

Part Number 405GP

Revision 1.01 – November 15, 2004

Preliminary Application Note405GP
Using the Interrupt Controller in the PowerPC 405GP

INTRODUCTION
The Universal Interrupt Controller (UIC) in the PowerPC 405GP Embedded Processor handles interrupt signals
from all sources external to the CPU. The UIC is an ASIC core that can provide status, configuration, masking and
generation of interrupts for up to 32 inputs. The implementation in the PPC405GP provides inputs for 19 internal
(on-chip) interrupt sources and 7 external (off-chip) IRQs. There are two outputs from the UIC, critical interrupt and
non-critical interrupt. Both are connected to high-level-triggered interrupt inputs at the CPU as shown in Figure 1.

Figure 1. UIC Overview

The interrupt inputs to the UIC are programmable using a set of configuration registers.Each input can be pro-
grammed to be high/low-level or rising/falling-edge triggered, and to generate a critical or non-critical output. Status
registers are provided to hold the current state of all interrupts and the masked status of all enabled interrupts. For
testing and debugging, interrupts can be generated directly from software by setting bits in a status set register.
In order to reduce interrupt servicing latency for critical interrupts, an optional vector generation capability is pro-
vided. The resulting vectors can point directly to an interrupt service routine or to a table entry containing the
address of the routine.

UIC INTERRUPT ASSIGNMENTS
Table 1 shows the interrupt assignments and configuration for the UIC's inputs. While the external IRQ interrupts
are fully programmable, the triggering and polarity of the on-chip internal interrupts must be configured as shown in
Table 1.

Critical
Interrupt

Non-critical
Interrupt

19 internal (on-chip)

7 external (off-chip)

UIC PPC405
CPU

Interrupt
Sources
AMCC Confidential and Proprietary 1

405GP – Using the Interrupt Controller in the
PowerPC 405GP

Revision 1.01 – November 15, 2004

Preliminary Application Note
Table 1. Interrupt Assignments and Configuration

Interrupt Triggering Polarity Source

0 Level High UART0

1 Level High UART1

2 Level High IIC

3 Edge Rising External Bus Master

4 Level High PCI External Command Write

5 Level High DMA Channel 0

6 Level High DMA Channel 1

7 Level High DMA Channel 2

8 Level High DMA Channel 3

9 Level High Ethernet Wake Up

10 Level High MAL System Error (SERR)

11 Level High MAL TX End of Buffer (TXEOB)

12 Level High MAL RX End of Buffer (RXEOB)

13 Level High MAL TX Descriptor Error (TXDE)

14 Level High MAL RX Descriptor Error (RXDE)

15 Level High Ethernet

16 Level High External PCI SERR

17 Level High ECC Correctable Error

18 Level High PCI Power Management

19 N/A N/A Reserved

20 N/A N/A Reserved

21 N/A N/A Reserved

22 N/A N/A Reserved

23 N/A N/A Reserved

24 N/A N/A Reserved

25 Any Any External IRQ 0

26 Any Any External IRQ 1

27 Any Any External IRQ 2

28 Any Any External IRQ 3

29 Any Any External IRQ 4

30 Any Any External IRQ 5

31 Any Any External IRQ 6
2 AMCC Confidential and Proprietary

Revision 1.01 – November 15, 2004

Preliminary Application Note
405GP – Using the Interrupt Controller in the
PowerPC 405GP
UIC REGISTERS
Table 2 lists the Device Control Registers (DCRs) in the UIC. These registers can only be accessed using the
mfdcr and mtdcr instructions while the processor is in privileged mode (also referred to as the supervisor state).
With the exception of the two vector registers, bit assignments for the UIC DCRs correspond to the interrupt
assignments in Table 2. These bit assignments are illustrated in Figure 2.

Figure 2. UIC DCR Bit Assignments

INTERRUPT STATUS
All internal and external interrupts are captured and held in the Status Register (UIC0_SR) until they are intention-
ally reset. An interrupt has occurred if a “1” is read from the assigned bit field in the register. Interrupts are cleared
by writing a “1” to every bit that is to be reset, and bits that are written with a “0” are unaffected. If an attempt is
made to reset a level sensitive interrupt while the incoming interrupt signal is still asserted, the status bit will not be
cleared. In this case, the interrupt input must be deasserted by the source before the status bit can be successfully
reset.
The read-only Masked Status Register (UIC0_MSR) contains the result of masking the Status Register with the
Enable Register. Reading status from this register eliminates the need for software to read and apply the enable
mask in order to determine which interrupts are both active and enabled.

Table 2. UIC Device Control Registers

Mnemonic Register Name Address Access

UIC0_SR UIC Status Register 0x0C0 Read/Clear

UIC0_SRS UIC Status Register Set 0x0C1 Read/Set

UIC0_ER UIC Enable Register 0x0C2 Read/Write

UIC0_CR UIC Critical Register 0x0C3 Read/Write

UIC0_PR UIC Polarity Register 0x0C4 Read/Write

UIC0_TR UIC Trigger Register 0x0C5 Read/Write

UIC0_MSR UIC Masked Status Register 0x0C6 Read Only

UIC0_VR UIC Vector Register 0x0C7 Read Only

UIC0_VCR UIC Vector Configuration Register 0x0C8 Write Only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 310 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

UART0
UART1

IIC ...

EXTERNAL IRQ 6
EXTERNAL IRQ 5

... EXTERNAL IRQ 4

MSB LSB
AMCC Confidential and Proprietary 3

405GP – Using the Interrupt Controller in the
PowerPC 405GP

Revision 1.01 – November 15, 2004

Preliminary Application Note
ENABLING INTERRUPTS
When an interrupt occurs, it will always be indicated in the Status Register. However, to have any effect on the
UIC's outputs to the processor, the interrupt must be also be enabled. Individual interrupts are enabled by setting
the assigned bit fields in the Enable Register (UIC0_ER) to “1” and disabled by clearing them to “0”.
In some cases on-chip interrupts must also be enabled in the control registers of the sourcing subsystem. For
example, to enable a terminal count interrupt from the DMA Controller, several bits would need to be set in one of
the DMA Channel Control Registers.
The external IRQs use pins that are shared with GPIO[17:23]. The function of these pins is controlled by bits 12:18
in the Chip Control Register (CPC0_CR0). Clearing the assigned bit in this register will disable the GPIO channel
and enable the pin as an interrupt input.
At the system level, the critical and non-critical interrupt inputs to the processor core are enabled by setting the
Critical Interrupt Enable (CE) and External Interrupt Enable (EE) bits in the Machine State Register (MSR). It
should be noted that, in this context, the non-critical interrupts are sometimes referred to as “external” interrupts
meaning external to the CPU rather than external to the chip. The MSR can only be accessed using the privileged
mfmsr and mtmsr instructions.The EE bit by itself can be set or cleared using the wrtee or wrteei instructions
which are also privileged.

CONFIGURING INTERRUPTS
The UIC's interrupt inputs are programmed for level or edge sensitivity using the Trigger Register(UIC0_TR). A “1”
in the appropriate bit location will cause an interrupt to be triggered by a rising or falling edge. A “0” will cause it to
be triggered by a change in logic level. A “1” in the same bit location in the Polarity Register (UIC0_PR) will cause
the interrupt to be generated in response to a high level or a rising edge. A “0” will cause it to be generated by a low
level or a falling edge. Note that the triggering and polarity of the external IRQ's are programmable while the on-
chip internal interrupts are predefined and must be configured as shown in Table 1.
All interrupts can be programmed to cause critical or non-critical outputs from the UIC to the processor. If the
assigned bit is set to “1” in the Critical Register (UIC0_CR), an enabled interrupt captured in the Status Register will
generate a critical interrupt signal to the processor. A “0” in the same bit location will cause a non-critical interrupt
signal to be generated.

GENERATING INTERRUPTS FOR TESTING AND DEBUGGING
When needed for testing and debugging, interrupts can be generated directly from software by setting bits in the
Status Register Set location (UIC0_SRS). Writing a “1” to any bit position will set the corresponding bit in the Status
Register and cause an interrupt to be generated if it is enabled. Locations written with a “0” are unaffected. Read-
ing this register returns the contents of the Status Register.

Table 3. Interrupt Configuration Summary

Mnemonic Register Name Programming

UIC0_ER UIC Enable Register 1 = enabled 0 = disabled

UIC0_TR UIC Trigger Register 1 = edge 0 = level

UIC0_PR UIC Polarity Register 1 = rising / high 0 = falling / low

UIC0_CR UIC Critical Register 1 = critical 0 = non-critical
4 AMCC Confidential and Proprietary

Revision 1.01 – November 15, 2004

Preliminary Application Note
405GP – Using the Interrupt Controller in the
PowerPC 405GP
OPTIONAL CRITICAL INTERRUPT VECTORS
The Vector Register (UIC0_VR) provides an optional way to reduce the interrupt service latency for critical inter-
rupts. This register contains an automatically generated 32 bit address that is the sum of a programmed base
address and an offset determined from the relative bit assignment of the highest priority critical interrupt that is
enabled and active. The offset is computed by finding the difference between the bit position of the highest priority
interrupt (programmable to be either 0 or 31) and the bit position of the active interrupt and then multiplying that dif-
ference by 512. A general interrupt service routine can use the resulting vector to jump directly to a service routine
for a particular interrupt as long as the entire routine can be contained in 512 words orless.Alternatively, the vector
can point to a table entry containing the address of a particular service routine. Interrupt vectors are not generated
for non-critical interrupts The vector base address is programmed into the highest order 30 bits of the Vector Con-
figuration Register (UIC0_VCR). Because the two least significant bits of this address are assumed to be “00”, the
base address will always be on a full word boundary. The least significant bit in this register determines which end
of the Status Register is the highest priority interrupt bit. When this field is set to “1” UIC0_SR[0] is the highest pri-
ority interrupt bit. When it is set to “0”,UIC0_SR[31] is the highest priority interrupt bit.

WHEN AN INTERRUPT OCCURS
Interrupts from the UIC are presented to the processor as either a critical or non-critical interrupt input. Critical
interrupts are recognized by the processor only if they are enabled by MSR[CE]. Similarly non-critical interrupts are
recognized only if they are enabled by MSR[EE]
When the processor takes a critical interrupt, it writes the address of the next instruction to Save/Restore Regis-
ter 2 (SRR2) and saves the contents of the MSR in Save/Restore Register 3(SRR3). MSR[CE] is reset to “0” in
order to prevent another critical interrupt from occurring before SRR2 and SRR3 are saved by the interrupt han-
dling routine. All other fields in the MSR are also reset to “0” except for Machine Check Enable (ME) which is left
unchanged. The high order 16 bits of the program counter are then written with the user-programmed contents of
the Exception Vector Prefix Register (EVPR) and the low order 16 bits are written with the Critical Interrupt Vector
offset, 0x100.
The processor's response to a non-critical interrupt from the UIC is very similar. First, it writes the address of the
next instruction to Save/Restore Register 0 (SRR0) and saves the contents of the MSR in Save/Restore Register 1
(SRR1). MSR[EE] is reset to “0” in order to prevent another non-critical interrupt from occurring before SRR0and
SRR1 are saved by the interrupt handling routine.All other fields in the MSR are also reset to “0” except for
Machine CheckEnable (ME) which is left unchanged. The high order 16 bits of the program counter are then writ-
ten with the user-programmed contents of the Exception Vector Prefix Register (EVPR) and the low order 16 bits
are written with the Non-Critical Interrupt Vector offset, 0x500.
Inside the interrupt handling routine, SRR2/SRR3 or SRR0/SRR1 should be saved as soon as possible. If desired,
interrupts can then be re-enabled by setting MSR[CE] or MSR[EE]. Software must also save any other registers
whose contents will be needed to restore the original state of the system.
After servicing the interrupt, the program counter and MSR are restored by executing either a Return From Critical
Interrupt (rfci) or Return From Interrupt (rfi) instruction. Execution then resumes at the address in the program
counter.
AMCC Confidential and Proprietary 5

405GP – Using the Interrupt Controller in the
PowerPC 405GP

Revision 1.01 – November 15, 2004

Preliminary Application Note
AN EXAMPLE: DMA TRANSFER WITH AN END OF TRANSFER INTERRUPT
As an example, consider a non-critical interrupt that occurs when DMA Channel 2 reaches terminal count at the
end of a DMA transfer.
The following steps would be taken to enable and configure this interrupt:

• Set DMA0_CR2[ETD] and DMA0_CR2[TCE] to enable terminal count.
• Set DMA0_CR2[CIE] to enable the interrupt at the DMA Controller.
• Clear UIC0_TR[D2IT] to make the interrupt input level sensitive.
• Set UIC0_PR[D2IP] to make the interrupt trigger on a high level.
• Clear UIC0_CR[D2IC] to cause the interrupt to be non-critical.
• Set UIC0_ER[D2IE] to enable the interrupt at the UIC.
• Set MSR[EE] to cause the CPU to accept non-critical interrupt inputs.

When the interrupt actually occurs, software would take the following steps:
• Save the current machine state.
• Set MSR[EE] to re-enable non-critical interrupts (if desired).
• Read UIC0_MSR to determine the source of the current interrupt.
• Read DMA0_SR[CS2] to determine that terminal count has been reached.
• Execute the rest of the interrupt service routine.
• Clear DMA0_SR[CS2] to reset terminal count at the DMA controller.
• Set UIC0_SR[D2IS] to clear the interrupt at the UIC.
• Restore the machine state and execute an rfi instruction.
6 AMCC Confidential and Proprietary

Revision 1.01 – November 15, 2004

Preliminary Application Note
405GP – Using the Interrupt Controller in the
PowerPC 405GP
Applied Micro Circuits Corporation
6290 Sequence Dr., San Diego, CA 92121

Phone: (858) 450-9333 — (800) 755-2622 — Fax: (858) 450-9885
http://www.amcc.com

AMCC reserves the right to make changes to its products, its datasheets, or related documentation, without notice and war-
rants its products solely pursuant to its terms and conditions of sale, only to substantially comply with the latest available
datasheet. Please consult AMCC’s Term and Conditions of Sale for its warranties and other terms, conditions and limitations.
AMCC may discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information is current. AMCC does not assume any lia-
bility arising out of the application or use of any product or circuit described herein, neither does it convey any license under
its patent rights nor the rights of others. AMCC reserves the right to ship devices of higher grade in place of those of lower
grade.
AMCC SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE
SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICA-
TIONS.
AMCC is a registered Trademark of Applied Micro Circuits Corporation. Copyright © 2004 Applied Micro Circuits Corporation.
AMCC Confidential and Proprietary 7

	Introduction
	Figure 1. UIC Overview

	UIC Interrupt Assignments
	Table 1. Interrupt Assignments and Configuration

	UIC Registers
	Table 2. UIC Device Control Registers
	Figure 2. UIC DCR Bit Assignments

	Interrupt Status
	Enabling Interrupts
	Configuring Interrupts
	Table 3. Interrupt Configuration Summary

	Generating Interrupts for Testing and Debugging
	Optional Critical Interrupt Vectors
	When an Interrupt Occurs
	An Example: DMA Transfer with an End of Transfer Interrupt

