AMCC 405GP

POWGFPC Document Issue 1.00
September 2004

PowerPC 405GP

Reference Design Kit

User’'s Manual

AMCC

APPLIED MICRO CIRCUITS CORPORATION

AMCC reserves the right to make changes to its products, its datasheets, or related
documentation, without notice and warrants its products solely pursuant to its
terms and conditions of sale, only to substantially comply with the latest available
datasheet. Please consult AMCC’s Term and Conditions of Sale for its warranties
and other terms, conditions and limitations. AMCC may discontinue any
semiconductor product or service without notice, and advises its customers to
obtain the latest version of relevant information to verify, before placing orders,
that the information is current. AMCC does not assume any liability arising out of
the application or use of any product or circuit described herein, neither does it
convey any license under its patent rights nor the rights of others. AMCC reserves
the right to ship devices of higher grade in place of those of lower grade.

AMCC SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED,
AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-
SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL
APPLICATIONS.

AMCC is a registered Trademark of Applied Micro Circuits Corporation.
Copyright © 2004 Applied Micro Circuits Corporation.

- Preliminary Copy

Revised 8/22/00

v. 0.8

PowerPC 405GP

Reference Design Kit

User’'s Manual

Version 0.8

PRELIMINARY VERSION

- Preliminary Copy

SecondEdition (August 2000)

This edition of the IBM PowerPC 405GP Reference Design Kit User's Manual applies to the IBM PowerPC 405GP
Reference Design Kit and to all subsequent versions of the PowerPC 405GP Reference Design Kit until otherwise
indicated in new versions or technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent
with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS DOCUMENT “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions; therefore, this statement may
not apply to you. IBM does not warrant that the use of the information herein shall be free from third party intellectual
property claims.

IBM does not warrant that the contents of this document will meet your requirements or that the document is error-free.
Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. IBM may make improvements and or changes in the product(s) and/or program(s) described in this
document at any time. This document does not imply a commitment by IBM to supply or make generally available the
product(s) described herein.

The products described in this document are not intended for use in implantation or other direct life support
applications.

All performance data contained in this document was obtained in a specific environment, and is presented as an
illustration. The results obtained in other operating environments may vary.

No part of this document may be reproduced or distributed in any form or by any means, or stored in a data base or
retrieval system, without the written permission of IBM.

Address comments about this document to:

IBM Corporation

Department YM5A

P.O. Box 12195

Research Triangle Park, NC 27709

email: ppcsupp@us.ibm.com

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

IBM may have patents or pending patent applications covering the subject matter in this document. The furnishing of
this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, 500 Columbus Avenue, Thornwood, NY 10594, United States of America.

OCopyright International Business Machines Corporation 1999. All rights reserved.
Printed in the United States of America.

Notice to U.S. Government Users — Documentation Related to Restricted Rights — Use, duplication, or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

ii PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

- Preliminary Copy

The following terms are trademarks of IBM Corporation:
IBM

OS Open

AIX

AlXwindows
PPC405GP

RISC System/6000
PowerPC

PowerPC Architecture
RISCWatch
RISCTrace

Other terms which are trademarks are the property of their respective owners.

Revised 8/22/00 v. 0.8

- Preliminary Copy

iv PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

Contents

iU S e ————————————————————————. nnnaaa— iX
1= 0] 1= Xi
Y o Jo 10 | I 130 =T T | TP PPR TS Xiii
Chapter 1. Overview of the Reference Design Kitcccuueiiiiieiiiiiiiiiiiieeee e 1-1
[F= Lo V= T @ oTa] o1] =T | P PEPPRSR 1-1
REfEreNCE PIAFOIM ... et e et e e e ab e e e s bt e e e eabe e e e s anbe e e e annes 1-1
(0o [T TaTo I = o 1V =T g U] o] o] Y TP PPRPP PP 1-1
Yo A= T L @a T 0] L] 1= o £ PP PRRPPR PP 1-1
BSP SOMMWAIE ...ttt ettt e e et et e e e et e e e e e e 1-1
@ 1Y 1V o1 (o S PP PPPPPPPPPPPN 1-2
OS Open Real-Time OPerating SYSIEIMcocuiiiiiiiiieiirere e e e 1-2
Dhrystone BeNChMArk PrOGIramooiiiiiiiiiiii ettt 1-2
Y Y o] o] [Tox= 1110] T e o] £ PRSP SRP 1-2
RIS O = ot T =T o0 o o 1T RSP 1-3
IBM High C/C++ Evaluation COMPIIETicuiiiiiiiee ettt e e e e st e e e e e e s s e e e e e e s snsnbbaeeeaaaeesannne 1-3
Chapter 2. Host System ReqUIrEMENLScccoeiiiiiiiie s 2-1
PC HOSt SYStEM REQUIFEMENTS ...ieiiiiiiiiiie et e ettt ettt e e ettt e e et e e e e te e e e e aateeeeasaeeeeamteeeeaanseeeeannbaeaeaaneeeeeannees 2-1
SUN HOSt SYStEM REQUITEIMENESuviiiiiieiiiiiiiiiiet e e e e s ittt e e e e s s st e e e e e e e s sab b e e e e aeessssataeeeeaeesssssbeaeeeaaeessanssennees 2-2
RS/6000 HOSt SYStem REQUIFEMENTScciiiiiiiiiiiee e sttt s e e e sttt e e e e e s s st e e e e e e s sssb b e e e e e e s s ssabbareeeeaeesaansrennees 2-2
Chapter 3. Installing the SOftware ... 3-1
PC Software INSTAIIALIONcooiiii ittt et e ettt e et e e e eab e e e e e bt e e e s ambaeaesabbeeaesnnees 3-1
BSP Software INSLAllAtion = PCcoiiiiiieiiie ettt e e e s b e e b bt e e nbe e e aanees 3-1
High C/C++ Evaluation Compiler INStallation - PC ..o snrne e aa e 3-2
RISCWatch Debugger INStallation - PCooiiiiiiiiiiic it re e e e e e s nabbareeaaae s 3-3
SUN SOWAIE INSTAIALION eeie ettt e e e bt e et e e e ssbe e e sbbe e e e anbreeenans 3-3
BSP Software INSTAllation = SUNcoiiiiiiiiie it re e e s e s aanees 3-3
High C/C++ Evaluation Compiler INStallation - SUNcccuiiiiiiiii e 3-5
RISCWatch Debugger INStallation - SUNcociiiiiiii e 3-7
RS/6000 SOftware INSTAIALIONooiiiiiiiiiiiiee e e e e e s s e e e e e e s s bbbt e e e e e e e s annbbeeeas 3-7
BSP Software Installation - RS/B000coieiiiireeiiiiee et e e seiee e e etie e e s sneeeeesneteeesseeeeesaneeeeeanneeeeeaaneeeeeansees 3-7
Hlgh C/C++ Evaluation Compiler Installation - RS/6000c.cooiiiiiiaiiiiiie e e e 3-9
RISCWatch Debugger Installation - RS/B000cccueiiiiiiiiaeiiieee i etiee et e e e seee e e e aeeeee s aneeeaeans 3-10
(O{ =T o] (= g S o [0 1Sy A @0 a1 ile [U] =1 o o [4-1
[O o T X A @] ile 0T =Y (o] o RSP OTPR 4-1
ST g T= U o] (ST =] (1] o T = PRSPPI 4-1
ETErNet SEIUP - PC oottt e e e e e e st e e e e e e e e tb e e e aaeeeessaaeeeeaeaeaeesaanstrnnnaaaeeas 4-2
ROM Monitor-Debugger Communication SEtUP - PC ... 4-3
YU o To 1S @0 gl [0 = 4o o PP PRRPPSP 4-3
Serial POt SELUP = SUN oottt e e e e e s st e e e e e e e s abb e e eeee e e s s ssbbeeeeteaeesaasbbaneaaaeens 4-4
EThernet SEIUP - SUN ..ottt e e e e st e e e e e s st bbbt e e e e e e s sbb b et ee et aeessannbbbreeaaaenas 4-4
ROM Monitor-Debugger Communication SetUP - SUNuuiiiiiiiiiiiiiiiee e sirrreee e 4-4
RS/6000 HOSt CONFIQUIALION ..ottt e e e e e e e e s s bbbt e e e e e e s bbb bbb e e e e e e s s anabeeees 4-5
Serial POrt SEtUP - RS/BO00c.cuiiiiiiiieeeiriee ettt e e st e e s e e e s st e e e eanre e e s anneeene 4-5
Ethernet Setup - RS/B000cociiiiiiiiiieiiiee et e et e e et e e s e e e s e e e s anre e e e nnees 4-7
ROM Monitor-Debugger Communication Setup - RS/6000coouiieriiiiieiiiieeeeniee e eeieee e e e eneeee e 4-9

v. 0.8 Contents %

(O{ o o1 (=T gL ST o F= U0 1117 T NSRS 5-1

Chapter 6. Board CONNECIOISoiiiiiiiiiiiiiiiiee ettt e e e e e s e e e e e s s e e eeeeas 6-1
Connecting the Reference Board t0 the HOSEccuuiiiiiii i a e 6-1
UsiNg @ TermiNal EMUIALOTuuiiiiiiiiiiiiiie e e e e e e s s bbbt e e e e e e s bbb b e e eeaaeessannnbbaeaaaaeeas 6-3
PC Terminal EMUIALIONooiiiiiiiiiiit ettt e et et e e et e e s nn e e s e e e e e s nnnnee s 6-3
SUN Terminal EMUIALIONcocoiiiiiiiiiii ittt ettt e e e s e e e e e e s sn e e e e anre e e e aannes 6-4
RS/6000 Terminal EMUIBLIONuviiiiiiiiiiiiieee ettt e e et e e e e e e s s sabb e e e e e e e e s ssbnbbneeeaaessannnes 6-5
BOAIT RESEL ..ttt e ettt e e e e e bttt e e e e e e e bttt e e e e e e R ba e et e e e e e e e e e n bbb e et e e e e e e aanbrreeeaeeean 6-6
LOF 0 F= 1o 1 (=T A = @ 1Y/ I 1Y/ o] o1 (] PR 7- 1
ROM MONIEOr SOUICE COUR ...uueiiiiiiieeiiiititte ettt e e s e e e e e e sttt e e e e e s s bbb bt ee e e e e e s sbbb bt eeeeaeessaanbbbbeeeaaenas 7-1
COMMUNICALIONS FEAIUIES ...ttt e e e et e e e e e s bbbt e e e e e e s bbb et e et e e e e s aannbbreeeaaenas 7-2
Configuration of bootp and tftp to Support ROM MONItor LOAAScccvveirieeeiiiiiiiiecee et e e e e eeivvnee e e e 7-2
PC bootp and tfitp CONFIQUIALIONeiiiieiiiee ettt e et e e e st e e e ente e e e e enteeeeaanaeeens 7-2
5101\ WeTololioJ= oo Iugi o @de]q)io (U] = U1 L] o PRSP PRRPR 7-4
RS/6000 bootp and tftp CoNfIQUIALIONuuuiiiiee e e e e e e e e e s esnb e aeeeaeesananes 7-5
ACCESSING the ROM IMONITOT ..vvviiiiiiiiiiiiiiit ettt e st e e e e s s e e e e e e s s sabbeeeaaeesssssbaraeeeeeassaasstbnneeaaeesannnes 7-6
R @Y Y (ol a1 (o TR @] o 1T -\ i o o NS PP PP 7-6
Monitor Selections and SUDMENUSiiiiiii et e et e e st e e e e aabr e e e s anbeeeas 7-7
INitial ROM MONITOT IMEINU ...ttt ettt ekt e e e st e e et e e ssnn e e e e abbe e e e snbreeenn 7-8
SEIECHNG POWEI-OMN TESES ..iiiiiiiiiiiitiiiiiie ettt e e et et e e e e sttt e e e e s s s bbb et e e e e e s s nbbbbeeeeeeesabnbbbaeeeaaessannses 7-9
SEIECHNG BOOL DEVICESuuviiiiiiieeiiiiiie ittt s sttt e e e e sttt e e e e s s bbbttt e e e e e asssbb b e eeeeeaeesannbbbbeeeaeeeas 7-10
Changing [P AQUIESSESoeiiiiiiiieiiriii ettt e s e e et e e et e e s e e e e ssne e e e annne e e s anneeeennnes 7-12
USING TE PING TOST ..iteiiiiieeeiit ettt ettt e e e e ettt e e e e e e e bbb bttt e e e e easabb bt eeeeeeessaanbbbeeeeaeesaannne 7-13
= a1 e=Tq g o TR TSI =T o TU T T 1= SRR 7-15
Disabling the AUtOMALIC DISPIAYeeiiiiiiiie ittt et e e e eae e e e e nt e e e e e nneeeeeenees 7-17
Displaying the Current CoNfiQUIatioNc.uuiiiiieiiiiiiiiee e s st e e e e e s e e e e e e s s snbbaeeeeaaeesannnes 7-18
Saving the Current CoNfIQUIALIONeiiiiiiiiiiiiiie e e e e s r e e e e e s st e e e e e e e s s nnsrarneeaaeeas 7-19
Setting the Baud Rate fOr S1 BOOSuciiiiiiiiiiiiiiiiiee sttt e s e e e e st e e e e e e s ssssbaraeeaaeeas 7-19
3 A = oo) SO PP PP P PP PPPPPP 7-21
EXItING the MaN MENU ...uiiiiiiiiiiiiiiiie ettt e e s s e e e e e e e st e e e e e e e s ssbbbeeeeeeessssnsbbaneeaanesannnes 7-23
(0= Ted a LI @ o] 1T0] o <P EPPP R POTTUPPPP 7-25
ROM MONIOr USEI FUNCHIONS ...iiiiiiiieiitiii ettt ettt ettt e e st e e s e e e nan e e e snne e s nanees 7-25
FIaSh UPAALE ULIIILYeeeiiiiiiiiiiiiiie ettt e e e st e e e e e s st e e e e e e s bbb bbb e e e e e e e s anbbbeeeaaeeeas 7-26
Network Address of the Ethernet CONrOlIEroooiiiiio e 7-26
Chapter 8. Sample APPLICALIONSurueeiiieiiiiiiietieiiieeieee ettt eee e eeeeeeeeeeeeeeereeeeeeeeeeeeeeeeeeees 8-1
(@Y= VT T PR PU PSP PU PR 8-1
ROM MONItOr FIASH IMEGE .. .eeeiii ittt ettt e e e e e e e e e e s s e e e s nnneee s 8-1
Using the SOftWAre SAMPIESooi e e s e e 8-4
Building and Running the Dhrystone BENChMAIKcc.eiiiiiiiiiiiii et 8-4
Building and Running the USr_SampP PrOQIamc..oioiiiiiie it rtiee et e e e e e seee e e s enbee e e anaeeens 8-5
Building and Running the timesamp PrOgramcccuuiiiieeiiiiiiiiiee e e s e e e s st e e e e e e s snnnrreeeeaeessananes 8-6
Setting the time in the 0N-DOAId CIOCKccuiiiiiiie e e e a e e s anne 8-7
PPCA405 MAC INSIIUCHION SAMIPIE ...vviiiiiieiiiiiiiiiie it sttt e e et e e e e e e s s e e e e e e e s saabbeeeeeeesssssbbeeaneaaeesannnes 8-7
Res0IVING EXECULION PrOBIEMScoiiiiiiiiiiie e e e e s e e e e e e e s e bt breeaaaeeas 8-9
Using the Ping Test on the ROM Monitor to Verify CONNECHIVILYoocciiiiiiieiiiiiiiiiiiee i 8-10
Setup of bootp and tftp Servers (Daemons) for ROM MoNitor LOAAScccvveiiieeiiiiiiiiieiie e sniiiieeeaeens 8-10
USING OS OPEN FUNCLIONSuiiiiiiiiiieii ittt e e e e e st e e e e e s s s bbbt e e e e e e e s sabbbeeeeeaaessannbbbaneaaaeeas 8-10
Chapter 9. Application Libraries and TOOISooooiiiiiiiiiii e 9-1
O ST @ o 1=T 0 [] o] = 1= OO PP PPP PSP PPRP 9-1
Using Libraries and SUPPOIT SOFIWAIEueiiiiiiiiiiiiiiiiee et e e e e e s s s bt breeaaaeeas 9-3
Serial POrt SUPPOIT LIDFAIYeeiiiiiiiiiiiiiie ettt e e e ettt e e e e s s bbbt e e e e e e s s ssnbbbaeeeaaeesannnes 9-4
(2 ToTo] A1 o =T o A (R ¥ Y, TP U PP P PUPPPPRPPPN 9-4
INPUL/OULPUL SUPPOIT LIDIAIY ..ottt e e e e e e e e e e enne e e s sneeeenn 9-4

Vi PPC405GP Reference Design Kit User’'s Manual v. 0.8

Keyboard/Mouse Controller SUPPOIT LIDFAIYcoooiiiioiiiiieier e 9-4

O] o] - 1 YT TP PP PP PPPPPPPPPPPN 9-4
PowerPC Low-Level Processor Access SUPPOrt LIDrary ..o 9-5
ROM Monitor Ethernet IP Interface LIDrary ..ot 9-5
Real-time Clock Interface SUPPOIt LIDIarycccvveiiiieiiiiiiiiiiiee et re e e e e e aaneeaae s 9-5
Ethernet Device Driver SUPPOIT LIDIAIYcooiiiiiiiiiiie st e e e e e st ee e e e e e s aaneaaaee s 9-5
Software Timer TiCK SUPPOIT LIBIAIYovviiiiiiiiiiie e e e e e st eaeae s 9-5
Device Drivers Supplied with the Board SUPPOrt SOftWAIEc..uvviiiiiiiiiiiiieiiie e 9-5
ASYNCNIONOUS DEVICE DIIVET ..iiiiiiiiiiiiiiie ettt ettt e st e e e e s s e e e e e e e s bbb e e e e eeeesssasbbaneeaaeesannnes 9-6
Device DRVEr INSTAIIALIONueiiiiiiei ettt e s e e e anbe e e annees 9-6
DEVICE INSTAIIALIONeeiiieeiieeite ettt et e e e e e e et e e e e e e e s anre e e e anre e e e nanees 9-7
Opening Asynchronous CommUNICAtION POIScuuviiiiiiiiiiiiiiiiiie et e e 9-7
Reading and WITINGcocveieiiiiie ettt et e st e e e e e e e n e 9-8
1@ 0 o1 1 9-9
(0] 1= N3 Tod o o U1 SRR 9-10

[101V oo £ (o | SRRSO PRRRPR 9-11
Keyboard/Mouse CONTOIET DIIVETuuiiieiiiiiiiiiie i e sttt e s s e e e e e s s e e e e e e s s sab b e e e e e e e e s s nnssteaneeaaeeas 9-11
Device Driver INSLAIIAtIONc.c.vuviiiiieii e s e e e e s st e e e e e e s st b e eeeeeessnnntaneeeaaeesannnes 9-11
(DY o= [1 =11 = U T I U PPPRRPP 9-12
OpeniNg KEYDOAIT POIciiiiiiiiiiiiii ettt e e e e e e st e e e e e e s s bbb e e e e e e e e s ssnntbrneeaaeeas 9-12
L= T= o [o T U PP SRR PP PPPRPRN 9-13
1[N 7o] 11 (o] - S PO PSP P PP PP PPPPPPP 9-13
TransIatioN FUNCHONooiiiiieiie ettt s et e et e e et e e e e e e e s aree e e s anrneens 9-14

D2 @ D= Tod =T D= PSP PPPP 9-15
FUNCHONAI DESCIIPLIONeeiiiiiiiieiiteee ettt e et e e e e e e e e e e e s nnne e e e nnnes 9-15
[2C INITAIISALION ... n e s 9-15

D2 O =Y o SRR 9-15

D2 O/ 1 (= PP 9-16
ACCESSING I2C REQISIEISiiiiiiiiiiee i i ittt e e e e s ettt et e e e e e e e e e e s s b eeeeeeessssbaeeeeeeeessssaaaaeaeaeesaanssrnnees 9-16

T C 7S] o] a1 PSSP PPPPPPPRPPPPS 9-16
VGA Card INLAISALIONccoiivviiieiee et e e e e e e e e e e e e e e s s sbbreeeeeees s ssbareeaeaaeesaasrnnnees 9-17
COMMON FUNCHIONSeiiiiiiei ettt et e e ettt e e e e b bt e e e asbe e e e e abb e e e e annseeeennnbeeeeanbneeaaan 9-17
ISR 1 T Lo [OO O TP PPP PP PPN 9-17
(1T o] o Tors 1Y ol =T TP RUPP PP 9-19

A YN =0 IS (] £ USSP PPTPPR PP 9-19
VGA TEVICE UIIVET ..eeieiiiie ettt ettt ettt e e e s ettt e e e e e e bbb bttt e e e e e e abb b e et ee e e e e snbbb bt eeeaeeeeaannbbeeeas 9-20
VGA SAIMPIE ..ottt ettt e e e e e ettt e e e e e e bbb e et e e e e e e e bbb b et e e e e e e e nabbebrn et e e e e e e nnrrrees 9-21
ETNEINETL DEVICE DIIVET ...ttt e e et e e e e e s sttt e e e e e e e bbb e e e e e aeessaannbbneeeaaeeas 9-21
Device DHVEr INSTAIIALIONeiiiiii ettt e e et e e et e e e e nee e e e s anaeeeeenees 9-22
(D= Tt g 1 | = o o PSRRI 9-22
Opening and CIosing EThErNEt FIlEScoii i e s raeaae s 9-23
[Ry=T= o [T o =T aTo INYAY) 111 oo RO PPSRPR 9-23
1(@ o] 11 o] PP PP OTPPPP 9-24
ENET_SET _CHANNEL ..ottt etttk e et e e e e aab e e e e b e e e s nnn e e e e enees 9-24
ENET_CLEAR_CHANNEL ..ottt ettt ettt e st e e e e s e e s e e e s e 9-24
ENET_QUERY_ADDRESS ..ottt ettt ekt e e et e e s e e e e e 9-24
ROM Monitor Ethernet DEVICE DIVETcuiiiiiiiiieiiiee ettt e s e e e 9-24
Environment Startup and INGAHZAIONociiiiiiii e 9-25
(S Tor Lo I =ToTo] 153 1 = 1 o TSP UPPP P PPTPPPPPPN 9-25
ENvironment INIGAlIZALIONooouiiie et e et e e et e e e et e e e s s e e e anee e e e e anaeeeeanneeeeaan 9-26
10T SRS 9-26
L=) 72 (o 1 1 USSP 9-26
] o] 7= 9 T o PSRRI 9-28
=] 0T | o] o SO EEUPPPRPPR 9-30

v. 0.8 Contents Vii

Chapter 10. OS Open Function Reference ... 10-1

YN 11 010 CES= g o B N T =T Lo £ EEPP USRS 10-1
ASYNC SAFE FUNCLONS ...eiiiiiiiiiiiii ittt e e e st e e e e e e st e e e e e e e e e ssaaaeeeaaeeeassssaaesneeaaeesaansrnenees 10-1
CanCEl SAfE FUNCLIONSuuiiiiiiie ittt e e e e e e e e e e e s s s bbbt e e e e e e s s sabaeeeeeeaeesaasstanneeaaeeas 10-1
Interrupt Handler Safe FUNCHONSooiiiiiiiiiie ettt e e st e e e e e s s e e e e e e e s annnteeees 10-1
Callable from Application Thread Group FUNCLONSccvvviiiiieiiiiiiiiirie et srireee e ssrranee e e e s 10-2

[T Toi 1T I PP TSP OP PR PPPPRPP 10-2

A. Program Trace CallSoooeiiiiiiiiiiiiiee et e e e e e e e e A -1

(@Y= VT TP PU PP PP PR A-1

MSGDATA SIUCTUME ..eeeiiieiiiittiee ettt e ettt e e e e et e e e e e e e bbb e et e e e e e e st bb s s e ee et e e e s s annrrneeeeeeeas A-1

PIrace DEfiNITIONSoeieiiieiiiitiie ettt ettt e et e et e e ekt e e ekt e e e e anr e e e e R et e e e n e e e e e s A-4
RD_ATTAGCH (B0) +ettteiutteitie ettt ettt ettt ettt ekt e aa b e e et e e b et e b bt e s he e e ea b e e e bt e e abb e e bb e e ahb e e eabe e e ambe e e beeenbneennreas A-5
RD_CONTINUE (7) 1eieiiitttiitt e ettt ettt e s st e e e e e e e bbbt e e e e e e e s e bbb et e e e e e e e nsbbb st e eeeeeansanbbbneeeaeesaannnes A-6
RD_DETACH (B1) 1.t ee ettt ettt e es e s s e s s s s e seessessessseseeeeeenteeneee et eteteseeneneneaeas A-7
RD_FILL (105) ettt ettt ettt ettt ettt A-8
RD_KILL (8) ettt ettt et ettt ettt et e ettt ettt en et n e A-9
RD_LDINFO (B4) .ottt ettt ettt e ettt ettt e et e et et n ettt en e A-10
RD_LOAD (L01) .ottt ettt ettt e ettt et e e e e et et e et et et e et et en e A-12
RD_LOGIN (103) .ooveieeeeeeteeees ettt e ettt e et e et et et et e e s e et et et e e s e et et ee et s eneeeeeeeenneneeen A-13
RD_LOGOFF (L04) ..eeteiuieeitie ettt ettt ettt h e ettt ae e e e st e et e e bt e ek s e e eae e e eab e e aa bt e e abeeesbbeeameeeannbeeanbeeabeeenene A-14
gD I Ry =7 A\ I B N (22 IR PSP A-15
RD_READ_FPR (L2) ittt ettt ettt ettt ekttt et e b e ekt e s hb e e st e e sttt et bt e ab e e eab e e e nbe e e enbe e e be e e e A-16
RD_READ_GPR (L1) .iiiuttiitttitit ettt ettt ettt ekttt ettt ekt e e ab e e et e ettt ekt e s hb e e e ab e e enne e e anbe e be e e e A-17
RD_READ_GPR_MULT(7L) tiiittttittteitte ittt ettt ettt sbe ettt etttk et sab e e sab e s b e e bne e e be e e e A-18
DI 2T =Y T) TR A-19
RD_READ | MULT (71) weotevieieeeeeeeeeeeeeeeeeee ettt sn s s s s s se s ne s s sseteentsenaneneessteseenenenenens A-20
RD_READ_SPR (115) ...oivivieieeeeieeeeeeeeeeeeeee e et stetete e ee et s teesses s s s s s s s sesesanessessseteestesnenenaesetnanenenenenens A-21
RD_READ_SR (118) ..ottt ettt et ettt e et ee et en e A-22
RD_STATUS (114) oottt ettt ettt ettt ettt e ettt et et nen e e A-23
RD_STOP_APPL (113) oottt ettt e et e et s et en e eneneeen A-24
RD_WAIT (L08) ...ttt ettt ettt ettt s ettt et et et e e e e e et ee et e e s et et ee e st eee et eennenseen A-25
RD_WRITE_BLOCK (19) ..utttiitiieitite ittt ettt ettt ettt ettt st e et e e sbe e e ss b e e sab e e aabee e bt e e abeeesnbeesmbeesneeenbeeanbeeenene A-26
RD_WRITE_D (5) +tettttetutteateeatet ettt e sttt e steestee e abee e ate e e sst e e sat e e e bt e e bt e ek b e e eab e e eab e e eabeeaabeeeabbeesmbee s ambeesmbeeanbeeennee A-27
RD_WRITE_FPR (15) . .ettiittiitit ettt ettt ettt ettt ettt et e ekt e s hb e e st e ettt e ke e e s bb e e eab e e smbe e e snbeeabeeenene A-28
RD_WRITE_GPR (L4) . ettiittiiitit ettt ettt ettt h e e bt ekt e et e et e bt e bt e e bt e e nab e e eabe e e enbeeebe e e e A-29
DAY = N TR A-30
RD_WRITE_SPR (L12) ..oiiiiiiiiiiiiiiiietee e sttt sttt e e e e e s sttt e e e e e e s s abb bt e e e e e e s anbbbbeeeeeessssnsbbaebeeeaeeesannnes A-31
RD_WRITE_SR (L119) ..euttiiiiiieiiiiiitiiet e ettt e e sttt e e e e e s e bbbttt e e e e e s abbe et e e e e e e s sbabbeeeeeeeaassnbsbbeeeeaeeesannnes A-32
RL_LDINFO (L8L) ..ottt ettt ettt et en e A-33
RL_LOAD_REQ(L80) ...ttt eeeeee ettt et e et ee ettt en e en e A-34

B. ROM MONItOr LOAA FOMMALcevviiiiiiiiiieieeeeeeeeeee ettt B-1

OVEIVIEBW ...ttt e e e e ettt e e e e ettt e e e e e e et e et e e e e e e s asaaaseeeeeeeeasssaaeeeaaeeaaasssaeeeeeeeeaassesaeeaaeeaenssanssteaeeaeeesannntrnnneaanens B-1

YTt 1[0] T 1Y 0 L= SRR B-1
[TS A= Tox 11 o RSP PRRRPR B-2
L= S 1= 1o o SO RPPSPSRR B-2
(D= L= BT = i 1o) o SRR PRRRPR B-3
)Y] o o] I ST=Tod 1o o PP PP TP PPRRPPR B-3

(20 To 10 o 1= To [PP U PP PP OPPRPR PP B-3

viii PPC405GP Reference Design Kit User’'s Manual v. 0.8

Figures

Figure 6-1.
Figure 6-3.
Figure 6-2.
Figure 6-4.
Figure 7-1.
Figure 9-1.
Figure 9-2.
Figure 9-3.

SY=T A= I oo T o] o1 o= Tox 1 o] o TP PPRRPR 6-1
Point-to-Point Ethernet CONNECTIONiiiiiiiiiiiiiee e 6-2
WiriNg iN @ CroSSOVETN CabIcciiiiiiiiiiiiiic e e e e e e e et rraraaaeeas 6-2
Ethernet Connection With HUD ... 6-3
ROM MONItOr AQAIrESS MAPD ...evviiieiieiiiiiiiiie ettt e e s e e e e e s s bbb e e e e e e s s bt braeeaeee s 7-7
EIf2rom OULPUL FlE ..o e e e e e e e e s bbb e e e e e e s s asbbaaeeaaeesaannes 9-28
Detail of PatCh File PIACEMENTcoccciiiiiiiice e e e et e e e e e e e s e enanaaees 9-29
NDranCh OULPUL IMBJEvvieiiiiiiiiiiiii e e e s s s e e e e e e s sbbb bbb e e e e e e e s annne 9-29

v.0.8 Figures iX

PPC405GP Reference Design Kit User’'s Manual

v. 0.8

Tables

Table 9-1. OS OPEN LIDIAIESeiiieiiiiiee ittt ettt e e et e e e sttt e e e amee e e e anteeeeanneeeeeaaneeeaeanneeaeaans 9-1
Table 9-2. OS Open Libraries for the Reference Board PIatformcccooiiiiiiiiii e 9-3
Table 9-3. Additional Parameters Passed to driver_install()ccccooiiiiiiiiciii e 9-7
Table 9-4. Additional Parameters Passed t0 OPEN() ...co.ooveeieririeieiirieserieieste e see e te st see e eee e nens 9-8
Table 9-5. ioctl() Commands for ASynchronous DeVICEe DIIVEISc..ueeiiiiiiiiiiiiiiiiie et e e 9-9
Table 9-6. Additional Parameters Passed to driver_install()c.cocooviiiiiiiiiccce e, 9-12
Table 10-1. Functions Specific to the PPCA405GP DeSign Kitcccuiiiiiiiiiiiiiiie e 10-2

v. 0.8 Tables xi

Xii

PPC405GP Reference Design Kit User’'s Manual

v. 0.8

- Preliminary Copy

About This Book

This book contains the information you need to install and use the IBM® PowerPC 405GP Reference
Design Kit, a hardware and software development tool for the PowerPC PPC405GP 32-bit RISC
microprocessor.

The PowerPC 405GP Reference Design Kit (hereinafter referred to as the PPC405GP design kit)
hardware includes the PowerPC 405 Reference Board (hereinafter referred to as the reference
board), power supply, and board interface cables. The board and power supply are housed in an ATX
form factor case. Features of the reference board include a PowerPC PPC405GP processor, 16 MB
SDRAM, four 32-bit PCI slots, built-in Ethernet support, 512KB socketed flash memory, 512KB
SRAM, 2 serial ports, a time-of-day clock with 8KB NVRAM, an IR controller, and a mouse/keyboard
controller.

The PPC405GP design kit software includes the ROM Monitor (resident in the flash memory on the
board), ROM Monitor source code, IBM’s OS Open real time operating system, sample application
programs, application development libraries and tools, IBM’'s High C/C++ compiler, and IBM’s
RISCWatch, a source-level debugger that runs on the host system.

The PPC405GP design kit also includes technical specifications and board schematics.

Connection of the reference board to a host system is required for the exercises in this book.
Supported host systems include:

* An IBM or compatible PC running one of the following:

— Windows 95/98
— Windows NT 4.0

* A Sun SPARCstation 5, 10, or 20 workstation running one of the following:

— Solaris 2.4 (or higher)
— SunOSs 4.1.3 (or higher)

* An IBM RISC System/6000™ workstation running AIX™ 4.1 (or higher)

Who Should Use This Book

This book is for hardware and software developers who need to evaluate the PowerPC PPC405GP
microprocessor and use the debugging features of the PowerPC 405GP Reference Design Kit to
support software development.

Users should understand hardware and software development tools, concepts, and environments.
Specifically, users should understand:

» The host's operating system

» The PowerPC Architecture™ and implementation-specific characteristics of the PowerPC
microprocessor being used

» C and Assembler language programming

Revised 8/22/00 v. 0.8 Preface xiii

- Preliminary Copy

How to Use This Book
This book contains the following chapters and appendixes:

Chapter 1, “Overview of the Reference Design Kit” describes the product, its hardware and software
components, and its relationship with the software tools on the host.

Chapter 2, “Host System Requirements” lists the hardware and software requirements of the host
system.

Chapter 3, “Installing the Software” describes the software installation on the host system.

Chapter 4, “Host Configuration” describes the steps required to facilitate communications between
the host computer and the reference board.

Chapter 5, “Hardware” describes the reference board, its memory map, its hardware components and
their functions.

Chapter 6, “Board Connectors” describes the reference board connectors and the procedures for
connecting the board to a host system.

Chapter 7, “ROM Monitor” describes the operations of the ROM monitor.

Chapter 8, “Sample Applications” describes how to compile, load, and run the sample applications on
the reference board.

Chapter 9, “Application Libraries and Tools” describes the application libraries and host tools provided
with the reference board software.

Chapter 10, “OS Open Function Reference” lists the OS Open functions for the PowerPC 405
Reference Board platform. The function calls are arranged alphabetically by function name.

Appendix A, “Program Trace Calls” describes the messages for interfacing a debugger on the host
system to the ROM Monitor on the reference board.

Appendix B, “ROM Monitor Load Format” describes the load format requirements supported by the
ROM monitor.

Conventions Used in This Book

This book follows the numeric and highlighting notation conventions based on those used in the RISC
System/6000 and AIX publications.

Numeric Conventions

In general, numbers are used exactly as shown. Unless noted otherwise, all numbers are in decimal,
and, if entered as part of a command, are entered without format information.

In text, binary numbers are preceded by a “B” followed by the number enclosed in single quotes, for
example:

B'010'

In commands, binary numbers are preceded by “Ob” or “b” followed by the number, which may be
enclosed in single quotes, for example:

0b010 or b’'010’

Xiv PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

- Preliminary Copy

In text, hexadecimal numbers are preceded by an “X” followed by the number enclosed in single
guotes, for example:

X'1A7
In commands, hexadecimal numbers are preceded by “0x” or “x” followed by the number, which may
be enclosed in single quotes, for example:

Oxla7 or x'1a7’

In text, the hexadecimal digits A through F appear in uppercase. In commands, these digits are
typically entered in lowercase.

Highlighting Conventions
This book uses the following highlighting conventions:

The names of invariant objects known to the software appear in bold type. In some text, however,
such as in lists, no special typographic treatment is used. Examples of such objects include:

» Function and macro names
» Data types and structures
» Constants and flags

Names of objects known to the software must be entered exactly as shown.

» Variable names supplied by user programs appear in italic type. In some text, however, such as in
lists, no special typographic treatment is used. Examples of these objects include arguments and
other parameters.

* No highlighting appears in code examples.

Syntax Diagram Conventions

Throughout this book, diagrams illustrate the syntax for string formats and commands. The following
list shows how to read these diagrams:

» Read the syntax diagrams from left to right, from top to bottom, following the path of the line.
« Aw»»—— symbol begins a diagram.

« A—— symbol indicates continuation of a diagram on the next line.

« A»——— symbol indicates continuation of a diagram from the previous line.

* A —»asymbol terminates a diagram.

» Keywords are in regular type, and variables are in italics. Keywords must be typed exactly as
shown.

« Keywords or variables on the main path of a diagram are required.

Y
A

»»— keyword —— variablel — variable2

» Keywords or variables shown on branches below the main path are optional.

*»— keyword
|— variable1 J |— variable2 J

Y
A

Revised 8/22/00 v. 0.8 Preface XV

- Preliminary Copy

» Keywords or variables can appear in a stack, indicating that only one item in a stack can be
chosen. If an item in a stack is on the main path, you must choose an item from the stack. If all
items in a stack are below the main path, you may choose an item from the stack.

For example, in the following syntax diagram, you must choose either variablel or variable2.
However, because variable3 and variable4 are below the main path, neither is required.

»»— keyword variable1 .
—[variable2 J i: variable3 j‘

variable4

Y
A

» A repeat separator is a returning arrow that surrounds a syntax element or group and shows that
the element or group can be repeated.

»»— keyword —[variable1

Contacting the IBM Embedded Systems Solution Center

Y
A

For information about the PowerPC 405GP Reference Design Kit and the IBM family of hardware and
software products for embedded system developers, call the IBM Embedded Systems Solution
Center at (919) 543-5701, or check out the IBM Microelectronics web site at:

http://www.chips.ibm.com/products/embedded
Please send any comments or questions regarding this product to the following Internet address:

ppcsupp@us.ibm.com

Related Publications

Many of the following publications are included on the CD ROM that comes with the evaluation Kkit.
The others are available from your IBM Microelectronics representative:

* Embedded Application Binary Interface (EABI) Publications

PowerPC Embedded Application Binary Interface (EABI)
System V Application Binary Interface, Third Edition, 0-13-0100439-5
System V Application Binary Interface, PowerPC Processor Supplement
* |IBM High C/C++ Publications
The following list includes the books in the IBM High C/C++ library:
IBM High C/C++ Programmer’s Guide for PowerPC, 92G6920
IBM High C/C++ Language Reference for PowerPC, 92G6923
IBM ELF Assembler User’s Guide for PowerPC, 92G6921
IBM ELF Linker User’s Guide for PowerPC, 92G6922
« OS Open Publications
IBM OS Open Programmer’s Reference, Volume 1, 92G6911
IBM OS Open Programmer’s Reference, Volume 2, 92G6912
IBM OS Open User’s Guide, 92G6897

XVi PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

- Preliminary Copy

* RISCWatch Debugger Publications

RISCWatch Debugger User’s Guide, 13H6964
RISCWatch Debugger Installation Guide, 13H6984

» PowerPC PPC405GP User’'s Manual

PowerPC 405GP RISC Microprocessor User’s Manual,
» Reference Board Publications

PowerPC 405 Reference Board Manual

Revised 8/22/00 v. 0.8 Preface XVii

- Preliminary Copy

XViii PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Chapter 1. Overview of the Reference Design Kit

This chapter introduces the hardware and software components included in the PPC405GP design
kit.

1.1 Hardware Components

The PPC405GP design kit contains the reference board, power supply line cord, serial port and
Ethernet cables.

1.1.1 Reference Platform

The reference board and power supply are housed in an ATX form factor case. Features of the
reference board include the PowerPC PPC405GP processor, 16 MB SDRAM, four 32-bit PCI slots,
built-in Ethernet support (10BaseT/100BaseTX), 512KB socketed flash memory, 512KB SRAM, 2
serial ports, a time-of-day clock with 8KB NVRAM, 12C port, IR port, and a mouse/keyboard controller.
A PCI VGA display adapter is also included in the Kit.

For a detailed description of the reference board, refer to the PowerPC 405 Reference Board Manual.

1.1.2 Cables and Power Supply

The PPC405GP design kit includes a serial port interface cable for connecting the board’s serial port
1 to a terminal or terminal emulator running on the host. The Sun version of the kit also contains a
male-to-male adapter to support this connection.

An Ethernet crossover cable is provided in the kit to support direct Ethernet communication with the

host system. A standard 10BaseT/100BaseTX RJ45 Ethernet connector is provided on the reference
board. The Ethernet crossover cable is for direct connection to a single host and cannot be used with
a hub or a building’s Ethernet network. The crossover cable is only supported for 10Mb/s operation -
for 100Mb/s a hub (not supplied) should be used.

A power supply line cord is also provided with the PPC405GP design kit.

1.2 Software Components

The PPC405GP design kit software consists of the Board Support Package (BSP), the RISCWatch
source level debugger, and the IBM High C/C++ evaluation compiler.
1.2.1 BSP Software

The BSP software includes the ROM Monitor code resident in flash memory, ROM Monitor source
code, the IBM OS Open real time operating system, several sample programs (including the
Dhrystone benchmark program), and application development libraries and tools.

Revised 8/22/00 v.0.8 Overview of the Reference Design Kit 1-1

—Preliminary Copy

1.2.1.1 ROM Monitor

The ROM Monitor program for the reference board is supplied in the 512KB socketed flash memory
module on the reference board. This code initializes the 405GP processor and the board for serial
and Ethernet communications. By supporting communications with the host computer system, the
ROM Monitor allows applications to be loaded from the host onto the board and debugged using the
RISCWatch source level debugger in ROM Monitor mode.

The ROM Monitor is accessed through a terminal (or terminal emulator) attached to serial port 1 on
the board. The RISCWatch debugger, when in ROM Monitor mode, runs on the host system,
communicating with the ROM Monitor through serial port 2 or the Ethernet interface on the board.

The ROM Monitor source code is provided and can be readily used for product development. The
availability of the code helps lower software development costs and quicken product time to market.
The code is also provided so that debuggers other than RISCWatch may be integrated with the
PPC405GP design kit. Appendix A describes the trace calls that support communication between the
RISCWatch debugger on the host and the ROM Monitor running on the board.

1.2.1.2 OS Open Real-Time Operating System

OS Open is a real-time operating system (RTOS) available for the PowerPC 400, 600, and 700
families of processors. OS Open is designed to take full advantage of the power of the IBM PowerPC
RISC processors. Also, because the OS Open environment is built in a scalable fashion, it can be
configured to meet the functional requirements and memory constraints of a wide variety of
embedded systems.

OS Open features:

» Hard real-time support, including deterministic execution, priority inheritance protocols, and priority
ceiling protocols

» Board support packages for plug-and-play operation of popular board-level products

» Support for existing American National Standards Institute (ANSI) C and emerging POSIX
standards

» Open network interfaces to support embedded systems in heterogeneous environments

» Scalable implementations to meet the requirements and constraints of a variety of embedded
systems

The version of OS Open included in the BSP software contains a reduced-function kernel that limits
the number of threads that can be in existence at one time. Additional details can be found in the
README file following software installation. A full-function OS Open kernel is available from IBM.
Contact the IBM Embedded Systems Solutions Center at (919) 543-5701 for additional information.

1.2.1.3 Dhrystone Benchmark Program

The Dhrystone benchmark is a commonly available integer benchmark. It is included as an example
program to be built, loaded onto the board, and executed. The results of this benchmark may vary
based on compiler options and the system environment in which it is run.

1.2.1.4 Application Tools

Several host-based tools are provided to support ROM and application development on the reference
board.

1-2 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

1.2.2 RISCWatch Debugger

The RISCWatch source level debugger provides a window-based debugging environment for loading,
debugging, and executing application programs on the board. Debugger installation and usage for
ROM Monitor and OS Open (non-JTAG) targets are addressed in the RISCWatch Debugger
Installation Guide and the RISCWatch Debugger User’s Guide included on the publications CD-ROM
in the kit. A sample debug session is included with the debugger.

1.2.3 IBM High C/C++ Evaluation Compiler

The IBM High C/C++ compiler is a globally optimizing compiler developed for the PowerPC family of
processors. It produces executable code in Extended Link Format (ELF) file format. The version
included in the kit is a limited capacity version created specifically for the PPC405GP design kit. It
supports the compilation, assembly, and linkage of the sample application programs and the ROM
Monitor source code. A full featured version of the IBM High C/C++ compiler is available from IBM.
For more information call the PowerPC Embedded Systems Solutions Center at (919) 543-5701.

Revised 8/22/00 v.0.8 Overview of the Reference Design Kit 1-3

—Preliminary Copy

1-4 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Chapter 2. Host System Requirements

This chapter describes the hardware and software requirements of the host system to which the
reference board is to be connected. Supported host systems include:

* |IBM (or compatible) PC running one of the following:

— Windows 95/98
— Windows NT 4.0

* Sun SPARCstation 5, 10, or 20 workstation running one of the following:

— Solaris 2.4 (or higher)
— SunOS 4.1.3 (or higher)

* |IBM RS/6000 workstation running AIX 4.1 (or higher)

2.1 PC Host System Requirements

Hardware requirements of the host PC include:
» IBM or compatible system unit. Minimum requirements: x486 DX2 50/66 MHz with 8 MB of RAM

* VGA/SVGA Display Monitor. Minimum requirement: VGA 640 x 480. Recommended: SVGA 1024 x
768

» Approximately 30MB of free disk space. This space is required for the IBM High C/C++ compiler,
the Board Support Package software, and the RISCWatch debugger. When planning disk space
usage, consider disk space requirements for Windows and any other software packages.

» At least one available serial port for terminal emulation. A second serial port is required if a SLIP
host-to-board connection is to be used instead of an Ethernet connection. For performance
reasons, an Ethernet connection is strongly recommended. Establishing an Ethernet host-to-board
connection will most likely require the installation of an Ethernet adapter card on the host (if not
already installed) and some additional connectivity hardware. That hardware might include any or
all of the following:

— An Ethernet 10BaseT/100BaseTX network transceiver, a twisted pair cable, and a hub. At a
minimum, a point-to-point connection will require the Ethernet crossover cable supplied with the
kit. The Ethernet crossover cable is for direct connection to a single host and cannot be used
with a hub or a building’s Ethernet network. The crossover cable is only supported for 10Mb/s
operation - for 100Mb/s a hub (not supplied) should be used.

The following software must be installed on the host PC to run the debugger that communicates with
the ROM Monitor on the board:

* RISCWatch 4.0 or higher

* Windows 95/98 or Windows NT 4.0

Windows users who want to establish a SLIP host-to-board connection over a second serial port,
require additional software since the TCP/IP package that comes with Windows does not support

SLIP communications. One TCP/IP package that can be used for Windows SLIP communications is
Trumpet Winsock, a TCP/IP protocol stack available from the www.trumpet.com Internet site.

Revised 8/22/00 v.0.8 Host System Requirements 2-1

—Preliminary Copy

Appropriate installation documentation can be found at the Trumpet site. Users should refer to the
documentation for the terms and conditions of using Trumpet Winsock. Information regarding the
setup and use of Trumpet Winsock can be found in Chapter 4, “Host Configuration.”

Note: Trumpet is not recommended for Windows users already connected to a network since
installing Trumpet may cause problems with previously defined networks. If the recommended
Ethernet host-to-board connection is going to be used (instead of the SLIP host-to-board
connection), Windows users need not install Trumpet since the TCP/IP package that comes
with Windows can be used to establish the Ethernet connection.

2.2 SUN Host System Requirements

Hardware requirements of the host Sun workstation include:

» Approximately 30MB of free disk space. This space is required for the IBM High C/C++ compiler,
the Board Support Package software, and the RISCWatch debugger. When planning disk space
usage, consider disk space requirements for the operating system and any other software
packages.

» An available serial port for terminal emulation and an Ethernet Attachment Unit Interface (AUI) or
RJ-45 port for host-to-board communications. Most Sun SPARCstations come equipped with one
serial port and an Ethernet AUI port. Consult your Sun literature for additional details.

* Any or all of the following hardware to establish an Ethernet connection between the board and the
host.

— An Ethernet 10BaseT/100BaseTX network transceiver, a twisted pair cable, and a hub. At a
minimum, a point-to-point connection will require the Ethernet crossover cable supplied with the
kit. The Ethernet crossover cable is for direct connection to a single host and cannot be used
with a hub or a building’s Ethernet network. The crossover cable is only supported for 10Mb/s
operation - for 200Mb/s a hub (not supplied) should be used.

» A graphics display to display debugger screens

The following software must be installed on the Sun workstation to run the debugger that
communicates with the ROM Monitor on the board:

» RISCWatch 4.0 or higher

* SunOS 4.1.3 (or higher) or Solaris 2.4 (or higher)

* A window system such as Open Windows or CDE

» Motif 1.2 (Solaris)

2.3 RS/6000 Host System Requirements

Hardware requirements of the host RS/6000 computer include:

» Approximately 30MB of free disk space. This space is required for the IBM High C/C++ compiler,
the Board Support Package software, and the RISCWatch debugger. When planning disk space
usage, consider disk space requirements for the operating system and any other software
packages.

2-2 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

» At least one available serial port for terminal emulation. A second serial port is required if a SLIP
host-to-board connection is to be used instead of an Ethernet connection. For performance
reasons, an Ethernet connection is strongly recommended. Most RS/6000 computers come
equipped with two serial ports and an Ethernet adapter. Please consult your RS/6000 literature for
more details. Establishing an Ethernet host-to-board connection may require additional
connectivity hardware. That hardware might include any or all of the following:

— An Ethernet 10BaseT/100BaseTX network transceiver, a twisted pair cable, and a hub. At a
minimum, a point-to-point connection will require the Ethernet crossover cable supplied with the
kit. The Ethernet crossover cable is for direct connection to a single host and cannot be used
with a hub or a building’s Ethernet network. The crossover cable is only supported for 10Mb/s
operation - for 200Mb/s a hub (not supplied) should be used.

» At least one available serial port for terminal emulation. A second serial port is required if a SLIP
host-to-board connection is to be used instead of an Ethernet connection. For performance
reasons, an Ethernet connection is strongly recommended. Most RS/6000 computers come
equipped with two serial ports and an Ethernet adapter. Please consult your RS/6000 literature for
more detalils.

» A graphics display (IBM 6091 or similar), to display debugger screens

The following software must be installed on the host RS/6000 computer to run the debugger that
communicates with the ROM Monitor on the board:

» RISCWatch 4.0 or higher
» AIX Version 4.1 or higher
* AIX/Windows™ with X11R5 and Motif 1.2

Revised 8/22/00 v.0.8 Host System Requirements 2-3

—Preliminary Copy

2-4 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Chapter 3. Installing the Software

This chapter describes the procedures for installing the BSP software and the High C/C++ Compiler

on the host system. Details of the software, its directories and their contents, are also given.
Instructions for installing the RISCWatch Debugger software can be found in the RISCWatch
Debugger Installation Guide. Please refer to the section corresponding to your host system.

3.1 PC Software Installation

3.1.1 BSP Software Installation - PC
Before beginning the installation, you must have:

» BSP for PC installation diskettes
* A PC running Windows 95/98 or Windows NT 4.0

The following procedure installs the BSP software:

Note: For Windows NT users, we recommend that you log on as administrator .

1. Insert the installation diskette labeled “BSP - PC” and “1 of n” (n may vary) into diskette drive A..

2. Select Start from the Windows task bar.

3. Select Run.

4. Type a:setup then press Enter to run the installation program.
5. Follow the installation program instructions.

If the default install directory is accepted, the BSP software is installed in the \osopen directory
tree.The \osopen directory tree contains the files and tools that support OS Open application and
ROM development. The \osopen subdirectories and their contents are as follows.

\bin

This directory contains several host based utilities used for application and ROM program
development.

» elf2rom.exe - creates a ROM image from an ELF executable file

» eimgbld.exe - creates a ROM Monitor loadable image from an ELF executable file

» hbranch.exe - places an absolute branch in the last address of a ROM image

» rambuild.exe - creates an assembler source file that contains the files found in a specified
directory

* make.exe - supports the use of makefiles when building application programs
» bootpd.exe - bootp server to support ROM Monitor downloads
 tftpd.exe - tftp server to support host-to-board file transfers

\examples

This directory contains example OS Open programs.

Revised 8/22/00 v.0.8 Installing the Software

3-1

—Preliminary Copy

\m405_evb

This directory contains the ROM Monitor and OS Open platform specific code for the reference board
included in the kit.

« README.TXT - contains the latest information regarding this release

 \include - contains OS Open include files

» \ld - contains dynamically loadable modules that can be run from OS Open’'s OpenShell

 \lib - contains OS Open libraries

* \m4 - contains assembler preprocessor include files

* \openbios - contains the source code for the ROM Monitor (See Chapter 7, “ROM Monitor”)

« \samples - contains samples programs that can be compiled and run

Considerable effort goes into providing a quality product with consistent documentation. To insure that
our customers have the advantage of the latest software features and updated information,

README.TXT contains clarifications and additional information and should be considered essential
reading.

\COMMENT.USR and \COMMENT.DOC

Please take the time to complete these user comment forms. Your feedback and suggestions will help
us to improve our products and technical publications. FAX and e-mail instructions are included in
each of the files.

3.1.2 High C/C++ Evaluation Compiler Installation - PC
Before beginning the installation, you must have:

» High C/C++ for PC installation diskettes
* A PC running Windows 95/98 or Windows NT 4.0

The following procedure installs the High C/C++ compiler:
Note: For Windows NT users, we recommend that you log on as administrator .

1. Insert the installation diskette labeled “High C/C++ - PC” and “1 of n” (n may vary) into diskette
drive A:

2. Select Start from the Windows task bar.
3. Select Run.
4. Type a:setup then press Enter to run the installation program.

5. Follow the installation program instructions.

If the default install directory is accepted, the IBM High C/C++ Compiler is installed in the \highcppc
directory tree. The \highcppc\bin directory contains the files required for the IBM High C/C++
Compiler. Those files include:

» asppc.exe - assembler for assembler language programs

» Idppc.exe - ELF linker/binder to build applications to be run on the board

* hcppc.exe - High C/C++ compiler for C programs

» arppc.exe - ELF library archiver

3-2 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

The readme file under the \highcppc directory contains the latest information regarding the compiler
and should be considered essential reading.

3.1.3 RISCWatch Debugger Installation - PC

Please refer to the RISCWatch Debugger Installation Guide for debugger installation instructions. Be
sure to follow the instructions for PC installation.

3.2 Sun Software Installation

3.2.1 BSP Software Installation - Sun

The software support package is installed from diskettes on a Sun host system using the cpio and tar
commands.

Before beginning the installation, you must have:
» BSP for Sun installation diskettes

» A Sun SPARCstation 5, 10, or 20 workstation running SunOS 4.1.3 (or higher) or Solaris 2.4 (or
higher)

» Superuser privileges on the Sun system

The procedures required for installing the BSP software support package vary depending on the
operating system being used. Please follow the instructions corresponding to your operating system.

Instructions for SunOS 4.1.3 (or higher) only:
1. Log in as root or use the su command to become the superuser
2. Open at least two windows for this procedure
3. Use the cd command to change to the /usr directory
4. Insert the installation diskette labeled “BSP - Sun” and “1 of n” (n may vary) into the diskette drive
5. From the second window run the command:
cpio -ivB BSP_os4.tar.Z BSP.tar.Z < /dev/rfd0
where /dev/rfd0 is the name of your diskette device.

6. When the system prompts you for a new volume, move to the first window and type eject to eject
the diskette. Insert the next diskette.

7. Move to the second window and type the name of the diskette drive (/dev/rfd0) to continue the
process.

8. If prompted for more diskettes, repeat the previous two steps. When finished, type eject to remove
the final diskette.

9. Return to the first window and verify that the following files are installed under the /usr directory:
BSP.tar.Z
BSP_os4.tar.Z

Revised 8/22/00 v.0.8 Installing the Software 3-3

—Preliminary Copy

10.Run the following commands to unpack and install the files (order is important):
zcat BSP.tar.Z | tar xvf -
zcat BSP_os4.tar.Z | tar xvf -
Installation for SunOS is complete. The tar.Z files may be removed to recover space.
Instructions for Solaris 2.4 (or higher) only:
1. Log in as root or use the su command to become the superuser.
2. Open at least two windows for this procedure.
3. Use the cd command to change to the /usr directory.
4. Insert the installation diskette labeled “BSP - Sun” and “1 of n” (n may vary) into the diskette drive.
5

. From the first window type volcheck . This creates a file called /vol/dev/rdisketteO/unlabeled (the
diskette device name).

If the system opens a message box saying the diskette format is unrecognized, ignore the
message and cancel the message box. The name of the file created may be different on your
system. You can use the eject - command to see the actual name. The file name returned is the
name that should be used in the subsequent steps.

6. From the second window run the command:
cpio -ivB BSP.tar.Z < /vol/dev/rdisketteO/unlabeled
where /vol/dev/rdisketteO/unlabeled is the name of your diskette device.

7. When the system prompts you for a new volume, move to the first window. Type eject if the system
did not automatically eject the diskette. Insert the next diskette and type volcheck .

8. Move to the second window and type the name of the diskette drive
(/vol/dev/rdisketteO/unlabeled) to continue the process.

9. If prompted for more diskettes, repeat the previous two steps. When finished, type eject to remove
the final diskette.

10.Return to the first window and verify that the following file is installed under the /usr directory:
BSP.tar.Z

11.Run the following command to unpack and install the files:
zcat BSP.tar.Z | tar xvf -

Installation for Solaris is complete. The tar.Z file may be removed to recover space.

The BSP software is installed in the /usr/osopen directory tree. It may be necessary to change
ownership of these directories, their subdirectories and their contents if other users require access to
them.

The /usr/osopen directory tree contains the files and tools that support OS Open application and
ROM development. The /usr/osopen subdirectories and their contents are as follows.

3-4 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

/bin

This directory contains several host based utilities used for application and ROM program
development.

« elf2rom - creates a ROM image from an ELF executable file

» eimgbld - creates a ROM Monitor loadable image from an ELF executable file

» hbranch - places an absolute branch in the last address of a ROM image

» rambuild - creates an assembler source file that contains the files found in a specified directory
» bootpd - bootp server to support ROM Monitor downloads

/examples
This directory contains example OS Open programs.
/m405_evb

This directory contains the ROM Monitor and OS Open platform specific code for the reference board
included in the kit.

« README.TXT - contains the latest information regarding this release

» /include - contains OS Open include files

» /ld - contains dynamically loadable modules that can be run from OS Open’s OpenShell

 /lib - contains OS Open libraries

* /m4 - contains assembler preprocessor include files

» /openbios - contains the source code for the ROM Monitor (See Chapter 7, “ROM Monitor”)

» /samples - contains samples programs that can be compiled and run

Considerable effort goes into providing a quality product with consistent documentation. To insure that
our customers have the advantage of the latest software features and updated information,

README.TXT contains clarifications and additional information and should be considered essential
reading.

/COMMENT.USR and /COMMENT.DOC

Please take the time to complete these user comment forms. Your feedback and suggestions will help
us to improve our products and technical publications. FAX and e-mail instructions are included in
each of the files.

3.2.2 High C/C++ Evaluation Compiler Installation - Sun

The compiler is installed from diskettes on a Sun host system using the cpio and tar commands.
Before beginning the installation, you must have:

» “High C/C++ for Sun” installation diskettes

* A Sun SPARCstation 5, 10, or 20 workstation running SunOS 4.1.3 (or higher) or Solaris 2.4 (or
higher)

» Superuser privileges on the Sun system

The procedures required for installing the High C/C++ compiler vary depending on the operating
system being used. Please follow the instructions corresponding to your operating system.

Revised 8/22/00 v.0.8 Installing the Software 3-5

—Preliminary Copy

Instructions for SunOS 4.1.3 (or higher) only:

1. Log in as root or use the su command to become the superuser.
2. Open at least two windows for this procedure.

3. Use the cd command to change to the /usr directory.

4

. Insert the installation diskette labeled “High C/C++ - Sun” and “1 of n” (n may vary) into the diskette
drive.

5. From the second window run the command:
cpio -ivB BSP_hcppc.tar.Z < /dev/rfd0
where /dev/rfd0 is the name of your diskette device.

6. When the system prompts you for a new volume, move to the first window and type eject to eject
the diskette. Insert the next diskette.

7. Move to the second window and type the name of the diskette drive (/dev/rfd0) to continue the
process.

8. If prompted for more diskettes, repeat the previous two steps. When finished, type eject to remove
the final diskette.

9. Return to the first window and verify that the following file is installed under the /usr directory:
BSP_hcppc.tar.Z

10.Run the following command to unpack and install the files:
zcat BSP_hcppc.tar.Z | tar xvf -

Installation for SunOS is complete. The tar.Z file may be removed to recover space.

Instructions for Solaris 2.4 (or higher) only:

1. Log in as root or use the su command to become the superuser.

2. Open at least two windows for this procedure.

3. Use the cd command to change to the /usr directory.

4

. Insert the installation diskette labeled “High C/C++ - Sun” and “1 of n” (n may vary) into the diskette
drive.

5. From the first window type volcheck. This creates a file called /vol/dev/rdisketteO/unlabeled (the
diskette device name).

If the system pops up a message box saying the diskette format is unrecognized, ignore the
message and cancel the message box. The name of the file created may be different on your
system. You can use the eject - command to see the actual name. The file name returned is the
name that should be used in the subsequent steps.

6. From the second window run the command:
cpio -ivB BSP_hcppc.tar.Z < /vol/dev/rdisketteO/unlabeled
where /voldev/rdisketteO/unlabeled is the name of your diskette device.

7. When the system prompts you for a new volume, move to the first window. Type eject if the system
did not automatically eject the diskette. Insert the next diskette and type volcheck .

3-6 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

8. Move to the second window and type the name of the diskette drive
(/vol/dev/rdisketteO/unlabeled) to continue the process.

9. If prompted for more diskettes, repeat the previous two steps. When finished, type eject to remove
the final diskette.

10.Return to the first window and verify that the following file is installed under the /usr directory:
BSP_hcppc.tar.Z

11.Run the following command to unpack and install the files:
zcat BSP_hcppc.tar.Z | tar xvf -

Installation for Solaris is complete. The tar.Z file may be removed to recover space.

The IBM High C/C++ Compiler is installed in the /usr/highcppc directory tree. It may be necessary to
change ownership of these directories, their subdirectories and their contents if other users require
access to them. The /usr/highcppc/bin directory contains the files required for the IBM High C/C++
Compiler. Those files include:

» asppc - Assembler for assembler language programs

» Idppc - ELF linker/binder to build applications to be run on the board
» hcppc - High C/C++ compiler for C programs

e arppc - ELF library archiver

The readme file under the /usr/highcppc directory contains the latest information regarding the
compiler and should be considered essential reading.

If you installed the compiler into a directory other than /usr/highcppc , edit the bin/hcppc.cnf file, and
locate the line near the top of the file that reads HCDIR=/usr/highcppc . Change this to reflect the
directory that the compiler was installed into. Save your changes and exit the editor.

3.2.3 RISCWatch Debugger Installation - Sun

Please refer to the RISCWatch Debugger Installation Guide for debugger installation instructions. Be
sure to follow the instructions for Sun installation.

3.3 RS/6000 Software Installation

3.3.1 BSP Software Installation - RS/6000
Before beginning the installation, you must have:

» BSP for RS/6000 installation diskettes
* A RISC System/6000, running AIX Version 4.1 or higher
» Superuser privileges on the AlX system

The following procedure installs the BSP software support package.

1. Log in as root or use the AIX su command to become the superuser.
2. Use the cd command to change to the /usr directory.

3. Insert the installation diskette labeled “BSP - RS6K” and “1 of n” (n may vary) into the diskette drive

Revised 8/22/00 v.0.8 Installing the Software 3-7

—Preliminary Copy

4. Issue the following command:
tar -xvf /dev/rfd0
where /dev/rfd0 is the name of your diskette device

5. When the system prompts you for the next media, eject the diskette, insert the next diskette, and
press Enter.

6. If prompted for more media, repeat the previous step for the remaining BSP diskettes. When
finished, remove the final diskette from the diskette drive.

7. Verify that the following file is installed under the /usr directory:
BSP.tar.Z
8. Run the following command to unpack and install the files:

zcat BSP.tar.Z | tar xvf -
Installation for AlX is complete. The tar.Z file may be removed to recover space.

The BSP software is installed in the /usr/osopen directory tree. It may be necessary to change
ownership of these directories, their subdirectories and their contents if other users require access to
them.

The /usr/osopen directory tree contains the files and tools that support OS Open application and
ROM development. The /usr/osopen subdirectories and their contents are as follows.

/bin

This directory contains several host based utilities used for application and ROM program
development.

» elf2rom - creates a ROM image from an ELF executable file

» eimgbld - creates a ROM Monitor loadable image from an ELF executable file

» hbranch - places an absolute branch in the last address of a ROM image

« rambuild - creates an assembler source file that contains the files found in a specified directory
» trc4l - post-processes OS Open trace snapshots for AIX 4.1

/examples
This directory contains example OS Open programs.
/m405_evb

This directory contains the ROM Monitor and OS Open platform specific code for the reference board
included in the kit.

« README.TXT - contains the latest information regarding this release

* /include - contains OS Open include files

» /ld - contains dynamically loadable modules that can be run from OS Open’s OpenShell

 /lib - contains OS Open libraries

* /m4 - contains assembler preprocessor include files

» /openbios - contains the source code for the ROM Monitor (See Chapter 7, “ROM Monitor”)

» /samples - contains samples programs that can be compiled and run

3-8 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Considerable effort goes into providing a quality product with consistent documentation. To insure that
our customers have the advantage of the latest software features and updated information,
README.TXT may contain clarifications and/or additional information and should be considered
essential reading.

/COMMENT.USR and COMMENT.DOC

Please take the time to complete these user comment forms. Your feedback and suggestions will help
us to improve our products and technical publications. FAX and e-mail instructions are included in
each of the files.

3.3.2 High C/C++ Evaluation Compiler Installation - RS/6000
Before beginning the installation, you must have:

» High C/C++ for RS/6000 installation diskettes
* A RISC System/6000, running AlX Version 4.1 or higher
» Superuser privileges on the AlX system

The following procedure installs the High C/C++ compiler.
1. Log in as root or use the AIX su command to become the superuser.
2. Use the cd command to change to the /usr directory.

3. Insert the installation diskette labeled “High C/C++ - RS6K" and “1 of n” (n may vary) into the
diskette drive

4. Issue the following command:
tar -xvf /dev/rfd0
where /dev/rfd0 is the name of your diskette device

5. When the system prompts you for the next media, eject the diskette, insert the next diskette, and
press Enter.

6. If prompted for more media, repeat the previous step for the remaining High C/C++ diskettes.
When finished, remove the final diskette from the diskette drive.

7. Verify that the following file is installed under the /usr directory:
BSP_hcppc.tar.Z

8. Run the following command to unpack and install the files:
zcat BSP_hcppc.tar.Z | tar xvf -

Installation for AlX is complete. The tar.Z file may be removed to recover space.

The IBM High C/C++ Compiler is installed in the /usr/highcppc directory tree. It may be necessary to
change ownership of these directories, their subdirectories and their contents if other users require
access to them. The /usr/highcppc/bin directory contains the files required for the IBM High C/C++
Compiler. Those files include:

Revised 8/22/00 v.0.8 Installing the Software 3-9

—Preliminary Copy

asppc - assembler for assembler language programs

Idppc - ELF linker/binder to build applications to be run on the board
hcppc - High C/C++ compiler for C programs

arppc - ELF library archiver

The readme file under the /usr/highcppc directory contains the latest information regarding the
compiler and should be considered essential reading.

If you installed the compiler into a directory other than /usr/highcppc , edit the bin/hcppc.cnf file, and
locate the line near the top of the file that reads HCDIR=/usr/highcppc . Change this to reflect the
directory that the compiler was installed into. Save your changes and exit the editor.

3.3.3 RISCWatch Debugger Installation - RS/6000

Please refer to the RISCWatch Debugger Installation Guide for debugger installation instructions. Be
sure to follow the instructions for RS/6000 installation.

3-10 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Chapter 4. Host Configuration

Several host configuration steps are required to facilitate communications between the host computer
and the board. These steps are outlined in this chapter. Please refer to the section corresponding to
your host system.

4.1 PC Host Configuration

The following sections discuss setup of host configuration for PC hosts.

4.1.1 Serial Port Setup - PC

Most PCs include two serial ports to support communications via asynchronous data transfer. These
ports are sometimes referred to as communication or COM ports. These ports are usually accessed
from the back of the system unit. You should consult your PC literature to determine how many serial
ports are available on your unit and where they are located. In this section, S1 and S2 refer to the

respective serial ports on the host PC, and SP1 and SP2 to the respective serial ports on the board.

When properly configured, one serial port can be used to connect a terminal emulator running on the
host to the ROM Monitor running on the board, and the other to provide a Serial Line Internet Protocol
(or SLIP) network interface between the host and the board to download and debug applications. The
SLIP host-to-board connection is optional if the recommended Ethernet connection is going to be
used for host-to-board communications. This section addresses the proper configuration of the S1
and S2 serial ports to support these connections. Users should also refer to the Windows on-line help
for “Changing Serial Port Settings”.

The connection of the terminal emulator running on the host to the ROM Monitor running on the
board, is made through the S1 serial port on the PC and the SP1 (J11 lower) serial port on the board.
The S1 port must be configured for a baud rate of 9600, 8 data bits, 1 stop bit, and no parity. The
proper setting of these parameters is discussed later in the section on terminal emulation.

A connection between the S2 serial port on the host and the SP2 (J11 upper) serial port on the board,
provides a SLIP network interface to download and debug application programs from the host. This
connection can be used in place of the recommended Ethernet connection.

Note: Windows users who want to establish a SLIP host-to-board connection over a second serial
port, require additional software since the TCP/IP package that comes with Windows does not
support SLIP communications. Trumpet Winsock is one package that supports the SLIP
protocol. Trumpet is not recommended for Windows users already connected to a network
since installing Trumpet may cause problems with previously defined networks. If the
recommended Ethernet host-to-board connection is going to be used (instead of a SLIP host-
to-board connection), Windows users do not need to install Trumpet since the TCP/IP package
that comes with Windows can be used to establish the Ethernet connection.

To establish a SLIP network over the S2 serial port for host-to-board communications, define a SLIP
interface via the TCP/IP package being used. Since TCP/IP packages for PCs vary, users should
consult their TCP/IP literature or their system administrator on how to establish the SLIP interface
between the host and the board. The following IP addresses are suggested for the SLIP interface:

Revised 8/22/00 v.0.8 Host Configuration 4-1

—Preliminary Copy

» PC host (source): 8.1.1.4
» Board (destination): 8.1.1.5

Make a note of the IP addresses selected since they will be needed later.
Trumpet Winsock users can use the following steps as a guide to establishing the SLIP interface:

1. Open the Trumpet Winsock by double clicking on the Trumpet Winsock icon in the Trumpet
Winsock Files program group.

2. If setup was bypassed during installation, your connection should fail. A Trumpet Winsock window
comes up indicating your connection status. Select Setup from the File menu to open the Setup
dialog.

3. Set the IP address field to the IP address of the PC host: 8.1.1.4 is suggested to maintain
consistency with this document.

. Select SLIP under Drivers and then go to Dialler settings.
. Select the appropriate COMM port (COM2 for example) to be used for SLIP communications.
. Set the Baud rate to 38400.

N o o b~

. Disable Hardware handshaking and make sure No automatic login is selected. Use the default
settings for the remaining options and/or check the help for more details.

(o]

. Select OK from Dialler Settings and then OK from Setup.

9. Edit the hosts file found in the installed Trumpet directory to include both the PC host IP address
and the board IP address. For example:

8.1.1.4 local_slip
8.1.1.5 board_slip

After entering all the information, you may need to restart Trumpet Winsock for the network setup to
take effect.

Prior to exiting Windows, we recommend terminating Trumpet Winsock (close the application). If you
do not follow this recommendation, subsequent Trumpet starts may fail. If this occurs, you will need to
reboot your system.

4.1.2 Ethernet Setup - PC

In addition to (or in place of) the SLIP connection, an Ethernet connection can be used for host-to-
board communications. The Ethernet connection is made through an Ethernet adapter on the host
and the 10BaseT/100BaseTX Ethernet port (J22) on the board. Ethernet is much faster than SLIP
and is recommended when downloading large applications on to the board or when using the
RISCWatch debugger.

An Ethernet connection may require additional hardware. The reference board supports a standard
Ethernet, twisted pair (10BaseT/100BaseTX) connection. This connection requires that the host PC
be equipped with an appropriate Ethernet adapter. The host adapter is not included in the kit. Please
consult your PC and adapter documentation for requirements and installation instructions.

At a minimum, a 10BaseT/100BaseTX connection requires a crossover Ethernet twisted pair cable
(included in the kit) for point-to-point communications. The Ethernet crossover cable is for 10Mb/s
direct connection to a single host and cannot be used with a hub or a building’s Ethernet network. If

4-2 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

you want more than two nodes, or 100Mb/s connectivity, you will need a hub and straight-through
twisted pair cables.

Other hardware required will depend on the type of Ethernet adapter you have on your PC and
whether the board is being connected to an existing Ethernet network. Please consult your system
administrator and the documentation included with the adapter hardware for additional instructions.

Establishment of an Ethernet interface requires a host IP address. If the host PC is connected to an
existing Ethernet network, the host IP address should already be defined and there is no need to set
it again. Consult your network administrator on how to obtain the host's Ethernet IP address and how
to add the board to the existing network.

To set the host IP address for the Ethernet connection:

1. Select the My Computer icon from the desktop.
2. Select Control Panel.

3. Select Network.
4

. Add the appropriate Adapter network component for the Ethernet adapter being used (if not
already added).

5. Add a Protocol network component of Microsoft - TCP/IP' (if not already added). Specify the IP
address (7.1.1.4is recommended to maintain consistency with this document) and netmask
(255.255.240.0) to be used.

For the update to take effect, TCP/IP may need to be restarted. This may require a reboot of the
system and/or a restart of TCP/IP. Make a note of the host IP address assigned to the Ethernet
adapter, as this value will need to be made known to the ROM Monitor on the board.

4.1.3 ROM Monitor-Debugger Communication Setup - PC

Before the RISCWatch Debugger can be used, some additional steps need to be taken to establish
ROM Monitor-Debugger communications. These steps involve an update of the TCP/IP services file
to establish a named communications port and port number for TCP/IP socket communications, and
a restart of the TCP/IP package for the update to take effect.

Windows 95/98 places the services file under C:\WINDOWS\SERVICES. Windows NT places the
services file under C:WINDOWS\SYSTEM32\DRIVERS\SERVICES. Users should consult their
TCP/IP documentation or system administrator if they can not locate the file. The following lines must
be added to the file:

osopen-dbg 20044/tcp # for RISCWatch OS Open debug
osopen-dbg 20044/udp # for RISCWatch rom_mon debug

For the update to take effect, TCP/IP needs to be restarted. This might require a reboot of the system
and a restart of the TCP/IP package.

4.2 Sun Host Configuration

Sun configuration requires that you be the superuser of the host workstation. This is accomplished by
logging in as root or by using the su command to become the superuser.

Revised 8/22/00 v.0.8 Host Configuration 4-3

—Preliminary Copy

4.2.1 Serial Port Setup - SUN

The Sun workstation includes two serial ports to support communications via asynchronous data
transfer. These ports are labeled Serial A and Serial B on the back of the Sun’s system unit. Some
SPARCstation models multiplex these two ports into one physical port labeled A/B (use A if it's
available since use of the B port requires a special de-multiplexing cable from Sun). This section
refers to these ports as S1 and S2, respectively. When properly configured, one of the serial ports can
be used to connect a terminal emulator running on the host to the ROM Monitor running on the board.
This connection is made through the S1 serial port on the Sun and the SP1 (J11 lower) serial port on
the board.

The S1 port on the host must be configured for a baud rate of 9600, 8 data bits, 1 stop bit, and no
parity. The proper setting of these parameters is discussed later in the section on terminal emulation.

4.2.2 Ethernet Setup - SUN

Since all Sun SPARCstations come equipped with an Ethernet (or AUI) port, an Ethernet connection
is used for host-to-board communications. The reference board supports a Standard Ethernet,
twisted pair (10BaseT/100BaseTX) connection. An Ethernet connection may require additional
hardware.

At a minimum, a 10BaseT/100BaseTX connection requires a crossover Ethernet twisted pair cable
(included in the kit) for point-to-point communications. The Ethernet crossover cable is for 10Mb/s
direct connection to a single host and cannot be used with a hub or a building’s Ethernet network. If
you want more than two nodes, or 100Mb/s connectivity, you will need a hub and straight-through
twisted pair cables.

Establishment of an Ethernet interface requires a host IP address. If the host SPARCstation is
connected to an existing Ethernet network, the host IP address should already be defined. Consult
your network administrator on how to obtain the host's Ethernet IP address and how to add the board
to the existing network.

If the host SPARCstation is not connected to an existing Ethernet network, then a network between
the board and the host must be established. The ifconfig command can be used to establish such a
network. Users should consult their network administrator and Sun documentation for additional
information. A host IP address of 7.1.1.4 is suggested to maintain consistency with this document.

Make a note of the host’s IP address since it will need to be made known to the ROM Monitor on the
board.

4.2.3 ROM Monitor-Debugger Communication Setup - SUN

Before the RISCWatch Debugger can be used, the TCP/IP services file must be updated to allow
ROM Monitor-Debugger communications.

To modify the /etc/services file, you need to log in as root or the superuser (su). The following lines
must be added to the file:

osopen-dbg 20044/tcp # for RISCWatch OS Open debug
osopen-dbg 20044/udp # for RISCWatch rom_mon debug

4-4 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

4.3 RS/6000 Host Configuration

RS/6000 configuration requires that you be the superuser of the host workstation. This is
accomplished by logging in as root or by using the AIX su command to become the superuser.

4.3.1 Serial Port Setup - RS/6000

The RS/6000 includes two serial ports to support communications via asynchronous data transfer.
These ports are labeled S1 and S2 on the back of the RS/6000’s system unit. When properly
configured, one serial port can be used to connect a terminal emulator running on the host to the
ROM Monitor running on the board, and the other to provide a Serial Line Internet Protocol (or SLIP)
network interface between the host and the board to download and debug applications. This section
addresses the proper configuration of the S1 and S2 serial ports to support these connections.
Details on setting up the terminal emulator are discussed in a later chapter. In this section, S1 and S2
refer to the respective serial ports on the host RS/6000, and SP1 and SP2 to the respective serial
ports on the board.

The connection of the terminal emulator running on the host to the ROM Monitor running on the
board, is made through the S1 serial port on the RS/6000 and the SP1 (J11 lower) serial port on the
board. A connection between the S2 serial port on the host and the SP2 (J11 upper) serial port on the
board, provides a SLIP network interface to download and debug application programs on the board.
If the recommended Ethernet connection is going to be used, the S2-to-SP2 SLIP connection is
optional and does not need to be established.

Proper setup involves the configuration of tty devices for both the S1 and S2 serial ports on the host.
tty0 is used for the terminal emulator-to-ROM Monitor connection and ttyl for the host-to-board SLIP
connection. It is also necessary to establish a SLIP network interface between S2 on the host and
SP2 on the board. The following steps should be taken to insure proper S1, S2 configuration:

1. Log in as root or the superuser (su).
2. Determine if the tty0, ttyl devices already exist.
a. Enter smit
b. Select Devices
c. Select TTY
d. Select List All Defined TTYs
Perform step 3 for each tty not listed.
Perform step 4 for each tty listed to insure that it is properly configured.
3. To add a tty device:
a. Return to the TTY screen.
b. Select Add a TTY.
c. Select tty rs232 Asynchronous Terminal
d. Select sa0 - Serial Port 1 (for ROM Monitor connection) when adding ttyO.
OR sal - Serial Port 2 (for board SLIP connection) when adding ttyl.
e. Select sl for the port number when adding ttyO .
OR s2 for the port number when adding tty1 .
f. Ensure that the BAUD rate is 9600 when adding ttyO.

Revised 8/22/00 v.0.8 Host Configuration 4-5

o O T

—Preliminary Copy

OR that the BAUD rate is 38400 when adding tty1.

. Ensure that the PARITY is none.
. Ensure that the BITS per character is 8.

Ensure that the Number of STOP BITS is 1.
Ensure that Enable LOGIN is disabled .
The default settings for all the other fields are satisfactory.

. Select Do or press Enter.

Upon successful completion, a properly configured tty device is created and thus, step 4 can
be skipped for the particular tty (ttyO or ttyl) added. Remember to repeat this step, step 3, if
both tty0 and ttyl needed to be added.

. To properly configure a previously defined tty device:

. Return to the TTY screen.

. Select Change/Show Characteristics ofa TTY

. Select tty# (where # =0 or 1).

. Ensure that the following fields are set to the indicated values:
TTY tty# (#=0 for tty0, 1 for tty1)
TTY type tty
TTY interface rs232
Description Asynchronous Terminal
Status Available
Location 00-00-S*-00 (*=1 for ttyO, 2 for ttyl)
Parent Adapter sa# (#=0 for tty0, 1 for ttyl)
Port Number s* (*=1 for ttyO, 2 for ttyl1)
Terminal Type dumb
Enable LOGIN disable

. Ensure that the BAUD rate is 9600 for ttyO .

OR that the BAUD rate is 38400 for tty1l.
Ensure that the PARITY is none.

. Ensure that the BITS per character is 8.
. Ensure that the Number of STOP BITS is 1.

The other fields can remain at their default values.
Select Do or press Enter.
Upon successful completion, the tty device is properly configured.

5. This last step establishes the SLIP network over the ttyl device between the host and the board.
It's optional for those using the recommended Ethernet connection for host-to-board
communications. This step is not required for ttyO since it is being used simply for terminal
emulation. Unlike a LAN interface, a SLIP connection is point-to-point. We first need to specify an
IP address for the host and then an IP address for the other end of the SLIP connection, which in
this case, is the reference board. To do this:

a. Enter smit.

b.

4-6

Select Communication Applications and Services

PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

. Select TCP/IP.
. Select Further Configuration
. Select Network Interfaces .
Select Network Interface Selection
. Select Add a Network Interface .
. Select Add a Serial Line INTERNET Network Interface
. Select ttyl.
j- Setthe INTERNET ADDRESS field the host’s IP address. An acceptable value would be 8.1.1.4.

k. Set the DESTINATION Address field to the reference board’s IP address. An acceptable value
would be 8.1.1.5.

Use of these IP addresses are recommended to maintain consistency with the rest of the
documentation. Make a note of the IP addresses selected, as they will need to be made
known to the ROM Monitor on the board.

Set the Network MASK to 255.255.240.0.
.Ensure that ACTIVATE is yes.

. Ensure that the TTY PORT is ttyl.

. Leave the BAUD RATE field blank.

. Leave the DIAL STRING field blank.

. Select Do or press Enter.

o Q ™ 0O O O

2 T O 5 3

Upon successful completion, the SLIP Network Interface is established over ttyl and the
serial port setup is complete.

If this step fails, insure that a SLIP Network has not already been defined over ttyl . To make
this check, return to the Network Interface Selection screen in smit and select List All
Network Interfaces . If sl1 is listed then a network interface has already been defined for ttyl
and its characteristics may need to be changed. Return to the Network Interface Selection
screen and select Change/Show Characteristics of a Network Interface . Select sl1 and
insure that the fields are set as stated previously in this step.

There is no need to change the IP addresses in the INTERNET ADRRESS and
DESTINATION address fields if they have already been defined, but use of the above
mentioned IP addresses is strongly recommended to maintain consistency with this
documentation.

4.3.2 Ethernet Setup - RS/6000

In addition to (or in place of) the SLIP connection, an Ethernet connection can be used for host-to-
board communications. The Ethernet connection is made through an Ethernet adapter on the host
and the 10BaseT/100BaseTX Ethernet port (J22) on the board. Ethernet is much faster than SLIP
and is recommended when downloading large applications on to the board or when using the
RISCWatch debugger.

An Ethernet connection may require additional hardware. The reference board supports a Standard
Ethernet, twisted pair (10BaseT/100BaseTX) connection. This connection requires that the host PC
be equipped with an appropriate Ethernet adapter. The host adapter is not included in the kit. Please
consult your PC and adapter documentation for requirements and installation instructions.

Revised 8/22/00 v.0.8 Host Configuration 4-7

—Preliminary Copy

At a minimum, a 10BaseT/100BaseTX connection requires a crossover Ethernet twisted pair cable
(included in the kit) for point-to-point communications. The Ethernet crossover cable is for 10Mb/s
direct connection to a single host and cannot be used with a hub or a building’s Ethernet network. If
you want more than two nodes, or 100Mb/s connectivity, you will need a hub and straight-through
twisted pair cables.

Other hardware required will depend on the type of Ethernet adapter you have on your RS/6000 and
whether the board is being connected to an existing Ethernet network. AIX Communications
Concepts and Procedures (GC23-2203, two volumes) has additional information about the
management and configuration of a TCP/IP network, including specifics as to how to configure an
Ethernet network interface. Some of the basic steps are outlined below. You should consult your
network administrator before attempting Ethernet setup.

1. The host must be equipped to participate in a 10BaseT/100BaseTX Ethernet network. This may
require the installation of an Ethernet adapter card for your specific RS/6000 model and, as
discussed previously, additional connectivity hardware. Consult the documentation included with
the hardware for installation instructions. Most RS/6000 models come with Ethernet adapters
already installed. They are labeled ET in the back of the RS/6000 system unit.

2. Assuming the host system is equipped with the appropriate Ethernet adapter, the Ethernet
interface must be configured properly. To do this:

a. Log in as root or the superuser (su).

. Enter smit .
. Select Communication Applications and Services.
. Select TCP/IP.
. Select Further Configuration
Select Network Interfaces .
. Select Network Interface Selection

>oQ S 0O o O T

. Select Add a Network Interface .
Select Add a Standard Ethernet Network Interface

Choose Standard Ethernet as opposed to IEEE 802.3 Ethernet . If you receive an error
message stating that there is “No available adapter”, go to step 3 and skip the remaining
items in this step.

j. Select enO.

k. Setthe INTERNET ADDRESS field to the host IP address. This value must be different from that
used for the SLIP interface. It can be set to any convenient value if the Ethernet network is
private for board development purposes. An acceptable value would be 7.1.1.4.

Make a note of the IP address selected for the host system, as it will need to be made known
to the ROM Monitor on the board. Note that an IP address for the board is not required as it
was for the point-to-point SLIP network interface. An IP address for the board will, however, be
required later on for the board setup.

Set the Network MASK field to 255.255.240.0.

.Ensure that ACTIVATE is yes.

. Ensure that the Use Address Resolution Protocol is yes.
. Leave the BROADCAST ADDRESS blank

. Select Do or press Enter.

T ©0 5 3

4-8 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Upon successful completion, a properly configured Ethernet interface has been added. The
Ethernet setup is complete and step 3 need not be performed.

3. Perform this step only if you received the “No available adapter” error message when trying to Add
a Standard Ethernet Network Interface in step 2. This message indicates that either the Ethernet
adapter is missing (or possibly misplugged) or the Ethernet Network Interface already exists. To
determine if the interface already exists:

a. Return to the Network Interface Selection screen in smit.

b. Select Change/Show Characteristics of a Network Interface

If en0 is not listed, insure that the RS/6000 host does have an Ethernet adapter and, if
possible, that it is plugged correctly. If the adapter was misplugged, repeat step 2 to add the
Ethernet Network Interface.

if en0 is listed, then the Ethernet Network Interface already exists. Select en0 and note the IP
address listed for the INTERNET ADDRESS field. This value is the host’'s Ethernet IP address
and will be needed later. If no IP address is listed, choose one. The IP address 7.1.1.4 can be
used to maintain consistency with the menus and examples in this document. The Ethernet
setup is complete.

4.3.3 ROM Monitor-Debugger Communication Setup - RS/6000

Before the RISCWatch Debugger can be used, some additional steps need to be taken to establish
ROM Monitor-Debugger communications. These steps involve an update of the TCP/IP services file
and a refresh of the TCP/IP inetd daemon.

To modify the /etc/services file, you need to log in as root or the superuser (su). The following lines
must be added to the file:

osopen-dbg 20044/tcp # for RISCWatch OS Open debug
osopen-dbg 20044/udp # for RISCWatch rom_mon debug

The AlX refresh -s inetd command must then be run to inform the inetd daemon of the changes
made to the /etc/services file.

Revised 8/22/00 v.0.8 Host Configuration 4-9

—Preliminary Copy

4-10 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Chapter 5. Hardware

The PPC405GP design kit includes the reference board which contains the following features:

* PowerPC PPC405GP processor, which includes:

— PowerPC 405 core
— 10BaseT/100 Base TX (RJ45) Ethernet
— Two 16550-type serial ports
— 1IC (I%C) port
— General Purpose Timers
— Interrupt Controller
— PC-100 SDRAM Controller with support for ECC
— DMA controller
— ROM/Peripheral controller
— Internal PCI Controller
— General-purpose I/Os
« Memory
16 MB SDRAM, single DIMM socket, support up to 128 MB
512KB socketed flash memory
512KB SRAM
Support for ECC

» Real-time clock with 8KB NVRAM and battery-backup

» Four 32-bit PCI connectors
» Keyboard/mouse controller
* |R controller

* A separate PCI VGA display adapter is also included with the board

For detailed descriptions of the reference board specifications, features, and its memory mapping,
please refer to the PowerPC 405 Reference Board Manual.

Revised 8/22/00 v. 0.8 Hardware

5-1

—Preliminary Copy

5-2 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Chapter 6. Board Connectors

For detailed descriptions of the connectors and jumpers on the reference board, please refer to the
PowerPC 405 Reference Board Manual.

6.1 Connecting the Reference Board to the Host

To establish a working environment, the reference board must be connected to a host system. ROM
Monitor access requires a connection between the serial port on the board (J11 lower) and the S1
(COML1) serial port on the host. Users must also establish a connection for debug and downloading
applications from the host to the board. This connection is made over the SLIP or Ethernet network
established during host configuration.

Host .
Evaluation Board

| | H] Ethernet Port (J22)
SLIP
[:I Serial Port 1 (J11 lower)
S2 (Com2)
[:I Serial Port 2 (J11 upper)
Terminal Emulator
Running on
Host S1 (Comil)

Figure 6-1. Serial Port Connection

Included in the PowerPC 405GP Reference Design Kit is an interface cable supporting either 9-pin or
25-pin serial port connections. Assuming a terminal emulator running on the host is going to be used
for ROM Monitor access, connect the 9-pin serial port connector on one end of a cable to the J11
lower serial port connector on the board, and the other end of the same cable to the S1 (COM1) serial
port on the host. The host end might require a serial port adapter (not supplied) for connectivity. Sun
SPARCSstation users might require the 25-pin male-to-male adapter (included in the Sun version of
the kit) at the host end. If a SLIP connection is going to be used for host-to-board communications,
connect a serial interface cable (not provided) from the J11 upper serial port connector on the board
to the S2 (COM2) serial port on the host.

The Ethernet connection can be made in two ways. If the connection is to be used exclusively
between the host and the board, and only 10Mb/s speed is required, the provided crossover cable

Revised 8/22/00 v. 0.8 Board Connectors 6-1

—Preliminary Copy

can be used to directly connect the two nodes. Otherwise, a 10BaseT or 100BaseTx hub (not
provided) must be used to connect the nodes together.

Note: The Ethernet 10BaseT crossover cable supplied will not work if plugged into a hub.

Figure 6-2 shows the connections and signal assignments required in a crossover cable:

RJ-45 Connector

Twisted Signal

Pair Name
1 TD +
1 TD -
2 RD +
2 RD -

3,4 (Not

used)

Pin

4,5,7,8

10BaseT Cable RJ-45
Signal
Pin Name

1 D +

2 TD -

3 RD +

6 RD -

4,578 (Not

used)

Figure 6-2. Wiring in a Crossover Cable

Figure 6-3 shows a point-to-point Ethernet connection using the provided crossover cable:

Host

Ethernet
Adapter Evaluation Board
10BaseT
Crossover H]
Cable — Ethernet Port (J22)
—[:I Serial Port 1 (J11 lower)
[:I Serial Port 2 (J11 upper)
Terminal Emulator
Running on
Host S1 (Coml)
Figure 6-3. Point-to-Point Ethernet Connection

Figure 6-4 shows an Ethernet connection using a hub:

6-2 PPC405GP Reference Design Kit User’'s Manual v. 0.8

Revised 8/22/00

— Preliminary Copy

10 BaseT /
Host 100 BaseTx
Hub

Ethernet
Adapter

10BaseT / 100BaseTx
Straight-through Cable

Evaluation Board

—H] Ethernet Port (J22)

Terminal Emulato r 4,—[] Serial Port 1 (J11 lower)
Running on

Host S1 (Coml)

[:I Serial Port 2 (J11 upper)

Figure 6-4. Ethernet Connection with Hub

If the connection is to be made to an existing Ethernet network, users should consult their Network
Administrator to insure proper connectivity. Users wanting to use both a SLIP and Ethernet
connection can do so, as long as both networks have been configured properly and the proper
connections have been made.

6.2 Using a Terminal Emulator

The ROM Monitor transmits/receives data through serial port 1 (J11 lower) on the board. Access to
the ROM Monitor can be achieved by connecting a VT100 (or compatible) terminal directly to serial
port 1 (J11 lower) on the board or by using a terminal emulator running on the host. When using a
terminal emulator, access is obtained via a connection between the serial port 1 connector on the
board and an available serial (or COM) port on the host system.

6.2.1 PC Terminal Emulation

Once all the host-to-board connections have been properly made and power has been supplied to the
board, the Windows HyperTerminal program can be used as a terminal emulator to support
communications with the ROM Monitor. The steps for setting up the terminal emulator connected to
COM1 are as follows:

1. Select Start from the Windows 95/98/NT task bar.
2. Select Programs .
3. Select Accessories .

4. Select HyperTerminal .

Revised 8/22/00 v. 0.8 Board Connectors 6-3

—Preliminary Copy

5. If you see a window that says "You need to install a modem before you can make a connection.
Would you like to do this now?" click on "No". You do not need a modem to connect to the board.

6. Select the Hypertrm icon.
7. Enter a name, for example "PPCEVB" and select an icon.

8. Select the following:
Connect using Direct to Com 1 (default)
Bits per second — 9600
Data bits — 8 (default)
Parity — None (default)
Stop Bits — 1 (default)
Flow Control — Xon/Xoff

9. Select OK.

After resetting the board, the ROM Monitor menu should appear in the HyperTerminal window. If it
does not, check your HyperTerminal settings and ensure proper connectivity between the host and
the board.

6.2.2 SUN Terminal Emulation

The Terminal Interface Program (TIP) can be used as a terminal emulator to support communications
with the ROM Monitor. When properly configured, TIP connects the host Sun SPARCstation to a
remote system, which in our case is the board. To set up TIP, do the following:

1. Log in as root or the superuser (su).

2. Go to the /etc directory (cd /etc) .

3. See if the file, remote , exists (Is remote). If the file does not exist, create it.
4

. Using an editor, add the following line to the remote file (cut and pasters can find this line in the
README.TXT file):

tty0:dv=/dev/ttya:br#9600:el="UC"S"Q"D:ie=%$.0e="D:pa=none:
5. Exit from root .

TIP configuration is complete. Once all the host-to-board connections have been properly made and
power has been supplied to the board, TIP can be activated by typing tip tty0 at the command
prompt. After resetting the board, the ROM Monitor main menu should appear in the window where
tip was activated. It might be necessary to press Enter once or twice to get the menu to appear for the
first time. If the ROM Monitor menu does not appear, consult your System Administrator — the ttya
device might need to be modified. Additional information on TIP can be found in the on-line man
pages by typing man tip .

6-4 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Some useful escape sequences to know when using TIP include:

~? Help for TIP

~CTRL-D Instructs the TIP command to terminate the connection and exit
~# Sends a break to the remote system

~S script Starts recording of transmissions made by the remote system

Note: Recordings are made in the default tip.record file in the user’s
current directory

~s Iscript Stops recording of transmissions made by the remote system

Note 1. It might be necessary to press Enter or CTRL-D before entering these escape sequences.

Note 2: If a terminal emulator other than TIP is used, it must be configured for 9600 bps, eight bits
per character, one stop bit, and no parity.

6.2.3 RS/6000 Terminal Emulation

The AIX Terminal Interface Program (TIP) can be used as a terminal emulator to support
communications with the ROM Monitor. When properly configured, TIP connects the host RISC/6000
to a remote system, which in our case is the board. To set up TIP, do the following:

1. Log in as root or the superuser (su).

2. Go to the /etc directory (cd /etc).

3. See if the file, remote, exists (Is remote). If the file does not exist, create it.
4

. Using an editor, add the following line to the remote file (cut and pasters can find this line in the
README.TXT file):

tty0:dv=/dev/tty0:br#9600:el="UC"S"Q"D:ie=%$:0e="D:pa=none:
5. Exit from root .
TIP configuration is complete. Once all the host-to-board connections have been properly made and
power has been supplied to the board, TIP can be activated by typing tip tty0 at the AIX command
prompt. After resetting the board, the ROM Monitor main menu should appear in the window where
tip was activated. It might be necessary to press Enter once or twice to get the menu to appear for the

first time. Additional information on TIP can be found in AIX Communications and Procedures (GC23-
2203, two volumes).

Revised 8/22/00 v. 0.8 Board Connectors 6-5

—Preliminary Copy

Some useful escape sequences to know when using TIP include:

~? Help for TIP

~CTRL-D Instructs the TIP command to terminate the connection and exit
~# Sends a break to the remote system

~S script Starts recording of transmissions made by the remote system

Note: Recordings are made in the default tip.record file in the user’s
current directory

~s Iscript Stops recording of transmissions made by the remote system

Note 1: It might be necessary to press Enter before entering these escape sequences.

Note 2: If a terminal emulator other than TIP is used, it must be configured for 9600 bps, eight bits
per character, one stop bit, and no parity.

6.3 Board Reset

When the connectors have been installed and power is applied to the board, you must first press the
board’s On/off switch to power up the board. Pressing the Reset switch causes the processor and the
communications controllers to reset. After the ROM Monitor (resident in flash) initializes the processor
and board peripherals, the monitor menu is displayed if a properly configured terminal (or terminal
emulator) is attached to serial port 1 (J11 lower) of the board. Details of ROM Monitor operation are
provided in Chapter 7, “ROM Monitor.”

6-6 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Chapter 7. ROM Monitor

This chapter describes the ROM Monitor program, also known as OpenBIOS. This ROM resident
program provides chip (and board level) initialization and a user interface menu that supports board
diagnostics, program downloads, and debug.

7.1 ROM Monitor Source Code

The ROM Monitor source code is provided for ROM development purposes. This code is separate
from the OS Open and sample application code described in Chapter 8. The ROM Monitor code is
loosely organized by function in the following subdirectories and files within the
\osopen\m405_evb\openbios directory (/usr/osopen/m405_evb/openbios for SUN and RS/6000

users).

makefile.mak
Makefile
devTab.c
include/

m4/

ppcLib/
enetLib/
ioLib/
miscLib/
slLib/
sildLib/
dbLib/
entry.s

lib/

netLib/
slipLib/
align_h.s
mapfilel
bios_***.map
flash/

Revised 8/22/00

Top level makefile to create ROM monitor image (PC)

Top level makefile to create ROM monitor image (RS/6000 & SUN)
Handles boot device definitions

C include files

assembler preprocessor include files

C callable functions to access PowerPC special instructions
Ethernet chip specific code

I/O helper functions

Miscellaneous routines used for ROM monitor

Serial Port interface routines

Code to support S1 serial port downloads

Ptrace debug interface routines

Processor and C environment initialization

Repository for intermediate libraries

IP and UDP processing functions

SLIP implementation

Alignment handling code

Mapfile to specify ROM Monitor linkage directives

Load map of the ROM Monitor version *** shipped with the board

Code to support re-programming the flash memory

v. 0.8 ROM Monitor 7-1

—Preliminary Copy

7.2 Communications Features

The ROM Monitor runs as part of the boot code in the flash memory on the board. The monitor
communicates with an asynchronous terminal (or terminal emulator) attached to serial port 1 (SP1)
on the board, through which the user accesses the monitor menu. The ROM Monitor can download
applications and communicate with the host debugger through serial port 2 (SP2) or the Ethernet
adapter, depending on which devices are enabled. Communications between SP2 and the host use
the Serial Link Internet Protocol (SLIP), while Ethernet communications use the Internet Protocol (IP)
over standard Ethernet. The ROM Monitor also supports the downloading of programs via serial
port 1, but not debug. To use this feature, a VT100 terminal emulator that supports binary file
transfers (such as kermit) must be used on the host system.

7.3 Configuration of bootp and tftp to Support ROM Monitor Loads

Both the debugger and the ROM Monitor can be used to load applications onto the board. Details on
how to use the debugger can be found in the RISCWatch Debugger User’s Guide. To use the facilities
of the ROM Monitor for downloading applications to the board, the host workstation must be
configured to support the bootp protocol and tftp daemons. The configuration consists of two parts.
The bootptab file on the host must be customized to match system requirements, and the bootp and
tftp daemons (or servers) must be made available.

7.3.1 PC bootp and tftp Configuration

Not all TCP/IP packages include the bootpd and tftpd servers required for ROM Monitor downloads.
For this reason both the bootpd and tftpd servers have been included in the BSP software package
under the \osopen\bin directory. These servers can be installed and used in conjunction with
Windows Socket compliant TCP/IP packages that come with Windows 95/98 and Windows NT.

Configuration consists of two parts. The bootptab and services files on the host must be customized
to match system requirements, and the bootpd and tftpd servers must be made available. If you
choose to use the bootpd and tftpd servers provided with this package, you will need to modify your
autoexec.bat file to specify the location of the bootptab and services files. This is accomplished by
adding a line that sets up an ETC environment variable to specify the directory where the bootptab
and services files are located (e.g., set etc=c:\windows for Windows 95/98,

set etc=c:\winnt\system32\drivers\etc . for Windows NT 4.0). Consult your TCP/IP
documentation or contact your system administrator if the services file cannot be found.

A sample bootptab file, \osopen\m405_evb\samples\bootptab.sam , is included with the BSP
software. This file can be copied to the ETC directory set in the autoexec.bat file and modified
appropriately. Note that the bootptab file in the ETC directory must be named bootptab with no file
extension. Entries describing the board to the host PC must be added to the bootptab file.

When creating or modifying the bootptab file, the following rules apply:
» Blank lines and lines beginning with “#” are ignored.
» Each entry must be entered on a single line.

» Each entry must start with a host name followed by the legends (see the sample bootptab file for
legend descriptions).

» Use “.” to separate each legend and leave no spaces between legends.

7-2 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

» User must supply the host IP address via the “ip” legend.

« If the “hd” (home directory) & “bf” (bootfile) legends are not provided for a particular entry, the first
defined “hd” and “bf” legends in the bootptab file will be taken as default.

File entries similar to those below would be suitable.

slipc:hd=\osopen\m405_evb\samples:bf=boot.img:bs:ip=8.1.1.5:sm=255.255.255.255
enetc:ht=ethernet:hd=\osopen\m405_evb\samples:bf=boot.img:bs:ip=7.1.1.5:
smM=255.255.255.255:ha=XXXXXXXXXXXX

Each of the entries, slipc and enetc, should be entered on a single line. The value of the Ethernet
hardware address field in the enetc entry, ha=xxxxxxxxxxxx, should match the twelve character
hardware address listed for the Ethernet Boot Source on the ROM Monitor menu.

Both connections use the file \osopen\m405_evb\samples\boot.img as the source for the
application image to be downloaded onto the board. Be sure that the ht=ethernet keyword is used for
the Ethernet connection entry and that the IP addresses are those of the board. Note that the IP
address in the slipc entry must match that of the IP address assigned to the board during serial port
setup. Since a board IP address was not required for Ethernet setup, the IP address used in the enetc
entry defines the IP address of the board for the Ethernet connection. If the suggested bootptab
entries are used, 7.1.1.5 would be the board’s Ethernet IP address. Take note of the board’s IP
addresses, since they must be made known to the ROM Monitor.

The services file (no file extension) must also exist in the ETC directory set in the autoexec.bat file.
It must be updated with the port and protocol information for the bootpd and tftpd servers. To use the
servers provided with this package, the following entries must be included in the services file:

bootps 67/UDP
bootpc 68/UDP
tftp 69/UDP

For the update to take effect, TCP/IP needs to be re-started. This may require a reboot of the system
and/or a restart of the TCP/IP package. After that, the bootpd and tftpd servers are ready for use.

You may choose to run bootpd.exe and tftpd.exe automatically every time that Windows is started or
you can run these programs only when needed. To make these program run automatically every time
Windows is started perform the following steps:

1. Select Start from the Windows task bar.

2. Select Settings .

3. Select Taskbar .

4. Select Start Menu Programs .

5. Select Add....

6. In the command line field enter the following:

BOOTPD-cC-h7.1.14
where C is the driver letter containing the boot image and 7.1.1.4 is the host IP address
7. Select Next.

8. In the Select Program Folder window, select the Programs/Startup folder.

Revised 8/22/00 v. 0.8 ROM Monitor 7-3

—Preliminary Copy

9. Select Next.

10.Select Finished .

11.To start tftp follow the above steps, but enter the following in the command line field:
TFTPD

The bootp and tftp daemons will be started automatically upon the next restart of Windows.

7.3.2 SUN bootp and tftp Configuration

The Solaris and SunOS operating systems both provide a tftpd server but do not provide a bootpd
server. For this reason a bootpd server has been included in the BSP software package under the
/usr/osopen/bin directory.

A sample bootptab file, /lusr/osopen/m405_evb/samples/bootptab.sam |, is included with the BSP
software. This file should be copied to the /etc directory and renamed bootptab if a bootptab file
does not already exist. You will need to log in as root or the superuser (su) to update or add files in
the /etc directory. Entries describing the evaluation board to the host workstation must be added to
the bootptab file.

When creating or modifying the bootptab file, the following rules apply:
» Blank lines and lines beginning with “#” are ignored.
» Each entry must be entered on a single line.

« Each entry must start with a host name followed by the legends (see the sample bootptab file for
legend descriptions).

» Use “" to separate each legend and leave no spaces between legends.
» User must supply the host ip address via the “ip” legend.

« If the “hd” (home directory) & “bf” (bootfile) legends are not provided for a particular entry, the first
defined “hd” and “bf” legends in the bootptab file will be taken as default.

File entries similar to those below would be suitable.

slipc:hd=\osopen\m405_evb\samples:bf=boot.img:bs:ip=8.1.1.5:sm=255.255.255.255
enetc:ht=ethernet:hd=\osopen\m405_evb\samples:bf=boot.img:bs:ip=7.1.1.5:
sm=255.255.255.255:ha=xXXXXXXXXXXXX

Each of the entries, slipc and enetc, should be entered on a single line. The value of the Ethernet
hardware address field in the enetc entry, ha=xxxxxxxxxxxx, should match the twelve character
hardware address listed for the Ethernet Boot Source on the ROM Monitor menu.

Both connections use the file /usr/osopen/m405_evb/samples/boot.img as the source for the
application image to be downloaded onto the board. Be sure that the ht=ethernet keyword is used for
the Ethernet connection entry and that the IP addresses are those of the board. Note that the IP
address in the slipc entry must match that of the IP address assigned to the board during serial port
setup. Since a board IP address was not required for Ethernet setup, the IP address used in the
enetc entry defines the IP address of the board for the Ethernet connection. If the suggested
bootptab entries are used, 7.1.1.5 would be the board’s Ethernet IP address. Take note of the
board’s IP addresses, since they must be made known to the ROM Monitor.

7-4 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

To start the bootpd and tftpd servers:

1. Log in as root or the superuser (su).
2. Ensure that the following entries are included in the /etc/services file:

bootps 67/udp
bootpc 68/udp
tftp 69/udp

3. Ensure that the tftp entry in the /etc/inetd.conf file is uncommented and modify as follows:
tftp dgram udp wait root /usr/etc/in.tftpd in.tftpd -s /
4. Add an entry for the bootpd server in /etc/inetd.conf as follows:
bootps dgram udp wait root /usr/osopen/bin/bootpd bootpd -i
5. Reconfigure inetd for the updates made to the inetd.conf file. First find the process ID for inetd :
ps -ef | grep inetd (Solaris)
ps -auex | grep inetd (Sun0S)
6. Send a hang-up signal to reconfigure inetd :

kill -HUP <process id>

bootp and tftp configuration is complete.

7.3.3 RS/6000 bootp and tftp Configuration

To modify the /etc/bootptab file, you need to log in as root or the superuser (su). Entries describing
the evaluation board to the host workstation must be added to this file. Complete details describing
the bootptab file format are available in the AIX Command Reference under “bootpd”. File entries
suitable for our purposes are shown below.

slipc:hd=\osopen\m405_evb\samples:bf=boot.img:bs:ip=8.1.1.5:sm=255.255.255.255
enetc:ht=ethernet:hd=\osopen\m405_evb\samples:bf=boot.img:bs:ip=7.1.1.5:
sm=255.255.255.255:ha=xXXXXXXXXXXX

Each of the entries, slipc and enetc, should be entered on a single line. The value of the Ethernet
hardware address field in the enetc entry, ha=xxxxxxxxxxxx, should match the twelve character
hardware address listed for the Ethernet Boot Source on the ROM Monitor menu.

Both connections use the file /usr/osopen/m405_evb/samples/boot.img as the source for the
application image to be downloaded onto the board. Be sure that the ht=ethernet keyword is used for
the Ethernet connection entry and that the IP addresses are those of the board. Note that the IP
address in the slipc entry must match that of the IP address assigned to the board during serial port
setup. Since a board IP address was not required for Ethernet setup, the IP address used in the
enetc entry defines the IP address of the board for the Ethernet connection. If the suggested
bootptab entries are used, 7.1.1.5 would be the board’s Ethernet IP address. Take note of the
board’s IP addresses, since they must be made known to the ROM Monitor.

To start the bootp and tftp daemons on systems running AIX 4, do the following:

1. Log in as root or the superuser (su).

2. Enter smit.

Revised 8/22/00 v. 0.8 ROM Monitor 7-5

—Preliminary Copy

3. Select Processes and Subsystems

4. Select Subservers .

5. Select Start a Subserver .

6. Select bootps .

7. Select OK.

Upon successful completion, bootp configuration is complete. Select Done and continue for tftp .
1. Select Start a Subserver .

2. Select tftp .

3. Select OK.

4. Select Done.

Upon successful completion, tftp configuration is complete. Select Exit to leave smit .

7.4 Accessing the ROM Monitor

The ROM Monitor expects a real or emulated VT100 type ASCII display attached to serial port 1 with
line protocol parameters of 9600 bps, eight bits per character, no parity, and one stop bit. Once the
terminal connected to SP1 is configured properly, you can access the ROM Monitor menu options,
use the ping test, and load an application onto the board.

The ROM Monitor also provides the interface to the RISCWatch debugger. This facility, along with the
image download process, is accessed via an IP network connection to the host workstation. Network
configuration of the host was discussed earlier in the chapter on host configuration. The actual
connection is either via SLIP (Serial Link Interface Protocol) running on serial port 2 at speeds up to
56Kbps, or via standard Ethernet using the 10BaseT/100BaseTX Ethernet port on the board.

7.5 ROM Monitor Operation

The ROM Monitor requires a block of DRAM for its operation and makes some assumptions about
applications loaded on the board. Some of these assumptions may be disregarded if you do not need
the ROM Monitor to interface with a debugger or otherwise support communication between the host
workstation and the board.

Applications wishing to coexist with the ROM Monitor must observe the following constraints.

» Provide exception vectors for application events starting at address 0x0000 0000. For example, an
application’s external interrupt handler should be located at 0x0000 0500. This is handled for you
when using OS Open.

» Use storage addresses between 0x0002 5000 and the end of DRAM only, except for application
vectors.

* Do not alter the EVPR register.
» Do not start applications lower than address 0x0002 5000.

7-6 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Figure 7-1 shows the address map of the reference board under control of the ROM Monitor.

OXFFFF FFFF
ROM Monitor Code (Flash)
OxFFFE 0000

0x0100 0000
(end of DRAM)

Application Area

0x0002 5000
ROM Monitor Area (DRAM)
0x0000 2000
0x0000 0000

Figure 7-1. ROM Monitor Address Map

Application Vectors

7.6 Monitor Selections and Submenus

At this point it is assumed that the host has been properly configured, all board connections have
been made, power has been supplied, and the terminal emulator running on the host has been
configured and started successfully. The main menu, shown below, is displayed after the board has
been reset and the ROM Monitor completes initialization. Note that some of the values you see, in
particular the ROM Monitor version, the IP addresses, and the Ethernet controller’'s hardware
address, may differ with those shown below.

Each menu option is described separately in the following sections. “Local” in the context of the ROM
Monitor IP addressing means the IP address assigned to the board, while “remote” means the IP
address assigned to the host workstation. Using option 8 to save changes made to the configuration
will allow the new values to persist beyond subsequent power-on or resets. The ROM Monitor
supports this by storing its configuration data in NVRAM.

Revised 8/22/00 v. 0.8 ROM Monitor 7-7

—Preliminary Copy

7.6.1 Initial ROM Monitor Menu
The following menu is displayed after the board has been reset.

405GP 1.3 ROM Monitor (7/6/99)

————————————————————— System Info

Processor =405GP, PVR: 40110000
Processor speed =200 MHz

PLB speed =100 MHz

Ext Bus speed =50MHz

PCI Bus speed =33 MHz (Sync)
Amount of SDRAM =16 MBytes
External PCI arbiter enabled

--- Device Configuration ---

Power-On Test Devices:
000 Enabled System Memory [RAM]
001 Enabled Ethernet [ENET]
004 Enabled Serial Port 2 [S2]

Boot Sources:
001 Enabled Ethernet [ENET]
local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
004 Enabled Serial Port 2 [S2]
local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
005 Enbaled Serial Port 1 [S1]
Baud=9600

Debugger: Disabled

1 - Enable/disable tests
2 - Enable/disable boot devices
3 - Change IP addresses
4 - Ping test
5 - Toggle ROM monitor debugger
6 - Toggle automatic menu
7 - Display configuration
8 - Save changes to configuration
9 - Set baud rate for s1 boot
A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue
->

7-8 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

7.6.2 Selecting Power-On Tests

Option 1 in the main menu selects power-on tests. These tests are run when the menu exits and
before the ROM loader begins the bootp processing.

1 - Enable/disable tests
2 - Enable/disable boot devices
3 - Change IP addresses
4 - Ping test
5 - Toggle ROM monitor debugger
6 - Toggle automatic menu
7 - Display configuration
8 - Save changes to configuration
9 - Set baud rate for s1 boot
A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue
>1

When option 1 is selected, the following submenu is displayed.

--- ENABLE AND DISABLE POWER-ON TESTS ---
Power-On Test Devices:

000 Enabled System Memory [RAM]

001 Enabled Ethernet [ENET]

004 Enabled Serial Port 2 [S2]

Select device to change ->

Selecting a test toggles its testing status. For example, since the System Memory test is enabled in
the above menu, selecting 0 at the prompt disables it.

Select device to change -> 0 [Selects system memory]
After the selection has been made, the new setting is displayed, followed by the main menu.

Select device to change ->0
[RAM] test is disabled [Message describing change]

--- Device Configuration ---

Power-On Test Devices:

000 Disabled System Memory [RAM]
001 Enabled Ethernet [ENET]

004 Enabled Serial Port 2 [S2]

Boot Sources:
001 Enabled Ethernet [ENET]
local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
004 Enabled Serial Port 2 [S2]
local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
005 Enbaled Serial Port 1 [S1]
Baud=9600

Revised 8/22/00 v. 0.8 ROM Monitor 7-9

Debugger : Disabled

1 - Enable/disable tests
2 - Enable/disable boot devices
3 - Change IP addresses
4 - Ping test
5 - Toggle ROM monitor debugger
6 - Toggle automatic menu
7 - Display configuration
8 - Save changes to configuration
9 - Set baud rate for s1 boot
A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue
->

—Preliminary Copy

Remember to use Option 8 to save any configuration changes that you may have made. If the
changes are not saved, they will be lost upon an exit from the menu or upon a board reset.

7.6.3 Selecting Boot Devices

Option 2 in the main menu enables and disables boot devices.

1 - Enable/disable tests
2 - Enable/disable boot devices
3 - Change IP addresses
4 - Ping test
5 - Toggle ROM monitor debugger
6 - Toggle automatic menu
7 - Display configuration
8 - Save changes to configuration
9 - Set baud rate for s1 boot
A - Enable/disable | cache (Enabled)
B - Enable/disable Dcache (Enabled)
0 - Exit menu and continue
> 2

When option 2 is selected, the following submenu is displayed.

--- ENABLE AND DISABLE BOOT DEVICES ---
Boot Sources:
001 Enabled Ethernet [ENET}
local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
004 Enabled Serial Port 2 [S2]
local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
005 Enabled Serial Port 1 [S1]
Baud = 9600

Select device to change ->

7-10 PPC405GP Reference Design Kit User’'s Manual

v. 0.8

Revised 8/22/00

— Preliminary Copy

Selecting a device toggles its boot status. Selecting 4, for example, would disable Serial Port 2 as a
boot device.

Select device to change -> 4 [Selects serial port]

After the selection has been made, the new setting is displayed, followed by the main menu.

Select device to change ->4
[S2] boot is disabled [Message describing change]

--- Device Configuration ---

Power-On Test Devices:
000 Disabled System Memory [RAM]
001 Enabled Ethernet [ENET]
004 Enabled Serial Port 2 [S2]

Boot Sources:
001 Enabled Ethernet [ENET]
local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
004 Disabled Serial Port 2 [S2]
local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
005 Enbaled Serial Port 1 [S1]
Baud=9600

Debugger : Disabled

1 - Enable/disable tests
2 - Enable/disable boot devices
3 - Change IP addresses
4 - Ping test
5 - Toggle ROM monitor debugger
6 - Toggle automatic menu
7 - Display configuration
8 - Save changes to configuration
9 - Set baud rate for s1 boot
A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue
>

When the user selects option 0 and exits from the monitor menu, the monitor attempts a boot of the
application image on the host using the enabled boot sources in the order they are listed. In the above
example, a boot is attempted over Ethernet since it is the first boot source enabled. If more than one
boot source is enabled, an attempt to boot over the first enabled device is made. If that attempt fails, a
boot over the next enabled device is attempted.

Revised 8/22/00 v. 0.8 ROM Monitor 7-11

—Preliminary Copy

7.6.4 Changing IP Addresses

Option 3 in the main menu allows users to change the IP addresses for the board and the host
workstation. These addresses are used for bootp processing, debugger communications, and in the
host connectivity “ping” test.

Note: The local IP address is that of the board and the remote IP address is that of the host
workstation. The IP addresses must match those set during host configuration.

1 - Enable/disable tests

2 - Enable/disable boot devices

3 - Change IP addresses

4 - Ping test

5 - Toggle ROM monitor debugger

6 - Toggle automatic menu

7 - Display configuration

8 - Save changes to configuration

9 - Set baud rate for s1 boot

A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue

> 3

When option 3 is selected, the following submenu is displayed:

--- CHANGE IP ADDRESS ---
Device List:
001 Enabled Ethernet [ENET]
local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
004 Disabled Serial Port 2 [S2]
local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff

Select device to change ->

Select the appropriate device.

Select device to change -> 1 [Selects Ethernet]

When a valid device is selected, the following submenu is displayed.

1 - Change local address
2 - Change remote address
0 - Return to main menu
->

Make the appropriate selection. To change the board’s IP address, you would select option 1, Change
local address.

>1 [Selects the local address]
Current IP address = (7.1.1.5) [Displays the current value]
Enter new IP address ->Enter IP address in dot notation (e.g., 8.1.1.2)

Now enter the new IP address in dotted decimal notation.

7.1.15

7-12 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Atfter the selection has been entered, the new configuration is displayed, followed by the main menu.

--- Device Configuration ---

Power-On Test Devices:
000 Disabled System Memory [RAM]
001 Enabled Ethernet [ENET]
004 Enabled Serial Port 2 [S2]

Boot Sources:
001 Enabled Ethernet [ENET]
local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
004 Disabled Serial Port 2 [S2]
local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
005 Enbaled Serial Port 1 [S1]
Baud=9600

Debugger : Disabled

1 - Enable/disable tests
2 - Enable/disable boot devices
3 - Change IP addresses
4 - Ping test
5 - Toggle ROM monitor debugger
6 - Toggle automatic menu
7 - Display configuration
8 - Save changes to configuration
9 - Set baud rate for s1 boot
A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue
->

This option should be repeated to set all of the IP addresses to their appropriate values. If the
suggested IP addresses are being used, the local and remote addresses for both the Ethernet and
the Serial Port should match those in the above menu. Remember to save any configuration changes
via option 8.

7.6.5 Using the Ping Test

Option 4 in the main menu selects the ping test. The ping test can be used for a basic assurance test
of IP connectivity to the host workstation. It should be performed after setting the IP addresses to
insure host-to-board communications. If the ping test fails, users can not load applications on to the
board. The local and remote addresses for the specified device are used for the source and
destination of the ICMP ping packets.

Revised 8/22/00 v. 0.8 ROM Monitor 7-13

—Preliminary Copy

1 - Enable/disable tests
2 - Enable/disable boot devices
3 - Change IP addresses
4 - Ping test
5 - Toggle ROM monitor debugger
6 - Toggle automatic menu
7 - Display configuration
8 - Save changes to configuration
9 - Set baud rate for s1 boot
A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue
>4

When option 4 is selected, the current configuration is displayed, followed by another command
prompt.

--- PING TEST ---
Device List:
001 Enabled Ethernet [ENET]
local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
004 Disabled Serial Port 2 [S2]
local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff

Select device to ping ->

Select the appropriate device to ping (in this case only Ethernet is enabled).

Select device to ping -> 1 [selects the Ethernet port]

If the board is able to successfully ping the host, a message similar to the following should appear:

Using [ENET] to ping. press any key to stop.

PING 7.1.1.4 56 data bytes

78 bytes from 7.1.1.4: icmp_seq=0 ttl=255 time=2 ms
78 bytes from 7.1.1.4: icmp_seq=2 ttl=255 time=1 ms

7-14 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Pressing any key terminates the ping test. The main menu is redisplayed following the PING status
report.

--- 7.1.1.4 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss
1 - Enable/disable tests

2 - Enable/disable boot devices

3 - Change IP addresses

4 - Ping test

5 - Toggle ROM monitor debugger

6 - Toggle automatic menu

7 - Display configuration

8 - Save changes to configuration

9 - Set baud rate for s1 boot

A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue

->

If the ping test fails,

» Verify that the local and remote IP addresses are set correctly. The local IP address should be that
of the board and the remote IP address should be that of the host. These IP addresses were
assigned during host configuration (see earlier chapter).

» Verify that the cables are connected properly.
» Verify TCP/IP is running on the host.

Note: The ROM Monitor will not respond to an inbound ping test from the host unless the ROM
Monitor is in Debug mode (via options 5 and 0) or the ROM Monitor ping test is active on the
board at the same time (via option 4).

7.6.6 Entering the Debugger

Option 5 toggles the feature of the ROM Monitor that allows communication with the host based
source level debugger. Debugging may be enabled/disabled, and saved as part of the configuration
using option 8. The debugger is not actually called by the monitor until after the user exits the main
menu by selecting option 0 (exit and continue).

--- Device Configuration ---

Power-On Test Devices:
000 Disabled System Memory [RAM]
001 Enabled Ethernet [ENET]
004 Enabled Serial Port 2 [S2]

Boot Sources:
001 Enabled Ethernet [ENET]
local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
004 Disabled Serial Port 2 [S2]
local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
005 Enbaled Serial Port 1 [S1]
Baud=9600

Revised 8/22/00 v. 0.8 ROM Monitor 7-15

—Preliminary Copy

Debugger : Disabled

1 - Enable/disable tests
2 - Enable/disable boot devices
3 - Change IP addresses
4 - Ping test
5 - Toggle ROM monitor debugger
6 - Toggle automatic menu
7 - Display configuration
8 - Save changes to configuration
9 - Set baud rate for s1 boot
A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue
> 5
ROM monitor debugger will be active on exit
1 - Enable/disable tests
2 - Enable/disable boot devices
3 - Change IP addresses
4 - Ping test
5 - Toggle ROM monitor debugger
6 - Toggle automatic menu
7 - Display configuration
8 - Save changes to configuration
9 - Set baud rate for s1 boot
A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue
> 7

--- Device Configuration ---

Power-On Test Devices:
000 Disabled System Memory [RAM]
001 Enabled Ethernet [ENET]
004 Enabled Serial Port 2 [S2]

Boot Sources:
001 Enabled Ethernet [ENET]
local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
004 Disabled Serial Port 2 [S2]
local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
005 Enbaled Serial Port 1 [S1]
Baud=9600

7-16 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Debugger : Enabled (on exit)

1 - Enable/disable tests
2 - Enable/disable boot devices
3 - Change IP addresses
4 - Ping test
5 - Toggle ROM monitor debugger
6 - Toggle automatic menu
7 - Display configuration
8 - Save changes to configuration
9 - Set baud rate for s1 boot
A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue
> O
PowerPC ROM Monitor Debugger

Waiting for debug command...
Press any key to exit

Use option 8 to save the state of the ROM Monitor debugger. This option in combination with option 6,
“Toggle automatic menu”, can be used to configure the board to automatically wait for the debugger to
attach after power-on.

The ROM Monitor debugger only communicates over Ethernet or Serial Port 2 (SLIP) so one of these
boot devices must be enabled when using the ROM Monitor debugger. After enabling the ROM
Monitor debugger (via option 5) and selecting option 0, the RISCWatch debugger can be started on
the host and used to load an application onto the board. This is assuming the RISCWatch
environment file has been updated for ROM Monitor communications. Once loaded successfully, the
application can be run from the debugger.

The RISCWatch Debugger User’s Guide contains more information on how to use the debugger to
load and execute files with the ROM Monitor as a non-JTAG target. At this point, it is recommended
that users become familiar with the debugging environment by following the “Quick Start” sample
debug session in the debugger’s User’'s Guide. This session takes a user through the basics,
including how to use the debugger to load and run applications on the board.

7.6.7 Disabling the Automatic Display

Option 6 in the main menu disables the automatic monitor display when the board boots up. After
option 6 has been selected and the configuration has been saved (via Option 8), the menu display is
disabled but continues to function until the user exits from the main menu. Following the next power-
on or reset, the menu is no longer automatically displayed. This allows the user’s image to be
downloaded automatically with no menu input required. This feature also allows a user to download
an application with no cable connected to the serial port 1 on the board (that is, without a terminal
emulator).

After the automatic menu display has been disabled, the main menu can be accessed (assuming a
terminal emulator is attached successfully to SP1 on the board) by pressing any key during the first

Revised 8/22/00 v. 0.8 ROM Monitor 7-17

—Preliminary Copy

five seconds that the board is booting. Otherwise, application download processing starts without
displaying the main menu.

7.6.8 Displaying the Current Configuration

Option 7 displays the current configuration.

1 - Enable/disable tests
2 - Enable/disable boot devices
3 - Change IP addresses
4 - Ping test
5 - Toggle ROM monitor debugger
6 - Toggle automatic menu
7 - Display configuration
8 - Save changes to configuration
9 - Set baud rate for s1 boot
A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue
-> 7

--- Device Configuration ---

Power-On Test Devices:
000 Disabled System Memory [RAM]
001 Enabled Ethernet [ENET]
004 Enabled Serial Port 2 [S2]

Boot Sources:
001 Enabled Ethernet [ENET]
local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
004 Disabled Serial Port 2 [S2]
local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
005 Enbaled Serial Port 1 [S1]
Baud=9600

Debugger : Enabled (on exit)

1 - Enable/disable tests
2 - Enable/disable boot devices
3 - Change IP addresses
4 - Ping test
5 - Toggle ROM monitor debugger
6 - Toggle automatic menu
7 - Display configuration
8 - Save changes to configuration
9 - Set baud rate for s1 boot
A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue
->

When a menu operation is selected to alter configuration settings, the current configuration is
automatically redisplayed.

7-18 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

7.6.9 Saving the Current Configuration

Option 8 saves the current configuration for subsequent power-on resets.

1 - Enable/disable tests
2 - Enable/disable boot devices
3 - Change IP addresses
4 - Ping test
5 - Toggle ROM monitor debugger
6 - Toggle automatic menu
7 - Display configuration
8 - Save changes to configuration
9 - Set baud rate for s1 boot
A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue
-> 8
Configuration has been saved
1 - Enable/disable tests
2 - Enable/disable boot devices
3 - Change IP addresses
4 - Ping test
5 - Toggle ROM monitor debugger
6 - Toggle automatic menu
7 - Display configuration
8 - Save changes to configuration
9 - Set baud rate for s1 boot
A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue
->

The configuration is saved in the NVRAM on the evaluation board and is retained until a new
configuration is subsequently saved.

7.6.10 Setting the Baud Rate for S1 Boots

Option 9 provides a mechanism for setting the baud rate to be used by serial port 1 when it is used as
a device to download programs. Downloading over serial port 1 requires the use of a VT100 terminal
emulator that supports kermit binary file transfer over serial port 1. RS/6000 and Sun users should
note that the TIP terminal emulator does not support kermit binary file transfers. Windows 95/98/NT
users can use HyperTerminal to perform kermit file transfers at up to 115200 baud. The kermit
terminal emulator, available as shareware from the http://www.columbia.edu/kermit Internet site,
can be used on any of the supported hosts to download programs over serial port 1 at speeds up to
115200 baud. Note that the ROM Monitor debugger can not operate over serial port 1.

Revised 8/22/00 v. 0.8 ROM Monitor 7-19

—Preliminary Copy

--- Device Configuration ---

Power-On Test Devices:
000 Disabled System Memory [RAM]
001 Enabled Ethernet [ENET]
004 Enabled Serial Port 2 [S2]

Boot Sources:
001 Enabled Ethernet [ENET]
local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
004 Disabled Serial Port 2 [S2]
local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
005 Enbaled Serial Port 1 [S1]
Baud=9600

Debugger : Enabled (on exit)

1 - Enable/disable tests

2 - Enable/disable boot devices

3 - Change IP addresses

4 - Ping test

5 - Toggle ROM monitor debugger

6 - Toggle automatic menu

7 - Display configuration

8 - Save changes to configuration

9 - Set baud rate for s1 boot

A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue

> 9
Select a baud rate for S1 boot
1- 9600
2- 19200
3- 28800
4- 38400
5- 57600
6- 115200
=4

--- Device Configuration ---

Power-On Test Devices:
000 Disabled System Memory [RAM]
001 Enabled Ethernet [ENET]
004 Enabled Serial Port 2 [S2]

Boot Sources:
001 Enabled Ethernet [ENET]
local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
004 Disabled Serial Port 2 [S2]
local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
005 Enbaled Serial Port 1 [S1]
Baud=38400

7-20 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Debugger : Disabled (on exit)

1 - Enable/disable tests
2 - Enable/disable boot devices
3 - Change IP addresses
4 - Ping test
5 - Toggle ROM monitor debugger
6 - Toggle automatic menu
7 - Display configuration
8 - Save changes to configuration
9 - Set baud rate for s1 boot
A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue
->

Use Option 8 to save the selected speed after reset and power-on.

7.6.11 S1 Boot

To perform an S1 boot you must have a terminal emulator which supports kermit file transfer. The file
must be a valid boot image and must be sent in binary mode. If you have selected to use a baud rate
other than 9600, you must set the terminal emulator to run at that speed before loading the file and
set the speed back to 9600 after the download is complete. The following example shows loading the
usr_samp.img file.

--- Device Configuration ---

Power-On Test Devices:

000 Disabled System Memory [RAM]
001 Disabled Ethernet [ENET]

004 Disabled Serial Port 2 [S2]

Boot Sources:
001 Disabled Ethernet [ENET]
local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
004 Disabled Serial Port 2 [S2]
local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
005 Enbaled Serial Port 1 [S1]
Baud=38400

Debugger: Disabled

1 - Enable/disable tests

2 - Enable/disable boot devices

3 - Change IP addresses

4 - Ping test

5 - Toggle ROM monitor debugger

6 - Toggle automatic menu

7 - Display configuration

8 - Save changes to configuration

9 - Set baud rate for s1 boot

A - Enable/disable | cache (Enabled)

Revised 8/22/00 v. 0.8 ROM Monitor 7-21

—Preliminary Copy

B - Enable/disable D cache (Enabled)
0 - Exit menu and continue

>0

Booting from [S1] Serial Port 1...

PLEASE NOTE: You must now...

a. Exit from terminal emulation mode

b. Modify the baud rate of your host session

c. Transmit a file to the target in binary mode
d. Reset the host baud rate to 9600

e. Reenter terminal emulation mode

f. Hit enter to execute the downloaded program

At this point kermit users must get to the terminal emulator command mode and change the line
speed to match what was selected by option 9 and tell the terminal emulator to send the file in binary
format.

MNc (Cntrl-\c)

(Back at waterdeep)
C-Kermit> set speed 38400
/dev/tty0, 38400 bps
C-Kermit> set file type bin

You can now load the file.

C-Kermit> send usr_samp.img

SF

Type escape character (M) followed by:

X to cancel file, CR to resend current packet

Z to cancel group, A for status report

E to send Error packet, Ctrl-C to quit immediately:

Sending: usr_samp.img => USR_SAMP.IMG
Size: 164864, Type: binary

When loading is completed, you must change the line speed back to 9600 bps before continuing.

C-Kermit> set speed 9600
/dev/tty0, 9600 bps

7-22 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

After setting the line speed back to 9600 bps, re-connect to your terminal emulator and press Enter to
complete the download.

C-Kermit> con

Connecting to /dev/tty0, speed 9600.

The escape character is Ctrl-\ (ASCII 28, FS)

Type the escape character followed by C to get back,
or followed by ? to see other options

Loaded successfully ...
Entry point at 0x25f20 ...

Hello 405GP user!

Your ROM Monitor version is : 1.3

Your 405GP Evaluation Board has 16777216 bytes of DRAM installed.
Your Ethernet controller’'s network address is : 1000abcdef55

usr_samp done!

Assuming the S1 boot baud rate has been set to 38400 and option 0 has been selected to exit the
ROM Monitor menu and initiate a load, Windows HyperTerminal users can initiate the kermit binary
file transfer by performing the following steps:

1. Select Call and then Disconnect .

2. Select File, Properties , Configure and set the baud to match the baud rate set via ROM Monitor
option 9. In this case, it is 38400.

. Select OK and OK again.
. Select Call and then Connect .

. Select Transfer, Send File and type the file name of the file to load. Set the Protocol to Kermit.

o 01~ W

. Select Send.

Upon successful completion of the transfer, the baud rate must be changed back to 9600.
7. Select Call and then Disconnect .

8. Select File, Properties , Configure and set the baud to 9600.

9. Select OK and OK again.

10.Select Call and then Connect .

11.Press Enter to complete the download sequence.

7.6.12 Exiting the Main Menu

Option 0 exits from the main menu, leaving the monitor active. If the debugger is active prior to
selecting option 0, the ROM Monitor waits for the user to start the debugger on the host. In all other
cases, option 0 initiates an attempt by the ROM Monitor to load an application from the host to the

Revised 8/22/00 v. 0.8 ROM Monitor 7-23

—Preliminary Copy

board over the enabled boot device(s). When downloading over the Ethernet or SLIP (S2), the host

bootp and tftp configuration must be completed for the ROM Monitor to load an application program
successfully. Upon exit of the menu, the ROM Monitor will send a bootp request to the host to obtain
the name of the file to download. Once the bootpd server returns the appropriate file name as set in
the bootptab file, the ROM Monitor sends a tftp request to the tftpd server on the host to transfer file.
Once the file is loaded successfully, it is executed.

When serial port 1 is used, the ROM Monitor requires the user to follow additional instructions to
complete the download. The example shown here describes the sequence required when programs
are downloaded over serial port 1.

- -- Device Configuration ---

Power-On Test Devices:
000 Disabled System Memory [RAM]
001 Disabled Ethernet [ENET]
004 Disabled Serial Port 2 [S2]

Boot Sources:
001 Disabled Ethernet [ENET]
local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
004 Disabled Serial Port 2 [S2]
local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
005 Enbaled Serial Port 1 [S1]
Baud=38400

Debugger : Enabled (on exit)

1 - Enable/disable tests
2 - Enable/disable boot devices
3 - Change IP addresses
4 - Ping test
5 - Toggle ROM monitor debugger
6 - Toggle automatic menu
7 - Display configuration
8 - Save changes to configuration
9 - Set baud rate for s1 boot
A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue
> 0
Booting from [S1] Serial Port 1...

PLEASE NOTE: You must now...

a. Exit from terminal emulation mode

b. Modify the baud rate of your host session

c. Transmit a file to the target in binary mode
d. Reset the host baud rate to 9600

e. Re-enter terminal emulation mode

f. Hit enter to execute the downloaded program

The ROM Monitor will now wait for you to follow the above steps. The idea is that you must
temporarily modify the terminal emulation session baud rate to match the baud rate expected by the

7-24 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

ROM Monitor for the serial port 1 download. The file must then be transferred to the board from the
host. The baud rate is restored to 9600 so that terminal emulation support can function after the
program has been downloaded, The ROM Monitor will wait for you to restore the baud rate (9600) and
press Enter prior to executing the downloaded program. This prevents any program I/O from being
lost or incorrectly displayed when it begins execution.

The following is an example of what you might see when the program is allowed to run.

Loaded successfully...
Entry point at 0x25130...

7.6.13 Cache Options

Options A and B allow the user to enable or disable the processor’s instruction and data caches,
respectively. These options toggle the status of the caches and take effect immediately upon
selection. The current cache status is indicated at the end of each option and remains in effect upon
exit from the ROM Monitor menu.

7.7 ROM Monitor User Functions

The ROM Monitor contains several functions that are available to user programs. The prototypes of
these functions can be found in the usr_func.h file in the directory \osopen\m405_evb\include (for
RS6000/SUN users the directory is /usr/osopen/m405_evb/include). These functions include:

send_packet_on_bootdev() Allows an IP packet to be sent over the device that was used to
load the application program (either the Ethernet or the second
serial port, SP2).

sh_register() Used to register a function that will be called when an IP packet is
received by the ROM Monitor over the boot device.

get_board_cfg() Reads the configuration data associated with the board.

enet_send_macframe() Allows a frame to be sent over the Ethernet.

enet_register() Allows the user to register an IP address for the Ethernet (an IP

address different from that assigned to the ROM Monitor) and to
specify a function to be called when a frame arrives for that

address.
enetisThere() Determines if the Ethernet chip is present on the board.
enetlnit() initializes the Ethernet.
getchar() Reads one character at a time from the keyboard buffer over the

first serial port (SP1).
slputchar() Writes one character to the first serial port (SP1).

Revised 8/22/00 v. 0.8 ROM Monitor 7-25

—Preliminary Copy

Applications must follow a predefined protocol to access ROM Monitor user functions. An example
showing the proper calling procedures are included in the usr_samp.c sample program in the
samples directory. This sample program calls the get_board_cfg() ROM Monitor function to
determine the amount of DRAM installed on the board. This program will be run as a sample program
in the next chapter.

7.8 Flash Update Utility

The openbios/flash directory contains all the code you need to reprogram the flash memory on the
board. This utility takes a binary image file targeted for the ROM as input, and generates a loadable
file that will reprogram the flash memory with the data in the binary input file. The file can then be
loaded by an existing ROM Monitor version (which will be overwritten upon successful completion of
the loaded program) or via RISCWatch JTAG.

IMPORTANT: Please see the readme.txt file in the openbios/flash directory for important
information regarding the use of this tool.

Be aware that if you use the ROM Monitor bootp or the RISCWatch ROM Monitor mode download
process to reprogram the flash, and the program loaded contains errors that will not allow you to
download images in the same manner, your flash may be corrupted and rendered useless. In this
case you will need to use RISCWatch JTAG or a ROM burner to reprogram the flash.

RISCWatch JTAG users will find a RISCWatch command file, rw_flash.cmd in the openbios/flash
directory. This command file can be used to prepare the board, load the flash update program
containing the new binary image to program into the ROM, and start it running. This method can be
used to program new flash parts, or to reprogram a corrupted flash part when normal ROM Monitor
downloads are not possible or inconvenient. When using this command file, RISCWatch must be
used in JTAG mode.

7.9 Network Address of the Ethernet Controller

The reference board’s 405GP Ethernet controller has been assigned a unique six-byte network
address. This address, also known as the media access control or MAC address, may need to be
known by customers using the board to develop their own ROM versions.

The easiest way to obtain its value is to hook up a terminal (or terminal emulator) to the serial port 1
(see Chapter 6.1, “Connecting the Reference Board to the Host”) and bring up the ROM Monitor.
After selecting option 7 to display the configuration, the controller’s network address is displayed in
the Ethernet boot source’s hwaddr field as twelve hex characters (six bytes).

Another way to obtain the address, is to search the Vital Product Data (VPD) area in ROM where the
network address is stored. The VPD fields consist of ASCII strings identifying the type of field, a
length byte specifying the length of the associated data, and the data itself. The VPD begins at
address OxFFFFFEOQO and is marked by field “*VPD” with 0 bytes of associated data. The network
address is marked by “*NA” with six bytes of associated data (the network address). Finally, the end
of the VPD is marked with “*END". To extract the network address, a program would typically start at
address OxFFFFFEOQO, scan for “*NA”, verify the next byte is 0x6, and treat the next six bytes as the
network address.

7-26 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Chapter 8. Sample Applications

This chapter describes the steps necessary to build and run the sample programs included in the
PPC405GP design kit software support package. This code includes a limited version of IBM's OS
Open real time operating system and is separate from the ROM Monitor code described in Chapter 7.

8.1 Overview

The sample application programs are compiled, assembled, and linked using the IBM High C/C++
compiler, assembler, and linker. OS Open libraries are used during the link step to create an
executable file in ELF format. This file includes the OS Open bootstrap code as well as other OS
Open functions and is referred to as a boot file. One of the tools provided in the software support
package, eimgbld , is then used to convert the boot file into the format used by the ROM Monitor to
load programs onto the evaluation board (see Appendix B for more information on the ROM Monitor
load format). The output of the eimgbld step is a file referred to as a boot image file.

There are several ways to load and execute a boot image file. One way is to use the ROM Monitor to
load and execute the file. Network loads over Ethernet or SLIP require that the host contain the bootp
and tftp servers and be properly configured to support the bootp and tftp protocols (see the previous
chapters on host configuration and ROM Monitor setup). Loads over serial port 1 require a terminal
emulator that supports the kermit transfer protocol. A ROM Monitor load is initiated via option 0 from
the ROM Monitor main menu.

Another way to load and execute the boot image file is to use the RISCWatch debugger in ROM
monitor mode. To bring up RISCWatch in ROM Monitor mode (see the RISCWatch Debugger User’s
Guide for details), you must update the RISCWatch environment file for ROM Monitor
communications, enable the ROM Monitor debugger (via option 5), exit the ROM Monitor menu (via
option 0) and then start up RISCWatch on the host system. The RISCWatch load image command
can then be used to load the boot image file onto the board. Once loaded successfully, the program
can be debugged and/or executed. At any time the RISCWatch logoff command can be issued to
execute the program. This command tells the ROM Monitor to exit debug mode and start the
execution of the program. After program execution, users should quit and restart RISCWatch before
loading another boot image file to run. Without quitting RISCWatch, subsequent boot image execution
can not be guaranteed.

Note: RISCWatch also provides the means to load a boot file (as opposed to a boot image file) via its
load file command. See the “Running Your Programs” section in the RISCWatch Debugger User’s
Guide for additional information. This section also describes the steps required to load and debug
boot and boot image files.

8.2 ROM Monitor Flash Image

The flash memory on the board comes preprogrammed with a specific version of the ROM Monitor.
This version may not be latest version of the ROM Monitor. To run the samples in the software support
package, the latest version should be used. The latest version of the ROM Monitor is included in the
software support package in the file:

\osopen\m405_evb\openbios\lib\rom_***.img (PC)

Revised 8/22/00 v.0.8 Sample Applications 8-1

—Preliminary Copy

/usr/osopen/m405_evb/openbios/lib/rom_***.img (RS6K & SUN)

where *** is equal to the ROM Monitor version. If the *** version number of the ROM Monitor in the
software support package does not match the version number displayed by the monitor when it
comes up on the board, you can load the more recent version of the monitor provided in the software
support package to re-program the flash memory.

The rom_***.img file can be loaded using the ROM Monitor or the RISCWatch debugger. For it to
load properly upon the selection of ROM Monitor option 0, it must be copied to boot.img if the
suggested bootptab entry was used (see “Configuration of bootp and tftp to Support ROM Monitor
Loads” on page 7-2).

To load using RISCWatch, enable the ROM Monitor debugger (via option 5), exit the ROM Monitor
menu (via option 0), start RISCWatch on the host system (make sure the RISCWatch environment file
is setup for ROM Monitor communications), then use the following RISCWatch commands to load and
execute the rom_***.img image file:

load image \osopen\m405_evb\openbios\lib\rom_***.img (PC)
load image /usr/osopen/m405_evb/openbios/lib/rom_***.img (RS6K & SUN)
logoff

You will see screen information similar to that shown below. Lines preceded by “$$” are annotation for
this example and do not appear on the screen.

3 Standard ROM Monitor load screen below
PPC405GP 1.2 ROM Monitor (11/6/99)
$$ Version 1.2 already installed corresponds to rom_12.img

————————————————————— System Info
Processor =405GP, PVR: 40110000
Processor speed =200 MHz

PLB Bus speed = 100MHz

Ext Bus speed =50 MHz

PCI Bus speed =33 MHz

Amount of SDRAM =16 MB (Bank 1 Enabled)
External PCI arbiter enabled

--- Device Configuration ---

Power-On Test Devices:

000 Disabled System Memory [RAM]
001 Disabled Ethernet [ENET]

004 Disabled Serial Port 2 [S2]

Boot Sources:
001 Enabled Ethernet [ENET]
local=7.1.1.5 remote=7.1.1.4 hwaddr=1000abcdef55
004 Disabled Serial Port 2 [S2]
local=8.1.1.5 remote=8.1.1.4 hwaddr=ffffffffffff
005 Disabled Serial Port 1 [S1]
Baud=38400

8-2 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Debugger: Disabled

1 - Enable/disable tests
2 - Enable/disable boot devices
3 - Change IP addresses
4 - Ping test
5 - Toggle ROM monitor debugger
6 - Toggle automatic menu
7 - Display configuration
8 - Save changes to configuration
9 - Set baud rate for s1 boot
A - Enable/disable | cache (Enabled)
B - Enable/disable D cache (Enabled)
0 - Exit menu and continue
_>0
3 Selection of 0 causes evaluation board to be loaded. Previous
$$ arrangements must have been made to place the new ROM Monitor
3 image (for ex. \osopen\m405_evb\openbios\lib\rom_13.img) in the
$$ place where bootp expects to find it (for ex. boot.img)
Booting from [ENET] Ethernet...
Sending bootp request ...

Loading file “\osopen\m405_evb\samples\boot.img” ...
Sending tftp boot request ...

Transfer Complete ...

Loaded successfully ...

Entry point at 0x25028 ...

$$ following information is from the ROM Monitor update program
HiHEHHEHAH IBM 405GP Evaluation Kit FLASH Update ###H
ROM Monitor Version 1.3

3 Heed the following warning. The ROM Monitor image could be
3 rendered unusable and the board useless until the flash ROM is
$$ replaced.
WARNING: You are about to re-program your ROM Monitor FLASH
image. Do NOT turn off power or press reset
until this procedure is completed. Otherwise
the card may be permanently damaged!!!

Do you wish to continue? (y or n) y

Verifying new FLASH Image...
131072 matches, 0 mismatches

Update complete!
All done!

After the update completes, a reset of the board should display the menu of the new ROM Monitor
version.

Revised 8/22/00 v.0.8 Sample Applications

—Preliminary Copy

8.3 Using the Software Samples

The sample application programs are in \osopen\m405_evb\samples (for RS6K & SUN the directory
is /usr/osopen/m405_evb/samples). It is recommended that users first build and run the Dhrystone,
usr_samp, and timesamp sample programs as detailed below, to become familiar with the working

environment. These sample programs use basic_os.c to provide a minimal OS Open configuration.

Additional details regarding the sample programs and application development in general can be
found in the “Developing OS Open Applications” chapter in the IBM OS Open User’s Guide. That
chapter should be referenced for instructions on building and running the applprog, benchmk,
mailsamp, and cat sample programs.

The sample makefile contains the directives needed to build all the sample programs. It is suggested
that this makefile be used as the starting point for building subsequent user applications.

Before attempting to build the samples, ensure the osopen/bin directory and the directory that
contains the compiler, are part of your execution path (these steps should be modified accordingly
based on where the compiler and the software support package were actually installed).

For PC hosts:
1. Edit AUTOEXEC.BAT using an editor such as e (you should back this file up before editing).
2. If the following statement is missing, add it to the end of the file.
SET PATH=C:\highcppc\bin;C:\osopen\bin;%PATH%;
3. Run AUTOEXEC.BAT to update your path.
For RS/6000 and SUN hosts:
1. Issue the command:
export PATH=$PATH:/usr/osopen/bin:/usr/highcppc/bin
OR (to update your PATH permanently):
1. Edit ~/.profile using an editor such as vi.

2. Add PATH=$PATH:/usr/osopen/bin:/usr/highcppc/bin as a line in your profile before the
line “export PATH".

3. Run . ~/.profile to update your profile.

Note: The "make" utility supplied with the PC version of the kit may not run under a Windows NT
command prompt that is started by cmd.exe. To avoid potential problems, start a DOS
command prompt using the command COMMAND.COM and compile from there. Also, some
Windows 95/98 users may receive a “Program Requires MS-DOS Mode” pop-up message
when compiling. To prevent this annoying message from occurring, select ‘Properties’ for the
MS-DOS window you are compiling from, then select Advanced and ensure that the ‘Suggest
MS-DOS mode as necessary’ box is hot checked.

8.3.1 Building and Running the Dhrystone Benchmark

The Dhrystone benchmark is a commonly available integer benchmark. Since the main loop of this
benchmark fits into the caches of many processors, its validity as a predictor of system performance

8-4 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

may be suspect. It is included here as an example of an application to be built, loaded onto the
evaluation board, and executed.

To build the Dhrystone benchmark, enter the command make dhry from the command line while in
the samples directory. The makefile will compile the Dhrystone source files, link the resulting object
files with the support libraries, and produce the boot file, dhry, and the boot image file, dhry.img .

If the bootptab entry suggested in Chapter 4, “Host Configuration,” was used, then dhry.img must be
renamed or copied to boot.img in order to be selected by the ROM Monitor load process. Select
option 0 from the ROM Monitor screen to load and run the image.

To load using RISCWatch, enable the ROM Monitor debugger (via option 5), exit the ROM Monitor
menu (via option 0), start RISCWatch on the host system (make sure the RISCWatch environment file
is setup for ROM Monitor communications), then use the RISCWatch load image command to load
the dhry.img file. Once successfully loaded, the logoff command can be issued to execute the
program.

You should see the following messages (or ones like them) appear on the ROM monitor screen.
Explanations enclosed by () do not appear on the screen but are added here as clarification.

Booting from [ENET] Ethernet...
Sending bootp request...

(This requests the Host workstation to return the name of the boot image.)

Loading file “\osopen\m405_evb\samples\boot.img”...
Sending tftp boot request...

(Having obtained the file name, the ROM monitor uses tftp to retrieve the file from the host
workstation.)

Transfer Complete...
Loaded successfully...
Entry point at 0x25a18...

(Having loaded an image, the ROM monitor is now transferring control to the application. Subsequent
messages are from the application.)

Dhrystone Benchmark, Version 2.1 (Language: C)
Program compiled without ‘register’ attribute
Please give the number of runs through the benchmark:

At this point, enter the number of desired iterations. The test is designed not to give results if the
selected iterations completes in less two seconds, so pick a large number (= 1000000). After the test
completes, a check screen will be displayed, followed by the benchmark results. The results may vary
based on the system environment.

8.3.2 Building and Running the usr_samp Program

The usr_samp.c program is included as a sample to be built and run on the EVB. It's a simple
program that shows how to properly call the get_board_cfg() ROM Monitor user function to determine
the ROM Monitor version, the amount of DRAM installed on the board and the Ethernet controller’'s
MAC address. Developers interested in using any of the ROM Monitor user functions should use this
program as a guide.

Revised 8/22/00 v.0.8 Sample Applications 8-5

—Preliminary Copy

To build the usr_samp program, enter the command make usr_samp from the command line while in
the samples directory. The makefile will compile the usr_samp.c file, link the resulting object file with
the support libraries, and produce the boot file, usr_samp , and the boot image file, usr_samp.img .

If the suggested bootptab was used, then usr_samp.img must be renamed or copied to boot.img in
order to be selected by the ROM Monitor load process.Select option 0 from the ROM Monitor screen
to load and run the image.

To load using RISCWatch, enable the ROM Monitor debugger (via option 5), exit the ROM Monitor
menu (via option 0), start RISCWatch on the host system (make sure the RISCWatch environment file
is setup for ROM Monitor communications), then use the RISCWatch load image command to load
the usr_samp.img file. Once successfully loaded, the logoff command can be issued to execute the
program.

You should see the following messages (or ones like them) appear on the ROM Monitor screen.

Booting from [ENET] Ethernet...
Sending bootp request...

Loading file “\osopen\m405_evb\samples\boot.img”...
Sending tftp boot request...

Transfer Complete...

Loaded successfully...

Entry point at Ox25e48...

Hello 405GP user!

Your ROM Monitor version is: 1.3

Your 405GP Evaluation Board has 16777216 bytes of DRAM installed.
Your Ethernet controller’'s network address is: 1000abcdef55

usr_samp done!

The DRAM amount listed should match the amount installed on the board.

8.3.3 Building and Running the timesamp Program

The timesamp.c program is included as a sample to be built and run on the EVB. This program is an
example of how to properly time a particular function or benchmark. The user must know and define
the time base frequency (the number of times the time base register is updated per second) in the
timesamp.c to ensure the timing calculations are accurate.

To build the timesamp program, enter the command make timesamp from the command line while in
the samples directory. The makefile will compile the timesamp.c file, link the resulting object file with
the support libraries, and produce the boot file, timesamp , and the boot image file, timesamp.img .

If the suggested bootptab was used, then timesamp.img must be renamed or copied to boot.img in
order to be selected by the ROM Monitor load process. Select option 0 from the ROM Monitor screen
to load and run the image.

8-6 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

To load using RISCWatch, enable the ROM Monitor debugger (via option 5), exit the ROM Monitor
menu (via option 0), start RISCWatch on the host system (make sure the RISCWatch environment file
is setup for ROM Monitor communications), then use the RISCWatch load image command to load
the timesamp.img file. Once successfully loaded, the logoff command can be issued to execute the
program.

You should see the following messages (or ones like them) appear on the ROM Monitor screen.

Booting from [ENET] Ethernet...
Sending bootp request...

Loading file “\osopen\m405_evb\samples\boot.img”...
Sending tftp boot request...

Transfer Complete...

Loaded successfully...

Entry point at Ox25e48...

Please give the number of runs through the benchmark:

At this point, enter the desired number of runs through the function or benchmark being timed. In this
sample, the function being timed should execute for approximately a second, so a number between 1
and 10 would sulffice.

8.3.4 Setting the time in the on-board clock

The battery-backed clock can be synchronised to real (wall-clock) time. A sample function to do this is
provided in the samples file utils.c . The function set_time_once_only() requires that you edit its
source code to provide the current time and date infomation. We suggest that you enter a time which
is a couple of minutes into the future, to give you time to finish editing the file, recompile, link and
download it onto the evaluation board. When the wall-clock time reaches the time that you set in the
source code, run the function. This is a one-time only effort, as the battery will ensure that the clock
remains set even when power is removed from the board.

8.3.5 PPC405 MAC instruction sample

This sample program demonstrates the performance advantage of the 405 MAC
(multiply/accumulate) instructions for common DSP operations. It is built in to the applprog sample
image. Refer to the OS Open User’s Guide for more information on building applprog .

The easiest way to use the program is to call it from the OpenShell prompt as “macsamp()”. It will then
use standard input and output for the prompts and responses. No file system is required for the basic
operation of the program, but if it is desirable to save the outputs, around 250 Kbytes of space is
required in the current directory.

First, the program generates a 3 second sample data stream in storage. The sample consists of three
sine waves (625, 1250, and 3750 Hz) sampled at 20 KHz using 16-bit signed samples. The program
then allows the user to select one of two filter implementations, one using the MAC instructions and
another one using the same underlying logic, but implemented using only basic PowerPC
instructions. The filter is a 60th order lowpass FIR filter with a stopband gain of -70 db, passband
edge at 1.5 KHz, and stopband edge at 3.0 KHz. The filter coefficients were calculated using the
programs supplied with “Analog and Digital Filter Design using C” by Les Thede (Prentice Hall ISBN
0-13-352627-5). This book is an excellent reference in understanding the logic of the filter itself.

Revised 8/22/00 v.0.8 Sample Applications 8-7

—Preliminary Copy

The cycle count (as derived from timebase values) for the filter operation is displayed, so by running
the program twice, selecting each filter, the performance benefit of the MAC instructions is shown.

The program also allows the original sample and the filter output to be saved as .WAV files, if a local
file system exists. Curious users can transfer the files via FTP to a PC and hear the audible difference
the lowpass filter makes. Shown below are frequency domain plots of the generated input sample and

the filtered output.

I Analysis - sinetest. way

]
N Y) O I
Illl---il-----

Hz 1000 2000 3000 4000 S000 GOOD 700D 2000 9000
Cursor: | 5251 Hz, -86.3 dB ¥ Linear View
Frequency: | 12498 Hz (D#E +7)
EFT Size: |k

Hange (120 dB

hd | H arnming hd

-102

Cloze

Help

The 3 sine waves are clearly shown in the input sample as being equal amplitude.

8-8 PPC405GP Reference Design Kit User’'s Manual v. 0.8

Revised 8/22/00

— Preliminary Copy

I Analysis - sinetout.way

Hz 1000 2000 2000 4000 S000 GO00 rooo 2000 anno

Curzor | 5427 Hz, -117 .2 dB v Linear Yiew
Frequency: | 12498 Hz (DRE +7) Llose
| Bange 120 dB

EFT Size: |ickr=-lE ~ |Hamming il Help

The output sample shows the first two sine waves virtually unchanged, but the signal at 3750 Hz has
been significantly attenuated, as you would expect for the lowpass roll off beginning at 1.5 KHz. You
can also see some amplitude ripples in the transition zone as a result of the filter method used.

8.4 Resolving Execution Problems
Configuration errors in the network or bootp tables cause most of the problems with running the

sample applications. This section contains information that will aid users in identifying common
problems.

Revised 8/22/00 v.0.8 Sample Applications 8-9

—Preliminary Copy

8.4.1 Using the Ping Test on the ROM Monitor to Verify Connectivity

If the ping test fails, verify that TCP/IP is running on the host system and that the IP addresses on the
selected interface are correct. The local address refers to the IP address of the evaluation board, and
the remote refers to the host workstation address. The host workstation address must match the one
selected during configuration of the host network interface. Also consult your TCP/IP documentation
to insure proper network configuration.

8.4.2 Setup of bootp and tftp Servers (Daemons) for ROM Monitor Loads

Insure that the bootp and tftp servers are started on the host workstation. If possible, use the tftp
command from another workstation to retrieve the load image. If this fails, make sure the image exists
in the target directory and that it is readable by “others”. If the tftp transfer succeeds, check the
bootptab entry in the bootptab file to insure that it specifies the correct interface and IP address of
the evaluation board.

8.5 Using OS Open Functions

OS Open provides the following major classes of functions for the embedded programming
environment:

» Thread management

The unit of execution context for OS Open is the thread as defined by POSIX standards. Functions
are provided to create threads with various scheduling and execution attributes. To manage the
execution environment, serialization and synchronization primitives are part of OS Open. The
system also provides functions to associate data with specific threads.

» Storage management

OS Open supports variable block allocations in the form of a heap. Functions are provided to
extend the heap, query heap usage, and allocate storage to meet alignment constraints. OS Open
also provides an independent storage management mechanism to allocate fixed blocks of storage
in constant time.

* Interrupt and fault support

OS Open provides functions to attach user-written code to any of the processor exceptions and
interrupts. Most of the functions of OS Open can be used in these interrupt handlers, except for
those functions that suspend execution or are valid only in the context of an executing thread.
When the underlying hardware platforms support it, OS Open platform-specific libraries provide
additional functions to attach user-written code to external interrupts supported on the platforms.

» Clock and timer management

OS Open functions provide time-of-day clock support and the ability to create, use, and destroy
timers. These timers can be one-time or periodic.

» Device support

OS Open functions support the installation of user-written device drivers to provide character
special files, block special files, and logical file systems. Low-level POSIX I/O (read, write) as well
as ANSI C stream (fget, fput) functions are provided for device and regular file access.

* ANSI C library support

8-10 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

OS Open provides a comprehensive set of ANSI C functions, providing support for string
manipulation, memory management, string-to-number conversion, input/output, non-local jumps,
and variable arguments.

» Pseudo device driver support

OS Open provides several functions, such as TTY and DOS file system functions, that are installed
and managed like device drivers, but they do not manipulate actual hardware nor do they have
platform or device dependencies.

OS Open provides functions that create and manage TCP/IP sockets. Network interface functions
for Token Ring, Ethernet, and Serial Line Interface Protocol (SLIP) are also provided. With the
TCP/IP protocol stack and network interfaces, additional functions are provided that implement
several popular networking utilities, such as ping, ifconfig, ftp, and telnet.

» Debug functions and kernel abstract data types

OS Open provides functions that set, clear, and query break points. OS Open features an internal
circular trace buffer for operating system and user events. Also, functions are provided that dump
kernel data objects in a readable form.

Additional information can be found in the OS Open’s User’s Guide.

Revised 8/22/00 v.0.8 Sample Applications 8-11

—Preliminary Copy

8-12 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Chapter 9. Application Libraries and Tools

This chapter describes some of the application libraries and tools available in the PPC405GP design
kit board support software package. See the OS Open User’s Guide and Programmer’s Reference for
additional information.

9.1 OS Open Libraries

The OS Open operating system is composed of a real-time executive and optional libraries of
functions and macros.

The real-time executive provides a operating system core for embedded applications. Depending on
an application’s requirements, an embedded application may also incorporate one or more optional
libraries.

This modular approach enables embedded system developers to scale an OS Open operating
system to match their application requirements. Because unneeded features are not present, an OS
Open configuration can provide savings in system hardware, initialization and reset time, and
program size.

Table 9-1 summarizes the OS Open libraries, described in the OS Open User’s Guide and in this
user’s guide. For detailed descriptions of the OS Open functions and macros, refer to the OS Open
Programmer’s Reference.

Table 9-1. OS Open Libraries

Library File Name Platforms
Alignment Exception Support Library alignLib.a Common
ANSI C Library cLib.a Common
ANSI C Math Library mathLib.a Common
ANSI C I/O Library fsLib.a Common
Bios Ethernet Library benetLib.a PPC405GP
Block Buffer Library bbuffLib.a Common
Block Library blkLib.a Common
Extended Heap Library heapLib.a Common
Boot Library(DRAM) bootlLib.a PPC405GP
C++ runtime support (High C++"" support) Library | cppLib.a, crti.o, ELF
crtn.o,mwdctorl.
o}
Card Services/enabler software layer for PCMCIA | csLib.a Common
support
Revised 8/22/00 v.0.8 Application Libraries and Tools 9-1

9-2

Table 9-1. OS Open Libraries (Continued)

—Preliminary Copy

Library File Name Platforms
Clock Support Library and NV-RAM clockLib.a PPC405GP
Debug Support Library dbLib.a Common
Device and File Support Library devLib.a Common
DOS File System Support Library fatLib.a Common
Dynamic Loader Library IdrLib.a Common
Ethernet Support Library enetLib.a PPC405GP
File Transfer Protocol Support Library ftpLib.a Common
Floating Point Library fpeLib.a Common
I2C Library i2cLib.a PPC405GP
Input/output Support Library ioLib.a PPC405GP
Kernel Abstract Data Types Library kadtLib.a Common
Keyboard/Mouse Controller Library keybLib.a PPC405GP
Network Support Library netLib.a Common
NFS Support Library nfsLib.a Common
On-Chip Memory Support Library ocmLib.a PPC405GP
OpenShell shell.o Common
PCI Library pciLib.a PPC405GP
PCMCIA ATA/IDE Hard disk device driver pataLib.a Common
PowerPC Low Level Access Support Library ppcLib.a PPC405GP
Queue Library queLib.a Common
RAM Disk Library ramdLib.a Common
Rate Monotonic Scheduling (RMS) Library rmsLib.a Common
Remote Source Level Debug Library rsidLib.a Common
Ring Buffer Library rngLib.a Common
RPC Support Library rpcLib.a Common
Runtime Library runlib.a Common
SCSI Support Library scsiLib.a Common
Serial Support Library asynclLib.a PPC405GP
Socket Services for PCMCIA support ssLib.a Common
Symbol Support Library symLib.a Common
TCP/IP Protocol Support Library tcpipLib.a Common
PPC405GP Reference Design Kit User’'s Manual v. 0.8

Revised 8/22/00

— Preliminary Copy

Table 9-1. OS Open Libraries (Continued)

Library File Name Platforms
Telnet Daemon Support Library tnetdLib.a Common
Telnet Client Support Library telnet.o Common
The Real-time Executive rtx.o, rtxLib.a Common
OS Open Minimal Kernel rtxmin.o Common
OS Open Kernel Extensions for the minimal rtxext.o Common
kernel
Timer Tick Support tickLib.a PPC405GP
Trivial File Transfer Protocol tftp.o Common
TTY Support Library ttyLib.a Common
VGA Display Library vgalib.a PPC405GP

The real-time executive, the only required component in an OS Open operating system, provides a
full set of basic operating system services:

Thread management

Virtual memory management for OS Open with Virtual Memory

Storage management
Signals

Clocks and timers
Interrupt and fault handling
Message queues
Semaphores

Trace buffer support
Miscellaneous services

The C functions for the real-time executive functions are in two libraries, rtx.o and rtxLib.a . The rtx.o
library contains the OS Open real-time executive. The rtxLib.a library contains interface routines to
OS Open functions, and is linked with application programs to resolve calls to the real-time executive.

9.2

The object libraries specific to the reference board are described below.

Using Libraries and Support Software

Table 9-2. OS Open Libraries for the Reference Board Platform

Library File Name
Boot Library(RAM) bootlLib.a
Ethernet Device Driver Support Library enetLib.a
I2C Library i2cLib.a
Revised 8/22/00 v.0.8 Application Libraries and Tools

9-3

—Preliminary Copy

Table 9-2. OS Open Libraries for the Reference Board Platform

Library File Name
Input/Output Support Library ioLib.a
Keyboard/mouse Controller Library keybLib.a
PowerPC Low Level Access Support Library ppcLib.a
Real-time Clock Interface Support Library clockLib.a
ROM Monitor Ethernet Interface Library benetLib.a
Serial Support Library asynclLib.a
Software Timer Tick Support Library tickLib.a

9.2.1 Serial Port Support Library

This library supports the serial ports on the reference board. Use in conjunction with the function
provided by devLib.a and fsLib.a to provide a high level I/O interface to application programs. The
serial port support functions reside in the asyncLib.a library.

9.2.2 Boot Library (RAM)

This library contains the OS Open bootstrap program for the appropriate platform. The boot library
performs initial processing to prepare the completed application program for execution on the board.
For the reference board platform, this processing includes moving the loaded program such that real
addresses correspond with addresses assumed by the language development tools. The boot library
for the reference board platform also dynamically determines available heap space and prepares the
symbol table for use by OS Open symbol management routines. The boot library does not export any
functions.

9.2.3 Input/Output Support Library

The input/output functions reside in the ioLib.a library. To initialize the 1/0O subsystem, you must call
ioLib_init() (normal mode) or dbg_ioLib_init() (ROM Monitor debug/ethernet) before performing any
I/O other function.

9.2.4 Keyboard/Mouse Controller Support Library

This library supports the keyboard and mouse ports on the reference board. The keyboard support
includes a basic translation function which converts keystokes to VT100 sequences, and allows the
keyboard to be attached to the TTY driver in ttyLib.a . This allows it to be used as the stdin device for
OS Open. The mouse driver presents the raw scancodes from the mouse to the application program.
The keyboard and mouse controller functions reside in keybLib.a .

9.2.5 I2C Library

This library supports reads and writes to devices on the I°C bus. It also provides functions to directly
access the 12C registers. The 12C library functions are in i2cLib.a .

9-4 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

9.2.6 PowerPC Low-Level Processor Access Support Library

The low-level access support library contains C-callable versions of the special PowerPC instructions.
A few of the sample programs use these functions to manipulate the PPC405GP’s special registers.
These functions provide access to processor instructions not generated by compilers. For example,
device drivers often have a requirement to control data caching, disable interrupts, synchronize 1/O,
and other processor and platform-specific operations. The low-level access support functions reside
in the ppcLib.a library.

9.2.7 ROM Monitor Ethernet IP Interface Library

This library contains routines allowing access to the ROM Monitor's Ethernet IP interface. These
functions allow the Ethernet to be simply configured with a unique IP address for use with TCP/IP
functions. The ROM Monitor Ethernet IP Interface functions reside in benetLib.a library. The
benetLib.a functions are only available with OS Open without Virtual Memory.

9.2.8 Real-time Clock Interface Support Library

This library contains routines to read and set the reference board’s battery-backed real-time clock.
These functions are not to be confused with the real-time clock functions provided directly by OS
Open when the system is running. The real-time clock interface support functions reside in the OS
Open’s clockLib.a library and are available to perform the following features:

» Set the OS Open clock from the real-time clock.

» Set the real-time clock from user-supplied data.

* Read and write NV-RAM in the clock chip.

A sample function to set the battery-backed clock to wall-clock time is provide. See “Setting the time
in the on-board clock” on page 8-7 for more information.

9.2.9 Ethernet Device Driver Support Library
This library provides support for the ethernet on the PPC405GP. The Ethernet device driver support
functions reside in the enetLib.a library.

9.2.10 Software Timer Tick Support Library

The OS Open system requires a periodic call to timertick_notify() to maintain internal clocks and
timer functions. The tickLib.a library contains an implementation of the timertick_notify() function
for PowerPC architecture machines. Timer tick support functions reside in the tickLib.a library.

9.3 Device Drivers Supplied with the Board Support Software

Device drivers provided with the reference board support package include:

» Asynchronous

» Ethernet

e |2C

» Keyboard/mouse

Revised 8/22/00 v.0.8 Application Libraries and Tools 9-5

—Preliminary Copy

Examples and references are provided where appropriate. Users should also refer to the
samples/thread0.c file for driver installation examples. Source code for each of the drivers is included
in subdirectories under the samples directory.

For more information about any of the OS Open functions mentioned in this chapter, refer to the OS
Open Programmer’s Reference.

9.3.1 Asynchronous Device Driver

The asynchronous device driver supports the asynchronous communication ports found on the
reference board. Following is a brief functional description of the device driver:

» Support from 50 baud

* Full duplex modem line control discipline

» Overrun error, parity error, and framing error detection

« BREAK interrupt detection

» Support for data length of 5, 6, 7, and 8 bits

» Support for 1, 1.5 and 2 stop bits

» Support for receive and transmit parity

» Support for odd and even parity

» Support for transmitting BREAK

» Support for 16 byte FIFO in the universal asynchronous receiver transmitter (UART)
» Programmed I/O (PIO) interrupt-driven slave communication

* Interrupt driven input/output

» Polled output functions

Since only full duplex modem line control discipline is supported, connection between the
asynchronous port and another device must be made through a NULL modem. A NULL modem is a
device that crosses transmitted data and received data pins to enable communication. The only time
a NULL modem is not necessary is when connection is made to a real modem device.

Refer to the OS Open sample file thread0.c for an example of installing the asynchronous device
driver and to samples/asyncLib for the driver source code.

9.3.1.1 Device Driver Installation

The asynchronous device driver is installed by calling driver_install() . Following is an example of
asynchronous device driver installation.

#include <sys/asyncLib.h>

#include <ppcLib.h>

int devhandle;
rc=driver_install(&devhandle, async_init);

async_init() is declared in the file <sys/asyncLib.h> as follows.
int async_init(driver_t *dsw, va_list vargs)

Upon successful installation, driver_install() returns 0; otherwise —1 is returned. For more
information on driver_install() , refer to the OS Open Programmer’s Reference.

9-6 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

9.3.1.2 Device Installation

After the asynchronous device driver is installed, named devices can be created using

device_install() . Following is an example of device installation.

rc=device_install("/dev/s0", CHRTYPE, devhandle, 1, 1024,

1024,asyncClockRate, UARTO_BASE_ADDRESS, CPC0_CRO_UARTO_EXTCLOCK_EN,

EXT_IRQ_COM1);

For device installation, devhandle is the value obtained from the driver_install() . Device type

CHRTYPE is defined in <sys/devDrivr.h> .

Additional parameters passed in the device_install() call are as follows.

Table 9-3. Additional Parameters Passed to driver_install()

Parameter

Meaning

Fourth Parameter

Port number to be installed (1 or 2)

Fifth Parameter

Size of write buffer

Sixth Parameter

Size of read buffer

Seventh Parameter

Input clock for the divisor (value defined in ppcLib.h)

Eight Parameter

UART base register address (from ppcLib.h)

Ninth Parameter

UART-relevent bits to be set in the CPCO_CRO register

Tenth Parameter

Interrupt IRQ_MIN < event <IRQ_MAX (from ioLib.h)

Note 1: These are positional parameters.

Note 2: Write and read buffer sizes indicate number of characters that can be
buffered in the device driver.

Upon successful installation, device_install() returns 0; otherwise —1 is returned. When the device is

installed, error reporting for the device is turned off and xon/xoff pacing is enabled. For more

information on device_install() , refer to the OS Open Programmer’s Reference.

9.3.1.3 Opening Asynchronous Communication Ports

After the device is installed, the open() system call can be used to open a particular device. Following
is an example of the open() system call used against the asynchronous port.

fd1=open("/dev/s0", O_RDWR, asyncParityNone, asyncParityOdd,
asyncStopBits1, asyncDataBits8, 9600);

Revised 8/22/00 v. 0.8

Application Libraries and Tools

9-7

—Preliminary Copy

Additional parameters passed in open() are as follows.

Table 9-4. Additional Parameters Passed to open()

Parameter Meaning
First Parameter Check/generate parity flag. Valid values are: asyncParityNone and
asyncParityGen_Check
Second Parity type. Valid values are asyncParityEven and asyncParityOdd. Because
Parameter parameters are positional, this parameter must be specified even if parity is not used.
Third Parameter Number of stop bits. Valid values are asyncStopBits1 and asyncStopBits2.

Fourth Parameter | Data length. Valid values are asyncDataBits5, asyncDataBits6, asyncDataBits7, and
asyncDataBits8.

Fifth Parameter Baud rate. Valid values range from 50 baud.

Note: These are positional parameters. All parameter constants can be found in <sys/ioctl.h> .

Note: The oflag parameter, O_RDWR in this example, which is passed in the open call, is ignored by
the device driver. When successful, open() returns a file descriptor, otherwise —1 is returned.
open() can be called multiple times against the same asynchronous port. Communication
parameters passed during the last open() call are set in the asynchronous port. For more
information on open(), refer to the OS Open Programmer’s Reference.

9.3.1.4 Reading and Writing

After successfully installing and opening the asynchronous port, read() and write() calls can be
issued against that port. Multiple threads can issue read() and write() calls to the same port at the
same time. However, simultaneous read() calls issued to the same port may block or be processed in
an unexpected order. For these instances, thread scheduling and synchronization must be handled by
the application.

Following is an example of read() and write() calls.

rc=write(fd1,"\nOS Open Real-time Executive\n", 29);
rc=read(fd1, buffer, 10);

fd1 is the value obtained from the open() call.

Note: For more information on read() and write() , refer to the OS Open Programmer’s Reference.

9-8 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

9.3.1.5 1/O Control

Anioctl() call issued against asynchronous device driver accepts the commands listed in Table 9-5.
All parameter constants can be found in <sys/ioctl.h> .

Table 9-5. ioctl() Commands for Asynchronous Device Drivers

Command Parameters Explanation
ASYNCBAUDSET Value from 50 Sets baud rate
ASYNCBAUDGET Pointer to integer Returns baud rate

ASYNCTRIGSET

asyncFifoTriggerl,
asyncFifoTrigger4,
asyncFifoTrigger8,
asyncFifoTriggerl4

Sets FIFO trigger level for asynchronous port

ASYNCTRIGGET

Pointer to integer

Returns current trigger level

ASYNCBREAKSET

None

Starts sending BREAK on port

ASYNCBREAKCLR

None

Stops sending BREAK on port

ASYNCSTICKGET

Pointer to integer

Returns the way the parity bit is interpreted by the port

ASYNCSTICKZERO

None

Disables stick parity

ASYNCSTICKONE

None

Parity interpretation tracks even/odd parity

ASYNCRERRORGET Pointer to integer Returns and clears read error conditions. Values are
defined in asyncLib.h

ASYNCWERRORGET Pointer to integer Returns and clears write error conditions. Values are
defined in asyncLib.h

ASYNCERROREN None Enables error reporting

ASYNCERRORDIS None Disables error reporting. All pending errors are cleared

ASYNCERRORGET Pointer to integer Returns error reporting enabled flag
ASYNCDLENGET Pointer to integer Returns current data length
ASYNCDLENSET asyncDataBits5, Sets data length

asyncDataBits6,

asyncDataBits7,

asyncDataBits8
ASYNCSTOPGET Pointer to integer Returns number of stop bits
ASYNCSTOPSET1 None Sets number of stop bits to 1
ASYNCSTOPSET1_5 None Sets number of stop bits to 1.5
ASYNCSTOPSET?2 None Sets number of stop bits to 2
ASYNCPARITYNONE None Disable parity
ASYNCPARITYGEN None Enable parity
ASYNCPARITYSGET Pointer to integer Return parity status (enabled/disabled)

Revised 8/22/00 v. 0.8

Application Libraries and Tools 9-9

—Preliminary Copy

Table 9-5. ioctl() Commands for Asynchronous Device Drivers (Continued)

Command Parameters Explanation

ASYNCPARITYODD None Sets parity to odd

ASYNCPARITYEVEN None Sets parity to even

ASYNCPARITYGET Pointer to integer Returns parity type

ASYNCXONENABLE None Enables XON/XOFF flow control

ASYNCXONDISABLE None Disables XON/XOFF flow control

ASYNCXONGET Pointer to integer Returns XON/XOFF flow control status

ASYNCMODEMSTAT Pointer to integer Returns modem status

ASYNCFLUSHIN None Flushes input buffer

ASYNCFLUSHOUT None Flushes output buffer

ASYNCDRAIN None Blocks until all characters in output buffer have been
transmitted

ASYNCIGNBREAK None Ignores break interrupts

ASYNCSIGBREAK None Sends SIGINT on reception of break condition

ASYNCERRBREAK None Returns error from read upon reception of break
condition. 0x00 is placed in the receive buffer at the
position where break occurred.

Following is an example of an ioctl() call issued against an asynchronous device.

rc=ioctl(fdl, ASYNCXONDISABLE);
if (rc 1=0) printf(“ioctl failure\n”);

fd1 is the value obtained from the open() call.

9.3.1.6 Polled Asynchronous I/O
A function is provided for polled output to s1 and s2 serial port.

int s1dbprintf(unsigned long uart_clock, unsigned char *base_reg,
unsigned long chcr0_reg, event_t int_level, const char *format, ...)
int s2dbprintf(unsigned long uart_clock, unsigned char *base_reg,
unsigned long chcr0_reg, event_t int_level, const char *format, ...)

The parameters passed to these functions are identical to printf() except for uart_clock, base_reg,
cher0 _reg, and int_level. uart_clock specifies the clock speed, base reg specifies the address of the
base UART register, chcr0_reg specifies the bits in the CPC0_CRO register that are to be set (only
the bits relevant to the UART are altered), and int_level specifies the external interrupt level. The
same values used on the device_install() function may be used. See “Device Installation” on

page 9-7.

s1bdprintf(asyncClockRate, UARTO_BASE_ADDRESS, CPC0_CRO_UARTO_EXTCLOCK_EN,
EXT_IRQ_COM1, “hello world\n\r");

9-10 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Because polled I/O transmits characters synchronously, these functions may be called from first level
interrupt handlers (FLIHS) or a user-supplied panic function. Since the function waits until the
characters are actually sent before returning, use of this with long strings can significantly affect the
timing of calling programs.

9.3.1.7 Flow control

The s1 port is a full 16550-compatible implementation, and supports all 16550 lines, including CTS,
RTS, DTR and DSR.

However, the s2 serial port multiplexes the CTS/RTS and DTR/DSR hardware flow control signals
onto the same pair of pins, so a choice must be made about which type of hardware flow control is to
be used. This is implemented by setting bits in the CPCO_CRO register. If hardware flow control is
desired, it should be set by setting flags in the chcrO_reg parameter that is passed to device_instal()
when installing the s2 port device. The flags available are:

« CPCO_CRO_UART1 CTS_RTS
« CPCO_CRO_UART1 _DTR_DSR

One of these flags may be OR’d into any other values specified in the chcrO_reg parameter, as shown
below:

rc=device_install("/dev/s1", CHRTYPE, devhandle, 1, 128, 128,
asyncClockRate, UART1_BASE_ADDRESS,
CPCO_CRO_UART1_EXTCLOCK_EN | CPCO_CRO_UART1_CTS_RTS, EXT_IRQ_COM2);

The device driver will automatically make sure that the selected signals appear on the correct pins on
the s2 serial port connector, so that a normal serial connection can be made (no special cables
required). The pin-switching is done via the on-board FPGA.

If neither hardware flow control option is selected the status of the flow control pins is undefined, and
only software flow control (XON/XOFF) should be used.

9.3.2 Keyboard/Mouse Controller Driver

The keyboard controller device driver supports the keyboard and mouse ports found on the reference
board. Following is a brief functional description of the device driver:

» Supports keyboard input

» Supports raw input or translated keycodes
* VT100 translation table installed as default
» Set up to be stdin device by default

» Mouse driver supports raw input

Refer to the OS Open sample file io_init.c for an example of installing the keyboard device driver and
to samples/keybLib for the driver source code.

9.3.2.1 Device Driver Installation

The keyboard controller device driver is installed by calling driver_install() . Following is an example
of device driver installation.

#include <sys/keyb.h>

Revised 8/22/00 v.0.8 Application Libraries and Tools 9-11

—Preliminary Copy

#include <ppcLib.h>
int kbdev;
rc=driver_install(&kbdev, keyb_init);

keyb_init() is declared in the file <sys/keyb.h> as follows.
int keyb_init(driver_t *dsw, va_list vargs)
Upon successful installation, driver_install() returns 0; otherwise —1 is returned. For more
information on driver_install() , refer to the OS Open Programmer’s Reference.
9.3.2.2 Device Installation

After the device driver is installed, named devices can be created using device_install() . Following is
an example of device installation.

rc=device_install("/dev/kbl", CHRTYPE, kbdev, 0, 128, 128,
KEYB_BASE_ADDRESS); /* Install keyboard device */
rc=device_install("/dev/imoul”, CHRTYPE, kbdev, 1, 128, 128,
KEYB_BASE_ADDRESS); /* Install mouse device */

For device installation, kbdev is the value obtained from the driver_install() . Device type CHRTYPE
is defined in <sys/devDrivr.n> . The mouse device driver is installed in the same manner as the
keyboard driver, except that the fourth parameter, port number, is 1 instead of 0.

Additional parameters passed in the device_install() call are as follows.

Table 9-6. Additional Parameters Passed to driver_install()

Parameter Meaning
Fourth Parameter Port number to be installed (0 for keyboard, 1 for mouse)
Fifth Parameter Size of read buffer
Sixth Parameter Size of translated buffer
Seventh Parameter Keyboard controller base address (from ppcLib.h)

Note 1: These are positional parameters.

Note 2: Read and translated buffer sizes indicate number of characters that can
be buffered in the device driver.

The read buffer holds scancodes from the keyboard before they are requested by a program. The
translated buffer is used by the translation function when it converts scancodes into translated
characters.

Upon successful installation, device_install() returns O; otherwise —1 is returned. For more
information on device_install() , refer to the OS Open Programmer’s Reference.

9.3.2.3 Opening Keyboard Port

After the device is installed, the open() system call can be used to open a particular device. Following
is an example of the open() system call used against the keyboard port.

fdl=open("/dev/kbl", O_RDONLY);

9-12 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

However, a more typical use is to associate the keyboard with the TTY pseudo-device. In this case the
keyboard driver is not opened directly, but is associated with the TTY device driver, and the open() is
made against the tty device.

#include <ttyLib.h>

commd_t commdr = {(int(*)open,{(int)"/dev/kb1”,0_RDONLY}};
commd_t commdw = { /* values for some output device */ };
struct termios defaultattr = { /* initialise default term attributes */ };
int * tty devh;

driver_install(tty_devh, tty_init);

device_install(“/dev/tty0”,DTYPE_TTY, *tty_devh, &commdr, &commdw,
&defaultattr);

fdl=open(“/dev/tty0”, O_RDONLY);

The default translation table in the keyboard device driver translates keyboard scancodes to the
VT100 escape sequences that the TTY device expects. This means that special keys (arrow keys,
function keys etc.) appear the same as they would coming from a VT100 serial port terminal emulator,
and the keyboard can be used as a direct replacement for the serial port as OS Open'’s default input
device.

There is no default translation function for the mouse device driver - it returns the scancodes to the
calling application.

9.3.2.4 Reading

After successfully installing and opening the keyboard port, read() calls can be issued against that
port. Multiple threads can issue read() calls to the same port at the same time. However,
simultaneous read() calls issued to the same port may block or be processed in an unexpected order.
For these instances, thread scheduling and synchronization must be handled by the application.

Note: For more information on read(), refer to the OS Open Programmer’s Reference.

9.3.2.5 1/O Controls

Because the keyboard device appears to the TTY library as identical to an async serial-port device, it
supports some of the async ioctl calls. These are:

» ASYNCRERRORGET

* ASYNCERROREN

* ASYNCERRORDIS

+ ASYNCERROREN

* ASYNCERRORGET

* ASYNFLUSHIN

These all function identically to the async device driver - see its description for more information.

The keyboard driver also supports its own ioctl, which is described below.

Revised 8/22/00 v.0.8 Application Libraries and Tools 9-13

—Preliminary Copy

9.3.2.6 Translation Function

The default translation table for the keyboard device converts special keys, such as the function keys,
to VT100 escape sequences which can be interpreted by the TTY library. It also handles routine
keyboard matters such as:

» converting scancodes to ASCII characters

» handling the caps lock, scroll lock and num lock keys, including the keyboard LEDs
« handling the shift and ctrl keys

» handling the numeric keypad

An ioctl function is available to substitute your own translation table, or to remove the translation
function altogether and just return raw scancodes. The ioctl function is:

+ KEYBTRANSFUNCSET
which takes as a parameter a function of type:
* void (*)(char, void *)

This function takes two parameters. The first is the scancode to be translated. The second parameter
is really a pointer to a structure of type keybdds_t, which is defined in <sys/keyb.h>. This structure
contains 2 ring buffers: the read ring buffer (rcv_ring) and the translated ring buffer
(rev_translated_ring). The sizes of these buffers are specified on the device_install() function call. It
also contains many fields which your function can use to keep track of the keyboard state, such as the
state of the caps lock, num lock or scroll lock keys.

When a key is pressed, one or more scancodes are put into the read ring buffer. When a program
requests a character from the keyboard device driver, the device driver extracts the scancode from
the buffer and calls the translation function. The scancode is passed in as the first parameter and the
pointer to the keybdds_t is the second parameter. The translation function should insert the translated
key(s) into the translated ring buffer, which is part of the keybdds _t structure:

void my_translate_function(char in_c, keybdds_t *dds) {

char out_c;
.... I* translation function converts scancode in_c to character out ¢ */
rngBufPut(dds->rcv_translated_ring,out_c,1); /* out ¢ into ring buffer */

If the translation function determines that the scancode(s) must be translated into more than one
output character (for example, an arrow key is converted into a escape sequence such as “ESC [A”),
it may place all of the translated characters into the translated buffer (rcv_translated _ring). When a
program subsequently performs a read from the keyboard device driver, the device driver will extract
the characters from the translated buffer and pass them back to the calling program (without looking
for further scan codes in the read buffer, and without calling the translation function again). When the
translated buffer is empty, the device driver again reads a scancode from the read buffer, calls the
translation function with it, and subsequently reads the translated characters out of the translated
buffer.

If the translation function determines that it cannot convert the scancode into a meaningful character
by itself (for example, the scancode is the beginning of a multiple-code sequence such as OxEOQ, Ox6B
for an arrow key), it may request further scancodes by using the ringBufGet() function on the read ring
buffer (rcv_ring). The translation function should read one complete sequence of scancodes and then

9-14 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

return, whether or not it has been able to convert those scancodes into a translated character. It
should not block waiting for further key presses.

The file <sys/keyb.h> includes many useful constants, for example scan code values for special keys.
The samples directory also contains the source code for the keyboard device driver, including the
translation function and the translation table that it uses.

9.3.3 12C Device Driver

The 12C driver supports reading and writing to devices attached to the 1°C bus. The nature of the 1°C
bus means that support is implemented as 1°C-specific functions, and not through the OS Open
device driver model used for other device drivers.

9.3.3.1 Functional Description

» Allows master reads and writes
* Only supports 7 bit addresses
» Only supports slow (100kHz) bus

9.3.3.2 12C Initialisation

The 12C device is initialised by a call to i2c_setupdriver(), passing in the base address for the
memory-mapped 12C registers.

#include <sys/i2cLib.h>
#include <ppcLib.h>
rc=i2c_setupdriver(IlC_BASE_ADDRESS);

IIC_BASE_ADDRESS is defined by including <ppcLib.h>.

9.3.3.3 I2Cread

Data is read from an 12C device by using the i2c_read() funtion. The caller supplies the device
address and information about the read. This includes an optional subaddress which is required by
some devices. A flags parameter is used to specify whether the subaddress is present or not. Also
supplied are a pointer to a place to store the data and a count of how many bytes to read. Between 1
and 4 bytes may be read on each call.

If a subaddress is specified, the device driver first writes the subaddress to the target device, waits for
the write to complete, then issues the read.

If the read completes successfully the function returns 0, otherwise it returns -1 if an error occurs,
such as no response from the device within a timeout period.

Other flags which may be passed in include the ability to specify the values of the Chaining and
Repeated Start bits in the 12C Control register. Constants for the flags values are in <sys/i2cLib.h>.

#include <sys/i2cLib.h>

int rc;

unsigned char device, subaddress;
unsigned char data[4];

/* Read 4 characters from the device, using the given subaddress */
rc=i2c_read(device, subaddress, 4, data, 12C_FLAGS_SUBADDR);

Revised 8/22/00 v.0.8 Application Libraries and Tools 9-15

—Preliminary Copy

9.3.3.4 12C write

Data is written to an 12C device with the i2c_write() function. The caller passes the device address
and the data to be written, along with other information. This includes an optional device subaddress.
The flags parameter specifies whether the subaddress is present. Also passed is the data to be
written and the length of the data. A total of 4 bytes can be written on an 12C write, and this number
includes the subaddress. So if no subaddress is specified, bewteen 1 and 4 bytes of data may be
written. However, if a subaddress is specified, between 0 and 3 bytes of data are allowed. It is
possible to only write the subaddress, with no accompanying data, which is why a data length of 0 is
allowed only when a subaddress is specified.

As on a read, the flags parameter may specify the value of the Chaining and Repeated Start bits to be
used in the 12C Control register.

#include <sys/i2cLib.h>

int rc;

unsigned char device, subaddress, device2;
unsigned char data[4];

/* Write 3 characters to the device, using the given subaddress */
rc=i2c_write(device, subaddress, 3, data, I2C_FLAGS_SUBADDR);

/* Write 4 characters to another device, without a subaddress */
rc=i2c_write(device2, 0, 4, data, 0);

9.3.3.5 Accessing I12C Registers

Functions are provided for directly reading and writing the 12C registers. The 12C registers values are
specified in <sys/i2cLib.h>.

To read a register, use i2c_read_reg(), passing in the register name and pointer to a place to store the
value.

#include <sys/i2cLib.h>
unsigned char reg_val;
i2c_read_reg(I2C_STATUS,®val);

To write a value to a register, use i2c_write_reg(), passing in the name of the register and the data to
be written to it.

#include <sys/i2cLib.h>
i2c_write_reg(12C_LO_SLAVE_ADDR,0x42);

9.3.4 VGA Support
OS Open provides VGA display support for a PCI VGA display adapter.

A subset of VGA modes is supported. There are also a set of functions to perform basic interactions
with the VGA, in both text and graphics modes. The VGA may be used purely as a library, or it may

9-16 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

also be installed as a device driver, in which case it may be attached as an output-only device, and
output streams such as stdout and stderr may be directed to it.

9.3.4.1 VGA Card Initialisation

The VGA card can be initialised by a call to vga_init() . This will detect whether a VGA card is present
in a PCl slot, and initialise it. Currently only one VGA card is supported in OS Open. Once the card
has been initialised, it can be set to one of the supported modes listed in sys/vgaLib.h, by using the
vga_set_mode() call.

9.3.4.2 Common Functions

Several functions are supported in both text and graphics mode. These either perform functions which
are common to both modes, or which are independant of the current mode.

vga_set _mode() places the VGA adapter in the specified mode. It does not clear the screen, and in
text modes the cursor is turned on and positioned at the top left of the screen. Text mode is selected
by passing in the parameter VGA_MODE_TEXT_80x25. 16 color graphics are available with
VGA_MODE_GRAPHICS_640x480x16 and 256 colors with
VGA_MODE_GRAPHICS_320x200x256.

The screen dimensions of the current mode can be obtained with the function
vga_get_screen_dimensions() . This provides the x,y dimensions of the screen, and the number of
colors available. Note that the screen coordinates start at 0 and therefore end at 1 less than the value
returned by this function. For example, in 640x480 mode, the function will return values of 640 and
480, and the pixels are numbered 0-639 and 0-479. In text mode, the values returned are the number
of character positions (80 by 25), not the number of pixels.

The address of the memory-mapped screen can be obtained with vga_get_vid_mem_start() . This
can be useful if you want to write code which directly address the video memory without going
through the functions available in vgaLib.

The screen can be cleared by the function vga_cls() . In text modes this fills the screen with spaces,
with the default attribute of a black background. The cursor is positioned at the top left corner of the
screen (location 0,0). In graphics modes, the value 0 is written to all pixels.

9.3.4.3 Text mode

The text mode supported is VGA mode 2*. This is a 16-color mode, 80 columns by 25 rows. The
mode is selected by calling vga_set_mode(VGA_MODE_TEXT_80x25). This should usually be
followed by a call to vga_cls() to clear the screen.

Cursor and scrolling

By default, the cursor is turned on, and placed in the top left corner of the screen. If you wish to
disable the cursor, you must first read the cursor attributes using vga_get_cursor_info() , set the
cursor state to off and then write back the cursor attributes using vga_set_cursor_info() .

#include <sys/vgalLib.h>

struct cursor_info_t cursor;
vga_get_cursor_info(&cursor);
cursor.state=VGA_CURSOR_OFF;
vga_set_cursor_info(&cursor);

Revised 8/22/00 v.0.8 Application Libraries and Tools 9-17

—Preliminary Copy

Similarly, the cursor type can be changed to a block by setting cursor.state to
VGA_CURSOR_BLOCK, or back to the default underline by setting cursor.state to
VGA_CURSOR_UNDERLINE.

The cursor can be positioned anywhere on the screen by setting the x and y coordinates:

struct cursor_info_t cursor;

vga_get_cursor_info(&cursor);

cursor.x=0; /* put the cursor at the start of the current line */
vga_set_cursor_info(&cursor);

Scrolling the screen up can be done with vga_scroll_up() . If you are writing an application, such as a
terminal emulator, which needs to scroll the screen, you should check whether the data being written
will run off the bottom of the screen, and call vga_scoll_up() to scroll the screen.

An example of how to print a string of characters while checking for scrolling is included in the sample
VGA device driver source code:

[* print length characters from buffer buff [], with scrolling */
int i, colors;

struct vga_pos dim;

struct vga_cursor_info_t cursor;

vga_get_screen_dimensions(&dim, &colors);
for (i=0;i<length;i++) {
vga_get_cursor_info(&cursor);
vga_print_char_at_cursor(buff[i], VGA_ATTR_DEFAULT);
/* check if cursor was at end of screen */
if ((cursor.y == dim.y-1) && /* on last line of screen */
(cursor.x == dum.x-1)) { /* and at last column */
vga_scroll_up();
}
}

Character Attributes

In the color text mode every character printed has an attribute associated with it. This consists of a
foreground color (the color of the character itself), a background color, an option to make the
character blink, and an option to intensify the foreground color. The intensified forground colors are
effectively 8 extra colors (intensified black appears grey, etc).

The attribute values are listed in the header file <sys/vgalLib.h>. They can be logically OR’d together
and used on calls such as print_char_at_cursor()

/* Print an intense red character on a blue background and make it blink */
print_char_at_cursor(‘"X’,VGA_FG_RED | VGA_INTENSE |
VGA_BG_BLUE | VGA_BLINK);

A default value is defined, VGA_ATTR_DEFAULT, which is a non-intensified white foreground with a
black background.

9-18 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

9.3.4.4 Graphics Modes

The graphics modes supported have functions which perform common functions and insulates the
programmer from the differences in the VGA hardware between the different VGA modes. The
640*480 mode, with 16 colors, is VGA mode 12h. The 320*200 mode, with 256 colors, is VGA mode
13h.

The most basic operation is to set a pixel to a specified color. This is done with vga_set_pixel() . The
parameters are the x and y coordinates and the value to be written to the pixel.

The VGA architecture allows significant performance improvements if multiple adjacent pixels are
written at the same time, and even more improvement if all the pixels have the same color. The
function vga_fill_block() will fill a rectangular block with pixels of all the same color. Note that by
specifying a height parameter of 1, a horizontal line can be drawn, and similarly a width value of 1
draws a vertical line. The performance improvement over separate calls to vga_set_pixel() is quite
noticeable, particularly in 16 color mode. The sample program supplied with OS Open draws color
bars on the screen - this can take several seconds with the individual set_pixel calls, but appears
instantaneous when using the block fill.

To write a line of data, the function vga_write_data() can be used. This takes a line of data and writes
it to the display, starting at the given x,y coordinates. If the data extends past the end of the line it will
wrap to the start of the following line. This means that an entire screen of data can be written with one
call. For 256-color mode, the data is clearly 8 bits, and so is byte-aligned. For 16-color mode,
however, the data is only 4 bits for each pixel. This can be passed byte-aligned (with the top 4 bits of
each byte being ignored), or it may be nibble-aligned, with each byte holding data for 2 pixels. The
parameter packed is used to distinguish between these two modes, and can take the values
VGA_DATA PACKED or VGA DATA NOT_PACKED. An example of where packed data may
originate is in a graphics file, such as one in TIFF format. Data can be read one line at a time from a
TIFF file, then either truncated or padded to fit the screen width, and written directly with the
vga_write_data() call.

9.3.4.5 VGA registers

Itis a tradition with programming VGA devices that sooner or later the programmer will want to access
the VGA registers directly. Sometimes that's because the provided function calls are too general, and
therefore too slow, or because the function needed is not provided by library or BIOS functions.
Values for VGA registers are provided in the vgaLib.h header file. The inbyte() and outbyte() functions
in ioLib can be used to access these registers.

Sample code is provided which demonstrates the use of these calls. For example, to write to one of
the attribute registers you may create a simple function:

#include <ioLib.h>
#include <sys/vgalLib.h>

void write_attr_reg(char index, char data) {
inbyte((unsigned char *)STATUS _1);

outbyte((unsigned char *)ATTR_INDEX, index);
outbyte((unsigned char *)ATTR_DATA_OUTPUT, data);
return;

}

Then to write the values 0 to 15 to each attribute register in turn, you may use:

Revised 8/22/00 v.0.8 Application Libraries and Tools 9-19

—Preliminary Copy

for (i=0;i<=15;i++) {
write_attr_req(i, i);

}

write_attr_reg(0x20,0); /* Turn on video */

This particular piece of code is useful when you have a new color palette which you wish to use. After
rewriting the color registers (using outbyte()'s to the DAC_DATA register) you can update the palette
registers to map colors 0 to 15 directly into color registers 0 to 15. See the sample file tifdemo.c which
reads in an image from a TIFF file, writes the palette information from the file to the VGA color
registers, then writes the image to the screen. This handles images with 16 and 256 colors, both
packed and unpacked data.

9.3.4.6 VGA device driver

Instead of calling individual VGA functions directly, the VGA device may be installed as a device
driver. This uses the VGA in text mode only. The advantage of this mode is that it allows the stdout
and/or stderr streams (or any other output stream) to be directed to the VGA screen. The VGA device
driver contains a simple terminal emulator which handles ASCII control characters such as carriage-
return, line-feed and backspace. It also handles automatic scrolling of the screen. Along with the TTY
device driver, which handles input keys including the arrow keys, tab etc, this can act as a basic ASCII
TTY terminal.

The device driver can be installed like this:

#include <sys/vgalLib.h>
#include <sys/devLib.h>
#include <sys/devDrivr.h>
int rc, vgadev;

rc=dev_io_init(32,32);
rc=driver_install(&vgadev, vgadd_init);
rc=device_install(“/devivgal”, CHRTYPE, vgadev);

The device can then be installed as the output device for the tty driver. First, set up a structure for
ttyLib to refer to the VGA device:

#include <ttyLib.h>
#include <fcntl.h>

commd_t vgacommd = {(int(*)())open, {(int)"/dev/ivgal”’, O_WRONLY }};

Note that “/dev/vgal” must match the string used in the device_install(). Now install the tty device. The
following code assumes that an input device has already been initialised, and the structure commd
points to that input device, and that defaultAttris an initialised attribute structure. An example of this is
provided in the sample file io_init.c, which initialises the serial port.

int ttydev;

rc=driver_install(&ttydev, tty init);
rc=device_install(“/dev/tty0”, DTYPE_TTY, ttydev, &commd, &vgacommd,
&defaultAttr);

9-20 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

/* Now open stdin, stdout, stderr */
fdl=open(*/dev/tty0”,0_RDONLY);
fd2=open(*/dev/tty0”,0_WRONLY);
fd3=open(*/dev/tty0”,0_WRONLY);
rc=fs_init(); /* Initialise file system - now we’re ready to go */

printf(“hello world\n”); /* output appears on the VGA screen */

At this point all OS Open stdout and stderr output, for example from OpenShell, will appear on the
VGA screen.

9.3.4.7 VGA sample

A sample VGA program is included in the OS Open samples directory. This consists of the files
vgasamp.c and tifdemo.c. These files can be compiled and linked in to the standard applprog image.

The sample code requires access to some graphics files which are included in the samples/ramdisk
directory. These may be loaded into a RAM disk which is linked into the applprog image. From the
samples directory, issue the command “rambuild -e ramdisk”. This creates a file ramdata.s containing
the data from the files in the ramdata subdirectory. Edit the makefile and ensure that ramdata.s is
being included in the build of applprog - typically this is done by adding ramdata.s to the same
variable as asmsamp.s, which is included by default:

SAMP_S = asmsamp.s ramdata.s
Edit thread0.c to ensure the ramdisk is being included and preloaded:
Ensure #define TO_RAMDISK is uncommented.
In function do_ramdisk, ensure there is a declaration:

extern char _ram_image_data(];

and that the device_install() call references ram_image_data and provides a sufficiently large RAM
disk (1024000 bytes in this example):

rc=device_install(“/ram”,BLKTYPE, devhandle, 1024000, ram_image_data);

Save the threadO.c file you have been editing. Make sure your VGA card is inserted into a PCI slot on
the board, and it is connected to a monitor which is powered on. Build the applprog image by using
the command “make”. If there are any unresolved cross-references, make sure that the libraries
vgalib.a and pciLib.a are being linked in. Also ensure the flag -Ball_archive is being used when
linking, to ensure code does not get garbage-collected out of the image. Then download the image to
the evaluation board. See the OS Open User’s Guide for more information on building and
downloading samples.

When the applprog image loads and runs on the board, it will display the OpenShell prompt “OS
Open>". At this prompt, enter the command vga_test(). You should see the VGA demonstration
program running on the VGA monitor.

9.3.5 Ethernet Device Driver

The Ethernet device driver is a character device driver supporting packet level read/writes to the
Ethernet controller. The driver features the ability to open multiple files. Each file receives packets for
a specific standard Ethernet or 802.3 address.

Revised 8/22/00 v.0.8 Application Libraries and Tools 9-21

—Preliminary Copy

Function highlights are:

» Up to eight receive channels
» Size of receive buffer pool determined by user at driver install time.

Refer to the OS Open sample file thread0.c for an example of installing the ethernet device driver and
to samples/enetLib for the driver source code.

9.3.5.1 Device Driver Installation

The Ethernet device driver is installed by calling the driver_install() function. Following is an example
of Ethernet device driver installation:

rc=driver_install(&devhandle_enet,

enet_init, /* device driver init routine */
ENET_RECEIVE_BUFFERS, /* num_blocks;# of recv buffers*/
NULL, /* enet_descriptor pointer */
NULL, /* enet_buffer pointer */

board_config_ptr->mac_address); /* mac_array */

num_blocks is the number of receive buffers used by the device driver. This value must be a multiple
of 4.

enet_descriptor points to a physically contiguous portion of memory the device driver uses for receive
and transmit buffer descriptors. The portion of memory must be at least (8 * num_blocks) + 32 bytes
in size, and 32 byte aligned. If enet_descriptor is NULL, the device driver will attempt to allocate the
needed space based on the value of num_blocks

enet_buffer points to a physically contiguous portion of memory the device driver uses for receive and
transmit buffers. The portion of memory must be at least 296 * num_blocks + 1568 bytes, and 32 byte
aligned. If enet_bufferis NULL, the device driver will attempt to allocate the needed space based on
the value of num_blocks.

Note: The device driver can not allocate memory that is guaranteed to be physically contiguous in
OS Open with Virtual Memory, so in this case enet_buffer must point to the buffer to be used.

mac_array points to the 6 byte ethernet hardware address. Typically this value is obtained from the
ROM Monitor’'s get_board_cfg() function.

Upon successful installation, driver_install() returns 0; otherwise -1 is returned. For more information
about the driver_install() function, refer to the OS Open Programmer’s Reference and the OS Open
samples threadO.c file.

9.3.5.2 Device Installation

After the Ethernet device driver is installed, Ethernet devices can be installed using the
device_install() function. Following is an example of device installation.

rc=device_install("/dev/en0", CHRTYPE, devhandle);

For device installation, devhandle is the value obtained from the driver_install() . Device type
CHRTYPE is defined in <sys/devDrivr.n> .

9-22 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Upon successful installation, device_install() returns 0; otherwise -1 is returned. At this point, files
may be opened against the Ethernet device.

9.3.5.3 Opening and Closing Ethernet Files

After the device is installed, the open() system call can be used to open a particular device. Following
is an example of the open() system call used to open an Ethernet port.

fdl=open("/dev/en0", O_RDWR);

When successful, open() returns the open file descriptor; otherwise -1 is returned. open() can be
called multiple times against the same Ethernet device.

When using the close() function, the call to the driver-specific close() is deferred until all open files on
the device are closed. This means that when an Ethernet file is closed, the channel address
associated with the file will not be freed if another Ethernet file is open. Be aware that if the Ethernet
interface has been connected to the TCP/IP protocol stacks via enet_attach(), t here will always be a
file open against the Ethernet device, and therefore no channel addresses will be freed even if all the
files the application opened are closed. To insure that the channel address will be freed, the
ENET_CLEAR_CHANNEL ioctl() should always be called for an Ethernet file before closing it.

For more information about the open() and close() functions, refer to the OS Open Programmer’s
Reference.

9.3.5.4 Reading and Writing

After successfully installing and opening the Ethernet port, the write() function can be issued. The
write buffer must contain a complete Ethernet packet. The universally administered address that was
found in the ISA card read only storage (ROS) passed to driver_install() will be copied into the
source address field by the device driver. There are prototype Ethernet header structures for both
standard Ethernet and 802.3 Ethernet packets in <enet.h>. Note that packets must be between 60
and 1514 byte in length (inclusive).

Before reading from the Ethernet file, an additional step must be performed. The Ethernet device
driver supports up to 8 receive channels. What this means is that up to 8 files can be open for read or
read/write simultaneously, and files will receive only those packets that have been selected for them.
Packet selection is by packet type, in the case of standard Ethernet, and by destination SAP in the
case of 802.3 Ethernet. The selection address is set with the ioctl ENET_SET_CHANNEL command,
discussed below.

fd1 is the value obtained from the open() call.

fdl = open(*/eno”,O_RDWR);
ioctl(fd, ENET_SET_CHANNEL,5,2);

/* send packet from buffer */
write(fd,buffer,count);

/* get received packet into buffer */
read(fd,buffer,count);
close(fd);

For more information on read() and write() functions, refer to the OS Open Programmer’s Reference.

Revised 8/22/00 v.0.8 Application Libraries and Tools 9-23

—Preliminary Copy

9.3.5.5 |/O Control

The ioctl() call issued against the Ethernet device driver accepts the following commands. In each of
these commands, fd is the value obtained from the open() call.

9.3.5.6 ENET_SET_CHANNEL

This command sets the receive channel address of the file. Once set, a receive channel address
cannot be used in a subsequent ioctl ENET_SET_CHANNEL command unless it is first cleared with
the ioctl ENET_CLEAR_CHANNEL command.

rc = ioctl(fd, ENET_SET_CHANNEL,
packet_type,/* packet type is an unsigned integer containing
the channel address */
type_length);/* specifies how many of the least sig bytes of
the packet type are to be used.Only values 1 and
2 are valid. */

A word about packet addresses. For standard Ethernet, the packet type is a 2-byte field right after the
hardware source address. If type_lengthis 2, the packet type parameter is assumed to refer to a
standard Ethernet packet type. For a type_length of 1, the packet typeis assumed to contain a 1-byte
destination SAP.

The incoming packets are differentiated as follows: For 802.3, there is a length field immediately after
the source address. By convention, Ethernet packets are 1500 bytes or less, and valid Ethernet types
are > 0x600. Hence, if the field after the source address is less than 0x600, the packet is assumed to
be an 802.3 packet, and the 1 byte packet_type is compared against the destination SAP. Some
reserved type values should not be generally used. They are defined in the file <netinet/if_ether.h>.

9.3.5.7 ENET_CLEAR_CHANNEL

This command clears the receive channel address of the file. This enables the device driver to free up
internal resources and return any unread packets on this channel to the receive buffer pool. Once the
receive channel address is cleared, it can be used again with the ioctl ENET_SET_CHANNEL
command. The file can then be set to another receive channel as well.

rc = ioctl(fd, ENET_CLEAR_CHANNEL);

9.3.5.8 ENET_QUERY_ADDRESS

This ioctl command retrieves the universally administered address that was assigned during
device_install.

unsigned char ua_address[6];
rc = ioctl(fd, ENET_QUERY_ADDRESS, ua_address);

The address is copied into the area supplied as the first data parameter to this ioctl .

9.3.6 ROM Monitor Ethernet Device Driver

The OS Open ROM Monitor Ethernet device driver provides network access to the applications
running on the board while still allowing the ROM Monitor to access the RISCWatch debugger over
the ethernet.

9-24 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

This device driver uses code resident in the ROM monitor to send and receive ethernet packets. A
different IP address must be specified to distinguish the packets from ROM Monitor and OS Open. I/O
initialization should be done by calling dbg_ioLib_init() rather than ioLib_init() .

The ROM Monitor Ethernet device driver is installed by calling biosenet_attach() . Following is a
prototype of this function.

#include <benetLib.h>
int biosenet_attach(unsigned long ipaddr, int init_flag);

Upon successful installation, biosenet_attach() returns 0; otherwise -1 is returned. The IP address
for OS Open is specified in the ipaddr parameter. The init_flag specifies whether the Ethernet
controller needs to be initialized. If init_flag is set to 0 then the Ethernet controller is not initialized. If
init_flag is set to a non-0 value, initialization of the Ethernet controller is performed. Please see
samples/thread0.c for example code.

9.4 Environment Startup and Initialization

The following section describes the processing that occurs when the evaluation board environment is
initialized.

Upon power-up or reset the ROM Monitor initializes the processor and other peripherals on the board.
If a ROM Monitor load is attempted (via option 0), all enabled power-on tests are executed and,
following their completion, a bootp request is sent to the host. This request involves an exchange of
UDP packets corresponding to the bootp protocol. In essence, the ROM Monitor asks for and is
supplied with the name of the boot image file on the host workstation. tftp (Trivial File Transfer
Protocol) is then initiated by the ROM Monitor to transfer the boot image to the evaluation board.

Once the file has been transferred, two simple checks are made. A “magic number” in the boot
image’s 32-byte header verifies that the image is one that can be loaded by the ROM Monitor (i.e., a
file created by the eimgbld tool - see appendix B for details of the load format). The ROM Monitor also
checks that the supplied boot image’s start address does not overlay sections of reserved DRAM.
After the load is complete, control is transferred to the specified entry point in the boot image, which is
in the bootstrap program.

When using RISCWatch's load image command to load a boot image file, the debugger strips off the
file's 32-byte header and loads the remaining bytes of the file onto the board. The start address of the
load is designated in bytes 4-8 of the header. Once loaded, the IAR register is set to the boot image’s
entry point as defined in bytes 16-19 of the header. This entry point is in the bootstrap code. See the
“Running Your Programs” section in the RISCWatch Debugger User’s Guide for additional information
on loading files.

9.4.1 Board Bootstrap

The source for OS Open’s bootstrap code is included in the samples\bootLib directory. The
bootstrap program performs the following functions:

1. Unpacks the boot image format, placing the .text and .data sections in the addresses specified at link time.
2. Modifies the kernel configuration block with new heap size and start address.

3. Sets the .bss section to zeros, in accordance with ANSI C requirements.

Revised 8/22/00 v.0.8 Application Libraries and Tools 9-25

—Preliminary Copy

9.4.2 Environment Initialization

OS Open requires information about the system environment at initialization. The following source
files, which are included with the samples, are used to supply that information and to establish the
working environment.

basic_os.c Contains pieces of config.c, io_init.c, panic.c, threadO.c, and utils.c to
provide a minimal OS Open configuration

config.c Configures the OS Open kernel

io_init.c Initializes OS Open’s /O subsystem

network.c Configures the host names and addresses for your environment

panic.c Provides a sample panic function

threadO.c Configures various features of OS Open (networking, remote debugger,
etc.)

utils.c Provides some useful utilities such as dir() to produce a directory listing

Additional information can be found in the “Configuring the OS Open Operating System” and
“Developing OS Open Applications” chapters in the IBM OS Open User’s Guide.

9.5 Tools

Several host based tools are provided to assist you in creating your own applications for the board.
The tools can also be used for ROM program development.

95.1 elf2Zrom

elf2rom takes an ELF format executable file (output from the linker/binder), extracts the text and data
sections, and writes them to a binary file. The resulting binary file can be programmed into ROM
using a ROM programmer or the flash update utility included with board support software.

Syntax:
elf2rom [-v] [-d] [-p] [-s size] [-i offset] [-0 output_file] input_elf
Description:

The program takes the input file input_elf, assumed to be an ELF file output from the linker, extracts
the text and data sections, and writes them to the file, output_file. There are several optional flags that
can affect elf2rom processing. They are described below.

-v The verbose flag causes information about the generated output file to
be written to stderr at the completion of the utility. This information
includes the sizes and origins of the various sections and entry point.

-d The debug flag will cause the symbol information from the input ELF file
to be included after the data section in the output binary file.

9-26 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

-i offset

long block_id
long entry_point
long toc_ptr

long text_size

long text_p_addr
long data_size
long data_p_addr
long bss_size
long bss_p_addr
long num_syms

long sym_p_addr

long text_offset

-0 output_file

input_elf

Revised 8/22/00

v. 0.8

The promotion flag causes the data section to be aligned on a full word
boundary if possible. This alignment facilitates full word moves of data to
the appropriate target address without causing alignment exceptions.

The size flag causes the output binary file to be padded to a particular
size. This option is useful if it is necessary to create binary files that are
the same size as a target ROM device. Error messages are generated if
the generated image exceeds the specified size.

The info flag places an information block into the output binary file at the
specified offset. Since this info block overlays what is currently in the file
at the specified offset, space should be reserved for its placement. The

info block contains the following fields.

Magic Number OXxBFAB0030
Entry point of image
Used for XCOFF; not used for ELF

Size of text section in bytes also offset from beginning of image to data
section

Text origin address as generated in ELF module

Size of data section

Data origin as specified in generated ELF module

Size of bss section

bss origin as specified in generated ELF module

Number of symbols from symbol section only valid if debug flag is set)

Address of symbol table. Calculated as text origin + offset of symbols
with created ROM image

Offset of text section from beginning of original ELF file. This information
is required by certain debuggers

Allows the specification of an output file name. The default name is
input_elf.img.

This is simply the ELF binary input file. (elf2rom only)

Application Libraries and Tools 9-27

—Preliminary Copy

Figure 9-1 shows the relationship of the various sections in the produced output file. The figure
assumes that the info block flag [-i] was specified with an offset of 0x00.

Padding to bring End of
image to size File
(if size specified)

Symbol Section
(if debug flag specified)

i

Data Size Data Section

Y

T Text section

Text Size
Info Block
¢ Start of

(overlays part of text) File

Figure 9-1. elf2rom Output File

Users can find an example of using elf2rom in the ROM Monitor's Makefile under
osopen/m405_evb/openbios

9.5.2 hbranch

hbranch places a branch at the end of a ROM image. hbranch can also be used to store a
communication device’s network address in the ROM’s Vital Product Data (VPD) area.

Syntax:
hbranch [-v] [-s size] [-n net_addr] input_image
Description:

The program takes the input file input_image (which must be the output of elf2rom or eimgbld with an
information block at 0xO relative) pads it to size size and writes a relative branch to the entry point
recorded in the end of the image. The entry point must be a label, not a function descriptor. There are
several optional flags that can affect hbranch processing. They are described below.

-V The verbose flag causes information about the generated output image to be
written to stderr at the completion of the utility. This information includes entry
point information.

-S size The size flag causes the image to be padded to a particular size. This facility is
useful if it is necessary to create binary images that are the same size as a
target ROM device.

-n net_addr The network address flag stores net_addr, a 12 hex character network address
(the media access control (MAC) address), in the VPD area in ROM. The ROM
Monitor uses this option to store the EVB's ethernet controller’'s network
address in its VPD.

9-28 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

-p patch_file

input_image

Figure 9-3 shows the relationship of the various sections in the produced output image.

Revised 8/22/00

The patch file flag causes the file patch_file to be placed into the image just

before the final branch and logically inserted into the instruction stream

between the branch at the end of the file and the entry point. The patch file is
inserted into the image “as is” and will usually contain the binary representation
of position independent executable instructions. See Figure 9-2 for the details
as to how normal hbranch processing is changed by a patch file.

This is simply the source image file. The output is written to stdout.

v. 0.8

Branch to
entry point

Branch to start
of patch file

Patch file consisting of executable instructions

‘_/

Figure 9-2. Detail of Patch File Placement

/ branch to ep

VPD (at end - 512)

Padding to bring
image to size
(if size is specified)

Binary image
produced by
elf2rom

Entry point

Figure 9-3. hbranch Output Image

End of
File

End of
File

Application Libraries and Tools

9-29

—Preliminary Copy

Users can find an example of using hbranch in the ROM Monitor's Makefile under
osopen/m405_evb/openbios

9.5.3 eimgbld

The eimgbld tool converts an output file from the linker/binder into the format used by the ROM
Monitor to load programs from the host onto the evaluation board. The ELF file must be an otherwise
executable file (with the text and data addresses bound at link time) and have space reserved after
the entry point for the load information block (see “ROM Monitor Load Format” on page B-1 for more
details). eimgbld sets the fields within the load information block so the application’s bootstrap code
can perform relocation.

Since the ROM loader does no relocation and simply transfers control to the application’s entry point
after a successful download, the application’s entry point must point to suitable bootstrap code. It is
the bootstrap code that relocates the application based on the data placed in the load information
block by eimgbld .

Syntax:
eimgbld: [-D -P -S -v -b addr -m m_file -0 o_file -s s_file -x x_file] input_elf
Description:

The program takes the input file input_elf (which must be the final ELF executable file produced from
the build process) and converts it into the load format used by the ROM Monitor. There are several
optional flags that can affect eimbgld processing:

-D Set debug flag. A flag is set in the image causing the ROM Monitor debugger to
be invoked immediately after the image is loaded.

-P Creates output image in PReP format. PReP format is used by some PowerPC
platforms.

-S Suppress symbol information. Specifying this flag will prevent the symbol table
from being included in the image.

-v Verbose option. Directs information about the produced image to stderr.

-b addr Set the symbol start location to address, addr.

-m m_file Specify the ROM address map file. The format of this file is two addresses on
each line (start address and ending address separated by a “").

-0 o_file Allows the specification of an output file name. The default name is input_elf.img.

--s s_file Restrict symbol table to names in specified file, s_name. The format of this file is

one symbol on each line.

-x x_file Suppress section names listed in specified file, x_name. The format of this file is
one section name on each line.

Users can find an example of using eimgbld in the sample Makefile under
osopen/m405_evb/samples .

9-30 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Chapter 10. OS Open Function Reference

This chapter describes the OS Open functions for the reference board. The function calls and macros
are arranged alphabetically by name. For information about the effective use of some of these
functions, refer to the microprocessor’s user’'s manual.

All descriptions contain the following sections:

e Synopsis
e Library
» Description
» Errors
 Attributes

Examples and references are provided or referenced where appropriate.

10.1 Attributes and Threads

Functions and macros have attributes that affect thread execution. Depending on their behavior,
functions may or may not be “async safe,” “cancel safe,” and “interrupt handler safe.”

10.1.1 Async Safe Functions

An async safe function may be entered by two or more concurrently executing threads, with each
thread getting the correct results.

Functions that operate only on disjoint or local data objects are reentrant, and are therefore async
safe. For example, ppcCntlzw() operates only on its arguments, making it reentrant and therefore
async safe.

Functions that operate on common or global data objects may use serialization techniques, such as
mutexes and semaphores, within the functions to ensure async safe operation. enet_send_packet()
uses the functions semwait() and sempost() to force serialization. Refer to the OS Open User’s
Guide for more information about the use of mutexes and semaphores.

10.1.2 Cancel Safe Functions

The cancel safe attribute is important only to threads executing in deferred cancelability mode (the
cancel state is enabled; the cancel type is deferred).

A thread executing in deferred cancelability mode can execute a cancel safe function without being
canceled. If the same thread executes a non-cancel safe function, the thread may or may not be
canceled during execution of the function.

10.1.3 Interrupt Handler Safe Functions

An interrupt handler safe function may be called by a first level interrupt handler (FLIH).

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-1

—Preliminary Copy

10.1.4 Callable from Application Thread Group Functions

This attribute is only a concern when running OS Open with Virtual Memory. A function that is callable
from an application thread group may be called from all thread groups. A function not callable from an
application thread group will cause an exception if called from any thread group other than the kernel

thread group.

10.2 Functions

Descriptions of the functions provided specifically to support the PPC405GP design kit are listed in
alphabetical order in Table 10-1.:

Table 10-1. Functions Specific to the PPC405GP Design Kit

Function or Macro Description Page
async_init() Installs the asynchronous device driver 10-10
biosenet_attach() Attaches the Ethernet to an IP address 10-11
clock_set() Sets the OS Open POSIX clock to the value obtained from the 10-13

battery operated real time clock
clockchip_get() Reads the real-time clock 10-14
clockchip_nvram_read() Reads bytes from the clock chip's NVRAM 10-15
clockchip_nvram_write() Writes bytes to the clock chip’'s NVRAM 10-16
clockchip_set() Sets the real-time clock to the number of seconds since 00:00:00 10-17
January 1st, 1970 UTC
clockchip_start() Starts the real-time clock 10-18
clockchip_stop() Stops the real-time clock 10-19
clockLib_init() Initializes the clockLib library routines 10-20
dbg_ioLib_init() Initializes the I/O library when using ROM Monitor debugger or 10-21
benetLib.a
dcache_flush() Flushes cache lines, beginning at the effective address and 10-22
continuing for a specified number of bytes
dcache_invalidate() Invalidates cache lines beginning at the effective address and 10-23
continuing for a specified number of bytes
dma_disable() Disable a DMA channel 10-24
dma_setup() Initialise a DMA channel for a transfer 10-25
dma_status() Return status information for a DMA channel 10-26
enet_init() The Ethernet device driver initialization function 10-27
ext_int_config() Configures the interrupt level specified by an eventl 10-28
ext_int_disable() Disables the interrupt level specified by an event 10-29

10-2 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Table 10-1. Functions Specific to the PPC405GP Design Kit (Continued)

Function or Macro Description Page
ext_int_enable() Enables the interrupt level specified by an event 10-30
ext_int_install() Installs a first level interrupt handler (FLIH) for an event 10-31
ext_int_query() Returns information about the FLIH 10-32
i2c_read() Read data from an 12C device 10-33
i2c_read_reg() Read an 12C register 10-34
i2c_setupdriver() Initialise the 1°C device driver 10-35
i2c_write() Write data to an 12C device 10-36
i2c_write_reg() Write to an 1C register 10-37
inshort_swap() Reads in a byte-swapped halfword 10-38
int_install() Installs a first level interrupt handler (FLIH) for an event. 10-39
int_query() Returns information about the FLIH 10-40
inword_swap() Reads in a byte-swapped word 10-41
ioLib_init() Initializes /O library 10-42
keyb_init() Initialise the keyboard/mouse controller device driver 10-43
memcpy_io() memcpy() for I/O areas 10-44
outshort_swap() Writes out a byte-swapped halfword 10-47
outword_swap() Write out a byte-swapped word 10-48
pci_find_device() Finds a specified PCI device 10-49
pci_find_device_type() Finds a specified type of PCI device 10-50
pci_get_io_base() Returns a PCI I/O base address 10-51
pci_get_memory_base() Returns a PCI memory base address 10-52
pci_init() PCl initilisation 10-53
pci_master_abort() Looks for and clears a PCI master abort condition 10-54
pci_read_config_reg() Reads from a PCI configuration register 10-55
pci_write_config_reg() Writes to a PCI configuration register 10-56
ppcAbend() Executes an invalid opcode forcing a program check interrupt 10-57
ppcAndMsr() ANDs a value with the contents of the MSR 10-58
ppcCntlzw() Counts consecutive leading zeros in a value 10-59
ppcDcbf() Copies the cache block back to main storage (if the block resides 10-60

in cache and has been modified with respect to main storage) and
then invalidates the cache block
Revised 8/22/00 v. 0.8 OS Open Function Reference 10-3

—Preliminary Copy

Table 10-1. Functions Specific to the PPC405GP Design Kit (Continued)

Function or Macro Description Page

ppcDcbi() Invalidates a cache block, discarding any modified contents if the 10-61
block is valid in cache

ppcDcbst() Copies a cache block, discarding any modified contents if the block | 10-62
is valid in cache

ppcDcbz() Sets a cache block to 0 10-63

ppcDflush() Flush and invalidate the data cache 10-64

ppcEieio() Ensures that all storage references before the call finish before any 10-65
storage references after the call start

ppcHalt() Is a one instruction spin loop, effectively putting the processor in 10-66
an enabled wait at the point of invocation

ppclcbi() Invalidates an instruction cache block 10-67

ppclsync() Causes the processor to discard any instructions that may have 10-68
been prefetched

ppcMfsdramO_bear() Returns the value of the SDRAMO_BEAR register 10-127

ppcMfsdramQ_besr0() - Returns the value of the SDRAMO_BESRO or SDRAMO_BESR1 10-128

ppcMfsdramO_besrl() register

ppcMfccrO() Returns the value of the CCRO register 10-69

ppcMfcpcO0_crO() Returns the value of the CPCO_CRO register 10-70

ppcMfcpcO0_crl() Returns the value of the CPCO_CR1 register 10-71

ppcMfdacl() - ppcMfdac2() Returns the value of the DAC1 or DAC2 regsiter 10-72

ppcMfdbcer0() - ppcMfdberl() | Returns the value of the DBCRO or DBCR1 regsiter 10-73

ppcMfdbsr() Returns the value of the DBSR register 10-74

ppcMfdccr() Returns the value of the DCCR register 10-75

ppcMfdcwr() Returns the value of the DCWR register 10-85

ppcMfdear() Returns the value of the DEAR register 10-86

ppcMfdma0_crO() - Returns the value of the DMAO_CRO through DMAO_CR3 10-87

ppcMfdma0_cr3() registers

ppcMfdma0_ct0() - Returns the value of the DMAO_CTO through DMAO_CT3 registers | 10-88

ppcMfdma0_ct3()

ppcMfdma0_da0() - Returns the value of the DMAO_DAO through DMAQO_DA3 registers | 10-89

ppcMfdma0_da3()

ppcMfdma0_sa0() - Returns the value of the DMAO_SAO through DMAO_SA3 registers | 10-90

ppcMfdma0_sa3()

ppcMfdma0_sg0() - Returns the value of the DMASBO through DMASB3 registers 10-91

ppcMfdma0_sg3()

10-4

PPC405GP Reference Design Kit User's Manual

v. 0.8

Revised 8/22/00

—Preliminary Copy

Table 10-1. Functions Specific to the PPC405GP Design Kit (Continued)

Function or Macro Description Page
ppcMfdma0_sgc() Returns the value of the DMAO_SGC register 10-92
ppcMfdma0_sr() Returns the value of the DMAO_SR register 10-93
ppcMfdvcl() - ppcMfdvc2() Returns the value of the DVC1 or DVC2 register 10-94
ppcMfsdramO_ecccfg() Returns the value of the SDRAMO_ECCCFG register 10-130
ppcMfsdramO_eccesr() Returns the value of the SDRAMO_ECCESR register 10-131
ppcMfesr() Returns the value of the ESR register 10-95
ppcMfevpr() Returns the value of the EVPR register 10-96
ppcMfgprl() Returns the value of GPR(1) 10-97
ppcMfgpr2() Returns the value of GPR(2) 10-98
ppcMfiacl() - ppcMfiac4() Returns the value of the IAC1 through IAC4 register 10-99
ppcMficcr() Returns the value of the ICCR register 10-100
ppcMficdbdr() Returns the value of the ICDBDR register 10-101
ppcMfdcp0_addrO() - Returns the value of the DCPO_ADDRO or DCPO_ADDRI1 register | 10-76
ppcMfdcp0_addrl()
ppcMfdcp0_membear() Returns the value of the DCPO_MEMBEAR register 10-81
ppcMfdcpO_cfg() Returns the value of the DCPO_CFG register 10-77
ppcMfdcpO_esr() Returns the value of the DCPO_ESR register 10-78
ppcMfdcpO_id() Returns the value of the DCPO_ID register 10-79
ppcMfdcpO_itor0() - Returns the value of the DCPO_ITORO through DCPO_ITOR3 10-80
ppcMfdcpO_itor3() register
ppcMfdcpO_plbbear() Returns the value of the DCPO_PLBBEAR register 10-82
ppcMfdcp0_ram() Returns the value of the a DCPO_RAM register 10-83
ppcMfdcpO_ver() Returns the value of the DCPO_VER register 10-84
ppcMfsdramO_bOcr() - Returns the value of the SDRAMO_BOCR through 10-126
ppcMfsdramO_b3cr() SDRAMO_B3CR resgister
ppcMfsdramO_cfg() Returns the value of the SDRAMO_CFG register 10-129
ppcMfsdramO_pmit() Returns the value of the SDRAMO_PMIT register 10-194
ppcMfmsr() Returns the value of the MSR register 10-118
ppcMfpid() Returns the value of the PID register 10-123
ppcMfpit() Returns the value of the PIT register 10-124
ppcMfpvr() Returns the value of the processor version register 10-125

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-5

—Preliminary Copy

Table 10-1. Functions Specific to the PPC405GP Design Kit (Continued)

Function or Macro Description Page
ppcMfsdramO_rtr() Returns the value of the SDRAMO_RTR register 10-132
ppcMfsdramO_tr() Returns the value of the SDRAMO_TR register 10-133
ppcMfsgr() Returns the value of the SGR register 10-134
ppcMfsler() Returns the value of the SLER register 10-135
ppcMfsprg0()- ppcMfsprg7() Returns the value of the special purpose register generals 10-136

(SPRGO0-SPRG7)

ppcMfsrrO() Returns the value of SRRO 10-137
ppcMfsrrl() Returns the current value of SRR1 10-138
ppcMfsrr2() Returns the current value of SRR2 10-139
ppcMfsrr3() Returns the current value of SRR3 10-140
ppcMfsuOr() Returns the value of the SUOR register 10-141
ppcMftb() Returns the current time base data 10-142
ppcMftcr() Returns the value of the TCR register 10-143
ppcMftsr() Returns the value of the TSR register 10-144
ppcMfuicO_cr() Returns the value of the UICO_CR register 10-145
ppcMfuicO_er() Returns the value of the UICO_ER register 10-146
ppcMfuicO_msr() Returns the value of the UICO_MSR register 10-147
ppcMfuicO_pr() Returns the value of the UICO_PR register 10-148
ppcMfuicO_sr() Returns the value of the UICO_SR register 10-149
ppcMfuicO_tr() Returns the value of the UICO_TR register 10-150
ppcMfuicO_vr() Returns the value of the UICO_VR register 10-151
ppcMfzpr() Returns the value of the ZPR register 10-152
ppcMtsdramO_bear() Sets the value of the SDRAMO_BEAR register 10-203
ppcMtsdramO_besr0() - Sets the value of the SDRAMO_BESRO or SDRAMO_BESR1 10-204
ppcMtsdramO_besrl() register

ppcMtccrO() Sets the value of the CCRO register 10-153
ppcMtcpc0_cr0() Sets the value of the CPCO_CRO register 10-154
ppcMtcpcO0_crl() Sets the value of the CPCO_CR1 register 10-155
ppcMtdacl() - ppcMtdac2() Sets the value of the DAC1 or DAC2 regsiter 10-156
ppcMtdbcer0() - ppcMtdberl() | Sets the value of the DBCRO or DBCRL regsiter 10-157
ppcMtdbsr() Sets the value of the DBSR register 10-158
ppcMtdccr() Sets the value of the DCCR register 10-159

10-6 PPC405GP Reference Design Kit User's Manual v. 0.8

Revised 8/22/00

—Preliminary Copy

Table 10-1. Functions Specific to the PPC405GP Design Kit (Continued)

Function or Macro Description Page
ppcMtdcwr() Sets the value of the DCWR register 10-165
ppcMtdear() Sets the value of the DEAR register 10-166
ppcMtdma0_crO() - Sets the value of the DMAO_CRO through DMAO_CR3 registers 10-167
ppcMtdma0_cr3()
ppcMtdmaO_ct0() - Sets the value of the DMAO_CTO through DMAO_CT3 registers 10-168
ppcMtdma0_ct3()
ppcMtdma0_da0() - Sets the value of the DMAO_DAO through DMAO_DA3 registers 10-169
ppcMtdma0_da3()
ppcMtdma0_sa0() - Sets the value of the DMAO_SAO through DMAO_SAS3 registers 10-170
ppcMtdma0_sa3()
ppcMtdma0_sg0() - Sets the value of the DMASBO through DMASBS registers 10-171
ppcMtdma0_sg3()
ppcMtdma0_sgc() Sets the value of the DMAQO_SGC register 10-172
ppcMtdmaO0_sr() Sets the value of the DMAO_SR register 10-173
ppcMtdvcl() - ppcMtdve2() Sets the value of the DVCL1 or DVC2 register 10-174
ppcMtsdramO_ecccfg() Sets the value of the SDRAMO_ECCCFG register 10-206
ppcMtsdramO_eccesr() Sets the value of the SDRAMO_ECCESR register 10-207
ppcMtesr() Sets the value of the ESR register 10-175
ppcMtevpr() Sets the value of the EVPR register 10-176
ppcMtiacl() - ppcMtiac4() Sets the value of the IAC1 through IAC4 register 10-177
ppcMticcr() Sets the value of the ICCR register 10-178
ppcMtdcp0_addrO() - Sets the value of the DCPO_ADDRO or DCPO_ADDRI1 register 10-160
ppcMtdcpO_addrl()
ppcMtdcpO_cfg() Sets the value of the DCPO_CFG register 10-161
ppcMtdcpO_esr() Sets the value of the DCPO_ESR register 10-162
ppcMtdcpO_itor0() - Sets the value of the DCP0_ITORO through DCPO_ITOR3 register | 10-163
ppcMtdcpO_itor3()
ppcMtdcpO_ram() Sets the value of the a DCPO_RAM register 10-164
ppcMtsdramO_bOcr() - Sets the value of the SDRAMO_BOCR through SDRAMO_B3CR 10-202
ppcMtsdramO_b3cr() resgister
ppcMtsdramO_cfg() Sets the value of the SDRAMO_CFG register 10-205
ppcMtsdramO_pmit() Sets the value of the SDRAMO_PMIT register 10-194
ppcMtmsr() Sets the MSR 10-195

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-7

—Preliminary Copy

Table 10-1. Functions Specific to the PPC405GP Design Kit (Continued)

Function or Macro Description Page
ppcMtpid() Sets the value of the PID register 10-197
ppcMtpit() Sets the value of the PIT register 10-201
ppcMtsdramO_rtr() Sets the value of the SDRAMO_RTR register 10-208
ppcMtsdramO_tr() Sets the value of the SDRAMO_TR register 10-209
ppcMtsgr() Sets the value of the SGR register 10-210
ppcMtsler() Sets the value of the SLER register 10-211
ppcMtsprg0() - ppcMtsprg7() | Sets the special purpose register generals (SPRGO - SPRG7) 10-212
ppcMtsrrO() Sets the SRRO 10-213
ppcMtsrrl() Sets the SRR1 10-214
ppcMtsrr2() Sets the SRR2 10-215
ppcMtsrr3() Sets the SRR3 10-216
ppcMtsuOr() Sets the value of the SUOR register 10-217
ppcMttb() Sets the current time base data 10-218
ppcMttcr() Sets the value of the TCR register 10-219
ppcMttsr() Sets the value of the TSR register 10-220
ppcMtuicO_cr() Sets the value of the UICO_CR register 10-221
ppcMtuic0_er() Sets the value of the UICO_ER register 10-222
ppcMtuicO_pr() Sets the value of the UICO_PR register 10-223
ppcMtuicO_sr() Sets the value of the UICO_SR register 10-224
ppcMtuicO_tr() Sets the value of the UICO_TR register 10-225
ppcMtuicO_vcr() Sets the value of the UICO_VCR register 10-226
ppcMtzpr() Sets the value of the ZPR register 10-227
ppcOrMsr() Performs the OR of a value and the current MSR, updating the 10-228
MSR

ppcSync() Causes the processor to wait until all data cache lines scheduled 10-229
to be written to main storage have actually been written

s1dbprintf() A version of printf() that may be used before 1/0 has been 10-230
established

s2dbprintf() A version of printf() that may be used before 1/0O has been 10-232
established for serial port 2

timebase_speed() Returns the speed of the timebase 10-233

timertick_install() Installs and starts the timer tick handler 10-234

10-8

PPC405GP Reference Design Kit User's Manual

v. 0.8

Revised 8/22/00

—Preliminary Copy

Table 10-1. Functions Specific to the PPC405GP Design Kit (Continued)

Function or Macro Description Page
timertick_remove() Removes the timer tick handler 10-235
vga_cls() VGA - clear screen 10-236
vga_fill_block() VGA - fill a block with a single color 10-237
vga_get_cursor_info() VGA - return cursor information 10-238
vga_get_screen_dimenions() | VGA - return screen dimensions 10-239
vga_get_vid_mem_start() VGA - return starting address of video memory 10-240
vga_init() VGA - initialise 10-241
vga_print_char() VGA - print a character at the given coordinates 10-242
vga_print_char_at_cursor() VGA - print a character at the cursor position 10-243
vga_print_string() VGA - print a string at the given coordinates 10-244
vga_print_string_at_cursor() | VGA - print a string at the cursor position 10-245
vga_scroll_up() VGA - scroll the screen up 10-246
vga_set_cursor_info() VGA - set cursor information 10-247
vga_set_mode() VGA - set the VGA mode 10-248
vga_set_pixel() VGA - write out one pixel 10-249
vga_write_data() VGA - write out the specified data to the screen 10-250
vgadd_init() VGA device driver initialistaion 10-251
vsldbprintf() A version of printf() that uses polled writes (no 10-252

interrupts), and may be used before 1/0 has been
established and accepts a va_list as a parameter
instead of a variable number of parameters

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-9

asyn C_i n It() —Preliminary Copy

Synopsis

#include <sys/asyncLib.h>
int driver_install(int *devhandle,async_init);

Library
asyncLib.a
Description

asyncLib.a is the asynchronous device driver that supports the asynchronous communication port
on the PPC405GP design kit platform. asyncLib.a is installed by calling driver_install() with
devhandle as the first parameter and async_init as the second parameter.

Errors

None

Attributes

Async Safe No
Cancel Safe Yes
Interrupt Handler Safe No
Callable from Application Thread Group No
References

driver_install(): OS Open Programmer’s Reference

“Device Drivers Supplied with the Board Support Software” on page 9-5

10-10 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy biosenet_attach()

Synopsis

#include <benetLib.h>
int biosenet_attach(unsigned long ipaaddr , int init_flag);

Library
benetLib.a

Description

biosenet_attach() attaches the TCP/IP protocol stack to the Ethernet device. The IP address should
be different from the IP address defined to the 403 EVB ROM Monitor. init_flag determines if
biosenet_attach() should initialize the Ethernet interface. The Ethernet device should be initialized
only if OS Open was loaded through an interface other than Ethernet. A non-zero value will cause
biosenet_attach() to initialize the Ethernet and a 0 value causes biosenet_attach() not to initialize
the Ethernet interface. biosenet_attach() returns 0 if successful and -1 if it is unsuccessful.

Note 1: When using biosenet_attach() the I/O should be initialized by calling dbg_ioLib_init() rather
than ioLib_init().

Note 2: biosenet_attach() is unavailable for OS Open with Virtual Memory.

Errors

None

Example

Initialize TCP/IP and define an IP address to biosenet_attach().

#include<sys/tcpipLib.h>

int rc;

rc=tcpip_init(imyhostnamei, 1, 100);

if (rc!=0) {

return(-1);}

if (net_init()) return(-1);

return(biosenet_attatch(0x07010104,0)); /* specify the IP addr. and the
init flag*/

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-11

biosenet_attach()

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

Processors
PowerPC 403GA Yes
PowerPC 403GC Yes
PowerPC 403GCX Yes
References

“Ethernet Device Driver” on page 9-21

10-12 PPC405GP Reference Design Kit User's Manual

No
No
No
No

v. 0.8

—Preliminary Copy

Revised 8/22/00

—Preliminary Copy C|0Ck_Set0

Synopsis

#include <clockLib.h>
int clock_set(void);

Library
clockLib.a
Description

clock _set() sets the OS Open POSIX clock to the value obtained from the battery operated real-time
clock. The clockLib must be initialized by calling clockLib_init() prior to calling this function.

Errors
[EIO] Real-time clock not running.
Attributes
Async Safe Yes/No?
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No

1. Not Async Safe in OS Open with Virtual Memory

References
“clockchip_set()” on page 10-17
“clockLib_init()” on page 10-20

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-13

clockchip_get()

Synopsis

#include <clockLib.h>
int clockchip_get(time_t *timeval);

Library

clockLib.a

Description

—Preliminary Copy

clockchip_get() reads the battery-backed real-time clock into the timeval structure supplied by the
user. The clockLib library must be initialized by calling clockLib_init() prior to calling this function.

Errors

[EINVAL] Library not initialized.

Attributes

Async Safe No
Cancel Safe Yes

Interrupt Handler Safe Yes

References
“clockchip_set()” on page 10-17
“clockLib_init()” on page 10-20

10-14 PPC405GP Reference Design Kit User's Manual

v. 0.8

Revised 8/22/00

—Preliminary Copy Clockchip_nvram_read ()

Synopsis

#include <clockLib.h>
int clockchip_nvram_read(int index, unsigned char *buffer, int length);

Library
clockLib.a
Description

clockchip_nvram_read() reads non-volatile RAM from the clock chip. index specifies the starting
byte of NVRAM, buffer points to the location where the bytes will be copied to and /ength specifies the
maximum number of bytes to read. clockchip_nvram_read() returns the actual number of bytes
read. The clockLib library must be initialized by calling clockLib_init() prior to calling this function.

Note: index must be within the range specified during clockLib_init()

Errors

[EINVAL] Library not initialized or index out of range.
Attributes

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

References

“clockchip_nvram_write()” on page 10-16

“clockLib_init()” on page 10-20

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-15

clockchip_nvram_write() —Preliminary Copy

Synopsis

#include <clockLib.h>
int clockchip_nvram_write(int index, unsigned char *buffer, int length);

Library

clockLib.a

Description

clockchip_nvram_write() writes non-volatile RAM in the clock chip. index specifies the starting byte
of NVRAM, buffer points to the location where the bytes will be copied from and /ength specifies the
maximum number of bytes to write. clockchip_nvram_write() returns the actual number of bytes

written. The clockLib library must be initialized by calling clockLib_init() prior to calling this function.

Note: index must be within the range specified during clockLib_init()

Errors

[EINVAL] Library not initialized or index out of range.
Attributes

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

References

“clockchip_nvram_read()” on page 10-15

“clockLib_init()” on page 10-20

10-16 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis

#include <clockLib.h>
int clockchip_set(time_t timeval);

Library
clockLib.a

Description

clockchip_set()

clockchip_set() sets the battery-backed real-time clock to timeval, which should contain the number

of seconds since January 1st, 1970 UTC.

Errors
[EIO] Real-time clock not running.
[EINVAL] Library not initialized.
Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

“clock_set()” on page 10-13

Revised 8/22/00 v. 0.8

OS Open Function Reference

10-17

clockchip_start()

Synopsis

#include <clockLib.h>
int clockchip_start(void);

Library

clockLib.a

Description

—Preliminary Copy

clockchip_start() starts the real-time clock. The clockLib library must be initialized by calling

clockLib_init() prior to calling this function.

Errors

[EINVAL] Library not initialized.

Attributes

Async Safe No
Cancel Safe Yes

Interrupt Handler Safe Yes

References
“clockchip_stop()” on page 10-19
“clockLib_init()” on page 10-20

10-18 PPC405GP Reference Design Kit User's Manual

v. 0.8

Revised 8/22/00

—Preliminary Copy

Synopsis

#include <clockLib.h>
int clockchip_stop(void);

Library
clockLib.a

Description

clockchip_stop() stops the real-time clock. The clockLib library must be initialized by calling

clockLib_init() prior to calling this function.

Errors

[EINVAL] Library not initialized.

Attributes

Async Safe No
Cancel Safe Yes

Interrupt Handler Safe Yes

References
“clockchip_start()” on page 10-18
“clockLib_init()” on page 10-20

Revised 8/22/00 v. 0.8

clockchip_stop()

OS Open Function Reference

10-19

C|OCkLib_init() —Preliminary Copy

Synopsis

#include <clockLib.h>
int clockLib_init(unsigned char *regbase, int reg_delta, int first_index, int
last_index);

Library

clockLib.a

Description

clockLib_init() initializes the clockLib library routines. regbase specifies the base address of the
clock/nvram chip, reg_delta specifies the distance (in bytes) between each addressable byte in the
chip. first_index and last_index indicate the range of bytes in the NVRAM that can be accessed by
clockchip_nvram_read() and clockchip_nvram_write() . The range is specified using starting and
ending index values (inclusive). clockLib_init() returns O if successful.

A constant defining the base address of the clock_nvram chip, RTC_NVRAM_BASE_ADDRESS, is
specified by including <ppcLlb.h> .

Note: clockLib_init() should be called once at system initialization.

Errors

[EINVAL] Already initialized or index out of range.

Example

clockLib_init(RTC_NVRAM_BASE_ADDRESS, 1 ,0 ,0x1ff7);

Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
References

“clock_set()” on page 10-13
“clockchip_get()” on page 10-14
“clockchip_nvram_read()” on page 10-15
“clockchip_nvram_write()” on page 10-16
“clockchip_set()” on page 10-17
“clockchip_start()” on page 10-18
“clockchip_stop()” on page 10-19

10-20 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy dbg_IOLIb_Inlt()

Synopsis

#include <ioLib.h>
int dbg_ioLib_init(void);

Library
ioLib.a
Description

dbg_ioLib_init() initializes the I/O library. Unlike ioLib_init() , this function allows external I/O
interrupts to be screened by the ROM monitor, enabling debug to be performed from outside of the
OS Open environment. Only external I/O through IRQ’s other than those used by the ROM Monitor
are available to OS Open.

If successful, dbg_ioLib_init() returns 0. Otherwise, dbg_ioLib_init() returns —1.

Errors

[ENOMEM] Insufficient memory to allocate first level interrupt handler control areas.
Attributes

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No

References

“ioLib_init()” on page 10-42

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-21

dcache_flush() —Preliminary Copy

Synopsis

#include <ioLib.h>
void dcache_flush(void *address, unsigned int count);

Library
ioLib.a
Description

dcache_flush() flushes data cache lines, beginning at the effective address and continuing for count
bytes.

A cache line flush forces the current contents of the cache line to main storage (if the line is valid and
marked as modified) and then invalidates the line.

Note: Since cache flushes occur on cache line boundaries, the operation can occur outside of the
bounds specified by the function call. For example, if address is X'216' and countis X'12', two
cache lines, spanning addresses from X'200' to X'23F', would be flushed.

Errors

None

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

“dcache_invalidate()” on page 10-23

10-22 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy dcaChe_invaIidate()

Synopsis

#include <ioLib.h >
void dcache_invalidate(void *address, unsigned int count);

Library
ioLib.a
Description

dcache_invalidate() invalidates data cache lines beginning at the effective address given by address
and continuing for count bytes.

Note: Since cache invalidation occurs on cache line boundaries, invalidation can occur outside of the
bounds implied by this command. For example, if address is X'104' and countis 16, the cache
line spanning the addresses from X'100' to X'120' would be invalidated.

Errors

None

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

“dcache_flush()” on page 10-22

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-23

dma_disable() —Preliminary Copy

Synopsis

#include <ioLib.h>
int dma_disable(unsigned int channel);

Library

ioLib.a

Description

dma_disable() disables the specified channel (0-3).

The dma_disable() function returns 0 if successful or -1 if channel is invalid.

Errors

None

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

“dma_setup()” on page 10-25
“dma_status()” on page 10-26

10-24 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy dma_setup()

Synopsis

#include <ioLib.h>
int dma_setup(unsigned int channel, unsigned long dmacr, unsigned long count,
void* dst_address, void* src_address, struct dma_sg_t *dmasb);

Library
ioLib.a
Description

dma_setup() initialises a DMA channel for the specified transfer. channel specifies the DMA channel,
dst_address the destination address, src_address the source address, count the length of the data
transfer, dmacr the value to be written to the DMACRN register. channel must be a value 0-3, count
must be greater than 0 and less than or equal to 65536. Note that the PW field in the dmacr register
may affect the transfer size, so for memory-to-memory transfers the total data sent is the size
specified by the PW field multiplied by the count value.

If dmasb is non-0, a scatter/gather transfer is used, and dmasb is the address of the first descriptor
table element, which must have been initialised before calling dma_setup() . In this case the only
other parameter that is used is channel, the others are ignored. Note that if you set an enable
interrupt bit in a descriptor table element, you should install an interrupt handler to process the
interrupt, using ext_interrupt_install().

The dma_setup() function returns O if successful or -1 if channel is invalid.

Errors

None

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual
“dma_disable()” on page 10-24
“dma_status()” on page 10-26

“ext_int_install()” on page 10-31

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-25

dma_status()

Synopsis

#include <ioLib.h>

int dma_status(unsigned int channel, struct dma_stat * dstat);

Library
ioLib.a

Description

—Preliminary Copy

dma_status() returns status information from the specified channel (0-3). The structure pointed to by
dstat is filled with status information. struct dma_stat is defined in <ioLib.h> .

The dma_status() function returns 0 if successful or -1 if channel is invalid.

Errors

None

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References
“dma_disable()” on page 10-24
“dma_setup()” on page 10-25

10-26 PPC405GP Reference Design Kit User's Manual

Yes
Yes
Yes
No

v. 0.8

Revised 8/22/00

—Preliminary Copy enet_init()

Synopsis

#include <enet.h>
int driver_install(int devhandle, enet_init, int num_blocks,
void *enet_descriptor, void *enet_buffer, char *mac_array);

Library

enetLib.a

Description

enetlLib.a is the Ethernet device driver supporting packet level read/writes to the 405GP Intergrated
Ethernet controller. enetLib.a is installed by calling driver_install() with six parameters. The first
parameter is the device handle, devhandle . The second parameter is the device driver initialization
function, enet_init . The third parameter is the number of 256 byte buffers allocated for the Ethernet
driver's use, num_blocks . The fourth parameter is the address of memory to use for buffer
descriptors, enet_descriptor . The fifth parameter is the address of memory to use for buffers,
enet_buffer . The sixth parameter is the location of the universal MAC address assigned to the
Ethernet controller, mac_array .

Please see “Ethernet Device Driver” on page 9-21 for additional information.
Errors

None

Attributes

Async Safe Yes
Cancel Safe Yes

Interrupt Handler Safe No

References
driver_install() : OS Open Programmer’'s Reference

“Ethernet Device Driver” on page 9-21

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-27

ext_int_config()

Synopsis

#include <ioLib.h>
void ext_int_config(int event , int flags);

Library
ioLib.a

Description

—Preliminary Copy

ext_int_config() configures the interrupt level specified by event. The items that can be configured
are the polarity, trigger setting and whether the event is critical. These are specified by the flags

parameter. ioLib.h defines the interrupt levels that can be configured.

The flags parameter can take any of the following values, which may be OR’d together:

EXTINT_NEG_ACTIVE or EXT_INT_POS_ACTIVE

EXTINT_LEVEL or EXT_INT_EDGE_TRIG
EXTINT_NON_CRITICAL or EXTINT_CRITICAL

The ext_int_config() function returns 0O if successful or -1 if event is invalid.

Errors

None

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References

“ext_int_enable()” on page 10-30
“ext_int_install()” on page 10-31
“ext_int_query()” on page 10-32
“ioLib_init()” on page 10-42

10-28 PPC405GP Reference Design Kit User's Manual

Yes
Yes
Yes
No

v. 0.8

Revised 8/22/00

—Preliminary Copy

Synopsis

#include <ioLib.h>
void ext_int_disable(int event);

Library
ioLib.a

Description

ext_int_disable()

ext_int_disable() disables the interrupt level specified by event. ioLib.h defines the interrupt levels

that can be disabled.
The ext_int_disable() function returns nothing.
Errors

None

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References

“ext_int_enable()” on page 10-30
“ext_int_install()” on page 10-31
“ext_int_query()” on page 10-32
“ioLib_init()” on page 10-42

Revised 8/22/00 v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-29

ext_int_enable()

Synopsis

#include <ioLib.h>
void ext_int_enable(int event);

Library
ioLib.a

Description

—Preliminary Copy

ext_int_enable() enables the interrupt level specified by event. ioLib.h defines the interrupt levels

that can be enabled.
ext_int_enable() returns nothing.
Errors

None

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References

“ext_int_install()” on page 10-31
“ext_int_query()” on page 10-32
“ioLib_init()” on page 10-42

10-30 PPC405GP Reference Design Kit User's Manual

Yes
Yes
Yes
No

v. 0.8

Revised 8/22/00

—Preliminary Copy ext_int_install()

Synopsis

#include <flih.h>
#include <ioLib.h>
int ext_int_install(int event, flih_t *new_flih, flih_t *old_flih);

Library
ioLib.a
Description

ext_int_install() installs a first level interrupt handler (FLIH) for the external interrupt event. ioLib.h
defines the interrupt levels that can be set.

If new_flihis NULL, the current interrupt handler is removed for the specified event. If new _flih is non-
NULL, it points to a flih_t structure containing the following fields:

flih_stack Pointer to the first stack location; obtained by allocating memory and
adding the size of the stack. flih_stack must be 16 byte aligned.

flih_function Pointer to a function invoked when event occurs.

arg A user-defined (void *) value passed to flih_function.

If old_flih is not NULL, the previous values of flih_function, flih_stack, and arg are stored in the
structure pointed to by old_flih.

Note: to install an interrupt handler for other, non-external, interrupts, see int_install() .

If successful, ext_int_install() returns 0. Otherwise, ext_int_install() returns —1.

Errors

[EINVAL] event does not refer to a valid event.
Attributes

Async Safe No

Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

“ext_int_enable()” on page 10-30
“ext_int_query()” on page 10-32
“ioLib_init()” on page 10-42

“int_install()” on page 10-39

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-31

ext_i nt_query() —Preliminary Copy

Synopsis

#include <ioLib.h>
#include <flih.h>
int ext_int_query(int event, flih_t *flih);

Library

ioLib.a

Description

ext_int_query() returns information about the first level interrupt handler (FLIH), if any, for event.
ioLib.h defines the events for which FLIHs can query.

The flih argument points to a flih_t structure containing the following fields:

flih_stack Pointer to the first stack location; obtained by allocating memory and
adding the size of the stack.

flih_function Pointer to a function invoked when event occurs.

arg A user-defined (void *) value passed to flih_function. If no FLIH is

installed for the specified level, each field in the flih_t structure is
assigned NULL.

If successful, ext_int_query() returns 0. Otherwise, ext_int_query() returns —1.

Errors

[EINVAL] event does not refer to a valid event.
Attributes

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
References

“ext_int_enable()” on page 10-30
“ext_int_install()” on page 10-31
“ioLib_init()” on page 10-42

10-32 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy i2C_readO

Synopsis

#include <sys/i2cLib.h>
int i2c_read(unsigned char dev_addr, unsigned char dev_subaddr, unsigned char
count, unsigned char *data, unsigned char flags)

Library
i2cLib.a

Description

i2c_read() reads count (1 to 4) characters from the i2c device specified by dev_addr, and places
them in the buffer pointed to by data. The optional subaddress specified by dev_subaddr may also be
used by the device to determine which data to send.

flags may contain any of the following vlaues, OR’d together:

I2C_FLAGS_SUB_ADDR: a device subaddress is to be used, and is in dev_subaddr
I2C_FLAGS_CH: chaining - sets the Chain bit in the 12C Control register
I2C_FLAGS_REP_ST: repeated start - sets the Repeated Start bit in the 12C Control register.

The 12C driver must have been initialised with a call to i2c_setupdriver() before this function is called.
Returns 0 if successful and -1 otherwise.
Errors

None

Example

Read 2 bytes from the specified device, using the given subaddress.
#include <sys/i2cLib.h>

int rc;

unsigned char dev_addr, dev_subaddr;

unsigned char data[4];
rc=i2c_read(dev_addr,dev_subaddr,2,data,l2C_FLAGS SUB_ADDR);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe No
Callable from Application Thread Group Yes
References

“i2c_setupdriver()” on page 10-35
PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-33

i2c_read_reg () —Preliminary Copy

Synopsis

#include <sys/i2cLib.h>
int i2c_read_reg(unsigned char reg, unsigned char *value)

Library
i2cLib.a
Description

i2c_read_reg() reads the contents of 12C register reg, and returns it in the character pointed to by
value. reg must be in the range 0 to 15. Constants defining the register names are in <sys/i2cLib.h>.

Returns 0 if successful and -1 otherwise.

Errors

None

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe No
Callable from Application Thread Group Yes
References

PPC405GP Embedded Controller User's Manual

10-34 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy i2c_setupdriver()

Synopsis

#include <sys/i2cLib.h>
int i2c_setupdriver(char * base_address)

Library
i2cLib.a

Description

i2c_setupdriver() initialises the I12C device driver. This function should be called before any other 12C
functions are attempted. The base_address parameter contains the starting address of the memory-
mapped IIC registers. This infomration may be obtained from processor documentation, and is also
contained in the symbol IIC_BASE_ADDRESS, obtained by including file <ppcLib.h>.

Returns 0 if successful and -1 otherwise.
Errors

ENOSPC, ENOMEM: Insufficient memory
Example

Initialise the 12C driver.

#include <sys/i2cLib.h>

#include <ppcLib.h>

int rc;
rc=i2c_setupdriver(lIC_BASE_ADDRESS);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-35

i2c_write () —Preliminary Copy

Synopsis

#include <sys/i2cLib.h>
int i2c_write(unsigned char dev_addr, unsigned char dev_subaddr, unsigned char
count, unsigned char *data, unsigned char flags)

Library
i2cLib.a

Description

i2c_write() writes count characters to the i2c device specified by dev_addr, from the buffer pointed to
by data. The optional subaddress specified by dev_subaddr may be used by the device to determine
where to place the data. If no device subaddress is used, the value of count may be 1 to 4. If a device
subaddress is used, count may be 0 to 3. When count is 0, only the device subaddress is written.

flags may contain any of the following vlaues, OR’d together:

I2C_FLAGS _SUB_ADDR: a device subaddress is to be used, and is in dev_subaddr
I2C_FLAGS_CH: chaining - sets the Chain bit in the 12C Control register
[2C_FLAGS_REP_ST: repeated start - sets the Repeated Start bit in the 12C Control register.

The 12C driver must have been initialised with a call to i2c_setupdriver() before this function is called.

Returns 0 if successful and -1 otherwise.

Errors

None

Example
Write 2 bytes to the specified device, using the given subaddress.

#include <sys/i2cLib.h>

int rc;

unsigned char dev_addr, dev_subaddr;

unsigned char data[4];
rc=i2c_write(dev_addr,dev_subaddr,2,data,l2C_FLAGS SUB_ADDR);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe No
Callable from Application Thread Group Yes
References

“i2c_setupdriver()” on page 10-35
PPC405GP Embedded Controller User's Manual

10-36 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy iZC_Write_reg ()

Synopsis

#include <sys/i2cLib.h>
int i2c_write_reg(unsigned char reg, unsigned char value)

Library
i2cLib.a
Description

i2c_write_reg() writes value to 12C register reg. reg must be in the range 0 to 15. Constants defining
the register names are in <sys/i2cLib.h>.

Returns O if successful and -1 otherwise.

Errors

None

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe No
Callable from Application Thread Group Yes
References

PPC405GP Embedded Controller User’'s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-37

inshort_swap()

Synopsis

#include <ioLib.h>
unsigned short inshort_swap(unsigned short * address)

Library
ioLib.a

Description

—Preliminary Copy

inshort_swap() returns a halfword read from the I/O port specified by address. The halfword is byte-

reversed, by using the lhbrx instruction.

After the halfword is read, the PowerPC eieio instruction is issued to enforce in-order execution of I/O.

Errors

None

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

“outshort_swap()” on page 10-47
“inword_swap()” on page 10-41
inshort(): OS Open Programmer’s Reference

Ihbrx instruction in PPC405GP Embedded Controller User’'s Manual

10-38 PPC405GP Reference Design Kit User's Manual

v. 0.8

Revised 8/22/00

—Preliminary Copy int_install()

Synopsis

#include <flih.h>
int int_install(int event, flih_t *new_flih, flih_t *old_flih);

Library
rtxLib.a
Description

int_install() installs a first level interrupt handler (FLIH) for event. flih.h defines the interrupt levels
that can be set.

If new_flihis NULL, the current interrupt handler is removed for the specified event. If new _flih is non-
NULL, it points to a flih_t structure containing the following fields:

flih_stack Pointer to the first stack location; obtained by allocating memory and
adding the size of the stack.

flih_function Pointer to a function invoked when event occurs.

arg A user-defined (void *) value passed to flih_function.

If old_flih is not NULL, the previous values of flih_function, flih_stack, and arg are stored in the
structure pointed to by old_flih.

Note: to install an interrupt handler for a device which generates an external interrupt (one handled by
the Universal Interrupt Controller, UIC) use the function ext_int_install() .

If successful, int_install() returns 0. Otherwise, int_install() returns —1.

Errors
[EINVAL] event does not refer to a valid event.
Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

“int_query()” on page 10-40
“ioLib_init()” on page 10-42
“ext_int_install()” on page 10-31

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-39

int_query() —Preliminary Copy

Synopsis

#include <flih.h>
int int_query(int event, flih_t *flih);

Library

rexLib.a

Description

int_query() returns information about the first level interrupt handler (FLIH), if any, for event.
flih.n defines the events for which FLIHs can query.

The flih argument points to a flih_t structure containing the following fields:

flih_stack Pointer to the first stack location; obtained by allocating memory and
adding the size of the stack.

flih_function Pointer to a function invoked when event occurs.

arg A user-defined (void *) value passed to flih_function. If no FLIH is

installed for the specified level, each field in the flih_t structure is
assigned NULL.

If successful, int_query() returns 0. Otherwise, int_query() returns —1.

Errors

EINVAL] event does not refer to a valid event.
Attributes

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No
References

“int_install()” on page 10-39
“ioLib_init()” on page 10-42

10-40 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis

#include <ioLib.h>

unsigned long inword_swap(unsigned long * address)

Library
ioLib.a

Description

inword_swap() returns a word read from the I/O port specified by address. The word is byte-
reversed, by using the lwbrx instruction.

inword_swap()

After the word is read, the PowerPC eieio instruction is issued to enforce in-order execution of 1/0O.

Errors

None

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

“outword_swap()” on page 10-48
“inshort_swap()” on page 10-38

inword(): OS Open Programmer’s Reference

Yes
Yes
Yes

Yes

Iwbrx instruction in PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

OS Open Function Reference

10-41

ioLib_init() —Preliminary Copy

Synopsis

#include <ioLib.h>
int ioLib_init(void);

Library

ioLib.a

Description

ioLib_init() initializes the 1/O library.

If successful, ioLib_init() returns 0. Otherwise, ioLib_init() returns —1.

ioLib_init() should not be used when using the ROM Monitor Ethernet interface or the ROM monitor
debugger. dbg_ioLib_init() should be used instead.

Errors

[ENOMEM] Insufficient memory to allocate first level interrupt handler control areas.
Attributes

Async Safe No

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No

References

“dbg_ioLib_init()” on page 10-21

10-42 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy keyb_lnlt()

Synopsis

#include <sys/keyb.h>
int driver_install(int *devhandle,keyb_init);

Library
keybLib.a
Description

keybLib.a is the keyboard and mouse controller device driver. keybLib.a is installed by calling
driver_install() with devhandle as the first parameter and keyb_init as the second parameter.

Errors

None

Attributes

Async Safe No
Cancel Safe Yes
Interrupt Handler Safe No
Callable from Application Thread Group No
References

driver_install(): OS Open Programmer's Reference

“Keyboard/Mouse Controller Driver” on page 9-11

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-43

memcpy_io() —Preliminary Copy

Synopsis

#include <ioLib.h>
int memcpy_io(void * target, void * source, size_t length);

Library
ioLib.a
Description

memcpy_io() is provided for compatiblity with some other paltforms whcih require special handling
for copying which involves I/O space. In this platform memcpy_io() behaves the same as memcpy().

Errors

None

Attributes

Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

memcpy(): OS Open Programmer’s Reference

10-44 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy Ocm_disable()

Synopsis

#include <ppcLib.h>
int ocm_disable(int side);

Library

ocmlLib.a

Description

ocm_disable() disables the specified side of the On-Chip Memory.

Valid values for the side parameter are OCM_DATA_SIDE or OCM_INST_SIDE

Errors

None

Attributes

Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-45

ocm_init() —Preliminary Copy

Synopsis

#include <ppcLib.h>
int ocm_init(char * ocm_address,int side);

Library
ocmLib.a
Description

ocm_init() initialises the specified side of the On-Chip Memory, starting at the specified address
ocm_address. ocm_address must lie on a 64MB boundary

Valid values for the side parameter are OCM_DATA_SIDE or OCM_INST_SIDE

Errors

None

Attributes

Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-46 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy OUtShOft_SWap()

Synopsis

#include <ioLib.h>
void outshort_swap(unsigned short * address, unsigned short data)

Library
ioLib.a
Description

outshort_swap() writes the halfword containing data to the I/O port specified by address. The
halfword is byte-reversed, by using the sthbrx instruction.

After the halfword is written, the PowerPC eieio instruction is issued to enforce in-order execution of
I/O.

Errors

None

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

“inshort_swap()” on page 10-38
“outword_swap()” on page 10-48
outshort(): OS Open Programmer’s Reference

sthbrx instruction in PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-47

outword_swap()

Synopsis

#include <ioLib.h>
void outword_swap(unsigned long* address, unsigned long data)

Library
ioLib.a

Description

—Preliminary Copy

outword_swap() writes the word containing data to the 1/0O port specified by address. The word is

byte-reversed, by using the stwbrx instruction.

After the word is written, the PowerPC eieio instruction is issued to enforce in-order execution of 1/0.

Errors

None

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

“inword_swap()” on page 10-41
“outshort_swap()” on page 10-47
outword(): OS Open Programmer’s Reference

stwbrx instruction in PPC405GP Embedded Controller User’s Manual

10-48 PPC405GP Reference Design Kit User's Manual

v. 0.8

Revised 8/22/00

—Preliminary Copy pCi_ﬁnd_deVice()

Synopsis

#include <sys/pciLib.h>
int pci_find_device(unsigned short vendorid, unsigned short deviceid,
unsigned int *nextp);

Library
pciLib.a
Description

pci_find_device() searches the PCI devices on the system looking for one which matches the
vendorid and deviceid. The vendorid is compared to the Vendor ID field on each PCI device on the
system, and the deviceid is compared to the Device ID field.

The value pointed to by nextp determines the where the search starts. To find the first device on the
system that matches, *nextp should be PCI_NEXT _INIT. When the search completes successfully,
*nextp is updated with the location of the device. On a subsequent call to this function using the same
*nextp, the search starts at the device after the last one that was found. In this way, all devices which
match the search criteria may be found. When no device is found, *nextp is set to PCI_NEXT_INIT.

If successful, returns an integer containing the bus and device numbers of the found device. For the
format of this integer, see the description of bus_dev_func in pci_read_config_reg().

Errors

Returns -1 if device is not found.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

PCI Local Bus Specification, Revision 2.1
“pci_find_device_type()” on page 10-50
“pci_read_config_reg()” on page 10-55

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-49

pci_find_device type() —Preliminary Copy

Synopsis

#include <sys/pciLib.h>
int pci_find_device_type(int class_code, unsigned int *nextp);

Library
pciLib.a
Description

pci_find_device_type() searches the PCI devices on the system looking for one which matches the
class_code. The class code consists of 3 bytes, as defined in the PCI specification. The two most
significant, the base class and sub-class, must exactly match the corresponding fields in the class
code field on the PCI device. The least significant field, interface, is a bit map. In order for the device
to completely match the class code, it must have at least the interface bits set that are specified in the
class_code interface map.

In the four-byte class code variable, the most significant byte is unused, the next byte contains the
base class, next is the sub-class, and the least significant byte contains the interface byte.

The value pointed to by nextp determines the where the search starts. To find the first device on the
system that matches, *nextp should be PCI_NEXT_INIT. When the search completes successfully,
*nextp is updated with the location of the device. On a subsequent call to this function using the same
*nextp, the search starts at the device after the last one that was found. In this way, all devices which
match the search criteria may be found. When no device is found, *nextp is set to PCI_NEXT_INIT.

If successful, returns an integer containing the bus and device numbers of the found device. For the
format of this integer, see the description of bus_dev_func in pci_read_config_reg().

Errors

Returns -1 if device is not found.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

PCI Local Bus Specification, Revision 2.1
“pci_find_device()” on page 10-49
“pci_read_config_reg()” on page 10-55

10-50 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis

#include <sys/pciLib.h>
int pci_get_io_base(int base_addr);

Library
pciLib.a

Description

pci_get_io_base() returns the base I/O address for the PCI address specified by base_addr.

pci_get io_base()

Typically this is used to determine where 1/O space starting at address 0 appears in the CPU memory

map.
Errors
Returns -1 if no base address matches base adar.

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References

“pci_get_memory_base()" on page 10-52

Revised 8/22/00 v. 0.8

Yes
Yes
Yes

Yes

OS Open Function Reference

10-51

pci_get_memory_base() —Preliminary Copy

Synopsis

#include <sys/pciLib.h>
int pci_get_memory_base(int base_addr);

Library
pciLib.a
Description

pci_get memory_base() returns the base CPU (PLB) memory address for the PCI address
specified by base_addr. A typical use for this is used to determine where PCI memory space starting
at address 0 appears in the CPU memory map.

Errors

Returns -1 if no base address matching base_addris mapped.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

“pci_get_io_base()” on page 10-51

10-52 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis

#include <sys/pciLib.h>
int pci_init(void);

Library
pciLib.a
Description

pci_init() initialises the PCI controller as a master.

Errors

None.

Attributes

Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes

Revised 8/22/00 v. 0.8

OS Open Function Reference

pci_init()

10-53

pci_master_abort()

Synopsis

#include <sys/pciLib.h>
int pci_master_abort(void);

Library
pciLib.a

Description

—Preliminary Copy

pci_master_abort() tests if a master abort happened during a previous PCI master access, and

clears the error if so. Returns O if there was no master abort, returns -1 if there was.

Errors

None.

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

10-54 PPC405GP Reference Design Kit User's Manual

Yes
Yes
Yes

Yes

v. 0.8

Revised 8/22/00

—Preliminary Copy

Synopsis
#include <sys/pciLib.h>

pci_read_config_reg()

unsigned int pci_read_config_reg(int bus_dev_func, int reg, int width);

Library
pciLib.a

Description

pci_read_config_reg() reads a register, reg, from the device specified by bus_dev_func. The amount
of data read is specified by width, and may be 1, 2, or 4 bytes. For 2 or 4 byte reads, reg must be

appropriately aligned.

bus_dev_func contains the identifier for a device, consisting of the bus and device numbers. They are
placed within the word so as to be able to be used directly by the PCI Configuration Address Register.
The bus number is placed in bits 23:16, the device number in bits 15:11 (using PCI bit notation where

bit 31 is most significant).

Returns the value of the specified register.

Errors

Returns -1 if width is not 1, 2, or 4.
Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

“pci_write_config_reg()” on page 10-56

Revised 8/22/00 v. 0.8

Yes
Yes
Yes

Yes

OS Open Function Reference

10-55

pci_write_config_reg()

Synopsis
#include <sys/pciLib.h>

int pci_write_config_reg(int bus_dev_func, int reg, unsigned int value, int

width);
Library
pciLib.a

Description

—Preliminary Copy

pci_write_config_reg() writes value to a register, reg, in the device specified by bus_dev_func. The
amount of data read is specified by width, and may be 1, 2, or 4 bytes. For 2 or 4 byte writes, reg must

be appropriately aligned. For the format of bus _dev_func, see the description in
pci_read_config_reg(). Returns 0 if successful.

Errors
Returns -1 if widthis not 1, 2, or 4.

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References

“pci_read_config_reg()” on page 10-55

10-56 PPC405GP Reference Design Kit User's Manual

Yes
Yes
Yes

Yes

v. 0.8

Revised 8/22/00

—Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcAbend(void)

Library
ppcLib.a

Description

ppcAbend()

ppcAbend() executes an invalid opcode forcing a Program Check interrupt.

Errors

None

Example

Force an illegal instruction exception.

ppcAbend()
Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes

Yes

OS Open Function Reference

10-57

ppcAnd MSI’() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcAndMsr(unsigned long value);

Library

ppcLib.a

Description

ppcAndMsr() ANDs value with the contents of the MSR.
The MSR is updated with the result of the AND operation.
ppcAndMsr() returns the previous contents of the MSR.
Refer to the <ppcLib.h> file for the defines of the MSR constants.
Errors

None

Example

Disable external interrupts.

unsigned long orig_msr = ppcAndMsr(~ppcMsrEE);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

“ppcOrMsr()” on page 10-228
“ppcMtmsr()” on page 10-195
PPC405GP Embedded Controller User’'s Manual

10-58 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcCntlzw(unsigned long value);

Library
ppcLib.a

Description

ppcCntlzw() counts consecutive leading zeros in value.

ppcCntlzw()

ppcCntlzw() returns the count, which ranges from 0 through 32, inclusive.

Errors

None

Example

Return count of leading zeros in variable k.

int k;

unsigned long k = ppcCntlzw(0x0700AA55); /*k =5 */

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes

Yes

OS Open Function Reference

10-59

ppCDbe() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcDcbf(void *addr);

Library
ppcLib.a
Description

ppcDcbf() copies the cache block at the effective address specified by addr back to main storage (if
the block resides in cache and has been modified with respect to main storage) and then invalidates
the cache block.

Effectively, this function acts like ppcDcbst() followed by ppcDcbi() .
Errors

None

Example

Flush the cache line at the effective address X'1000' to main storage and then invalidate the cache
line. You might do this in preparation for a DMA slave transfer.

ppcDcbf((void *)0x1000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

“ppcDcbst()” on page 10-62

“ppcDcbi()” on page 10-61

“ppcDcbz()” on page 10-63

“ppcDflush()” on page 10-64

PPC405GP Embedded Controller User’s Manual

10-60 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcDcbi(void *addr);

Library
ppcLib.a

Description

ppcDchbi()

ppcDcbi() invalidates the cache block containing addr, discarding any modified contents if the block is

valid in cache.

Errors

None

Example

Invalidate the cache line beginning with 0x3000. This might be done before reading an area of

storage updated by a DMA transfer.
ppcDchi((void *)0x3000);

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References

“ppcDcbf()” on page 10-60
“ppcDcbst()” on page 10-62
“ppcDcbz()” on page 10-63
“ppcDflush()” on page 10-64

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8

Yes
Yes
Yes

Yes

OS Open Function Reference

10-61

ppCDCbSt() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcDcbst(void *addr);

Library
ppcLib.a
Description

ppcDcbst() copies the cache block containing addrto main storage, if the block is valid in cache and
has been modified with respect to main storage.

Errors
None
Example

Force the cache line beginning with 0x4000 to memory if the block is valid and out of sync with
storage. This would be done to synchronize the cache and storage without invalidating the cache line.

ppcDcbst((void *)0x4000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

“ppcDcbf()” on page 10-60

“ppcDcbi()” on page 10-61

“ppcDcbz()” on page 10-63

“ppcDflush()” on page 10-64

PPC405GP Embedded Controller User’s Manual

10-62 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcDcbz(void *addr);

Library
ppcLib.a

Description

ppcDcbz()

ppcDcbz() sets the cache block containing the byte referenced by addr to 0.

The line is established, if necessary, without fetching the line from main storage.

Note: If an invalid real address is specified, problems could occur when a subsequent attempt is
made by the cache unit to store that line to main storage.

Errors

None

Example

Assume buffer is 16 cache lines long and cache aligned. To quickly set it to O, set to first buffer

address.
char *bpt = buffer;
for(j = 0; j < 16; j++)

{
ppcDcbz((void *)bpt);
bpt += cache_line_size;

}
Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References

“ppcDcbf()” on page 10-60
“ppcDcbi()” on page 10-61
“ppcDcbst()” on page 10-62
“ppcDflush()” on page 10-64

PPC405GP Embedded Controller User’s Manuall

Revised 8/22/00 v. 0.8

Yes
Yes
Yes

Yes

OS Open Function Reference

10-63

ppcDflush()

Synopsis

#include <ppcLib.h>
void ppcDflush(void);

Library
ppcLib.a

Description

—Preliminary Copy

ppcDflush() flushes the existing data in the data cache back into memory, invalidating all of the lines
in the data cache, then turns off the data caches by writing Os into the Data Cache Cacheability

Register (DCCR).
Errors
None

Example

Force data reads from memory instead of the data cache.

ppcDflush();
Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

“ppcDcbf()” on page 10-60

“ppcDcbi()” on page 10-61

“ppcDcbst()” on page 10-62

“bpcDcbz()” on page 10-63

PPC405GP Embedded Controller User’s Manuall

10-64 PPC405GP Reference Design Kit User's Manual

v. 0.8

Revised 8/22/00

—Preliminary Copy ppCElGlO()

Synopsis

#include <ppcLib.h>
void ppcEieio(void);

Library
ppcLib.a
Description

ppcEieio() ensures that all storage references before the call finish before any storage references
after the call start.

The PPC405GP may internally reorder operations to storage. In the case of memory mapped 1/O,
such reordering can be undesirable and can be prevented by appropriate use of ppcEieio() .

Errors

None

Example
Ensure storage references are done in order.

char *one_loc = (char *)0x202;
char *two_loc = (char *)0x204;

one_loc = OXAA; / write a OXAA to 0x202 */
ppcEieio(); /* insure the store completes before setting two_loc */
*two_loc = 0x55;

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-65

ppCHaIt() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcHalt(void);

Library
ppcLib.a
Description

ppcHalt() is a one instruction spin loop, effectively putting the processor in an enabled wait at the
point of invocation.

Errors
None
Example

Wait at the point of invocation.

ppcHalt();
Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

PPC405GP Embedded Controller User's Manual

10-66 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppclcbi(void *addr);

Library
ppcLib.a

Description

ppclcbi()

ppclcbi() i nvalidates the Instruction Cache Block pointed to by the address passed. This may be

done after updating an instruction.

Errors

None

Example
Write a trap into location 0x3000.

unsigned in * i_addr = (int *) 0x3000;
|_addr = 0x7¢800008; / tw instruction */
ppcDbcst((void *) 0x3000);

ppclcbi((void *) 0x3000);

ppclsync();

Attributes

Async Safe
Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’'s Manual

Revised 8/22/00 v. 0.8

Yes
Yes
Yes

Yes

OS Open Function Reference

10-67

ppCISynC() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppclsync(void);

Library
ppcLib.a
Description

ppclsync() causes the processor to discard any instructions that may have been prefetched before
ppclsync() . This call must be used after modifying instruction storage.

Errors

None

Example

Place a trap into a given address.

*trap_address = 0x7F000008;

ppclsync();
Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

PPC405GP Embedded Controller User’'s Manual

10-68 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfccrO(void);

Library
ppcLib.a

Description

ppcMfccrO() returns the value of the processor ccrO register (Core Configuration Register 0).

Errors

None

Example

Retrieve the value of ccrO register.

unsigned long current_ccrO=ppcMfccr0();

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

ppcMfccrO()

OS Open Function Reference

10-69

ppchcpcO_crO() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfcpcO_crO(void);

Library

ppcLib.a

Description

ppcMfcpcO_crO() returns the value of the processor CPCO_CRO (chip control 0) register.
Errors

None

Example

Retrieve the value of CPCO_CRO register.

unsigned long current_cpcO_crO=ppcMfcpcO_crO();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-70 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppCMprCO_Crl()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfcpcO_crl(void);

Library

ppcLib.a

Description

ppcMfcpcO _crl() returns the value of the processor CPCO_CRL1 (chip control 1) register.
Errors

None

Example

Retrieve the value of CPCO_CR1 register.

unsigned long current_cpc0_crl=ppcMfcpcO_crl();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference

10-71

ppcMfdacl() - ppcMfdac2() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdac1(void)
unsigned long ppcMfdac2(void)

Library

ppcLib.a

Description

ppcMfdacl() - ppcMfdac2() returns the current value of the specified register.

The Data Address Compare registers 1 and 2 contain addresses for which debug events may be
taken, depending on the values set in the DBCRL1 register.

Errors
None
Example

Retrieve the current value of the DAC2 register.

unsigned long dac2_value= ppcMfdac2() ;
Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-72 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppcMfdbcrO() - ppcMfdbcrl()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdbcr0(void)
unsigned long ppcMfdbcrl(void)

Library

ppcLib.a

Description

ppcMfdbcr0() - ppcMfdberl() returns the current value of the specified register.

Dedug Control Registers 0 and 1 are used to enable debug events, reset the processor and set the
debug mode of the processor.

WARNING: Enabling bits 0 and 1 can cause unexpected results. Enabling bits 2 and 3 will cause a
processor reset to occur. DBCRO and DBCR1 are designed to be used by development tools, not
applications.

Refer to the file <ppc405.h> for defined constants for the DBCRO and DBCR1 registers.
Errors

None

Example

Retrieve the current value of the DBCR1 register.

unsigned long dbcrl_value= ppcMfdberl() ;
Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-73

ppCMfd be() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdbsr(void);

Library

ppcLib.a

Description

ppcMfdbsr() returns the value of the processor DBSR register.

The Debug Status Register contains the status of debug events and the most recent reset.
The file <ppc405.h> defines constants that can be used when referring to the DBSR.
Errors

None

Example

Retrieve the value of DBSR register.

unsigned long current_ DBSR=ppcMfdbsr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-74 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfdccr(void);

Library
ppcLib.a

Description

ppcMfdccr() returns the value of the processor DCCR (Data Cache Cacheability Register).

Errors

None

Example

Retrieve the value of DCCR register.

unsigned long current_ DCCR=ppcMfdccr();

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

ppcMfdccr()

OS Open Function Reference

10-75

ppcMfdcp0_addrO() - ppcMfdcpO_addri() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdcp0_addrO(void)
unsigned long ppcMfdcp0_addrl(void)

Library

ppcLib.a

Description

ppcMfdcp0_addrO() - ppcMfdcpO_addrl() returns the current value of the specified register.

The Address Decode Definition Registers are part of the decompression core and are addressed
indirectly through the DCPO_CFGADDR and DCP0_CFGDATA registers.

Errors
None
Example

Retrieve the current value of the DCPO_ADDRO register.

unsigned long dcp0_addr0_value= ppcMfdcp0_addrO() ;
Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-76 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdcp0_cfg(void);

Library
ppcLib.a

Description

ppcMfdcpO_cfg() returns the value of the processor DCPO_CFG compression register.

ppcMfdcpO_cfg()

The Decompression core Configuration Register is part of the decompression core and is addressed
indirectly through the DCP0O_CFGADDR and DCPO_CFGDATA registers.

Errors

None

Example

Retrieve the value of DCPO_CFG register.

unsigned long current_ DCPO_CFG=ppcMfdcp0_cfg();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8

OS Open Function Reference

10-77

ppchdeO_esr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdcp0_esr(void);

Library

ppcLib.a

Description

ppcMfdcpO_esr() returns the value of the processor DCPO_ESR register.

The Bus Error Status Register 0 is part of the decompression core and is addressed indirectly
through the DCPO_CFGADDR and DCPO_CFGDATA registers.

Errors

None

Example

Retrieve the value of DCPO_ESR register.

unsigned long current. DCPO_ESR=ppcMfdcp0_esr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-78 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfdcpO_id(void);

Library
ppcLib.a

Description

ppcMfdcpO _id()

ppcMfdcpO_id() returns the value of the processor DCPO_ID compression register.

The Decompression core ID Register is part of the decompression core and is addressed indirectly
through the DCPO_CFGADDR and DCPQO_CFGDATA registers.

Errors

None

Example

Retrieve the value of DCPO_ID register.

unsigned long current_DCPO_ID=ppcMfdcp0_id();

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-79

ppcMfdcpO_itor0O() - ppcMfdcpO _itor3()

Synopsis

#include <ppcLib.h>

unsigned long ppcMfdcpO_itorO(void)
unsigned long ppcMfdcpO_itorl(void)
unsigned long ppcMfdcpO_itor2(void)
unsigned long ppcMfdcpO_itor3(void)

Library
ppcLib.a

Description

—Preliminary Copy

ppcMfdcpO_itor0() - ppcMfdcpO_itor3() returns the current value of the specified compression

Register.

The Index Table Origin Registers are part of the decompression core and are addressed indirectly

through the DCPO_CFGADDR and DCPO_CFGDATA registers.

Errors

None

Example

Retrieve the current value of the DCPO_ITORO register.

unsigned long dcpO_itor0_value=

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User's Manual

ppcMfdcpO_itor0() ;

Yes
Yes
Yes
No

10-80 PPC405GP Reference Design Kit User's Manual

v. 0.8

Revised 8/22/00

_Preliminary Copy ppcMfdcp0_membear()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdcpO0_membear(void);

Library

ppcLib.a

Description

ppcMfdcpO_membear() returns the value of the processor DCPO_MEMBEAR compression register.

The Bus Error Address Register (DCP to EBIU address) is part of the decompression core and is
addressed indirectly through the DCP0O_CFGADDR and DCPO_CFGDATA registers.

Errors

None

Example

Retrieve the value of DCPO_MEMBEAR register.

unsigned long current_ DCPO_MEMBEAR=ppcMfdcp0_membear();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-81

ppcMfdcpO_plbbear() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdcp0_plbbear(void);

Library

ppcLib.a

Description

ppcMfdcpO_plbbear() returns the value of the processor DCPO_PLBBEAR register.

The Bus Error Address Register (PLB address) is part of the decompression core and is addressed
indirectly through the DCPO_CFGADDR and DCP0_CFGDATA registers.

Errors

None

Example

Retrieve the value of DCPO_PLBBEAR register.

unsigned long current DCPO_PLBBEAR=ppcMfdcp0_plbbear();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-82 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppCMdepO_ram()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdcp0_ram(unsigned long regno);

Library
ppcLib.a
Description

ppcMfdcpO_ram() returns the value of one of the processor DCP0O_RAM compression registers,
specified by regno. There are 0x400 DCPO_RAM registers, from DCP0O_RAMO to DCPO_RAMB3(f.
regno must be a value from 0 to Ox3ff.

The Decompression core SRAM/ROM Registers are part of the decompression core and are
addressed indirectly through the DCP0O_CFGADDR and DCPQO_CFGDATA registers.

Errors
None

Example
Retrieve the value of DCPO_RAM register 0.
unsigned long current. DCPO_ROMO=ppcMfdcp0_ram(0);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-83

ppchdeO_ver() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdcpO_ver(void);

Library

ppcLib.a

Description

ppcMfdcpO_ver() returns the value of the processor DCPO_VER register.

The Decompression core Version Number Register is part of the decompression core and is
addressed indirectly through the DCP0O_CFGADDR and DCPO_CFGDATA registers.

Errors

None

Example

Retrieve the value of DCPO_VER register.

unsigned long current DCPO_VER=ppcMfdcp0_ver();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-84 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfdcwr(void);

Library
ppcLib.a

Description

ppcMfdcwr() returns the value of the processor DCWR (Data Cache Write-through Register).

Errors

None

Example

Retrieve the value of DCWR register.

unsigned long current_ DCWR=ppcMfdcwr();

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

ppcMfdcwr()

OS Open Function Reference

10-85

ppchdear() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdear(void);

Library

ppcLib.a

Description

ppcMfdear() returns the value of the processor DEAR (Data Exception Address Register).
Errors

None

Example

Retrieve the value of DEAR register.

unsigned long current_ DEAR=ppcMfdear();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-86 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppcMfdmaO_crO() - ppcMfdma0_cr3()

Synopsis

#include <ppcLib.h>

unsigned long ppcMfdma0_crO(void);
unsigned long ppcMfdma0_crl(void);
unsigned long ppcMfdma0_cr2(void);
unsigned long ppcMfdma0_cr3(void);

Library
ppcLib.a

Description

ppcMfdma0_cr0() - ppcMfdmaO_cr3() return the value of the DMA channel control registers
(DMAO_CRO - DMAO_CR3). The DMACRSs set up and enables the DMA channels. The file
<ppcLib.h> contains several constants that can be used when accessing the DMACR'’s.

Errors

None.

Example

Retrieve the current value of the DMAO_CRO.
unsigned long dmacr0_value=ppcMfdma0_cr0();

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-87

ppcMfdmaO_ct0() - ppcMfdmaO_ct3()

Synopsis

#include <ppcLib.h>

unsigned long ppcMfdma0_ctO(void);
unsigned long ppcMfdma0_ctl1(void);
unsigned long ppcMfdma0_ct2(void);
unsigned long ppcMfdma0_ct3(void);

Library
ppcLib.a

Description

—Preliminary Copy

ppcMfdma0_ct0() - ppcMfdma0_ct3() return the value of the DMA count registers (DMAQO_CTO -
DMAO_CT3). The DMACT registers contains the number of transfers left in the DMA transaction for

the channel.

Errors

None.

Example

Retrieve the current value of the DMAO_CTO.
unsigned long dmact0_value=ppcMfdma0_ct0();

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User's Manual

Yes
Yes
Yes
No

10-88 PPC405GP Reference Design Kit User's Manual

v. 0.8

Revised 8/22/00

—Preliminary Copy ppcMfdmaO_daO() - ppcMfdmaO_da3()

Synopsis

#include <ppcLib.h>

unsigned long ppcMfdma0_daO(void);
unsigned long ppcMfdma0_dal(void);
unsigned long ppcMfdma0_da2(void);
unsigned long ppcMfdma0_da3(void);

Library
ppcLib.a

Description

ppcMfdma0_da0() - ppcMfdmaO_da3() return the value of the DMA destination address registers

(DMAO_DAO - DMAO_DA3)). The DMADA registers contain the memory addresses for transfers
between memory and peripheral or the destination addresses for memory to memory transfers.

Errors

None.

Example

Retrieve an address from DMAO_DAS.

unsigned long dmada3_value = ppcMfdma0_da3();

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-89

ppcMfdma0_sal() - ppcMfdmal_sa3() —Preliminary Copy

Synopsis

#include <ppcLib.h>

unsigned long ppcMfdma0_saO(void);
unsigned long ppcMfdma0_sal(void);
unsigned long ppcMfdma0_sa2(void);
unsigned long ppcMfdma0_sa3(void);

Library
ppcLib.a
Description

ppcMfdma0_sa0() - ppcMfdma0_sa3() return the value of the DMA source address registers
(DMAO_SAO - DMAO_SA3). The DMASASs are only used in memory to memory move mode.

Errors
None.

Example
Retrieve the current value of the DMAO_SAO.

unsigned long dmasa0_value=ppcMfdma0_sa0();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-90 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppcMfdma0_sgO0() - ppcMfdma0_sg3()

Synopsis

#include <ppcLib.h>

unsigned long ppcMfdma0_sg0(void);
unsigned long ppcMfdma0_sg1(void);
unsigned long ppcMfdma0_sg2(void);
unsigned long ppcMfdma0_sg3(void);

Library
ppcLib.a

Description

ppcMfdma0_sg0() - ppcMfdmaO_sg3() return the value of the DMA scatter/gather base address

registers (DMASBO - DMASB3). The DMASBSs contain the address of the current scatter/gather

descriptor table element in system memory.

Errors

None.

Example

See “ppcMtdma0_sg0() - ppcMtdma0_sg3()” on page 10-171.

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-91

ppchdmaO_sgC() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdma0_sgc(void);

Library
ppcLib.a
Description

ppcMfdma0_sgc() returns the value of the DMA scatter/gather command register (DMAO_SGC).

The value of the DMAO_SGC may be used when starting or stopping DMA operations on a channel.
The file <ppcLib.h> contains several constants that may be used when accessing the DMAO_SR .

Errors

None.

Example

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes

Callable from Application Thread Group No

References

PPC405GP Embedded Controller User’'s Manual

10-92 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfdma0_sr(void);

Library
ppcLib.a

Description

ppcMfdmaO_sr()

ppcMfdma0_sr() returns the value of the DMA status register (DMAO_SR).

The value of the DMAO_SR may be used to determine the status of the DMA channels. The file
<ppcLib.h> contains several constants that may be used when accessing the DMAO_SR .

Errors

None.

Example

Retrieve the current value of the DMAO_SR.

unsigned long dmasr_value=ppcMfdma0_sr();

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-93

ppcMfdvcl() - ppcMfdvc2() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfdvcl(void)
unsigned long ppcMfdvc2(void)

Library

ppcLib.a

Description

ppcMfdvcl() - ppcMfdvc2() returns the current value of the specified Data Value Compare Register.
Errors

None

Example

Retrieve the current value of the DVC2 register.

unsigned long dvc2_value= ppcMfdvc2() ;
Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-94 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfesr(void);

Library
ppcLib.a

Description

ppcMfesr()

ppcMfesr() returns the value of the processor ESR (Exception Syndrome Register).

Errors

None

Example

Retrieve the value of ESR register.

unsigned long current_ ESR=ppcMfesr();

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-95

ppchevpr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfevpr(void);

Library
ppcLib.a
Description

ppcMfevpr() returns the value of the processor EVPR (Exception Vector Prefix Register). Bits 0 to 15
contain the prefix of the address of the exception processing routines. Bits 15 to 31 are reserved.

Errors

None

Example

Retrieve the value of EVPR register.

unsigned long current_ EVPR=ppcMfevpr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-96 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfgprl(void);

Library
ppcLib.a

Description

ppcMfgprl() returns the current value of GPR(1).

Typically, this is the value of the current stack frame.

Errors

None

Example

See “ppcMfgpr2()” on page 10-98.

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes

Yes

ppcMfgprl()

OS Open Function Reference

10-97

ppCMfgprZ() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfgpr2(void)

Library

ppcLib.a

Description

ppcMfgpr2() returns the current value of GPR(2).

For XCOFF-based OS Open this is typically the value of the table of contents (TOC) pointer for the
current execution context.

Errors

None

Example

Retrieve TOC and stack frame base from current context.

toc = ppcMfgpr2();
unsigned long stack_base = ppcMfgpri();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

PPC405GP Embedded Controller User’'s Manual

10-98 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppcMfiacl() - ppcMfiac4()

Synopsis

#include <ppcLib.h>

unsigned long ppcMfiacl(void)
unsigned long ppcMfiac2(void)
unsigned long ppcMfiac3(void)
unsigned long ppcMfiac4(void)

Library
ppcLib.a
Description

ppcMfiacl() - ppcMfiac4() returns the current value of the specified Instruction Address Compare
Register. The IAC contains the address of the instruction that the debug event will be based on. The
Debug Control Register 0 (DBCRO) controls the instruction address debug event. Bits 30 and 31 of
the IAC are reserved, since the address must be word aligned.

Errors
None
Example

Retrieve the current value of the IAC4 register.

unsigned long iac4_value= ppcMfiac4() ;
Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-99

ppCMﬁCCI’() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMficcr(void);

Library

ppcLib.a

Description

ppcMficcr() returns the value of the processor ICCR (Instruction Cache Cacheability Register).
Errors

None

Example

Retrieve the value of ICCR register.

unsigned long current_ICCR=ppcMficcr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-100 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMficdbdr(void);

Library
ppcLib.a

Description

ppcMficdbdr()

ppcMficdbdr() returns the value of the processor ICDBDR (Instruction Cache Debug Data Register).

<ppc405.h> has constants defined for use with the ICDBDR register.

Errors

None

Example

Retrieve the value of ICDBDR register.
unsigned long current_ICDBDR=ppcMficdbdr();

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-101

ppchmalO_cfg () —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfmal0_cfg(void);

Library

ppcLib.a

Description

ppcMfmal0_cfg() returns the value of the processor MALO_CFG register.
The MAL Configuration Register is part of the Memory Access Layer core.
Errors

None

Example

Retrieve the value of the MALO_CFG register.

unsigned long current_ MALO_CFG=ppcMfmal0_cfg();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-102 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppchmalO_esr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfmal0_esr(void);

Library

ppcLib.a

Description

ppcMfmal0_esr() returns the value of the processor MALO _ESR register.
The MAL Error Status Register is part of the Memory Access Layer core.
Errors

None

Example

Retrieve the value of the MALO_ESR register.

unsigned long current_ MALO_ESR=ppcMfmal0_esr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference

10-103

ppchmalO_ier() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfmal0_ier(void);

Library

ppcLib.a

Description

ppcMfmalO_ier() returns the value of the processor MALO_IER register.

The MAL Interrupt Enable Register is part of the Memory Access Layer core.
Errors

None

Example

Retrieve the value of the MALO_IER register.

unsigned long current_ MALO_IER=ppcMfmal0_ier();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-104 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfmal0_rcbs0(void);

Library
ppcLib.a
Description

ppcMfmal0_rchbs0()

The MAL Receive Channel Buffer Size Register is part of the Memory Access Layer core.

Errors

None

Example

Retrieve the value of the MALO_RCBSO register.
unsigned long current_ MALO_RCBSO0=ppcMfmal0_rcbs0();

Attributes

Async Safe

Cancel Safe

ppcMfmalO_rcbs0()

returns the value of the processor MALO_RCBSO register.

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-105

ppcMfmal0_rxcarr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfmal0_rxcarr(void);

Library

ppcLib.a

Description

ppcMfmal0_rxcarr() returns the value of the processor MALO_RXCARR register.

The MAL RX Channel Active Reset Register is part of the Memory Access Layer core.
Errors

None

Example

Retrieve the value of the MALO_RXCARR register.

unsigned long current_ MALO_RXCARR=ppcMfmal0_rxcarr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-106 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppchmaIO_rxcasr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfmal0_rxcasr(void);

Library

ppcLib.a

Description

ppcMfmal0_rxcasr() returns the value of the processor MALO _ register.

The MAL RX Channel Active Set Register is part of the Memory Access Layer core.
Errors

None

Example

Retrieve the value of the MALO_CASR register.

unsigned long current_ MALO_CASR=ppcMfmal0_rxcasr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference

10-107

ppcMfmal0_rxctpOr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfmal0_rxctpOr(void);

Library

ppcLib.a

Description

ppcMfmal0_rxctpOr() returns the value of the processor MALO_RXCTPOR register.

The MAL RX Channel Table Pointer O Register is part of the Memory Access Layer core.
Errors

None

Example

Retrieve the value of the MALO_RXCTPOR register.

unsigned long current_ MALO_RXCTPOR=ppcMfmal0_rxctpOr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-108 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfmal0_rxdeir(void);

Library
ppcLib.a
Description

ppcMfmal0_rxdeir()

The MAL RX Descriptor Error Interrupt Register is part of the Memory Access Layer core.

Errors

None

Example

Retrieve the value of the MALO_RXDEIR register.
unsigned long current_ MALO_RXDEIR=ppcMfmal0_rxdeir();

Attributes

Async Safe

Cancel Safe

ppcMfmalO_rxdeir()

returns the value of the processor MALO_RXDEIR register.

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-109

ppcMfmal0_rxeobisr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfmal0_rxeobisr(void);

Library

ppcLib.a

Description

ppcMfmalO_rxeobisr() returns the value of the processor MALO_REOBISR register.

The MAL RX End Of Buffer Interrupt Status Register is part of the Memory Access Layer core.
Errors

None

Example

Retrieve the value of the MALO_REOBISR register.

unsigned long current_ MALO_REOBISR=ppcMfmal0_rxeobisr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-110 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppchmalO_txcarr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfmal0_txcarr(void);

Library

ppcLib.a

Description

ppcMfmalO_txcarr() returns the value of the processor MALO_TXCARR register.

The MAL TX Channel Active Reset Register is part of the Memory Access Layer core.
Errors

None

Example

Retrieve the value of the MALO_TXCARR register.

unsigned long current_ MALO_TXCARR=ppcMfmal0_txcarr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference

10-111

ppcMfmalQ_txcasr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfmal0_txcasr(void);

Library

ppcLib.a

Description

ppcMfmalO_txcasr() returns the value of the processor MALO_TXCASR register.
The MAL TX Channel Active Set Register is part of the Memory Access Layer core.
Errors

None

Example

Retrieve the value of the MALO_TXCASR register.

unsigned long current_ MALO_TXCASR=ppcMfmal0_txcasr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-112 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfmal0_txctpOr(void);

Library
ppcLib.a
Description

ppcMfmal0_txctpOr()

The MAL TX Channel Table Pointer O Register is part of the Memory Access Layer core.

Errors

None

Example

Retrieve the value of the MALO_TXCTPOR register.

ppcMfmalO _txctpOr()

returns the value of the processor MALO_TXCTPOR register.

unsigned long current_ MALO_TXCTPOR=ppcMfmal0_txctpOr();

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-113

ppcMfmal0_txctplr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfmal0_txctplr(void);

Library

ppcLib.a

Description

ppcMfmal0_txctplr() returns the value of the processor MALO_TXCTP1R register.

The MAL TX Channel Table Pointer 1 Register is part of the Memory Access Layer core.
Errors

None

Example

Retrieve the value of the MALO_TXCTP1R register.

unsigned long current_ MALO_TXCTP1R=ppcMfmal0_txctplr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-114 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfmal0_txdeir(void);

Library
ppcLib.a
Description

ppcMfmalO_txdeir()

The MAL TX Descriptor Error Interrupt Register is part of the Memory Access Layer core.

Errors

None

Example

Retrieve the value of the MALO_TXDEIR register.
unsigned long current_ MALO_TXDEIR=ppcMfmal0_txdeir();

Attributes

Async Safe

Cancel Safe

ppcMfmalO_txdeir()

returns the value of the processor MALO_TXDEIR register.

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-115

ppcMfmalQ_txeobisr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfmal0_txeobisr(void);

Library

ppcLib.a

Description

ppcMfmalO_txeobisr() returns the value of the processor MALO_TXEOBISR register.

The MAL TX End Of Buffer Interrupt Status Register is part of the Memory Access Layer core.
Errors

None

Example

Retrieve the value of the MALO_TXEOBISR register.

unsigned long current_ MALO_TXEOBISR=ppcMfmal0_txeobisr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-116 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfsdramO_pmit(void);

Library
ppcLib.a
Description

ppcMfsdramOQ_pmit()

The Memory Power Management Idle Timer Register is part of the SDRAM controller and is
addressed indirectly through the SDRAMO_CFGADDR and SDRAMO_CFGDATA registers.

Errors

None

Example

Retrieve the value of SDRAMO_PMIT register.

ppcMfmpmit()

returns the value of the processor SDRAMO_PMIT register.

unsigned long current_ SDRAMO_PMIT=ppcMfsdramO_pmit();

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-117

ppchmsr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfmsr(void);

Library

ppcLib.a

Description

ppcMfmsr() returns the value of the Machine State Register(MSR).

Refer to the <ppc_arch.h> file for the defines of constants that can be used as masks with the MSR
value.

Errors
None
Example

See “ppcMtmsr()” on page 10-195.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-118 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfocmO0_dsarc(void);

Library
ppcLib.a
Description

ppcMfocmO_dsarc()

The On-Chip Memory Data Side Address Range Compare Register is part of the OCM core.

Errors

None

Example

Retrieve the value of OCMO0_DSARC register.

ppcMfocmO_dsarc()

returns the value of the processor OCM0O_DSARC register.

unsigned long current_ OCMO0_DSARC=ppcMfocm0_dsarc();

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-119

ppcMfocmO_dscntl() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfocmO0_dscntl(void);

Library
ppcLib.a

Description

ppcMfocmO_dscntl() returns the value of the processor OCMO_DSCNTL register.

The On-Chip Memory Data Side Control Register is part of the OCM core.
Errors

None

Example

Retrieve the value of OCMO_DSCNTL register.

unsigned long current. OCMO0_DSCNTL=ppcMfocmQ_dscntl();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-120 PPC405GP Reference Design Kit User's Manual v. 0.8

Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfocmO_isarc(void);

Library
ppcLib.a
Description

ppcMfocmO _isarc()

ppcMfocmO_isarc()

returns the value of the processor OCMO_ISARC register.

The On-Chip Memory Instruction Side Address Range Compare Register is part of the OCM core.

Errors

None

Example

Retrieve the value of OCMO_ISARC register.

unsigned long current_ OCMO_ISARC=ppcMfocmO_isarc();

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-121

ppcMfocmO _iscntl()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfocmO_iscntl(void);

Library
ppcLib.a

Description

ppcMfocmO _iscntl() returns the value of the processor OCMO_ISCNTL register.

The On-Chip Memory Instruction Side Control Register is part of the OCM core.
Errors

None

Example

Retrieve the value of OCMO_ISCNTL register.

unsigned long current. OCMO_ISCNTL=ppcMfocmO_iscntl();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-122 PPC405GP Reference Design Kit User's Manual v. 0.8

—Preliminary Copy

Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfpid(void);

Library
ppcLib.a

Description

ppcMfpid()

ppcMfpid() returns the value of the processor PID (Process ID) register.

Errors

None

Example

Retrieve the value of PID register.

unsigned long current_PID=ppcMfpid();

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-123

ppCprlt() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfpit(void);

Library

ppcLib.a

Description

ppcMfpit() returns the value of the processor PIT (Programmable Interval Timer) register.
Errors

None

Example

Retrieve the value of PIT register.

unsigned long current_PIT=ppcMfpit();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-124 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfpvr(void);

Library
ppcLib.a

Description

ppcMfpvr()

ppcMfpvr() returns the value of the processor version register, which indicates the version and

revision of the PowerPC processor.

Errors

None

Example

Retrieve the current value of the processor version register. Processor version-specific code may

require this value.

printf(“This is processor version %x\n”, ppcMfpvr());

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’'s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-125

ppcMfsdramO_bOcr() - ppcMfsdramO_b3cr() —Preliminary Copy

Synopsis

#include <ppcLib.h>

unsigned long ppcMfsdramO_bOcr(void)
unsigned long ppcMfsdramO_b1cr(void)
unsigned long ppcMfsdramO_b2cr(void)
unsigned long ppcMfsdramO_b3cr(void)

Library

ppcLib.a

Description

ppcMfsdramO_bOcr() - ppcMfsdramO_b3cr() returns the current value of the specified register.

The Memory 0-3 Configuration Registers are part of the SDRAM controller and are addressed
indirectly through the SDRAMO_CFGADDR and SDRAMO_CFGDATA registers.

Errors
None
Example

Retrieve the current value of the mbOcf register.

unsigned long mbOcf_value= ppcMfsdramQ_bOcr() ;
Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-126 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfsdramOQ_bear(void);

Library
ppcLib.a
Description

ppcMfsdramO_bear()

ppcMfsdramO_bear()

returns the value of the processorSDRAMO_BEAR register.

The PLB Master Bus Error Address Register is part of the SDRAM controller and is addressed
indirectly through the SDRAMO_CFGADDR and SDRAMO_CFGDATA registers.

Errors

None

Example

Retrieve the value of SDRAMO_BEAR register.

unsigned long current_ BEAR=ppcMfsdramO_bear();

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-127

ppcMfsdramO_besr0() - ppcMfsdramO_besri() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfsdramQ_besr0(void)
unsigned long ppcMfsdramOQ_besr1(void)

Library

ppcLib.a

Description

ppcMfsdramO_besr0() - ppcMfsdramO_besrl() returns the current value of the specified Register.

The Bus Error Syndrome Registers A and B are part of the SDRAM controller and are addressed
indirectly through the SDRAMO_CFGADDR and SDRAMO_CFGDATA registers.

Errors
None
Example

Retrieve the current value of the besra register.

unsigned long besra_value= ppcMfsdramO_besr0() ;
Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-128 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfsdramO_cfg(void);

Library
ppcLib.a
Description

ppcMfsdramO_cfg()

The Memory Controller Options 1 Register is part of the SDRAM controller and is addressed

ppcMfsdramO_cfg()

returns the value of the processor SDRAMO_CFG register.

indirectly through the SDRAMO_CFGADDR and SDRAMO_CFGDATA registers.

Errors

None

Example

Retrieve the value of SDRAMO_CFG register.
unsigned long current_ SDRAMO_CFG=ppcMfsdram0_cfg();

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-129

ppcMfsdramO_ecccfg() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfsdramO_ecccfg(void);

Library

ppcLib.a

Description

ppcMfsdramO_ecccfg() returns the value of the processor SDRAMO_ECCCFG register.

The ECC Configuration Register is part of the SDRAM controller and is addressed indirectly through
the SDRAMO_CFGADDR and SDRAMO_CFGDATA registers.

Errors

None

Example

Retrieve the value of SDRAMO_ECCCEFG register.

unsigned long current. SDRAMO_ECCCFG=ppcMfsdramO_ecccfg();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-130 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

_Preliminary Copy ppcMfsdramO_eccesr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfsdramOQ_eccesr(void);

Library

ppcLib.a

Description

ppcMfsdramO_eccesr() returns the value of the processor SDRAMO_ECCESR register.

The ECC Error Status Register is part of the SDRAM controller and is addressed indirectly through
the SDRAMO_CFGADDR and SDRAMO_CFGDATA registers.

Errors

None

Example

Retrieve the value of SDRAMO_ECCESR register.

unsigned long current_ SDRAMO_ECCESR=ppcMfsdramQ_eccesr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-131

ppcMfsdramO_rtr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfsdramO_rtr(void);

Library

ppcLib.a

Description

ppcMfsdramO_rtr() returns the value of the processorSDRAMO_RTR register.

The Refresh Timer Register is part of the SDRAM controller and is addressed indirectly through the
SDRAMO_CFGADDR and SDRAMO_CFGDATA registers.

Errors
None

Example
Retrieve the value ofSDRAMO_RTR register.

unsigned long current RTR=ppcMfsdramO_rtr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-132 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfsdramO_tr(void);

Library
ppcLib.a

Description

ppcMfsdramO_tr()

ppcMfsdramO _tr() returns the value of the processor SDRAMO_TR register.

The SDRAM Timing Register 1 is part of the SDRAM controller and is addressed indirectly through
the SDRAMO_CFGADDR and SDRAMO_CFGDATA registers.

Errors

None

Example

Retrieve the value of SDRAMO_TR register.

unsigned long current_ SDRAMO_TR=ppcMfsdram0_tr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8

OS Open Function Reference

10-133

ppCMngr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfsgr(void);

Library

ppcLib.a

Description

ppcMfsgr() returns the value of the processor SGR (Storage Guarded Register).
Errors

None

Example

Retrieve the value of SGR register.

unsigned long current_ SGR=ppcMfsgr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-134 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfsler(void);

Library
ppcLib.a

Description

ppcMfsler() returns the value of the processor SLER (Storage Little-Endian Register).

Errors

None

Example

Retrieve the value of SLER register.

unsigned long current_SLER=ppcMfsler();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8

ppcMfsler()

OS Open Function Reference

10-135

ppcMfsprg0() - ppcMfsprg7()

Synopsis

#include <ppcLib.h>

unsigned long ppcMfsprgO(void);
unsigned long ppcMfsprgl(void);
unsigned long ppcMfsprg2(void);
unsigned long ppcMfsprg3(void);
unsigned long ppcMfsprg4(void);
unsigned long ppcMfsprg5(void);
unsigned long ppcMfsprg6(void);
unsigned long ppcMfsprg7(void);

Library
ppcLib.a

Description

—Preliminary Copy

ppcMfsprg0() - ppcMfsprg7() returns the current value of the special purpose register generals

(SPRGO - SPRG7).

Typically, the SPRGs provide temporary storage at the operating system level.

NOTE: OS Open reserves SPRGO-3 for its own use.
Errors
None

Example
Read value of SPRGO.

unsigned long sprg0_value = ppcMfsprg0();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-136 PPC405GP Reference Design Kit User's Manual

v. 0.8

Revised 8/22/00

—Preliminary Copy ppCMfSI’fOO

Synopsis

#include <ppcLib.h>
unsigned long ppcMfsrrO(void);

Library
ppcLib.a
Description

ppcMfsrrO() returns the value of SRRO.

Typically, SRRO is used in interrupt handlers, as it usually contains the address of the next instruction
to be executed at the time of the interrupt. SRRO and SRR1 are set when a noncritical interrupt

occurs.

Errors

None

Example

Retrieve the current value of the SRRO. An exception handler may use this value to determine the

point of exception.

unsigned long current_srrO=ppcMfsrr0();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

“ppcMfsrrl()” on page 10-138
PPC405GP Embedded Controller User’'s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference

10-137

ppCMfoI’l() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfsrri(void);

Library

ppcLib.a

Description

ppcMfsrrl() returns the current value of SRR1.

Typically, SRR1 is used in interrupt handlers, as it contains the old MSR value as well as information
bits specific to the interrupt. SRR0O and SRR1 are set when a noncritical interrupt occurs.

Errors
None
Example

Retrieve the current value of SRR1. This register contains the saved MSR, which may be needed by
an exception handler.

unsigned long current_srrl=ppcMfsrrl();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

10-138 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfsrr2(void);

Library
ppcLib.a

Description

ppcMfsrr2() returns the current value of SRR2.

ppcMfsrr2()

Typically, SRR2 is used in interrupt handlers, as it usually contains the address of the next instruction
to be executed at the time of the interrupt. SRR2 and SRR3 are set when a critical interrupt occurs.

Errors

None

Example

Retrieve the current value of SRR2. An exception handler may use this value to determine the point of

exception.

unsigned long current_srr2=ppcMfsrr2();

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-139

ppCMfoI’3() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfsrr3(void);

Library

ppcLib.a

Description

ppcMfsrr3() returns the current value of SRR3.

Typically, SRR3 is used in interrupt handlers, as it contains the old MSR value as well as information
bits specific to the interrupt. SRR2 and SRR3 are set when a critical interrupt occurs.

Errors
None
Example

Retrieve the current value of SRR3. This register contains the saved MSR, which may be needed by
an exception handler.

unsigned long current_srr3=ppcMfsrr3();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

10-140 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

unsigned long ppcMfsuOr(void);

Library
ppcLib.a

Description

ppcMfsuOr() returns the value of the processor SUOR (Storage User-Defined 0 Register).

ppcMfsuOr()

On the PPC405GP, SUOR is used to hold the K bits indicating storage compression.

Errors

None

Example

Retrieve the value of SUOR register.

unsigned long current_SUOR=ppcMfsu0r();

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-141

ppCMftb() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMftb(tb_t *clock _data);

Library

ppcLib.a

Description

ppcMftb() returns the current time base data.

Typically, the time base registers are used to determine the number of clock cycles that have passed.
Errors

None

Example

Retrieve the current value of time base high and low registers.

tb_t clock data;
ppcMftb(&clock_data);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-142 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMftcr(void);

Library
ppcLib.a

Description

ppcMftcr()

ppcMftcr() returns the value of the processor TCR (Timer Control Register).

File <ppc405.h> defines several constants for the TCR.

Errors

None

Example

Retrieve the value of TCR register.

unsigned long current_ TCR=ppcMftcr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8

OS Open Function Reference

10-143

ppCMftSf() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMftsr(void);

Library

ppcLib.a

Description

ppcMftsr() returns the value of the processor TSR (Timer Status Register).
File <ppc405.h> defines several constants for the TSR.

Errors

None

Example

Retrieve the value of TSR register.

unsigned long current_ TSR=ppcMftsr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-144 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppCMfUiCO_

Synopsis

#include <ppcLib.h>
unsigned long ppcMfuicO_cr(void);

Library

ppcLib.a

Description

ppcMfuicO_cr() returns the value of the processor UICO_CR register.
The UIC Critical Register is part of the Universal Interrupt Controller core.
Errors

None

Example

Retrieve the value of UICO_CR register.

unsigned long current_UICO_CR=ppcMfuic0_cr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference

cr()

10-145

ppchuicO_er() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfuicO_er(void);

Library

ppcLib.a

Description

ppcMfuicO_er() returns the value of the processor UICO_ER register.
The UIC Enable Register is part of the Universal Interrupt Controller core.
Errors

None

Example

Retrieve the value of UICO_ER register.

unsigned long current_UICO_ER=ppcMfuicO_er();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-146 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppCMfUiCO_mSI‘O

Synopsis

#include <ppcLib.h>
unsigned long ppcMfuicO_msr(void);

Library

ppcLib.a

Description

ppcMfuicO_msr() returns the value of the processor UICO_MSR register.

The UIC Masked Status Register is part of the Universal Interrupt Controller core.
Errors

None

Example

Retrieve the value of UICO_MSR register.

unsigned long current_UICO_MSR=ppcMfuicO_msr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference

10-147

ppCMfUiCO_pI’() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfuicO_pr(void);

Library

ppcLib.a

Description

ppcMfuicO_pr() returns the value of the processor UICO_PR register.
The UIC Polarity Register is part of the Universal Interrupt Controller core.
Errors

None

Example

Retrieve the value of UICO_PR register.

unsigned long current_UICO_PR=ppcMfuicO_pr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-148 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppCMfUiCO_Sr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfuicO_sr(void);

Library

ppcLib.a

Description

ppcMfuicO_sr() returns the value of the processor UICO_SR register.
The UIC Status Register is part of the Universal Interrupt Controller core.
Errors

None

Example

Retrieve the value of UICO_SR register.

unsigned long current_UICO_SR=ppcMfuicO_sr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-149

ppchuicO_tr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfuicO_tr(void);

Library

ppcLib.a

Description

ppcMfuicO_tr() returns the value of the processor UICO_TR register.

The UIC Triggering Register is part of the Universal Interrupt Controller core.
Errors

None

Example

Retrieve the value of UICO_TR register.

unsigned long current_UICO_TR=ppcMfuic0_tr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-150 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppCMfuiCO_vr()

Synopsis

#include <ppcLib.h>
unsigned long ppcMfuicO_vr(void);

Library

ppcLib.a

Description

ppcMfuicO_vr() returns the value of the processor UICO_VR register.
The UIC Vector Register is part of the Universal Interrupt Controller core.
Errors

None

Example

Retrieve the value of UICO_VR register.

unsigned long current_UICO_VR=ppcMfuicO_vr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-151

ppCMprr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
unsigned long ppcMfzpr(void);

Library

ppcLib.a

Description

ppcMfzpr() returns the value of the processor ZPR (Zone Protection Register).
Errors

None

Example

Retrieve the value of ZPR register.

unsigned long current_ZPR=ppcMfzpr();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-152 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

void ppcMtccrO(unsigned long value);

Library
ppcLib.a

Description

ppcMtccrO() sets the value of the processor ccrO register (Core Configuration Register 0).

Errors

None

Example

Set the value of ccrO register.

ppcMtccrO(value);

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

ppcMtccrO()

OS Open Function Reference

10-153

ppthcpcO_crO() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtcpcO_crO(unsigned long value);

Library

ppcLib.a

Description

ppcMtcpcO_crO() sets the value of the processor CPCO_CRO (chip control 0) register.
Errors

None

Example

Set the value of CPCO_CRO register.

ppcMtcpcO_crO(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-154 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppcMtcpcO_crl()

Synopsis

#include <ppcLib.h>
void ppcMtcpcO_crl(unsigned long value);

Library

ppcLib.a

Description

ppcMtcpcO_crl() sets the value of the processor CPCO_CRL1 (chip control 1) register.
Errors

None

Example

Set the value of CPCO_CR1 register.

ppcMtcpcO_cri(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference

10-155

ppcMtdacl() - ppcMtdac?2() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtdacl(unsigned long value)
void ppcMtdac2(unsigned long value)

Library

ppcLib.a

Description

ppcMtdacl() - ppcMtdac2() sets the value of the specified register.

The Data Address Compare registers 1 and 2 contain addresses for which debug events may be
taken, depending on the values set in the DBCRL1 register.

Errors
None
Example

Set the value of the DAC2 register.

ppcMtdac2(value);

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-156 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppcMtdbcr0O() - ppcMtdbcrl()

Synopsis

#include <ppcLib.h>
void ppcMtdbcrO(unsigned long value)
void ppcMtdbcrl(unsigned long value)

Library

ppcLib.a

Description

ppcMtdbcr0() - ppcMtdberl() sets the value of the specified register.

Dedug Control Registers 0 and 1 are used to enable debug events, reset the processor and set the
debug mode of the processor.

WARNING: Enabling bits 0 and 1 can cause unexpected results. Enabling bits 2 and 3 will cause a
processor reset to occur. DBCRO and DBCR1 are designed to be used by development tools, not
applications.

Refer to the file <ppc405.h> for defined constants for the DBCRO and DBCR1 registers.
Errors

None

Example

Set the value of the DBCRL1 register.

ppcMtdbcrl(value);

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-157

ppCMtd be() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtdbsr(unsigned long value);

Library

ppcLib.a

Description

ppcMtdbsr() sets the value of the processor DBSR register.

The Debug Status Register contains the status of debug events and the most recent reset.
The file <ppc405.h> defines constants that can be used when referring to the DBSR.
Errors

None

Example

Set the value of DBSR register.

ppcMtdbsr(value);

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-158 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

void ppcMtdccr(unsigned long value);

Library
ppcLib.a

Description

ppcMtdccr() sets the value of the processor DCCR (Data Cache Cacheability Register).

Errors

None

Example

Set the value of DCCR register.

ppcMtdccr(value);

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

ppcMtdccr()

OS Open Function Reference

10-159

ppcMtdcpO_addrO() - ppcMtdcpO_addri() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtdcp0_addrO(unsigned long value)
void ppcMtdcp0_addri(unsigned long value)

Library

ppcLib.a

Description

ppcMtdcpO_addrO() - ppcMtdcpO_addrl() sets the value of the specified register.

The Address Decode Definition Registers are part of the decompression core and are addressed
indirectly through the DCPO_CFGADDR and DCP0_CFGDATA registers.

Errors

None

Example

Set the value of the DCPO_ADDRO register.

ppcMtdcpO_addrO(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-160 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

void ppcMtdcpO_cfg(unsigned long value);

Library
ppcLib.a

Description

ppcMtdcpO_cfg()

ppcMtdcpO_cfg() sets the value of the processor DCPO_CFG compression register.

The Decompression core Configuration Register is part of the decompression core and is addressed
indirectly through the DCP0O_CFGADDR and DCPO_CFGDATA registers.

Errors

None

Example

Set the value of DCPO_CFG register.

ppcMtdcpO_cfg(value);

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-161

ppthdeO_esr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtdcp0_esr(unsigned long value);

Library

ppcLib.a

Description

ppcMtdcpO_esr() sets the value of the processor DCPO_ESR register.

The Bus Error Status Register 0 is part of the decompression core and is addressed indirectly
through the DCPO_CFGADDR and DCPO_CFGDATA registers.

Errors
None

Example
Set the value of DCPO_ESR register.

ppcMtdcpO_esr(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-162 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppcMtdcpO itor0() - ppcMtdcpO _itor3()

Synopsis

#include <ppcLib.h>

void ppcMtdcpO_itorO(unsigned long value)
void ppcMtdcpO_itorl(unsigned long value)
void ppcMtdcpO_itor2(unsigned long value)
void ppcMtdcpO_itor3(unsigned long value)

Library
ppcLib.a

Description

ppcMtdcpO_itor0() - ppcMtdcpO_itor3() sets the value of the specified compression Register.

The Index Table Origin Registers are part of the decompression core and are addressed indirectly
through the DCPO_CFGADDR and DCPQO_CFGDATA registers.

Errors

None

Example

Set the value of the DCPO_ITORO register.
ppcMtdcpO_itorO(value);

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-163

ppthdeO_ram() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtdcp0_ram(unsigned long regno, unsigned long value);

Library
ppcLib.a
Description

ppcMtdcpO_ram() sets the value of one of the processor DCPO_RAM compression registers,
specified by regno. There are 0x400 DCPO_RAM registers, from DCP0_RAMO to DCP0_RAMS3Hf.
regno must be a value from 0 to Ox3ff.

The Decompression core SRAM/ROM Registers are part of the decompression core and are
addressed indirectly through the DCPO_CFGADDR and DCPO_CFGDATA registers.

Errors

None

Example
Set the value of DCPO_RAM register O.

ppcMtdcpO_ram(0,value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-164 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

void ppcMtdcwr(unsigned long value);

Library
ppcLib.a

Description

ppcMtdcwr() sets the value of the processor DCWR (Data Cache Write-through Register).

Errors

None

Example

Set the value of DCWR register.

ppcMtdcwr(value);

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

ppcMtdcwr()

OS Open Function Reference

10-165

ppthdear() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtdear(unsigned long value);

Library

ppcLib.a

Description

ppcMtdear() sets the value of the processor DEAR (Data Exception Address Register).
Errors

None

Example

Set the value of DEAR register.

ppcMtdear(value);

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-166 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppcMtdmaO_cr0O() - ppcMtdma0_cr3()

Synopsis

#include <ppcLib.h>

void ppcMtdmaO_crO(unsigned long value);
void ppcMtdma0_crl(unsigned long value);
void ppcMtdmaO_cr2(unsigned long value);
void ppcMtdmaO_cr3(unsigned long value);

Library
ppcLib.a

Description

ppcMtdma0_cr0() - ppcMtdmaO_cr3() set the value of the DMA Channel Control Registers

(DMAO_CRO - DMAO_CR3). Prior to executing DMA transfers, the control register must be initialized
and enabled. Constants that may be used when accessing the DMACR'’s are obtained by including

<ppcLib.h> .
Errors
None.
Example
Disable channel 2.
ppcMtdmaO_cr2(~-DMACR_CE);
Attributes
Async Safe
Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References
PPC405GP Embedded Controller User’'s Manual

Revised 8/22/00 v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-167

ppcMtdma0O_ctO() - ppcMtdmaO_ct3()

Synopsis

#include <ppcLib.h>

void ppcMtdma0_ctO(unsigned long value);
void ppcMtdma0_ct1(unsigned long value);
void ppcMtdma0_ct2(unsigned long value);
void ppcMtdma0_ct3(unsigned long value);

Library
ppcLib.a

Description

—Preliminary Copy

ppcMtdma0_ct0() - ppcMtdmaO_ct3() set the values of the DMA count registers (DMAO_CTO -
DMAO_CT3) to the specified value. The DMACTSs contain the number of transfers left in a DMA
transaction for the channel. The maximum number of transfers is 64K and each transfer can be 1, 2,

or 4 bytes as programmed in the DMA Channel Control register.

Errors

None.

Example

Set the DMAO_CTO for 64K transfers by setting the DMAQO_CTO to 0.

ppcMtdma0_ct0(0x00000000);

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References
PPC405GP Embedded Controller User's Manual

Yes
Yes
Yes
No

10-168 PPC405GP Reference Design Kit User's Manual

v. 0.8

Revised 8/22/00

—Preliminary Copy ppcMtdmaO_daO() - ppcMtdmaO_da3()

Synopsis

#include <ppcLib.h>

void ppcMtdmaO_daO(unsigned long value);
void ppcMtdmaO_dal(unsigned long value);
void ppcMtdmaO_da2(unsigned long value);
void ppcMtdmaO_da3(unsigned long value);

Library
ppcLib.a

Description

ppcMtdma0_da0() - ppcMtdmaO_da3() set the values of the DMA destination address registers
(DMAO_DAO - DMAO_DAB3) to the specified value. The DMADA registers contain the memory address
for transfers between memory and peripheral or the destination address for memory to memory

transfers.
Errors
None.
Example
Set the destination address for a transfer.
ppcMtdma0_da0(0x00020000);
Attributes
Async Safe
Cancel Safe

Interrupt Handler Safe
Callable from Application Thread Group

References
PPC405GP Embedded Controller User’'s Manual

Revised 8/22/00 v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-169

ppcMtdma0_sal() - ppcMtdmaO_sa3() —Preliminary Copy

Synopsis

#include <ppcLib.h>

void ppcMtdma0_saO(unsigned long value);
void ppcMtdma0_sal(unsigned long value);
void ppcMtdma0_sa2(unsigned long value);
void ppcMtdma0_sa3(unsigned long value);

Library
ppcLib.a
Description

ppcMtdma0_sa0() - ppcMtdmaO_sa3() set the value of the DMA source address registers
(DMAO_SAO - DMAO_SA3). The DMASA registers are used in memory-to-memory move mode.

Errors

None.

Example

Set the source address for a transfer.

ppcMtdma0_sa0(0x00020000);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-170 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppcMtdma0_sgO0() - ppcMtdmaO_sg3()

Synopsis

#include <ppcLib.h>

void ppcMtdmaO_sgO(unsigned long value);
void ppcMtdmaO_sgl(unsigned long value);
void ppcMtdmaO_sg2(unsigned long value);
void ppcMtdmaO_sg3(unsigned long value);

Library
ppcLib.a

Description

ppcMtdma0_sg0() - ppcMtdma0_sg3() set the value of the DMA scatter/gather base address
registers (DMASBO - DMASB3). The DMASB registers contain the address of the current
scatter/gather descriptor table element in system memory. The definition of the scatter/gather
descriptor table is obtained by including <ioLib.h> .

Errors

None.

Example
Set up a scatter/gather descriptor table element for a transfer.

#include <ppcLib.h>

#include <ioLib.h>

struct dma_sg_t sg;

extern unsigned long mysourceaddr, mydestaddr, data_len;

sg.dmacr_reg=DMACR_EN | DMACR_PW_32; /* Set DMACR values as needed */
sg.source_addr=mysourceaddr; /* set source address */
sg.dest_addr=mydestaddr; /* set destination address */

sg.count=data_len; /* set length of data to be transferred */

sg.flags.link=0; /* This is the last scatter/gather element in the list */
sg.flags.int_enable=DMA_SG_INT_ERROR; /* enable interrupts for errors only */
sg.flags.sub_channel=0; /* set sub_channel =0 */

ppcMtdma0_sgO0(&sg); /* Set up the address of the table in scatter/gather reg

*/

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-171

ppthdmaO_sgC() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtdma0_sgc(unsigned long value);

Library
ppcLib.a
Description

ppcMtdma0_sgc() sets the value of the DMA Scatter/Gather Command Register (DMAOQO_SGC).
Constants that may be used when accessing the DMAO_SGC are obtained by including <ppcLib.h> .

Errors

None.

Example

Start DMA Scatter/gatehr on channel 2.
ppcMtdmasgc(ppcMfdma0_sgc() | DMAO_SGC_SSG2);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-172 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

void ppcMtdmaO_sr(unsigned long value);

Library
ppcLib.a

Description

ppcMtdmaO_sr()

ppcMtdmaO_sr() sets the value of the DMA Status Register (DMAO_SR). Bits in the DMASR may be

cleared by writing a 1 to the corresponding bit position. The file <ppcLib.h> contains several

constants that may be used when accessing the DMAO_SR.

Errors

None.

Example

Set all status bits for channel 3.

ppcMtdmal_sr(DMAQ_SR_ALL3);

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-173

ppcMtdvcl() - ppcMtdvc2() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtdvcl(unsigned long value)
void ppcMtdvc2(unsigned long value)

Library

ppcLib.a

Description

ppcMtdvcl() - ppcMtdvc2() sets the value of the specified Data Value Compare Register.
Errors

None

Example

Set the value of the DVC2 register.

ppcMtdvc2(value);

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-174 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

void ppcMtesr(unsigned long value);

Library
ppcLib.a

Description

ppcMtesr()

ppcMtesr() sets the value of the processor ESR (Exception Syndrome Register).

Errors

None

Example

Set the value of ESR register.

ppcMtesr(value);

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-175

ppthevpr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtevpr(unsigned long value);

Library
ppcLib.a
Description

ppcMtevpr() sets the value of the processor EVPR (Exception Vector Prefix Register). Bits 0 to 15
contain the prefix of the address of the exception processing routines. Bits 15 to 31 are reserved.

Errors
None
Example

Set the value of EVPR register.

ppcMtevpr(value);

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-176 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis

#include <ppcLib.h>

void ppcMtiacl(unsigned long value)
void ppcMtiac2(unsigned long value)
void ppcMtiac3(unsigned long value)
void ppcMtiac4(unsigned long value)

Library
ppcLib.a

Description

ppcMtiacl() - ppcMtiac4()

ppcMtiacl() - ppcMtiac4() sets the value of the specified Instruction Address Compare Register. The
IAC contains the address of the instruction that the debug event will be based on. The Debug Control
Register 0 (DBCRO) controls the instruction address debug event. Bits 30 and 31 of the IAC are

reserved, since the address must be word aligned.
Errors

None

Example

Set the value of the IAC4 register.
ppcMtiac4(value);

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-177

ppCMtiCCI’() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMticcr(unsigned long value);

Library

ppcLib.a

Description

ppcMticcr() sets the value of the processor ICCR (Instruction Cache Cacheability Register).
Errors

None

Example

Set the value of ICCR register.

ppcMticcr(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-178 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppthmaIO_cfg()

Synopsis

#include <ppcLib.h>
void ppcMtmalO_cfg(unsigned long value);

Library

ppcLib.a

Description

ppcMtmal0_cfg() sets the value of the processor MALO_CFG register.
The MAL Configuration Register is part of the Memory Access Layer core.
Errors

None

Example

Set the value of the MALO_CFG register.

ppcMtmalO_cfg(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference

10-179

ppthmalO_esr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtmal0_esr(unsigned long value);

Library

ppcLib.a

Description

ppcMtmal0_esr() sets the value of the processor MALO_ESR register.
The MAL Error Status Register is part of the Memory Access Layer core.
Errors

None

Example

Set the value of the MALO_ESR register.

ppcMtmal0_esr(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-180 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

_Preliminary Copy ppcMtmal0_ier()

Synopsis

#include <ppcLib.h>
void ppcMtmalO_ier(unsigned long value);

Library

ppcLib.a

Description

ppcMtmalO_ier() sets the value of the processor MALO_IER register.

The MAL Interrupt Enable Register is part of the Memory Access Layer core.
Errors

None

Example

Set the value of the MALO_IER register.

ppcMtmalO_ier(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference

10-181

ppthmalO_rcbsO() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtmal0_rcbs0(unsigned long value);

Library

ppcLib.a

Description

ppcMtmal0_rcbs0() sets the value of the processor MALO_RCBSO register.

The MAL Receive Channel Buffer Size Register is part of the Memory Access Layer core.
Errors

None

Example

Set the value of the MALO_RCBSO register.

ppcMtmal0_rcbsO(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-182 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppthmaIO_rxcarr()

Synopsis

#include <ppcLib.h>
void ppcMtmalO0_rxcarr(unsigned long value);

Library

ppcLib.a

Description

ppcMtmalO_rxcarr() sets the value of the processor MALO_RXCARR register.

The MAL RX Channel Active Reset Register is part of the Memory Access Layer core.
Errors

None

Example

Set the value of the MALO_RXCARR register.

ppcMtmalO_rxcarr(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference

10-183

ppcMtmalO_rxcasr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtmal0_rxcasr(unsigned long value);

Library

ppcLib.a

Description

ppcMtmalO_rxcasr() sets the value of the processor MALO_RXCASR register.

The MAL RX Channel Active Set Register is part of the Memory Access Layer core.
Errors

None

Example

Set the value of the MALO_RXCASR register.

ppcMtmal0_rxcasr(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-184 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

void ppcMtmalO_rxctpOr(unsigned long value);

Library
ppcLib.a

Description

ppcMtmalO_rxctpOr()

ppcMtmalO_rxctpOr() sets the value of the processor MALO_RXCTPOR register.

The MAL RX Channel Table Pointer O Register is part of the Memory Access Layer core.

Errors

None

Example

Set the value of the MALO_RXCTPOR register.

ppcMtmalO0_rxctpOr(value);

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-185

ppcMtmal0_rxdeir() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtmal0_rxdeir(unsigned long value);

Library

ppcLib.a

Description

ppcMtmalO_rxdeir() sets the value of the processor MALO_RXDEIR register.

The MAL RX Descriptor Error Interrupt Register is part of the Memory Access Layer core.
Errors

None

Example

Set the value of the MALO_RXDEIR register.

ppcMtmalO_rxdeir(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-186 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

void ppcMtmalO_rxeobisr(unsigned long value);

Library
ppcLib.a

Description

ppcMtmalO_rxeobisr()

ppcMtmalO_rxeobisr() sets the value of the processor MALO_RXEOBISR register.

The MAL RX End Of Buffer Interrupt Status Register is part of the Memory Access Layer core.

Errors

None

Example

Set the value of the MALO_RXEOBISR register.

ppcMtmalO_rxeobisr(value);

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-187

ppcMtmalQ_txcarr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtmal0_txcarr(unsigned long value);

Library

ppcLib.a

Description

ppcMtmal0_txcarr() sets the value of the processor MALO_TXCARR register.

The MAL TX Channel Active Reset Register is part of the Memory Access Layer core.
Errors

None

Example

Set the value of the MALO_TXCARR register.

ppcMtmalO_txcarr(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-188 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppcMtmalO_txcasr()

Synopsis

#include <ppcLib.h>
void ppcMtmal0_txcasr(unsigned long value);

Library

ppcLib.a

Description

ppcMtmalO_txcasr() sets the value of the processor MALO_TXCASR register.

The MAL TX Channel Active Set Register is part of the Memory Access Layer core.
Errors

None

Example

Set the value of the MALO_TXCASR register.

ppcMtmal0_txcasr(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-189

ppcMtmal0_txctpOr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtmal0_txctpOr(unsigned long value);

Library

ppcLib.a

Description

ppcMtmalO_txctpOr() sets the value of the processor MALO_TXCTPOR register.

The MAL TX Channel Table Pointer O Register is part of the Memory Access Layer core.
Errors

None

Example

Set the value of the MALO_TXCTPOR register.

ppcMtmal0_txctpOr(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-190 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

void ppcMtmalO_txctplr(unsigned long value);

Library
ppcLib.a

Description

ppcMtmalO_txctplr()

ppcMtmalO_txctplr() sets the value of the processor MALO_TXCTPI1R register.

The MAL TX Channel Table Pointer 1 Register is part of the Memory Access Layer core.

Errors

None

Example

Set the value of the MALO_TXCTP1R register.

ppcMtmal0_txctplr(value);

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-191

ppthmalO_txdeir() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtmal0_txdeir(unsigned long value);

Library

ppcLib.a

Description

ppcMtmalO_txdeir() sets the value of the processor MALO_TXDEIR register.

The MAL Descriptor Error Interrupt Register is part of the Memory Access Layer core.
Errors

None

Example

Set the value of the MALO_TXDEIR register.

ppcMtmal0_txdeir(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-192 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

void ppcMtmal0_teobisr(unsigned long value);

Library
ppcLib.a

Description

ppcMtmalO_txeobisr()

ppcMtmalO_teobisr() sets the value of the processor MALO_TEOBISR register.

The MAL TX End Of Buffer Interrupt Status Register is part of the Memory Access Layer core.

Errors

None

Example

Set the value of the MALO_TEOBISR register.

ppcMtmalO_teobisir(value);

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-193

ppthmpmit() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtsdramO_pmit(unsigned long value);

Library

ppcLib.a

Description

ppcMtsdramO_pmit() sets the value of the processor SDRAMO_PMIT register.

The Memory Power Management Idle Timer Register is part of the SDRAM controller and is
addressed indirectly through the SDRAMO_CFGADDR and SDRAMO_CFGDATA registers.

Errors
None

Example
Set the value of SDRAMO_PMIT register.

ppcMtsdramO_pmit(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-194 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

void ppcMtmsr(unsigned long value);

Library
ppcLib.a

Description

ppcMtmsr()

ppcMtmsr() sets the value of the Machine State Register(MSR).

Refer to the <ppc_arch.h> file for the defines of constants that can be used as masks with the MSR

value.

Errors

None

Example

Enable external interrupts:

unsigned long msr=ppcMfmsr()
ppcMtmsr(msr | ppcMsrEE);

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-195

ppcMtocmO_dsarc() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtocmO_dsarc(unsigned long value);

Library

ppcLib.a

Description

ppcMtocmO_dsarc() sets the value of the processor OCMO_DSARC register.

The On-Chip Memory Data Side Address Range Compare Register is part of the OCM core.
Errors

None

Example

Set the value of OCMO_DSARC register.

ppcMtocmO_dsarc(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-196 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppcMtocmO_dscntl()

Synopsis

#include <ppcLib.h>
void ppcMtocmO_dscntl(unsigned long value);

Library

ppcLib.a

Description

ppcMtocmO_dscntl() sets the value of the processor OCMO_DSCNTL register.
The On-Chip Memory Data Side Control Register is part of the OCM core.
Errors

None

Example

Set the value of OCMO_DSCNTL register.

ppcMtocmO_dscntl(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference

10-197

ppcMtocmO_isarc() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtocmO_isarc(unsigned long value);

Library

ppcLib.a

Description

ppcMtocmO_isarc() sets the value of the processor OCMO_ISARC register.

The On-Chip Memory InstructionSide Address Range Compare Register is part of the OCM core.
Errors

None

Example

Set the value of OCMO_ISARC register.

ppcMtocmO_isarc(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-198 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppcMtocmO_iscntl()

Synopsis

#include <ppcLib.h>
void ppcMtocmO_iscntl(unsigned long value);

Library

ppcLib.a

Description

ppcMtocmO _iscntl() sets the value of the processor OCMO_ISCNTL register.
The On-Chip Memory InstructionSide Control Register is part of the OCM core.
Errors

None

Example

Set the value of OCMO_ISCNTL register.

ppcMtocmO_iscntl(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference

10-199

pPcMtpid()

Synopsis

#include <ppcLib.h>
void ppcMtpid(unsigned long value);

Library
ppcLib.a

Description

ppcMtpid() sets the value of the processor PID (Process ID) register.

Errors
None
Example

Set the value of PID register.

ppcMtpid(value);

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-200 PPC405GP Reference Design Kit User's Manual

v. 0.8

—Preliminary Copy

Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

void ppcMtpit(unsigned long value);

Library
ppcLib.a

Description

ppcMtpit() sets the value of the processor PIT (Programmable Interval Timer) register.

Errors

None

Example

Set the value of PIT register.

ppcMtpit(value);
Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

ppcMtpit()

OS Open Function Reference

10-201

ppcMtsdramO_bOcr() - ppcMtsdramO_b3cr()

Synopsis

#include <ppcLib.h>

void ppcMtsdramO_bOcr(unsigned long value)
void ppcMtsdramOQ_blcr(unsigned long value)
void ppcMtsdramOQ_b2cr(unsigned long value)
void ppcMtsdramO_b3cr(unsigned long value)

Library
ppcLib.a

Description

—Preliminary Copy

ppcMtsdramO_bOcr() - ppcMtsdramO_b3cr() sets the value of the specified register.

The Memory 0-3 Configuration Registers are part of the SDRAM controller and are addressed

indirectly through the SDRAMO_CFGADDR and SDRAMO_CFGDATA registers.

Errors

None

Example

Set the value of the mbOcf register.
ppcMtsdramO_bOcr(value);

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’'s Manual

Yes
Yes
Yes
No

10-202 PPC405GP Reference Design Kit User's Manual

v. 0.8

Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

void ppcMtsdramO_bear(unsigned long value);

Library
ppcLib.a

Description

ppcMtsdramO_bear()

ppcMtsdramO_bear() sets the value of the processorSDRAMO_BEAR register.

The PLB Master Bus Error Address Register is part of the SDRAM controller and is addressed
indirectly through the SDRAMO_CFGADDR and SDRAMO_CFGDATA registers.

Errors

None

Example

Set the value ofSDRAMO_BEAR register.

ppcMtsdramO_bear(value);

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-203

ppcMtsdramO_besr0() - ppcMtsdramO_besri() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtsdramOQ_besrO(unsigned long value)
void ppcMtsdramOQ_besr1(unsigned long value)

Library

ppcLib.a

Description

ppcMtsdramO_besr0() - ppcMtsdramO_besrl() sets the value of the specified Register.

The Bus Error Syndrome Registers A and B are part of the SDRAM controller and are addressed
indirectly through the SDRAMO_CFGADDR and SDRAMO_CFGDATA registers.

Errors

None

Example

Set the value of the SDRAMO_BESRO register.

ppcMtsdramO_besrO(value) ;

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-204 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppCMtSdramO_Cfg ()

Synopsis

#include <ppcLib.h>
void ppcMtsdramO_cfg(unsigned long value);

Library

ppcLib.a

Description

ppcMtsdramO_cfg() sets the value of the processor SDRAMO_CFG register.

The Memory Controller Options 1 Register is part of the SDRAM controller and is addressed
indirectly through the SDRAMO_CFGADDR and SDRAMO_CFGDATA registers.

Errors

None

Example

Set the value of SDRAMO_CFG register.

ppcMtsdramO_cfg(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-205

ppcMtsdramO_ecccfg() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtsdramO_ecccfg(unsigned long value);

Library

ppcLib.a

Description

ppcMtsdramO_ecccfg() sets the value of the processor SDRAMO_ECCCEFG register.

The ECC Configuration Register is part of the SDRAM controller and is addressed indirectly through
the SDRAMO_CFGADDR and SDRAMO_CFGDATA registers.

Errors

None

Example

Set the value of SDRAMO_ECCCFG register.

ppcMtsdramO_ecccfg(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-206 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

void ppcMtsdramO_eccesr(unsigned long value);

Library
ppcLib.a

Description

ppcMtsdramO_eccesr()

ppcMtsdramO_eccesr() sets the value of the processor SDRAMO_ECCESR register.

The ECC Error Status Register is part of the SDRAM controller and is addressed indirectly through
the SDRAMO_CFGADDR and SDRAMO_CFGDATA registers.

Errors

None

Example

Set the value of SDRAMO_ECCESR register.

ppcMtsdramO_eccesr(value);

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-207

ppcMtsdramO_rtr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtsdramO_rtr(unsigned long value);

Library

ppcLib.a

Description

ppcMtsdramO_rtr() sets the value of the processorSDRAMO_RTR register.

The Refresh Timer Register is part of the SDRAM controller and is addressed indirectly through the
SDRAMO_CFGADDR and SDRAMO_CFGDATA registers.

Errors
None

Example
Set the value ofSDRAMO_RTR register.

ppcMtsdram0O_rtr(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-208 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

void ppcMtsdram0O_tr(unsigned long value);

Library
ppcLib.a

Description

ppcMtsdramO_tr()

ppcMtsdramO _tr() sets the value of the processor SDRAMO_TR register.

The SDRAM Timing Register 1 is part of the SDRAM controller and is addressed indirectly through
the SDRAMO_CFGADDR and SDRAMO_CFGDATA registers.

Errors

None

Example

Set the value of SDRAMO_TR register.

ppcMtsdramO_tr(value);

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-209

ppCMtsgr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtsgr(unsigned long value);

Library

ppcLib.a

Description

ppcMtsgr() sets the value of the processor SGR (Storage Guarded Register).
Errors

None

Example

Set the value of SGR register.

ppcMtsgr(value);

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-210 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppCMtSIer()

Synopsis

#include <ppcLib.h>
void ppcMtsler(unsigned long value);

Library

ppcLib.a

Description

ppcMtsler() sets the value of the processor SLER (Storage Little-Endian Register).
Errors

None

Example

Set the value of SLER register.

ppcMtsler(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-211

ppcMtsprgO() - ppcMtsprg7()

Synopsis

#include <ppcLib.h>

void ppcMtsprgO(unsigned long value);
void ppcMtsprgl(unsigned long value);
void ppcMtsprg2(unsigned long value);
void ppcMtsprg3(unsigned long value);
void ppcMtsprg4(unsigned long value);
void ppcMtsprg5(unsigned long value);
void ppcMtsprg6(unsigned long value);
void ppcMtsprg7(unsigned long value);

Library
ppcLib.a

Description

—Preliminary Copy

ppcMtsprg0() - ppcMtsprg7() sets the value of the special purpose register generals (SPRGO -

SPRG?7).

Typically, the SPRGs provide temporary storage at the operating system level.

NOTE: OS Open reserves SPRGO-3 for its own use.
Errors

None

Example

Set value of SPRGO.

ppcMtsprgO(value);
Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-212 PPC405GP Reference Design Kit User's Manual

v. 0.8

Revised 8/22/00

—Preliminary Copy ppCMtSffO()

Synopsis

#include <ppcLib.h>
void ppcMtsrrO(unsigned long value);

Library
ppcLib.a
Description

ppcMtsrrO() sets the value of SRRO.

Typically, SRRO is used in interrupt handlers, as it usually contains the address of the next instruction
to be executed at the time of the interrupt. SRRO and SRR1 are set when a noncritical interrupt

occurs.
Errors

None

Example

Set the value of the SRRO.

ppcMtsrrO(value);

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

“ppcMfsrrl()” on page 10-138
PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference

10-213

ppCMtSfI’l() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtsrrl(unsigned long value);

Library

ppcLib.a

Description

ppcMtsrrl() sets the value of SRR1.

Typically, SRR1 is used in interrupt handlers, as it contains the old MSR value as well as information
bits specific to the interrupt. SRR0O and SRR1 are set when a noncritical interrupt occurs.

Errors
None
Example

Set the value of SRR1.

ppcMtsrri(value);
Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-214 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

void ppcMtsrr2(unsigned long value);

Library
ppcLib.a

Description

ppcMtsrr2() sets the value of SRR2.

ppcMtsrr2()

Typically, SRR2 is used in interrupt handlers, as it usually contains the address of the next instruction
to be executed at the time of the interrupt. SRR2 and SRR3 are set when a critical interrupt occurs.

Errors

None

Example

Set the value of SRR2.

ppcMtsrr2(value);

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-215

ppCMtSfI’3() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtsrr3(unsigned long value);

Library

ppcLib.a

Description

ppcMtsrr3() sets the value of SRR3.

Typically, SRR3 is used in interrupt handlers, as it contains the old MSR value as well as information
bits specific to the interrupt. SRR2 and SRR3 are set when a critical interrupt occurs.

Errors
None
Example

Set the value of SRR3.

ppcMtsrr3(value);
Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

10-216 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

void ppcMtsuOr(unsigned long value);

Library
ppcLib.a

Description

ppcMtsuOr() sets the value of the processor SUOR (Storage User-Defined 0 Register).

ppcMtsuOr()

On the PPC405GP, SUOR is used to hold the K bits indicating storage compression.

Errors

None

Example

Set the value of SUOR register.

ppcMtsuOr(value);
Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-217

ppCMttb() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMttb(tb_t *clock _data);

Library

ppcLib.a

Description

ppcMttb() sets the time base data.

Typically, the time base registers are used to determine the number of clock cycles that have passed.
Errors

None

Example

Set the value of time base high and low registers.

tb_t clock data;
ppcMttb(&clock_data);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-218 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMttcr(unsigned long value);

Library
ppcLib.a

Description

ppcMttcr()

ppcMttcr() sets the value of the processor TCR (Timer Control Register).

File <ppc405.h> defines several constants for the TCR.

Errors
None
Example

Set the value of TCR register.

ppcMttcr(value);

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8

OS Open Function Reference

10-219

ppcMttsr()

Synopsis

#include <ppcLib.h>
void ppcMttsr(unsigned long value);

Library
ppcLib.a

Description

ppcMttsr() sets the value of the processor TSR (Timer Status Register).

File <ppc405.h> defines several constants for the TSR.
Errors

None

Example

Set the value of TSR register.

ppcMttsr(value);

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-220 PPC405GP Reference Design Kit User's Manual

v. 0.8

—Preliminary Copy

Revised 8/22/00

—Preliminary Copy ppCMtUiCO_

Synopsis

#include <ppcLib.h>
void ppcMtuicO_cr(unsigned long value);

Library

ppcLib.a

Description

ppcMtuicO_cr() sets the value of the processor UICO_CR register.

The UIC Critical Register is part of the Universal Interrupt Controller core.
Errors

None

Example

Set the value of UICO_CR register.

ppcMtuicO_cr(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference

cr()

10-221

ppthuicO_er() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtuicO_er(unsigned long value);

Library

ppcLib.a

Description

ppcMtuicO_er() sets the value of the processor UICO_ER register.

The UIC Enable Register is part of the Universal Interrupt Controller core.
Errors

None

Example

Set the value of UICO_ER register.

ppcMtuicO_er(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-222 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppCI\/ItuiCO_pr()

Synopsis

#include <ppcLib.h>
void ppcMtuicO_pr(unsigned long value);

Library

ppcLib.a

Description

ppcMtuicO_pr() sets the value of the processor UICO_PR register.

The UIC Polarity Register is part of the Universal Interrupt Controller core.
Errors

None

Example

Set the value of UICO_PR register.

ppcMtuicO_pr(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-223

ppthuicO_sr() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtuicO_sr(unsigned long value);

Library

ppcLib.a

Description

ppcMtuicO_sr() sets the value of the processor UICO_SR register.

The UIC Status Register is part of the Universal Interrupt Controller core.
Errors

None

Example

Set the value of UICO_SR register.

ppcMtuicO_sr(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-224 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy ppCMtuiCO_tr()

Synopsis

#include <ppcLib.h>
void ppcMtuicO_tr(unsigned long value);

Library

ppcLib.a

Description

ppcMtuicO_tr() sets the value of the processor UICO_TR register.

The UIC Triggering Register is part of the Universal Interrupt Controller core.
Errors

None

Example

Set the value of UICO_TR register.

ppcMtuicO_tr(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-225

ppCMtUiCO_VCf() —Preliminary Copy

Synopsis

#include <ppcLib.h>
void ppcMtuicO_vcr(unsigned long value);

Library

ppcLib.a

Description

ppcMtuicvr() sets the value of the processor UICO_VCR register.

The UIC Vector Configuration Register is part of the Universal Interrupt Controller core.
Errors

None

Example

Set the value of UICVC register.

ppcMtuicO_vcr(value);

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User's Manual

10-226 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <ppcLib.h>

void ppcMtzpr(unsigned long value);

Library
ppcLib.a

Description

ppcMtzpr()

ppcMtzpr() sets the value of the processor ZPR (Zone Protection Register).

Errors

None

Example

Set the value of ZPR register.

ppcMtzpr(value);

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00

v. 0.8

Yes
Yes
Yes
No

OS Open Function Reference

10-227

ppcOrMsr()

Synopsis

#include <ppcLib.h>
unsigned long ppcOrMsr(unsigned long value);

Library
ppcLib.a

Description

ppcOrMsr() performs the OR of value and the current MSR, updating the MSR.

The previous value of the MSR is returned.

—Preliminary Copy

The file <ppcLib.h> defines several constants for the MSR that can be used as masks.

Errors

None

Example

Enable instruction address translation.

unsigned long old_val = ppcOrMsr(ppcMsrIR);

Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

“ppcAndMsr()” on page 10-58
PPC405GP Embedded Controller User's Manual

10-228 PPC405GP Reference Design Kit User's Manual

v. 0.8

Revised 8/22/00

—Preliminary Copy ppCSynC()

Synopsis

#include <ppcLib.h>
void ppcSync(void);

Library
ppcLib.a

Description

ppcSync() causes the processor to wait until all data cache lines scheduled to be written to main

storage have actually been written.

Errors

None

Example
Ensure a ppcDbci() completes before using the values.

char *memptr = (char *)0x2000;
char new_value;

ppcDcbi((void *)memptr)
ppcSync();

new_value = *memptr;

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference

10-229

sldbprintf() —Preliminary Copy

Synopsis

#include <sys/asyncLib.h>
int s1dbprintf(unsigned long uart_clock, unsigned char *base_reg, unsigned
long cpcO_cr0_reg, event_t int_level, const char *format,...);

Library

asyncLib.a

Description

sldbprintf() is a version of printf() that uses polled writes (no interrupts) to serial port 1, and may be
used before 1/0 has been established. s1ldbprintf() may be called before the async device driver is
installed. uart_clock is the clock frequency of the serial port. base _reg specifies the address of the
base UART register. cpcO_cr0_reg specifies the fields in the Chip Control O register that will be set.
Only the fields relevant to UART 0 should be specified. int_level specifies the interrupt level
associated with serial port 1. The default communication values are 9600 baud, 8 bit data, no parity, 1
stop bit.

Manifest constants for common values for the parameters are supplied in <sys/asyncLib.h>,
<ioLib.h>and <ppcLib.h>. To use the external UART clock, uart_clock must be asyncClockRate,
base_reg must be UARTO_BASE_ADDRESS, cpc0O_crO_reg must be
CPCO_CRO_UARTO_EXTCLOCK_EN, int_level must be EXT_IRQ_COM1.

Errors

None

Example
Print “Hello World” on serial port 1 before I/O has been initialized.

#include <sys/asyncLib.h>

#include <ioLib.h>

#include <ppcLib.h>

#define S1IDB_PARMS asyncClockRate, UARTO_BASE_ADDRESS,
CPCO_CRO_UARTO_EXTCLOCK_EN, EXT_IRQ_COM1
sldbprintf(S1DB_PARMS, "Hello World\n\r");

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

“vsldbprintf()” on page 10-252
PPC405GP Embedded Controller User’s Manual

10-230 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy Sldbprlntf()

PowerPC 405 Reference Board Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-231

52dbpr|ntf() —Preliminary Copy

Synopsis

#include <sys/asyncLib.h>
int s2dbprintf(unsigned long uart_clock, unsigned char *base_reg, unsigned
long cpcO_cr0_reg, event_t int_level, const char *format,...);

Library

asyncLib.a

Description

s2dbprintf() is a version of printf() that uses polled writes (no interrupts) to serial port 2, and may be
used before 1/0 has been established. s2dbprintf() may be called before the async device driver is
installed. uart_clock is the clock frequency of the serial port. base _reg specifies the address of the
base UART register. cpcO_cr0_reg specifies the fields in the Chip Control O register that will be set.
Only the fields relevant to UART 1 should be specified. int_level specifies the interrupt level
associated with serial port 2. The default communication values are 9600 baud, 8 bit data, no parity, 1
stop bit.

Manifest constants for common values for the parameters are supplied in <sys/asyncLib.h>,
<ioLIb.h> and <ppcLib.h> . To use the external UART clock, uart_clock must be asyncClockRate,
base_reg must be UART1_BASE_ADDRESS, cpc0O_crO_reg must be
CPCO_CRO_UART1_EXTCLOCK_EN, int_level must be EXT_IRQ_COM?2.

Errors

None

Example
Print “Hello World” on serial port 2 before I/O has been initialized.

#include <sys/asyncLib.h>

#include <ioLib.h>

#include <ppcLib.h>

#define S2DB_PARMS asyncClockRate, UART1_BASE_ADDRESS,
CPCO_CRO_UART1_EXTCLOCK_EN, EXT_IRQ_COM2
s2dbprintf(S2DB_PARMS, "Hello World\n\r");

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’'s Manual

PowerPC 405 Reference Board Manual

10-232 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy timebase speed()

Synopsis

#include <tickLib.h>
unsigned long timebase_speed(void);

Library
tickLib.a
Description

timebase_speed() returns the timebase frequency, in Hz. This is done by setting serial port 2 to a
known speed (9600 bps) in loopback mode and sending a character out to it. This takes a known
amount of time for the character to be received. By determining how many increments to the timebase
registers occurred during this known time, the timebase frequency can be determined.

Errors

None

Example

Get the timebase speed.

unsigned long tb_speed=timebase_speed();

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

PPC405GP Embedded Controller User’s Manual

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-233

timertick_install()

Synopsis

#include <tickLib.h>
int timertick_install(void);

Library
tickLib.a

Description

—Preliminary Copy

timertick_install() installs and starts the timer tick handler to maintain time-of-day in the OS Open

real-time executive.

Errors

[ENOMEM] Insufficient memory to install the timer tick handler.

Example
Do a timertick_install() .
timertick_install();

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References

“timertick_remove()” on page 10-235

10-234 PPC405GP Reference Design Kit User's Manual

Yes
Yes
Yes
No

v. 0.8

Revised 8/22/00

—Preliminary Copy timertick_remove()

Synopsis

#include <tickLib.h>
int timertick_remove(void);

Library
tickLib.a
Description

timertick_remove() removes the timer tick handler installed by timertick_install() .

Errors

[EINVAL] Internal error involving tick handler level.
Attributes

Async Safe Yes

Cancel Safe Yes

Interrupt Handler Safe Yes

Callable from Application Thread Group No

References

“timertick_install()” on page 10-234

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-235

vga_cls()

Synopsis

#include <sys/vgaLib.h>
void vga_cls(void);

Library
vgaLib.a

Description

—Preliminary Copy

vga_cls() clears the VGA screen. In text mode, the cursor position is reset to the top left corner of the

screen (coordinates 0,0).

Text mode: Yes
Graphics mode: Yes

Errors
None.

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References

“vga_set_mode()” on page 10-248

10-236 PPC405GP Reference Design Kit User's Manual

Yes
Yes
Yes

Yes

v. 0.8

Revised 8/22/00

—Preliminary Copy

Synopsis

#include <sys/vgalib.h>

int vga_fill_block(unsigned int x, unsigned int y,

unsigned int width, unsigned int height, int color);

Library
vgalib.a

Description

vga_fill_block()

vga_fill_block() fills a rectangular block with color. The block has its top left corner at cordinates x,,

and is of width width and height height.

Returns 0 if successful.

Text mode: No
Graphics mode: Yes

Errors

Returns -1 if the block extends beyond the screen size, or if the VGA display is not in graphics mode.

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

“vga_set_pixel()” on page 10-249
“vga_write_data()” on page 10-250

Revised 8/22/00

v. 0.8

No
Yes
Yes

Yes

OS Open Function Reference

10-237

vga_get_cursor_info() —Preliminary Copy

Synopsis

#include <sys/vgaLib.h>
int vga_get_cursor_info(struct vga_cursor_info_t* cursor);

Library
vgaLib.a
Description

vga_get_cursor_info() retrieves information about the current position and state of the cursor. The x
and y coordinates of the cursor are returned in cursor->x and cursor->y respectively. The cursor type
is returned in cursor->type, and may have the value VGA_CURSOR_BLOCK (block cursor) or
VGA_CURSOR_UNDERLINE (underline cursor). The cursor state is returned in cursor->state, and
may have the value VGA_ CURSOR_OFF or VGA CURSOR_ON.

Returns 0 if successful.

Text mode: Yes
Graphics mode: No

Errors
Returns -1 if VGA display is not in text mode.
Example

See “vga_set_cursor_info()” on page 10-247.

Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

“vga_set_cursor_info()” on page 10-247

10-238 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy vga_get _screen_dimensions()

Synopsis

#include <sys/vgalib.h>
void vga_get_screen_dimensions(struct vga_pos* dim, int* num_colors);

Library
vgalib.a
Description

vga_get_screen_dimensions() retrieves the current screen size and the number of colors
supported. The screen size is returned in dim->x and dim->y. For graphics modes these dimensions
are in pixels - for text mode they are in characters. The current number of colors supported is returned
in the variable pointed to by nhum_colors.

Text mode: Yes
Graphics mode: Yes

Errors

None.

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

“vga_set_mode()” on page 10-248

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-239

vga_get vid_mem_start()

Synopsis

#include <sys/vgaLib.h>
char * vga_get_vid_mem_start(void);

Library
vgaLib.a

Description

—Preliminary Copy

vga_get_vid_mem_start() returns a pointer to the memory-mapped address of video memory in the
current display mode. This can be used to directly access display memory.

Text mode: Yes
Graphics mode: Yes

Errors

None.

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

10-240 PPC405GP Reference Design Kit User's Manual

Yes
Yes
Yes

Yes

v. 0.8

Revised 8/22/00

—Preliminary Copy

Synopsis

#include <sys/vgalib.h>
int vga_init(void);

Library
vgalib.a

Description

vga_init()

vga_init() initialises the Video Graphics Array (VGA) display adapter

Returns O if successful.
Errors
Returns -1 if no VGA adapter found.

Attributes

Async Safe

Cancel Safe

Interrupt Handler Safe

Callable from Application Thread Group

References

“vgadd_init” on page 10-251
“vga_set_mode()” on page 10-248
“VGA Support” on page 9-16

Revised 8/22/00 v. 0.8

No
Yes
Yes

Yes

OS Open Function Reference

10-241

vga_print_char() —Preliminary Copy

Synopsis

#include <sys/vgaLib.h>
int vga_print_char(char ¢, unsigned int x, unsigned int y, int attr);

Library

vgalib.a

Description

vga_print_char() prints the character ¢, with attributes attr at location x, .
Returns 0 if successful.

Text mode: Yes
Graphics mode: No

Errors

Returns -1 if VGA display is not in text mode, of if the position given is outside the display area.

Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

“vga_print_char_at_cursor()” on page 10-243
“vga_print_string()” on page 10-244

“vga_print_string_at_cursor()” on page 10-245

10-242 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis

#include <sys/vgalib.h>
int vga_print_char_at_cursor(char c, int attr);

Library
vgalib.a

Description

vga_print_char_at_cursor()

vga_print_char_at_cursor() prints the character c, with attributes attr,at the current cursor location.
The cursor location is advanced one character. If the cursor is located at the last location on the

screen (bottom right) it wraps to the first position on the bottom line of the screen (bottom left).

Returns O if successful.

Text mode: Yes
Graphics mode: No

Errors
Returns -1 if VGA display is not in text mode.

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References
“vga_print_char()” on page 10-242
“vga_print_string()” on page 10-244

“vga_print_string_at_cursor()” on page 10-245

Revised 8/22/00 v. 0.8

Yes
Yes
Yes

Yes

OS Open Function Reference

10-243

vga_print_string() —Preliminary Copy

Synopsis

#include <sys/vgaLib.h>
int vga_print_string(char* string, unsigned int x, unsigned int y, int attr

);

Library
vgaLib.a
Description

vga_print_string() prints the null-terminated character string string, with attributes attr, starting at
location x,y.

Returns O if successful.

Text mode: Yes
Graphics mode: No

Errors

Returns -1 if VGA display is not in text mode, of if the position given would cause the string to exceed
the display area.

Attributes
Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

“vga_print_char()” on page 10-242
“vga_print_char_at_cursor()” on page 10-243

“vga_print_string_at_cursor()” on page 10-245

10-244 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis

#include <sys/vgalib.h>
int vga_print_string_at_cursor(char* string, int attr);

Library
vgalib.a

Description

vga_print_string_at_cursor()

vga_print_string_at_cursor() prints the null-terminated character string string, with attributes attr,
starting at the current cursor location. The cursor location is updated to follow the last character
written. If the last character is written at the last screen position (bottom right), the cursor wraps to the

start of the bottom line (bottom left).
Returns 0O if successful.

Text mode: Yes
Graphics mode: No

Errors

Returns -1 if VGA display is not in text mode, of if the position given would cause the string to exceed

the display area.

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References
“vga_print_char()” on page 10-242
“vga_print_char_at_cursor()” on page 10-243

“vga_print_string()” on page 10-244

Revised 8/22/00 v. 0.8

Yes
Yes
Yes

Yes

OS Open Function Reference

10-245

vga_scroll_up()

Synopsis

#include <sys/vgaLib.h>
int vga_scroll_up(void);

Library
vgaLib.a

Description

—Preliminary Copy

vga_scroll_up() scrolls the screen up one line. The top row of the screen is discarded, all other lines
are moved up 1 line, the bottom line of the screen is cleared. The cursor position remains unchanged
- it remains at the same position on the screen, it does not follow the data that is scrolled.

Returns 0 if successful.

Text mode: Yes
Graphics mode: No

Errors
Returns -1 if VGA display is not in text mode.

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

10-246 PPC405GP Reference Design Kit User's Manual

Yes
Yes
Yes

Yes

v. 0.8

Revised 8/22/00

—Preliminary Copy vga_set_cursor_info()

Synopsis

#include <sys/vgalib.h>
int vga_set_cursor_info(struct vga_cursor_info_t* cursor);

Library
vgalib.a
Description

vga_set_cursor_info() sets the location of the cursor and the cursor state. The x and y coordinates
are set to the values specified in cursor->x and cursor->y respectively. The cursor type is set by
cursor->type, which may have the value VGA_CURSOR_BLOCK (block cursor) or
VGA_CURSOR_UNDERLINE (underline cursor). The cursor state is set by cursor->state, which may
have the value VGA_CURSOR_ON or VGA CURSOR_OFF.

Returns O if successful.

Text mode: Yes
Graphics mode: No

Errors

Returns -1 if VGA display is not in text mode or if the position specified is outside the display area.
Example

Turn the cursor off.

#include <sys/vgalLib.h>

vga_cursor_info_t cursor;

vga_get_cursor_info(&cursor);
cursor->state=VGA_ CURSOR_OFF;
vga_set_cursor_info(&cursor);

Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

“vga_get_cursor_info()” on page 10-238

Revised 8/22/00 v. 0.8 OS Open Function Reference 10-247

V(g a_set_mode() —Preliminary Copy

Synopsis

#include <sys/vgaLib.h>
int vga_set_mode(int mode);

Library

vgaLib.a

Description

vga_set_mode() sets the VGA mode as specified in the variable mode.
Possible values for mode are:

VGA MODE_TEXT_80x25: VGA mode 2*. 80x25 character text mode, 16 colors.
VGA_MODE_GRAPHICS_640x480x16: VGA mode 12h. 640x480 graphics, 16 colors
VGA_MODE_GRAPHICS_320x200x256: VGA mode 13h. 320x200 graphics, 256 colors

This does not clear the screen in the new mode. If needed, vga_cls() should be called to clear the
screen.

Returns 0 if successful.
Errors

Returns -1 if mode is not one of the valid values.

Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

“vga_cls()” on page 10-236

10-248 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis
#include <sys/vgalib.h>

int vga_set_pixel(unsigned int x, unsigned int y, int color);

Library
vgalib.a

Description

vga_set pixel()

vga_set _pixel() sets one pixel at the specified x,y coordinates to the color color.

Returns O if successful.

Text mode: No
Graphics mode: Yes

Errors

Returns -1 if VGA display is not in graphics mode, or if the X,y coordinates are outside the display

area.

Attributes

Async Safe
Cancel Safe
Interrupt Handler Safe

Callable from Application Thread Group

References
“vga_fill_block()” on page 10-237
“vga_write_data()” on page 10-250

Revised 8/22/00 v. 0.8

No
Yes
Yes

Yes

OS Open Function Reference

10-249

V(g a_write_d ata() —Preliminary Copy

Synopsis

#include <sys/vgaLib.h>
int vga_write_data(unsigned int X, unsigned int y, unsigned int length, char
* data, int packed);

Library
vgaLib.a
Description

vga_write_data() writes the data pointed to by data,of length length, to the specified x,y coordinates.
The data can either be in one pixel per byte (packed = VGA_DATA_NOT_PACKED), or, for 4-bit, 16
color data, packed into nibbles, 2 pixels per byte (packed = VGA DATA_PACKED). The data is written
to consecutive addresses, so that when the end of a line is reached the data will wrap and continue
on the following line.

Returns 0 if successful.

Text mode: No
Graphics mode: Yes

Errors

Returns -1 if VGA display is not in graphics mode, or if the either x,y coordinate is outside the display
area, or if the data written would extend outside the display area.

Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

“vga_fill_block()” on page 10-237
“vga_write_data()” on page 10-250

10-250 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

—Preliminary Copy

Synopsis

#include <sys/vgalib.h>
int driver_install(int * devhandle, vgadd_init);

Library
vgalib.a

Description

vgadd_init()

vgadd_init is the entry point for the VGA device driver. The VGA device driver is installed by calling

driver_install() with devhandle as the first parameter and vgadd_init as the second parameter.

Installing the device driver using device_install() and driver_install() will automatically call vga_init() .

Errors
None.

Example

#include <sys/vgalLib.h>

#include <sys/devDrivr.h>

int rc;

int vgadev;

rc=driver_install(&vgadev, vgadd_init);
rc=device_install(“/dev/ivgal”,CHRTYPE,vgadev);

Attributes
Async Safe No
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group Yes
References

“vga_init()” on page 10-241
“VGA device driver” on page 9-20

Revised 8/22/00 v. 0.8

OS Open Function Reference

10-251

vsldbprintf() —Preliminary Copy

Synopsis

#include <sys/asyncLib.h>
int vs1dbprintf(unsigned long uart_clock, unsigned char *base_reg, unsigned
long cpcO_cr0_reg, event_t int_level, const char *format, va_list arg_list);

Library

asyncLib.a

Description

vsldbprintf() is a version of sldbprintf() that accepts a va_list as a parameter instead of a variable
number of parameters. vsldbprintf() may be called before the async device driver is installed.
uart_clock is the clock frequency of the serial port. base_reg specifies the address of the base
UART register. cpcO_crO_reg specifies the fields in the Chip Control 0 register that will be set. Only
the fields relevant to UART 0 should be specified. int_level specifies the interrupt level associated
with serial port 1. arg_list is a list of variable arguments that has been created by a call to va_start().
The default communication values are 9600 baud, 8 bit data, no parity, 1 stop bit.

Errors

None

Attributes

Async Safe Yes
Cancel Safe Yes
Interrupt Handler Safe Yes
Callable from Application Thread Group No
References

“s1dbprintf()” on page 10-230
PPC405GP Embedded Controller User's Manual
PowerPC 405 Reference Board Manual

10-252 PPC405GP Reference Design Kit User's Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

Appendix A. Program Trace Calls

This appendix describes the remote debugging interface provided by the ROM monitor. These calls
may be used by remote debuggers other than the RISCWatch debugger provided with the kit.

A.1 Overview

The following section describes the message (ptrace) protocol that has been implemented in the
ROM monitor to support debug. If you want to interface your own debugger to the ROM monitor or
modify the ROM monitor to interface with your debugger, you will need to understand the existing
message protocol associated with the various debugging functions.

The ptrace interface to the ROM monitor can best be understood by reviewing the information below
along with the debug-specific ROM monitor source code (dbLib/ptrace.c).

A.2 MSGDATA Structure

In the interface descriptions shown below, several references are made to a “process id.” The concept
of process ids does not apply to the ROM monitor, so any nonzero value can be used. The ROM
monitor uses the value 42.

Data structure MSGDATA is defined in dbg.h. New register definitions and new error messages are
also defined in dbg.h.

The dbg.h file is shown below:

I* @(#)dbg.h4.3 5/9/95 09:12:14 */

I* +

| COPYRIGHT 1BM CORPORATION 1994

| LICENSED MATERIAL - PROGRAM PROPERTY OF I B M

| REFER TO COPYRIGHT INSTRUCTIONS: FORM G120-2083
| US Government Users Restricted Rights - Use, duplication or |
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
+ */

#if /defined(DBG_H)

#define DBG_H

#define BREAKPT 0x7D821008

#ifndef MIN

#define MIN(X,Y) ((X) < (Y) ? (X) : (Y))

#endif

[*ptrace definitions based on AIX ptrace */
#define RD_TRACE_ME 0 /* used ONLY by target task to be traced*/
#define RD_READ _| 1 [* read target instruction addr space */
#define RD_READ_D 2 /* read target data address space */
#define RD_READ_U 3 /* read offset from the user structure */
#define RD_WRITE_|I 4 [* write target instruction addr space */
#define RD_WRITE_D 5 [* write target data address space */
#define RD_WRITE_U 6 /* write offset to the user structure */

Revised 8/22/00 v. 0.8 A-1

—Preliminary Copy

#define RD_CONTINUE 7 /* continue execution */
#define RD_KILL 8 [* terminate execution */
#define RD_STEP 9 [**execute one or more instructions*** 1*/
#define RD_READ_GPR 11 [* read general purpose register */
#define RD_READ_FPR 12 /* read floating point register */
#define RD_WRITE_GPR 14 /* write general purpose register */
#define RD_WRITE_FPR 15 /* write floating point register */
#define RD_READ_BLOCK 17 /* read block of data */
#define RD_WRITE_BLOCK 19 /* write block of data */
#define RD_ATTACH 30 /* attach to a process */
#define RD_DETACH 31 /* detach a proc to let it keep running */
#define RD_REGSET 32 [* return entire register set to caller */
#define RD_REATT 33 /* reattach debugger to proc */
#define RD_LDINFO 34 /* return loaded program info */
#define RD_MULTI 35 /* set/clear multi-processing */
#define RD_READ_|_ MULT 70 /* Read multiple inst words */
#define RD_READ GPR_MULT 71 /* Read multiple registers */
#define RD_SINGLE_STEP 100 [**source line single step***rxkkkkixk %/

#define RD_LOAD 101 /* load a task 1*/
#define RD_LOGIN 103 [*ptrace for login 1%/
#define RD_LOGON 103 [*ptrace for logon I*/
#define RD_LOGOFF 104 [*ptrace for logoff 1*/
#define RD_FILL 105 [*ptrace for fill memory I*/
#define RD_PASS 106 [*ptrace for pass 1%/
#define RD_SEARCH 107 [*ptrace for search memory I*/
#define RD_WAIT 108 /*ptrace for wait status information !*/

/* Added to support ADEPT */

#define RD_READ_DCR 110 [*ptrace for reading DCR’s */
#define RD_WRITE_SPR 111 [*ptrace for writing SPR’s */
#define RD_WRITE_DCR 112 [*ptrace for writing DCR’s */
#define RD_STOP_APPL 113 [*ptrace for stopping the application */
#define RD_STATUS 114 [*ptrace for getting run status */
#define RD_READ_SPR 115 [*ptrace for reading SPR’s */
/* Added to support 403GC */

#define RD_READ_TLB 116 /*ptrace for readingTLB(403GC) */

#define RD_WRITE_TLB 117 [*ptrace for writing TLB(403GC) */
/* Added to support 602 */

#define RD_READ_SR 118 [*ptrace for reading SR’s */
#define RD_WRITE_SR 119 [*ptrace for writing SR'’s *
#define MAX_PTRACE 119 /*last ptrace number */

#define RL_LOAD_REQ 180 /* Remote Loader - Load Request */
#define RL_LDINFO 181 /* Remote Loader - Load Information */

[*TCP/IP services for all sorts of remote debug */
#define OSOPEN_SERVNAME “osopen-dbg” /* OS/Open debug service */
#define OSOPEN_MON_SERVNAME “osopen-mon” /* OS/Open debug monitor svc */
I*new register definition */
#define DAR 137 /* Data Address Register ($dar) */
#define DSISR 138 /* Data St Int Status Reg ($dsisr) */
#define SRRO 139 [* Save and Restore Register 0 ($srrQ) */
#define SRR1 140 /* Save and Restore Register 0 ($srrl) */
#define SRO 141 /* Segment Register ($sr0) */
#define SR1 142 * Segment Register ($srl) */

A-2 PPC405GP Reference Design Kit User’'s Manual v. 0.8

Revised 8/22/00

— Preliminary Copy

#define SR2 143 /* Segment Register ($sr2)

#define SR3 144 /* Segment Register ($sr3)

#define SR4 145 /* Segment Register ($sr4)

#define SR5 146 /* Segment Register ($srb5)

#define SR6 147 I* Segment Register ($sr6)

#define SR7 148 I* Segment Register ($sr7)

#define SR8 149 /* Segment Register ($sr8)

#define SR9 150 /* Segment Register ($sr9)

#define SR10 151 [* Segment Register ($srl0)
#define SR11 152 [* Segment Register ($srll)
#define SR12 153 /* Segment Register ($sr12)
#define SR13 154 /* Segment Register ($srl3)
#define SR14 155 /* Segment Register ($sr14)
#define SR15 156 /* Segment Register ($srlb)
#define DEC 157 /* Decrementer ($dec)

#define RTCU 158 /* Real Time Clock Upper ($rtcu)
#define RTCL 159 /* Real Time Clock Lower ($rtcl)
#define SDRO 160 /* Storage Description Reg ($sdr0)
#define SDR1 161 [* Storage Description Reg ($sdrl)
#define EISO 162 /* External Int Summary Regl($eisl)
#define EIS1 163 /* External Int Summary Reg2($eis2)
#define EIMO 164 /* External Int Mask Regl($eiml)
#define EIM1 165 [* External Int Mask Reg2($eim?2)
#define SRR2 166 [* Save and Restore Register 2 ($srr2)
#define SRR3 167 /* Save and Restore Register 3 ($srr3) */

[*other definitions needed for remote debug

#define
#define

RD_MAXDATA 1800

RD_MINLENGTH 6 /* Min no of dwords in msg

#define RD_MINBYTES (RD_MINLENGTH*sizeof(unsigned long))
#define RD_MAXBUFFER (RD_MAXDATA - RD_MINLENGTH)

#define
#define
#define
#define
#define
#define

RD_MAXPACKET 1000000 /* Max bytes in TCP/IP packet

RD_REGBYTES (32+8)*4 /* No of bytes for all registers
NO_KILL 1 /*do not kill any users processes
KILL_PROC 0 /*kill user process upon logoff
MAX_ERROR 1014 /*last error for rptrace
MIN_ERROR 1000 /Hirst error for rptrace

#define MIN_PACKET_SIZE 24
#define DBG_SPORT 20044
#define DBG_DPORT 20050
/*new error codes

#define RD_NOLOAD_ERR 1000 /*no loader info available

#define RD_COM_ERR 1001 /*communication error occured
#define RD_SIZE_ERR 1002 /*not enough room to pass all info */
#define RD_NOTSUPP 1003 [*call not supported

#define RD_REG_ERR 1004 [*invalid register number requested
#define RD_NOTAVAIL 1005 [*call not implemented at this time
#define RD_NOFILE_ERR 1006 [*file could not be loaded, no file
#define RD_NOSCAN_ERR 1008 [*could not locate scan string file
#define RD_NOPERM 1010 /*no permission to log on
#define RD_INVALID_SEQ 1011 [*invalid rptrace sequence

#define RD_BUSY_ERR 1012 [*some users is already logged on
#define RD_PTRACE_ERR 1014 [*internal ptrace error

Revised 8/22/00 v. 0.8

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

f* Total no of DWORDS in a MSGDATA

*

*/
*/
*/
*
*/
*/

*/
*/

*/

*/

*/
*/
*/
*/
*/
*/
*/

*

*/

A-3

—Preliminary Copy

#define RD_OK 0 /*rptrace completed ok */

#define ARCH_403 0x34000000 /* 403 architecture */
#define ARCH_601 0x36000000 /* 601 architecture */
#define ARCH_602 0x36303200 /* 602 architecture */
#define ARCH_603 0x36303300 /* 603 architecture */
#define ARCH_604 0x36303400 /* 604 architecture */

typedef struct msgdata /* message data structure */

{ unsigned long data_len; /* optional data length } */
unsigned long retcode; [* return code IMIN */
unsigned long request; /* request type IPART */
unsigned long address; /¥ function parameter }= */
unsigned long data /* function parameter }6*DWORD */

struct{ unsigned f1:1;
unsigned f2:1;
unsigned f3:1;
unsigned padd:21;
unsigned f25:8;
} flags;
#define printmsg flags.f1
#define breakpt flags.f2
#define dbg_seqno flags.f25
union { unsigned long trace_bufferflRD_MAXBUFFER];
unsigned long processid;
} parameter;

#define buffer parameter.trace buffer /* buffer for data, in any */
#define rpid parameter.processid [* process id */

} MSGDATA,;

#endif

A.3 Ptrace Definitions

The following section presents the application programming interface (API) for rptrace messages.
One field that is not shown here, because it is common to every call, is the msg.printmsg flag. This
may be set in an rptrace response where msg.retcode does not equal RD_OK. When the
msg.printmsg flag is set it indicates that a text string is contained in msg.buffer and that this message
should be displayed to the user. Typically this is an error message that provides more detail as to why
the rptrace call failed to return RD_OK.

Another field that is not shown is the dbg_seqno field. The field provides a mechanism for recovering
from lost requests and responses. If a request has the dbg_seqgno field as not zero, it is compared
with the value from the previous request. If it matches, the action is not performed and instead, the
previous response is sent. This allows the debugger to time-out and retry requests without danger of
performing the same function twice.

A-4 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

A.3.1 RD_ATTACH (30)

Attaches debugger to running process in target environment.

Parameters Description
Request msg.request= RD_ATTACH Requested API function
msg.rpid= process_id Numeric process ID on the target system.(Any non
zero value)
msg.data_len= sizeof(msg.rpid) Length of additional data being sent
Response msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that

does not exist

msg.retcode= EIO (5)

One of the parameters is incorrect

msg.retcode= RD_COM_ERR (1001)

Communication error occurred

msg.retcode= RD_NOTSUPP (1003)

Call not supported for this interface

msg.retcode= RD_OK (0)

Successful completion

msg.data_len=0

No additional data

Revised 8/22/00

v. 0.8

A-5

A.3.2 RD_CONTINUE (7)

—Preliminary Copy

This request causes the process to resume execution. If the dbg_seqno field of the request is zero,
the response is not returned until the process stops due to a break point or error. Otherwise, an
immediate response is sent from the RD_CONTINUE request and the debugger should send the
RD_STATUS request to see if the process has stopped.

Parameters Description
Request msg.request= RD_CONTINUE Requested API function
msg.address= address This field is ignored by ROM monitor
msg.data= signal 0
msg.rpid= process_id Numeric process ID on the target system
msg.data_len= sizeof(msg.rpid) Length of additional data being sent
Response msg.retcode= RD_COM_ERR (1001) Communication error occurred
msg.retcode= RD_OK (0) Successful completion
msg.data= 0

A-6 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

A.3.3 RD_DETACH (31)

Detaches debugger from running process in target environment. Debugged process is restarted and
execution continues without debugger control.

Parameters Description
Request msg.request= RD_DETACH Requested API function
msg.rpid= process_id Numeric process ID on the target system
msg.data= 0 Ignored by ROM monitor
msg.address=1 Ignored by ROM monitor
msg.data_len= sizeof(msg.rpid) Length of additional data being sent
Response msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that

does not exist, or a process that is currently not
being debugged

msg.retcode= RD_COM_ERR (1001)

Communications error occurred

msg.retcode= RD_NOTSUPP (1003)

Call not supported for this interface

msg.retcode= RD_OK (0)

Successful completion

msg.retcode= EIO (5)

One of the parameters is incorrect

msg.data_len=0

No additional data is being sent

Revised 8/22/00

v. 0.8

A-7

A.3.4 RD_FILL (105)

Fills memory with zeroes at the location specified by address for the number of bytes specified by

—Preliminary Copy

data.
Parameters Description
Request msg.request= RD_FILL Requested API function
msg.rpid= process_id Numeric process ID on the target system
msg.address= address Address of memory to fill with zeroes
msg.data= count Number of bytes to fill with zeroes
msg.data_len= sizeof(msg.rpid) Length of additional data being sent
Response msg.retcode= RD_COM_ERR (1001) Communications error occurred.
msg.retcode= RD_NOTSUPP (1003) Call not supported for this interface
msg.retcode= RD_OK (0) Successful completion
msg.retcode= EIO (5) One of the parameters is incorrect
msg.data_len=0 No additional data is being sent

A-8 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

A.3.5 RD KILL (8)

This request causes the process to terminate the same way it would with an exit routine. The ROM
monitor does not implement this function but simply returns an RD_OK response for compatibility with
older debuggers.

Parameters Description
Request msg.request= RD_KILL Requested API function.
msg.rpid= process_id Process ID of the process to be killed.
msg.data_len= sizeof(msg.rpid) Length of additional data being sent
Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0)

Successful completion

msg.retcode= ESRCH (3)

The msg.pid parameter identifies a process that
does not exist

msg.data_len=0

Length of additional data being sent

Revised 8/22/00

v. 0.8

A-9

A.3.6 RD_LDINFO (34)

—Preliminary Copy

Request loader information from target environment. This information is provided to the ROM monitor
in the boot header or by the RL_LDINFO request. Refer to ROM Monitor Load Format section for

more information.

Parameters

Description

Request msg.request= RD_LDINFO

Requested API function

msg.rpid= process_id

Process ID from which the loader information is
requested

msg.data_len= sizeof(msg.rpid)

Length of additional data being sent

A-10 PPC405GP Reference Design Kit User’'s Manual

v.0.8 Revised 8/22/00

— Preliminary Copy

Parameters

Description

Response

msg.retcode= RD_NOLOAD_ERR (1000)

No loader information is available

msg.retcode= ESRCH (3)

The msg.pid parameter identifies a process that
does not exist

msg.retcode= RD_COM_ERR (1001)

Communication error occurred

msg.retcode= RD_SIZE_ERR (1002)

Not enough room in the buffer to fit all load
information

msg.retcode= RD_OK (0)

Successful completion

msg.retcode= EIO (5)

One of the parameters is incorrect

msg.buffer[0]= Idinfo_next

Offset to next loader information segment. See
note below

msg.buffer[1]= fd

File descriptor for loaded object. In remote
debug OxFFFF FFFF should be returned (this is
a space filler)

msg.buffer[2]= textorig

Starting text address

msg.buffer[3]= textsize

Size of text

msg.buffer[4]= dataorig

Starting data address.

msg.buffer[5]= datasize

Size of data

msg.buffer[6]= (char *)pathname

Fully qualified filename of the object file.

msg.buffer[X]= (char *)membername

Membername (used for shared library objects).
X does not represent position on word boundary.
A NULL has to be returned for the membername
even if the debugged file has no member name

msg.buffer[ldinfo_next]= Idinfo_next

Next loader block (notice "Idinfo_next")

msg.data_len= "variable"

Set to length of data sent in msg.buffer. Data
length will vary depending on the amount of
information passed. Remember to count all the
NULL characters

Note: dinfo_next=0 indicates that no further loader blocks are present, otherwise Idinfo_next
contains the offset of the next loader block in the buffer. This is actually the length of
the current block. For example, if the buffer contains three blocks of lengths 38, 40 and
41 bytes, the Idinfo_next fields would be 38, 40 and 0, respectively. Note also that the
blocks do not have to be contiguous - it is possible that the end of one block may not
directly abut the following block. This may occur if additional information or word-
aligning padding is placed after the end of the member name string. Pathname and
membername are strings terminated with a null character.

Revised 8/22/00

v. 0.8

A-11

A.3.7 RD_LOAD (101)

—Preliminary Copy

Loads executable program. Full path name of the file to be loaded is passed in this message. The
ROM monitor will respond by sending an RL_LOAD_REQ to the remote loader daemon port.

Parameters Description
Request msg.request= RD_LOAD Requested API function
msg.buffer= filename Name of file to load. A NULL character terminates
filename. filename contains a fully qualified path
to that file
msg.data_len= strlen(filename)+1 String length of filename plus NULL character
Response msg.retcode= RD_COM_ERR (1001) Communication error occurred
msg.retcode= RD_OK (0) Successful completion
msg.retcode=RD_NOFILE_ERR (1006) | Could not locate/load the file
msg.rpid= process_id Process_id of the newly loaded file. This number
(integer) can not be equal to -1 (OxFFFF FFFF) or
0
msg.data_len= sizeof(msg.rpid) Length of additional data being sent.
A-12 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

A.3.8 RD_LOGIN (103)

Initializes users LOGIN. This request must be the first rptrace request issued by the debugger or
results will be unpredictable.

Parameters Description
Request msg.request= RD_LOGIN Requested API function.
msg.buffer[0]= host_name This field is ignored by ROM monitor.
msg.buffer[strlen(host_name)+1]= This field is ignored by ROM monitor.
user_name
msg.data_len= Length of additional data being sent
strlen(host_name)+strlen(user_name)+2
Response | msg.retcode= RD_COM_ERR (1001) Communication error occurred
msg.retcode= RD_OK (0) Successful completion
msg.data_len=0 Length of additional data being sent

Revised 8/22/00

v. 0.8

A-13

A.3.9 RD_LOGOFF (104)

Performs user LOGOFF function. This is used when the debugger performs normal termination using

quit or detach.

—Preliminary Copy

Parameters Description
Request msg.request= RD_LOGOFF Requested API function
msg.data= NO_KILL This field is ignored by ROM monitor
msg.data_len=0 Length of additional data being sent
Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0)

Successful completion

msg.retcode= RD_INVALID_SEQ (1011)

Not logged on.

msg.data_len=0

Length of additional data being sent

A-14 PPC405GP Reference Design Kit User’'s Manual

v.0.8 Revised 8/22/00

— Preliminary Copy

A.3.10 RD_READ_D (2)

This request returns the integer in the debugged process address space at the location pointed to by
the address parameter. If the value of address is not in a valid address space, unpredictable results
will occur.

Parameters Description
Request msg.request= RD_READ_D Requested API function
msg.address= address Address of memory to read data from
msg.rpid= process_id Numeric process ID on the target system
msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion

msg.retcode= EIO (5) Debugged process can not access given address.

msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that
does not exist

msg.data= data Data read at location pointed to by address. -1 if
error

msg.data_len=0 Length of additional data being sent

Revised 8/22/00 v. 0.8 A-15

A.3.11 RD_READ_FPR (12)

—Preliminary Copy

This request returns the content of one of the floating-point registers.

Parameters Description
Request msg.request= RD_READ_FPR Requested API function
msg.rpid= process_id Numeric process ID on the target system
msg.address= register Name of the register to be read
msg.data_len= sizeof(msg.rpid) Length of additional data being sent
Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0)

Successful completion

msg.retcode= EIO (5)

Register is not defined

msg.retcode= RD_REG_ERR (1004)

Unable to access given register

msg.data= value

Value read from register. OXFFFFFFFF if error
occurred

msg.retcode= ESRCH (3)

The msg.pid parameter identifies a process that
does not exist

msg.data_len=0

Length of additional data being sent

A-16 PPC405GP Reference Design Kit User’'s Manual

v.0.8 Revised 8/22/00

— Preliminary Copy

A.3.12 RD_READ_GPR (11)

This request returns the content of one of the general-purpose or special-purpose registers of the

debugged process. Valid registers are defined in "dbg.h" and "sys/reg.h". Not all defined registers are

supported for all environments.

Parameters Description
Request msg.request= RD_READ_GPR Requested API function
msg.rpid= process_id Numeric process ID on the target system
msg.address= register Name of the register to be read
msg.data_len= sizeof(msg.rpid) Length of additional data being sent
Response msg.retcode= RD_COM_ERR (1001) Communication error occur

msg.retcode= RD_OK (0)

Successful completion

msg.retcode= EIO (5)

Register is not define

msg.retcode= RD_REG_ERR (1004)

Unable to access given register

msg.data= value

Value read from register. OxFFFFFFFF if error
occurred

msg.retcode= ESRCH (3)

The msg.pid parameter identifies a process that
does not exist

msg.data_len=0

Length of additional data being sent

Revised 8/22/00

v. 0.8

A-17

A.3.13 RD_READ_GPR_MULT(71)

—Preliminary Copy

This request returns the contents of general-purpose registers 0 to 18, inclusive, of the debugged

process.
Parameters Description
Request msg.request= RD_READ_GPR_MULT | Requested API function
msg.rpid= process_id Numeric process ID on the target system
msg.data_len= sizeof(msg.rpid) Length of additional data being sent
Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0)

Successful completion

msg.retcode= RD_NOTSUPP (1003)

Call not supported by this interface

msg.retcode= RD_REG_ERR (1004)

Unable to access given register

msg.retcode= ESRCH (3)

The msg.pid parameter identifies a process that
does not exist

msg.data_len= 76 (0x4C)

Length of additional data being sent

msg.buffer[0-18]

Values read from GPRO to GPR18. Undefined if
error

A-18 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

A.3.14 RD_READ_| (1)

This request returns the integer in the debugged process address space at the location pointed to by
the address parameter. If the value of address is not in a valid address space, unpredictable results
will occur.

Parameters Description
Request msg.request= RD_READ_| Requested API function
msg.address= address Address of memory to read data from
msg.rpid= process_id Numeric process ID on the target system
msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion.
msg.retcode= EIO (5) Debugged process can not access given address
msg.retcode= ESRCH (3) The msg.pid parameter identifies a process that

does not exist

msg.data= data Data read at location pointed to by address. -1 if
error (retcode should also be set to EIO)

msg.data_len=0 Length of additional data being sent

Revised 8/22/00 v. 0.8 A-19

A.3.15 RD_READ_| MULT (71)

—Preliminary Copy

This request returns the 32 integers in the debugged process address space at the location pointed to
by the address parameter. If the value of address is not in a valid address space, unpredictable
results will occur.

Parameters Description
Request msg.request= RD_READ_I_MULT Requested API function
msg.address= address Address of memory to read data from
msg.rpid= process_id Numeric process ID on the target system
msg.data_len= sizeof(msg.rpid) Length of additional data being sent
Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0)

Successful completion

msg.retcode= EIO (5)

Debugged process can not access given address

msg.retcode= ESRCH (3)

The msg.pid parameter identifies a process that
does not exist

msg.retcode= RD_NOTSUPP (1003)

Call not supported by this interface

msg.buffer[0-Ox1F]

Contents of addresses from location pointed to by
address to address + Ox1F

msg.data_len= 128 (0x80)

Length of additional data being sent

A-20 PPC405GP Reference Design Kit User’'s Manual

v.0.8 Revised 8/22/00

— Preliminary Copy

A.3.16 RD_READ_SPR (115)

This request reads data directly from one of the SPRs (not the process’s copy). All SPR registers are
accessible through this message request. The sender is responsible for supplying valid SPR values,
no error checking is performed on this field.

Parameters Description
Request msg.request= RD_READ_SPR Requested API function
msg.address= SPR number SPR number to read
msg.data_len=0 Length of additional data being sent
Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0)

Successful completion

msg.data= value

Value read from register

msg.data_len=0

Length of additional data being sent

Revised 8/22/00

v. 0.8

A-21

A.3.17 RD_READ_SR (118)

This request returns the content of one of the segment registers.

—Preliminary Copy

Parameters Description
Request msg.request= RD_READ_SR Requested API function
msg.rpid= process_id Numeric process ID on the target system
msg.address= register Name of the register to be read
msg.data_len= sizeof(msg.rpid) Length of additional data being sent
Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0)

Successful completion

msg.retcode= EIO (5)

Register is not defined

msg.retcode= RD_REG_ERR (1004)

Unable to access given register

msg.data= value

Value read from register. OXFFFFFFFF if error
occurred

msg.retcode= ESRCH (3)

The msg.pid parameter identifies a process that
does not exist

msg.data_len=0

Length of additional data being sent

A-22 PPC405GP Reference Design Kit User’'s Manual

v.0.8 Revised 8/22/00

— Preliminary Copy

A.3.18 RD_STATUS (114)

This request is used to get program execution status and to determine if a previous RD_CONTINUE
request was received.

Parameters Description
Request msg.request= RD_STATUS Requested API function
msg.rpid= process_id Numeric process ID on the target system
msg.data_len= sizeof(msg.rpid) Length of additional data being sent
Response msg.address= execution status Status is 1 if program is running and O if stopped.

In the case of an error, this field will be -1
(OXFFFFFFFF)

msg.data= sequence number

Sequence number of the last RD_CONTINUE
request that was received

msg.retcode= RD_COM_ERR (1001)

Communication error occurred

msg.retcode= RD_OK (0)

Successful completion

msg.retcode= RD_ESRCH (3)

The msg.pid field identifies a process that does not
exist

Revised 8/22/00

v. 0.8

A-23

—Preliminary Copy

A.3.19 RD_STOP_APPL (113)

This request is used to interrupt program execution.

Parameters Description
Request msg.request= RD_STOP_APPL Requested API function
msg.rpid= process_id Numeric process ID on the target system
msg.data_len= sizeof(msg.rpid) Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0) Successful completion
msg.retcode= RD_ESRCH (3) The msg.pid field identifies a process that does not
exist

A-24 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

A.3.20 RD_WAIT (108)

This call allows the debugger to determine the current status of the debugged process after it is
stopped. The first (least significant) byte of the process status indicates the reason for stoppage: this
is always 0x7f. The second byte contains the signal number that caused the stop. Valid signals are:

o AIX_SIGILL (4) - illegal instruction
» AIX_SIGTRAP (5) - hit a trap instruction (breakpoint)
» AIX_SIGFPE (8) - floating point error

* AIX_SIGSEGYV (11) - storage violation

For example after hitting a breakpoint, the status of Ox57f is returned to the debugger. After the
program terminates, the first byte contains 0x00 and the rest of the status holds the program exit
code. After RD_KILL call wait status of 0x57f should be returned.

Parameters Description
Request msg.request= RD_WAIT Requested API function
msg.data_len=0 Length of data in msg.buffer
Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0)

Successful completion

msg.data= status

Process status

msg.address= pid

Process id

msg.data_len= strlen(message_string)

The ROM monitor always returns 0 in this field

msg.buffer= message_string

Formatted message string text (NULL terminated)

Revised 8/22/00

v. 0.8

A-25

A.3.21 RD_WRITE_BLOCK (19)

This request writes a block of data into the address space of the debugged process at the address
pointed to by the msg.address field. The number of bytes to write is contained in the msg.data field
and the data is in the msg.buffer field. Unpredictable results occur if the msg.address parameter
points to a location that can not be accessed by the debugged process.

—Preliminary Copy

Parameters Description
Request msg.request= RD_WRITE_BLOCK Requested API function
msg.address= address Address of memory to write data to
msg.data= count Number of bytes of buffer area to be written
msg.buffer Data to be written
msg.data_len= count Length of additional data being sent
Response msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0)

Successful completion

msg.retcode= EIO (5)

Debugged process can not access given address.

msg.data_len=0

Length of additional data being sent

A-26 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

A.3.22 RD_WRITE_D (5)

This request writes the value of the msg.data parameter into the address space of the debugged
process at the address pointed to by the msg.address parameter. Unpredictable results occur if the
msg.address parameter points to a location that can not be accessed by the debugged process.

Parameters Description
Request msg.request= RD_WRITE_D Requested API function.
msg.address= address Address of memory to write data to
msg.data= data Data to write to memory.
msg.rpid= process_id Numeric process ID on the target system
msg.data_len= sizeof(msg.rpid) Length of additional data being sent
Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0)

Successful completion

msg.retcode= EIO (5)

Debugged process can not access given address

msg.retcode= ESRCH (3)

The msg.pid parameter identifies a process that
does not exist.

msg.data= data

Data written at location pointed to by address. -1 if
error (retcode should also be set to EIO or
ESRCH).

msg.data_len=0

Length of additional data being sent

Revised 8/22/00

v. 0.8

A-27

A.3.23 RD_WRITE_FPR (15)

—Preliminary Copy

This request writes data to one of the floating-point registers:

Parameters Description
Request msg.request= RD_WRITE_FPR Requested API function
msg.rpid= process_id Numeric process ID on the target system
msg.address= register Name of the register to be written
msg.data= value Value to be written to the register
msg.data_len= sizeof(msg.rpid) Length of additional data being sent
Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0)

Successful completion

msg.retcode= EIO (5)

Register is not defined

msg.retcode= RD_REG_ERR (1004)

Unable to access given register

msg.data= value

Value written to register. OXFFFFFFFF if error
occurred

msg.retcode= ESRCH (3)

The msg.pid parameter identifies a process that
does not exist

msg.retcode= RD_COM_ERR (1001)

Communication error occurred

A-28 PPC405GP Reference Design Kit User’'s Manual

v.0.8 Revised 8/22/00

— Preliminary Copy

A.3.24 RD_WRITE_GPR (14)

This request writes data to one of the general-purpose or special-purpose registers of the debugged
process. Valid registers are defined in dbg.h and sys/reg.h. Not all defined registers are supported for

all environments.

Parameters Description
Request msg.request= RD_WRITE_GPR Requested API function
msg.rpid= process_id Numeric process ID on the target system
msg.address= register Name of the register to be written
msg.data= value Value to be written to the register
msg.data_len= sizeof(msg.rpid) Length of additional data being sent
Response msg.retcode= RD_COM_ERR (1001) Communication error occurred.

msg.retcode= RD_OK (0)

Successful completion

msg.retcode= EIO (5)

Register is not defined

msg.retcode= RD_REG_ERR (1004)

Unable to access given register

msg.data= value

Value written to register. OxXFFFFFFFF if error
occurred

msg.retcode= ESRCH (3)

The msg.pid parameter identifies a process that
does not exist

msg.data_len=0

Length of additional data being sent

Revised 8/22/00

v. 0.8

A-29

A.3.25 RD_WRITE_| (4)

—Preliminary Copy

This request writes the value of the msg.data parameter into the address space of the debugged
process at the address pointed to by the msg.address parameter. This request fails if the
msg.address parameter points to a location that can not be accessed by debugged process. This call
sets break points in the debugged process by writing TRAP (0x7D821008) instructions.

Parameters Description
Request msg.request= RD_WRITE_| Requested API function
msg.rpid= process_id Numeric process ID on the target system
msg.address= address Address of memory to write data to
msg.data= data Data to write to memory
msg.data_len= sizeof(msg.rpid) Length of additional data being sent
Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0)

Successful completion

msg.retcode= EIO (5)

Debugged process can not access given address

msg.retcode= ESRCH (3)

The msg.pid parameter identifies a process that
does not exist.

msg.data= data

Data written at location pointed to by address. -1 if
error (retcode should also be set to EIO or
ESRCH)

msg.data_len=0

Length of additional data being sent

A-30 PPC405GP Reference Design Kit User’'s Manual

v.0.8 Revised 8/22/00

— Preliminary Copy

A.3.26 RD_WRITE_SPR (112)

This request writes data directly to one of the SPRs (not the process’s copy). All SPR registers are
accessible through this request. The requester is responsible for supplying valid SPR values. No error

checking is performed on this field.

Parameters

Description

Request msg.request= RD_WRITE_SPR

Requested API function

msg.address= SPR number

SPR number to be written

msg.data= value

Data to write to register

msg.data_len=0

Length of additional data being sent

Response msg.retcode= RD_COM_ERR (1001)

Communication error occurred

msg.retcode= RD_OK (0)

Successful completion

msg.data_len=0

Length of additional data being sent

Revised 8/22/00 v. 0.8

A-31

A.3.27 RD_WRITE_SR (119)

This request writes data to one of the segment registers.

—Preliminary Copy

Parameters Description
Request msg.request= RD_WRITE_SR Requested API function
msg.rpid= process_id Numeric process ID on the target system
msg.address= register Name of the register to be written
msg.data= value Value to be written to the register
msg.data_len= sizeof(msg.rpid) Length of additional data being sent
Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0)

Successful completion

msg.retcode= EIO (5)

Register is not defined

msg.retcode= RD_REG_ERR (1004)

Unable to access given register

msg.data= value

Value written to register. OXFFFFFFFF if error
occurred

msg.retcode= ESRCH (3)

The msg.pid parameter identifies a process that
does not exist

msg.data_len=0

Length of additional data being sent

A-32 PPC405GP Reference Design Kit User’'s Manual

v.0.8 Revised 8/22/00

— Preliminary Copy

A.3.28 RL_LDINFO (181)

This request provides load information from the host to the ROM monitor. This request is used when
the target is loaded by a process other than the debugger. The information specified on the this
request will be returned on subsequent RD_LDINFO requests.

Parameters Description
Request msg.request= RL_LDINFO Requested API function
msg.data_len= sizeof(struct Idinfo) + Length of additional data being sent
strlen(pathname)
msg.buffer=load information See description of RD_LDINFO request
Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0)

Successful completion

msg.data_len=0

Length of additional data being sent

Revised 8/22/00

v. 0.8

A-33

A.3.29 RL_LOAD REQ(180)

This request flows from the ROM monitor to the host when a RD_LOAD request is received. The port
of the request is for the remote loader daemon (20050) to accommodate loading by a process
independent from the debugger.

—Preliminary Copy

Parameters Description
Request msg.request= RL_LOAD_REQ Requested API function
msg.buffer= filename NULL terminated string containing fully qualified
name of file to be loaded
msg.data_len= strlen(filename) Length of additional data being sent
Response msg.retcode= RD_COM_ERR (1001) Communication error occurred

msg.retcode= RD_OK (0)

Successful completion

msg.retcode= RD_NOFILE_ERR
(1006)

Can't open file or file is incorrect format

msg.retcode= RD_PTRACE_ERR
(1014)

Error reading file

msg.rpid= process_id

Process ID of newly loaded file. This number
(integer) can not be equal to -1 (OXFFFF FFFF) or
0

msg.data_len= sizeof(msg.rpid)

Length of additional data being sent

A-34 PPC405GP Reference Design Kit User’'s Manual

v.0.8 Revised 8/22/00

— Preliminary Copy

Appendix B. ROM Monitor Load Format

This appendix presents the ROM Monitor load format requirements.

B.1 Overview

The ROM Monitor load format is designed to permit the specification of multiple text and data
sections. The format consists of a linked list of sections of specified types prefixed by a small boot
header, boot_block, that specifies the initial target of the image and the entry point. The boot_block
header is placed at the front of the image by eimgbld or nimgbld . The ROM Monitor does no
relocation. It is assumed that the destination addresses for the individual sections are the same ones
specified during the application’s linkage. The info_block structure is reserved in the bootstrap
program, bootlLib.s. eimgbld or nimgbld patch in the values within the info_block structure for
bootLib to use at run time. The bootstrap program processes the sections back to front, that is, from
the end of the image to the beginning. This is to avoid destructive overlap during the processing of
typical images.

The sections are preceded by header blocks which identify the section types. The headers are linked
together in a doubly linked list.

B.2 Section Types

There are three basic section types. Generally, they can occur in the image in any order, but are
usually arranged in ascending address order. The section header block has the following format:

I* +
| Relocation block structure.
+ */
typedef struct rel_block {
unsigned long type;
unsigned long dest_addr;
unsigned long size;
union {
struct data_info {
unsigned long size_to _fill;
unsigned long char_to_fill;
} data_info_str;
struct text_info {
unsigned long toc_pointer; /* used for XCOFF; not used for ELF */
unsigned long entry_pt;
} text_info_str;
unsigned long number_symbols;
} section_info;
struct rel_block *next;
struct rel_block *bptr;
} rel_block_t;

Revised 8/22/00 v. 0.8 B-1

—Preliminary Copy

The type field is one of the following manifest constants:

#define TEXT_SECT 0x00000001
#define DATA_SECT 0x00000002
#define SYMB_SECT 0x00000004

The dest_addr specifies the target for the block, while size is the extent of the block, not counting the
header. The bootstrap program uses this information to move the block to the destination specified at
link time. next and bptr are the section header forward and backward pointers, respectively.

B.2.1 First Section

The first section is a text section. The ROM loader places the entire image at the address specified in
the boot_block header. The entry point specified in the boot_block header is assumed to be a branch,
followed by the first section header, info_block. This is to allow the bootstrap to easily gain immediate
addressability to the first section block.

The format of the first section block is shown below:

I* +
| First section header
+ */
struct info_block {
long magic_num; [* magic number */
long text_start; /* addr of text section from section header */
long text_size; [* size of text section from section header
*/
long data_start; [* addr of data section from section header */
long data_size; /* size of data section from section header */
long elf_hdr_size; /* size of ELF headr */
long sym_start; /* addr of symbol table */
long num_syms; /* number of symbols */
long toc_ptr; /* used for XCOFF; not used for ELF */
struct rel_block * next; [* pointer to next boot section header
*/
I3

magic_num is used for verification purposes and must be X'004D 5054

text_start is the physical address value from the object text header.

text_size is the size in bytes from the object text header.

data_start is the physical address from the object data header.

data_size is the size in bytes from the object data header.

elf_hdr_size is the size of the object header. The debugger requires this information.
sym_start is the address of the symbol table in storage.

num_syms is the number of symbol entries.

next points to the next section header.

B.2.2 Text Section

For a text section, the union section_info contains the structure text_info , specifying the entry point
of the text section.

B-2 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

— Preliminary Copy

B.2.3 Data Section

For a data section, the union section_info contain the structure data_info , specifying size_to_fill
and char_to_fill . These parameters are used to optionally fill a region past the size extent specified in
the base rel_block with a character. It is most often used to zero bss by specifying the size of the bss
in size_to_fill and 0xO0 for char_to_fill .

B.2.4 Symbol Section

For symbols, the union section_info contains the number of symbols in the section. The data in this
section consists of the symbol table from the original object file.

B.3 Boot Header

The entire image is preceded by the boot header that was added by nimgbld or eimgbld . The ROM
loader uses this information to verify that it is a ROM Monitor load image, determine where to place
the image, and whether to invoke the ROM Monitor debugger before transferring control to the entry
point. The boot header is stripped off by the ROM Monitor loader and does not appear at the load
address.

The boot header has the following format:

I* +
| Boot header.
+ K
typedef struct boot_block {

unsigned long magic;

unsigned long dest;

unsigned long num_512blocks;

unsigned long debug_flag;

unsigned long entry_point;

unsigned long reserved[3];

} boot_block_t;

magic identifies this image as a legitimate ROM Monitor image and must have the value
X'0052 504F'.

dest is the target address for the image (after the boot header is stripped off).

num_512blocks - Boot images are padded to a multiple of 512 byte blocks. This field specifies the
number of blocks.

debug_flag controls whether the ROM Monitor debugger gets control before the loaded image starts.
If the value is 0x0, the image runs immediately. If 0x01, the debugger gains control as soon as the
load is complete.

entry_point specifies the address where the image will receive control.

Revised 8/22/00 v. 0.8 B-3

—Preliminary Copy

B-4 PPC405GP Reference Design Kit User’'s Manual v. 0.8 Revised 8/22/00

Index

A

Alignment Exception Support Library 9-1
ANSI C I/O Library 9-1

ANSI C Library 9-1

ANSI C Math Library 9-1

async safe 10-1

async_init() function 10-10

asynclLib.a library 9-4

B

biosenet_attach() function 10-11

Block Buffer Library 9-1

board initialization 9-25

board reset 6-6

book

conventions used Xxiv

highlighting xv
numeric Xiv
syntax diagrams xv

Boot Library 9-1, 9-4

C
C++ runtime support library 9-1
cancel safe 10-1
Clock Support Library 9-2
clock, on-board, setting time 8-7
clock_set() function 10-13
clockchip_get() function 10-14
clockchip_nvram_read() function 10-15
clockchip_nvram_write() function 10-16
clockchip_set() function 10-17
clockchip_start() function 10-18
clockchip_stop() function 10-19
clockLib.a library 9-5
clockLib_init() function 10-20
connecting the board to the host 6-1
conventions used Xxiv

highlighting xv

numeric Xiv

syntax diagrams xv

D
dbg_ioLib_init() function 10-21
dcache_flush() function 10-22
dcache_invalidate() function 10-23
Debug Support Library 9-2
Device and File Support Library 9-2
device drivers

asynchronous 9-6

Ethernet 9-21

I2C 9-15

keyboard,mouse 9-11

VGA 9-16
dma_disable() function 10-24
dma_setup() function 10-25
dma_status() function 10-26
DOS File System Support Library 9-2
driver_install

v. 0.8

async_init 9-6
keyb_init 9-12
Dynamic Loader Library 9-2

E
enet_INIT() function 10-27
Ethernet 9-21
ethernet controller

hardware address 7-26
Ethernet Device Driver Installation 9-22
ext_int_config() function 10-28
ext_int_disable() function 10-29
ext_int_enable() function 10-30
ext_int_install() function 10-31
ext_int_query() function 10-32

F

File Transfer Protocol Support Library 9-2

Flash update utility 7-26
Floating Point Emulation Library 9-2
functlons
pci_init() 10-53
functions
async_init() 10-10
biosenet_attach() 10-11
clock_set() 10-13
clockchip_get() 10-14
clockchip_nvram_read() 10-15
clockchip_nvram_write() 10-16
clockchip_set() 10-17
clockchip_start() 10-18
clockchip_stop() 10-19
clockLib_init() 10-20
dbg_ioLib_init() 10-21
dcache_flush() 10-22
dcache_invalidate() 10-23
dma_disable() 10-24
dma_setup() 10-25
dma_status() 10-26
enet_init() 10-27
ext_int_config() 10-28
ext_int_disable() 10-29
ext_int_enable() 10-30
ext_int_install() 10-31
ext_int_query() 10-32
i2c_read() 10-33
i2c_read_reg() 10-34
i2c_setupdriver() 10-35
i2c_write() 10-36
i2c_write_reg() 10-37
inshort_swap() 10-38
int_install() 10-39
int_query() 10-40
inword_swap() 10-41
ioLib_init() 10-42
keyb_init() 10-43
memcpy_io() 10-44
ocm_disable() 10-45

Index

X-1

X-2

ocm_init() 10-46
outshort_swap() 10-47
outword_swap() 10-48
pci_find_device() 10-49
pci_find_device_type() 10-50
pci_get_io_base() 10-51
pci_get_memory_base() 10-52
pci_master_abort() 10-54
pci_read_config_reg() 10-55
pci_write_config_reg() 10-56
ppcAbend() 10-57
ppcAndMsr() 10-58
ppcCntlzw() 10-59

ppcDcbf() 10-60

ppcDcbi() 10-61

ppcDcbst() 10-62

ppcDcbz() 10-63

ppcDflush() 10-64

ppcEieio() 10-65

ppcHalt() 10-66

ppclcbi() 10-67

ppclsync() 10-68
ppcMfccrO() 10-69
ppcMfcpcO_cr0() 10-70
ppcMfcpcO_crl() 10-71
ppcMfdacl() - ppcMfdac2() 10-72
ppcMfdber0() - ppcMfdberl() 10-73
ppcMfdbsr() 10-74
ppcMfdcer() 10-75

ppcMfdcp0_addrO() - ppcMfdcpO_addrl() 10-76

ppcMfdcp0_cfg() 10-77

ppcMfdcpO_esr() 10-78

ppcMfdcpO_id() 10-79

ppcMfdcpO_itorO() - ppcMfdcpO_itor3() 10-80
ppcMfdcpO_membear() 10-81
ppcMfdcpO_plbbear() 10-82
ppcMfdcp0_ram() 10-83

ppcMfdcpO_ver() 10-84

ppcMfdcwr() 10-85

ppcMfdear() 10-86

ppcMfdma0_cr0() - ppcMfdma0_cr3() 10-87
ppcMfdmaO_ctO() - ppcMfdma0O_ct3() 10-88
ppcMfdma0_da0() - ppcMfdma0_da3() 10-89
ppcMfdmaO_sa0() - ppcMfdma0_sa3() 10-90
ppcMfdmaO_sg0() - ppcMfdma0_sg3() 10-91
ppcMfdma0_sgc() 10-92

ppcMfdma0_sr() 10-93

ppcMfdvcl() - ppcMfdve2() 10-94

ppcMfesr() 10-95

ppcMfevpr() 10-96

ppcMfgprl() 10-97

ppcMfgpr2() 10-98

ppcMfiacl() - ppcMfiac4() 10-99

ppcMficer() 10-100

ppcMficdbdr() 10-101

ppcMfmal0_cfg() 10-102

ppcMfmal0_esr() 10-103

ppcMfmalO_ier() 10-104
ppcMfmal0_rcbsO() 10-105
ppcMfmalO_rxcarr() 10-106
ppcMfmalO_rxcasr() 10-107

PPC405GP Reference Design Kit User's Manual

ppcMfmalO_rxctpOr() 10-108

ppcMfmalO_rxdeir() 10-109

ppcMfmalO_rxeobisr() 10-110

ppcMfmalO_txcarr() 10-111

ppcMfmalQ_txcasr() 10-112

ppcMfmalO_txctpOr() 10-113

ppcMfmalO_txctplr() 10-114

ppcMfmalO_txdeir() 10-115

ppcMfmalO_txeobisr() 10-116

ppcMfmpmit() 10-117

ppcMfmsr() 10-118

ppcMfocmO_dsarc() 10-119

ppcMfocmO_dscntl() 10-120

ppcMfocmO_isarc() 10-121

ppcMfocmO_iscntl() 10-122

ppcMfpid() 10-123

ppcMfpit() 10-124

ppcMfpvr() 10-125

ppcMfsdramQ_bOcr() - ppcMfsdramO_b3cr() 10-126

ppcMfsdramO_bear() 10-127

ppcMfsdramOQ_besrO() - ppcMfsdram0_besrl() 10-
128

ppcMfsdramQ_cfg() 10-129

ppcMfsdram0_ecccfg() 10-130

ppcMfsdramO_eccesr() 10-131

ppcMfsdramO_rtr() 10-132

ppcMfsdramO_tr() 10-133

ppcMfsgr() 10-134

ppcMfsler() 10-135

ppcMfsprgl() - ppcMfsprg7() 10-136

ppcMfsrrO() 10-137

ppcMfsrrl() 10-138

ppcMfsrr2() 10-139

ppcMfsrr3() 10-140

ppcMfsuOr() 10-141

ppcMftb() 10-142

ppcMftcr() 10-143

ppcMftsr() 10-144

ppcMfuicO_cr() 10-145

ppcMfuicO_er() 10-146

ppcMfuicO_msr() 10-147

ppcMfuicO_pr() 10-148

ppcMfuicO_sr() 10-149

ppcMfuicO_tr() 10-150

ppcMfuicO_vr() 10-151

ppcMfzpr() 10-152

ppcMtcerO() 10-153

ppcMtcpcO_cr0() 10-154

ppcMtcpcO_crl() 10-155

ppcMtdacl() - ppcMtdac2() 10-156

ppcMtdbcer0() - ppcMtdberl() 10-157

ppcMtdbsr() 10-158

ppcMtdcer() 10-159

ppcMtdcpO_addr0() - ppcMtdcpO_addrl() 10-160

ppcMtdcpO_cfg() 10-161

ppcMtdcpO_esr() 10-162

ppcMtdcpO_itorO() - ppcMtdcpO_itor3() 10-163

ppcMtdcpO_ram() 10-164

ppcMtdcwr() 10-165

ppcMtdear() 10-166

ppcMtdma0_cr0() - ppcMtdmaO_cr3() 10-167

v. 0.8

ppcMtdma0_ctO() - ppcMtdma0O_ct3() 10-168
ppcMtdma0_da0() - ppcMtdma0O_da3() 10-169
ppcMtdma0_sa0() - ppcMfdma0O_sa3() 10-170
ppcMtdma0_sg0() - ppcMfdma0O_sg3() 10-171
ppcMtdma0_sgc() 10-172

ppcMtdma0_sr() 10-173

ppcMtdvcl() - ppcMtdve2() 10-174
ppcMtesr() 10-175

ppcMtevpr() 10-176

ppcMtiacl() - ppcMtiac4() 10-177
ppcMticer() 10-178

ppcMtmalO_cfg() 10-179

ppcMtmalO_esr() 10-180

ppcMtmalO_ier() 10-181
ppcMtmalO_rcbsO() 10-182
ppcMtmalO_rxcarr() 10-183
ppcMtmalO_rxcasr() 10-184
ppcMtmalO_rxctpOr() 10-185
ppcMtmalO_rxdeir() 10-186
ppcMtmalO_rxeobisr() 10-187
ppcMtmalO_txcarr() 10-188
ppcMtmalO_txcasr() 10-189
ppcMtmalO_txctpOr() 10-190
ppcMtmal0_txctplr() 10-191
ppcMtmalQ_txdeir() 10-192
ppcMtmalQ_txeobisr() 10-193
ppcMtmpmit() 10-194

ppcMtmsr() 10-195

ppcMtocmO_dsarc() 10-196
ppcMtocmO_dscntl() 10-197
ppcMtocmO_isarc() 10-198
ppcMtocmO_iscntl() 10-199

ppcMtpid() 10-200

ppcMtpit() 10-201

ppcMtsdramO_bOcr() - ppcMtsdramO_b3cr() 10-202

ppcMtsdramQ_bear() 10-203

ppcMtsdramQ_besr0() - ppcMtsdram0_besrl() 10-

204
ppcMtsdram0_cfg() 10-205
ppcMtsdramOQ_ecccfg() 10-206
ppcMtsdramO_eccesr() 10-207
ppcMtsdramO_rtr() 10-208
ppcMtsdramO_tr() 10-209
ppcMtsgr() 10-210
ppcMtsler() 10-211
ppcMtsprg0() - ppcMtsprg7() 10-212
ppcMtsrrO() 10-213
ppcMtsrrl() 10-214
ppcMtsrr2() 10-215
ppcMtsrr3() 10-216
ppcMtsuOr() 10-217
ppcMttb() 10-218
ppcMtter() 10-219
ppcMttsr() 10-220
ppcMtuicO_cr() 10-221
ppcMtuicO_er() 10-222
ppcMtuicO_pr() 10-223
ppcMtuicO_sr() 10-224
ppcMtuicO_tr() 10-225
ppcMtuicvr() 10-226
ppcMtzpr() 10-227

v. 0.8

H

ppcOrMsr() 10-228

ppcSync() 10-229

sldbprinf() 10-230

s2dbprinf() 10-232
set_time_once_only() 8-7
timebase_speed() 10-233
timertick_install() 10-234
timertick_remove() 10-235
vga_cls() 10-236

vga_fill_block() 10-237
vga_get_cursor_info() 10-238
vga_get_screen_dimensions() 10-239
vga_get_vid_mem_start() 10-240
vga_init() 10-241
vga_print_char() 10-242
vga_print_char_at_cursor() 10-243
vga_print_string() 10-244
vga_print_string_at_cursor() 10-245
vga_scroll_up() 10-246
vga_set_cursor_info() 10-247
vga_set_mode() 10-248
vga_set_pixel() 10-249
vga_write_data() 10-250
vgadd_init() 10-251

vsldbprinf() 10-252

hardware components 1-1

cables and power supply 1-1

host system requirements

PC 2-1
RS/6000 2-2
Sun 2-2

I/O control 9-9

I12C Library 9-2, 9-4
i2c_read() function 10-33
i2c_read_reg() function 10-34
i2c_setupdriver() function 10-35
i2c_write() function 10-36
i2c_write_reg() function 10-37
i2cLib.a library 9-4

IBM Embedded Systems Solution Center xvi

initialization

board bootstrap 9-25

Input/output Support Library 9-2
inshort_swap() function 10-38
installing

async driver 9-6
i2c driver 9-15
keyboard/mouse driver 9-11

int_install() function 10-39
inword_swap() function 10-41
ioLib.a library 9-4
ioLib_init() function 10-42

K

Kernel Abstract Data Types Library 9-2
keyb_init() function 10-43

keybLib.a library 9-4
keyboard/mouse controller 9-11
Keyboard/Mouse Controller Library 9-2

Index

X-3

Keyboard/Mouse Library 9-4

L

library description
asyncLib.a 9-4
clockLib.a 9-5
i2cLib.a 9-4
ioLib.a 9-4
keybLib.a 9-4
ppcLib.a 9-5
rtx.o 9-3
rtxLib.a 9-3
tickLib.a 9-5
vgaLib.a 9-16

M

MAC sample program 8-7
memcpy_io() function 10-44
Mouse/Keyboard Library 9-4

N
Network Support Library 9-2
NFS Support Library 9-2

0]

OCM Support Library 9-2

ocm_disable() function 10-45

ocm_init() function 10-46

Opening and Closing Ethernet Files 9-23
opening asynchronous communication ports 9-7
opening keyboard port 9-12

OpenShell 9-2

OS Open kernel extensions 9-3

OS Open minimal kernel 9-3
outshort_swap() function 10-47
outword_swap() function 10-48

P

PC host configuration 4-1

ethernet setup 4-2

serial port setup 4-1

services file 4-3
PC software installation 3-1

board support package 3-1

High C/C++ compiler 3-2

RISCWatch debugger 3-3
PCI Library 9-2
pci_find_device() function 10-49
pci_find_device_type() function 10-50
pci_get_io_base() function 10-51
pci_get_memory_base() function 10-52
pci_init() function 10-53
pci_master_abort() function 10-54
pci_read_config_reg() function 10-55
pci_write_config_reg() function 10-56
PCMCIA ATA/IDE 9-2
PCMCIA card services/enabler 9-1
PCMCIA socket sevices 9-2
polled asynchronous I/0 9-10
PowerPC Low Level Access Support Library 9-2
PowerPC Low-Level Processor Access Support Library
9-5
ppcAbend() function 10-57
ppcAndMsr() function 10-58

ppcCntlzw() function 10-59

ppcDcbf() function 10-60

ppcDcbi() function 10-61

ppcDcbst() function 10-62

ppcDcbz() function 10-63

ppcDflush() function 10-64

ppcEieio() function 10-65

ppcHalt() function 10-66

ppclcbi() function 10-67

ppcLib.a library 9-5

ppclsync() function 10-68

ppcMfccrO() function 10-69

ppcMfcpcO_crO() function 10-70

ppcMfcpcO_crl() function 10-71

ppcMfdacl() - ppcMfdac2() function 10-72
ppcMfdbcer0() - ppcMfdberl() function 10-73
ppcMfdbsr() function 10-74

ppcMfdccr() function 10-75

ppcMfdcpO_addr0() - ppcMfkaddr3() function 10-76
ppcMfdcp0_cfg() function 10-77

ppcMfdcpO_esr() function 10-78

ppcMfdcpO_id() function 10-79

ppcMfdcp0_itor0() - ppcMfdcpO_itor3() function 10-80
ppcMfdcpO_membear() function 10-81
ppcMfdcp0_plbbear() function 10-82
ppcMfdcpO_ram() function 10-83

ppcMfdcpO_ver() function 10-84

ppcMfdcwr() function 10-85

ppcMfdear() function 10-86

ppcMfdma0_cr0() - ppcMfdma0_cr3() function 10-87
ppcMfdma0_ct0() - ppcMfdmaO_ct3() function 10-88
ppcMfdma0_dao() - ppcMfdma0_da3() function 10-89
ppcMfdma0_sa0() - ppcMfdma0O_sa3() function 10-90
ppcMfdma0_sg0() - ppcMfdmaO_sg3() function 10-91
ppcMfdma0_sgc() function 10-92

ppcMfdma0_sr() function 10-93

ppcMfdvcl() - ppcMfdve2() function 10-94
ppcMfesr() function 10-95

ppcMfevpr() function 10-96

ppcMfgprl() function 10-97

ppcMfgpr2() function 10-98

ppcMfiacl() - ppcMfiac4() function 10-99
ppcMficer() function 10-100

ppcMficdbdr() function 10-101

ppcMfmalO_cfg() function 10-102
ppcMfmalO_esr() function 10-103

ppcMfmalO_ier() function 10-104
ppcMfmal0_rcbs0() function 10-105
ppcMfmalO_rxcarr() function 10-106
ppcMfmalO_rxcasr() function 10-107
ppcMfmalO_rxctpOr() function 10-108
ppcMfmalO_rxdeir() function 10-109
ppcMfmalQ_rxeobisr() function 10-110
ppcMfmalQ_txcarr() function 10-111
ppcMfmalO_txcasr() function 10-112
ppcMfmalO_txctpOr() function 10-113
ppcMfmalO_txctplr() function 10-114
ppcMfmalO_txdeir() function 10-115
ppcMfmalQ_txeobisr() function 10-116
ppcMfmpmit() function 10-117

ppcMfmsr() function 10-118

X-4 PPC405GP Reference Design Kit User's Manual v.0.8

ppcMfocmO_dsarc() function 10-119
ppcMfocmO_dscntl() function 10-120
ppcMfocmO_isarc() function 10-121
ppcMfocmO_iscntl() function 10-122

ppcMfpid() function 10-123

ppcMfpit() function 10-124

ppcMfpvr() function 10-125

ppcMfsdramQ_bOcr() - ppcMfsdramO_b3cr() function 10-
126

ppcMfsdramO_bear() function 10-127
ppcMfsdramO_besr0() - ppcMfsdramO_besr1() function
10-128

ppcMfsdramO_cfg() function 10-129
ppcMfsdramO_ecccfg() function 10-130
ppcMfsdramO_eccesr() function 10-131
ppcMfsdramO_rtr() function 10-132
ppcMfsdramO_tr() function 10-133

ppcMfsgr() function 10-134

ppcMfsler() function 10-135

ppcMfsprg0() - ppcMfsprg7() function 10-136
ppcMfsrrO() function 10-137

ppcMfsrrl() function 10-138

ppcMfsrr2() function 10-139

ppcMfsrr3() function 10-140

ppcMfsuOr() function 10-141

ppcMftb() function 10-142

ppcMfter() function 10-143

ppcMftsr() function 10-144

ppcMfuicO_cr() function 10-145

ppcMfuicO_er() function 10-146

ppcMfuicO_msr() function 10-147

ppcMfuicO_pr() function 10-148

ppcMfuicO_sr() function 10-149

ppcMfuicO_tr() function 10-150

ppcMfuicO_vr() function 10-151

ppcMfzpr() function 10-152

ppcMtccrO() function 10-153

ppcMtcpcO_crO() function 10-154

ppcMtcpcO_crl() function 10-155

ppcMtdacl() - ppcMtdac2() function 10-156
ppcMtdbcer0() - ppcMtdberl() function 10-157
ppcMtdbsr() function 10-158

ppcMtdccr() function 10-159

ppcMtdcpO_addr0() - ppcMtdcpO_addrl() function 10-
160

ppcMtdcpO_cfg() function 10-161

ppcMtdcpO_esr() function 10-162

ppcMtdcpO_itor0() - ppcMtdcpO_itor3() function 10-163
ppcMtdcpO_ram() function 10-164

ppcMtdcwr() function 10-165

ppcMtdear() function 10-166

ppcMtdma0_cr0() - ppcMtdma0_cr3() functions 10-167
ppcMtdma0_ctO() - ppcMtdmaO_ct3() functions 10-168
ppcMtdma0_da0() - ppcMtdmada() functions 10-169
ppcMtdma0_sa0() - ppcMtdma0O_sa3() functions 10-170
ppcMtdma0_sg0() - ppcMtdma0_sg3() functions 10-171
ppcMtdma0_sgc() function 10-172

ppcMtdma0_sr() function 10-173

ppcMtdvcl() - ppcMtdve2() function 10-174
ppcMtesr() function 10-175

ppcMtevpr() function 10-176

v. 0.8

ppcMtiacl() - ppcMtiac4() function 10-177
ppcMticer() function 10-178
ppcMtmalO_cfg() function 10-179
ppcMtmalO_esr() function 10-180
ppcMtmalO_ier() function 10-181
ppcMtmal0_rcbs0() function 10-182
ppcMtmalO_rxcarr() function 10-183
ppcMtmalO_rxcasr() function 10-184
ppcMtmalO_rxctpOr() function 10-185
ppcMtmalO_rxdeir() function 10-186
ppcMtmalO_rxeobisr() function 10-187
ppcMtmalO_txcarr() function 10-188
ppcMtmalO_txcasr() function 10-189
ppcMtmalO_txctpOr() function 10-190
ppcMtmalO_txctplr() function 10-191
ppcMtmalO_txdeir() function 10-192
ppcMtmalO_txeobisr() function 10-193
ppcMtmpmit() function 10-194
ppcMtmsr() function 10-195
ppcMtocmO_dsarc() function 10-196
ppcMtocmO_dscntl() function 10-197
ppcMtocmO_isarc() function 10-198
ppcMtocmO_iscntl() function 10-199
ppcMtpid() function 10-200
ppcMtpit() function 10-201
ppcMtsdramO_bOcr() - ppcMtsdramO_b3cr() function 10-
202
ppcMtsdramO_bear() function 10-203
ppcMtsdramO_besr0() - ppcMltbesrb() 10-204
ppcMtsdramO_cfg() function 10-205
ppcMtsdramO_ecccfg() function 10-206
ppcMtsdramO_eccesr() function 10-207
ppcMtsdramO_rtr() function 10-208
ppcMtsdramO_tr() function 10-209
ppcMtsgr() function 10-210
ppcMtsler() function 10-211
ppcMtsprg0() - ppcMtsprg7() function 10-212
ppcMtsrrO() function 10-213
ppcMtsrrl() function 10-214
ppcMtsrr2() function 10-215
ppcMtsrr3() function 10-216
ppcMtsuOr() function 10-217
ppcMttb() function 10-218
ppcMtter() function 10-219
ppcMttsr() function 10-220
ppcMtuicO_cr() function 10-221
ppcMtuicO_er() function 10-222
ppcMtuicO_pr() function 10-223
ppcMtuicO_sr() function 10-224
ppcMtuicO_tr() function 10-225
ppcMtuicO_vcer() function 10-226
ppcMtzpr() function 10-227
ppcOrMsr() function 10-228
ppcSync() function 10-229
ptrace
definitions A-4

RD_ATTACH A-5

RD_CONTINUE A-6

RD_DETACH A-7

RD_FILL A-8

RD_KILL A-9

Index X-5

RD_LDINFO A-10
RD_LOAD A-12
RD_LOGIN A-13
RD_LOGOFF A-14
RD_READ D A-15
RD_READ FPR A-16
RD_READ GPR A-17
RD_READ_GPR_MULT A-18
RD_READ | A-19
RD_READ_| MULT A-20
RD_READ_SPR A-21
RD_READ SR A-22
RD_STATUS A-23
RD_STOP_APPL A-24
RD_WAIT A-25
RD_WRITE_BLOCK A-26
RD_WRITE_D A-27
RD_WRITE_FPR A-28
RD_WRITE_GPR A-29
RD_WRITE_| A-30
RD_WRITE_SPR A-31
RD_WRITE_SR A-32
RL_LDINFO A-33
RL_LOAD REQ A-34

Q
Queue Library 9-2

R

RAM Disk Library 9-2

Rate Monotonic Scheduling (RMS) Library 9-2
RD_ATTACH definition A-5
RD_CONTINUE definition A-6
RD_DETACH definition A-7
RD_FILL definition A-8

RD_INFO definition A-10

RD_KILL definition A-9

RD_LOAD definition A-12
RD_LOGIN definition A-13
RD_LOGOFF definition A-14
RD_READ_D definition A-15
RD_READ_FPR definition A-16
RD_READ_GPR definition A-17
RD_READ_GPR_MULT definition A-18
RD_READ_| definition A-19
RD_READ_I_MULTI definition A-20
RD_READ_SPR definition A-21
RD_READ_SR definiton A-22
RD_STATUS definition A-23
RD_STOP_APPL definition A-24
RD_WAIT definition A-25
RD_WRITE_BLOCK definition A-26
RD_WRITE_D definition A-27
RD_WRITE_FPR definition A-28
RD_WRITE_GPR definition A-29
RD_WRITE_I definition A-30
RD_WRITE_SPR definition A-31
RD_WRITE_SR definition A-32
read from keyboard port 9-13
Real_time Executive 9-3

Real-time Clock Interface Support Library 9-5
Recursion, see Recursion

Remote Source Level Debug Library 9-2
Ring Buffer Library 9-2
RL_LDINFO definition A-33
RL_LOAD_REQ definition A-34
ROM monitor
accessing 7-6
bootp and tftp configuration 7-2
PC 7-2
RS/6000 7-5
SUN 7-4
communication features 7-2
menus 7-7
cache options 7-25
changing IP addresses 7-12
disabling the automatic display 7-17
displaying the current configuration 7-18
entering the debugger 7-15
exiting the main menu 7-23
initial ROM monitor menu 7-8
saving the current configuration 7-19
selecting boot devices 7-10
selecting power-on tests 7-9
using the ping test 7-13
source code 7-1
user functions 7-25
ROM monitor load format
boot header B-3
section types B-1
data section B-3
first section B-2
symbol section B-3
sections types
text section B-2
RPC Support Library 9-2
RS/6000 host configuration 4-5
ethernet setup 4-7
serial port setup 4-5
services file 4-9
RS/6000 software installation 3-7
board support package 3-7
Hligh C/C++ compiler 3-9
RISCWatch debugger 3-10
rtx.o library 9-3
rtxLib.a library 9-3
Runtime Library 9-2

S
s1dbprintf() function 10-230
s2dbprintf() function 10-232
sample applications
overview 8-1
resolving problems 8-9
bootp and tftp servers 8-10
using the ping test 8-10
ROM monitor flash image 8-1
using 8-4
Dhrystone benchmark 8-4
MAC sample program 8-7
timesamp program 8-6
usr_samp program 8-5
SCSI Support Library 9-2
Serial Port Support Library 9-4

X-6 PPC405GP Reference Design Kit User's Manual v.0.8

Serial Support Library 9-2
set_time_once_only() function 8-7
software components 1-1
board support software 1-1
HIGH C/C++ compiler 1-3
RISCWatch debugger 1-3

Software Timer Tick Support Library 9-5

Sun host configuration 4-3
ethernet setup 4-4
serial port setup 4-4
services file 4-4

Sun software installation 3-3
board support package 3-3
High C/C++ compiler 3-5
RISCWatch debugger 3-7

Symbol Support Library 9-2

T
TCP/IP Protocol Support Library 9-2
Telnet Client Support Library 9-3
Telnet Daemon Support Library 9-3
terminal emulator 6-3

PC terminal emulation 6-3

RS/6000 terminal emulation 6-5

Sun terminal emulation 6-4
tickLib.a library 9-5
time, setting on on-board clock 8-7
timebase_speed() function 10-233
Timer Tick Support 9-3
timertick_install() function 10-234
timertick_remove() function 10-235
tools 9-26

eimgbld 9-30

elf2rom 9-26

hbranch 9-28

Trivial File Transfer Protocol Library 9-3

TTY Support Library 9-3

\%

VGA device driver 9-16

VGA library 9-3

vga_cls() function 10-236
vga_fill_block() function 10-237

vga_get_cursor_info() function 10-238
vga_get_screen_dimensions() function 10-239
vga_get_vid_mem_start() function 10-240

vga_init() function 10-241
vga_print_char() function 10-242

vga_print_char_at_cursor() function 10-243

vga_print_string() function 10-244

vga_print_string_at_cursor() function 10-245

vga_scroll_up() function 10-246

vga_set_cursor_info() function 10-247

vga_set_mode() function 10-248
vga_set_pixel() function 10-249
vga_write_data() function 10-250
vgadd_init() function 10-251
vsldbprintf() function 10-252

w

writing calls on asynchronous ports 9-8

v. 0.8

Index

X-8

PPC405GP Reference Design Kit User's Manual

v. 0.8

— Preliminary Copy

Revised 8/22/00

v. 0.8

..lli

©lnternational Business Machines Corporation 1998, 2000
Printed in the United States of America

08-2000

All Rights Reserved

IBM and the IBM logo are registered trademarks of the IBM Corporation.

The information contained in this document is subject to change without notice. The products
described in this document are NOT intended for use in implantation or other life support
applications where malfunction may result in injury or death to persons. The information
contained in this document does not affect or change IBM’s product specifications or warranties.
Nothing in this document shall operate as an express or implied license or indemnity under the
intellectual property rights of IBM or third parties. All information contained in this document was
obtained in specific environments, and is presented as illustration. The results obtained in other
operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS.
In no event will IBM be liable for any damages arising directly or indirectly from any use of the
information contained in this document.

IBM Microelectronics Division
1580 Route 52, Bldg. 504
Hopewell Junction, NY 12533-6531

The IBM home page can be found at
http://www.ibm.com

The IBM Microelectronics Division home page can be found at
http://www.chips.ibm.com

Document No. AANN-NNNN-NN

	Contents
	Figures
	Tables
	About This Book
	Chapter�1. Overview of the Reference Design Kit
	1.1 Hardware Components
	1.1.1 Reference Platform
	1.1.2 Cables and Power Supply

	1.2 Software Components
	1.2.1 BSP Software
	1.2.1.1 ROM Monitor
	1.2.1.2 OS Open Real-Time Operating System
	1.2.1.3 Dhrystone Benchmark Program
	1.2.1.4 Application Tools

	1.2.2 RISCWatch Debugger
	1.2.3 IBM High C/C++ Evaluation Compiler

	Chapter�2. Host System Requirements
	2.1 PC Host System Requirements
	2.2 SUN Host System Requirements
	2.3 RS/6000 Host System Requirements

	Chapter�3. Installing the Software
	3.1 PC Software Installation
	3.1.1 BSP Software Installation - PC
	3.1.2 High C/C++ Evaluation Compiler Installation - PC
	3.1.3 RISCWatch Debugger Installation - PC

	3.2 Sun Software Installation
	3.2.1 BSP Software Installation - Sun
	3.2.2 High C/C++ Evaluation Compiler Installation - Sun
	3.2.3 RISCWatch Debugger Installation - Sun

	3.3 RS/6000 Software Installation
	3.3.1 BSP Software Installation - RS/6000
	3.3.2 HIgh C/C++ Evaluation Compiler Installation - RS/6000
	3.3.3 RISCWatch Debugger Installation - RS/6000

	Chapter�4. Host Configuration
	4.1 PC Host Configuration
	4.1.1 Serial Port Setup - PC
	4.1.2 Ethernet Setup - PC
	4.1.3 ROM Monitor-Debugger Communication Setup - PC

	4.2 Sun Host Configuration
	4.2.1 Serial Port Setup - SUN
	4.2.2 Ethernet Setup - SUN
	4.2.3 ROM Monitor-Debugger Communication Setup - SUN

	4.3 RS/6000 Host Configuration
	4.3.1 Serial Port Setup - RS/6000
	4.3.2 Ethernet Setup - RS/6000
	4.3.3 ROM Monitor-Debugger Communication Setup - RS/6000

	Chapter�5. Hardware
	Chapter�6. Board Connectors
	6.1 Connecting the Reference Board to the Host
	6.2 Using a Terminal Emulator
	6.2.1 PC Terminal Emulation
	6.2.2 SUN Terminal Emulation
	6.2.3 RS/6000 Terminal Emulation

	6.3 Board Reset

	Chapter�7. ROM Monitor
	7.1 ROM Monitor Source Code
	7.2 Communications Features
	7.3 Configuration of bootp and tftp to Support ROM Monitor Loads
	7.3.1 PC bootp and tftp Configuration
	7.3.2 SUN bootp and tftp Configuration
	7.3.3 RS/6000 bootp and tftp Configuration

	7.4 Accessing the ROM Monitor
	7.5 ROM Monitor Operation
	7.6 Monitor Selections and Submenus
	7.6.1 Initial ROM Monitor Menu
	7.6.2 Selecting Power-On Tests
	7.6.3 Selecting Boot Devices
	7.6.4 Changing IP Addresses
	7.6.5 Using the Ping Test
	7.6.6 Entering the Debugger
	7.6.7 Disabling the Automatic Display
	7.6.8 Displaying the Current Configuration
	7.6.9 Saving the Current Configuration
	7.6.10 Setting the Baud Rate for S1 Boots
	7.6.11 S1 Boot
	7.6.12 Exiting the Main Menu
	7.6.13 Cache Options

	7.7 ROM Monitor User Functions
	7.8 Flash Update Utility
	7.9 Network Address of the Ethernet Controller

	Chapter�8. Sample Applications
	8.1 Overview
	8.2 ROM Monitor Flash Image
	8.3 Using the Software Samples
	8.3.1 Building and Running the Dhrystone Benchmark
	8.3.2 Building and Running the usr_samp Program
	8.3.3 Building and Running the timesamp Program
	8.3.4 Setting the time in the on-board clock
	8.3.5 PPC405 MAC instruction sample

	8.4 Resolving Execution Problems
	8.4.1 Using the Ping Test on the ROM Monitor to Verify Connectivity
	8.4.2 Setup of bootp and tftp Servers (Daemons) for ROM Monitor Loads

	8.5 Using OS Open Functions

	Chapter�9. Application Libraries and Tools
	9.1 OS Open Libraries
	9.2 Using Libraries and Support Software
	9.2.1 Serial Port Support Library
	9.2.2 Boot Library (RAM)
	9.2.3 Input/Output Support Library
	9.2.4 Keyboard/Mouse Controller Support Library
	9.2.5 I2C Library
	9.2.6 PowerPC Low-Level Processor Access Support Library
	9.2.7 ROM Monitor Ethernet IP Interface Library
	9.2.8 Real-time Clock Interface Support Library
	9.2.9 Ethernet Device Driver Support Library
	9.2.10 Software Timer Tick Support Library

	9.3 Device Drivers Supplied with the Board Support Software
	9.3.1 Asynchronous Device Driver
	9.3.1.1 Device Driver Installation
	9.3.1.2 Device Installation
	9.3.1.3 Opening Asynchronous Communication Ports
	9.3.1.4 Reading and Writing
	9.3.1.5 I/O Control
	9.3.1.6 Polled Asynchronous I/O
	9.3.1.7 Flow control

	9.3.2 Keyboard/Mouse Controller Driver
	9.3.2.1 Device Driver Installation
	9.3.2.2 Device Installation
	9.3.2.3 Opening Keyboard Port
	9.3.2.4 Reading
	9.3.2.5 I/O Controls
	9.3.2.6 Translation Function

	9.3.3 I2C Device Driver
	9.3.3.1 Functional Description
	9.3.3.2 I2C Initialisation
	9.3.3.3 I2C read
	9.3.3.4 I2C write
	9.3.3.5 Accessing I2C Registers

	9.3.4 VGA Support
	9.3.4.1 VGA Card Initialisation
	9.3.4.2 Common Functions
	9.3.4.3 Text mode
	9.3.4.4 Graphics Modes
	9.3.4.5 VGA registers
	9.3.4.6 VGA device driver
	9.3.4.7 VGA sample

	9.3.5 Ethernet Device Driver
	9.3.5.1 Device Driver Installation
	9.3.5.2 Device Installation
	9.3.5.3 Opening and Closing Ethernet Files
	9.3.5.4 Reading and Writing
	9.3.5.5 I/O Control
	9.3.5.6 ENET_SET_CHANNEL
	9.3.5.7 ENET_CLEAR_CHANNEL
	9.3.5.8 ENET_QUERY_ADDRESS

	9.3.6 ROM Monitor Ethernet Device Driver

	9.4 Environment Startup and Initialization
	9.4.1 Board Bootstrap
	9.4.2 Environment Initialization

	9.5 Tools
	9.5.1 elf2rom
	9.5.2 hbranch
	9.5.3 eimgbld

	Chapter�10. OS Open Function Reference
	10.1 Attributes and Threads
	10.1.1 Async Safe Functions
	10.1.2 Cancel Safe Functions
	10.1.3 Interrupt Handler Safe Functions
	10.1.4 Callable from Application Thread Group Functions

	10.2 Functions
	async_init()
	biosenet_attach()
	clock_set()
	clockchip_get()
	clockchip_nvram_read()
	clockchip_nvram_write()
	clockchip_set()
	clockchip_start()
	clockchip_stop()
	clockLib_init()
	dbg_ioLib_init()
	dcache_flush()
	dcache_invalidate()
	dma_disable()
	dma_setup()
	dma_status()
	enet_init()
	ext_int_config()
	ext_int_disable()
	ext_int_enable()
	ext_int_install()
	ext_int_query()
	i2c_read()
	i2c_read_reg()
	i2c_setupdriver()
	i2c_write()
	i2c_write_reg()
	inshort_swap()
	int_install()
	int_query()
	inword_swap()
	ioLib_init()
	keyb_init()
	memcpy_io()
	memcpy_io()
	memcpy_io()
	outshort_swap()
	outword_swap()
	pci_find_device()
	pci_find_device_type()
	pci_get_io_base()
	pci_get_memory_base()
	pci_init()
	pci_master_abort()
	pci_read_config_reg()
	pci_write_config_reg()
	ppcAbend()
	ppcAndMsr()
	ppcCntlzw()
	ppcDcbf()
	ppcDcbi()
	ppcDcbst()
	ppcDcbz()
	ppcDflush()
	ppcEieio()
	ppcHalt()
	ppcIcbi()
	ppcIsync()
	ppcMfccr0()
	ppcMfcpc0_cr0()
	ppcMfcpc0_cr1()
	ppcMfdac1() - ppcMfdac2()
	ppcMfdbcr0() - ppcMfdbcr1()
	ppcMfdbsr()
	ppcMfdccr()
	ppcMfdcp0_addr0() - ppcMfdcp0_addr1()
	ppcMfdcp0_cfg()
	ppcMfkesr()
	ppcMfdcp0_id()
	ppcMfdcp0_itor0() - ppcMfdcp0_itor3()
	ppcMfdcp0_membear()
	ppcMfdcp0_plbbear()
	ppcMfdcp0_ram()
	ppcMfdcp0_ver()
	ppcMfdcwr()
	ppcMfdear()
	ppcMfdma0_cr0() - ppcMfdma0_cr3()
	ppcMfdma0_ct0() - ppcMfdma0_ct3()
	ppcMtfmada0() - ppcMfdma0_da3()
	ppcMfdma0_sa0() - ppcMfdma0_sa3()
	ppcMfdma0_sg0() - ppcMfdma0_sg3()
	ppcMfdma0_sgc()
	ppcMfdma0_sr()
	ppcMfdvc1() - ppcMfdvc2()
	ppcMfesr()
	ppcMfevpr()
	ppcMfgpr1()
	ppcMfgpr2()
	ppcMfiac1() - ppcMfiac4()
	ppcMficcr()
	ppcMficdbdr()
	ppcMfdcp0_ram()
	ppcMfdcp0_ram()
	ppcMfdcp0_ram()
	ppcMfdcp0_ram()
	ppcMfdcp0_ram()
	ppcMfdcp0_ram()
	ppcMfdcp0_ram()
	ppcMfdcp0_ram()
	ppcMfdcp0_ram()
	ppcMfdcp0_ram()
	ppcMfdcp0_ram()
	ppcMfdcp0_ram()
	ppcMfdcp0_ram()
	ppcMfdcp0_ram()
	ppcMfdcp0_ram()
	ppcMfsdram0_pmit()
	ppcMfmsr()
	pcMfpid()
	ppcMfpid()
	ppcMfpid()
	ppppcMfpid()
	pppcMfpid()
	ppcMfpit()
	ppcMfpvr()
	ppcMfsdram0_b0cr() - ppcMfsdram0_b3cr()
	ppcMfsdram0_bear()
	ppcMfsdram0_besr0() - ppcMfsdram0_besr1()
	ppcMfsdram0_cfg()
	ppcMfsdram0_ecccfg()
	ppcMfsdram0_eccesr()
	ppcMfsdram0_rtr()
	ppcMfsdram0_tr()
	ppcMfsgr()
	ppcMfsler()
	ppcMfsprg0() - ppcMfsprg7()
	ppcMfsrr0()
	ppcMfsrr1()
	ppcMfsrr2()
	ppcMfsrr3()
	ppcMfsu0r()
	ppcMftb()
	ppcMftcr()
	ppcMftsr()
	ppcMfuic0_cr()
	ppcMfuic0_er()
	ppcMfuic0_msr()
	ppcMfuic0_pr()
	ppcMfuic0_sr()
	ppcMfuic0_tr()
	ppcMfuic0_vr()
	ppcMfzpr()
	ppcMtccr0()
	ppcMtcpc0_cr0()
	ppcMtcpc0_cr1()
	ppcMtdac1() - ppcMtdac2()
	ppcMtdbcr0() - ppcMtdbcr1()
	ppcMtdbsr()
	ppcMtdccr()
	ppcMtdcp0_addr0() - ppcMtdcp0_addr1()
	ppcMtdcp0_cfg()
	ppcMtdcp0_esr()
	ppcMtdcp0_itor0() - ppcMtdcp0_itor3()
	ppcMtdcp0_ram()
	ppcMtdcwr()
	ppcMtdear()
	ppcMtdma0_cr0() - ppcMtdma0_cr3()
	ppcMtdma0_ct0() - ppcMtdma0_ct3()
	ppcMtdma0_da0() - ppcMtdma0_da3()
	ppcMtdma0_sa0() - ppcMtdma0_sa3()
	ppcMtdma0_sg0() - ppcMtdma0_sg3()
	ppcMtdma0_sgc()
	ppcMtdma0_sr()
	ppcMtdvc1() - ppcMtdvc2()
	ppcMtesr()
	ppcMtevpr()
	ppcMtiac1() - ppcMtiac3()
	ppcMticcr()
	ppcMtdcp0_esrs()
	ppcMtdcp0_esrs()
	ppcMtdcp0_esrs()
	ppcMtdcp0_esrs()
	ppcMtdcp0_esrs()
	ppcMtdcp0_esrs()
	ppcMtdcp0_esrs()
	ppcMtdcp0_esrs()
	ppcMtdcp0_esrs()
	ppcMtdcp0_esrs()
	ppcMtdcp0_esrs()
	ppcMtdcp0_esrs()
	ppcMtdcp0_esrs()
	ppcMtdcp0_esrs()
	ppcMtdcp0_esrs()
	ppcMtsdram0_pmit()
	ppcMtmsr()
	ppcMtpid()
	ppcMtpid()
	ppcMtpid()
	ppcMtpid()
	ppcMtpid()
	ppcMtpit()
	ppcMtsdram0_b0cr() - ppcMtsdram0_b3cr()
	ppcMtsdram0_bear()
	ppcMtsdram0_besr0() - ppcMtsdram0_besr1()
	ppcMtsdram0_cfg()
	ppcMtsdram0_ecccfg()
	ppcMtsdram0_eccesr()
	ppcMtsdram0_rtr()
	ppcMtsdram0_tr()
	ppcMtsgr()
	ppcMtsler()
	ppcMtsprg0() - ppcMtsprg7()
	ppcMfsrr0()
	ppcMtsrr1()
	ppcMtsrr2()
	ppcMtsrr3()
	ppcMtsu0r()
	ppcMttb()
	ppcMttcr()
	ppcMttsr()
	ppcMtuic0_cr()
	ppcMtuic0_er()
	ppcMtuic0_pr()
	ppcMtuic0_sr()
	ppcMtuic0_tr()
	ppcMtuic0_vcr()
	ppcMtzpr()
	ppcOrMsr()
	ppcSync()
	s1dbprintf()
	s2dbprintf()
	timebase_speed()
	timertick_install()
	timertick_remove()
	vga_cls()
	vga_fill_block()
	vga_get_cursor_info()
	vga_get_screen_dimensions()
	vga_get_vid_mem_start()
	vga_init()
	vga_print_char()
	vga_print_char_at_cursor()
	vga_print_string()
	vga_print_string_at_cursor()
	vga_scroll_up()
	vga_set_cursor_info()
	vga_set_mode()
	vga_set_pixel()
	vga_write_data()
	vgadd_init
	vs1dbprintf()

	Appendix A.�� Program Trace Calls
	A.1 Overview
	A.2 MSGDATA Structure
	A.3 Ptrace Definitions
	A.3.1 RD_ATTACH (30)
	A.3.2 RD_CONTINUE (7)
	A.3.3 RD_DETACH (31)
	A.3.4 RD_FILL (105)
	A.3.5 RD_KILL (8)
	A.3.6 RD_LDINFO (34)
	A.3.7 RD_LOAD (101)
	A.3.8 RD_LOGIN (103)
	A.3.9 RD_LOGOFF (104)
	A.3.10 RD_READ_D (2)
	A.3.11 RD_READ_FPR (12)
	A.3.12 RD_READ_GPR (11)
	A.3.13 RD_READ_GPR_MULT(71)
	A.3.14 RD_READ_I (1)
	A.3.15 RD_READ_I_MULT (71)
	A.3.16 RD_READ_SPR (115)
	A.3.17 RD_READ_SR (118)
	A.3.18 RD_STATUS (114)
	A.3.19 RD_STOP_APPL (113)
	A.3.20 RD_WAIT (108)
	A.3.21 RD_WRITE_BLOCK (19)
	A.3.22 RD_WRITE_D (5)
	A.3.23 RD_WRITE_FPR (15)
	A.3.24 RD_WRITE_GPR (14)
	A.3.25 RD_WRITE_I (4)
	A.3.26 RD_WRITE_SPR (112)
	A.3.27 RD_WRITE_SR (119)
	A.3.28 RL_LDINFO (181)
	A.3.29 RL_LOAD_REQ(180)

	Appendix B.�� ROM Monitor Load Format
	B.1 Overview
	B.2 Section Types
	B.2.1 First Section
	B.2.2 Text Section
	B.2.3 Data Section
	B.2.4 Symbol Section

	B.3 Boot Header

