine unit that produces RGB values for the pixel
being rendered. A user-selectable combining function specifies a scale factor, and local and other alpha
values, and a formula for combining them to produce a new alpha value. The αlocal and αother inputs
selected by the arguments to grAlphaCombine() can also be used in the scale factor chosen by
grColorCombine(), described in the previous chapter.

void grAlphaCombine(GrCombineFunction_t func,
GrCombineFactor_t factor,
GrCombineLocal_t local,
GrCombineOther_t other,
FxBool invert

Glide 3.0 Programming Guide

60 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

)

Table 6.1 lists the possible values for func, the first argument to grAlphaCombine(). The f that appears
in the formulas in Table 6.1 is a scale factor that is chosen by the second argument, factor. Table 6.2
lists the possible scale factors. αlocal and αother are chosen by the third and fourth arguments, local and
other; the candidates are listed in Table 6.3. As with grColorCombine(), the final argument, invert, is a
Boolean that is set if a bit-wise inversion of the computed alpha value is desired. Inverting the bits in a
color component c is the same as computing (1.0 – c) for floating point color values in the range [0..1]
or (255 – c) for 8-bit color values in the range [0..255].

The default alpha combine unit configuration is

grAlphaCombine(GR_COMBINE_FUNCTION_SCALE_OTHER,
GR_COMBINE_FACTOR_ONE,
GR_COMBINE_LOCAL_NONE,
GR_COMBINE_OTHER_CONSTANT,
FXFALSE
);

Two examples in the previous chapter, Example 5.7 and Example 5.8, use the αlocal or αother value.

Table 6.1 Combining functions for alpha.
The first argument to grAlphaCombine(), func, specifies the alpha combine function; its value is chosen from
among the symbols list in the left hand column of the table below. The right hand column gives the combining
function that corresponds to each symbolic name. f is a scale factor and is defined by the factor argument to
grAlphaCombine(). αα local and ααother are specified by the third and fourth arguments.

combine function computed alpha
GR_COMBINE_FUNCTION_ZERO 0
GR_COMBINE_FUNCTION_LOCAL αlocal
GR_COMBINE_FUNCTION_LOCAL_ALPHA αlocal
GR_COMBINE_FUNCTION_SCALE_OTHER
GR_COMBINE_FUNCTION_BLEND_OTHER

f * αother

GR_COMBINE_FUNCTION_SCALE_OTHER_ADD_LOCAL f * αother + αlocal
GR_COMBINE_FUNCTION_SCALE_OTHER_ADD_LOCAL_ALPHA f * αother + αlocal
GR_COMBINE_FUNCTION_SCALE_OTHER_MINUS_LOCAL f * (αother – αlocal)
GR_COMBINE_FUNCTION_SCALE_OTHER_MINUS_LOCAL_ADD_LOCAL
GR_COMBINE_FUNCTION_BLEND

f * (αother – αlocal) + αlocal

≡ f * αother + (1 – f) *
αlocal

GR_COMBINE_FUNCTION_SCALE_OTHER_MINUS_LOCAL_ADD_LOCAL_ALPH
A

f * (αother – αlocal) + αlocal

GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL
GR_COMBINE_FUNCTION_BLEND_LOCAL

f * (– αlocal) + αlocal

≡ (1 – f) * αlocal
GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL_ALPHA f * (– αlocal) + αlocal

6. Using the Alpha Component

Copyright  1995-1998 3Dfx Interactive, Inc. 61
Proprietary and Confidential Printed 08/05/98 10:30 AM

Table 6.2 Scale factors for the alpha combine function.
The second argument to grAlphaCombine(), factor, specifies a scale factor, called f in the formulas
delineated in Table 6.1; its value is chosen from among the symbols listed in the left hand column of the table
below. The right hand column gives the scale factor that corresponds to each symbolic name. αα local and ααother

are defined by the third and fourth arguments to grAlphaCombine() and αα texture comes from the texture
combine unit, described in Chapter 9.

combine factor scale factor (f)
GR_COMBINE_FACTOR_NONE unspecified
GR_COMBINE_FACTOR_ZERO 0
GR_COMBINE_FACTOR_LOCAL αlocal / 255
GR_COMBINE_FACTOR_OTHER_ALPHA αother / 255
GR_COMBINE_FACTOR_LOCAL_ALPHA αlocal / 255
GR_COMBINE_FACTOR_TEXTURE_ALPHA αtexture / 255
GR_COMBINE_FACTOR_ONE 1
GR_COMBINE_FACTOR_ONE_MINUS_LOCAL 1 – αlocal / 255
GR_COMBINE_FACTOR_ONE_MINUS_OTHER_ALPHA 1 – αother / 255
GR_COMBINE_FACTOR_ONE_MINUS_LOCAL_ALPHA 1 – αlocal / 255
GR_COMBINE_FACTOR_ONE_MINUS_TEXTURE_ALPHA 1 – αtexture / 255

Table 6.3 Specifying local and other alpha values.
The third and fourth arguments to grAlphaCombine(), local and other, specify the sources for the αlocal and
αother values that appear in the alpha combine formulas delineated in Table 6.1 and in the color combine
formulas shown in Table 5.1 and Table 5.2; their values are chosen from among the symbols in the tables
below. Iterated alpha values are computed by iterating the alpha specified in the vertex structures passed to
drawing functions. The texture alpha comes from the texture combine unit, and the constant alpha is set by
grConstantColorValue().

local combine source local alpha (αlocal)
GR_COMBINE_LOCAL_NONE unspecified α
GR_COMBINE_LOCAL_ITERATED iterated vertex α
GR_COMBINE_LOCAL_CONSTANT constant α
GR_COMBINE_LOCAL_DEPTH high 8 bits from iterated vertex z

other combine source other alpha (αother)
GR_COMBINE_OTHER_NONE unspecified α
GR_COMBINE_OTHER_ITERATED iterated vertex α
GR_COMBINE_OTHER_TEXTURE α from texture map
GR_COMBINE_OTHER_CONSTANT constant α

Alpha Buffering
As pixels are rendered, a full 32-bit RGBA color is maintained internally. At the end of the rendering
pipeline, the 24-bit RGB portion is dithered to 16 bits and stored in the display buffer. The alpha value
component is discarded, unless the auxiliary buffer is being used as an alpha buffer.

With alpha buffering enabled, the graphics hardware stores an 8-bit alpha value for each pixel in the
auxiliary buffer. To enable alpha buffering, set the alpha parameter of grColorMask() or blend using a

Glide 3.0 Programming Guide

62 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

function that calls for a destination alpha (see the following section for a discussion of alpha blending).
Since the auxiliary buffer can only serve a single use at a time, depth buffering, alpha buffering, and
triple buffering are mutually exclusive. If depth buffering is currently enabled (by calling
grDepthMask() with argument FXTRUE), the alpha parameter specified in a grColorMask() call is
ignored.

void grColorMask(FxBool rgb, FxBool alpha)

The alpha buffer is cleared by calling grBufferClear(). If alpha buffering is enabled, then the alpha
buffer is cleared using the alpha parameter. The graphics display buffer and alpha buffer can be
cleared simultaneously.

void grBufferClear(GrColor_t color, GrAlpha_t alpha, FxU32 depth)

In the anti-aliasing discussion in Chapter 4, alpha was used as a pixel coverage value for objects being
rendered. Alpha blending is then used to blur the edge color with the background color and reduce
unsightly “jaggies”.

The final example in this chapter, Example 6.3, shows another way to use the alpha buffer. In this
case, a background scene is drawn with one alpha value, a polygonal cropping window is drawn with a
second alpha value, and a foreground is mapped into the cropping window by discarding parts of the
new scene that fall outside the cropping window. The example uses the alpha combine unit, alpha
buffering, and alpha blending.

Alpha Blending
In Chapter 4, routines to draw anti-aliased points, lines, triangles and polygons were presented. They
use alpha blending to smooth the jagged edges.

PORTING
NOTE

Previous versions of Glide contained a set of commands to draw anti-aliased primitives.
Only one of these has been retained in Glide 3: grAADrawTriangle(). It operates
independently of the GR_AA_ORDERED mechanism. A description follows.

Example 4.5 calls grAlphaBlendFunction() to configure alpha blending to accomplish anti-aliasing.

Another use for alpha blending is to create translucent objects in a scene. Without blending, a newly
calculated color value will overwrite any color value already computed for that pixel and stored in the
frame buffer. With blending, the alpha value is used to combine the new color value with the previous
one so that the previous color “shows through”.

Think of the RGB values of a pixel as its color, and the A, or alpha, value as its opacity. Transparent
or translucent objects have lower opacity values than opaque objects. For example, objects seen
through a window are less defined than those viewed directly, but are still visible (unlike objects behind
a solid wall). The window glass has a color and a small alpha value that is used to scale the window
color before adding it to the existing color.

6. Using the Alpha Component

Copyright  1995-1998 3Dfx Interactive, Inc. 63
Proprietary and Confidential Printed 08/05/98 10:30 AM

The graphics hardware supports alpha blending of pixels. When alpha blending is enabled, the alpha
value of a pixel is used to combine the color value of the pixel being processed with that of the pixel
already stored in the frame buffer.

Alpha blending allows an application to control the degree to which the two pixels have their colors
blended, i.e., alpha blending allows translucent surfaces. The alpha component of a pixel represents its
opacity; transparent or translucent surfaces have lower opacity than opaque ones. An alpha value of
0x00 corresponds to absolute transparency and an alpha value of 0xFF corresponds to absolute
opacity.

When using alpha blending for translucency/transparency, a scene must be sorted so that
translucent/transparent surfaces are rendered correctly.

Just as with the color combine and alpha combine functions, the color components can be blended
differently than the alpha component. The blending functions are defined as follows:

cdst ← (csrc ⋅ fsrc) + (cdst ⋅ fdst)

αdst ← (αsrc ⋅ gsrc) + (αdst ⋅ gdst)

where cdst is the RGB color of the destination pixel, csrc is the incoming source pixel RGB, and fsrc and
fdst are the source and destination blending factors for the RGB components. Similarly, αdst is the alpha
value of the destination pixel, αsrc is the incoming alpha value, and gsrc and gdst are the source and
destination blending factors for the alpha component. Note that the current value of the destination
pixel is used to compute the blended value that will overwrite it. The source of incoming alpha and
color are determined by grAlphaCombine() and grColorCombine() respectively. Cdst and αdst are
clamped to the range [0..255].

The manner in which incoming pixels (source) are combined with the existing pixel (destination) is
defined by two blending factors. These factors are controlled by the Glide function
grAlphaBlendFunction().

void grAlphaBlendFunction(GrAlphaBlendFnc_t rgbSrcFactor,
GrAlphaBlendFnc_t rgbDestFactor,
GrAlphaBlendFnc_t alphaSrcFactor,
GrAlphaBlendFnc_t alphaDestFactor

)

The first two arguments specify blending factors for the RGB components while the third and fourth
arguments give the blending factors for the alpha component. The choices for all source and destination
blending factors are shown in Table 6.4.

Alpha blending that requires a destination alpha is mutually exclusive of either depth buffering or triple
buffering. Attempting to use GR_BLEND_DST_ALPHA, GR_BLEND_ONE_MINUS_DST_ALPHA, or
GR_BLEND_ALPHA_SATURATE when depth buffering or triple buffering are enabled will have undefined
results.

Glide 3.0 Programming Guide

64 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Example 6.1 Blending two images, part I.
In this example, two images are blended so that the final color of each pixel is the sum of colors from the two
images.

grAlphaBlendFunction(GR_BLEND_ONE, GR_BLEND_ZERO, GR_BLEND_ONE,
GR_BLEND_ZERO);

/* draw the first image */

grAlphaBlendFunction(GR_BLEND_ONE, GR_BLEND_ONE, GR_BLEND_ONE,
GR_BLEND_ZERO);

/* draw the second image */

Example 6.2 Blending two images, part II.
In this example, two images are blending so that the final color of each pixel is 75% of the first image and
25% of the second. When the second image is drawn, alpha is given a constant value of ¼ by setting the
constant color and pointing the αother in the alpha combine unit to it.

grAlphaBlendFunction(GR_BLEND_ONE, GR_BLEND_ZERO, GR_BLEND_ONE,
GR_BLEND_ZERO);

/* draw the first image */

/* assumes RGBA format for colors */
grConstantColorValue(64);

grAlphaCombine(GR_COMBINE_FUNCTION_BLEND_OTHER, GR_COMBINE_FACTOR_ONE,
GR_COMBINE_LOCAL_NONE, GR_COMBINE_OTHER_CONSTANT, FXFALSE);

grAlphaBlendFunction(GR_BLEND_SRC_ALPHA, GR_BLEND_ONE_MINUS_SRC_ALPHA,
GR_BLEND_ONE, GR_BLEND_ZERO);

/* draw the second image */

6. Using the Alpha Component

Copyright  1995-1998 3Dfx Interactive, Inc. 65
Proprietary and Confidential Printed 08/05/98 10:30 AM

Table 6.4 Alpha blending factors.
Four blending factors are specified in the grAlphaBlendFunction(). The rgbSrcFactor and alphaSrcFactor
choices are given in the first table. The specified factors are multiplied by the incoming RGBA values from the
color and alpha combine units and added to the product of the destination factors and the alpha values stored
in the alpha buffer. The possible destination factors are shown in the second table.

For alpha source and destination blend function factor parameters, only GR_BLEND_ZERO and
GR_BLEND_ONE are supported.

if rgbSrcFactor or alphaSrcFactor is the source blending factor fsrc or gsrc is
GR_BLEND_ZERO 0
GR_BLEND_ONE 1
GR_BLEND_DST_COLOR cdst/255
GR_BLEND_ONE_MINUS_DST_COLOR 1– cdst/255
GR_BLEND_SRC_ALPHA αsrc/255
GR_BLEND_ONE_MINUS_SRC_ALPHA 1– αsrc/255
GR_BLEND_DST_ALPHA αdst/255
GR_BLEND_ONE_MINUS_DST_ALPHA 1– αdst /255
GR_BLEND_ALPHA_SATURATE min(αsrc/255, 1– αdst/255)

if rgbDestFactor or alphaDestFactor is the destination blending factor fdst or gdst is
GR_BLEND_ZERO 0
GR_BLEND_ONE 1
GR_BLEND_SRC_COLOR csrc/255
GR_BLEND_ONE_MINUS_SRC_COLOR 1– csrc/255
GR_BLEND_SRC_ALPHA αsrc/255
GR_BLEND_ONE_MINUS_SRC_ALPHA 1– αsrc/255
GR_BLEND_DST_ALPHA αdst/255
GR_BLEND_ONE_MINUS_DST_ALPHA 1– αdst/255
GR_BLEND_PREFOG_COLOR csrc before fog is applied. See the Multi-Pass Fog section in

Chapter 8.

Glide 3.0 Programming Guide

66 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Example 6.3 A compositing example.
A background scene is drawn with one alpha value, a polygonal cropping window is drawn with a second
alpha value, and a foreground is mapped into the cropping window by discarding parts of the new scene that
fall outside the cropping window. This example uses the alpha combine unit, alpha buffering, and alpha
blending.

/* enable the alpha buffer */
grColorMask(FXTRUE, FXTRUE);

/* set alpha combine to generate zero alpha */
grAlphaCombine(GR_COMBINE_FUNCTION_ZERO, GR_COMBINE_FACTOR_NONE,

GR_COMBINE_LOCAL_NONE, GR_COMBINE_OTHER_NONE, FXFALSE);

/* draw background scene */

/* clear out the cropping polygon */
grColorCombine(GR_COMBINE_FUNCTION_ZERO, GR_COMBINE_FACTOR_NONE,

GR_COMBINE_LOCAL_NONE, GR_COMBINE_OTHER_NONE, FXFALSE);
grAlphaCombine(GR_COMBINE_FUNCTION_ZERO, GR_COMBINE_FACTOR_NONE,

GR_COMBINE_LOCAL_NONE, GR_COMBINE_OTHER_NONE, FXFALSE);

/* draw cropping window */

/* set alpha blend unit to use destination alpha to select */
/* new pixel or old one */
grAlphaBlendFunction(GR_BLEND_DST_ALPHA, GR_BLEND_ONE_MINUS_DST_ALPHA,

GR_BLEND_ZERO, GR_BLEND_ONE);

/* set color combine and alpha combine back to defaults */
grColorCombine(GR_COMBINE_FUNCTION_SCALE_OTHER, GR_COMBINE_FACTOR_ONE,

GR_COMBINE_LOCAL_ITERATED, GR_COMBINE_OTHER_ITERATED, FXFALSE);
grAlphaCombine(GR_COMBINE_FUNCTION_ SCALE_OTHER, GR_COMBINE_FACTOR_ONE,

GR_COMBINE_LOCAL_NONE, GR_COMBINE_OTHER_CONSTANT, FXFALSE);

/*draw the foreground scene */

Copyright  1995−1998 3Dfx Interactive, Inc. 67
Proprietary and Confidential Printed 08/05/98 10:30 AM

7. Depth Buffering

In This Chapter
One potential use of the auxiliary buffer is as a 16-bit depth buffer. Each pixel may have an associated
z or q value and either one may be used to represent the distance between the pixel and the viewer. A
user-selectable depth test determines when an incoming pixel replaces one previously stored in the
frame buffer. One common use for a depth buffer is pixel-accurate hidden surface removal, allowing
nearer surfaces to obscure surfaces further away regardless of the order they are drawn in.

You will learn how to:

t enable depth buffering.

t specify a depth test.

t implement a fixed point z buffer.

t implement a floating point w buffer.. (It’s really a “q buffer” in Glide 3.0 but history demands that
we stick with the old name.)

t use a depth bias to reduce poke-through artifacts introduced by coplanar polygons.

The type of depth buffering in use is controlled using grDepthBufferMode(). The comparison function
is selected with the function grDepthBufferFunction(). Writes to the depth buffer are controlled by
grDepthMask(). Since the auxiliary buffer can serve only a single use, depth buffering, alpha buffering,
and triple buffering are mutually exclusive.

Enabling Depth Buffering
The Glide function grDepthBufferMode() enables and disables depth buffering.

void grDepthBufferMode(GrDepthBufferMode_t mode)

The mode argument specifies the type of depth buffering to be performed. Valid modes are
GR_DEPTHBUFFER_DISABLE, GR_DEPTHBUFFER_ZBUFFER, GR_DEPTHBUFFER_WBUFFER,
GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO_BIAS, or GR_DEPTHBUFFER_WBUFFER_COMPARE_TO_BIAS.
If GR_DEPTHBUFFER_ZBUFFER or GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO_BIAS is selected, the depth
buffer is a 16-bit fixed point z buffer. A 16-bit floating point w buffer is used if mode is
GR_DEPTHBUFFER_WBUFFER or GR_DEPTHBUFFER_WBUFFER_COMPARE_TO_BIAS. By default, the depth
buffer mode is GR_DEPTHBUFFER_DISABLE.

Since alpha, depth, and triple buffering are mutually exclusive of each other, enabling depth buffering
when using either the alpha or triple buffer will have undefined results.

If GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO_BIAS or GR_DEPTHBUFFER_WBUFFER_COMPARE_TO_BIAS
is selected, then the bias specified with grDepthBiasLevel() is used as a pixel’s depth value for
comparison purposes only. Depth buffer values are compared against the depth bias level, and if the

Glide 3.0 Programming Guide

68 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

compare passes and the depth buffer mask is enabled, the pixel’s unbiased depth value is written to the
depth buffer. This mode is useful for clearing beneath cockpits and other types of overlays without
affecting either the color or depth values for the cockpit or overlay.

Consider the following example: the depth buffer is cleared to 0xFFFF and a cockpit is drawn with a
depth value of zero. Next, the scene beneath the cockpit is drawn with depth buffer compare function of
GR_CMP_LESS, rendering pixels only where the cockpit is not drawn. To render the next frame, you
need to clear the last scene. If you use grBufferClear(), you will remove everything, including the
cockpit. To clear the color and depth buffers underneath the cockpit without disturbing the cockpit, the
area to be cleared is rendered using triangles with the depth bias level set to zero, a depth buffer
compare function of GR_CMP_NOTEQUAL, and a depth buffer mode of
GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO_BIAS or GR_DEPTHBUFFER_WBUFFER_COMPARE_TO_BIAS.
All pixels with non-zero depth buffer values will be rendered and the depth buffer will be set to either
unbiased z or q, depending on the mode. Using this method, the color and depth buffers can be cleared
to any desired value beneath a cockpit or overlay without affecting the cockpit or overlay. Sorted
background polygons that cover the visible area can be rendered in this manner, eliminating the need to
clear the whole buffer and then redraw the overlay for each frame. Once the depth buffer is cleared
beneath the cockpit, the depth buffer mode is returned to either GR_DEPTHBUFFER_ZBUFFER or
GR_DEPTHBUFFER_WBUFFER by calling grDepthBufferMode() and the depth comparison function is
returned to its normal setting (GR_CMP_LESS in this example) by calling grDepthBufferFunction().

Note that since this mode of clearing is performed using triangle rendering, the fill rate is about one
half that of a rectangular clear using grBufferClear(). In the case where sorted background polygons
are used to clear beneath the cockpit, this method should always be faster than the alternative of calling
grBufferClear() and then drawing the background polygons. In the case where background polygons
are not used, the two methods:

• clearing the buffers with grBufferClear() and then repainting the cockpit, or
• clearing beneath the cockpit with triangles and not repainting the cockpit

should be compared and the faster method chosen. Avoiding a cockpit repaint is important: cockpits are
typically rendered with linear frame buffer writes and while the writes are individually fast, the process
can be lengthy if the cockpit covers many pixels.

GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO_BIAS and GR_DEPTHBUFFER_WBUFFER_COMPARE_TO_BIAS
modes are not available in revision 1 of the Pixelfx chip (use grGet() to obtain the revision number).

When depth buffering is enabled, the grDepthMask() routine enables writes to the depth buffer.

void grDepthMask(FxBool enable)

If enable is FXFALSE, depth buffer writing is disabled. Otherwise, it is enabled. Initially, writing to the
depth buffer is disabled. Since the alpha, depth, and triple buffers share the same memory,
grDepthMask() should be called only if depth buffering is being used.

The depth buffer can be cleared to a specific value with grBufferClear(), as described in Chapter 3.
The depth buffer is typically cleared to a value that is further away from the viewpoint than any object
in the scene.

The Depth Test
grDepthBufferFunction() specifies the function used to compare each rendered pixel’s depth value with
the depth value present in the depth buffer. The comparison is performed only if depth testing is

7. Depth Buffering

Copyright  1995-1998 3Dfx Interactive, Inc. 69
Proprietary and Confidential Printed 08/05/98 10:30 AM

enabled with grDepthBufferMode(). The choice of depth buffer function is typically dependent upon the
depth buffer mode currently active. The default comparison function is GR_CMP_LESS.

The single argument, func, specifies the depth comparison function. Table 7.1 lists the valid
comparison functions and the conditions under which a pixel will “pass” the test and overwrite the
pixel in the frame buffer and depth buffer.

Table 7.1 The depth test.
The func argument to grDepthBufferFunction() can take on any of the values listed in the first column of the
table below. The second column specifies the depth test, and the third column describes the conditions under
which an incoming pixel will “pass” the test and overwrite the appropriate location in the frame buffer and
depth buffer.

if func is the depth comparison is and the pixel
GR_CMP_NEVER FALSE never passes

GR_CMP_LESS depthnew < depthold passes if the pixel’s depth value is less than the stored
depth value

GR_CMP_EQUAL depthnew = depthold passes if the pixel’s depth value is equal to the stored
depth value

GR_CMP_LEQUAL depthnew ≤ depthold passes if the pixel’s depth value is less than or equal to the
stored depth value

GR_CMP_GREATER depthnew > depthold passes if the pixel’s depth value is greater than the stored
depth value

GR_CMP_NOTEQUAL depthnew ≠ depthold passes if the pixel’s depth value is not equal to the stored
depth value

GR_CMP_GEQUAL depthnew ≥ depthold passes if the pixel’s depth value is greater than or equal to
the stored depth value

GR_CMP_ALWAYS TRUE always passes

Fixed Point z Buffering
When 16-bit linear z buffering is enabled, z values for each pixel are linearly interpolated across a
polygon’s face. Since observer space z values are not linear in screen space, the graphics hardware
must instead interpolate 1/z values, which are linear in screen space. When linear z buffering is
enabled, the graphics hardware interpolates a high precision fixed point 1/z value (provided by the
application), but it stores only the 16-bit integer portion of the 1/z value. This can lead to some
precision problems, and thus an application’s objects and database must be constructed and scaled
carefully to minimize z aliasing. Linear z buffering is enabled by calling grDepthBufferMode() with the
constant GR_DEPTHBUFFER_ZBUFFER.

Glide 3.0 Programming Guide

70 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Example 7.1 Configuring a z buffer.
The following code sequence configures Glide for z buffering:

grDepthBufferMode(GR_DEPTHBUFFER_ZBUFFER);
grDepthBufferFunction(GR_CMPFNC_GREATER); // 1/Z decreases as Z
increases!
grDepthMask(FXTRUE);
grBufferClear(0, 0, 0);

Floating Point w Buffering
The graphics hardware can also derive a depth value from the q/w factor computed for texture mapping
and fog. Such an approach has many advantages over linear z buffering, including much greater
dynamic range and less aliasing and accuracy artifacts. The graphics hardware uses a proprietary 16-
bit floating point format for w buffering, however, an application typically does not need to manipulate
this data directly, except when an application must read data directly from the depth buffer and then
convert this depth value to an application dependent format. Floating point w buffering is enabled by
calling grDepthBufferMode() with the constant GR_DEPTHBUFFER_WBUFFER.

Example 7.2 Configuring a w buffer.
The following code sequence configures Glide for w buffering. The depth buffer is initially cleared to a value
representing the farthest point, so that all objects in the scene are closer to the viewer than empty space is.

FxU8 wLimits[2];

grGet(GR_WDEPTH_MIN_MAX,2,*wLimits);
grDepthBufferMode(GR_DEPTHBUFFER_WBUFFER);
grDepthBufferFunction(GR_CMP_LESS); // larger W values are farther
away
grDepthMask(FXTRUE);
grBufferClear(0, 0, wLimits[1]);

7. Depth Buffering

Copyright  1995-1998 3Dfx Interactive, Inc. 71
Proprietary and Confidential Printed 08/05/98 10:30 AM

Establishing a Depth Bias
When depth buffering coplanar polygons (e.g. when one polygon is used as a “detail” polygon on
another), precision problems with coplanar polygons may result in “poke through” artifacts if the
vertices of the two polygons are not the same. To eliminate the artifacts, an application should apply a
“depth bias” when it renders two coplanar polygons, so that Glide understands which polygon is on top
of the other. grDepthBiasLevel() allows an application to specify a depth bias.

void grDepthBiasLevel(FxU32 level)

Specifically, if two polygons are coplanar but do not share vertices (e.g., a surface detail polygon sits
on top of a larger polygon), the depth bias level should be incremented or decremented as appropriate
for the depth buffer mode and function, per coplanar polygon. For left-handed coordinate systems,
where 0x0000 corresponds to “nearest to viewer” and 0xFFFF corresponds “farthest from viewer”,
depth bias levels should be decremented on successive renderings of coplanar polygons. When the
coplanar polygons have been rendered, the depth bias mode should be reset to 0.

Example 7.3 Using a depth bias.
In this code segment, an underlying triangle is rendered, a depth bias is established, and then another triangle
is rendered on top of the first one.

/* Render the underlying polygon */
grDrawTriangle(/* base polygon’s parameters */);

/* Render the composite polygon by first enabling depth bias */
grDepthBiasLevel(-1);
grDrawTriangle(/* composite polygon’s parameters */);

/* Disable depth bias */
grDepthBiasLevel(0);

An Example: Hidden Surface Removal
When a scene is rendered, some of the objects will undoubtedly obscure other objects. If the viewpoint
never changes, you can sort the polygons on z, and draw the scene from back to front.

But what if the viewpoint can change from one frame to the next? Say it’s tracking a cursor controlled
by a mouse. The computation cost of re-sorting the scene for each frame can be prohibitive, depending
on the complexity of the scene. But a z buffer will solve the problem.

You will still need to transform world coordinates to screen coordinates for each object in the scene, but
the transformed vertices can be drawn in any order, without regard to their distance from the viewpoint.

The code segment in Example 7.4 shows the depth buffer in action.

Glide 3.0 Programming Guide

72 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Example 7.4 Hidden surface removal using a z buffer.
The code segment below leaves out the details of converting a mouse position or movement into a viewpoint
and transforming the world coordinates to new screen coordinates.

/* set up a z buffer and depth test */
grDepthBufferMode(GR_DEPTHBUFFER_ZBUFFER);
grDepthBufferFunction(GR_CMPFNC_GREATER); // 1/Z decreases as Z increases!
grDepthMask(FXTRUE) ;

while (1) {
/* clear the buffers for each frame */
grBufferClear(0, 0, 0);

/* get the new viewpoint and transform the coordinates */
set_viewpoint_from_mouse();
transform_coordinates();

/*draw the objects in the scene */
draw_objects();

/* display the frame */
grBufferSwap(1);

}

Copyright  1995−1998 3Dfx Interactive, Inc. 73
Proprietary and Confidential Printed 08/05/98 10:30 AM

8. Special Effects

In This Chapter
Glide supports several different types of special effects, including fog, chroma-keying, and alpha
testing. Fog simulates atmospheric conditions like fog, mist, smog, or smoke that partially obscure
distant objects. Chroma-keying can be used to create a blue screen effect, removing all pixels that are a
specific color. Alpha masking uses the low order bit of the incoming alpha value to invalidate pixels.

You will learn how to:

t produce fog using the alpha iterator.

t create a fog table and use it to create atmospheric effects.

t configure the fog and alpha blending units for multi-pass fogging.

t use chroma-keying to simulate a blue screen.

t use alpha testing to simulate a blue screen.

Fog
Fog is a rendering technique that adds realism to computer-generated scenes by making distant objects
appear to fade away. Fog is a general term representing all atmospheric effects: haze, mist, smoke,
smog. It is essential in visual simulations like flight simulators to produce the effect of limited visibility.
When fogging is enabled, distant objects fade into the fog color. Both the fog color and the fog density
(the rate at which objects fade as a function of their distance from the viewer) are programmable.

Glide and the graphics hardware support per-pixel fog blending operations. The fog unit is separate
from the alpha blending unit, so both fog and transparency may be applied simultaneously. Fog is
applied after texturing and lighting, and it may improve performance in large simulations: some objects
may be lost in the fog and can be culled before rendering.

Fog is applied after color combining and before alpha blending, as shown in the pixel pipeline flow
diagram in Figure 1.2.

The fog operation blends the fog color (cfog) with each rasterized pixel’s post-texturing color (cin) using
a blending factor f. Factor f is retrieved from a user downloaded fog table indexed with the pixel’s q for
fog component, depending on grFogMode(). The fog operation blends a global (cfog) with each
rasterized pixel’s color (cin) using a blending factor f. A value of f=0 indicates minimum fog density
and a value of f=255 indicates maximum fog density.

The general fog equation is shown below.

cout = f cfog + (1−f)cin

The fog mode, set with grFogMode(), shapes the fog equation to the situation, as shown in Table 8.1.

void grFogMode(GrFogMode_t mode)

Glide 3.0 Programming Guide

74 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

The mode argument can be one of five values: GR_FOG_DISABLE, GR_FOG_WITH_TABLE_ON_Q,
GR_FOG_ADD2, GR_FOG_MULT2, or, if supported, GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT. The
GR_FOG_ADD2 and GR_FOG_MULT2 modes facilitate multi-pass fogging applications and are used in
conjunction with GR_FOG_WITH_TABLE_ON_Q or GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT.

Table 8.1 The fog mode shapes the fog equation.
The general form of the fog equation is cout = f cfog + (1−f)cin. The mode argument to grFogMode() tailors the
general equation for a specific situation, as shown below. The first three modes are mutually exclusive: choose
one. Modes GR_FOG_ADD2 and GR_FOG_MULT2 are used in tandem with either GR_FOG_WITH_TABLE_ON_Q
or GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT.

if mode sets the fog equation is
where cin is the color entering the
fog unit, cout is the result of fogging,
cfog is the fog color and

GR_FOG_DISABLE cout = cin
GR_FOG_WITH_TABLE_ON_Q cout = ffog[q] • cfog +

(1− ffog[q]) • cin

ffog[w] is computed by interpolating
between entries in a fog table
indexed with q.

GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT cout = ffog[v.fog] • cfog +
(1− ffog[v.fog]) • cin

ffog[v.fog] is computed by interpolating
between entries in a fog table
indexed with v.fog, the
GR_PARAM_FOG_EXT parameter to
grVertexLayout(). This mode is valid
only when the FOGCOORD
extension is supported. See
grGetString() in Chapter 13.

GR_FOG_MULT2 cout = f cfog f is computed from a fog table.
GR_FOG_ADD2 cout = (1−f)cin f is computed from a fog table.

The fogging factor f is determined by mode. If mode is GR_FOG_WITH_TABLE_ON_Q, then f is computed
by interpolating between fog table entries, where the fog table is indexed with a floating point
representation of the pixel’s q component. If mode is GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT, then
the fog table is indexed with a special vertex parameter, GR_PARAM_FOG_EXT. Fog is applied after color
combining and before alpha blending.

The global fog color (cfog) is set by calling grFogColorValue(). The argument, value, is an RGBA color
and is specified in the format defined in the cFormat parameter to grSstWinOpen() (see Chapter 3).

void grFogColorValue(GrColor_t value)

Fogging With A Fog Table

The application may supply a fog table to the hardware via the function grFogTable(). To enable table-
based fogging, the fog mode must be set to GR_FOG_WITH_TABLE_ON_Q. The number of entries in the
fog table depends on the hardware and can be retrieved with grGet(GR_FOG_TABLE_ENTRIES,…). The
entries are density values of type GrFog_t, an unsigned 8-bit quantity. A value of 0 indicates minimum

8. Special Effects

Copyright  1995-1998 3Dfx Interactive, Inc. 75
Proprietary and Confidential Printed 08/05/98 10:30 AM

density, and 255 indicates maximum density. This density determines the amount of blending that
occurs between the incoming pixel and the global fog color, set by grFogColorValue(). The order of the
entries within the table corresponds roughly to their distance from the viewer. Entries within the table
are calculated as a function of world q where world q ≅ 2i/4 , where i is the index into the fog table. To
minimize “fog banding”, the graphics hardware linearly blends between adjacent fog levels within the
fog table. The difference between consecutive fog values must be less than 64.

void grFogTable(const GrFog_t table[])

grFogTable() downloads a new table of 8-bit values that are logically viewed as fog opacity values
corresponding to various depths. The table entries control the amount of blending between the fog color
and the pixel’s color. A value of 0x00 indicates no fog blending and a value of 0xFF indicates complete
fog.

The fog operation blends the fog color (cfog) with each rasterized pixel’s color (cin) using a blending
factor f. When grFogMode() is set to GR_FOG_WITH_TABLE_ON_Q, then the factor f is computed by
interpolating between fog table entries, where the fog table is indexed with a floating point
representation of the pixel’s q component.

cout = ffog[q] • cfog + (1− ffog[q]) • cin

The order of the entries within the fog table corresponds roughly to their distance from the viewer. The
exact fog coordinate or q value corresponding to fog table entry i can be found by calling
guFogTableIndexToW() with argument i.

guFogTableIndexToW(int i)

guFogTableIndexToW() returns the floating point fog coordinate value associated with entry i in a fog
table. Because fog table entries are non-linear, it is not straight forward to initialize a fog table.
guFogTableIndexToW() assists by converting fog table indices to eye-space w, and returns the
following:

pow(2.0, 3.0+(double)(i>>2)) / (8-(i&3))

An exponential fog table can be generated by computing (1–e–kw)•255 where k is the fog density and w
is world distance. It is usually best to normalize the fog table so that the last entry is 255.

Glide 3.0 Programming Guide

76 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Example 8.1 Creating a fog table.
The code fragment below creates storage for a fog table. Then, two different techniques for filling in the
entries are explored.

int nFog;
GrFog_t *fog;

grGet(GR_FOG_TABLE_ENTRIES, 4, &nFog);
fog = (GrFog_t) malloc(nFog * sizeof(GrFog_t));

The first code segment shows a linear fog table that has a steep ramp at the beginning and end, with slow
growing values in the middle.

int i;

fog [0] = 0;
for (i=1; i<12; i++) fog[i]= fog[i-1]+ 12;
for (i=12; i<56; i++) fog[i]= fog[i-1] + 1;
for (i=56; i< nFog-1; i++) fog[i]= fog[i-1] + 7;
fog[nFog-1] = 255;

The second table is an exponential fog table. It computes q from i using guFogTableIndexToW() and then
computes the fog table entries as fog[i]=(1–e-kw)•255 where k is a user-defined constant, FOG_DENSITY.

#define FOG_DENSITY .5
int i;

for (i=0; i<nFog; i++) {
fog[i] = (1 - exp((- FOG_DENSITY) * guFogTableIndexToW(i))) * 255;

}
fog[nFog-1] = 255;

Example 8.2 Fogging with q and a fog table.
The code segment below assumes that a fog table has been defined. It is loaded using grFogTable(), a fog
color is defined, and the appropriate fog mode set. All that remains is to draw the scene.

GrFog_t fog[];
int i;

/* load the fog table */
grFogTable(fog);

/* set a fog color - how about smoke? */
grFogColorValue(0);

/* set mode to fog table */
grFogMode(GR_FOG_WITH_TABLE_ON_Q);

/* draw the scene */

PORTING
NOTE

In previous versions of Glide, a fog table has a constant number of entries, namely
GR_FOG_TABLE_SIZE. The number of entries has become a run-time constant in
Glide 3.0 and is retrieved by calling grGet(GR_FOG_TABLE_ENTRIES,…). Check your
code for hardcoded numbers like “64” in loops and so forth.

8. Special Effects

Copyright  1995-1998 3Dfx Interactive, Inc. 77
Proprietary and Confidential Printed 08/05/98 10:30 AM

Generating a Fog Table Automatically

The Glide Utilities Library includes three routines that generate fog tables with different
characteristics.

void guFogGenerateExp(GrFog_t fogTable[], float density)

guFogGenerateExp() generates an exponential fog table according to the equation:

e–density•w

where w is the eye-space q coordinate associated with the fog table entry. The resulting fog table is
copied into fogTable. The fog table is normalized (scaled) such that the last entry is maximum fog
(255).

void guFogGenerateExp2(GrFog_t fogTable[], float density)

guFogGenerateExp2() generates an exponentially squared fog table according to the equation:

e–(density•w) (density•w)

where w is the eye-space q coordinate associated with the fog table entry. The resulting fog table is
copied into fogTable. The fog table is normalized (scaled) such that the last entry is maximum fog
(255).

void guFogGenerateLinear(GrFog_t fogTable[], float near, float far)

guFogGenerateLinear() generates a linear (in eye-space) fog table according to the equation

(w – near)/(far – near)

where w is the eye-space w coordinate associated with the fog table entry. The resulting fog table is
copied into fogTable. The fog table is clamped so that all values are between minimum fog (0) and
maximum fog (255). Note that guFogGenerateLinear() fog is linear in eye-space wq, not in screen-
space.

Multi-Pass Fog
Special actions must be taken when applying fog to pixels generated with multi-pass techniques. Recall
from Figure 1.2 that the fog unit is sandwiched between the color combine unit and the alpha blending
unit in the pixel pipeline. This ordering facilitates anti-aliasing but may result in repeated fogging of
intermediate values in multi-pass alpha blending applications. Special modes for the fog unit and a
special alpha blending function have been provided to identify and handle this situation.

The GR_FOG_ADD2 and GR_FOG_MULT2 modes, passed as arguments to grFogMode(), suppress the first
and second terms, respectively, of the fog equation. In GR_FOG_ADD2 mode, the first term of the fog
equation is suppressed, resulting in a fog equation shown below:

cout = (1−f)cin

and no fog is applied. In GR_FOG_MULT2 mode, the second term is suppressed, making the fog equation
effectively:

cout = f cfog

leaving only the scaled fog color.

Glide 3.0 Programming Guide

78 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

In the grAlphaBlendFunction() routine, presented in Chapter 6, the GR_BLEND_PREFOG_COLOR factor
selects the pre-fogged value of the pixel as the destination RGBA blending factor.

The following sections present recipes for correctly applying fog to common multi-pass rendering
applications. The generalized fog and blending equations are tailored to the specific situations and are
the starting point for the derivations presented in the text. In case you’ve forgotten, the general fog
equation is

Fog(cin) = fcfog + (1−f)cin

where cin is the pre-fogged color, and the blending equation is

cdst = fsrc • Fog(cin) + fdst • cdst

where cdst is the value stored in the frame buffer and fsrc and fdst are the source and destination blending
factors.

Table 8.2 summarizes the required fog mode and blending factor settings for the multi-pass fog
scenarios presented here. Detailed discussion follows.

Table 8.2 Configuring the fog and alpha blending units for multi-pass fog generation.
The table below describes the proper settings for the fog mode and source and destination alpha blending
factors for three different multi-pass fogging applications. If the fog mode is specified as mode, either
GR_FOG_WITH_TABLE_ON_Q or GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT, if supported, may be used.

pass
grFogMode() and
grAlphaBlendFunction()
parameters

simple two pass blending
α•Fog(c1) + (1−α)•Fog(c2)

additive blending
Fog(Σci)

modulated blending
Fog(Πci)

1 mode mode mode (mode | GR_FOG_ADD2)
rgbSrcFactor GR_BLEND_ONE GR_BLEND_ONE GR_BLEND_ONE

rgbDstFactor GR_BLEND_ZERO GR_BLEND_ZERO GR_BLEND_ZERO

2 mode (mode | GR_FOG_ADD2) GR_FOG_DISABLE

thru rgbSrcFactor n/a GR_BLEND_ONE GR_BLEND_DST_COLOR

n−1 rgbDstFactor GR_BLEND_ONE GR_BLEND_ZERO

n mode mode (mode | GR_FOG_ADD2) (mode | GR_FOG_MULT2)
rgbSrcFactor GR_BLEND_SRC_ALPHA GR_BLEND_ONE GR_BLEND_ONE

rgbDstFactor GR_BLEND_ONE_MINUS_SRC_ALPHA GR_BLEND_ONE GR_BLEND_PREFOG_COLOR

Simple Blends

Simple two-pass blending using α and 1−α can be used to produce translucent fog and requires no
special actions. The goal here is to produce

cdst = α•Fog(c2) + (1−α)•Fog(c1)

where ci is the color entering the fog unit from the color combine unit on pass i, Fog(ci) is the color
output by the fog unit on pass i, and cdst is the color that is stored in the frame buffer. The first pass
will generate and store Fog(c1). The second pass will generate Fog(c2) and blend it with the result of
the first pass.

8. Special Effects

Copyright  1995-1998 3Dfx Interactive, Inc. 79
Proprietary and Confidential Printed 08/05/98 10:30 AM

For the first pass, set the fog mode to GR_FOG_WITH_TABLE_ON_Q and the source and destination
factors for alpha blending to GR_BLEND_ONE and GR_BLEND_ZERO, respectively, as shown in Table 8.2
and demonstrated in Example 8.3. After pass one is complete,

cdst = 1•Fog(c1) + 0•cdst

= Fog(c1)

For the second pass, specify the source and destination factors for alpha blending as
GR_BLEND_SRC_ALPHA and GR_BLEND_ONE_MINUS_SRC_ALPHA, respectively. Thus,

cdst = α•cin + (1−α)•cdst

= α•Fog(c2) + (1−α)•Fog(c1)

Note that there is nothing special about using GR_BLEND_SRC_ALPHA and
GR_BLEND_ONE_MINUS_SRC_ALPHA as the blending factors. Any of the blending factors listed in Table
6.4 can be used.

Example 8.3 Simple two-pass blending.
The code segment below assumes that a fog table has been defined. It loads the table, then sets a fog color.
For the first pass, the fog mode is set to use the fog table and the alpha blending function to write fogged
colors into the frame buffer. For the second pass, the fog mode and color remain the same, but the blending
factors change blending the newly-generated fogged colors with the previous ones.

const GrFog_t fog[];
int i;

/* load the fog table */
grFogTable(fog);

/* set a fog color - how about smoke? */
grFogColorValue(0);

/* set mode to fog table */
grFogMode(GR_FOG_WITH_TABLE_ON_Q);
grAlphaBlendFunction(GR_BLEND_ONE, GR_BLEND_ZERO, GR_BLEND_ONE,
GR_BLEND_ZERO);

/* draw the first pass */
…

/* reconfigure alpha blending for the second pass */
grAlphaBlendFunction(GR_BLEND_SRC_ALPHA, GR_BLEND_ONE_MINUS_SRC_ALPHA,

GR_BLEND_ONE, GR_BLEND_ZERO);

/* draw the second pass */
…

Additive Multi-Pass Fog

The additive case assumes that the results of each pass are being added together, and we wish to fog the
final result:

cdst = Fog(Σci) where ci is the color entering the fog unit in pass i

Glide 3.0 Programming Guide

80 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Here is the procedure for the two-pass case. This can be generalized to multiple passes by induction.
We wish to obtain:

cdst = Fog(c1 + c2) = fcfog + (1−f)(c1 + c2)

For the first pass, choose either GR_FOG_WITH_TABLE_ON_Q or
GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT (if supported) as the fog mode and set the source and
destination alpha blending factors to GR_BLEND_ONE and GR_BLEND_ZERO, respectively. After the first
pass,

cdst = 1•Fog(c1) + 0•cdst

= Fog(c1)

= fcfog + (1−f)c1

For the second pass, add GR_FOG_ADD2 to the fog mode, causing the blended fog term to be suppressed
(if you forget to do this, the cfog term will occur twice). Set the source and destination alpha blending
factors to GR_BLEND_ONE and GR_BLEND_ONE, respectively. Thus,

Fog(c2) = (1−f)c2

cdst = 1•cin + 1•cdst

= (1−f)c2 + (fcfog + (1−f)c1)

= fcfog + (1−f)(c1 + c2)

Example 8.4 Two-pass additive fogging.
The code segment below assumes that a fog table has been defined.

const GrFog_t fog[];
int i;

/* load the fog table */
grFogTable(fog);

/* set a fog color - how about smoke? */
grFogColorValue(0);

/* set mode to fog table */
grFogMode(GR_FOG_WITH_TABLE_ON_Q);
grAlphaBlendFunction(GR_BLEND_ONE, GR_BLEND_ZERO, GR_BLEND_ONE,
GR_BLEND_ZERO);

/* draw the first pass */
…

/* set mode to fog table */
grFogMode(GR_FOG_WITH_TABLE_ON_Q | GR_FOG_ADD2);
grAlphaBlendFunction(GR_BLEND_ONE, GR_BLEND_ONE, GR_BLEND_ONE,
GR_BLEND_ZERO);

/* draw the second pass */
…

8. Special Effects

Copyright  1995-1998 3Dfx Interactive, Inc. 81
Proprietary and Confidential Printed 08/05/98 10:30 AM

Modulation Multi-Pass Fog

The modulation case assumes that the results of each pass are being multiplied together, and we wish to
fog the final result:

cdst = Fog(Πci) where ci is the color entering the fog unit in pass i

This case occurs most commonly when applying light maps to a scene, and it is more complex to
implement than the additive case. Here is the procedure for the three-pass case; it can be generalized by
induction. We wish to obtain:

cdst = Fog(c1c2c3) = fcfog + (1−f)(c1c2c3)

For the first pass, choose either GR_FOG_WITH_TABLE_ON_Q or
GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT (if supported) as the fog mode and OR in GR_FOG_ADD2, as
shown in Table 8.2 and demonstrated in Example 8.5. Set the source and destination alpha blending
factors to GR_BLEND_ONE and GR_BLEND_ZERO, respectively. After the first pass,

cdst = 1•Fog(c1) + 0•cdst

= Fog(c1)

= (1−f)c1

For the second pass (and all intermediate passes in the general case), disable fogging
(grFogMode(GR_FOG_DISABLE)) and set the source and destination alpha blending factors to
GR_BLEND_DST_COLOR and GR_BLEND_ZERO, respectively. (Using source and destination factors of
GR_BLEND_ZERO and GR_BLEND_SRC_COLOR, respectively, will work as well.) After the second pass we
have:

cdst = cdst•cin + 0•cdst

= cdst•c2

= (1−f)c1c2

For the final pass, enable fogging again, choosing either GR_FOG_WITH_TABLE_ON_Q or
GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT (if supported), and OR in GR_FOG_MULT2, which causes the
blended pixel term to be suppressed. Set the source and destination alpha blending factors to
GR_BLEND_ONE and GR_BLEND_PREFOG_COLOR, respectively. The result is:

Fog(c3) = fcfog

cdst = 1•Fog(c3) + c3•cdst

= fcfog + c3•(1−f)c1c2

= fcfog + (1−f)c1c2c3

Glide 3.0 Programming Guide

82 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Example 8.5 Three-pass modulation fogging.
The code segment below assumes that a fog table has been defined.

const GrFog_t fog[];
int i;

/* load the fog table */
grFogTable(fog);

/* set a fog color - how about smoke? */
grFogColorValue(0);

/* set fog mode and alpha blending function for pass 1*/
grFogMode(GR_FOG_WITH_TABLE_ON_Q | GR_FOG_ADD2);
grAlphaBlendFunction(GR_BLEND_ONE, GR_BLEND_ZERO, GR_BLEND_ONE,
GR_BLEND_ZERO);

/* draw pass 1 */
…

/* set fog mode and alpha blending function for pass 2*/
grFogMode(GR_FOG_DISABLE);
grAlphaBlendFunction(GR_BLEND_DST_COLOR, GR_BLEND_ZERO, GR_BLEND_ONE,
GR_BLEND_ZERO);

/* draw pass 2 */
…

/* set fog mode and alpha blending function for final pass */
grFogMode(GR_FOG_WITH_TABLE_ON_Q | GR_FOG_MULT2);
grAlphaBlendFunction(GR_BLEND_ONE, GR_BLEND_PREFOG_COLOR, GR_BLEND_ONE,
GR_BLEND_ZERO);

/* draw pass 3 */
…

Chroma-keying
When chroma-keying is enabled, color values are compared to a global chroma-key reference value set
by grChromakeyValue(). If the pixel’s color is the same as the chroma-key reference value, the pixel is
discarded. The chroma-key comparison takes place before the color combine function; the other color
selected by color combine function is the one compared (see grColorCombine() in Chapter 5). By
default, chroma-keying is disabled.

Chroma-keying is useful for certain types of sprite animation or blue-screening of textures. Only one
color value is reserved for chroma-keyed transparency, while alpha blending reserves a variable
number of color bits for transparency.

void grChromakeyMode(GrChromakeyMode_t mode)

Use grChromakeyMode() to enable or disable chroma-keying. The argument, mode, specifies whether
chroma-keying should be enabled or disabled. Valid values are GR_CHROMAKEY_ENABLE and
GR_CHROMAKEY_DISABLE.

void grChromakeyValue(GrColor_t value)

8. Special Effects

Copyright  1995-1998 3Dfx Interactive, Inc. 83
Proprietary and Confidential Printed 08/05/98 10:30 AM

The function grChromakeyValue() sets the global chroma-key reference value as a packed RGBA value
in the format specified in the cFormat parameter to grSstWinOpen() (see Chapter 3).

Glide 3.0 introduces the concept of a chroma-range as an extension. The extension capability and the
two chroma-range extensions, one for pixels and one for texels, are described in Chapter 13.

Example 8.6 Simulating a blue-screen with chroma-keying.
A blue screen is a compositing mechanism used in live video where a second scene overlays all the “blue”
pixels in the first scene. This technique is used to stand a weathercaster in front of a weather map, for
example, and explains why they don’t wear blue suits or ties! With chroma-keying, pixels of any one specific
color can be discarded, not just blue.

/* draw the background */
draw_weather_map();

/* enable chroma-keying */
grChromakeyMode(GR_CHROMAKEY_ENABLE);

/*set the reference color - assumes ARGB format */
grChromakeyValue(0xFF);

/* draw the inserted scene - most of it is blue */
draw_weatherman();

Alpha Testing
The alpha test function is a technique for accepting or rejecting a pixel based on its alpha value. The
incoming alpha value (the output from the alpha combine unit) is compared with a reference value and
accepted or rejected based on a user-defined comparison function.

One application of the alpha compare function is billboarding: if you create a texture with some
transparent and some opaque areas, you can indicate the degree of opacity with the alpha value. Set
alpha to zero if the texel is transparent, and to one if it’s opaque. With a reference alpha value of .5 (or
any number greater than 0) and a “greater than” comparison function, transparent texels are rejected
and the destination pixel is displayed.

Incoming pixels can be rejected based on a comparison between their alpha values and a global alpha
test reference value. The nature of the comparison is user definable through the function
grAlphaTestFunction(). This is useful for some effects such as partially transparent texture maps. Also,
alpha testing can prevent the depth buffer from being updated for nearly transparent pixels. To disable
alpha testing, set the alpha test function to GR_CMP_ALWAYS. The global alpha test reference is set via a
call to grAlphaTestReferenceValue(). Because alpha testing does not require alpha storage (i.e. an alpha
buffer), it is always available regardless of the use of depth or triple buffering.

void grAlphaTestFunction(GrCmpFnc_t func)

The incoming alpha value is compared to the constant alpha test reference value using the function
specified by func. The possible values for func are shown in Table 8.3. The incoming alpha is the
output of the alpha combine unit (see grAlphaCombine(), described earlier in this chapter). The
reference value is set with grAlphaTestReferenceValue().

void grAlphaTestReferenceValue(GrAlpha_t value)

Glide 3.0 Programming Guide

84 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

The incoming alpha value is compared to the value using the function specified by
grAlphaTestFunction(). If the comparison fails, the pixel is not drawn.

Table 8.3 Alpha test functions.
Alpha testing is a technique whereby the incoming alpha value is compared to a reference value and the pixel
is discarded if the test fails. The test is user-selectable; the choices are shown below.

If func is the comparison function
GR_CMP_NEVER never passes.
GR_CMP_LESS passes if the α value produced by the alpha combine unit is less than the constant

α reference value.
GR_CMP_EQUAL passes if the α value produced by the alpha combine unit is equal to the constant α

reference value.
GR_CMP_LEQUAL passes if the α value is less than or equal to the constant α reference value.
GR_CMP_GREATER passes if the α value is greater than the constant α reference value.
GR_CMP_NOTEQUAL passes if the α value is not equal to the constant α reference value.
GR_CMP_GEQUAL passes if the α value is greater than or equal to the constant α reference value.
GR_CMP_ALWAYS always passes.

Alpha testing is performed on all pixel writes, including those resulting from scan conversion of points,
lines, and triangles, and from direct linear frame buffer writes. Alpha testing is implicitly disabled
during linear frame buffer writes if the pixel pipeline is bypassed (see Chapter 11).

Stenciling
Stenciling is not directly supported by the graphics family graphics hardware. However, a stencil effect
is possible with depth buffering by setting the depth buffer (using linear frame buffer writes) to its
minimum value in the areas to be stenciled out.

Copyright  1995−1998 3Dfx Interactive, Inc. 85
Proprietary and Confidential Printed 08/05/98 10:30 AM

9. Texture Mapping

In This Chapter
The discussion thus far has described how to produce a polygon that is filled with a solid color or
smoothly shaded from one color to another. This chapter describes the process of filling a polygon with
a pattern: a brick wall pattern, for example, or a veined marble texture.

Texture mapping is a technique in which a two-dimensional image, a texture map, is pasted like wall-
paper onto a three-dimensional surface. This allows for very realistic images without requiring the use
of many small detail polygons. The graphics hardware provides accelerated perspective-correct texture
mapping.

You will learn about:

t textures and texels and how they relate to pixels.

t magnification and minification.

t point sampling and bilinear filters.

t texture clamping.

t specifying magnification and minification filters and texture clamping options.

t adding, modulating, and blending textures in the texture combine unit.

A Look at Texture Mapping and Glide
A texture map is a square or rectangular array of texture elements, or texels, that are addressed by
(s, t) coordinates. The TMU, or texture mapping unit, contains memory for storing textures, circuitry
to map texels to pixels, and more circuitry to add, scale, and blend texels.

A 3Dfx Interactive graphics subsystem includes at least one TMU and may have as many as three;
Figure 9.1 shows the connectivity. Each TMU will produce an RGBA color from its own texture
memory that will be pairwise combined to produce a texture RGBA color that can be selected as an
input to the color combine and alpha combine units described in Chapters 5 and 6.

Texture memory is described in the next chapter. In this chapter, we assume that textures are already
loaded into texture memory and concern ourselves with configuring the texel selection function and
using the texture combine unit.

Glide 3.0 Programming Guide

86 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Figure 9.1 TMU connectivity.
A TMU contains texture memory, texture selection circuitry, and a texture combine unit. The texture combine
units have other and local datapaths just like the color and alpha combine units.

(a) A system with one TMU extracts the appropriate texel or texels from texture memory, minifies or magnifies
it, filters it, and clamps or wraps it according to texture map parameters or local overrides. The texture
combine unit can scale the result.

(b) When the system has two TMUs they are chained together. The result from one TMU becomes an input to
the texture combine unit of the next one and the texture RGBA that results is a user-selectable combination
of the two textures.

(c) A three TMU system continues the cascading of texels.

TMU1

texture
memory

texel
selection

local RGBA

TMU0

texture
memory

texel
selection

texture
combine

unit

local RGBA

texture RGBA

other RGBA

0

TMU0

texture
memory

texel
selection

0

local RGBA

texture RGBA

TMU1

texture
memory

texel
selection

local RGBA

TMU0

texture
memory

texel
selection

local RGBA

texture RGBA

TMU2

texture
memory

texel
selection

0

local RGBA

other RGBA

other RGBA

(a) a texture pipeline
with one TMU

(b) a texture pipeline with two TMUs (c) a texture pipeline with three TMUs

texture
combine

unit

texture
combine

unit

texture
combine

unit

texture
combine

unit

texture
combine

unit

Glide Textures and Texels
Textures are square or rectangular arrays of data; an individual value within a texture is called a texel
and has an (s, t) address. The s and t texel coordinates are in the range [–32768..32767]. The large
range for s and t allows a texture to be repeated many times across a polygon. A large number of
fraction bits allows for precise s and t representation and iteration even when divided by a large q
value.

For one repeat of the texture, the choice of coordinate systems determines the properties of s and t.

When Using Window Coordinates

All square texture maps have their origin at (s,t) = (0,0) and their opposite corner at (256,256). This is
true even for a 1××1 texture map. Note that these texture coordinates are before division by q. Texture
coordinate (0.5, 0.5) represents the exact center of the first texel in a 256×256 texture map, and

9. Texture Mapping

Copyright  1995-1998 3Dfx Interactive, Inc. 87
Proprietary and Confidential Printed 08/05/98 10:30 AM

(255.5, 255.5) represents the exact center of the texel in the opposite corner; (256.5, 256.5) wraps to
the center of the first texel. In general, the center of the first texel in a 2n×2n texture map (where
0≤n≤8) is at (128/2n, 128/2n).

Rectangular textures also have their origin at (0, 0). If the rectangular texture is wider than tall (s is
larger than t) then the opposite corner is at (256, n) where n/256=t/s. For example, if the texture is four
times as wide as high, then n=64. Likewise, if the rectangular texture is taller than it is wide, the
opposite corner is at (n, 256) and n/256=s/t. Therefore, the longer texture axis always has texture
coordinates running from 0 to 256, while the shorter texture axis is proportionally smaller. Table 9.1
shows the texel coordinates of the first and last pixel for all supported aspect ratios and texture map
dimensions.

Figure 9.2 Mapping texels onto texture maps in window coordinate systems.
The textures shown below all have a 1:2 aspect ratio, and range in size from 32×64 to 1×2. In each one, the
texture coordinates (s,t) range from (0,0) to (128,256). Thus, the texels get bigger (in terms of coverage of
coordinate space) as the texture map size decreases. The degenerate case of 1×1 is shown for completeness.

32×64 texture
each texel is 4

texture coordinates
square

16×32 texture
each texel is 8

texture coordinates
square

8×16 texture
each texel is 16

texture coordinates
square

4×8 texture
each texel is 32

texture coordinates
square

2×4 texture
each texel is 64

texture coordinates
square

1×2 texture
each texel is 128

texture coordinates
square

1×1 texture
single texel degenerate case

0

256

128

0

256

128
0

256

128
0

256

128
0

256

128

0

256

128
0

256

128 256

Glide 3.0 Programming Guide

88 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Table 9.1 Mapping pixels to texture coordinates in texture maps in window coordinate systems.
The texel coordinate on the long side of a texture map always goes from 0 to 256, regardless of the size of the
texture map. Since texels are square, the texture coordinate on the short side of the texture map is scaled
accordingly: it ranges from 0 to 256•(the ratio of the short to the long side). The degenerate cases are shaded.

if the aspect ratio is and the texture map size is a texel is the center of the first texel is at the center of the last texel is at

1:1 256×256 1×1 (.5, .5) (255.5, 255.5)
(a square texture) 128×128 2×2 (1, 1) (255, 255)

64×64 4×4 (2, 2) (254, 254)
32×32 8×8 (4, 4) (252, 252)
16×16 16×16 (8, 8) (248, 248)
8×8 32×32 (16, 16) (240, 240)
4×4 64×64 (32, 32) (224, 224)
2×2 128×128 (64, 64) (192, 192)
1×1 256×256 (128, 128) (128, 128)

2:1 or 1:2 2:1 1:2 2:1 1:2
(the long side is 256×128 128×256 1×1 (.5, .5) (255.5,

127.5)

(127.5,

255.5)
twice the length of 128×64 64×128 2×2 (1, 1) (255, 127) (127, 255)

the short side) 64×32 32×64 4×4 (2, 2) (254, 126) (126, 254)
32×16 16×32 8×8 (4, 4) (252, 124) (124, 252)
16×8 8×16 16×16 (8, 8) (248, 120) (120, 248)
8×4 4×8 32×32 (16, 16) (240, 112) (112, 240)
4×2 2×4 64×64 (32, 32) (224, 96) (96, 224)
2×1 1×2 128×128 (64, 64) (192, 64) (64, 192)
1×1 1×1 (128, 128) (128, 128) (128, 128)

4:1 or 1:4 4:1 1:4 4:1 1:4
(the long side is 256×64 64×256 1×1 (.5, .5) (255.5, 63.5) (63.5, 255.5)
four times the 128×32 32×128 2×2 (1, 1) (255, 63) (63, 255)

length of the short 64×16 16×64 4×4 (2, 2) (254, 62) (62, 254)
side) 32×8 8×32 8×8 (4, 4) (252, 60) (60, 252)

16×4 4×16 16×16 (8, 8) (248, 56) (56, 248)
8×2 2×8 32×32 (16, 16) (240, 48) (48, 240)
4×1 1×4 64×64 (32, 32) (224, 32) (32, 224)
2×1 1×2 (64, 64) (192, 64) (64, 192)
1×1 1×1 (128, 128) (128, 128) (128, 128)

8:1 or 1:8 8:1 1:8 8:1 1:8
(the long side is 256×32 32×256 1×1 (.5, .5) (255.5, 31.5) (31.5, 255.5)
eight times the 128×16 16×128 2×2 (1, 1) (255, 31) (31, 255)

length of the short 64×8 8×64 4×4 (2, 2) (254, 30) (30, 254)
side) 32×4 4×32 8×8 (4, 4) (252, 28) (28, 252)

16×2 2×16 16×16 (8, 8) (248, 24) (24, 248)
8×1 1×8 32×32 (16, 16) (240, 16) (16, 240)
4×1 1×4 (32, 32) (224, 32) (32, 224)
2×1 1×2 (64, 64) (192, 64) (64, 192)
1×1 1×1 (128, 128) (128, 128) (128, 128)

When Using Clip Coordinates

All square texture maps have their origin at (s,t) = (0,0) and their opposite corner at (1,1). This is true
even for a 1××1 texture map. Note that these texture coordinates are before division by q, which is
performed automatically. Rectangular textures also have their origin at (0, 0) and their opposite corner
at (1,1). The center of the first texel in an n×m texture map is at (1/2n+1, 1/2m+1), and the center of the
texel in the opposite corner is at (1–(1/2n+1), 1–(1/2m+1)).

9. Texture Mapping

Copyright  1995-1998 3Dfx Interactive, Inc. 89
Proprietary and Confidential Printed 08/05/98 10:30 AM

Figure 9.3 Mapping texels onto texture maps in clip coordinate systems.
The textures shown below all have a 1:2 aspect ratio, and range in size from 32×64 to 1×2. In each one, the
texture coordinates (s,t) range from (0,0) to (1,1). Thus, the texels get bigger (in terms of coverage of
coordinate space) as the texture map size decreases. We have shown square texels and different scales on the s
and t axis to parallel Table 9.1; however, this introduces distortion. The degenerate case of 1×1 is shown for
completeness.

32×64 texture
each texel is
 1/32 by 1/64

16×32 texture
each texel is
1/16 by 1/32

8×16 texture
each texel is
1/8 by 1/16

4×8 texture
each texel is

¼ by 1/8

2×4 texture
each texel is

½ by ¼

1×2 texture
each texel is

1 by ½

1×1 texture
single texel degenerate case

0

1

0

1

 1
0

1

 1
0

1

 1
0

1

 1

0

1

 1
0

1

 1 1

Texture Filtering
All texture mapping capabilities of the graphics subsystem are handled in the TMU, which includes
logic to support true-perspective texture mapping (dividing every pixel by q), per-pixel level-of-detail
(LOD) mipmapping, and bilinear filtering. Additionally, TMU implements texture mapping techniques
such as detail texture mapping, projected texture mapping, and trilinear filtering. While point sampled
and bilinear filtering are single pass operations, single TMU systems require two passes for trilinear
texture filtering. Multiple TMU systems support trilinear texture filtering as a single-pass operation.
Note that regardless of the number of TMUs in a given graphics system, there is no performance

Glide 3.0 Programming Guide

90 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

difference between point-sampled and bilinear filtered texture-mapped rendering, and no performance
penalty for per-pixel mipmapping or perspective correction.

Texture maps are square or rectangular, but after being mapped to a polygon or surface and
transformed into screen coordinates, the individual texels of a texture map rarely correspond to screen
pixels on a one-to-one basis. Depending on the transformations used and the texture mapping applied, a
single pixel on the screen can correspond to anything from a tiny portion of a texel, resulting in
magnification, to a large collection of texels, resulting in minification. In either case it is unclear
exactly which texel values should be used and how they should be averaged or interpolated.
Consequently, Glide allows an application to choose between two types of filtering: point sampling and
bilinear interpolation.

Figure 9.4 Point sampling and bilinear filtering.
Glide supports two methods of choosing a texel within a texture map. If the pixel maps to less than one texel,
as shown in diagram (a), texture magnification is called. If the pixel maps to more than one texel, as shown in
diagram (b), then minification is required. The user can select between point-sampling and bilinear filtering
during the minification or magnification. When using point sampling, the texel whose (s, t) coordinates are
nearest the center of the pixel is chosen. Bilinear filtering computes a weighted average of the 2 by 2 array of
texels that lie nearest the center of the pixel. The magnification and minification filters are independent: one
can specify point sampling and the other bilinear filtering, or both can be the same.

texelpixel texelpixel

(a) magnification:
the pixel is smaller
than a texel

(b) minification:
the pixel is larger
than a texel

(c) point sampled filter:
the texel nearest the pixel
center

(d) bilinear filter: a weighted
average of the four texels
nearest the pixel center

pixel center pixel center

Magnification of a texture map occurs when a texture map is “blown up” on screen (see Figure
9.4(a)). For example, if a 64×64 texture map is rendered onto a polygon that covers 128×128 pixels on
the screen, an average of four pixels will cover each texel in the texture map, causing noticeable
blockiness. The graphics hardware supports bilinear interpolation of texels that greatly reduces the
blockiness and pixelization of texture magnification.

Minification of a texture map occurs when a texture map is compressed on screen (see Figure 9.4(b)).
For example, if a 64×64 texture map is rendered onto a polygon that only covers 16×16 pixels on the
screen, an average of 16 texels will cover each pixel on the screen. This leads to disturbing artifacts
known as “texture aliasing”. The graphics hardware remedies this problem by supporting both
mipmapping and filtering.

If a graphics subsystem is performing point sampled filtering, the texel with coordinates nearest the
center of the pixel being rendered is used to generate the color output on the screen (see Figure 9.4(c)).
Point sampling, also known as nearest neighbor sampling, may result in pixelization and blockiness
during magnification and “texture jerking” during minification.

9. Texture Mapping

Copyright  1995-1998 3Dfx Interactive, Inc. 91
Proprietary and Confidential Printed 08/05/98 10:30 AM

One way of reducing the blockiness of point sampling is by linearly interpolating between the colors of
the texels that are adjacent to the source pixel, which results in a much smoother image than point
sampling (see Figure 9.4(d)). Bilinear interpolation is performed by the graphics hardware with no
incurred additional performance overhead.

Minification and magnification filtering are controlled by the Glide function grTexFilterMode() and are
independently selectable.

void grTexFilterMode(GrChipID_t tmu,
GrTextureFilterMode_t minFilterMode,
GrTextureFilterMode_t magFilterMode

)

The first argument, tmu, selects the texture mapping unit that the filter selections apply to. Valid values
are GR_TMU0, GR_TMU1, and GR_TMU2. The minification filter, minFilterMode, can be either
GR_TEXTUREFILTER_POINT_SAMPLED or GR_TEXTUREFILTER_BILINEAR, as can the magnification
filter, magFilterMode. The magnification filter is used when the LOD calculated for a pixel indicates
that the pixel covers less than one texel. Otherwise, the minification filter is used.

Texture Clamping
When texture s and t coordinates have overflowed during a texture mapped rendering operation, the
hardware can either clamp the coordinates to a maximum value or, alternatively, wrap them around.
This choice is up to the developer depending on whether tiled or non-tiled texture mapping is desired.
Texture clamping also allows for interesting effects, for example, out of range s and t coordinates can
be passed with a very small texture in a large polygon. Such an approach will effectively place the
texture somewhere in the interior of the polygon with the rest of the polygon rendered with the border
color of the texture. This can potentially save texture memory if small composite textures are used on a
predominantly monotone surface, e.g., a window on the side of a space ship.

Glide 3.0 Programming Guide

92 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Figure 9.5 Texture clamping.
The texture clamp mode specifies what to do when texture coordinates are outside the range of the texture
map. If wrapping is enabled, then texture maps will tile, i.e., values greater than 255 will wrap around to 0. If
clamping is enabled, then texture map indices will be clamped to 0 and 255. Both modes should always be set
to GR_TEXTURECLAMP_CLAMP when using projected textures.

Glide 3.0 introduces a texture clamp mode extension, GR_TEXTURECLAMP_MIRROR_EXT, that is available if
the TEXMIRROR extension is supported. See Chapter 13 for details and an expanded version of this figure.

The texture on the left is to be mapped onto the rectangle, with
the texture origin in the interior of the rectangle. The clamp
mode settings for s and t affect the final result, as shown below.

(a) wrap both s and t (b) clamp s, wrap t (c) wrap s, clamp t (d) clamp both s and t

Note that s and t coordinates may be individually wrapped or clamped, as shown in Figure 9.5.

void grTexClampMode(GrChipID_t tmu,
GrTextureClampMode_t sClampMode,
GrTextureClampMode_t tClampMode

)

The first argument, tmu, selects the TMU in which the mipmap resides and may be GR_TMU0, GR_TMU1,
or GR_TMU2. The other two arguments set the clamping mode for s and t individually; they may be set
to GR_TEXTURECLAMP_CLAMP, GR_TEXTURECLAMP_WRAP, or, if supported,
GR_TEXTURECLAMP_MIRROR_EXT (see the discussion on the TEXMIRROR extension in Chapter 13). If
wrapping is enabled, texture maps will tile: values greater than 255 will wrap around to 0. If clamping
is enabled, texture map indices will be clamped to 0 and 255. Both modes should always be set to
GR_TEXTURECLAMP_CLAMP when using projected textures.

Mipmapping
A mipmap is an ordered set of texture maps representing the same texture; each texture map has lower
resolution than the previous one, and is typically derived by filtering and averaging down its
predecessor. LOD0 is the name given to the texture with the highest resolution in the mipmap, where
LOD stands for “level of detail”. The LOD1 texture, if defined, is half as high and half as wide, and
defines one-quarter as many texels as LOD0. There can be up to nine texture maps in a mipmap.

9. Texture Mapping

Copyright  1995-1998 3Dfx Interactive, Inc. 93
Proprietary and Confidential Printed 08/05/98 10:30 AM

PORTING
NOTE

The GR_LOD and GR_ASPECT constants have been redefined: the value now represents
the logarithm, base 2, of the largest dimension. In order to call attention to code that used
them, the names have been changed as well, adding “LOG2_”, as shown in Table 9.2
above.

Some code that used the old constants will require modification. For example, a
Glide 2.x for loop that decrements a counter to access larger mipmap levels will
increment the counter in Glide 3.0. Any tables indexed by mipmap level or aspect ratio
must also be examined to see if changes are required.

Figure 9.6 gives a graphical representation of a complete mipmap. The texture maps can be square or
rectangular, but each one in the mipmap must have the same aspect ratio. See Table 9.2.

The next chapter will describe Glide functions that manage texture memory and load textures and
mipmaps. In this chapter, we will assume that the proper textures are already loaded; we will focus on
the texel selection and texture combine capabilities.

Table 9.2 Texture sizes and shapes.

A mipmap can be composed of up to nine textures (the LOD names are shown in column 1) and can be square
or rectangular (the aspect ratios are listed in row 1). All textures within a mipmap must have the same aspect
ratio. The shaded entries in the table below have degenerate aspect ratios: one or both dimensions have been
reduced to one texel.

GR_ASPECT_LOG2_1x1
GR_ASPECT_LOG2_2x1
or
GR_ASPECT_LOG2_1x2

GR_ASPECT_LOG2_4x1
or
GR_ASPECT_LOG2_1x4

GR_ASPECT_LOG2_8x1
or
GR_ASPECT_LOG2_1x8

GR_LOD_LOG2_256 256×256 256×128 or 128×256 256×64 or 64×256 256×32 or 32×256
GR_LOD_LOG2_128 128×128 128×64 or 64×128 128×32 or 32×128 128×16 or 16×128
GR_LOD_LOG2_64 64×64 64×32 or 32×64 64×16 or 16×64 64×8 or 8×64
GR_LOD_LOG2_32 32×32 32×16 or 16×32 32×8 or 8×32 32×4 or 4×32
GR_LOD_LOG2_16 16×16 16×8 or 8×16 16×4 or 4×16 16×2 or 2×16
GR_LOD_LOG2_8 8×8 8×4 or 4×8 8×2 or 2×8 8×1 or 1×8
GR_LOD_LOG2_4 4×4 4×2 or 2×4 4×1 or 1×4 4×1 or 1×4
GR_LOD_LOG2_2 2×2 2×1 or 1×2 2×1 or 1×2 2×1 or 1×2
GR_LOD_LOG2_1 1×1 1×1 1×1 1×1

Glide 3.0 Programming Guide

94 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

PORTING
NOTE

The GR_LOD and GR_ASPECT constants have been redefined: the value now represents
the logarithm, base 2, of the largest dimension. In order to call attention to code that used
them, the names have been changed as well, adding “LOG2_”, as shown in Table 9.2
above.

Some code that used the old constants will require modification. For example, a
Glide 2.x for loop that decrements a counter to access larger mipmap levels will
increment the counter in Glide 3.0. Any tables indexed by mipmap level or aspect ratio
must also be examined to see if changes are required.

9. Texture Mapping

Copyright  1995-1998 3Dfx Interactive, Inc. 95
Proprietary and Confidential Printed 08/05/98 10:30 AM

Figure 9.6 Mipmaps.
A mipmap is an ordered set of texture maps representing the same texture. Each texture map in the set has
lower resolution than the previous one, and is typically derived by filtering and averaging down its
predecessor. GR_LOD_LOG2_256 is the name given to the texture with the highest resolution in the mipmap,
where LOD stands for “level of detail”. The GR_LOD_LOG2_128 texture is half as high and half as wide, and
defines one-quarter as many texels as its predecessor, and so on. The mipmap can contain up to nine texture
maps, as shown. The texel addresses range from (0,0) to (256,256) in window coordinates, or from (0,0) to
(1,1) in clip coordinates, in all nine textures, as described earlier in the chapter.

GR_LOD_256

GR_LOD_128

GR_LOD_64

GR_LOD_32

GR_LOD_16

GR_LOD_8

GR_LOD_4

GR_LOD_2 GR_LOD_1

The hardware computes an LOD for every pixel. The integer part of the LOD is used to choose one (or
two) of the textures in the current mipmap; the fractional part is used to blend two mipmap levels if
desired.

• Nearest mipmapping. The mipmap level is chosen based on which mipmap is nearest to a
pixel’s LOD. Nearest mipmapping may suffer from a visual artifact known as “mipmap
banding” that manifests itself as visible bands between LOD levels appearing in a texture
mapped image.

• Nearest dithered mipmapping. To offset the effects of mipmap banding, the hardware can
dither between adjacent texture maps within a mipmap. This technique, known as nearest
dithered mipmapping, alleviates the effects of mipmap banding to a great extent, at the cost of
performance degradation for larger texture maps.

Glide 3.0 Programming Guide

96 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

void grTexMipMapMode(GrChipID_t tmu, GrMipMapMode_t mode, FxBool LODblend)

Mipmapping style is controlled by grTexMipMapMode(). The first argument, tmu, designates the TMU
to modify. The second argument, mode, selects the mipmapping style; valid values are
GR_MIPMAP_DISABLE, GR_MIPMAP_NEAREST, and GR_MIPMAP_NEAREST_DITHER. The final argument,
LODblend, enables or disables blending between levels of detail in the mipmap. GR_MIPMAP_NEAREST
should be used when LODblend is FXTRUE.

Using dithered mipmapping with bilinear filtering results in images almost indistinguishable from
images rendered with trilinear filtering techniques. On the down side, dithering of the mipmap levels
reduces the peak fill rate by approximately 20% to 30%, depending on the scene being rendered. Since
the presence or absence of mipmap dithering is not very noticeable, it is very hard to determine the
cause of the performance loss. Therefore, Glide disallows this mode by default. An application may
explicitly allow the use of dithered mipmapping by issuing a grEnable(GR_ALLOW_MIPMAP_DITHER)
command (see Chapter 12).

If you are considering using dithered mipmapping, measure performance with and without it. The
trade-off is that there may be visible mipmap bands, which can be eliminated by using trilinear
mipmapping. On multiple TMU boards this is a one-pass operation, otherwise it requires two passes.
Alternatively, dithered mipmapping can be allowed but disabled for most polygons and enabled only for
those polygons that require it.

If there is no performance difference with and without dithered mipmapping, but the image quality did
not improve with dithered mipmapping, don’t use it. As you enhance or extend your program, you run
the risk of creating a situation in which performance loss due to dithered mipmapping could occur. It is
best to selectively enable dithered mipmapping just for the polygons that require it.

Mipmap Blending
To reduce the effects of mipmap banding the hardware can perform a weighted blend between adjacent
mipmap levels. This blend is a single pass operation on two TMU configurations and a two-pass
operation on a single TMU configurations.

Mipmap blending can be performed independently of the type of minification and magnification
filtering being performed. Since mipmap blending is actually a form of texture combining, it is
controlled by proper set up of the texture combine function.

Trilinear Filtering
The combination of bilinear filtering, mipmapping, and mipmap blending is generally known as
trilinear mipmapping. Trilinear mipmapping provides maximum visual quality by performing inter-
and intra-mipmap blending. However, trilinear mipmapping is a two-pass operation on graphics
subsystems with a single TMU. Nearest dithered mipmapping results in nearly the same visual quality
as trilinear texture mapping, however, it is always a single pass operation and thus achieves consistent
performance across a wider range of hardware.

LOD Bias
LOD bias affects the point at which mipmapping levels change. Increasing values for LOD bias makes
the overall images blurrier or smoother. Decreasing values make the overall images sharper. Selection
of LOD bias is a qualitative judgment that is application and texture dependent. LOD bias can be any

9. Texture Mapping

Copyright  1995-1998 3Dfx Interactive, Inc. 97
Proprietary and Confidential Printed 08/05/98 10:30 AM

value in the range [–8.0..7.75]. However, the hardware will snap LOD bias to the nearest quarter.
There is no “best” setting for the LOD bias; it is a very subjective control. Some textures look better if
sharper than “normal,” while others look better blurred.

The LOD bias is controlled with the function grTexLodBiasValue(). The first argument, tmu, identifies
the TMU to modify; valid values are GR_TMU0, GR_TMU1, and GR_TMU2. The second argument, bias, is
a signed floating point value in the range [–8..7.75].

void grTexLodBiasValue(GrChipID_t tmu, float bias)

grTexLodBiasValue() changes the current LOD bias value, which allows an application to maintain fine
grain control over the effects of mipmapping, specifically when mipmap levels change. The LOD bias
value is added to the LOD calculated for a pixel and the result determines which mipmap level to use.
An LOD of n is calculated when a pixel covers approximately 22n texels. For example, when a pixel
covers approximately one texel, the LOD is 0; when a pixel covers four texels, the LOD is 1; when a
pixel covers 16 texels, the LOD is 2. Smaller LOD values make increasingly sharper images that may
suffer from aliasing and moiré effects. Larger LOD values make increasingly smooth images that may
suffer from becoming too blurry. The default LOD bias value is 0.0.

During some special effects, an LOD bias may help image quality. If an application is not performing
texture mapping with trilinear filtering or dithered mipmapping, then an LOD bias of +.5 generally
improves image quality by rounding to the nearest LOD. If an application is performing dithered
mipmapping (i.e. grTexMipMapMode() is GR_MIPMAP_NEAREST_DITHER), then an LOD bias of 0.0 or
+.25 generally improves image quality. An LOD bias value of 0.0 is usually best with trilinear filtering.

Combining Textures
The graphics hardware can combine multiple textures together simultaneously. This allows for
interesting effects including detail texturing, projected texturing, and trilinear texture mapping.
Combining two textures requires a single pass with two TMUs or two passes with a single TMU.
Combining two textures is controlled with the function grTexCombine().

Each TMU selects an appropriate texel for the current rendering mode and filters it (point sampled or
bilinear, as determined by a mipmap’s associated filtering mode or the most recent call to
grTexFilterMode()), then passes the texel on to the texture combine unit. The texture combine unit
combines the filtered texel with the incoming texel from the other TMUs, according to the user-
selectable formula defined by the most recent grTexCombine() function. The simplest combine function
is a simple pass-through that implements decal texture mapping. However, more elaborate texture
mapping combinations can be used to implement useful effects such as trilinear mipmapping,
composite texturing, and projected textures.

void grTexCombine(GrChipID_t tmu,
GrCombineFunction_t rgbFunction,
GrCombineFactor_t rgbFactor,
GrCombineFunction_t alphaFunction,
GrCombineFactor_t alphaFactor,
FxBool rgbInvert,
FxBool alphaInvert

)

The first argument names the TMU to which the rest of the arguments apply. Valid values are
GR_TMU0, GR_TMU1, and GR_TMU2. The next two arguments, rgbFunction and rgbFactor, describe the

Glide 3.0 Programming Guide

98 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

combining function and scale factor for the red, green, and blue components produced by the texel
selection circuitry of tmu. Similarly, alphaFunction and alphaFactor define the combining function
and scale factor for the alpha component. Table 9.3 lists the possible combining functions; the scale
factors are detailed in Table 9.4. In both tables, clocal and αlocal represent the color components
generated by indexing and filtering from the mipmap stored on tmu; cother and αother represent the
incoming color components from the neighboring TMU (refer to Figure 9.1).

The texture combine units compute the function specified by the rgbFunction and alphaFunction
combine functions and the rgbFactor and alphaFactor combine scale factors on the local filtered texel
and the filtered texel from the upstream TMU. The result is clamped to [0..255], and then a bit-wise
inversion may be applied, controlled by the rgbInvert and alphaInvert parameters. Inverting the bits in
an 8-bit color component is the same as computing (255 – c).

grTexCombine() also keeps track of required vertex parameters for the rendering routines.
GR_COMBINE_FACTOR_NONE is provided to indicate that no parameters are required. Currently it is the
same as GR_COMBINE_FACTOR_ZERO.

9. Texture Mapping

Copyright  1995-1998 3Dfx Interactive, Inc. 99
Proprietary and Confidential Printed 08/05/98 10:30 AM

Table 9.3 Texture combine functions.
The rgbFunction and alphaFunction arguments to grTexCombine() can take on any of the values listed in the
first column. The second and third columns show the computed color or alpha value for each choice. clocal and
αlocal represent the color components generated by indexing and filtering from the mipmap stored on tmu;
cother and αother represent the incoming color components from the neighboring TMU (refer to Figure 9.1).

texture combine function
(prefixed with GR_COMBINE_FUNCTION_)

computed color if specified
as rgbFunction

computed alpha if specified
as alphaFunction

ZERO 0 0
LOCAL clocal αlocal
LOCAL_ALPHA αlocal αlocal
SCALE_OTHER
BLEND_OTHER

f * cother f * αother

SCALE_OTHER_ADD_LOCAL f * cother + clocal f * αother + αlocal
SCALE_OTHER_ADD_LOCAL_ALPHA f * cother + αlocal f * αother + αlocal
SCALE_OTHER_MINUS_LOCAL f * (cother – clocal) f * (αother – αlocal)
SCALE_OTHER_MINUS_LOCAL_ADD_LOCAL
BLEND

f * (cother – clocal) + clocal

≡ f * cother + (1 – f) * clocal

f * (αother – αlocal) + αlocal

≡ f * αother + (1 – f) *
αlocal

SCALE_OTHER_MINUS_LOCAL_ADD_LOCAL_ALPHA f * (cother – clocal) + αlocal f * (αother – αlocal) + αlocal
SCALE_MINUS_LOCAL_ADD_LOCAL
BLEND_LOCAL

f * (– clocal) + clocal

≡ (1 – f) * clocal

f * (– αlocal) + αlocal

≡ (1 – f) * αlocal
SCALE_MINUS_LOCAL_ADD_LOCAL_ALPHA f * (– clocal) + αlocal f * (–αlocal) + αlocal

Table 9.4 Scale factors for texture color generation.
The rgbFactor and alphaFactor arguments to grTexCombine() can take on any of the values listed in the first
column. The second and third columns show the scale factor that will be used. clocal and αlocal represent the
color components generated by indexing and filtering from the mipmap stored on tmu; cother and αother

represent the incoming color components from the neighboring TMU (refer to Figure 9.1).

If GR_COMBINE_FACTOR_DETAIL_FACTOR or GR_COMBINE_FACTOR_ONE_MINUS_DETAIL_FACTOR is
specified, the scale factor employs the detail blend factor, called β in the table. See the discussion of
grTexDetailControl() in the next section for more information.

If GR_COMBINE_FACTOR_LOD_FRACTION or GR_COMBINE_FACTOR_ONE_MINUS_LOD_FRACTION is
specified, the scale factor employs the fractional part of the computed LOD, called λ in the table. See the
discussion about computing an LOD earlier in this chapter for more information.

texture combine factor (prefixed with
GR_COMBINE_FACTOR_)

scale factor f if specified
as rgbFactor

scale factor f if
specified as
alphaFactor

NONE unspecified unspecified
ZERO 0 0
LOCAL clocal / 255 αlocal / 255
OTHER_ALPHA αother / 255 αother / 255
LOCAL_ALPHA αlocal / 255 αlocal / 255
DETAIL_FACTOR β β
LOD_FRACTION λ λ
ONE 1 1
ONE_MINUS_LOCAL 1 – clocal / 255 1 – αlocal / 255
ONE_MINUS_OTHER_ALPHA 1 – αother / 255 1 – αother / 255
ONE_MINUS_LOCAL_ALPHA 1 – αlocal / 255 1 – αlocal / 255
ONE_MINUS_DETAIL_FACTOR 1 – β 1 – β

Glide 3.0 Programming Guide

100 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

ONE_MINUS_LOD_FRACTION 1 – λ 1 – λ

Examples of Configuring the Texture Pipeline
The following code examples illustrate how to configure the texture pipeline for different texture
mapping effects. The examples all assume that appropriate textures have been loaded and the
addressing mechanism in the TMU points to the right place. This process is described in detail in the
next chapter; the examples are repeated there, with the texture loading segments filled in. The examples
also assume that grColorCombine() and/or grAlphaCombine() utilize texture mapping by setting the
scale factor to GR_COMBINE_FACTOR_TEXTURE_ALPHA or
GR_COMBINE_FACTOR_ONE_MINUS_TEXTURE_ALPHA.

The examples in this chapter attempt to cover most of the texture mapping techniques of interest. Table
9.5 shows the principle texture mapping algorithms and describes the implementation in terms of
available TMUs. We show examples utilizing one or two TMUs, mipmaps split across two TMUs, and
a two-pass application.

Table 9.5 The number of TMUs affects texture mapping functionality.
The number of texture mapping units determines the performance of advanced texture mapping rendering. The
table below describes the number of passes required to implement the texture mapping techniques supported
by the graphics subsystem. Note that in a system with three TMUs, only the most complicated algorithm
(trilinear filtering with mipmapping, projected, and detail textures) requires more than one pass.

texture mapping performance
functionality one TMU two TMUs three TMUs

Point sampling with mipmapping one pass one pass one pass
Bilinear filtering with mipmapping one pass one pass one pass
Bilinear filtering with mipmapping and projected textures two pass one pass one pass
Bilinear filtering with mipmapping and detail textures two pass one pass one pass
Bilinear filtering with mipmapping, projected and detail textures not supported two pass one pass
Trilinear filtering with mipmapping two pass one pass one pass
Trilinear filtering with mipmapping and projected textures not supported two pass one pass
Trilinear filtering with mipmapping and detail textures not supported two pass one pass
Trilinear filtering with mipmapping, projected, and detail
textures

not supported two pass two pass

Configuring the Texture Pipeline for Decal Texture Mapping

The simplest texture mapping technique is decal mapping, which applies a texture to a polygon without
modification. The first two entries in Table 9.5 are decal mapping, differing only in the choice of
minification and magnification filters. Decal mapping is a single pass operation on all 3Dfx Interactive
graphics accelerator configurations.

Example 9.1 Setting up simple (decal) texture mapping.
The following code sets up the texture pipeline so that a texel is placed into the pixel pipeline without
modification. The code assumes that there is a single TMU, that a texture has already been loaded into texture

9. Texture Mapping

Copyright  1995-1998 3Dfx Interactive, Inc. 101
Proprietary and Confidential Printed 08/05/98 10:30 AM

memory with the texture base address pointing to it, and that the color combine unit is configured to use the
texture color and/or alpha value.

grTexCombine(GR_TMU0, GR_COMBINE_FUNCTION_LOCAL,
GR_COMBINE_FACTOR_NONE,
 GR_COMBINE_FUNCTION_LOCAL, GR_COMBINE_FACTOR_NONE,
 FXFALSE, FXFALSE);

Configuring the Texture Pipeline for Projected Texture Mapping

Interesting spotlight effects are possible by multiplying two texture maps against each other. For
example, one texture map can be an intensity map (e.g., a spotlight) and the other can be a source
texture. Recall that the texture RGBA values from the “upstream” TMU1 become the other input to
the “downstream” TMU0. In Example 9.2, the spotlight texture is upstream, the source texture is
downstream and the resulting RGBAtexture = RGBAspotlight × RGBAsource.

Example 9.2 Applying a modulated (projected) texture.
The code segment below assumes that the texture maps have already been loaded: an intensity map for the
spotlight in TMU0 and a source texture in TMU1. The resulting texture RGBA is a product of the texels chosen
from the two textures. The color combine unit must be configured to use the output from the texture pipeline.

grTexCombine(GR_TMU0,
GR_COMBINE_FUNCTION_SCALE_OTHER, GR_COMBINE_FACTOR_LOCAL,
GR_COMBINE_FUNCTION_SCALE_OTHER, GR_COMBINE_FACTOR_LOCAL,
FXFALSE, FXFALSE);

grTexCombine(GR_TMU1,
GR_COMBINE_FUNCTION_LOCAL, GR_COMBINE_FACTOR_NONE,
GR_COMBINE_FUNCTION_LOCAL, GR_COMBINE_FACTOR_NONE,
FXFALSE, FXFALSE);

Configuring the Texture Pipeline for Trilinear Texture Mapping

When doing standard mipmapping, noticeable banding can occur because of the visible differences in
mipmap levels. One way around this is to blend two separate textures within a mipmap based on the
LOD (level of detail) fraction bits. This is known as mipmap blending which, in conjunction with
bilinear filtering, is referred to as trilinear texture mapping. To perform trilinear texture mapping the
application must download a texture specifically for use with trilinear mipmapping and then use this
texture only for blended mipmapping operations.

When using texture combining to implement mipmap blending (i.e., trilinear texture mapping),
mipmaps must be created specifically for trilinear texture mapping on each Texelfx chip. The odd levels
must be downloaded to one chip, and the even levels must be downloaded to another chip. The
mipmaps must have the trilinear variable set to FXTRUE (see Chapter 10). The texture combine unit on
the downstream TMU is set differently, depending on whether it holds the even or the odd LODs. The
upstream TMU always uses decal mapping.

If a texture will be used for both trilinear filtering and another combine operation (but not
simultaneously), it must be allocated and downloaded twice, once with LODblend set to FXTRUE and
the other time with LODblend set to FXFALSE.

Glide 3.0 Programming Guide

102 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Example 9.3 Using trilinear filtering: mipmap blending with bilinear filtering.
The first code segment shows the texture combine unit configuration for trilinear mipmapping when the even
LODs are stored in TMU0 and the odd ones are in TMU1. As usual, the code assumes that the textures are
loaded, the TMU base registers are pointing to them, and the color combine unit is configured to make use of
the resulting RGBA value.

grTexCombine(GR_TMU0,
GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL,
GR_COMBINE_FACTOR_LOD_FRACTION,
GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL,
GR_COMBINE_FACTOR_LOD_FRACTION,
FXFALSE, FXFALSE);

grTexCombine(GR_TMU1, GR_COMBINE_FUNCTION_LOCAL,
GR_COMBINE_FACTOR_NONE,

GR_COMBINE_FUNCTION_LOCAL, GR_COMBINE_FACTOR_NONE,
FXFALSE, FXFALSE);

This second code segment gives the proper grTexCombine() configuration when the situation is reversed: the
odd LODs in the mipmap are on TMU0 while the even ones are upstream on TMU1. Note the difference: the
setting of the rgbInvert and alphaInvert parameters. We make the same assumptions as above.

grTexCombine(GR_TMU0,
GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL,
GR_COMBINE_FACTOR_ONE_MINUS_LOD_FRACTION,
GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL,
GR_COMBINE_FACTOR_ONE_MINUS_LOD_FRACTION,
FXFALSE, FXFALSE);

grTexCombine(GR_TMU1, GR_COMBINE_FUNCTION_LOCAL,
GR_COMBINE_FACTOR_NONE,

GR_COMBINE_FUNCTION_LOCAL, GR_COMBINE_FACTOR_NONE,
FXFALSE, FXFALSE);

Configuring the Texture Pipeline for Composite Texturing

When a bilinear-filtered texture-mapped surface is viewed closely, the resulting image may be blurry
and overly soft. A technique known as composite texturing can remedy this blurriness. Composite
texturing blends two textures together based on their LOD values. One texture represents the overall
texture look, and the other texture represents the details that should be seen when the texture is viewed
closely. For example, brick can be represented with a tiled brick pattern. As the viewer moves closer to
the wall, pits and cracks in the bricks could begin to appear by blending a separate “pits and cracks”
texture into the brick based on the LOD value.

The Glide function grTexDetailControl() manages the various parameters involved when performing
composite texture mapping.

void grTexDetailControl(GrChipID_t tmu, int detailBias, FxU8 detailScale, float detailMax)

The first argument specifies the TMU to modify; valid values are GR_TMU0, GR_TMU1, and GR_TMU2.
The second argument, detailBias, controls where the blending between the two textures begins and is
an integer in the range [–32..31]. The detailScale argument controls the steepness of the blend; valid
values are [0..7]. The scale is computed as 2detail_scale. The detailMax argument specifies the maximum
blending that will occur and is in the range [0..1].

9. Texture Mapping

Copyright  1995-1998 3Dfx Interactive, Inc. 103
Proprietary and Confidential Printed 08/05/98 10:30 AM

Detail texturing refers to the effect where the blend between two textures in a texture combine unit is a
function of the LOD calculated for each pixel. grTexDetailControl() controls how the detail blending
factor, β, is computed from LOD. The detailBias parameter controls where the blending begins; the
detailScale parameter controls how fast the detail shows up; and the detailMax parameter controls the
maximum blending that occurs.

β = min(detailMax, max(0, (detailBias–LOD) << detailScale) / 255.0)

where LOD is the calculated LOD before grTexLodBiasValue() is added. The detail blending factor is
utilized by calling grTexCombine() with an rgbFunction of GR_COMBINE_FUNCTION_BLEND and an
rgbFactor of GR_COMBINE_FACTOR_DETAIL_FACTOR to compute:

cout = β(cdetail texture) + (1–β)(cmain_texture)

An LOD of n is calculated when a pixel covers approximately 22n texels. For example, when a pixel
covers approximately one texel, the LOD is 0; when a pixel covers four texels, the LOD is 1; when a
pixel covers 16 texels, the LOD is 2.

Detail blending occurs in the downstream TMU. Since the detail texture and main texture typically
have very different computed LODs, the detail texturing control settings depend on which texture is in
the downstream TMU.

Example 9.4 Creating a composite texture.
The code segment below creates a composite texture by adding details to the primary texture as the viewer
approaches. The primary texture is loaded onto TMU0 while the detail texture is upstream on TMU1. The
scale factor GR_COMBINE_FACTOR_DETAIL_FACTOR creates the composite on TMU0, while TMU1 does
decal mapping.

grTexCombine(GR_TMU0,
GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL,
GR_COMBINE_FACTOR_DETAIL_FACTOR,
GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL,
GR_COMBINE_FACTOR_DETAIL_FACTOR,
FXFALSE, FXFALSE);

grTexCombine(GR_TMU1, GR_COMBINE_FUNCTION_LOCAL,
GR_COMBINE_FACTOR_NONE,

GR_COMBINE_FUNCTION_LOCAL, GR_COMBINE_FACTOR_NONE,
FXFALSE, FXFALSE);

Copyright  1995−1998 3Dfx Interactive, Inc. 105
Proprietary and Confidential Printed 08/05/98 10:30 AM

10. Managing Texture Memory

In This Chapter
In the last chapter, the routines that control texel selection and texture combining on the TMU were
presented. The discussion assumed that appropriate textures had already been loaded into the texture
memory. This chapter describes the multitude of texture formats that Glide supports and the routines
that download texture maps and manage texture memory.

You will learn about:

t the texture formats supported by Glide, including special formats for compressed textures
and a color palette.

t how to allocate memory for all or part of a mipmap.

t how to download all or part of a mipmap.

t how to designate a specific texture map as the texel source.

t how to split a mipmap across two TMUs.

t how to download and access a fragmented mipmap, one in which successive LODs occupy
non-contiguous texture memory.

t how to download a color palette or a narrow channel decompression table.

t how to download a texture map from a file.

Texture Map Formats
Texture memory is a valuable and limited resource. Glide supports a multitude of texture formats in
order to help the application programmer use texture memory wisely. Each format encodes the color
information for each texel in a different way; most compress it in some manner. Texels have either 8 or
16 bits, depending on the texture format, and are expanded to 32 bits before being sent to the texture
combine unit.

Glide uses symbolic names for the texture formats; the name describes the form of encoding for the
color information and the precision. For example:

• Texture formats GR_TEXFMT_RGB_332 and GR_TEXFMT_ARGB_8332 use three bits each for red and
green and two bits for blue. An 8-bit alpha is included in the latter.

• Texture formats GR_TEXFMT_RGB_565, GR_TEXFMT_ARGB_1555, and GR_TEXFMT_ARGB_4444
provide three different ways to compress three or four 8-bit color component values into 16 bits.
The first format discards alpha and uses five bits for red and blue, and six bits for green. The
second one uses five bits each for red, green, and blue, and saves the extra bit for alpha. The third
format treats all four components equally, using four bits for each.

Glide 3.0 Programming Guide

106 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

• Texture formats GR_TEXFMT_INTENSITY_8, GR_TEXFMT_ALPHA_INTENSITY_44, and
GR_TEXFMT_ALPHA_INTENSITY_88 contain an intensity value rather than color components and
can model monochrome lighting effects. Example 9.2 in the previous chapter uses an intensity
texture in combination with another to produce a modulated texture.

• Texture format GR_TEXFMT_ALPHA_8 contains only an 8-bit alpha value. When the texel is
expanded to a 32-bit ARGB form, the alpha value is used for red, green, and blue as well.

• Texture formats GR_TEXFMT_YIQ_422 and GR_TEXFMT_AYIQ_8422 use a narrow channel
compression technique to encode the color information. Each TMU has storage for two distinct
decompression tables that translate the encoded information into 32-bit colors. Narrow channel
compression is described in detail below.

• Texture formats GR_TEXFMT_P_8 and GR_TEXFMT_AP_88 implement a color palette, described
below. Each TMU has room for one 256-entry color palette.

Table 10.1 shows all thirteen texture formats, detailing the format of a texel and the expansion to 32
bits for each texture format.

Narrow Channel Compression
The 3Dfx Interactive graphics accelerators provide a form of narrow channel compression that uses a
YAB color space based on intensity/chrominance information. The compression is based on an
algorithm that compresses a 24-bit RGB value to an 8-bit YAB format with little loss in precision. This
YAB compression algorithm is especially suited to texture mapping, as textures typically contain very
similar color components. The algorithm is performed by the host CPU, and YAB compressed textures
are passed to SST-1. The advantages of using compressed textures are increased effective texture
storage space and lower bandwidth requirements to perform texture filtering.

The YAB color space is represented with eight bits per pixel, and, like the GR_TEXTFMT_RGB_332
representation (see Table 10.1), it allocates specific fields in those eight bits to specific components:
four bits for Y and two bits each for A and B. For example, if the mapping from RGB to YAB is
accomplished by the following linear matrix transformation,

Y = 0.299*red + 0.587*green + 0.114*blue

A = 0.596*red + 0.275*green + 0.321*blue

B = 0.212*red + 0.523*green + 0.311*blue Equation Set 1

it is called YIQ compression. Two Glide texture formats utilize YIQ compression:
GR_TEXTFMT_YIQ_422 and GR_TEXTFMT_AYIQ_8422.

Compression is achieved by quantizing the Y, A, and B space more coarsely than the RGB space (by
allocating fewer bits to each channel in YAB space) without degrading the quality of the image
substantially. Also, instead of allocating the same number of bits to each channel (as is done when
compressing RGB values directly), we can allocate more bits to channels carrying more information,
and fewer bits otherwise. For example, when the image is represented in YIQ space with the equations
above, it is possible to allocate only 16 distinct values to Y, which carries the intensity variations in the
image, and only 4 distinct values for the I and Q channels, which carry the hue information. Hence, the
original 24-bit RGB image can be represented in YIQ space with only eight bits of information,
reducing the space requirements for the texture by a factor of three.

10. Managing Texture Memory

Copyright  1995-1998 3Dfx Interactive, Inc. 107
Proprietary and Confidential Printed 08/05/98 10:30 AM

Table 10.1 Texture formats.
The table below shows the available texture formats and describes how texture data is expanded into 32-bit
RGBA color. It also shows how 32-bit RGBA texture information is derived from the YAB compression texture
formats. This is detailed in the Narrow Channel Compression section in this chapter.

symbolic name (prefixed
with GR_TEXFMT_) compressed form in texture memory expanded 32-bit ARGB form

RGB_332

8-bit RGB
(3-3-2) green blue

7 0

red

25 4 1

alpha

2431 16

red

23 815 0

blue

7

green

1 1 1 1 1 1 1 1 red red red green green green
d

blue blue blue blue

YIQ_422

8-bit YIQ

(4-2-2) A B

7 0

Y

24 3 1

alpha

2431 16

red

23 815 0

blue

7

green

1 1 1 1 1 1 1 1 ncc[Y]+ncc[I]+ ncc[Q] ncc[Y]+ncc[I]+ ncc[Q] ncc[Y]+ncc[I]+ ncc[Q]

ALPHA_8

8-bit Alpha

7 0

alpha

alpha

2431 16

red

23 815 0

blue

7

green

alpha alpha alpha alpha

INTENSITY_8

8-bit Intensity

7 0

intensity

alpha

2431

1 1 1 1 1 1 1 1

16

red

23 815 0

blue

7

green

intensityintensityintensity

ALPHA_INTENSITY_44

8-bit Alpha and Intensity
(4-4) intensity

7 0

alpha

4 3 15 8 7 023 1631 24

alpha red bluegreen

intensityintensity intensity intensity intensity intensityalpha alpha

P_8
8-bit Palette

7 0

palette

alpha

2431 16

red

23 815 0

blue

7

green

1 1 1 1 1 1 1 1 palette red[7:0] palette green[7:0] palette blue[7:0]

ARGB_8332

16-bit ARGB
(8-3-3-2) greenred

7 01

blue

8 5 415

alpha

2

alpha

2431 16

red

23 815 0

blue

7

green

alpha red red red green green green
d

blue blue blue blue

AYIQ_8422

16-bit AYIQ

(8-4-2-2) AY

7 01

B

8 4 315

alpha

2

alpha

2431 16

red

23 815 0

blue

7

green

ncc[Y]+ncc[I]+ ncc[Q] ncc[Y]+ncc[I]+ ncc[Q] ncc[Y]+ncc[I]+ ncc[Q]alpha

RGB_565

16-bit RGB
(5-6-5) greenred

10 0

blue

11 5 415

alpha

2431 16

red

23 815 0

blue

7

green

1 1 1 1 1 1 1 1 red red green green
d

blue blue

ARGB_1555

16-bit ARGB
(1-5-5-5) greenred

9 0

blue

10 5 415

alpha

14

alpha

2431 16

red

23 815 0

blue

7

green

αα αα αα αα αα αα αα αα red red green green blue blue

ARGB_4444

16-bit ARGB
(4-4-4-4) greenred

8 0

blue

11 4 315

alpha

12 7 15 8 7 023 1631 24

alpha red bluegreen

bluered red green green bluealpha alpha

ALPHA_INTENSITY_88

16-bit Alpha and
Intensity (8-8) intensity

7 0815

alpha

alpha

2431 16

red

23 815 0

blue

7

green

alpha intensity intensity intensity

AP_88

16-bit Alpha and Palette
(8-8) palette

7 0815

alpha

alpha

16

red

23 815 0

blue

7

green

2431

alpha palette red[7:0] palette green[7:0] palette blue[7:0]

Glide 3.0 Programming Guide

108 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

The decompression from YIQ to RGB is the inverse of the compression equations above. The RGB
values can be recovered as follows:

red = Y + 0.95•A + 0.62•B

blue = Y – 0.28•A – 0.64•B

green = Y – 1.11•A + 1.73•B Equation Set 2

Implementing these equations in hardware as formulated above is expensive: the YAB components must
be scaled and two multipliers per component are needed. In addition, when compressed textures are
used in conjunction with bilinear filtering, 24 multipliers are needed, since four texels must be made
available simultaneously. But, by rewriting the equations as vectors (shown below) and building a
small lookup table with pre-computed RGB values, the need for multipliers is eliminated, at least in the
decompression circuitry.

(red, green, blue) = (Y, Y, Y) + (0.95•A, –0.28•A, –1.11•A) + (0.62•B, –0.64•B, –1.73•B) Equation 3

The four entries in the lookup table for A, then, represent the values of red, green, and blue calculated
for four distinct values of A: –256, –85, 85, and 255. And the four entries in the lookup table for B
represent the RGB values calculated for four distinct values of B. Y is implemented with a lookup table
as well, but with sixteen distinct entries. Note that the quantized values of Y, A, and B can be any four
values and don’t necessarily have to be evenly spaced or cover the full range of values.

Note that the graphics hardware will work with any set of similar compression/decompression
equations: the constants are contained in the table entries and the mechanics of the decompression are
independent of them. The constants in the equations above are the ones used in YIQ space and were
chosen to optimize the compression of flesh tones and backgrounds in photographs and videos. Most
computer graphics textures, like terrain, sky, building facades, and so on, are not necessarily aligned
along the orange-blue and purple-green axes of YIQ space and benefit from a different set of constants.
The 3Dfx Interactive TexUS texture utility software provides routines for generating compressed
textures using the YIQ equations shown above. It also provides a neural net program that can optimize
the choice of factors in the equation for a given texture.

The Color Palette
An 8-bit color palette is implemented in all TMU chips after Revision 0. It is a 256-entry RGB table
that is accessed during rendering by texture formats GR_TEXFMT_P_8 and GR_TEXFMT_AP_88 (see
Table 10.1). These two texture formats store an 8-bit offset into the color palette for each texel in the
texture map. During rendering, four texels are looked up simultaneously, each with an independent 8-
bit address. The process of downloading NCC tables and color palettes is described later in this
chapter.

Glide.30 introduces and color palette extension that provides an alternate palette format containing 6-
bit ARGB entries instead of 8-bit RGB entries. It is described in Chapter 13.

10. Managing Texture Memory

Copyright  1995-1998 3Dfx Interactive, Inc. 109
Proprietary and Confidential Printed 08/05/98 10:30 AM

Figure 10.1 The color palette.
TMU Revision 1 provides a color palette. The color palette holds 256 RGB colors that are retrieved during
rendering, with a texture map utilizing one of the two palette texture formats: GR_TEXFMT_P_8 or
GR_TEXFMT_AP_88. The texel in these two formats is an offset into the color palette; GR_TEXFMT_AP_88
appends an alpha value to the palette offset. In addition, see the discussion of the PALETTE6666 extension in
Chapter 13.

red green blue

red[p] green[p] blue[p]

red[p] green[p] blue[p]

texture format
GR_TEXFMT_P_8

texture format
GR_TEXFMT_AP_88

α

0xFF

α

256-entry color palette

Texture Memory
Each TMU has its own texture memory, which ranges in size from 2MB to 4MB depending on the
system configuration. To download a texture into texture memory, one must complete the following
steps:

STEP1: Determine how much memory is required for the texture.
STEP2: Determine the starting address and extent of free space. Is it adequate for the texture? Will a

mipmap level straddle the 2Mbyte boundary in texture memory (thereby causing an error)?
STEP3: Download the texture.
STEP4: Identify the texture as the texel source for subsequent texture mapping operations.

Glide does no texture memory management; rather, it includes several functions that allow the
application to manage it.

Computing the Size of a Mipmap
The Glide functions grTexCalcMemRequired() and grTexTextureMemRequired() determine the storage
requirements of a mipmap. The size returned by these functions includes any bytes required to pad the
texture to a hardware-specific alignment boundary, and may be added to the starting address of the
texture to determine the next available location in texture memory.

Both routines use the texture format, aspect ratio, and range of LODs in the mipmap to compute the
size. These values are arguments to grTexCalcMemRequired(); they are extracted from a GrTexInfo

structure that is passed to grTexTextureMemRequired(). The other difference between the two routines
is that grTexTextureMemRequired() has an evenOdd argument and can determine the memory
requirements of a texture that will be split across two TMUs for trilinear filtering applications (see
Example 9.3 in the previous chapter).

Glide 3.0 Programming Guide

110 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Table 10.2 Glide constants that specify arguments to grTex functions.
The table below lists the constants used to name the values that can be specified as arguments to functions in
the grTex family. The first column lists the argument names that are used in the function specifications. The
second column gives the Glide type for the argument. The third column lists the constant name, and the fourth
column gives a description.

If the function
argument is named

and its type is then these constants are valid values and these are the consequences of

choosing that value.
tmu GrChipID_t GR_TMU0

GR_TMU1
GR_TMU2

Selects the target TMU. The
constant names it.

smallLOD
largeLOD
thisLOD

GrLOD_t GR_LOD_LOG2_256
GR_LOD_LOG2_128
GR_LOD_LOG2_64
GR_LOD_LOG2_32
GR_LOD_LOG2_16
GR_LOD_LOG2_8
GR_LOD_LOG2_4
GR_LOD_LOG2_2
GR_LOD_LOG2_1

The number in the constant is the
largest of the texture. The aspect
ratio determines the smaller
dimension.

aspectRatio GrAspectRatio_t GR_ASPECT_LOG2_8x1
GR_ASPECT_LOG2_4x1
GR_ASPECT_LOG2_2x1
GR_ASPECT_LOG2_1x1
GR_ASPECT_LOG2_1x2
GR_ASPECT_LOG2_1x4
GR_ASPECT_LOG2_1x8

The constant sets the aspect ratio
of the textures in a mipmap.

format GrTextureFormat_t GR_TEXFMT_RGB_332
GR_TEXFMT_YIQ_422
GR_TEXFMT_ALPHA_8
GR_TEXFMT_INTENSITY_8
GR_TEXFMT_ALPHA_INTENSITY_44
GR_TEXFMT_P_8
GR_TEXFMT_ARGB_8332
GR_TEXFMT_AYIQ_8422
GR_TEXFMT_RGB_565
GR_TEXFMT_ARGB_1555
GR_TEXFMT_ARGB_4444
GR_TEXFMT_ ALPHA_INTENSITY_88
GR_TEXFMT_AP_88

See Table 10.1 for a description
of the texture formats.

evenOdd FxU32 GR_MIPMAPLEVELMASK_EVEN
GR_MIPMAPLEVELMASK_ODD
GR_MIPMAPLEVELMASK_BOTH

Even LODs are GR_LOD_LOG2_256,
GR_LOD_LOG2_64,
GR_LOD_LOG2_16, GR_LOD_LOG2_4,
and GR_LOD_LOG2_1.

Odd LODs are GR_LOD_LOG2_128,
GR_LOD_LOG2_32, GR_LOD_LOG2_8,
and GR_LOD_LOG2_2.

range GrTexBaseRange_t GR_TEXBASE_256
GR_TEXBASE_128
GR_TEXBASE_64
GR_TEXBASE_32_TO_1

Specifies the base register when
using more than one. A mipmap
can be broken into four fragments.
The number in the constant
corresponds to the LOD number.

tableType
table

GrTexTable_t GR_TEX_NCC0
GR_TEX_NCC1
GR_TEX_PALETTE

Each TMU can have two NCC
tables and a palette. Load them
one at a time with a general
purpose routine.

mipmapMode
mode

GrMipMapMode_t GR_MIPMAP_DISABLE
GR_MIPMAP_NEAREST
GR_MIPMAP_NEAREST_DITHER

Specifies the kind of mipmapping
to perform.

10. Managing Texture Memory

Copyright  1995-1998 3Dfx Interactive, Inc. 111
Proprietary and Confidential Printed 08/05/98 10:30 AM

FxU32 grTexCalcMemRequired(GrLOD_t smallLOD,
GrLOD_t largeLOD,
GrAspectRatio_t aspectRatio,
GrTextureFormat_t format

)

grTexCalcMemRequired() calculates and returns the amount of memory required by a mipmap of the
specified LOD range, aspect ratio, and format. The first two arguments, smallLOD and largeLOD,
define the range of LODs in the mipmap. The third argument, aspectRatio, specifies the aspect ratio of
the mipmap and the fourth argument, format, gives the texture format. All four arguments are specified
using Glide constants; the choices are listed in Table 10.2.

PORTING
NOTE

Applications should make no assumptions about texture alignment. Specifically,
applications should not assume that textures are aligned to 8-byte boundaries, as this
could change in future 3Dfx chipsets. In Glide 3.0 the grGet() selector
GR_TEXTURE_ALIGN has been added so that developers can write code that will
automatically align textures correctly.

The memory requirements for the mipmap can be computed directly from these four parameters. The
LOD range determines the length of the longest edge of each LOD. The aspect ratio provides a way to
compute the length of the shorter edge of the LOD and, hence, the number of texels in the mipmap. The
texture format determines the space requirements for one texel, which can be multiplied by the number
of texels in order to compute the storage requirements for the mipmap. The two functions described
here, grTexCalcMemRequired() and grTexTextureMemRequired(), will do the calculations.

Many of Glide’s texture management routines make use of the GrTexInfo structure to collect the
mipmap parameters together with the mipmap data.

PORTING
NOTE

The GrTexInfo structure has been changed in Glide 3.0:

• smallLodLog2 is the logarithm base 2 of the largest dimension of the lowest
resolution mipmap. It replaces smallLod. The aspect ratio determines the smaller
dimension.

• largeLodLog2 is the logarithm base 2 of the largest dimension of the highest
resolution mipmap. It replaces largeLod.

• aspectRatioLog2 is the logarithm base 2 of the ratio of width to height. It replaces
aspectRatio. If the aspect ratio is positive, then s will be the larger dimension of the
mipmap; if it is negative, then t will be the larger dimension.

typedef struct {
GrLOD_t smallLodLog2;
GrLOD_t largeLodLog2;
GrAspectRatio_t aspectRatioLog2;
GrTextureFormat_t format;
void *data;

Glide 3.0 Programming Guide

112 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

} GrTexInfo;

FxU32 grTexTextureMemRequired(FxU32 evenOdd, GrTexInfo *info)

grTexTextureMemRequired() calculates and returns the number of bytes required to store the texture
described in the structure pointed to by info. The number returned may be added to the starting address
for a texture download to determine the next free location in texture memory.

The range of LODs in the mipmap is defined in the info structure. The other argument, evenOdd,
indicates whether even, odd, or all LODs within the specified range should be used in computing the
space requirements. For example, if the mipmap is used for trilinear filtering, the even LODs are
downloaded and used on one TMU, and the odd LODs on another. evenOdd is specified symbolically:
valid values are GR_MIPMAPLEVELMASK_EVEN, GR_MIPMAPLEVELMASK_ODD, and
GR_MIPMAPLEVELMASK_BOTH. Figure 10.2 describes the evenOdd flag and even and odd LODs. In
general, an LOD is even if its size is an even power of 2, and odd otherwise. Thus, the even LODs are
GR_LOD_LOG2_256, GR_LOD_LOG2_64, GR_LOD_LOG2_16, GR_LOD_LOG2_4, and GR_LOD_LOG2_1. The other LODs
are odd: GR_LOD_LOG2_128, GR_LOD_LOG2_32, GR_LOD_LOG2_8, and GR_LOD_LOG2_2.

Figure 10.2 The size of a mipmap depends on the setting of the evenOdd flag.
Suppose we have a GrTexInfo structure with data, as shown below.

smallLodLog2

largeLodLog2

aspectRatioLog2

format

data

GR_LOD_LOG2_8

GR_LOD_LOG2_128

GR_ASPECT_LOG2__2x1

GR_TEXFMT_INTENSITY_8

info

GR_LOD_LOG2_128

The size returned by grTexTextureMemRequired() depends on the value of the evenOdd flag, as shown below.

LOD width height number of bytes
GR_LOD_LOG2_128 128 64 213 = 8192 bytes
GR_LOD_LOG2_64 64 32 211 = 2048 bytes
GR_LOD_LOG2_32 32 16 29 = 512 bytes
GR_LOD_LOG2_16 16 8 27 = 128 bytes
GR_LOD_LOG2_8 8 4 25 = 32 bytes

òògrTexTextureMemRequired(GR_MIPMAPLEVELMASK_BOTH, info) returns the sum of the sizes of all 5 LODs.

8192 + 2048 + 512 + 128 + 32 = 10,912 bytes

òò grTexTextureMemRequired(GR_MIPMAPLEVELMASK_ODD, info) returns the sum of the
sizes of the odd LODs: GR_LOD_LOG2_128, GR_LOD_LOG2_32, and GR_LOD_LOG2_8.

8192 + 512 + 32 = 8,736 bytes

òò grTexTextureMemRequired(GR_MIPMAPLEVELMASK_EVEN, info) returns the sum of the
sizes of the even LODs: GR_LOD_LOG2_64 and GR_LOD_LOG2_16.

10. Managing Texture Memory

Copyright  1995-1998 3Dfx Interactive, Inc. 113
Proprietary and Confidential Printed 08/05/98 10:30 AM

2048 + 128 = 2,176 bytes

Querying for Available Memory
Two Glide functions, grTexMinAddress() and grTexMaxAddress() provide initial upper and lower
bounds on texture memory for the specified TMU. They each have one argument, tmu, which selects
the TMU on which to check the memory bounds.

FxU32 grTexMinAddress(GrChipID_t tmu)

FxU32 grTexMaxAddress(GrChipID_t tmu)

grTexMinAddress() and grTexMaxAddress() provide initial values for free space pointers in a Glide
application. Be aware, however, that they always return the same values, regardless of whether any
textures have been downloaded.

grTexMinAddress() returns the first location in texture memory into which a texture can be loaded.

grTexMaxAddress() returns the last possible appropriately aligned address that can be used as a
starting address; only the smallest possible texture can be loaded there: the 1×1 texture
GR_LOD_LOG2_1.

Texture memory management can be simple, sophisticated, or somewhere in between, depending on
size and number of textures that will be loaded. The examples below show some straightforward
techniques.

One important restriction must be mentioned: a mipmap level cannot straddle the 2Mbyte boundary in
texture memory. That is, the addresses of the first and last words in the level must either both be
greater or both be less than 2 Mbytes (221). One simple way to work around this limitation is to load
complete mipmaps on one side or the other, depending on the fit, as shown in Example 10.2.

Example 10.1 Will the mipmap fit?
This code segment illustrates a simple scenario where a single mipmap is loaded into an empty texture
memory on TMU0. Since this is the only texture that is loaded, there is no need to implement a free list.

FxU32 textureSize, startAddress;

textureSize = grTexCalcMemRequired(GR_LOD_LOG2_1, GR_LOD_LOG2_256,
GR_ASPECT_LOG2_1x1, GR_TEXFMT_ARGB_1555

);
startAddress = grTexMinAddress(GR_TMU0);

if (startAddress + textureSize <= grTexMaxAddress(GR_TMU0))
download_the_texture;

Example 10.2 Setting up to load several mipmaps.
This code segment gets a little more real than the one above by keeping a pointer to the next available
starting address for mipmaps. To get a starting address for a texture, call the subroutine.

#define TEXMEM_2MB_EDGE 2097152
FxU32 textureSize, nextTexture, lastTexture;

Glide 3.0 Programming Guide

114 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

/* these two lines initialize the bounds and should be part */
/* of the initialization code in the main program */
nextTexture = grTexMinAddress(GR_TMU0);
lastTexture = grTexMaxAddress(GR_TMU0)

long getStartAddress(FxU32 evenOdd, GrTexInfo *info)
{ long start;

textureSize = grTexTextureMemRequired(evenOdd, info);
start = nextTexture;

/* check for 2MB edge and space past it if necessary */
if ((start< TEXMEM_2MB_EDGE) && (start+textureSize> TEXMEM_2MB_EDGE))

start = TEXMEM_2MB_EDGE

nextTexture += textureSize;
if (nextTexture <= lastTexture) return start;
else {

nextTexture = start;
return -1;

}

Downloading Mipmaps
Download a mipmap into texture memory with the function grTexDownloadMipMap(). Replace an
individual mipmap level with grTexDownloadMipMapLevel(). Replace part of an LOD with
grTexDownloadMipMapLevelPartial().

The first argument to all three routines is tmu, which designates the target TMU for the load. Each of
the three routines also provides a startAddress argument that specifies an offset into texture memory
where the texture will be loaded, and an evenOdd argument that indicates which levels to load
(specified as one of GR_MIPMAPLEVELMASK_EVEN, GR_MIPMAPLEVELMASK_ODD, or
GR_MIPMAPLEVELMASK_BOTH). startAddress must lie between the values returned by
grTexMinAddress() and grTexMaxAddress() and must be appropriately aligned.

grTexDownloadMipMap() expects the mipmap parameters (aspect ratio, texture format, LOD range,
and the texture data) in a GrTexInfo structure; the other two routines have arguments for each
parameter.

Downloading All or Part of a Mipmap

Use grTexDownloadMipMap() to load a mipmap.

typedef struct {
GrLOD_t smallLodLog2;
GrLOD_t largeLodLog2;
GrAspectRatio_t aspectRatioLog2;
GrTextureFormat_t format;
void *data;

} GrTexInfo;

void grTexDownloadMipMap(GrChipID_t tmu, FxU32 startAddress, FxU32 evenOdd, GrTexInfo *info)

10. Managing Texture Memory

Copyright  1995-1998 3Dfx Interactive, Inc. 115
Proprietary and Confidential Printed 08/05/98 10:30 AM

Figure 10.3 Downloading a mipmap.
Suppose we have a GrTexInfo structure with data, as shown below.

smallLod

largeLod

aspectRatio

format

data

GR_LOD_LOG2_8

GR_LOD_LOG2_128

GR_ASPECT_LOG2_2x1

GR_TEXFMT_INTENSITY_8

info

GR_LOD_LOG2_128

The three drawings below show startAddress and its relationship to where and what textures are loaded, based
on the evenOdd value. The first grTexDownloadMipMap() call loads all LODs between GR_LOD_LOG2_128
and GR_LOD_LOG2_8.

TMU0

grTexDownloadMipMap(GR_TMU0, startAddress, GR_MIPMAPLEVELMASK_BOTH, info)

The second scenario loads only the odd LODs. Recall that the largest dimension of odd LODs is an odd power
of two. In this case, GR_LOD_LOG2_128, GR_LOD_LOG2_32, and GR_LOD_LOG2_8 are odd LODs.

grTexDownloadMipMap(GR_TMU0, startAddress, GR_MIPMAPLEVELMASK_ODD, info)

TMU0

The final scenario loads only the even LODs. Note that no modification is necessary to the values in the
GrTexInfo structure pointed to by info. Glide will skip over the texture data for the odd LODs, only loading
the even ones.

grTexDownloadMipMap(GR_TMU0, startAddress, GR_MIPMAPLEVELMASK_EVEN, info)

TMU0

Glide 3.0 Programming Guide

116 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Replacing a Single LOD

One form of simple texture memory management requires only that the application swap mipmaps with
identical memory footprints (i.e., same format, dimensions, and mipmap levels) in and out of the same
texture memory area. Texture replacement is a simple facility for doing texture map animation, and it is
also a method of doing dynamic texture management: the local texture buffer is split into discrete
texture regions that are updated as needed. To replace a mipmap, use the Glide function
grTexDownloadMipMap() with new data. Alternatively, an application can swap out individual mipmap
levels within a mipmap using grTexDownloadMipMapLevel().

void grTexDownloadMipMapLevel(GrChipID_t tmu,
FxU32 startAddress,
GrLOD_t thisLOD,
GrLOD_t largeLOD,
GrAspectRatio_t aspectRatio,
GrTextureFormat_t format,
FxU32 evenOdd,
void *data

)

grTexDownloadMipMapLevel() replaces a single mipmap level in a previously downloaded mipmap
that begins at startAddress. Argument largeLOD specifies the largest (and first) LOD in the
downloaded mipmap; the aspectRatio and format locate the first texel of thisLOD. The data argument
points to the first texel of the new LOD, as shown in Figure 10.4.

10. Managing Texture Memory

Copyright  1995-1998 3Dfx Interactive, Inc. 117
Proprietary and Confidential Printed 08/05/98 10:30 AM

Figure 10.4 Replacing a single LOD.
Suppose a mipmap has been loaded into TMU1 with the following command and data.

grTexDownloadMipMap(GR_TMU1,startAddress,GR_MIPMAPLEVELMASK_BOTH, info)

smallLod

largeLod

aspectRatio

format

data

GR_LOD_LOG2_8

GR_LOD_LOG2_256

GR_ASPECT_LOG2_1x1

GR_TEXFMT_ARGB_1555

info

GR_LOD_LOG2_256

GR_LOD_LOG2_128

To replace GR_LOD_LOG2_128, use the following call to grTexDownloadMipMapLevel().

TMU1

grTexDownloadMipMapLevel(GR_TMU1, startAddress, GR_LOD_128, info→largeLod,
info→aspectRatio, info→format,
GR_MIPMAPLEVELMASK_BOTH, newData)

Replacing Part of an LOD

Applications that want to replace one of the large LODs in a mipmap, but also want to maintain a
snappy frame rate, may opt to replace the LOD a few rows at a time with
grTexDownloadMipMapLevelPartial().

void grTexDownloadMipMapLevelPartial(GrChipID_t tmu,
FxU32 startAddress,
GrLOD_t thisLOD,
GrLOD_t largeLOD,
GrAspectRatio_t aspectRatio,
GrTextureFormat_t format,
FxU32 evenOdd,
void *data,
int firstRow,
int lastRow

Glide 3.0 Programming Guide

118 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

)
The first seven arguments to grTexDownloadMipMapLevelPartial() are the same as those to
grTexDownloadMipMapLevel(): the tmu that the texture is loaded on, the starting address, the LOD
that will be partially replaced, the largest LOD in the mipmap, the aspect ratio and texture format of
the downloaded texture, and the evenOdd flag. The data argument points to a stream of texels that will
overwrite those in texture memory, starting at the row firstRow in thisLOD and continuing through
lastRow. To download one row of the texture, use the same value for firstRow and lastRow.

Figure 10.5 Replacing a few rows of an LOD.
Suppose a mipmap has been loaded into TMU0 with the following command and data.

grTexDownloadMipMap(GR_TMU0, startAddress, GR_MIPMAPLEVELMASK_BOTH, info)

smallLod

largeLod

aspectRatio

format

data

GR_LOD_LOG2_32

GR_LOD_LOG2_256

GR_ASPECT_LOG2_8x1

GR_TEXFMT_AP_88

info

GR_LOD_LOG2_256

GR_LOD_LOG2_128

To replace GR_LOD_LOG2_256 in chunks, use a series of calls to grTexDownloadMipMapLevelPartial():

for (row=0; row<256; row+=64)
grTexDownloadMipMapLevel(GR_TMU0, startAddress, GR_LOD_LOG2_256, info→largeLodLog2,

info→aspectRatioLog2, info→format, GR_MIPMAPLEVELMASK_BOTH, newData, row, row +
63);

TMU0

startAddress

newData

row

row+63

10. Managing Texture Memory

Copyright  1995-1998 3Dfx Interactive, Inc. 119
Proprietary and Confidential Printed 08/05/98 10:30 AM

Identifying a Mipmap as the Texel Source
The final step is to register the newly loaded mipmap with the TMU as the source for texels. The Glide
function grTexSource() provides this service.

void grTexSource(GrChipID_t tmu, FxU32 startAddress, FxU32 evenOdd, GrTexInfo *info)

grTexSource() sets up the area of texture memory that is to be used as a source for subsequent texture
mapping operations. The starting address, specified as argument startAddress, should be the same one
that was used as an argument to grTexDownloadMipMap(), or the starting address used for the largest
mipmap level when using grTexDownloadMipMapLevel().

Here are the three examples from Chapter 9, with additional lines of code to download the appropriate
textures.

Example 10.3 Downloading a texture for decal texture mapping.
The following code sets up the texture pipeline so that a texel is placed into the pixel pipeline without
modification. The code assumes that the color combine unit is configured to use the texture color and/or alpha
value.

FxU32 textureSize, startAddress;
GrTexInfo info;
FxU16 mipmap[256*256 + 128*128 + 64*64 + 32*32 + 256 + 64 + 16 + 4 +
1];

info.smallLodLog2 = GR_LOD_LOG2_1;
info.largeLodLog2 = GR_LOD_LOG2_256;
info.aspectRatioLog2 = GR_ASPECT_LOG2_1x1;
info.format = GR_TEXFMT_1555;
info.data = mipmap;

textureSize = grTexTextureMemRequired(GR_MIPMAPLEVELMASK_BOTH, &info);
startAddress = grTexMinAddress(GR_TMU0);
if ((startAddress + textureSize)> grTexMaxAddress(GR_TMU0)) {

printf(“error: texture too big for TMU0\n”);
exit();

}

grTexDownloadMipMap(GR_TMU0, startAddress, GR_MIPMAPLEVELMASK_BOTH,
&info);
grTexSource(GR_TMU0, startAddress, GR_MIPMAPLEVELMASK_BOTH, &info);

grTexCombine(GR_TMU0, GR_COMBINE_FUNCTION_LOCAL,
GR_COMBINE_FACTOR_NONE,
 GR_COMBINE_FUNCTION_LOCAL, GR_COMBINE_FACTOR_NONE,
 FXFALSE, FXFALSE);

Glide 3.0 Programming Guide

120 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Example 10.4 Downloading two textures for modulated or composite texture mapping.
The code segment below loads an intensity map for a spotlight in TMU0 and a source texture in TMU1. The
resulting texture RGBA is a product of the texels chosen from the two textures. The color combine unit must be
configured to use the output from the texture pipeline.

FxU32 textureSize[2], startAddress[2];
GrTexInfo src, spot;
FxU16 srcdata[256*256 + 128*128 + 64*64 + 32*32 + 256 + 64 + 16 + 4 +
1];
FxU8 spotdata[256*256 + 128*128 + 64*64 + 32*32 + 256 + 64 + 16 + 4 +
1];

src.smallLodLog2 = spot.smallLodLog2 = GR_LOD_LOG2_1;
src.largeLodLog2 = spot.largeLodLog2 = GR_LOD_LOG2_256;
src.aspectRatioLog2 = spot.aspectRatioLog2 = GR_ASPECT_LOG2_1x1;
src.format = GR_TEXFMT_1555;
src.data = srcdata;
spot.format = GR_TEXFMT_INTENSITY_8;
spot.data = spotdata;

textureSize[0] = grTexTextureMemRequired(GR_MIPMAPLEVELMASK_BOTH,
&spot);
startAddress[0] = grTexMinAddress(GR_TMU0);
if ((startAddress[0] + textureSize[0])> grTexMaxAddress(GR_TMU0)) {

printf(“error: spotlight texture too big for TMU0\n”);
exit();

}

textureSize[1] = grTexTextureMemRequired(GR_MIPMAPLEVELMASK_BOTH,
&src);
startAddress[1] = grTexMinAddress(GR_TMU1);
if ((startAddress[1] + textureSize[1])> grTexMaxAddress(GR_TMU1)) {

printf(“error: source texture too big for TMU1\n”);
exit();

}

grTexDownloadMipMap(GR_TMU0,startAddress[0],GR_MIPMAPLEVELMASK_BOTH,
&spot);
grTexSource(GR_TMU0,startAddress[0],GR_MIPMAPLEVELMASK_BOTH, &spot);
grTexCombine(GR_TMU0, GR_COMBINE_FUNCTION_SCALE_OTHER,
GR_COMBINE_FACTOR_LOCAL,

GR_COMBINE_FUNCTION_SCALE_OTHER, GR_COMBINE_FACTOR_LOCAL,
FXFALSE, FXFALSE);

grTexDownloadMipMap(GR_TMU1,startAddress[1],GR_MIPMAPLEVELMASK_BOTH,
&src);
grTexSource(GR_TMU1,startAddress[1],GR_MIPMAPLEVELMASK_BOTH, &src);
grTexCombine(GR_TMU1,
GR_COMBINE_FUNCTION_LOCAL, GR_COMBINE_FACTOR_NONE,

GR_COMBINE_FUNCTION_LOCAL, GR_COMBINE_FACTOR_NONE,
FXFALSE, FXFALSE);

10. Managing Texture Memory

Copyright  1995-1998 3Dfx Interactive, Inc. 121
Proprietary and Confidential Printed 08/05/98 10:30 AM

Example 10.5 Splitting a texture across two TMUs for trilinear mipmapping.
The first code segment shows the texture combine unit configuration for trilinear mipmapping when the even
LODs are stored in TMU0 and the odd ones are in TMU1. The code assumes that the color combine unit is
configured to make use of the resulting RGBA value.

FxU32 textureSize[2], startAddress[2];
GrTexInfo tri;
FxU16 mipmap[256*256 + 128*128 + 64*64 + 32*32 + 256 + 64 + 16 + 4 +
1];

tri.smallLodLog2 = GR_LOD_LOG2_1;
tri.largeLodLog2 = GR_LOD_LOG2_256;
tri.aspectRatioLog2 = GR_ASPECT_LOG2_1x1;
tri.format = GR_TEXFMT_1555;
tri.data = mipmap;

textureSize[0] = grTexTextureMemRequired(GR_MIPMAPLEVELMASK_EVEN,
&tri);
startAddress[0] = grTexMinAddress(GR_TMU0);
if ((startAddress[0] + textureSize[0])> grTexMaxAddress(GR_TMU0)) {

printf(“error: even LODs of texture too big for TMU0\n”);
exit();

}

textureSize[1] = grTexTextureMemRequired(GR_MIPMAPLEVELMASK_ODD, &tri)
;
startAddress[1] = grTexMinAddress(GR_TMU1);
if ((startAddress[1] + textureSize[1])> grTexMaxAddress(GR_TMU1)) {

printf(“error: odd LODs of texture too big for TMU1\n”);
exit();

}

grTexDownloadMipMap(GR_TMU0,startAddress[0],GR_MIPMAPLEVELMASK_EVEN,
&tri) ;
grTexSource(GR_TMU0,startAddress[0],GR_MIPMAPLEVELMASK_EVEN, &tri);
grTexCombine(GR_TMU0,

GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL,
GR_COMBINE_FACTOR_LOD_FRACTION,
GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL,
GR_COMBINE_FACTOR_LOD_FRACTION,
FXFALSE, FXFALSE);

grTexDownloadMipMap(GR_TMU1,startAddress[1],GR_MIPMAPLEVELMASK_ODD,
&tri);
grTexSource(GR_TMU1,startAddress[1],GR_MIPMAPLEVELMASK_ODD, &tri);
grTexCombine(GR_TMU1,
GR_COMBINE_FUNCTION_LOCAL, GR_COMBINE_FACTOR_NONE,

GR_COMBINE_FUNCTION_LOCAL, GR_COMBINE_FACTOR_NONE,
FXFALSE, FXFALSE);

This second code segment gives the proper grTexCombine() configuration when the situation is reversed: the
odd LODs in the mipmap are on TMU0 while the even ones are upstream on TMU1. Note the difference in the
texture combine unit configuration: the setting of the rgbInvert and alphaInvert parameters.

FxU32 textureSize[2], startAddress[2];
GrTexInfo tri;
FxU16 mipmap[256*256 + 128*128 + 64*64 + 32*32 + 256 + 64 + 16 + 4 +
1];

tri.smallLodLog2 = GR_LOD_LOG2_1;
tri.largeLodLog2 = GR_LOD_LOG2_256;
tri.aspectRatioLog2 = GR_ASPECT_LOG2_1x1;
tri.format = GR_TEXFMT_1555;
tri.data = mipmap;

Glide 3.0 Programming Guide

122 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

textureSize[0] = grTexTextureMemRequired(GR_MIPMAPLEVELMASK_ODD, &tri);
startAddress[0] = grTexMinAddress(GR_TMU0);
if ((startAddress[0] + textureSize[0])> grTexMaxAddress(GR_TMU0)) {

printf(“error: even LODs of texture too big for TMU0\n”);
exit();

}

textureSize[1] = grTexTextureMemRequired(GR_MIPMAPLEVELMASK_EVEN,
&tri);
startAddress[1] = grTexMinAddress(GR_TMU1);
if ((startAddress[1] + textureSize[1])> grTexMaxAddress(GR_TMU1)) {

printf(“error: odd LODs of texture too big for TMU1\n”);
exit();

}

grTexDownloadMipMap(GR_TMU0,startAddress[0],GR_MIPMAPLEVELMASK_ODD,
&tri);
grTexSource(GR_TMU0,startAddress[0],GR_MIPMAPLEVELMASK_ODD, &tri);
grTexCombine(GR_TMU0,

GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL,
GR_COMBINE_FACTOR_ONE_MINUS_LOD_FRACTION,
GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL,
GR_COMBINE_FACTOR_ONE_MINUS_LOD_FRACTION,
FXFALSE, FXFALSE);

grTexDownloadMipMap(GR_TMU1,startAddress[1],GR_MIPMAPLEVELMASK_EVEN,
&tri);
grTexSource(GR_TMU1,startAddress[1],GR_MIPMAPLEVELMASK_EVEN, &tri);
grTexCombine(GR_TMU1,
GR_COMBINE_FUNCTION_LOCAL, GR_COMBINE_FACTOR_NONE,

GR_COMBINE_FUNCTION_LOCAL, GR_COMBINE_FACTOR_NONE,
FXFALSE, FXFALSE);

Loading a Mipmap into Fragmented Memory
Normally, mipmap levels are stored sequentially in texture memory. Multi-base addressing allows
mipmap levels to be loaded into different texture memory locations. A mipmap can be split into four
chunks (along pre-defined boundaries), each of which can be loaded in a different location in texture
memory. Four different base addresses are specified for a multi-based texture, one each for
GR_LOD_LOG2_256, GR_LOD_LOG2_128, and GR_LOD_LOG2_64, and one for textures GR_LOD_LOG2_32
through GR_LOD_LOG2_1.

To use multi-base addressing, you must enable it with a call to grTexMultibase(), download the
mipmap as four smaller mipmaps, and then set up the multi-base addressing by calling
grTexMultibaseAddress() four times with the four starting addresses. See Example 10.6.

void grTexMultibase(GrChipID_t tmu, FxBool enable)

grTexMultibase() enables or disables multi-base addressing. Multi-base addressing must be enabled
before downloading a multi-based texture, and before rendering using a multi-based texture. Multi-base
addressing must be disabled before downloading or rendering from a texture with a single base address.

You must call grTexMultibaseAddress() once for each part of a fragmented texture with multiple base
addresses. In each case, startAddress should point to the texture memory location for the corresponding

10. Managing Texture Memory

Copyright  1995-1998 3Dfx Interactive, Inc. 123
Proprietary and Confidential Printed 08/05/98 10:30 AM

mipmap level. All of the base addresses for a multi-based texture should be specified before
downloading the texture or rendering from the texture.

void grTexMultibaseAddress(GrChipID_t tmu,
GrTexBaseRange_t range,
FxU32 startAddress,
FxU32 evenOdd,
GrTexInfo *info

)

The first argument names the TMU on which the fragmented texture will be loaded. The second
argument, range, tells which fragment this call is about, and is one of four Glide constants:
GR_TEXBASE_256, GR_TEXBASE_128, GR_TEXBASE_64, or GR_TEXBASE_32_TO_1. The third argument,
startAddress, is the starting address for this fragment. Note that grTexMultibaseAddress() should be
called with a valid starting address before the fragment is downloaded.

The fourth argument, evenOdd, specifies whether the even, the odd, or all textures in the mipmap will
be downloaded on this tmu. If a fragment is missing from the mipmap, or if a fragment will not be
downloaded on this tmu, then grTexMultibaseAddress() need not be called for that fragment.

Calls to grTexSource() are equivalent to calls to grTexMultibaseAddress() with the range argument set
to GR_LOD_LOG2_256.

Example 10.6 Using multiple texture base registers.
Suppose that start is an array of starting addresses that have been obtained from a memory management
routine. (The memory management details are left as an exercise for the reader.) Further suppose that the
block of texture memory pointed to by start[0] is large enough for GR_LOD_LOG2_256, that the block
pointed to by start[1] is large enough for GR_LOD_LOG2_128, and so on. The array mipmap points to the
four fragments. The lod array stores the four constants that identify the fragments for convenience in the for
loop that sets up the multiple base registers and downloads the fragments.

int i;
GrTexInfo info;
FxU32 start[4];
FxU16 mipmap[4][];
GrTexBaseRange_t lod[4]=(GR_TEXBASE_256,

GR_TEXBASE_128, GR_TEXBASE_64, GR_TEXBASE_32_TO_1);

grTexMultibase(GR_TMU0, FX_TRUE);

for (i=0; i,4; i++) {
info.smallLodLog2 = info.largeLodLog2 = lod[i];
info.data = mipmap[i];
grTexMultibaseAddress(GR_TMU0, lod[i], start[i], GR_MIPMAPLEVEL_BOTH,

&info);
grTexDownloadMipMap(GR_TMU0, start[i], GR_MIPMAPLEVEL_BOTH, &info);

}

Glide 3.0 Programming Guide

124 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Downloading a Decompression Table or Color Palette
The texels in mipmaps that use texture formats GR_TEXFMT_YIQ_422 and GR_TEXFMT_AYIQ_8422
must be “decompressed” to 32-bit values before being filtered and combined in the TMU. Texels that
are stored in texture formats GR_TEXFMT_P_8 and GR_TEXFMT_AP_88 must be looked up in a color
palette to translate them to 32-bit color components. The translation tables must be downloaded to the
same TMU as the textures that use them before texel selection can occur.

Glide maintains two NCC decompression tables and one 256-entry color palette. The NCC table or
color palette must be downloaded before a texture that uses it can be used as the source for texels.
Glide provides a routine that can download either a color palette or one of the two decompression
tables.

void grTexDownloadTable(GrTexTable_t tableType, void *data)

grTexDownloadTable() downloads either an NCC table or a 256-entry color palette. The first argument,
tableType, describes the kind of table to be downloaded and is specified with one of these Glide
constants: GR_TEX_NCC0, GR_TEX_NCC1, GR_TEX_PALETTE, or, if supported,
GR_TEX_PALETTE_6666_EXT (see Chapter 13). The second argument points to the data for the table.

Part of a 256-entry color palette can be downloaded or replaced with the Glide function
grTexDownloadTablePartial().

void grTexDownloadTablePartial(GrTexTable_t tableType, void *data, int start, int end)

Entries from start up to and including end are downloaded. To download one entry, use the same value
for start and end. Partial downloads of NCC tables is not supported at this time.

The two table types are discussed separately in the paragraphs that follow. A downloading example is
included for each kind.

PORTING
NOTE

In Glide 2.x, grTexDownloadTable(), grTexDownloadTablePartial(), and grTexNCCTable()
had an argument, tmu, that has been removed in Glide 3.0. All TMUs share the same
NCC table or color palette. If one TMU is using a color palette, then none of the others
can use an NCC table. Similarly, if TMU is using a compressed texture (and hence an
NCC table for decompression), none of the other TMUs can use a texture that requires a
color palette.

Decompression Tables

A texture can be compressed into a YAB texture with an appropriate decompression table with the help
of the 3Dfx Interactive Texture Utility Software (TexUS). The compressed texture is stored as a 3Dfx
texture map file (.3DF) that can then be loaded using the Glide Utility routine gu3dfLoad(), which is
described later in this chapter. Space for two NCC tables is provided so that they can be swapped on a
per-triangle basis when performing multi-pass rendering without interrupting the rendering process
with table downloading.

10. Managing Texture Memory

Copyright  1995-1998 3Dfx Interactive, Inc. 125
Proprietary and Confidential Printed 08/05/98 10:30 AM

Before a compressed texture can be used as the texel source, one of the two NCC tables must be
designated as the source for decompression operations. The Glide function grTexNCCTable() should be
called before any rendering operations using the compressed table are initiated.

void grTexNCCTable(GrNCCTable_t table)

grTexNCCTable() selects one of the two NCC tables as the current source for decompression
operations. Valid values are GR_TEXTABLE_NCC0 and GR_TEXTABLE_NCC1.

Glide 3.0 Programming Guide

126 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Example 10.7 Loading an NCC table.
NCC tables are created by programs in the TexUS library and written to a .3DF file. This code segment uses
gu3dfLoad(), described in the next section, to read the file into memory. Once in memory, the table is
downloaded to NCC1 in TMU0. Once the table is loaded, a texture in one of the compressed formats can be
downloaded and used as the texel source.

Gu3dfInfo info;

gu3dfLoad(“ncctable.3df”, &info);
grTexDownloadTable(GU_TEX_NCC1, &info.table.nccTable);
grTexNCCTable(GR_TEXTABLE_NCC1);

Color Palettes

A color palette is an array of 256 ARGB colors, 8 bits for each component, and 32 bits per entry (refer
back to Figure 10.1). The alpha component, in the high order 8 bits, is ignored. A second palette
format is introduced in Glide 3.0 and may be used if the PALETTE6666 extension is supported. See
Chapter 13 for more details.

Example 10.8 Loading a color palette.
The following code segment will create a random color palette and download it into TMU0. To use the palette,
download a palletized texture (texture formats GR_TEXFMT_P_8 or GR_TEXFMT_AP_88) and configure the
texture and color combine units appropriately.

extern unsigned long lrand(void);
GuTexPalette palette;
int i, j;

// create a random 256-entry color palette
for (i=0; i<256; i++)

palette.data[i] = 0x00FFFFFF & lrand();

grTexDownloadTable(GU_TEX_PALETTE, &palette);

Loading Mipmaps From Disk
TexUS (3Dfx Interactive’s Texture Utility Software) programs create files in a 3DF file format. These
files may contain mipmaps, decompression tables, or both. A pair of data types and a pair of functions
provide access to .3DF files from Glide.

The data structures are shown below. Gu3dfInfo is the top level structure. It has a pointer to the mipmap
data, and it stores the decompression table or palette if there is one. There is also a Gu3dfHeader

structure that contains all the mipmap characteristics (LOD range, aspect ratio, format, dimensions)
and the amount of memory the mipmap will require.

10. Managing Texture Memory

Copyright  1995-1998 3Dfx Interactive, Inc. 127
Proprietary and Confidential Printed 08/05/98 10:30 AM

typedef struct {
FxU32 width, height;
int small_lod, large_lod;
GrAspectRatio_t aspect_ratio;
GrTextureFormat_t format;

} Gu3dfHeader;

typedef union {
GuNccTable nccTable;
GuTexPalette palette;

} GuTexTable;

typedef struct {
Gu3dfHeader header;
GuTexTable table;
void *data;
FxU32 mem_required;

} Gu3dfInfo;

The procedure for reading a .3DF file from Glide is shown in Example 10.9. The application first calls
gu3dfGetInfo() to fill in the Gu3dfInfo structure pointed to by info.

FxBool gu3dfGetInfo(const char *filename, Gu3dfInfo *info)

After an application has determined the characteristics of a .3DF mipmap, memory must be allocated
for the mipmap and the address stored in the info→data pointer. Then gu3dfLoad() is invoked to load
the mipmap from the file into memory. Note that the mipmap must be downloaded into a TMU before it
can be used as a texel source.

FxBool gu3dfLoad(const char *filename, Gu3dfInfo *info)

Both gu3dfGetInfo() and gu3dfLoad() return FXTRUE if the file specified by filename exists and can be
read; otherwise they return FXFALSE.

Example 10.9 Reading a .3DF file.
The following code segment assumes that “mipmap.3df” contains a properly formatted 3DF file. The code
calls gu3dfGetInfo() to determine memory requirements, allocates storage for the mipmap using the system
subroutine malloc(), then reads the mipmap into the newly allocated memory by calling gu3dfLoad().

Gu3dfInfo fileInfo;

gu3dfGetInfo(“mipmap.3df”, &fileInfo);
fileInfo.data = malloc(fileInfo.mem_required);
gu3dfLoad(“mipmap.3df”, &fileInfo);

Copyright  1995−1998 3Dfx Interactive, Inc. 129
Proprietary and Confidential Printed 08/05/98 10:30 AM

11. Accessing the Linear Frame Buffer

In This Chapter
The frame buffer on a graphics subsystem is directly accessible by software as a single linear address
space. This address space is segmented into separate readable and writable areas, and each of these
areas in turn can address any of the three hardware buffers: the front buffer, the back buffer, or the
auxiliary buffer.

You will learn how to:

t calculate a pixel address.

t acquire an LFB (linear frame buffer) read or write pointer.

t read pixel data from the color, alpha, or depth buffer.

t write pixel data in a user-selectable format to the color alpha, or depth buffer.

t set constant values for direct writes to the depth and alpha buffers.

t enable and disable the pixel pipeline during direct LFB writes.

Acquiring an LFB Read or Write Pointer
When a Glide application desires direct access to a color or auxiliary buffer, it must lock that buffer in
order to gain access to a pointer in the frame buffer data. This lock may assert a critical code section
which affects process scheduling and precludes the use of GUI debuggers; therefore, time spent doing
direct accesses should be minimized and the lock should be released as soon as possible.

FxBool grLfbLock(GrLock_t type,
GrBuffer_t buffer,
GrLfbWriteMode_t writeMode,
GrOriginLocation_t origin,
FxBool pixelPipeline,
GrLfbInfo_t *info

)

An application may hold multiple simultaneous locks to various buffers, if the underlying hardware
allows it. Application software should always check the return value of grLfbLock(): a lock may fail. A
buffer is locked for reads or for writes, as specified in the type parameter.

type is a bit field created by ORing a read/write flag and an idle flag. The read/write flag can be either
GR_LFB_READ_ONLY or GR_LFB_WRITE_ONLY. The idle flag can be either GR_LFB_IDLE or
GR_LFB_NOIDLE. The default is GR_LFB_IDLE: the graphics subsystem is idle until the buffer is
unlocked. GR_LFB_NOIDLE allows the pixel pipeline to continue operating during the lock: triangle
rendering and buffer clearing operations may be interspersed with frame buffer accesses.

Glide 3.0 Programming Guide

130 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

TAKE
NOTE

Using GR_LFB_NOIDLE may interfere with sound generation.

The buffer parameter specifies which Glide buffer to lock; currently supported buffer designations are
GR_BUFFER_FRONTBUFFER, GR_BUFFER_BACKBUFFER, and GR_BUFFER_AUXBUFFER.

If the graphics hardware supports multiple write formats to the linear frame buffer space, an
application may request a particular write format with the writeMode parameter; valid values are listed
below.

GR_LFBWRITEMODE_565 GR_LFBWRITEMODE_565_DEPTH
GR_LFBWRITEMODE_555 GR_LFBWRITEMODE_555_DEPTH
GR_LFBWRITEMODE_1555 GR_LFBWRITEMODE_1555_DEPTH
GR_LFBWRITEMODE_888 GR_LFBWRITEMODE_8888
GR_LFBWRITEMODE_ZA16 GR_LFBWRITEMODE_ANY

Use GR_LFBWRITEMODE_ANY when acquiring a read-only LFB pointer or when you want to use the
existing data format. If the data format specified in writeMode is not supported on the target hardware,
the lock will fail. Supported pixel formats are described in Table 11.2 and Table 11.3, later in this
chapter.

If the application specifies GR_LFB_WRITEMODE_ANY and the lock succeeds, the destination pixel format
is returned in info.writeMode. This default destination pixel format will always be the pixel format that
most closely matches the true pixel storage format in the frame buffer. On Voodoo Graphics and
Voodoo Rush, this will always be GR_LFBWRITEMODE_565 for color buffers and
GR_LFBWRITEMODE_ZA16 for the auxiliary buffer. The writeMode argument is ignored for read-only
locks.

Some 3Dfx hardware supports a user-specified y origin for LFB writes. An application may request a
particular y origin by passing an origin argument other than GR_ORIGIN_ANY. If the origin specified is
not supported on the target hardware, then the lock will fail. If the application specifies
GR_ORIGIN_ANY and the lock succeeds, the LFB y origin is returned in info.origin. The default y origin
for LFB writes is GR_ORIGIN_UPPER_LEFT; currently supported values are GR_ORIGIN_UPPER_LEFT,
GR_ORIGIN_LOWER_LEFT, and GR_ORIGIN_ANY.

Some 3Dfx hardware allows linear frame buffer writes to be processed by the pixel pipeline before
being written into the selected buffer. This feature is enabled by passing a value of FXTRUE in the
pixelPipeline argument; grLfbLock() will fail if the underlying hardware is incapable of processing
pixels through the pixel pipeline. When enabled, color, alpha, and depth data from the linear frame
buffer write is processed as if it were generated by the triangle iterators. If the selected writeMode
lacks depth information, then the depth value is derived from grLfbConstantDepth(). If the writeMode
lacks alpha information, then the alpha value is derived from grLfbConstantAlpha(). Linear frame
buffer writes through the pixel pipeline may not be enabled for auxiliary buffer locks. The
pixelPipeline argument is ignored for read-only locks.

11. Accessing the Linear Frame Buffer

Copyright  1995-1998 3Dfx Interactive, Inc. 131
Proprietary and Confidential Printed 08/05/98 10:30 AM

The final parameter to grLfbLock() is a structure of type GrLfbInfo_t. The info.size is used to provide
backward compatibility for future revisions of grLfbLock() and must be initialized by the user to the
size of the GrLfbInfo_t structure, as shown below. An unrecognized size will cause the lock to fail.

info.size = sizeof(GrLfbInfo_t);

Upon successful completion, the rest of the structure is filled in with information pertaining to the
locked buffer. The GrLfbInfo_t structure is defined as:

typedef struct {
int size;
void *lfbPtr;
FxU32 strideInBytes;
GrLfbWriteMode_t writeMode;
GrOriginLocation_t origin;

} GrLfbInfo_t;

info.lfbPtr is assigned a valid linear pointer to be used for accessing the requested buffer. The access is
either read-only or write-only; reading from a write pointer or writing to a read pointer will have
undefined effects on the graphics subsystem. info.strideInBytes is assigned the byte distance between
scanlines. As described above, info.writeMode and info.origin are filled in with values describing the
settings in use in the currently selected buffer.

A successful call to grLfbLock() will cause the 3D graphics engine to idle. This is equivalent to calling
grFinish() and may negatively impact the performance of some applications. Writes to the linear frame
buffer should use grLfbWriteRegion(), described later in this chapter, to interleave ordered linear frame
buffer copies into the 3D command stream as efficiently as possible.

When the application has completed its direct access transactions, the lock is relinquished by calling
grLfbUnlock(), thus restoring 3D and GUI access to the buffer.

FxBool grLfbUnlock(GrLock_t type, GrBuffer_t buffer)

The two parameters, type and buffer, are identical to the first two arguments of the corresponding call
to grLfbLock(). Note that after a successful call to grLfbUnlock(), accessing the info.lfbPtr used in the
grLfbUnlock() call will have undefined results.

An application may not call any Glide routines other than grLfbLock() and grLfbUnlock() while any
lock is active. Any such calls will result in undefined behavior.

Calculating a Pixel Address
The address of a particular pixel is computed from the (x,y) coordinates and the length of a scanline, a
value that is returned in the info structure when grLfbLock() is successful. info.strideInBytes
represents the number of bytes in a row or scanline. Thus,

address(x,y) = y * info.strideInBytes + x

address of the word containing (x,y) = address(x,y)/2 = (y * info.strideInBytes + x)/2

The location of the y origin, set in the call to grSstWinOpen() (see Chapter 3), determines the mapping
of y addresses into frame buffer memory. When writing to the LFB, the location of the y origin set in
grSstWinOpen() can be overridden, as described in the discussion of grLfbLock() that follows.

Glide 3.0 Programming Guide

132 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Reading from the LFB
To read data directly from the linear frame buffer, obtain a read-only LFB pointer by calling
grLfbLock(), as described in the previous section. All data is read as two 16-bit pixels per 32-bit word.
The default pixel ordering within the 32-bit read is 0xRRRRLLLL where the left pixel in the pair is in
the lower 16-bits of the 32-bit word, as shown in Figure 11.1.

Figure 11.1 Reading from and writing to the LFB.
When a 32-bit word is read using the read pointer acquired with a call to grLfbLock(), the bytes are swapped:
the left most pixel is returned in the low-order half word. When a 32-bit word containing two pixels is written
to the LFB, the left most pixel is in the high-order half word. Remember that.

buffer

writePointer

readPointer

When a 32-bit word is read using the read pointer returned in info.lfbPtr, the target buffer determines
how the data should be interpreted. If the locked buffer is a color buffer, the data should be interpreted
as two RGB colors, each containing a 5-bit red value, a 6-bit green value, and a 5-bit blue value. If the
locked buffer is a depth buffer, then the data contains two depth values, either 16-bit fixed point z
values or 16-bit floating point w values, depending on grDepthBufferMode(). If the locked buffer is an
alpha buffer, then the data contains two 8-bit alpha values, stored in the low order byte of each
halfword. Table 11.1 shows the possible data formats.

The 16-bit floating point format for w is shown in Table 11.1. It has a 4-bit exponent and a 12-bit
mantissa. Like IEEE floating point, a leading 1 value in the MSB of the mantissa is hidden. Note that
the w floating point value is unsigned only. The w floating point format converts to a real number by
using the equation:

1.mantissa * 2exponent

Using this format the minimum depth value is 1.0 (floating point encoding: 0x0000) and the maximum
depth value is 65528.0 (floating point encoding: 0xFFFF).

11. Accessing the Linear Frame Buffer

Copyright  1995-1998 3Dfx Interactive, Inc. 133
Proprietary and Confidential Printed 08/05/98 10:30 AM

Table 11.1 Interpreting data read from the LFB.
When a 32-bit word is read using the read pointer acquired with a call to grLfbLock(), the target buffer
determines how the data should be interpreted. If the locked buffer is a color buffer, the data should be
interpreted as two RGB colors, each containing a 5-bit red value, a 6-bit green value, and a 5-bit blue value.
If the locked buffer is a depth buffer, then the data contains two depth values, either 16-bit fixed point z values
or 16-bit floating point q values, depending on grDepthBufferMode(). If the locked buffer is an alpha buffer,
then the data contains two 8-bit alpha values, stored in the low order byte of each halfword.

buffer depth buffer mode color format physical layout of the data
read

GR_BUFFER_FRONTBUFFER
GR_BUFFER_BACKBUFFER
GR_BUFFER_AUXBUFFER

ignored GR_COLORFORMAT_ARGB
or
GR_COLORFORMAT_RGBA

red green blue

GR_COLORFORMAT_ABGR
or
GR_COLORFORMAT_BGRA

blue green red

GR_BUFFER_AUXBUFFER GR_DEPTHBUFFER_ZBUFFER ignored 16-bit integer
GR_DEPTHBUFFER_WBUFFER ignored exp mantissa

GR_BUFFER_AUXBUFFER ignored ignored ignored alpha

Example 11.1 Reading a pixel value from the LFB.
The following code segment reads 10 pixels from the color buffer currently being displayed, starting with the
pixel at (100, 200), and stores them in the pix[] array. The read pointer is initially set to the value returned
in the info structure when the lock was initiated. A byte offset representing (100, 200) is calculated,
converted to a word address, and added to the initial value to produce the starting address. The writeMode,
origin, and pixelPipeline arguments to grLfbLock() are ignored for read-only pointers.

#define BYTESPERPIXEL 2

FxU16 pix[10];
GrLfbInfo_t info;
FxU32 *rptr;
int i;

/* get a read pointer */
if (grLfbLock(GR_LFB_READ_ONLY, GR_LFB_FRONTBUFFER, GR_LFB_WRITEMODE_ANY,

GR_ORIGIN_ANY, FXFALSE, &info)) {

/* add in the word address of the first pixel */
/* (compute byte offset for (100,200)/4 */
rptr = info.lfbPtr
rptr += ((*info.strideInBytes * 200) + 100*BYTESPERPIXEL)>>2;

/*read two pixels at a time */
for (i=0; i<10; rptr++) {

pix[i++] = *rptr && 0xFFFF;
pix[i++] = *rptr >>16;

}
grLfbUnlock(GR_LFB_READ_ONLY, GR_LFB_FRONTBUFFER);

}

Glide 3.0 Programming Guide

134 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Reading a Rectangle of Pixels from the LFB
The grLfbReadRegion() convenience function copies a rectangle of pixels from the frame buffer to user
memory as efficiently as possible, performing the buffer locks and unlocks as needed. Note that this is
the only way to read back from the frame buffer on Scanline Interleaved systems.

FxBool grLfbReadRegion(GrBuffer_t src_buffer,
FxU32 src_x,
FxU32 src_y,
FxU32 src_width,
FxU32 src_height,
FxU32 dst_stride,
void *dst_data

)

A src_width by src_height rectangle of pixels is copied from the buffer specified by src_buffer, starting
at the location (src_x, src_y). The pixels are copied to user memory starting at dst_data, with a stride
in bytes defined by dst_stride. The frame buffer y origin is always assumed to be at the upper left and
the pixel data format is assumed to be GR_LFBWRITEMODE_565 (see Table 11.2). The dst_stride must
be greater than or equal to src_width * 2.

Writing to the LFB
To write directly to the linear frame buffer, obtain a write-only LFB pointer as described above. The
call to grLfbLock() specifies a writeMode that defines the data format and a y origin location for the
LFB writes. Both of these can be set to default to whatever conditions exist in the buffer. The
pixelPipeline parameter enables or disables the pixel special effects pipeline.

The incoming pixel data can be interpreted in many different ways depending on the current linear
frame buffer write mode and color ordering configuration. The source of depth, alpha, and color
information is determined by a combination of the current linear frame buffer write mode and whether
the pixel special effects pipeline is being bypassed or not. If the selected writeMode lacks depth
information, then the value is derived from grLfbConstantDepth(). If the writeMode lacks alpha
information, then the value is derived from grLfbConstantAlpha(). Linear frame buffer writes through
the pixel pipeline may not be enabled for auxiliary buffer locks. The pixelPipeline argument is ignored
for read only locks.

The procedure for writing to the LFB is as follows:

STEP1: If the pixel pipeline and depth buffering or alpha buffering are enabled, and if the desired
writeMode is lacking depth or alpha values, set constant values for depth and/or alpha
with grLfbConstantDepth() and grLfbConstantAlpha().

STEP2: Call grLfbLock() to get a write pointer. Specify a write mode and y origin if desired.
Bypass the pixel pipeline if desired.

STEP3: Write into the linear frame buffer using the write pointer.
STEP4: Disable LFB writing and free the buffer by calling grLfbUnlock().

Each of these steps and the associated Glide functions are addressed in the remainder of this chapter,
accompanied by examples of their use.

11. Accessing the Linear Frame Buffer

Copyright  1995-1998 3Dfx Interactive, Inc. 135
Proprietary and Confidential Printed 08/05/98 10:30 AM

Setting LFB Write Parameters
Before you start writing data into the linear frame buffer, you need to do some set-up work.

• There are ten different formats for the data; you must choose one.

• A pixel can have red, green, blue, alpha, and depth components, but not all of the data formats
provide values for all five components; you must set constant values for the ones that won’t be
provided by the data.

• The y origin can be different for LFB writes than it is for conventional rendering; set it if you want.

Linear Frame Buffer Write Modes

Data can be written into the LFB in one of several data formats or write modes.

When two 16-bit pixels are written to the hardware as a packed 32-bit value, the pixel located in the
high 16-bits is written as the leftmost pixel, as shown in Figure 11.1. This is endian dependent,
however, the GLIDE_PLATFORM compile time constant automatically allows Glide to configure itself for
the proper endian characteristics. Incoming color data can be interpreted as either RGBA, ARGB,
BGRA, or ABGR. This is determined by the cFormat parameter passed to grSstWinOpen() (see Table
3.2).

The write modes and resulting data formats are shown in Table 11.2 and Table 11.3.

Glide 3.0 Programming Guide

136 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Table 11.2 16-bit LFB data formats.
Three of the LFB data formats write a minimum of 16 bits to the linear frame buffer. The first column in the
table below gives the Glide constant for the write mode. The packing order of the color components is
controlled by the cFormat argument to grSstWinOpen(). The third column shows the packing order for each
write mode and each color format. Table 11.3 gives the layouts for the 32-bit LFB write formats.

LFB write mode cFormat physical layout of the color and depth
components

GR_LFBWRITEMODE_565 GR_COLORFORMAT_ARGB or
GR_COLORFORMAT_RGBA

greenred

1115 0

blue

10 5 4

GR_COLORFORMAT_ABGR or
GR_COLORFORMAT_BGRA

greenblue

1115 0

red

10 5 4

GR_LFBWRITEMODE_555 GR_COLORFORMAT_ARGB

greenred

915 0

blue

10 5 414

ignored

GR_COLORFORMAT_ABGR

greenblue

915 0

red

10 5 414

ignored

GR_COLORFORMAT_RGBA

greenred

10 01

blue

11 6 515

ignored

GR_COLORFORMAT_BGRA

greenblue

10 01

red

11 6 515

ignored

GR_LFBWRITEMODE_1555 GR_COLORFORMAT_ARGB

greenred

915 0

blue

10 5 414

alpha

GR_COLORFORMAT_ABGR

greenblue

915 0

red

10 5 414

alpha

GR_COLORFORMAT_RGBA

greenred

10 01

blue

11 6 515

alpha

GR_COLORFORMAT_BGRA

greenblue

10 01

red

11 6 515

alpha

GR_LFBWRITEMODE_ZA16

with alpha buffering enabled
ignored

15 0

ignored alpha

8 7

GR_LFBWRITEMODE_ZA16

with depth buffering enabled
ignored

15 0

depth

11. Accessing the Linear Frame Buffer

Copyright  1995-1998 3Dfx Interactive, Inc. 137
Proprietary and Confidential Printed 08/05/98 10:30 AM

Table 11.3 32-bit LFB data formats.
The LFB data formats shown below write a minimum of 32 bits to the linear frame buffer. The first column in
the table below gives the Glide constant for the write mode. The packing order of the color components is
controlled by the cFormat argument to grSstWinOpen(). The third column shows the packing order for each
write mode and each color format. Table 11.2 gives the layouts for the 16-bit LFB write formats.

LFB write mode cFormat physical layout of the color and depth
components

GR_LFBWRITEMODE_565_DEPTH GR_COLORFORMAT_ARGB or
GR_COLORFORMAT_RGBA

greenred

27

blue

26 21 2031 16 15 0

depth

GR_COLORFORMAT_ABGR or
GR_COLORFORMAT_BGRA greenblue

27

red

26 21 2031 16 15 0

depth

GR_LFBWRITEMODE_555_DEPTH GR_COLORFORMAT_ARGB

greenred

2531 16

blue

26 21 2030

ignored

15 0

depth

GR_COLORFORMAT_ABGR

greenblue red

ignored

2531 1626 21 2030

ignored

15 0

depth

GR_COLORFORMAT_RGBA

greenred

26 1617

blue

27 22 2131

ignored

15 0

depth

GR_COLORFORMAT_BGRA

greenblue red

ignored

depth

26 161727 22 2131 15 0

GR_LFBWRITEMODE_1555_DEPTH GR_COLORFORMAT_ARGB

greenred

2531 16

blue

26 21 2030 15 0

depth

alpha

GR_COLORFORMAT_ABGR

greenblue

2531 16

red

26 21 2030 15 0

depth

alpha

GR_COLORFORMAT_RGBA

greenred blue

alpha

2531 1626 21 2030 15 0

depth

GR_COLORFORMAT_BGRA

greenblue red

alpha

2531 1626 21 2030 15 0

depth

GR_LFBWRITEMODE_888 GR_COLORFORMAT_ARGB
ignored

2431 16

red

23 815 0

blue

7

green

GR_COLORFORMAT_ABGR
ignored

2431 16

blue

23 815 0

red

7

green

GR_COLORFORMAT_RGBA
red

2431 16

green

23 815 0

ignored

7

blue

GR_COLORFORMAT_BGRA
blue

2431 16

green

23 815 0

ignored

7

red

GR_LFBWRITEMODE_8888 GR_COLORFORMAT_ARGB
alpha

2431 16

red

23 815 0

blue

7

green

GR_COLORFORMAT_ABGR
alpha

2431 16

blue

23 815 0

red

7

green

GR_COLORFORMAT_RGBA
red

2431 16

green

23 815 0

alpha

7

blue

GR_COLORFORMAT_BGRA
blue

2431 16

green

23 815 0

alpha

7

red

Glide 3.0 Programming Guide

138 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Setting Constant Color, Alpha, and Depth Values

If a linear frame buffer write mode does not provide an alpha, depth, or color value, the necessary
value is read from the appropriate constant alpha, color, or depth value. Pixel data written in
GR_LFBWRITEMODE_1555, for example, contains no depth component, so depth information is pulled
from the constant depth register set by grLfbConstantDepth(). Data written in GR_LFBWRITEMODE_888
is missing alpha and depth components; the constant alpha register, set by grLfbConstantAlpha(), and
the constant depth register are used.

In GR_LFBWRITEMODE_DEPTH_DEPTH mode, color information is retrieved from the constant color
register, set by grConstantColorValue() and described in Chapter 5. Note that the color set by
grConstantColorValue() is written to the color buffer while the depth components in the LFB write are
written to the depth buffer. If the pixel pipeline is enabled, only the depth information is written. Table
11.4 details the source of each component for each of the LFB write modes.

Table 11.4 Color, alpha, and depth sources.
The following table illustrates where the color, alpha, and depth values come from for each of the different
write modes for LFB writes that go through the pixel pipeline.

Glide constant color source alpha source depth source
GR_LFBWRITEMODE_565 incoming pixel constant alpha2 constant depth3

GR_LFBWRITEMODE_0555 incoming pixel constant alpha2 constant depth3

GR_LFBWRITEMODE_1555 incoming pixel incoming pixel constant depth3

GR_LFBWRITEMODE_565_DEPTH incoming pixel constant alpha2 incoming pixel
GR_LFBWRITEMODE_0555_DEPTH incoming pixel constant alpha2 incoming pixel
GR_LFBWRITEMODE_1555_DEPTH incoming pixel incoming pixel incoming pixel
GR_LFBWRITEMODE_888 incoming pixel constant alpha2 constant depth3

GR_LFBWRITEMODE_8888 incoming pixel incoming pixel constant depth3

GR_LFBWRITEMODE_DEPTH_DEPTH constant color1 constant alpha2 incoming pixel
1The constant color is set by grConstantColorValue() and only affects chroma-keying operations, not output.
2The constant alpha value is set by grLfbConstantAlpha() and is only used for alpha test operations, not output.
3The constant depth value is set by grLfbConstantDepth() and is only used for depth test operations, not output.

Some linear frame buffer write modes, specifically GR_LFBWRITEMODE_555, GR_LFBWRITEMODE_565,
GR_LFBWRITEMODE_1555, GR_LFBWRITEMODE_888, GR_LFBWRITEMODE_8888, and
GR_LFBWRITEMODE_ALPHA_ALPHA, do not possess depth information. grLfbConstantDepth() specifies
the depth value for these linear frame buffer write modes.

void grLfbConstantDepth(FxU32 depth)

This depth value is used for depth buffering and fog operations and is assumed to be in a format
suitable for the current depth buffering mode. Table 11.1 describes the floating point format used for w
buffering; z buffers use 16-bit fixed point values. The default constant depth value is 0.

If a linear frame buffer format contains depth information, then the depth supplied with the linear frame
buffer write is used, and the constant depth value set with grLfbConstantDepth() is ignored.

11. Accessing the Linear Frame Buffer

Copyright  1995-1998 3Dfx Interactive, Inc. 139
Proprietary and Confidential Printed 08/05/98 10:30 AM

Some linear frame buffer write modes, specifically GR_LFBWRITEMODE_555, GR_LFBWRITEMODE_888,
GR_LFBWRITEMODE_555_DEPTH, and GR_LFBWRITEMODE_DEPTH_DEPTH, do not contain alpha
information. grLfbConstantAlpha() specifies the alpha value for these linear frame buffer write modes.

void grLfbConstantAlpha(GrAlpha_t alpha)

This alpha value is used if alpha testing and blending operations are performed during linear frame
buffer writes. The default constant alpha value is 0xFF.

If a linear frame buffer format contains alpha information, then the alpha supplied with the linear frame
buffer write is used, and the constant alpha value set with grLfbConstantAlpha() is ignored.

Establishing a y Origin

The origin for linear frame buffer writes can be set separately from the origin for other rendering
(points, lines, triangles, buffer clears, etc.). This is useful in cases where images have a different origin
than graphics primitives, or where different images have different origins.

The origin argument to grLfbLock() is used to establish a separate y origin for LFB writes, either
GR_ORIGIN_UPPER_LEFT or GR_ORIGIN_LOWER_LEFT.

Special Effects and Linear Frame Buffer Writes
Look back to Figure 1.2 in Chapter 1. The pixel pipeline is not bypassed when writing directly to the
linear frame buffer, unless you disable it. In fact, writing to the linear frame buffer is functionally
equivalent to sending individual pixels down the pixel pipeline. Effects such as depth buffering, fog,
chroma-keying, and alpha blending are not automatically disabled during LFB writes. As a result,
unexpected results can occur unless all special effects are disabled, or at least set to a known state.

Disabling All Special Effects

If “pure” unmodified writes to the frame buffer are desired (a la VGA direct access), two mechanisms
can be used to effect this. The first technique is to save the global state by calling grGlideGetState(),
then disable all special effects via grDisableAllEffects(). Special effects can then be re-enabled
individually; subsequent writes are performed on the linear frame buffer with only the desired effects
enabled. When raw access to the frame buffer is complete, a call to grGlideSetState() resets the
graphics hardware to its previous state.

void grGlideGetState(void *state)

void grDisableAllEffects(void)

void grGlideSetState(const void *state)

The other option for unmodified writes is enabling a hardware special effects pipeline bypass by setting
the pixelPipeline parameter to grLfbLock() to FXFALSE. This is useful when rendering overlays or text
directly to the screen and the application does not wish to disable all current effects (such as fog, depth
buffering, etc.) individually.

Note that if the pixel pipeline is bypassed, then no effects are enabled with the exception of dithering.
This includes clipping to the grClipWindow(), so an application must be careful not to write outside of
the visible display. The values of grColorMask() and grDepthMask() are also ignored when the pixel
pipeline is bypassed.

Glide 3.0 Programming Guide

140 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Example 11.2 Enabling specific special effects.
The following code fragment illustrates how to save Glide’s state, set certain special effects, then restore
Glide’s state.

GrState state;
GrLfbInfo_t info;

// Save the state
grGlideGetState(&state);

// Selectively enable some effects
grChromakeyMode(GR_CHROMAKEY_ENABLE);
grFogMode(GR_FOG_WITH_TABLE_ON_Q);

if (grLfbLock(GR_WRITE_ONLY, GR_BUFFER_BACKBUFFER, GR_LFBWRITEMODE_ANY,
GR_ORIGIN_ANY, FXTRUE, &info)) {

// write some pixels using info.lfbPtr
// ...

grLfbUnlock(GR_WRITE_ONLY, GR_BUFFER_BACKBUFFER);
}

// Restore the state
grGlideSetState(&state);

What Happens When a Special Effect is Enabled During an LFB Write?

If depth buffering is enabled during linear frame buffer writes, incoming pixel depths are either
retrieved from the incoming pixel or from the constant depth register, depending on the write mode.
Note that this can lead to some very odd effects: rarely will an application wish to depth buffer values
being written to the depth buffer. If depth buffering is not desired, then the application should disable it
by calling grDepthBufferMode() with the parameter GR_DEPTHBUFFER_DISABLE. Note that depth
biasing is disabled during linear frame buffer writes because of a resource conflict between depth
biasing and linear frame buffer writes.

If alpha testing is enabled during linear frame buffer writes, incoming pixel alpha values are either
retrieved from the incoming pixel or from the constant alpha register, depending on the write mode. If
alpha testing is not desired, then the application should set the alpha test function to GR_CMP_ALWAYS.

If alpha blending is enabled during linear frame buffer writes, incoming pixel alpha values are either
retrieved from the incoming pixel or from the constant alpha register, depending on the write mode. If
alpha blending is not desired, then the application should call
grAlphaBlendFunction(GR_BLEND_ONE, GR_BLEND_ZERO, GR_BLEND_ONE, GR_BLEND_ZERO)

All other effects, such as chroma-keying and fog, act the same in linear frame buffer write modes as in
normal rendering operations and are disabled as described in Chapter 8.

It is possible to directly read from and write to the alpha/depth buffer for various special effects. To
write directly to the alpha/depth buffer call grLfbLock() with a buffer parameter of
GR_BUFFER_AUXBUFFER, and then use the newly acquired pointer. When writing to the depth buffer,
incoming values must be in the correct format (16-bit floating point for w buffering or 16-bit integer
for linear z buffering). The 16-bit floating point format used for w buffering is described in Table 11.1.
Remember that if depth buffering is enabled and the application is writing directly to the depth buffer,

11. Accessing the Linear Frame Buffer

Copyright  1995-1998 3Dfx Interactive, Inc. 141
Proprietary and Confidential Printed 08/05/98 10:30 AM

unexpected results may occur since, in essence, the application is depth buffering writes to the depth
buffer.

Example 11.3 Writing one 565 RGB pixel to the back buffer (RGB ordering).

FxU16 pixel = 0xFFFF; // White pixel
GrLfbInfo_t info;
FxU16 *ptr;

if (grLfbLock(GR_WRITE_ONLY, GR_BUFFER_BACKBUFFER, GR_LFBWRITEMODE_565,
GR_ORIGIN_ANY, FXTRUE, &info)) {

ptr = info.lfbPtr;
ptr[x + y*info.strideInBytes] = pixel;
grLfbUnlock(GR_WRITE_ONLY, GR_BUFFER_BACKBUFFER);

}

Example 11.4 Writing two 565 RGB pixels to the back buffer (RGB color ordering).
The significant difference between this example and the last one is the type of the pointer ptr that is used to
access frame buffer memory.

GrLfbInfo_t info;
FxU32 *ptr;
Fx16 whitePixel, blackPixel;
FxU32 pixel;

whitePixel = 0xFFFF;
blackPixel = 0x0000;

// This will make the black pixel the leftmost of the pair.
pixel = (((FxU32) blackPixel) << 16) | whitePixel;

if (grLfbLock(GR_WRITE_ONLY, GR_BUFFER_BACKBUFFER, GR_LFBWRITEMODE_565,
GR_ORIGIN_ANY, FXTRUE, &info)) {

ptr = info.lfbPtr;
ptr[x + y*info.strideInBytes] = pixel;
grLfbUnlock(GR_WRITE_ONLY, GR_BUFFER_BACKBUFFER);

}

Example 11.5 Writing one 888 RGB pixel to the back buffer (ARGB color ordering).

GrLfbInfo_t info;
FxU32 pixel = 0x00FF0000; // Red pixel

if (grLfbLock(GR_WRITE_ONLY, GR_BUFFER_BACKBUFFER, GR_LFBWRITEMODE_888,
GR_ORIGIN_ANY, FXTRUE, &info)) {

info.lfbPtr[x + y* info.strideInBytes] = pixel;
grLfbUnlock(GR_WRITE_ONLY, GR_BUFFER_BACKBUFFER);

}

Glide 3.0 Programming Guide

142 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Writing a Rectangle of Pixels into the LFB
The grLfbWriteRegion() convenience function copies a rectangle of pixels from a region of memory
into the linear frame buffer as efficiently as possible. It performs the buffer locks and unlocks as
needed.

FxBool grLfbWriteRegion(GrBuffer_t buffer,
 FxU32 xStart,

FxU32 yStart,
GrLfbSrcFmt_t srcFormat,
FxU32 width,
FxU32 height,
FxBool pixelPipline,
FxI32 strideInBytes,
void *data

)

The first argument, buffer, specifies the buffer that the data will be copied into; the choices are
GR_BUFFER_FRONTBUFFER, GR_BUFFER_BACKBUFFER, and GR_BUFFER_AUXBUFFER. The next two
parameters, xStart and yStart, specify the starting coordinates in the buffer where the data will be
written. The y origin is assumed to be in the upper left corner of the screen.

The srcFormat argument describes the format of the data; valid values are shown in Table 11.5. The
width and height parameters give the dimensions, in pixels, of the rectangular region to be written to
the LFB, and strideInBytes specifies how many bytes are in one row of the array. The pixelPipeline
argument is a Boolean value. If set to FXTRUE, the data is sent through the pixel pipeline on its way to
the LFB. The final argument, data, points to the pixel data in memory.

PORTING
NOTE

Glide 3.0 introduces a new argument to grLfbWriteRegion(): pixelPipeline. If is is
FXTRUE, LFB data is written through the 3D pixel pipe. Not all hardware supports pixel
pipe writes (e.g. Voodoo Rush) or source formats; grLfbWriteRegion() will return
FXFALSE if an invalid or unsupported operation is attempted.

Note that strideInBytes can be a negative number. If data points to the pixel closest to the origin, and
strideInBytes is the length of a row in the array, then the sign of strideInBytes represents the location of
the origin in the image pointed to by data. A negative strideInBytes is used if data points to the lower
left corner, as shown in Figure 11.2.

Note also that not all hardware supports pixel pipe writes or source formats (e.g., Voodoo Rush).
grLfbWriteRegion() will return FXFALSE if an invalid or unsupported operation is attempted.

11. Accessing the Linear Frame Buffer

Copyright  1995-1998 3Dfx Interactive, Inc. 143
Proprietary and Confidential Printed 08/05/98 10:30 AM

Table 11.5 Source data formats for the grLfbWriteRegion() routine.

source data format description
GR_LFB_SRC_FMT_565 RGB 565 color image
GR_LFB_SRC_FMT_555 RGB 555 color image
GR_LFB_SRC_FMT_1555 RGB 1555 color image
GR_LFB_SRC_FMT_888 RGB 888 color image. Each pixel is padded to 32 bits with RGB in the low

order 24 bits.
GR_LFB_SRC_FMT_8888 ARGB 8888 color image
GR_LFB_SRC_FMT_565_DEPTH RGB 565 and 16-bit depth value packed into each 32-bit element of image
GR_LFB_SRC_FMT_555_DEPTH RGB 555 and 16-bit depth value packed into each 32-bit element of image
GR_LFB_SRC_FMT_1555_DEPTH RGB 1555 and 16-bit depth value packed into each 32-bit element of image
GR_LFB_SRC_FMT_ZA16 Two 16-bit depth or alpha values. Alpha values are stored into odd bytes.
GR_LFB_SRC_FMT_RLE16 A 16-bit RLE Encoded image: each pixel has a16-bit signed count and a 16-

bit color. Negative counts are currently ignored.

Glide 3.0 Programming Guide

144 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Figure 11.2 Frame buffer writes: encoding the location of the origin as the sign of the strideInBytes.
If the image you want to write into the linear frame buffer is defined with the origin in the lower left corner,
you can use a negative strideInBytes to compute addresses, as shown in part (a) below. If the origin is in the
upper left corner, use a positive strideInBytes, as shown in part (b). The bottom half of each diagram shows
the pixel copy in progress.

address(x,y) = data + (x + y*strideInBytes)

(a).
corner and is negative.

(b).
left corner and strideInBytes

 strideInBytesdata

(xStart, yStart)

0,0

width

height

(xStart, yStart)

0,0

width

height

| strideInBytes |
data

Thus, a rectangle of srcFormat pixels pointed to by data and defined by width, height, and
strideInBytes will be copied into buffer at the location (xStart, yStart). Note that not all 3Dfx graphics
subsystems support all source image formats; grLfbWriteRegion() will fail if the source format is not
supported.

Copyright  1995−1998 3Dfx Interactive, Inc. 145
Proprietary and Confidential Printed 08/05/98 10:30 AM

12. Housekeeping Routines

In This Chapter
Glide provides a collection of routines that return information about the system, the software, and the
scene being rendered.

You will learn how to:

t retrieve system configuration information: the current version of Glide, the number of SST
subsystems present, the size of the display screen, fog table or gamma correction table, the
minimum and maximum values for the depth buffer.

t answer system status questions: How full is the FIFO? How many pixels entering the pixel pipeline
are actually drawn? What is the swap rate?

t make sure that all pending graphics commands have been executed.

t change the location of the y origin.

t enable and disable Glide operating modes.

Retrieving Configuration Information
The grGet() routine retrieves the values of selected Glide state variables that are numbers.

FxI32 grGet(FxU32 pname, FxU32 plength, FxI32 *params)

grGet() retrieves the values of selected Glide state variables. The first argument, pname, tells Glide
which environmental parameters to return. The possible values are shown in Table 12.1. The other
arguments describe the buffer in which the values are returned: plength is the length, in bytes, of the
buffer and params is a pointer to it.

If successful, grGet() returns the number of bytes written into the params buffer. If grGet() fails, it
returns 0; the contents of the params array are unchanged. Possible reasons for failure include invalid
Glide context, an invalid pname, and NULL params.

grGet() replaces a whole bunch of APIs:
Out with the old In with the new:
grBufferNumPending() grGet(GR_PENDING_BUFFERSWAPS,…)
grGlideGetVersion() grGetString(GR_VERSION,…)
grSstIsBusy() grGet(GR_IS_BUSY,…)
grSstPerfStats() grGet(GR_STATS_PIXEL_*,…)
grSstQueryBoards() grGet(GR_NUM_BOARDS,…)
grSstQueryHardware() grGet(*,…), grGetString(*,…)
grSstScreenHeight() grGet(GR_VIEWPORT,…)

PORTING
NOTE

grSstScreenWidth() grGet(GR_VIEWPORT,…)

Glide 3.0 Programming Guide

146 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

grSstStatus() grGet(GR_IS_BUSY,…), grGet(*,…)
grSstVideoLine() grGet(GR_VIDEO_POS,…)
grSstVRetraceOn() grGet(GR_VIDEO_POS,…) when 0 is returned

Constants:
GR_WDEPTHVALUE_NEAREST grGet(GR_WDEPTH_MIN_MAX,…)
GR_WDEPTHVALUE_FARTHEST grGet(GR_WDEPTH_MIN_MAX,…)
GR_ZDEPTHVALUE_NEAREST grGet(GR_ZDEPTH_MIN_MAX,…)
GR_ZDEPTHVALUE_FARTHEST grGet(GR_ZDEPTH_MIN_MAX,…)

12. Housekeeping Routines

Copyright  1995-1998 3Dfx Interactive, Inc. 147
Proprietary and Confidential Printed 08/05/98 10:30 AM

Table 12.1 Selectors for grGet().
The pre-defined constants in the first column can be used as the first argument to grGet(). The other three
columns describe the data that will be used if the chosen selector is used.

selector encoded in pname
number

of values
returned

number
of bytes
returned

description of value(s) returned in params

GR_BITS_DEPTH 1 4 The number of bits of depth (z or q) in the frame
buffer.

GR_BITS_RGBA 4 16 The number of bits each of red, green, blue,
alpha in the frame buffer. If there is no separate
alpha buffer (e.g. on the SST-1 the depth buffer
can be used as an alpha buffer), 0 is returned for
the alpha bits.

GR_BITS_GAMMA 1 4 The number of bits for each channel in the
gamma table. If gamma correction is not
available, grGet() will fail, and the params array
is unmodified.

GR_FIFO_FULLNESS 2 8 How full the FIFO is, as a percentage. The value
is returned in two forms: 1.24 fixed point and a
hardware-specific format.

GR_FOG_TABLE_ENTRIES 1 4 The number of entries in the hardware fog table.
For Voodoo Graphics, the value is 64.

GR_GAMMA_TABLE_ENTRIES 1 4 The number of entries in the hardware gamma
table. Returns FXFALSE if it is not possible to
manipulate gamma (e.g. on a Macronix card, or
in windowed mode).

GR_GLIDE_STATE_SIZE 1 4 Size of buffer, in bytes, needed to save Glide
state. See grGlideGetState().

GR_GLIDE_VERTEXLAYOUT_SIZE 1 4 Size of buffer, in bytes, needed to save the
current vertex layout. See
grGlideGetVertexLayout().

GR_IS_BUSY 1 4 Returns FXFALSE if idle, FXTRUE if busy.
GR_LFB_PIXEL_PIPE 1 4 Returns FXTRUE if LFB writes can go through the

3D pixel pipe, FXFALSE otherwise.
GR_MAX_TEXTURE_SIZE 1 4 The width of the largest texture supported on this

configuration (e.g. Voodoo Graphics returns
256).

GR_MAX_TEXTURE_ASPECT_RATIO 1 4 The logarithm base 2 of the maximum aspect
ratio supported for power-of-two, mipmap-able
textures (e.g. Voodoo Graphics returns 3).

GR_MEMORY_FB 1 4 The total number of bytes per Pixelfx chip if a
non-UMA configuration is used, else 0. In non-
UMA configurations, the total FB memory is
GR_MEMORY_FB * GR_NUM_FB.

GR_MEMORY_TMU 1 4 The total number of bytes per Texelfx chip if a
non-UMA configuration is used, else FXFALSE. In
non-UMA configurations, the total usable texture
memory is GR_MEMORY_TMU * GR_NUM_TMU.

GR_MEMORY_UMA 1 4 The total number of bytes if a UMA
configuration, else 0.

Glide 3.0 Programming Guide

148 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Table 12.1 Selectors for grGet(). (continued)
The pre-defined constants in the first column can be used as the first argument to grGet(). The other three
columns describe the data that will be used if the chosen selector is used.

selector encoded in pname number
of values
returned

number
of bytes
returned

description of value(s) returned in params

GR_NON_POWER_OF_TWO_TEXTURES 1 4 Returns FXTRUE if this configuration supports
textures with arbitrary width and height (up to
the maximum). Note that only power-of-two
textures may be mipmapped. Not implemented
in the initial release of Glide 3.0.

GR_NUM_BOARDS 1 4 The number of installed boards supported by
Glide. Valid before a call to grSstWinOpen().

GR_NUM_FB 1 4 The number of Pixelfx chips present. This
number will always be 1 except for SLI
configurations.

GR_NUM_SWAP_HISTORY_BUFFER 1 4 Number of entries in the swap history buffer.
Each entry is 4 bytes long.

GR_NUM_TMU 1 4 The number of Texelfx chips per Pixelfx chip.
For integrated chips, the number of TMUs is
returned.

GR_PENDING_BUFFERSWAPS 1 4 The number of buffer swaps pending.
GR_REVISION_FB 1 4 The revision of the Pixelfx chip(s).
GR_REVISION_TMU 1 4 The revision of the Texelfx chip(s).
GR_STATS_LINES 1 4 The number of lines drawn.
GR_STATS_PIXELS_AFUNC_FAIL 1 4 The number of pixels that failed the alpha

function test.
GR_STATS_PIXELS_CHROMA_FAIL 1 4 The number of pixels that failed the chroma

key (or range) test.
GR_STATS_PIXELS_DEPTHFUNC_FAIL 1 4 The number of pixels that failed the depth

buffer test.
GR_STATS_PIXELS_IN 1 4 The number of pixels that went into the pixel

pipe.
GR_STATS_PIXELS_OUT 1 4 The number of pixels that went out of the pixel

pipe.
GR_STATS_POINTS 1 4 The number of points drawn.
GR_STATS_TRIANGLES_IN 1 4 The number of triangles received.
GR_STATS_TRIANGLES_OUT 1 4 The number of triangles drawn.
GR_SWAP_HISTORY 1 4 The swapHistory buffer contents. The ith 4-byte

entry counts the number of vertical syncs
between the (current frame – i)th frame and its
predecessor. If swapHistory is not implemented
(e.g. on Voodoo Graphics and Voodoo Rush),
grGet() will fail, and the params array is
unmodified.

Use grGet(GR_NUM_SWAP_HISTORY_BUFFER,…) to
determine the number of entries in the buffer.

GR_SUPPORTS_PASSTHRU 1 4 Returns FXTRUE if pass through mode is
supported. See grEnable().

12. Housekeeping Routines

Copyright  1995-1998 3Dfx Interactive, Inc. 149
Proprietary and Confidential Printed 08/05/98 10:30 AM

Table 12.1 Selectors for grGet(). (continued)
The pre-defined constants in the first column can be used as the first argument to grGet(). The other three
columns describe the data that will be used if the chosen selector is used.

selector encoded in pname number
of values
returned

number
of bytes
returned

description of value(s) returned in params

GR_TEXTURE_ALIGN 1 4 Alignment boundary for textures. For example, if
textures must be 16-byte aligned, 0x10 would be
returned.

GR_VIDEO_POSITION 2 8 Vertical and horizontal beam location. Vertical
retrace is indicated by y == 0.

GR_VIEWPORT 4 16 x, y, width, height of the viewport.
GR_WDEPTH_MIN_MAX 2 8 Minimum and maximum allowable w buffer

values.
GR_ZDEPTH_MIN_MAX 2 8 Minimum and maximum allowable z buffer

values.

The grGetString() routine returns environmental parameters that are character strings.

const char *grGetString(FxU32 name)

grGetString() returns a pointer to the string selected by the name argument, or NULL if name is
invalid.

Table 12.2 Selectors for grGetString().

selector specified in name description
GR_EXTENSION Returns a space-separated list of Glide extension names (the extension

names themselves do not contain spaces). If no extensions are supported, a
single space “ “ is returned.

GR_HARDWARE Returns one of “Voodoo Graphics”, “Voodoo Rush”, “Voodoo2”, or
“Banshee”. Other types may be added in the future.

GR_RENDERER “Glide”.
GR_VENDOR The vendor, “3Dfx Interactive”.
GR_VERSION The Glide version. For example, “3.0-alpha”.

Completing Graphics Commands
When a Glide user issues a command that provides data or state to the hardware, the command is
queued and will be executed some time later, in the order issued. Two commands allow the user to force
the completion of outstanding commands.

void grFinish(void)

Glide 3.0 Programming Guide

150 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Calling grFinish() forces all previously issued Glide commands to complete: it does not return until all
effects from previous commands are fully realized on the screen. grFinish() should be used judiciously
as it can have severe performance impacts if called to frequently.

void grFlush(void)

Calling grFlush() forces all previously issued commands to begin execution, guaranteeing they will
complete in finite time. However, they may not all be completed upon return. Use grFlush() to
guarantee command completion upon return.

Glide 3.0 is the first release to support grFlush(). It is a no-op in current hardware because commands
are not buffered (they are FIFOed, and the FIFO is guaranteed to drain). Future hardware designs may
utilize a buffer rather than a FIFO; in that case, this command will become necessary. Developers
interested in writing upward-compatible software should start using them now.

PORTING
NOTE

The Glide 2.x routine grSstIdle() has been replaced by grFinish().

Monitoring System Performance
The graphics hardware maintains a set of counters that collect statistics about the fate of pixels as they
move through the pixel pipeline. Glide returns the current values of these counters with grGet(); the
counters can be reset by calling grReset(), described below.

In order to account for every pixel counted and saved in pixelsOut, one must use the following
equation:

pixelsOut = LfbWritePixels + bufferClearPixels + (pixelsIn – depthFuncFail – chromaFail – aFuncFail)

The pixel counters are accessed with grGet() selectors similar to the variable names used in the
equations: GR_STATS_PIXELS_OUT, GR_STATS_PIXELS_IN, GR_STATS_DEPTHFUNC_FAIL,
GR_STATS_CHROMA_FAIL, and GR_STATS_AFUNC_FAIL. bufferClearPixels represents the number of
pixels written as a result of calls to grBufferClear() and can be calculated as:

bufferClearPixels = (# of times the buffer was cleared)* (clip window width) * (clip window height)

In addition to the pixel statistics, grGet() will return the number of points drawn (GR_STATS_POINTS),
the number of lines drawn (GR_STATS_LINES), the number of triangles started
(GR_STATS_TRIANGLES_IN) and the number of triangles actually drawn (GR_STATS_
TRIANGLES_OUT).

grGet() does not wait for the system to be idle, and hence does not include statistics for commands that
are still in the FIFO. Call grFinish() to empty the FIFO.

The counters are reset by calling grReset() with the appropriate selector. The hardware counters are
only 24-bits wide, so regular calls to grReset() are required to avoid overflow.

12. Housekeeping Routines

Copyright  1995-1998 3Dfx Interactive, Inc. 151
Proprietary and Confidential Printed 08/05/98 10:30 AM

void grReset(FxU32 what)

grReset() resets statistic counters. The argument what is one of the selectors listed in Table 12.3.

PORTING
NOTE

The Glide 2.x routine grSstResetPerfStats() has been replaced by
grReset(GR_STATS_PIXELS,…).

Glide 3.0 Programming Guide

152 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Table 12.3 Selectors for grReset().

what selector description
GR_STATS_PIXELS Reset all the pixel statistic counters.
GR_STATS_POINTS Reset all the point statistic counters.
GR_STATS_LINES Reset all the line statistic counters.
GR_STATS_TRIANGLES Reset all the triangle statistic counters.
GR_VERTEX_PARAMETERS Reset all grVertexLayout() parameter offsets to zero and all modes

to GR_PARAM_DISABLE.

Changing the y Origin
The location of the y origin is initially established as part of the grSstWinOpen() call in the Glide
initialization sequence. The initial setting can be overridden later on by calling grSstOrigin().

void grSstOrigin(GrOriginLocation_t origin)

The argument, origin, specifies the direction of the y coordinate axis. GR_ORIGIN_UPPER_LEFT places
the screen space origin at the upper left corner of the screen with positive y going down.
GR_ORIGIN_LOWER_LEFT places the screen space origin at the lower left corner of the screen with
positive y going up.

Enabling Glide Operating Modes
Several operating modes can be selectively enabled and disabled by the application programmer:

• Anti-aliasing. Vertices must be sorted by depth. When enabled, points, lines, and triangles are anti-
aliased. This mode is ignored when drawing strips and fans.

• Shameless plug. When enabled, the 3Dfx Interactive power shield logo is blended into each frame
drawn. Good for trade shows.

• Video smoothing. When enabled and with hardware support,

• Allow nearest dithered mipmapping. When enabled, the application is allowed to enable nearest
dithered mipmapping, a technique that alleviates the effects of mipmap banding at the cost of
performance degradation for larger texture maps. Use it only if you can live with the poor
performance. Note that you must actually enable nearest dithered mipmapping by calling
grTexMipMapMode().

Use grEnable() and grDisable() to select these operating modes.

void grEnable(GrEnableMode_t mode)
void grDisable(GrEnableMode_t mode)

The single argument to both routines is one of the mode selectors shown in Table 12.4.

12. Housekeeping Routines

Copyright  1995-1998 3Dfx Interactive, Inc. 153
Proprietary and Confidential Printed 08/05/98 10:30 AM

PORTING
NOTE

Most of the functionality of the old grSstOpen() command was implemented in
grSstWinOpen(). The smoothing_mode argument, however, has been replaced by
grReset(GR_VIDEO_SMOOTHING,…).

The old grHints(GR_HINT_ALLOW_MIPMAP_DITHER) functionality is now implemented
as grEnable(GR_ALLOW_MIPMAP_DITHER).

Table 12.4 Glide operating modes.

mode description default
GR _AA_ORDERED An anti-aliasing method that requires objects to be sorted

by depth. This mode applies to all primitives except strips
and fans.

disabled

GR_ALLOW_MIPMAP_DITHER Allow GR_MIPMAP_NEAREST_DITHER mode. By default,
this mode cannot be enabled with grTexMipMapMode()
because of the performance impact. Note that this does
not actually set mipmap dithering; grTexMipMapMode()
must still be called.

disabled

GR_PASSTHRU Pass through mode. When enabled, the graphics frame
buffer will displayed. When disabled, the VGA frame
buffer is displayed. (This feature replaces the now-
obsolete grSstControl() API).

Pass through mode is not supported by all hardware
configurations. Use grGet(GR_SUPPORTS_PASSTHRU,…)
to determine whether or not pass through mode is
supported on the current system.

depends on
system
configuration

GR_SHAMELESS_PLUG The 3Dfx power shield shameless plug is blended into
each displayed frame if the mode is enabled.

disabled

GR_VIDEO_SMOOTHING Video smoothing mode. If the hardware does not support
video smoothing, this mode is a no-op.

enabled

Glide Utilities
Glide 3.0 defines six utility commands in the glideutl.h header file. Four help generate fog tables and
are described in Chapter 8. The other two define and read files of frame buffer data and are described
in Chapter 11.

Glide 3.0 Programming Guide

154 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

PORTING
NOTE

Glide 3.0 make a long list of utility routines disappear: most of these are remnants of
Glide 1.0 that have no possible use any more:

guAADrawTriangleWithClip() guTexGetCurrentMipMap()
guAlphaSource() guTexGetMipMapInfo()
guColorCombineFunction() guTexMemQueryAvail()
guDrawTriangleWithClip() guTexMemReset()
guDrawPolygonVertexListWithClip() guTexDownloadMipMap()
guEncodeRLE16() guTexDownloadMipMapLevel()
guEndianSwapBytes() guTexSource()
guEndianSwapWords() guTexCreateColorMipMap()
guTexAllocateMemory() guFbReadRegion()
guTexChangeAttributes() guFbWriteRegion()
guTexCombineFunction()

Copyright  1995−1998 3Dfx Interactive, Inc. 155
Proprietary and Confidential Printed 08/05/98 10:30 AM

13. Glide Extensions

In This Chapter
Glide 3.0 introduces a mechanism for adding hardware, operating system, and application specific
extensions to the Glide Library. A Glide application calls grGetString() to determine if a given
extension is available on the current system configuration. If it is, grGetProcAddress() returns an entry
point. By convention, extension procedure names end with “_EXT”.

In this chapter, you will discover:

t a mechanism for identifying and executing extensions.

t a chroma-ranging extension that allows a range of color values (instead of a single value) to be
used as the chroma-key.

t an extension that implements chroma-ranging on texels.

t an extension that allows a fog coordinate to be included in each vertex.

t an extension that allows an ARGB color palette to be used.

t an extension that allows textures to be mirrored as they are repetitively applied.

Using Extensions
Calling the procedure grGetString(GR_EXTENSION,…) returns a space-delimited list of the names of
extensions that are available for the current system configuration. In general, newer hardware (like
Voodoo2), supports all of the extensions while older hardware (like Voodoo Graphics and Voodoo Rush)
support none of them. A single space is returned if no extensions are supported by the current
hardware.

Some of the extensions increase the available modes for existing commands. Others introduce new
commands; these are shown in the last column of Table 13.1. To access one of the procedures
associated with a supported extension, use grGetProcAddress() to retrieve a pointer to it. Table 13.1
lists the extensions that may be present in Glide 3.0.

GrProc grGetProcAddress(char *procName)

Glide 3.0 Programming Guide

156 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Table 13.1 Extension and procedure names.
This table lists the names of Glide extensions. If the current system configuration supports the extension, its
name is included in the string returned by grGetString(GR_EXTENSION,…). If an extension is supported,
entry points for the procedures that implement it can be accessed through calls to grGetProcAddress(). These
extensions are not available on systems with Voodoo Graphics and Voodoo Rush hardware.

extension name description associated procedure names

CHROMARANGE Chroma-range feature in the pixel pipeline is supported. grChromaRangeModeExt(
)
grChromaRangeExt()

TEXCHROMA Chroma-range feature in the texture mapping unit is
supported.

grTexChromaModeExt()
grChromaRangeExt()

FOGCOORD GR_FOG_PARAM vertex parameter in grVertexLayout() is
supported.

PALETTE6666 GR_TEXTABLE_PALETTE_6666 format is supported.
TEXMIRROR GR_TEXTURECLAMP_MIRROR_EXT mode in

grTexClampMode() is supported.

The Chroma-Range Extension
Chapter 8 described the chroma-key operation: a way to screen out all pixels that match a designated
color. Glide 3.0 introduces chroma-ranging, a generalization of the single chroma-key color to a range
of colors. The chroma-range extension is available only with hardware support. Use
grGetString(GR_EXTENSION,…) and search for the sub-string “CHROMARANGE” to query for
availability of this extension. If the chroma-range extension is present, the entry points may be
retrieved via grGetProcAddress().

Two routines implement the chroma-range extension: grChromaRangeModeExt() enables and disables
the mode and grChromaRangeExt() establishes the chroma-range and the match criteria.

void grChromaRangeModeExt(GrChromakeyMode_t mode)

grChromaRangeModeExt() enables and disables chroma-range checking. The mode argument can be
one of two values: GR_CHROMARANGE_DISABLE or GR_CHROMARANGE_ENABLE.

Chroma-keying must be enabled (using grChromakeyMode()) before grChromaRangeModeExt() is
executed, and it will remain enabled after chroma-ranging is disabled. You can disable both modes by
disabling chroma-keying.

void grChromaRangeExt(GrColor_t color0, GrColor_t color1, FxU32 mode)

grChromaRangeExt() sets the global chroma-range reference values as order-insensitive packed RGB
values. The color format for color0 and color1 should be the same one as specified in the cFormat
parameter to grSstWinOpen() (see Chapter 3). The order in which chroma-range values are specified
for a particular color component is irrelevant, i.e. the { color0, color1 } pairs
{(130,36,87), (150,38,92)} and {(150,36,92), (130,38,87)} are equivalent.

The mode argument determines the match criteria for the chroma test. Only one value for mode is
supported in Glide 3.0: GR_CHROMARANGE_RGB_ALL. In this mode, the { color0, color1 } pair defines
an inclusive range, i.e., the range falling between the minimum and maximum pair values. If all

13. Glide Extensions

Copyright  1995-1998 3Dfx Interactive, Inc. 157
Proprietary and Confidential Printed 08/05/98 10:30 AM

components of the incoming pixel color fall within their respective ranges, the chroma test succeeds and
the pixel is invalidated.

The chroma-range comparison uses the other color specified in the configuration of the color combine
unit, and is performed between colors with 24-bit.

Chroma-Ranges and Texels
If grGetString(GR_EXTENSION) returns the sub-string “TEXCHROMA”, then chroma-ranges for each
TMU can be specified. The entry points for the two routines that implement the TEXCHROMA
extension, grTexChromaModeExt() and grTexChromaRangeExt(), may be retrieved via
grGetProcAddress().

void grTexChromaModeExt(GrChipID_t tmu, GrChromakeyMode_t mode)

grTexChromaModeExt() enables or disables chroma-ranging in the designated tmu (GR_TMU0, GR_TMU1,
or GR_TMU). The mode argument is either GR_TEXCHROMA_ENABLE or GR_TEXCHROMA_DISABLE.

void grTexChromaRangeExt(GrChipID_t tmu,
GrColor_t color0,
GrColor_t color1,
GrTexChromakeyMode_t mode

)

grTexChromaRangeExt() sets the chroma-range values for the TMU specified by tmu. The color0 and
color1 arguments behave like those for pixel chroma-ranging, described in the previous section.

The mode parameter determines the way the color ranges are used in the texel chroma test. Only one
value is currently supported, GR_TEXCHROMARANGE_RGB_ALL_EXT. In this mode, each color
component pair defines an inclusive range, i.e., the range falling between the minimum and maximum
pair values. If all components of the incoming pixel color fall within their ranges, the chroma test
succeeds and the pixel is invalidated.

The FOGCOORD Extension
If the FOGCOORD extension is supported, the GR_PARAM_FOG_EXT parameter can be declared as
part of a vertex layout (see grVertexLayout() in Chapter 2). The fog coordinate is used to index a fog
table in GR_FOG_WITH_FOGTABLE_ON_FOGCOORD_EXT mode. See Chapter 8 for more details.

The PALETTE6666 Extension
Glide 3.0 introduces another color palette format with the PALETTE6666 extension. The new format
stores a 24-bit ARGB color (6 bits per component) in the palette rather than the 24-bit RGB value of th
standard palette. The PALETTE6666 format is used in conjunction with texture format
GR_TEXFMT_P_8 (see Table 10.1 for more information about texture formats).

Figure 13.1 The PALETTE666 color palette.
The PALETTE6666 color palette holds 256 ARGB colors. Each entry is 24 bits wide, with 6 bits allocated to
each of the color components. A palette entry is retrieved when rendering with a texture map utilizing texture
format GR_TEXFMT_P_8. The texel is an offset into the color palette.

Glide 3.0 Programming Guide

158 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

The resulting color is a 32-bit quantity with each 6-bit color component expanded to 8 bits as shown below.

texture format
GR_TEXFMT_P_8

PALETTE6666 color palette

green bluealpha red

green bluealpha red

The 6-bit color components from the color palette become 8-
bit fields in the resulting color by replicating the two high-
order bits.

The TEXMIRROR Extension
If the TEXMIRROR extension is supported, another texture clamping mode is available:
GR_TEXTURECLAMP_MIRROR_EXT. Figure 13.2 shows the effect of repetitively applying the texture
with mirroring in both the s and t directions. Figure 13.3 shows how mirror mode interacts with the
other two texture clamping modes, described in Chapter 9.

Figure 13.2 A GR_TEXTURECLAMP_MIRROR_EXT example.
The illustrations below show a texture mapping with three different ranges for s and t and the texture
clamping mode for both coordinates set to GR_TEXTURECLAMP_MIRROR_EXT. Clip coordinate space is used
for this example.

the texture map, with s
and t in the range [0..1]

mirrored in both
directions as applied to

texels in the range [0..2]

mirrored in both directions as
applied to texels in the range

[0..4]

13. Glide Extensions

Copyright  1995-1998 3Dfx Interactive, Inc. 159
Proprietary and Confidential Printed 08/05/98 10:30 AM

Figure 13.3 Texture clamping.
The texture clamp mode specifies what to do when texture coordinates are outside the range of the texture
map. If wrapping is enabled, then texture maps will tile, i.e., values greater than 255 will wrap around to 0. If
clamping is enabled, then texture map indices are clamped to 0 and 255. Both modes should always be set to
GR_TEXTURECLAMP_CLAMP when using projected textures.

Glide 3.0 introduces a texture clamp mode extension, GR_TEXTURECLAMP_MIRROR_EXT, that is available if
the TEXMIRROR extension is supported. See Chapter 13 for details and an expanded version of this figure.

The texture on the left is to be
mapped onto the rectangle, with
the texture origin in the interior of
the rectangle. The clamp mode
settings for s and t affect the final
result, as shown below.

wrap both s and t clamp s, wrap t

mirror s, clamp twrap s, clamp t clamp both s and t

mirror both s and tclamp s, mirror twrap s, mirror t

mirror s, wrap t

Copyright  1995−1998 3Dfx Interactive, Inc. 161
Proprietary and Confidential Printed 08/05/98 10:30 AM

14. Programming Tips and Techniques

In This Chapter
This chapter is a collection of short programming tips. You will read about:

t avoiding redundant state changes.

t minimizing screen clears.

t controlling texture aliasing artifacts with an LOD bias.

t precision compression artifacts that can arise when z buffering.

t state coherency and contention between processes.

Avoiding Redundant State Setting
If an application depth sorts all the polygons in a scene, the arbitrary order in which polygons are
rendered can potentially cause an immense amount of redundant state information to be passed to the
hardware. This is a difficult problem to solve, however, the following guidelines should assist when
attempting to efficiently maintain state:

• Use material libraries to clump together attributes into “materials”. Change states en masse
whenever a new material becomes current, but only change the current material when necessary.

• Use intelligent object rendering code that renders similar triangles (in terms of state attributes)
together to minimize unnecessary state updates.

Avoiding Screen Clears by Rendering Background Polygons
If an application does not need to clear the alpha or depth buffers, it can forego clearing the display
buffer by rendering large background polygons first. For example, a flight simulator will typically
render large sky and ground polygons that will effectively cover the entire screen, removing the need to
clear the display buffer.

Using LOD Bias To Control Texture Aliasing
LOD calculations computed for mipmapping can be biased to finely control the point at which mipmap
levels are crossed. The LOD bias for a texture is specified by calling grTexLodBiasValue(). For
bilinear, blended, mipmapped, non-mipmap dithered, non-mipmap-interpolated textures, an LOD bias
value of 0.5 is typically sufficient. For bilinear, blended, mipmapped, mipmap interpolated textures, an
LOD bias value of –3/8 is typically sufficient.

However, the choice of an LOD bias value is highly dependent on the frequency of a texture. If textures
are fairly high in frequency, then a larger LOD bias may be required to reduce texture aliasing
artifacts.

Glide 3.0 Programming Guide

162 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

Linear z Buffering and Coordinate System Ranges
The graphics hardware supports linear z buffering by storing the 16-bit whole part of any z values
passed to the hardware. A side effect of this is that the precision of the z buffer tends to be concentrated
very close to the viewer. Therefore z buffer “poke through” may occur as a result of the compression of
precision close to the viewer.

State Coherency and Contention Between Processes
Neither the graphics hardware nor Glide handle resource contention management in multithreaded or
multitasking environments. Thus, an application that has multiple threads or processes accessing Glide
and/or the graphics hardware must maintain state coherency and perform context management
manually using some form of mutual exclusion management.

Copyright  1995−1998 3Dfx Interactive, Inc. 163
Proprietary and Confidential Printed 08/05/98 10:30 AM

Appendix A A Sample Program

/*
** Copyright (c) 1995-8, 3Dfx Interactive, Inc.
** All Rights Reserved.
**
** This is UNPUBLISHED PROPRIETARY SOURCE CODE of 3Dfx Interactive, Inc.;
** the contents of this file may not be disclosed to third parties, copied
or
** duplicated in any form, in whole or in part, without the prior written
** permission of 3Dfx Interactive, Inc.
**
** RESTRICTED RIGHTS LEGEND:
** Use, duplication or disclosure by the Government is subject to
restrictions
** as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data
** and Computer Software clause at DFARS 252.227-7013, and/or in similar or
** successor clauses in the FAR, DOD or NASA FAR Supplement. Unpublished -
** rights reserved under the Copyright Laws of the United States.
**
** $Id: test05.c,v 1.1 1995/06/30 06:47:04 garymct Exp $
*/
#ifdef __DOS__
#include <conio.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <glide.h>

typedef struct {
float x, y;
float r, g, b, a;

} myVertex;

FxI32 numBoards=0;
GrContext_t win;

void main(void)
{ float color = 255.0;

puts("\nTEST05:");
puts("renders a Gouraud-shaded triangle");

#ifdef __DOS__
puts("press a key to continue");
getch();

#endif

grGlideInit();
grGet(GR_NUM_BOARDS, 1, &numboards) ;

if (numBoards==0)
grErrorSetCallback("main: grGet(GR_NUM_BOARDS) returned 0!", FXTRUE)

;

/* Select SST 0 and open up the hardware */
grSstSelect(0) ;
if (!(win=grSstWinOpen(NULL, GR_RESOLUTION_640x480, GR_REFRESH_60Hz,

Glide 3.0 Programming Guide

164 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

GR_COLORFORMAT_ABGR, GR_ORIGIN_LOWER_LEFT, 2, 0
)))

grErrorSetCallback("main: grSstWinOpen failed!", FXTRUE);

/# establish the vertex layout */
grCoordinateSpace(GR_WINDOW_COORDS);
grVertexLayout(GR_PARAM_XY, 0, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_RGB, 8, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_A, 20
while (1) {

myVertex vtx1, vtx2, vtx3;

grBufferClear(0, 0, GR_WDEPTHVALUE_FARTHEST);
guColorCombineFunction(GR_COLORCOMBINE_ITRGB);

vtx1.x = 160;
vtx1.y = 120;
vtx1.r = color;
vtx1.g = 0;
vtx1.b = 0;
vtx1.a = 0;
vtx2.x = 480;
vtx2.y = 180;
vtx2.r = 0;
vtx2.g = color;
vtx2.b = 0;
vtx2.a = 128;
vtx3.x = 320;
vtx3.y = 360;
vtx3.r = 0;
vtx3.g = 0;
vtx3.b = color;
vtx3.a = 255;
grDrawTriangle(&vtx1, &vtx2, &vtx3);

grBufferSwap(1);
#ifdef __DOS__

getch();
break;

#endif

}
grGlideShutdown();

}

Copyright  1995−1998 3Dfx Interactive, Inc. 165
Proprietary and Confidential Printed 08/05/98 10:30 AM

Appendix B. Glide State Constants

This following table shows the Glide constants that define values for modes, functions, and other Glide
state variables.

if the Glide type is and the argument name
is something like

 then these constants are valid values for
the argument

and these are the consequences of

choosing that value.
FxU32 evenOdd

oddEvenMask

GR_MIPMAPLEVELMASK_EVEN
GR_MIPMAPLEVELMASK_ODD
GR_MIPMAPLEVELMASK_BOTH

Selects mipmaps for loading. Even LODs
are GR_LOD_LOG2_256,
GR_LOD_LOG2_64, GR_LOD_LOG2_16,

GR_LOD_LOG2_4, and GR_LOD_LOG2_1.

Odd LODs are GR_LOD_LOG2_128,
GR_LOD_LOG2_32, GR_LOD_LOG2_8, and
GR_LOD_LOG2_2

GrAlphaBlendFnc_t rgbSrcFactor
rgbDestFactor
alphaSrcFactor
alphaDestFactor

GR_BLEND_ZERO
GR_BLEND_SRC_ALPHA
GR_BLEND_SRC_COLOR
GR_BLEND_DST_COLOR
GR_BLEND_DST_ALPHA
GR_BLEND_ONE
GR_BLEND_ONE_MINUS_SRC_ALPHA
GR_BLEND_ONE_MINUS_SRC_COLOR
GR_BLEND_ONE_MINUS_DST_COLOR
GR_BLEND_ONE_MINUS_DST_ALPHA
GR_BLEND_RESERVED_8
GR_BLEND_RESERVED_9
GR_BLEND_RESERVED_A
GR_BLEND_RESERVED_B
GR_BLEND_RESERVED_C
GR_BLEND_RESERVED_D
GR_BLEND_RESERVED_E
GR_BLEND_ALPHA_SATURATE
GR_BLEND_PREFOG_COLOR

sets alpha blending factors

GrAspectRatio_t aspectRatio GR_ASPECT_LOG2_8x1
GR_ASPECT_LOG2_4x1
GR_ASPECT_LOG2_2x1
GR_ASPECT_LOG2_1x1
GR_ASPECT_LOG2_1x2
GR_ASPECT_LOG2_1x4
GR_ASPECT_LOG2_1x8

sets the aspect ratio of the textures in a
mipmap

GrBuffer_t buffer GR_BUFFER_FRONTBUFFER
GR_BUFFER_BACKBUFFER
GR_BUFFER_AUXBUFFER
GR_BUFFER_DEPTHBUFFER
GR_BUFFER_ALPHABUFFER
GR_BUFFER_TRIPLEBUFFER

GrChipID_t tmu GR_TMU0
GR_TMU1
GR_TMU2

Selects the target TMU. The constant

names it.
GrChromakeyMode_t mode GR_CHROMAKEY_DISABLE

GR_CHROMAKEY_ENABLE

GrCmpFnc_t func GR_CMP_NEVER
GR_CMP_LESS
GR_CMP_EQUAL
GR_CMP_LEQUAL
GR_CMP_GREATER
GR_CMP_NOTEQUAL
GR_CMP_GEQUAL
GR_CMP_ALWAYS

GrColorFormat_t cFormat GR_COLORFORMAT_ARGB
GR_COLORFORMAT_ABGR
GR_COLORFORMAT_RGBA
GR_COLORFORMAT_BGRA

Glide 3.0 Programming Guide

166 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

if the Glide type is and the argument name
is something like

 then these constants are valid values for the
argument

and these are the consequences of
choosing that value

GrCombineFactor_t factor
rgbFactor
alphaFactor

GR_COMBINE_FACTOR_ZERO
GR_COMBINE_FACTOR_NONE
GR_COMBINE_FACTOR_LOCAL
GR_COMBINE_FACTOR_OTHER_ALPHA
GR_COMBINE_FACTOR_LOCAL_ALPHA
GR_COMBINE_FACTOR_TEXTURE_ALPHA
GR_COMBINE_FACTOR_DETAIL_FACTOR
GR_COMBINE_FACTOR_LOD_FRACTION
GR_COMBINE_FACTOR_ONE
GR_COMBINE_FACTOR_ONE_MINUS_LOCAL
GR_COMBINE_FACTOR_ONE_MINUS_OTHER_ALPHA
GR_COMBINE_FACTOR_ONE_MINUS_LOCAL_ALPHA
GR_COMBINE_FACTOR_ONE_MINUS_TEXTURE_ALPHA
GR_COMBINE_FACTOR_ONE_MINUS_DETAIL_FACTOR
GR_COMBINE_FACTOR_ONE_MINUS_LOD_FRACTION

chooses a combine factor for the
color combine, alpha combine, or
texture combine units

GrCombineFunction_t factor
rgbFunction
alphaFunction

GR_COMBINE_FUNCTION_ZERO
GR_COMBINE_FUNCTION_NONE
GR_COMBINE_FUNCTION_LOCAL
GR_COMBINE_FUNCTION_LOCAL_ALPHA
GR_COMBINE_FUNCTION_SCALE_OTHER
GR_COMBINE_FUNCTION_BLEND_OTHER
GR_COMBINE_FUNCTION_SCALE_OTHER_ADD_LOCAL
GR_COMBINE_FUNCTION_SCALE_OTHER_ADD_LOCAL_ALPHA
GR_COMBINE_FUNCTION_SCALE_OTHER_MINUS_LOCAL
GR_COMBINE_FUNCTION_SCALE_OTHER_MINUS_LOCAL_ADD_LOCAL
GR_COMBINE_FUNCTION_BLEND
GR_COMBINE_FUNCTION_SCALE_OTHER_MINUS_LOCAL_ADD_LOCAL_ALPHA
GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL
GR_COMBINE_FUNCTION_BLEND_LOCAL
GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL_ALPHA

chooses a
combining
function for
the color
combine,
alpha
combine, or
texture
combine
units

GrCombineLocal_t local GR_COMBINE_LOCAL_ITERATED
GR_COMBINE_LOCAL_CONSTANT
GR_COMBINE_LOCAL_NONE
GR_COMBINE_LOCAL_DEPTH

chooses a local alpha or RGB source
for color, alpha, or texture combine
units

GrCombineOther_t other GR_COMBINE_OTHER_ITERATED
GR_COMBINE_OTHER_TEXTURE
GR_COMBINE_OTHER_CONSTANT
GR_COMBINE_OTHER_NONE

chooses an alpha or RGB source for
the “other” value in the color, alpha,
or texture combine units

GrCullMode_t mode GR_CULL_DISABLE
GR_CULL_NEGATIVE
GR_CULL_POSITIVE

Do back-facing polygons have
negative or positive area?

GrDepthBufferMode_t mode GR_DEPTHBUFFER_DISABLE
GR_DEPTHBUFFER_ZBUFFER
GR_DEPTHBUFFER_WBUFFER
GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO_BIAS
GR_DEPTHBUFFER_WBUFFER_COMPARE_TO_BIAS

chooses a depth buffering algorithm

GrDitherMode_t mode GR_DITHER_DISABLE
GR_DITHER_2x2
GR_DITHER_4x4

Wanna dither?

GrFogMode_t mode GR_FOG_DISABLE
GR_FOG_WITH_ TABLE_ON_Q
GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT
GR_FOG_MULT2
GR_FOG_ADD2

enables and characterizes fogging

GrLfbWriteMode_t mode GR_LFBWRITEMODE_565
GR_LFBWRITEMODE_555
GR_LFBWRITEMODE_1555
GR_LFBWRITEMODE_888
GR_LFBWRITEMODE_8888
GR_LFBWRITEMODE_565_DEPTH
GR_LFBWRITEMODE_555_DEPTH
GR_LFBWRITEMODE_1555_DEPTH
GR_LFBWRITEMODE_DEPTH_DEPTH
GR_LFBWRITEMODE_ALPHA_ALPHA

GrLOD_t smallLOD
largeLOD
thisLOD

GR_LOD_LOG2_256
GR_LOD_LOG2_128
GR_LOD_LOG2_64
GR_LOD_LOG2_32
GR_LOD_LOG2_16
GR_LOD_LOG2_8
GR_LOD_LOG2_4
GR_LOD_LOG2_2
GR_LOD_LOG2_1

Specifies the largest dimension of

the texture. The aspect ratio

determines the smaller dimension.

GrMipMapMode_t mipmapMode
mode

GR_MIPMAP_DISABLE
GR_MIPMAP_NEAREST
GR_MIPMAP_NEAREST_DITHER

specifies the kind of mipmapping to
perform

Appendix C. Glide State Constants

Copyright  1995-1998 3Dfx Interactive, Inc. 167
Proprietary and Confidential Printed 08/05/98 10:30 AM

GrNCCTable_t table GR_NCCTABLE_NCC0
GR_NCCTABLE_NCC1

chooses an NCC table for use in
decompressing texels

Glide 3.0 Programming Guide

168 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

If the Glide type is and the argument name
is something like

 then these constants are valid values for
the argument

and these are the consequences of
choosing that value

GrOriginLocation_t locateOrigin
origin

GR_ORIGIN_UPPER_LEFT
GR_ORIGIN_LOWER_LEFT

sets location of origin

GrSmoothingMode_t smoothMode GR_SMOOTHING_DISABLE
GR_SMOOTHING_ENABLE

enables/disables 24-smoothing filter

GrTexBaseRange_t range GR_TEXBASE_256
GR_TEXBASE_128
GR_TEXBASE_64
GR_TEXBASE_32_TO_1

Specifies which base register when using

more than one. A mipmap can be broken

into four fragments. The number in the
constant corresponds to the LOD

number.
GrTexTable_t tableType

table

GR_TEX_NCC0
GR_TEX_NCC1
GR_TEX_PALETTE

Each TMU can have two NCC tables

and a palette. Load them one at a time

with a general purpose routine.
GrTextureClampMode_t sClampMode

tClampMode

GR_TEXTURECLAMP_WRAP
GR_TEXTURECLAMP_CLAMP

Clamp or wrap at the edges of a texture?

GrTextureFilterMode_t minFilterMode
magFilterMode

GR_TEXTUREFILTER_POINT_SAMPLED
GR_TEXTUREFILTER_BILINEAR

chooses minification and magnification
filters

GrTextureFormat_t format GR_TEXFMT_RGB_332
GR_TEXFMT_YIQ_422
GR_TEXFMT_ALPHA_8
GR_TEXFMT_INTENSITY_8
GR_TEXFMT_ALPHA_INTENSITY_44
GR_TEXFMT_P_8
GR_TEXFMT_ARGB_8332
GR_TEXFMT_AYIQ_8422
GR_TEXFMT_RGB_565
GR_TEXFMT_ARGB_1555
GR_TEXFMT_ARGB_4444
GR_TEXFMT_ ALPHA_INTENSITY_88
GR_TEXFMT_AP_88

see Table 10.1 for a description of the
texture formats

The types below are used in three Glide Utilities Library functions that present higher level views of the
texture, color, and alpha combine units.

if the Glide type is and the argument
name is something
like

 then these constants are valid values for the argument and these are the
consequences of
choosing that value

GrAlphaSource_t mode GR_ALPHASOURCE_CC_ALPHA
GR_ALPHASOURCE_ITERATED_ALPHA
GR_ALPHASOURCE_TEXTURE_ALPHA
GR_ALPHASOURCE_TEXTURE_ALPHA_TIMES_ITERATED_ALPHA

chooses an alpha source
for alpha and color
combing

GrColorCombineFnc_t function GR_COLORCOMBINE_ZERO
GR_COLORCOMBINE_CCRGB
GR_COLORCOMBINE_ITRGB
GR_COLORCOMBINE_ITRGB_DELTA0
GR_COLORCOMBINE_DECAL_TEXTURE
GR_COLORCOMBINE_TEXTURE_TIMES_CCRGB
GR_COLORCOMBINE_TEXTURE_TIMES_ITRGB
GR_COLORCOMBINE_TEXTURE_TIMES_ITRGB_DELTA0
GR_COLORCOMBINE_TEXTURE_TIMES_ITRGB_ADD_ALPHA
GR_COLORCOMBINE_TEXTURE_TIMES_ALPHA
GR_COLORCOMBINE_TEXTURE_TIMES_ALPHA_ADD_ITRGB
GR_COLORCOMBINE_TEXTURE_ADD_ITRGB
GR_COLORCOMBINE_TEXTURE_SUB_ITRGB
GR_COLORCOMBINE_CCRGB_BLEND_ITRGB_ON_TEXALPHA
GR_COLORCOMBINE_DIFF_SPEC_A
GR_COLORCOMBINE_DIFF_SPEC_B
GR_COLORCOMBINE_ONE

chooses a color
combining function

GrTextureCombineFnc_
t

function GR_TEXTURECOMBINE_ZERO
GR_TEXTURECOMBINE_DECAL
GR_TEXTURECOMBINE_OTHER
GR_TEXTURECOMBINE_ADD
GR_TEXTURECOMBINE_MULTIPLY
GR_TEXTURECOMBINE_SUBTRACT
GR_TEXTURECOMBINE_DETAIL
GR_TEXTURECOMBINE_DETAIL_OTHER
GR_TEXTURECOMBINE_TRILINEAR_ODD
GR_TEXTURECOMBINE_TRILINEAR_EVEN
GR_TEXTURECOMBINE_ONE

chooses a texture
combining function

Copyright  1995−1998 3Dfx Interactive, Inc. 169
Proprietary and Confidential Printed 08/05/98 10:30 AM

Glossary

aliasing Rendering artifacts that occur when a continuous function is discretely
sampled or sub-sampled. Two common types of aliasing are polygonal
aliasing and texture aliasing. Polygonal aliasing is a rendering artifact that
occurs when rasterization applies color to a pixel without considering how
much of the pixel is covered by the triangle. Along the edges of the
triangle, only a portion of the pixel is likely to be covered by the triangle.
An aliased triangle will have jagged edges. Texture aliasing is a rendering
artifact that occurs when a texture map is not sampled frequently enough
or when the texel area covered by a pixel is not accounted for. See anti-
aliasing.

alpha The A in an RGBA color. The alpha component is never displayed. It is a
multiplier used to describe transparency and controls the blending of
overlapping colors. See blending.

ambient light One of the components of a lighting model. Ambient light seems to come
from all directions rather than from a specific source. Back lighting in a
room is an example. It scatters in all directions after striking a surface, as
does diffuse light. See diffuse, emitted, and specular light.

animation Generating and displaying a scene as the viewpoint and/or objects change
position to give the illusion of motion.

anti-aliasing Techniques for eliminating aliasing. For polygonal aliasing, a rendering
technique that accounts for fractional coverage of a pixel when assigning
it a color, thereby reducing or eliminating the jagged edges that
characterize an aliased rendering. For texture aliasing, a rendering
technique that accounts for the areas of texels covered by a pixel. See
aliasing.

API Application program interface.

ASIC Application-specific integrated circuit.

back face culling The process of eliminating back facing triangles. A triangle has two sides,
front and back, with only one side visible at a time. The sign of the area of
the triangle determines which side is visible and can be used to eliminate
back facing triangles before they are rendered.

bilinear filtering A technique for choosing the texel color to apply to a pixel during texture
mapping. The weighted average of the four texels nearest the pixel center
is used.

blending When two triangles overlap in screen space, a decision must be made
about the color of the pixels in the overlapping area. Blending is a

Glide 3.0 Programming Guide

170 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

technique for reducing the two colors to one, usually as a linear
interpolation of the two candidates.

chroma-key A technique for removing pixels of a specific color, used to implement a
“blue screen”.

clamp Forcing a value to lie within a specified range of values.

clipping Elimination of those portions of a scene that are outside the clipping
rectangle defined by calling grClipWindow().

depth bias A constant that is added to the calculated depth of a pixel.

depth buffer One possible use of the auxiliary buffer. It stores a depth value for each
pixel. Subsequent pixels can be accepted or discarded based on a depth
test.

diffuse light One of the components of a lighting model. Diffuse light comes from a
single source, but it is scattered equally in all directions when it strikes a
surface. See ambient, emitted, and specular light.

dithering A technique for increasing the perceived range of colors in an image by
applying a pattern to surrounding pixels to modify their color values.
When viewed from a distance, these colors appear to blend into an
intermediate color that can’t be represented directly. Dithering is similar to
the half-toning used in black and white publications to produce shades of
gray.

double buffering Using two color buffers: a scene is rendered in one buffer while the
previously rendered scene in the other buffer is displayed. When the
rendering is complete, the two buffers are swapped and the rendering of
the next scene can begin in the buffer that is no longer being displayed.
See single buffering, triple buffering, and frame buffer.

EDO DRAM Extended-data-out dynamic random access memory.

emitted light One of the components of a lighting model. Emitted light comes from an
object and is unaffected by other light sources. Lamps, headlights, and
candles are examples. See ambient, diffuse, and specular light.

FBI Frame buffer interface.

FIFO First in, first out. A list data structure in which new entries are added at
the end of the list.

flat shading Coloring a triangle with a single, constant color. See Gouraud shading.

fog A rendering technique that simulates atmospheric effects such as haze,
fog, and smog by fading object colors to a background color based on
distance from the viewer.

frame buffer The memory used to hold pixels. In an SST system, the frame buffer is
accessed by the FBI chip and can be used for up to three color buffers. In
single or double buffer mode, the auxiliary buffer can optionally be used
as an alpha buffer or a depth buffer.

Glossary

Copyright  1995-1998 3Dfx Interactive, Inc. 171
Proprietary and Confidential Printed 08/05/98 10:30 AM

Gouraud shading Colors are assigned to the vertices of a triangle and linearly interpolated
across the triangle to produce a smooth variation in color. Also called
smooth shading. See flat shading.

homogeneous coordinates (x, y, z, w). The w coordinate is a scaled positive depth value used during
perspective projection, perspective texture mapping, and depth buffering.
Some graphics systems do not use homogeneous coordinates; in these
instances the z depth value can be used in lieu of the w coordinate,
assuming that the z value is positively increasing into the screen.

LOD Level of detail. See mipmap.

magnification If a texture-mapped screen pixel is smaller than a texel, magnification
techniques are used. See mipmap and minification.

minification If a texture-mapped screen pixel is larger than a texel, minification
techniques are used. See mipmap and magnification.

mipmap A pyramidal organization of gradually smaller, filtered sub-textures or an
individual texture map within the set, that is used for anti-aliased texture
mapping.

PCI system bus The bus in a PC that connects the host CPU and the peripheral devices,
including the SST-1 board.

pixel Picture element.

point sampling In the context of SST-1 texture mapping, choosing the texel nearest the
pixel center.

rendering The process of converting triangles into bits in the frame buffer, applying
texture mapping, alpha blending, depth buffering, etc. Rendering is what
SST-1 does.

RGBA Red, green, blue, and alpha.

single buffering Rendering into the color buffer as it is being displayed.

specular light One of the components of a lighting model. Specular light comes from a
specific direction and bounces off surfaces in a preferred direction as well.
It models the shininess of a surface. See ambient, diffuse, and emitted
light.

subpixel correction Adjusting the vertex parameter values (x, y, z, w, s, t, red, green, blue,
and alpha) to lie at the center of the pixel rather than somewhere else. The
result is very accurate rendering.

texel Texture element.

texture A one- or two-dimensional image that is used to modify the color of a
triangle and add realism to the scene. You might map a brick texture onto
a set of triangles that represents a wall, for example.

texture coordinates (s, t). Texture coordinates can be specified over any range of values.
However, the SST-1 hardware expects texture coordinates in the range
[–216..216–1] where [0..256] represents one replication of a texture map.

Glide 3.0 Programming Guide

172 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

texture mapping The process of applying a texture to a triangle.

texture memory Memory used for storing textures. On an SST graphics system, this
memory is part of TMU.

TMU Texture Mapping Unit.

triangle The SST-1 system’s rendering primitive.

trilinear filtering A technique for blending texels between two levels of detail to avoid
mipmap banding.

triple buffering One possible use of the auxiliary buffer. Three drawing buffers are in use,
one being displayed, one waiting to be displayed, and one being rendered
into.

vertex One of the corners of a triangle. It has x and y coordinates and a set of
attributes: an RGBA color, a z value indicating depth, s and t coordinates
for texture mapping, and a w coordinate for perspective correction.

Copyright  1995−1998 3Dfx Interactive, Inc. 173
Proprietary and Confidential Printed 08/05/98 10:30 AM

Index
Bold face page numbers indicate an example of use.

A

advanced filtering · 3, 89, 96, 100
aliasing · 2, 45, 167
alpha blending · 1, 3, 4, 5, 6, 20, 27, 46, 48, 59, 62, 63,

66, 73, 74, 79, 82, 137, 138, 163, 169
alpha buffer · 27, 28, 168
alpha buffering · 6, 27, 28, 30, 48, 61, 62, 65, 66, 67,

83, 127
alpha combine unit · 4, 6, 46, 48, 50, 59, 60, 62, 64, 65,

66, 83, 84, 85, 86, 165
alpha compare function · 83
alpha testing · 5, 6, 20, 59, 73, 83, 137, 138
anti-aliasing · 1, 6, 31, 45, 46, 48, 62, 150, 151, 167,

169
aspect ratio · 93
atmospheric effects · 168. See fog.
auxiliary buffer · 26, 27, 28, 59, 61, 67, 168, 170

B

backface culling · 6, 43, 44
bilinear filter · 85, 90, 100, 101, 102
bilinear filtering · 3, 89, 96, 108, 167
billboarding · 83
blending equation · 78
blending factor · 48, 63, 65, 73, 75, 78, 79, 80, 81, 103
blue screen · 73, 168

C

cFormat · 20, 21, 74, 83, 133, 134, 135, 154, 163
chroma-key · 4, 5, 73, 136, 168
chroma-keying · 6, 73, 82, 83, 137, 138
clearing behind an overlay · 68
clipping · 168
clipping window · 31, 32, 34
cockpit bit · 68
color byte ordering · 21, 49
color combine unit · 5, 49, 50, 52, 53, 54, 55, 56, 57,

59, 85, 100, 101, 102, 119, 120, 121, 125
color component · 49, 50, 106, 168
color palette · 105, 106, 107, 108, 109, 124, 125, 155
convex polygon · 6, 11, 31, 39, 40
coordinate · 86, 169, 170
culling · 73, 167

D

decompression table · 105, 106, 124, 125
depth bias · 67, 71, 138, 168
depth buffer · 2, 28
depth buffering · 1, 3, 4, 6, 20, 27, 28, 30, 62, 63, 67,

68, 69, 70, 71, 83, 84, 127, 131, 136, 137, 138, 139,
159, 164, 168, 169

depth test · 5, 10, 67, 68, 69, 72, 136, 168
dithering · 1, 3, 4, 5, 34, 49, 50, 61, 95, 96, 97, 137,

159, 164, 168
double buffering · 23, 27, 168

E

EDO DRAM · 168
even and odd LODs · 109, 110, 112, 114, 115, 116, 117,

118, 119, 123, 163

F

FBI · 3, 168
FIFO · 168
flat shading · 168, 169
floating point format · 2, 4
fog · 3, 4, 5, 6, 20, 34, 70, 73, 74, 75, 76, 77, 79, 80, 82,

136, 137, 138, 164, 168
fog color · 73
fog density · 73, 77
fog equation · 73, 74, 77, 78
fog mode · 74, 76, 78, 79, 80, 81, 82
fog table · 73, 77
frame buffer memory · 27

G

Glide · 1
Gouraud shading · 1, 2, 3, 168, 169
grAADrawTriangle() · 48
GrAlpha_t · 30, 62, 83, 137
GrAlphaBlendFnc_t · 63, 163
grAlphaBlendFunction() · 27, 30, 48, 62, 63, 64, 65, 66,

78, 79, 80, 82, 138
grAlphaCombine() · 48, 50, 51, 52, 56, 59, 60, 61, 63,

64, 66, 83, 100
grAlphaControlsITRGBLighting() · 57
grAlphaTestFunction() · 83, 84
grAlphaTestReferenceValue() · 83
GrAspectRatio_t · 110, 111, 114, 116, 117, 126, 163

174 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

GrBuffer_t · 127, 129, 140
grBufferClear() · 21, 30, 31, 34, 49, 62, 68, 70, 72, 148,

162
grBufferNumPending() · 143
grBufferSwap() · 28, 29, 72, 162
GrChipID_t · 91, 92, 96, 97, 102, 110, 113, 114, 116,

117, 119, 122, 123, 163
grChromakeyMode() · 82, 138
GrChromakeyMode_t · 82, 163
grChromakeyValue() · 21, 49, 82, 83
grChromaRangeExt() · 154
grChromaRangeModeExt() · 154
grClipWindow() · 30, 31, 32, 137, 168
GrCmpFnc_t · 83, 163
grColorCombine() · 34, 50, 51, 52, 53, 54, 55, 56, 57,

59, 60, 63, 66, 100
GrColorFormat_t · 9, 20, 21, 49, 163
grColorMask() · 27, 28, 30, 61, 66, 137
GrCombineFactor_t · 50, 59, 97, 164
GrCombineFunction_t · 50, 59, 97, 164
GrCombineLocal_t · 50, 59, 164
GrCombineOther_t · 50, 59, 164
grConstantColorValue() · 21, 25, 34, 49, 53, 54, 55, 57,

59, 61, 64, 136
GrContext_t · 24
grCoordinateSpace() · 10, 15, 16, 17, 162
grCullMode() · 44
GrCullMode_t · 44, 164
grDepthBiasLevel() · 67
grDepthBiasLevel() · 71
grDepthBufferFunction() · 67, 68, 69, 70, 72
grDepthBufferMode() · 27, 30, 67, 69, 70, 72, 130, 131,

138
grDepthMask() · 28, 30, 62, 67, 68, 70, 72, 137
grDepthRange() · 11
grDisable() · 150
grDisableAllEffects() · 137
grDitherMode() · 50
GrDitherMode_t · 50, 164
grDrawLine() · 9, 34
grDrawPoint() · 34
grDrawTriangle() · 9, 32, 42, 48, 54, 55, 56, 71, 162
grDrawVertexArray() · 35, 37, 38, 40, 41, 42
grDrawVertexArrayContiguous() · 35, 42
grEnable() · 41, 46, 48, 96, 150
grErrorSetCallback() · 30, 161
grFinish() · 129, 147, 148
grFinish(). · 148
grFlush() · 148
GrFog_t · 75, 76, 77, 79, 80, 82
grFogColorValue() · 21, 49, 74, 75, 76, 79, 80, 82
grFogMode() · 74, 75, 76, 77, 79, 80, 81, 82, 138
grFogTable() · 74, 75, 76, 79, 80, 82
grGet() · 19, 25, 26, 29, 30, 68, 76, 143, 145, 146, 147,

148, 161
grGetProcAddress() · 153, 154, 155
grGetString() · 147, 153, 154, 155
grGlideGetState() · 10, 137, 138
grGlideGetVersion() · 143

grGlideInit() · 19, 20, 24, 26, 161
grGlideSetState() · 10, 137, 138
grGlideShutdown() · 26, 162
grLfbConstantAlpha() · 128, 132, 136, 137
grLfbConstantDepth() · 128, 132, 136
GrLfbInfo_t · 127, 129, 138, 139
grLfbLock() · 127, 128, 129, 130, 131, 132, 137, 138,

139
grLfbReadRegion() · 132
GrLfbSrcFmt_t · 140
grLfbUnlock() · 129, 131, 132, 138, 139
GrLfbWriteMode_t · 127, 129
grLfbWriteRegion() · 129, 140, 141, 142
grLoadGammaTable() · 58
GrLock_t · 127, 129
GrLOD_t · 110, 111, 114, 116, 117, 164
GrMipMapMode_t · 96, 110, 164
GrNCCTable_t · 124
GrOriginLocation_t · 20, 127, 129, 165
grQueryResolutions() · 24
grRenderBuffer() · 27
grReset() · 148
GrScreenRefresh_t · 20
GrScreenResolution_t · 20
grSelectContext() · 24
grSstIdle() · 148
grSstIsBusy() · 143
grSstOpen() · 151
grSstOrigin() · 10, 150
grSstPerfStats() · 143
grSstQueryBoards() · 143
grSstQueryHardware() · 143
grSstResetPerfStats() · 149
grSstScreenHeight() · 143
grSstScreenWidth() · 143
grSstSelect() · 19, 20, 24, 25, 26, 161
grSstStatus() · 144
grSstVideoLine() · 144
grSstVRetraceOn() · 144
grSstWinClose() · 25, 26
grSstWinOpen() · 9, 19, 20, 21, 23, 24, 25, 26, 27, 49,

74, 83, 129, 133, 134, 135, 150, 151, 154
GrTexBaseRange_t · 110, 123, 165
grTexCalcMemRequired() · 109, 111, 113, 114
grTexChromaModeExt() · 155
grTexClampMode() · 92
grTexCombine() · 50, 59, 97, 98, 99, 100, 101, 102,

103, 119, 120, 121, 122
grTexDetailControl() · 99, 102
grTexDownloadMipMap() · 114, 115, 116, 119, 120,

121, 122, 123
grTexDownloadMipMapLevel() · 114, 116, 117, 118,

119
grTexDownloadMipMapLevelPartial() · 114, 117, 118
grTexDownloadTable() · 124, 125
grTexDownloadTablePartial() · 124
grTexFilterMode() · 91, 97
GrTexInfo · 109, 111, 112, 114, 115, 119, 120, 121, 123
grTexLodBiasValue() · 97, 103, 159

Glossary

Copyright  1995-1998 3Dfx Interactive, Inc. 175
Proprietary and Confidential Printed 08/05/98 10:30 AM

grTexMaxAddress() · 113, 114, 119, 120, 121, 122
grTexMinAddress() · 113, 114, 120, 121, 122
grTexMipMapMode() · 96, 97, 150, 151
grTexMultibase() · 122
grTexMultibaseAddress() · 122, 123
grTexNCCTable() · 124, 125
grTexSource() · 119, 120, 121, 122, 123
GrTexTable_t · 110, 124, 165
grTexTextureMemRequired() · 109, 111, 112, 119, 120,

121, 122
GrTextureClampMode_t · 92, 165
GrTextureFilterMode_t · 91, 165
GrTextureFormat_t · 110, 111, 114, 116, 117, 126, 165
GrVertex · 48
grVertexLayout() · 12, 13, 14, 15, 16, 17, 32, 34, 41,

59, 150, 162
grViewport() · 10
gu3dfGetInfo() · 126
Gu3dfHeader · 125, 126
Gu3dfInfo · 125, 126
gu3dfLoad() · 124, 125, 126
guFogGenerateExp() · 77
guFogGenerateExp2() · 77
guFogGenerateLinear() · 77
guFogTableIndextoW() · 76
guFogTableIndexToW() · 75, 76
guGammaCorrectionRGB() · 57, 58
GuNccTable · 126
GuTexPalette · 125, 126
GuTexTable · 126

H

haze · See fog
homogeneous coordinate · 169

I

idle flag · 127
iterated alpha · 46, 48, 56
iterated RGB · 5, 56, 57

L

level of detail (LOD) · 3, 89, 92, 95, 169
lighting · 1, 2, 5, 73, 167, 168, 169

diffuse · 56, 167, 168, 169
maps · 81
specular · 56, 57

linear frame buffer
layout · 28
writing · 5, 136

LOD bias · 96

M

magnification · 85, 86, 90, 91, 96, 100, 165, 169
minification · 85, 86, 90, 91, 96, 100, 165, 169
mipmapping · 1, 3, 89, 92, 95, 96, 100

nearest · 95

nearest dithered · 95, 150, 151
mist · See fog
multi-pass fog · 77

N

narrow channel compression · See NCC
Narrow Channel Compression (NCC) · 2
NCC table · 108, 110, 124, 125, 164, 165

O

opacity · 62, 83

P

PCI bus · 2, 169
performance · 2, 3, 4, 73, 89, 95, 96, 100, 129, 150

number of TMUs and · 100
perspective correction · 2, 170
perspective distortion · See perspective correction
pixel center · 167, 169
pixel pipeline · 4, 5, 6, 11, 73, 100, 119, 127, 136, 137,

143, 148
point sampling · 3, 85, 89, 90, 97, 100, 169
porting note

anti-aliasing · 46, 47, 62
gamma correction · 58
grHints() · 12, 151
grSstIdle() replaced by grFinish() · 148
GrVertex structure · 12
LOD and aspect ratio names · 93, 94, 111
obsolete utility routines · 152
palettes and compression tables · 124
performance statistics · 149
pixelPipe argument to grLfbWriteRegion() · 140
q and w · 11
rendering polygons · 40
routines made obsolete by grGet() · 143
size of fog table · 76
texture alignment · 111
vertex snapping · 17
windowed environments · 20

Q

q coordinate · 77

R

read/write flag · 127
RGB iterators · 5, 56
RGBA iterators · 5

S

s and t coordinates · 91, 92, 170
scanline interleaving · 2, 3, 25
screen resolution · 27, 28
single buffering · 168, 169

176 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed 08/05/98 10:30 AM Proprietary and Confidential

smog · See fog
smoke · See fog
smoothing filter · 165
special effects unit · 5
state coherency · 159, 160
stenciling · 84
subpixel correction · 1, 169
system configuration · 2, 3, 27, 96

T

texel · 2, 57, 83, 86, 88, 90, 92, 95, 108, 167, 169, 170
texel center · 90
texel selection · 85, 93, 98, 105, 124
TexelFx · See TMU
texture

composite · 91, 102, 103, 120
decal · 97, 100, 101, 103, 119
detail · 100
projected · 92, 100
rectangular · 87, 93
square · 93

texture alpha · 57, 61
texture axis · 87
texture clamping · 85, 91, 92, 157
texture combine unit · 4, 5, 51, 52, 53, 55, 61, 85, 86,

96, 97, 98, 101, 102, 105, 121, 164
texture coordinate · 86, 87, 88, 169
texture format · 57, 105, 106, 107, 108, 109, 110, 111,

114, 118, 123, 125, 165
texture mapping · 1, 2, 3, 89, 96, 100, 106, 167, 169,

170
detail · 3, 89, 100
projected · 1, 3, 89, 100
true-perspective · 1, 2, 89

texture memory · 107, 170
2 Mbyte boundary · 109, 113

texture pipeline · 6, 100, 101, 119, 120
texture space decompression · See Narrow Channel

Compression
TMU · 3, 89, 96, 100, 170
translucence · 62
transparence · 4, 62, 83
triangle

area of · 44, 167
vertex · 170

triangle strips and fans · 35
trilinear filtering · 170. See trilinear mipmapping.
trilinear mipmapping · 1, 3, 89, 96, 97, 100, 101, 102,

109, 112, 121
triple buffering · 4, 23, 27, 28, 29, 62, 63, 67, 68, 83,

168, 170

V

video smoothing · 151

W

w buffer · 67, 70, 136, 138
w coordinate · 169, 170

Y

y origin, location of · 21, 22, 23, 28, 32, 44, 45, 128,
129, 132, 133, 137, 140, 150

YAB compression · 2, 106, 107, 108
YIQ compression · 106, 108

Z

z buffer · 2, 67, 69, 70, 71, 72, 136, 138, 159, 160

