
PPC405EP Evaluation Board Kit
User’s Manual

COVER

AMCC 405EP
PowerPC Document Issue 1.00

September 2004

AMCC reserves the right to make changes to its products, its datasheets, or related
documentation, without notice and warrants its products solely pursuant to its
terms and conditions of sale, only to substantially comply with the latest available
datasheet. Please consult AMCC’s Term and Conditions of Sale for its warranties
and other terms, conditions and limitations. AMCC may discontinue any
semiconductor product or service without notice, and advises its customers to
obtain the latest version of relevant information to verify, before placing orders,
that the information is current. AMCC does not assume any liability arising out of
the application or use of any product or circuit described herein, neither does it
convey any license under its patent rights nor the rights of others. AMCC reserves
the right to ship devices of higher grade in place of those of lower grade.

AMCC SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED,
AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-
SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL
APPLICATIONS.

AMCC is a registered Trademark of Applied Micro Circuits Corporation.
Copyright © 2004 Applied Micro Circuits Corporation.

PowerPC  405EP

Evaluation Board Kit

User’s Manual

Preliminary

SA14-2707-00



 Preliminary
First Preliminary Edition (December 2002)

This edition of the IBM PPC405EP Evaluation Board Kit User’s Manual applies to the IBM PPC405EP 32-bit
embedded controller, until otherwise indicated in new versions or application notes.

© Copyright International Business Machines Corporation 2002

All Rights Reserved
Printed in the United States of America December 2002

The following are trademarks of International Business Machines Corporation in the United States, or other countries,
or both.
IBM IBM Logo
CoreConnect
PowerPC PowerPC logo
PowerPC Architecture
RISCTrace RISCWatch

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this docu-
ment are NOT intended for use in implantation, life support, or other hazardous uses where malfunction may result in
death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or
change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied
license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this docu-
ment was obtained in specific environments, and is presented as an illustration. The results obtained in other operating
environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will IBM
be liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division
1580 Route 52, Bldg. 504
Hopewell Junction, NY 12533-6351

The IBM home page can be found at http://www.ibm.com

The IBM Microelectronics Division home page can be found at http://www.ibm.com/chips

Note: This document contains information on products in the sampling and/or initial production phases of
development. This information is subject to change without notice. Verify with your IBM field applications
engineer that you have the latest version of this document before finalizing a design.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be
relied upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are
made.
ii PPC405EP Evaluation Board Kit User’s Manual

http://www.ibm.com
http://www.ibm.com/chips

 Preliminary
Contents

Figures vii
Tables ix
About This Book.. xi
Chapter 1. Overview of the Evaluation Board Kit.. 1-1

Hardware Components .. 1-1
Evaluation Board ... 1-1
 Cables and Power Supply .. 1-1

Software Components.. 1-1
BSP Software .. 1-1

ROM Monitor ... 1-1
OS Open Real-Time Operating System .. 1-2
Dhrystone Benchmark Program .. 1-2
Application Tools ... 1-2

RISCWatch Debugger ... 1-2
IBM High C/C++ Evaluation Compiler ... 1-3

Chapter 2. Host System Requirements 2-1
PC Host System Requirements ... 2-1

Chapter 3. Installing the Software 3-1
PC Software Installation .. 3-1

BSP Software Installation .. 3-1
High C/C++ Evaluation Compiler Installation... 3-2
RISCWatch Debugger Installation ... 3-2

Chapter 4. Host Configuration 4-1
PC Host Configuration ... 4-1

Serial Port Setup - PC .. 4-1
Ethernet Setup - PC... 4-1
ROM Monitor-Debugger Communication Setup - PC.. 4-2

Chapter 5. Hardware 5-1
Chapter 6. Board Connectors 6-1

Connecting the Evaluation Board to the Host .. 6-1
Using a Terminal Emulator... 6-3

PC Terminal Emulation.. 6-3
Board Reset ... 6-3

Chapter 7. ROM Monitor 7-1
ROM Monitor Source Code.. 7-1
Communications Features ... 7-1
Configuration of bootp and tftp to Support ROM Monitor Loads .. 7-2

PC bootp and tftp Configuration .. 7-2
Accessing the ROM Monitor .. 7-4
ROM Monitor Operation ... 7-4
Monitor Selections and Submenus .. 7-5

Initial ROM Monitor Menu .. 7-6
Selecting Power-On Tests ... 7-7
Selecting Boot Devices.. 7-8
Changing IP Addresses ... 7-9
Using the Ping Test ... 7-11
Entering the Debugger... 7-12
Disabling the Automatic Display .. 7-14
Displaying the Current Configuration... 7-15
Contents iii

 Preliminary
Saving the Current Configuration.. 7-16
Setting the Baud Rate for S1 Boots .. 7-16
S1 Boot ... 7-18
Exiting the Main Menu... 7-20
Cache Options .. 7-22

ROM Monitor User Functions.. 7-22
Flash Update Utility ... 7-23
Network Address of the Ethernet Controller .. 7-23

Chapter 8. Sample Applications.. 8-1
Overview ... 8-1
ROM Monitor Flash Image .. 8-1
Using the Software Samples ... 8-4

Building and Running the Dhrystone Benchmark ... 8-4
Building and Running the usr_samp Program .. 8-5
Building and Running the timesamp Program... 8-6
Setting the time in the on-board clock... 8-7
PPC405 MAC instruction sample.. 8-7

Resolving Execution Problems.. 8-9
Using the Ping Test on the ROM Monitor to Verify Connectivity... 8-10
Setup of bootp and tftp Servers (Daemons) for ROM Monitor Loads ... 8-10

Using OS Open Functions... 8-10
Chapter 9. Application Libraries and Tools 9-1

OS Open Libraries... 9-1
Using Libraries and Support Software... 9-3

Serial Port Support Library.. 9-4
Boot Library (RAM) ... 9-4
Input/Output Support Library... 9-4
I2C Library... 9-4
PowerPC Low-Level Processor Access Support Library .. 9-4
ROM Monitor Ethernet IP Interface Library... 9-5
Real-time Clock Interface Support Library .. 9-5
Ethernet Device Driver Support Library .. 9-5
Software Timer Tick Support Library... 9-5

Device Drivers Supplied with the Board Support Software ... 9-5
Asynchronous Device Driver... 9-6

Device Driver Installation .. 9-6
Device Installation... 9-6
Opening Asynchronous Communication Ports ... 9-7
Reading and Writing ... 9-8
I/O Control .. 9-9
Polled Asynchronous I/O .. 9-10
Flow control .. 9-11

I2C Device Driver .. 9-11
Functional Description .. 9-11
I2C Initialisation .. 9-11
I2C read .. 9-12
I2C write.. 9-12
Accessing I2C Registers... 9-13

Ethernet Device Driver .. 9-13
Device Driver Installation .. 9-13
Device Installation... 9-14
Opening and Closing Ethernet Files ... 9-14
Reading and Writing ... 9-14
I/O Control .. 9-15
iv PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
ENET_SET_CHANNEL... 9-15
ENET_CLEAR_CHANNEL.. 9-16
ENET_QUERY_ADDRESS... 9-16
MIB Functions.. 9-16

ROM Monitor Ethernet Device Driver .. 9-16
Environment Startup and Initialization.. 9-17

Board Bootstrap .. 9-17
Environment Initialization... 9-18

Tools .. 9-18
elf2rom... 9-18
hbranch14.. 9-20
eimgbld .. 9-22

Chapter 10. OS Open Function Reference... 10-1
Attributes and Threads... 10-1

Async Safe Functions .. 10-1
Cancel Safe Functions... 10-1
Interrupt Handler Safe Functions... 10-1
Callable from Application Thread Group Functions ... 10-2

Functions.. 10-2
Appendix A. Program Trace Calls A-1

Overview ... A-1
MSGDATA Structure... A-1
Ptrace Definitions .. A-4

RD_ATTACH (30)... A-5
RD_CONTINUE (7) .. A-6
RD_DETACH (31) .. A-7
RD_FILL (105) .. A-8
RD_KILL (8).. A-9
RD_LDINFO (34) .. A-10
RD_LOAD (101) ... A-12
RD_LOGIN (103) .. A-13
RD_LOGOFF (104) .. A-14
RD_READ_D (2)... A-15
RD_READ_FPR (12) ... A-16
RD_READ_GPR (11) ... A-17
RD_READ_GPR_MULT(71)... A-18
RD_READ_I (1) .. A-19
RD_READ_I_MULT (71) .. A-20
RD_READ_SPR (115).. A-21
RD_READ_SR (118) .. A-22
RD_STATUS (114) ... A-23
RD_STOP_APPL (113) .. A-24
RD_WAIT (108) .. A-25
RD_WRITE_BLOCK (19) ... A-26
RD_WRITE_D (5) ... A-27
RD_WRITE_FPR (15) .. A-28
RD_WRITE_GPR (14).. A-29
RD_WRITE_I (4)... A-30
RD_WRITE_SPR (112) .. A-31
RD_WRITE_SR (119)... A-32
RL_LDINFO (181)... A-33
RL_LOAD_REQ(180) ... A-34

Appendix B. ROM Monitor Load Format .. . B-1
Overview ... B-1
Contents v

 Preliminary
Section Types.. B-1
First Section .. B-2
Text Section .. B-2
Data Section.. B-3
Symbol Section ... B-3

Boot Header .. B-3
Index X-1
vi PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
Figures

Figure 6-1. Wiring in a Crossover Cable .. 6-1
Figure 6-2. Point-to-Point Ethernet Connection ... 6-2
Figure 6-3. Ethernet Connection with Hub ... 6-2
Figure 7-1. ROM Monitor Address Map ... 7-4
Figure 9-1. elf2rom Output File .. 9-20
Figure 9-2. Detail of Patch File Placement... 9-21
Figure 9-3. hbranch Output Image ... 9-21
Figures vii

 Preliminary
viii PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
Tables

Table 9-1. OS Open Libraries ...9-1
Table 9-2. OS Open Libraries for the PowerPC 405EP Evaluation Board Platform9-3
Table 9-3. Additional Parameters Passed to driver_install() ..9-7
Table 9-4. Additional Parameters Passed to open() ..9-8
Table 9-5. ioctl() Commands for Asynchronous Device Drivers ..9-9
Table 10-1. Functions Specific to the PPC405EP Design Kit ...10-2
Tables ix

 Preliminary
x PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
About This Book

This book contains the information you need to install and use the IBM® PowerPC PPC405EP
Evaluation Board Kit, a hardware and software development tool for the PowerPC PPC405EP 32-bit
RISC microprocessor.

The PowerPC PPC405EP Evaluation Board Kit (hereinafter referred to as the PPC405EP evaluation
board kit) hardware includes the PowerPC 405EP Evaluation Board (hereinafter referred to as the
evaluation board), power supply, and board interface cables. Features of the evaluation board include
a PowerPC PPC405EP processor, 128MB SDRAM, four 32-bit PCI slots, built-in Ethernet support,
512KB socketed flash memory, 512KB SRAM, 2 serial ports, and a time-of-day clock with 8KB
NVRAM.

The PPC405EP evaluation board kit software includes the ROM Monitor (resident in the flash
memory on the board), ROM Monitor source code, IBM’s OS Open real time operating system,
sample application programs, application development libraries and tools, IBM’s High C/C++
compiler, and IBM’s RISCWatch, a source-level debugger that runs on the host system.

The PPC405EP evaluation board kit also includes technical specifications and board schematics.

Connection of the evaluation board to a host system is required for the exercises in this book.
Supported host systems include:

• An IBM or compatible PC running one of the following:

– Windows 95/98/ME

– Windows NT 4.0/Windows 2000/XP

Who Should Use This Book

This book is for hardware and software developers who need to evaluate the PowerPC PPC405EP
microprocessor and use the debugging features of the PowerPC PPC405EP Evaluation Board Kit to
support software development.

Users should understand hardware and software development tools, concepts, and environments.
Specifically, users should understand:

• The host’s operating system

• The PowerPC Architecture™ and implementation-specific characteristics of the PowerPC
microprocessor being used

• C and Assembler language programming

How to Use This Book

This book contains the following chapters and appendixes:

Chapter 1, “Overview of the Evaluation Board Kit” describes the product, its hardware and software
components, and its relationship with the software tools on the host.

Chapter 2, “Host System Requirements” lists the hardware and software requirements of the host
system.
About This Book xi

 Preliminary
Chapter 3, “Installing the Software” describes the software installation on the host system.

Chapter 4, “Host Configuration” describes the steps required to facilitate communications between
the host computer and the evaluation board.

Chapter 5, “Hardware” describes the evaluation board, its memory map, its hardware components
and their functions.

Chapter 6, “Board Connectors” describes the evaluation board connectors and the procedures for
connecting the board to a host system.

Chapter 7, “ROM Monitor” describes the operations of the ROM monitor.

Chapter 8, “Sample Applications” describes how to compile, load, and run the sample applications on
the evaluation board.

Chapter 9, “Application Libraries and Tools” describes the application libraries and host tools provided
with the evaluation board software.

Chapter 10, “OS Open Function Reference” lists the OS Open functions for the PowerPC 405EP
Evaluation Board platform. The function calls are arranged alphabetically by function name.

Appendix A, “Program Trace Calls” describes the messages for interfacing a debugger on the host
system to the ROM Monitor on the evaluation board.

Appendix B, “ROM Monitor Load Format” describes the load format requirements supported by the
ROM monitor.

Conventions Used in This Book

This book follows the numeric and highlighting notation conventions based on those used in the RISC
System/6000 and AIX publications.

Numeric Conventions

In general, numbers are used exactly as shown. Unless noted otherwise, all numbers are in decimal,
and, if entered as part of a command, are entered without format information.

In text, binary numbers are preceded by a “B” followed by the number enclosed in single quotes, for
example:

B'010'

In commands, binary numbers are preceded by “0b” or “b” followed by the number, which may be
enclosed in single quotes, for example:

0b010 or b’010’

In text, hexadecimal numbers are preceded by an “X” followed by the number enclosed in single
quotes, for example:

 X'1A7'

In commands, hexadecimal numbers are preceded by “0x” or “x” followed by the number, which may
be enclosed in single quotes, for example:

0x1a7 or x'1a7'
xii PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
In text, the hexadecimal digits A through F appear in uppercase. In commands, these digits are
typically entered in lowercase.

Highlighting Conventions

This book uses the following highlighting conventions:

The names of invariant objects known to the software appear in bold type. In some text, however,
such as in lists, no special typographic treatment is used. Examples of such objects include:

• Function and macro names

• Data types and structures

• Constants and flags

Names of objects known to the software must be entered exactly as shown.

• Variable names supplied by user programs appear in italic type. In some text, however, such as in
lists, no special typographic treatment is used. Examples of these objects include arguments and
other parameters.

• No highlighting appears in code examples.

Syntax Diagram Conventions

Throughout this book, diagrams illustrate the syntax for string formats and commands. The following
list shows how to read these diagrams:

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

• A symbol begins a diagram.

• A symbol indicates continuation of a diagram on the next line.

• A symbol indicates continuation of a diagram from the previous line.

• A symbol terminates a diagram.

• Keywords are in regular type, and variables are in italics. Keywords must be typed exactly as
shown.

• Keywords or variables on the main path of a diagram are required.

• Keywords or variables shown on branches below the main path are optional.

• Keywords or variables can appear in a stack, indicating that only one item in a stack can be
chosen. If an item in a stack is on the main path, you must choose an item from the stack. If all
items in a stack are below the main path, you may choose an item from the stack.

keyword variable1 variable2

keyword

variable1 variable2
About This Book xiii

 Preliminary
For example, in the following syntax diagram, you must choose either variable1 or variable2.
However, because variable3 and variable4 are below the main path, neither is required.

• A repeat separator is a returning arrow that surrounds a syntax element or group and shows that
the element or group can be repeated.

Contacting the IBM Embedded Systems Solution Center

For information about the PowerPC PPC405EP Evaluation Board Kit and the IBM family of hardware
and software products for embedded system developers, call the IBM Embedded Systems Solution
Center at (919) 543-5701, or check out the IBM Microelectronics web site at:

http://www.chips.ibm.com/products/embedded

Please send any comments or questions regarding this product to the following Internet address:

ppcsupp@us.ibm.com

Related Publications

Many of the following publications are included on the CD ROM that comes with the evaluation kit.
The others are available from your IBM Microelectronics representative:

• Embedded Application Binary Interface (EABI) Publications

PowerPC Embedded Application Binary Interface (EABI)

System V Application Binary Interface, Third Edition, 0-13-0100439-5

System V Application Binary Interface, PowerPC Processor Supplement

• IBM High C/C++ Publications

The following list includes the books in the IBM High C/C++ library:

IBM High C/C++ Programmer’s Guide for PowerPC, 92G6920

IBM High C/C++ Language Reference for PowerPC, 92G6923

IBM ELF Assembler User’s Guide for PowerPC, 92G6921

IBM ELF Linker User’s Guide for PowerPC, 92G6922

• OS Open Publications

IBM OS Open Programmer’s Reference, Volume 1, 92G6911

IBM OS Open Programmer’s Reference, Volume 2, 92G6912

IBM OS Open User’s Guide, 92G6897

• RISCWatch Debugger Publications

RISCWatch Debugger User’s Guide, 13H6964

RISCWatch Debugger Installation Guide, 13H6984

keyword variable1

variable2 variable3

variable4

keyword variable1
xiv PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
• PowerPC PPC405EP Publications

PowerPC 405EP Embedded Processor Data Sheet

PowerPC 405EP Embedded Processor User’s Manual

• Evaluation Board Publications

PowerPC 405EP Evaluation Board Manual
About This Book xv

 Preliminary
xvi PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
Chapter 1. Overview of the Evaluation Board Kit

This chapter introduces the hardware and software components included in the PPC405EP
evaluation board kit.

1.1 Hardware Components

The PPC405EP evaluation board kit contains the evaluation board, power supply, power supply line
cord, serial port and Ethernet cables.

1.1.1 Evaluation Board

Features of the evaluation board include the PowerPC PPC405EP processor, 128MB SDRAM, four
32-bit PCI slots, 2 built-in Ethernet ports (10BaseT/100BaseTX), 512KB socketed flash memory,
512KB SRAM, 2 serial ports, a time-of-day clock with 8KB NVRAM, and a I2C port.

For a detailed description of the evaluation board, refer to the PowerPC 405EP Evaluation Board
Manual.

1.1.2 Cables and Power Supply

The PPC405EP evaluation board kit includes a serial port interface cable for connecting the board’s
serial port 1 to a terminal or terminal emulator running on the host.

An Ethernet crossover cable is provided in the kit to support direct Ethernet communication with the
host system. Standard 10BaseT/100BaseTX RJ45 Ethernet connectors are provided on the
evaluation board. The Ethernet crossover cable is for direct connection to a single host and cannot be
used with a hub or a building’s Ethernet network. The crossover cable is only supported for 10Mb/s
operation - for 100Mb/s a hub (not supplied) should be used.

A power supply line cord is also provided with the PPC405EP evaluation board kit.

1.2 Software Components

The PPC405EP evaluation board kit software consists of the Board Support Package (BSP), the
RISCWatch source level debugger, and the IBM High C/C++ evaluation compiler.

1.2.1 BSP Software

The BSP software includes the ROM Monitor code resident in flash memory, ROM Monitor source
code, the IBM OS Open real time operating system, several sample programs (including the
Dhrystone benchmark program), and application development libraries and tools.

1.2.1.1 ROM Monitor

The ROM Monitor program for the evaluation board is supplied in the 512KB socketed flash memory
module on the evaluation board. This code initializes the 405EP processor and the board for serial
and Ethernet communications. By supporting communications with the host computer system, the
Overview of the Evaluation Board Kit 1-1

 Preliminary
ROM Monitor allows applications to be loaded from the host onto the board and debugged using the
RISCWatch source level debugger in ROM Monitor mode.

The ROM Monitor is accessed through a terminal (or terminal emulator) attached to serial port 1 on
the board. The RISCWatch debugger, when in ROM Monitor mode, runs on the host system,
communicating with the ROM Monitor through an Ethernet interface on the board.

The ROM Monitor source code is provided and can be readily used for product development. The
availability of the code helps lower software development costs and quicken product time to market.
The code is also provided so that debuggers other than RISCWatch may be integrated with the
PPC405EP evaluation board kit. Appendix A describes the trace calls that support communication
between the RISCWatch debugger on the host and the ROM Monitor running on the board.

1.2.1.2 OS Open Real-Time Operating System

OS Open is a real-time operating system (RTOS) available for the PowerPC 400, 600, and 700
families of processors. OS Open is designed to take full advantage of the power of the IBM PowerPC
RISC processors. Also, because the OS Open environment is built in a scalable fashion, it can be
configured to meet the functional requirements and memory constraints of a wide variety of
embedded systems.

OS Open features:

• Hard real-time support, including deterministic execution, priority inheritance protocols, and priority
ceiling protocols

• Board support packages for plug-and-play operation of popular board-level products

• Support for existing American National Standards Institute (ANSI) C and emerging POSIX
standards

• Open network interfaces to support embedded systems in heterogeneous environments

• Scalable implementations to meet the requirements and constraints of a variety of embedded
systems

The version of OS Open included in the BSP software contains a reduced-function kernel that limits
the number of threads that can be in existence at one time. Additional details can be found in the
README file following software installation. A full-function OS Open kernel is available from IBM.
Contact the IBM Embedded Systems Solutions Center at (919) 543-5701 for additional information.

1.2.1.3 Dhrystone Benchmark Program

The Dhrystone benchmark is a commonly available integer benchmark. It is included as an example
program to be built, loaded onto the board, and executed. The results of this benchmark may vary
based on compiler options and the system environment in which it is run.

1.2.1.4 Application Tools

Several host-based tools are provided to support ROM and application development on the evaluation
board.

1.2.2 RISCWatch Debugger

The RISCWatch source level debugger provides a window-based debugging environment for loading,
debugging, and executing application programs on the board. Debugger installation and usage for
1-2 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
ROM Monitor and OS Open (non-JTAG) targets are addressed in the RISCWatch Debugger
Installation Guide and the RISCWatch Debugger User’s Guide included on the publications CD-ROM
in the kit. A sample debug session is included with the debugger.

1.2.3 IBM High C/C++ Evaluation Compiler

The IBM High C/C++ compiler is a globally optimizing compiler developed for the PowerPC family of
processors. It produces executable code in Extended Link Format (ELF) file format. The version
included in the kit is a limited capacity version created specifically for the PPC405EP evaluation board
kit. It supports the compilation, assembly, and linkage of the sample application programs and the
ROM Monitor source code. A full featured version of the IBM High C/C++ compiler is available from
IBM. For more information contact the PowerPC Embedded Systems Solutions Center at
ppcsupp@us.ibm.com.
Overview of the Evaluation Board Kit 1-3

 Preliminary
1-4 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
Chapter 2. Host System Requirements

This chapter describes the hardware and software requirements of the host system to which the
evaluation board is to be connected. Supported host systems include:

• IBM (or compatible) PC running one of the following:

– Windows 95/98/ME

– Windows NT 4.0/2000/XP

2.1 PC Host System Requirements

Hardware requirements of the host PC include:

• IBM or compatible system unit. Minimum requirements: x486 DX2 50/66MHz with 8MB of RAM

• VGA/SVGA Display Monitor. Minimum requirement: VGA 640 x 480. Recommended: SVGA 1024 x
768

• Approximately 50MB of free disk space. This space is required for the IBM High C/C++ compiler,
the Board Support Package software, and the RISCWatch debugger. When planning disk space
usage, consider disk space requirements for Windows and any other software packages.

• At least one available serial port for terminal emulation. Establishing an Ethernet host-to-board
connection will most likely require the installation of an Ethernet adapter card on the host (if not
already installed) and some additional connectivity hardware. That hardware might include any or
all of the following:

– An Ethernet 10BaseT/100BaseTX network transceiver, a twisted pair cable, and a hub. At a
minimum, a point-to-point connection will require the Ethernet crossover cable supplied with the
kit. The Ethernet crossover cable is for direct connection to a single host and cannot be used
with a hub or a building’s Ethernet network. The crossover cable is only supported for 10Mb/s
operation - for 100Mb/s a hub (not supplied) should be used.

The following software must be installed on the host PC to run the debugger that communicates with
the ROM Monitor on the board:

• RISCWatch 5.0 or higher

• Windows 95/98/ME or Windows NT 4.0/2000/XP
Host System Requirements 2-1

 Preliminary
2-2 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
Chapter 3. Installing the Software

This chapter describes the procedures for installing the BSP software and the High C/C++ Compiler
on the host system. Details of the software, its directories and their contents, are also given.
Instructions for installing the RISCWatch Debugger software can be found in the RISCWatch
Debugger Installation Guide. Please refer to the section corresponding to your host system.

3.1 PC Software Installation

Before beginning the installation, you must have:

• BSP for PC installation CD

• A PC running Windows 95/98/NT 4.0/2000

The following procedure installs the BSP software:

Note: For Windows NT/2000 users, we recommend that you log on as administrator .

1. Insert the CD into the CD drive (assumed from here on to be drive “D”). This should automatically
run the install program. If it does not, proceed to step 2.

2. Select Start from the Windows task bar.

3. Select Run .

4. Type D:\setup then press Enter to run the installation program.

5. Follow the installation program instructions. A typical install will install the BSP Software, the
HighC/C++ Compiler, and RISCWatch. The default install directory is \Program Files\IBM\405EP_
EvalKit .

3.1.1 BSP Software Installation

If the default install directory is accepted, the BSP software is installed in the osopen subdirectory
tree under install directory.The osopen directory tree contains the files and tools that support OS
Open application and ROM development. The osopen subdirectories and their contents are as
follows.

\bin

This directory contains several host based utilities used for application and ROM program
development.

• elf2rom.exe - creates a ROM image from an ELF executable file

• eimgbld.exe - creates a ROM Monitor loadable image from an ELF executable file

• hbranch.exe - places an absolute branch in the last address of a ROM image

• rambuild.exe - creates an assembler source file that contains the files found in a specified
directory

• gnumake.exe - supports the use of makefiles when building application programs

• bootpd.exe - bootp server to support ROM Monitor downloads
Installing the Software 3-1

 Preliminary
• tftpd.exe - tftp server to support host-to-board file transfers

\ld

Contains dynamically loadable modules that can be run from OS Open’s OpenShell

\m405h_evb

This directory contains the ROM Monitor and OS Open platform specific code for the evaluation board
included in the kit.

• README.TXT - contains the latest information regarding this release

• \include - contains OS Open include files

• \lib - contains OS Open libraries

• \m4 - contains assembler preprocessor include files

• \openbios - contains the source code for the ROM Monitor (See Chapter 7, “ROM Monitor”)

• \samples - contains samples programs that can be compiled and run

• \make - contains parameters used by various makefiles

Considerable effort goes into providing a quality product with consistent documentation. To insure that
our customers have the advantage of the latest software features and updated information,
README.TXT contains clarifications and additional information and should be considered essential
reading.

Providing Feedback

Please provide any feedback to ppcsupp@us.ibm.com. Your feedback and suggestions will help us to
improve our products and technical publications.

3.1.2 High C/C++ Evaluation Compiler Installation

The IBM High C/C++ Compiler is installed in the highcppc directory tree under the base installation
directory. The highcppc\bin directory contains the files required for the IBM High C/C++ Compiler.
Those files include:

• asppc.exe - assembler for assembler language programs

• ldppc.exe - ELF linker/binder to build applications to be run on the board

• hcppc.exe - High C/C++ compiler for C programs

• arppc.exe - ELF library archiver

The readme file under the highcppc directory contains the latest information regarding the compiler
and should be considered essential reading.

3.1.3 RISCWatch Debugger Installation

RISCWatch is installed under the RISCWatch directory tree under the base installation directory.
Proper environment setup is required before initial usage. Please refer to the RISCWatch Debugger
Installation Guide for debugger environment setup instructions.
3-2 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
Chapter 4. Host Configuration

Several host configuration steps are required to facilitate communications between the host computer
and the board. These steps are outlined in this chapter. Please refer to the section corresponding to
your host system.

4.1 PC Host Configuration

The following sections discuss setup of host configuration for PC hosts.

4.1.1 Serial Port Setup - PC

Most PCs include two serial ports to support communications via asynchronous data transfer. These
ports are sometimes referred to as communication or COM ports. These ports are usually accessed
from the back of the system unit. You should consult your PC literature to determine how many serial
ports are available on your unit and where they are located. In this section, S1 and S2 refer to the
respective serial ports on the host PC, and SP1 and SP2 to the respective serial ports on the board.

One serial port should be used to connect a terminal emulator running on the host to the ROM
Monitor running on the board. This section addresses the proper configuration of the S1 serial ports
to support this connection. Users should also refer to the Windows on-line help for “Changing Serial
Port Settings”.

The connection of the terminal emulator running on the host to the ROM Monitor running on the
board, is made through the S1 serial port on the PC and the SP1 (J7 lower) serial port on the board.
The S1 port must be configured for a baud rate of 9600, 8 data bits, 1 stop bit, and no parity. The
proper setting of these parameters is discussed later in the section on terminal emulation.

4.1.2 Ethernet Setup - PC

An Ethernet connection can be used for host-to-board communications. The Ethernet connection is
made through an Ethernet adapter on the host and the 10BaseT/100BaseTX Ethernet port (J18) on
the board. Ethernet is is recommended when downloading large applications on to the board or when
using the RISCWatch debugger.

An Ethernet connection may require additional hardware. The evaluation board supports a standard
Ethernet, twisted pair (10BaseT/100BaseTX) connection. This connection requires that the host PC
be equipped with an appropriate Ethernet adapter. The host adapter is not included in the kit. Please
consult your PC and adapter documentation for requirements and installation instructions.

At a minimum, a 10BaseT/100BaseTX connection requires a crossover Ethernet twisted pair cable
(included in the kit) for point-to-point communications. The Ethernet crossover cable is for 10Mb/s
direct connection to a single host and cannot be used with a hub or a building’s Ethernet network. If
you want more than two nodes, or 100Mb/s connectivity, you will need a hub and straight-through
twisted pair cables.

Other hardware required will depend on the type of Ethernet adapter you have on your PC and
whether the board is being connected to an existing Ethernet network. Please consult your system
administrator and the documentation included with the adapter hardware for additional instructions.
Host Configuration 4-1

 Preliminary
Establishment of an Ethernet interface requires a host IP address. If the host PC is connected to an
existing Ethernet network, the host IP address should already be defined and there is no need to set
it again. Consult your network administrator on how to obtain the host’s Ethernet IP address and how
to add the board to the existing network.

To set the host IP address for the Ethernet connection:

1. Select the My Computer icon from the desktop.

2. Select Control Panel.

3. Select Network.

4. Add the appropriate Adapter network component for the Ethernet adapter being used (if not
already added).

5. Add a Protocol network component of Microsoft - TCP/IP' (if not already added). Specify the IP
address (7.1.1.4 is recommended to maintain consistency with this document) and netmask
(255.255.240.0) to be used.

For the update to take effect, TCP/IP may need to be restarted. This may require a reboot of the
system and/or a restart of TCP/IP. Make a note of the host IP address assigned to the Ethernet
adapter, as this value will need to be made known to the ROM Monitor on the board.

4.1.3 ROM Monitor-Debugger Communication Setup - PC

Before the RISCWatch Debugger can be used, some additional steps need to be taken to establish
ROM Monitor-Debugger communications. These steps involve an update of the TCP/IP services file
to establish a named communications port and port number for TCP/IP socket communications, and
a restart of the TCP/IP package for the update to take effect.

Windows 95/98 places the services file under C:\WINDOWS\SERVICES. Windows NT places the
services file under C:WINDOWS\SYSTEM32\DRIVERS\SERVICES. Users should consult their
TCP/IP documentation or system administrator if they can not locate the file. The following lines must
be added to the file:

osopen-dbg 20044/tcp # for RISCWatch OS Open debug

osopen-dbg 20044/udp # for RISCWatch rom_mon debug

For the update to take effect, TCP/IP needs to be restarted. This might require a reboot of the system
and a restart of the TCP/IP package.
4-2 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
Chapter 5. Hardware

The PPC405EP evaluation board kit includes the evaluation board which contains the following
features:

• PowerPC PPC405EP processor, which includes:

– PowerPC 405 core

– Two 10BaseT/100 Base TX (RJ45) Ethernet Ports

– Two 16550-type serial ports

– IIC (I2C) port

– General Purpose Timers

– Interrupt Controller

– PC-133 SDRAM Controller

– DMA controller

– ROM/Peripheral controller

– Internal PCI Controller

– General-purpose I/Os

• Memory

– 128MB SDRAM, single DIMM socket, support up to 128MB

– 512KB socketed flash memory

– 512KB SRAM

• Real-time clock with 8KB NVRAM and battery-backup

• Four 32-bit PCI connectors

For detailed descriptions of the evaluation board specifications, features, and its memory mapping,
please refer to the PowerPC 405EP Evaluation Board Manual.
Hardware 5-1

 Preliminary
5-2 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
Chapter 6. Board Connectors

For detailed descriptions of the connectors and jumpers on the evaluation board, please refer to the
PowerPC 405EP Evaluation Board Manual.

6.1 Connecting the Evaluation Board to the Host

To establish a working environment, the evaluation board must be connected to a host system. ROM
Monitor access requires a connection between the serial port on the board (J7 lower) and the S1
(COM1) serial port on the host. Users must also establish a connection for debug and downloading
applications from the host to the board. This connection is made over the Ethernet network
established during host configuration.

Included in the PowerPC PPC405EP Evaluation Board Kit is an interface cable supporting either 9-
pin or 25-pin serial port connections. Assuming a terminal emulator running on the host is going to be
used for ROM Monitor access, connect the 9-pin serial port connector on one end of a cable to the J7
lower serial port connector on the board, and the other end of the same cable to the S1 (COM1) serial
port on the host. The host end might require a serial port adapter (not supplied) for connectivity.The
Ethernet connection can be made in two ways. If the connection is to be used exclusively between the
host and the board, and only 10Mb/s speed is required, the provided crossover cable can be used to
directly connect the two nodes. Otherwise, a 10BaseT or 100BaseTx hub (not provided) must be
used to connect the nodes together.

Note: The Ethernet 10BaseT crossover cable supplied will not work if plugged into a hub.

Figure 6-1 shows the connections and signal assignments required in a crossover cable:

Figure 6-2 shows a point-to-point Ethernet connection using the provided crossover cable:

RJ-45 Connector 10BaseT Cable RJ-45

Twisted
Pair

Signal
Name

Signal
Name

1 TD + TD +

1 TD − TD −

2 RD + RD +

2 RD − RD −

3,4 (Not
used)

(Not
used)

Figure 6-1. Wiring in a Crossover Cable

Pin

1

2

3

6

4, 5, 7, 8 4, 5, 7, 8

Pin

1

2

3

6

Board Connectors 6-1

 Preliminary
Figure 6-3 shows an Ethernet connection using a hub:

If the connection is to be made to an existing Ethernet network, users should consult their Network
Administrator to insure proper connectivity.

Terminal Emulator

Host

Running on
Host S1 (Com1)

Ethernet

Figure 6-2. Point-to-Point Ethernet Connection

Adapter Evaluation Board

Ethernet Port (J18)

10BaseT
Crossover
Cable

Serial Port 1 (J7 lower)

Serial Port 2 (J7 upper)

Terminal Emulato r

Host

Running on
Host S1 (Com1)

Ethernet
Adapter

10 BaseT /
100 BaseTx

10BaseT / 100BaseTx
Straight-through Cable

Figure 6-3. Ethernet Connection with Hub

Evaluation Board

Ethernet Port (J18)

Serial Port 1 (J7 lower)

Serial Port 2 (J7 upper)

Hub
6-2 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
6.2 Using a Terminal Emulator

The ROM Monitor transmits/receives data through serial port 1 (J7 lower) on the board. Access to the
ROM Monitor can be achieved by connecting a VT100 (or compatible) terminal directly to serial port 1
(J7 lower) on the board or by using a terminal emulator running on the host. When using a terminal
emulator, access is obtained via a connection between the serial port 1 connector on the board and
an available serial (or COM) port on the host system.

6.2.1 PC Terminal Emulation

Once all the host-to-board connections have been properly made and power has been supplied to the
board, the Windows HyperTerminal program can be used as a terminal emulator to support
communications with the ROM Monitor. The steps for setting up the terminal emulator connected to
COM1 are as follows:

1. Select Start from the Windows task bar.

2. Select Programs .

3. Select Accessories .

4. Select HyperTerminal .

5. If you see a window that says "You need to install a modem before you can make a connection.
Would you like to do this now?" click on "No". You do not need a modem to connect to the board.

6. Select the Hypertrm icon.

7. Enter a name, for example "PPCEVB" and select an icon.

8. Select the following:
Connect using Direct to Com 1 (default)
Bits per second – 9600
Data bits – 8 (default)
Parity – None (default)
Stop Bits – 1 (default)
Flow Control – Xon/Xoff

9. Select OK.

After resetting the board, the ROM Monitor menu should appear in the HyperTerminal window. If it
does not, check your HyperTerminal settings and ensure proper connectivity between the host and
the board.

6.3 Board Reset

When the connectors have been installed and power is applied to the board, you must first press the
board’s On/off switch to power up the board. Pressing the Reset switch causes the processor and the
communications controllers to reset. After the ROM Monitor (resident in flash) initializes the processor
and board peripherals, the monitor menu is displayed if a properly configured terminal (or terminal
emulator) is attached to serial port 1 (J7 lower) of the board. Details of ROM Monitor operation are
provided in Chapter 7, “ROM Monitor.”
Board Connectors 6-3

 Preliminary
6-4 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
Chapter 7. ROM Monitor

This chapter describes the ROM Monitor program, also known as OpenBIOS. This ROM resident
program provides chip (and board level) initialization and a user interface menu that supports board
diagnostics, program downloads, and debug.

7.1 ROM Monitor Source Code

The ROM Monitor source code is provided for ROM development purposes. This code is separate
from the OS Open and sample application code described in Chapter 8. The ROM Monitor code is
loosely organized by function in the following subdirectories and files within the 405EP\openbios
directory.

7.2 Communications Features

The ROM Monitor runs as part of the boot code in the flash memory on the board. The monitor
communicates with an asynchronous terminal (or terminal emulator) attached to serial port 1 (SP1)

align_h.s Alignment handling code

bootprom.cmd RISCWatch command script for reprogramming Serial Boot PROM

dbLib/ Ptrace debug interface routines

devTab.c Handles boot device definitions

enetLib/ Ethernet related code

entry.s Processor and C environment initialization

flash/ Code to support re-programming the flash memory

include/ C include files

ioLib/ I/O helper functions

lib/ Repository for intermediate libraries

m4/ assembler preprocessor include files

Makefile Top level makefile to create ROM monitor image

malLib/ Memory Access Layer routines

mapfile1 Mapfile to specify ROM Monitor linkage directives

miscLib/ Miscellaneous routines used for ROM monitor

netLib/ IP and UDP processing functions

ppcLib/ C callable functions to access PowerPC special instructions

rom_***.map Load map of the ROM Monitor version *** shipped with the board

s1ldLib/ Code to support S1 serial port downloads

s1Lib/ Serial Port interface routines
ROM Monitor 7-1

 Preliminary
on the board, through which the user accesses the monitor menu. The ROM Monitor can download
applications and communicate with the host debugger through different Ethernet adapters, depending
on which devices are enabled. Ethernet communications use the Internet Protocol (IP) over standard
Ethernet. The ROM Monitor also supports the downloading of programs via serial port 1, but not
debug. To use this feature, a VT100 terminal emulator that supports binary file transfers (such as
kermit) must be used on the host system.

7.3 Configuration of bootp and tftp to Support ROM Monitor Loads

Both the debugger and the ROM Monitor can be used to load applications onto the board. Details on
how to use the debugger can be found in the RISCWatch Debugger User’s Guide. To use the facilities
of the ROM Monitor for downloading applications to the board, the host workstation must be
configured to support the bootp protocol and tftp daemons. The configuration consists of two parts.
The bootptab file on the host must be customized to match system requirements, and the bootp and
tftp daemons (or servers) must be made available.

7.3.1 PC bootp and tftp Configuration

Not all TCP/IP packages include the bootpd and tftpd servers required for ROM Monitor downloads.
For this reason both the bootpd and tftpd servers have been included in the BSP software package
under the \osopen\bin directory. These servers can be installed and used in conjunction with
Windows Socket compliant TCP/IP packages that come with Windows 95/98 and Windows NT.

Configuration consists of two parts. The bootptab and services files on the host must be customized
to match system requirements, and the bootpd and tftpd servers must be made available. If you
choose to use the bootpd and tftpd servers provided with this package, you will need to modify your
autoexec.bat file to specify the location of the bootptab and services files. This is accomplished by
adding a line that sets up an ETC environment variable to specify the directory where the bootptab
and services files are located (e.g., set etc=c:\windows for Windows 95/98,
set etc=c:\winnt\system32\drivers\etc . for Windows NT 4.0). Consult your TCP/IP
documentation or contact your system administrator if the services file cannot be found.

A sample bootptab file, bin\bootptab , is included with the BSP software. The bin\bootptab file can
be copied to the ETC directory set in the autoexec.bat file and modified appropriately. Note that the
bootptab file in the ETC directory must be named bootptab with no file extension. Entries describing
the board to the host PC must be added to the bootptab file.

When creating or modifying the bootptab file, the following rules apply:

• Blank lines and lines beginning with “#” are ignored.

• Each entry must be entered on a single line.

• Each entry must start with a host name followed by the legends (see the sample bootptab file for
legend descriptions).

• Use “:” to separate each legend and leave no spaces between legends.

• User must supply the host IP address via the “ip” legend.

• If the “hd” (home directory) & “bf” (bootfile) legends are not provided for a particular entry, the first
defined “hd” and “bf” legends in the bootptab file will be taken as default.

File entries similar to the one below would be suitable.
7-2 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
enetc:ht=ethernet:hd=\osopen\m405h_evb\samples:bf=boot.img:bs:ip=7.1.1.5:
sm=255.255.255.255:ha=xxxxxxxxxxxx

Each of the entry should be entered on a single line. The value of the Ethernet hardware address field
in the enetc entry, ha=xxxxxxxxxxxx, should match the twelve character hardware address listed for
the Ethernet Boot Source on the ROM Monitor menu.

The connection uses the file \osopen\m405h_evb\samples\boot.img as the source for the
application image to be downloaded onto the board. Be sure that the ht=ethernet keyword is used for
the Ethernet connection entry and that the IP addresses are those of the board. Since a board IP
address was not required for Ethernet setup, the IP address used in the enetc entry defines the IP
address of the board for the Ethernet connection. If the suggested bootptab entries are used, 7.1.1.5
would be the board’s Ethernet IP address. Take note of the board’s IP addresses, since they must be
made known to the ROM Monitor.

The services file (no file extension) must also exist in the ETC directory set in the autoexec.bat file.
It must be updated with the port and protocol information for the bootpd and tftpd servers. To use the
servers provided with this package, the following entries must be included in the services file:

bootps 67/UDP

bootpc 68/UDP

tftp 69/UDP

For the update to take effect, TCP/IP needs to be re-started. This may require a reboot of the system
and/or a restart of the TCP/IP package. After that, the bootpd and tftpd servers are ready for use.

You may choose to run bootpd.exe and tftpd.exe automatically every time that WIndows is started or
you can run these programs only when needed. To make these program run automatically every time
WIndows is started perform the following steps:

1. Select Start from the Windows task bar.

2. Select Settings .

3. Select Taskbar .

4. Select Start Menu Programs .

5. Select Add... .

6. In the command line field enter the following:

BOOTPD -c C -h 7.1.1.4

where C is the driver letter containing the boot image and 7.1.1.4 is the host IP address

7. Select Next .

8. In the Select Program Folder window, select the Programs/Startup folder.

9. Select Next .

10.Select Finished .

11.To start tftp follow the above steps, but enter the following in the command line field:

TFTPD

The bootp and tftp daemons will be started automatically upon the next restart of Windows.
ROM Monitor 7-3

 Preliminary
7.4 Accessing the ROM Monitor

The ROM Monitor expects a real or emulated VT100 type ASCII display attached to serial port 1 with
line protocol parameters of 9600 bps, eight bits per character, no parity, and one stop bit. Once the
terminal connected to SP1 is configured properly, you can access the ROM Monitor menu options,
use the ping test, and load an application onto the board.

The ROM Monitor also provides the interface to the RISCWatch debugger. This facility, along with the
image download process, is accessed via an IP network connection to the host workstation. Network
configuration of the host was discussed earlier in the chapter on host configuration. The actual
connection is via Ethernet using the 10BaseT/100BaseTX Ethernet port on the board.

7.5 ROM Monitor Operation

The ROM Monitor requires a block of DRAM for its operation and makes some assumptions about
applications loaded on the board. Some of these assumptions may be disregarded if you do not need
the ROM Monitor to interface with a debugger or otherwise support communication between the host
workstation and the board.

Applications wishing to coexist with the ROM Monitor must observe the following constraints.

• Provide exception vectors for application events starting at address 0x0000 0000. For example, an
application’s external interrupt handler should be located at 0x0000 0500. This is handled for you
when using OS Open.

• Use storage addresses between 0x0010 0000 and the end of DRAM only, except for application
vectors.

• Do not alter the EVPR register.

• Do not start applications lower than address 0x0010 0000.

Figure 7-1 shows the address map of the evaluation board under control of the ROM Monitor.

0x0010 0000

0xFFFF FFFF

0xFFF8 0000

0x0800 0000

ROM Monitor Code (Flash)

Application Area

Figure 7-1. ROM Monitor Address Map

Application Vectors
0x0000 2000

0x0000 0000

ROM Monitor Area (DRAM)

(end of DRAM)

. .
 .
7-4 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
7.6 Monitor Selections and Submenus

At this point it is assumed that the host has been properly configured, all board connections have
been made, power has been supplied, and the terminal emulator running on the host has been
configured and started successfully. The main menu, shown below, is displayed after the board has
been reset and the ROM Monitor completes initialization. Note that some of the values you see, in
particular the ROM Monitor version, the IP addresses, and the Ethernet controller’s hardware
address, may differ with those shown below.

Each menu option is described separately in the following sections. “Local” in the context of the ROM
Monitor IP addressing means the IP address assigned to the board, while “remote” means the IP
address assigned to the host workstation. Using option 8 to save changes made to the configuration
will allow the new values to persist beyond subsequent power-on or resets. The ROM Monitor
supports this by storing its configuration data in NVRAM.
ROM Monitor 7-5

 Preliminary
7.6.1 Initial ROM Monitor Menu

The following menu is displayed after the board has been reset. (Note: The following screens may not
exactly match the PPC405EP kit).

405EP 1.19 ROM Monitor (09/05/02)

--------------------- System Info ----------------------
 Processor = 405EP, PVR: 51210950
 Processor speed = 200 MHz
 PLB speed = 100 MHz
 Ext Bus speed = 50MHz
 PCI Bus speed = 33 MHz
 Amount of SDRAM = 128 MBytes
 External PCI arbiter enabled
--

--- Device Configuration ---
 Power-On Test Devices:
 000 Enabled System Memory [RAM]
 001 Enabled Ethernet 0 [EMAC0]

 Boot Sources:
 001 Enabled Ethernet 0 [EMAC0]
 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
005 Enabled Serial Port 1 [S1]
 Baud=9600

 Debugger: Disabled

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
->
7-6 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
7.6.2 Selecting Power-On Tests

Option 1 in the main menu selects power-on tests. These tests are run when the menu exits and
before the ROM loader begins the bootp processing.

1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
-> 1

When option 1 is selected, the following submenu is displayed.

--- ENABLE AND DISABLE POWER-ON TESTS ---
 Power-On Test Devices:
 000 Enabled System Memory [RAM]
 001 Enabled Ethernet 0 [EMAC0]
 004 Enabled Ethernet 1 [EMAC1]

Select device to change ->

Selecting a test toggles its testing status. For example, since the System Memory test is enabled in
the above menu, selecting 0 at the prompt disables it.

Select device to change -> 0 [Selects system memory]

After the selection has been made, the new setting is displayed, followed by the main menu.

Select device to change ->0
 [RAM] test is disabled [Message describing change]

 --- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Enabled Ethernet 0 [EMAC0]
 004 Enabled Ethernet 1 [EMAC1]

 Boot Sources:
 001 Enabled Ethernet 0 [EMAC0]
 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Enabled Ethernet 1 [EMAC1]
 local=8.1.1.5 remote=8.1.1.4 hwaddr=1000abcdef56
 005 Enbaled Serial Port 1 [S1]
 Baud=9600
ROM Monitor 7-7

 Preliminary

 Debugger : Disabled

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
->

Remember to use Option 8 to save any configuration changes that you may have made. If the
changes are not saved, they will be lost upon an exit from the menu or upon a board reset.

7.6.3 Selecting Boot Devices

Option 2 in the main menu enables and disables boot devices.

1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable Dcache (Enabled)
 0 - Exit menu and continue
-> 2

When option 2 is selected, the following submenu is displayed.

--- ENABLE AND DISABLE BOOT DEVICES ---
 Boot Sources:
 001 Enabled Ethernet 0 [EMAC0}
 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55

Select device to change ->

Selecting a device toggles its boot status. Selecting 1, for example, would disable Ethernet Port 1 as
a boot device.

Select device to change -> 1 [Selects ethernet port]
7-8 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
After the selection has been made, the new setting is displayed, followed by the main menu.

Select device to change ->4
 [EMAC0] boot is disabled [Message describing change]

 --- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Disabled Ethernet 0 [EMAC0]
 004 Enabled Ethernet 1 [EMAC1]

 Boot Sources:
 001 Disabled Ethernet 0 [EMAC0]
 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 005 Enabled Serial Port 1 [S1]
 Baud=9600

 Debugger : Disabled

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
->

When the user selects option 0 and exits from the monitor menu, the monitor attempts a boot of the
application image on the host using the enabled boot sources in the order they are listed. In the above
example, a boot is attempted over Ethernet since it is the first boot source enabled. If more than one
boot source is enabled, an attempt to boot over the first enabled device is made. If that attempt fails, a
boot over the next enabled device is attempted.

7.6.4 Changing IP Addresses

Option 3 in the main menu allows users to change the IP addresses for the board and the host
workstation. These addresses are used for bootp processing, debugger communications, and in the
host connectivity “ping” test.

Note: The local IP address is that of the board and the remote IP address is that of the host
workstation. The IP addresses must match those set during host configuration.

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
ROM Monitor 7-9

 Preliminary
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
-> 3

When option 3 is selected, the following submenu is displayed:

--- CHANGE IP ADDRESS ---
Device List:
 001 Enabled Ethernet 0 [EMAC0]
 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Ethernet 1 [EMAC1]
 local=8.1.1.5 remote=8.1.1.4 hwaddr=1000abcdef56

Select device to change ->

Select the appropriate device.

Select device to change -> 1 [Selects Ethernet]

When a valid device is selected, the following submenu is displayed.

1 - Change local address
 2 - Change remote address
 0 - Return to main menu
->

Make the appropriate selection. To change the board’s IP address, you would select option 1, Change
local address.

-> 1 [Selects the local address]
Current IP address = (7.1.1.5) [Displays the current value]
Enter new IP address ->Enter IP address in dot notation (e.g., 8.1.1.2)

Now enter the new IP address in dotted decimal notation.

7.1.1.5

After the selection has been entered, the new configuration is displayed, followed by the main menu.

--- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Enabled Ethernet 0 [EMAC0
 004 Enabled Ethernet 1 [EMAC1

 Boot Sources:
 001 Enabled Ethernet 0[EMAC0]
 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Ethernet 1 [EMAC1]
7-10 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
 local=8.1.1.5 remote=8.1.1.4 hwaddr=1000abcdef56
 005 Enabled Serial Port 1 [S1]
 Baud=9600

 Debugger : Disabled

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
->

This option should be repeated to set all of the IP addresses to their appropriate values. If the
suggested IP addresses are being used, the local and remote addresses for both the Ethernet and
the Serial Port should match those in the above menu. Remember to save any configuration changes
via option 8.

7.6.5 Using the Ping Test

Option 4 in the main menu selects the ping test. The ping test can be used for a basic assurance test
of IP connectivity to the host workstation. It should be performed after setting the IP addresses to
insure host-to-board communications. If the ping test fails, users can not load applications on to the
board. The local and remote addresses for the specified device are used for the source and
destination of the ICMP ping packets.

1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
-> 4

When option 4 is selected, the current configuration is displayed, followed by another command
prompt.

--- PING TEST ---
Device List:
 001 Enabled Ethernet 0[EMAC0]
ROM Monitor 7-11

 Preliminary
 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Ethenet 1 [EMAC1]
 local=8.1.1.5 remote=8.1.1.4 hwaddr=1000abcdef56

Select device to ping ->

Select the appropriate device to ping (in this case only Ethernet is enabled).

Select device to ping -> 1 [selects the Ethernet port]

If the board is able to successfully ping the host, a message similar to the following should appear:

Using [EMAC0] to ping. press any key to stop.
PING 7.1.1.4 56 data bytes
78 bytes from 7.1.1.4: icmp_seq=0 ttl=255 time=2 ms
78 bytes from 7.1.1.4: icmp_seq=2 ttl=255 time=1 ms

Pressing any key terminates the ping test. The main menu is redisplayed following the PING status
report.

--- 7.1.1.4 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
->

If the ping test fails,

• Verify that the local and remote IP addresses are set correctly. The local IP address should be that
of the board and the remote IP address should be that of the host. These IP addresses were
assigned during host configuration (see earlier chapter).

• Verify that the cables are connected properly.

• Verify TCP/IP is running on the host.

Note: The ROM Monitor will not respond to an inbound ping test from the host unless the ROM
Monitor is in Debug mode (via options 5 and 0) or the ROM Monitor ping test is active on the
board at the same time (via option 4).

7.6.6 Entering the Debugger

Option 5 toggles the feature of the ROM Monitor that allows communication with the host based
source level debugger. Debugging may be enabled/disabled, and saved as part of the configuration
7-12 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
using option 8. The debugger is not actually called by the monitor until after the user exits the main
menu by selecting option 0 (exit and continue).

 --- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Enabled Ethernet 0 [EMAC0]
 004 Enabled Ethernet 1 [EMAC1]

 Boot Sources:
 001 Enabled Ethernet 0[EMAC0]
 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Ethernet 1[EMAC1]
 local=8.1.1.5 remote=8.1.1.4 hwaddr=1000abcdef56
 005 Enbaled Serial Port 1 [S1]
 Baud=9600

 Debugger : Disabled

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
-> 5
ROM monitor debugger will be active on exit
 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
-> 7

 --- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Enabled Ethernet 0 [EMAC0]
 004 Enabled Ethernet 1 [EMAC1]

 Boot Sources:
ROM Monitor 7-13

 Preliminary
 001 Enabled Ethernet 0[EMAC0]
 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Ethernet 1[EMAC1]
 local=8.1.1.5 remote=8.1.1.4 hwaddr=1000abcdef56
 005 Enbaled Serial Port 1 [S1]
 Baud=9600

 Debugger : Enabled (on exit)

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
-> 0
PowerPC ROM Monitor Debugger

 Waiting for debug command...
 Press any key to exit

Use option 8 to save the state of the ROM Monitor debugger. This option in combination with option 6,
“Toggle automatic menu”, can be used to configure the board to automatically wait for the debugger to
attach after power-on.

The ROM Monitor debugger only communicates over Ethernet so one of these boot devices must be
enabled when using the ROM Monitor debugger. After enabling the ROM Monitor debugger (via
option 5) and selecting option 0, the RISCWatch debugger can be started on the host and used to
load an application onto the board. This is assuming the RISCWatch environment file has been
updated for ROM Monitor communications. Once loaded successfully, the application can be run from
the debugger.

The RISCWatch Debugger User’s Guide contains more information on how to use the debugger to
load and execute files with the ROM Monitor as a non-JTAG target. At this point, it is recommended
that users become familiar with the debugging environment by following the “Quick Start” sample
debug session in the debugger’s User’s Guide. This session takes a user through the basics,
including how to use the debugger to load and run applications on the board.

7.6.7 Disabling the Automatic Display

Option 6 in the main menu disables the automatic monitor display when the board boots up. After
option 6 has been selected and the configuration has been saved (via Option 8), the menu display is
disabled but continues to function until the user exits from the main menu. Following the next power-
on or reset, the menu is no longer automatically displayed. This allows the user’s image to be
downloaded automatically with no menu input required. This feature also allows a user to download
7-14 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
an application with no cable connected to the serial port 1 on the board (that is, without a terminal
emulator).

After the automatic menu display has been disabled, the main menu can be accessed (assuming a
terminal emulator is attached successfully to SP1 on the board) by pressing any key during the first
five seconds that the board is booting. Otherwise, application download processing starts without
displaying the main menu.

7.6.8 Displaying the Current Configuration

Option 7 displays the current configuration.

1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
-> 7

 --- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Enabled Ethernet 0 [EMAC0]
 004 Enabled Ethernet 1 [EMAC1]

 Boot Sources:
 001 Enabled Ethernet 0 [EMAC0]
 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Ethernet 1 [EMAC1]
 local=8.1.1.5 remote=8.1.1.4 hwaddr=1000abcdef56
 005 Enbaled Serial Port 1 [S1]
 Baud=9600

 Debugger : Enabled (on exit)

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
ROM Monitor 7-15

 Preliminary
 ->

When a menu operation is selected to alter configuration settings, the current configuration is
automatically redisplayed.

7.6.9 Saving the Current Configuration

Option 8 saves the current configuration for subsequent power-on resets.

1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
-> 8
Configuration has been saved
 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
 ->

The configuration is saved in the NVRAM on the evaluation board and is retained until a new
configuration is subsequently saved.

7.6.10 Setting the Baud Rate for S1 Boots

Option 9 provides a mechanism for setting the baud rate to be used by serial port 1 when it is used as
a device to download programs. Downloading over serial port 1 requires the use of a VT100 terminal
emulator that supports kermit binary file transfer over serial port 1. Windows NT/2000 users can use
HyperTerminal to perform kermit file transfers at up to 115200 baud. The kermit terminal emulator,
available as shareware from the http://www.columbia.edu/kermit Internet site, can be used on any
of the supported hosts to download programs over serial port 1 at speeds up to 115200 baud. Note
that the ROM Monitor debugger can not operate over serial port 1.
7-16 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
--- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Enabled Ethernet 0 [EMAC0]
 004 Enabled Ethernet 1 [EMAC1]

 Boot Sources:
 001 Enabled Ethernet 0 [EMAC0]
 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Ethernet 1 [EMAC1]
 local=8.1.1.5 remote=8.1.1.4 hwaddr=1000abcdef56
 005 Enbaled Serial Port 1 [S1]
 Baud=9600

 Debugger : Enabled (on exit)

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
 -> 9

 Select a baud rate for S1 boot
 1 - 9600
 2 - 19200
 3 - 28800
 4 - 38400
 5 - 57600
 6 - 115200
 => 4

 --- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Enabled Ethernet 0 [EMAC0]
 004 Enabled Ethernet 1 [EMAC1]

 Boot Sources:
 001 Enabled Ethernet 0 [EMAC0]
 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Ethernet 1 [EMAC1]
 local=8.1.1.5 remote=8.1.1.4 hwaddr=1000abcdef56
 005 Enbaled Serial Port 1 [S1]
 Baud=38400
ROM Monitor 7-17

 Preliminary

 Debugger : Disabled (on exit)

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
->

Use Option 8 to save the selected speed after reset and power-on.

7.6.11 S1 Boot

To perform an S1 boot you must have a terminal emulator which supports kermit file transfer. The file
must be a valid boot image and must be sent in binary mode. If you have selected to use a baud rate
other than 9600, you must set the terminal emulator to run at that speed before loading the file and
set the speed back to 9600 after the download is complete. The following example shows loading the
usr_samp.img file.

--- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Disabled Ethernet 0[EMAC0]
 004 Disabled Ethernet 1[EMAC1]

 Boot Sources:
 001 Disabled Ethernet 0 [EMAC0]
 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Ethernet 1 [EMAC1]
 local=8.1.1.5 remote=8.1.1.4 hwaddr=1000abcdef56
 005 Enbaled Serial Port 1 [S1]
 Baud=38400

 Debugger: Disabled

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
7-18 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
-> 0
Booting from [S1] Serial Port 1...

PLEASE NOTE: You must now...

 a. Exit from terminal emulation mode
 b. Modify the baud rate of your host session
 c. Transmit a file to the target in binary mode
 d. Reset the host baud rate to 9600
 e. Reenter terminal emulation mode
 f. Hit enter to execute the downloaded program

At this point kermit users must get to the terminal emulator command mode and change the line
speed to match what was selected by option 9 and tell the terminal emulator to send the file in binary
format.

^\c (Cntrl-\c)
(Back at waterdeep)
C-Kermit> set speed 38400
/dev/tty0, 38400 bps
C-Kermit> set file type bin

You can now load the file.

C-Kermit> send usr_samp.img
SF
Type escape character (^\) followed by:
X to cancel file, CR to resend current packet
Z to cancel group, A for status report
E to send Error packet, Ctrl-C to quit immediately:

Sending: usr_samp.img => USR_SAMP.IMG
Size: 164864, Type: binary
...
...
...
....
.... [OK]
ZB

When loading is completed, you must change the line speed back to 9600 bps before continuing.

C-Kermit> set speed 9600
/dev/tty0, 9600 bps
ROM Monitor 7-19

 Preliminary
After setting the line speed back to 9600 bps, re-connect to your terminal emulator and press Enter to
complete the download.

C-Kermit> con
Connecting to /dev/tty0, speed 9600.
The escape character is Ctrl-\ (ASCII 28, FS)
Type the escape character followed by C to get back,
or followed by ? to see other options

Loaded successfully ...
Entry point at 0x25f20 ...

Hello 405EP user!

Your ROM Monitor version is : 1.19

Your 405EP Evaluation Board has 16777216 bytes of DRAM installed.

Your Ethernet controller’s network address is : 1000abcdef55

usr_samp done!

Assuming the S1 boot baud rate has been set to 38400 and option 0 has been selected to exit the
ROM Monitor menu and initiate a load, Windows HyperTerminal users can initiate the kermit binary
file transfer by performing the following steps:

1. Select Call and then Disconnect .

2. Select File , Properties , Configure and set the baud to match the baud rate set via ROM Monitor
option 9. In this case, it is 38400.

3. Select OK and OK again.

4. Select Call and then Connect .

5. Select Transfer , Send File and type the file name of the file to load. Set the Protocol to Kermit.

6. Select Send .

Upon successful completion of the transfer, the baud rate must be changed back to 9600.

7. Select Call and then Disconnect .

8. Select File , Properties , Configure and set the baud to 9600.

9. Select OK and OK again.

10.Select Call and then Connect .

11.Press Enter to complete the download sequence.

7.6.12 Exiting the Main Menu

Option 0 exits from the main menu, leaving the monitor active. If the debugger is active prior to
selecting option 0, the ROM Monitor waits for the user to start the debugger on the host. In all other
cases, option 0 initiates an attempt by the ROM Monitor to load an application from the host to the
7-20 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
board over the enabled boot device(s). When downloading over the Ethernet, the host bootp and tftp
configuration must be completed for the ROM Monitor to load an application program successfully.
Upon exit of the menu, the ROM Monitor will send a bootp request to the host to obtain the name of
the file to download. Once the bootpd server returns the appropriate file name as set in the bootptab
file, the ROM Monitor sends a tftp request to the tftpd server on the host to transfer file. Once the file
is loaded successfully, it is executed.

When serial port 1 is used, the ROM Monitor requires the user to follow additional instructions to
complete the download. The example shown here describes the sequence required when programs
are downloaded over serial port 1.

 - -- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Disabled Ethernet 0 [EMAC0]
 004 Disabled Ethernet 1 [EMAC1]

 Boot Sources:
 001 Disabled Ethernet 0 [EMAC0]
 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Ethernet 1 [EMAC1]
 local=8.1.1.5 remote=8.1.1.4 hwaddr=1000abcdef56
 005 Enbaled Serial Port 1 [S1]
 Baud=38400

 Debugger : Enabled (on exit)

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
 -> 0
Booting from [S1] Serial Port 1...

PLEASE NOTE: You must now...

 a. Exit from terminal emulation mode
 b. Modify the baud rate of your host session
 c. Transmit a file to the target in binary mode
 d. Reset the host baud rate to 9600
 e. Re-enter terminal emulation mode
 f. Hit enter to execute the downloaded program

The ROM Monitor will now wait for you to follow the above steps. The idea is that you must
temporarily modify the terminal emulation session baud rate to match the baud rate expected by the
ROM Monitor 7-21

 Preliminary
ROM Monitor for the serial port 1 download. The file must then be transferred to the board from the
host. The baud rate is restored to 9600 so that terminal emulation support can function after the
program has been downloaded, The ROM Monitor will wait for you to restore the baud rate (9600) and
press Enter prior to executing the downloaded program. This prevents any program I/O from being
lost or incorrectly displayed when it begins execution.

The following is an example of what you might see when the program is allowed to run.

Loaded successfully...
 Entry point at 0x25130...
 .
 .
 .

7.6.13 Cache Options

Options A and B allow the user to enable or disable the processor’s instruction and data caches,
respectively. These options toggle the status of the caches and take effect immediately upon
selection. The current cache status is indicated at the end of each option and remains in effect upon
exit from the ROM Monitor menu.

7.7 ROM Monitor User Functions

The ROM Monitor contains several functions that are available to user programs. The prototypes of
these functions can be found in the usr_func.h file in the directory osopen\405ep\openbios\include
These functions include:

Applications must follow a predefined protocol to access ROM Monitor user functions. An example
showing the proper calling procedures are included in the usr_samp.c sample program in the

send_packet_on_bootdev() Allows an IP packet to be sent over the Ethernet device that was
used to load the application program

sh_register() Used to register a function that will be called when an IP packet is
received by the ROM Monitor over the boot device.

get_board_cfg() Reads the configuration data associated with the board.

enet_send_macframe() Allows a frame to be sent over the Ethernet.

enet_register() Allows the user to register an IP address for the Ethernet (an IP
address different from that assigned to the ROM Monitor) and to
specify a function to be called when a frame arrives for that
address.

enetisThere() Determines if an Ethernet port is connected on the board.

enetInit() initializes the Ethernet.

getchar() Reads one character at a time from the keyboard buffer over the
first serial port (SP1).

s1putchar() Writes one character to the first serial port (SP1).
7-22 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
samples directory. This sample program calls the get_board_cfg() ROM Monitor function to
determine the amount of DRAM installed on the board. This program will be run as a sample program
in the next chapter.

7.8 Flash Update Utility

The openbios/flash directory contains all the code you need to reprogram the flash memory on the
board. This utility takes a binary image file targeted for the ROM as input, and generates a loadable
file that will reprogram the flash memory with the data in the binary input file. The file can then be
loaded by an existing ROM Monitor version (which will be overwritten upon successful completion of
the loaded program) or via RISCWatch JTAG.

IMPORTANT: Please see the readme.txt file in the openbios/flash directory for important
information regarding the use of this tool.

Be aware that if you use the ROM Monitor bootp or the RISCWatch ROM Monitor mode download
process to reprogram the flash, and the program loaded contains errors that will not allow you to
download images in the same manner, your flash may be corrupted and rendered useless. In this
case you will need to use RISCWatch JTAG or a ROM burner to reprogram the flash.

RISCWatch JTAG users will find a RISCWatch command file, rw_flash.cmd in the openbios/flash
directory. This command file can be used to prepare the board, load the flash update program
containing the new binary image to program into the ROM, and start it running. This method can be
used to program new flash parts, or to reprogram a corrupted flash part when normal ROM Monitor
downloads are not possible or inconvenient. When using this command file, RISCWatch must be
used in JTAG mode.

7.9 Network Address of the Ethernet Controller

Each of the the evaluation board’s Ethernet’s ports has been assigned a unique six-byte network
address. This address, also known as the media access control or MAC address, may need to be
known by customers using the board to develop their own ROM versions.

The easiest way to obtain its value is to hook up a terminal (or terminal emulator) to the serial port 1
(see Chapter 6.1, “Connecting the Evaluation Board to the Host”) and bring up the ROM Monitor.
After selecting option 7 to display the configuration, the controller’s network address is displayed in
the Ethernet boot source’s hwaddr field as twelve hex characters (six bytes).

Another way to obtain the address, is to search the Vital Product Data (VPD) area in ROM where the
network address is stored. The VPD fields consist of ASCII strings identifying the type of field, a
length byte specifying the length of the associated data, and the data itself. The VPD begins at
address 0xFFFFFE00 and is marked by field “*VPD” with 0 bytes of associated data. The network
address is marked by “*NA” with six bytes of associated data (the network address). Finally, the end
of the VPD is marked with “*END”. To extract the network address, a program would typically start at
address 0xFFFFFE00, scan for “*NA”, verify the next byte is 0x6, and treat the next six bytes as the
network address.
ROM Monitor 7-23

 Preliminary
7-24 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
Chapter 8. Sample Applications

This chapter describes the steps necessary to build and run the sample programs included in the
PPC405EP evaluation board kit software support package. This code includes a limited version of
IBM’s OS Open real time operating system and is separate from the ROM Monitor code described in
Chapter 7.

8.1 Overview

The sample application programs are compiled, assembled, and linked using the IBM High C/C++
compiler, assembler, and linker. OS Open libraries are used during the link step to create an
executable file in ELF format. This file includes the OS Open bootstrap code as well as other OS
Open functions and is referred to as a boot file. One of the tools provided in the software support
package, eimgbld , is then used to convert the boot file into the format used by the ROM Monitor to
load programs onto the evaluation board (see Appendix B for more information on the ROM Monitor
load format). The output of the eimgbld step is a file referred to as a boot image file.

There are several ways to load and execute a boot image file. One way is to use the ROM Monitor to
load and execute the file. Network loads over Ethernet require that the host contain the bootp and tftp
servers and be properly configured to support the bootp and tftp protocols (see the previous chapters
on host configuration and ROM Monitor setup). Loads over serial port 1 require a terminal emulator
that supports the kermit transfer protocol. A ROM Monitor load is initiated via option 0 from the ROM
Monitor main menu.

Another way to load and execute the boot image file is to use the RISCWatch debugger in ROM
monitor mode. To bring up RISCWatch in ROM Monitor mode (see the RISCWatch Debugger User’s
Guide for details), you must update the RISCWatch environment file for ROM Monitor
communications, enable the ROM Monitor debugger (via option 5), exit the ROM Monitor menu (via
option 0) and then start up RISCWatch on the host system. The RISCWatch load image command
can then be used to load the boot image file onto the board. Once loaded successfully, the program
can be debugged and/or executed. At any time the RISCWatch logoff command can be issued to
execute the program. This command tells the ROM Monitor to exit debug mode and start the
execution of the program. After program execution, users should quit and restart RISCWatch before
loading another boot image file to run. Without quitting RISCWatch, subsequent boot image execution
can not be guaranteed.

Note: RISCWatch also provides the means to load a boot file (as opposed to a boot image file) via its
load file command. See the “Running Your Programs” section in the RISCWatch Debugger User’s
Guide for additional information. This section also describes the steps required to load and debug
boot and boot image files.

8.2 ROM Monitor Flash Image

The flash memory on the board comes preprogrammed with a specific version of the ROM Monitor.
This version may not be latest version of the ROM Monitor. To run the samples in the software support
package, the latest version should be used. The latest version of the ROM Monitor is included in the
software support package in the file:
Sample Applications 8-1

 Preliminary
openbios\lib\rom_***.img

where *** is equal to the ROM Monitor version. If the *** version number of the ROM Monitor in the
software support package does not match the version number displayed by the monitor when it
comes up on the board, you can load the more recent version of the monitor provided in the software
support package to re-program the flash memory.

The rom_***.img file can be loaded using the ROM Monitor or the RISCWatch debugger. For it to
load properly upon the selection of ROM Monitor option 0, it must be copied to boot.img if the
suggested bootptab entry was used (see “Configuration of bootp and tftp to Support ROM Monitor
Loads” on page 7-2).

To load using RISCWatch, enable the ROM Monitor debugger (via option 5), exit the ROM Monitor
menu (via option 0), start RISCWatch on the host system (make sure the RISCWatch environment file
is setup for ROM Monitor communications), then use the following RISCWatch commands to load and
execute the rom_***.img image file:

load image (install dir)\osopen\m405h_evb\openbios\lib\rom_***.img

logoff

You will see screen information similar to that shown below. Lines preceded by “$$” are annotation for
this example and do not appear on the screen.

$$ Standard ROM Monitor load screen below
405EP 1.19 ROM Monitor (12/15/01)
$$ Version 1.4 already installed corresponds to rom_19.img

 --------------------- System Info ----------------------
 Processor = 405EP, PVR: 51210950
 Processor speed = 200 MHz
 PLB Bus speed = 100MHz

Ext Bus speed = 50 MHz
 PCI Bus speed = 33 MHz

Amount of SDRAM = 128 MB
 External PCI arbiter enabled
 --
 --- Device Configuration ---
 Power-On Test Devices:
 000 Disabled System Memory [RAM]
 001 Disabled Ethernet 0 [EMAC0]
 004 Disabled Ethernet 1 [EMAC1]

 Boot Sources:
 001 Enabled Ethernet 0 [EMAC0]
 local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
 004 Disabled Ethernet 1 [EMAC1]
 local=8.1.1.5 remote=8.1.1.4 hwaddr=1000abcdef56
 005 Disabled Serial Port 1 [S1]
 Baud=38400
8-2 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary

 Debugger: Disabled

 1 - Enable/disable tests
 2 - Enable/disable boot devices
 3 - Change IP addresses
 4 - Ping test
 5 - Toggle ROM monitor debugger
 6 - Toggle automatic menu
 7 - Display configuration
 8 - Save changes to configuration
 9 - Set baud rate for s1 boot
 A - Enable/disable I cache (Enabled)
 B - Enable/disable D cache (Enabled)
 0 - Exit menu and continue
->0
$$ Selection of 0 causes evaluation board to be loaded. Previous
$$ arrangements must have been made to place the new ROM Monitor
$$ image (for ex. \osopen\m405h_evb\openbios\lib\rom_13.img) in the
$$ place where bootp expects to find it (for ex. boot.img)
Booting from [ENET] Ethernet...
Sending bootp request ...

Loading file “\osopen\m405h_evb\samples\boot.img” ...
Sending tftp boot request ...
Transfer Complete ...
Loaded successfully ...
Entry point at 0x25028 ...

$$ following information is from the ROM Monitor update program
############### IBM 405EP Evaluation Kit FLASH Update ################
 ROM Monitor Version 1.3

$$ Heed the following warning. The ROM Monitor image could be
$$ rendered unusable and the board useless until the flash ROM is
$$ replaced.
 WARNING: You are about to re-program your ROM Monitor FLASH
 image. Do NOT turn off power or press reset
 until this procedure is completed. Otherwise
 the card may be permanently damaged!!!

Do you wish to continue? (y or n) y

Verifying new FLASH Image...
131072 matches, 0 mismatches

Update complete!
All done!

After the update completes, a reset of the board should display the menu of the new ROM Monitor
version.
Sample Applications 8-3

 Preliminary
8.3 Using the Software Samples

The sample application programs are in osopen\m405h_evb\samples subdirectory. It is
recommended that users first build and run the Dhrystone, usr_samp, and timesamp sample
programs as detailed below, to become familiar with the working environment. These sample
programs use basic_os.c to provide a minimal OS Open configuration.

Additional details regarding the sample programs and application development in general can be
found in the “Developing OS Open Applications” chapter in the IBM OS Open User’s Guide. That
chapter should be referenced for instructions on building and running the applprog, benchmk,
mailsamp, and cat sample programs.

The sample makefile contains the directives needed to build all the sample programs. It is suggested
that this makefile be used as the starting point for building subsequent user applications.

Before attempting to build the samples, ensure the osopen/bin directory and the directory that
contains the compiler, are part of your execution path (these steps should be modified accordingly
based on where the compiler and the software support package were actually installed).

For PC hosts:

1. Edit AUTOEXEC.BAT using an editor such as e (you should back this file up before editing).

2. If the following statement is missing, add it to the end of the file.

SET PATH=C:\Program Files\IBM\405EP_EvalKit\highcppc\bin;C:\Program
Files\IBM\405EP_EvalKit\osopen\bin;%PATH%;

3. Run AUTOEXEC.BAT to update your path.

8.3.1 Building and Running the Dhrystone Benchmark

The Dhrystone benchmark is a commonly available integer benchmark. Since the main loop of this
benchmark fits into the caches of many processors, its validity as a predictor of system performance
may be suspect. It is included here as an example of an application to be built, loaded onto the
evaluation board, and executed.

To build the Dhrystone benchmark, enter the command gnumake dhry from the command line while
in the samples directory. The makefile will compile the Dhrystone source files, link the resulting
object files with the support libraries, and produce the boot file, dhry , and the boot image file,
dhry.img .

If the bootptab entry suggested in Chapter 4, “Host Configuration,” was used, then dhry.img must be
renamed or copied to boot.img in order to be selected by the ROM Monitor load process. Select
option 0 from the ROM Monitor screen to load and run the image.

To load using RISCWatch, enable the ROM Monitor debugger (via option 5), exit the ROM Monitor
menu (via option 0), start RISCWatch on the host system (make sure the RISCWatch environment file
is setup for ROM Monitor communications), then use the RISCWatch load image command to load
the dhry.img file. Once successfully loaded, the logoff command can be issued to execute the
program.

You should see the following messages (or ones like them) appear on the ROM monitor screen.
Explanations enclosed by () do not appear on the screen but are added here as clarification.

Booting from [ENET] Ethernet...
8-4 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
Sending bootp request...

(This requests the Host workstation to return the name of the boot image.)

Loading file “\osopen\m405h_evb\samples\boot.img”...
Sending tftp boot request...

(Having obtained the file name, the ROM monitor uses tftp to retrieve the file from the host
workstation.)

Transfer Complete...
Loaded successfully...
Entry point at 0x25a18...

(Having loaded an image, the ROM monitor is now transferring control to the application. Subsequent
messages are from the application.)

Dhrystone Benchmark, Version 2.1 (Language: C)
Program compiled without ‘register’ attribute
Please give the number of runs through the benchmark:

At this point, enter the number of desired iterations. The test is designed not to give results if the
selected iterations completes in less two seconds, so pick a large number (≥ 1000000). After the test
completes, a check screen will be displayed, followed by the benchmark results. The results may vary
based on the system environment.

8.3.2 Building and Running the usr_samp Program

The usr_samp.c program is included as a sample to be built and run on the EVB. It’s a simple
program that shows how to properly call the get_board_cfg() ROM Monitor user function to determine
the ROM Monitor version, the amount of DRAM installed on the board and the Ethernet controller’s
MAC address. Developers interested in using any of the ROM Monitor user functions should use this
program as a guide.

To build the usr_samp program, enter the command gnumake usr_samp from the command line
while in the samples directory. The makefile will compile the usr_samp.c file, link the resulting object
file with the support libraries, and produce the boot file, usr_samp , and the boot image file,
usr_samp.img .

If the suggested bootptab was used, then usr_samp.img must be renamed or copied to boot.img in
order to be selected by the ROM Monitor load process.Select option 0 from the ROM Monitor screen
to load and run the image.

To load using RISCWatch, enable the ROM Monitor debugger (via option 5), exit the ROM Monitor
menu (via option 0), start RISCWatch on the host system (make sure the RISCWatch environment file
is setup for ROM Monitor communications), then use the RISCWatch load image command to load
the usr_samp.img file. Once successfully loaded, the logoff command can be issued to execute the
program.

You should see the following messages (or ones like them) appear on the ROM Monitor screen.

Booting from [ENET] Ethernet...
Sending bootp request...

Loading file “\osopen\m405h_evb\samples\boot.img”...
Sending tftp boot request...
Sample Applications 8-5

 Preliminary
Transfer Complete...
Loaded successfully...
Entry point at 0x25e48...

Hello 405EP user!

Your ROM Monitor version is: 1.19

Your 405EP Evaluation Board has 134217728 bytes of DRAM installed.

Your Ethernet controller’s network address is: 1000abcdef55

usr_samp done!

The DRAM amount listed should match the amount installed on the board.

8.3.3 Building and Running the timesamp Program

The timesamp.c program is included as a sample to be built and run on the EVB. This program is an
example of how to properly time a particular function or benchmark. The user must know and define
the time base frequency (the number of times the time base register is updated per second) in the
timesamp.c to ensure the timing calculations are accurate.

To build the timesamp program, enter the command gnumake timesamp from the command line
while in the samples directory. The makefile will compile the timesamp.c file, link the resulting object
file with the support libraries, and produce the boot file, timesamp , and the boot image file,
timesamp.img .

If the suggested bootptab was used, then timesamp.img must be renamed or copied to boot.img in
order to be selected by the ROM Monitor load process. Select option 0 from the ROM Monitor screen
to load and run the image.

To load using RISCWatch, enable the ROM Monitor debugger (via option 5), exit the ROM Monitor
menu (via option 0), start RISCWatch on the host system (make sure the RISCWatch environment file
is setup for ROM Monitor communications), then use the RISCWatch load image command to load
the timesamp.img file. Once successfully loaded, the logoff command can be issued to execute the
program.

You should see the following messages (or ones like them) appear on the ROM Monitor screen.

Booting from [ENET] Ethernet...
Sending bootp request...

Loading file “\osopen\m405h_evb\samples\boot.img”...
Sending tftp boot request...
Transfer Complete...
Loaded successfully...
Entry point at 0x25e48...

Please give the number of runs through the benchmark:
8-6 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
At this point, enter the desired number of runs through the function or benchmark being timed. In this
sample, the function being timed should execute for approximately a second, so a number between 1
and 10 would suffice.

8.3.4 Setting the time in the on-board clock

The battery-backed clock can be synchronised to real (wall-clock) time. A sample function to do this is
provided in the samples file utils.c . The function set_time_once_only() requires that you edit its
source code to provide the current time and date infomation. We suggest that you enter a time which
is a couple of minutes into the future, to give you time to finish editing the file, recompile, link and
download it onto the evaluation board. When the wall-clock time reaches the time that you set in the
source code, run the function. This is a one-time only effort, as the battery will ensure that the clock
remains set even when power is removed from the board.

8.3.5 PPC405 MAC instruction sample

This sample program demonstrates the performance advantage of the 405 MAC
(multiply/accumulate) instructions for common DSP operations. It is built in to the applprog sample
image. Refer to the OS Open User’s Guide for more information on building applprog .

The easiest way to use the program is to call it from the OpenShell prompt as “macsamp()”. It will then
use standard input and output for the prompts and responses. No file system is required for the basic
operation of the program, but if it is desirable to save the outputs, around 250 Kbytes of space is
required in the current directory.

First, the program generates a 3 second sample data stream in storage. The sample consists of three
sine waves (625, 1250, and 3750 Hz) sampled at 20 KHz using 16-bit signed samples. The program
then allows the user to select one of two filter implementations, one using the MAC instructions and
another one using the same underlying logic, but implemented using only basic PowerPC
instructions. The filter is a 60th order lowpass FIR filter with a stopband gain of -70 db, passband
edge at 1.5 KHz, and stopband edge at 3.0 KHz. The filter coefficients were calculated using the
programs supplied with “Analog and Digital Filter Design using C” by Les Thede (Prentice Hall ISBN
0-13-352627-5). This book is an excellent reference in understanding the logic of the filter itself.

The cycle count (as derived from timebase values) for the filter operation is displayed, so by running
the program twice, selecting each filter, the performance benefit of the MAC instructions is shown.
The program also allows the original sample and the filter output to be saved as .WAV files, if a local
file system exists. Curious users can transfer the files via FTP to a PC and hear the audible difference
the lowpass filter makes. Shown below are frequency domain plots of the generated input sample and
the filtered output.
Sample Applications 8-7

 Preliminary
The 3 sine waves are clearly shown in the input sample as being equal amplitude.
8-8 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
The output sample shows the first two sine waves virtually unchanged, but the signal at 3750 Hz has
been significantly attenuated, as you would expect for the lowpass roll off beginning at 1.5 KHz. You
can also see some amplitude ripples in the transition zone as a result of the filter method used.

8.4 Resolving Execution Problems

Configuration errors in the network or bootp tables cause most of the problems with running the
sample applications. This section contains information that will aid users in identifying common
problems.
Sample Applications 8-9

 Preliminary
8.4.1 Using the Ping Test on the ROM Monitor to Verify Connectivity

If the ping test fails, verify that TCP/IP is running on the host system and that the IP addresses on the
selected interface are correct. The local address refers to the IP address of the evaluation board, and
the remote refers to the host workstation address. The host workstation address must match the one
selected during configuration of the host network interface. Also consult your TCP/IP documentation
to insure proper network configuration.

8.4.2 Setup of bootp and tftp Servers (Daemons) for ROM Monitor Loads

Insure that the bootp and tftp servers are started on the host workstation. If possible, use the tftp
command from another workstation to retrieve the load image. If this fails, make sure the image exists
in the target directory and that it is readable by “others”. If the tftp transfer succeeds, check the
bootptab entry in the bootptab file to insure that it specifies the correct interface and IP address of
the evaluation board.

8.5 Using OS Open Functions

OS Open provides the following major classes of functions for the embedded programming
environment:

• Thread management

The unit of execution context for OS Open is the thread as defined by POSIX standards. Functions
are provided to create threads with various scheduling and execution attributes. To manage the
execution environment, serialization and synchronization primitives are part of OS Open. The
system also provides functions to associate data with specific threads.

• Storage management

OS Open supports variable block allocations in the form of a heap. Functions are provided to
extend the heap, query heap usage, and allocate storage to meet alignment constraints. OS Open
also provides an independent storage management mechanism to allocate fixed blocks of storage
in constant time.

• Interrupt and fault support

OS Open provides functions to attach user-written code to any of the processor exceptions and
interrupts. Most of the functions of OS Open can be used in these interrupt handlers, except for
those functions that suspend execution or are valid only in the context of an executing thread.
When the underlying hardware platforms support it, OS Open platform-specific libraries provide
additional functions to attach user-written code to external interrupts supported on the platforms.

• Clock and timer management

OS Open functions provide time-of-day clock support and the ability to create, use, and destroy
timers. These timers can be one-time or periodic.

• Device support

OS Open functions support the installation of user-written device drivers to provide character
special files, block special files, and logical file systems. Low-level POSIX I/O (read, write) as well
as ANSI C stream (fget, fput) functions are provided for device and regular file access.

• ANSI C library support
8-10 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
OS Open provides a comprehensive set of ANSI C functions, providing support for string
manipulation, memory management, string-to-number conversion, input/output, non-local jumps,
and variable arguments.

• Pseudo device driver support

OS Open provides several functions, such as TTY and DOS file system functions, that are installed
and managed like device drivers, but they do not manipulate actual hardware nor do they have
platform or device dependencies.

OS Open provides functions that create and manage TCP/IP sockets. Network interface functions
for Ethernet are also provided. With the TCP/IP protocol stack and network interfaces, additional
functions are provided that implement several popular networking utilities, such as ping, ifconfig,
ftp, and telnet.

• Debug functions and kernel abstract data types

OS Open provides functions that set, clear, and query break points. OS Open features an internal
circular trace buffer for operating system and user events. Also, functions are provided that dump
kernel data objects in a readable form.

Additional information can be found in the OS Open’s User’s Guide.
Sample Applications 8-11

 Preliminary
8-12 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
Chapter 9. Application Libraries and Tools

This chapter describes some of the application libraries and tools available in the PPC405EP
evaluation board kit board support software package. See the OS Open User’s Guide and
Programmer’s Reference for additional information.

9.1 OS Open Libraries

The OS Open operating system is composed of a real-time executive and optional libraries of
functions and macros.

The real-time executive provides a operating system core for embedded applications. Depending on
an application’s requirements, an embedded application may also incorporate one or more optional
libraries.

This modular approach enables embedded system developers to scale an OS Open operating
system to match their application requirements. Because unneeded features are not present, an OS
Open configuration can provide savings in system hardware, initialization and reset time, and
program size.

Table 9-1 summarizes the OS Open libraries, described in the OS Open User’s Guide and in this
user’s guide. For detailed descriptions of the OS Open functions and macros, refer to the OS Open
Programmer’s Reference.

Table 9-1. OS Open Libraries

Library File Name Platforms

ANSI C Library cLib.a Common

ANSI C Math Library mathLib.a Common

ANSI C I/O Library fsLib.a Common

ROM Monitor Ethernet Library benetLib.a PPC405EP

Block Buffer Library bbuffLib.a Common

Block Library blkLib.a Common

Extended Heap Library heapLib.a Common

Boot Library(DRAM) bootlLib.a PPC405EP

Boot Library(FLASH) bootrLib.a PPC405EP

High C++™runtime support Library cppLib.a, crti.o,
crtn.o,mwdctorl.
o

Common

Card Services/enabler software layer for PCMCIA
support

csLib.a Common
Application Libraries and Tools 9-1

 Preliminary
Clock Support Library and NV-RAM clockLib.a PPC405EP

Debug Support Library dbLib.a Common

Device and File Support Library devLib.a Common

DOS File System Support Library fatLib.a Common

Dynamic Loader Library ldrLib.a Common

Ethernet Support Library enetLib.a PPC405EP

File Transfer Protocol Support Library ftpLib.a Common

Floating Point Library fpeLib.a Common

I2C Library i2cLib.a PPC405EP

Input/output Support Library ioLib.a PPC405EP

Kernel Abstract Data Types Library kadtLib.a Common

Network Support Library netLib.a Common

NFS Support Library nfsLib.a Common

OpenShell shell.o Common

PCI Library pciLib.a PPC405EP

PCMCIA ATA/IDE Hard disk device driver pataLib.a Common

PowerPC Low Level Access Support Library ppcLib.a PPC405EP

Queue Library queLib.a Common

RAM Disk Library ramdLib.a Common

Rate Monotonic Scheduling (RMS) Library rmsLib.a Common

Remote Source Level Debug Library rsldLib.a Common

Ring Buffer Library rngLib.a Common

RPC Support Library rpcLib.a Common

Runtime Library runlib.a Common

SCSI Support Library scsiLib.a Common

Serial Support Library asyncLib.a PPC405EP

Socket Services for PCMCIA support ssLib.a Common

Symbol Support Library symLib.a Common

TCP/IP Protocol Support Library tcpipLib.a Common

Telnet Daemon Support Library tnetdLib.a Common

Telnet Client Support Library telnet.o Common

Table 9-1. OS Open Libraries (Continued)

Library File Name Platforms
9-2 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
The real-time executive, the only required component in an OS Open operating system, provides a
full set of basic operating system services:

• Thread management

• Virtual memory management for OS Open with Virtual Memory

• Storage management

• Signals

• Clocks and timers

• Interrupt and fault handling

• Message queues

• Semaphores

• Trace buffer support

• Miscellaneous services

The C functions for the real-time executive functions are in two libraries, rtx.o and rtxLib.a . The rtx.o
library contains the OS Open real-time executive. The rtxLib.a library contains interface routines to
OS Open functions, and is linked with application programs to resolve calls to the real-time executive.

9.2 Using Libraries and Support Software

The object libraries specific to the evaluation board are described below.

The Real-time Executive rtx.o, rtxLib.a Common

OS Open Minimal Kernel rtxmin.o Common

OS Open Kernel Extensions for the minimal
kernel

rtxext.o Common

Timer Tick Support tickLib.a PPC405EP

Trivial File Transfer Protocol tftp.o Common

TTY Support Library ttyLib.a Common

Table 9-2. OS Open Libraries for the PowerPC 405EP Evaluation Board Platform

Library File Name

Boot Library(RAM) bootlLib.a

Ethernet Device Driver Support Library enetLib.a

Memory Access Layer Support Library malLib.a

I2C Library i2cLib.a

Table 9-1. OS Open Libraries (Continued)

Library File Name Platforms
Application Libraries and Tools 9-3

 Preliminary
9.2.1 Serial Port Support Library

This library supports the serial ports on the evaluation board. Use in conjunction with the function
provided by devLib.a and fsLib.a to provide a high level I/O interface to application programs. The
serial port support functions reside in the asyncLib.a library.

9.2.2 Boot Library (RAM)

This library contains the OS Open bootstrap program for the appropriate platform. The boot library
performs initial processing to prepare the completed application program for execution on the board.
For the evaluation board platform, this processing includes moving the loaded program such that real
addresses correspond with addresses assumed by the language development tools. The boot library
for the evaluation board platform also dynamically determines available heap space and prepares the
symbol table for use by OS Open symbol management routines. The boot library does not export any
functions.

9.2.3 Input/Output Support Library

The input/output functions reside in the ioLib.a library. To initialize the I/O subsystem, you must call
ioLib_init() (normal mode) or dbg_ioLib_init() (ROM Monitor debug/ethernet) before performing any
I/O other function.

9.2.4 I2C Library

This library supports reads and writes to devices on the I2C bus. It also provides functions to directly
access the I2C registers. The I2C library functions are in i2cLib.a .

9.2.5 PowerPC Low-Level Processor Access Support Library

The low-level access support library contains C-callable versions of the special PowerPC instructions.
A few of the sample programs use these functions to manipulate the PPC405EP’s special registers.
These functions provide access to processor instructions not generated by compilers. For example,
device drivers often have a requirement to control data caching, disable interrupts, synchronize I/O,

Input/Output Support Library ioLib.a

PowerPC Low Level Access Support Library ppcLib.a

Real-time Clock Interface Support Library clockLib.a

ROM Monitor Ethernet Interface Library benetLib.a

Serial Support Library asyncLib.a

PCI Support Library pciLib.a

On-chip Memory Support Library ocmLib.a

Software Timer Tick Support Library tickLib.a

Table 9-2. OS Open Libraries for the PowerPC 405EP Evaluation Board Platform

Library File Name
9-4 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
and other processor and platform-specific operations. The low-level access support functions reside
in the ppcLib.a library.

9.2.6 ROM Monitor Ethernet IP Interface Library

This library contains routines allowing access to the ROM Monitor’s Ethernet IP interface. These
functions allow the Ethernet to be simply configured with a unique IP address for use with TCP/IP
functions. The ROM Monitor Ethernet IP Interface functions reside in benetLib.a library. The
benetLib.a functions are only available with OS Open without Virtual Memory.

9.2.7 Real-time Clock Interface Support Library

This library contains routines to read and set the evaluation board’s battery-backed real-time clock.
These functions are not to be confused with the real-time clock functions provided directly by OS
Open when the system is running. The real-time clock interface support functions reside in the OS
Open’s clockLib.a library and are available to perform the following features:

• Set the OS Open clock from the real-time clock.

• Set the real-time clock from user-supplied data.

• Read and write NVRAM in the clock chip.

A sample function to set the battery-backed clock to wall-clock time is provide. See “Setting the time
in the on-board clock” on page 8-7 for more information.

9.2.8 Ethernet Device Driver Support Library

This library provides support for the ethernet on the PPC405EP. The Ethernet device driver support
functions reside in the enetLib.a library.

9.2.9 Software Timer Tick Support Library

The OS Open system requires a periodic call to timertick_notify() to maintain internal clocks and
timer functions. The tickLib.a library contains an implementation of the timertick_notify() function
for PowerPC architecture machines. Timer tick support functions reside in the tickLib.a library.

9.3 Device Drivers Supplied with the Board Support Software

Device drivers provided with the evaluation board support package include:

• Asynchronous

• Ethernet

• I2C

Examples and references are provided where appropriate. Users should also refer to the
samples/thread0.c file for driver installation examples. Source code for each of the drivers is included
in subdirectories under the samples directory.

For more information about any of the OS Open functions mentioned in this chapter, refer to the OS
Open Programmer’s Reference.
Application Libraries and Tools 9-5

 Preliminary
9.3.1 Asynchronous Device Driver

The asynchronous device driver supports the asynchronous communication ports found on the
evaluation board. Following is a brief functional description of the device driver:

• Support from 50 baud

• Full duplex modem line control discipline

• Overrun error, parity error, and framing error detection

• BREAK interrupt detection

• Support for data length of 5, 6, 7, and 8 bits

• Support for 1, 1.5 and 2 stop bits

• Support for receive and transmit parity

• Support for odd and even parity

• Support for transmitting BREAK

• Support for 64 byte FIFO in the universal asynchronous receiver transmitter (UART)

• Programmed I/O (PIO) interrupt-driven slave communication

• Interrupt driven input/output

• Polled output functions

Since only full duplex modem line control discipline is supported, connection between the
asynchronous port and another device must be made through a NULL modem. A NULL modem is a
device that crosses transmitted data and received data pins to enable communication. The only time
a NULL modem is not necessary is when connection is made to a real modem device.

Refer to the OS Open sample file thread0.c for an example of installing the asynchronous device
driver and to samples/asyncLib for the driver source code.

9.3.1.1 Device Driver Installation

The asynchronous device driver is installed by calling driver_install() . Following is an example of
asynchronous device driver installation.

#include <sys/asyncLib.h>
#include <ppcLib.h>
int devhandle;
rc=driver_install(&devhandle, async_init);

async_init() is declared in the file <sys/asyncLib.h> as follows.

int async_init(driver_t *dsw, va_list vargs)

Upon successful installation, driver_install() returns 0; otherwise –1 is returned. For more
information on driver_install() , refer to the OS Open Programmer’s Reference.

9.3.1.2 Device Installation

After the asynchronous device driver is installed, named devices can be created using
device_install() . Following is an example of device installation.

rc=device_install("/dev/s0", CHRTYPE, devhandle, 1, 1024,
1024,asyncClockRate, UART0_BASE_ADDRESS, CPC0_CR0_UART0_EXTCLOCK_EN,
EXT_IRQ_COM1);
9-6 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
For device installation, devhandle is the value obtained from the driver_install() . Device type
CHRTYPE is defined in <sys/devDrivr.h> .

Additional parameters passed in the device_install() call are as follows.

Upon successful installation, device_install() returns 0; otherwise –1 is returned. When the device is
installed, error reporting for the device is turned off and xon/xoff pacing is enabled. For more
information on device_install() , refer to the OS Open Programmer’s Reference.

9.3.1.3 Opening Asynchronous Communication Ports

After the device is installed, the open() system call can be used to open a particular device. Following
is an example of the open() system call used against the asynchronous port.

fd1=open("/dev/s0", O_RDWR, asyncParityNone, asyncParityOdd,
 asyncStopBits1, asyncDataBits8, 9600);

Table 9-3. Additional Parameters Passed to driver_install()

Parameter Meaning

Fourth Parameter Port number to be installed (1 or 2)

Fifth Parameter Size of write buffer

Sixth Parameter Size of read buffer

Seventh Parameter Input clock for the divisor (value defined in ppcLib.h)

Eight Parameter UART base register address (from ppcLib.h)

Ninth Parameter UART-relevent bits to be set in the CPC0_CR0 register

Tenth Parameter Interrupt IRQ_MIN < event <IRQ_MAX (from ioLib.h)

Note 1: These are positional parameters.

Note 2: Write and read buffer sizes indicate number of characters that can be
buffered in the device driver.
Application Libraries and Tools 9-7

 Preliminary
Additional parameters passed in open() are as follows.

Note: The oflag parameter, O_RDWR in this example, which is passed in the open call, is ignored by
the device driver. When successful, open() returns a file descriptor, otherwise –1 is returned.
open() can be called multiple times against the same asynchronous port. Communication
parameters passed during the last open() call are set in the asynchronous port. For more
information on open() , refer to the OS Open Programmer’s Reference.

9.3.1.4 Reading and Writing

After successfully installing and opening the asynchronous port, read() and write() calls can be
issued against that port. Multiple threads can issue read() and write() calls to the same port at the
same time. However, simultaneous read() calls issued to the same port may block or be processed in
an unexpected order. For these instances, thread scheduling and synchronization must be handled by
the application.

Following is an example of read() and write() calls.

rc=write(fd1,"\nOS Open Real-time Executive\n", 29);
rc=read(fd1, buffer, 10);

fd1 is the value obtained from the open() call.

Note: For more information on read() and write() , refer to the OS Open Programmer’s Reference.

Table 9-4. Additional Parameters Passed to open()

Parameter Meaning

First Parameter Check/generate parity flag. Valid values are: asyncParityNone and
asyncParityGen_Check

Second
Parameter

Parity type. Valid values are asyncParityEven and asyncParityOdd. Because
parameters are positional, this parameter must be specified even if parity is not used.

Third Parameter Number of stop bits. Valid values are asyncStopBits1 and asyncStopBits2.

Fourth Parameter Data length. Valid values are asyncDataBits5, asyncDataBits6, asyncDataBits7, and
asyncDataBits8.

Fifth Parameter Baud rate. Valid values range from 50 baud.

Note: These are positional parameters. All parameter constants can be found in <sys/ioctl.h> .
9-8 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
9.3.1.5 I/O Control

An ioctl() call issued against asynchronous device driver accepts the commands listed in Table 9-5.
All parameter constants can be found in <sys/ioctl.h> .

Table 9-5. ioctl() Commands for Asynchronous Device Drivers

Command Parameters Explanation

ASYNCBAUDSET Value from 50 Sets baud rate

ASYNCBAUDGET Pointer to integer Returns baud rate

ASYNCTRIGSET asyncFifoTrigger1,
asyncFifoTrigger4,
asyncFifoTrigger8,
asyncFifoTrigger14

Sets FIFO trigger level for asynchronous port

ASYNCTRIGGET Pointer to integer Returns current trigger level

ASYNCBREAKSET None Starts sending BREAK on port

ASYNCBREAKCLR None Stops sending BREAK on port

ASYNCSTICKGET Pointer to integer Returns the way the parity bit is interpreted by the port

ASYNCSTICKZERO None Disables stick parity

ASYNCSTICKONE None Parity interpretation tracks even/odd parity

ASYNCRERRORGET Pointer to integer Returns and clears read error conditions. Values are
defined in asyncLib.h

ASYNCWERRORGET Pointer to integer Returns and clears write error conditions. Values are
defined in asyncLib.h

ASYNCERROREN None Enables error reporting

ASYNCERRORDIS None Disables error reporting. All pending errors are cleared

ASYNCERRORGET Pointer to integer Returns error reporting enabled flag

ASYNCDLENGET Pointer to integer Returns current data length

ASYNCDLENSET asyncDataBits5,
asyncDataBits6,
asyncDataBits7,
asyncDataBits8

Sets data length

ASYNCSTOPGET Pointer to integer Returns number of stop bits

ASYNCSTOPSET1 None Sets number of stop bits to 1

ASYNCSTOPSET1_5 None Sets number of stop bits to 1.5

ASYNCSTOPSET2 None Sets number of stop bits to 2

ASYNCPARITYNONE None Disable parity

ASYNCPARITYGEN None Enable parity

ASYNCPARITYSGET Pointer to integer Return parity status (enabled/disabled)
Application Libraries and Tools 9-9

 Preliminary
Following is an example of an ioctl() call issued against an asynchronous device.

rc=ioctl(fd1, ASYNCXONDISABLE);
if (rc !=0) printf(“ioctl failure\n”);

fd1 is the value obtained from the open() call.

9.3.1.6 Polled Asynchronous I/O

A function is provided for polled output to s1 and s2 serial port.

int s1dbprintf(unsigned long uart_clock, unsigned char *base_reg,
unsigned long chcr0_reg, event_t int_level, const char *format, ...)
int s2dbprintf(unsigned long uart_clock, unsigned char *base_reg,
unsigned long chcr0_reg, event_t int_level, const char *format, ...)

The parameters passed to these functions are identical to printf() except for uart_clock, base_reg,
chcr0_reg, and int_level. uart_clock specifies the clock speed, base_reg specifies the address of the
base UART register, chcr0_reg specifies the bits in the CPC0_CR0 register that are to be set (only
the bits relevant to the UART are altered), and int_level specifies the external interrupt level. The
same values used on the device_install() function may be used. See “Device Installation” on
page 9-6.

s1bdprintf(asyncClockRate, UART0_BASE_ADDRESS, CPC0_CR0_UART0_EXTCLOCK_EN,
EXT_IRQ_COM1, “hello world\n\r”);

ASYNCPARITYODD None Sets parity to odd

ASYNCPARITYEVEN None Sets parity to even

ASYNCPARITYGET Pointer to integer Returns parity type

ASYNCXONENABLE None Enables XON/XOFF flow control

ASYNCXONDISABLE None Disables XON/XOFF flow control

ASYNCXONGET Pointer to integer Returns XON/XOFF flow control status

ASYNCMODEMSTAT Pointer to integer Returns modem status

ASYNCFLUSHIN None Flushes input buffer

ASYNCFLUSHOUT None Flushes output buffer

ASYNCDRAIN None Blocks until all characters in output buffer have been
transmitted

ASYNCIGNBREAK None Ignores break interrupts

ASYNCSIGBREAK None Sends SIGINT on reception of break condition

ASYNCERRBREAK None Returns error from read upon reception of break
condition. 0x00 is placed in the receive buffer at the
position where break occurred.

Table 9-5. ioctl() Commands for Asynchronous Device Drivers (Continued)

Command Parameters Explanation
9-10 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
Because polled I/O transmits characters synchronously, these functions may be called from first level
interrupt handlers (FLIHs) or a user-supplied panic function. Since the function waits until the
characters are actually sent before returning, use of this with long strings can significantly affect the
timing of calling programs.

9.3.1.7 Flow control

The s1 port is a full 16550-compatible implementation, and supports all 16550 lines, including CTS,
RTS, DTR and DSR.

However, the s2 serial port multiplexes the CTS/RTS and DTR/DSR hardware flow control signals
onto the same pair of pins, so a choice must be made about which type of hardware flow control is to
be used. This is implemented by setting bits in the CPC0_CR0 register. If hardware flow control is
desired, it should be set by setting flags in the chcr0_reg parameter that is passed to device_instal()
when installing the s2 port device. The flags available are:

• CPC0_CR0_UART1_CTS_RTS

• CPC0_CR0_UART1_DTR_DSR

One of these flags may be OR’d into any other values specified in the chcr0_reg parameter, as shown
below:

rc=device_install("/dev/s1", CHRTYPE, devhandle, 1, 128, 128,
asyncClockRate, UART1_BASE_ADDRESS,
CPC0_CR0_UART1_EXTCLOCK_EN | CPC0_CR0_UART1_CTS_RTS, EXT_IRQ_COM2);

The device driver will automatically make sure that the selected signals appear on the correct pins on
the s2 serial port connector, so that a normal serial connection can be made (no special cables
required). The pin-switching is done via the on-board FPGA.

If neither hardware flow control option is selected the status of the flow control pins is undefined, and
only software flow control (XON/XOFF) should be used.

9.3.2 I2C Device Driver

The I2C driver supports reading and writing to devices attached to the I2C bus. The nature of the I2C
bus means that support is implemented as I2C-specific functions, and not through the OS Open
device driver model used for other device drivers.

9.3.2.1 Functional Description

• Allows master reads and writes

• Only supports 7 bit addresses

• Only supports slow (100kHz) bus

9.3.2.2 I2C Initialisation

The I2C device is initialised by a call to i2c_setupdriver(), passing in the base address for the
memory-mapped I2C registers.

#include <sys/i2cLib.h>
#include <ppcLib.h>
rc=i2c_setupdriver(IIC_BASE_ADDRESS);
Application Libraries and Tools 9-11

 Preliminary
IIC_BASE_ADDRESS is defined by including <ppcLib.h>.

9.3.2.3 I2C read

Data is read from an I2C device by using the i2c_read() funtion. The caller supplies the device
address and information about the read. This includes an optional subaddress which is required by
some devices. A flags parameter is used to specify whether the subaddress is present or not. Also
supplied are a pointer to a place to store the data and a count of how many bytes to read. Between 1
and 4 bytes may be read on each call.

If a subaddress is specified, the device driver first writes the subaddress to the target device, waits for
the write to complete, then issues the read.

If the read completes successfully the function returns 0, otherwise it returns -1 if an error occurs,
such as no response from the device within a timeout period.

Other flags which may be passed in include the ability to specify the values of the Chaining and
Repeated Start bits in the I2C Control register. Constants for the flags values are in <sys/i2cLib.h>.

#include <sys/i2cLib.h>
int rc;
unsigned char device, subaddress;
unsigned char data[4];
...
/* Read 4 characters from the device, using the given subaddress */
rc=i2c_read(device, subaddress, 4, data, I2C_FLAGS_SUBADDR);

9.3.2.4 I2C write

Data is written to an I2C device with the i2c_write() function. The caller passes the device address
and the data to be written, along with other information. This includes an optional device subaddress.
The flags parameter specifies whether the subaddress is present. Also passed is the data to be
written and the length of the data. A total of 4 bytes can be written on an I2C write, and this number
includes the subaddress. So if no subaddress is specified, bewteen 1 and 4 bytes of data may be
written. However, if a subaddress is specified, between 0 and 3 bytes of data are allowed. It is
possible to only write the subaddress, with no accompanying data, which is why a data length of 0 is
allowed only when a subaddress is specified.

As on a read, the flags parameter may specify the value of the Chaining and Repeated Start bits to be
used in the I2C Control register.

#include <sys/i2cLib.h>
int rc;
unsigned char device, subaddress, device2;
unsigned char data[4];
...
/* Write 3 characters to the device, using the given subaddress */
rc=i2c_write(device, subaddress, 3, data, I2C_FLAGS_SUBADDR);
...
/* Write 4 characters to another device, without a subaddress */
rc=i2c_write(device2, 0, 4, data, 0);
9-12 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
9.3.2.5 Accessing I2C Registers

Functions are provided for directly reading and writing the I2C registers. The I2C registers values are
specified in <sys/i2cLib.h>.

To read a register, use i2c_read_reg(), passing in the register name and pointer to a place to store the
value.

#include <sys/i2cLib.h>
unsigned char reg_val;
i2c_read_reg(I2C_STATUS,®val);

To write a value to a register, use i2c_write_reg(), passing in the name of the register and the data to
be written to it.

#include <sys/i2cLib.h>
i2c_write_reg(I2C_LO_SLAVE_ADDR,0x42);

9.3.3 Ethernet Device Driver

The Ethernet device driver is a character device driver supporting packet level read/writes to the
Ethernet controller. The driver features the ability to open multiple files. Each file receives packets for
a specific standard Ethernet or 802.3 address.

Function highlights are:

• Up to eight receive channels

• Size of receive buffer pool determined by user at driver install time.

Refer to the OS Open sample file thread0.c for an example of installing the ethernet device driver and
to samples/enetLib for the driver source code.

9.3.3.1 Device Driver Installation

The Ethernet device driver is installed by calling the driver_install() function. Following is an example
of Ethernet device driver installation:

rc=driver_install(&devhandle_enet,
enet_init, /* device driver init routine */
ENET_RECEIVE_BUFFERS, /* num_blocks;# of recv buffers*/
NULL, /* enet_descriptor pointer */
NULL, /* enet_buffer pointer */
board_config_ptr->mac_address); /* mac_array */

num_blocks is the number of receive buffers used by the device driver. This value must be a multiple
of 4.

enet_descriptor points to a physically contiguous portion of memory the device driver uses for receive
and transmit buffer descriptors. The portion of memory must be at least (8 * num_blocks) + 32 bytes
in size, and 32 byte aligned. If enet_descriptor is NULL, the device driver will attempt to allocate the
needed space based on the value of num_blocks

enet_buffer points to a physically contiguous portion of memory the device driver uses for receive and
transmit buffers. The portion of memory must be at least 296 * num_blocks + 1568 bytes, and 32 byte
Application Libraries and Tools 9-13

 Preliminary
aligned. If enet_buffer is NULL, the device driver will attempt to allocate the needed space based on
the value of num_blocks.

.

Note: The device driver can not allocate memory that is guaranteed to be physically contiguous in
OS Open with Virtual Memory, so in this case enet_buffer must point to the buffer to be used.

mac_array points to the 6 byte ethernet hardware address. Typically this value is obtained from the
ROM Monitor’s get_board_cfg() function.

Upon successful installation, driver_install() returns 0; otherwise -1 is returned. For more information
about the driver_install() function, refer to the OS Open Programmer’s Reference and the OS Open
samples thread0.c file.

9.3.3.2 Device Installation

After the Ethernet device driver is installed, Ethernet devices can be installed using the
device_install() function. Following is an example of device installation.

rc=device_install("/dev/en0", CHRTYPE, devhandle);

For device installation, devhandle is the value obtained from the driver_install() . Device type
CHRTYPE is defined in <sys/devDrivr.h> .

Upon successful installation, device_install() returns 0; otherwise -1 is returned. At this point, files
may be opened against the Ethernet device.

9.3.3.3 Opening and Closing Ethernet Files

After the device is installed, the open() system call can be used to open a particular device. Following
is an example of the open() system call used to open an Ethernet port.

fd1=open("/dev/en0", O_RDWR);

When successful, open() returns the open file descriptor; otherwise -1 is returned. open() can be
called multiple times against the same Ethernet device.

When using the close() function, the call to the driver-specific close() is deferred until all open files on
the device are closed. This means that when an Ethernet file is closed, the channel address
associated with the file will not be freed if another Ethernet file is open. Be aware that if the Ethernet
interface has been connected to the TCP/IP protocol stacks via enet_attach(), t here will always be a
file open against the Ethernet device, and therefore no channel addresses will be freed even if all the
files the application opened are closed. To insure that the channel address will be freed, the
ENET_CLEAR_CHANNEL ioctl() should always be called for an Ethernet file before closing it.

For more information about the open() and close() functions, refer to the OS Open Programmer’s
Reference.

9.3.3.4 Reading and Writing

After successfully installing and opening the Ethernet port, the write() function can be issued. The
write buffer must contain a complete Ethernet packet. The universally administered address that was
found in the ISA card read only storage (ROS) passed to driver_install() will be copied into the
source address field by the device driver. There are prototype Ethernet header structures for both
9-14 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
standard Ethernet and 802.3 Ethernet packets in <enet.h> . Note that packets must be between 60
and 1514 byte in length (inclusive).

Before reading from the Ethernet file, an additional step must be performed. The Ethernet device
driver supports up to 8 receive channels. What this means is that up to 8 files can be open for read or
read/write simultaneously, and files will receive only those packets that have been selected for them.
Packet selection is by packet type, in the case of standard Ethernet, and by destination SAP in the
case of 802.3 Ethernet. The selection address is set with the ioctl ENET_SET_CHANNEL command,
discussed below.

fd1 is the value obtained from the open() call.

fd1 = open(“/eno”,O_RDWR);
ioctl(fd,ENET_SET_CHANNEL,5,2);

/* send packet from buffer */
write(fd,buffer,count);

/* get received packet into buffer */
read(fd,buffer,count);
close(fd);

For more information on read() and write() functions, refer to the OS Open Programmer’s Reference.

9.3.3.5 I/O Control

The ioctl() call issued against the Ethernet device driver accepts the following commands. In each of
these commands, fd is the value obtained from the open() call.

9.3.3.6 ENET_SET_CHANNEL

This command sets the receive channel address of the file. Once set, a receive channel address
cannot be used in a subsequent ioctl ENET_SET_CHANNEL command unless it is first cleared with
the ioctl ENET_CLEAR_CHANNEL command.

rc = ioctl(fd, ENET_SET_CHANNEL,
packet_type,/* packet type is an unsigned integer containing

the channel address */
type_length);/* specifies how many of the least sig bytes of

the packet type are to be used.Only values 1 and
2 are valid. */

A word about packet addresses. For standard Ethernet, the packet type is a 2-byte field right after the
hardware source address. If type_length is 2, the packet_type parameter is assumed to refer to a
standard Ethernet packet type. For a type_length of 1, the packet_type is assumed to contain a 1-byte
destination SAP.

The incoming packets are differentiated as follows: For 802.3, there is a length field immediately after
the source address. By convention, Ethernet packets are 1500 bytes or less, and valid Ethernet types
are > 0x600. Hence, if the field after the source address is less than 0x600, the packet is assumed to
be an 802.3 packet, and the 1 byte packet_type is compared against the destination SAP. Some
reserved type values should not be generally used. They are defined in the file <netinet/if_ether.h>.
Application Libraries and Tools 9-15

 Preliminary
9.3.3.7 ENET_CLEAR_CHANNEL

This command clears the receive channel address of the file. This enables the device driver to free up
internal resources and return any unread packets on this channel to the receive buffer pool. Once the
receive channel address is cleared, it can be used again with the ioctl ENET_SET_CHANNEL
command. The file can then be set to another receive channel as well.

rc = ioctl(fd, ENET_CLEAR_CHANNEL);

9.3.3.8 ENET_QUERY_ADDRESS

This ioctl command retrieves the universally administered address that was assigned during
device_install.

unsigned char ua_address[6];
rc = ioctl(fd, ENET_QUERY_ADDRESS, ua_address);

The address is copied into the area supplied as the first data parameter to this ioctl .

9.3.3.9 MIB Functions

The ethernet device driver supports gathering of certain statistical information, as specified in IEEE
802.3 and RFC 1757: Remote Network Monitoring Managment Information Base. These functions
each return a count of the statistic that they are measuring. The counts are not reset at any time - in
order to determine how many evants have occurred since the last time the count was obtained, you
must record the previous count and subtract it from the current value. You must handle counters
which may wrap when they reach 2**32, such as aOctetsReceived, and be sure to sample at a
frequent enough interval to avoid the counter cycling completely between samples.

For example, on a 100Mbps connection, a maximum of 100M bits can be processed per second,
which is 12.5 M octets per second. The aOctetsReceived counter will count 2**32, or about 4.2 billion,
octets before wrapping. Therefore you should sample the counter at an interval no greater than:
(4,200,000,000/12,500,000) = 336 seconds, or just over 5 minutes.

The functions provided are listed below. More infomation about each one is available in “OS Open
Function Reference” on page 10-1.

enet_get_aAlignmentErrors()
enet_get_aFrameCheckSequenceErrors()
enet_get_aFramesReceivedOK()
enet_get_aFramesTransmittedOK()
enet_get_aMultipleCollisionFrames()
enet_get_aOctetsReceived()
enet_get_aOctetsTransmitted()
enet_get_aSingleCollisionFrames()

9.3.4 ROM Monitor Ethernet Device Driver

The OS Open ROM Monitor Ethernet device driver provides network access to the applications
running on the board while still allowing the ROM Monitor to access the RISCWatch debugger over
the ethernet.
9-16 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
This device driver uses code resident in the ROM monitor to send and receive ethernet packets. A
different IP address must be specified to distinguish the packets from ROM Monitor and OS Open. I/O
initialization should be done by calling dbg_ioLib_init() rather than ioLib_init() .

The ROM Monitor Ethernet device driver is installed by calling biosenet_attach() . Following is a
prototype of this function.

#include <benetLib.h>
int biosenet_attach(unsigned long ipaddr, int init_flag);

Upon successful installation, biosenet_attach() returns 0; otherwise -1 is returned. The IP address
for OS Open is specified in the ipaddr parameter. The init_flag specifies whether the Ethernet
controller needs to be initialized. If init_flag is set to 0 then the Ethernet controller is not initialized. If
init_flag is set to a non-0 value, initialization of the Ethernet controller is performed. Please see
samples/thread0.c for example code.

9.4 Environment Startup and Initialization

The following section describes the processing that occurs when the evaluation board environment is
initialized.

Upon power-up or reset the ROM Monitor initializes the processor and other peripherals on the board.
If a ROM Monitor load is attempted (via option 0), all enabled power-on tests are executed and,
following their completion, a bootp request is sent to the host. This request involves an exchange of
UDP packets corresponding to the bootp protocol. In essence, the ROM Monitor asks for and is
supplied with the name of the boot image file on the host workstation. tftp (Trivial File Transfer
Protocol) is then initiated by the ROM Monitor to transfer the boot image to the evaluation board.

Once the file has been transferred, two simple checks are made. A “magic number” in the boot
image’s 32-byte header verifies that the image is one that can be loaded by the ROM Monitor (i.e., a
file created by the eimgbld tool - see appendix B for details of the load format). The ROM Monitor also
checks that the supplied boot image’s start address does not overlay sections of reserved DRAM.
After the load is complete, control is transferred to the specified entry point in the boot image, which is
in the bootstrap program.

When using RISCWatch’s load image command to load a boot image file, the debugger strips off the
file’s 32-byte header and loads the remaining bytes of the file onto the board. The start address of the
load is designated in bytes 4-8 of the header. Once loaded, the IAR register is set to the boot image’s
entry point as defined in bytes 16-19 of the header. This entry point is in the bootstrap code. See the
“Running Your Programs” section in the RISCWatch Debugger User’s Guide for additional information
on loading files.

9.4.1 Board Bootstrap

The source for OS Open’s bootstrap code is included in the samples\bootLib directory. The
bootstrap program performs the following functions:

 1. Unpacks the boot image format, placing the .text and .data sections in the addresses specified at link time.

 2. Modifies the kernel configuration block with new heap size and start address.

 3. Sets the .bss section to zeros, in accordance with ANSI C requirements.
Application Libraries and Tools 9-17

 Preliminary
9.4.2 Environment Initialization

OS Open requires information about the system environment at initialization. The following source
files, which are included with the samples, are used to supply that information and to establish the
working environment.

Additional information can be found in the “Configuring the OS Open Operating System” and
“Developing OS Open Applications” chapters in the IBM OS Open User’s Guide.

9.5 Tools

Several host based tools are provided to assist you in creating your own applications for the board.
The tools can also be used for ROM program development.

9.5.1 elf2rom

elf2rom takes an ELF format executable file (output from the linker/binder), extracts the text and data
sections, and writes them to a binary file. The resulting binary file can be programmed into ROM
using a ROM programmer or the flash update utility included with board support software.

Syntax:

elf2rom [-v] [-d] [-p] [-s size] [-i offset] [-o output_file] input_elf

Description:

The program takes the input file input_elf, assumed to be an ELF file output from the linker, extracts
the text and data sections, and writes them to the file, output_file. There are several optional flags that
can affect elf2rom processing. They are described below.

basic_os.c Contains pieces of config.c, io_init.c, panic.c, thread0.c, and utils.c to
provide a minimal OS Open configuration

config.c Configures the OS Open kernel

io_init.c Initializes OS Open’s I/O subsystem

network.c Configures the host names and addresses for your environment

panic.c Provides a sample panic function

thread0.c Configures various features of OS Open (networking, remote debugger,
etc.)

utils.c Provides some useful utilities such as dir() to produce a directory listing

-v The verbose flag causes information about the generated output file to
be written to stderr at the completion of the utility. This information
includes the sizes and origins of the various sections and entry point.

-d The debug flag will cause the symbol information from the input ELF file
to be included after the data section in the output binary file.
9-18 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
-p The promotion flag causes the data section to be aligned on a full word
boundary if possible. This alignment facilitates full word moves of data to
the appropriate target address without causing alignment exceptions.

-s The size flag causes the output binary file to be padded to a particular
size. This option is useful if it is necessary to create binary files that are
the same size as a target ROM device. Error messages are generated if
the generated image exceeds the specified size.

-i offset The info flag places an information block into the output binary file at the
specified offset. Since this info block overlays what is currently in the file
at the specified offset, space should be reserved for its placement. The
info block contains the following fields.

long block_id Magic Number 0xBFAB0030

long entry_point Entry point of image

long toc_ptr Used for XCOFF; not used for ELF

long text_size Size of text section in bytes also offset from beginning of image to data
section

long text_p_addr Text origin address as generated in ELF module

long data_size Size of data section

long data_p_addr Data origin as specified in generated ELF module

long bss_size Size of bss section

long bss_p_addr bss origin as specified in generated ELF module

long num_syms Number of symbols from symbol section only valid if debug flag is set)

long sym_p_addr Address of symbol table. Calculated as text origin + offset of symbols
with created ROM image

long text_offset Offset of text section from beginning of original ELF file. This information
is required by certain debuggers

-o output_file Allows the specification of an output file name. The default name is
input_elf.img.

input_elf This is simply the ELF binary input file. (elf2rom only)
Application Libraries and Tools 9-19

 Preliminary
Figure 9-1 shows the relationship of the various sections in the produced output file. The figure
assumes that the info block flag [-i] was specified with an offset of 0x00.

Users can find an example of using elf2rom in the ROM Monitor’s Makefile under
osopen/m405h_evb/openbios .

9.5.2 hbranch14

hbranch14 places a branch at the end of a ROM image. hbranch14 can also be used to store a
communication device’s network address in the ROM’s Vital Product Data (VPD) area. hbranch14
allows up to 4 network addresses.

Syntax:

hbranch14 [-v] [-s size] [-n net_addr] input_image

Description:

The program takes the input file input_image (which must be the output of elf2rom or eimgbld with an
information block at 0x0 relative) pads it to size size and writes a relative branch to the entry point
recorded in the end of the image. The entry point must be a label, not a function descriptor. There are
several optional flags that can affect hbranch14 processing. They are described below.

-v The verbose flag causes information about the generated output image to be
written to stderr at the completion of the utility. This information includes entry
point information.

-s size The size flag causes the image to be padded to a particular size. This facility is
useful if it is necessary to create binary images that are the same size as a
target ROM device.

-n net_addr The network address flag stores net_addr, a 12 hex character network address
(the media access control (MAC) address), in the VPD area in ROM. The ROM
Monitor uses this option to store the EVB’s ethernet controller’s network
address in its VPD. hbranch14 allows up to 4 differrent network addresses

Info Block

Text section

Data Section

Symbol Section
(if debug flag specified)

Padding to bring

(if size specified)

Text Size

Data Size

(overlays part of text)

image to size

Figure 9-1. elf2rom Output File

End of
File

Start of
File
9-20 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
Figure 9-3 shows the relationship of the various sections in the produced output image.

-p patch_file The patch file flag causes the file patch_file to be placed into the image just
before the final branch and logically inserted into the instruction stream
between the branch at the end of the file and the entry point. The patch file is
inserted into the image “as is” and will usually contain the binary representation
of position independent executable instructions. See Figure 9-2 for the details
as to how normal hbranch processing is changed by a patch file.

input_image This is simply the source image file. The output is written to stdout.

Figure 9-2. Detail of Patch File Placement

Branch to
entry point

Branch to start
of patch file

Patch file consisting of executable instructions

End of
File

Padding to bring

(if size is specified)

branch to ep

Binary image

elf2rom

Entry point

image to size

produced by

Figure 9-3. hbranch Output Image

VPD (at end - 512)

Start of File

End of
File
Application Libraries and Tools 9-21

 Preliminary
Users can find an example of using hbranch in the ROM Monitor’s Makefile under
osopen/m405h_evb/openbios .

9.5.3 eimgbld

The eimgbld tool converts an output file from the linker/binder into the format used by the ROM
Monitor to load programs from the host onto the evaluation board. The ELF file must be an otherwise
executable file (with the text and data addresses bound at link time) and have space reserved after
the entry point for the load information block (see “ROM Monitor Load Format” on page B-1 for more
details). eimgbld sets the fields within the load information block so the application’s bootstrap code
can perform relocation.

Since the ROM loader does no relocation and simply transfers control to the application’s entry point
after a successful download, the application’s entry point must point to suitable bootstrap code. It is
the bootstrap code that relocates the application based on the data placed in the load information
block by eimgbld .

Syntax:

eimgbld: [-D -P -S -v -b addr -m m_file -o o_file -s s_file -x x_file] input_elf

Description:

The program takes the input file input_elf (which must be the final ELF executable file produced from
the build process) and converts it into the load format used by the ROM Monitor. There are several
optional flags that can affect eimbgld processing:

Users can find an example of using eimgbld in the sample Makefile under
osopen/m405h_evb/samples .

-D Set debug flag. A flag is set in the image causing the ROM Monitor debugger to
be invoked immediately after the image is loaded.

-P Creates output image in PReP format. PReP format is used by some PowerPC
platforms.

-S Suppress symbol information. Specifying this flag will prevent the symbol table
from being included in the image.

-v Verbose option. Directs information about the produced image to stderr.

-b addr Set the symbol start location to address, addr.

-m m_file Specify the ROM address map file. The format of this file is two addresses on
each line (start address and ending address separated by a “,”).

-o o_file Allows the specification of an output file name. The default name is input_elf.img.

--s s_file Restrict symbol table to names in specified file, s_name. The format of this file is
one symbol on each line.

-x x_file Suppress section names listed in specified file, x_name. The format of this file is
one section name on each line.
9-22 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
Chapter 10. OS Open Function Reference

This chapter describes the OS Open functions for the evaluation board. The function calls and
macros are arranged alphabetically by name. For information about the effective use of some of these
functions, refer to the microprocessor’s user’s manual.

All descriptions contain the following sections:

• Synopsis

• Library

• Description

• Errors

• Attributes

Examples and references are provided or referenced where appropriate.

10.1 Attributes and Threads

Functions and macros have attributes that affect thread execution. Depending on their behavior,
functions may or may not be “async safe,” “cancel safe,” and “interrupt handler safe.”

10.1.1 Async Safe Functions

An async safe function may be entered by two or more concurrently executing threads, with each
thread getting the correct results.

Functions that operate only on disjoint or local data objects are reentrant, and are therefore async
safe. For example, ppcCntlzw() operates only on its arguments, making it reentrant and therefore
async safe.

Functions that operate on common or global data objects may use serialization techniques, such as
mutexes and semaphores, within the functions to ensure async safe operation. enet_send_packet()
uses the functions semwait() and sempost() to force serialization. Refer to the OS Open User’s
Guide for more information about the use of mutexes and semaphores.

10.1.2 Cancel Safe Functions

The cancel safe attribute is important only to threads executing in deferred cancelability mode (the
cancel state is enabled; the cancel type is deferred).

A thread executing in deferred cancelability mode can execute a cancel safe function without being
canceled. If the same thread executes a non-cancel safe function, the thread may or may not be
canceled during execution of the function.

10.1.3 Interrupt Handler Safe Functions

An interrupt handler safe function may be called by a first level interrupt handler (FLIH).
OS Open Function Reference 10-1

 Preliminary
10.1.4 Callable from Application Thread Group Functions

This attribute is only a concern when running OS Open with Virtual Memory. A function that is callable
from an application thread group may be called from all thread groups. A function not callable from an
application thread group will cause an exception if called from any thread group other than the kernel
thread group.

10.2 Functions

Descriptions of the functions provided specifically to support the PPC405EP evaluation board kit are
listed in alphabetical order in Table 10-1:

Table 10-1. Functions Specific to the PPC405EP Design Kit

Function or Macro Description Page

async_init() Installs the asynchronous device driver 10-8

biosenet_attach() Attaches the Ethernet to an IP address 10-9

clock_set() Sets the OS Open POSIX clock to the value obtained from the
battery operated real time clock

10-11

clockchip_get() Reads the real-time clock 10-12

clockchip_nvram_read() Reads bytes from the clock chip’s NVRAM 10-13

clockchip_nvram_write() Writes bytes to the clock chip’s NVRAM 10-14

clockchip_start() Starts the real-time clock 10-16

clockchip_stop() Stops the real-time clock 10-17

clockLib_init() Initializes the clockLib library routines 10-18

dbg_ioLib_init() Initializes the I/O library when using ROM Monitor debugger or
benetLib.a

10-19

dcache_flush() Flushes cache lines, beginning at the effective address and
continuing for a specified number of bytes

10-20

dcache_invalidate() Invalidates cache lines beginning at the effective address and
continuing for a specified number of bytes

10-21

dma_disable() Disable a DMA channel 10-22

dma_setup() Initialise a DMA channel for a transfer 10-23

dma_status() Return status information for a DMA channel 10-24

enet_get_aAlignmentErrors() Return MIB AlignmentErrors statistic 10-25

enet_get_aFrameCheckSeq
uenceErrors()

Return MIB FrameCheckSequenceErrors statistic 10-26

enet_get_aFramesReceived
OK()

Return MIB FramesReceivedOK statistic 10-27
10-2 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
enet_get_aFramesTransmitt
edOK()

Return MIB FramesTransmittedOK statistic 10-28

enet_get_aMultipleCollisionF
rames()

Return MIB MultipleCollisionFrames statistic 10-29

enet_get_aOctetsReceived() Return MIB OctetsReceived statistic 10-30

enet_get_OctetsTransmitted
a()

Return MIB OctetsTransmitted statistic 10-31

enet_get_aSingleCollisionFr
ames()

Return MIB SingleCollisionFrames statistic 10-32

enet_init() The Ethernet device driver initialization function 10-33

ext_int_config() Configures the interrupt level specified by an eventl 10-34

ext_int_disable() Disables the interrupt level specified by an event 10-35

ext_int_enable() Enables the interrupt level specified by an event 10-36

ext_int_install() Installs a first level interrupt handler (FLIH) for an event 10-37

ext_int_query() Returns information about the FLIH 10-38

i2c_read() Read data from an I2C device 10-39

i2c_read_reg() Read an I2C register 10-40

i2c_setupdriver() Initialise the I2C device driver 10-41

i2c_write() Write data to an I2C device 10-42

i2c_write_reg() Write to an I2C register 10-43

inshort_swap() Reads in a byte-swapped halfword 10-44

inword_swap() Reads in a byte-swapped word 10-47

ioLib_init() Initializes I/O library 10-48

malChannelActivate Activates a MAL channel 10-49

malChannelDelete Deletes a MAL channel 10-50

malChannelDescTblPtrGet Retrieves the data pointer for a MAL Channel’s Descriptor Table 10-51

malChannelInit Initialize a specific MAL channel for operation 10-52

malChannelIntMaskGet Retrieves the MAL Channel’s interrupt mask 10-53

malChannelIntMaskSet Sets the MAL Channel’s interrupt mask 10-54

malChannelStop Stops a MAL channel 10-55

malInit Initializes the MAL driver 10-56

malReset Resets the MAL controller 10-57

Table 10-1. Functions Specific to the PPC405EP Design Kit (Continued)

Function or Macro Description Page
OS Open Function Reference 10-3

 Preliminary
memcpy_io() memcpy() for I/O areas 10-58

outshort_swap() Writes out a byte-swapped halfword 10-59

outword_swap() Write out a byte-swapped word 10-60

pci_find_device() Finds a specified PCI device 10-61

pci_find_device_type() Finds a specified type of PCI device 10-62

pci_get_io_base() Returns a PCI I/O base address 10-63

pci_get_memory_base() Returns a PCI memory base address 10-64

pci_init() PCI initialization 10-65

pci_master_abort() Looks for and clears a PCI master abort condition 10-66

pci_read_config_reg() Reads from a PCI configuration register 10-67

pci_write_config_reg() Writes to a PCI configuration register 10-68

ppcAbend() Executes an invalid opcode forcing a program check interrupt 10-69

ppcAndMsr() ANDs a value with the contents of the MSR 10-70

ppcCntlzw() Counts consecutive leading zeros in a value 10-71

ppcDcbf() Copies the cache block back to main storage (if the block resides
in cache and has been modified with respect to main storage) and
then invalidates the cache block

10-72

ppcDcbi() Invalidates a cache block, discarding any modified contents if the
block is valid in cache

10-73

ppcDcbst() Copies a cache block, discarding any modified contents if the
block is valid in cache

10-74

ppcDcbz() Sets a cache block to 0 10-75

ppcDflush() Flush and invalidate the data cache 10-76

ppcEieio() Ensures that all storage references before the call finish before
any storage references after the call start

10-77

ppcHalt() Is a one instruction spin loop, effectively putting the processor in
an enabled wait at the point of invocation

10-78

ppcIcbi() Invalidates an instruction cache block 10-79

ppcIsync() Causes the processor to discard any instructions that may have
been prefetched

10-80

ppcMfccr0() Returns the value of the CCR0 register 10-81

ppcMfdac1() - ppcMfdac2() Returns the value of the DAC1 or DAC2 regsiter 10-82

ppcMfdbcr0() - ppcMfdbcr1() Returns the value of the DBCR0 or DBCR1 regsiter 10-83

Table 10-1. Functions Specific to the PPC405EP Design Kit (Continued)

Function or Macro Description Page
10-4 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
ppcMfdbsr() Returns the value of the DBSR register 10-84

ppcMfdccr() Returns the value of the DCCR register 10-85

ppcMfdcr_any() Returns the value of any DCR register 10-86

ppcMfdcwr() Returns the value of the DCWR register 10-87

ppcMfdear() Returns the value of the DEAR register 10-88

ppcMfdvc1() - ppcMfdvc2() Returns the value of the DVC1 or DVC2 register 10-89

ppcMfesr() Returns the value of the ESR register 10-90

ppcMfevpr() Returns the value of the EVPR register 10-91

ppcMfgpr1() Returns the value of GPR(1) 10-92

ppcMfgpr2() Returns the value of GPR(2) 10-93

ppcMfiac1() - ppcMfiac4() Returns the value of the IAC1 through IAC4 register 10-94

ppcMficcr() Returns the value of the ICCR register 10-95

ppcMficdbdr() Returns the value of the ICDBDR register 10-96

ppcMfmsr() Returns the value of the MSR register 10-97

ppcMfpid() Returns the value of the PID register 10-98

ppcMfpit() Returns the value of the PIT register 10-99

ppcMfpvr() Returns the value of the processor version register 10-100

ppcMfsgr() Returns the value of the SGR register 10-101

ppcMfsler() Returns the value of the SLER register 10-102

ppcMfsprg0()- ppcMfsprg7() Returns the value of the special purpose register generals
(SPRG0-SPRG7)

10-103

ppcMfsrr0() Returns the value of SRR0 10-104

ppcMfsrr1() Returns the current value of SRR1 10-105

ppcMfsrr2() Returns the current value of SRR2 10-106

ppcMfsrr3() Returns the current value of SRR3 10-107

ppcMfsu0r() Returns the value of the SU0R register 10-108

ppcMftb() Returns the current time base data 10-109

ppcMftcr() Returns the value of the TCR register 10-110

ppcMftsr() Returns the value of the TSR register 10-111

ppcMfzpr() Returns the value of the ZPR register 10-112

ppcMtccr0() Sets the value of the CCR0 register 10-113

Table 10-1. Functions Specific to the PPC405EP Design Kit (Continued)

Function or Macro Description Page
OS Open Function Reference 10-5

 Preliminary
ppcMtdac1() - ppcMtdac2() Sets the value of the DAC1 or DAC2 regsiter 10-114

ppcMtdbcr0() - ppcMtdbcr1() Sets the value of the DBCR0 or DBCR1 regsiter 10-115

ppcMtdbsr() Sets the value of the DBSR register 10-116

ppcMtdccr() Sets the value of the DCCR register 10-117

ppcMtdcr_any() Sets the value of any DCR register 10-120

ppcMtdcwr() Sets the value of the DCWR register 10-121

ppcMtdear() Sets the value of the DEAR register 10-122

ppcMtdvc1() - ppcMtdvc2() Sets the value of the DVC1 or DVC2 register 10-123

ppcMtesr() Sets the value of the ESR register 10-124

ppcMtevpr() Sets the value of the EVPR register 10-125

ppcMtiac1() - ppcMtiac4() Sets the value of the IAC1 through IAC4 register 10-126

ppcMticcr() Sets the value of the ICCR register 10-127

ppcMtmsr() Sets the MSR 10-128

ppcMtpid() Sets the value of the PID register 10-129

ppcMtpit() Sets the value of the PIT register 10-130

ppcMtsgr() Sets the value of the SGR register 10-131

ppcMtsler() Sets the value of the SLER register 10-132

ppcMtsprg0() - ppcMtsprg7() Sets the special purpose register generals (SPRG0 - SPRG7) 10-133

ppcMtsrr0() Sets the SRR0 10-134

ppcMtsrr1() Sets the SRR1 10-135

ppcMtsrr2() Sets the SRR2 10-136

ppcMtsrr3() Sets the SRR3 10-137

ppcMtsu0r() Sets the value of the SU0R register 10-138

ppcMttb() Sets the current time base data 10-139

ppcMttcr() Sets the value of the TCR register 10-140

ppcMttsr() Sets the value of the TSR register 10-141

ppcMtzpr() Sets the value of the ZPR register 10-142

ppcOrMsr() Performs the OR of a value and the current MSR, updating the
MSR

10-143

ppcSync() Causes the processor to wait until all data cache lines scheduled
to be written to main storage have actually been written

10-144

Table 10-1. Functions Specific to the PPC405EP Design Kit (Continued)

Function or Macro Description Page
10-6 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
s1dbprintf() A version of printf() that may be used before I/O has been
established

10-145

s2dbprintf() A version of printf() that may be used before I/O has been
established for serial port 2

10-147

timebase_speed() Returns the speed of the timebase 10-148

timertick_install() Installs and starts the timer tick handler 10-149

timertick_remove() Removes the timer tick handler 10-150

vs1dbprintf() A version of printf() that uses polled writes (no interrupts),
and may be used before I/O has been established and
accepts a va_list as a parameter instead of a variable
number of parameters

10-151

Table 10-1. Functions Specific to the PPC405EP Design Kit (Continued)

Function or Macro Description Page
OS Open Function Reference 10-7

async_init() Preliminary
async_init()

Synopsis

#include <sys/asyncLib.h>
int driver_install(int *devhandle,async_init);

Library

asyncLib.a

Description

asyncLib.a is the asynchronous device driver that supports the asynchronous communication port
on the PPC405EP evaluation board kit platform. asyncLib.a is installed by calling driver_install()
with devhandle as the first parameter and async_init as the second parameter.

Errors

None

Attributes

References

driver_install(): OS Open Programmer’s Reference

“Device Drivers Supplied with the Board Support Software” on page 9-5

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe No

Callable from Application Thread Group No
10-8 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary biosenet_attach()
biosenet_attach()

Synopsis

#include <benetLib.h>
int biosenet_attach(unsigned long ipaaddr , int init_flag);

Library

benetLib.a

Description

biosenet_attach() attaches the TCP/IP protocol stack to the Ethernet device. The IP address should
be different from the IP address defined to the 403 EVB ROM Monitor. init_flag determines if
biosenet_attach() should initialize the Ethernet interface. The Ethernet device should be initialized
only if OS Open was loaded through an interface other than Ethernet. A non-zero value will cause
biosenet_attach() to initialize the Ethernet and a 0 value causes biosenet_attach() not to initialize
the Ethernet interface. biosenet_attach() returns 0 if successful and -1 if it is unsuccessful.

Note 1: When using biosenet_attach() the I/O should be initialized by calling dbg_ioLib_init() rather
than ioLib_init().

Note 2: biosenet_attach() is unavailable for OS Open with Virtual Memory.

Errors

Example

Initialize TCP/IP and define an IP address to biosenet_attach().

 #include<sys/tcpipLib.h>

 int rc;
 rc=tcpip_init(ìmyhostnameî, 1 , 100);
 if (rc!=0) {
 return(-1);}
 if (net_init()) return(-1);
 return(biosenet_attatch(0x07010104,0)); /* specify the IP addr. and the

init flag*/

None
OS Open Function Reference 10-9

biosenet_attach() Preliminary
Attributes

Processors

References

“Ethernet Device Driver” on page 9-13

Async Safe No

Cancel Safe No

Interrupt Handler Safe No

Callable from Application Thread Group No

PowerPC 403GA Yes

PowerPC 403GC Yes

PowerPC 403GCX Yes
10-10 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary clock_set()
clock_set()

Synopsis

#include <clockLib.h>
int clock_set(void);

Library

clockLib.a

Description

clock_set() sets the OS Open POSIX clock to the value obtained from the battery operated real-time
clock. The clockLib must be initialized by calling clockLib_init() prior to calling this function.

Errors

Attributes

References

“clockchip_set()” on page 10-15

“clockLib_init()” on page 10-18

[EIO] Real-time clock not running.

Async Safe Yes/No1

1. Not Async Safe in OS Open with Virtual Memory

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-11

clockchip_get() Preliminary
clockchip_get()

Synopsis

#include <clockLib.h>
int clockchip_get(time_t *timeval);

Library

clockLib.a

Description

clockchip_get() reads the battery-backed real-time clock into the timeval structure supplied by the
user. The clockLib library must be initialized by calling clockLib_init() prior to calling this function.

Errors

Attributes

References

“clockchip_set()” on page 10-15

“clockLib_init()” on page 10-18

[EINVAL] Library not initialized.

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes
10-12 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary clockchip_nvram_read()
clockchip_nvram_read()

Synopsis

#include <clockLib.h>
int clockchip_nvram_read(int index, unsigned char *buffer, int length);

Library

clockLib.a

Description

clockchip_nvram_read() reads non-volatile RAM from the clock chip. index specifies the starting
byte of NVRAM, buffer points to the location where the bytes will be copied to and length specifies the
maximum number of bytes to read. clockchip_nvram_read() returns the actual number of bytes
read. The clockLib library must be initialized by calling clockLib_init() prior to calling this function.

Note: index must be within the range specified during clockLib_init()

Errors

Attributes

References

“clockchip_nvram_write()” on page 10-14

“clockLib_init()” on page 10-18

[EINVAL] Library not initialized or index out of range.

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes
OS Open Function Reference 10-13

clockchip_nvram_write() Preliminary
clockchip_nvram_write()

Synopsis

#include <clockLib.h>
int clockchip_nvram_write(int index, unsigned char *buffer, int length);

Library

clockLib.a

Description

clockchip_nvram_write() writes non-volatile RAM in the clock chip. index specifies the starting byte
of NVRAM, buffer points to the location where the bytes will be copied from and length specifies the
maximum number of bytes to write. clockchip_nvram_write() returns the actual number of bytes
written. The clockLib library must be initialized by calling clockLib_init() prior to calling this function.

Note: index must be within the range specified during clockLib_init()

Errors

Attributes

References

“clockchip_nvram_read()” on page 10-13

“clockLib_init()” on page 10-18

[EINVAL] Library not initialized or index out of range.

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes
10-14 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary clockchip_set()
clockchip_set()

Synopsis

#include <clockLib.h>
int clockchip_set(time_t timeval);

Library

clockLib.a

Description

clockchip_set() sets the battery-backed real-time clock to timeval, which should contain the number
of seconds since January 1st, 1970 UTC.

Errors

Attributes

References

“clock_set()” on page 10-11

[EIO] Real-time clock not running.

[EINVAL] Library not initialized.

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-15

clockchip_start() Preliminary
clockchip_start()

Synopsis

#include <clockLib.h>
int clockchip_start(void);

Library

clockLib.a

Description

clockchip_start() starts the real-time clock. The clockLib library must be initialized by calling
clockLib_init() prior to calling this function.

Errors

Attributes

References

“clockchip_stop()” on page 10-17

“clockLib_init()” on page 10-18

[EINVAL] Library not initialized.

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes
10-16 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary clockchip_stop()
clockchip_stop()

Synopsis

#include <clockLib.h>
int clockchip_stop(void);

Library

clockLib.a

Description

clockchip_stop() stops the real-time clock. The clockLib library must be initialized by calling
clockLib_init() prior to calling this function.

Errors

Attributes

References

“clockchip_start()” on page 10-16

“clockLib_init()” on page 10-18

[EINVAL] Library not initialized.

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes
OS Open Function Reference 10-17

clockLib_init() Preliminary
clockLib_init()

Synopsis

#include <clockLib.h>
int clockLib_init(unsigned char *regbase, int reg_delta, int first_index, int
last_index);

Library

clockLib.a

Description

clockLib_init() initializes the clockLib library routines. regbase specifies the base address of the
clock/nvram chip, reg_delta specifies the distance (in bytes) between each addressable byte in the
chip. first_index and last_index indicate the range of bytes in the NVRAM that can be accessed by
clockchip_nvram_read() and clockchip_nvram_write() . The range is specified using starting and
ending index values (inclusive). clockLib_init() returns 0 if successful.

A constant defining the base address of the clock_nvram chip, RTC_NVRAM_BASE_ADDRESS, is
specified by including <ppcLIb.h> .

Note: clockLib_init() should be called once at system initialization.

Errors

Example

clockLib_init(RTC_NVRAM_BASE_ADDRESS, 1 ,0 ,0x1ff7);

Attributes

References

“clock_set()” on page 10-11

“clockchip_get()” on page 10-12

“clockchip_nvram_read()” on page 10-13

“clockchip_nvram_write()” on page 10-14

“clockchip_set()” on page 10-15

“clockchip_start()” on page 10-16

“clockchip_stop()” on page 10-17

[EINVAL] Already initialized or index out of range.

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes
10-18 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary dbg_ioLib_init()
dbg_ioLib_init()

Synopsis

#include <ioLib.h>
int dbg_ioLib_init(void);

Library

ioLib.a

Description

dbg_ioLib_init() initializes the I/O library. Unlike ioLib_init() , this function allows external I/O
interrupts to be screened by the ROM monitor, enabling debug to be performed from outside of the
OS Open environment. Only external I/O through IRQ’s other than those used by the ROM Monitor
are available to OS Open.

If successful, dbg_ioLib_init() returns 0. Otherwise, dbg_ioLib_init() returns –1.

Errors

Attributes

References

“ioLib_init()” on page 10-48

[ENOMEM] Insufficient memory to allocate first level interrupt handler control areas.

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-19

dcache_flush() Preliminary
dcache_flush()

Synopsis

#include <ioLib.h>
void dcache_flush(void *address, unsigned int count);

Library

ioLib.a

Description

dcache_flush() flushes data cache lines, beginning at the effective address and continuing for count
bytes.

A cache line flush forces the current contents of the cache line to main storage (if the line is valid and
marked as modified) and then invalidates the line.

Note: Since cache flushes occur on cache line boundaries, the operation can occur outside of the
bounds specified by the function call. For example, if address is X'216' and count is X'12', two
cache lines, spanning addresses from X'200' to X'23F', would be flushed.

Errors

None

Attributes

References

“dcache_invalidate()” on page 10-21

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-20 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary dcache_invalidate()
dcache_invalidate()

Synopsis

#include <ioLib.h >
void dcache_invalidate(void *address, unsigned int count);

Library

ioLib.a

Description

dcache_invalidate() invalidates data cache lines beginning at the effective address given by address
and continuing for count bytes.

Note: Since cache invalidation occurs on cache line boundaries, invalidation can occur outside of the
bounds implied by this command. For example, if address is X'104' and count is 16, the cache
line spanning the addresses from X'100' to X'120' would be invalidated.

Errors

None

Attributes

References

“dcache_flush()” on page 10-20

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-21

dma_disable() Preliminary
dma_disable()

Synopsis

#include <ioLib.h>
int dma_disable(unsigned int channel);

Library

ioLib.a

Description

dma_disable() disables the specified channel (0-3).

The dma_disable() function returns 0 if successful or -1 if channel is invalid.

Errors

None

Attributes

References

“dma_setup()” on page 10-23

“dma_status()” on page 10-24

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-22 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary dma_setup()
dma_setup()

Synopsis

#include <ioLib.h>
int dma_setup(unsigned int channel, unsigned long dmacr, unsigned long count,
void* dst_address, void* src_address, struct dma_sg_t *dmasb);

Library

ioLib.a

Description

dma_setup() initialises a DMA channel for the specified transfer. channel specifies the DMA channel,
dst_address the destination address, src_address the source address, count the length of the data
transfer, dmacr the value to be written to the DMACRn register. channel must be a value 0-3, count
must be greater than 0 and less than or equal to 65536. Note that the PW field in the dmacr register
may affect the transfer size, so for memory-to-memory transfers the total data sent is the size
specified by the PW field multiplied by the count value.

If dmasb is non-0, a scatter/gather transfer is used, and dmasb is the address of the first descriptor
table element, which must have been initialised before calling dma_setup() . In this case the only
other parameter that is used is channel, the others are ignored. Note that if you set an enable
interrupt bit in a descriptor table element, you should install an interrupt handler to process the
interrupt, using ext_interrupt_install().

The dma_setup() function returns 0 if successful or -1 if channel is invalid.

Errors

None

Attributes

References

PPC405EP Embedded Processor User’s Manual

“dma_disable()” on page 10-22

“dma_status()” on page 10-24

“ext_int_install()” on page 10-37

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-23

dma_status() Preliminary
dma_status()

Synopsis

#include <ioLib.h>
int dma_status(unsigned int channel, struct dma_stat * dstat);

Library

ioLib.a

Description

dma_status() returns status information from the specified channel (0-3). The structure pointed to by
dstat is filled with status information. struct dma_stat is defined in <ioLib.h> .

The dma_status() function returns 0 if successful or -1 if channel is invalid.

Errors

None

Attributes

References

“dma_disable()” on page 10-22

“dma_setup()” on page 10-23

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-24 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary enet_get_aAlignmentErrors()
enet_get_aAlignmentErrors()

Synopsis

#include <enet.h>
unsigned int enet_get_aAlignmentErrors(void);

Library

enetLib.a

Description

enet_get_aAlignmentErrors() returns the current value of the IEEE 802.3 clause 30
aAlignmentErrors counter. This is a 32 bit, non-resettable counter that contains the number of non-
integral frames that are received and do not pass the frame check sequence (FCS) check.

Errors

None

Attributes

References

IEEE Std 802.3, 1998 Edition

“MIB Functions” on page 9-24

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-25

enet_get_aFrameCheckSequenceErrors() Preliminary
enet_get_aFrameCheckSequenceErrors()

Synopsis

#include <enet.h>
unsigned int enet_get_aFrameCheckSequenceErrors(void);

Library

enetLib.a

Description

enet_get_aFrameCheckSequenceErrors() returns the current value of the IEEE 802.3 clause 30
aFrameCheckSequenceErrors counter. This is a 32 bit, non-resettable counter that contains the
number of integral frames that are received, but do not pass the frame check sequence (FCS) check.

Errors

None

Attributes

References

IEEE Std 802.3, 1998 Edition

“MIB Functions” on page 9-24

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-26 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary enet_get_aFramesReceivedOK()
enet_get_aFramesReceived()

Synopsis

#include <enet.h>
unsigned int enet_get_aFramesReceivedOK(void);

Library

enetLib.a

Description

enet_get_aFramesReceivedOK() returns the current value of the IEEE 802.3 clause 30
aFramesReceivedOK counter. This is a 32 bit, non-resettable counter that contains the number of
frames that are successfully received. This counter does not include frames that are received with
errors.

Errors

None

Attributes

References

IEEE Std 802.3, 1998 Edition

“MIB Functions” on page 9-24

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-27

enet_get_aFramesTransmittedOK() Preliminary
enet_get_aFramesTransmittedOK()

Synopsis

#include <enet.h>
unsigned int enet_get_aFramesTransmittedOK(void);

Library

enetLib.a

Description

enet_get_aFramesTransmittedOK() returns the current value of the IEEE 802.3 clause 30
aFramesTransmittedOK counter. This is a 32 bit, non-resettable counter that contains the number of
frames that are successfully transmitted.

Errors

None

Attributes

References

IEEE Std 802.3, 1998 Edition

“MIB Functions” on page 9-24

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-28 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary enet_get_aMultipleCollisionFrames()
enet_get_aMultipleCollisionFrames()

Synopsis

#include <enet.h>
unsigned int enet_get_aMultipleCollisionFrames(void);

Library

enetLib.a

Description

enet_get_aMultipleCollisionFrames() returns the current value of the IEEE 802.3 clause 30
aMultipleCollisionFrames counter. This is a 32 bit, non-resettable counter that contains the number of
frames that are involved in multiple collisions, but are subsequently transmitted successfully.

Errors

None

Attributes

References

IEEE Std 802.3, 1998 Edition

“MIB Functions” on page 9-24

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-29

enet_get_aOctetsReceived() Preliminary
enet_get_aOctetsReceived()

Synopsis

#include <enet.h>
unsigned int enet_get_aOctetsReceived(void);

Library

enetLib.a

Description

enet_get_aOctetsReceived() returns the total number of octets received, modulo 2**32. This is a 32
bit, non-resettable counter that contains the number of octets received, including those in bad
packets. This is equivalent to the etherStatsOctets counter defined in RFC 1757.

Errors

None

Attributes

References

RFC 1757, Remote Network Monitoring Management Information Base, 1995

“MIB Functions” on page 9-24

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-30 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary enet_get_aOctetsTransmitted()
enet_get_aOctetsTransmitted()

Synopsis

#include <enet.h>
unsigned int enet_get_aOctetsTransmitted(void);

Library

enetLib.a

Description

enet_get_aOctetsTransmitted() returns the total number of octets transmitted, modulo 2**32. This is
a 32 bit, non-resettable counter that contains the number of octets transmitted, including
retransmission of packets with collisions.

Errors

None

Attributes

References

IEEE Std 802.3, 1998 Edition

“MIB Functions” on page 9-24

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-31

enet_get_aSingleCollisionFrames() Preliminary
enet_get_aSingleCollisionFrames()

Synopsis

#include <enet.h>
unsigned int enet_get_aSingleCollisionFrames(void);

Library

enetLib.a

Description

enet_get_aSingleCollisionFrames() returns the current value of the IEEE 802.3 clause 30
aSingleCollisionFrames counter. This is a 32 bit, non-resettable counter that contains the number of
frames that are involved in a single collision, but are subsequently transmitted successfully.

Errors

None

Attributes

References

IEEE Std 802.3, 1998 Edition

“MIB Functions” on page 9-16

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-32 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary enet_init()
enet_init()

Synopsis

#include <enet.h>
int driver_install(int devhandle, enet_init, int num_blocks,
void *enet_descriptor, void *enet_buffer, char *mac_array);

Library

enetLib.a

Description

enetLib.a is the Ethernet device driver supporting packet level read/writes to the intergrated Ethernet
controller. enetLib.a is installed by calling driver_install() with six parameters. The first parameter is
the device handle, devhandle . The second parameter is the device driver initialization function,
enet_init . The third parameter is the number of 256 byte buffers allocated for the Ethernet driver's
use, num_blocks . The fourth parameter is the address of memory to use for buffer descriptors,
enet_descriptor . The fifth parameter is the address of memory to use for buffers, enet_buffer . The
sixth parameter is the location of the universal MAC address assigned to the Ethernet controller,
mac_array .

Please see “Ethernet Device Driver” on page 9-13 for additional information.

Errors

None

Attributes

References

driver_install() : OS Open Programmer’s Reference

“Ethernet Device Driver” on page 9-13

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe No
OS Open Function Reference 10-33

ext_int_config() Preliminary
ext_int_config()

Synopsis

#include <ioLib.h>
void ext_int_config(int event , int flags);

Library

ioLib.a

Description

ext_int_config() configures the interrupt level specified by event. The items that can be configured
are the polarity, trigger setting and whether the event is critical. These are specified by the flags
parameter. ioLib.h defines the interrupt levels that can be configured.

The flags parameter can take any of the following values, which may be OR’d together:

EXTINT_NEG_ACTIVE or EXT_INT_POS_ACTIVE
EXTINT_LEVEL or EXT_INT_EDGE_TRIG
EXTINT_NON_CRITICAL or EXTINT_CRITICAL

The ext_int_config() function returns 0 if successful or -1 if event is invalid.

Errors

None

Attributes

References

“ext_int_enable()” on page 10-36

“ext_int_install()” on page 10-37

“ext_int_query()” on page 10-38

“ioLib_init()” on page 10-48

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-34 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ext_int_disable()
ext_int_disable()

Synopsis

#include <ioLib.h>
void ext_int_disable(int event);

Library

ioLib.a

Description

ext_int_disable() disables the interrupt level specified by event. ioLib.h defines the interrupt levels
that can be disabled.

The ext_int_disable() function returns nothing.

Errors

None

Attributes

References

“ext_int_enable()” on page 10-36

“ext_int_install()” on page 10-37

“ext_int_query()” on page 10-38

“ioLib_init()” on page 10-48

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-35

ext_int_enable() Preliminary
ext_int_enable()

Synopsis

#include <ioLib.h>
void ext_int_enable(int event);

Library

ioLib.a

Description

ext_int_enable() enables the interrupt level specified by event. ioLib.h defines the interrupt levels
that can be enabled.

ext_int_enable() returns nothing.

Errors

None

Attributes

References

“ext_int_install()” on page 10-37

“ext_int_query()” on page 10-38

“ioLib_init()” on page 10-48

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-36 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ext_int_install()
ext_int_install()

Synopsis

#include <flih.h>
#include <ioLib.h>
int ext_int_install(int event, flih_t *new_flih, flih_t *old_flih);

Library

ioLib.a

Description

ext_int_install() installs a first level interrupt handler (FLIH) for the external interrupt event. ioLib.h
defines the interrupt levels that can be set.

If new_flih is NULL, the current interrupt handler is removed for the specified event. If new_flih is non-
NULL, it points to a flih_t structure containing the following fields:

If old_flih is not NULL, the previous values of flih_function, flih_stack, and arg are stored in the
structure pointed to by old_flih.

Note: to install an interrupt handler for other, non-external, interrupts, see int_install() .

If successful, ext_int_install() returns 0. Otherwise, ext_int_install() returns –1.

Errors

Attributes

References

“ext_int_enable()” on page 10-36

“ext_int_query()” on page 10-38

“ioLib_init()” on page 10-48

“int_install()” on page 10-45

flih_stack Pointer to the first stack location; obtained by allocating memory and
adding the size of the stack. flih_stack must be 16 byte aligned.

flih_function Pointer to a function invoked when event occurs.

arg A user-defined (void *) value passed to flih_function.

[EINVAL] event does not refer to a valid event.

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-37

ext_int_query() Preliminary
ext_int_query()

Synopsis

#include <ioLib.h>
#include <flih.h>
int ext_int_query(int event, flih_t *flih);

Library

ioLib.a

Description

ext_int_query() returns information about the first level interrupt handler (FLIH), if any, for event.

ioLib.h defines the events for which FLIHs can query.

The flih argument points to a flih_t structure containing the following fields:

If successful, ext_int_query() returns 0. Otherwise, ext_int_query() returns –1.

Errors

Attributes

References

“ext_int_enable()” on page 10-36

“ext_int_install()” on page 10-37

“ioLib_init()” on page 10-48

flih_stack Pointer to the first stack location; obtained by allocating memory and
adding the size of the stack.

flih_function Pointer to a function invoked when event occurs.

arg A user-defined (void *) value passed to flih_function. If no FLIH is
installed for the specified level, each field in the flih_t structure is
assigned NULL.

[EINVAL] event does not refer to a valid event.

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-38 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary i2c_read()
i2c_read()

Synopsis

#include <sys/i2cLib.h>
int i2c_read(unsigned char dev_addr, unsigned char dev_subaddr, unsigned char
count, unsigned char *data, unsigned char flags)

Library

i2cLib.a

Description

i2c_read() reads count (1 to 4) characters from the i2c device specified by dev_addr, and places
them in the buffer pointed to by data. The optional subaddress specified by dev_subaddr may also be
used by the device to determine which data to send.

flags may contain any of the following vlaues, OR’d together:

I2C_FLAGS_SUB_ADDR: a device subaddress is to be used, and is in dev_subaddr
I2C_FLAGS_CH: chaining - sets the Chain bit in the I2C Control register
I2C_FLAGS_REP_ST: repeated start - sets the Repeated Start bit in the I2C Control register.

The I2C driver must have been initialised with a call to i2c_setupdriver() before this function is called.

Returns 0 if successful and -1 otherwise.

Errors

None

Example

Read 2 bytes from the specified device, using the given subaddress.

#include <sys/i2cLib.h>
...
int rc;
unsigned char dev_addr, dev_subaddr;
unsigned char data[4];
rc=i2c_read(dev_addr,dev_subaddr,2,data,I2C_FLAGS_SUB_ADDR);

Attributes

References

“i2c_setupdriver()” on page 10-41

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe No

Callable from Application Thread Group Yes
OS Open Function Reference 10-39

i2c_read_reg() Preliminary
i2c_read_reg()

Synopsis

#include <sys/i2cLib.h>
int i2c_read_reg(unsigned char reg, unsigned char *value)

Library

i2cLib.a

Description

i2c_read_reg() reads the contents of I2C register reg, and returns it in the character pointed to by
value. reg must be in the range 0 to 15. Constants defining the register names are in <sys/i2cLib.h>.

Returns 0 if successful and -1 otherwise.

Errors

None

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe No

Callable from Application Thread Group Yes
10-40 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary i2c_setupdriver()
i2c_setupdriver()

Synopsis

#include <sys/i2cLib.h>
int i2c_setupdriver(char * base_address)

Library

i2cLib.a

Description

i2c_setupdriver() initialises the I2C device driver. This function should be called before any other I2C
functions are attempted. The base_address parameter contains the starting address of the memory-
mapped IIC registers. This infomration may be obtained from processor documentation, and is also
contained in the symbol IIC_BASE_ADDRESS, obtained by including file <ppcLib.h>.

Returns 0 if successful and -1 otherwise.

Errors

ENOSPC, ENOMEM: Insufficient memory

Example

Initialise the I2C driver.

#include <sys/i2cLib.h>
#include <ppcLib.h>
...
int rc;
rc=i2c_setupdriver(IIC_BASE_ADDRESS);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
OS Open Function Reference 10-41

i2c_write() Preliminary
i2c_write()

Synopsis

#include <sys/i2cLib.h>
int i2c_write(unsigned char dev_addr, unsigned char dev_subaddr, unsigned char
count, unsigned char *data, unsigned char flags)

Library

i2cLib.a

Description

i2c_write() writes count characters to the i2c device specified by dev_addr, from the buffer pointed to
by data. The optional subaddress specified by dev_subaddr may be used by the device to determine
where to place the data. If no device subaddress is used, the value of count may be 1 to 4. If a device
subaddress is used, count may be 0 to 3. When count is 0, only the device subaddress is written.

flags may contain any of the following vlaues, OR’d together:

I2C_FLAGS_SUB_ADDR: a device subaddress is to be used, and is in dev_subaddr
I2C_FLAGS_CH: chaining - sets the Chain bit in the I2C Control register
I2C_FLAGS_REP_ST: repeated start - sets the Repeated Start bit in the I2C Control register.

The I2C driver must have been initialised with a call to i2c_setupdriver() before this function is called.

Returns 0 if successful and -1 otherwise.

Errors

None

Example

Write 2 bytes to the specified device, using the given subaddress.

#include <sys/i2cLib.h>
int rc;
unsigned char dev_addr, dev_subaddr;
unsigned char data[4];
rc=i2c_write(dev_addr,dev_subaddr,2,data,I2C_FLAGS_SUB_ADDR);

Attributes

References

“i2c_setupdriver()” on page 10-41

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe No

Callable from Application Thread Group Yes
10-42 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary i2c_write_reg()
i2c_write_reg()

Synopsis

#include <sys/i2cLib.h>
int i2c_write_reg(unsigned char reg, unsigned char value)

Library

i2cLib.a

Description

i2c_write_reg() writes value to I2C register reg. reg must be in the range 0 to 15. Constants defining
the register names are in <sys/i2cLib.h>.

Returns 0 if successful and -1 otherwise.

Errors

None

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe No

Callable from Application Thread Group Yes
OS Open Function Reference 10-43

inshort_swap() Preliminary
inshort_swap()

Synopsis

#include <ioLib.h>
unsigned short inshort_swap(unsigned short * address)

Library

ioLib.a

Description

inshort_swap() returns a halfword read from the I/O port specified by address. The halfword is byte-
reversed, by using the lhbrx instruction.

After the halfword is read, the PowerPC eieio instruction is issued to enforce in-order execution of I/O.

Errors

None

Attributes

References

“outshort_swap()” on page 10-59

“inword_swap()” on page 10-47

inshort(): OS Open Programmer’s Reference

lhbrx instruction in PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
10-44 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary int_install()
int _install()

Synopsis

#include <flih.h>
int int_install(int event, flih_t *new_flih, flih_t *old_flih);

Library

rtxLib.a

Description

int_install() installs a first level interrupt handler (FLIH) for event. flih.h defines the interrupt levels
that can be set.

If new_flih is NULL, the current interrupt handler is removed for the specified event. If new_flih is non-
NULL, it points to a flih_t structure containing the following fields:

If old_flih is not NULL, the previous values of flih_function, flih_stack, and arg are stored in the
structure pointed to by old_flih.

Note: to install an interrupt handler for a device which generates an external interrupt (one handled by
the Universal Interrupt Controller, UIC) use the function ext_int_install() .

If successful, int_install() returns 0. Otherwise, int_install() returns –1.

Errors

Attributes

References

“int_query()” on page 10-46

“ioLib_init()” on page 10-48

“ext_int_install()” on page 10-37

flih_stack Pointer to the first stack location; obtained by allocating memory and
adding the size of the stack.

flih_function Pointer to a function invoked when event occurs.

arg A user-defined (void *) value passed to flih_function.

[EINVAL] event does not refer to a valid event.

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-45

int_query() Preliminary
int_query()

Synopsis

#include <flih.h>
int int_query(int event, flih_t *flih);

Library

rtxLib.a

Description

int_query() returns information about the first level interrupt handler (FLIH), if any, for event.

flih.h defines the events for which FLIHs can query.

The flih argument points to a flih_t structure containing the following fields:

If successful, int_query() returns 0. Otherwise, int_query() returns –1.

Errors

Attributes

References

“int_install()” on page 10-45

“ioLib_init()” on page 10-48

flih_stack Pointer to the first stack location; obtained by allocating memory and
adding the size of the stack.

flih_function Pointer to a function invoked when event occurs.

arg A user-defined (void *) value passed to flih_function. If no FLIH is
installed for the specified level, each field in the flih_t structure is
assigned NULL.

EINVAL] event does not refer to a valid event.

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-46 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary inword_swap()
inword_swap()

Synopsis

#include <ioLib.h>
unsigned long inword_swap(unsigned long * address)

Library

ioLib.a

Description

inword_swap() returns a word read from the I/O port specified by address. The word is byte-
reversed, by using the lwbrx instruction.

After the word is read, the PowerPC eieio instruction is issued to enforce in-order execution of I/O.

Errors

None

Attributes

References

“outword_swap()” on page 10-60

“inshort_swap()” on page 10-44

inword(): OS Open Programmer’s Reference

lwbrx instruction in PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
OS Open Function Reference 10-47

ioLib_init() Preliminary
ioLib_init()

Synopsis

#include <ioLib.h>
int ioLib_init(void);

Library

ioLib.a

Description

ioLib_init() initializes the I/O library.

If successful, ioLib_init() returns 0. Otherwise, ioLib_init() returns –1.

ioLib_init() should not be used when using the ROM Monitor Ethernet interface or the ROM monitor
debugger. dbg_ioLib_init() should be used instead.

Errors

Attributes

References

“dbg_ioLib_init()” on page 10-19

[ENOMEM] Insufficient memory to allocate first level interrupt handler control areas.

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-48 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary malChannelActivate()
malChannelInit()malChannelActivate()

Synopsis

#include <malLib.h>
int malChannelActivate(MAL_DATA * mdata, UINT channel_type, UINT
channel_number);

Library

malLib.a

Description

malChannelActivate() activates a MAL channel. The channel must have been previously initialized
with the malChannelInit() function.

Errors

None

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-49

malChannelDelete() Preliminary
malChannelDelete()

Synopsis

#include <malLib.h>
int malChannelDelete(MAL_DATA * mdata, UINT channel_type, UINT
channel_number);

Library

malLib.a

Description

malChannelDelete() removes a MAL channel from the set of channels MAL is currently managing.
The channel must not be active when this function is called.

Errors

None

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-50 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary malChannelDescPtrGet()
malChellDescPtrGet()

Synopsis

#include <malLib.h>
int malChannelDescPtrGet(MAL_DATA * mdata, UINT channel_type, UINT
channel_number, MAL_BD ** descTblAdrs);

Library

malLib.a

Description

malChannelDescPtrGet() returns the address of the descriptor table array that was allocated for the
channel in the malInit() function.

Errors

None

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-51

malChannelInit() Preliminary
Synopsis

#include <malLib.h>
int malChannelInit(MAL_DATA * mdata, MAL_CHANNEL *mchannel);

Library

malLib.a

Description

malChannelInit() initializes a MAL channel and readies it for operation. It does not start the channel.

Errors

None

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-52 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary malChannelIntMaskGet()
malChannelIntMaskGet()

Synopsis

#include <malLib.h>
int malChannelIntMaskGet(MAL_DATA * mdata, UINT channel_type, UINT
channel_number, UINT * intmask);

Library

malLib.a

Description

malChannelIntMaskGet() returns the interrupt mask for a channel.

Errors

None

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-53

malChannelIntMaskSet() Preliminary
malChannelIntMaskSet()

Synopsis

#include <malLib.h>
int malChannelIntMaskSet(MAL_DATA * mdata, UINT channel_type, UINT
channel_number, UINT * intmask);

Library

malLib.a

Description

malChannelIntMaskGet() sets the interrupt mask for a channel.

Errors

None

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-54 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary malChannelStop()
malChannelStop()

Synopsis

#include <malLib.h>
int malChannelStop(MAL_DATA * mdata, UINT channel_type, UINT channel_number);

Library

malLib.a

Description

malChannelStop() stops an active MAL channel.

Errors

None

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-55

malInit() Preliminary
malInit()

Synopsis

#include <malLib.h>
int malInit(MAL_DATA * mdata);

Library

malLib.a

Description

malInit() initializes the Memory Access Layer (MAL) core.

Errors

None

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-56 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary malReset()
malReset()

Synopsis

#include <malLib.h>
int malReset(MAL_DATA * mdata);

Library

malLib.a

Description

malReset() performs a software reset on the Memory Access Layer (MAL) core.

Errors

None

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-57

memcpy_io() Preliminary
memcpy_io()

Synopsis

#include <ioLib.h>
int memcpy_io(void * target, void * source, size_t length);

Library

ioLib.a

Description

memcpy_io() is provided for compatiblity with some other paltforms whcih require special handling
for copying which involves I/O space. In this platform memcpy_io() behaves the same as memcpy().

Errors

None

Attributes

References

memcpy(): OS Open Programmer’s Reference

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-58 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary outshort_swap()
outshort_swap()

Synopsis

#include <ioLib.h>
void outshort_swap(unsigned short * address, unsigned short data)

Library

ioLib.a

Description

outshort_swap() writes the halfword containing data to the I/O port specified by address. The
halfword is byte-reversed, by using the sthbrx instruction.

After the halfword is written, the PowerPC eieio instruction is issued to enforce in-order execution of
I/O.

Errors

None

Attributes

References

“inshort_swap()” on page 10-44

“outword_swap()” on page 10-60

outshort(): OS Open Programmer’s Reference

sthbrx instruction in PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
OS Open Function Reference 10-59

outword_swap() Preliminary
outword_swap()

Synopsis

#include <ioLib.h>
void outword_swap(unsigned long* address, unsigned long data)

Library

ioLib.a

Description

outword_swap() writes the word containing data to the I/O port specified by address. The word is
byte-reversed, by using the stwbrx instruction.

After the word is written, the PowerPC eieio instruction is issued to enforce in-order execution of I/O.

Errors

None

Attributes

References

“inword_swap()” on page 10-47

“outshort_swap()” on page 10-59

outword(): OS Open Programmer’s Reference

stwbrx instruction in PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
10-60 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary pci_find_device()
pci_find_device()

Synopsis

#include <sys/pciLib.h>
int pci_find_device(unsigned short vendorid, unsigned short deviceid,
unsigned int *nextp);

Library

pciLib.a

Description

pci_find_device() searches the PCI devices on the system looking for one which matches the
vendorid and deviceid. The vendorid is compared to the Vendor ID field on each PCI device on the
system, and the deviceid is compared to the Device ID field.

The value pointed to by nextp determines the where the search starts. To find the first device on the
system that matches, *nextp should be PCI_NEXT_INIT. When the search completes successfully,
*nextp is updated with the location of the device. On a subsequent call to this function using the same
*nextp, the search starts at the device after the last one that was found. In this way, all devices which
match the search criteria may be found. When no device is found, *nextp is set to PCI_NEXT_INIT.

If successful, returns an integer containing the bus and device numbers of the found device. For the
format of this integer, see the description of bus_dev_func in pci_read_config_reg().

Errors

Returns -1 if device is not found.

Attributes

References

PCI Local Bus Specification, Revision 2.1

“pci_find_device_type()” on page 10-62

“pci_read_config_reg()” on page 10-67

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
OS Open Function Reference 10-61

pci_find_device_type() Preliminary
pci_find_device_type()

Synopsis

#include <sys/pciLib.h>
int pci_find_device_type(int class_code, unsigned int *nextp);

Library

pciLib.a

Description

pci_find_device_type() searches the PCI devices on the system looking for one which matches the
class_code. The class code consists of 3 bytes, as defined in the PCI specification. The two most
significant, the base class and sub-class, must exactly match the corresponding fields in the class
code field on the PCI device. The least significant field, interface, is a bit map. In order for the device
to completely match the class_code, it must have at least the interface bits set that are specified in the
class_code interface map.

In the four-byte class_code variable, the most significant byte is unused, the next byte contains the
base class, next is the sub-class, and the least significant byte contains the interface byte.

The value pointed to by nextp determines the where the search starts. To find the first device on the
system that matches, *nextp should be PCI_NEXT_INIT. When the search completes successfully,
*nextp is updated with the location of the device. On a subsequent call to this function using the same
*nextp, the search starts at the device after the last one that was found. In this way, all devices which
match the search criteria may be found. When no device is found, *nextp is set to PCI_NEXT_INIT.

If successful, returns an integer containing the bus and device numbers of the found device. For the
format of this integer, see the description of bus_dev_func in pci_read_config_reg().

Errors

Returns -1 if device is not found.

Attributes

References

PCI Local Bus Specification, Revision 2.1

“pci_find_device()” on page 10-61

“pci_read_config_reg()” on page 10-67

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
10-62 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary pci_get_io_base()
pci_get_io_base()

Synopsis

#include <sys/pciLib.h>
int pci_get_io_base(int base_addr);

Library

pciLib.a

Description

pci_get_io_base() returns the base I/O address for the PCI address specified by base_addr.
Typically this is used to determine where I/O space starting at address 0 appears in the CPU memory
map.

Errors

Returns -1 if no base address matches base_addr.

Attributes

References

“pci_get_memory_base()” on page 10-64

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
OS Open Function Reference 10-63

pci_get_memory_base() Preliminary
pci_get_memory_base()

Synopsis

#include <sys/pciLib.h>
int pci_get_memory_base(int base_addr);

Library

pciLib.a

Description

pci_get_memory_base() returns the base CPU (PLB) memory address for the PCI address
specified by base_addr. A typical use for this is used to determine where PCI memory space starting
at address 0 appears in the CPU memory map.

Errors

Returns -1 if no base address matching base_addr is mapped.

Attributes

References

“pci_get_io_base()” on page 10-63

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
10-64 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary pci_init()
pci_init()

Synopsis

#include <sys/pciLib.h>
int pci_init(void);

Library

pciLib.a

Description

pci_init() initialises the PCI controller as a master.

Errors

None.

Attributes

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
OS Open Function Reference 10-65

pci_master_abort() Preliminary
pci_master_abort()

Synopsis

#include <sys/pciLib.h>
int pci_master_abort(void);

Library

pciLib.a

Description

pci_master_abort() tests if a master abort happened during a previous PCI master access, and
clears the error if so. Returns 0 if there was no master abort, returns -1 if there was.

Errors

None.

Attributes

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
10-66 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary pci_read_config_reg()
pci_read_config_reg()

Synopsis

#include <sys/pciLib.h>
unsigned int pci_read_config_reg(int bus_dev_func, int reg, int width);

Library

pciLib.a

Description

pci_read_config_reg() reads a register, reg, from the device specified by bus_dev_func. The amount
of data read is specified by width, and may be 1, 2, or 4 bytes. For 2 or 4 byte reads, reg must be
appropriately aligned.

bus_dev_func contains the identifier for a device, consisting of the bus and device numbers. They are
placed within the word so as to be able to be used directly by the PCI Configuration Address Register.
The bus number is placed in bits 23:16, the device number in bits 15:11 (using PCI bit notation where
bit 31 is most significant).

Returns the value of the specified register.

Errors

Returns -1 if width is not 1, 2, or 4.

Attributes

References

“pci_write_config_reg()” on page 10-68

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
OS Open Function Reference 10-67

pci_write_config_reg() Preliminary
pci_write_config_reg()

Synopsis

#include <sys/pciLib.h>
int pci_write_config_reg(int bus_dev_func, int reg, unsigned int value, int
width);

Library

pciLib.a

Description

pci_write_config_reg() writes value to a register, reg, in the device specified by bus_dev_func. The
amount of data read is specified by width, and may be 1, 2, or 4 bytes. For 2 or 4 byte writes, reg must
be appropriately aligned. For the format of bus_dev_func, see the description in
pci_read_config_reg(). Returns 0 if successful.

Errors

Returns -1 if width is not 1, 2, or 4.

Attributes

References

“pci_read_config_reg()” on page 10-67

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
10-68 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcAbend()
ppcAbend()

Synopsis

#include <ppcLib.h>
void ppcAbend(void)

Library

ppcLib.a

Description

ppcAbend() executes an invalid opcode forcing a Program Check interrupt.

Errors

None

Example

Force an illegal instruction exception.

ppcAbend()

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
OS Open Function Reference 10-69

ppcAndMsr() Preliminary
ppcAndMsr()

Synopsis

#include <ppcLib.h>
unsigned long ppcAndMsr(unsigned long value);

Library

ppcLib.a

Description

ppcAndMsr() ANDs value with the contents of the MSR.

The MSR is updated with the result of the AND operation.

ppcAndMsr() returns the previous contents of the MSR.

Refer to the <ppcLib.h> file for the defines of the MSR constants.

Errors

None

Example

Disable external interrupts.

unsigned long orig_msr = ppcAndMsr(~ppcMsrEE);

Attributes

References

“ppcOrMsr()” on page 10-143

“ppcMtmsr()” on page 10-128

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-70 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcCntlzw()
ppcCntlzw()

Synopsis

#include <ppcLib.h>
unsigned long ppcCntlzw(unsigned long value);

Library

ppcLib.a

Description

ppcCntlzw() counts consecutive leading zeros in value.

ppcCntlzw() returns the count, which ranges from 0 through 32, inclusive.

Errors

None

Example

Return count of leading zeros in variable k.

int k;
 unsigned long k = ppcCntlzw(0x0700AA55); /* k = 5 */

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
OS Open Function Reference 10-71

ppcDcbf() Preliminary
ppcDcbf()

Synopsis

#include <ppcLib.h>
void ppcDcbf(void *addr);

Library

ppcLib.a

Description

ppcDcbf() copies the cache block at the effective address specified by addr back to main storage (if
the block resides in cache and has been modified with respect to main storage) and then invalidates
the cache block.

Effectively, this function acts like ppcDcbst() followed by ppcDcbi() .

Errors

None

Example

Flush the cache line at the effective address X'1000' to main storage and then invalidate the cache
line. You might do this in preparation for a DMA slave transfer.

ppcDcbf((void *)0x1000);

Attributes

References

“ppcDcbst()” on page 10-74

“ppcDcbi()” on page 10-73

“ppcDcbz()” on page 10-75

“ppcDflush()” on page 10-76

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
10-72 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcDcbi()
ppcDcbi()

Synopsis

#include <ppcLib.h>
void ppcDcbi(void *addr);

Library

ppcLib.a

Description

ppcDcbi() invalidates the cache block containing addr, discarding any modified contents if the block is
valid in cache.

Errors

None

Example

Invalidate the cache line beginning with 0x3000. This might be done before reading an area of
storage updated by a DMA transfer.

ppcDcbi((void *)0x3000);

Attributes

References

“ppcDcbf()” on page 10-72

“ppcDcbst()” on page 10-74

“ppcDcbz()” on page 10-75

“ppcDflush()” on page 10-76

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
OS Open Function Reference 10-73

ppcDcbst() Preliminary
ppcDcbst()

Synopsis

#include <ppcLib.h>
void ppcDcbst(void *addr);

Library

ppcLib.a

Description

ppcDcbst() copies the cache block containing addr to main storage, if the block is valid in cache and
has been modified with respect to main storage.

Errors

None

Example

Force the cache line beginning with 0x4000 to memory if the block is valid and out of sync with
storage. This would be done to synchronize the cache and storage without invalidating the cache line.

ppcDcbst((void *)0x4000);

Attributes

References

“ppcDcbf()” on page 10-72

“ppcDcbi()” on page 10-73

“ppcDcbz()” on page 10-75

“ppcDflush()” on page 10-76

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
10-74 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcDcbz()
ppcDcbz()

Synopsis

#include <ppcLib.h>
void ppcDcbz(void *addr);

Library

ppcLib.a

Description

ppcDcbz() sets the cache block containing the byte referenced by addr to 0.

The line is established, if necessary, without fetching the line from main storage.

Note: If an invalid real address is specified, problems could occur when a subsequent attempt is
made by the cache unit to store that line to main storage.

Errors

None

Example

Assume buffer is 16 cache lines long and cache aligned. To quickly set it to 0, set to first buffer
address.

 char *bpt = buffer;
 for(j = 0; j < 16; j++)
 {
 ppcDcbz((void *)bpt);
 bpt += cache_line_size;
 }

Attributes

References

“ppcDcbf()” on page 10-72

“ppcDcbi()” on page 10-73

“ppcDcbst()” on page 10-74

“ppcDflush()” on page 10-76

PPC405EP Embedded Processor User’s Manuall

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
OS Open Function Reference 10-75

ppcDflush() Preliminary
ppcDflush()

Synopsis

#include <ppcLib.h>
void ppcDflush(void);

Library

ppcLib.a

Description

ppcDflush() flushes the existing data in the data cache back into memory, invalidating all of the lines
in the data cache, then turns off the data caches by writing 0s into the Data Cache Cacheability
Register (DCCR).

Errors

None

Example

Force data reads from memory instead of the data cache.

 ppcDflush();

Attributes

References

“ppcDcbf()” on page 10-72

“ppcDcbi()” on page 10-73

“ppcDcbst()” on page 10-74

“ppcDcbz()” on page 10-75

PPC405EP Embedded Processor User’s Manuall

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
10-76 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcEieio()
ppcEieio()

Synopsis

#include <ppcLib.h>
void ppcEieio(void);

Library

ppcLib.a

Description

ppcEieio() ensures that all storage references before the call finish before any storage references
after the call start.

The PPC405EP may internally reorder operations to storage. In the case of memory mapped I/O,
such reordering can be undesirable and can be prevented by appropriate use of ppcEieio() .

Errors

None

Example

Ensure storage references are done in order.

char *one_loc = (char *)0x202;
char *two_loc = (char *)0x204;

one_loc = 0xAA; / write a 0xAA to 0x202 */
ppcEieio(); /* insure the store completes before setting two_loc */
*two_loc = 0x55;

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
OS Open Function Reference 10-77

ppcHalt() Preliminary
ppcHalt()

Synopsis

#include <ppcLib.h>
void ppcHalt(void);

Library

ppcLib.a

Description

ppcHalt() is a one instruction spin loop, effectively putting the processor in an enabled wait at the
point of invocation.

Errors

None

Example

Wait at the point of invocation.

ppcHalt();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
10-78 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcIcbi()
ppcIcbi()

Synopsis

#include <ppcLib.h>
void ppcIcbi(void *addr);

Library

ppcLib.a

Description

ppcIcbi() i nvalidates the Instruction Cache Block pointed to by the address passed. This may be
done after updating an instruction.

Errors

None

Example

Write a trap into location 0x3000.

unsigned in * i_addr = (int *) 0x3000;
i_addr = 0x7c800008; / tw instruction */
ppcDbcst((void *) 0x3000);
ppcIcbi((void *) 0x3000);
ppcIsync();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
OS Open Function Reference 10-79

ppcIsync() Preliminary
ppcIsync()

Synopsis

#include <ppcLib.h>
void ppcIsync(void);

Library

ppcLib.a

Description

ppcIsync() causes the processor to discard any instructions that may have been prefetched before
ppclsync() . This call must be used after modifying instruction storage.

Errors

None

Example

Place a trap into a given address.

*trap_address = 0x7F000008;
 ppcIsync();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
10-80 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMfccr0()
ppcMfccr0()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfccr0(void);

Library

ppcLib.a

Description

ppcMfccr0() returns the value of the processor ccr0 register (Core Configuration Register 0).

Errors

None

Example

Retrieve the value of ccr0 register.

unsigned long current_ccr0=ppcMfccr0();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-81

ppcMfdac1() - ppcMfdac2() Preliminary
ppcMfdac1() - ppcMfdac2()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdac1(void)
unsigned long ppcMfdac2(void)

Library

ppcLib.a

Description

ppcMfdac1() - ppcMfdac2() returns the current value of the specified register.

The Data Address Compare registers 1 and 2 contain addresses for which debug events may be
taken, depending on the values set in the DBCR1 register.

Errors

None

Example

Retrieve the current value of the DAC2 register.

unsigned long dac2_value= ppcMfdac2() ;

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-82 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMfdbcr0() - ppcMfdbcr1()
ppcMfdbcr0() - ppcMfdbcr1()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdbcr0(void)
unsigned long ppcMfdbcr1(void)

Library

ppcLib.a

Description

ppcMfdbcr0() - ppcMfdbcr1() returns the current value of the specified register.

Dedug Control Registers 0 and 1 are used to enable debug events, reset the processor and set the
debug mode of the processor.

WARNING: Enabling bits 0 and 1 can cause unexpected results. Enabling bits 2 and 3 will cause a
processor reset to occur. DBCR0 and DBCR1 are designed to be used by development tools, not
applications.

Refer to the file <ppc405.h> for defined constants for the DBCR0 and DBCR1 registers.

Errors

None

Example

Retrieve the current value of the DBCR1 register.

unsigned long dbcr1_value= ppcMfdbcr1() ;

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-83

ppcMfdbsr() Preliminary
ppcMfdbsr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdbsr(void);

Library

ppcLib.a

Description

ppcMfdbsr() returns the value of the processor DBSR register.

The Debug Status Register contains the status of debug events and the most recent reset.

The file <ppc405.h> defines constants that can be used when referring to the DBSR.

Errors

None

Example

Retrieve the value of DBSR register.

unsigned long current_DBSR=ppcMfdbsr();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-84 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMfdccr()
ppcMfdccr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdccr(void);

Library

ppcLib.a

Description

ppcMfdccr() returns the value of the processor DCCR (Data Cache Cacheability Register).

Errors

None

Example

Retrieve the value of DCCR register.

unsigned long current_DCCR=ppcMfdccr();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-85

ppcMfdcr_any() Preliminary
ppcMfdcr_any()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdcr_any(unsigned long dcr_num);

Library

ppcLib.a

Description

ppcMfdcr_any() returns the value of the DCR specified by dcr_num.

Errors

None

Example

Retrieve the value of CPC0_PLLMR register.

unsigned long current_CPC0_PLLMR=ppcMfdcr_any(CPC0_PLLMR);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-86 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMfdcwr()
ppcMfdcwr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdcwr(void);

Library

ppcLib.a

Description

ppcMfdcwr() returns the value of the processor DCWR (Data Cache Write-through Register).

Errors

None

Example

Retrieve the value of DCWR register.

unsigned long current_DCWR=ppcMfdcwr();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-87

ppcMfdear() Preliminary
ppcMfdear()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdear(void);

Library

ppcLib.a

Description

ppcMfdear() returns the value of the processor DEAR (Data Exception Address Register).

Errors

None

Example

Retrieve the value of DEAR register.

unsigned long current_DEAR=ppcMfdear();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-88 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMfdvc1() - ppcMfdvc2()
ppcMfdvc1() - ppcMfdvc2()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdvc1(void)
unsigned long ppcMfdvc2(void)

Library

ppcLib.a

Description

ppcMfdvc1() - ppcMfdvc2() returns the current value of the specified Data Value Compare Register.

Errors

None

Example

Retrieve the current value of the DVC2 register.

unsigned long dvc2_value= ppcMfdvc2() ;

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-89

ppcMfesr() Preliminary
ppcMfesr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfesr(void);

Library

ppcLib.a

Description

ppcMfesr() returns the value of the processor ESR (Exception Syndrome Register).

Errors

None

Example

Retrieve the value of ESR register.

unsigned long current_ESR=ppcMfesr();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-90 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMfevpr()
ppcMfevpr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfevpr(void);

Library

ppcLib.a

Description

ppcMfevpr() returns the value of the processor EVPR (Exception Vector Prefix Register). Bits 0 to 15
contain the prefix of the address of the exception processing routines. Bits 15 to 31 are reserved.

Errors

None

Example

Retrieve the value of EVPR register.

unsigned long current_EVPR=ppcMfevpr();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-91

ppcMfgpr1() Preliminary
ppcMfgpr1()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfgpr1(void);

Library

ppcLib.a

Description

ppcMfgpr1() returns the current value of GPR(1).

Typically, this is the value of the current stack frame.

Errors

None

Example

See “ppcMfgpr2()” on page 10-93.

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
10-92 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMfgpr2()
ppcMfgpr2()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfgpr2(void)

Library

ppcLib.a

Description

ppcMfgpr2() returns the current value of GPR(2).

For XCOFF-based OS Open this is typically the value of the table of contents (TOC) pointer for the
current execution context.

Errors

None

Example

Retrieve TOC and stack frame base from current context.

toc = ppcMfgpr2();
unsigned long stack_base = ppcMfgpr1();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group Yes
OS Open Function Reference 10-93

ppcMfiac1() - ppcMfiac4() Preliminary
ppcMfiac1() - ppcMfiac4()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfiac1(void)
unsigned long ppcMfiac2(void)
unsigned long ppcMfiac3(void)
unsigned long ppcMfiac4(void)

Library

ppcLib.a

Description

ppcMfiac1() - ppcMfiac4() returns the current value of the specified Instruction Address Compare
Register. The IAC contains the address of the instruction that the debug event will be based on. The
Debug Control Register 0 (DBCR0) controls the instruction address debug event. Bits 30 and 31 of
the IAC are reserved, since the address must be word aligned.

Errors

None

Example

Retrieve the current value of the IAC4 register.

unsigned long iac4_value= ppcMfiac4() ;

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-94 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMficcr()
ppcMficcr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMficcr(void);

Library

ppcLib.a

Description

ppcMficcr() returns the value of the processor ICCR (Instruction Cache Cacheability Register).

Errors

None

Example

Retrieve the value of ICCR register.

unsigned long current_ICCR=ppcMficcr();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-95

ppcMficdbdr() Preliminary
ppcMficdbdr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMficdbdr(void);

Library

ppcLib.a

Description

ppcMficdbdr() returns the value of the processor ICDBDR (Instruction Cache Debug Data Register).

<ppc405.h> has constants defined for use with the ICDBDR register.

Errors

None

Example

Retrieve the value of ICDBDR register.

unsigned long current_ICDBDR=ppcMficdbdr();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-96 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMfmsr()
ppcMfmsr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfmsr(void);

Library

ppcLib.a

Description

ppcMfmsr() returns the value of the Machine State Register(MSR).

Refer to the <ppc_arch.h> file for the defines of constants that can be used as masks with the MSR
value.

Errors

None

Example

See “ppcMtmsr()” on page 10-128.

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-97

ppcMfpid() Preliminary
pppcMfpid()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfpid(void);

Library

ppcLib.a

Description

ppcMfpid() returns the value of the processor PID (Process ID) register.

Errors

None

Example

Retrieve the value of PID register.

unsigned long current_PID=ppcMfpid();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-98 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMfpit()
ppcMfpit()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfpit(void);

Library

ppcLib.a

Description

ppcMfpit() returns the value of the processor PIT (Programmable Interval Timer) register.

Errors

None

Example

Retrieve the value of PIT register.

unsigned long current_PIT=ppcMfpit();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-99

ppcMfpvr() Preliminary
ppcMfpvr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfpvr(void);

Library

ppcLib.a

Description

ppcMfpvr() returns the value of the processor version register, which indicates the version and
revision of the PowerPC processor.

Errors

None

Example

Retrieve the current value of the processor version register. Processor version-specific code may
require this value.

printf(“This is processor version %x\n”, ppcMfpvr());

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-100 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMfsgr()
ppcMfsgr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfsgr(void);

Library

ppcLib.a

Description

ppcMfsgr() returns the value of the processor SGR (Storage Guarded Register).

Errors

None

Example

Retrieve the value of SGR register.

unsigned long current_SGR=ppcMfsgr();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-101

ppcMfsler() Preliminary
ppcMfsler()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfsler(void);

Library

ppcLib.a

Description

ppcMfsler() returns the value of the processor SLER (Storage Little-Endian Register).

Errors

None

Example

Retrieve the value of SLER register.

unsigned long current_SLER=ppcMfsler();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-102 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMfsprg0() - ppcMfsprg7()
ppcMfsprg0() - ppcMfsprg7()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfsprg0(void);
unsigned long ppcMfsprg1(void);
unsigned long ppcMfsprg2(void);
unsigned long ppcMfsprg3(void);
unsigned long ppcMfsprg4(void);
unsigned long ppcMfsprg5(void);
unsigned long ppcMfsprg6(void);
unsigned long ppcMfsprg7(void);

Library

ppcLib.a

Description

ppcMfsprg0() - ppcMfsprg7() returns the current value of the special purpose register generals
(SPRG0 - SPRG7).

Typically, the SPRGs provide temporary storage at the operating system level.

NOTE: OS Open reserves SPRG0-3 for its own use.

Errors

None

Example

Read value of SPRG0.

unsigned long sprg0_value = ppcMfsprg0();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-103

ppcMfsrr0() Preliminary
ppcMfsrr0()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfsrr0(void);

Library

ppcLib.a

Description

ppcMfsrr0() returns the value of SRR0.

Typically, SRR0 is used in interrupt handlers, as it usually contains the address of the next instruction
to be executed at the time of the interrupt. SRR0 and SRR1 are set when a noncritical interrupt
occurs.

Errors

None

Example

Retrieve the current value of the SRR0. An exception handler may use this value to determine the
point of exception.

unsigned long current_srr0=ppcMfsrr0();

Attributes

References

“ppcMfsrr1()” on page 10-105

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-104 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMfsrr1()
ppcMfsrr1()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfsrr1(void);

Library

ppcLib.a

Description

ppcMfsrr1() returns the current value of SRR1.

Typically, SRR1 is used in interrupt handlers, as it contains the old MSR value as well as information
bits specific to the interrupt. SRR0 and SRR1 are set when a noncritical interrupt occurs.

Errors

None

Example

Retrieve the current value of SRR1. This register contains the saved MSR, which may be needed by
an exception handler.

unsigned long current_srr1=ppcMfsrr1();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-105

ppcMfsrr2() Preliminary
ppcMfsrr2()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfsrr2(void);

Library

ppcLib.a

Description

ppcMfsrr2() returns the current value of SRR2.

Typically, SRR2 is used in interrupt handlers, as it usually contains the address of the next instruction
to be executed at the time of the interrupt. SRR2 and SRR3 are set when a critical interrupt occurs.

Errors

None

Example

Retrieve the current value of SRR2. An exception handler may use this value to determine the point of
exception.

unsigned long current_srr2=ppcMfsrr2();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-106 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMfsrr3()
ppcMfsrr3()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfsrr3(void);

Library

ppcLib.a

Description

ppcMfsrr3() returns the current value of SRR3.

Typically, SRR3 is used in interrupt handlers, as it contains the old MSR value as well as information
bits specific to the interrupt. SRR2 and SRR3 are set when a critical interrupt occurs.

Errors

None

Example

Retrieve the current value of SRR3. This register contains the saved MSR, which may be needed by
an exception handler.

unsigned long current_srr3=ppcMfsrr3();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-107

ppcMfsu0r() Preliminary
ppcMfsu0r()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfsu0r(void);

Library

ppcLib.a

Description

ppcMfsu0r() returns the value of the processor SU0R (Storage User-Defined 0 Register).

On the PPC405EP, SU0R is used to hold the U0 bits indicating storage compression.

Errors

None

Example

Retrieve the value of SU0R register.

unsigned long current_SU0R=ppcMfsu0r();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-108 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMftb()
ppcMftb()

Synopsis

#include <ppcLib.h>
void ppcMftb(tb_t *clock_data);

Library

ppcLib.a

Description

ppcMftb() returns the current time base data.

Typically, the time base registers are used to determine the number of clock cycles that have passed.

Errors

None

Example

Retrieve the current value of time base high and low registers.

tb_t clock_data;
ppcMftb(&clock_data);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-109

ppcMftcr() Preliminary
ppcMftcr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMftcr(void);

Library

ppcLib.a

Description

ppcMftcr() returns the value of the processor TCR (Timer Control Register).

File <ppc405.h> defines several constants for the TCR.

Errors

None

Example

Retrieve the value of TCR register.

unsigned long current_TCR=ppcMftcr();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-110 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMftsr()
ppcMftsr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMftsr(void);

Library

ppcLib.a

Description

ppcMftsr() returns the value of the processor TSR (Timer Status Register).

File <ppc405.h> defines several constants for the TSR.

Errors

None

Example

Retrieve the value of TSR register.

unsigned long current_TSR=ppcMftsr();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-111

ppcMfzpr() Preliminary
ppcMfzpr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfzpr(void);

Library

ppcLib.a

Description

ppcMfzpr() returns the value of the processor ZPR (Zone Protection Register).

Errors

None

Example

Retrieve the value of ZPR register.

unsigned long current_ZPR=ppcMfzpr();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-112 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMtccr0()
ppcMtccr0()

Synopsis

#include <ppcLib.h>
void ppcMtccr0(unsigned long value);

Library

ppcLib.a

Description

ppcMtccr0() sets the value of the processor ccr0 register (Core Configuration Register 0).

Errors

None

Example

Set the value of ccr0 register.

ppcMtccr0(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-113

ppcMtdac1() - ppcMtdac2() Preliminary
ppcMtdac1() - ppcMtdac2()

Synopsis

#include <ppcLib.h>
void ppcMtdac1(unsigned long value)
void ppcMtdac2(unsigned long value)

Library

ppcLib.a

Description

ppcMtdac1() - ppcMtdac2() sets the value of the specified register.

The Data Address Compare registers 1 and 2 contain addresses for which debug events may be
taken, depending on the values set in the DBCR1 register.

Errors

None

Example

Set the value of the DAC2 register.

ppcMtdac2(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-114 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMtdbcr0() - ppcMtdbcr1()
ppcMtdbcr0() - ppcMtdbcr1()

Synopsis

#include <ppcLib.h>
void ppcMtdbcr0(unsigned long value)
void ppcMtdbcr1(unsigned long value)

Library

ppcLib.a

Description

ppcMtdbcr0() - ppcMtdbcr1() sets the value of the specified register.

Dedug Control Registers 0 and 1 are used to enable debug events, reset the processor and set the
debug mode of the processor.

WARNING: Enabling bits 0 and 1 can cause unexpected results. Enabling bits 2 and 3 will cause a
processor reset to occur. DBCR0 and DBCR1 are designed to be used by development tools, not
applications.

Refer to the file <ppc405.h> for defined constants for the DBCR0 and DBCR1 registers.

Errors

None

Example

Set the value of the DBCR1 register.

ppcMtdbcr1(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-115

ppcMtdbsr() Preliminary
ppcMtdbsr()

Synopsis

#include <ppcLib.h>
void ppcMtdbsr(unsigned long value);

Library

ppcLib.a

Description

ppcMtdbsr() sets the value of the processor DBSR register.

The Debug Status Register contains the status of debug events and the most recent reset.

The file <ppc405.h> defines constants that can be used when referring to the DBSR.

Errors

None

Example

Set the value of DBSR register.

ppcMtdbsr(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-116 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMtdccr()
ppcMtdccr()

Synopsis

#include <ppcLib.h>
void ppcMtdccr(unsigned long value);

Library

ppcLib.a

Description

ppcMtdccr() sets the value of the processor DCCR (Data Cache Cacheability Register).

Errors

None

Example

Set the value of DCCR register.

ppcMtdccr(value);
OS Open Function Reference 10-117

ppcMtdccr() Preliminary
Attributes

References

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-118 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMtdccr()
PPC405EP Embedded Processor User’s Manual
OS Open Function Reference 10-119

ppcMtdcr_any() Preliminary
ppcMtdcr_any()

Synopsis

#include <ppcLib.h>
unsigned long ppcMtdcr_any(unsigned long dcr_num, unsigned long value);

Library

ppcLib.a

Description

ppcMtdcr_any() sets the DCR specified by dcr_num to value.

Errors

None

Example

Disable all interrupts in UIC0 by writing 0’s to the enable register.

ppcMtdcr_any(UIC0_ER, 0x00000000);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-120 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMtdcwr()
ppcMtdcwr()

Synopsis

#include <ppcLib.h>
void ppcMtdcwr(unsigned long value);

Library

ppcLib.a

Description

ppcMtdcwr() sets the value of the processor DCWR (Data Cache Write-through Register).

Errors

None

Example

Set the value of DCWR register.

ppcMtdcwr(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-121

ppcMtdear() Preliminary
ppcMtdear()

Synopsis

#include <ppcLib.h>
void ppcMtdear(unsigned long value);

Library

ppcLib.a

Description

ppcMtdear() sets the value of the processor DEAR (Data Exception Address Register).

Errors

None

Example

Set the value of DEAR register.

ppcMtdear(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-122 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMtdvc1() - ppcMtdvc2()
ppcMtdvc1() - ppcMtdvc2()

Synopsis

#include <ppcLib.h>
void ppcMtdvc1(unsigned long value)
void ppcMtdvc2(unsigned long value)

Library

ppcLib.a

Description

ppcMtdvc1() - ppcMtdvc2() sets the value of the specified Data Value Compare Register.

Errors

None

Example

Set the value of the DVC2 register.

ppcMtdvc2(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-123

ppcMtesr() Preliminary
ppcMtesr()

Synopsis

#include <ppcLib.h>
void ppcMtesr(unsigned long value);

Library

ppcLib.a

Description

ppcMtesr() sets the value of the processor ESR (Exception Syndrome Register).

Errors

None

Example

Set the value of ESR register.

ppcMtesr(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-124 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMtevpr()
ppcMtevpr()

Synopsis

#include <ppcLib.h>
void ppcMtevpr(unsigned long value);

Library

ppcLib.a

Description

ppcMtevpr() sets the value of the processor EVPR (Exception Vector Prefix Register). Bits 0 to 15
contain the prefix of the address of the exception processing routines. Bits 15 to 31 are reserved.

Errors

None

Example

Set the value of EVPR register.

ppcMtevpr(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-125

ppcMtiac1() - ppcMtiac4() Preliminary
ppcMtiac1() - ppcMtiac3()

Synopsis

#include <ppcLib.h>
void ppcMtiac1(unsigned long value)
void ppcMtiac2(unsigned long value)
void ppcMtiac3(unsigned long value)
void ppcMtiac4(unsigned long value)

Library

ppcLib.a

Description

ppcMtiac1() - ppcMtiac4() sets the value of the specified Instruction Address Compare Register. The
IAC contains the address of the instruction that the debug event will be based on. The Debug Control
Register 0 (DBCR0) controls the instruction address debug event. Bits 30 and 31 of the IAC are
reserved, since the address must be word aligned.

Errors

None

Example

Set the value of the IAC4 register.

ppcMtiac4(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-126 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMticcr()
ppcMticcr()

Synopsis

#include <ppcLib.h>
void ppcMticcr(unsigned long value);

Library

ppcLib.a

Description

ppcMticcr() sets the value of the processor ICCR (Instruction Cache Cacheability Register).

Errors

None

Example

Set the value of ICCR register.

ppcMticcr(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-127

ppcMtmsr() Preliminary
ppcMtmsr()

Synopsis

#include <ppcLib.h>
void ppcMtmsr(unsigned long value);

Library

ppcLib.a

Description

ppcMtmsr() sets the value of the Machine State Register(MSR).

Refer to the <ppc_arch.h> file for the defines of constants that can be used as masks with the MSR
value.

Errors

None

Example

Enable external interrupts:

unsigned long msr=ppcMfmsr()
ppcMtmsr(msr | ppcMsrEE);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-128 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMtpid()
ppcMtpid()

Synopsis

#include <ppcLib.h>
void ppcMtpid(unsigned long value);

Library

ppcLib.a

Description

ppcMtpid() sets the value of the processor PID (Process ID) register.

Errors

None

Example

Set the value of PID register.

ppcMtpid(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-129

ppcMtpit() Preliminary
ppcMtpit()

Synopsis

#include <ppcLib.h>
void ppcMtpit(unsigned long value);

Library

ppcLib.a

Description

ppcMtpit() sets the value of the processor PIT (Programmable Interval Timer) register.

Errors

None

Example

Set the value of PIT register.

ppcMtpit(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-130 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMtsgr()
ppcMtsgr()

Synopsis

#include <ppcLib.h>
void ppcMtsgr(unsigned long value);

Library

ppcLib.a

Description

ppcMtsgr() sets the value of the processor SGR (Storage Guarded Register).

Errors

None

Example

Set the value of SGR register.

ppcMtsgr(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-131

ppcMtsler() Preliminary
ppcMtsler()

Synopsis

#include <ppcLib.h>
void ppcMtsler(unsigned long value);

Library

ppcLib.a

Description

ppcMtsler() sets the value of the processor SLER (Storage Little-Endian Register).

Errors

None

Example

Set the value of SLER register.

ppcMtsler(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-132 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMtsprg0() - ppcMtsprg7()
ppcMtsprg0() - ppcMtsprg7()

Synopsis

#include <ppcLib.h>
void ppcMtsprg0(unsigned long value);
void ppcMtsprg1(unsigned long value);
void ppcMtsprg2(unsigned long value);
void ppcMtsprg3(unsigned long value);
void ppcMtsprg4(unsigned long value);
void ppcMtsprg5(unsigned long value);
void ppcMtsprg6(unsigned long value);
void ppcMtsprg7(unsigned long value);

Library

ppcLib.a

Description

ppcMtsprg0() - ppcMtsprg7() sets the value of the special purpose register generals (SPRG0 -
SPRG7).

Typically, the SPRGs provide temporary storage at the operating system level.

NOTE: OS Open reserves SPRG0-3 for its own use.

Errors

None

Example

Set value of SPRG0.

ppcMtsprg0(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-133

ppcMtsrr0() Preliminary
ppcMfsrr0()

Synopsis

#include <ppcLib.h>
void ppcMtsrr0(unsigned long value);

Library

ppcLib.a

Description

ppcMtsrr0() sets the value of SRR0.

Typically, SRR0 is used in interrupt handlers, as it usually contains the address of the next instruction
to be executed at the time of the interrupt. SRR0 and SRR1 are set when a noncritical interrupt
occurs.

Errors

None

Example

Set the value of the SRR0.

ppcMtsrr0(value);

Attributes

References

“ppcMfsrr1()” on page 10-105

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-134 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMtsrr1()
ppcMtsrr1()

Synopsis

#include <ppcLib.h>
void ppcMtsrr1(unsigned long value);

Library

ppcLib.a

Description

ppcMtsrr1() sets the value of SRR1.

Typically, SRR1 is used in interrupt handlers, as it contains the old MSR value as well as information
bits specific to the interrupt. SRR0 and SRR1 are set when a noncritical interrupt occurs.

Errors

None

Example

Set the value of SRR1.

ppcMtsrr1(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-135

ppcMtsrr2() Preliminary
ppcMtsrr2()

Synopsis

#include <ppcLib.h>
void ppcMtsrr2(unsigned long value);

Library

ppcLib.a

Description

ppcMtsrr2() sets the value of SRR2.

Typically, SRR2 is used in interrupt handlers, as it usually contains the address of the next instruction
to be executed at the time of the interrupt. SRR2 and SRR3 are set when a critical interrupt occurs.

Errors

None

Example

Set the value of SRR2.

ppcMtsrr2(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-136 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMtsrr3()
ppcMtsrr3()

Synopsis

#include <ppcLib.h>
void ppcMtsrr3(unsigned long value);

Library

ppcLib.a

Description

ppcMtsrr3() sets the value of SRR3.

Typically, SRR3 is used in interrupt handlers, as it contains the old MSR value as well as information
bits specific to the interrupt. SRR2 and SRR3 are set when a critical interrupt occurs.

Errors

None

Example

Set the value of SRR3.

ppcMtsrr3(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-137

ppcMtsu0r() Preliminary
ppcMtsu0r()

Synopsis

#include <ppcLib.h>
void ppcMtsu0r(unsigned long value);

Library

ppcLib.a

Description

ppcMtsu0r() sets the value of the processor SU0R (Storage User-Defined 0 Register).

On the PPC405EP, SU0R is used to hold the U0 bits indicating storage compression.

Errors

None

Example

Set the value of SU0R register.

ppcMtsu0r(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-138 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMttb()
ppcMttb()

Synopsis

#include <ppcLib.h>
void ppcMttb(tb_t *clock_data);

Library

ppcLib.a

Description

ppcMttb() sets the time base data.

Typically, the time base registers are used to determine the number of clock cycles that have passed.

Errors

None

Example

Set the value of time base high and low registers.

tb_t clock_data;
ppcMttb(&clock_data);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-139

ppcMttcr() Preliminary
ppcMttcr()

Synopsis

#include <ppcLib.h>
void ppcMttcr(unsigned long value);

Library

ppcLib.a

Description

ppcMttcr() sets the value of the processor TCR (Timer Control Register).

File <ppc405.h> defines several constants for the TCR.

Errors

None

Example

Set the value of TCR register.

ppcMttcr(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-140 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcMttsr()
ppcMttsr()

Synopsis

#include <ppcLib.h>
void ppcMttsr(unsigned long value);

Library

ppcLib.a

Description

ppcMttsr() sets the value of the processor TSR (Timer Status Register).

File <ppc405.h> defines several constants for the TSR.

Errors

None

Example

Set the value of TSR register.

ppcMttsr(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-141

ppcMtzpr() Preliminary
ppcMtzpr()

Synopsis

#include <ppcLib.h>
void ppcMtzpr(unsigned long value);

Library

ppcLib.a

Description

ppcMtzpr() sets the value of the processor ZPR (Zone Protection Register).

Errors

None

Example

Set the value of ZPR register.

ppcMtzpr(value);

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-142 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary ppcOrMsr()
ppcOrMsr()

Synopsis

#include <ppcLib.h>
unsigned long ppcOrMsr(unsigned long value);

Library

ppcLib.a

Description

ppcOrMsr() performs the OR of value and the current MSR, updating the MSR.

The previous value of the MSR is returned.

The file <ppcLib.h> defines several constants for the MSR that can be used as masks.

Errors

None

Example

Enable instruction address translation.

unsigned long old_val = ppcOrMsr(ppcMsrIR);

Attributes

References

“ppcAndMsr()” on page 10-70

PPC405EP Embedded Processor User’s Manual

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-143

ppcSync() Preliminary
ppcSync()

Synopsis

#include <ppcLib.h>
void ppcSync(void);

Library

ppcLib.a

Description

ppcSync() causes the processor to wait until all data cache lines scheduled to be written to main
storage have actually been written.

Errors

None

Example

Ensure a ppcDbci() completes before using the values.

char *memptr = (char *)0x2000;
char new_value;
ppcDcbi((void *)memptr)
ppcSync();
new_value = *memptr;

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-144 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary s1dbprintf()
s1dbprintf()

Synopsis

#include <sys/asyncLib.h>
int s1dbprintf(unsigned long uart_clock, unsigned char *base_reg, unsigned
long cpc0_cr0_reg, event_t int_level, const char *format,...);

Library

asyncLib.a

Description

s1dbprintf() is a version of printf() that uses polled writes (no interrupts) to serial port 1, and may be
used before I/O has been established. s1dbprintf() may be called before the async device driver is
installed. uart_clock is the clock frequency of the serial port. base_reg specifies the address of the
base UART register. cpc0_cr0_reg specifies the fields in the Chip Control 0 register that will be set.
Only the fields relevant to UART 0 should be specified. int_level specifies the interrupt level
associated with serial port 1. The default communication values are 9600 baud, 8 bit data, no parity, 1
stop bit.

Manifest constants for common values for the parameters are supplied in <sys/asyncLib.h>,
<ioLib.h> and <ppcLib.h>. To use the external UART clock, uart_clock must be asyncClockRate,
base_reg must be UART0_BASE_ADDRESS, cpc0_cr0_reg must be
CPC0_CR0_UART0_EXTCLOCK_EN, int_level must be EXT_IRQ_COM1.

Errors

None

Example

Print “Hello World” on serial port 1 before I/O has been initialized.

#include <sys/asyncLib.h>
#include <ioLib.h>
#include <ppcLib.h>
#define S1DB_PARMS asyncClockRate, UART0_BASE_ADDRESS,
CPC0_CR0_UART0_EXTCLOCK_EN, EXT_IRQ_COM1
s1dbprintf(S1DB_PARMS, ”Hello World\n\r”);

Attributes

References

“vs1dbprintf()” on page 10-151

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-145

s1dbprintf() Preliminary
PowerPC 405EP Evaluation Board Manual
10-146 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary s2dbprintf()
s2dbprintf()

Synopsis

#include <sys/asyncLib.h>
int s2dbprintf(unsigned long uart_clock, unsigned char *base_reg, unsigned
long cpc0_cr0_reg, event_t int_level, const char *format,...);

Library

asyncLib.a

Description

s2dbprintf() is a version of printf() that uses polled writes (no interrupts) to serial port 2, and may be
used before I/O has been established. s2dbprintf() may be called before the async device driver is
installed. uart_clock is the clock frequency of the serial port. base_reg specifies the address of the
base UART register. cpc0_cr0_reg specifies the fields in the Chip Control 0 register that will be set.
Only the fields relevant to UART 1 should be specified. int_level specifies the interrupt level
associated with serial port 2. The default communication values are 9600 baud, 8 bit data, no parity, 1
stop bit.

Manifest constants for common values for the parameters are supplied in <sys/asyncLib.h>,
<ioLIb.h> and <ppcLib.h> . To use the external UART clock, uart_clock must be asyncClockRate,
base_reg must be UART1_BASE_ADDRESS, cpc0_cr0_reg must be
CPC0_CR0_UART1_EXTCLOCK_EN, int_level must be EXT_IRQ_COM2.

Errors

None

Example

Print “Hello World” on serial port 2 before I/O has been initialized.

#include <sys/asyncLib.h>
#include <ioLib.h>
#include <ppcLib.h>
#define S2DB_PARMS asyncClockRate, UART1_BASE_ADDRESS,
CPC0_CR0_UART1_EXTCLOCK_EN, EXT_IRQ_COM2
s2dbprintf(S2DB_PARMS, ”Hello World\n\r”);

Attributes

References

PPC405EP Embedded Processor User’s Manual

PowerPC 405EP Evaluation Board Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-147

timebase_speed() Preliminary
timebase_speed()

Synopsis

#include <tickLib.h>
unsigned long timebase_speed(void);

Library

tickLib.a

Description

timebase_speed() returns the timebase frequency, in Hz. This is done by setting serial port 2 to a
known speed (9600 bps) in loopback mode and sending a character out to it. This takes a known
amount of time for the character to be received. By determining how many increments to the timebase
registers occurred during this known time, the timebase frequency can be determined.

Errors

None

Example

Get the timebase speed.

unsigned long tb_speed=timebase_speed();

Attributes

References

PPC405EP Embedded Processor User’s Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-148 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary timertick_install()
timertick_install()

Synopsis

#include <tickLib.h>
int timertick_install(void);

Library

tickLib.a

Description

timertick_install() installs and starts the timer tick handler to maintain time-of-day in the OS Open
real-time executive.

Errors

Example

Do a timertick_install() .

timertick_install();

Attributes

References

“timertick_remove()” on page 10-150

[ENOMEM] Insufficient memory to install the timer tick handler.

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-149

timertick_remove() Preliminary
timertick_remove()

Synopsis

#include <tickLib.h>
int timertick_remove(void);

Library

tickLib.a

Description

timertick_remove() removes the timer tick handler installed by timertick_install() .

Errors

Attributes

References

“timertick_install()” on page 10-149

[EINVAL] Internal error involving tick handler level.

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
10-150 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary vs1dbprintf()
vs1dbprintf()

Synopsis

#include <sys/asyncLib.h>
int vs1dbprintf(unsigned long uart_clock, unsigned char *base_reg, unsigned
long cpc0_cr0_reg, event_t int_level, const char *format, va_list arg_list);

Library

asyncLib.a

Description

vs1dbprintf() is a version of s1dbprintf() that accepts a va_list as a parameter instead of a variable
number of parameters. vs1dbprintf() may be called before the async device driver is installed.
uart_clock is the clock frequency of the serial port. base_reg specifies the address of the base
UART register. cpc0_cr0_reg specifies the fields in the Chip Control 0 register that will be set. Only
the fields relevant to UART 0 should be specified. int_level specifies the interrupt level associated
with serial port 1. arg_list is a list of variable arguments that has been created by a call to va_start().
The default communication values are 9600 baud, 8 bit data, no parity, 1 stop bit.

Errors

None

Attributes

References

“s1dbprintf()” on page 10-145

PPC405EP Embedded Processor User’s Manual

PowerPC 405EP Evaluation Board Manual

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
OS Open Function Reference 10-151

vs1dbprintf() Preliminary
10-152 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
Appendix A. Program Trace Calls

This appendix describes the remote debugging interface provided by the ROM monitor. These calls
may be used by remote debuggers other than the RISCWatch debugger provided with the kit.

A.1 Overview

The following section describes the message (ptrace) protocol that has been implemented in the
ROM monitor to support debug. If you want to interface your own debugger to the ROM monitor or
modify the ROM monitor to interface with your debugger, you will need to understand the existing
message protocol associated with the various debugging functions.

The ptrace interface to the ROM monitor can best be understood by reviewing the information below
along with the debug-specific ROM monitor source code (dbLib/ptrace.c).

A.2 MSGDATA Structure

In the interface descriptions shown below, several references are made to a “process id.” The concept
of process ids does not apply to the ROM monitor, so any nonzero value can be used. The ROM
monitor uses the value 42.

Data structure MSGDATA is defined in dbg.h. New register definitions and new error messages are
also defined in dbg.h.

The dbg.h file is shown below:

/* @(#)dbg.h4.3 5/9/95 09:12:14 */
/*---+
| COPYRIGHT I B M CORPORATION 1994
| LICENSED MATERIAL - PROGRAM PROPERTY OF I B M
| REFER TO COPYRIGHT INSTRUCTIONS: FORM G120-2083
| US Government Users Restricted Rights - Use, duplication or |
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
+---*/
#if !defined(DBG_H)
#define DBG_H
#define BREAKPT 0x7D821008
#ifndef MIN
#define MIN(X,Y) ((X) < (Y) ? (X) : (Y))
#endif
/*ptrace definitions based on AIX ptrace */
#define RD_TRACE_ME 0 /* used ONLY by target task to be traced*/
#define RD_READ_I 1 /* read target instruction addr space */
#define RD_READ_D 2 /* read target data address space */
#define RD_READ_U 3 /* read offset from the user structure */
#define RD_WRITE_I 4 /* write target instruction addr space */
#define RD_WRITE_D 5 /* write target data address space */
#define RD_WRITE_U 6 /* write offset to the user structure */
Program Trace Calls A-1

 Preliminary
#define RD_CONTINUE 7 /* continue execution */
#define RD_KILL 8 /* terminate execution */
#define RD_STEP 9 /**execute one or more instructions*** !*/
#define RD_READ_GPR 11 /* read general purpose register */
#define RD_READ_FPR 12 /* read floating point register */
#define RD_WRITE_GPR 14 /* write general purpose register */
#define RD_WRITE_FPR 15 /* write floating point register */
#define RD_READ_BLOCK 17 /* read block of data */
#define RD_WRITE_BLOCK 19 /* write block of data */
#define RD_ATTACH 30 /* attach to a process */
#define RD_DETACH 31 /* detach a proc to let it keep running */
#define RD_REGSET 32 /* return entire register set to caller */
#define RD_REATT 33 /* reattach debugger to proc */
#define RD_LDINFO 34 /* return loaded program info */
#define RD_MULTI 35 /* set/clear multi-processing */
#define RD_READ_I_MULT 70 /* Read multiple inst words */
#define RD_READ_GPR_MULT 71 /* Read multiple registers */
#define RD_SINGLE_STEP 100 /**source line single step************ !*/
#define RD_LOAD 101 /* load a task !*/
#define RD_LOGIN 103 /*ptrace for login !*/
#define RD_LOGON 103 /*ptrace for logon !*/
#define RD_LOGOFF 104 /*ptrace for logoff !*/
#define RD_FILL 105 /*ptrace for fill memory !*/
#define RD_PASS 106 /*ptrace for pass !*/
#define RD_SEARCH 107 /*ptrace for search memory !*/
#define RD_WAIT 108 /*ptrace for wait status information !*/
/* Added to support ADEPT */
#define RD_READ_DCR 110 /*ptrace for reading DCR’s */
#define RD_WRITE_SPR 111 /*ptrace for writing SPR’s */
#define RD_WRITE_DCR 112 /*ptrace for writing DCR’s */
#define RD_STOP_APPL 113 /*ptrace for stopping the application */
#define RD_STATUS 114 /*ptrace for getting run status */
#define RD_READ_SPR 115 /*ptrace for reading SPR’s */
/* Added to support 403GC */
#define RD_READ_TLB 116 /*ptrace for readingTLB(403GC) */
#define RD_WRITE_TLB 117 /*ptrace for writing TLB(403GC) */
/* Added to support 602 */
#define RD_READ_SR 118 /*ptrace for reading SR’s */
#define RD_WRITE_SR 119 /*ptrace for writing SR’s */
#define MAX_PTRACE 119 /*last ptrace number */
#define RL_LOAD_REQ 180 /* Remote Loader - Load Request */
#define RL_LDINFO 181 /* Remote Loader - Load Information */
/*TCP/IP services for all sorts of remote debug */
#define OSOPEN_SERVNAME “osopen-dbg” /* OS/Open debug service */
#define OSOPEN_MON_SERVNAME “osopen-mon” /* OS/Open debug monitor svc */
/*new register definition */
#define DAR 137 /* Data Address Register ($dar) */
#define DSISR 138 /* Data St Int Status Reg ($dsisr) */
#define SRR0 139 /* Save and Restore Register 0 ($srr0) */
#define SRR1 140 /* Save and Restore Register 0 ($srr1) */
#define SR0 141 /* Segment Register ($sr0) */
#define SR1 142 /* Segment Register ($sr1) */
A-2 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
#define SR2 143 /* Segment Register ($sr2) */
#define SR3 144 /* Segment Register ($sr3) */
#define SR4 145 /* Segment Register ($sr4) */
#define SR5 146 /* Segment Register ($sr5) */
#define SR6 147 /* Segment Register ($sr6) */
#define SR7 148 /* Segment Register ($sr7) */
#define SR8 149 /* Segment Register ($sr8) */
#define SR9 150 /* Segment Register ($sr9) */
#define SR10 151 /* Segment Register ($sr10) */
#define SR11 152 /* Segment Register ($sr11) */
#define SR12 153 /* Segment Register ($sr12) */
#define SR13 154 /* Segment Register ($sr13) */
#define SR14 155 /* Segment Register ($sr14) */
#define SR15 156 /* Segment Register ($sr15) */
#define DEC 157 /* Decrementer ($dec) */
#define RTCU 158 /* Real Time Clock Upper ($rtcu) */
#define RTCL 159 /* Real Time Clock Lower ($rtcl) */
#define SDR0 160 /* Storage Description Reg ($sdr0) */
#define SDR1 161 /* Storage Description Reg ($sdr1) */
#define EIS0 162 /* External Int Summary Reg1($eis1) */
#define EIS1 163 /* External Int Summary Reg2($eis2) */
#define EIM0 164 /* External Int Mask Reg1($eim1) */
#define EIM1 165 /* External Int Mask Reg2($eim2) */
#define SRR2 166 /* Save and Restore Register 2 ($srr2) */
#define SRR3 167 /* Save and Restore Register 3 ($srr3) */
/*other definitions needed for remote debug */
#define RD_MAXDATA 1800 /* Total no of DWORDS in a MSGDATA */
#define RD_MINLENGTH 6 /* Min no of dwords in msg */
#define RD_MINBYTES (RD_MINLENGTH*sizeof(unsigned long))
#define RD_MAXBUFFER (RD_MAXDATA - RD_MINLENGTH)
#define RD_MAXPACKET 1000000 /* Max bytes in TCP/IP packet */
#define RD_REGBYTES (32+8)*4 /* No of bytes for all registers */
#define NO_KILL 1 /*do not kill any users processes */
#define KILL_PROC 0 /*kill user process upon logoff */
#define MAX_ERROR 1014 /*last error for rptrace */
#define MIN_ERROR 1000 /*first error for rptrace */
#define MIN_PACKET_SIZE 24
#define DBG_SPORT 20044
#define DBG_DPORT 20050
/*new error codes */
#define RD_NOLOAD_ERR 1000 /*no loader info available */
#define RD_COM_ERR 1001 /*communication error occured */
#define RD_SIZE_ERR 1002 /*not enough room to pass all info */
#define RD_NOTSUPP 1003 /*call not supported */
#define RD_REG_ERR 1004 /*invalid register number requested */
#define RD_NOTAVAIL 1005 /*call not implemented at this time */
#define RD_NOFILE_ERR 1006 /*file could not be loaded, no file */
#define RD_NOSCAN_ERR 1008 /*could not locate scan string file */
#define RD_NOPERM 1010 /*no permission to log on */
#define RD_INVALID_SEQ 1011 /*invalid rptrace sequence */
#define RD_BUSY_ERR 1012 /*some users is already logged on */
#define RD_PTRACE_ERR 1014 /*internal ptrace error */
Program Trace Calls A-3

 Preliminary
#define RD_OK 0 /*rptrace completed ok */
#define ARCH_403 0x34000000 /* 403 architecture */
#define ARCH_601 0x36000000 /* 601 architecture */
#define ARCH_602 0x36303200 /* 602 architecture */
#define ARCH_603 0x36303300 /* 603 architecture */
#define ARCH_604 0x36303400 /* 604 architecture */
typedef struct msgdata /* message data structure */
{ unsigned long data_len; /* optional data length } */
unsigned long retcode; /* return code }MIN */
unsigned long request; /* request type }PART */
unsigned long address; /* function parameter }= */
unsigned long data /* function parameter }6*DWORD */
struct { unsigned f1:1;
 unsigned f2:1;
 unsigned f3:1;
 unsigned padd:21;
 unsigned f25:8;
 } flags;
#define printmsg flags.f1
#define breakpt flags.f2
#define dbg_seqno flags.f25
union { unsigned long trace_buffer[RD_MAXBUFFER];
 unsigned long processid;
 } parameter;
#define buffer parameter.trace_buffer /* buffer for data, in any */
#define rpid parameter.processid /* process id */
} MSGDATA;
#endif

A.3 Ptrace Definitions

The following section presents the application programming interface (API) for rptrace messages.
One field that is not shown here, because it is common to every call, is the msg.printmsg flag. This
may be set in an rptrace response where msg.retcode does not equal RD_OK. When the
msg.printmsg flag is set it indicates that a text string is contained in msg.buffer and that this message
should be displayed to the user. Typically this is an error message that provides more detail as to why
the rptrace call failed to return RD_OK.

Another field that is not shown is the dbg_seqno field. The field provides a mechanism for recovering
from lost requests and responses. If a request has the dbg_seqno field as not zero, it is compared
with the value from the previous request. If it matches, the action is not performed and instead, the
previous response is sent. This allows the debugger to time-out and retry requests without danger of
performing the same function twice.
A-4 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
A.3.1 RD_ATTACH (30)

Attaches debugger to running process in target environment.

 Parameters Description

Request msg.request= RD_ATTACH Requested API function

msg.rpid= process_id Numeric process ID on the target system.(Any non
zero value)

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that
does not exist

msg.retcode= EIO (5) One of the parameters is incorrect

msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_NOTSUPP (1003) Call not supported for this interface

msg.retcode= RD_OK (0) Successful completion

msg.data_len=0 No additional data
Program Trace Calls A-5

 Preliminary
A.3.2 RD_CONTINUE (7)

This request causes the process to resume execution. If the dbg_seqno field of the request is zero,
the response is not returned until the process stops due to a break point or error. Otherwise, an
immediate response is sent from the RD_CONTINUE request and the debugger should send the
RD_STATUS request to see if the process has stopped.

 Parameters Description

Request msg.request= RD_CONTINUE Requested API function

msg.address= address This field is ignored by ROM monitor

msg.data= signal 0

msg.rpid= process_id Numeric process ID on the target system

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.data= 0
A-6 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
A.3.3 RD_DETACH (31)

Detaches debugger from running process in target environment. Debugged process is restarted and
execution continues without debugger control.

 Parameters Description

Request msg.request= RD_DETACH Requested API function

msg.rpid= process_id Numeric process ID on the target system

msg.data= 0 Ignored by ROM monitor

msg.address=1 Ignored by ROM monitor

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that
does not exist, or a process that is currently not
being debugged

msg.retcode= RD_COM_ERR (1001) Communications error occurred

msg.retcode= RD_NOTSUPP (1003) Call not supported for this interface

msg.retcode= RD_OK (0) Successful completion

msg.retcode= EIO (5) One of the parameters is incorrect

msg.data_len= 0 No additional data is being sent
Program Trace Calls A-7

 Preliminary
A.3.4 RD_FILL (105)

Fills memory with zeroes at the location specified by address for the number of bytes specified by
data.

 Parameters Description

Request msg.request= RD_FILL Requested API function

msg.rpid= process_id Numeric process ID on the target system

msg.address= address Address of memory to fill with zeroes

msg.data= count Number of bytes to fill with zeroes

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communications error occurred.

msg.retcode= RD_NOTSUPP (1003) Call not supported for this interface

msg.retcode= RD_OK (0) Successful completion

msg.retcode= EIO (5) One of the parameters is incorrect

msg.data_len= 0 No additional data is being sent
A-8 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
A.3.5 RD_KILL (8)

This request causes the process to terminate the same way it would with an exit routine. The ROM
monitor does not implement this function but simply returns an RD_OK response for compatibility with
older debuggers.

 Parameters Description

Request msg.request= RD_KILL Requested API function.

msg.rpid= process_id Process ID of the process to be killed.

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that
does not exist

msg.data_len= 0 Length of additional data being sent
Program Trace Calls A-9

 Preliminary
A.3.6 RD_LDINFO (34)

Request loader information from target environment. This information is provided to the ROM monitor
in the boot header or by the RL_LDINFO request. Refer to ROM Monitor Load Format section for
more information.

 Parameters Description

Request msg.request= RD_LDINFO Requested API function

msg.rpid= process_id Process ID from which the loader information is
requested

msg.data_len= sizeof(msg.rpid) Length of additional data being sent
A-10 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
Response msg.retcode= RD_NOLOAD_ERR (1000) No loader information is available

msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that
does not exist

msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_SIZE_ERR (1002) Not enough room in the buffer to fit all load
information

msg.retcode= RD_OK (0) Successful completion

msg.retcode= EIO (5) One of the parameters is incorrect

msg.buffer[0]= ldinfo_next Offset to next loader information segment. See
note below

msg.buffer[1]= fd File descriptor for loaded object. In remote
debug 0xFFFF FFFF should be returned (this is
a space filler)

msg.buffer[2]= textorig Starting text address

msg.buffer[3]= textsize Size of text

msg.buffer[4]= dataorig Starting data address.

msg.buffer[5]= datasize Size of data

msg.buffer[6]= (char *)pathname Fully qualified filename of the object file.

msg.buffer[X]= (char *)membername Membername (used for shared library objects).
X does not represent position on word boundary.
A NULL has to be returned for the membername
even if the debugged file has no member name

msg.buffer[ldinfo_next]= ldinfo_next Next loader block (notice "ldinfo_next")

msg.data_len= "variable" Set to length of data sent in msg.buffer. Data
length will vary depending on the amount of
information passed. Remember to count all the
NULL characters

Note: dinfo_next=0 indicates that no further loader blocks are present, otherwise ldinfo_next
contains the offset of the next loader block in the buffer. This is actually the length of
the current block. For example, if the buffer contains three blocks of lengths 38, 40 and
41 bytes, the ldinfo_next fields would be 38, 40 and 0, respectively. Note also that the
blocks do not have to be contiguous - it is possible that the end of one block may not
directly abut the following block. This may occur if additional information or word-
aligning padding is placed after the end of the member name string. Pathname and
membername are strings terminated with a null character.

 Parameters Description
Program Trace Calls A-11

 Preliminary
A.3.7 RD_LOAD (101)

Loads executable program. Full path name of the file to be loaded is passed in this message. The
ROM monitor will respond by sending an RL_LOAD_REQ to the remote loader daemon port.

 Parameters Description

Request msg.request= RD_LOAD Requested API function

msg.buffer= filename Name of file to load. A NULL character terminates
filename. filename contains a fully qualified path
to that file

msg.data_len= strlen(filename)+1 String length of filename plus NULL character

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.retcode= RD_NOFILE_ERR (1006) Could not locate/load the file

msg.rpid= process_id Process_id of the newly loaded file. This number
(integer) can not be equal to -1 (0xFFFF FFFF) or
0

msg.data_len= sizeof(msg.rpid) Length of additional data being sent.
A-12 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
A.3.8 RD_LOGIN (103)

Initializes users LOGIN. This request must be the first rptrace request issued by the debugger or
results will be unpredictable.

 Parameters Description

Request msg.request= RD_LOGIN Requested API function.

msg.buffer[0]= host_name This field is ignored by ROM monitor.

msg.buffer[strlen(host_name)+1]=
user_name

This field is ignored by ROM monitor.

msg.data_len=
strlen(host_name)+strlen(user_name)+2

Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.data_len= 0 Length of additional data being sent
Program Trace Calls A-13

 Preliminary
A.3.9 RD_LOGOFF (104)

Performs user LOGOFF function. This is used when the debugger performs normal termination using
quit or detach.

 Parameters Description

Request msg.request= RD_LOGOFF Requested API function

msg.data= NO_KILL This field is ignored by ROM monitor

msg.data_len= 0 Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.retcode= RD_INVALID_SEQ (1011) Not logged on.

msg.data_len= 0 Length of additional data being sent
A-14 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
A.3.10 RD_READ_D (2)

This request returns the integer in the debugged process address space at the location pointed to by
the address parameter. If the value of address is not in a valid address space, unpredictable results
will occur.

 Parameters Description

Request msg.request= RD_READ_D Requested API function

msg.address= address Address of memory to read data from

msg.rpid= process_id Numeric process ID on the target system

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.retcode= EIO (5) Debugged process can not access given address.

msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that
does not exist

msg.data= data Data read at location pointed to by address. -1 if
error

msg.data_len= 0 Length of additional data being sent
Program Trace Calls A-15

 Preliminary
A.3.11 RD_READ_FPR (12)

This request returns the content of one of the floating-point registers.

 Parameters Description

Request msg.request= RD_READ_FPR Requested API function

msg.rpid= process_id Numeric process ID on the target system

msg.address= register Name of the register to be read

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.retcode= EIO (5) Register is not defined

msg.retcode= RD_REG_ERR (1004) Unable to access given register

msg.data= value Value read from register. 0xFFFFFFFF if error
occurred

msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that
does not exist

msg.data_len= 0 Length of additional data being sent
A-16 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
A.3.12 RD_READ_GPR (11)

This request returns the content of one of the general-purpose or special-purpose registers of the
debugged process. Valid registers are defined in "dbg.h" and "sys/reg.h". Not all defined registers are
supported for all environments.

 Parameters Description

Request msg.request= RD_READ_GPR Requested API function

msg.rpid= process_id Numeric process ID on the target system

msg.address= register Name of the register to be read

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occur

msg.retcode= RD_OK (0) Successful completion

msg.retcode= EIO (5) Register is not define

msg.retcode= RD_REG_ERR (1004) Unable to access given register

msg.data= value Value read from register. 0xFFFFFFFF if error
occurred

msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that
does not exist

msg.data_len= 0 Length of additional data being sent
Program Trace Calls A-17

 Preliminary
A.3.13 RD_READ_GPR_MULT(71)

This request returns the contents of general-purpose registers 0 to 18, inclusive, of the debugged
process.

 Parameters Description

Request msg.request= RD_READ_GPR_MULT Requested API function

msg.rpid= process_id Numeric process ID on the target system

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.retcode= RD_NOTSUPP (1003) Call not supported by this interface

msg.retcode= RD_REG_ERR (1004) Unable to access given register

msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that
does not exist

msg.data_len= 76 (0x4C) Length of additional data being sent

msg.buffer[0-18] Values read from GPR0 to GPR18. Undefined if
error
A-18 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
A.3.14 RD_READ_I (1)

This request returns the integer in the debugged process address space at the location pointed to by
the address parameter. If the value of address is not in a valid address space, unpredictable results
will occur.

 Parameters Description

Request msg.request= RD_READ_I Requested API function

msg.address= address Address of memory to read data from

msg.rpid= process_id Numeric process ID on the target system

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion.

msg.retcode= EIO (5) Debugged process can not access given address

msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that
does not exist

msg.data= data Data read at location pointed to by address. -1 if
error (retcode should also be set to EIO)

msg.data_len= 0 Length of additional data being sent
Program Trace Calls A-19

 Preliminary
A.3.15 RD_READ_I_MULT (71)

This request returns the 32 integers in the debugged process address space at the location pointed to
by the address parameter. If the value of address is not in a valid address space, unpredictable
results will occur.

 Parameters Description

Request msg.request= RD_READ_I_MULT Requested API function

msg.address= address Address of memory to read data from

msg.rpid= process_id Numeric process ID on the target system

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.retcode= EIO (5) Debugged process can not access given address

msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that
does not exist

msg.retcode= RD_NOTSUPP (1003) Call not supported by this interface

msg.buffer[0-0x1F] Contents of addresses from location pointed to by
address to address + 0x1F

msg.data_len= 128 (0x80) Length of additional data being sent
A-20 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
A.3.16 RD_READ_SPR (115)

This request reads data directly from one of the SPRs (not the process’s copy). All SPR registers are
accessible through this message request. The sender is responsible for supplying valid SPR values,
no error checking is performed on this field.

 Parameters Description

Request msg.request= RD_READ_SPR Requested API function

msg.address= SPR number SPR number to read

msg.data_len= 0 Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.data= value Value read from register

msg.data_len= 0 Length of additional data being sent
Program Trace Calls A-21

 Preliminary
A.3.17 RD_READ_SR (118)

This request returns the content of one of the segment registers.

 Parameters Description

Request msg.request= RD_READ_SR Requested API function

msg.rpid= process_id Numeric process ID on the target system

msg.address= register Name of the register to be read

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.retcode= EIO (5) Register is not defined

msg.retcode= RD_REG_ERR (1004) Unable to access given register

msg.data= value Value read from register. 0xFFFFFFFF if error
occurred

msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that
does not exist

msg.data_len= 0 Length of additional data being sent
A-22 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
A.3.18 RD_STATUS (114)

This request is used to get program execution status and to determine if a previous RD_CONTINUE
request was received.

 Parameters Description

Request msg.request= RD_STATUS Requested API function

msg.rpid= process_id Numeric process ID on the target system

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.address= execution status Status is 1 if program is running and 0 if stopped.
In the case of an error, this field will be -1
(0xFFFFFFFF)

msg.data= sequence number Sequence number of the last RD_CONTINUE
request that was received

msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.retcode= RD_ESRCH (3) The msg.pid field identifies a process that does not
exist
Program Trace Calls A-23

 Preliminary
A.3.19 RD_STOP_APPL (113)

This request is used to interrupt program execution.

 Parameters Description

Request msg.request= RD_STOP_APPL Requested API function

msg.rpid= process_id Numeric process ID on the target system

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.retcode= RD_ESRCH (3) The msg.pid field identifies a process that does not
exist
A-24 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
A.3.20 RD_WAIT (108)

This call allows the debugger to determine the current status of the debugged process after it is
stopped. The first (least significant) byte of the process status indicates the reason for stoppage: this
is always 0x7f. The second byte contains the signal number that caused the stop. Valid signals are:

• AIX_SIGILL (4) - illegal instruction

• AIX_SIGTRAP (5) - hit a trap instruction (breakpoint)

• AIX_SIGFPE (8) - floating point error

• AIX_SIGSEGV (11) - storage violation

For example after hitting a breakpoint, the status of 0x57f is returned to the debugger. After the
program terminates, the first byte contains 0x00 and the rest of the status holds the program exit
code. After RD_KILL call wait status of 0x57f should be returned.

 Parameters Description

Request msg.request= RD_WAIT Requested API function

msg.data_len= 0 Length of data in msg.buffer

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.data= status Process status

msg.address= pid Process id

msg.data_len= strlen(message_string) The ROM monitor always returns 0 in this field

msg.buffer= message_string Formatted message string text (NULL terminated)
Program Trace Calls A-25

 Preliminary
A.3.21 RD_WRITE_BLOCK (19)

This request writes a block of data into the address space of the debugged process at the address
pointed to by the msg.address field. The number of bytes to write is contained in the msg.data field
and the data is in the msg.buffer field. Unpredictable results occur if the msg.address parameter
points to a location that can not be accessed by the debugged process.

 Parameters Description

Request msg.request= RD_WRITE_BLOCK Requested API function

msg.address= address Address of memory to write data to

msg.data= count Number of bytes of buffer area to be written

msg.buffer Data to be written

msg.data_len= count Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion

msg.retcode= EIO (5) Debugged process can not access given address.

msg.data_len= 0 Length of additional data being sent
A-26 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
A.3.22 RD_WRITE_D (5)

This request writes the value of the msg.data parameter into the address space of the debugged
process at the address pointed to by the msg.address parameter. Unpredictable results occur if the
msg.address parameter points to a location that can not be accessed by the debugged process.

 Parameters Description

Request msg.request= RD_WRITE_D Requested API function.

msg.address= address Address of memory to write data to

msg.data= data Data to write to memory.

msg.rpid= process_id Numeric process ID on the target system

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.retcode= EIO (5) Debugged process can not access given address

msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that
does not exist.

msg.data= data Data written at location pointed to by address. -1 if
error (retcode should also be set to EIO or
ESRCH).

msg.data_len= 0 Length of additional data being sent
Program Trace Calls A-27

 Preliminary
A.3.23 RD_WRITE_FPR (15)

This request writes data to one of the floating-point registers:

 Parameters Description

Request msg.request= RD_WRITE_FPR Requested API function

msg.rpid= process_id Numeric process ID on the target system

msg.address= register Name of the register to be written

msg.data= value Value to be written to the register

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.retcode= EIO (5) Register is not defined

msg.retcode= RD_REG_ERR (1004) Unable to access given register

msg.data= value Value written to register. 0xFFFFFFFF if error
occurred

msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that
does not exist

msg.retcode= RD_COM_ERR (1001) Communication error occurred
A-28 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
A.3.24 RD_WRITE_GPR (14)

This request writes data to one of the general-purpose or special-purpose registers of the debugged
process. Valid registers are defined in dbg.h and sys/reg.h. Not all defined registers are supported for
all environments.

 Parameters Description

Request msg.request= RD_WRITE_GPR Requested API function

msg.rpid= process_id Numeric process ID on the target system

msg.address= register Name of the register to be written

msg.data= value Value to be written to the register

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0) Successful completion

msg.retcode= EIO (5) Register is not defined

msg.retcode= RD_REG_ERR (1004) Unable to access given register

msg.data= value Value written to register. 0xFFFFFFFF if error
occurred

msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that
does not exist

msg.data_len= 0 Length of additional data being sent
Program Trace Calls A-29

 Preliminary
A.3.25 RD_WRITE_I (4)

This request writes the value of the msg.data parameter into the address space of the debugged
process at the address pointed to by the msg.address parameter. This request fails if the
msg.address parameter points to a location that can not be accessed by debugged process. This call
sets break points in the debugged process by writing TRAP (0x7D821008) instructions.

 Parameters Description

Request msg.request= RD_WRITE_I Requested API function

msg.rpid= process_id Numeric process ID on the target system

msg.address= address Address of memory to write data to

msg.data= data Data to write to memory

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.retcode= EIO (5) Debugged process can not access given address

msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that
does not exist.

msg.data= data Data written at location pointed to by address. -1 if
error (retcode should also be set to EIO or
ESRCH)

msg.data_len= 0 Length of additional data being sent
A-30 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
A.3.26 RD_WRITE_SPR (112)

This request writes data directly to one of the SPRs (not the process’s copy). All SPR registers are
accessible through this request. The requester is responsible for supplying valid SPR values. No error
checking is performed on this field.

 Parameters Description

Request msg.request= RD_WRITE_SPR Requested API function

msg.address= SPR number SPR number to be written

msg.data= value Data to write to register

msg.data_len= 0 Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.data_len= 0 Length of additional data being sent
Program Trace Calls A-31

 Preliminary
A.3.27 RD_WRITE_SR (119)

This request writes data to one of the segment registers.

 Parameters Description

Request msg.request= RD_WRITE_SR Requested API function

msg.rpid= process_id Numeric process ID on the target system

msg.address= register Name of the register to be written

msg.data= value Value to be written to the register

msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.retcode= EIO (5) Register is not defined

msg.retcode= RD_REG_ERR (1004) Unable to access given register

msg.data= value Value written to register. 0xFFFFFFFF if error
occurred

msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that
does not exist

msg.data_len= 0 Length of additional data being sent
A-32 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
A.3.28 RL_LDINFO (181)

This request provides load information from the host to the ROM monitor. This request is used when
the target is loaded by a process other than the debugger. The information specified on the this
request will be returned on subsequent RD_LDINFO requests.

 Parameters Description

Request msg.request= RL_LDINFO Requested API function

msg.data_len= sizeof(struct ldinfo) +
strlen(pathname)

Length of additional data being sent

msg.buffer= load information See description of RD_LDINFO request

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.data_len= 0 Length of additional data being sent
Program Trace Calls A-33

 Preliminary
A.3.29 RL_LOAD_REQ(180)

This request flows from the ROM monitor to the host when a RD_LOAD request is received. The port
of the request is for the remote loader daemon (20050) to accommodate loading by a process
independent from the debugger.

 Parameters Description

Request msg.request= RL_LOAD_REQ Requested API function

msg.buffer= filename NULL terminated string containing fully qualified
name of file to be loaded

msg.data_len= strlen(filename) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.retcode= RD_NOFILE_ERR
(1006)

Can’t open file or file is incorrect format

msg.retcode= RD_PTRACE_ERR
(1014)

Error reading file

msg.rpid= process_id Process ID of newly loaded file. This number
(integer) can not be equal to -1 (0xFFFF FFFF) or
0

msg.data_len= sizeof(msg.rpid) Length of additional data being sent
A-34 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
Appendix B. ROM Monitor Load Format

This appendix presents the ROM Monitor load format requirements.

B.1 Overview

The ROM Monitor load format is designed to permit the specification of multiple text and data
sections. The format consists of a linked list of sections of specified types prefixed by a small boot
header, boot_block, that specifies the initial target of the image and the entry point. The boot_block
header is placed at the front of the image by eimgbld or nimgbld . The ROM Monitor does no
relocation. It is assumed that the destination addresses for the individual sections are the same ones
specified during the application’s linkage. The info_block structure is reserved in the bootstrap
program, bootlLib.s. eimgbld or nimgbld patch in the values within the info_block structure for
bootLib to use at run time. The bootstrap program processes the sections back to front, that is, from
the end of the image to the beginning. This is to avoid destructive overlap during the processing of
typical images.

The sections are preceded by header blocks which identify the section types. The headers are linked
together in a doubly linked list.

B.2 Section Types

There are three basic section types. Generally, they can occur in the image in any order, but are
usually arranged in ascending address order. The section header block has the following format:

/*---+
| Relocation block structure.
+---*/
typedef struct rel_block {
 unsigned long type;
 unsigned long dest_addr;
 unsigned long size;
 union {
 struct data_info {
 unsigned long size_to_fill;
 unsigned long char_to_fill;
 } data_info_str;
 struct text_info {

unsigned long toc_pointer; /* used for XCOFF; not used for ELF */
 unsigned long entry_pt;
 } text_info_str;
 unsigned long number_symbols;
 } section_info;
 struct rel_block *next;
 struct rel_block *bptr;
} rel_block_t;
ROM Monitor Load Format B-1

 Preliminary
The type field is one of the following manifest constants:

#define TEXT_SECT 0x00000001
#define DATA_SECT 0x00000002
#define SYMB_SECT 0x00000004

The dest_addr specifies the target for the block, while size is the extent of the block, not counting the
header. The bootstrap program uses this information to move the block to the destination specified at
link time. next and bptr are the section header forward and backward pointers, respectively.

B.2.1 First Section

The first section is a text section. The ROM loader places the entire image at the address specified in
the boot_block header. The entry point specified in the boot_block header is assumed to be a branch,
followed by the first section header, info_block. This is to allow the bootstrap to easily gain immediate
addressability to the first section block.

The format of the first section block is shown below:

/*---+
| First section header
+---*/
struct info_block {
 long magic_num; /* magic number */
 long text_start; /* addr of text section from section header */
 long text_size; /* size of text section from section header
*/
 long data_start; /* addr of data section from section header */
 long data_size; /* size of data section from section header */
 long elf_hdr_size; /* size of ELF headr */
 long sym_start; /* addr of symbol table */
 long num_syms; /* number of symbols */
 long toc_ptr; /* used for XCOFF; not used for ELF */
 struct rel_block * next; /* pointer to next boot section header
*/
};

magic_num is used for verification purposes and must be X’004D 5054’.

text_start is the physical address value from the object text header.

text_size is the size in bytes from the object text header.

data_start is the physical address from the object data header.

data_size is the size in bytes from the object data header.

elf_hdr_size is the size of the object header. The debugger requires this information.

sym_start is the address of the symbol table in storage.

num_syms is the number of symbol entries.

next points to the next section header.

B.2.2 Text Section

For a text section, the union section_info contains the structure text_info , specifying the entry point
of the text section.
B-2 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
B.2.3 Data Section

For a data section, the union section_info contain the structure data_info , specifying size_to_fill
and char_to_fill . These parameters are used to optionally fill a region past the size extent specified in
the base rel_block with a character. It is most often used to zero bss by specifying the size of the bss
in size_to_fill and 0x0 for char_to_fill .

B.2.4 Symbol Section

For symbols, the union section_info contains the number of symbols in the section. The data in this
section consists of the symbol table from the original object file.

B.3 Boot Header

The entire image is preceded by the boot header that was added by nimgbld or eimgbld . The ROM
loader uses this information to verify that it is a ROM Monitor load image, determine where to place
the image, and whether to invoke the ROM Monitor debugger before transferring control to the entry
point. The boot header is stripped off by the ROM Monitor loader and does not appear at the load
address.

The boot header has the following format:

/*---+
| Boot header.
+---*/
typedef struct boot_block {
 unsigned long magic;
 unsigned long dest;
 unsigned long num_512blocks;
 unsigned long debug_flag;
 unsigned long entry_point;
 unsigned long reserved[3];
} boot_block_t;

magic identifies this image as a legitimate ROM Monitor image and must have the value
X’0052 504F’.

dest is the target address for the image (after the boot header is stripped off).

num_512blocks - Boot images are padded to a multiple of 512 byte blocks. This field specifies the
number of blocks.

debug_flag controls whether the ROM Monitor debugger gets control before the loaded image starts.
If the value is 0x0, the image runs immediately. If 0x01, the debugger gains control as soon as the
load is complete.

entry_point specifies the address where the image will receive control.
ROM Monitor Load Format B-3

 Preliminary
B-4 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary

Index

Index

A
ANSI C I/O Library 9-1
ANSI C Library 9-1
ANSI C Math Library 9-1
async safe 10-1
async_init() function 10-8
asyncLib.a library 9-4
B
benetLib.a library 9-5
biosenet_attach() function 10-9
Block Buffer Library 9-1
Block Library 9-1
board initialization 9-17
board reset 6-3
book

conventions used xii
highlighting xiii
numeric xii
syntax diagrams xiii

Boot Library 9-1, 9-4
Boot Library (FLASH) 9-1
C
C++ runtime support library 9-1
cancel safe 10-1
Clock Support Library 9-2
clock, on-board, setting time 8-7
clock_set() function 10-11
clockchip_get() function 10-12
clockchip_nvram_read() function 10-13
clockchip_nvram_write() function 10-14
clockchip_set() function 10-15
clockchip_start() function 10-16
clockchip_stop() function 10-17
clockLib.a library 9-5
clockLib_init() function 10-18
connecting the board to the host 6-1
conventions used xii

highlighting xiii
numeric xii
syntax diagrams xiii

D
dbg_ioLib_init() function 10-19
dcache_flush() function 10-20
dcache_invalidate() function 10-21
Debug Support Library 9-2
Device and File Support Library 9-2
device drivers

asynchronous 9-6
Ethernet 9-13
I2C 9-11

dma_disable() function 10-22
dma_setup() function 10-23
dma_status() function 10-24
DOS File System Support Library 9-2
driver_install

async_init 9-6
Dynamic Loader Library 9-2
E
enet_get_aAlignmentErrors() function 10-25
enet_get_aFrameCheckSequenceErrors() function
10-26
enet_get_aFramesReceivedOK() function 10-27
enet_get_aFramesTransmittedOK() function 10-28
enet_get_aMultipleCollisionFrames() function 10-
29
enet_get_aOctetsReceived() function 10-30
enet_get_aOctetsTransmitted() function 10-31
enet_get_aSingleCollisionFrames() function 10-32
enet_INIT() function 10-33
Ethernet 9-13
ethernet controller

hardware address 7-23
Ethernet Device Driver Installation 9-13
Ethernet Support Library 9-2
ext_int_config() function 10-34
ext_int_disable() function 10-35
ext_int_enable() function 10-36
ext_int_install() function 10-37
ext_int_query() function 10-38
F
File Transfer Protocol Support Library 9-2
Flash update utility 7-23
Floating Point Emulation Library 9-2
functIons

pci_init() 10-65
functions

async_init() 10-8
biosenet_attach() 10-9
clock_set() 10-11
clockchip_get() 10-12
clockchip_nvram_read() 10-13
clockchip_nvram_write() 10-14
clockchip_set() 10-15
clockchip_start() 10-16
clockchip_stop() 10-17
clockLib_init() 10-18
dbg_ioLib_init() 10-19
dcache_flush() 10-20
dcache_invalidate() 10-21
dma_disable() 10-22
Index X-1

 Preliminary
dma_setup() 10-23
dma_status() 10-24
enet_get_aAlignmentErrors() 10-25
enet_get_aFrameCheckSequenceErrors() 10-

26
enet_get_aFramesReceivedOK() 10-27
enet_get_aFramesTransmittedOK() 10-28
enet_get_aMultipleCollisionFrames() 10-29
enet_get_aOctetsReceived() 10-30
enet_get_aOctetsTransmitted() 10-31
enet_get_aSingleCollisionFrames() 10-32
enet_init() 10-33
ext_int_config() 10-34
ext_int_disable() 10-35
ext_int_enable() 10-36
ext_int_install() 10-37
ext_int_query() 10-38
i2c_read() 10-39
i2c_read_reg() 10-40
i2c_setupdriver() 10-41
i2c_write() 10-42
i2c_write_reg() 10-43
inshort_swap() 10-44
int_install() 10-45
int_query() 10-46
inword_swap() 10-47
ioLib_init() 10-48
malChannelActivate() 10-49
malChannelDelete() 10-50
malChannelDescPtrGet() 10-51
malChannelInit() 10-52
malChannelIntMaskGet() 10-53
malChannelIntMaskSet() 10-54
malChannelStop() 10-55
malInit() 10-56
malReset() 10-57
memcpy_io() 10-58
outshort_swap() 10-59
outword_swap() 10-60
pci_find_device() 10-61
pci_find_device_type() 10-62
pci_get_io_base() 10-63
pci_get_memory_base() 10-64
pci_master_abort() 10-66
pci_read_config_reg() 10-67
pci_write_config_reg() 10-68
ppcAbend() 10-69
ppcAndMsr() 10-70
ppcCntlzw() 10-71
ppcDcbf() 10-72
ppcDcbi() 10-73
ppcDcbst() 10-74
ppcDcbz() 10-75
ppcDflush() 10-76

ppcEieio() 10-77
ppcHalt() 10-78
ppcIcbi() 10-79
ppclsync() 10-80
ppcMfccr0() 10-81
ppcMfdac1() - ppcMfdac2() 10-82
ppcMfdbcr0() - ppcMfdbcr1() 10-83
ppcMfdbsr() 10-84
ppcMfdccr() 10-85
ppcMfdcr_any() 10-86
ppcMfdcwr() 10-87
ppcMfdear() 10-88
ppcMfdvc1() - ppcMfdvc2() 10-89
ppcMfesr() 10-90
ppcMfevpr() 10-91
ppcMfgpr1() 10-92
ppcMfgpr2() 10-93
ppcMfiac1() - ppcMfiac4() 10-94
ppcMficcr() 10-95
ppcMficdbdr() 10-96
ppcMfmsr() 10-97
ppcMfpid() 10-98
ppcMfpit() 10-99
ppcMfpvr() 10-100
ppcMfsgr() 10-101
ppcMfsler() 10-102
ppcMfsprg1() - ppcMfsprg7() 10-103
ppcMfsrr0() 10-104
ppcMfsrr1() 10-105
ppcMfsrr2() 10-106
ppcMfsrr3() 10-107
ppcMfsu0r() 10-108
ppcMftb() 10-109
ppcMftcr() 10-110
ppcMftsr() 10-111
ppcMfzpr() 10-112
ppcMtccr0() 10-113
ppcMtdac1() - ppcMtdac2() 10-114
ppcMtdbcr0() - ppcMtdbcr1() 10-115
ppcMtdbsr() 10-116
ppcMtdccr() 10-117
ppcMtdcr_any() 10-120
ppcMtdcwr() 10-121
ppcMtdear() 10-122
ppcMtdvc1() - ppcMtdvc2() 10-123
ppcMtesr() 10-124
ppcMtevpr() 10-125
ppcMtiac1() - ppcMtiac4() 10-126
ppcMticcr() 10-127
ppcMtmsr() 10-128
ppcMtpid() 10-129
ppcMtpit() 10-130
ppcMtsgr() 10-131
ppcMtsler() 10-132
X-2 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
ppcMtsprg0() - ppcMtsprg7() 10-133
ppcMtsrr0() 10-134
ppcMtsrr1() 10-135
ppcMtsrr2() 10-136
ppcMtsrr3() 10-137
ppcMtsu0r() 10-138
ppcMttb() 10-139
ppcMttcr() 10-140
ppcMttsr() 10-141
ppcMtzpr() 10-142
ppcOrMsr() 10-143
ppcSync() 10-144
s1dbprinf() 10-145
s2dbprinf() 10-147
set_time_once_only() 8-7
timebase_speed() 10-148
timertick_install() 10-149
timertick_remove() 10-150
vs1dbprinf() 10-151

H
hardware components 1-1

cables and power supply 1-1
host system requirements

PC 2-1
I
I/O control 9-9
I2C Library 9-2, 9-4
i2c_read() function 10-39
i2c_read_reg() function 10-40
i2c_setupdriver() function 10-41
i2c_write() function 10-42
i2c_write_reg() function 10-43
i2cLib.a library 9-4
IBM Embedded Systems Solution Center xiv
initialization

board bootstrap 9-17
Input/output Support Library 9-2
inshort_swap() function 10-44
installing

async driver 9-6
i2c driver 9-11

int_install() function 10-45
inword_swap() function 10-47
ioLib.a library 9-4
ioLib_init() function 10-48
K
Kernel Abstract Data Types Library 9-2
L
library description

asyncLib.a 9-4
benetLib.a 9-5
clockLib.a 9-5
i2cLib.a 9-4

ioLib.a 9-4
ppcLib.a 9-5
rtx.o 9-3
rtxLib.a 9-3
tickLib.a 9-5

M
MAC sample program 8-7
malChannelActivate function 10-49
malChannelDelete function 10-50
malChannelDescPtrGet function 10-51
malChannelInit function 10-52
malChannelIntMaskGet function 10-53
malChannelIntMaskSet function 10-54
malChannelStop function 10-55
malInit function 10-56
malReset function 10-57
memcpy_io() function 10-58
N
Network Support Library 9-2
NFS Support Library 9-2
O
Opening and Closing Ethernet Files 9-14
opening asynchronous communication ports 9-7
OpenShell 9-2
OS Open kernel extensions 9-3
OS Open minimal kernel 9-3
outshort_swap() function 10-59
outword_swap() function 10-60
P
PC host configuration 4-1

ethernet setup 4-1
serial port setup 4-1
services file 4-2

PC software installation 3-1
board support package 3-1
High C/C++ compiler 3-2
RISCWatch debugger 3-2

PCI Library 9-2
pci_find_device() function 10-61
pci_find_device_type() function 10-62
pci_get_io_base() function 10-63
pci_get_memory_base() function 10-64
pci_init() function 10-65
pci_master_abort() function 10-66
pci_read_config_reg() function 10-67
pci_write_config_reg() function 10-68
PCMCIA ATA/IDE 9-2
PCMCIA card services/enabler 9-1
PCMCIA socket sevices 9-2
polled asynchronous I/O 9-10
PowerPC Low Level Access Support Library 9-2
PowerPC Low-Level Processor Access Support
Library 9-4
Index X-3

 Preliminary
ppcAbend() function 10-69
ppcAndMsr() function 10-70
ppcCntlzw() function 10-71
ppcDcbf() function 10-72
ppcDcbi() function 10-73
ppcDcbst() function 10-74
ppcDcbz() function 10-75
ppcDflush() function 10-76
ppcEieio() function 10-77
ppcHalt() function 10-78
ppcIcbi() function 10-79
ppcLib.a library 9-5
ppclsync() function 10-80
ppcMfccr0() function 10-81
ppcMfdac1() - ppcMfdac2() function 10-82
ppcMfdbcr0() - ppcMfdbcr1() function 10-83
ppcMfdbsr() function 10-84
ppcMfdccr() function 10-85
ppcMfdcr_any() function 10-86
ppcMfdcwr() function 10-87
ppcMfdear() function 10-88
ppcMfdvc1() - ppcMfdvc2() function 10-89
ppcMfesr() function 10-90
ppcMfevpr() function 10-91
ppcMfgpr1() function 10-92
ppcMfgpr2() function 10-93
ppcMfiac1() - ppcMfiac4() function 10-94
ppcMficcr() function 10-95
ppcMficdbdr() function 10-96
ppcMfmsr() function 10-97
ppcMfpid() function 10-98
ppcMfpit() function 10-99
ppcMfpvr() function 10-100
ppcMfsgr() function 10-101
ppcMfsler() function 10-102
ppcMfsprg0() - ppcMfsprg7() function 10-103
ppcMfsrr0() function 10-104
ppcMfsrr1() function 10-105
ppcMfsrr2() function 10-106
ppcMfsrr3() function 10-107
ppcMfsu0r() function 10-108
ppcMftb() function 10-109
ppcMftcr() function 10-110
ppcMftsr() function 10-111
ppcMfzpr() function 10-112
ppcMtccr0() function 10-113
ppcMtdac1() - ppcMtdac2() function 10-114
ppcMtdbcr0() - ppcMtdbcr1() function 10-115
ppcMtdbsr() function 10-116
ppcMtdccr() function 10-117
ppcMtdcr_any() function 10-120
ppcMtdcwr() function 10-121
ppcMtdear() function 10-122
ppcMtdvc1() - ppcMtdvc2() function 10-123

ppcMtesr() function 10-124
ppcMtevpr() function 10-125
ppcMtiac1() - ppcMtiac4() function 10-126
ppcMticcr() function 10-127
ppcMtmsr() function 10-128
ppcMtpid() function 10-129
ppcMtpit() function 10-130
ppcMtsgr() function 10-131
ppcMtsler() function 10-132
ppcMtsprg0() - ppcMtsprg7() function 10-133
ppcMtsrr0() function 10-134
ppcMtsrr1() function 10-135
ppcMtsrr2() function 10-136
ppcMtsrr3() function 10-137
ppcMtsu0r() function 10-138
ppcMttb() function 10-139
ppcMttcr() function 10-140
ppcMttsr() function 10-141
ppcMtzpr() function 10-142
ppcOrMsr() function 10-143
ppcSync() function 10-144
ptrace

definitions A-4
RD_ATTACH A-5
RD_CONTINUE A-6
RD_DETACH A-7
RD_FILL A-8
RD_KILL A-9
RD_LDINFO A-10
RD_LOAD A-12
RD_LOGIN A-13
RD_LOGOFF A-14
RD_READ_D A-15
RD_READ_FPR A-16
RD_READ_GPR A-17
RD_READ_GPR_MULT A-18
RD_READ_I A-19
RD_READ_I_MULT A-20
RD_READ_SPR A-21
RD_READ_SR A-22
RD_STATUS A-23
RD_STOP_APPL A-24
RD_WAIT A-25
RD_WRITE_BLOCK A-26
RD_WRITE_D A-27
RD_WRITE_FPR A-28
RD_WRITE_GPR A-29
RD_WRITE_I A-30
RD_WRITE_SPR A-31
RD_WRITE_SR A-32
RL_LDINFO A-33
RL_LOAD_REQ A-34

Q
Queue Library 9-2
X-4 PPC405EP Evaluation Board Kit User’s Manual

 Preliminary
R
RAM Disk Library 9-2
Rate Monotonic Scheduling (RMS) Library 9-2
RD_ATTACH definition A-5
RD_CONTINUE definition A-6
RD_DETACH definition A-7
RD_FILL definition A-8
RD_INFO definition A-10
RD_KILL definition A-9
RD_LOAD definition A-12
RD_LOGIN definition A-13
RD_LOGOFF definition A-14
RD_READ_D definition A-15
RD_READ_FPR definition A-16
RD_READ_GPR definition A-17
RD_READ_GPR_MULT definition A-18
RD_READ_I definition A-19
RD_READ_I_MULTI definition A-20
RD_READ_SPR definition A-21
RD_READ_SR definiton A-22
RD_STATUS definition A-23
RD_STOP_APPL definition A-24
RD_WAIT definition A-25
RD_WRITE_BLOCK definition A-26
RD_WRITE_D definition A-27
RD_WRITE_FPR definition A-28
RD_WRITE_GPR definition A-29
RD_WRITE_I definition A-30
RD_WRITE_SPR definition A-31
RD_WRITE_SR definition A-32
Real_time Executive 9-3
Real-time Clock Interface Support Library 9-5
Recursion, see Recursion
Remote Source Level Debug Library 9-2
Ring Buffer Library 9-2
RL_LDINFO definition A-33
RL_LOAD_REQ definition A-34
ROM monitor

accessing 7-4
bootp and tftp configuration 7-2

PC 7-2
communication features 7-1
menus 7-5

cache options 7-22
changing IP addresses 7-9
disabling the automatic display 7-14
displaying the current configuration 7-15
entering the debugger 7-12
exiting the main menu 7-20
initial ROM monitor menu 7-6
saving the current configuration 7-16
selecting boot devices 7-8
selecting power-on tests 7-7
using the ping test 7-11

source code 7-1
user functions 7-22

ROM monitor load format
boot header B-3
section types B-1

data section B-3
first section B-2
symbol section B-3

sections types
text section B-2

RPC Support Library 9-2
rtx.o library 9-3
rtxLib.a library 9-3
Runtime Library 9-2
S
s1dbprintf() function 10-145
s2dbprintf() function 10-147
sample applications

overview 8-1
resolving problems 8-9

bootp and tftp servers 8-10
using the ping test 8-10

ROM monitor flash image 8-1
using 8-4

Dhrystone benchmark 8-4
MAC sample program 8-7
timesamp program 8-6
usr_samp program 8-5

SCSI Support Library 9-2
Serial Port Support Library 9-4
Serial Support Library 9-2
set_time_once_only() function 8-7
software components 1-1

board support software 1-1
HIGH C/C++ compiler 1-3
RISCWatch debugger 1-2

Software Timer Tick Support Library 9-5
Symbol Support Library 9-2
T
TCP/IP Protocol Support Library 9-2
Telnet Client Support Library 9-2
Telnet Daemon Support Library 9-2
terminal emulator 6-3

PC terminal emulation 6-3
tickLib.a library 9-5
time, setting on on-board clock 8-7
timebase_speed() function 10-148
Timer Tick Support 9-3
timertick_install() function 10-149
timertick_remove() function 10-150
tools 9-18

eimgbld 9-22
elf2rom 9-18
Index X-5

 Preliminary
hbranch 9-20
Trivial File Transfer Protocol Library 9-3
TTY Support Library 9-3
V
vs1dbprintf() function 10-151
W
writing calls on asynchronous ports 9-8
X-6 PPC405EP Evaluation Board Kit User’s Manual

	Contents
	Figures
	Tables
	About This Book
	Chapter�1. Overview of the Evaluation Board Kit
	1.1 Hardware Components
	1.1.1 Evaluation Board
	1.1.2 Cables and Power Supply

	1.2 Software Components
	1.2.1 BSP Software
	1.2.1.1 ROM Monitor
	1.2.1.2 OS Open Real-Time Operating System
	1.2.1.3 Dhrystone Benchmark Program
	1.2.1.4 Application Tools

	1.2.2 RISCWatch Debugger
	1.2.3 IBM High C/C++ Evaluation Compiler

	Chapter�2. Host System Requirements
	2.1 PC Host System Requirements

	Chapter�3. Installing the Software
	3.1 PC Software Installation
	3.1.1 BSP Software Installation
	3.1.2 High C/C++ Evaluation Compiler Installation
	3.1.3 RISCWatch Debugger Installation

	Chapter�4. Host Configuration
	4.1 PC Host Configuration
	4.1.1 Serial Port Setup - PC
	4.1.2 Ethernet Setup - PC
	4.1.3 ROM Monitor-Debugger Communication Setup - PC

	Chapter�5. Hardware
	Chapter�6. Board Connectors
	6.1 Connecting the Evaluation Board to the Host
	6.2 Using a Terminal Emulator
	6.2.1 PC Terminal Emulation

	6.3 Board Reset

	Chapter�7. ROM Monitor
	7.1 ROM Monitor Source Code
	7.2 Communications Features
	7.3 Configuration of bootp and tftp to Support ROM Monitor Loads
	7.3.1 PC bootp and tftp Configuration

	7.4 Accessing the ROM Monitor
	7.5 ROM Monitor Operation
	7.6 Monitor Selections and Submenus
	7.6.1 Initial ROM Monitor Menu
	7.6.2 Selecting Power-On Tests
	7.6.3 Selecting Boot Devices
	7.6.4 Changing IP Addresses
	7.6.5 Using the Ping Test
	7.6.6 Entering the Debugger
	7.6.7 Disabling the Automatic Display
	7.6.8 Displaying the Current Configuration
	7.6.9 Saving the Current Configuration
	7.6.10 Setting the Baud Rate for S1 Boots
	7.6.11 S1 Boot
	7.6.12 Exiting the Main Menu
	7.6.13 Cache Options

	7.7 ROM Monitor User Functions
	7.8 Flash Update Utility
	7.9 Network Address of the Ethernet Controller

	Chapter�8. Sample Applications
	8.1 Overview
	8.2 ROM Monitor Flash Image
	8.3 Using the Software Samples
	8.3.1 Building and Running the Dhrystone Benchmark
	8.3.2 Building and Running the usr_samp Program
	8.3.3 Building and Running the timesamp Program
	8.3.4 Setting the time in the on-board clock
	8.3.5 PPC405 MAC instruction sample

	8.4 Resolving Execution Problems
	8.4.1 Using the Ping Test on the ROM Monitor to Verify Connectivity
	8.4.2 Setup of bootp and tftp Servers (Daemons) for ROM Monitor Loads

	8.5 Using OS Open Functions

	Chapter�9. Application Libraries and Tools
	9.1 OS Open Libraries
	9.2 Using Libraries and Support Software
	9.2.1 Serial Port Support Library
	9.2.2 Boot Library (RAM)
	9.2.3 Input/Output Support Library
	9.2.4 I2C Library
	9.2.5 PowerPC Low-Level Processor Access Support Library
	9.2.6 ROM Monitor Ethernet IP Interface Library
	9.2.7 Real-time Clock Interface Support Library
	9.2.8 Ethernet Device Driver Support Library
	9.2.9 Software Timer Tick Support Library

	9.3 Device Drivers Supplied with the Board Support Software
	9.3.1 Asynchronous Device Driver
	9.3.1.1 Device Driver Installation
	9.3.1.2 Device Installation
	9.3.1.3 Opening Asynchronous Communication Ports
	9.3.1.4 Reading and Writing
	9.3.1.5 I/O Control
	9.3.1.6 Polled Asynchronous I/O
	9.3.1.7 Flow control

	9.3.2 I2C Device Driver
	9.3.2.1 Functional Description
	9.3.2.2 I2C Initialisation
	9.3.2.3 I2C read
	9.3.2.4 I2C write
	9.3.2.5 Accessing I2C Registers

	9.3.3 Ethernet Device Driver
	9.3.3.1 Device Driver Installation
	9.3.3.2 Device Installation
	9.3.3.3 Opening and Closing Ethernet Files
	9.3.3.4 Reading and Writing
	9.3.3.5 I/O Control
	9.3.3.6 ENET_SET_CHANNEL
	9.3.3.7 ENET_CLEAR_CHANNEL
	9.3.3.8 ENET_QUERY_ADDRESS
	9.3.3.9 MIB Functions

	9.3.4 ROM Monitor Ethernet Device Driver

	9.4 Environment Startup and Initialization
	9.4.1 Board Bootstrap
	9.4.2 Environment Initialization

	9.5 Tools
	9.5.1 elf2rom
	9.5.2 hbranch14
	9.5.3 eimgbld

	Chapter�10. OS Open Function Reference
	10.1 Attributes and Threads
	10.1.1 Async Safe Functions
	10.1.2 Cancel Safe Functions
	10.1.3 Interrupt Handler Safe Functions
	10.1.4 Callable from Application Thread Group Functions

	10.2 Functions
	async_init()
	biosenet_attach()
	clock_set()
	clockchip_get()
	clockchip_nvram_read()
	clockchip_nvram_write()
	clockchip_set()
	clockchip_start()
	clockchip_stop()
	clockLib_init()
	dbg_ioLib_init()
	dcache_flush()
	dcache_invalidate()
	dma_disable()
	dma_setup()
	dma_status()
	enet_get_aAlignmentErrors()
	enet_get_aFrameCheckSequenceErrors()
	enet_get_aFramesReceived()
	enet_get_aFramesTransmittedOK()
	enet_get_aMultipleCollisionFrames()
	enet_get_aOctetsReceived()
	enet_get_aOctetsTransmitted()
	enet_get_aSingleCollisionFrames()
	enet_init()
	ext_int_config()
	ext_int_disable()
	ext_int_enable()
	ext_int_install()
	ext_int_query()
	i2c_read()
	i2c_read_reg()
	i2c_setupdriver()
	i2c_write()
	i2c_write_reg()
	inshort_swap()
	int_install()
	int_query()
	inword_swap()
	ioLib_init()
	malChannelInit()malChannelActivate()
	malChannelDelete()
	malChellDescPtrGet()
	malChannelIntMaskGet()
	malChannelIntMaskSet()
	malChannelStop()
	malInit()
	malReset()
	memcpy_io()
	outshort_swap()
	outword_swap()
	pci_find_device()
	pci_find_device_type()
	pci_get_io_base()
	pci_get_memory_base()
	pci_init()
	pci_master_abort()
	pci_read_config_reg()
	pci_write_config_reg()
	ppcAbend()
	ppcAndMsr()
	ppcCntlzw()
	ppcDcbf()
	ppcDcbi()
	ppcDcbst()
	ppcDcbz()
	ppcDflush()
	ppcEieio()
	ppcHalt()
	ppcIcbi()
	ppcIsync()
	ppcMfccr0()
	ppcMfdac1() - ppcMfdac2()
	ppcMfdbcr0() - ppcMfdbcr1()
	ppcMfdbsr()
	ppcMfdccr()
	ppcMfdcr_any()
	ppcMfdcwr()
	ppcMfdear()
	ppcMfdvc1() - ppcMfdvc2()
	ppcMfesr()
	ppcMfevpr()
	ppcMfgpr1()
	ppcMfgpr2()
	ppcMfiac1() - ppcMfiac4()
	ppcMficcr()
	ppcMficdbdr()
	ppcMfmsr()
	pppcMfpid()
	ppcMfpit()
	ppcMfpvr()
	ppcMfsgr()
	ppcMfsler()
	ppcMfsprg0() - ppcMfsprg7()
	ppcMfsrr0()
	ppcMfsrr1()
	ppcMfsrr2()
	ppcMfsrr3()
	ppcMfsu0r()
	ppcMftb()
	ppcMftcr()
	ppcMftsr()
	ppcMfzpr()
	ppcMtccr0()
	ppcMtdac1() - ppcMtdac2()
	ppcMtdbcr0() - ppcMtdbcr1()
	ppcMtdbsr()
	ppcMtdccr()
	ppcMtdcr_any()
	ppcMtdcwr()
	ppcMtdear()
	ppcMtdvc1() - ppcMtdvc2()
	ppcMtesr()
	ppcMtevpr()
	ppcMtiac1() - ppcMtiac3()
	ppcMticcr()
	ppcMtmsr()
	ppcMtpid()
	ppcMtpit()
	ppcMtsgr()
	ppcMtsler()
	ppcMtsprg0() - ppcMtsprg7()
	ppcMfsrr0()
	ppcMtsrr1()
	ppcMtsrr2()
	ppcMtsrr3()
	ppcMtsu0r()
	ppcMttb()
	ppcMttcr()
	ppcMttsr()
	ppcMtzpr()
	ppcOrMsr()
	ppcSync()
	s1dbprintf()
	s2dbprintf()
	timebase_speed()
	timertick_install()
	timertick_remove()
	vs1dbprintf()

	Appendix A.�� Program Trace Calls
	A.1 Overview
	A.2 MSGDATA Structure
	A.3 Ptrace Definitions
	A.3.1 RD_ATTACH (30)
	A.3.2 RD_CONTINUE (7)
	A.3.3 RD_DETACH (31)
	A.3.4 RD_FILL (105)
	A.3.5 RD_KILL (8)
	A.3.6 RD_LDINFO (34)
	A.3.7 RD_LOAD (101)
	A.3.8 RD_LOGIN (103)
	A.3.9 RD_LOGOFF (104)
	A.3.10 RD_READ_D (2)
	A.3.11 RD_READ_FPR (12)
	A.3.12 RD_READ_GPR (11)
	A.3.13 RD_READ_GPR_MULT(71)
	A.3.14 RD_READ_I (1)
	A.3.15 RD_READ_I_MULT (71)
	A.3.16 RD_READ_SPR (115)
	A.3.17 RD_READ_SR (118)
	A.3.18 RD_STATUS (114)
	A.3.19 RD_STOP_APPL (113)
	A.3.20 RD_WAIT (108)
	A.3.21 RD_WRITE_BLOCK (19)
	A.3.22 RD_WRITE_D (5)
	A.3.23 RD_WRITE_FPR (15)
	A.3.24 RD_WRITE_GPR (14)
	A.3.25 RD_WRITE_I (4)
	A.3.26 RD_WRITE_SPR (112)
	A.3.27 RD_WRITE_SR (119)
	A.3.28 RL_LDINFO (181)
	A.3.29 RL_LOAD_REQ(180)

	Appendix B.�� ROM Monitor Load Format
	B.1 Overview
	B.2 Section Types
	B.2.1 First Section
	B.2.2 Text Section
	B.2.3 Data Section
	B.2.4 Symbol Section

	B.3 Boot Header

	Index

