
Printed at 10:56 AM on Monday, May 18, 1998

Glide 3.0 Reference Manual
Programming the 3Dfx Interactive Glide™ Rasterization Library 3.0

Document Release 020
July 23, 1998

Copyright  1995−1998 3Dfx Interactive, Inc.
All Rights Reserved

3Dfx Interactive, Inc.
4435 Fortran Drive

San Jose, CA 95134

Copyright  1995−1998 3Dfx Interactive, Inc. i
Proprietary and Confidential Printed on 08/05/98

Table of Contents
Table of Contents ...i

INTRODUCTION..III

Base Types ...iii
Predefined Constants... iv
API Reference ..v
grAADrawTriangle ...1
grAlphaBlendFunction ..3
grAlphaCombine..5
grAlphaControlsITRGBLighting..9
grAlphaTestFunction... 11
grAlphaTestReferenceValue.. 13
grBufferClear ... 15
grBufferSwap... 17
grChromakeyMode .. 19
grChromakeyValue .. 21
grChromaRangeExt... 23
grChromaRangeModeExt.. 25
grClipWindow .. 27
grColorCombine .. 29
grColorMask .. 31
grConstantColorValue... 33
grCoordinateSpace ... 35
grCullMode .. 37
grDepthBiasLevel .. 39
grDepthBufferFunction ... 41
grDepthBufferMode... 43
grDepthMask.. 45
grDepthRange.. 47
grDisable.. 49
grDisableAllEffects.. 51
grDitherMode... 53
grDrawLine .. 55
grDrawPoint... 57
grDrawTriangle .. 59
grDrawVertexArray .. 61
grDrawVertexArrayContiguous... 63
grEnable... 65
grErrorSetCallback.. 67
grFinish.. 69
grFlush... 71
grFogColorValue.. 73
grFogMode... 75
grFogTable... 77
grGet .. 79
grGetProcAddress... 83
grGetString .. 85
grGlideGetState ... 87
grGlideGetVertexLayout.. 89

Introduction Glide 3.0 Reference Manual

ii Copyright  1995−1998 3Dfx Interactive, Inc.
Printed on 08/05/98 Proprietary and Confidential

grGlideInit ..91
grGlideSetState..93
grGlideSetVertexLayout ..95
grGlideShutdown...97
grLfbConstantAlpha ..99
grLfbConstantDepth..101
grLfbLock...103
grLfbReadRegion...107
grLfbUnlock ...109
grLfbWriteRegion .. 111
grLoadGammaTable .. 113
grQueryResolutions .. 115
grRenderBuffer .. 117
grReset... 119
grSelectContext ...121
grSstSelect...125
grSstWinClose ...127
grSstWinOpen..129
grTexCalcMemRequired ..131
grTexChromaModeExt...133
grTexChromaRangeExt ...135
grTexClampMode...137
grTexCombine..139
grTexDetailControl...143
grTexDownloadMipMap ...145
grTexDownloadMipMapLevel ..147
grTexDownloadMipMapLevelPartial..149
grTexDownloadTable ...151
grTexDownloadTablePartial...153
grTexFilterMode...155
grTexLodBiasValue..157
grTexMaxAddress..159
grTexMinAddress...161
grTexMipMapMode...163
grTexMultibase...165
grTexMultibaseAddress...167
grTexNCCTable ..169
grTexSource...171
grTexTextureMemRequired ...173
grVertexLayout ..175
grViewport..179
gu3dfGetInfo ..181
gu3dfLoad..183
guFogGenerateExp..185
guFogGenerateExp2..187
guFogGenerateLinear..189
guFogTableIndexToW..191
guGammaCorrectionRGB ...193
References ...195

Copyright  1995−1998 3Dfx Interactive, Inc. iii
Proprietary and Confidential Printed on 08/05/98

Introduction
This document is the official programming reference for version 3.0 of 3Dfx Interactive Glide Rasterization
Library. The Glide Library is a low-level rendering and state management subroutine library that serves as a
thin layer over the register level interface to the 3Dfx Interactive family of graphics accelerators. Glide permits
easy and efficient implementation of 3D rendering libraries, games, and drivers on the graphics hardware. Glide
only implements operations that are natively supported by the hardware. Higher level operations are located in
the Glide Utility Library, which is currently part of Glide.

Glide serves three primary purposes:

• It relieves programmers from hardware specific issues such as timing, maintaining register shadows, and
working with hard-coded register constants and offsets.

• It defines an abstraction of the graphics hardware to facilitate ease of software porting.

• It acts as a delivery vehicle for sample source code providing in-depth optimizations.

By abstracting the low level details of interfacing with the graphics hardware into a set of C-callable APIs,
Glide allows developers targeting the graphics hardware to avoid working with hardware registers and memory
directly, enabling faster development and lower probability of bugs. Glide also handles mundane and error
prone chores, such as initialization and shutdown.

Glide currently consists of Glide APIs as well as Glide Utility APIs. All Glide APIs begin with the gr prefix, all
Glide Utility APIs being with the gu prefix. Glide Utility APIs do not directly communicate with hardware
registers; they are strictly layered on Glide APIs. Therefore, their functionality could be performed just as easily
by application code. Glide Utility APIs are included in Glide for convenience.

A 3Dfx interactive graphics accelerator consists of a Pixelfx chip that performs pixel rendering operations and
manages the video frame buffer, and one or more Texelfx chips that perform texture mapping operations. Each
Texelfx chip contains one Texture Mapping Unit, or TMU. The term TMU is used throughout the rest of this
manual.

The internal name for the graphics subsystem is “SST”. Some function names, type definitions, and constants
within Glide reflect this internal name, which is easier to type than some variation of Voodoo Graphics, Voodoo
Rush, or Voodoo2.

Base Types
All 3Dfx Interactive programming libraries use a common set of platform-independent signed and unsigned
types. These types can be found in 3dfx.h and are described in the table below:

type name format ANSI C type
FxU8 8-bit unsigned unsigned char
FxI8 8-bit signed signed char
FxU16 16-bit unsigned unsigned short int
FxI16 16-bit signed signed short int
FxU32 32-bit unsigned unsigned long int
FxI32 32-bit signed value signed long int
FxFloat 32-bit floating point value float

FxBool 32-bit signed long int

Introduction Glide 3.0 Reference Manual

iv Copyright  1995−1998 3Dfx Interactive, Inc.
Printed on 08/05/98 Proprietary and Confidential

Glide Types and Structures
Glide overlays the base types with a collection of type definitions whose names convey the kind of values that
variables of that type will assume. Each type is associated with a character string prefix that becomes part of
each predefined constant associated with the type. The table below lists the types, the underlying base type, and
the prefix for constants that can be used to establish a value for a parameter of the associated type. In a few
cases, the unifying prefix is not used and the table provides the list of associated constants instead.

enumerated type underlying base type valid values or prefix
GrChipID_t FxI32 GR_FBI, GR_TMU0, GR_TMU1, GR_TMU2
GrCombineFunction_t FxI32 GR_COMBINE_FUNCTION_
GrCombineFactor_t FxI32 GR_COMBINE_FACTOR_
GrCombineLocal_t FxI32 GR_COMBINE_LOCAL_
GrCombineOther_t FxI32 GR_COMBINE_OTHER_
GrAlphaSource_t FxI32 GR_ALPHASOURCE_
GrColorCombineFnc_t FxI32 GR_COLORCOMBINE_
GrAlphaBlendFnc_t FxI32 GR_BLEND_
GrAspectRatio_t FxI32 GR_ASPECT_LOG2_
GrBuffer_t FxI32 GR_BUFFER_
GrChromakeyMode_t FxI32 GR_CHROMAKEY_
GrChromaRangeMode_t FxI32 GR_CHROMARANGE_
GrTexChromakeyMode_t FxI32 GR_TEXCHROMA_
GrCmpFnc_t FxI32 GR_CMP_
GrColorFormat_t FxI32 GR_COLORFORMAT_
GrCullMode_t FxI32 GR_CULL_
GrDepthBufferMode_t FxI32 GR_DEPTHBUFFER_
GrDitherMode_t FxI32 GR_DITHER_
GrFogMode_t FxI32 GR_FOG_
GrLock_t FxU32 GR_LFB_
GrLfbBypassMode_t FxI32 GR_LFBBYPASS_
GrLfbWriteMode_t FxI32 GR_LFBWRITEMODE_
GrOriginLocation_t FxI32 GR_ORIGIN_
GrLOD_t FxI32 GR_LOD_LOG2_
GrMipMapMode_t FxI32 GR_MIPMAP_
GrSmoothingMode_t FxI32 GR_SMOOTHING_
GrTextureClampMode_t FxI32 GR_TEXTURECLAMP_
GrTextureCombineFnc_t FxI32 GR_TEXTURECOMBINE_
GrTextureFilterMode_t FxI32 GR_TEXTUREFILTER_
GrTextureFormat_t FxI32 GR_TEXFMT_
GrTexTable_t FxU32 GR_TEXTABLE_
GrNCCTable_t FxU32 GR_NCCTABLE_
GrTexBaseRange_t FxU32 GR_TEXBASE_
GrEnableMode_t FxU32 GR_MODE_
GrCoordinateSpaceMode_t FxU32 GR_WINDOW_COORDS, GR_CLIP_COORDS
GrLfbSrcFmt_t FxU32

Copyright  1995-98 3Dfx Interactive, Inc.
Proprietary and Confidential Printed 08/05/98

v

Glide also defines a small set of structures, as shown below.

structure name definition description and usage
GrLfbInfo_t typedef struct {

 int size;
 void *lfbPtr;
 FxU32 strideInBytes;
 GrLfbWriteMode_t writeMode;
 GrOriginLocation_t origin;
} GrLfbInfo_t;

Contains state information
about the linear frame buffer.
Used with grLfgLock.

GrTexInfo typedef struct {
 GrLOD_t smallLodLog2;
 GrLOD_t largeLodLog2;
 GrAspectRatio_t aspectRatioLog2;
 GrTextureFormat_t format;
 Void *data;
} GrTexInfo;

Contains mipmap parameters.
Used with
grTexDownloadMipMap,
grTexMultibaseAddress,
grTexSource, and
grTexTextureMemRequired.

GrResolution typedef struct {
 GrScreenResolution_t resolution;
 GrScreenRefresh_t refresh;
 int numColorBuffers;
 int numAuxBuffers;
} GlideResolution;

Contains display screen
parameters. Used with
grQueryResolutions.

Predefined Constants
Glide predefines several constants and is also dependent upon several externally defined constants. These are
documented in full in glide.h.

API Reference
The following is an API reference that lists the APIs provided by Glide, their purpose, usage, parameters, and
notes describing their implementation.

Copyright  1995−1998 3Dfx Interactive, Inc. 1
Proprietary and Confidential Printed on 08/05/98

grAADrawTriangle

NAME

grAADrawTriangle – draw an anti-aliased triangle

C SPECIFICATION

void grAADrawTriangle(const void *a,
const void *b,
const void *c,
FxBool antialiasAB,
FxBool antialiasBC,
FxBool antialiasCA

)

PARAMETERS

a, b, c Pointers to the vertices defining the triangle.

antialiasAB If FXTRUE, anti-alias the AB edge.

antialiasBC If FXTRUE, anti-alias the BC edge.

antialiasCA If FXTRUE, anti-alias the CA edge.

DESCRIPTION

Glide draws a triangle with the specified edges anti-aliased by setting up the alpha iterator so that it
represents pixel coverage. grAlphaCombine must select iterated alpha and grAlphaBlendFunction
should select GR_BLEND_SRC_ALPHA, GR_BLEND_ONE_MINUS_SCR_ALPHA as the RGB blend functions
and GR_BLEND_ZERO, GR_BLEND_ZERO as the alpha blend functions if sorting from back to front and
GR_BLEND_ALPHA_SATURATE, GR_BLEND_ONE as the RGB blend functions and GR_BLEND_SATURATE,
GR_BLEND_ONE as the alpha blend functions if sorting from front to back. Opaque anti-aliased primitives
must set alpha=255 in the vertex data. Transparent anti-aliased primitives are drawn by setting alpha to
values less than 255; this alpha value is multiplied by the pixel coverage to obtain the final alpha value for
alpha blending.

NOTES

If there is a steep gradient in a particular color space (i.e., green goes from 255.0 to 0.0 in a small number
of pixels), then there will be visual anomalies at the edges of the resultant anti-aliased triangle. The
workaround for this ‘feature’ is to reduce the gradient by increasing small color components and decreasing
large ones. This can be demonstrated by changing the values of maxColor and minColor in test25 of the
Glide distribution. Note that this ‘feature’ is only present when the color combine mode includes iterated
RGB or alpha as one of the parameters in the final color.

GrAADrawTriangle is independent of the GR_AA_ORDERED mode that enables anti-aliasing.

SEE ALSO

grAlphaBlendFunction, grAlphaCombine, grDrawTriangle, grEnable

Copyright  1995−1998 3Dfx Interactive, Inc. 3
Proprietary and Confidential Printed on 08/05/98

grAlphaBlendFunction

NAME

grAlphaBlendFunction – specify the alpha blending function

C SPECIFICATION

void grAlphaBlendFunction(GrAlphaBlendFnc_t rgb_sf,
GrAlphaBlendFnc_t rgb_df,
GrAlphaBlendFnc_t alpha_sf,
GrAlphaBlendFnc_t alpha_df

)

PARAMETERS

rgb_sf Specifies the red, green, and blue source blending factors. The following symbolic
constants are accepted:

GR_BLEND_ZERO GR_BLEND_ONE
GR_BLEND_DST_COLOR GR_BLEND_ONE_MINUS_DST_COLOR
GR_BLEND_SRC_ALPHA GR_BLEND_ONE_MINUS_SRC_ALPHA
GR_BLEND_DST_ALPHA GR_BLEND_ONE_MINUS_DST_ALPHA
GR_BLEND_ALPHA_SATURATE

rgb_df Specifies the red, green, and blue destination blending factors. The following
symbolic constants are accepted:

GR_BLEND_ZERO GR_BLEND_ONE
GR_BLEND_SRC_COLOR GR_BLEND_ONE_MINUS_SRC_COLOR
GR_BLEND_SRC_ALPHA GR_BLEND_ONE_MINUS_SRC_ALPHA
GR_BLEND_DST_ALPHA GR_BLEND_ONE_MINUS_DST_ALPHA
GR_BLEND_PREFOG_COLOR

alpha_sf Specifies the alpha source blending factor. The following symbolic constants are
accepted:

GR_BLEND_ZERO GR_BLEND_ONE

alpha_df Specifies the alpha destination blending factor. The following symbolic constants are
accepted:

GR_BLEND_ZERO GR_BLEND_ONE

DESCRIPTION

Alpha blending blends the RGBA values for rendered pixels (source) with the RGBA values that are
already in the frame buffer (destination). grAlphaBlendFunction defines the operation of blending.
rgb_sf and alpha_sf specifies which of nine methods is used to scale the source color and alpha
components. rgb_df and alpha_df specify which of eight methods is used to scale the destination color and
alpha components.

Alpha blending is defined by the equations:

grAlphaBlendFunction Glide 3.0 Reference Manual

4 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed on 08/05/98 Proprietary and Confidential

R = min (255, Rs sR + Rd dR)

G = min (255, Gs sG + Gd dG)

B = min (255, Bs sB + Bd dB)

A = min (255, As sA + Ad dA)

where Rs, Gs, Bs, As are the source color and alpha components, Rd, Gd, Bd, Ad are the destination color and
alpha components, sR, sG, sB sA are the source blending factors, and dR, dG, dB, dA are the destination blending
factors.

The blending factors are as follows:

blending factor component blend factor
GR_BLEND_ZERO 0
GR_BLEND_ONE 1
GR_BLEND_SRC_COLOR Cs / 255
GR_BLEND_ONE_MINUS_SRC_COLOR 1 – Cs / 255
GR_BLEND_DST_COLOR Cd / 255
GR_BLEND_ONE_MINUS_DST_COLOR 1 – Cd / 255
GR_BLEND_SRC_ALPHA As / 255
GR_BLEND_ONE_MINUS_SRC_ALPHA 1 – As / 255
GR_BLEND_DST_ALPHA Ad / 255
GR_BLEND_ONE_MINUS_DST_ALPHA 1 – Ad / 255
GR_BLEND_ALPHA_SATURATE min (As / 255, 1 – Ad / 255)
GR_BLEND_PREFOG_COLOR color before fog is applied

where Cs and Cd are the corresponding Rs, Gs, Bs, As and Rd, Gd, Bd, Ad components respectively.

To disable alpha blending, call
grAlphaBlendFunction(GR_BLEND_ONE, GR_BLEND_ZERO, GR_BLEND_ONE, GR_BLEND_ZERO)

NOTES

The source of incoming alpha and color are determined by grAlphaCombine and grColorCombine
respectively.

Alpha blending that requires a destination alpha is mutually exclusive with depth buffering. Attempting to
use GR_BLEND_DST_ALPHA, GR_BLEND_ONE_MINUS_DST_ALPHA, or GR_BLEND_ALPHA_SATURATE
when depth buffering is enabled will have undefined results.

On Voodoo Graphics systems, alpha blending and triple buffering are mutually exclusive as well.

GR_BLEND_PREFOG_COLOR is useful when applying fog to a scene generated in multiple passes. See the
Glide Programming Guide for more information.

SEE ALSO

grAADrawTriangle, grAlphaCombine, grColorCombine

Copyright  1995−1998 3Dfx Interactive, Inc. 5
Proprietary and Confidential Printed on 08/05/98

grAlphaCombine

NAME

grAlphaCombine – configure the alpha combine unit

C SPECIFICATION

void grAlphaCombine(GrCombineFunction_t func,
GrCombineFactor_t factor,
GrCombineLocal_t local,
GrCombineOther_t other,
FxBool invert
)

PARAMETERS

func Specifies the function used in source alpha generation. Valid parameters are
described below. The combine function names are prefixed with the string
“GR_COMBINE_FUNCTION_”: e.g. GR_COMBINE_FUNCTION_ZERO or
GR_COMBINE_FUNCTION_BLEND_LOCAL.

combine function func computed alpha
ZERO 0
LOCAL Alocal

LOCAL_ALPHA Alocal

SCALE_OTHER
BLEND_OTHER

f *Aother

SCALE_OTHER_ADD_LOCAL f *Aother + Alocal

SCALE_OTHER_ADD_LOCAL_ALPHA f *Aother + Alocal

SCALE_OTHER_MINUS_LOCAL f *(Aother – Alocal)
SCALE_OTHER_MINUS_LOCAL_ADD_LOCAL
BLEND

f *(Aother – Alocal) + Alocal

≡ f *Aother + (1– f)*Alocal

SCALE_OTHER_MINUS_LOCAL_ADD_LOCAL_ALPHA f *(Aother – Alocal) + Alocal

SCALE_MINUS_LOCAL_ADD_LOCAL
BLEND_LOCAL

f *(– Alocal) + Alocal

≡ (1– f) *Alocal

SCALE_MINUS_LOCAL_ADD_LOCAL_ALPHA f *(– Alocal) + Alocal

grAlphaCombine Glide 3.0 Reference Manual

6 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed on 08/05/98 Proprietary and Confidential

factor Specifies the scaling factor used in alpha generation. Valid parameters are described
below:

combine factor factor scale factor (f)
GR_COMBINE_FACTOR_NONE Unspecified
GR_COMBINE_FACTOR_ZERO 0
GR_COMBINE_FACTOR_LOCAL Alocal / 255
GR_COMBINE_FACTOR_OTHER_ALPHA Aother / 255
GR_COMBINE_FACTOR_LOCAL_ALPHA Alocal / 255
GR_COMBINE_FACTOR_TEXTURE_ALPHA Atexture / 255
GR_COMBINE_FACTOR_ONE 1
GR_COMBINE_FACTOR_ONE_MINUS_LOCAL 1 – Alocal / 255
GR_COMBINE_FACTOR_ONE_MINUS_OTHER_ALPHA 1 – Aother / 255
GR_COMBINE_FACTOR_ONE_MINUS_LOCAL_ALPHA 1 – Alocal / 255
GR_COMBINE_FACTOR_ONE_MINUS_TEXTURE_ALPHA 1 – Atexture / 255

local Specifies the local alpha used in source alpha generation. Valid parameters are
described below:

local combine source local alpha (Alocal)
GR_COMBINE_LOCAL_NONE Unspecified alpha.
GR_COMBINE_LOCAL_ITERATED Iterated vertex alpha.
GR_COMBINE_LOCAL_CONSTANT Constant alpha.
GR_COMBINE_LOCAL_DEPTH High 8 bits from iterated vertex z.

other Specifies the other alpha used in source alpha generation. Valid parameters are
described below:

other combine source other alpha (Aother)
GR_COMBINE_OTHER_NONE Unspecified alpha.
GR_COMBINE_OTHER_ITERATED Iterated vertex alpha.
GR_COMBINE_OTHER_TEXTURE Alpha from texture map.
GR_COMBINE_OTHER_CONSTANT Constant alpha.

invert Specifies whether the generated alpha should be bitwise inverted as a final step.

DESCRIPTION

grAlphaCombine configures the alpha combine unit of the graphics subsystem’s hardware pipeline. This
provides a low level mechanism for controlling all rendering modes within the hardware without
manipulating individual register bits. The alpha combine unit computes the source alpha for the remainder
of the rendering pipeline. The default mode is

grAlphaCombine(GR_COMBINE_FUNCTION_SCALE_OTHER, GR_COMBINE_FACTOR_ONE,
GR_COMBINE_LOCAL_NONE, GR_COMBINE_OTHER_CONSTANT, FXFALSE);

The alpha combine unit computes the function specified by the combine function on the inputs specified by
the local combine source, other combine source, and the combine scale factor. The result is clamped to
[0..255], and then a bitwise inversion may be applied, controlled by the invert parameter.

The constant color parameters are the colors passed to grConstantColorValue. If the texture has no
alpha component, then texture alpha is 255.

grAlphaCombine also keeps track of required vertex parameters for the rendering routines.
GR_COMBINE_FACTOR_NONE, GR_COMBINE_LOCAL_NONE, and GR_COMBINE_OTHER_NONE are provided

Glide 3.0 Reference Manual grAlphaCombine

Copyright  1995-98 3Dfx Interactive, Inc. 7
Proprietary and Confidential Printed 08/05/98

to indicate that no parameters are required. Currently they are the same as GR_COMBINE_FACTOR_ZERO,
GR_COMBINE_LOCAL_CONSTANT, and GR_COMBINE_OTHER_CONSTANT respectively.

NOTES

The local alpha value specified by the local parameter and the other alpha value specified by the other
parameter are used by the color combine unit.

Inverting the bits in a color is the same as computing (1.0 – color) for floating point color values in the
range [0..1] or (255 – color) for 8-bit color values in the range [0..255].

SEE ALSO

grColorCombine, grConstantColorValue, grDrawTriangle

Copyright  1995−1998 3Dfx Interactive, Inc. 9
Proprietary and Confidential Printed on 08/05/98

grAlphaControlsITRGBLighting

NAME

grAlphaControlsITRGBLighting – enables/disables alpha controlled lighting

C SPECIFICATION

void grAlphaControlsITRGBLighting(FxBool enable)

PARAMETERS

enable Specifies whether the mode is enabled or disabled.

DESCRIPTION

When enabled, the normal color combine controls for local color (Clocal) are overridden, and the most
significant bit of texture alpha (Atexture) selects between iterated vertex RGB and the constant color set by
grConstantColorValue. By default, alpha controlled lighting mode is disabled.

value of enable high order bit of alpha channel color combine local color
FXTRUE 0 iterated RGB
FXTRUE 1 grConstantColorValue
FXFALSE 0 set by grColorCombine
FXFALSE 1 set by grColorCombine

NOTES

Some possible uses for this mode are self-lit texels and specular paint. If a texture contains texels that
represent self-luminous areas, such as windows, then multiplicative lighting can be disabled for these texels
as follows. Choose a texture format that contains one bit of alpha and set the alpha for each texel to 1 if the
texel is self-lit. Set the Glide constant color to white and enabled alpha controlled lighting mode. Finally,
set up texture lighting by multiplying the texture color by iterated RGB where iterated RGB is the local
color in the color combine unit. When a texel’s alpha is 0, the texture color will be multiplied by the local
color which is iterated RGB. This applies lighting to the texture. When a texel’s alpha is 1, the texture color
will be multiplied by the Glide constant color which was previously set to white, so no lighting is applied.

If the color combine unit is configured to add iterated RGB to a texture for the purpose of a specular
highlight, then texture alpha can be used as specular paint. In this example, the Glide constant color is set to
black and iterated RGB iterates the specular lighting. If a texel’s alpha is 0, the texture color will be added
to iterated RGB, and specular lighting is applied to the texture. If the texel’s alpha is 1, the texture color
will be added to the Glide constant color which was previously set to black, so no lighting is applied. The
result is that the alpha channel in the texture controls where specular lighting is applied to the texture and
specularity can be painted onto the texture in the alpha channel.

SEE ALSO

grColorCombine, grConstantColorValue

Copyright  1995−1998 3Dfx Interactive, Inc. 11
Proprietary and Confidential Printed on 08/05/98

grAlphaTestFunction

NAME

grAlphaTestFunction – specify the alpha test function

C SPECIFICATION

void grAlphaTestFunction(GrCmpFnc_t function)

PARAMETERS

function The new alpha comparison function.

DESCRIPTION

The alpha test discards pixels depending on the outcome of a comparison between the incoming alpha
value and a constant reference value. grAlphaTestFunction specifies the comparison function and
grAlphaTestReferenceValue specifies the constant reference value.

The incoming alpha value is compared to the constant alpha test reference value using the function
specified by function. If the comparison passes, the pixel is drawn, conditional on subsequent tests, such as
depth buffer and chroma-key. If the comparison fails, the pixel is not drawn. The default function is
GR_CMP_ALWAYS.

The comparison functions are as follows:

function comparison function
GR_CMP_NEVER Never passes.
GR_CMP_LESS Passes if the incoming alpha value is less than the constant alpha reference value.
GR_CMP_EQUAL Passes if the incoming alpha value is equal to the constant alpha reference value.
GR_CMP_LEQUAL Passes if the incoming alpha value is less than or equal to the constant alpha

reference value.
GR_CMP_GREATER Passes if the incoming alpha value is greater than the constant alpha reference

value.
GR_CMP_NOTEQUAL Passes if the incoming alpha value is not equal to the constant alpha reference

value.
GR_CMP_GEQUAL Passes if the incoming alpha value is greater than or equal to the constant alpha

reference value.
GR_CMP_ALWAYS Always passes.

Alpha testing is performed on all pixel writes, including those resulting from scan conversion of points,
lines, and triangles, and from direct linear frame buffer writes. Alpha testing is implicitly disabled during
linear frame buffer writes if the pixel pipeline is disabled (see grLfbLock and grLfbWriteRegion).

NOTES

The incoming alpha is the output of the alpha combine unit that is configured with grAlphaCombine.

SEE ALSO

grAlphaCombine, grAlphaTestReferenceValue, grLfbLock, grLfbWriteRegion

Copyright  1995−1998 3Dfx Interactive, Inc. 13
Proprietary and Confidential Printed on 08/05/98

grAlphaTestReferenceValue

NAME

grAlphaTestReferenceValue – specify the alpha test reference value

C SPECIFICATION

void grAlphaTestReferenceValue(GrAlpha_t value)

PARAMETERS

value The new alpha test reference value.

DESCRIPTION

The alpha test discards pixels depending on the outcome of a comparison between the pixel’s incoming
alpha value and a constant reference value. grAlphaTestFunction specifies the comparison function and
grAlphaTestReferenceValue specifies the constant reference value. The default reference value is
0x00.

The incoming alpha value is compared to the value using the function specified by
grAlphaTestFunction. If the comparison passes, the pixel is drawn, conditional on subsequent tests
such as depth buffer and chroma-key. If the comparison fails, the pixel is not drawn.

Alpha testing is performed on all pixel writes, including those resulting from scan conversion of points,
lines, and triangles, and from direct linear frame buffer writes. Alpha testing is implicitly disabled during
linear frame buffer writes if the pixel pipeline is disabled (see grLfbLock and grLfbWriteRegion).

NOTES

The incoming alpha is the output of the alpha combine unit that is configured with grAlphaCombine.

SEE ALSO

grAlphaCombine, grAlphaTestReferenceValue, grLfbLock, grLfbWriteRegion

Copyright  1995−1998 3Dfx Interactive, Inc. 15
Proprietary and Confidential Printed on 08/05/98

grBufferClear

NAME

grBufferClear – clear the buffers to the specified values

C SPECIFICATION

void grBufferClear(GrColor_t color, GrAlpha_t alpha, FxU32 depth)

PARAMETERS

color The color value used for clearing the draw buffer.

alpha The alpha value used for clearing the alpha buffer (ignored if alpha buffering is not
enabled, i.e. a destination alpha is not specified in grAlphaBlendFunction).

depth An unsigned value used for clearing the depth buffer (ignored if depth buffering is
not enabled).

DESCRIPTION

Clears the appropriate buffers with the given values. grClipWindow defines the area within the buffer to
be cleared. Any buffers that are enabled are cleared by grBufferClear. For example, if depth buffering is
enabled, the depth buffer will be cleared. If an application does not want a buffer to be cleared, then it
should mask off writes to the buffer using grDepthMask and/or grColorMask as appropriate.

Although color, alpha, and depth parameters are always specified, the parameters actually used will depend
on the current configuration of the hardware; the irrelevant parameters are ignored.

The minimum and maximum values for depth buffer data can be retrieved by calling
grGet(GR_ZDEPTH_MIN_MAX,…) or grGet(GR_W_EPTH_MIN_MAX,…). The depth parameter can be one
of these values or a direct representation of a value in the depth buffer. In the latter case the value is either a
1/z value (for GR_DEPTHBUFFER_ZBUFFER mode) or a 16-bit floating point format q value (for
GR_DEPTHBUFFER_WBUFFER mode). The 16-bit floating point format is described in detail in the Glide
Programming Manual.

NOTES

A buffer clear fills pixels much faster than triangle rendering; thus clearing the buffer is much faster than
rendering a screen-sized rectangle. Clearing buffers is not always necessary, however, and should be
avoided if possible. When depth buffering is disabled and every visible pixel is rendered each frame,
simply draw each frame on top of whatever was previously in the frame buffer. When depth buffering is
enabled, a sorted background that covers the entire area can be drawn with the depth buffer compare
function set to GR_CMP_ALWAYS so that all pixel colors and depth values are replaced, and then normal
depth buffering can be resumed.

The constants GR_ZDEPTHVALUE_NEAREST and GR_ZDEPTHVALUE_FARTHEST assume that depth values
decrease as they get further away from the eye. However, any linear function of 1/z can be used for
computing depth buffer values and therefore they can either increase or decrease with distance from the
eye.

SEE ALSO

grClipWindow, grColorMask, grDepthMask, grGet, grRenderBuffer

Copyright  1995−1998 3Dfx Interactive, Inc. 17
Proprietary and Confidential Printed on 08/05/98

grBufferSwap

NAME

grBufferSwap – exchange front and back buffers

C SPECIFICATION

void grBufferSwap(int swap_interval)

PARAMETERS

swap_interval The number of vertical retraces to wait before swapping the front and back buffers.

DESCRIPTION

grBufferSwap exchanges the front and back buffers in the graphics subsystem after swap_interval
vertical retraces. If the swap_interval is 0, then the buffer swap does not wait for vertical retrace.
Otherwise, the buffers are swapped after swap_interval vertical retraces. For example, if the monitor
frequency is 60 Hz, a swap_interval of 3 results in a maximum frame rate of 20 Hz.

The exchange takes place during the next vertical retrace of the monitor, rather than immediately after
grBufferSwap is called. If the application is double buffering, the graphics subsystem will stop rendering
and wait until the swap occurs before executing more commands. If the application is triple buffering and
the third rendering buffer is available, rendering commands will take place immediately in the third buffer.

NOTES

A swap_interval of 0 may result in visual artifacts, such as ‘tearing’, since a buffer swap can occur during
the middle of a screen refresh cycle. This setting is very useful in performance monitoring situations, as
true rendering performance can be measured without including the time buffer swaps spend waiting for
vertical retrace.

grBufferSwap waits until there are fewer than 7 pending buffer swap requests in the graphics command
FIFO before returning.

SEE ALSO

grGet

Copyright  1995−1998 3Dfx Interactive, Inc. 19
Proprietary and Confidential Printed on 08/05/98

grChromakeyMode

NAME

grChromakeyMode – enable/disable hardware chroma-keying

C SPECIFICATION

void grChromakeyMode(GrChromakeyMode_t mode)

PARAMETERS

mode specifies whether chroma-keying should be enabled or disabled. Valid values are
GR_CHROMAKEY_ENABLE and GR_CHROMAKEY_DISABLE.

DESCRIPTION

Enables and disables chroma-keying. When chroma-keying is enabled, color values are compared to a
global chroma-key reference value (set by grChromakeyValue). If the pixel’s color is the same as the
chroma-key reference value, the pixel is discarded. The chroma-key comparison takes place before the
color combine function. By default, chroma-keying is disabled.

NOTES

The chroma-key comparison compares the chroma-key reference value to the other color specified in the
configuration of the color combine unit.

SEE ALSO

grColorCombine, grChromakeyValue, grChromaRangeModeExt

Copyright  1995−1998 3Dfx Interactive, Inc. 21
Proprietary and Confidential Printed on 08/05/98

grChromakeyValue

NAME

grChromakeyValue – set the global chroma-key reference value

C SPECIFICATION

void grChromakeyValue(GrColor_t value)

PARAMETERS

value The new chroma-key reference value.

DESCRIPTION

Sets the global chroma-key reference value as a packed RGBA value. The color format should be in the
same format as specified in the cFormat parameter to grSstWinOpen.

NOTES

The chroma-key comparison compares the chroma-key reference value to the other color specified in the
configuration of the color combine unit. The comparison is performed between colors with 24-bit precision;
thus value must be set accordingly. See Table 10.1 in the Glide Programming Guide for details on how
colors formats are expanded to 24 bits.

SEE ALSO

grColorCombine, grChromakeyMode, grChromaRangeExt

Copyright  1995−1998 3Dfx Interactive, Inc. 23
Proprietary and Confidential Printed on 08/05/98

grChromaRangeExt

NAME

grChromaRangeExt – set the global chroma-range bounds and match criteria

C SPECIFICATION

void grChromaRangeExt(GrColor_t color0, GrColor_t color1, FxU32 mode)

PARAMETERS

color0, color1 Independent range values for red, green, and blue.

mode Chroma-range match criteria. Only one mode value is currently supported:
GR_CHROMARANGE_RGB_ALL_EXT.

DESCRIPTION

grChromaRangeExt sets the global chroma-range reference values as order-insensitive packed RGBA
values. The color format for color0 and color1 should be the same one as specified in the cFormat
parameter to grSstWinOpen. The order in which range values are specified for a particular color
component is irrelevant, i.e. the {color0, color1} pairs {(130,36,87), (150,38,92)} and {(150,36,92),
(130,38,87)} are equivalent.

The mode parameter determines the way the color ranges are used in the chroma test. Only one value is
currently supported, GR_CHROMARANGE_RGB_ALL_EXT. In this mode, each color component pair defines
an inclusive range such that lower bound ≤ color ≤ upper bound. If all components of the incoming pixel
color fall within their ranges, the chroma test succeeds and the pixel is invalidated.

NOTES

Glide 3.0 is the first release to support grChromaRangeExt. The API is available only with hardware
support. Use grGetString(GR_EXTENSION,…) and search for the sub-string “CHROMARANGE” to
query for availability of this extension. If the extension is present, the entry point may be retrieved via
grGetProcAddr.

The chroma-key comparison compares the chroma-key reference value to the other color specified in the
configuration of the color combine unit. The comparison is performed between colors with 24-bit precision;
thus value must be set accordingly. See Table 10.1 in the Glide Programming Guide for details on how
colors formats are expanded to 24 bits.

Chroma ranging must be enabled before use. See grChromaRangeModeExt.

SEE ALSO

grColorCombine, grChromakeyMode, grChromaRangeModeExt, grGetProcAddr

Copyright  1995−1998 3Dfx Interactive, Inc. 25
Proprietary and Confidential Printed on 08/05/98

grChromaRangeModeExt

NAME

grChromaRangeModeExt – enable or disable chroma range checking

C SPECIFICATION

void grChromaRangeModeExt(GrChromakeyMode_t mode)

PARAMETERS

mode Chroma range checking enable flag. One of the two values:
GR_CHROMARANGE_DISABLE_EXT or GR_CHROMARANGE_ENABLE_EXT

DESCRIPTION

grChromaRangeModeExt enables and disables chroma range checking. Chroma ranging is independent of
chroma-keying, but must be enabled before use.

NOTES

Glide 3.0 is the first release to support grChromaRangeModeExt. The API is available only with hardware
support. Use grGetString(GR_EXTENSION,…) and search for the sub-string “CHROMARANGE” to
query for availability of this extension. If the extension is present, the entry point may be retrieved via
grGetProcAddr.

SEE ALSO

grColorCombine, grChromakeyMode, grChromaRangeExt, grGetString, grGetProcAddr

Copyright  1995−1998 3Dfx Interactive, Inc. 27
Proprietary and Confidential Printed on 08/05/98

grClipWindow

NAME

grClipWindow – set the size and location of the hardware clipping window

C SPECIFICATION

void grClipWindow(FxU32 minx, FxU32 miny, FxU32 maxx, FxU32 maxy)

PARAMETERS

minx The lower x screen coordinate of the clipping window.

miny The lower y screen coordinate of the clipping window.

maxx The upper x screen coordinate of the clipping window.

 maxy The upper y screen coordinate of the clipping window.

DESCRIPTION

grClipWindow specifies the hardware clipping window. Any pixels outside the clipping window are
rejected. Values are inclusive for minimum x and y values and exclusive for maximum x and y values. The
clipping window also specifies the area grBufferClear clears.

At startup the default values for the clip window are the full size of the screen, e.g. (0,0,640,480) for
640×480 mode and (0,0,800,600) for 800×600 mode. To disable clipping simply sets the size of the clip
window to the screen size. The clipping window should not be used for general purpose primitive clipping;
since clipped pixels are processed but discarded; proper geometric clipping should be done by the
application for best performance. The clipping window should be used to prevent stray pixels that appear
from imprecise geometric clipping. Note that if the pixel pipeline is disabled (see grLfbLock), clipping is
not performed on linear frame buffer writes.

NOTES

SEE ALSO

grBufferClear, grLfbLock

Copyright  1995−1998 3Dfx Interactive, Inc. 29
Proprietary and Confidential Printed on 08/05/98

grColorCombine

NAME

grColorCombine – configure the color combine unit

C SPECIFICATION

void grColorCombine(GrCombineFunction_t func,
GrCombineFactor_t factor,
GrCombineLocal_t local,
GrCombineOther_t other,
FxBool invert

)

PARAMETERS

func Specifies the function used in source color generation. Valid parameters are
described below:

combine function func computed color
GR_COMBINE_FUNCTION_ZERO 0
GR_COMBINE_FUNCTION_LOCAL Clocal

GR_COMBINE_FUNCTION_LOCAL_ALPHA Alocal

GR_COMBINE_FUNCTION_SCALE_OTHER
GR_COMBINE_FUNCTION_BLEND_OTHER

f * Cother

GR_COMBINE_FUNCTION_SCALE_OTHER_ADD_LOCAL f * Cother + Clocal

GR_COMBINE_FUNCTION_SCALE_OTHER_ADD_LOCAL_ALPHA f * Cother + Alocal

GR_COMBINE_FUNCTION_SCALE_OTHER_MINUS_LOCAL f * (Cother – Clocal)
GR_COMBINE_FUNCTION_SCALE_OTHER_MINUS_LOCAL_ADD_LOCAL
GR_COMBINE_FUNCTION_BLEND

f * (Cother – Clocal) + Clocal

≡ f * Cother + (1 – f) * Clocal

GR_COMBINE_FUNCTION_SCALE_OTHER_MINUS_LOCAL_ADD_LOCAL_ALPHA f * (Cother – Clocal) + Alocal

GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL
GR_COMBINE_FUNCTION_BLEND_LOCAL

f * (– Clocal) + Clocal

≡ (1 – f) * Clocal

GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL_ALPHA f * (– Clocal) + Alocal

factor Specifies the scaling factor f used in source color generation. Valid parameters are
described below:

value for factor scale factor used (f)
GR_COMBINE_FACTOR_NONE unspecified
GR_COMBINE_FACTOR_ZERO 0
GR_COMBINE_FACTOR_LOCAL Clocal / 255
GR_COMBINE_FACTOR_OTHER_ALPHA Aother / 255
GR_COMBINE_FACTOR_LOCAL_ALPHA Alocal / 255
GR_COMBINE_FACTOR_TEXTURE_ALPHA Atexture / 255
GR_COMBINE_FACTOR_ONE 1
GR_COMBINE_FACTOR_ONE_MINUS_LOCAL 1 – Clocal / 255
GR_COMBINE_FACTOR_ONE_MINUS_OTHER_ALPHA 1 – Aother / 255
GR_COMBINE_FACTOR_ONE_MINUS_LOCAL_ALPHA 1 – Alocal / 255
GR_COMBINE_FACTOR_ONE_MINUS_TEXTURE_ALPHA 1 – Atexture / 255

grColorCombine Glide 3.0 Reference Manual

30 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed on 08/05/98 Proprietary and Confidential

local Specifies the local color used in source color generation. Valid parameters are
described below:

value for local color used (Clocal)
GR_COMBINE_LOCAL_NONE Unspecified color.
GR_COMBINE_LOCAL_ITERATED Iterated vertex color (Gouraud shading).
GR_COMBINE_LOCAL_CONSTANT Constant color.

other Specifies the other color used in source color generation. Valid parameters are
described below:

value for other color used (Cother)
GR_COMBINE_OTHER_NONE Unspecified color.
GR_COMBINE_OTHER_ITERATED Iterated vertex color (Gouraud shading).
GR_COMBINE_OTHER_TEXTURE Color from texture map.
GR_COMBINE_OTHER_CONSTANT Constant color.

invert Specifies whether the generated source color should be bitwise inverted as a final
step.

DESCRIPTION

grColorCombine configures the color combine unit of the graphics subsystem’s hardware pipeline. This
provides a low level mechanism for controlling all modes of the color combine unit without manipulating
individual register bits.

The color combine unit computes the function specified by the combine function on the inputs specified by
the local combine source, other combine source, and the combine scale factor. The result is clamped to
[0..255], and then a bitwise inversion may be applied, controlled by the invert parameter. The resulting
color goes to the alpha and depth units.

The default color combine mode is
grColorCombine(GR_COMBINE_FUNCTION_SCALE_OTHER,

GR_COMBINE_FACTOR_ONE,
GR_COMBINE_LOCAL_ITERATED,
GR_COMBINE_OTHER_ITERATED,
FXFALSE

)

GR_COMBINE_LOCAL_CONSTANT and GR_COMBINE_OTHER_CONSTANT select the constant color specified
in a previous call to grConstantColorValue. The iterated color selected by
GR_COMBINE_LOCAL_ITERATED or GR_COMBINE_OTHER_ITERATED are the red, green, blue, and alpha
values associated with a drawing primitive’s vertices.

grColorCombine also keeps track of required vertex parameters for the rendering routines.
GR_COMBINE_FACTOR_NONE, GR_COMBINE_LOCAL_NONE, and GR_COMBINE_OTHER_NONE are provided
to indicate that no parameters are required. Currently they are the same as GR_COMBINE_FACTOR_ZERO,
GR_COMBINE_LOCAL_CONSTANT, and GR_COMBINE_OTHER_CONSTANT respectively.

NOTES

In the tables above, Alocal is the local alpha value selected by grAlphaCombine and Aother is the other alpha
value selected by grAlphaCombine.

Inverting the bits in a color is the same as computing (1.0 – color) for floating point color values in the
range [0..1] or (255 – color) for 8-bit color values in the range [0..255].

SEE ALSO

grAlphaCombine, grConstantColorValue, grDrawTriangle

Copyright  1995−1998 3Dfx Interactive, Inc. 31
Proprietary and Confidential Printed on 08/05/98

grColorMask

NAME

grColorMask – enable/disable writing into the color and alpha buffers

C SPECIFICATION

void grColorMask(FxBool rgb, FxBool alpha)

PARAMETERS

rgb The new color buffer mask.

alpha The new alpha buffer mask.

DESCRIPTION

grColorMask specifies whether the color and/or alpha buffers can or cannot be written to during rendering
operations. If rgb is FXFALSE, for example, no change is made to the color buffer regardless of the drawing
operation attempted. The alpha parameter is ignored if depth buffering is enabled since the alpha and depth
buffers share memory.

The value of grColorMask is ignored during linear frame buffer writes if the pixel pipeline is disabled
(see grLfbLock). The default values are all FXTRUE, indicating that the associated buffers are writable.

NOTES

SEE ALSO

grBufferClear, grDepthMask, grLfbLock

Copyright  1995−1998 3Dfx Interactive, Inc. 33
Proprietary and Confidential Printed on 08/05/98

grConstantColorValue

NAME

grConstantColorValue – set the global constant color

C SPECIFICATION

void grConstantColorValue(GrColor_t color)

PARAMETERS

color The new constant color.

DESCRIPTION

Glide refers to a global constant color in the color combine unit and alpha combine unit if
GR_COMBINE_LOCAL_CONSTANT or GR_COMBINE_OTHER_CONSTANT are specified. This constant color is
set with grConstantColorValue. The color format should be in the same format as specified in the
cFormat parameter to grSstWinOpen. The default value is 0xFFFFFFFF.

NOTES

SEE ALSO

grAlphaCombine, grColorCombine

Copyright  1995−1998 3Dfx Interactive, Inc. 35
Proprietary and Confidential Printed on 08/05/98

grCoordinateSpace

NAME

grCoordinateSpace – specify the coordinate space for vertices

C SPECIFICATION

void grCoordinateSpace(GrCoordinateSpaceMode_t mode)

PARAMETERS

mode Specifies the coordinate space for vertices. One of the following values:
GR_CLIP_COORDS or GR_WINDOW_COORDS.

DESCRIPTION

This API specifies the coordinate space for vertex coordinates. The mode parameter is one of the following:

mode description
GR_CLIP_COORDS Vertices are specified in clip coordinates.

GR_WINDOW_COORDS Vertices are specified in native hardware device coordinates relative to the
window origin.

When window coordinates are used, the application performs the coordinate divisions by w, providing x/w,
y/w, z/w, 1/w, s/w, t/w, and q/w as necessary in the vertex structure (only x/w and y/w are mandatory).
Window coordinates may be less than optimal on future hardware that can perform perspective division and
viewport transformations.

When clip coordinates are used, the division by w is performed automatically. The minimal vertex specifies
x, y, and w. If z buffering is enabled, z should be in the range [−w..+w]; otherwise, z data need not be given.
Glide will automatically compute x/w, y/w, z/w, and 1/w, perform vertex snapping on the results, and then
apply the viewport transformation to get window coordinates. Texture coordinates s and t are in the range
[0..1] for all texture sizes and aspect ratios. Glide automatically computes s/w, t/w, and q/w.

NOTES

Glide 3.0 is the first release to support grCoordinateSpace.

SEE ALSO

grClipWindow, grDepthRange, grSstOrigin

Copyright  1995−1998 3Dfx Interactive, Inc. 37
Proprietary and Confidential Printed on 08/05/98

grCullMode

NAME

grCullMode – set the cull mode

C SPECIFICATION

void grCullMode(GrCullMode_t mode)

PARAMETERS

mode The new culling mode. Valid parameters are GR_CULL_DISABLE,
GR_CULL_NEGATIVE, and GR_CULL_POSITIVE.

DESCRIPTION

Specifies the type of backface culling, if any, that Glide performs when rendering a triangle. Glide
computes the signed area of a triangle prior to rendering, and the sign of this area can be used for backface
culling operations. If the sign of the area matches the mode, then the triangle is rejected. grCullMode
assumes that GR_CULL_POSITIVE corresponds to a counter-clockwise oriented triangle when the origin is
GR_ORIGIN_LOWER_LEFT and a clockwise oriented triangle when the origin is GR_ORIGIN_TOP_LEFT.

location of the origin triangle orientation sign of area of culled triangles
GR_ORIGIN_LOWERLEFT clockwise negative
GR_ORIGIN_LOWERLEFT counter-clockwise positive
GR_ORIGIN_UPPERLEFT clockwise positive
GR_ORIGIN_UPPERLEFT counter-clockwise negative

NOTES

grCullMode has no effect on points and lines, but does effect all triangle rendering primitives including
polygons.

SEE ALSO

grDrawTriangle, grDrawVertexArray, grDrawVertexArrayContiguous

Copyright  1995−1998 3Dfx Interactive, Inc. 39
Proprietary and Confidential Printed on 08/05/98

grDepthBiasLevel

NAME

grDepthBiasLevel – set the depth bias level

C SPECIFICATION

void grDepthBiasLevel(FxU32 level)

PARAMETERS

level The new depth bias level.

DESCRIPTION

grDepthBiasLevel allows an application to specify a depth bias used when rendering coplanar polygons.
Specifically, if two polygons are coplanar but do not share vertices, e.g. a surface detail polygon sits on top
of a larger polygon, artifacts such as “poke through” may result. To remedy such artifacts an application
should increment or decrement the depth bias level, as appropriate for the depth buffer mode and function,
per coplanar polygon. For left handed coordinate systems where 0x0000 corresponds to “nearest to
viewer” and 0xFFFF corresponds “farthest from viewer” depth bias levels should be decremented on
successive rendering of coplanar polygons.

Depth biasing is mutually exclusive of linear frame buffer writes.

NOTES

When using a floating point depth buffer (a w buffer), the bias is added after a floating point depth is
computed, and the add is an integer add.

In depth buffering modes GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO_BIAS and
GR_DEPTHBUFFER_WBUFFER_COMPARE_TO_BIAS, the depth bias level specifies the value to compare
depth buffer values against, and is not added to the source depth value when writing to the depth buffer. See
grDepthBufferMode for more information.

SEE ALSO

grDepthBufferMode, grDepthMask

Copyright  1995−1998 3Dfx Interactive, Inc. 41
Proprietary and Confidential Printed on 08/05/98

grDepthBufferFunction

NAME

grDepthBufferFunction – specify the depth buffer comparison function

C SPECIFICATION

void grDepthBufferFunction(GrCmpFnc_t func)

PARAMETERS

func The new depth comparison function.

DESCRIPTION

grDepthBufferFunction specifies the function used to compare each rendered pixel’s depth value with
the depth value present in the depth buffer. The comparison is performed only if depth testing is enabled
with grDepthBufferMode. The choice of depth buffer function is typically dependent upon the depth
buffer mode currently active.

The valid comparison functions are as follows:

func comparison function
GR_CMP_NEVER Never passes.
GR_CMP_LESS Passes if the pixel’s depth value is less than the stored depth value.
GR_CMP_EQUAL Passes if the pixel’s depth value is equal to the stored depth value.
GR_CMP_LEQUAL Passes if the pixel’s depth value is less than or equal to the stored depth value.
GR_CMP_GREATER Passes if the pixel’s depth value is greater than the stored depth value.
GR_CMP_NOTEQUAL Passes if the pixel’s depth value is not equal to the stored depth value.
GR_CMP_GEQUAL Passes if the pixel’s depth value is greater than or equal to the stored depth

value.
GR_CMP_ALWAYS Always passes.

The default comparison function is GR_CMP_LESS.

NOTES

SEE ALSO

grDepthBufferMode, grDepthMask, grDepthBiasLevel, grLfbConstantDepth

Copyright  1995−1998 3Dfx Interactive, Inc. 43
Proprietary and Confidential Printed on 08/05/98

grDepthBufferMode

NAME

grDepthBufferMode – set the depth buffering mode

C SPECIFICATION

void grDepthBufferMode(GrDepthBufferMode_t mode)

PARAMETERS

mode The new depth buffering mode.

DESCRIPTION

grDepthBufferMode specifies the type of depth buffering to be performed. Valid modes are
GR_DEPTHBUFFER_DISABLE, GR_DEPTHBUFFER_ZBUFFER, GR_DEPTHBUFFER_WBUFFER,
GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO_BIAS, or GR_DEPTHBUFFER_WBUFFER_COMPARE_TO_BIAS.
If GR_DEPTHBUFFER_ZBUFFER or GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO_BIAS is selected, then the
graphics subsystem will perform 16-bit fixed point z buffering. If GR_DEPTHBUFFER_WBUFFER or
GR_DEPTHBUFFER_WBUFFER_COMPARE_TO_BIAS is selected, then the graphics subsystem will perform
16-bit floating point w buffering. By default the depth buffer node is GR_DEPTHBUFFER_DISABLE. Refer
to the Glide Programming Guide for more information about w and z buffering.

If GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO_BIAS or
GR_DEPTHBUFFER_WBUFFER_COMPARE_TO_BIAS is selected, then the bias specified with
grDepthBiasLevel is used as a pixel’s depth value for comparison purposes only. Depth buffer values
are compared against the depth bias level and if the compare passes and the depth buffer mask is enabled,
the pixel’s unbiased depth value is written to the depth buffer. This mode is useful for clearing beneath
cockpits and other types of overlays without effecting either the color or depth values for the cockpit or
overlay.

Consider the following example: the depth buffer is cleared to 0xFFFF and a cockpit is drawn with a depth
value of zero. Next, the scene beneath the cockpit is drawn with depth buffer compare function of
GR_CMP_LESS rendering pixels only where the cockpit is not drawn. To clear the color and depth buffers
underneath the cockpit without disturbing the cockpit, the area to be cleared is rendered using triangles (not
grBufferClear) with the depth bias level set to zero, a depth buffer compare function of
GR_CMP_NOTEQUAL and a depth buffer mode of GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO_BIAS or
GR_DEPTHBUFFER_WBUFFER_COMPARE_TO_BIAS. All pixels whose previous depth buffer values are not
equal to zero will be rendered and the depth buffer will be set to either unbiased z or w depending on the
mode. Using this method, the color and depth buffers can be cleared to any desired value beneath a cockpit
or overlay without effecting the cockpit or overlay. Or more desirably, sorted background polygons from
the scene to be rendered that cover all of the visible area can be rendered in this mode, saving the time
consuming clearing operation. After the depth buffer is cleared beneath the cockpit, the depth buffer mode
is returned to either GR_DEPTHBUFFER_ZBUFFER or GR_DEPTHBUFFER_WBUFFER and the compare
function is returned to its normal setting (GR_CMP_LESS in this example). Note that since this mode of
clearing is performed using triangle rendering, the fill rate is one half that of a rectangle clear using
grBufferClear. In the case where sorted background polygons are used to clear underneath the cockpit,
this method should always be faster than the alternative of calling grBufferClear and then drawing the
background polygons. In the case where background polygons are not used, both methods:

1. Clearing the buffers with grBufferClear and then repainting the cockpit.

2. Clearing beneath the cockpit with triangles and not repainting the cockpit.

grDepthBufferMode Glide 3.0 Reference Manual

44 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed on 08/05/98 Proprietary and Confidential

should be compared and the faster method chosen. Avoiding a cockpit repaint is important; cockpits are
typically rendered with linear frame buffer writes and while the writes are individually fast, the process can
be lengthy if the cockpit covers many pixels.

NOTES

Since alpha, depth, and triple buffering are mutually exclusive of each other, enabling depth buffering when
using either the alpha or triple buffer will have undefined results.

GR_DEPTHBUFFER_ZBUFFER_COMPARE_TO_BIAS and GR_DEPTHBUFFER_WBUFFER_COMPARE_TO_BIAS
modes are not available in revision 1 of the Pixelfx chip (use grGet to obtain the revision number).

SEE ALSO

grDepthBufferFunction, grDepthMask, grDepthBiasLevel, grGet, grLfbConstantDepth

Copyright  1995−1998 3Dfx Interactive, Inc. 45
Proprietary and Confidential Printed on 08/05/98

grDepthMask

NAME

grDepthMask – enable/disable writing into the depth buffer

C SPECIFICATION

void grDepthMask(FxBool enable)

PARAMETERS

enable The new depth buffer mask.

DESCRIPTION

grDepthMask specifies whether the depth buffer is enabled for writing. If enable is FXFALSE, depth buffer
writing is disabled. Otherwise, it is enabled. Initially, depth buffer writing is disabled.

NOTES

Since the alpha and depth buffers share the same memory, grDepthMask should be called only if depth
buffering is being used.

grDepthMask is ignored during linear frame buffer writes if the pixel pipeline is bypassed (see
grLfbLock).

SEE ALSO

grBufferClear, grDepthBufferFunction, grDepthBufferMode, grDepthBiasLevel,
grLfbConstantDepth, grLfbLock

Copyright  1995−1998 3Dfx Interactive, Inc. 47
Proprietary and Confidential Printed on 08/05/98

grDepthRange

NAME

grDepthRange – specify viewport depth range

C SPECIFICATION

void grDepthRange(FxFloat near, FxFloat far)

PARAMETERS

near, far range for depth values for z buffering

DESCRIPTION

grDepthRange specifies the viewport parameters for the depth component for z buffering. It is useful only
when vertices are specified in clip coordinates.

If z buffering, clip-space z is in the range [-w, +w]. After division by w, z is in the range [-1, 1] which is mapped
to the depth buffer according to [near, far], where [near=0, far=1] represents the entire range of the depth
buffer, regardless of how many bits are in the depth buffer.

If w buffering, grDepthRange is ignored.

NOTES

Glide 3.0 is the first release to support grDepthRange.

SEE ALSO

grCoordinateSpace

Copyright  1995−1998 3Dfx Interactive, Inc. 49
Proprietary and Confidential Printed on 08/05/98

grDisable

NAME

grDisable – disable Glide operating modes

C SPECIFICATION

void grDisable (GrEnableMode_t mode)

PARAMETERS

mode Glide operating mode. Valid values are GR_AA_ORDERED,
GR_ALLOW_MIPMAP_DITHER, GR_PASSTHRU, GR_ SHAMELESS_PLUG, and GR_
VIDEO_SMOOTHING.

DESCRIPTION

grDisable disables various Glide operating modes. The mode parameter is one of the following:

mode description
GR _AA_ORDERED An anti-aliasing method that requires objects to be sorted by depth.

This mode applies to all primitives except strips and fans.
GR_ALLOW_MIPMAP_DITHER GR_MIPMAP_NEAREST_DITHER mode. By default, this mode cannot

be enabled with grTexMipMapMode because of the performance
impact. Note that this does not actually set mipmap dithering;
grTexMipMapMode must still be called.

GR_PASSTHRU Pass through mode. When enabled, the graphics frame buffer will
displayed. When disabled, the VGA frame buffer will be displayed.
(This feature replaces the now-obsolete grSstControl API).

Pass through mode is not supported by all hardware configurations.
Use grGet(GR_SUPPORTS_PASSTHRU,…) to determine whether or
not pass through mode is supported on the current system.

GR_VIDEO_SMOOTHING Video smoothing mode. Enabling smoothing reduces dithering
artifacts but may result in a slightly blurrier image. If the hardware
does not support video smoothing, this function is a no-op.

GR_SHAMELESS_PLUG The 3Dfx power shield shameless plug that is blended into each
displayed frame.

NOTES

Glide 3.0 is the first release to support grDisable.

SEE ALSO

grAADrawTriangle, grEnable, grGet, grTexMipMapMode

Copyright  1995−1998 3Dfx Interactive, Inc. 51
Proprietary and Confidential Printed on 08/05/98

grDisableAllEffects

NAME

grDisableAllEffects – disable all special effects in the graphics subsystem

C SPECIFICATION

void grDisableAllEffects(void)

PARAMETERS

none

DESCRIPTION

grDisableAllEffects disables all special effects (alpha blending, alpha testing, chroma-keying, fog,
depth buffering) in the graphics subsystem with the exception of clipping, dithering, and the color/depth
masks. Effects must be re-enabled individually.

NOTES

SEE ALSO

grAlphaBlendFunction, grAlphaTestFunction, grChromakeyMode, grDepthBufferMode,
grFogMode

Copyright  1995−1998 3Dfx Interactive, Inc. 53
Proprietary and Confidential Printed on 08/05/98

grDitherMode

NAME

grDitherMode – sets the dithering mode

C SPECIFICATION

void grDitherMode(GrDitherMode_t mode)

PARAMETERS

mode The new dithering mode.

DESCRIPTION

grDitherMode selects the form of dithering used when converting 24-bit RGB values to the 16-bit RGB
color buffer format. Valid values are GR_DITHER_DISABLE, GR_DITHER_2x2, and GR_DITHER_4x4.
GR_DITHER_DISABLE forces a simple truncation, which may result in noticeable banding.
GR_DITHER_2x2 uses a 2x2 ordered dither matrix, and GR_DITHER_4x4 uses a 4x4 ordered dither matrix.

The default dithering mode is GR_DITHER_4x4. grDitherMode is not affected by
grDisableAllEffects.

NOTES

SEE ALSO

Copyright  1995−1998 3Dfx Interactive, Inc. 55
Proprietary and Confidential Printed on 08/05/98

grDrawLine

NAME

grDrawLine – draw a one-pixel-wide arbitrarily oriented line

C SPECIFICATION

void grDrawLine(const void *a, const void *b)

PARAMETERS

a, b Endpoints and attributes of the line.

DESCRIPTION

grDrawLine renders a one-pixel-wide, arbitrarily oriented line with the given endpoints. All current Glide
attributes will affect the appearance of the line. The drawing mode set by the most recent call to grEnable
determines the kind of line that will be drawn. For example, if GR_AA_ORDERED has been enabled,
grDrawLine will draw an anti-aliased line. All current Glide attributes will affect the appearance of the
line.

NOTES

The Glide 2.x routine grAADrawLine is obsolete in Glide 3.0. To draw an anti-aliased point, enable anti-
aliasing by calling grEnable(GR_AA_ORDERED) before drawing the point with grDrawLine.

SEE ALSO

grDrawPoint, grDrawTriangle, grEnable

Copyright  1995−1998 3Dfx Interactive, Inc. 57
Proprietary and Confidential Printed on 08/05/98

grDrawPoint

NAME

grDrawPoint – draw a point

C SPECIFICATION

void grDrawPoint(const void *pt)

PARAMETERS

pt Location and attributes of the point.

DESCRIPTION

grDrawPoint renders a single point. The drawing mode set by the most recent call to grEnable
determines the kind of point that will be drawn. For example, if GR_AA_ORDERED has been enabled,
grDrawPoint will draw an anti-aliased point. All current Glide attributes will affect the appearance of the
point. If many points need to be rendered to the screen, e.g. a sprite, use linear frame buffer writes instead.

pt is a pointer to a vertex structure whose internal layout has been specified by calls to grVertexLayout.

NOTES

The Glide 2.x routine grAADrawPoint is obsolete in Glide 3.0. To draw an anti-aliased point, enable anti-
aliasing by calling grEnable(GR_AA_ORDERED) before drawing the point with grDrawPoint.

SEE ALSO

grDrawLine, grDrawTriangle, grEnable, grLfbLock, grVertexLayout

Copyright  1995−1998 3Dfx Interactive, Inc. 59
Proprietary and Confidential Printed on 08/05/98

grDrawTriangle

NAME

grDrawTriangle – draw a triangle

C SPECIFICATION

void grDrawTriangle(const void *a, const void *b, const void *c)

PARAMETERS

a, b, c Location and attributes of the vertices defining the triangle.

DESCRIPTION

grDrawTriangle renders an arbitrarily oriented triangle. The drawing mode set by the most recent call to
grEnable determines the kind of point that will be drawn. For example, if GR_AA_ORDERED has been
enabled, grDrawTriangle will draw an anti-aliased triangle. All current Glide attributes will affect the
appearance of the triangle.

The parameters a, b, and c are pointers to vertex structures whose internal layout has been specified by
calls to grVertexLayout.

Triangles are rendered with the following filling rules:

1. Zero area triangles render zero pixels.

2. Pixels are rendered if and only if their center lies within the triangle.

A pixel center is within a triangle if it is inside all three of the edges. If a pixel center lies exactly on an
edge, it is considered to be inside for the left and horizontal bottom (lower y coordinate) edges and outside
for the right and horizontal top (higher y coordinate) edges. If a pixel is outside any edge, it is considered to
be outside the triangle.

In the following picture, a pixel whose center is at the intersection of the 8 triangles is rendered only by
triangle D. The center pixel lies on a right edge in triangles A, B, E, F, G, and H. In triangle C and H, the
pixel lies exactly on a top edge (high Y). But in triangle D, the pixel lies exactly on the bottom and left
edges and is therefore considered to be inside the triangle.

E

D

C

BA

H

G

F

(0,0)

These filling rules guarantee that perfect meshes will draw every pixel within the mesh once and only once.

grDrawTriangle Glide 3.0 Reference Manual

60 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed on 08/05/98 Proprietary and Confidential

NOTES

If GR_AA_ORDERED has been enabled, grDrawTriangle will anti-aliased all three edges of the triangle.
To selectively anti-alias edges, use grAADrawTriangle.

SEE ALSO

grAADrawTriangle, grDrawLine, grDrawPoint, grEnable, grVertexLayout

Copyright  1995−1998 3Dfx Interactive, Inc. 61
Proprietary and Confidential Printed on 08/05/98

grDrawVertexArray

NAME

grDrawVertexArray – draw a list of by-vertex vertices

C SPECIFICATION

void grDrawVertexArray (FxU32 mode, FxU32 count, void *pointers[])

PARAMETERS

mode Type of vertices. Valid values are GR_POINTS, GR_LINE_STRIP, GR_LINES,
GR_POLYGON, GR_TRIANGLE_STRIP, GR_TRIANGLE_FAN, GR_TRIANGLES,
GR_TRIANGLE_STRIP_CONTINUE, and GR_TRIANGLE_FAN_CONTINUE.

count Number of vertices to draw.

pointers Array of pointers to the vertex data.

DESCRIPTION

grDrawVertexArray draws the vertices identified by pointers, according to mode. It assumes the by-
vertex format introduced in Glide 3.0, whereby the parametric values associated with a single vertex are
bundled together. The vertex layout has been established by a series of calls to grVertexLayout.

The mode argument determines the shape that will be drawn with the vertices, as shown below.

GR_POINTS GR_LINES GR_TRIANGLES

GR_LINE_STRIP GR_TRIANGLE_STRIP GR_TRIANGLE_FAN

Mode GR_POLYGON is inappropriate with the example vertex list, since they produce a non-convex
polygon. If GR_POLYGON is specified, the points are drawn as a triangle fan and produce a different polygon
than the one that results from connecting the vertices in sequence.

Mode GR_LINES expects a vertex list with an even number of vertices, and will ignore the last vertex in the
example. Similarly, GR_TRIANGLE expects vertex triples and will ignore the last vertex in the example.

Two additional values are accepted for mode: GR_TRIANGLE_STRIP_CONTINUE and
GR_TRIANGLE_FAN_CONTINUE. These two modes can be used in strictly limited circumstances:
grDrawVertexArray(GR_TRIANGLE_STRIP_CONTINUE,…) must follow immediately after a command
to draw or continue a triangle strip. Likewise, grDrawVertexArray(GR_TRIANGLE_FAN_CONTINUE,…)
must follow immediately after a command to draw or continue a triangle fan.

grAlphaBlendFunction Glide 3.0 Reference Manual

62 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed on 08/05/98 Proprietary and Confidential

NOTES

Glide 3.0 is the first release to support grDrawVertexArray. Six old routines for drawing polygons have
been made obsolete by grDrawVertexArray: grDrawPolygon; grDrawPlanarPolygon;
grDrawPolygonVertexList; grDrawPlanarPolygonVertexList; grAADrawPolygon; and
grAADrawPolygonVertexList. The table below shows how to convert calls to the obsolete routines with
calls to grDrawVertexArray. It assumes that the old GrVertex structure has been defined both
syntactically and with calls to grVertexLayout.

old new
grDrawPlanarPolygon(nVerts, ilist, vlist) grDrawVertexArray(GR_POYGON, nVerts,

vlist sorted according to ilist)
grDrawPolygon(nVerts, ilist, vlist) grDrawVertexArray(GR_POLYGON, nVerts,

vlist sorted according to ilist)
grDrawPlanarPolygonVertexList(nVerts, vlist) grDrawVertexArrayContiguous(GR_POLYGON, nVerts,

vlist, sizeof(GrVertex))
grDrawPolygonVertexList(nVerts, vlist) grDrawVertexArrayContiguous(GR_POLYGON, nVerts,

vlist, sizeof(GrVertex))
grAADrawPolygon(nVerts, vlist) grEnable(AA_ORDERED);

grDrawVertexArray(GR_POLYGON, nVerts,
vlist sorted according to ilist)

grAADrawPolygonVertexList(nVerts, vlist) grEnable(AA_ORDERED);
grDrawVertexArrayContiguous(GR_POLYGON, nVerts,

vlist, sizeof(GrVertex))

SEE ALSO

grDrawVertexArrayContiguous, grEnable, grVertexLayout

Copyright  1995−1998 3Dfx Interactive, Inc. 63
Proprietary and Confidential Printed on 08/05/98

grDrawVertexArrayContiguous

NAME

grDrawVertexArrayContiguous – draw a contiguous list of by-vertex vertices

C SPECIFICATION

void grDrawVertexArrayContiguous (FxU32 mode, FxU32 count, void *vertex, FxU32 stride)

PARAMETERS

mode Type of vertices. Valid values are GR_POINTS, GR_LINE_STRIP, GR_LINES,
GR_POLYGON, GR_TRIANGLE_STRIP, GR_TRIANGLE_FAN, GR_TRIANGLES,
GR_TRIANGLE_STRIP_CONTINUE, and GR_TRIANGLE_FAN_CONTINUE.

count Number of vertices to draw.

vertex Pointer to the first element of an array of vertex data.

stride Size of a single vertex in the array.

DESCRIPTION

This is a specialized variant of grDrawVertexArray to account for the common case of all the vertices
being in a linear array. The vertices are processed in order.

NOTES

Glide 3.0 is the first release to support grDrawVertexArrayContiguous. It is a generalization of the
now-obsolete grDrawPolygonVertexList.

SEE ALSO

grDrawVertexArray

Copyright  1995−1998 3Dfx Interactive, Inc. 65
Proprietary and Confidential Printed on 08/05/98

grEnable

NAME

grEnable – enable Glide operating modes

C SPECIFICATION

void grEnable (GrEnableMode_t mode)

PARAMETERS

mode Glide operating mode. Valid values are GR_AA_ORDERED,
GR_ALLOW_MIPMAP_DITHER, GR_PASSTHRU, GR_ SHAMELESS_PLUG, and GR_
VIDEO_SMOOTHING.

DESCRIPTION

grEnable enables various Glide operating modes. The mode parameter is one of the following:

mode description
GR _AA_ORDERED An anti-aliasing method that requires objects to be sorted by depth.

This mode applies to all primitives except strips and fans.
GR_ALLOW_MIPMAP_DITHER Allow GR_MIPMAP_NEAREST_DITHER mode. By default, this mode

cannot be enabled with grTexMipMapMode because of the
performance impact. Note that this does not actually set mipmap
dithering; grTexMipMapMode must still be called.

GR_PASSTHRU Pass through mode. When enabled, the graphics frame buffer will
displayed. When disabled, the VGA frame buffer will be displayed.
(This feature replaces the now-obsolete grSstControl API).

Pass through mode is not supported by all hardware configurations.
Use grGet(GR_SUPPORTS_PASSTHRU,…) to determine whether or
not pass through mode is supported on the current system.

GR_VIDEO_SMOOTHING Video smoothing mode. Enabling smoothing reduces dithering
artifacts but may result in a slightly blurrier image. If the hardware
does not support video smoothing, this mode is a no-op.

GR_SHAMELESS_PLUG The 3Dfx power shield shameless plug is blended into each displayed
frame if this mode is enabled.

NOTES

Glide 3.0 is the first release to support grEnable.

SEE ALSO

grAADrawTriangle, grDisable, grGet, grTexMipMapMode

Copyright  1995−1998 3Dfx Interactive, Inc. 67
Proprietary and Confidential Printed on 08/05/98

grErrorSetCallback

NAME

grErrorSetCallback – install a user-defined error-handler

C SPECIFICATION

typedef void (*GrErrorCallbackFnc_t)(const char *string, FxBool fatal);

void grErrorSetCallback(GrErrorCallbackFnc_t fnc);

PARAMETERS

function Pointer to a function to be called with all future errors.

DESCRIPTION

grErrorSetCallback allows an application to install a callback function to handle error messages
generated internally by Glide. The callback function accepts a string describing the error and a flag
indicating if the error is fatal or recoverable. grErrorSetCallback is relevant only for the debug build of
Glide; the release build of Glide removes all internal parameter validation and error checking, thus the user
installed callback will never be called.

NOTES

SEE ALSO

Copyright  1995−1998 3Dfx Interactive, Inc. 69
Proprietary and Confidential Printed on 08/05/98

grFinish

NAME

grFinish – force completion of all outstanding graphics commands

C SPECIFICATION

void grFinish (void)

PARAMETERS

none

DESCRIPTION

Calling grFinish forces all previously issued Glide commands to complete: it does not return until all
effects from previous commands are fully realized on the screen. grFinish should be used judiciously as
it can have severe performance impacts if called to frequently.

NOTES

Glide 3.0 is the first release to support grFinish. It replaces the now-obsolete grSstIdle.

SEE ALSO

grFlush

Copyright  1995−1998 3Dfx Interactive, Inc. 71
Proprietary and Confidential Printed on 08/05/98

grFlush

NAME

grFlush – flush the graphics FIFO

C SPECIFICATION

void grFlush (void)

PARAMETERS

none

DESCRIPTION

Calling grFlush forces all previously issued commands to begin execution, guaranteeing they will
complete in finite time. However, they may not all be completed upon return. Use grFinish to guarantee
command completion upon return.

NOTES

Glide 3.0 is the first release to support grFlush. It is a no-op in current hardware because commands are
not buffered (they are FIFOed, and the FIFO is guaranteed to drain). Future hardware designs may utilize a
buffer rather than a FIFO; in that case, this command will become necessary. Developers interested in
writing upward-compatible software should start using grFlush now.

SEE ALSO

grFinish

Copyright  1995−1998 3Dfx Interactive, Inc. 73
Proprietary and Confidential Printed on 08/05/98

grFogColorValue

NAME

grFogColorValue – set the global fog color

C SPECIFICATION

void grFogColorValue(GrColor_t value)

PARAMETERS

value The new global fog color.

DESCRIPTION

grFogColorValue specifies the global fog color to be used during fog blending operations. The color
format should be in the same format as specified in the cFormat parameter to grSstWinOpen.

The fog operation blends the fog color (Cfog) with each rasterized pixel’s color (Cin) using a blending factor
f. Factor f is derived from a user downloaded fog table based on either the pixels’s q or f component,
depending on the current grFogMode.

The new color is computed as follows:

Cout = f Cfog + (1–f)Cin

NOTES

Fog is applied after color combining and before alpha blending.

SEE ALSO

grDisableAllEffects, grFogMode, grFogTable

Copyright  1995−1998 3Dfx Interactive, Inc. 75
Proprietary and Confidential Printed on 08/05/98

grFogMode

NAME

grFogMode – enable/disable per-pixel fog blending operations

C SPECIFICATION

void grFogMode(GrFogMode_t mode)

PARAMETERS

mode The new fog mode.

DESCRIPTION

grFogMode enables/disables fog blending operations. Valid parameters are GR_FOG_DISABLE,
GR_FOG_WITH_TABLE_ON_Q, GR_FOG_ADD2, and GR_FOG_MULT2. The last two modes can be used in
conjunction with the others to tailor the fog equation, as shown below. If the “FOGCOORD” extension is
supported, then GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT is also permitted.

The fog operation blends the fog color (cfog) with each rasterized pixel’s color (cin) using a blending factor f.
A value of f = 0 indicates minimum fog density and a value of f = 255 indicates maximum fog density. The
new color is computed as follows:

cout = f cfog + (1–f)cin

Factor f is determined by mode. If mode is GR_FOG_WITH_TABLE_ON_Q, then f is computed by
interpolating between fog table entries, where the fog table is indexed with a floating point representation
of the pixel’s q (if using clip coordinates) or w (if using window coordinates) component. If mode is
GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT, then the fog table is indexed with a special vertex parameter,
GR_PARAM_FOG_EXT.

grFogMode Glide 3.0 Reference Manual

76 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed on 08/05/98 Proprietary and Confidential

if mode sets the fog equation is
where cin is the color
entering the fog unit, cout

is the result of fogging,
cfog is the fog color and

GR_FOG_DISABLE cout = cin
GR_FOG_WITH_TABLE_ON_Q cout = ffog[q] • cfog + (1− ffog[q]) • cin ffog[q] is computed by

interpolating between
entries in a fog table
indexed with q.

GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT cout = ffog[v.fog] • cfog + (1− ffog[v.fog]) • cin ffog[v.fog] is computed by
interpolating between
entries in a fog table
indexed with v.fog, the
GR_PARAM_FOG_EXT
parameter to
grVertexLayout. This
mode is valid only when
the FOGCOORD
extension is supported.
See grGetString.

GR_FOG_MULT2 cout = f cfog f is computed from a fog
table.

GR_FOG_ADD2 cout = (1−f)cin f is computed from a fog
table.

NOTES

Fog is applied after color combining and before alpha blending.

Mode modifiers GR_FOG_ADD2 and GR_FOG_MULT2 are useful when applying fog to scenes that require
several passes to generate. See the Glide Programming Guide for more information.

SEE ALSO

grFogColorValue, grFogTable

Copyright  1995−1998 3Dfx Interactive, Inc. 77
Proprietary and Confidential Printed on 08/05/98

grFogTable

NAME

grFogTable – download a fog table

C SPECIFICATION

void grFogTable(const GrFog_t table[])

PARAMETERS

table The new fog table.

DESCRIPTION

grFogTable downloads a new table of 8-bit values that are logically viewed as fog opacity values
corresponding to various depths. The table entries control the amount of blending between the fog color
and the pixel’s color. A value of 0x00 indicates no fog blending and a value of 0xFF indicates complete
fog.

The fog operation blends the fog color (Cfog) with each rasterized pixel’s color (Cin) using a blending factor
f. Factor f depends upon the most recent call to grFogMode. If the grFogMode is set to
GR_FOG_WITH_TABLE_ON_Q, the factor f is computed by interpolating between fog table entries, where the
fog table is indexed with a floating point representation of the pixel’s q (if using clip coordinates) or w (if
using window coordinates) component. The order of the entries within the fog table correspond roughly to
their distance from the viewer. The exact world w corresponding to fog table entry i can be found by calling
guFogTableIndexToW(i) or by computing:

pow(2.0,3.0+(double)(i>>2)) / (8-(i&3));

The new color is computed as follows:

Cout = f Cfog + (1–f)Cin

An exponential fog table can be generated by computing (1-e-kw)*255 where k is the fog density and w is
world distance. It is usually best to normalize the fog table so that the last entry is 255.

NOTES

In previous versions of Glide, fog tables had a fixed size of 64 entries. With Glide 3.0, the fog table size is
variable and hardware dependent. Use grGet(GR_FOG_TABLE_ENTRIES,…) to retrieve the size for your
system configuration.

The difference between consecutive entries in the fog table must be less than 64.

Fog is applied after color combining and before alpha blending.

There are several Glide Utility APIs for generating fog tables.

SEE ALSO

grFogMode, grFogColorValue, grGet, guFogTableIndexToW

Copyright  1995−1998 3Dfx Interactive, Inc. 79
Proprietary and Confidential Printed on 08/05/98

grGet

NAME

grGet – return Glide state

C SPECIFICATION

FxU32 grGet (FxU32 pname, FxU32 plength, FxI32 *params)

PARAMETERS

pname Encoded selectors for the environmental parameters to be returned.

plength Length of the return buffer, in bytes.

params Pointer to a buffer in which the parameters will be returned.

DESCRIPTION

grGet retrieves the values of selected Glide state variables. If successful, it returns the number of bytes
written into the params buffer. If grGet fails (invalid context, invalid pname or NULL params), 0 is
returned and the contents of the params array is unchanged.

selector encoded in pname
number
of values
returned

number
of bytes
returned

description of value(s) returned in params

GR_BITS_DEPTH 1 4 The number of bits of depth (z or w) in the
frame buffer.

GR_BITS_RGBA 4 16 The number of bits each of red, green, blue,
alpha in the frame buffer. If there is no separate
alpha buffer (e.g. on Voodoo2, the depth buffer
can be used as an alpha buffer), 0 will be
returned for alpha bits.

GR_BITS_GAMMA 1 4 The number of bits for each channel in the
gamma table. If gamma correction is not
available, grGet will fail, and the params array
will be unmodified.

GR_FIFO_FULLNESS 2 8 How full the FIFO is, as a percentage. The
value is returned in two forms: 1.24 fixed point
and a hardware-specific format.

GR_FOG_TABLE_ENTRIES 1 4 The number of entries in the hardware fog
table.

GR_GAMMA_TABLE_ENTRIES 1 4 The number of entries in the hardware gamma
table. Returns FXFALSE if it is not possible to
manipulate gamma (e.g. on a Macronix card, or
in windowed mode).

GR_GLIDE_STATE_SIZE 1 4 Size of buffer, in bytes, needed to save Glide
state. See grGlideGetState.

GR_GLIDE_VERTEXLAYOUT_SIZE 1 4 Size of buffer, in bytes, needed to save the
current vertex layout. See
grGlideGetVertexLayout.

GR_IS_BUSY 1 4 Returns FXFALSE if idle, FXTRUE if busy.
GR_LFB_PIXEL_PIPE 1 4 Returns FXTRUE if LFB writes can go through

the 3D pixel pipe, FXFALSE otherwise.

grGet Glide 3.0 Reference Manual

80 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed on 08/05/98 Proprietary and Confidential

selector encoded in pname
number
of values
returned

number
of bytes
returned

description of value(s) returned in params

GR_MAX_TEXTURE_SIZE 1 4 The width of the largest texture supported
on this configuration (e.g. Voodoo
Graphics returns 256).

GR_MAX_TEXTURE_ASPECT_RATIO 1 4 The logarithm base 2 of the maximum
aspect ratio supported for power-of-two,
mipmap-able textures (e.g. Voodoo
Graphics returns 3).

GR_MEMORY_FB 1 4 The total number of bytes per Pixelfx chip
if a non-UMA configuration is used, else
0. In non-UMA configurations, the total
FB memory is GR_MEMORY_FB * GR_NUM_FB.

GR_MEMORY_TMU 1 4 The total number of bytes per Texelfx chip
if a non-UMA configuration is used, else
FXFALSE. In non-UMA configurations, the
total usable texture memory is
GR_MEMORY_TMU * GR_NUM_TMU.

GR_MEMORY_UMA 1 4 The total number of bytes if a UMA
configuration, else 0.

GR_NON_POWER_OF_TWO_TEXTURES 1 4 Returns FXTRUE if this configuration
supports textures with arbitrary width and
height (up to the maximum). Note that
only power-of-two textures may be
mipmapped. Not implemented in the initial
release of Glide 3.0.

GR_NUM_BOARDS 1 4 The number of installed boards supported
by Glide. Valid before a call to
grSstWinOpen.

GR_NUM_FB 1 4 The number of Pixelfx chips present. This
number will always be 1 except for SLI
configurations.

GR_NUM_SWAP_HISTORY_BUFFER 1 4 Number of entries in the swap history
buffer. Each entry is 4 bytes long.

GR_NUM_TMU 1 4 The number of Texelfx chips per Pixelfx
chip. For integrated chips, the number of
TMUs will be returned.

GR_PENDING_BUFFERSWAPS 1 4 The number of buffer swaps pending.
GR_REVISION_FB 1 4 The revision of the Pixelfx chip(s).
GR_REVISION_TMU 1 4 The revision of the Texelfx chip(s).
GR_STATS_LINES 1 4 The number of lines drawn.
GR_STATS_PIXELS_AFUNC_FAIL 1 4 The number of pixels that failed the alpha

function test.
GR_STATS_PIXELS_CHROMA_FAIL 1 4 The number of pixels that failed the

chroma key (or range) test.
GR_STATS_PIXELS_DEPTHFUNC_FAIL 1 4 The number of pixels that failed the depth

buffer test.
GR_STATS_PIXELS_IN 1 4 The number of pixels that went into the

pixel pipe, excluding buffer clears.
GR_STATS_PIXELS_OUT 1 4 The number of pixels that went out of the

pixel pipe, including buffer clears.
GR_STATS_POINTS 1 4 The number of points drawn.

Glide 3.0 Reference Manual grGet

Copyright  1995-98 3Dfx Interactive, Inc. 81
Proprietary and Confidential Printed 08/05/98

selector encoded in pname
number of
values
returned

number of
bytes
returned

description of value(s) returned in params

GR_STATS_TRIANGLES_IN 1 4 The number of triangles received.
GR_STATS_TRIANGLES_OUT 1 4 The number of triangles drawn.
GR_SWAP_HISTORY n 4n The swapHistory buffer contents. The ith

4-byte entry counts the number of vertical
syncs between the (current frame – i)th frame
and its predecessor. If swapHistory is not
implemented (e.g. on Voodoo Graphics and
Voodoo Rush), grGet will fail, and the
params array will be unmodified.

Use grGet(GR_NUM_SWAP_HISTORY_BUFFER,…)
to determine the number of entries in the buffer.

GR_SUPPORTS_PASSTHRU 1 4 Returns FXTRUE if pass through mode is
supported. See grEnable.

GR_TEXTURE_ALIGN 1 4 The alignment boundary for textures. For
example, if textures must be 16-byte aligned,
0x10 would be returned.

GR_VIDEO_POSITION 2 8 Vertical and horizontal beam location.
Vertical retrace is indicated by y == 0.

GR_VIEWPORT 4 16 x, y, width, height.
GR_WDEPTH_MIN_MAX 2 8 The minimum and maximum allowable w

buffer values.
GR_ZDEPTH_MIN_MAX 2 8 The minimum and maximum allowable z

buffer values.

NOTES

Glide 3.0 is the first release to support grGet.

SEE ALSO

grEnable, grGetProcAddress, grGetString

Copyright  1995−1998 3Dfx Interactive, Inc. 83
Proprietary and Confidential Printed on 08/05/98

grGetProcAddress

NAME

grGetProcAddress – get a pointer to an extension function

C SPECIFICATION

GrProc grGetProcAddress (char *procName)

PARAMETERS

procName The name of the desired procedure.

DESCRIPTION

grGetProcAddress retrieves a pointer to the function named in procName. Use
grGetString(GR_EXTENSION,…) to retrieve a list of supported extensions. If an extension is supported
on the calling system, the extension name in the first column of the table can be found in the string returned
by grGetString, and the procedure names found in the third column can be used as the procName
argument to grGetProcAddress.

extension name description associated procedure names
CHROMARANGE Chroma range feature in the pixel pipeline is supported. grChromaRangeModeExt

grChromaRangeExt
TEXCHROMA Chroma range feature in the texture mapping unit is

supported.
grTexChromaModeExt
grChromaRangeExt

TEXMIRROR GR_TEXTURECLAMP_MIRROR_EXT mode in
grTexClampMode is supported.

PALETTE6666 GR_TEXTURE_PALETTE_6666_EXT format is
supported in grTexDownloadTable and
grTexDownloadTablePartial.

FOGCOORD GR_PARAM_FOG_EXT vertex parameter in
grVertexLayout is supported and
GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT is
supported in grFogMode.

NOTES

Glide 3.0 is the first release to support grGetProcAddress.

SEE ALSO

grGetString

Copyright  1995−1998 3Dfx Interactive, Inc. 85
Proprietary and Confidential Printed on 08/05/98

grGetString

NAME

grGetString – return environment information

C SPECIFICATION

const char *grGetString (FxU32 name)

PARAMETERS

name A selector that determines which string will be returned. Valid values are
GR_EXTENSION, GR_HARDWARE, GR_RENDERER, GR_VENDOR, or GR_VERSION.

DESCRIPTION

grGetString returns a pointer to a text string, or NULL on error (invalid name).

selector description
GR_EXTENSION Returns a space-separated list of Glide extension names (the extension names

themselves do not contain spaces). If no extensions are supported, a single space
“ “ is returned.

GR_HARDWARE Returns one of “Voodoo Graphics”, “Voodoo Rush”, “Voodoo2”, or “Banshee”.
Other types may be added in the future.

GR_RENDERER “Glide”.
GR_VENDOR The vendor, “3Dfx Interactive”.
GR_VERSION The Glide version. For example, “3.0”.

The following extensions are potentially available in Glide 3.0, with support dependent on the hardware
capabilities of the system Glide is running on:

extension name description
CHROMARANGE Chroma range feature in the pixel pipeline is supported.

Two new functions can be called using grGetProcAddress: grChromaRangeModeExt
and grChromaRangeExt.

TEXCHROMA Chroma range feature in the texture mapping unit is supported. Two new functions can be
called using grGetProcAddress: grTexChromaModeExt and grChromaRangeExt.

TEXMIRROR GR_TEXTURECLAMP_MIRROR_EXT mode in grTexClampMode is supported.
PALETTE6666 GR_TEXTURE_PALETTE_6666_EXT format is supported in grTexDownloadTable

and grTexDownloadTablePartial.
FOGCOORD GR_PARAM_FOG_EXT vertex parameter in grVertexLayout is supported and

GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT is supported in grFogMode.

NOTES

Glide 3.0 is the first release to support grGetString.

SEE ALSO

grGet, grGetProcAddress

Copyright  1995−1998 3Dfx Interactive, Inc. 87
Proprietary and Confidential Printed on 08/05/98

grGlideGetState

NAME

grGlideGetState – get the current state of the current graphics subsystem

C SPECIFICATION

void grGlideGetState(void *state)

PARAMETERS

state Pointer to a buffer where the state is to be stored.

DESCRIPTION

grGlideGetState makes a copy of the current state of the current graphics subsystem. This allows an
application to save the state and then restore it later using grGlideSetState. Use
grGet(GR_GLIDE_STATE_SIZE,…) to determine how much space will be needed (and hence, how big
the state buffer should be).

NOTES

SEE ALSO

grGet, grGlideSetState

Copyright  1995−1998 3Dfx Interactive, Inc. 89
Proprietary and Confidential Printed on 08/05/98

grGlideGetVertexLayout

NAME

grGlideGetVertexLayout – get the current vertex layout

C SPECIFICATION

void grGlideGetVertexLayout(void *layout)

PARAMETERS

layout Pointer to a buffer where the state is to be stored.

DESCRIPTION

grGlideGetVertexLayout makes a copy of the current vertex layout established by calls to
grVertexLayout. This allows an application to save the layout and then restore it later using
grGlideSetVertexLayout. Use grGet(GR_GLIDE_VERTEXLAYOUT_SIZE,…) to determine how much
space will be needed (and hence, how big the layout buffer should be).

NOTES

Glide 3.0 is the first release to support grGlideGetVertexLayout.

SEE ALSO

grGet, grGlideSetVertexLayout, grVertexLayout

Copyright  1995−1998 3Dfx Interactive, Inc. 91
Proprietary and Confidential Printed on 08/05/98

grGlideInit

NAME

grGlideInit – initialize the Glide library

C SPECIFICATION

void grGlideInit(void)

PARAMETERS

none

DESCRIPTION

grGlideInit initializes the Glide library, performing tasks such as finding any installed graphics
subsystems, allocating memory, and initializing state variables. grGlideInit must be called before any
other Glide routines are called (the one exception is noted below).

NOTES

grGet(GR_NUM_BOARDS,…) is the only API that can be called before grGlideInit.

SEE ALSO

grGet, grGlideShutdown, grSstWinOpen, grSstSelect

Copyright  1995−1998 3Dfx Interactive, Inc. 93
Proprietary and Confidential Printed on 08/05/98

grGlideSetState

NAME

grGlideSetState – set the state of the currently active graphics subsystem

C SPECIFICATION

void grGlideSetState(const void *state)

PARAMETERS

state Pointer to a buffer containing the new state.

DESCRIPTION

grGlideSetState sets the state of the currently active graphics subsystem. This API is typically paired
with calls to grGlideGetState so that an application can save and restore the state.

SEE ALSO

grGlideGetState

Copyright  1995−1998 3Dfx Interactive, Inc. 95
Proprietary and Confidential Printed on 08/05/98

grGlideSetVertexLayout

NAME

grGlideSetVertexLayout – set the current vertex layout

C SPECIFICATION

void grGlideSetVertexLayout (const void *layout)

PARAMETERS

layout Pointer to a buffer containing a vertex layout previously saved by
grGlideGetVertexLayout.

DESCRIPTION

grGlideSetVertexLayout restores the vertex layout previously saved by grGlideGetVertexLayout.

SEE ALSO

grGlideGetVertexLayout

Copyright  1995−1998 3Dfx Interactive, Inc. 97
Proprietary and Confidential Printed on 08/05/98

grGlideShutdown

NAME

grGlideShutdown – shut down the Glide library

C SPECIFICATION

void grGlideShutdown(void)

PARAMETERS

none

DESCRIPTION

grGlideShutdown frees up any system resources allocated by Glide, including memory, and interrupt
vectors. grGlideShutdown should be called immediately before program termination.

NOTES

SEE ALSO

grGlideInit

Copyright  1995−1998 3Dfx Interactive, Inc. 99
Proprietary and Confidential Printed on 08/05/98

grLfbConstantAlpha

NAME

grLfbConstantAlpha – set the constant alpha value for linear frame buffer writes

C SPECIFICATION

void grLfbConstantAlpha(GrAlpha_t alpha)

PARAMETERS

alpha The new constant alpha value.

DESCRIPTION

Some linear frame buffer write modes, specifically GR_LFBWRITEMODE_555, GR_LFBWRITEMODE_565,
GR_LFBWRITEMODE_888, GR_LFBWRITEMODE_555_DEPTH, and GR_LFBWRITEMODE_565_DEPTH, do not
contain alpha information. grLfbConstantAlpha specifies the alpha value for these linear frame buffer
write modes. This alpha value is used if alpha testing and blending operations are performed during linear
frame buffer writes. The default constant alpha value is 0xFF.

NOTES

If a linear frame buffer format contains alpha information, then the alpha supplied with the linear frame
buffer write is used, and the constant alpha value set with grLfbConstantAlpha is ignored.

SEE ALSO

grAlphaTestFunction, grAlphaBlendFunction

Copyright  1995−1998 3Dfx Interactive, Inc. 101
Proprietary and Confidential Printed on 08/05/98

grLfbConstantDepth

NAME

grLfbConstantDepth – set the constant depth value for linear frame buffer writes

C SPECIFICATION

void grLfbConstantDepth(FxU32 depth)

PARAMETERS

depth The new constant depth value.

DESCRIPTION

Some linear frame buffer write modes, specifically GR_LFBWRITEMODE_555, GR_LFBWRITEMODE_565,
GR_LFBWRITEMODE_1555, GR_LFBWRITEMODE_888, and GR_LFBWRITEMODE_8888 do not include
depth information. grLfbConstantDepth specifies the depth value for these linear frame buffer write
modes. This depth value is used for depth buffering and fog operations and is assumed to be in a format
suitable for the current depth buffering mode. The default constant depth value is 0x00.

NOTES

If a linear frame buffer format contains depth information, then the depth supplied with the linear frame
buffer write is used, and the constant depth value set with grLfbConstantDepth is ignored.

SEE ALSO

grDepthBufferMode, grFogMode

Copyright  1995−1998 3Dfx Interactive, Inc. 103
Proprietary and Confidential Printed on 08/05/98

grLfbLock

NAME

grLfbLock – lock a frame buffer in preparation for direct linear frame buffer accesses

C SPECIFICATION

FxBool grLfbLock(GrLock_t type,
GrBuffer_t buffer,
GrLfbWriteMode_t writeMode,
GrOriginLocation_t origin,
FxBool pixelPipeline,
GrLfbInfo_t *info

)

PARAMETERS

type Lock type.

buffer Buffer to lock.

writeMode Requested destination pixel format.

origin Requested y origin of linear frame buffer.

pixelPipeline If FXTRUE, send linear frame buffer writes through the pixel pipeline.

info Structure to be filled with pointer and stride info.

DESCRIPTION

When a Glide application desires direct access to a color or auxiliary buffer, it must lock that buffer in order
to gain access to a pointer to the frame buffer data. This lock may assert a critical code section which
effects process scheduling and precludes the use of GUI debuggers; therefore, time spent doing direct
accesses should be minimized and the lock should be released as soon as possible using the grLfbUnlock
API. An application may hold multiple simultaneous locks to various buffers, depending on the underlying
hardware. Application software should always check the return value of grLfbLock and take into account
the possibility that a lock may fail.

A lock type is a bit field created by the bit-wise OR of one read/write flag and an optional idle request flag.
The read/write flag can be one of:

read/write flag description
GR_LFB_READ_ONLY info.lfbPtr should only be used for read access; writing to this

pointer will have undefined effects on the graphics subsystem.
GR_LFB_WRITE_ONLY info.lfbPtr should only be used for write access; reading from this

pointer will yield undefined data.

grLfbLock Glide 3.0 Reference Manual

104 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed on 08/05/98 Proprietary and Confidential

The idle request flag can be one of:

idle request flag description
GR_LFB_IDLE The 3D engine will be idled before grLfbLock returns. This is the

default behavior if no idle request flag is specified.
GR_LFB_NOIDLE The 3D engine will not be idled; there is no guarantee of

serialization of linear frame buffer accesses and triangle rendering
or buffer clearing operations.

An application may attempt to lock any Glide buffer. Currently supported buffer designations are
GR_BUFFER_FRONTBUFFER, GR_BUFFER_BACKBUFFER, and GR_BUFFER_AUXBUFFER.

Some 3Dfx hardware supports multiple write formats to the linear frame buffer space. An application may
request a particular write format by passing a writeMode argument other than GR_LFBWRITEMODE_ANY. If
the destination pixel format specified is not supported on the target hardware, then the lock will fail.
Supported pixel formats are:

writeMode description
GR_LFBWRITEMODE_565 Frame buffer accepts 16-bit RGB 565 pixel data.

GR_LFBWRITEMODE_555 Frame buffer accepts 16-bit RGB-555 pixel data. The MSB of each
pixel is ignored.

GR_LFBWRITEMODE_1555 Frame buffer accepts 16-bit ARGB-1555 pixel data. The alpha
component is replicated to 8-bits and copied to the alpha buffer if
the alpha buffer has been enabled with grColorMask.

GR_LFBWRITEMODE_888 Frame buffer accepts 24-bit RGB 888 pixel data packed into 32-bit
words. The most significant byte of each word is ignored. If
dithering is enabled, then color will be dithered down to the real
frame buffer storage format if necessary.

GR_LFBWRITEMODE_8888 Frame buffer accepts 32-bit ARGB 8888 pixel data. The alpha
component is copied into the alpha buffer if the alpha buffer has
been enabled with grColorMask. If dithering is enabled, then
color will be dithered down to the real frame buffer storage format
if necessary.

GR_LFBWRITEMODE_565_DEPTH Frame buffer accepts 32-bit pixels where the two most significant
bytes contain 565 RGB data, and the two least significant bytes
contain 16-bit depth data.

GR_LFBWRITEMODE_555_DEPTH Frame buffer accepts 32-bit pixels where the two most significant
bytes contain 555 RGB data, the most significant bit is ignored, and
the two least significant bytes contain 16-bit depth data.

GR_LFBWRITEMODE_1555_DEPT
H

Frame buffer accepts 32-bit pixels where the two most significant
bytes contain 1555 ARGB data. The alpha component is replicated
to 8-bits and copied to the alpha buffer, if alpha buffering has been
enabled with grColorMask.

GR_LFBWRITEMODE_ZA16 Frame buffer accepts 16-bit auxiliary buffer values. This is the only
writeMode that is valid when locking the auxiliary buffer. Alpha
buffer values are taken from the 8 least significant bits of each
sixteen bit word.

GR_LFBWRITEMODE_ANY Lock will return the pixel format that most closely matches the true
frame buffer storage format in the info.writeMode.

If the application specifies GR_LFB_WRITEMODE_ANY and the lock succeeds, the destination pixel format
will be returned in info.writeMode. This default destination pixel format will always be the pixel format
that most closely matches the true pixel storage format in the frame buffer. On Voodoo Graphics and

Glide 3.0 Reference Manual grLfbLock

Copyright  1995-98 3Dfx Interactive, Inc. 105
Proprietary and Confidential Printed 08/05/98

Voodoo Rush, this will always be GR_LFBWRITEMODE_565 for color buffers and
GR_LFBWRITEMODE_ZA16 for the auxiliary buffer. The writeMode argument is ignored for read-only locks.

Some 3Dfx hardware supports a user specified y origin for LFB writes. An application may request a
particular y origin by passing an origin argument other than GR_ORIGIN_ANY. If the origin specified is not
supported on the target hardware, then the lock will fail. If the application specifies GR_ORIGIN_ANY and
the lock succeeds, the LFB y origin will be returned in info.origin. The default y origin will always be
GR_ORIGIN_UPPER_LEFT for LFB writes. Currently supported y origin values are:

y origin description
GR_ORIGIN_UPPER_LEFT Addressing originates in the upper left hand corner of the screen.
GR_ORIGIN_LOWER_LEFT Addressing originates in the lower left hand corner of the screen.
GR_ORIGIN_ANY Lock will always choose GR_ORIGIN_UPPER_LEFT.

Some 3Dfx hardware allows linear frame buffer writes to be processed through the same set of functions as
those pixels generated by the triangle rasterizer. This feature is enabled by passing a value of FXTRUE in the
pixelPipeline argument of grLfbLock. If the underlying hardware is incapable of processing pixels
through the pixel pipeline, then the lock will fail. Use grGet(GR_FLB_PIXEL_PIPE,…) to determine
whether or not LFB writes can utilize the pixel pipeline.

When enabled, color, alpha, and depth data from the linear frame buffer write will be processed as if they
were generated by the triangle iterators. If the selected writeMode lacks depth information, then the value is
derived from grLfbConstantDepth. If the writeMode lacks alpha information, then the value is derived
from grLfbConstantAlpha. Linear frame buffer writes through the pixel pipeline may not be enabled for
auxiliary buffer locks. The pixelPipeline argument is ignored for read only locks.

Upon successful completion, the user provided GrLfbInfo_t structure will be filled in with information
pertaining to the locked buffer. The GrLfbInfo_t structure is currently defined as:

typedef struct {
int size;
void *lfbPtr;
FxU32 strideInBytes;
GrLfbWriteMode_t writeMode;
GrOriginLocation_t origin;

} GrLfbInfo_t;

The size element must be initialized by the user to the size of the GrLfbInfo_t structure, e.g.:

info.size = sizeof(GrLfbInfo_t);

This size element will be used to provide backward compatibility for future revisions of the API. An
unrecognized size will cause the lock to fail. The lfbPtr element is assigned a valid linear pointer to be
used for accessing the requested buffer. The strideInBytes element is assigned the byte distance
between scan lines.

NOTES

An application may not call any Glide routines other than grLfbLock and grLfbUnlock while a lock is
active.

The info.lfbptr is invalid and may not be used outside a grLfbLock /grLfbUnlock pair.

Using GR_LFB_NOIDLE may interfere with sound generation.

SEE ALSO

grGet, grLfbUnlock, grLfbConstantAlpha, grLfbConstantDepth, grLfbReadRegion,
grLfbWriteRegion

Copyright  1995−1998 3Dfx Interactive, Inc. 107
Proprietary and Confidential Printed on 08/05/98

 grLfbReadRegion

NAME

grLfbReadRegion – efficiently copy a pixel rectangle from a linear frame buffer

C SPECIFICATION

FxBool grLfbReadRegion(GrBuffer_t src_buffer,
FxU32 src_x,
FxU32 src_y,
FxU32 src_width,
FxU32 src_height,
FxU32 dst_stride,
void *dst_data

)
PARAMETERS

src_buffer Source frame buffer. Valid values are GR_BUFFER_FRONTBUFFER,
GR_BUFFER_BACKBUFFER, and GR_BUFFER_AUXBUFFER.

src_x, src_y Source x and y coordinates. The y origin is always assumed to be at the upper left.

src_width, src_height Width and height of source rectangle to be copied from the frame buffer.

dst_stride Stride, in bytes, of destination user memory buffer.

dst_data Pointer to destination user memory buffer.

DESCRIPTION

This API copies a rectangle from a region of a frame buffer into a buffer in user memory; this is the only
way to read back from the frame buffer on Scanline Interleaved systems.

A src_width by src_height rectangle of pixels is copied from the buffer specified by src_buffer, starting at
the location (src_x, src_y). The pixels are copied to user memory starting at dst_data, with a stride in bytes
defined by dst_stride.

The frame buffer y origin is always assumed to be at the upper left. The pixel data read will always be 16-
bit 565 RGB.

The dst_stride must be greater than or equal to src_width * 2.

NOTES

On Voodoo2 systems, grLfbReadRegion may not be used in conjunction with triple buffering.

SEE ALSO

grLfbLock, grLfbUnlock, grLfbConstantAlpha, grLfbConstantDepth, grLfbWriteRegion

Copyright  1995−1998 3Dfx Interactive, Inc. 109
Proprietary and Confidential Printed on 08/05/98

grLfbUnlock

NAME

grLfbUnlock – unlock a frame buffer previously locked with grLfbLock

C SPECIFICATION

FxBool grLfbUnlock(GrLock_t type, GrBuffer_t buffer)

PARAMETERS

type Lock type. Valid values are GR_LFB_READ_ONLY and GR_LFB_WRITE_ONLY.

buffer Buffer to unlock. Valid values are GR_BUFFER_FRONTBUFFER,
GR_BUFFER_BACKBUFFER, and GR_BUFFER_AUXBUFFER.

DESCRIPTION

When an application desires direct access to a color or auxiliary buffer, it must lock that buffer in order to
gain access to a pointer to the frame buffer data. When the application has completed its direct access
transactions and would like restore 3D and GUI engine access to the buffer, then it must call
grLfbUnlock.

NOTES

An application may not call any Glide routines other than grLfbLock and grLfbUnlock while a lock is
active.

The info.lfbptr is invalid and may not be used outside a grLfbLock /grLfbUnlock pair.

SEE ALSO

grLfbLock, grLfbConstantAlpha, grLfbConstantDepth

Copyright  1995−1998 3Dfx Interactive, Inc. 111
Proprietary and Confidential Printed on 08/05/98

grLfbWriteRegion

NAME

grLfbWriteRegion – efficiently copy a pixel rectangle into a linear frame buffer

C SPECIFICATION

FxBool grLfbWriteRegion(GrBuffer_t dst_buffer,
FxU32 dst_x,
FxU32 dst_y,
GrLfbSrcFmt_t src_format,
FxU32 src_width,
FxU32 src_height,
FxBool pixelPipeline,
FxI32 src_stride,
void *src_data
)

PARAMETERS

dst_buffer Destination frame buffer. Valid values are GR_BUFFER_FRONTBUFFER,
GR_BUFFER_BACKBUFFER, and GR_BUFFER_AUXBUFFER.

dst_x, dst_y Destination x and y coordinates The y origin is always assumed to be at the upper
left.

src_format Format of source image.

src_width, src_height Width and height of source image.

pixelPipeline Enable pixel pipeline processing for source data.

src_stride Stride of source image.

src_data Pointer to image data.

DESCRIPTION

This API copies a rectangle from a region of memory pointed to by src_data into the linear frame buffer as
efficiently as possible. The image may be in one of the following source formats:

GR_LFB_SRC_FMT_565 RGB 565 color image.

GR_LFB_SRC_FMT_555 RGB 555 color image.

GR_LFB_SRC_FMT_1555 RGB 1555 color image.

GR_LFB_SRC_FMT_888 RGB 888 color image each pixel padded to 32-bits with RGB in
low order 24-bits.

GR_LFB_SRC_FMT_8888 ARGB 8888 color image.

GR_LFB_SRC_FMT_565_DEP
TH

RGB 565 and 16-bit depth value packed into each 32-bit element of
image.

GR_LFB_SRC_FMT_555_DEP
TH

RGB 555 and 16-bit depth value packed into each 32-bit element of
image.

GR_LFB_SRC_FMT_1555_DE
PTH

RGB 1555 and 16-bit depth value packed into each 32-bit element
of image.

grLfbWriteRegion Glide 3.0 Reference Manual

112 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed on 08/05/98 Proprietary and Confidential

GR_LFB_SRC_FMT_ZA16 Two 16-bit depth or alpha values. Alpha values are stored into odd
bytes.

GR_LFB_SRC_FMT_RLE16 16 BPP RLE Encoded image - see notes.

Not all 3Dfx graphics subsystems will support all source image formats. The function will fail, returning
FXFALSE, if the source format specified is not supported by the 3D hardware.

The src_data pointer must point to the starting pixel of the rectangle to be copied. A rectangle in memory
defined by src_width, src_height, and src_stride will be copied into the buffer designated by dst_buffer at
the location (dst_x, dst_y). src_stride is defined as bytes per scan line in the source image.

If pixelPipeline is set to FXTRUE, source data will be processed through the pixel pipeline before being
written into the linear frame buffer. Not all 3Dfx graphics subsystems will support pixel pipeline processing
on LFB writes (e.g. Voodoo Rush). The grLfbWriteRegion function will fail, returning FXFALSE, if
pixel pipeline processing is enabled on a system that doesn’t support it. Use
grGet(GR_FLB_PIXEL_PIPE,…) to determine whether or not LFB writes can utilize the pixel pipeline.

The frame buffer y origin is always assumed to be at the upper left.

NOTES

The GR_LFB_SRC_FMT_RLE16 format is a two-word format consisting of one 16-bit count word and one
16-bit color word. The count word should be treated as a signed 16-bit integer. Negative values are
currently ignored.

The Glide 3.0 release is the first release to include the pixelPipeline argument to grLfbWriteRegion.

SEE ALSO

grGet, grLfbLock, grLfbUnlock, grLfbConstantAlpha, grLfbConstantDepth,
grLfbReadRegion

Copyright  1995−1998 3Dfx Interactive, Inc. 113
Proprietary and Confidential Printed on 08/05/98

grLoadGammaTable

NAME

grLoadGammaTable – load the hardware gamma correction table

C SPECIFICATION

void grLoadGammaTable (FxU32 nEntries, FxU32 *r, FxU32 *g, FxU32 *b)

PARAMETERS

nEntries The number of elements in the color parameter arrays.

r, g, b Arrays of RGB values that will interpolated to generate an output gamma value.

DESCRIPTION

grLoadGammaTable loads the hardware gamma correction table with nEntries red, green, and blue values
that will be interpolated to generate an output gamma value. If nEntries is less than the size of the
hardware-dependent gamma table, the first part of the table will be overwritten by the new values. If
nEntries is greater than the gamma table size, the extra values are discarded. The size of the gamma table
may be obtained by calling grGet(GR_GAMMA_TABLE_ENTRIES). The entries in the gamma table must be
monotonically increasing in each color component,; otherwise, the results are undefined.

NOTES

It is strongly recommended that guGammaCorrectionRGB be used instead of grLoadGammaTable.

Glide 3.0 is the first release to support grLoadGammaTable.

SEE ALSO

grGet, guGammaCorrectionRGB

Copyright  1995−1998 3Dfx Interactive, Inc. 115
Proprietary and Confidential Printed on 08/05/98

grQueryResolutions

NAME

grQueryResolutions – query for possible frame buffer configurations

C SPECIFICATION

typedef struct {
GrScreenResolution_t resolution;
GrScreenRefresh_t refresh;
int numColorBuffers;
int numAuxBuffers;

} GrResolution;

FxI32 grQueryResolutions (const GrResolution *resTemplate,
GrResolution *output

)

PARAMETERS

resTemplate Template containing query constraints.

output Pointer to an array of GrResolution structures that will receive the resolution
information.

DESCRIPTION

grQueryResolutions returns all available frame buffer configurations that match the constraints
specified in the template resTemplate. The constraints are specified as either GR_QUERY_ANY or a specific
value in each of the four fields in the GrResolution structure. grQueryResolutions returns the
number of bytes required to contain the available resolution information. Typically, a Glide application
program calls grQueryResolutions with a NULL output parameter initially and uses the return value
allocate space, then calls grQueryResolutions again to return the information. This process is
demonstrated in the code fragment below:

GrResolution query;
GrResolution *list;
Int listSize;

/* find all possible modes that include a z-buffer */
query.resolution = GR_QUERY_ANY;
query.refresh = GR_QUERY_ANY;
query.numColorBuffers = GR_QUERY_ANY;
query.numAuxBuffers = 1;

listSize = grQueryResolutions(&query, NULL);
list = malloc(listSize);
grQueryResolutions(&query, list);

NOTES

Glide 3.0 is the first release to support grQueryResolutions.

SEE ALSO

grGet, grGetString, grSstWinOpen

Copyright  1995−1998 3Dfx Interactive, Inc. 117
Proprietary and Confidential Printed on 08/05/98

grRenderBuffer

NAME

grRenderBuffer – selects the current color buffer for drawing and clearing

C SPECIFICATION

void grRenderBuffer(GrBuffer_t buffer)

PARAMETERS

buffer Selects the current color buffer. Valid values are GR_BUFFER_FRONTBUFFER and
GR_BUFFER_BACKBUFFER.

DESCRIPTION

grRenderBuffer selects the buffer for primitive drawing and buffer clears. The default is
GR_BUFFER_BACKBUFFER.

NOTES

SEE ALSO

grBufferClear, grDrawLine, grDrawPoint, grDrawTriangle, grDrawVertexArray,
grDrawVertexArrayContiguous

Copyright  1995−1998 3Dfx Interactive, Inc. 119
Proprietary and Confidential Printed on 08/05/98

grReset

NAME

grReset – reset selected Glide state

C SPECIFICATION

FxBool grReset (FxU32 what)

PARAMETERS

what The piece of state to reset.

DESCRIPTION

grReset resets statistic counters and vertex layouts. The argument what is one of the selectors listed
below.

selector description
GR_STATS_PIXELS Reset all the pixel statistic counters.
GR_STATS_POINTS Reset all the point statistic counters.
GR_STATS_LINES Reset all the line statistic counters.
GR_STATS_TRIANGLES Reset all the triangle statistic counters.
GR_VERTEX_PARAMETERS Reset grVertexLayout parameter offset to zero, and all

parameter modes to GR_PARAM_DISABLE.

The current values of the statistics counters and the vertex layout size can be retrieved with calls to grGet.

NOTES

Glide 3.0 is the first release to support grReset. It replaces the now-obsolete API
grSstResetPerfStats.

SEE ALSO

grGet

Copyright  1995−1998 3Dfx Interactive, Inc. 121
Proprietary and Confidential Printed on 08/05/98

grSelectContext

NAME

grSelectContext – activate a context

C SPECIFICATION

FxBool grSelectContext (GrContext_t context)

PARAMETERS

context A context handle.

DESCRIPTION

When programming a full screen Glide application, the developer has complete ownership of the 3D
hardware and texture ram. Many applications will be developed to run under Windows 95, however, and
must be prepared to restore the graphics state after a period of inactivity.

To gracefully handle the loss of resources (e.g. to another 3D application being scheduled by the Windows
95 operating system), an application is required to periodically (typically once per frame) query with
grSelectContext to determine if Glide’s resources have be reallocated by the system. Context is a
context handle returned from a successful call to grSstWinOpen.

If none of the rendering context’s state and resources have been disturbed since the last call,
grSelectContext will return FXTRUE. In this case no special actions by the application are required. If it
returns FXFALSE, then the application must assume that the rendering state has changed and must be
reestablished (by re-downloading textures, explicitly resetting the rendering state, etc.) before further
rendering commands are issued.

NOTES

Glide 3.0 is the first release to support grSelectContext.

SEE ALSO

grSstWinOpen

Copyright  1995−1998 3Dfx Interactive, Inc. 123
Proprietary and Confidential Printed on 08/05/98

grSstOrigin

NAME

grSstOrigin – establishes a y origin

C SPECIFICATION

void grSstOrigin(GrOriginLocation_t origin)

PARAMETERS

origin Specifies the direction of the y coordinate axis. GR_ORIGIN_UPPER_LEFT places the
screen space origin at the upper left corner of the screen with positive y going down.
GR_ORIGIN_LOWER_LEFT places the screen space origin at the lower left corner of
the screen with positive y going up.

DESCRIPTION

grSstOrigin sets the y origin for all triangle operations, fast fill, and clipping rectangles.

NOTES

grSstOrigin overrides the y origin specified in grSstWinOpen.

SEE ALSO

grSstWinOpen

Copyright  1995−1998 3Dfx Interactive, Inc. 125
Proprietary and Confidential Printed on 08/05/98

grSstSelect

NAME

grSstSelect – make a graphics subsystem current

C SPECIFICATION

void grSstSelect(int which_sst)

PARAMETERS

which_sst The ordinal number of the graphics subsystem to make current. This value must be
between 0 and the number of installed subsystems returned by
grGet(GR_NUM_BOARDS,…).

DESCRIPTION

grSstSelect selects a particular installed graphics subsystem as active. If the value passed is greater than
the number of installed graphics subsystems and you are using the debug build of Glide, a run-time error
will be generated.

NOTES

SEE ALSO

grGet, grSstWinOpen

Copyright  1995−1998 3Dfx Interactive, Inc. 127
Proprietary and Confidential Printed on 08/05/98

grSstWinClose

NAME

grSstWinClose – close a graphics context

C SPECIFICATION

FxBool grSstWinClose(GrContext_t context)

PARAMETERS

context The graphics context to close.

DESCRIPTION

grSstWinClose closes a graphics context. It will fail, returning FXFALSE, if context is not a valid handle
to a graphics context. Otherwise, it returns the state of Glide to the one following grGlideInit, so that
grSstWinOpen can be called to open a new context.

NOTES

Glide 3.0 is the first release to require the context parameter for grSstWinClose.

SEE ALSO

grSstWinOpen

Copyright  1995−1998 3Dfx Interactive, Inc. 129
Proprietary and Confidential Printed on 08/05/98

grSstWinOpen

NAME

grSstWinOpen – opens the graphics display device

C SPECIFICATION

GrContext_t grSstWinOpen(FxU32 hWin,
GrScreenResolution_t res,
GrScreenRefresh_t ref,
GrColorFormat_t cFormat,
GrOriginLocation_t org_loc,
int num_buffers,
int num_aux_buffers

)

PARAMETERS

hWin Specifies a handle to the window. The interpretation of this value depends on the
system environment. Applications run on Voodoo Graphics or Voodoo2 hardware
must specify NULL as well. Win32 full screen applications running on Voodoo Rush
system must specify a window handle; a NULL value for hWin will cause the
application’s real window handle (i.e. what is returned by GetActiveWindow) to be
used. Since Win32 pure console applications do not have a window handle, they can
be used only with Voodoo Graphics or Voodoo2 systems and a NULL window handle
is required.

System environment hWin value
Win32 Full Screen
Win32 Pure Console NULL (Voodoo Graphics and Voodoo2 only).

res Specifies which screen resolution to use. Refer to sst1vid.h for available video
resolutions, e.g., GR_RESOLUTION_640x480 and GR_RESOLUTION_800x600. In
addition, the resolution GR_RESOLUTION_NONE is permitted (but not recommended)
for Voodoo Rush. This signals Glide to use the user specified window (see the hWin
parameter). Specifying GR_RESOLUTION_NONE on a Voodoo Graphics or Voodoo2

system will cause the call to fail.

ref Specifies the refresh rate to use. Refer to sst1vid.h for available video resolutions,
e.g., GR_REFRESH_60Hz and GR_REFRESH_72Hz. The ref parameter is ignored
when a Win32 application is running in a window (Voodoo Rush systems only).

grSstWinOpen Glide 3.0 Reference Manual

130 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed on 08/05/98 Proprietary and Confidential

cFormat Specifies the packed color RGBA ordering for linear frame buffer writes and
parameters for the following APIs: grBufferClear, grChromakeyValue,
grConstantColorValue, and grFogColorValue. The following table illustrates
the available formats:

color format hex variable organization
GR_COLORFORMAT_RGBA 0xRRGGBBAA
GR_COLORFORMAT_ARGB 0xAARRGGBB
GR_COLORFORMAT_BGRA 0xBBGGRRAA
GR_COLORFORMAT_ABGR 0xAABBGGRR

org_loc Specifies the direction of the y coordinate axis. GR_ORIGIN_UPPER_LEFT places the
screen space origin at the upper left corner of the screen with positive y going down
(a la IBM VGA). GR_ORIGIN_LOWER_LEFT places the screen space origin at the
lower left corner of the screen with positive y going up (a la SGI GL).

num_buffers Specifies the number of rendering buffers to use. Supported values 2 (double-
buffering) or 3 (triple buffering). If there is not enough memory to support the
desired resolution (e.g. 800×600 triple buffered on a 2MB system), an error will
occur.

num_aux_buffers Specifies the number of auxiliary buffers required by an application. The auxiliary
buffers are used either for depth or alpha buffering. Permitted values are 0 or 1. For
full screen applications, this parameter allows Voodoo Graphics, Voodoo2, and
Voodoo Rush systems to validate whether the available video memory will support
the application’s requirements for color and auxiliary buffers at a specified screen
resolution. For a windowed application running on Voodoo Rush, this parameter
allows an application to run in a larger 3D window if a depth buffer is not necessary
(depth and back buffers share the same off-screen video memory).

DESCRIPTION

grSstWinOpen initializes the graphics to a known state using the given parameters. It supports Voodoo
graphics, Voodoo2, and Voodoo Rush, and either full-screen or windowed operation in the latter. By default
all special effects of the hardware (depth buffering, fog, chroma-key, alpha blending, alpha testing, etc.) are
disabled and must be individually enabled. All global state constants (chroma-key value, alpha test
reference, constant depth value, constant alpha value, etc.) and pixel rendering statistic counters are
initialized to 0x00. Upon success, an opaque graphics context handle is returned; otherwise zero is
returned. If grSstWinOpen is called on an already open window, FXFALSE will be returned.

NOTES

Glide 3.0 is the first release to introduce graphics window context handles. Only one graphics context may
be created and active at a time. This restriction may be relaxed in future releases.

SEE ALSO

grSstWinClose

Copyright  1995−1998 3Dfx Interactive, Inc. 131
Proprietary and Confidential Printed on 08/05/98

grTexCalcMemRequired

NAME

grTexCalcMemRequired – return the texture memory consumed by a texture

C SPECIFICATION

FxU32 grTexCalcMemRequired(GrLOD_t smallLOD,
 GrLOD_t largeLOD,
GrAspectRatio_t aspect,
GrTextureFormat_t format
)

PARAMETERS

smallLOD, largeLOD The smallest and largest LODs in the mipmap. Values are chosen from the following:
GR_LOD_LOG2_1, GR_LOD_LOG2_2, GR_LOD_LOG2, GR_LOD_LOG2_4,
GR_LOD_LOG2_8, GR_LOD_LOG2_16, GR_LOD_LOG2_32, GR_LOD_LOG2_64,
GR_LOD_LOG2_128, and GR_LOD_LOG2_256.

aspect Aspect ratio of the mipmap. Values are chosen from the following:
GR_ASPECT_LOG2_8x1, GR_ASPECT_LOG2_4x1, GR_ASPECT_LOG2_2x1,
GR_ASPECT_LOG2_1x1, GR_ASPECT_LOG2_1x2, GR_ASPECT_LOG2_1x4, and
GR_ASPECT_LOG2_1x8.

format Format of the mipmap. Values are chosen from the following:
GR_TEXFMT_RGB_332, GR_TEXFMT_YIQ_422, GR_TEXFMT_ALPHA_8,
GR_TEXFMT_INTENSITY_8, GR_TEXFMT_ALPHA_INTENSITY_44,
GR_TEXFMT_P_8, GR_TEXFMT_8332, GR_TEXFMT_AYIQ_8422,
GR_TEXFMT_RGB_565, GR_TEXFMT_ARGB_1555, GR_TEXFMT_ARGB_4444,
GR_TEXFMT_ALPHA_INTENSITY_88, and GR_TEXFMT_AP_88.

DESCRIPTION

grTexCalcMemRequired calculates and returns the amount of memory a mipmap of the specified LOD
range, aspect ratio, and format requires. Because of the packing requirements of some texture formats the
number returned may reflect padding bytes required to properly align the mipmap in memory. See
grGet(GR_TEXTURE_ALIGN,…).

NOTES

The value returned includes memory for both the even and odd mipmap levels. In the case where a mipmap
is split across two TMUs with the even levels in one TMU and the odd levels in the other TMU, use
grTexTextureMemRequired to compute the memory requirements of each TMU.

It is possible that memory required for a mipmap is less than the sum of the memory required for its
individual mipmap levels. When multiple mipmap levels are packed into one mipmap, they will be loaded
into contiguous memory.

SEE ALSO

grGet, grTexTextureMemRequired

Copyright  1995−1998 3Dfx Interactive, Inc. 133
Proprietary and Confidential Printed on 08/05/98

grTexChromaModeExt

NAME

grTexChromaModeExt – set the chroma-key mode for a given TMU

C SPECIFICATION

void grTexChromaModeExt (GrChipID_t tmu, GrChromakeyMode_t mode)

PARAMETERS

tmu The TMU. Valid values are GR_TMU0, GR_TMU1, and GR_TMU2.

mode One of the following:

mode description
GR_TEXCHROMA_DISABLE_EXT Disable texture chroma keying.
GR_TEXCHROMA_ENABLE_EXT Enables texture chroma keying. Chroma texels

obtain 0x00 for RGBA.

DESCRIPTION

grTexChromaModeExt sets the chroma range mode for the specified TMU. It is independent of the
chroma-key and chroma range modes in the pixel pipeline.

NOTES

Glide 3.0 is the first release to introduce grTexChromaModeExt. The API is available only with hardware
support. Use grGetString(GR_EXTENSION,…) and search for the sub-string “TEXCHROMA” to query
for availability of this extension. If the extension is present, the entry point may be retrieved via
grGetProcAddr.

The TEXCHROMA extension is independent of the chroma-key and chroma range modes in the pixel
pipeline.

SEE ALSO

grChromakeyMode, grChromaRangeModeExt, grGetProcAddress, grGetString,
grTexChromaRangeExt

Copyright  1995−1998 3Dfx Interactive, Inc. 135
Proprietary and Confidential Printed on 08/05/98

grTexChromaRangeExt

NAME

grTexChromaRangeExt – set chroma-range values for a given TMU

C SPECIFICATION

void grTexChromaRangeExt (GrChipID_t tmu,
GrColor_t color0,
GrColor_t color 1,
GrTexChromakeyMode_t mode

)

PARAMETERS

tmu The TMU. Valid values are GR_TMU0, GR_TMU1, and GR_TMU2.

color0, color1 Independent range values for red, green, and blue.

mode Chroma-range match criteria. Only one mode value is currently supported:
GR_TEXCHROMARANGE_RGB_ALL_EXT.

DESCRIPTION

grTexChromaRangeExt sets the chroma range values for the TMU specified by tmu.

The color format for color0 and color1 should be the same one as specified in the cFormat parameter to
grSstWinOpen. The order in which range values are specified for a particular color component is
irrelevant, i.e. the {color0, color1} pairs {(130,36,87), (150,38,92)} and {(150,36,92), (130,38,87)} are
equivalent.

The mode parameter determines the way the color ranges are used in the chroma test. Only one value is
currently supported, GR_TEXCHROMARANGE_RGB_ALL_EXT. In this mode, each color component pair
defines an inclusive range such that lower bound ≤ color ≤ upper bound. If all components of the incoming
pixel color fall within their ranges, the chroma test succeeds and the pixel is invalidated.

NOTES

Glide 3.0 is the first release to introduce grTexChromaRangeExt. The API is available only with
hardware support. Use grGetString(GR_EXTENSION,…) and search for the sub-string “TEXCHROMA”
to query for availability of this extension. If the extension is present, the entry point may be retrieved via
grGetProcAddr.

The TEXCHROMA extension is independent of the chroma-key and chroma range modes in the pixel
pipeline.

SEE ALSO

grChromakeyValue, grChromaRangeExt, grGetProcAddress, grGetString,
grTexChromaModeExt

Copyright  1995−1998 3Dfx Interactive, Inc. 137
Proprietary and Confidential Printed on 08/05/98

grTexClampMode

NAME

grTexClampMode – set the texture map clamping/wrapping mode

C SPECIFICATION

void grTexClampMode(GrChipID_t tmu,
GrTextureClampMode_t sClampMode,
GrTextureClampMode_t tClampMode

)

PARAMETERS

tmu Texture Mapping Unit to modify. Valid values are GR_TMU0, GR_TMU1, and
GR_TMU2.

sClampMode The new mode for the s direction, either GR_TEXTURECLAMP_CLAMP or
GR_TEXTURECLAMP_WRAP.

tClampMode The new mode for the t direction, either GR_TEXTURECLAMP_CLAMP or
GR_TEXTURECLAMP_WRAP.

DESCRIPTION

grTexClampMode sets the texture mapping clamping/wrapping mode for both the s and t directions. If
wrapping is enabled, then texture maps will tile, i.e. values greater than 255 for window coordinate
systems, or 1.0 for clip coordinate system, will wrap around to 0. If clamping is enabled, then texture map
indices will be clamped to 0 and 255 (window coordinates) or 0.0 and 1.0 (clip coordinates).

If the TEXMIRROR extension is supported, then either sClampMode or tClampMode or both may be set to
GR_TEXTURECLAMP_MIRROR_EXT. See the Glide 3.0 Programming Manual for a description of extensions
in general and the TEXMIRROR one in particular.

NOTES

Both modes should always be set to GR_TEXTURECLAMP_CLAMP for perspectively projected textures.

SEE ALSO

grGetString, grTexSource

Copyright  1995−1998 3Dfx Interactive, Inc. 139
Proprietary and Confidential Printed on 08/05/98

grTexCombine

NAME

grTexCombine – configure a texture combine unit

C SPECIFICATION

void grTexCombine(GrChipID_t tmu,
GrCombineFunction_t rgb_function,
GrCombineFactor_t rgb_factor

GrCombineFunction_t alpha_function,
GrCombineFactor_t alpha_factor,

FxBool rgb_invert,
FxBool alpha_invert

)

PARAMETERS

tmu Texture Mapping Unit to modify. Valid values are GR_TMU0, GR_TMU1, and
GR_TMU2.

rgb_function Specifies the function used in texture color generation. Valid parameters are
described below:

combine function effect
GR_COMBINE_FUNCTION_ZERO 0
GR_COMBINE_FUNCTION_LOCAL Clocal

GR_COMBINE_FUNCTION_LOCAL_ALPHA Alocal

GR_COMBINE_FUNCTION_SCALE_OTHER
GR_COMBINE_FUNCTION_BLEND_OTHER

f * Cother

GR_COMBINE_FUNCTION_SCALE_OTHER_ADD_LOCAL f * Cother + Clocal

GR_COMBINE_FUNCTION_SCALE_OTHER_ADD_LOCAL_ALPHA f * Cother + Alocal

GR_COMBINE_FUNCTION_SCALE_OTHER_MINUS_LOCAL f * (Cother – Clocal)
GR_COMBINE_FUNCTION_SCALE_OTHER_MINUS_LOCAL_ADD_LOCAL
GR_COMBINE_FUNCTION_BLEND

f * (Cother – Clocal) + Clocal

≡ f * Cother + (1 – f) * Clocal

GR_COMBINE_FUNCTION_SCALE_OTHER_MINUS_LOCAL_ADD_LOCAL_ALPHA f * (Cother – Clocal) + Alocal

GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL
GR_COMBINE_FUNCTION_BLEND_LOCAL

f * (– Clocal) + Clocal

≡ (1 – f) * Clocal

GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL_ALPHA f * (– Clocal) + Alocal

grTexCombine Glide 3.0 Reference Manual

140 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed on 08/05/98 Proprietary and Confidential

rgb_factor Specifies the scaling factor f used in texture color generation. Valid parameters are
described below:

combine factor scale factor (f)
GR_COMBINE_FACTOR_NONE unspecified
GR_COMBINE_FACTOR_ZERO 0
GR_COMBINE_FACTOR_LOCAL Clocal / 255
GR_COMBINE_FACTOR_OTHER_ALPHA Aother / 255
GR_COMBINE_FACTOR_LOCAL_ALPHA Alocal / 255
GR_COMBINE_FACTOR_DETAIL_FACTOR β
GR_COMBINE_FACTOR_LOD_FRACTION λ
GR_COMBINE_FACTOR_ONE 1
GR_COMBINE_FACTOR_ONE_MINUS_LOCAL 1 – Clocal / 255
GR_COMBINE_FACTOR_ONE_MINUS_OTHER_ALPHA 1 – Aother / 255
GR_COMBINE_FACTOR_ONE_MINUS_LOCAL_ALPHA 1 – Alocal / 255
GR_COMBINE_FACTOR_ONE_MINUS_DETAIL_FACTOR 1 – β
GR_COMBINE_FACTOR_ONE_MINUS_LOD_FRACTION 1 –λ

alpha_function Specifies the function used in texture alpha generation. Valid parameters are
described below:

combine function effect
GR_COMBINE_FUNCTION_ZERO 0
GR_COMBINE_FUNCTION_LOCAL Alocal

GR_COMBINE_FUNCTION_LOCAL_ALPHA Alocal

GR_COMBINE_FUNCTION_SCALE_OTHER
GR_COMBINE_FUNCTION_BLEND_OTHER

f * Aother

GR_COMBINE_FUNCTION_SCALE_OTHER_ADD_LOCAL f * Aother + Alocal

GR_COMBINE_FUNCTION_SCALE_OTHER_ADD_LOCAL_ALPHA f * Aother + Alocal

GR_COMBINE_FUNCTION_SCALE_OTHER_MINUS_LOCAL f * (Aother – Alocal)
GR_COMBINE_FUNCTION_SCALE_OTHER_MINUS_LOCAL_ADD_LOCAL
GR_COMBINE_FUNCTION_BLEND

f * (Aother – Alocal) + Alocal

≡ f * Aother + (1 – f) * Alocal

GR_COMBINE_FUNCTION_SCALE_OTHER_MINUS_LOCAL_ADD_LOCAL_ALPHA f * (Aother – Alocal) + Alocal

GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL
GR_COMBINE_FUNCTION_BLEND_LOCAL

f * (– Alocal) + Alocal

≡ (1 – f) * Alocal

GR_COMBINE_FUNCTION_SCALE_MINUS_LOCAL_ADD_LOCAL_ALPHA f * (– Clocal) + Alocal

Glide 3.0 Reference Manual grTexCombine

Copyright  1995-98 3Dfx Interactive, Inc. 141
Proprietary and Confidential Printed 08/05/98

alpha_factor Specifies the scaling factor f used in texture alpha generation. Valid parameters are
described below:

combine factor scale factor (f)
GR_COMBINE_FACTOR_NONE unspecified
GR_COMBINE_FACTOR_ZERO 0
GR_COMBINE_FACTOR_LOCAL Alocal / 255
GR_COMBINE_FACTOR_OTHER_ALPHA Aother / 255
GR_COMBINE_FACTOR_LOCAL_ALPHA Alocal / 255
GR_COMBINE_FACTOR_DETAIL_FACTOR β
GR_COMBINE_FACTOR_LOD_FRACTION

GR_COMBINE_FACTOR_ONE 1
GR_COMBINE_FACTOR_ONE_MINUS_LOCAL 1 – Alocal / 255
GR_COMBINE_FACTOR_ONE_MINUS_OTHER_ALPHA 1 – Aother / 255
GR_COMBINE_FACTOR_ONE_MINUS_LOCAL_ALPHA 1 – Alocal / 255
GR_COMBINE_FACTOR_ONE_MINUS_DETAIL_FACTOR 1 – β
GR_COMBINE_FACTOR_ONE_MINUS_LOD_FRACTION

rgb_invert Specifies whether the generated texture color should be bitwise inverted as a final
step.

alpha_invert Specifies whether the generated texture alpha should be bitwise inverted as a final
step.

DESCRIPTION

grTexCombine configures the color and alpha texture combine units of the graphics hardware pipeline.
This provides a low level mechanism for controlling all the modes of the texture combine unit without
manipulating individual register bits.

The texture combine unit computes the function specified by rgb_function and alpha_function using
rgb_factor and alpha_factor as scale factors on the local (Clocal and Alocal) and upstream (Cother and Aother)
filtered texels. The result is clamped to [0..255], and then a bitwise inversion may be applied, controlled by
the rgb_invert and alpha_invert parameters. The final result is then passed downstream, to either another
TMU or the Pixelfx chip.

In the rgb_factor and alpha_factor tables, β is the detail blend factor that is computed as a function of
LOD, and λ is the fractional part of the LOD. See grTexDetailControl for further information.

grTexCombine also tracks required vertex parameters for the rendering routines.
GR_COMBINE_FACTOR_NONE indicates that no parameters are required; it is functionally equivalent to
GR_COMBINE_FACTOR_ZERO.

NOTES

Clocal and Alocal are the color components generated by indexing and filtering from the mipmap stored on the
selected TMU; Cother and Aother are the incoming color components from the neighboring TMU.

Inverting the bits in a color is the same as computing (1.0 – color) for floating point color values in the
range [0..1] or (255 – color) for 8-bit color values in the range [0..255].

The TMU closest to the Pixelfx chip is GR_TMU0. If a TMU exists upstream from GR_TMU0, it is GR_TMU1.
If a TMU exists upstream from GR_TMU1, it is GR_TMU2.

SEE ALSO

grDrawTriangle, grTexLodBiasValue, grTexDetailControl

Copyright  1995−1998 3Dfx Interactive, Inc. 143
Proprietary and Confidential Printed on 08/05/98

grTexDetailControl
NAME

grTexDetailControl – set the detail texturing controls

C SPECIFICATION

void grTexDetailControl(GrChipID_t tmu,
int lodBias,
FxU8 detailScale,
float detailMax

)
PARAMETERS

tmu Texture Mapping Unit to modify. Valid values are GR_TMU0, GR_TMU1, and
GR_TMU2.

lodBias Controls where the blending between the two textures begins. This value is an LOD
bias value in the range [–32.. +31].

detailScale Controls the steepness of the blend. Values are in the range [0..7] are valid. The scale
is computed as 2detailScale.

detailMax Controls the maximum blending that occurs. Values in the range [0.0..1.0] are valid.

DESCRIPTION

Detail texturing refers to the effect where the blend between two textures in a texture combine unit is a
function of the LOD calculated for each pixel. grTexDetailControl controls how the detail blending
factor, β, is computed from LOD. The lodBias parameter controls where the blending begins, the
detailScale parameter controls the steepness of the blend (how fast the detail pops in), and the detailMax
parameter controls the maximum blending that occurs. Detail blending factor β is calculated as

β = min(detailMax, max(0, (lodBias – LOD) << detailScale) / 255.0)

where LOD is the calculated LOD before grTexLodBiasValue is added. The detail blending factor is
typically used by calling grTexCombine with an rgb_function of GR_COMBINE_FUNCTION_BLEND and an
rgb_factor of GR_COMBINE_FACTOR_DETAIL_FACTOR to compute:

Cout = β*detail_texture + (1 – β)*main_texture

NOTES

An LOD of n is calculated when a pixel covers approximately 22n texels. For example, when a pixel covers
approximately 1 texel, the LOD is 0. When a pixel covers 4 texels, the LOD is 1, and when a pixel covers
16 texels, the LOD is 2.

Detail blending occurs in the downstream TMU. Since the detail texture and main texture typically have
very different computed LODs, the detail texturing control settings depend on which texture is in the
downstream TMU.

SEE ALSO

grTexCombine, grTexLodBiasValue

Copyright  1995−1998 3Dfx Interactive, Inc. 145
Proprietary and Confidential Printed on 08/05/98

grTexDownloadMipMap

NAME

grTexDownloadMipMap – download a complete mipmap to texture memory

C SPECIFICATION

void grTexDownloadMipMap (GrChipID_t tmu,
FxU32 startAddress,
FxU32 evenOdd,
GrTexInfo *info

)
PARAMETERS

tmu Texture Mapping Unit to modify. Valid values are GR_TMU0, GR_TMU1, and
GR_TMU2.

startAddress Offset into texture memory where the texture will be loaded.

evenOdd Which mipmap levels to download. Valid values are GR_MIPMAPLEVELMASK_EVEN,
GR_MIPMAPLEVELMASK_ODD, and GR_MIPMAPLEVELMASK_BOTH.

info Format, dimensions, and image data for texture.

DESCRIPTION

grTexDownloadMipMap downloads an entire mipmap to an area of texture memory specified by
startAddress. Valid values for startAddress must be between the values returned by grTexMinAddress
and grTexMaxAddress.

NOTES

The GrTexInfo structure has changed in Glide 3.0. See glide.h for more information.

An error will occur if the mipmap is loaded into an area that crosses a 2MB boundary. See the Glide
Programming Manual for more information.

SEE ALSO

grTexDownloadMipMapLevel, grTexMinAddress, grTexMaxAddress,
grTexTextureMemRequired, grTexSource

Copyright  1995−1998 3Dfx Interactive, Inc. 147
Proprietary and Confidential Printed on 08/05/98

grTexDownloadMipMapLevel

NAME

grTexDownloadMipMapLevel – download a single mipmap level to texture memory

C SPECIFICATION

void grTexDownloadMipMapLevel (GrChipID_t tmu,
FxU32 startAddress,
GrLOD_t thisLod,
GrLOD_t largeLod,
GrAspectRatio_t aspectRatio,
GrTextureFormat_t format,
FxU32 evenOdd,
void *data

)
PARAMETERS

tmu Texture Mapping Unit to modify. Valid values are GR_TMU0, GR_TMU1, and
GR_TMU2.

startAddress Starting address in texture memory of the largest level of the mipmap.

thisLod Constant describing LOD to be downloaded. Values are chosen from the following:
GR_LOD_LOG2_1, GR_LOD_LOG2_2, GR_LOD_LOG2, GR_LOD_LOG2_4,
GR_LOD_LOG2_8, GR_LOD_LOG2_16, GR_LOD_LOG2_32, GR_LOD_LOG2_64,
GR_LOD_LOG2_128, and GR_LOD_LOG2_256.

largeLod Constant describing largest LOD in the complete mipmap of which thisLod is a part.
Values are chosen from the following: GR_LOD_LOG2_1, GR_LOD_LOG2_2,
GR_LOD_LOG2, GR_LOD_LOG2_4, GR_LOD_LOG2_8, GR_LOD_LOG2_16,
GR_LOD_LOG2_32, GR_LOD_LOG2_64, GR_LOD_LOG2_128, and
GR_LOD_LOG2_256.

aspectRatio Constant describing aspect ratio of texture image. Values are chosen from the
following: GR_ASPECT_LOG2_8x1, GR_ASPECT_LOG2_4x1,
GR_ASPECT_LOG2_2x1, GR_ASPECT_LOG2_1x1, GR_ASPECT_LOG2_1x2,
GR_ASPECT_LOG2_1x4, and GR_ASPECT_LOG2_1x8.

format Constant describing format of color data in texture image. Values are chosen from
the following: GR_TEXFMT_RGB_332, GR_TEXFMT_YIQ_422,
GR_TEXFMT_ALPHA_8, GR_TEXFMT_INTENSITY_8,
GR_TEXFMT_ALPHA_INTENSITY_44, GR_TEXFMT_P_8, GR_TEXFMT_8332,
GR_TEXFMT_AYIQ_8422, GR_TEXFMT_RGB_565, GR_TEXFMT_ARGB_1555,
GR_TEXFMT_ARGB_4444, GR_TEXFMT_ALPHA_INTENSITY_88, and
GR_TEXFMT_AP_88.

evenOdd Which mipmap levels to download. Valid values are GR_MIPMAPLEVELMASK_EVEN,
GR_MIPMAPLEVELMASK_ODD, and GR_MIPMAPLEVELMASK_BOTH.

data Raw texture image data.

grTexDownloadMipMapLevel Glide 3.0 Reference Manual

148 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed on 08/05/98 Proprietary and Confidential

DESCRIPTION

grTexDownloadMipMapLevel downloads a single mipmap level. startAddress points to the beginning of
the mipmap; Glide will calculate an offset from startAddress to the beginning of the level to be replaced.

startAddress must lie between the values returned by grTexMinAddress and grTexMaxAddress.

An error will occur if the mipmap level is loaded into an area that crosses a 2MB boundary. See the Glide
Programming Manual for more information.

NOTES

SEE ALSO

grTexDownloadMipMap, grTexDownloadMipMapLevelPartial, grTexMinAddress,
grTexMaxAddress, grTexTextureMemRequired, grTexSource

Copyright  1995−1998 3Dfx Interactive, Inc. 149
Proprietary and Confidential Printed on 08/05/98

grTexDownloadMipMapLevelPartial

NAME

grTexDownloadMipMapLevelPartial – download part of a single mipmap level to texture memory

C SPECIFICATION

void grTexDownloadMipMapLevelPartial(GrChipID_t tmu,
FxU32 startAddress,
GrLOD_t thisLod,
GrLOD_t largeLod,
GrAspectRatio_t aspectRatio,
GrTextureFormat_t format,
FxU32 evenOdd

void *data,
int start,
int end

)
PARAMETERS

tmu Texture Mapping Unit to modify. Valid values are GR_TMU0, GR_TMU1, and
GR_TMU2.

startAddress Starting address in texture memory of the largest level of the mipmap.

thisLod Constant describing LOD to be downloaded. Values are chosen from the following:
GR_LOD_LOG2_1, GR_LOD_LOG2_2, GR_LOD_LOG2, GR_LOD_LOG2_4,
GR_LOD_LOG2_8, GR_LOD_LOG2_16, GR_LOD_LOG2_32, GR_LOD_LOG2_64,
GR_LOD_LOG2_128, and GR_LOD_LOG2_256.

largeLod Constant describing largest LOD in the complete mipmap of which thisLod is a part.
Values are chosen from the following: GR_LOD_LOG2_1, GR_LOD_LOG2_2,
GR_LOD_LOG2, GR_LOD_LOG2_4, GR_LOD_LOG2_8, GR_LOD_LOG2_16,
GR_LOD_LOG2_32, GR_LOD_LOG2_64, GR_LOD_LOG2_128, and
GR_LOD_LOG2_256.

aspectRatio Constant describing aspect ratio of texture image. Values are chosen from the
following: GR_ASPECT_LOG2_8x1, GR_ASPECT_LOG2_4x1,
GR_ASPECT_LOG2_2x1, GR_ASPECT_LOG2_1x1, GR_ASPECT_LOG2_1x2,
GR_ASPECT_LOG2_1x4, and GR_ASPECT_LOG2_1x8.

format Constant describing format of color data in texture image. Values are chosen from
the following: GR_TEXFMT_RGB_332, GR_TEXFMT_YIQ_422,
GR_TEXFMT_ALPHA_8, GR_TEXFMT_INTENSITY_8,
GR_TEXFMT_ALPHA_INTENSITY_44, GR_TEXFMT_P_8, GR_TEXFMT_8332,
GR_TEXFMT_AYIQ_8422, GR_TEXFMT_RGB_565, GR_TEXFMT_ARGB_1555,
GR_TEXFMT_ARGB_4444, GR_TEXFMT_ALPHA_INTENSITY_88, and
GR_TEXFMT_AP_88.

evenOdd Which mipmap levels to download. Valid values are GR_MIPMAPLEVELMASK_EVEN,
GR_MIPMAPLEVELMASK_ODD, and GR_MIPMAPLEVELMASK_BOTH.

data Raw texture image data.

grTexDownloadMipMapLevelPartial Glide 3.0 Reference Manual

150 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed on 08/05/98 Proprietary and Confidential

start, end Starting and ending rows of the mipmap to download.

DESCRIPTION

grTexDownloadMipMapLevelPartial downloads part of a single mipmap level. startAddress points to
the beginning of the mipmap; Glide will calculate an offset from startAddress to the beginning of the level
to be replaced, with start and end determining the specific rows of the mipmap level to replace.

Valid values for startAddress must be between the values returned by grTexMinAddress and
grTexMaxAddress. startAddress should point to the beginning of the mipmap even if the starting row to
be downloaded is not the first row in the texture.

NOTES

To download one row of the texture, use the same value for start and end.

An error will occur if the mipmap is loaded into an area that crosses a 2MB boundary. See the Glide
Programming Manual for more information.

SEE ALSO

grTexDownloadMipMap, grTexDownloadMipMapLevel, grTexMinAddress, grTexMaxAddress,
grTexTextureMemRequired, grTexSource

Copyright  1995−1998 3Dfx Interactive, Inc. 151
Proprietary and Confidential Printed on 08/05/98

grTexDownloadTable

NAME

grTexDownloadTable – download an NCC table or color palette

C SPECIFICATION

void grTexDownloadTable(GrTexTable_t type, void *data)

PARAMETERS

type Type of texture table. The valid values are:
GR_TEXTABLE_NCC0 – Narrow-channel compression table 0,
GR_TEXTABLE_NCC1 – Narrow-channel compression table 1,
GR_TEXTABLE_PALETTE – 256 entry color palette containing 8-bit RGB.
GR_TEXTABLE_PALETTE_6666_EXT – 256 entry color palette containing 6-bit

ARGB. This is an extension and may not be supported on all hardware.

data Table data, either of type GuNccTable or GuTexPalette.

DESCRIPTION

grTexDownloadTable downloads either an NCC table or a 256-entry color palette. The color palette is
referenced when rendering texture formats GR_TEXFMT_P_8 or GR_TEXFMT_AP_88. One of two NCC
tables is used when decompressing texture formats GR_TEXFMT_YIQ_422 or GR_TEXFMT_AYIQ_8422.
Use grTexNCCTable to select one of the two NCC tables.

NOTES

grTexSource does not download a texture’s table – this must be done separately using
grTexDownloadTable.

grTexDownloadTable does not download an NCC table if the table address is the same as the last table
downloaded. Therefore, if the table’s data has changed, it must be copied to a new address before
downloading.

Glide 3.0 implements one global palette and two global NCC tables. Previous versions of Glide allowed
palettes and NCC tables to differ on each TMU. In Glide 3.0, however, if one TMU is using palette
textures, then the others cannot be in NCC mode. Similarly, if one TMU is using a compressed texture, the
palette is off limits to the other TMUs.

SEE ALSO

grGetString, grTexDownloadTablePartial, grTexNCCTable, grTexSource

Copyright  1995−1998 3Dfx Interactive, Inc. 153
Proprietary and Confidential Printed on 08/05/98

grTexDownloadTablePartial

NAME

grTexDownloadTablePartial – download a subset of an NCC table or color palette

C SPECIFICATION

void grTexDownloadTablePartial(GrTexTable_t type,
void *data,
int start,
int end

)
PARAMETERS

type Type of texture table. Valid values are:
GR_TEXTABLE_PALETTE – 256-entry color palette containing 8-bit RGB.
GR_TEXTABLE_PALETTE_6666_EXT – 256-entry color palette containing 6-bit

ARGB. This is an extension and may not be supported on all hardware.

data Table data, either of type GuNccTable or GuTexPalette.

start, end Starting and ending entries to download.

DESCRIPTION

grTexDownloadTablePartial downloads part of a 256-entry color palette to a TMU. Entries from start
up to and including end are downloaded. The color palette is referenced when rendering texture formats
GR_TEXFMT_P_8 or GR_TEXFMT_AP_88.

NOTES

To download one entry, use the same value for start and end.

Partial downloading of NCC tables is not supported at this time.

SEE ALSO

grGetString, grTexDownloadTable, grTexNCCTable, grTexSource

Copyright  1995−1998 3Dfx Interactive, Inc. 155
Proprietary and Confidential Printed on 08/05/98

grTexFilterMode

NAME

grTexFilterMode – specify the texture minification and magnification filters

C SPECIFICATION

void grTexFilterMode(GrChipID_t tmu,
GrTextureFilterMode_t minFilterMode,
GrTextureFilterMode_t magFilterMode

)
PARAMETERS

tmu Texture Mapping Unit to modify. Valid values are GR_TMU0, GR_TMU1, and
GR_TMU2.

minFilterMode The minification filter, either GR_TEXTUREFILTER_POINT_SAMPLED or
GR_TEXTUREFILTER_BILINEAR.

magFilterMode The magnification filter, either GR_TEXTUREFILTER_POINT_SAMPLED or
GR_TEXTUREFILTER_BILINEAR.

DESCRIPTION

grTexFilterMode specifies the texture filters for minification and magnification. The magnification filter
is used when the LOD calculated for a pixel indicates that the pixel covers less than one texel. Otherwise,
the minification filter is used.

NOTES

SEE ALSO

grTexSource

Copyright  1995−1998 3Dfx Interactive, Inc. 157
Proprietary and Confidential Printed on 08/05/98

grTexLodBiasValue

NAME

grTexLodBiasValue – set the LOD bias value

C SPECIFICATION

void grTexLodBiasValue(GrChipID_t tmu, float bias)

PARAMETERS

tmu Texture Mapping Unit to modify. Valid values are GR_TMU0, GR_TMU1, and
GR_TMU2.

bias The new LOD bias value, a signed floating point value in the range [-8..7.75].

DESCRIPTION

grTexLodBiasValue changes the current LOD bias value, which allows an application to maintain fine
grain control over the effects of mipmapping, specifically when mipmap levels change. The LOD bias
value is added to the LOD calculated for a pixel and the result determines which mipmap level to use.
Smaller LOD values make increasingly sharper images which may suffer from aliasing and moiré effects.
Larger LOD values make increasingly smooth images which may suffer from becoming too blurry. The
default LOD bias value is 0.0.

During some special effects, an LOD bias may help image quality. If an application is not performing
texture mapping with trilinear filtering or dithered mipmapping, then an LOD bias of 0.5 generally
improves image quality by rounding to the nearest LOD. If an application is performing dithered
mipmapping (i.e., grTexMipMapMode is GR_MIPMAP_NEAREST_DITHER), then an LOD bias of 0.0 or 0.25
generally improves image quality. An LOD bias value of 0.0 is usually best with trilinear filtering.

NOTES

The bias parameter is rounded to the nearest quarter increment.

SEE ALSO

grTexMipMapMode, grTexSource

Copyright  1995−1998 3Dfx Interactive, Inc. 159
Proprietary and Confidential Printed on 08/05/98

grTexMaxAddress

NAME

grTexMaxAddress – return the highest start address for texture downloads

C SPECIFICATION

FxU32 grTexMaxAddress(GrChipID_t tmu)

PARAMETERS

tmu Texture Mapping Unit to query. Valid values are GR_TMU0, GR_TMU1, and GR_TMU2.

DESCRIPTION

grTexMaxAddress returns the upper bound on texture memory addresses for a specific TMU.

NOTES

The returned address is the highest valid texture start address and is valid only for the smallest mipmap
level GR_LOD_LOG2_1.

SEE ALSO

grTexMinAddress, grTexDownloadMipMap, grTexDownloadMipMapLevel, grTexSource

Copyright  1995−1998 3Dfx Interactive, Inc. 161
Proprietary and Confidential Printed on 08/05/98

grTexMinAddress

NAME

grTexMinAddress – return the lowest start address for texture downloads

C SPECIFICATION

FxU32 grTexMinAddress(GrChipID_t tmu)

PARAMETERS

tmu Texture Mapping Unit to query. Valid values are GR_TMU0, GR_TMU1, and GR_TMU2.

DESCRIPTION

grTexMinAddress returns the lower bound on texture memory addresses for a specific TMU.

NOTES

SEE ALSO

grTexMaxAddress, grTexDownloadMipMap, grTexDownloadMipMapLevel, grTexSource

Copyright  1995−1998 3Dfx Interactive, Inc. 163
Proprietary and Confidential Printed on 08/05/98

grTexMipMapMode

NAME

grTexMipMapMode – set the mipmapping mode

C SPECIFICATION

void grTexMipMapMode(GrChipID_t tmu, GrMipMapMode_t mode, FxBool lodBlend)

PARAMETERS

tmu Texture Mapping Unit to modify. Valid values are GR_TMU0, GR_TMU1, and
GR_TMU2.

mode The new mipmapping mode. Valid values are GR_MIPMAP_DISABLE,
GR_MIPMAP_NEAREST, and GR_MIPMAP_NEAREST_DITHER.

lodBlend FXTRUE enables blending between levels of detail for trilinear mipmapping.
FXFALSE disables LOD blending.

DESCRIPTION

grTexMipMapMode sets the mipmapping mode for the graphics hardware. The graphics hardware performs
mipmapping with no performance penalty. Either no mipmapping, nearest mipmapping, or nearest dithered
mipmapping can be performed. Nearest mipmapping (GR_MIPMAP_NEAREST) selects the nearest mipmap
based on LOD. Dithered nearest mipmapping (GR_MIPMAP_NEAREST_DITHERED) dithers between
adjacent mipmap levels to reduce the effects of mipmap banding but without the cost of trilinear filtering
with LOD blending.

NOTES

GR_MIPMAP_NEAREST_DITHERED mode can degrade fill-rate performance by 20-30% in some
applications. If this mode is used, performance should be benchmarked to determine the cost of the
increased quality. In order to prevent inadvertent use of the GR_MIPMAP_NEAREST_DITHERED mode, it’s
availability must be specifically enabled by calling grEnable(GR_ALLOW_MIPMAP_DITHER). Note that
grEnable merely make the mode available; it must still be enabled by calling grTexMipMapMode.

GR_MIPMAP_NEAREST truncates the LOD calculated for each pixel. To round to the nearest LOD, set the
LOD bias value to 0.5 with grTexLodBiasValue.

GR_MIPMAP_NEAREST should be used when lodBlend is FXTRUE.

SEE ALSO

grEnable, grTexLodBiasValue, grTexSource

Copyright  1995−1998 3Dfx Interactive, Inc. 165
Proprietary and Confidential Printed on 08/05/98

grTexMultibase

NAME

grTexMultibase – enables or disables multibase addressing

C SPECIFICATION

void grTexMultibase(GrChipID_t tmu, FxBool enable)

PARAMETERS

tmu Texture Mapping Unit to modify. Valid values are GR_TMU0, GR_TMU1, and
GR_TMU2.

enable FXTRUE enables multibase addressing, FXFALSE disables multibase addressing.

DESCRIPTION

grTexMultibase enables or disables multibase addressing. Normally, mipmap levels are stored
sequentially in texture memory. Multibase addressing allows mipmap levels to be loaded into different
texture memory locations. Multibase addressing must be enabled before downloading a multibased texture,
and before rendering using a multibased texture. Multibase addressing must be disabled before
downloading or rendering from a texture with a single base address.

NOTES

Use grTexMultibaseAddress to specify the multiple base addresses for a multibased texture.

An error will occur if a mipmap level is loaded into an area that crosses a 2MB boundary. See the Glide
Programming Manual for more information.

SEE ALSO

grTexMultibaseAddress, grTexSource

Copyright  1995−1998 3Dfx Interactive, Inc. 167
Proprietary and Confidential Printed on 08/05/98

grTexMultibaseAddress

NAME

grTexMultibaseAddress – specify one base address for a multibased texture

C SPECIFICATION

void grTexMultibaseAddress(GrChipID_t tmu,
GrTexBaseRange_t range,

FxU32 startAddress,
FxU32 evenOdd,
GrTexInfo *info

)
PARAMETERS

tmu Texture Mapping Unit to modify. Valid values are GR_TMU0, GR_TMU1, and
GR_TMU2.

range Which base address to specify. Valid values are GR_TEXBASE_256,
GR_TEXBASE_128, GR_TEXBASE_64 and GR_TEXBASE_32_TO_1.

startAddress Starting address in texture memory for texture.

evenOdd Which mipmap levels reside on this TMU for this texture. Valid values are
GR_MIPMAPLEVELMASK_EVEN, GR_MIPMAPLEVELMASK_ODD, and
GR_MIPMAPLEVELMASK_BOTH.

info Format and dimensions of the texture.

DESCRIPTION

grTexMultibaseAddress specifies one base address for a texture with multiple base addresses.
Normally, mipmap levels are stored sequentially in texture memory. Multibase addressing allows mipmap
levels to be loaded into different texture memory locations. Four different base addresses are specified for a
multibased texture, one for GR_LOD_LOG2_256, one for GR_LOD_LOG2_128, one for GR_LOD_LOG2_64,
and one for GR_LOD_LOG2_32 through GR_LOD_LOG2_1. In each case, startAddress should point to the
texture memory location for the corresponding mipmap level.

All of the base addresses for a multibased texture should be specified before downloading the texture or
rendering from the texture.

NOTES

The GrTexInfo structure has changed in Glide 3.0. See glide.h for more information.

grTexSource does not restore the multiple base addresses for a multibased texture, but does set the base
address for mipmap level GR_LOD_LOG2_256. Therefore, it is not necessary to call
grTexMultibaseAddress with a range of GR_TEXBASE_256 after a call to grTexSource.

If a mipmap does not include some of the larger mipmap levels, then the base addresses associated with
these missing levels need not be specified.

An error will occur if a mipmap level is loaded into an area that crosses a 2MB boundary. See the Glide
Programming Manual for more information.

SEE ALSO

grTexMultibase, grTexSource

Copyright  1995−1998 3Dfx Interactive, Inc. 169
Proprietary and Confidential Printed on 08/05/98

grTexNCCTable

NAME

grTexNCCTable – select an NCC table

C SPECIFICATION

void grTexNCCTable(GrNCCTable_t table)

PARAMETERS

table NCC table to use for decompressing compressed textures. Valid values are
GR_TEXTABLE_NCC0 and GR_TEXTABLE_NCC1.

DESCRIPTION

grTexNCCTable selects one of the two NCC tables as the current source for NCC decompression
operations. Before rendering operations commence, the appropriate NCC table should be downloaded using
grTexDownloadTable.

NOTES

Glide 3.0 implements two global NCC tables. Previous versions of Glide allowed different NCC tables on
each TMU.

SEE ALSO

grTexDownloadTable, grTexSource

Copyright  1995−1998 3Dfx Interactive, Inc. 171
Proprietary and Confidential Printed on 08/05/98

grTexSource

NAME

grTexSource – specify the current texture source for rendering

C SPECIFICATION

void grTexSource(GrChipID_t tmu,
FxU32 startAddress,
FxU32 evenOdd,
GrTexInfo *info

)
PARAMETERS

tmu Texture Mapping Unit to modify. Valid values are GR_TMU0, GR_TMU1, and
GR_TMU2.

startAddress Starting address in texture memory for texture.

evenOdd Which mipmap levels have been downloaded at startAddress. Valid values are
GR_MIPMAPLEVELMASK_EVEN, GR_MIPMAPLEVELMASK_ODD, and
GR_MIPMAPLEVELMASK_BOTH.

info Format and dimensions of the new texture.

DESCRIPTION

grTexSource sets up the area of texture memory that is to be used as a source for subsequent texture
mapping operations. The startAddress specified should be the same as the startAddress argument to
grTexDownloadMipMap, or the starting address used for the largest mipmap level when using
grTexDownloadMipMapLevel or grTexDownloadMipMapLevelPartial.

NOTES

The GrTexInfo structure has changed in Glide 3.0. See glide.h for more information.

An error will occur if a mipmap level is loaded into an area that crosses a 2 Mbyte boundary. See the Glide
Programming Manual for more information.

SEE ALSO

grTexDownloadMipMap, grTexDownloadMipMapLevel, grTexDownloadMipMapLevelPartial,
grTexMinAddress, grTexMaxAddress, grTexTextureMemRequired

Copyright  1995−1998 3Dfx Interactive, Inc. 173
Proprietary and Confidential Printed on 08/05/98

grTexTextureMemRequired

NAME

grTexTextureMemRequired – return the texture memory consumed by a texture

C SPECIFICATION

FxU32 grTexTextureMemRequired(FxU32 evenOdd, GrTexInfo *info)

PARAMETERS

evenOdd Which mipmap levels are included: even, odd or both. Valid values are
GR_MIPMAPLEVELMASK_EVEN, GR_MIPMAPLEVELMASK_ODD, and
GR_MIPMAPLEVELMASK_BOTH.

info Format and dimensions of the texture.

DESCRIPTION

grTexTextureMemRequired calculates and returns the number of bytes required to store a given texture,
including any padding bytes required to properly align the mipmap in memory. See
grGet(GR_TEXTURE_ALIGN,…). The number returned may be added to the start address for a texture
download to determine the next free location in texture memory.

NOTES

The GrTexInfo structure has changed in Glide 3.0. See glide.h for more information.

SEE ALSO

grGet, grTexCalcMemRequired, grTexDownloadMipMap, grTexDownloadMipMapLevel,
grTexMinAddress, grTexMaxAddress, grTexSource

Copyright  1995−1998 3Dfx Interactive, Inc. 175
Proprietary and Confidential Printed on 08/05/98

grVertexLayout

NAME

grVertexLayout – specify the format of by-vertex arrays

C SPECIFICATION

void grVertexLayout (FxU32 param, FxI32 offset, FxU32 mode)

PARAMETERS

param Parameter selector.

offset Offset of the parameter data from the vertex pointer, in bytes.

mode GR_PARAM_ENABLE or GR_PARAM_DISABLE.

DESCRIPTION

grVertexLayout specifies the internal format of the vertex structure for arrays organized in the by-vertex
format. All parameters associated with a vertex (color, texture coordinates, etc.) are grouped together in a
vertex structure, and there is a single array of these vertex structures. The layout of each vertex is defined
with grVertexLayout, and drawn with grDrawVertexArray.

grVertexLayout is called once for each value of param, chosen from the tables that follow. Every vertex
must include GR_PARAM_XY; the other components depend on your choice of coordinate space and
rendering modes.

grVertexLayout Glide 3.0 Reference Manual

176 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed on 08/05/98 Proprietary and Confidential

When using clip coordinates, use these values for param:

param type size in
bytes

description values usage

GR_PARAM_XY FxFloat 8 x and y
coordinates.
Vertex snapping is

no longer required.

In the range
[−w..w].

Required. Must be at offset 0.

GR_PARAM_Z FxFloat 4 z coordinate. In the range
[−w..w].

When z buffering is enabled.

GR_PARAM_W FxFloat 4 w coordinate. In the range
[1..64K].

Required.

GR_PARAM_Q FxFloat 4 Usage depends
on choice of
coordinate
space.

Depth/fog
iterator.

When using fog mode
GR_FOG_WITH_TABLE_ON_Q or w
buffering is enabled. Defaults to 1 if
not defined.

GR_PARAM_STn FxFloat 8 s and t
coordinates for
TMU n.

s, t in range [0,1]
for one repeat of
the texture.
Independent of aspect

ratio.

When texture mapping.

GR_PARAM_Qn FxFloat 4 q coordinate for
TMU n.

When texture mapping with
projected textures. Defaults to
GR_PARAM_Q if not defined.

GR_PARAM_A FxFloat 4 alpha value. In the range [0..1] When using alpha blending, alpha
testing, or anti-aliasing.

GR_PARAM_RGB FxFloat 12 RGB triplet. In the range [0..1]
GR_PARAM_PARGB FxU32 4 Packed ARGB,

one byte per
component.

Each component is
an integer in the
range [0..255]

Choose one of the two color formats.

GR_PARAM_FOG_EXT

(if FOGCOORD
extension is supported)

FxFloat 4 Fog table index. f/w in the range
(0..1]

When using fog mode
GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT

Glide 3.0 Reference Manual Introduction

Copyright  1995-98 3Dfx Interactive, Inc. 177
Proprietary and Confidential Printed 08/05/98

When using window coordinates, choose from these values for param:

param type size in
bytes

description values usage

GR_PARAM_XY FxFloat 8 x and y
coordinates.
Vertex snapping is

no longer required.

x/w, y/w in the
range
[−2048..2047]

Required. Must be at offset 0.

GR_PARAM_Z FxFloat 4 z coordinate. Stored as 1/z. In the
range [0..64K]

When z buffering is enabled.

GR_PARAM_Q FxFloat 4 Usage depends
on choice of
coordinate
space.

1/w Required.

GR_PARAM_STn FxFloat 8 s and t
coordinates for
TMU n.

Stored as s/q, t/q in
the range [0..256]
for one repeat of
the texture. The
range of the smaller
dimension is limited

by the aspect ratio.
See Chapter 9.

When texture mapping.

GR_PARAM_Qn FxFloat 4 q coordinate for
TMU n.

In the range
[0..255]

When texture mapping with
projected textures. Defaults to
GR_PARAM_Q if not defined or if
disabled.

GR_PARAM_A FxFloat 4 alpha value. In the range
[0..255]

When using alpha blending, alpha
testing, or anti-aliasing.

GR_PARAM_RGB FxFloat 12 RGB triplet. In the range
[0..255].

GR_PARAM_PARGB FxU32 4 Packed ARGB,
one byte per
component.

Each component is
an integer in the
range [0..255].

Choose one of the two color formats.

GR_PARAM_FOG_EXT

(if FOGCOORD
extension is supported)

FxFloat 4 Fog table index. Stored as f/q in the
range (0..1].

When using fog mode
GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT

offset is the offset in bytes of the parameter data from the vertex pointer. The offset can be either positive or
negative.

mode is either GR_PARAM_ENABLE or GR_PARAM_DISABLE. Disabling a parameter will potentially cause it
to inherit the last known value. When a parameter is disabled the offset argument is ignored. Disabling a
mandatory parameter like GR_PARAM_XY will cause a fatal Glide error.

grVertexLayout modifies the behavior of all grDrawVertex* APIs.

grVertexLayout Glide 3.0 Reference Manual

178 Copyright  1995−1998 3Dfx Interactive, Inc.
Printed on 08/05/98 Proprietary and Confidential

NOTES

Glide 3.0 is the first release to support grVertexLayout.

The GrVertex structure has disappeared in Glide 3.0, to be replaced by a user-defined structure whose
layout is communicated through calls to grVertexLayout. To create the old structure, define it in the
application and execute the appropriate calls:

typedef struct{
float x, y, z; /* X, Y, Z */
float r, g, b; /* R, G, B */
float ooz; /* 65535/Z (used for Z-buffering) */
float a; /* Alpha */
float oow; /* 1/W (used for W-buffering, texturing) */
GrTmuVertex tmuvtx[GLIDE_NUM_TMU];

} MyVertex; /* old GrVertex */

grCoordinateSpace(GR_WINDOW_COORDS);
grVertexLayout(GR_PARAM_XY, 0, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_RGB, 12, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_Z, 24, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_A, 28, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_Q, 32, GR_PARAM_ENABLE);
grVertexLayout(GR_PARAM_ST0, 36, GR_PARAM_ENABLE);

To conserve memory, define only the parameters that will be used by the rendering mode and coordinate
space settings you have chosen.

SEE ALSO

grDrawVertexArray, grFogMode, grGet, grGetString, grGlideGetVertexLayout,
grGlideSetVertexLayout

Copyright  1995−1998 3Dfx Interactive, Inc. 179
Proprietary and Confidential Printed on 08/05/98

grViewport

NAME

grViewport – define a viewport

C SPECIFICATION

void grViewport (FxI32 x, FxI32 y, FI32 width, FxI32 height)

PARAMETERS

x, y The origin of the viewport, relative to the screen origin.

width, height The width and height of the viewport.

DESCRIPTION

grViewport specifies the viewport transformation. The current grSstOrigin setting determines whether
x and y specify the upper left corner or the lower left corner. Negative width and height are allowed and
mirror the image about the x or y axis. If (xs, ys) represent normalized screen coordinates, then the window
coordinates (xwin, xwin) are computed as:

xwin = (xs+1)(width/2) + x and ywin = (ys+1)(height/2) + y

NOTES

Glide 3.0 is the first release to support grViewport.

SEE ALSO

Copyright  1995−1998 3Dfx Interactive, Inc. 181
Proprietary and Confidential Printed on 08/05/98

gu3dfGetInfo

NAME

gu3dfGetInfo – get information about the mipmap stored in a .3DF file

C SPECIFICATION

FxBool gu3dfGetInfo(const char *filename, Gu3dfInfo *info)

PARAMETERS

filename Name of the .3DF file.

info Pointer to a Gu3dfInfo structure to fill with information about the mipmap.

DESCRIPTION

gu3dfGetInfo allows an application to determine relevant information about a .3DF file located on disk.
The information is assigned to the appropriate member elements of the info structure. The Gu3dfInfo
structure is defined in glide.h.

After an application has determined the characteristics of a .3DF mipmap, it is responsible for allocating
system memory for the mipmap. This pointer is stored in the info→data pointer and used by gu3dfLoad.

NOTES

SEE ALSO

gu3dfLoad

Copyright  1995−1998 3Dfx Interactive, Inc. 183
Proprietary and Confidential Printed on 08/05/98

gu3dfLoad

NAME

gu3dfLoad – load a .3DF file into system memory

C SPECIFICATION

FxBool gu3dfLoad(const char *filename, Gu3dfInfo *info)

PARAMETERS

filename Name of the file to load.

info Pointer to a Gu3dfInfo structure that gu3dfLoad fills in after loading the file.

DESCRIPTION

gu3dfLoad loads a .3DF file specified by filename into the pointer specified by info→data. gu3dfLoad
returns FXTRUE if the file was successfully loaded; otherwise it returns FXFALSE. It is assumed the info
structure passed has been appropriately configured with a call to gu3dfGetInfo.

NOTES

SEE ALSO

gu3dfGetInfo

Copyright  1995−1998 3Dfx Interactive, Inc. 185
Proprietary and Confidential Printed on 08/05/98

guFogGenerateExp

NAME

guFogGenerateExp – generate an exponential fog table

C SPECIFICATION

void guFogGenerateExp(GrFog_t *fogTable, float density)

PARAMETERS

fogTable Pointer to an array that will receive the generated fog table values.

density The fog density, typically between 0.0 and 1.0.

DESCRIPTION

guFogGenerateExp generates an exponential fog table according to the equation:

e–density*w

where w is the eye-space w coordinate associated with the fog table entry. The resulting fog table is copied
into fogTable.

NOTES

The fog table is normalized (scaled) such that the last entry is maximum fog (255).

SEE ALSO

grFogMode, grFogTable, guFogGenerateExp2, guFogGenerateLinear, guFogTableIndexToW

Copyright  1995−1998 3Dfx Interactive, Inc. 187
Proprietary and Confidential Printed on 08/05/98

guFogGenerateExp2

NAME

guFogGenerateExp2 – generate an exponential squared fog table

C SPECIFICATION

void guFogGenerateExp2(GrFog_t *fogTable, float density)

PARAMETERS

fogTable Pointer to an array that will receive the generated fog table values.

density The fog density, typically between 0.0 and 1.0.

DESCRIPTION

guFogGenerateExp2 generates an exponential squared fog table according to the equation:

e–(density*w)2

where w is the eye-space w coordinate associated with the fog table entry. The resulting fog table is copied
into fogTable.

NOTES

The fog table is normalized (scaled) such that the last entry is maximum fog (255).

SEE ALSO

grFogMode, grFogTable, guFogGenerateExp, guFogGenerateLinear, guFogTableIndexToW

Copyright  1995−1998 3Dfx Interactive, Inc. 189
Proprietary and Confidential Printed on 08/05/98

guFogGenerateLinear

NAME

guFogGenerateLinear – generate a linear fog table

C SPECIFICATION

void guFogGenerateLinear(GrFog_t *fogTable,
float near,
float far

)
PARAMETERS

fogTable Pointer to an array that will receive the generated fog table values.

near The eye-space w coordinate where minimum fog exists.

far The eye-space w coordinate where maximum fog exists.

DESCRIPTION

guFogGenerateLinear generates a linear (in eye-space) fog table according to the equation:

(w – near)/(far – near)

where w is the eye-space w coordinate associated with the fog table entry. The resulting fog table is copied
into fogTable.

NOTES

The fog table is clamped so that all values are between minimum fog (0) and maximum fog (255).

guFogGenerateLinear fog is linear in eye-space w, not in screen-space.

SEE ALSO

grFogMode, grFogTable, guFogGenerateExp, guFogGenerateExp2, guFogTableIndexToW

Copyright  1995−1998 3Dfx Interactive, Inc. 191
Proprietary and Confidential Printed on 08/05/98

guFogTableIndexToW

NAME

guFogTableIndexToW – convert a fog table index to a floating point eye-space w value

C SPECIFICATION

float guFogTableIndexToW(int i)

PARAMETERS

i The fog table index, between 0 and GR_FOG_TABLE_SIZE.

DESCRIPTION

guFogTableIndexToW returns the floating point fog coordinate value associated with entry i in a fog
table. Because fog table entries are non-linear, it is not straight forward to initialize a fog table.
guFogTableIndexToW assists by converting fog table indices to eye-space w values.

NOTES

guFogTableIndexToW returns the following:

pow(2.0, 3.0+(double)(i>>2)) / (8-(i&3));

SEE ALSO

grFogMode, grFogTable, guFogGenerateExp, guFogGenerateExp2, guFogGenerateLinear

Copyright  1995−1998 3Dfx Interactive, Inc. 193
Proprietary and Confidential Printed on 08/05/98

guGammaCorrectionRGB

NAME

guGammaCorrectionRGB – set up gamma correction tables

C SPECIFICATION

void guGammaCorrectionRGB (FxFloat gRed, FxFloat gGreen, FxFloat gBlue)

PARAMETERS

gRed The gamma correction value for the red component.

gGreen The gamma correction value for the green component.

gBlue The gamma correction value for the blue component.

DESCRIPTION

guGammaCorrectionRGB sets the gamma tables by computing a gamma correction curve for each color
component using the equation:

cγ = 255 * (c/255)1/γ

where c is the original red, green, or blue color component in the range [0, 255], γ is the component-
specific gamma value, and cγ is the gamma-corrected color component value.

The gamma-corrected values are used to generate a hardware-dependent gamma table, which is
automatically downloaded.

NOTES

Glide 3.0 is the first release to support guGammaCorrectionRGB. It replaces the now-obsolete
grGammaCorrectionValue.

SEE ALSO

Copyright  1995−1998 3Dfx Interactive, Inc. 195
Proprietary and Confidential Printed on 08/05/98

References
FOLE90 Foley, J., A. van Dam, S. Feiner, and J. Hughes, “Computer Graphics”, Addison-Wesley,

Reading, 1990

SUTH74 Sutherland, I. E. and G. W. Hodgman, “Reentrant Polygon Clipping”, CACM 17(1), 32-42

WILL83 Williams, L., “Pyramidal Parametrics”, SIGGRAPH 83, 1-

