
Proprietary Information

SST-96 (a.k.a. Voodoo Rush™)

VOODOO GRAPHICS
FOR

WINDOWS

Revision 2.2

November 30, 1999
Copyright  1997 3dfx Interactive, Inc. All Rights Reserved

3Dfx Interactive, Inc.
4435 Fortran Drive

Phone: (408) 935-4400
Fax: (408) 262-8602

www.3dfx.com

Proprietary Information

Copyright Notice:
[English translations from legalese in brackets]

©1996-1999, 3Dfx Interactive, Inc. All rights reserved

This document may be reproduced in written, electronic or any other form of expression only in its entirety.

[If you want to give someone a copy, you are hereby bound to give him or her a complete copy.]

This document may not be reproduced in any manner whatsoever for profit.

[If you want to copy this document, you must not charge for the copies other than a modest amount sufficient to
cover the cost of the copy.]

No Warranty

THESE SPECIFICATIONS ARE PROVIDED BY 3DFX "AS IS" WITHOUT ANY REPRESENTATION
OR WARRANTY, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT OF THIRD-PARTY
INTELLECTUAL PROPERTY RIGHTS, OR ARISING FROM THE COURSE OF DEALING BETWEEN
THE PARTIES OR USAGE OF TRADE. IN NO EVENT SHALL 3DFX BE LIABLE FOR ANY
DAMAGES WHATSOEVER INCLUDING, WITHOUT LIMITATION, DIRECT OR INDIRECT
DAMAGES, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE THE SPECIFICATIONS,
EVEN IF 3DFX HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

[You're getting it for free. We believe the information provided to be accurate. Beyond that, you're on your own.]

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 3 Updated 12/1/99

COPYRIGHT NOTICE: ... 2

NO WARRANTY ... 2

1. INTRODUCTION .. 5

1.1 SYSTEM DIAGRAM ... 5
1.2 SYSTEM FEATURES... 6
1.3 SYSTEM RESOLUTIONS... 7
1.4 SYSTEM PERFORMANCE ... 9

2. MEMORY MAP... 10

3. COMMAND FIFO ..11

4. 3D REGISTERS ... 13

5. TEXTURE MEMORY... 14

6. RENDER AND REFRESH .. 15

7. 3D REGISTER MAP.. 19

8. REGISTER DEFINITIONS... 23

8.1 STATUS REGISTER... 23
8.2 VERTEX AND FVERTEX REGISTERS ... 24
8.3 STARTR, STARTG, STARTB, STARTA, FSTARTR, FSTARTG, FSTARTB, AND FSTARTA REGISTERS....................... 24
8.4 STARTZ AND FSTARTZ REGISTERS ... 25
8.5 STARTS, STARTT, FSTARTS, AND FSTARTT REGISTERS.. 25
8.6 STARTW AND FSTARTW REGISTERS... 25
8.7 DRDX, DGDX, DBDX, DADX, FDRDX, FDGDX, FDBDX, AND FDADX REGISTERS 26
8.8 DZDX AND FDZDX REGISTERS... 26
8.9 DSDX, DTDX, FDSDX, AND FDTDX REGISTERS.. 26
8.10 DWDX AND FDWDX REGISTERS .. 27
8.11 DRDY, DGDY, DBDY, DADY, FDRDY, FDGDY, FDBDY, AND FDADY REGISTERS ... 27
8.12 DZDY AND FDZDY REGISTERS... 27
8.13 DSDY, DTDY, FDSDY, AND FDTDY REGISTERS ... 28
8.14 DWDY AND FDWDY REGISTERS .. 28
8.15 TRIANGLECMD AND FTRIANGLECMD REGISTERS .. 29
8.16 NOPCMD REGISTER .. 29
8.17 FASTFILLCMD REGISTER ... 29
8.18 SWAPBUFFERCMD REGISTER ... 30
8.19 SWAPPENDCMD REGISTER... 30
8.20 FBZCOLORPATH REGISTER ... 32
8.21 FOGMODE REGISTER.. 36
8.22 ALPHAMODE REGISTER.. 38
8.23 FBZMODE REGISTER .. 41
8.24 STIPPLE REGISTER.. 46
8.25 COLOR0 REGISTER... 46
8.26 COLOR1 REGISTER... 46

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 4 Updated 12/1/99

8.27 FOGCOLOR REGISTER .. 46
8.28 ZACOLOR REGISTER... 46
8.29 CHROMAKEY REGISTER ... 48
8.30 CHROMARANGE REGISTER ... 48
8.31 COLBUFFERSETUP AND AUXBUFFERSETUP REGISTERS ... 49
8.32 CLIPLEFTRIGHT0, CLIPTOPBOTTOM0, CLIPLEFTRIGHT1 AND CLIPTOPBOTTOM1 REGISTERS 50
8.33 FOGTABLE REGISTER ... 51
8.34 FBIJRINIT0, FBIJRINIT1, FBIJRINIT2, FBIJRINIT3, FBIJRINIT4 AND FBIJRINIT5 REGISTERS............................... 52
8.35 FBIJRVERSION REGISTER .. 56
8.36 FBIPIXELSIN REGISTER... 56
8.37 FBICHROMAFAIL REGISTER .. 56
8.38 FBIZFUNCFAIL REGISTER.. 56
8.39 FBIAFUNCFAIL REGISTER ... 57
8.40 FBIPIXELSOUT REGISTER ... 57
8.41 TEXCHIPSEL REGISTER .. 57
8.42 TEXTUREMODE REGISTER .. 58
8.43 TLOD REGISTER ... 60
8.44 TDETAIL REGISTER .. 62
8.45 TEXBASEADDR, TEXBASEADDR1, TEXBASEADDR2, AND TEXBASEADDR38 REGISTERS............................... 62
8.46 TREXINIT0 REGISTER... 63
8.47 TREXINIT1 REGISTER... 63
8.48 NCCTABLE0 AND NCCTABLE1 REGISTERS ... 63

9. CHANGES FROM SST-1 .. 65

10. REVISION HISTORY.. 66

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 5 Updated 12/1/99

1. Introduction
The SST-96 graphics subsystem combines the high performance graphics of 3Dfx Interactive (3D) with the proven
performance of an industry standard windows accelerator (2D). This union creates an extremely cost effective and
uncompromising multimedia solution. The 2D engine provides a PCI system interface, VGA, 2D and Video
features and the 3D engine adds windowed 3Dfx “Voodoo Graphics”.

SST-96 connects the 2D and 3D graphics engines through the “Voodoo Rush” (VR) interface. The VR interface
consist of a shared frame buffer memory interface and a 3D control interface. The shared frame buffer interface
defines a Pseudo Unified Memory Architecture (PUMA) which connects the 2D/3D devices through the pins of the
frame buffer memory and the 3D control interface defines signals which coordinate efficient 2D/3D operation.

The SST-96 PUMA interface supports shared access to the frame buffer memory through a request and grant
arbitration protocol based on VUMA (VESA Unified Memory Arbitration). PUMA defines the 2D device as the
requester and the 3D device as the grantor. As the requester, the 2D device may generate low priority requests for
general frame buffer accesses and high priority requests for video/memory refresh accesses.

The SST-96 3D control interface provides for an efficient 2D/3D operation through swap, vsync and status
connections. The swap/vsync connections provide for a polling-free 3D-render/2D-refresh buffer swap mechanism
and the status connection provides 3D status to the PCI though the 2D chip.

1.1 System Diagram

Error! Not a valid link.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 6 Updated 12/1/99

1.2 System Features

Interface
• Low-cost industry-standard 2D/VGA Windows Accelerator.
• High performance “Voodoo Graphics” quality 3Dfx Accelerator.
• Minimum interface overhead:

3-pin Pseudo Unified Memory Architecture (REQ, GNT & CLK),
2-Pin buffer management (SWAP & VSYNC),
1-Pin system status (STATUS).

2D
• PUMA client interface.
• 2 or 4 MB linearly mapped frame buffer memory
• VGA compliance.
• BLTs & ROPs.
• Draw & fill.
• Scrolling, clipping & scaling.
• Video In & Video Out.
• Optional MPEG attachment.
• Video refresh.
• DRAM refresh.

3D
• PUMA core interface.
• 1 to 4 MB of texture memory.
• Triangle raster engine with sub-pixel correction to .4 x .4 resolution.
• Linearly interpolated Gouraud-shaded rendering.
• Perspective-corrected texture-mapped rendering with iterated RGB modulation/addition.
• Texture filtering: point-sampling, bilinear, and tri-linear filtering with mip-mapping.
• Texture formats: 8-bit RGB(3-3-2), 8-bit intensity, 8-bit alpha, 8-bit narrow channel YIQ(4-2-2), 8-

bit alpha-intensity(4-4), 16-bit RGB(5-6-5), 16-bit ARGB (1-5-5-5), 16-bit ARGB (4-4-4-4), 16-bit
ARGB (8-3-3-2), 16-bit narrow channel AYIQ (8-4-2-2), 16-bit alpha-intensity (8-8).

• Texture decompression: 8-bit “narrow channel” YIQ.
• Transparency with dedicated color mask.
• Source/Destination pixel alpha blending.
• Linearly interpolated 16-bit Z-buffer rendering.
• Perspective-corrected 16-bit floating point W-buffer rendering.
• 24-bit color dithering to native 16-bit RGB buffer using 4x4 or 2x2 ordered dither matrix.
• Non-linear table driven fog.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 7 Updated 12/1/99

1.3 System Resolutions
SST-96 supports any resolution which fits in the frame buffer memory, is less than 2K by 2K in X/Y rendering
dimension and is supported by the refresh engine of the 2D chip. Full-screen 3D requires the memory space of the
front/back 3D buffers, while windowed 3D requires the additional memory space of the 2D desktop. Windowed 3D
overlays 3D data onto the desktop from off-screen buffers utilizing either two off-screen buffers (out-of-place 3D)
or one on-screen buffer and one off-screen buffer (in-place 3D -- requires equal 2D and 3D color depths).

The following tables detail the memory byte requirements for full-Screen and windowed resolutions. Numbers
indicated in light gray require a 4MB frame buffer and numbers indicated in dark gray do not fit within SST-96.

Full Screen 3D
3D

Resolution
3D Color

Depth
Auxiliary

Depth
Color

Buffer 1
Color

Buffer 2
Auxiliary

Buffer
Total

of Buffers
CMDFIFO

Space
16-bit Full Screen 3D

 640x480 16
16
16

0
8
16

614400
614400
614400

614400
614400
614400

0
307200
614400

1228800
1536000
1843200

868352
561152
253952

800x600 16
16
16

0
8
16

960000
960000
960000

960000
960000
960000

0
480000
960000

1920000
2400000
2880000

177152
1794304
1314304

1024x768 16
16
16

0
8
16

1572864
1572864
1572864

1572864
1572864
1572864

0
786432

1572864

3145728
3932160
4718592

1048576
262144

(524288)
1152x864 16

16
16

0
8
16

1990656
1990656
1990656

1990656
1990656
1990656

0
995328

1990656

3981312
4976640
5971968

212992
(782336)

(1777664)
1280x1024 16

16
16

0
8
16

2621440
2621440
2621440

2621440
2621440
2621440

0
1310720
2621440

5242880
6553600
7864320

(1048576)
(2359296)
(3670016)

1600x1200 16
16
16

0
8
16

3840000
3840000
3840000

3840000
3840000
3840000

0
1920000
3840000

7680000
9600000
11520000

(3485696)
(5405696)
(7325696)

8-bit Full Screen 3D

640x480 8
8
8

0
8
16

307200
307200
307200

307200
307200
307200

0
307200
614400

614400
921600

1228800

1482752
1175552
868352

800x600 8
8
8

0
8
16

480000
480000
480000

480000
480000
480000

0
480000
960000

960000
1440000
1920000

1137152
657152
177152

1024x768 8
8
8

0
8
16

786432
786432
786432

786432
786432
786432

0
786432

1572864

1572864
2359296
3145728

524288
1835008
1048576

1152x864 8
8
8

0
8
16

995328
995328
995328

995328
995328
995328

0
995328

1990656

1990656
2985984
3981312

106496
1208320
212992

1280x1024 8
8
8

0
8
16

1310720
1310720
1310720

1310720
1310720
1310720

0
1310720
2621440

2621440
3932160
5242880

1572864
262144

(1048576)
1600x1200 8

8
8

0
8
16

1920000
1920000
1920000

1920000
1920000
1920000

0
1920000
3840000

3840000
5760000
7680000

354304
(1565696)
(3485696)

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 8 Updated 12/1/99

Windowed 3D
2D & 3D
Resolution

3D Color
Depth

Auxiliary
Depth

Color
Buffer 1

Color
Buffer 2

Auxiliary
Buffer

Total
of Buffers

CMDFIFO
Space

8-bit Desktop and 16-bit 640x480 Out-of-Place 3D (two off-screen 3D buffers)

1024x768
640x480

0
16
16
16

0
0
8
16

0
614400
614400
614400

0
614400
614400
614400

0
0

307200
614400

786432
2105232
2322432
2629632

na
81920

1871872
1564672

1152x864
640x480

0
16
16
16

0
0
8
16

0
614400
614400
614400

0
614400
614400
614400

0
0

307200
614400

995328
2224128
2531328
2838528

na
1970176
1662976
1355776

1280x1024
640x480

0
16
16
16

0
0
8
16

0
614400
614400
614400

0
614400
614400
614400

0
0

307200
614400

1310720
2539520
2846720
3153920

na
1571168
1263968
956768

1600x1200
640x480

0
16
16
16

0
0
8
16

0
614400
614400
614400

0
614400
614400
614400

0
0

307200
614400

192000
3148800
3456000
3763200

na
1045504
736403
431104

16-bit Desktop and 16-bit 640x480 In-Place 3D (one on-screen 3D buffer & one off-screen 3D buffer)

1024x768
640x480

0
16
16
16

0
0
8
16

0
0
0
0

0
614400
614400
614400

0
0

307200
614400

1572864
2187264
2492264
2799464

na
2007040
1702040
1394840

1152x864
640x480

0
16
16
16

0
0
8
16

0
0
0
0

0
614400
614400
614400

0
0

307200
614400

1990656
2605056
2912256
3219456

na
1896448
1282048
974848

1280x1024
640x480

0
16
16
16

0
0
8
16

0
0
0
0

0
614400
614400
614400

0
0

307200
614400

2621440
3235840
3543040
3850240

na
958464
651264
344064

8-bit Desktop and 16-bit 320x200 Out-of-Place 3D (two off-screen 3D buffers)

1024x768
320x200

0
16
16
16

0
0
8
16

0
128000
128000
12800

0
128000
128000
128000

0
0

64000
128000

786432
1042432
1106432
1170432

na
1054720
990720
926720

1152x864
320x200

0
16
16
16

0
0
8
16

0
128000
128000
128000

0
128000
128000
128000

0
0

64000
128000

995328
1251328
1315328
1379328

na
845824
781824
717824

1280x1024
320x200

0
16
16
16

0
0
8
16

0
128000
128000
128000

0
128000
128000
128000

0
0

64000
128000

1310720
1566720
1630720
1694720

na
530432
466432
402432

1600x1200
320x200

0
16
16
16

0
0
8
16

0
128000
128000
128000

0
128000
128000
128000

0
0

64000
128000

1920000
2176000
2240000
2304000

na
2018304
1954304
1890304

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 9 Updated 12/1/99

1.4 System Performance
The performance of SST-96 approximates the performance of SST-1. However, modification to the memory
architecture resulting from the 2D engine partnership alter the command and rendering interfaces with a slight
degradation in performance. Changes come from the additional command traffic across the PUMA frame buffer
interface and modifications to the frame buffer memory packing and tiling organizations.

The following table estimates the performance of SST-1 and SST-96 from an architectural simulator. The numbers
represent systems rendering depth checked color and no alpha blend at 50MHz system. The simulator assumptions
include a never-idle triangle engine (best-case) and full triangle parameter delivery (120 bytes) for each triangle
(worst-case) and 15% overhead for memory/display refresh. Additional assumptions include, an efficient command
transport from the 2D device (8x64 bits in 11 cycles) and an efficient UMA arbitration overhead (1 dead cycle).

Pixels Per Triangle /
CZ Rendering

12
Ktris/Mpixs

24
Ktris/Mpixs

49
Ktris/Mpixs

112
Ktris/Mpixs

200
Ktris/Mpixs

511
Ktris/Mpixs

SST-1 (direct) 996 12 894 21 533 26 266 29 158 31 65 33

SST-1 (memory fifo) 626 7 501 12 359 17 214 24 138 27 62 31

SST-96 (memory fifo) 511 6 414 10 293 14 179 20 119 23 56 28

Pixels Per Triangle /
Rendering Mode

10
Ktri/Mpi

x

25
Ktri/Mpi

x

50
Ktri/Mpi

x

100
Ktri/Mpi

x

500
Ktri/Mpi

x

1000
Ktri/Mpi

x

5000
Ktri/Mpix

C - color only 787 7 694 17 586 29 409 40 83 41 41 41 8 41

CA - color & blend 580 5 466 11 339 16 232 23 70 35 39 39 8 41

CZ - color & depth 557 5 439 10 307 15 204 20 58 29 31 31 6 34

CAZ - blend & depth 444 4 335 8 335 11 143 14 38 19 21 21 4 22

The SST-96 performance loss at the rendering interface is a result of changes to the packing and tiling
organization of pixels within frame buffer memory. SST-96 packs pixel quads of color or depth onto separate
mapped memory pages while SST-1 packs pixel pairs of color and depth within a memory word. Additionally,
SST-96 tiles pixels of color/depth onto linear strides of memory while SST-1 tiles pixels of color/depth onto
rectangular strides of memory. These memory organization differences result in less access efficiency for small
polygons in, more page miss penalties for small polygons and more page misses between color/depth accesses.

 pixels/triangle 12 24 49 112 200 511

KT Packing Loss 37% 24% 17% 11% 9% 4%

KT Tiling Loss 23% 19% 17% 15% 12% 6%

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 10 Updated 12/1/99

2. Memory Map
SST-96 requires 4 or 8 Mbytes of PCI address space. The 8MB space consists of a 4 MB region for the frame
buffer, a 2 MB region for the 3D control registers and a 2 MB region for the 3D texture memory. Alternatively, a
4MB space consists of a 2 MB region for the frame buffer, a 1 MB region for the 3D control registers and a 1 MB
region for the 3D texture memory. The following table defines the ordering of these regions within the space of
SST-96.

Address Table

Address Description
0x000000-0x3fffff SST-96 frame buffer memory (4 MB)
0x400000-0x5fffff SST-96 3D control register (2 MB)
0x600000-0x7fffff SST-96 3D texture memory (2 MB)

<or>
0x000000-0x1fffff SST-96 frame buffer memory (2 MB)
0x200000-0x2fffff SST-96 3D control register (1 MB)
0x300000-0x3fffff SST-96 3D texture memory (1 MB)

The three regions of the PCI address space define the shared frame buffer memory space of the PUMA interface.
Accesses across this interface are performed as EDO DRAM read or write operations. As a result, SST-96 provides
page mapped read access of the 3D control registers but does not provide read access of texture memory.

The following three tables describe the address maps supported by SST-96. The first map is the preferred map of
SST-96, however, the second and third maps may be configured through external control on the 3D device. For
each configuration, the address map indicates the PUMA memory signals associated with the PUMA address
space.

8MB Address Map

PUMA DRAM

Signals

DATA[63:0]

CAS[7:0] (byte enables)

RAS0 WE0
OE0

2MB Frame Buffer Dram
Linear read/write access, rendering and refresh.

 WE1
OE1

2MB

RAS1 WE0
OE0

2MB

3D Registers
Double word aligned write access.
Page aligned read access.

 WE1
OE1

2MB 3D Texture Memory
Write Only.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 11 Updated 12/1/99

3. Command FIFO
A 3D control command FIFO (CMDFIFO) may be established by software within the DRAM of the frame buffer
memory. Initialization registers of FBIjr define the CMDFIFO as a circular space of 1 to 512 4KB pages. Once
established, software loads commands into the FIFO through linear frame buffer writes and the 3D engine seeks
commands out of the FIFO through the PUMA interface.

Software must write the CMDFIFO through consecutive 32-bit LFB addresses filling full 64-bit quad words.

FIFO Management

Hardware manages the CMDFIFO emptiness. The 3D engine maintains a read pointer and an entries count for the
CMDFIFO. Writes to the CMDFIFO increment the entries count and reads from the CMDFIFO decrement the
entries count while incrementing the read pointer. Then, as the entry count is greater than zero, the 3D engine
arbitrates for PUMA access and reads from the CMDFIFO.

Software manages CMDFIFO fullness. To assist, hardware provides read access of the CMDFIFO entries count and
a fullness status. From the entries count and knowledge of the CMDFIFO size, software may determine the exact
fullness. Alternatively, the status registers within the 2D and 3D chips indicate a fullness measurement based on
the comparison to a programmable fullness count. Software is encouraged to manage fullness through read of the
2D serial status as access to the 2D chip does not tax the frame buffer bandwidth.

FIFO Data

The CMDFIFO data controls the 3D engine through non-grouped and grouped write packets. Each packet type
contains an even number of 32-bit 8-byte aligned data words which command write operations to PUMA 4-byte
word addresses. Non-grouped write packets modify a single address with a single 32-bit data word and grouped-
write packets modify up to 32 addresses with as many pieces of 32-bit data words.

The non-grouped write packet consists of an address in the lower word and data in the upper word. Similarly, the
grouped write packet begins with an address in the lower double-word but follows the address with a mask control
word and up to 32 32-bit data words.

The address of the grouped write format sets the base address of the write and the mask determines the sequence
and volume of data to be written. From LSB to MSB of the mask, a “1” enables the write and a “0” disables the
write. The sequence of 32-bit data words following the address and mask modify addresses equaling the base
address plus N when the mask bit N equals “1” as N goes from 0 to 31.

Non-grouped Write Packet

• 2 64-bit aligned 32-bit words.

63 32 31 0

Data[31:0] (written to Address) 0 rsvd[9:0] Address[20:0]

(PCI address [22:2] of register)

Example: write to triangleCMD register.

63 32 31 0

<triangleCMD_data> 0 0000000000 0x10_0020

Writes PUMA address = 0x10_0020 with data = <triangleCMD_data>

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 12 Updated 12/1/99

Grouped Write Packet

• 2 to 34 even numbered 32-bit words.

63 32 31 0

Mask[31:0] (Mask[N]=1 enables write to BaseAddress+N) 1 rsvd[9:0] BaseAddress[20:0]

(PCI address [22:2] of first register)

32-bit data words equaling the count of Mask[N]=1 as N goes from 0 to 31 (0 to 31 32-bit data words)

Example: set triangle vertex, RGBW start, dX and dY parameters, and triangleCMD registers (19 registers).

63 32 31 0

0x3803_ffff 1 0000000000 0x10_0002

<vertexAy_data> <vertexAx_data>

<vertexBy_data> <vertexBx_data>

<vertexCy_data> <vertexCx_data>

<dRdX_data> <startR_data>

<startG_data> <dRdY_data>

<dGdY_data> <dGdX_data>

<dBdX_data> <startB_data>

<startW_data> <dBdY_data>

<dWdY_data> <dWdX_data>

0xXXXX_XXXX (filler data must be written) <triangleCMD_data>

1. Writes PUMA address = 0x10_0002 with data = <vertexAx_data>
2. Writes PUMA address = 0x10_0003 with data = <vertexAy_data>
3. Writes PUMA address = 0x10_0004 with data = <vertexBx_data>
4. Writes PUMA address = 0x10_0005 with data = <vertexBy_data>
5. Writes PUMA address = 0x10_0006 with data = <vertexCx_data>
6. Writes PUMA address = 0x10_0007 with data = <vertexCy_data>
7. Writes PUMA address = 0x10_0008 with data = <startR_data>
8. Writes PUMA address = 0x10_0009 with data = <dRdX_data>
9. Writes PUMA address = 0x10_000a with data = <dRdY_data>
10. Writes PUMA address = 0x10_000b with data = <startG_data>
11. Writes PUMA address = 0x10_000c with data = <dGdX_data>
12. Writes PUMA address = 0x10_000d with data = <dGdY_data>
13. Writes PUMA address = 0x10_000e with data = <startB_data>
14. Writes PUMA address = 0x10_000f with data = <dBdX_data>
15. Writes PUMA address = 0x10_0010 with data = <dBdY_data>
16. Writes PUMA address = 0x10_001d with data = <startW_data>
17. Writes PUMA address = 0x10_001e with data = <dWdX_data>
18. Writes PUMA address = 0x10_001f with data = <dWdY_data>
19. Writes PUMA address = 0x10_0020 with data = <trangleCMD_data>

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 13 Updated 12/1/99

4. 3D Registers
SST-96 defines 256 3D control registers mapped onto 1MB of the PUMA address space. Within this space, write
addresses pack the registers within the first DRAM page and read addresses spread the registers onto separate
DRAM pages. This arrangement allows for efficient bursts when writing registers and DRAM emulation when
reading registers. The following table defines the address sub-fields mapping the registers for read and write
access.

Type PCI Address 19:0 (1MB)
write 19:16 15:12 11:10 9:2 1:0

address chip wrap 00 register byte
read 19:12 11:2 1:0

address register X byte

The register field selects 1 of 256 3D registers defined by the register table of the 3D registers map section.

The chip field selects one or more of the SST-96 3D chips (FBI, TREX0, TREX1 or TREX2) to be accessed. Each
bit in this field selects a chip for writing. The LSB selects the FBI and the higher order bits select the higher order
TREX chips. The value of “0000” also selects all chips. Software controls write data presented to the individual
chips through this field. Reads ignore this field as data is always read from FBI. The following table defines the
mapping of this field:

Chip Field SST-96 Chip Selected
chip[3:0] TREX2 TREX1 TREX0 FBI

0000 Yes Yes Yes Yes
0001 No No No Yes
0010 No No Yes No
0011 No No Yes Yes
0100 No Yes No No
0101 No Yes No Yes
0110 No Yes Yes No
0111 No Yes Yes Yes
1000 Yes No No No
1001 Yes No No Yes
1010 Yes No Yes No
1011 Yes No Yes Yes
1100 Yes Yes No No
1101 Yes Yes No Yes
1110 Yes Yes Yes No
1111 Yes Yes Yes Yes

The wrap field aliases the memory mapped registers to 16 locations. This field allows software to avoid write
compression within processors such as the Digital Alpha AXP and the Pentium Pro. These processors contain large
write-buffers that collapse multiple writes to the same address.

The byte field defines the byte alignment of the register access. This field must be 0x0 for all register accesses.
Register accesses are restricted to 4-byte word aligned 32-bit accesses. No byte (8-bit) or half word (16-bit)
accesses are allowed. To modify individual bits of a 32-bit register, the entire 32-bit word must be written with
valid bits in all positions.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 14 Updated 12/1/99

5. Texture Memory
SST-96 defines 2MB of PUMA address space for loading texture memory. Through this space, software may load
from 1 to 8 MB of texture memory. Software loads texture memory by setting up the texture write before writing
the texture through the PUMA interface. Software sets the texture base address register and various other texture
control registers which define the texture packing scheme. Then, software writes the S and T data for each LOD of
the texture.

The 21-bit PUMA address of the 2MB PUMA texture space defines the LOD, S and T of the texture through the
mapping defined in the following table (S[1] is set to 0 for 8-bit textures).

PCI Address[20:0] 20 17 16 9 8 2 1 0

Texture Fields LOD[3:0] T[7:0] S[7:1] 00

The 32-bit PUMA data word defines the data of the LSBs of S, for 16-bit and 8-bit textures, through the mapping
defined in the following table.

PCI Data[31:0] 31 24 23 16 15 8 7 0

16-bit Texture S[0]=1 S[0]=0

8-bit Texture S[1:0]=11 S[1:0]=10 S[1:0]=01 S[1:0]=00

Texture loads of LODs smaller than the extent of S and T ignore the unused MSBs of S and T within the PUMA
address and data. The write of a single texel wide 16-bit texture inhibits the write to the upper two bytes of data.
The write of a double texel wide 8-bit texel inhibits the write to the upper two bytes of data. Additionally, the write
of a single texel wide 8-bit texel inhibits the write to the upper three bytes of data.

The following TREX registers, defining the data packing of the texture, must be set prior to writing a texture.

texBaseAddr - These registers determine the 8 byte aligned base address of the texture within the 1-8MB space of
texture memory. Addressing from the base address assumes that the texture uses all LOD levels. LOD0 is stored
first and each of the higher numbered LODs are stored contiguously after.

texureMode.tformat - This register field defines the format of the texels. From the standpoint of texture load, this
register defines the volume of bytes per texel.

tLOD.lod_split - This register field defines split textures. Split textures load only the relevant even or odd textures
as defined by the tLOD.lod_odd register field.

tLOD.lod_aspect - This register field defines the 2**N aspect ratio of the texture. Valid values range from 0b00 to
0b11. These values set the following aspect ratios: 00=1to1, 01=2to1, 10=4to1 & 11=8to1.

Efficient packing of textures, with a minimum LOD number greater than 0, requires software mapping of the base
address which assumes the low numbered LODs are written. Software must set the base address below the intended
write address to account for the space of the unused LODs. The space of an LOD can be determined from the
bytes/texel, texels/LOD and LODs/texture (small LODs consume a minimum of 4 bytes (2-3 unused bytes)).

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 15 Updated 12/1/99

6. Render and Refresh
The SST-96 architecture presents two synchronization issues resulting from the PUMA connection and the shared
duties of the 2D and 3D chips. One problem occurs as order-of-evaluation may be lost when the 2D and 3D
engines simultaneously render into the memory of the PUMA interface and a second problem occurs as the 2D
engine performs display refresh of images rendered by the 2D and 3D engines.

RENDER

Command ordering may become problematic as 3D commands are tossed across the PUMA interface to the 3D
device. Within the SST-96 architecture, 2D accesses may over step 3D activities and 3D direct accesses may over
step 3D CMD FIFO activities. To ensure proper order of evaluation, software must coordinate these activities
through polling for 3D engine idleness and 3D command FIFO emptiness. 3D direct accesses must poll for 3D
CMD FIFO emptiness and 2D accesses (BLTs, LFBs & ROPs) must additionally poll for 3D CMD FIFO emptiness.

Windowed Rendering

All rendering, clipping and fast-fill activities of the 3D engine are in window relative coordinates. The hardware
translates window relative X and Y drawing coordinates to Linear Frame Buffer (LFB) addresses through the
colBufferSetup and AuxBufferSetup registers.

The color and auxiliary buffer setup registers define separate base address and X stride values for each of the
buffers. The base address field defines the LFB base address of the buffer and the X stride field defines the number
of pixels between rows of the 3D data. The X strides are restricted to strides which is evenly divisible by 4 pixels
and the base addresses must be set with the same quad pixel alignment between the color and auxiliary buffers.

Determination of the LFB address depends on the state of the Y-flip mode (fbzMode[17]). For the non-flipped
case, X stride is added to the base address for each window Y address and, for the flipped case, X stride is
subtracted from the base address for each window Y address. The following diagram illustrates the calculation of
LFB address for the non-flipped and flipped window origin rendering modes.

Error! Not a valid link.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 16 Updated 12/1/99

REFRESH

Swap coordination within SST-96 requires a swap command, a swap pending increment command and commands
to initialize the next buffer. The following command sequence illustrates this process.

1. Rendering Commands
2. Swap Pending Increment Command
3. Swap Command
4. Set Next Buffer Pointers Registers
5. Fast Fill Buffer Commands
6. Repeat

Tiling or BLTing

SST-96 swaps buffers rendered by the 3D engine and refreshed by the 2D engine through “tiling” or “BL

Tile swapping occurs automatically through hardware. Software sets up a mapping of rectangular regions of the 3D
image onto rectangular regions of the display and the hardware synchronizes swaps to VSYNC. Tile data is
overlaid onto the display as a back-end process during refresh. No additional frame buffer bandwidth is incurred
over regular refresh. Other advantages include bilinear magnification and source-to-destination format conversion
(e.g. 16-bit 3D-RGB to 8-bit 2D-RGB).

BLTing occurs through software. Software must poll after every swap command before BLTing data between
buffers. The BLT adds two frame buffer accesses per pixel. An additional disadvantage exists as the data formats of
the 2D and 3D engines must be equivalent.

Alliance provides 12 tiles. In general, each tile maps data of onto the display during refresh. Multi-buffering
requires the assignment of tiles to frames. Double buffering assigns tiles to frames A and B, triple buffering
assigns tiles to frames A, B and C and stereo buffering assigns tiles to frames A, B, C and D. Full screen 3D
requires ONE tile per frame, 3D in a window requires TWO tiles per frame and 3D in a window with a simple pull
down menu requires FOUR tiles per frame (can't be done in stereo quad buffering). More complicated applications
require a greater number of tiles per frame and thus limit the number of frames which may be supported. For more
tiling information see the Video Window documentation on the 2D chip from Alliance.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 17 Updated 12/1/99

Double and Triple Buffering

Double buffered monaural 3D requires a 2D engine which displays the front buffer as the 3D engine renders into
the back buffer. As the 3D engine completes rendering the current back buffer, the 3D engine initiates a swap
request and suspends execution until the request is fulfilled. Then, with the next VSYNC (exceeding the minimum
VSYNC count), the 2D chip swaps (tiles) in the new front buffer allowing the 3D engine to render into the new
back buffer.

Triple buffered monaural 3D requires a 2D engine which displays the front buffer as the 3D engine renders into
two back buffers. As the 3D engine completes rendering the first back buffer, the 3D engine initiates a swap request
and continues rendering into the second back buffer. Meanwhile, with every VSYNC (exceeding the minimum
VSYNC count), the 2D chip swaps (tiles) in the new front buffer allowing the 3D engine to render into another
back buffer.

Error! Not a valid link.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 18 Updated 12/1/99

Stereo Buffering

Double buffered stereo requires a 2D engine which displays the left and right images at the frame rate as the 3D
engine renders the opposite images within the frame rate. This configuration precludes 3D rendering which may
fall behind the refresh rate of the 2D engine.

Quadruple buffered stereo requires a 2D engine which displays the left and right images at the frame rate as the 3D
engine renders the next left and right images. Software renders left and right image pairs with a singular swap
command. Each swap command switches in a new set of left and right image pairs at even numbered VSYNC
pulses. If the 3D engine gets behind the 3D engine, the 3D engine continues rendering as the 2D engine refreshes
the display with the previous left and right images.

Error! Not a valid link.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 19 Updated 12/1/99

7. 3D Register Map
The following register map defines the 3D control registers of SST-96. The map describes the name, the address
and the number of bits of each of the 3D control registers. The address indicates the 8-bit register number for both
read and write addresses. For read accesses, the address of this table reflects bits 9:2 of the PCI address and for
write accesses the address of reflects bits 19:12 of the PCI address.

In addition, the register map includes the following chip, RW and Sync/Fifo columns.

• The chip column indicates the chips that the registers are stored in (F = FBIjr & T = TREX). A “%” indicates
that the registers are unconditionally written to the chips of the chip field regardless of the chip address.

• The RW column indicates the read and write capability of individual registers. Reading from a register which
is “write only” returns undefined data. Writing a register which is “read only” does nothing.

• The sync column identifies registers which may cause the graphics processor to stall. A “yes” indicates that
the graphics processor will wait for a flush of the data pipeline before loading the register. Loading these
registers results in a small performance degradation when compared to registers which do not need
synchronization.

• The FIFO column identifies registers whose writes will be pushed into the MEM FIFO. Care must be taken
when writing to those registers not pushed into the FIFO. Writes to these registers may complete out-of-order
relative to pending writes which have been FIFOed. Also, reads are never FIFOed, therefore reading FIFOed
registers will return the current value of the register, irrespective of writes to the register pending in the FIFO.

The register map defines the registers of SST-96 while highlighting modifications from SST-1. Registers which
have been modified or added since SST-1 are highlighted in light gray. Additionally, unlike SST-1, the SST-96 map
defines only one mapping for the triangle parameter registers. SST-96 defines the triangle parameter registers
(start, delta-x and delta-y) grouped by parameter type (R, G, B, A, Z, S and T) only. This grouping was the
alternate grouping of SST-1.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 20 Updated 12/1/99

Register Table

Name Address
w:[9:2]
r:[19:12]

Bits Chip

RW Sync?
/Fifo?

Description p#

status 0x000 15:0 F R na Status Register 23
reserved 0x001 na 19
vertexAx 0x002 15:0 F+T% W N/Y Vertex A x-coordinate location (12.4 format) 24
vertexAy 0x003 15:0 F+T% W N/Y Vertex A y-coordinate location (12.4 format)
vertexBx 0x004 15:0 F+T% W N/Y Vertex B x-coordinate location (12.4 format)
vertexBy 0x005 15:0 F+T% W N/Y Vertex B y-coordinate location (12.4 format)
vertexCx 0x006 15:0 F+T% W N/Y Vertex C x-coordinate location (12.4 format)
vertexCy 0x007 15:0 F+T% W N/Y Vertex C y-coordinate location (12.4 format)

startR 0x008 23:0 F W N/Y Starting Red parameter (12.12 format) 24
dRdX 0x009 23:0 F W N/Y Change in Red with respect to X (12.12 format)
dRdY 0x00a 23:0 F W N/Y Change in Red with respect to Y (12.12 format)
startG 0x00b 23:0 F W N/Y Starting Green parameter (12.12 format)
dGdX 0x00c 23:0 F W N/Y Change in Green with respect to X (12.12 format)
dGdY 0x00d 23:0 F W N/Y Change in Green with respect to Y (12.12 format)
startB 0x00e 23:0 F W N/Y Starting Blue parameter (12.12 format)
dBdX 0x00f 23:0 F W N/Y Change in Blue with respect to X (12.12 format)
dBdY 0x010 23:0 F W N/Y Change in Blue with respect to Y (12.12 format)
startZ 0x011 31:0 F W N/Y Starting Z parameter (20.12 format)
dZdX 0x012 31:0 F W N/Y Change in Z with respect to X (20.12 format)
dZdY 0x013 31:0 F W N/Y Change in Z with respect to Y (20.12 format)
startA 0x014 23:0 F W N/Y Starting Alpha parameter (12.12 format)
dAdX 0x015 23:0 F W N/Y Change in Alpha with respect to X (12.12 format)
dAdY 0x016 23:0 F W N/Y Change in Alpha with respect to Y (12.12 format)
startS 0x017 31:0 T W N/Y Starting S/W parameter (14.18 format)
dSdX 0x018 31:0 T W N/Y Change in S/W with respect to X (14.18 format)
dSdY 0x019 31:0 T W N/Y Change in S/W with respect to Y (14.18 format)
startT 0x01a 31:0 T W N/Y Starting T/W parameter (14.18 format)
dTdX 0x01b 31:0 T W N/Y Change in T/W with respect to X (14.18 format)
dTdY 0x01c 31:0 T W N/Y Change in T/W with respect to Y (14.18 format)
startW 0x01d 31:0 F+T W N/Y Starting 1/W parameter (2.30 format)
dWdX 0x01e 31:0 F+T W N/Y Change in 1/W with respect to X (2.30 format)
dWdY 0x01f 31:0 F+T W N/Y Change in 1/W with respect to Y (2.30 format)

triangleCMD 0x020 31 F+T% W N/Y Execute TRIANGLE command (sign bit) 29
reserved 0x021 na
fvertexAx 0x022 31:0 F+T% W N/Y Vertex A x-coordinate location (floating point) 24
fvertexAy 0x023 31:0 F+T% W N/Y Vertex A y-coordinate location (floating point)
fvertexBx 0x024 31:0 F+T% W N/Y Vertex B x-coordinate location (floating point)
fvertexBy 0x025 31:0 F+T% W N/Y Vertex B y-coordinate location (floating point)
fvertexCx 0x026 31:0 F+T% W N/Y Vertex C x-coordinate location (floating point)
fvertexCy 0x027 31:0 F+T% W N/Y Vertex C y-coordinate location (floating point)

fstartR 0x028 31:0 F W N/Y Starting Red parameter (floating point) 25
fdRdX 0x029 31:0 F W N/Y Change in Red with respect to X (floating point)
fdRdY 0x02a 31:0 F W N/Y Change in Red with respect to Y (floating point)
fstartG 0x02b 31:0 F W N/Y Starting Green parameter (floating point)

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 21 Updated 12/1/99

fdGdX 0x02c 31:0 F W N/Y Change in Green with respect to X (floating
point)

fdGdY 0x02d 31:0 F W N/Y Change in Green with respect to Y (floating
point)

fstartB 0x02e 31:0 F W N/Y Starting Blue parameter (floating point)
fdBdX 0x02f 31:0 F W N/Y Change in Blue with respect to X (floating point)
fdBdY 0x030 31:0 F W N/Y Change in Blue with respect to Y (floating point)
fstartZ 0x031 31:0 F W N/Y Starting Z parameter (floating point)
fdZdX 0x032 31:0 F W N/Y Change in Z with respect to X (floating point)
fdZdY 0x033 31:0 F W N/Y Change in Z with respect to Y (floating point)
fstartA 0x034 31:0 F W N/Y Starting Alpha parameter (floating point)
fdAdX 0x035 31:0 F W N/Y Change in Alpha with respect to X (floating

point)

fdAdY 0x036 31:0 F W N/Y Change in Alpha with respect to Y (floating
point)

fstartS 0x037 31:0 T W N/Y Starting S/W parameter (floating point)
fdSdX 0x038 31:0 T W N/Y Change in S/W with respect to X (floating point)
fdSdY 0x039 31:0 T W N/Y Change in S/W with respect to Y (floating point)
fstartT 0x03a 31:0 T W N/Y Starting T/W parameter (floating point)
fdTdX 0x03b 31:0 T W N/Y Change in T/W with respect to X (floating point)
fdTdY 0x03c 31:0 T W N/Y Change in T/W with respect to Y (floating point)
fstartW 0x03d 31:0 F+T W N/Y Starting 1/W parameter (floating point)
fdWdX 0x03e 31:0 F+T W N/Y Change in 1/W with respect to X (floating point)
fdWdY 0x03f 31:0 F+T W N/Y Change in 1/W with respect to Y (floating point)

ftriangleCMD 0x040 31 F+T% W N/Y Execute TRIANGLE command (floating point) 29
reserved 0x041 na Required CMD spacer for SST-96.
nopCMD 0x042 0 F+T% W Y/Y Execute NOP command
reserved 0x043 na Required CMD spacer for SST-96.
fastfillCMD 0x044 na F W Y/Y Execute FASTFILL command
reserved 0x045 na Required CMD spacer for SST-96.
swapbufferCMD 0x046 8:0 F W Y/Y Execute SWAPBUFFER command
reserved 0x047 na Required CMD spacer for SST-96
swappendCMD 0x048 na F W N/N Increments swap pending count
reserved 0x049 na Required CMD spacer for SST-96.
reserved 0x04a to

0x04f
na

fbzColorPath 0x050 27:0 F+T% R/W N/Y FBI Color Path Control 32
fogMode 0x051 5:0 F R/W N/Y Fog Mode Control
alphaMode 0x052 31:0 F R/W N/Y Alpha Mode Control
reserved 0x053 na
fbzMode 0x054 19:0 F R/W Y/Y Color and Auxiliary Buffer Control 41
stipple 0x055 31:0 F R/W Y/Y Rendering Stipple Value
color0 0x056 31:0 F R/W Y/Y Constant Color #0
color1 0x057 31:0 F R/W Y/Y Constant Color #1
fogColor 0x058 23:0 F W Y/Y Fog Color Value
zaColor 0x059 31:0 F W Y/Y Constant Alpha/Depth Value
chromaKey 0x05a 23:0 F W Y/Y Chroma Key Compare Value
chromaRange 0x05b 28:0 F W Y/Y Chroma Range Compare Values, Modes &

Enable

reserved 0x05c to
0x05f

na

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 22 Updated 12/1/99

colBufferSetup 0x060 31:0 F R/W Y/Y Color Buffer Base Address, Stride and Mode 48
auxBufferSetup 0x061 30:0 F R/W Y/Y Auxiliary Buffer Base Address and Stride
clipLeftRight0 0x062 31:0 F R/W Y/Y Left and Right of Clipping Register 0
clipTopBottom0 0x063 31:0 F R/W Y/Y Top and Bottom of Clipping Register 0
clipLeftRight1 0x064 31:0 F R/W Y/Y Left and Right of Clipping Register 1
clipTopBottom1 0x065 31:0 F R/W Y/Y Top and Bottom of Clipping Register 1
reserved 0x066 to

0x06f
na

fogTable 0x070 to

0x08f
31:0 F W Y/Y Fog Table 51

fbijrInit0 0x090 17:0 F R/W N/N FBIjr Hardware Init 0 - General 52
fbijrInit1 0x091 24:0 F R/W N/N FBIjr Hardware Init 1 - PUMA
fbijrInit2 0x092 18:0 F R/W N/N FBIjr Hardware Init 2 - MEM FIFO Setup
fbijrInit3 0x093 30:0 F R/W N/N FBIjr Hardware Init 3 - CMD FIFO Setup
fbijrInit4 0x094 18:0 F R/W N/N FBIjr Hardware Init 4 - CMD FIFO Entry Count
fbijrInit5 0x095 18:0 F R/W N/N FBIjr Hardware Init 5 - CMD FIFO Read Pointer
reserved 0x096 to

0x09f
na

fbijrVersion 0x0a0 31:0 F R na FBIjr Version (company, device, & board) 56
fbiPixelsIn 0x0a1 23:0 F R na Pixel Counter (Number pixels processed)
fbiChromaFail 0x0a2 23:0 F R na Pixel Counter (Number pixels failed Chroma

test)

fbiZfuncFail 0x0a3 23:0 F R na Pixel Counter (Number pixels failed Z test)
fbiAfuncFail 0x0a4 23:0 F R na Pixel Counter (Number pixels failed Alpha test)
fbiPixelsOut 0x0a5 23:0 F R na Pixel Counter (Number pixels drawn)
reserved 0x0a6 to

0x0be
na

texChipSel 0x0bf 1:0 F R/W N/Y Texture Write Chip Select

textureMode 0x0c0 30:0 T W N/Y Texture Mode Control 58
tLOD 0x0c1 23:0 T W N/Y Texture LOD Settings
tDetail 0x0c2 16:0 T W N/Y Texture LOD Settings
texBaseAddr 0x0c3 18:0 T W N/Y Texture Base Address
texBaseAddr_1 0x0c4 18:0 T W N/Y Texture Base Address (supplemental LOD 1)
texBaseAddr_2 0x0c5 18:0 T W N/Y Texture Base Address (supplemental LOD 2)
texBaseAddr_3_8 0x0c6 18:0 T W N/Y Texture Base Address (supplemental LOD 3-8)
TREXInit0 0x0c7 31:0 T W Y/Y TREX Hardware Initialization (register 0)
TREXInit1 0x0c8 31:0 T W Y/Y TREX Hardware Initialization (register 1)
nccTable0 0x0c9 to

0x0d4
31:0
26:0

T W Y/Y Narrow Channel Compression Table 0 (12
entries)

nccTable1 0x0d5 to
0x0e0

31:0
26:0

T W Y/Y Narrow Channel Compression Table 1 (12
entries)

reserved 0x0e1 to
0x0ff

na

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 23 Updated 12/1/99

8. Register Definitions

8.1 status Register
The status register is a read only register which provides the CPU information on the current state of the graphics
processor. The data of the register indicates idleness, swap activity and FIFO fullness. This information is available
through both the status register of FBIjr and a status register within the 2D chip. Software is encouraged to
acquire the status through the 2D chip as this access does not tax the frame buffer bandwidth. However, software
must accept inaccuracies in 2D status resulting from an update latency of up to TBD (50+) memory clocks.

Bit Description
0 FBIjr Busy

Indicates a busy FBIjr. This includes all units and FIFOs of FBIjr. Default is 0.
1 TREX Busy

Indicates a busy TREX. This includes all units and FIFOs of the TREX. Default is 0.
2 Swap Request

Indicates an active swap request from the 3D chip to the 2D chip. Hardware generates
swap requests for each swap buffer command (swapbufferCMD). Default is 0.

3 Swap Sync Signal
Indicates the actual VSYNC signal used by the hardware for buffer swap. Software
alters the active level and period of this signal through the fbijrInit0 register. Default is
X.

6:4 Swap Pending Count
Indicates the number of outstanding buffer swaps. Software increments the count with
direct writes to the swappendCMD Register and hardware decrements the count with
the completion of each swap buffer command (swapbufferCMD). Valid values range
from 0 to 7 swaps. Excessive increments clamp a count of 7 and excessive decrements
clamp a count of 0. Default is 0x0.

7 CMD FIFO Fullness
Indicates a fullness level of the CMDFIFO within PUMA DRAM. An entry-count
greater than or equal to the page-threshold of the fbijrInit2 register sets the fullness
status bit and an entry-count less than the threshold resets the status bit. Default is 0.

13:8 MEM FIFO Free Space
Indicates the free space count of the MEMFIFO of FBIjr. Valid values range from 0 to
63 double-words. Default is 0x0.

14 CMD FIFO Overflow Error
Indicates a CMDFIFO overflow error. FBIjr sets the error when the CMDFIFO entry
count exceeds the CMDFIFO space (top page - bottom page of the fbijrInit2 register).
This error condition is sticky – once set the bit remains set until reset through hard or
soft reset. Default is 0x0.

15 MEM FIFO Overflow Error
Indicates a MEMFIFO overflow error. FBIjr sets the error when data is pushed onto the
MEMFIFO as the MEMFIFO free-space count equals zero. This error condition is
sticky – once set the bit remains set until reset through hard or soft reset. Default is 0x0.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 24 Updated 12/1/99

8.2 vertex and fvertex Registers
The vertexAx, vertexAy, vertexBx, vertexBy, vertexCx, vertexCy, fvertexAx, fvertexAy, fvertexBx, fvertexBy,
fvertexCx, and fvertexCy registers specify the x and y coordinates of a triangle to be rendered. There are three
vertices in the triangle, with the AB and BC edges defining the minor edge and the AC edge defining the major
edge. The diagram below illustrates two typical triangles:

(vertexAx, vertexAy)

(vertexBx,
 vertexBy)

(vertexCx, vertexCy)

Major Edge

Minor Edge

Minor Edge

(vertexAx, vertexAy)

(vertexBx,
 vertexBy)

(vertexCx, vertexCy)

Major Edge

Minor Edge

Minor Edge

The fvertex registers are floating point equivalents of the vertex registers. SST-96 automatically converts both the
fvertex and vertex registers into an internal fixed point notation used for rendering.

vertexAx, vertexAy, vertexBx, vertexBy, vertexCx, vertexCy
Bit Description
15:0 Vertex coordinate information (fixed point two’s complement 12.4 format)

fvertexAx, fvertexAy, fvertexBx, fvertexBy, fvertexCx, fvertexCy
Bit Description
31:0 Vertex coordinate information (IEEE 32-bit single-precision floating point format)

8.3 startR, startG, startB, startA, fstartR, fstartG, fstartB, and fstartA Registers
The startR, startG, startB, startA, fstartR, fstartG, fstartB, and fstartA registers specify the starting color
information (red, green, blue, and alpha) of a triangle to be rendered. The start registers must contain the color
values associated with the A vertex of the triangle. The fstart registers are floating point equivalents of the start
registers. SST-96 automatically converts both the start and fstart registers into an internal fixed point notation
used for rendering.

startR, startG, startB, startA
Bit Description
23:0 Starting Vertex-A Color information (fixed point two’s complement 12.12 format)

fstartR, fstartG, fstartB, fstartA
Bit Description
31:0 Starting Vertex-A Color information (IEEE 32-bit single-precision floating point

format)

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 25 Updated 12/1/99

8.4 startZ and fstartZ registers
The startZ and fstartZ registers specify the starting Z information of a triangle to be rendered. The startZ
registers must contain the Z values associated with the A vertex of the triangle. The fstartZ register is a floating
point equivalent of the startZ registers. SST-96 automatically converts both the startZ and fstartZ registers into
an internal fixed point notation used for rendering.

startZ
Bit Description
31:0 Starting Vertex-A Z information (fixed point two’s complement 20.12 format)

fstartZ
Bit Description
31:0 Starting Vertex-A Z information (IEEE 32-bit single-precision floating point format)

8.5 startS, startT, fstartS, and fstartT Registers
The startS, startT, fstartS, and fstartT registers specify the starting S/W and T/W texture coordinate information
of a triangle to be rendered. The start registers must contain the texture coordinates associated with the A vertex
of the triangle. The start S and T coordinates must be divided by W. The 3D engine iterates S/W and T/W prior to
perspective correction. During rendering, the iterated S and T coordinates are optionally divided by the iterated W
parameter to perform perspective correction. The fstart registers are floating point equivalents of the start
registers. SST-96 automatically converts both the start and fstart registers into an internal fixed point notation
used for rendering.

startS, startT
Bit Description
31:0 Starting Vertex-A Texture coordinates (fixed point two’s complement 14.18 format)

fstartS, fstartT
Bit Description
31:0 Starting Vertex-A Texture coordinates (IEEE 32-bit single-precision floating point

format)

8.6 startW and fstartW registers
The startW and fstartW registers specify the starting 1/W information of a triangle to be rendered. The startW
registers must contain the W values associated with the A vertex of the triangle. The W value used for rendering
is actually the reciprocal of the 3D-geometry-calculated W value. The 3D engine iterates 1/W prior to perspective
correction. During rendering, the iterated S and T coordinates are optionally divided by the iterated W parameter
to perform perspective correction. The fstartW register is a floating point equivalent of the startW registers.
SST-96 automatically converts both the startW and fstartW registers into an internal fixed point notation used for
rendering.

startW
Bit Description
31:0 Starting Vertex-A W information (fixed point two’s complement 2.30 format)

fstartW

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 26 Updated 12/1/99

Bit Description
31:0 Starting Vertex-A W information (IEEE 32-bit single-precision floating point format)

8.7 dRdX, dGdX, dBdX, dAdX, fdRdX, fdGdX, fdBdX, and fdAdX Registers
The dRdX, dGdX, dBdX, dAdX, fdRdX, fdGdX, fdBdX, and fdAdX registers specify the change in the color
information (red, green, blue, and alpha) with respect to X of a triangle to be rendered. As a triangle is rendered,
the change in color values are added to the color component as the pixel drawn moves from left-to-right, and are
subtracted from the color component as the pixel drawn moves from right-to-left. The fd?dX registers are floating
point equivalents of the d?dX registers. SST-96 automatically converts both the d?dX and fd?dX registers into an
internal fixed point notation used for rendering.

dRdX, dGdX, dBdX, dAdX
Bit Description
23:0 Change in color with respect to X (fixed point two’s complement 12.12 format)

fdRdX, fdGdX, fdBdX, fdAdX
Bit Description
31:0 Change in color with respect to X (IEEE 32-bit single-precision floating point format)

8.8 dZdX and fdZdX Registers
The dZdX and fdZdX registers specify the change in Z with respect to X of a triangle to be rendered. As a
triangle is rendered, the dZdX register is added to the the internal Z register when the pixel drawn moves from
left-to-right, and is subtracted from the internal Z register when the pixel drawn moves from right-to-left. The
fdZdX registers are floating point equivalents of the dZdX registers. SST-96 automatically converts both the
dZdX and fdZdX registers into an internal fixed point notation used for rendering.

dZdX
Bit Description
31:0 Change in Z with respect to X (fixed point two’s complement 20.12 format)

fdZdX
Bit Description
31:0 Change in Z with respect to X (IEEE 32-bit single-precision floating point format)

8.9 dSdX, dTdX, fdSdX, and fdTdX Registers
The dXdX, dTdX, fdSdX, and fdTdX registers specify the change in the S/W and T/W texture coordinates with
respect to X of a triangle to be rendered. As a triangle is rendered, the d?dX registers are added to the the internal
S and T registers when the pixel drawn moves from left-to-right, and are subtracted from the internal S/W and
T/W registers when the pixel drawn moves from right-to-left. The delta S/W and T/W values used by SST-96 for
rendering must be divided by W (i.e. SST-96 uses ∆S/W and ∆T/W). The d?dX registers are floating point
equivalents of the fd?dX registers. SST-96 automatically converts both the d?dX and fd?dX registers into an
internal fixed point notation used for rendering.

dSdX, dTdX
Bit Description
31:0 Change in S and T with respect to X (fixed point two’s complement 14.18 format)

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 27 Updated 12/1/99

fdSdX, fdTdX
Bit Description
31:0 Change in Z with respect to X (IEEE 32-bit single-precision floating point format)

8.10 dWdX and fdWdX Registers
The dWdX and fdWdX registers specify the change in 1/W with respect to X of a triangle to be rendered. As a
triangle is rendered, the dWdX register is added to the the internal 1/W register when the pixel drawn moves from
left-to-right, and is subtracted from the internal 1/W register when the pixel drawn moves from right-to-left. The
fdWdX registers are floating point equivalents of the dWdX registers. SST-96 automatically converts both the
dWdX and fdWdX registers into an internal fixed point notation used for rendering.

dWdX
Bit Description
31:0 Change in W with respect to X (fixed point two’s complement 2.30 format)

fdWdX
Bit Description
31:0 Change in W with respect to X (IEEE 32-bit single-precision floating point format)

8.11 dRdY, dGdY, dBdY, dAdY, fdRdY, fdGdY, fdBdY, and fdAdY Registers
The dRdY, dGdY, dBdY, dAdY, fdRdY, fdGdY, fdBdY, and fdAdY registers specify the change in the color
information (red, green, blue, and alpha) with respect to Y of a triangle to be rendered. As a triangle is rendered,
the d?dY registers are added to the the internal color component registers when the pixel drawn in a positive Y
direction, and are subtracted from the internal color component registers when the pixel drawn moves in a negative
Y direction. The fd?dY registers are floating point equivalents of the d?dY registers. SST-96 automatically
converts both the d?dY and fd?dY registers into an internal fixed point notation used for rendering.

dRdY, dGdY, dBdY, dAdY
Bit Description
23:0 Change in color with respect to Y (fixed point two’s complement 12.12 format)

fdRdY, fdGdY, fdBdY, fdAdY
Bit Description
31:0 Change in color with respect to Y (IEEE 32-bit single-precision floating point format)

8.12 dZdY and fdZdY Registers
The dZdY and fdZdY registers specify the change in Z with respect to Y of a triangle to be rendered. As a
triangle is rendered, the dZdY register is added to the the internal Z register when the pixel drawn moves in a
positive Y direction, and is subtracted from the internal Z register when the pixel drawn moves in a negative Y
direction. The fdZdY registers are floating point equivalents of the dZdY registers. SST-96 automatically
converts both the dZdY and fdZdY registers into an internal fixed point notation used for rendering.

dZdY
Bit Description
31:0 Change in Z with respect to Y (fixed point two’s complement 20.12 format)

fdZdY

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 28 Updated 12/1/99

Bit Description
31:0 Change in Z with respect to Y (IEEE 32-bit single-precision floating point format)

8.13 dSdY, dTdY, fdSdY, and fdTdY Registers
The dYdY, dTdY, fdSdY, and fdTdY registers specify the change in the S/W and T/W texture coordinates with
respect to Y of a triangle to be rendered. As a triangle is rendered, the d?dY registers are added to the the internal
S/W and T/W registers when the pixel drawn moves in a positive Y direction, and are subtracted from the internal
S/W and T/W registers when the pixel drawn moves in a negative Y direction. The delta S/W and T/W values used
by SST-96 for rendering must be divided by W (i.e. SST-96 uses ∆S/W and ∆T/W). The d?dY registers are
floating point equivalents of the fd?dY registers. SST-96 automatically converts both the d?dY and fd?dY
registers into an internal fixed point notation used for rendering.

dSdY, dTdY
Bit Description
31:0 Change in S and T with respect to Y (fixed point two’s complement 14.18 format)

fdSdY, fdTdY
Bit Description
31:0 Change in Z with respect to Y (IEEE 32-bit single-precision floating point format)

8.14 dWdY and fdWdY Registers
The dWdY and fdWdY registers specify the change in 1/W with respect to Y of a triangle to be rendered. As a
triangle is rendered, the dWdY register is added to the the internal 1/W register when the pixel drawn moves in a
positive Y direction, and is subtracted from the internal 1/W register when the pixel drawn moves in a negative Y
direction. The fdWdY registers are floating point equivalents of the dWdY registers. SST-96 automatically
converts both the dWdY and fdWdY registers into an internal fixed point notation used for rendering.

dWdY
Bit Description
31:0 Change in W with respect to Y (fixed point two’s complement 2.30 format)

fdWdY
Bit Description
31:0 Change in W with respect to Y (IEEE 32-bit single-precision floating point format)

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 29 Updated 12/1/99

8.15 triangleCMD and ftriangleCMD Registers
The triangleCMD and ftriangleCMD registers execute the triangle drawing command. Writes to triangleCMD
or ftriangleCMD initiate rendering a triangle defined by the vertex, start, d?dX, and d?dY registers (the vertex,
start, d?dX, and d?dY registers must be setup prior to writing to triangleCMD or ftriangleCMD).

The value stored to triangleCMD or ftriangleCMD is the area of the triangle being rendered. The area determines
whether a triangle is clockwise or counter-clockwise geometrically. If bit(31)=0, the triangle is oriented in a
counter-clockwise orientation (positive area), otherwise, if bit(31)=1, the triangle is oriented in a clockwise
orientation (negative area).

To calculate the area of a triangle, the following steps are performed:

1. The vertices (A, B, and C) are sorted by the Y coordinate in order of increasing Y (i.e. A.y <= B.y <= C.y)
2. The area is calculated as follows:
 AREA = ((dxAB * dyBC) - (dxBC * dyAB)) / 2
 where
 dxAB = A.x - B.x
 dyBC = B.y - C.y
 dxBC = B.x - C.x
 dyAB = A.y - B.y

Note that SST-96 only requires the sign bit of the area to be stored in the triangleCMD and ftriangleCMD
registers (bits(30:0) written to triangleCMD and ftriangleCMD are ignored).

triangleCMD
Bit Description
31 Sign of the area of the triangle to be rendered

ftriangleCMD
Bit Description
31 Sign of the area of the triangle to be rendered (IEEE 32-bit single-precision floating

point format)

8.16 nopCMD Register
Writing any data to the nopCMD register executes the NOP command. Executing a NOP command flushes the
graphics pipeline. The lsb of the data value written to nopCMD is used to optionally clear the fbiPixelsIn,
fbiChromaFail, fbiZfuncFail, fbiAfuncFail, and fbiPixelsOut registers. Writing a ‘1’ to the lsb of nopCMD will
clear the aforementioned registers. Writing a ‘0’ to the lsb of nopCMD will not modify the values of the
aforementioned registers.

Bit Description
0 Clear fbiPixelsIn, fbiChromaFail, fbiZfuncFail, fbiAfuncFail, and fbiPixelsOut

registers (1=clear registers)

8.17 fastfillCMD Register
Writing to the fastfillCMD register executes the FASTFILL command. This command clears a rectangular area of
the color and auxiliary buffers. Clearing of the color buffer is enabled through RGB write mask (fbzMode[9]) and
clearing of the auxiliary buffer is enabled through the depth/alpha write mask (fbzMode[10]).

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 30 Updated 12/1/99

The FASTFILL clearing rectangle is defined by the clip0 registers. These registers define four corners of the
rectangle inclusive of the clipLeft and clipLoY values and exclusive of the clipRight and clipHiY values. The
state of clipEnable and clipMode are also ignored as the FASTFILL rectangle is always enabled and inclusive.

The FASTFILL clearing values are defined by the color1 and zaColor registers. The color1 register defines the
color buffer value and the zaColor register defines the auxiliary buffer value. The color1 register defines a 24-bit
color which is dithered or truncated to the 16-bit frame buffer format as defined by fbzMode[8].

SST-96 stores color and auxiliary data on separate pages of memory. Operations to both buffers requires a page
miss between accesses. As a result, for greater performance, SST-96 software is encouraged to clear the color and
auxiliary buffers separately.

8.18 swapbufferCMD Register
The swapbufferCMD register executes a SWAPBUFFER command. This command synchronizes swapping of the
video refresh and rendering buffers of the 2D and 3D chips. Each swap command causes a swap request from the
3D engine to the video refresh engine of the 2D chip. Then with each swap request, the 2D chip swaps buffers at
the next VSYNC period.

The 3D engine issues swap requests to the 2D engine after the graphics pipeline has emptied and the swap buffer
interval has been met. Defined within this command, the swap buffer interval specifies the minimum number of
VSYNC periods between swaps. This interval forces a maximum frame rate, allowing a greater visual update
consistency.

The SWAPBUFFER command stalls the 3D engine to prohibit writing into the front buffer. Double buffering stalls
the graphics engine with the first pending swap request and triple buffering stalls the graphics engine with the
second pending swap request. While, stereo quad buffering is equivalent to double buffering left and right image
pairs.

Software may utilize the swap buffer pending count of the fbijrStatus register to determine the number of frames
queued in the hardware. This count increments with direct writes to the swappendCMD register and decrements
with the completion of each SWAPBUFFER command.

Bit Description
0 Reserved (was SST-1: Swap Synch Enable)
8:1 Swap Buffer Interval

Defines the minimum number of VSYNC periods between swaps. The programmed
value specifies N-1 VSYNC intervals, where N equals the minimum number of
VSYNCs between swaps. Values range from 0 to 2**8. The default is 0.

SST-96 does not support the SST-1 Swap Sync Enable feature. This feature enabled SST-1 to swap refresh buffers
mid-frame. Mid-frame swapping is not possible with the SST-96 Alliance solution. The Alliance solution tiles 3D
data onto the desktop with no support for mid-frame tile swapping.

8.19 swappendCMD Register
Writes to the swappendCMD register increment the swap buffer pending count of the FBIjr status register. Writes
take effect immediately and are available only through direct access (NO CMDFIFO ACCESS).

Bit Description

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 31 Updated 12/1/99

na Swap Buffer Pending Count Increment
Writes to this register increment the 3-bit swap buffer pending count of the FBIjr status
register. This count increments through direct writes to this register and decrements
with the completion of each swap buffer command. Excessive increments clamp a count
of 7 and excessive decrements clamp a count of 0. The default is X.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 32 Updated 12/1/99

8.20 fbzColorPath Register
The fbzColorPath register controls the color and alpha rendering pixel pipelines. Bits in fbzColorPath control
color/alpha selection and lighting. Individual bits of fbzColorPath are set to enable modulation, addition, etc. for
various lighting effects including diffuse and specular highlights.

Bit Description
1:0 RGB Select (0=Iterated RGB, 1=T Color Output, 2=Color1 RGB, 3=Reserved)
3:2 Alpha Select (0=Iterated A, 1=T Alpha Output, 2=Color1 Alpha, 3=Reserved)
4 Color Combine Unit control (cc_localselect mux control: 0=iterated RGB, 1=Color0

RGB)
6:5 Alpha Combine Unit control (cca_localselect mux control: 0=iterated alpha, 1=Color0

alpha, 2=iterated Z, 3=reserved)
7 Color Combine Unit control (cc_localselect_override mux control: 0=cc_localselect,

1=Texture alpha bit(7))
8 Color Combine Unit control (cc_zero_other mux control: 0=c_other, 1=zero)
9 Color Combine Unit control (cc_sub_clocal mux control: 0=zero, 1=c_local)
12:10 Color Combine Unit control (cc_mselect mux control: 0=zero, 1=c_local, 2=a_other,

3=a_local, 4=texture alpha, 5-7=reserved)
13 Color Combine Unit control (cc_reverse_blend control)
14 Color Combine Unit control (cc_add_clocal control)
15 Color Combine Unit control (cc_add_alocal control)
16 Color Combine Unit control (cc_invert_output control)
17 Alpha Combine Unit control (cca_zero_other mux control: 0=a_other, 1=zero)
18 Alpha Combine Unit control (cca_sub_clocal mux control: 0=zero, 1=a_local)
21:19 Alpha Combine Unit control (cca_mselect mux control: 0=zero, 1=a_local, 2=a_other,

3=a_local, 4=texture alpha, 5-7=reserved)
22 Alpha Combine Unit control (cca_reverse_blend control)
23 Alpha Combine Unit control (cca_add_clocal control)
24 Alpha Combine Unit control (cca_add_alocal control)
25 Alpha Combine Unit control (cca_invert_output control)
26 Parameter Adjust (1=adjust parameters for subpixel correction)
27 Enable Texture Mapping (1=enable)

Note that the color channels are controlled separately from the alpha channel. There are two primary color
selection units: the Color Combine Unit(CCU) and the Alpha Combine Unit (ACU). Bits(1:0), bit(4), and
bits(16:8) of fbzColorPath control the Color Combine Unit. The diagram below illustrates the Color Combine
Unit controlled by the fbzColorPath register:

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 33 Updated 12/1/99

8

9 1.8.0

9 1.8.08 0.8.0

8 Color

10 1.9.0

Clamp 0-FF

8

0.8

cc_invert_output

9 signed x
9 unsigned

multiply

Trunc. LSBs
No Round

9 1.8.0

2’s Comp

c_other

cc_sub_clocal

8 0.8.0

0

0 1

c_local

8

9 0.9.0

+1

8

cc_mselect[2:0]

0

a_local

texture alpha

cc_reverse_blend

{cc_add_clocal, cc_add_alocal}

8

0

00 10

cc_zero_other

0

0 1

a_local

01

iterated RGBcolor0 RGB

Chroma-Key
Check

chromaKey

Invalidate Pixel

rgbselect[1:0]

texture RGB

iterated RGB

color1 RGB

Linear frame
buffer RGB

cc_localselect

a_other

01
10 2

0 1 42 3

1 0

texture alpha bit(7)

cc_localselect_override

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 34 Updated 12/1/99

Bits(3:2), bits(6:5), and bits(25:17) of fbzColorPath control the Alpha Combine Unit. The diagram below
illustrates the Alpha Combine Unit controlled by the fbzColorPath register:

8

9 1 .8 .0

9 1 .8 .08 0 .8 .0

8 a lpha

10 1 .9 .0

C l a m p 0 - F F

8

0 . 8

c c a _ i n v e r t _ o u t p u t

9 s i g n e d x
9 u n s i g n e d

m u l t i p l y

T r u n c . L S B s
N o R o u n d

9 1 .8 .0

2 ’ s C o m p

a _ o t h e r

c c a _ s u b _ c l o c a l

8 0 .8 .0

0

0 1

a _ l o c a l

8

9 0 .9 .0

+ 1

8

c c a _ m s e l e c t [2 : 0]

0

c c a _ r e v e r s e _ b l e n d

{ c c a _ a d d _ c l o c a l , c c a _ a d d _ a l o c a l }

8

0

0 0 1 0

c c a _ z e r o _ o t h e r

0

0 1

a _ l o c a l

0 1

i t e r a t ed a lpha

c o l o r 0 a l p h a

ase l ec t [1 :0]

t e x t u r e a l p h a

i t e r a t ed a lpha

c o l o r 1 a l p h a

L i n e a r f r a m e
b u f f e r a l p h a

c c a _ l o c a l s e l e c t [1 : 0]

i t e r a t e d Z (2 7 : 2 0)

a _ l o c a l

t e x t u r e a l p h a

a _ o t h e r

10 2
0 2

0 1 42 3

1

A l p h a - M a s k
C h e c k

A l p h a - M a s k E n a b l e

Bit(26) of fbzColorPath enables subpixel correction for all parameters. When enabled, SST-96 will automatically
subpixel correct the incoming color, depth, and texture coordinate parameters for triangles not aligned on integer
spatial boundaries. Enabling subpixel correction decreases the on-chip triangle setup performance from 7 clocks to

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 35 Updated 12/1/99

16 clocks, but as the triangle setup engine is separately pipelined from the triangle rasterization engine, little if any
performance penalty is seen when subpixel correction is enabled.

Important Note: When subpixel correction is enabled, the correction is performed on the start registers as they are
passed into the triangle setup unit from the PCI FIFO. As a result, the host must pass down new starting
parameter information for each new triangle -- if new starting parameter information is not passed down for a new
triangle, the starting parameters will be subpixel corrected starting with the start registers already subpixel
corrected for the last rendered triangle [in effect the parameters will be subpixel corrected twice, resulting in
inaccuracies in the starting parameter values].

Bit(27) of fbzColorPath is used to enable texture mapping. If texture-mapped rendering is desired, then bit(27) of
fbzColorPath must be set. When bit(27)=1, then data is transfered from T to FBI. If texture mapping is not
desired (i.e. Gouraud shading, flat shading, etc.), then bit(27) may be cleared and no data is transfered from T to
FBI.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 36 Updated 12/1/99

8.21 fogMode Register
The fogMode register controls the fog functionality of SST-96.

Bit Description
0 Enable fog (1=enable)
1 Fog Unit control (fogadd control: 0=fogColor, 1=zero)
2 Fog Unit control (fogmult control: 0=Color Combine Unit RGB, 1=zero)
3 Fog Unit control (fogalpha control: 0=fog table alpha, 1=iterated alpha)
4 Fog Unit control (fogz control: 0=fogalpha mux, 1=iterated z(27:20))
5 Fog Unit control (fogconstant control: 0=fog multiplier output, 1=fogColor)

The diagram below shows the fog unit of SST-96:

C o l o r C h a n n e l
(f r o m C o l o r
 C o m b i n e U n i t)

f o g m u l t
0 1

0

f o g C o l o r

f o g a d d0 1

0

9

2 ’ s C o m p

8

8 u n s i g n e d x
8 u n s i g n e d
 m u l t i p l y

i t e r a t e d w
(f l o a t i n g p o i n t)

6 4 x 8 R A M
(f o g a l p h a)

6 {4 b i t s exponen t ,
 man t i s sa (11 :10)}

6 4 x 8 R A M
(f o g d e l t a a l p h a)

6 {4 b i t s exponen t ,
 man t i s sa (11 :10)}

8 (. 008 fo rma t)

8

6 (. 006 fo rma t)

f o g t a b l e a l p h a

i t e r a t e d Z (2 7 : 2 0)

i t e r a t e d a l p h a

8

9 s i g n e d x
8 u n s i g n e d
 m u l t i p l y

9

8

f o g C o l o r

f o g c o n s t a n t

C l a m p F F

8 C o l o r

f o g e n a b l e

f o g e n a b l e

f o g a l p h a

f o g z

0 1

0 1

1 0

1

mant i ssa (9 :2)
8

(8 .0 fo rmat) 8

9 (1 .8 fo rmat)

Bit(0) of fogMode is used to enable fog and atmospheric effects. When fog is enabled, the fog color specified in
the fogColor register is blended with the source pixels as a function of the fogTable values and iterated W. SST-

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 37 Updated 12/1/99

96 supports a 64-entry lookup table (fogTable) to support atmospheric effects such as fog and haze. When
enabled, the MSBs of a normalized floating point representation of (1/W) is used to index into the 64-entry fog
table. The ouput of the lookup table is an “alpha” value which represents the level of blending to be performed
between the static fog/haze color and the incoming pixel color. 8 lower order bits of the floating point (1/W) are
used to blend between multiple entries of the lookup table to reduce fog “banding.” The fog lookup table is loaded
by the Host CPU, so various fog equations, colors, and effects can be supported.

The following table shows the mathematical equations for the supported values of bits(2:1) of fogMode when
bits(5:3)=0:
Bit(0) - Enable
Fog

Bit(1) - fogadd
mux control

Bit(2) - fogmult
mux control

Fog Equation

0 ignored ignored Cout = Cin
1 0 0 Cout = Afog*Cfog + (1-Afog)*Cin
1 0 1 Cout = Afog*Cfog
1 1 0 Cout = (1-Afog)*Cin
1 1 1 Cout = 0

where:
 Cout = Color output from Fog block
 Cin = Color input from Color Combine Unit Module
 Cfog = fogColor register
 AFog = alpha value calculated from Fog table

When bit(3) of fogMode is set, the integer part of the iterated alpha component is used as the fog alpha instead of
the calculated fog alpha value from the fog table. When bit(4) of fogMode is set, the upper 8 bits of the iterated Z
component are used as the fog alpha instead of the calculated fog alpha value from the fog table. If both bit(3) and
bit(4) are set, then bit(4) takes precedence, and the upper 8 bits of the iterated Z component are used for the fog
alpha value. Bit(5) of fogMode takes precedence over bits(4:3) and enables a constant value(fogColor) to be added
to incoming source color.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 38 Updated 12/1/99

8.22 alphaMode Register
The alphaMode register controls the alpha blending and anti-aliasing functionality of SST-96.

Bit Description
0 Enable alpha function (1=enable)
3:1 Alpha function (see table below)
4 Enable alpha blending (1=enable)
5 Enable anti-aliasing (1=enable)
7:8 reserved
11:8 Source RGB alpha blending factor (see table below)
15:12 Destination RGB alpha blending factor (see table below)
19:16 Source alpha-channel alpha blending factor (see table below)
23:20 Destination alpha-channel alpha blending factor (see table below)
31:24 Alpha reference value

Bits(3:1) specify the alpha function during rendering operations. The alpha function and test pipeline is shown
below:

<? =?

1 1

afunc_eqafunc_lt

afunc_gt

Alpha test pass

Alpha Test
enable

Alpha from Alpha
 Combine Unit

alphaMode(31:24)

When alphaMode bit(0)=1, an alpha comparison is performed between the incoming source alpha and bits(31:24)
of alphaMode. Section 5.18.1 below further describes the alpha function algorithm.

Bit(4) of alphaMode enables alpha blending. When alpha blending is enabled, the blending function is performed
to combine the source color with the destination pixel. The blending factors of the source and destinations pixels
are individually programmable, as determined by bits(23:8). Note that the RGB and alpha color channels may
have different alpha blending factors. Section 5.18.2 below further describes alpha blending.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 39 Updated 12/1/99

Bit(5) of alphaMode is used to enable anti-aliasing of triangle edges. Anti-aliasing is currently not implemented
in SST-96.

8.22.1 Alpha function
When the alpha function is enabled (alphaMode bit(0)=1), the following alpha comparison is performed:
 AlphaSrc AlphaOP AlphaRef
where AlphaSrc represents the alpha value of the incoming source pixel, and AlphaRef is the value of bits(31:24)
of alphaMode. A source pixel is written into an RGB buffer if the alpha comparison is true and writing into the
RGB buffer is enabled (fbzMode bit(9)=1. If the alpha function is enabled and the alpha comparison is false, the
fbiAfuncFail register is incremented and the pixel is invalidated in the pixel pipeline and no drawing occurs to the
color or depth buffers. The supported alpha comparison functions (AlphaOPs) are shown below:

Value AlphaOP Function
0 never
1 less than
2 equal
3 less than or equal
4 greater than
5 not equal
6 greater than or equal
7 always

8.22.2 Alpha Blending
When alpha blending is enabled (alphaMode bit(4)=1), incoming source pixels are blended with destination
pixels. The alpha blending function for the RGB color components is as follows:

Dnew ⇐ (S ⋅ α) + (Dold ⋅ β)
where

Dnew The new destination pixel being written into the frame buffer
S The new source pixel being generated
Dold The old (current) destination pixel about to be modified
α The source pixel alpha blending function.
β The destination pixel alpha blending function.

The alpha blending function for the alpha components is as follows:

Anew ⇐ (AS ⋅ αd) + (Aold ⋅ βd)
where

Anew The new destination alpha being written into the alpha buffer
AS The new source alpha being generated
Aold The old (current) destination alpha about to be modified
αd The source alpha alpha-blending function.
βd The destination alpha alpha-blending function.

Note that the source and destination pixels may have different associated alpha blending functions. Also note that
RGB color components and the alpha components may have different associated alpha blending functions. The
alpha blending factors of the RGB color components are defined in bits(15:8) of alphaMode, while the alpha
blending factors of the alpha component is specified in bits(23:16) of alphaMode. The following table lists the
alpha blending functions supported:

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 40 Updated 12/1/99

Alpha Blending Function Alpha Blending Function Pneumonic Alpha Blending Function Description
0x0 AZERO Zero
0x1 ASRC_ALPHA Source alpha
0x2 A_COLOR Color
0x3 ADST_ALPHA Destination alpha
0x4 AONE One
0x5 AOMSRC_ALPHA 1 - Source alpha
0x6 AOM_COLOR 1 - Color
0x7 AOMDST_ALPHA 1 - Destination alpha
0x8-0xe Reserved
0xf (source alpha blending function) ASATURATE MIN(Source alpha, 1 - Destination

alpha)
0xf (destination alpha blending function) A_COLORBEFOREFOG Color before Fog Unit

When the value 0x2 is selected as the destination alpha blending factor, the source pixel color is used as the
destination blending factor. When the value 0x2 is selected as the source alpha blending factor, the destination
pixel color is used as the source blending factor. Note also that the alpha blending function 0xf is different
depending upon whether it is being used as a source or destination alpha blending function. When the value 0xf is
selected as the destination alpha blending factor, the source color before the fog unit (“unfogged” color) is used as
the destination blending factor -- this alpha blending function is useful for multi-pass rendering with atmospheric
effects. When the value 0xf is selected as the source alpha blending factor, the alpha-saturate anti-aliasing
algorithm is selected -- this MIN function performs polygonal anti-aliasing for polygons which are drawn front-to-
back.

*** Note that the first silicon spin of SST-96 only supports AZERO and AONE for the alpha blending functions
for the alpha channel. All alpha blending functions for the RGB color channels are supported in the first silicon
spin.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 41 Updated 12/1/99

8.23 fbzMode Register
The fbzMode register controls frame buffer and depth buffer rendering functions of the SST-1 processor. Bits in
fbzMode control clipping, chroma-keying, depth-buffering, dithering, and masking.

Bit Description
0 Enable clipping rectangles (1=enable)
1 Enable chroma-keying (1=enable)
2 Enable stipple register masking (1=enable)
3 W-Buffer Select (0=Use Z-value for depth buffering, 1=Use W-value for depth

buffering)
4 Enable depth-buffering (1=enable)
7:5 Depth-buffer function (see table below)
8 Enable dithering (1=enable)
9 RGB buffer write mask (0=disable writes to RGB buffer)
10 Depth/alpha buffer write mask (0=disable writes to depth/alpha buffer)
11 Dither algorithm (0=4x4 ordered dither, 1=2x2 ordered dither)
12 Enable Stipple pattern masking (1=enable)
13 Enable Alpha-channel mask (1=enable alpha-channel masking)
15:14 Reserved (Was SST-1 Draw buffer)
16 Enable depth-biasing (1=enable)
17 Rendering commands Y origin (0=top of screen is origin, 1=bottom of screen is origin)
18 Enable alpha planes (1=enable)
19 Enable alpha-blending dither subtraction (1=enable)
20 Depth buffer source compare select (0=normal operation, 1=zaColor[15:0].

This mode was not present in FBI revision 1.0.

Bit(0) of fbzMode is used to enable clipping. When set, rendering is clipped to the rectangles defined by the
clipLeftRight[01] and clipBottomTop[01] registers. Each of these registers defines a clip rectangle which may be
selectively enabled to include or preclude rendering. Applications rendering outside of the screen resolution must
use one of the two clip rectangles, set to screen coordinates, to preclude drawing to off-screen coordinates.

Bit(1) of fbzMode is used to enable the chroma-key color compare check. When enabled, any source pixel
matching the color specified in the chromaKey register is not written to the RGB buffer. The chroma-key color
compare is performed immediately after texture mapping lookup, but before the color combine unit and fog in the
pixel datapath.

Bit(2) of fbzMode is used to enable stipple register masking. When enabled, bit(12) of fbzMode is used to
determine the stipple mode -- bit(12)=0 specifies stipple rotate mode, while bit(12)=1 specifies stipple pattern
mode.

When stipple register masking is enabled and stipple rotate mode is selected, bit(31) of the stipple register is used
to mask pixels in the pixel pipeline. For all triangle commands and linear frame buffer writes through the pixel
pipeline, pixels are invalidated in the pixel pipeline if stipple bit(31)=0 and stipple register masking is enabled in
stipple rotate mode. After an individual pixel is processed in the pixel pipeline, the stipple register is rotated from
right-to-left, with the value of bit(0) filled with the value of bit(31). Note that the stipple register is rotated
regardless of whether stipple masking is enabled (bit(2) in fbzMode) when in stipple rotate mode.

When stipple register masking is enabled and stipple pattern mode is selected, the spatial <x,y> coordinates of a
pixel processed in the pixel pipeline are used to lookup a 4x8 monochrone pattern stored in the stipple register --

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 42 Updated 12/1/99

the resultant lookup value is used to mask pixels in the pixel pipeline. For all triangle commands and linear frame
buffer writes through the pixel pipeline, a stipple bit is selected from the stipple register as follows:

 switch(pixel_Y[1:0]) {
 case 0: stipple_Y_sel[7:0] = stipple[7:0];
 case 1: stipple_Y_sel[7:0] = stipple[15:8];
 case 2: stipple_Y_sel[7:0] = stipple[23:16];
 case 3: stipple_Y_sel[7:0] = stipple[31:24];
 }
 switch(pixel_X[2:0] {
 case 0: stipple_mask_bit = stipple_Y_sel[7];
 case 1: stipple_mask_bit = stipple_Y_sel[6];
 case 2: stipple_mask_bit = stipple_Y_sel[5];
 case 3: stipple_mask_bit = stipple_Y_sel[4];
 case 4: stipple_mask_bit = stipple_Y_sel[3];
 case 5: stipple_mask_bit = stipple_Y_sel[2];
 case 6: stipple_mask_bit = stipple_Y_sel[1];
 case 7: stipple_mask_bit = stipple_Y_sel[0];
 }

If the stipple_mask_bit=0, the pixel is invalidated in the pixel pipeline when stipple register masking is enabled
and stipple pattern mode is selected. Note that when stipple pattern mode is selected the stipple register is never
rotated.

Bits(4:3) specify the depth-buffering function during rendering operations. The depth buffering pipeline is shown
below:

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 43 Updated 12/1/99

iterated W component

wfloat_select1 0

16

iterated Z component

48

16

16 (integer only)

Clamp

zaColor[15:0]
zbias_enable

16

<? =?

1 1

old Depth
(from Depth Buffer)

zfunc_eqzfunc_lt

zfunc_gt

D e p t h t e s t p a s s

Depth Buffer
enable

cin wfloat_select

1. Sign extend 16-bit zaColor to 18 bits
2. Convert 16-bit depth to 18-bit
 {underflow,underflow,depth}
3. Add 18-bit values
4. Clamp to 0-FFFF

wfloat format:
 1.<mant> * 2^exp

Clamp

cin = 1

To Fog Unit

4 12

12 mantissaexponent 4

if(|w_iter[47:32]) {
 mant = 0, exp = 0xf, underflow = 1
} else if(!|w_iter[31:16]) {
 mant = 1, exp = 0xf, underflow = 0
} else {
 exp = find_first_one(w_iter[31:16])
 mant = (w_iter[30:16] << exp), underflow = 0
}

underflow 1

To adder logic

Bit(4) of fbzMode is used to enable depth-buffering. When depth buffering is enabled, a depth comparison is
performed for each source pixel as defined in bits(7:5). When bit(3)=0, the z iterator is used for the depth buffer

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 44 Updated 12/1/99

comparison. When bit(3)=1, the w iterator is used for the depth buffer comparison. When bit(3)=1 enabling w-
buffering, the inverse of the normalized w iterator is used for the depth-buffer comparison. This in effect
implements a floating-point w-buffering scheme utilizing a 4-bit exponent and a 12-bit mantissa. The inverted w
iterator is used so that the same depth buffer comparisons can be used as with a typical z-buffer. Section 8.23.1
below further describes the depth-buffering algorithm.

Bit(8) of fbzMode enables 16-bit color dithering. When enabled, native 24-bit source pixels are dithered into 16-
bit RGB color values with no performance penalty. When dithering is disabled, native 24-bit source pixels are
converted into 16-bit RGB color values by bit truncation. When dithering is enabled, bit(11) of fbzMode defines
the dithering algorithm -- when bit(11)=0 a 4x4 ordered dither algorithm is used, and when bit(11)=1 a 2x2
ordered dither algorithm is used to convert 24-bit RGB pixels into 16-bit frame buffer colors.

Bit(9) of fbzMode enables writes to the RGB buffers. Clearing bit(9) invalidates all writes to the RGB buffers, and
thus the RGB buffers remain unmodified for all rendering operations. Bit(9) must be set for normal drawing into
the RGB buffers. Similarly, bit(10) enables writes to the depth-buffer. When cleared, writes to the depth-buffer are
invalidated, and the depth-buffer state is unmodified for all rendering operations. Bit(10) must be set for normal
depth-buffered operation.

Bit(13) of fbzMode enables the alpha-channel mask. When enabled, bit(0) of the incoming alpha value is used to
mask writes to the color and depth buffers. If alpha channel masking is enabled and bit(0) of the incoming alpha
value is 0, then the pixel is invalidated in the pixel pipeline, the fbiAfuncFail register is incremented, and no
drawing occurs to the color or depth buffers. If alpha channel masking is enabled and bit(0) of the incoming alpha
value is 1, then the pixel is drawn normally subject to depth function, alpha blending function, alpha test, and
color/depth masking.

Bits(15:14) of fbzMode was used to select the RGB draw buffer for graphics drawing with SST-1. For SST-96
drawing is performed into the buffer selected by the colorBufferSetup register.

Bit(16) of fbzMode is used to enable the Depth Buffer bias. When bit(16)=1, the calculated depth value
(irrespective of Z or 1/W type of depth buffering selected) is added to bits(15:0) of zaColor. Depth buffer biasing
is used to elimate aliasing artifacts when rendering co-planar polygons.

Bit(17) of fbzMode is used to define the origin of the Y coordinate for rendering operations (FASTFILL and
TRIANGLE commands). When cleared, the Y origin (Y=0) for all rendering operations when the pixel pipeline is
enabled are defined to be at the top of the screen. When bit(17) is set, the Y origin is defined to be at the bottom of
the screen.

Bit(18) of fbzMode is used to enable the destination alpha planes. When set, the auxiliary buffer will be used as
destination alpha planes. Note that if bit(18) of fbzMode is set that depth buffering cannot be used, and thus bit(4)
of fbzMode (enable depth buffering) must be set to 0x0.

Bit(19) of fbzMode is used to enable dither subtraction on the destination color during alpha blending. When
dither subtraction is enabled (fbzMode bit(19)=1), the dither matrix used to convert 24-bit color to 16-bit color is
subtracted from the destination color before applying the alpha-blending algorithm. Enabling dither subtraction is
used to enhance image quality when performing alpha-blending.

Bit(20) of fbzMode is used to select the source depth value used for depth buffering. When fbzMode bit(20)=0,
the source depth value used for the depth buffer comparison is either iterated Z or iterated W (as selected by
fbzMode bit(3)) and may be biased (as controlled by fbzMode bit(16)). When fbzMode bit(20)=1, the constant
depth value defined by zaColor[15:0] is used as the source depth value for the depth buffer comparison.
Regardless of the state of fbzMode bit(20), the biased iterated Z/W is written into the depth buffer if the depth
buffer function passes. Note that fbzMode bit(20) is not implemented in FBI revision 1.0.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 45 Updated 12/1/99

8.23.1 Depth-buffering function
When the depth-buffering is enabled (fbzMode bit(4)=1), the following depth comparison is performed:
 DEPTHsrc DepthOP DEPTHdst
where DEPTHsrc and DEPTHdst represent the depth source and destination values respectively. A source pixel is
written into an RGB buffer if the depth comparison is true and writing into the RGB buffer is enabled (fbzMode
bit(9)=1). The source depth value is written into the depth buffer if the depth comparison is true and writing into
the depth buffer is enabled (fbzMode bit(10)=1). The supported depth comparison functions (DepthOPs) are
shown below:

Value DepthOP Function
0 never
1 less than
2 equal
3 less than or equal
4 greater than
5 not equal
6 greater than or equal
7 always

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 46 Updated 12/1/99

8.24 stipple Register
The stipple register specifies a mask which is used to enable individual pixel writes to the RGB and depth buffers.
See the stipple functionality description in the fbzMode register description for more information.

Bit Description
31:0 stipple value

8.25 color0 Register
The color0 register specifies constant color values which are used for certain rendering functions. In particular,
bits(23:0) of color0 are optionally used as the c_local input in the color combine unit. In addition, bits(31:24) of
color0 are optionally used as the c_local input in the alpha combine unit. See the fbzColorPath register
description for more information.

Bit Description
7:0 Constant Color Blue
15:8 Constant Color Green
23:16 Constant Color Red
31:24 Constant Color Alpha

8.26 color1 Register
The color1 register specifies constant color values which are used for certain rendering functions. In particular,
bits(23:0) of color1 are optionally used as the c_other input in the color combine unit selected by bits(1:0) of
fbzColorPath. The alpha component of color1(bits(31:24)) are optionally used as the a_other input in the alpha
combine unit selected by bits(3:2) of fbzColorPath. The color1 register bits(23:0) are also used by the FASTFILL
command as the constant color for screen clears.

Bit Description
7:0 Constant Color Blue
15:8 Constant Color Green
23:16 Constant Color Red
31:24 Constant Color Alpha

8.27 fogColor Register
The fogColor register is used to specify the fog color for fogging operations. Fog is enabled by setting bit(0) in
fogMode. See the fogMode and fogTable register descriptions for more information fog.

Bit Description
7:0 Fog Color Blue
15:8 Fog Color Green
23:16 Fog Color Red
31:24 reserved

8.28 zaColor Register
The zaColor register is used to specify constant alpha and depth values for FASTFILL commands, and co-planar
polygon rendering support. When executing the FASTFILL command, the constant 16-bit depth value written into

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 47 Updated 12/1/99

the depth buffer is taken from bits(15:0) of zaColor. When fbzMode bit(16)=1 enabling depth-biasing, the
constant depth value required is taken from zaColor bits(15:0).

Bit Description
15:0 Constant Depth
23:16 reserved
31:24 Constant Alpha

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 48 Updated 12/1/99

8.29 chromaKey Register
The chromaKey register specifies a 24-bit RGB color value which is compared to all pixels to be written to the
color buffer. If chroma-keying is enabled (fbzMode[1]) and chroma-ranging is disabled (chromaRange[28]), an
outgoing pixel color equaling the color of the chromaKey register blocks the pixel write into the frame buffer.

The chroma comparison is performed immediately after texture lookup, texture blending and Gouraud shading, but
before lighting, fog and alpha blending. Chroma-keying ignores the alpha color component of the outgoing pixel.
For more information see the fbzColorPath block diagram.

Bit Description
7:0 Chroma-key Blue
15:8 Chroma-key Green
23:16 Chroma-key Red
31:24 reserved

8.30 chromaRange Register
The chromaRange register specifies a color range which is compared to all pixels to be written to the color buffer.
If chroma-keying is enabled (fbzMode[1]) and chroma-ranging is enabled (chromaRange[28]), the outgoing pixel
color is compared to a color range formed by the colors of the chromaKey and chromaRange registers.

The RGB color components of the chromaKey and chromaRange registers define a color data range for the color
components. The color component range includes all color values between and including the lower limit color of
the chromaKey register and the upper limit color of the chromaRange register. Note, software must program the
chromaKey lower limits less-than or equal to the chromaRange upper limits.

The RGB color component mode bits of the chromaRange register defines the color component range mode as
inclusive or exclusive. Inclusive ranges select colors within the range and exclusive ranges select colors outside of
the range.

The block mode bit of the chromaRange register sets the blocking mode for colors selected within each color
component ranges. A blocking mode of "intersection" blocks pixels prohibited by all of the color components and a
blocking mode of "union" blocks pixels prohibited by any of the color components.

Bit Description
7:0 Chroma-Range Blue Upper Limit
15:8 Chroma-Range Green Upper Limit
23:16 Chroma-Range Red Upper Limit
24 Chroma-Range Blue Mode (0=inclusive; 1=exclusive)
25 Chroma-Range Green Mode (0=inclusive; 1=exclusive)
26 Chroma-Range Red Mode (0=inclusive; 1=exclusive)
27 Chroma-Range Block Mode (0=intersection; 1=union)
28 Chroma-Range Enable (0=disable; 1=enable)
31:29 reserved

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 49 Updated 12/1/99

8.31 colBufferSetup and auxBufferSetup Registers
The colBufferSetup and auzBufferSetup registers define the base address and X stride of the color and auxiliary
buffers. The color buffer setup register additionally defines the color buffer mode determining the color depth of the
buffer as 16-bit RGB or 8-bit color index. The corresponding mode for the auxiliary buffer which defines the buffer
as 16-bit depth or 8-bit alpha is established within the fbzMode register.

colBufferSetup
Bit Description
21:0 Color Buffer Base Address

Sets the color buffer base byte address within the lower 4MB PUMA DRAM address
space. Software must set this register with a quad-pixel alignment identical to that of
the auxiliary buffer base address. Default is X.

30:22 Color Buffer X Stride
Defines the X quad-pixel dimension of the color buffer. Full screen 3D rendering sets
the dimension of the 3D image and windowed 3D rendering sets the dimension of the
desktop. Valid values range from 1 to 511 quad pixels. Default is X.

31 Color Buffer Mode
sets the color buffer mode to 16-bit RGB or 8-bit color index (0=16-bit RGB; 1=8-bit
color index). In either case the buffer consumes a packed linear space. Default is 0.

auxBufferSetup
Bit Description
21:0 Auxiliary Buffer Base Address

Sets the auxiliary buffer base byte address within the lower 4MB PUMA DRAM address
space. Software must set this register with a quad-pixel alignment identical to that of
the color buffer base address. Default is X.

30:22 Auxiliary Buffer X Stride
Defines the X quad-pixel dimension of the auxiliary buffer. Full screen or windowed 3D
rendering sets the dimension of the 3D image. Valid values range from 1 to 511 quad
pixels. Default is X.

The following equation describes the calculations of LFB address derived from the X and Y rendering coordinates,
the auxiliary buffer base address (BaseAdr) and the auxiliary buffer X stride (xStride) settings.

LFBA (bytes) = BaseAdr + (((y * (xStride * 4)) + x) * N), where N = 1 or 2 bytes/pixel.

Note: X stride is negated in this calculation for the flipped Y origin case.

Note2: drawing operations (triangles or fast fill) to X/Y coordinates which extend beyond the 4MB frame buffer
space (after LFB translation) wrap the frame buffer space modifying addresses in the lower frame buffer.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 50 Updated 12/1/99

8.32 clipLeftRight0, clipTopBottom0, clipLeftRight1 and clipTopBottom1 Registers
The clip0 and clip1 registers specify two rectangular regions which restrict drawing operations. Each rectangle
may be defined as inclusive or exclusive through the clipMode field of the clipTopBottom register. An inclusive
rectangle allows drawing within the rectangle and an exclusive rectangle disallows drawing within the rectangle.
Drawing within an excluded region of either of the enabled clip rectangles circumvents the write of pixels into both
the color and auxiliary buffers.

The clip registers define the four corners of a rectangular region in window relative pixel coordinates (native x/y
rendering coordinates). The value of clipLoY must be less than cliipHiY and the value of clipLeft must be less
than clipRight. This programming results in a rectangular region including the clipLeft and clipLoY register
values, but excluding the clipRight and clipHiY register values.

The function of each clip rectangle may be selectively enabled and disabled through the ClipEnable bit of each of
the ClipLeftRight registers and a global enable also exists within the fbzMode register.

The clip0 registers also define the rectangular region for the FASTFILL command. For FASTFILL, the clip
rectangle is always enabled and always inclusive (i.e. clipMode and clipEnable are ignored).

ClipLeftRight[01] Register
Bit Description
10:0 Unsigned integer specifying right clipping rectangle edge
15:11 reserved
26:16 Unsigned integer specifying left clipping rectangle edge
30:27 reserved
31 Clip Enable (0=disable; 1=enable).

clipTopBottom[01] Register
Bit Description
10:0 Unsigned integer specifying high Y clipping rectangle edge
15:11 reserved
26:16 Unsigned integer specifying low Y clipping rectangle edge
30:27 reserved
31 Clip Mode (0=inclusive; 1=exclusive).

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 51 Updated 12/1/99

8.33 fogTable Register
The fogTable register is used to implement fog functions in SST-96. The fogTable register is a 64-entry lookup
table consisting of 8-bit fog blending factors and 8-bit ∆fog blending values. The ∆fog blending values are the
difference between successive fog blending factors in fogTable and are used to blend between fogTable entries.
Note that the ∆fog blending factors are stored in 6.2 format, while the fog blending factors are stored in 8.0 format.
For most applications, the 6.2 format ∆fog blending factors will have the two LSBs set to 0x0, with the six MSBs
representing the difference between successive fog blending factors. Also note that as a result of the 6.2 format for
the ∆fog blending factors, the difference between successive fog blending factors cannot exceed 63. When storing
the fog blending factors, the sum of each fog blending factor and ∆fog blending factor pair must not exceed 255.
When loading fogTable, two fog table entries must be written concurrently in a 32-bit word. A total of 32 32-bit
PCI writes are required to load the entire fogTable register.
fogTable[n] (0 ≤ n ≤ 31)
Bit Description
7:0 FogTable[2n] ∆Fog blending factor
15:8 FogTable[2n] Fog blending factor
23:16 FogTable[2n+1] ∆Fog blending factor
31:24 FogTable[2n+1] Fog blending factor

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 52 Updated 12/1/99

8.34 fbijrInit0, fbijrInit1, fbijrInit2, fbijrInit3, fbijrInit4 and fbijrInit5 Registers
The fbijrInit registers contain the initialization bits of FBIjr. Writes to these registers take effect immediately and
are available through direct access only (NO CMDFIFO ACCESS). Software must take care when writing to these
registers while the graphics engine or command FIFO pipeline is busy. These registers are read and write
assessable.

fbijrInit0 - General
Bit Description
0 Software Reset

Resets all of FBIjr minus the PUMA arbiter, the PUMA direct access path, the serial
status port, the Init registers and the configuration pins (0=run; 1=reset). Default is 1.

1 TREX Texture Mapping Disable
Disables texture combine within FBIjr. Default is 0.

2 Triple Buffering Enable
Enables triple buffering operation. Triple buffering allows the graphics engine to get
ahead one swap buffer command before stalling for VSYNC. Default is 0.

3 VSYNC Level Mode
Sets the VSYNC active edge for the detection of refresh buffer swap (0=active low;
1=active high). Default is 0.

4 VSYNC Stereo Mode
Inhibits swapping on the odd-numbered VSYNC pulses. The first odd-numbered
VSYNC is defined as the first VSYNC pulse after this bit is set. Default is 0.

5 DRAM Write to Read Slow Timing Enable
Enables a dead cycle between write and read transactions. Default is 0.

6 DRAM Read Fast RAS Off Timing Enable
Enables the removal of RAS before the end of a read transaction. Default is 0.

7 DRAM Read to Write Fast Timing Enable
Enables a dead cycle within the DRAM timing between read and write transactions.
Default is 0.

11:8 FBI-To-TREX Bus Clock Delay
Valid values delay the clock 0-15 increments. Default is 0x2.

16:12 TREX-To-FBI FIFO High Water Mark
Marks a fullness level which stalls data received from the TREX. Valid values range
from 0 to 31 entries. Default is 0x0f.

17 Serial Status Transfer Mode
Sets the active clock edge for the transfer of serial status out of FBIjr (0 = rising edge; 1
= falling edge). Default is 0.

InitState = 0x0000_f201

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 53 Updated 12/1/99

fbijrInit1 - PUMA
Bit Description
5:0 PUMA Low Priority Request Delay Count

Delays the detection of a low priority PUMA request and the beginning of the client
grant sequence (provided the core device desires ownership). Valid values range from 0
to 63 cycles. Default is 0.

6 PUMA Low Priority Grant Limit Enable
Enables the PUMA Low Priority Grant Limit Count. Default is 0.

12:7 PUMA Low Priority Grant Limit Count
Limits the PUMA grant time of low priority client ownership (provided core device
desires ownership). Valid values range from 0-63 cycles. Default is X.

18:13 PUMA Low Priority Request Urgency Count
Creates a window of time upon which the PUMA core device attempts to gracefully
complete the current operation before relinquishing the bus for a low priority request.
Valid values range from 0-63 cycles. Default is 0.

22:19 PUMA High Priority Request Urgency Count
Creates a window of time upon which the PUMA core device attempts to gracefully
complete the current operation before relinquishing the bus for a high priority request.
Valid values range from 0-15 cycles. Default is 0.

23 PUMA Texture Base Address Mode
Sets the texture memory base address to 2MB or 6MB within the 8MB PUMA address
space (0=2MB and 1=6MB). In the 2MB mode, FBIjr decodes the texture space
beginning at the 2MB PUMA address. In the 6MB mode, FBIjr decodes the texture
memory space defined in section 5. This bit is ignored while in a 4MB PUMA hardware
configuration (section Error! Reference source not found.). Default is 1.

24 PUMA Texture Address Space Mode
Sets the texture memory address space to 1MB or 2MB of the 8MB PUMA address
space (0=1MB; 1=2MB). In the 2MB mode, FBIjr decodes the PUMA space defined in
section 5. In the 1MB mode, FBIjr decodes a 1MB texture space removing the MSB of
LOD from the PCI address. In this mode, the hardware forces LOD[3]=0 and software
must load the LOD8 through careful addressing of the texture base address register.
This bit is ignored while in a 4MB PUMA hardware configuration (section Error!
Reference source not found.). Default is 1.

InitState = 0x0180_0000

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 54 Updated 12/1/99

fbijrInit2 - MEMFIFO Setup
Bit Description
0 MEMFIFO Direct Write Stall Disable

Disables the MEMFIFO stall mechanism (PUMA preemption) as direct writes
encounter the low space mark of the MEMFIFO. Default is 0.

6:1 MEMFIFO Direct Write Low Space Mark
Causes the suspension of direct writes into the MEMFIFO. Emptiness equaling this
value stalls direct-write accesses through PUMA preemption provided MEMFIFO direct
write stall has not been disabled (fbijrInit2[0]). The direct-write stall blocks low-
priority PUMA request granting until the MEMFIFO empties to meet the high space
mark. This register field must be set to sufficiently accommodate the PUMA stall
latency of the 2D engine. Valid values range from 0 to 63. Default is 16.

12:7 MEMFIFO CMDFIFO Read Low Space Mark
Causes the suspension of CMDFIFO reads into the MEMFIFO. Emptiness equaling this
value suspends CMDFIFO reads until the MEMFIFO empties to the high space mark.
This register must be set to sufficiently accommodate the CMDFIFO pending reads plus
subsequent direct writes. Valid values range from 0 to 63. Default is 26.

18:13 MEMFIFO High Space Mark
Causes the resumption of data acceptance into the MEMFIFO. Emptiness equaling this
value enables direct-write accesses or CMDFIFO read operations which have been
suspended through the low space marks. Valid values range from 0 to 63. Default is 56.

InitState = 0x0007_0D2D

fbijtInit3 - CMDFIFO Setup
Bit Description
0 CMDFIFO Enable

Enables the CMDFIFO within PUMA DRAM. Default is 0.
10:1 CMDFIFO Bottom Page

Defines the bottom 4KB page of the CMDFIFO positioned within the 4MB DRAM
space of PUMA. This register field, compared against the PCI byte address bits [21:12],
determines the first page of the CMDFIFO. Valid values range from 1 to 1K pages.
Default is X.

20:11 CMDFIFO Top Page
Defines the top 4KB page of the CMDFIFO positioned within the 4MB DRAM space of
PUMA. This register field, compared against the PCI byte address bits [21:12],
determines the last page of the CMDFIFO. Valid values range from 1 to 1K pages.
Default is X.

30:21 CMDFIFO Page Threshold
Defines the 4KB page entry-count threshold used in generating the single bit CMDFIFO
fullness status of the fbijrStatus register. CMDFIFO entry-counts greater than or equal
to this threshold set the fullness status and entry-counts lower than this threshold reset
the fullness status. Default is X.

InitState = 0x0018_0600

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 55 Updated 12/1/99

fbijrInit4 - CMDFIFO Entry Count
Bit Description
18:0 CMDFIFO Entry Count

Identifies the 64-bit quad-word entry-count of the CMDFIFO. Software initializes the
count through direct write access and hardware increments the count as software writes
to the FIFO. Then, an enabled CMDFIFO, with an entry-count greater than 0, causes
the hardware to read from the CMDFIFO while subtracting from the entry-count. Valid
values range from 0 to 512K quad-words. Default is X.

InitState = 0x0000_0000

fbijrInit5 - CMDFIFO Read Pointer
Bit Description
18:0 CMDFIFO Read Pointer

Identifies the 64-bit quad-word read-pointer address of the CMDFIFO within the 4MB
DRAM space of PUMA. The read-pointer bits reflect bits [21:3] of the PCI byte address.
Software initializes the pointer through direct write access and hardware increments the
pointer as the 3D engine reads from the FIFO. Hardware reads from the CMDFIFO
when the CMDFIFO is enabled and the CMDFIFO entry-count is greater than 0. Valid
values range from 0 to 512K quad-words. Default is X.

InitState = 0x0018_0600

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 56 Updated 12/1/99

8.35 fbijrVersion Register
The fbijrVersion register contains four version fields identifying the Board Version, the FBIjr Chip Version, the
fbijr Device Version, and the 3Dfx PCI Vender Number. The contents of the 4-bit board version field is set through
hardware configuration and all of the other fields are hardwired within FBIjr. This register is read-only.

Bit Description
3:0 Board Version ID

Identifies the board version of SST-96. The board version is set through Hardware
Configuration straps on the ft_data[3:0] bus bits of FBIjr. FBIjr tri-states this bus during
reset to sample the input from external resistive configuration straps. Valid values range
from 0 to 16. The initial board version value is 0.

7:4 FBIjr Version ID = 0x1
Identifies the chip version of FBIjr.

15:8 FBIjr Device ID = 0x02
Identifies FBIjr as the third chip from 3Dfx.

31:16 PCI Vendor ID = 0x121a
Identifies 3Dfx through the reserved PCI vendor ID number.

8.36 fbiPixelsIn Register
The fbiPixelsIn register is a 24-bit counter which is incremented for each pixel processed by the SST-96 triangle
walking engine. fbiPixelsIn is incremented irrespective if the triangle pixel is actually drawn or not as a result of
the depth test, alpha test, etc. fbiPixelsIn is used primarily for statistical information, and in essence allows
software to count the number of pixels in a screen-space triangle. fbiPixelsIn is reset to 0x0 on power-up reset,
and is reset when a ‘1’ if written to the lsb of nopCMD.

Bit Description
23:0 Pixel Counter (number of pixels processed by SST-96 triangle engine)

8.37 fbiChromaFail Register
The fbiChromaFail register is a 24-bit counter which is incremented each time an incoming source pixel (either
from the triangle engine or linear frame buffer writes through the pixel pipeline) is invalidated in the pixel pipeline
because of the chroma-key color match test. If an incoming source pixel color matches the chomaKey register,
fbiChromaFail is incremented. fbiChromaFail is reset to 0x0 on power-up reset, and is reset when a ‘1’ if
written to the lsb of nopCMD.

Bit Description
23:0 Pixel Counter (number of pixels failed chroma-key test)

8.38 fbiZfuncFail Register
The fbiZfuncFail register is a 24-bit counter which is incremented each time an incoming source pixel (either
from the triangle engine or linear frame buffer writes through the pixel pipeline) is invalidated in the pixel pipeline
because of a failure in the Z test. The Z test is defined and enabled in the fbzMode register. fbiZfuncFail is reset
to 0x0 on power-up reset, and is reset when a ‘1’ if written to the lsb of nopCMD.

Bit Description
23:0 Pixel Counter (number of pixels failed Z test)

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 57 Updated 12/1/99

8.39 fbiAfuncFail Register
The fbiAfuncFail register is a 24-bit counter which is incremented each time an incoming source pixel (either
from the triangle engine or linear frame buffer writes through the pixel pipeline) is invalidated in the pixel pipeline
because of a failure in the alpha test. The alpha test is defined and enabled in the alphaMode register. The
fbiAfuncFail register is also incremented if an incoming source pixel is invalidated in the pixel pipeline as a result
of the alpha masking test (bit(13) in fbzMode). fbiAfuncFail is reset to 0x0 on power-up reset, and is reset when
a ‘1’ if written to the lsb of nopCMD.

Bit Description
23:0 Pixel Counter (number of pixels failed Alpha test)

8.40 fbiPixelsOut Register
The fbiPixelsOut register is a 24-bit counter which is incremented each time a pixel is written into a color buffer
during rendering operations (rendering operations include triangle commands, linear frame buffer writes, and the
FASTFILL command). Pixels tracked by fbiPixelsOut are therefore subject to the chroma-test, Z test, Alpha test,
etc. that are part of the regular SST-96 pixel pipeline. fbiPixelsOut is used to count the number of pixels actually
drawn (as opposed to the number of pixels processed counted by fbiPixelsIn). Note that the RGB mask (fbzMode
bit(9) is ignored when determining fbiPixelsOut. fbiPixelsOut is reset to 0x0 on power-up reset, and is reset
when a ‘1’ if written to the lsb of nopCMD.

Bit Description
23:0 Pixel Counter (number of pixels drawn to color buffer)

8.41 texChipSel Register
The texShipSel register selects the TREX for writing texture memory. Valid values range from 0 to 2 (0=TREX0;
1=TREX1; 2=TREX2). Default is 0.

Bit Description
1:0 Texture Chip Select 2 (0=TREX0; 1=TREX1; 2=TREX2). Default is 0.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 58 Updated 12/1/99

8.42 textureMode Register
The textureMode register controls texture mapping functionality including perspective correction, texture
filtering, texture clamping, and multiple texture blending.

Bit Name Description
0 tpersp_st Enable perspective correction for S and T iterators (0=linear interploation of S,T, force

W to 1.0, 1=perspective correct, S/W, T/W)
1 tminfilter Texture minification filter (0=point-sampled, 1=bilinear)
2 tmagfilter Texture magnification filter (0=point-sampled, 1=bilinear)
3 tclampw Clamp when W is negative (0=disabled, 1=force S=0, T=0 when W is negative)
4 tloddither Enable Level-of-Detail dithering (0=no dither, 1=dither)
5 tnccselect Narrow Channel Compressed (NCC) Table Select (0=table 0, 1=table 1)
6 tclamps Clamp S Iterator (0=wrap, 1=clamp)
7 tclampt Clamp T Iterator (0=wrap, 1=clamp)
11:8 tformat Texture format (see table below)
 Texture Color Combine Unit control (RGB):
12 tc_zero_other Zero Other (0=c_other, 1=zero)
13 tc_sub_clocal Subtract Color Local (0=zero, 1=c_local)
16:14 tc_mselect Mux Select (0=zero, 1=c_local, 2=a_other, 3=a_local, 4=LOD, 5=LOD_frac, 6-

7=reserved)
17 tc_reverse_blend Reverse Blend (0=normal blend, 1=reverse blend)
18 tc_add_clocal Add Color Local
19 tc_add_alocal Add Alpha Local
20 tc_invert_output Invert Output
 Texture Alpha Combine Unit control (A):
21 tca_zero_other Zero Other (0=c_other, 1=zero)
22 tca_sub_clocal Subtract Color Local (0=zero, 1=c_local)
25:23 tca_mselect Mux Select (0=zero, 1=c_local, 2=a_other, 3=a_local, 4=LOD, 5=LOD_frac, 6-

7=reserved)
26 tca_reverse_blend Reverse Blend (0=normal blend, 1=reverse blend)
27 tca_add_clocal Add Color Local
28 tca_add_alocal Add Alpha Local
29 tca_invert_output Invert Output
30 trilinear Enable trilinear texture mapping (0=point-sampled/bilinear, 1=trilinear)

tpersp_st bit of textureMode enables perspective correction for S and T iterators. Note that there is no
performance penalty for performing perspective corrected texture mapping.

tminfilter, tmagfilter bits of textureMode specify the filtering operation to be performed. When point sampled
filtering is selected, the texel specified by <s,t> is read from texture memory. When bilinear filtering is selected,
the four closet texels to a given <s,t> are read from memory and blended together as a function of the fractional
components of <s,t>. tminfilter is referenced when LOD>=LODmin, otherwise tmagfilter is referenced.

tclampw bit of textureMode is used when projecting textures to avoid projecting behind the source of the
projection. If this bit is set, S, T are each forced to zero when W is negative. Though usually desireable, it is not
necessary to set this bit when doing projected textures.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 59 Updated 12/1/99

tloddither bit of textureMode enables Level-of-Detail (LOD) dither. Dithering the LOD calculation is useful when
performing texture mipmapping to remove the LOD bands which can occur from with mipmapping without
trilinear filtering. This adds an average of 3/8 (.375) to the LOD value and needs to compensated in the amount of
lodbias.

tnccselect bit of textureMode selects the NCC lookup table to be used when decompressing 8-bit NCC textures.

tclamps, tclampt bits of textureMode enable clamping of the S and T texture iterators. When clamping is
enabled, the S iterator is clamped to [0, texture width) and the T iterator is clamped to [0, texture height). When
clamping is disabled, S coordinates outside of [0, texture width) are allowed to wrap into the [0, texture width)
range using bit truncation. Similarly when clamping is disabled, T coordinates outside of [0, texture height) are
allowed to wrap into the [0, texture height) range using bit truncation.

tformat field of textureMode specifies the texture format accessed by T. Note that the texture format field is used
for both reading and writing of texture memory. The following table shows the texture formats and how the texture
data is expanded into 32-bit ARGB color:

tforma
t Value

Texture format 8-bit Alpha 8-bit Red 8-bit Green 8-bit Blue

0 8-bit RGB (3-3-2) 0xff {r[2:0],r[2:0],r[2:1]} {g[2:0],g[2:0],g[2:1]} {b[1:0],b[1:0],b[1:0],b[1:0]}

1 8-bit YIQ (4-2-2) See below

2 8-bit Alpha a[7:0] a[7:0] a[7:0] a[7:0]

3 8-bit Intensity 0xff i [7:0] i[7:0] i[7:0]

4 8-bit Alpha, Intensity (4-4) {a[3:0],a[3:0]} {i[3:0],i[3:0]} {i[3:0],i[3:0]} {i[3:0],i[3:0]}

5-7 Reserved

8 16-bit ARGB (8-3-3-2) a[7:0] {r[2:0],r[2:0],r[2:1]} {g[2:0],g[2:0],g[2:1]} {b[1:0],b[1:0],b[1:0],b[1:0]}

9 16-bit AYIQ (8-4-2-2) See below

10 16-bit RGB (5-6-5) 0xff {r[4:0],r[4:2]} {g[5:0],r[5:4]} {b[4:0],b[4:2]}

11 16-bit ARGB (1-5-5-5) {a[0],a[0],a[0],a[0],
 a[0],a[0],a[0],a[0]}

{r[4:0],r[4:2]} {g[4:0],g[4:2]} {b[4:0],b[4:2]}

12 16-bit ARGB (4-4-4-4) {a[3:0},a[3:0]} {r[3:0},r[3:0]} {g[3:0},g[3:0]} {b[3:0},b[3:0]}

13 16-bit Alpha, Intensity (8-8) a[7:0] i[7:0] i[7:0] i[7:0]

15-14 Reserved

where a, r, g, b, and i(intensity) represent the actual values read from texture memory. The following table shows
how 32-bit RGBA texture information is derived from the YIQ texture formats. This is detailed later in the
nccTable description.

Texture format 8-bit Alpha 8-bit Red 8-bit Green 8-bit Blue
8-bit YIQ (4-2-2) 0xff ncc _red[7:0] ncc _green[7:0] ncc _blue[7:0]
16-bit AYIQ (8-4-2-2) a[7:0] ncc _red[7:0] ncc _green[7:0] ncc _blue[7:0]

There are three Texture Color Combine Units (RGB) and one Texture Alpha Combine Unit(A), all four are
identical, except for the bit fields that control them. The tc_* fields of textureMode control the Texture Color
Combine Units; the tca_* fields control the Texture Alpha Combine Units. The diagram below illustrates the
Texture Color Combine Unit/Texture Alpha Combine Unit:

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 60 Updated 12/1/99

Blend with Incoming Color

8

9 1.8.0

9 1.8.08 0.8.0

8 Color

10 1.9.0

Clamp 0-FF

8

0.8

tc/tca_invert_output

9 signed x
9 unsigned

multiply

Trunc. LSBs
No Round

9 1.8.0

2’s Comp

tc/tca_ c_other

tc/tca_sub_c_local

8 0.8.0

0

0 1

c_local

8

9 0.9.0

+1

8

tc/tca_ mselect[2:0]

LODB[0]

0

a_local
a_other

detail_factor
LODB_frac[7:0]

trilinear_enable

tc/tca_reverse_blend

{tc/tca_ add_c_local, tc/tca_ add_a_local}

8

0

00 10

Combined in
common unit

Unique for a,r,g,b

1

For trilinear:
0: odd TREX
1: even TREX

tc/tca_ zero_other

0

0 1

alpha_inv

a_local

01

tc_ prefix applies to R,G and B channels. tca_ prefix applies to A channel.

[0,0x100]

8.43 tLOD Register
The tLOD register controls the texture mapping LOD calculations.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 61 Updated 12/1/99

Bit Name Description
5:0 lodmin Minimum LOD. (4.2 unsigned)
11:6 lodmax Maximum LOD. (4.2 unsigned)
17:12 lodbias LOD Bias. (4.2 signed)
18 lod_odd LOD odd (0=even, 1=odd)
19 lod_tsplit Texture is Split. (0=texture contains all LOD levels, 1=odd or even levels only, as

controlled by lod_odd)
20 lod_s_is_wider S dimension is wider, for rectilinear texture maps. This is a don’t care for square

textures. (1=S is wider than T).
22:21 lod_aspect Aspect ratio. Equal to 2^n. (00 is square texture, others are rectilinear: 01 is

2x1/1x2, 10 is 4x1/1x4, 10 is 8x1/1x8)
23 lod_zerofrac LOD zero frac, useful for bilinear when even and odd levels are split across two Ts

(0=normal LOD frac, 1=force fraction to 0)
24 tmultibaseaddr Use multiple texbaseAddr registers
25 tdata_swizzle Byte swap incoming texture data (bytes 0<->3, 1<->2).
26 tdata_swap Short swap incoming texture data (shorts 0<->1).
27 tdirect_write Enable raw direct texture memory writes (1=enable).

lodbias is added to the calculated LOD value, then it is clamped to the range [lodmin, min(8.0, lodmax)]. Note
that whether the LOD is clamped to lodmin is used to determine whether to use the minification or magnification
filter, selected by the tminfilter and tmagfilter bits of textureMode:

LOD bias, clamp

0
256x256

8
1x1

LOD

LODmaxLODmin

tmagfilter
tminfilter

The tdata_swizzle and tdata_swap bits in tLOD are used to modify incoming texture data for endian dependencies.
The tdata_swizzle bit causes incoming texture data bytes to be byte order reversed, such that bits(31:24) are
swapped with bits(7:0), and bits(23:16) are swapped with bits(15:8). Short-word swapping is performed after byte
order swizzling, and is selected by the tdata_swap bit in tLOD. When enabled, short-word swapping causes the
post-swizzled 16-bit shorts to be order reversed, such that bits(31:16) are swapped with bits(15:0). The following
diagram shows the data manipulation functions perfomed by the tdata_swizzle and tdata_swap bits:

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 62 Updated 12/1/99

3

Incoming Texture Data

2 1 0 (Bytes 0-3)

1 01 00 10 1 tdata_swizzle

1 0 (Shorts 0-1)

0 1 1 0 tdata_swap

32

8888

8888

16

1616

16

Texture Memory
Data [15:0]

Texture Memory
Data [31:16]

8.44 tDetail Register
The tDetail register controls the detail texture.

Bit Name Description
7:0 detail _max Detail texture LOD clamp (8.0 unsigned)
13:8 detail_bias Detail texture bias (6.0 signed)
16:14 detail_scale Detail texture scale shift left

detail_factor is used in the Texture Combine Unit to blend between the main texture and the detail texture.
detail_factor (0.8 unsigned) = max(detail_max, ((detail_bias - LOD) << detail_scale))

8.45 texBaseAddr, texBaseAddr1, texBaseAddr2, and texBaseAddr38 Registers
The texBaseAddr register specifies the starting texture memory address for accessing a texture, at a granularity of
8 bytes. It is used for both texture writes and rendering. Calculation of the texbaseaddr is described in the Texture
Memory Access section. Selection of the base address is a function of tmultibaseaddr and LODBI.

Bit Name Description
18:0 texbaseaddr Texture Memory Base Address, tmultibaseaddr==0 or LODBI==0

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 63 Updated 12/1/99

18:0 texbaseaddr1 Texture Memory Base Address, tmultibaseaddr==1 and LODBI==1
18:0 texbaseaddr2 Texture Memory Base Address, tmultibaseaddr==1 and LODBI==2
18:0 texbaseaddr38 Texture Memory Base Address, tmultibaseaddr==1 and LODBI>=3

8.46 TREXInit0 Register
This register is used for hardware initialization and configuration of the TREX chip(s). See TREX spec.

8.47 TREXInit1 Register
This register is used for hardware initialization and configuration of the TREX chip(s). See TREX spec.

8.48 nccTable0 and nccTable1 Registers
The nccTable0 and nccTable1 registers contain two Narrow Channel Compression (NCC) tables used to store
lookup values for compressed textures (used in YIQ and AYIQ texture formats as specified in tformat of
textureMode). Two tables are stored so that they can be swapped on a per-triangle basis when performing multi-
pass rendering, thus avoiding a new download of the table. Use of either nccTable0 or nccTable1 is selected by
the Narrow Channel Compressed (NCC) Table Select bit of textureMode. nccTable0 and nccTable1 are stored in
the format of the table below, and are write only.

nccTable Address Bits Contents

0 31:0 {Y3[7:0], Y2[7:0], Y1[7:0], Y0[7:0]}
1 31:0 {Y7[7:0], Y6[7:0], Y5[7:0], Y4[7:0]}
2 31:0 {Yb[7:0], Ya[7:0], Y9[7:0], Y8[7:0]}
3 31:0 {Yf[7:0], Ye[7:0], Yd[7:0], Yc[7:0]}
4 26:0 {I0_r[8:0], I0_g[8:0], I0_b[8:0]}
5 26:0 {I1_r[8:0], I1_g[8:0], I1_b[8:0]}
6 26:0 {I2_r[8:0], I2_g[8:0], I2_b[8:0]}
7 26:0 {I3_r[8:0], I3_g[8:0], I3_b[8:0]}
8 26:0 {Q0_r[8:0], Q0_g[8:0], Q0_b[8:0]}
9 26:0 {Q1_r[8:0], Q1_g[8:0], Q1_b[8:0]}
10 26:0 {Q2_r[8:0], Q2_g[8:0], Q2_b[8:0]}
11 26:0 {Q3_r[8:0], Q3_g[8:0], Q3_b[8:0]}

The following figure illustrates how compressed textures are decompressed using the NCC tables:

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 64 Updated 12/1/99

(2x16)x8 Lookup
RAM

4 Y

8

(2x4)x27 Lookup
RAM

2 I

27

(2x4)x27 Lookup
RAM

2 Q

27

8

8 9 Red 9 Red 8 9 Grn 9 Grn 8 9 Blu 9 Blu

8 Red 8 Green 8 Blue

11

Clamp 0-FF

8

11

Clamp 0-FF

8

11

Clamp 0-FF

8

0.8 1.8 1.8

0.8

nccTable register
Select

From Memory Data Alignment

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 65 Updated 12/1/99

9. Changes from SST-1

• Modifications

1. Register Address Map
Changed slightly.
2. Initialization Registers
100% modified.
3. CMDFIFO
Software loaded and managed for fullness.
4. Linear Frame Buffer Access
Access performed through 2D engine.
5. Color and Auxiliary Buffers
Data is stored in separate linearly packed buffers. Software manage the regions in both the 2D and 3D engines.
6. Swap Buffer Mechanism
Command required to increment swap pending count. No swap without VSYNC.
7. Video and DRAM Refresh
Performed on 2D chip.
8. Multi-TMU
Requires a register write to select the TMU for texture memory access.

• Additions

1. Clipping
Second clip window and inclusive/exclusive option.
2. Window Relative Rendering
Separate base address and X stride programming for both color and auxiliary buffers.
3. Chroma Range
Inclusive/exclusive & union/intersection ranges.
4. 2D BLT/ROP funtions
All functions of the 2D engine with operation ordering controlled by software.
5. Video in a window
Potential video textures if video data is in proper format and data is BLT to texture memory.
6. Stereo Video
Support for Quad buffered stereo.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 66 Updated 12/1/99

10. Revision History
1. Version 0.1; Date: 2/9/96
• Original FBIjr version.
2. Version 0.2; Date: 2/13/96
• Modified the mode register addresses for easier group decode.
• Added render/refresh section.
3. Version 0.3; Date: 2/28/96
• Modified Init3&4 to become CMD FIFO specific registers.
• Added Version register - read only with pci vendor number, device number and device version. Additionally

moved the block of read only non-status registers down to a 16 double word aligned address.
• Reset fbzMode register back to SST-1 (bit(1) enables clipping globally, bit(10) enables writes to the AUX

buffer, bits(16:15) do nothing for SST-96, bit(18) sets AUX buffer to alpha).
• Removed AUX type bit from auxBufferSetup register.
• Added clip enable bits to both clip0 and clip1 registers.
• Modified CMDFIFO text to reflect write pointer which points to last place written and read pointer which

points to the next place to read from. As a result, emptiness is determined by write_pointer == read_pointer+1.
• Modified fbijr status register fbijr Idle bit to include all internal activities.
• Added revision history.
4. Version 0.4; Date: 2/28/96
• Fixed parameter register mapping error. The previous ordering was from an out of date SST-1 spec. The

current ordering is exactly equal to STT-1 alternate mapping.
5. Version 0.5; Date: 3/7/96
• Added CMDFIFO examples.
• Improved swap buffer tiling description.
• Added Hardware Configuration Section Error! Reference source not found..
• Modified FBIjr Version register to include 4 bit Board Version which is loaded from the Hardware

configuration straps.
• Added Texture Memory Load description.
• Improved windowOffset and xStride descriptions.
6. Version 0.6; Date: 3/14/96
• Improved Swap Buffer Command description. Removed swap on sync enable.
• Modified CMDFIFO initialization from read/write pointers to entries-count/read-pointer protocol.
• Added chromaRange register.
• Changed register address map to 1MB for 4MP puma mode.
• Added multiple TREX support. Changed register address map chip field to 4 bits. Added textureChipSel

register (00=TREX0, 01=TREX1, 10=TREX2).
7. Version 0.7; Date: 3/18/96
• Added fbzMode[20] to select the source depth value used for depth buffering.
• Added SST-1 changes section to 1.0.
• Added windowed 320x200 3D resolutions.
8. Version 0.8; Date: 4/4/96
• Moved MEMFIFO fields to separate initialization register. Now there are 6 initialization registers.
• Changed MEMFIFO low/high free space registers to 6 bits each.
• Changed CMDFIFO base/size register change top/bottom registers.
• Added CMDFIFO entries threshold register.
• Changed fbijrStatus register CMDFIFO and MEMFIFO fullness fields.
• Changed Color and Auxiliary buffer setup registers. Added X stride fields.

 SST-96 Specification

Copyright  1996 3Dfx Interactive, Inc. Revision 2.2
Proprietary 67 Updated 12/1/99

• Eliminated the Offset and Stride registers. These features are now in the buffer setup registers.
• Added CMDFIFO and MEMFIFO overflow error bits to the status register.
9. Version 0.9; Date: 8/22/96
• Removed performance tiling/packing information.
• General cleaning.

