
Designer's Guide to 
state machines-Part 2 

Asynchronous state 
machines challenge 

digital designers 

Part 1 of this 2-part series provided a brief refresher 
of the basic theory of state machines and gave two 
detailed examples of synchronous state-machine de­
sign with common PLDs. This article, part 2, contin­
ues with an example of a more difficult, asynchro­
nous state machine. Part 2 also gives some 
background information on state-machine software 
packages and details a PLD whose architecture suits 
large state machines. 

Stan Kopec, Altera Corp 

Implementing state-machine designs in programmable­
logic devices (PLDs) can solve some irksome control­
logic design problems. If you elect to perform asynchro­
nous state-machine design, however, be advised that 
it's more difficult than its synchronous counterpart. You 
should embark on an asynchronous state-machine de­
sign only when your application gives you no other 
choice. 

Asynchronous state machines, by definition, will 
respond to any allowable input. Thus, they're suscepti­
ble to interference, noise, and glitches. Further, they 
require you to pay close attention to state assignment. 
Although careful state assignment is helpful but not 
critical in synchronous state-machine design, in asyn­
chronous state machines it's crucial. 

What's more, asynchronous designs are very sensi­
tive to mismatched delays, races, and hazards. A race is 
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Fig I-This bus arbiter for the IBM PS/2 Micro Channel bus accepts 
DMA requests from external devices and then strives to gain control 
of the bus. 

a series of successive states that occurs during a state 
transition. A hazard occurs whenever more than one 
state variable changes at a time, resulting in unwanted 
transient states or potential decoding-logic glitches. 

The problem of asynchronous state-machine design is 
evident in Fig 1, which shows a bus arbiter for the IBM 
Micro Channel (the bus for the company's PS/2 comput­
ers). The arbiter, M3, has eight states. Fig 2a shows the 
state diagram for the bus arbiter. The inputs are 
ARB/GNT, PREIN, WIN, CHRESET, FAIR, 
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If you)re implementing an asynchronous 
state machine in which the input-to-output 
delays are critical) you may want to put the 
intermediate states to work. 

BRSTREQ, and BUSREQ; the outputs are PREOUT, 
BUSGNT, BURST and ENARB. 

The arbiter operates as follows. Peripheral logic 
asserts the BUSREQ (single-cycle) or BRSTREQ 
(block-transfer) lines to request use of the Micro Chan­
nel. The arbiter state machine (Ma) responds by assert­
ing PREOUT to the Micro Channel. In response , the 
PS/2's µ.P asserts ARB/GNT, indicating that arbitra­
tion has begun. M3 asserts ENARB to place its arbitra­
tion priority on the bus. If the bus value matches its 
priority when ARB goes low, the arbiter has won the 
bus, and it proceeds to transfer data after asserting 
BUSGNT. If the priorities do not match, the arbiter 
has lost and must wait for another arbitration cycle. 
During block transfers, the arbiter asserts BURST. 

Because the state variables in asynchronous ma­
chines are sensitive to glitches, changing only one state 
variable at a time proves to be a good rule of thumb. 

CHRESET 
M,-MQORE STATE MACHINE 

NOTE: 

When you look at Ma, you might assume that it requires 
only three state variables because it has eight states. In 
fact, M3 requires six state variables to satisfy all the 
state adjacencies. You determine adjacencies by listing 
each state with the states connected to it by arrows in 
the state diagram. To make adjacent states differ by 
only one state variable, you may need to insert inter­
mediate states (Fig 2b). 

In an asynchronous-machine design, you should de­
code invalid state-variable combinations to make the 
design more reliable. If the logic decodes an invalid 
state, it should reset the machine to an IDLE condition 
or an ERROR state. Thus, even if the machine misbe­
haves, at least it can't run amok. 

Fig 3 (pg 184) shows the transition equations for Ma. 
Ma is a Moore design. Its p-term requirements range 
from two to 14. If you used PLDs having eight p-term 

Text continued on pg 184 

SMALLER STATE BUBBLES 
ARE INTERMEDIATE STATES 

(b) 

Fig 2-The state-transition-diagram in a is the formal definition of the bus-arbitration handshake for the IBM Micro Channel bus. The 
diagram in b has an extra intermediate state so that the M, state machine will operate without glitches. Note that M, requires six state 
variables, instead of only three, to specify the eight required states. The extra variables are needed to satisfy the requirement that each state 
transition change only one state variable. 
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State-machine software speeds design 
State machine and general-pur­
pose PLD-design software can 
automate many of the rote tasks 
associated with state-machine 
design. Fig A shows the major 
blocks of such a package. Be­
cause some of these software 
packages minimize logic func­
tions-for example, by selecting 
deMorgan's inversion where ap­
propriate-they can save you 
considerable time and effort. 
Some state-machine packages 
will also try different flip-flop 
types in a quest for the minimal 
implementation (your target 
PLD must have these flip-flop 
types, of course). 

Some of these software pack­
ages also allow high-level func­
tional descriptions. For example, 
high-level syntax for state ma­
chines means that you can enter 

STATE­
MACHINE 

ENTRY 

STATE 
MACHINE 

FILE 

STATE­
MACHINE 

CONVERT· 
ER 

statements for transition specifi­
cations rather than transition 
equations. By automatically gen­
erating the transition equations 
from the high-level description, 
the software packages save you 
much error-prone rote work as 
you try out different state as­
signments. 

The software tools can further 
aid in your design effort by au­
tomatically reducing these initial 
equations to a minimal form. 
JEDEC-file assembly from these 
minimal equations is a straight­
forward translation. 

These packages also provide a 
simple functional simulation-or, 
less frequently, a timing simula­
tion-from the JEDEC-file de­
scription of your state machine. 
You can typically compile a 
state-machine design and simu-
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I 
I 
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late it on your PC in minutes 
with any of this software. This 
relatively rapid iteration cycle is 
of particular value when you for­
mulate your machine design, be­
cause complex control flows are 
prone to designer error. Seeing 
your machine's operation in an 
interactive simulation environ­
ment allows you to work the 
bugs out quickly before you go 
to the lab to make a breadboard. 

Existing PLD-design tools 
don't handle tasks such as state­
variable assignment for you. 
Neither do they detect or report 
races and hazards (asynchronous 
state-machine designers, watch 
out!). Mealy-to-Moore conversion 
is also left to you. These areas 
are where the art of state-ma­
chine design begins. 

PROGRAMMING 
SOFTWARE/ 
HARDWARE 
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REPORT 
FILE 
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Fig A-State-machine and general-purpose PLD-design software can automate many of the rote tasks associated with 
state-machine design. 
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New PLD architecture suits large state machines 
The EPS448 SAM (stand-alone 
microsequencer) is a 28-pin, 
CMOS EPROM-based chip (Fig 
A). It has a 768-p-term pro­
grammable-logic block for select­
ing one of four state-machine 
branches per state. It also in­
cludes 16k bits of microcode/ 
state EPROM, an 8-bit loop 
counter, and a 15-level stack. 

Functionally, you can consider 
the device to be a microcoded, 
instruction-based engine under 
the direction of a master pro­
grammable-logic block that de­
termines branches. 

The SAM's architecture imple­
ments a synchronous Moore 
state machine. A SAM can im­
plement state machines with as 
many as 448 states. The device's 
36-bitx448-word microprogram/ 
state memory is organized into 
two sections: One section is one 
word wide for straight-line, un­
conditional sequences, and one 
section is four words wide for 
branching sequences. 

Each microcode word has 
fields for the state of the de-

vice's outputs, a 3-state enable 
bit, an op code, and arguments 
for the op code. The arguments 
for the op code are the location 
in the microprogram memory of 
the next state to be jumped to, 
and, optionally, constants. 

The branch-logic block com­
bines the device's eight inputs 
and its present state (one of two 
8-bit fields in the currently ad­
dressed word in the micropro­
gram/state memory) to select 
one of four next states from 
among those in a branching-se­
quence memory location. Fur­
ther, the SAM is unlike conven­
tional PLDs in that its hold-state 
transitions consume no p-terms. 

True to its microcoded archi­
tecture, the SAM can also per­
form functions more akin to 
those of a µP than to those of a 
classical state machine. For ex­
ample, it can nest subroutines 
and execute timing loops. With 
the 8-bit, 256-state loop counter, 
in combination with the stack, 
you can generate arbitrarily long 
output-signal durations. 
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Fig A-The EPS448 SAM (stand-alone microsequencer) has a 768 p-term rrrogram­
mable-logic block for selecting one of four swte-machine branches per state. Operating 
as a bit-slice rrrocessor does, the SAM also includes 16k bits of microcode/sf,ate EPROM, 
an 8-bit loop counter, and a 15-level swck. 

The SAM has a primitive in­
struction set with which you can 
invoke the counter and stack at 
required points in the state-ma­
chine flow. The instructions in­
clude call, return, push counter, 
load counter, decrement, and 
test counter. You can use these 
instruction-based operations in 
conjunction with the program­
mable-branch logic. 

The counter in the SAM has 
several potential uses in applica­
tions such as the synchronous 
DMA controller (M1) and the 
synchronous bus controller (M2) 
detailed in part 1 of this series 
(Ref 1). A bus-timeout function 
could force the termination of a 
bus cycle when READY does not 
occur within a specified time. If 
block data transfers involve a 
fixed-length (nonprogrammable) 
block of data, the counter could 
replace the external byte count­
er. To limit bus hogging, M1 
might transfer 16-byte sub­
blocks, release the bus, and then 
request it again after some in­
terval. 

The stack on SAM could be 
used similarly to enhance Mi's 
and M2's functioning. In a single­
SAM implementation, M2 could 
be a submachine (slave machine) 
called by M1 to execute bus cy­
cles. In this case, the stack 
would store the present state of 
the calling state machine, M1. 
When it finished its bus cycle, 
M2 would execute a return in 
order to restore M1 to control of 
the SAM. 

You can also use the stack to 
create extended timing loops 
when modulo 256 is too short. 
By nesting loops and using the 
counter, you can construct loops 
as long as 25615 iterations. In ad­
dition to subroutine nesting and 
timer loops, the stack can also 
store data. A sequencer support­
ing two or more independent 
DMA channels could use the 
stack for the temporary storage 
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and swapping of channel param­
eters, for example. 

sign problems it addresses, the 
SAM requires high-level design 
software. The vendor's SAM + 
software package can automati­
cally compile your machine de­
scription from a text file. You 
can use high-level IF statements 
for state-machine transitions in 
conjunction with assembly-level 
SAM instructions that use 
counter and stack. You specify 
state outputs as vectors without 

worrying about logic or p-terms. 
Fig B shows a SAM specification 
for M1. You can use multiple SAMs in 

parallel to increase the output­
line count or to implement multi­
chip controllers. Like memory 
chips, the architecture lends it­
self to modular expansion in 

Reference 
1. Kopec, Stan , "State machines 

solve control-sequence problems," 
EDN, May 26, 1988, pg 177. both output width and micropro­

gram depth. 
Given the complexity of its ar­

chitecture and the size of the de-

SAM Ml DESIGN 
PART: EPS448 
INPUTS: BCO,STARTX,GRANT,DREQ,IO,SRC8,DST8,DONECYC 
OUTPUTS: REQBUS, XDONE,DECB1,DECB2,DECS1,DECS2,DECD1,DECD2, R16S, 

R16D,R8S,R8D,SWAP 

PROGRAM: 

A: [00 00 00 00 0000 OJ JUMP B; 

B: IF STARTX*IO' THEN [10 00 00 00 0000 OJ JUMP D; 
ELSEIF STARTX*IO THEN [00 00 00 00 0000 OJ JUMP 
ELSE [00 00 00 00 0000 OJ JUMP B; 

C: IF DREQ THEN [10 00 00 00 0000 OJJUMP D; 
ELSE [00 00 00 00 0000 OJJUMP C; 

D: IF GRANT*SRC8' THEN [00 01 01 00 1000 OJJUMP I; 
ELSEIF GRANT*SRC8 THEN [00 01 10 00 0010 O]JUMP 
ELSE [10 00 00 00 0000 OJJUMP D; 

E: IF DONECYC*DREQ THEN [00 00 10 00 0010 1JJUMP F; 
ELSE [00 01 10 00 0010 OJJUMP E; 

F: IF DONECYC THEN [00 00 00 01 0100 OJJUMP G; 
ELSE [00 00 10 00 0010 1JJUMP F; 

G: IF DONECYC*BCO THEN [01 00 00 00 0000 OJJUMP A; 

C; 

E; 

ELSEIF DONECYC*BCO' THEN [00 00 00 00 0000 O]JUMP H; 
ELSE [00 00 00 01 0100 OJJUMP G; 

H: IF DREQ THEN (00 00 10 00 0010 1JJUMP E; 
ELSE (00 00 00 00 0000 O)JUMP H; 

I: IF DONECYC*DST8 THEN [00 00 00 10 0001 OJJUMP J; 
ELSEIF DONECYC*DSTS' THEN [00 00 00 01 0100 OJJUMP M; 
ELSE [00 01 01 00 1000 OJJUMP I; 

J: IF DONECYC*DREQ THEN [00 00 00 10 0001 1JJUMP K; 
ELSE [00 00 00 10 0001 OJJUMP J; 

K: IF DONECYC*BCO THEN [01 00 00 00 0000 OJJUMP A; 
ELSEIF DONECYC*IO*BCO' THEN [00 00 00 00 0000 OJJUMP L; 
ELSE [00 00 00 10 0001 1JJUMP K; 

L: IF DREQ THEN [00 01 01 00 1000 OJJUMP I; 
ELSE [00 00 00 00 0000 OJJUMP L; 

M: IF DONECYC*IO*BCO' THEN [00 00 00 00 0000 OJJUMP L; 
ELSEIF DONECYC*IO'*BCO' THEN [00 01 01 00 1000 OJJUMP I; 
ELSEIF DONECYC*BCO THEN [01 00 00 00 0000 OJJUMP A; 
ELSE [00 00 00 01 0100 OJJUMP M; 

Fig B-This high-level SAM specification for the M, bus arbiter from part 1 of th-is series shows the pr<YflT'ietary IF-statement entry 
format for state transitions . To '{JTOgram for the chip's counter and stack, you must use assembly language. 
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Because some PLD-design software pack­
ages perform minimization of logic func­
tions) they can save you considerable time 
and effort. 

macrocells, you would have to cascade macrocells to 
handle some of the state variables. A variable p-term 
device (22V10, EP1210) or a PLD with p-term redistri­
bution (EP512) could handle this requirement directly. 
PLA devices would also provide a good result, because 
M3 requires a total of 40 or fewer p-terms. 

transition to the final state. This cascading means that a 
double state transition is actually occurring, and the 
extra TARRAY delay shown in the FREQUENCY equa­
tion is the result. 

You implement asynchronous-state-machine state 
variables in combinatorial macrocells. Inserting inter­
mediate states has the effect of adding another logic­
array delay to your state transitions. Fig 4 shows the 
PLD timing model for an asynchronous state machine. 
Note that the change in Qo takes the machine to an 
intermediate state and that this transition then trig­
gers a change in Q1 before the state machine makes the 

Delays for outputs from asynchronous machines are 
referenced to the appropriate inputs. Outputs typically 
become valid within one propagation delay (Tp0 ) of a 
new state's stabilizing. Because no central clock exists, 
you can't register outputs to minimize skews, as you can 
in synchronous machines. 

If you're implementing an asynchronous state ma­
chine in which the input-to-output delays are critical, 
you may want to put those intermediate states to work. 
Normally, in a Moore machine, outputs are associated 

State 

IDLE 
REQCYC 
ARB 
LOSE 
BX FER 
SXFER 
FINISH 
PEN 

INTER-

MJ State Assignment and Transition Equations 

State Variables 
Q5 Q4 QJ Q2 Ql QO 

000000 
001100 
100100 
000101 
110000 
100001 
100000 
100010 

MEDIATE 
I 

000100 
101100 
100101 
000001 
100011 
110010 
000010 
010000 
110100 

I 
v 

QO = (10010X*ARB/-GNT'*WIN' + 000101* (BUSREQ + BRSTREQ) + 
10010X*BUSREQ*WIN*ARB/-GNT + lOOOOl)*CHRESET' (5 TERMS) 

Ql = (llOOXO*ARB/-GNT*FAIR*BRSTREQ + 100010 + lOOOXl*ARB/-GNT)*CHRESET' 
(3 TERMS) 

Q2 = (OOOXOO*(BUSREQ+BRSTREQ) + XOllOO + 100100 + 
100101*ARB/-GNT'*WIN' + 10010l*ARB/-GNT*(BUSREQ+BRSTREQ) 7 
OOOlOl)*CHRESET' (8 TERMS) 

QJ (OOXlOO*(BUSREQ+BRSTREQ))*CHRESET' (2 TERMS) 

Q4 (lXOlOO*BRSTREQ*WIN*ARB/-GNT + llOOOO*FAIR'*BRSTREQ' + 
llOOOO*(ARB/-GNT+FAIR*BRSTREQ') + llOOOO*PREIN')*CHRESET' 

(5 TERMS) 

Q5 (XOllOO*(BUSREQ+BRSTREQ) + 100100*ARB/-GNT'*WIN' + 
10010X*ARB/-GNT*(BUSREQ+BRSTREQ) + lXOlOO*BRSTREQ*WIN*ARB/ -GNT + 
llOOXO*(ARB/-GNT+FAIR*BRSTREQ') + lXOOOO*(FAIR+BRSTREQ) + 
lOOOlO*PREIN + 100101*BUSREQ*WIN*ARB/-GNT' + 
lOOOXl*BUSREQ + llOOOO*PREIN)*CHRESET' (14 TERMS) 

Fig 3-Given the state assignments in Fig 2b, these transition equations result for M,. M, is a Moore machine. 
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Existing PLD-design tools don)t handle 
such tasks as state-variable assignment for 
you. 
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Fig 4-When you use this PLD timing model to calculate assignments in Fig Zb, these transition equations result for M,. M, is a Moore 
machine. 

with primary states. If you find that an output can't 
tolerate the added delay of the intermediate state, you 
can activate the output at both the intermediate state 
and the primary state. This assignment eliminates the 
added logic-array delay in generating the output, so it 
effectively performs an output look-ahead. Be careful, 
though: If you use an intermediate-state code in more 
than one place (as in Fig 2b's state diagram of M3, 

which has state 100101 in more than one place), you'll 
need to decode the intermediate state and the inputs to 
guarantee that the output will be correct. 

Given this model, you can see that a PLD that 
implements M3 will be able to operate at 

Frequency=l/T1NPuT+ (2x TARRAY). 

Therefore, a typical PLD in which TINPuT=5 nsec and 
TARRAv =20 nsec will operate at approximately 22 MHz. 
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PLDs having a faster speed grade would give corre­
spondingly faster frequencies. EDN 
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