
Part Number 405CPU

Revision 1.02 - September 10, 2007

 1

PPC405 Processor
Preliminary User’s Manual405

PPC405 Processor
User’s Manual

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

Printed in the United States of America, Monday, September 10, 2007

The following are trademarks of AMCC in the United States, or other countries, or both:

Other company, product, and service names may be trademarks or service marks of others.

Applied Micro Circuits Corporation
215 Moffett Park Drive, Sunnyvale, CA 94089

Phone: (408) 542-8600 — (800) 840-6055 — Fax: (408) 542-8601
http://www.amcc.com

AMCC reserves the right to make changes to its products, its data sheets, or related documentation, without notice and
warrants its products solely pursuant to its terms and conditions of sale, only to substantially comply with the latest available
data sheet. Please consult AMCC’s Term and Conditions of Sale for its warranties and other terms, conditions and limitations.
AMCC may discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information is current. AMCC does not assume any
liability arising out of the application or use of any product or circuit described herein, neither does it convey any license
under its patent rights nor the rights of others. AMCC reserves the right to ship devices of higher grade in place of those of
lower grade.
AMCC SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE
SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL
APPLICATIONS.
AMCC is a registered Trademark of Applied Micro Circuits Corporation. Copyright © 2006 Applied Micro Circuits Corporation.

AMCC

2

http://www.manualslib.com/

 3

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Contents

Figures.. 11

Tables ... 13

About This Book .. 17

1. Overview .. 21
1.1 PPC405 Processor Features .. 21
1.2 PowerPC Architecture .. 22
1.3 PPC405 as a PowerPC Implementation ... 23
1.4 RISC Processor Core Organization .. 23

1.4.1 Instruction and Data Cache Controllers .. 23
1.4.1.1 Instruction Cache Unit ... 23
1.4.1.2 Data Cache Unit .. 23

1.4.2 Memory Management Unit .. 24
1.4.3 Debug .. 25

1.4.3.1 Development Tool Support .. 25
1.4.3.2 Debug Modes .. 25

1.4.4 Processor Core Interfaces .. 26
1.4.4.1 Processor Local Bus .. 26
1.4.4.2 Device Control Register Bus .. 26
1.4.4.3 Clock and Power Management .. 26
1.4.4.4 JTAG .. 26
1.4.4.5 Interrupts .. 26
1.4.4.6 On-Chip Memory ... 26

1.5 Processor Programming Model .. 26
1.5.1 Data Types .. 26
1.5.2 Processor Register Set Summary ... 27

1.5.2.1 General Purpose Registers ... 27
1.5.2.2 Special Purpose Registers .. 27
1.5.2.3 Machine State Register ... 27
1.5.2.4 Condition Register ... 27
1.5.2.5 Device Control Registers ... 27

1.5.3 Memory-Mapped I/O Registers ... 28
1.5.4 Addressing Modes .. 28

2. Programming Model ... 31
2.1 User and Privileged Programming Models ... 31
2.2 Storage Addressing .. 31

2.2.1 Storage Attributes ... 32
2.3 Registers .. 32

2.3.1 General Purpose Registers (GPR0-GPR31) ... 35
2.3.2 Special Purpose Registers (SPR) ... 35

2.3.2.1 Count Register (CTR) .. 36
2.3.2.2 Link Register (LR) .. 37
2.3.2.3 Fixed Point Exception Register (XER) ... 37
2.3.2.4 Special Purpose Registers (USPRG0 and SPRG0–SPRG7) ... 39
2.3.2.5 Processor Version Register (PVR) .. 39

2.3.3 Condition Register (CR) .. 39
2.3.3.1 CR Fields After Compare Instructions ... 40
2.3.3.2 The CR0 Field .. 40

AMCC Proprietary

http://www.manualslib.com/

4 AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

2.3.4 The Time Base .. 41
2.3.5 Machine State Register (MSR) .. 42
2.3.6 Device Control Registers ... 42

2.4 Data Types and Alignment ... 42
2.4.1 Alignment for Storage Reference and Cache Control Instructions .. 43
2.4.2 Alignment and Endian Operation .. 43
2.4.3 Summary of Instructions Causing Alignment Exceptions .. 43

2.5 Byte Ordering .. 44
2.5.1 Structure Mapping Examples .. 44

2.5.1.1 Big Endian Mapping ... 45
2.5.1.2 Little Endian Mapping .. 45

2.5.2 Support for Little Endian Byte Ordering ... 45
2.5.3 Endian (E) Storage Attribute ... 46

2.5.3.1 Fetching Instructions from Little Endian Storage Regions ... 46
2.5.3.2 Accessing Data in Little Endian Storage Regions .. 47
2.5.3.3 PowerPC Byte-Reverse Instructions .. 47

2.6 Instruction Processing .. 49
2.7 Branch Processing .. 50

2.7.1 Unconditional Branch Target Addressing Options .. 50
2.7.2 Conditional Branch Target Addressing Options .. 50
2.7.3 Conditional Branch Condition Register Testing ... 51
2.7.4 BO Field on Conditional Branches .. 51
2.7.5 Branch Prediction .. 52

2.8 Speculative Accesses ... 53
2.8.1 Speculative Accesses in the PPC405 ... 53

2.8.1.1 Prefetch Distance Down an Unresolved Branch Path ... 54
2.8.1.2 Prefetch of Branches to the CTR and Branches to the LR .. 54

2.8.2 Preventing Inappropriate Speculative Accesses ... 54
2.8.2.1 Fetching Past an Interrupt-Causing or Interrupt-Returning Instruction 54
2.8.2.2 Fetching Past tw or twi Instructions ... 55
2.8.2.3 Fetching Past an Unconditional Branch ... 55
2.8.2.4 Suggested Locations of Memory-Mapped Hardware ... 55

2.8.3 Summary ... 56
2.9 User and Supervisor Modes .. 56

2.9.1 MSR Bits and Exception Handling .. 56
2.9.2 Privileged Instructions ... 56
2.9.3 Privileged SPRs .. 57
2.9.4 Privileged DCRs .. 58

2.10 Synchronization .. 58
2.10.1 Context Synchronization ... 58
2.10.2 Execution Synchronization .. 60
2.10.3 Storage Ordering and Synchronization ... 60

2.11 Implemented Instruction Set Summary ... 61
2.11.1 Instructions Specific to the PowerPC Embedded Environment ... 62
2.11.2 Storage Reference Instructions ... 62
2.11.3 Arithmetic Instructions ... 63
2.11.4 Logical Instructions .. 64
2.11.5 Compare Instructions .. 64
2.11.6 Branch Instructions .. 64

2.11.6.1 CR Logical Instructions .. 65
2.11.6.2 Rotate Instructions ... 65
2.11.6.3 Shift Instructions .. 65

http://www.manualslib.com/

 5

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.11.6.4 Cache Management Instructions ... 66
2.11.7 Interrupt Control Instructions ... 66
2.11.8 TLB Management Instructions .. 66
2.11.9 Processor Control Instructions .. 67
2.11.10 Extended Mnemonics .. 67

3. Cache Operations ... 69
3.1 ICU Features .. 69
3.2 DCU Features ... 69
3.3 ICU Organization .. 69

3.3.1 ICU Operations ... 71
3.3.2 Instruction Cachability Control .. 71
3.3.3 Instruction Cache Synonyms .. 71
3.3.4 ICU Coherency .. 72

3.4 DCU Organization .. 72
3.4.1 DCU Operations .. 73
3.4.2 DCU Write Strategies .. 74
3.4.3 DCU Load and Store Strategies .. 74
3.4.4 Data Cachability Control ... 75
3.4.5 DCU Coherency .. 75

3.5 Cache Instructions .. 75
3.5.1 ICU Instructions ... 75
3.5.2 DCU Instructions ... 76

3.6 Cache Control and Debugging Features .. 77
3.6.1 CCR0 Programming Guidelines .. 79
3.6.2 ICU Debugging .. 80
3.6.3 DCU Debugging .. 81

3.7 DCU Performance .. 81
3.7.1 Pipeline Stalls .. 81
3.7.2 Cache Operation Priorities .. 82
3.7.3 Simultaneous Cache Operations .. 82
3.7.4 Sequential Cache Operations ... 82

4. On-Chip Memory (OCM) ... 85
4.1 OCM Addressing .. 86
4.2 Store Data Bypass Behavior and Memory Coherency ... 86
4.3 OCM Registers ... 88

5. Memory Management ... 91
5.1 MMU Overview ... 91
5.2 Address Translation .. 91
5.3 Translation Lookaside Buffer (TLB) .. 92

5.3.1 Unified TLB ... 92
5.3.2 TLB Fields ... 93

5.3.2.1 Page Identification Fields ... 93
5.3.2.2 Translation Field .. 94
5.3.2.3 Access Control Fields .. 95
5.3.2.4 Storage Attribute Fields ... 95

5.3.3 Shadow Instruction TLB .. 96
5.3.3.1 ITLB Accesses ... 96

5.3.4 Shadow Data TLB ... 97
5.3.4.1 1 DTLB Accesses .. 97

5.3.5 Shadow TLB Consistency ... 97

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

5.4 TLB-Related Interrupts ... 99
5.4.1 Data Storage Interrupt ... 99
5.4.2 Instruction Storage Interrupt .. 99
5.4.3 Data TLB Miss Interrupt .. 100
5.4.4 Instruction TLB Miss Interrupt ... 100

5.5 TLB Management ... 100
5.5.1 TLB Search Instructions (tlbsx/tlbsx.) .. 100
5.5.2 TLB Read/Write Instructions (tlbre/tlbwe) .. 101
5.5.3 TLB Invalidate Instruction (tlbia) .. 101
5.5.4 TLB Sync Instruction (tlbsync) ... 101

5.6 Recording Page References and Changes .. 101
5.7 Access Protection ... 102

5.7.1 Access Protection Mechanisms in the TLB ... 102
5.7.1.1 General Access Protection ... 102
5.7.1.2 Execute Permissions ... 102
5.7.1.3 Write Permissions .. 102
5.7.1.4 Zone Protection .. 103

5.7.2 Access Protection for Cache Control Instructions ... 104
5.7.3 Access Protection for String Instructions ... 105

5.8 Real-Mode Storage Attribute Control .. 105
5.8.1 Storage Attribute Control Registers ... 106

5.8.1.1 Data Cache Write-through Register (DCWR) .. 106
5.8.1.2 Data Cache Cachability Register (DCCR) ... 106
5.8.1.3 Instruction Cache Cachability Register (ICCR) .. 107
5.8.1.4 Storage Guarded Register (SGR) .. 107
5.8.1.5 Storage User-defined 0 Register (SU0R) .. 107
5.8.1.6 Storage Little-Endian Register (SLER) .. 107

6. Interrupt Handling ... 109
6.1 Architectural Definitions and Behavior .. 109
6.2 Behavior of the PPC405 Implementation .. 110
6.3 Interrupt Handling Priorities .. 111
6.4 Critical and Noncritical Interrupts ... 112
6.5 General Interrupt Handling Registers ... 114

6.5.1 Machine State Register (MSR) .. 114
6.5.2 Save/Restore Registers 0 and 1 (SRR0–SRR1) ... 115
6.5.3 Save/Restore Registers 2 and 3 (SRR2–SRR3) ... 115
6.5.4 Exception Vector Prefix Register (EVPR) ... 116
6.5.5 Exception Syndrome Register (ESR) .. 116
6.5.6 Data Exception Address Register (DEAR) .. 118

6.6 Critical Input Interrupts .. 118
6.7 Machine Check Interrupts ... 118

6.7.1 Instruction Machine Check Handling ... 119
6.7.2 Data Machine Check Handling .. 120

6.8 Data Storage Interrupt .. 120
6.9 Instruction Storage Interrupt ... 121
6.10 External Interrupt .. 122

6.10.1 External Interrupt Handling .. 122
6.11 Alignment Interrupt ... 123
6.12 Program Interrupt .. 123
6.13 System Call Interrupt .. 124

6

http://www.manualslib.com/

 7

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

6.14 Programmable Interval Timer (PIT) Interrupt ... 125
6.15 Fixed Interval Timer (FIT) Interrupt ... 125
6.16 Watchdog Timer Interrupt ... 126
6.17 Data TLB Miss Interrupt .. 127
6.18 Instruction TLB Miss Interrupt ... 127
6.19 Debug Interrupt ... 128

7. Timer Facilities .. 129
7.1 Time Base .. 130

7.1.1 Reading the Time Base ... 131
7.1.2 Writing the Time Base ... 131

7.2 Programmable Interval Timer (PIT) .. 131
7.2.1 Fixed Interval Timer (FIT) .. 132

7.3 Watchdog Timer ... 133
7.4 Timer Status Register (TSR) .. 135
7.5 Timer Control Register (TCR) ... 135

8. Debugging ... 137
8.1 Development Tool Support ... 137
8.2 Debug Interfaces .. 137
8.3 IEEE 1149.1 Test Access Port (JTAG Debug Port) ... 137

8.3.1 JTAG Connector ... 138
8.3.2 JTAG Instructions .. 138
8.3.3 JTAG Boundary Scan ... 138
8.3.4 JTAG Implementation ... 139
8.3.5 JTAG ID Register .. 139

8.4 Trace Port .. 139
8.5 Debug Modes ... 139

8.5.1 Internal Debug Mode ... 140
8.5.2 External Debug Mode ... 140
8.5.3 Debug Wait Mode ... 140
8.5.4 Real-time Trace Debug Mode ... 141

8.6 Processor Control ... 142
8.7 Processor Status ... 142
8.8 Debug Registers ... 142

8.8.1 Debug Control Registers ... 143
8.8.1.1 Debug Control Register 0 (DBCR0) ... 143
8.8.1.2 Debug Control Register 1 (DBCR1) ... 144

8.8.2 Debug Status Register (DBSR) .. 145
8.8.3 Instruction Address Compare Registers (IAC1–IAC4) ... 147
8.8.4 Data Address Compare Registers (DAC1–DAC2) ... 147
8.8.5 Data Value Compare Registers (DVC1–DVC2) .. 147
8.8.6 Debug Events .. 147
8.8.7 Instruction Complete Debug Event ... 148
8.8.8 Branch Taken Debug Event .. 148
8.8.9 Exception Taken Debug Event .. 148
8.8.10 Trap Taken Debug Event .. 149
8.8.11 Unconditional Debug Event ... 149
8.8.12 IAC Debug Event .. 149

8.8.12.1 IAC Exact Address Compare ... 149
8.8.12.2 IAC Range Address Compare ... 149

8.8.13 DAC Debug Event ... 150

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

8.8.13.1 DAC Exact Address Compare ... 150
8.8.13.2 DAC Range Address Compare .. 151
8.8.13.3 DAC Applied to Cache Instructions .. 152
8.8.13.4 DAC Applied to String Instructions ... 153

8.8.14 Data Value Compare Debug Event ... 153
8.8.15 Imprecise Debug Event ... 155

9. Instruction Set ... 157
9.1 Instruction Set Portability .. 157
9.2 Instruction Formats ... 157
9.3 Pseudocode .. 158

9.3.1 Operator Precedence .. 160
9.4 Register Usage ... 160
9.5 Alphabetical Instruction Listing .. 160

10. Register Summary .. 353
10.1 Reserved Registers .. 353
10.2 Reserved Fields .. 353
10.3 General Purpose Registers .. 353
10.4 Machine State Register and Condition Register ... 353
10.5 Special Purpose Registers ... 354
10.6 Time Base Registers .. 355
10.7 Device Control Registers .. 356

Appendix A. Instruction Summary .. 357
A.1 Instruction Formats .. 357

A.1.1 Instruction Fields ... 357
A.1.2 Instruction Format Diagrams ... 359

A.1.2.1 I-Form .. 360
A.1.2.2 B-Form ... 360
A.1.2.3 SC-Form .. 360
A.1.2.4 D-Form .. 360
A.1.2.5 X-Form ... 361
A.1.2.6 XL-Form ... 361
A.1.2.7 XFX-Form .. 362
A.1.2.8 X0-Form ... 362
A.1.2.9 M-Form .. 362

A.2 List of Implemented Instructions—Alphabetical .. 362
A.3 List of Instructions—by Opcode .. 388

Appendix B. Instructions by Category .. 395
B.1 Implementation-Specific Instructions ... 395
B.2 Instructions in the PowerPC Embedded Environment .. 398
B.3 Privileged Instructions ... 400
B.4 Assembler Extended Mnemonics .. 402
B.5 Storage Reference Instructions ... 417
B.6 Arithmetic and Logical Instructions .. 420
B.7 Condition Register Logical Instructions ... 424
B.8 Branch Instructions .. 424
B.9 Comparison Instructions .. 425
B.10 Rotate and Shift Instructions ... 426
B.11 Cache Control Instructions .. 427

8

http://www.manualslib.com/

 9

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

B.12 Interrupt Control Instructions ... 427
B.13 TLB Management Instructions .. 428
B.14 Processor Management Instructions ... 429

Appendix C. Code Optimization and Instruction Timings ... 430
C.1 Code Optimization Guidelines .. 430

C.1.1 Condition Register Bits for Boolean Variables .. 430
C.1.2 CR Logical Instruction for Compound Branches .. 430
C.1.3 Cache Usage .. 430
C.1.4 CR Dependencies .. 431
C.1.5 Branch Prediction ... 431
C.1.6 Alignment .. 431

C.2 Instruction Timings .. 431
C.2.1 General Rules ... 431
C.2.2 Branches .. 432
C.2.3 Multiplies ... 432
C.2.4 Scalar Load Instructions ... 433
C.2.5 Scalar Store Instructions .. 434
C.2.6 Alignment in Scalar Load and Store Instructions .. 434
C.2.7 String and Multiple Instructions .. 434
C.2.8 Loads and Store Misses ... 435
C.2.9 Instruction Cache Misses ... 435

Index ... 437

Revision Log .. 449

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

10

http://www.manualslib.com/

 11

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Figures
Figure 2-2. PPC405 Programming Model—Registers ...34
Figure 2-1. PPC405 Programming Model—Registers ...34
Figure 2-3. General Purpose Registers (GPR0-GPR31) ...35
Figure 2-4. Count Register (CTR) ..36
Figure 2-5. Link Register (LR) ..37
Figure 2-6. Fixed Point Exception Register (XER) ...38
Figure 2-7. Special Purpose Register General (SPRG0–SPRG7) ..39
Figure 2-8. Processor Version Register (PVR) ..39
Figure 2-9. Condition Register (CR) ..40
Figure 2-10. PPC405 Data Types ..42
Figure 2-11. Normal Word Load or Store (Big Endian Storage Region) ..48
Figure 2-12. Byte-Reverse Word Load or Store (Little Endian Storage Region) ...48
Figure 2-13. Byte-Reverse Word Load or Store (Big Endian Storage Region) ..48
Figure 2-14. Normal Word Load or Store (Little Endian Storage Region) ...49
Figure 2-15. PPC405 Instruction Pipeline ..50
Figure 3-1. Instruction Flow ...70
Figure 3-2. Core Configuration Register 0 (CCR0) ..77
Figure 3-3. Instruction Cache Debug Data Register (ICDBDR) ...80
Figure 4-1. OCM Address Usage ...86
Figure 5-1. Effective-to-Real Address Translation Flow ..92
Figure 5-2. TLB Entries ..93
Figure 5-3. ITLB/DTLB/UTLB Address Resolution ..98
Figure 5-4. Process ID (PID) ..102
Figure 5-5. Zone Protection Register (ZPR) ..103
Figure 5-6. Generic Storage Attribute Control Register ...106
Figure 6-1. Machine State Register (MSR) ..114
Figure 6-2. Save/Restore Register 0 (SRR0) ..115
Figure 6-3. Save/Restore Register 1 (SRR1) ..115
Figure 6-4. Save/Restore Register 2 (SRR2) ..115
Figure 6-5. Save/Restore Register 3 (SRR3) ..116
Figure 6-6. Exception Vector Prefix Register (EVPR) ..116
Figure 6-7. Exception Syndrome Register (ESR) ..116
Figure 6-8. Data Exception Address Register (DEAR) ..118
Figure 7-1. Relationship of Timer Facilities to the Time Base ...129
Figure 7-2. Time Base Lower (TBL) ...130
Figure 7-3. Time Base Upper (TBU) ..130
Figure 7-4. Programmable Interval Timer (PIT) ...132
Figure 7-5. Watchdog State Machine ..133
Figure 7-6. Timer Status Register (TSR) ...135
Figure 7-7. Timer Control Register (TCR) ..136

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

Figure 8-1. Debug Control Register 0 (DBCR0) ...143
Figure 8-2. Debug Control Register 1 (DBCR1) ...144
Figure 8-3. Debug Status Register (DBSR) ...145
Figure 8-4. Instruction Address Compare Registers (IAC1–IAC4) ...147
Figure 8-5. Data Address Compare Registers (DAC1–DAC2) ...147
Figure 8-6. Data Value Compare Registers (DVC1–DVC2) ...147
Figure 8-7. Inclusive IAC Range Address Compares ...150
Figure 8-8. Exclusive IAC Range Address Compares ...150
Figure 8-9. Inclusive DAC Range Address Compares ...151
Figure 8-10. Exclusive DAC Range Address Compares ..152

12

http://www.manualslib.com/

 13

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Tables
Table 2-1. PPC405 SPRs ...36
Table 2-2. XER[CA] Updating Instructions ...38
Table 2-3. XER[SO,OV] Updating Instructions ...38
Table 2-4. Time Base Registers ...41
Table 2-5. Alignment Exception Summary ...43
Table 2-6. Big Endian Mapping ..46
Table 2-7. Little Endian Mapping ..46
Table 2-8. Bits of the BO Field ..51
Table 2-9. Conditional Branch BO Field ...52
Table 2-10. Example Memory Mapping ..55
Table 2-11. Privileged Instructions ...57
Table 2-12. PPC405 Instruction Set Summary ...61
Table 2-13. Implementation-specific Instructions ...62
Table 2-14. Storage Reference Instructions ...62
Table 2-15. Arithmetic Instructions ...63
Table 2-16. Multiply-Accumulate and Multiply Halfword Instructions ..63
Table 2-17. Logical Instructions ..64
Table 2-18. Compare Instructions ..64
Table 2-19. Branch Instructions ..64
Table 2-20. CR Logical Instructions ..65
Table 2-21. Rotate Instructions ...65
Table 2-22. Shift Instructions ..65
Table 2-23. Cache Management Instructions ...66
Table 2-24. Interrupt Control Instructions ...66
Table 2-25. TLB Management Instructions ...67
Table 2-26. Processor Control Instructions ..67
Table 3-1. Instruction Cache Organization ...70
Table 3-2. Data Cache Organization ..73
Table 3-3. Priority Changes With Different Data Cache Operations ...82
Table 4-1. Examples of Store Data Bypass ...87
Table 5-1. TLB Fields Related to Page Size ...94
Table 5-2. Protection Applied to Cache Control Instructions ..104
Table 6-1. Interrupt Handling Priorities ...111
Table 6-2. Interrupt Vector Offsets ...113
Table 6-3. ESR Alteration by Various Interrupts ...117
Table 6-4. Register Settings during Critical Input Interrupts ...118
Table 6-5. Register Settings during Machine Check—Instruction Interrupts ..119
Table 6-6. Register Settings during Machine Check—Data Interrupts ...120
Table 6-7. Register Settings during Data Storage Interrupts ..121
Table 6-8. Register Settings during Instruction Storage Interrupts ...122

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

Table 6-9. Register Settings during External Interrupts ..122
Table 6-10. Alignment Interrupt Summary ..123
Table 6-11. Register Settings during Alignment Interrupts ...123
Table 6-12. ESR Usage for Program Interrupts ..123
Table 6-13. Register Settings during Program Interrupts ..124
Table 6-14. Register Settings during System Call Interrupts ..125
Table 6-15. Register Settings during Programmable Interval Timer Interrupts ...125
Table 6-16. Register Settings during Fixed Interval Timer Interrupts ..126
Table 6-17. Register Settings during Watchdog Timer Interrupts ...126
Table 6-18. Register Settings during Data TLB Miss Interrupts ..127
Table 6-19. Register Settings during Instruction TLB Miss Interrupts ...127
Table 6-20. SRR2 during Debug Interrupts ...128
Table 6-21. Register Settings during Debug Interrupts ...128
Table 7-1. Time Base Access ...130
Table 7-2. FIT Controls ...132
Table 7-3. Watchdog Timer Controls ..133
Table 7-4. Watchdog Timer State Machine ...134
Table 8-1. JTAG Instructions ..138
Table 8-2. Debug Events ..148
Table 8-3. DAC Applied to Cache Instructions ..152
Table 8-4. Setting of DBSR Bits for DAC and DVC Events ..154
Table 8-5. Comparisons Based on DBCR1[DVnM] ..154
Table 8-6. Comparisons for Aligned DVC Accesses ...155
Table 8-7. Comparisons for Misaligned DVC Accesses ...155
Table 9-1. Implementation-Specific Instructions ...157
Table 9-2. Operator Precedence ...160
Table 9-3. Extended Mnemonics for addi ...164
Table 9-4. Extended Mnemonics for addic ..165
Table 9-5. Extended Mnemonics for addic. ...166
Table 9-6. Extended Mnemonics for addis ..167
Table 9-7. Extended Mnemonics for bc, bca, bcl, bcla ...176
Table 9-8. Extended Mnemonics for bcctr, bcctrl ..181
Table 9-9. Extended Mnemonics for bclr, bclrl ..184
Table 9-10. Extended Mnemonics for cmp ...188
Table 9-11. Extended Mnemonics for cmpi ..189
Table 9-12. Extended Mnemonics for cmpl ..190
Table 9-13. Extended Mnemonics for cmpli ...191
Table 9-14. Extended Mnemonics for creqv ...195
Table 9-15. Extended Mnemonics for crnor ..197
Table 9-16. Extended Mnemonics for cror ..198
Table 9-17. Extended Mnemonics for crxor ..200

14

http://www.manualslib.com/

 15

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Table 9-18. Transfer Bit Mnemonic Assignment ...262
Table 9-19. Extended Mnemonics for mfspr ...267
Table 9-20. Extended Mnemonics for mftb ...268
Table 9-21. Extended Mnemonics for mftb ...268
Table 9-22. Extended Mnemonics for mtcrf ..269
Table 9-23. Extended Mnemonics for mtspr ...273
Table 9-24. Extended Mnemonics for nor, nor. ..292
Table 9-25. Extended Mnemonics for or, or. ..293
Table 9-26. Extended Mnemonics for ori ..295
Table 9-27. Extended Mnemonics for rlwimi, rlwimi. ...299
Table 9-28. Extended Mnemonics for rlwinm, rlwinm. ..300
Table 9-29. Extended Mnemonics for rlwnm, rlwnm. ...302
Table 9-30. Extended Mnemonics for subf, subf., subfo, subfo. ...327
Table 9-31. Extended Mnemonics for subfc, subfc., subfco, subfco. ...328
Table 9-32. Extended Mnemonics for tlbre ...336
Table 9-33. Extended Mnemonics for tlbwe ...340
Table 9-34. Extended Mnemonics for tw ..342
Table 9-35. Extended Mnemonics for twi ...345
Table 10-1. PPC405 General Purpose Registers ...353
Table 10-2. PPC405 General Purpose Registers ...353
Table 10-3. Special Purpose Registers ..354
Table 10-4. Time Base Registers ...356

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

16

http://www.manualslib.com/

 17

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

About This Book
This user’s manual provides the architectural overview, programming model, and detailed information about the
registers, the instruction set, and operations of the AMCC PowerPC™ 405 (PPC405) embedded processor. This
device contains a 32-bit reduced instruction set computer (RISC) processor.

The PPC405 RISC embedded processor features:

• PowerPC Architecture™

• Single-cycle execution for most instructions

• Instruction cache unit and data cache unit

• Support for little endian operation

• Interrupt interface for one critical and one non-critical interrupt signal

• JTAG interface

Who Should Use This Book

This book is for system hardware and software developers, and for application developers who need to understand
the PPC405. The audience should understand network processor design, network system design, operating
systems, RISC processing, and design for testability.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

How to Use This Book

This book describes the PPC405 device architecture, programming model, external interfaces, internal registers,
and instruction set. This book is organized as follows:

• Overview on page 21
• Programming Model on page 31
• Cache Operations on page 69
• Memory Management on page 91
• Interrupt Handling on page 109
• On-Chip Memory (OCM) on page 85
• Timer Facilities on page 129
• Debugging on page 137
• Instruction Set on page 157
• Register Summary on page 353

This book contains the following appendixes:
• Instruction Summary on page 357
• Instructions by Category on page 395
• Code Optimization and Instruction Timings on page 430

To help readers find material in these chapters, the book contains:
• Contents on page 3
• Figures on page 11
• Tables on page 13
• Index on page 437

18

http://www.manualslib.com/

 19

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Conventions

The following is a list of notational conventions frequently used in this manual.

ActiveLow An overbar indicates an active-low signal.

n A decimal number

0xn A hexadecimal number

0bn A binary number

= Assignment

∧ AND logical operator

¬ NOT logical operator

∨ OR logical operator

⊕ Exclusive-OR (XOR) logical operator

+ Twos complement addition

– Twos complement subtraction, unary minus

× Multiplication

÷ Division yielding a quotient

% Remainder of an integer division; (33 % 32) = 1.

|| Concatenation

=, ≠ Equal, not equal relations

<, > Signed comparison relations

, Unsigned comparison relations

if...then...else... Conditional execution; if condition then a else b, where a and b represent one or more
pseudocode statements. Indenting indicates the ranges of a and b. If b is null, the
else does not appear.

do Do loop. “to” and “by” clauses specify incrementing an iteration variable; “while” and
“until” clauses specify terminating conditions. Indenting indicates the scope of a loop.

leave Leave innermost do loop or do loop specified in a leave statement.

FLD An instruction or register field

FLDb A bit in a named instruction or register field

FLDb:b A range of bits in a named instruction or register field

FLDb,b, . . . A list of bits, by number or name, in a named instruction or register field

REGb A bit in a named register

REGb:b A range of bits in a named register

REGb,b, . . . A list of bits, by number or name, in a named register

REG[FLD] A field in a named register

REG[FLD, FLD . . .] A list of fields in a named register

REG[FLD:FLD] A range of fields in a named register

<u >u

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

GPR(r) General Purpose Register (GPR) r, where 0 ≤ r ≤ 31.

(GPR(r)) The contents of GPR r, where 0 ≤ r ≤ 31.

DCR(DCRN) A Device Control Register (DCR) specified by the DCRF field in an mfdcr or mtdcr
instruction

SPR(SPRN) An SPR specified by the SPRF field in an mfspr or mtspr instruction

TBR(TBRN) A Time Base Register (TBR) specified by the TBRF field in an mftb instruction

GPRs RA, RB, . . .
(Rx) The contents of a GPR, where x is A, B, S, or T

(RA|0) The contents of the register RA or 0, if the RA field is 0.

CRFLD The field in the condition register pointed to by a field of an instruction.

c0:3 A 4-bit object used to store condition results in compare instructions.
nb The bit or bit value b is replicated n times.

xx Bit positions which are don’t-cares.

CEIL(x) Least integer ≥ x.

EXTS(x) The result of extending x on the left with sign bits.

PC Program counter.

RESERVE Reserve bit; indicates whether a process has reserved a block of storage.

CIA Current instruction address; the 32-bit address of the instruction being described by
a sequence of pseudocode. This address is used to set the next instruction address
(NIA). Does not correspond to any architected register.

NIA Next instruction address; the 32-bit address of the next instruction to be executed. In
pseudocode, a successful branch is indicated by assigning a value to NIA. For
instructions that do not branch, the NIA is CIA +4.

MS(addr, n) The number of bytes represented by n at the location in main storage represented by
addr.

EA Effective address; the 32-bit address, derived by applying indexing or indirect
addressing rules to the specified operand, that specifies a location in main storage.

EAb A bit in an effective address.

EAb:b A range of bits in an effective address.

ROTL((RS),n) Rotate left; the contents of RS are shifted left the number of bits specified by n.

MASK(MB,ME) Mask having 1s in positions MB through ME (wrapping if MB > ME) and 0s
elsewhere.

instruction(EA) An instruction operating on a data or instruction cache block associated with an EA.

20

http://www.manualslib.com/

 21

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

1. Overview
This document describes the PowerPC™ 405 fixed-point, 32-bit RISC processor, referred to as the PPC405.

This section describes:

• PPC405 processor features

• PPC405 as a 32-bit implementation of Book-E Enhanced PowerPC Architecture.

• Organization of the PPC405 core, including a block diagram and descriptions of the functional units.

• PPC405 core interfaces.

1.1 PPC405 Processor Features

The PPC405 provides high performance and low-power consumption executing at sustained speeds approaching
one cycle per instruction. On-chip instruction and data caches reduce chip count and design complexity in systems
and improve system throughput. The CPU provides an ideal foundation for systems incorporating system-on-a-
chip (SOC) designs. This section provides a list of features that are implemented in the PPC405.

• Five-stage pipeline with single-cycle execution of most instructions, including loads and stores

• Unaligned load/store support to cache arrays, main memory, and on-chip memory (OCM)

• Thirty-two 32-bit general purpose registers (GPRs)

• Static branch prediction

• Hardware multiply/divide for faster integer arithmetic (4-cycle multiply, 35-cycle divide)

• Multiply-accumulate instructions

• Enhanced string and multiple-word handling

• True little endian operation

• Forward and reverse trace from a trigger event

• Storage control
• Separate, configurable, two-way set-associative 16KB instruction and data cache units
• Eight words (32 bytes) per cache line
• Instruction cache unit (ICU) non-blocking during line fills, data cache unit (DCU) non-blocking during line

fills and flushes
• Read and write line buffers
• Instruction fetch hits are supplied from line buffer
• Data load/store hits are supplied to line buffer
• Programmable ICU prefetching of next sequential line into line buffer
• Programmable ICU prefetching of non cacheable instructions, full line (eight words) or half line (four words)
• Write-back or write-through DCU write strategies
• Programmable allocation on loads and stores
• Operand forwarding during cache line fills
• Parity detection and reporting for the instruction cache, data cache, and translation lookaside buffer (TLB)
• Double word instruction fetch from cache
• Translation of the 4 GB logical address space into physical addresses

• On-Chip Memory (OCM) interface

• Memory management
• Translation of the 4GB logical address space into physical addresses
• Independent enabling of instruction and data translation/protection

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

• Page-level access control using the translation mechanism
• Software control of page replacement strategy
• Additional control over protection using zones
• WIU0GE (write-through, cachability, compressed user-defined 0, guarded, endian) storage attribute

control for each virtual memory region
• WIMU0GE storage attribute control for thirty-two real 128MB regions

• Timer support
• 64-bit time base
• Programmable interval timer (PIT), fixed interval timer (FIT), and watchdog timers
• Synchronous external time base clock input

• Debug support
• Enhanced debug support with logical operators
• Four instruction address compares (IACs)
• Two data address compares (DACs)
• Two data value compares (DVCs)
• JTAG instruction to write to ICU
• Forward or backward instruction tracing

• Minimized interrupt latency

• Advanced power management support

• PowerPC User Instruction Set Architecture (UISA) and extensions for embedded applications

• 32-bit DCR interface

1.2 PowerPC Architecture

The PowerPC Architecture comprises three levels of standards:

• PowerPC User Instruction Set Architecture (UISA), including the base user-level instruction set, user-level
registers, programming model, data types, and addressing modes. This is referred to as Book I of the
PowerPC Architecture.

• PowerPC Virtual Environment Architecture, describing the memory model, cache model, cache control
instructions, address aliasing, and related issues. While accessible from the user level, these features are
intended to be accessed from within library routines provided by the system software. This is referred to as
Book II of the PowerPC Architecture.

• PowerPC Operating Environment Architecture, including the memory management model, supervisor-level
registers, and the exception model. These features are not accessible from the user level. This is referred to as
Book III of the PowerPC Architecture.

Book I and Book II define the instruction set and facilities available to the application programmer. Book III defines
features, such as system-level instructions, that are not directly accessible by user applications. The PowerPC
Architecture is described in The PowerPC Architecture: A Specification for a New Family of RISC Processors.

The PowerPC Architecture provides compatibility of PowerPC Book I application code across all PowerPC
implementations to help maximize the portability of applications developed for PowerPC processors. This is
accomplished through compliance with the first level of the architectural definition, the PowerPC UISA, which is
common to all PowerPC implementations.

22

http://www.manualslib.com/

 23

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

1.3 PPC405 as a PowerPC Implementation

The PPC405 implements the PowerPC UISA, user-level registers, programming model, data types, addressing
modes, and 32-bit fixed-point operations. The PPC405 fully complies with the PowerPC UISA. The UISA 64-bit and
floating point operations are not implemented. The floating point operations, which cause exceptions, can then be
emulated by software.

Most of the features of the PPC405 processor core are compatible with the PowerPC Virtual Environment and
Operating Environment Architectures. The PPC405 processor core also provides a number of optimizations and
extensions to these layers of the PowerPC Architecture. The full architecture of the PPC405 is defined by the
PowerPC Embedded Environment and the PowerPC User Instruction Set Architecture.

The primary extensions of the PowerPC Architecture defined in the Embedded Environment are:

• A simplified memory management mechanism with enhancements for embedded applications

• An enhanced, dual-level interrupt structure

• An architected DCR address space for integrated peripheral control

• The addition of several instructions to support these modified and extended resources

Some of the specific implementation features of the PPC405 are beyond the scope of the PowerPC Architecture.
These features are included to enhance performance, integrate functionality, and reduce system complexity in
embedded control applications.

1.4 RISC Processor Core Organization

The processor core consists of a 5-stage pipeline, separate instruction and data cache units, virtual memory
management unit (MMU), debug, and interfaces to other functions.

1.4.1 Instruction and Data Cache Controllers

The PPC405 processor core uses a 16-KB instruction cache unit (ICU) and an 16-KB data cache unit (DCU) to
enable concurrent accesses and minimize pipeline stalls. Both cache units are two-way set-associative and use a
32-byte line size. The instruction set provides a rich assortment of cache control instructions, including instructions
to read tag information and data arrays. See Chapter 4, “Cache Operations,” for detailed information about the ICU
and DCU.

1.4.1.1 Instruction Cache Unit

The ICU provides one or two instructions per cycle to the execution unit (EXU) over a 64-bit bus. A line buffer (built
into the output of the array for manufacturing test) enables the ICU to be accessed only once for every four
instructions, to reduce power consumption by the array.

The ICU can forward any or all of the words of a line fill to the EXU to minimize pipeline stalls caused by cache
misses. The ICU aborts speculative fetches abandoned by the EXU, eliminating unnecessary line fills and enabling
the ICU to handle the next EXU fetch. Aborting abandoned requests also eliminates unnecessary PLB activity to
increase PLB availability for other on-chip cores, such as the DMA controller.

1.4.1.2 Data Cache Unit

The DCU transfers 1, 2, 3, 4, or 8 bytes per cycle, depending on the number of byte enables presented by the
CPU. The DCU contains a single-element command and store data queue to reduce pipeline stalls; this queue
enables the DCU to independently process load/store and cache control instructions. Dynamic PLB request

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

prioritization reduces pipeline stalls even further. When the DCU is busy with a low-priority request while a
subsequent storage operation requested by the CPU is stalled, the DCU automatically increases the priority of the
current request to the PLB.

The DCU uses a two-line flush queue to minimize pipeline stalls caused by cache misses. Line flushes are
postponed until after a line fill is completed. Registers comprise the first position of the flush queue; the line buffer
built into the output of the array for manufacturing test serves as the second position of the flush queue. Pipeline
stalls are further reduced by forwarding the requested word to the CPU during the line fill. Single-queued flushes
are non-blocking. When a flush operation is pending, the DCU can continue to access the array to determine
subsequent load or store hits. Under these conditions, load hits can occur concurrently with store hits to write-back
memory without stalling the pipeline. Requests abandoned by the CPU can also be aborted by the cache
controller.

Additional DCU features enable the programmer to tailor performance for a given application. The DCU can
function in write-back or write-through mode, as controlled by the Data Cache Write-through Register (DCWR) or
the translation look-aside buffer (TLB). DCU performance can be tuned to balance performance and memory
coherency. Store-without-allocate, controlled by the SWOA field of the Core Configuration Register 0 (CCR0), can
inhibit line fills caused by store misses to further reduce potential pipeline stalls and unwanted external bus traffic.
Similarly, load-without-allocate, controlled by CCR0[LWOA], can inhibit line fills caused by load misses.

1.4.2 Memory Management Unit

The 4GB address space of the PPC405 is presented as a flat address space.

The MMU provides address translation, protection functions, and storage attribute control for embedded
applications. The MMU supports demand paged virtual memory and other management schemes that require
precise control of logical to physical address mapping and flexible memory protection. Working with appropriate
system level software, the MMU provides the following functions:

• Translation of the 4GB logical address space into physical addresses

• Independent enabling of instruction and data translation/protection

• Page level access control using the translation mechanism

• Software control of page replacement strategy

• Additional control over protection using zones

• Storage attributes for cache policy and speculative memory access control

The MMU can be disabled under software control. If the MMU is not used, the PPC405 provides other storage
control mechanisms.

The translation lookaside buffer (TLB) is the hardware resource that controls translation and protection. It consists
of 64 entries, each specifying a page to be translated. The TLB is fully associative; a page entry can be placed
anywhere in the TLB. The translation function of the MMU occurs pre-cache for data accesses. Cache tags and
indexing use physical addresses for data accesses; instruction fetches are virtually indexed and physically tagged.

Software manages the establishment and replacement of TLB entries. This gives system software significant
flexibility in implementing a custom page replacement strategy. For example, to reduce TLB thrashing or
translation delays, software can reserve several TLB entries for globally accessible static mappings. The
instruction set provides several instructions to manage TLB entries. These instructions are privileged and require
the software to be executing in supervisor state. Additional TLB instructions are provided to move TLB entry fields
to and from GPRs.

24

http://www.manualslib.com/

 25

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

The MMU divides logical storage into pages. Eight page sizes (1KB, 4KB, 16KB, 64KB, 256KB, 1MB, 4MB, and
16MB) are simultaneously supported, so that, at any given time, the TLB can contain entries for any combination of
page sizes. For a logical to physical translation to occur, a valid entry for the page containing the logical address
must be in the TLB. Addresses for which no TLB entry exists cause TLB-Miss exceptions.

To improve performance, 4 instruction-side and 8 data-side TLB entries are kept in shadow arrays. The shadow
arrays prevent TLB contention. Hardware manages the replacement and invalidation of shadow-TLB entries; no
system software action is required. The shadow arrays can be thought of as level 1 TLBs, with the main TLB
serving as a level 2 TLB.

When address translation is enabled, the translation mechanism provides a basic level of protection. Physical
addresses not mapped by a page entry are inaccessible when translation is enabled. Read access is implied by
the existence of the valid entry in the TLB. The EX and WR bits in the TLB entry further define levels of access for
the page, by permitting execute and write access, respectively.

The Zone Protection Register (ZPR) enables the system software to override the TLB access controls. For
example, the ZPR provides a way to deny read access to application programs. The ZPR can be used to classify
storage by type; access by type can be changed without manipulating individual TLB entries.

The PowerPC Architecture provides WIU0GE (write-back/write through, cachability, user-defined 0, guarded,
endian) storage attributes that control memory accesses, using bits in the TLB or, when address translation is
disabled, storage attribute control registers.

When address translation is enabled (MSR[IR, DR] = 1), storage attribute control bits in the TLB control the storage
attributes associated with the current page. When address translation is disabled (MSR[IR, DR] = 0), bits in each
storage attribute control register control the storage attributes associated with storage regions. Each storage
attribute control register contains 32 fields. Each field sets the associated storage attribute for a 128MB memory
region. See the topic Real-Mode Storage Attribute Control in the PPC405 Processor User’s Manual for details
about the storage attribute control registers.

1.4.3 Debug

The processor core debug facilities include debug modes for the various types of debugging used during hardware
and software development. Also included are debug events that allow developers to control the debug process.
Debug modes and debug events are controlled using debug registers in the chip. The debug registers are
accessed either through software running on the processor, or through the JTAG port. The JTAG port can also be
used for board test.

The debug modes, events, controls, and interfaces provide a powerful combination of debug facilities for hardware
and software development tools.

1.4.3.1 Development Tool Support

The PPC405 is supported by a wide range of hardware and software development tools.

An operating system debugger is an example of an operating system-aware debugger, implemented using
software traps.

1.4.3.2 Debug Modes

The internal, external, real-time-trace, and debug wait modes support a variety of debug tool used in embedded
systems development. These debug modes are described in detail in Debug Modes on page 139.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

1.4.4 Processor Core Interfaces

The processor core provides a range of I/O interfaces.

1.4.4.1 Processor Local Bus

The PLB-compliant interface provides separate 32-bit address and 64-bit data buses for the instruction and data
sides.

1.4.4.2 Device Control Register Bus

The Device Control Register (DCR) bus interface provides access to on-chip registers for configuration and status
of peripherals such as OCM and DMA.

These registers are accessed using the mfdcr and mtdcr instructions.

1.4.4.3 Clock and Power Management

This interface supports several methods of clock distribution and power management.

1.4.4.4 JTAG

The JTAG port is enhanced to support the attachment of a debug tool such as the RISCWatch product. Through
the JTAG test access port, a debug tool can single-step the processor and interrogate internal processor state to
facilitate software debugging. The enhancements comply with the IEEE 1149.1 specification for vendor-specific
extensions, and are therefore compatible with standard JTAG hardware for boundary-scan system testing.

1.4.4.5 Interrupts

The PPC405 provides an interface to the UIC, an on-chip interrupt controller that is logically outside the processor.
The UIC combines asynchronous interrupt inputs from on-chip and off-chip sources and presents them to the
processor core using a pair of interrupt signals: critical and non-critical.

1.4.4.6 On-Chip Memory

The on-chip memory (OCM) interface supports the implementation of instruction- and data-side memory that can
be accessed at performance levels matching the cache arrays.

1.5 Processor Programming Model

The programming model is described in detail in Programming Model on page 31.

The PowerPC instruction set and Special Purpose Registers (SPRs) provide a high degree of user control over
configuration and operation of the processor core functional units.

1.5.1 Data Types

Processor core operands are bytes, halfwords, and words. Multiple words or strings of bytes can be transferred
using the load/store multiple and load/store string instructions. Data is represented in twos complement notation or
in unsigned fixed-point format.

26

http://www.manualslib.com/

 27

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

The address of a multibyte operand is always the lowest memory address occupied by that operand. Byte ordering
can be selected as big endian (the lowest memory address of an operand contains its most significant byte) or as
little endian (the lowest memory address of an operand contains its least significant byte).

1.5.2 Processor Register Set Summary

The processor core registers can be grouped into basic categories based on function and access mode: General
Purpose Registers (GPRs), Special Purpose Registers (SPRs), the Machine State Register (MSR), the Condition
Register (CR), and Device Control Registers (DCRs).

Register Summary on page 353 provides lists of all registers provided by the processor..

1.5.2.1 General Purpose Registers

The processor core contains 32 GPRs; each register contains 32 bits. The contents of the GPRs can be
transferred from memory using load instructions and stored to memory using store instructions. GPRs, which are
specified as operands in many instructions, can also receive instruction results and the contents of other registers.

1.5.2.2 Special Purpose Registers

Special Purpose Registers (SPRs), which are part of the PowerPC Architecture, are accessed using the mtspr and
mfspr instructions. SPRs control the use of the debug facilities, timers, interrupts, storage control attributes, and
other architected processor resources.

All SPRs are privileged (unavailable to user-mode programs), except the Count Register (CTR), the Link Register
(LR), SPR General Purpose Registers (SPRG4–SPRG7, read-only), and the Fixed Point Exception Register
(XER). Note that access to the Time Base Lower (TBL) and Time Base Upper (TBU) registers, when addressed as
SPRs, is write-only and privileged. However, when addressed as Time Base Registers (TBRs), read access to
these registers is not privileged. See The Time Base on page 41 for more information.

1.5.2.3 Machine State Register

The PPC405 processor core contains a 32-bit Machine State Register (MSR). The contents of a GPR can be
written to the MSR using the mtmsr instruction, and the MSR contents can be read into a GPR using the mfmsr
instruction. The MSR contains fields that control the operation of the processor core.

1.5.2.4 Condition Register

The PPC405 processor core contains a 32-bit Condition Register (CR). These bits are grouped into eight 4-bit
fields, CR[CR0]–CR[CR7]. Instructions are provided to perform logical operations on CR fields and bits within fields
and to test CR bits within fields. The CR fields, which are set by compare instructions, can be used to control
branches. CR[CR0] can be set implicitly by arithmetic instructions.

1.5.2.5 Device Control Registers

DCRs, which are architecturally outside of the processor core, are accessed using the mtdcr and mfdcr
instructions. DCRs are used to control, configure, and hold status for various functional units that are not part of the
processor core.

The mtdcr and mfdcr instructions are privileged, for all DCRs. Therefore, all accesses to DCRs are privileged.
See User and Supervisor Modes on page 56 for details.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

1.5.3 Memory-Mapped I/O Registers

The memory-mapped I/O (MMIO) registers are accessed using load and store instructions. MMIO registers, which
are outside processor core and which are not architected, are used to control, configure, and hold status for
various functional units that are not part of the processor core.

1.5.4 Addressing Modes

The processor core supports the following addressing modes, which enable efficient retrieval and storage of data
in memory:

• Base plus displacement addressing

• Indexed addressing

• Base plus displacement addressing and indexed addressing, with update

In the base plus displacement addressing mode, an effective address (EA) is formed by adding a displacement to
a base address contained in a GPR (or to an implied base of 0). The displacement is an immediate field in an
instruction.

In the indexed addressing mode, the EA is formed by adding an index contained in a GPR to a base address
contained in a GPR (or to an implied base of 0).

The base plus displacement and the indexed addressing modes also have a “with update” mode. In “with update”
mode, the effective address calculated for the current operation is saved in the base GPR, and can be used as the
base in the next operation. The “with update” mode relieves the processor from repeatedly loading a GPR with an
address for each piece of data, regardless of the proximity of the data in memory.

28

http://www.manualslib.com/

 29

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

30

http://www.manualslib.com/

 31

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2. Programming Model
The programming model of the PPC405 describes how the following features and operations of the processor
appear to programmers:

• Memory organization and addressing, page 31

• Registers, page 32

• Data types and alignment, page 42

• Byte ordering, page 44

• Instruction processing, page 49

• Branch processing, page 50

• Speculative accesses, page 53

• Privileged mode operation, page 56.

• Synchronization, page 58

• Instruction set, page 61

2.1 User and Privileged Programming Models

The PPC405 executes programs in two modes, also referred to as states. Programs running in privileged mode
(also referred to as the supervisor state) can access any register and execute any instruction. These instructions
and registers comprise the privileged programming model. In user mode, certain registers and instructions are
unavailable to programs. This is also called the problem state. Those registers and instructions that are available
comprise the user programming model.

Privileged mode provides operating system software access to all processor resources. Because access to certain
processor resources is denied in user mode, application software runs in user mode. Operating system software
and other application software is protected from the effects of an errant application program.

Throughout this book, the terms user program and privileged programs are used to associate programs with one of
the programming models. Registers and instructions are described as user or privileged. Privileged mode
operation is described in detail in User and Supervisor Modes on page 56.

2.2 Storage Addressing

As a 32-bit implementation of the Book-E Enhanced PowerPC Architecture, the PPC405 implements a uniform 32-
bit effective address (EA) space. Effective addresses are expanded into virtual addresses and then translated to
36-bit (64GB) real addresses by the memory management unit (see Memory Management on page 91 for more
information on the translation process).

The PPC405 generates an effective address whenever it executes a storage access, branch, cache management,
or translation look aside buffer (TLB) management instruction, or when it fetches the next sequential instruction.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

2.2.1 Storage Attributes

The PowerPC Architecture defines storage attributes that control data and instruction accesses. Storage attributes
are provided to control cache write-through policy (the W storage attribute), cachability (the I storage attribute),
memory coherency in multiprocessor environments (the M storage attribute), and guarding against speculative
memory accesses (the G storage attribute). The PowerPC Embedded Environment defines additional storage
attributes for storage compression (the U0 storage attribute) and byte ordering (the E storage attribute).

The PPC405 provides two control mechanisms for the W, I, U0, G, and E attributes. Because the PPC405 does not
provide hardware support for multiprocessor environments, the M storage attribute, when present, has no effect.

When the PPC405 operates in virtual mode (address translation is enabled), each storage attribute is controlled by
the W, I, U0, G, and E fields in the translation lookaside buffer (TLB) entry for each memory page. The size of
memory pages, and hence the size of storage attribute control regions, is variable. Multiple sizes can be in effect
simultaneously on different pages.

When the PPC405 operates in real mode (address translation is disabled), storage attribute control registers
control the corresponding storage attributes. These registers are:

• Data Cache Write-through Register (DCWR)

• Data Cache Cachability Register (DCCR)

• Instruction Cache Cachability Register (ICCR)

• Storage Guarded Register (SGR)

• Storage Little-Endian Register (SLER)

• Storage User-defined 0 Register (SU0R)

Each storage attribute control register contains 32 bits; each bit controls one of thirty-two 128MB storage attribute
control regions. Bit 0 of each register controls the lowest-order region, with ascending bits controlling ascending
regions in memory. The storage attributes in each storage attribute region are set independently of each other and
of the storage attributes for other regions.

2.3 Registers

All PPC405 registers are identified in this section. Some of the frequently-used registers are described in detail.
Other registers are covered in their respective topic chapters (for example, the cache registers are described in
Cache Operations on page 69). All processor registers are summarized in Register Summary on page 353.

The registers are grouped into categories: General Purpose Registers (GPRs), Special Purpose Registers (SPRs),
Time Base Registers (TBRs), the Machine State Register (MSR), the Condition Register (CR), Device Control
Registers (DCRs), and memory-mapped I/O registers (MMIO). Different instructions are used to access each
category of registers.

Processor registers are covered in this book. The DCRs ands MMIO registrers are covered in the user’s manual for
the chip in which this processor is instantiated.

For all registers with fields marked as reserved, the reserved fields should be written as 0 and read as undefined.
That is, when writing to a register with a reserved field, write a 0 to the reserved field. When reading from a register
with a reserved field, ignore that field.

32

http://www.manualslib.com/

 33

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Programming Note: Programming Note: A good coding practice is to perform the initial write to a register
with reserved fields as described, and to perform all subsequent writes to the register using a read-modify-
write strategy: read the register, use logical instructions to alter defined fields, leaving reserved fields
unmodified, and write the register.

Figure 2-1 illustrates the registers in the user and supervisor programming models.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

Figure 2-1. PPC405 Programming Model—Registers

User Model
General-Purpose Registers

GPR0

GPR1

GPR31

•
•
•

Condition Register

CR

Fixed-Point Exception Register

XER

Link Register

LR

Count Register

CTR

Time Base Registers (read-only)

TBL

TBU

SPR 0x001

SPR 0x009

SPR 0x008

TBR 0x10C

TBR 0x10D

Supervisor Model

MSR

Machine State Register

PVR

Processor Version Register

SPR 0x3DA

Exception Handling Registers
Exception Vector Prefix Register

Exception Syndrome Register

EVPR

ESR

SPR 0x3D5

SPR 0x3D4

SPR General Registers

SPRG0

SPRG1

SPRG7

SPR 0x110

SPR 0x111

SPR 0x114

Save/Restore Registers

SRR0

SRR1

SRR2

SRR3

SPR 0x01A

SPR 0x01B

SPR 0x3DE

SPR 0x3DF

SPRG4

SPRG5

SPRG7

SPR 0x104

SPR 0x105

SPR 0x107

SPRG5 SPR 0x106

SPR General Registers (read-only)

SPRG2

SPRG3

SPRG4

SPRG5

SPRG6

SPR 0x112

SPR 0x113

SPR 0x115

SPR 0x116

SPR 0x117

Data Exception Address Register

DEAR SPR 0x3D5

Timer Control Register

TCR

Timer Status Register

TSR

Timer FacilitiesCore Configuration Register

CCR0

Instruction Address Compares

IAC1

IAC2

IAC3

IAC4

SPR 0x3F4

SPR 0x3F5

SPR 0x3B4

SPR 0x3B5

Debug Registers

Time Base Registers

TBL

TBU

SPR 0x11C

SPR 0x11D

Data Address Compares

DAC1

DAC2

SPR 0x3F6

SPR 0x3F7

Debug Status Register

DBSR

Storage Attribute Control Registers

DCCR

DCWR

SPR 0x3FA

SPR 0x3BA

SPR 0x3BB

ICCR

SGR

SLER

SU0R

SPR 0x3FB

SPR 0x3B9

SPR 0x3BC

Debug Control Registers

DBCR0

DBCR1

SPR 0x3F2

SPR 0x3BD

Data Value Compares

DVC1

DVC2

SPR 0x3B6

SPR 0x3B7

Instruction Cache Debug Data Register

ICDBR SPR 0x3D3

SPR 0x3F0

Memory Management Registers

Process ID

Zone Protection Register

PID

ZPR

SPR 0x3B1

SPR 0x3B0

SPR 0x3B3

SPR 0x3D8

SPR 0x11F

Programmable Interval Timer

PIT SPR 0x3DBUser SPR General Register 0 (read/write)

USPRG0 SPR 0x100

34

http://www.manualslib.com/

 35

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.3.1 General Purpose Registers (GPR0-GPR31)

The PPC405 contains thirty-two 32-bit general purpose registers (GPRs). Data from memory can be read into
GPRs using load instructions and the contents of GPRs can be written to memory using store instructions. Most
integer instructions use GPRs for source and destination operands. See Table 10-1 on page 353 for the numbering
of the GPRs.

2.3.2 Special Purpose Registers (SPR)

Special purpose registers (SPRs), which are part of the PowerPC Architecture and the PowerPC Embedded
Environment, are accessed using the mtspr and mfspr instructions.

SPRs control the operation of debug facilities, timers, interrupts, storage control attributes, and other architected
processor resources. Table 10-3 on page 354 shows the mnemonic, name, and number for each SPR. Table 2-1
on page 36, lists the PPC405 SPRs by function and indicates the pages where the SPRs are described more fully.

Except for the Link Register (LR), the Count Register (CTR), the Fixed-point Exception Register (XER), User SPR
General 0 (USPRG0, and read access to SPR General 4–7 (SPRG4–SPRG7), all SPRs are privileged. As SPRs,
the registers TBL and TBU are privileged write-only; as TBRs, these registers can be read in user mode. Unless
used to access non-privileged SPRs, attempts to execute mfspr and mtspr instructions while in user mode cause
privileged violation program interrupts. See Privileged SPRs on page 57.

Figure 2-3. General Purpose Registers (GPR0-GPR31)
0:31 General Purpose Register data

AMCC Proprietary

http://www.manualslib.com/

 36

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.3.2.1 Count Register (CTR)

The CTR is written from a GPR using mtspr. The CTR contents can be used as a loop count that is decremented
and tested by some branch instructions. Alternatively, the CTR contents can specify a target address for the bcctr
instruction, enabling branching to any address.

The CTR is in the user programming model.

Table 2-1. PPC405 SPRs
Function Register Access Page

Configuration CCR0 Privileged 77

Branch Control
CTR User 36

LR User 37

Debug

DAC1 DAC2 Privileged 147

DBCR0 DBCR1 Privileged 143

DBSR Privileged 145

DVC1 DVC2 Privileged 147

IAC1 IAC2 IAC3 IAC4 Privileged 147

ICDBDR Privileged 80

Fixed-point Exception XER User 37

General-Purpose SPR

SPRG0 SPRG1 SPRG2 SPRG3 Privileged 39

SPRG4 SPRG5 SPRG6 SPRG7 User read, privileged write 39

USPRG0 User 39

Interrupts and Exceptions

DEAR Privileged 118

ESR Privileged 116

EVPR Privileged 116

SRR0 SRR1 Privileged 115

SRR2 SRR3 Privileged 115

Processor Version PVR Privileged, read-only 39

Storage Attribute Control

DCCR Privileged 106

DCWR Privileged 106

ICCR Privileged 107

SGR Privileged 107

SLER Privileged 107

SU0R Privileged 107

Timer Facilities

TBL TBU Privileged, write-only 130

PIT Privileged 131

TCR Privileged 135

TSR Privileged 135

Zone Protection ZPR Privileged 103

Figure 2-4. Count Register (CTR)

0:31 Count
Used as count for branch conditional with
decrement instructions, or as address for branch-
to-counter instructions.

AMCC Proprietary

http://www.manualslib.com/

 37

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.3.2.2 Link Register (LR)

The LR is written from a GPR using mtspr, and by branch instructions that have the LK bit set to 1. Such branch
instructions load the LR with the address of the instruction following the branch instruction. Thus, the LR contents
can be used as the return address for a subroutine that was called using the branch.

The LR contents can be used as a target address for the bclr instruction. This allows branching to any address.

When the LR contents represent an instruction address, LR30:31 are assumed to be 0, because all instructions
must be word-aligned. However, when LR is read using mfspr, all 32 bits are returned as written.
The LR is in the user programming model.

2.3.2.3 Fixed Point Exception Register (XER)

The XER records overflow and carry conditions generated by integer arithmetic instructions.

The Summary Overflow (SO) field is set to 1 when instructions cause the Overflow (OV) field to be set to 1. The SO
field does not necessarily indicate that an overflow occurred on the most recent arithmetic operation, but that an
overflow occurred since the last clearing of XER[SO]. mtspr(XER) sets XER[SO, OV] to the value of bit positions 0
and 1 in the source register, respectively.

Once set, XER[SO] is not reset until an mtspr(XER) is executed with data that explicitly puts a 0 in the SO bit, or
until an mcrxr instruction is executed.

XER[OV] is set to indicate whether an instruction that updates XER[OV] produces a result that “overflows” the 32-
bit target register. XER[OV] = 1 indicates overflow. For arithmetic operations, this occurs when an operation has a
carry-in to the most-significant bit of the result that does not equal the carry-out of the most-significant bit (that is,
the exclusive-or of the carry-in and the carry-out is 1).

The following instructions set XER[OV] differently. The specific behavior is indicated in the instruction descriptions
in Chapter 24, “Instruction Set.”

• Move instructions:

mcrxr, mtspr(XER)

• Multiply and divide instructions:

mullwo, mullwo., divwo, divwo., divwuo, divwuo

The Carry (CA) field is set to indicate whether an instruction that updates XER[CA] produces a result that has a
carry-out of the most-significant bit. XER[CA] = 1 indicates a carry.

The following instructions set XER[CA] differently.The specific behavior is indicated in the instruction descriptions
in Chapter 24, “Instruction Set.”

• Move instructions

mcrxr, mtspr(XER)

• • Shift-algebraic operations

sraw, srawi

Figure 2-5. Link Register (LR)

0:31 Link Register contents If (LR) represents an instruction address, LR30:31
should be 0.

AMCC Proprietary

http://www.manualslib.com/

 38

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

The Transfer Byte Count (TBC) field is the byte count for load/store string instructions.

The XER is part of the user programming model.

Table 2-2 and Table 2-3 list the PPC405 instructions that update the XER. In the tables, the syntax “[o]” indicates
that the instruction has an “o” form that updates XER[SO,OV], and a “non-o” form. The syntax “[.]” indicates that the
instruction has a “record” form that updates CR[CR0] (see “Condition Register (CR)” on page 39), and a “non-
record” form.

Figure 2-6. Fixed Point Exception Register (XER)

0 SO
Summary Overflow
0 No overflow has occurred.
1 Overflow has occurred.

Can be set by mtspr or by using “o” form
instructions; can be reset by mtspr or by mcrxr.

1 OV
Overflow
0 No overflow has occurred.
0 Overflow has occurred.

Can be set by mtspr or by using “o” form
instructions; can be reset by mtspr, by mcrxr,
or “o” form instructions.

2 CA
Carry
0 Carry has not occurred.
1 Carry has occurred.

Can be set by mtspr or arithmetic instructions
that update the CA field; can be reset by mtspr,
by mcrxr, or by arithmetic instructions that update
the CA field.

3:24 Reserved

25:31 TBC Transfer Byte Count Used by lswx and stswx; written by mtspr.

Table 2-2. XER[CA] Updating Instructions

Integer Arithmetic
Integer

Shift
Processor

Control

Add Subtract

Shift
Right

Algebraic
Register

Management

addc[o][.]
adde[o][.]
addic[.]
addme[o][.]
addze[o][.]

subfc[o][.]
subfe[o][.]
subfic
subfme[o][.]
subfze[o][.]

sraw[.]
srawi[.]

mtspr
mcrxr

Table 2-3. XER[SO,OV] Updating Instructions

Integer Arithmetic Auxiliary Processor
Processor

Control

Add Subtract Multiply Divide Negate
Multiply-

Accumulate

Negative
Multiply-

Accumulate
Register

Management

addo[.]
addco[.]
addeo[.]
addmeo[.]
addzeo[.]

subfo[.]
subfco[.]
subfeo[.]
subfmeo[.]
subfzeo[.]

mullwo[.] divwo[.]
divwuo[.] nego[.]

macchwo[.]
macchwso[.]
macchwsuo[.]
macchwuo[.]
machhwo[.]
machhwso[.]
machhwsuo[.]
machhwuo[.]
maclhwo[.]
maclhwso[.]
maclhwsuo[.]
maclhwuo[.]

nmacchwo[.]
nmacchwso[.]
nmachhwo[.]
nmachhwso[.]
nmaclhwo[.]
nmaclhwso[.]

mtspr
mcrxr

AMCC Proprietary

http://www.manualslib.com/

 39

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.3.2.4 Special Purpose Registers (USPRG0 and SPRG0–SPRG7)

USPRG0 and SPRG0–SPRG7 are provided for general purpose software use. For example, these registers are
used as temporary storage locations. For example, an interrupt handler might save the contents of a GPR to an
SPRG, and later restore the GPR from it. This is faster than a save/restore to a memory location. These registers
are written using mtspr and read using mfspr.

Access to USPRG0 is non-privileged for both read and write.

Access to SPRG0–SPRG7 is privileged, except for read access to SPRG4–SPRG7. See Privileged SPRs on
page 57 for more information.

2.3.2.5 Processor Version Register (PVR)

The PVR is a read-only register that uniquely identifies a standard product or Core+ASIC implementation. Software
can examine the PVR to recognize implementation-dependent features and determine available hardware
resources.

Access to the PVR is privileged. See “Privileged SPRs” on page 57 for more information.

2.3.3 Condition Register (CR)

The CR contains eight 4-bit fields (CR0–CR7), as shown in Figure 2-9. The fields contain conditions detected
during the execution of integer or logical compare instructions. The CR contents can be used in conditional branch
instructions.

The CR can be modified in any of the following ways:

• mtcrf sets specified CR fields by writing to the CR from a GPR, under control of a mask specified as an
instruction field.

• mcrf sets a specified CR field by copying another CR field to it.

• mcrxr copies certain bits of the XER into a designated CR field, and then clears the corresponding XER bits.

• The “with update” forms of integer instructions implicitly update CR[CR0].

• Integer compare instructions update a specified CR field.

• The CR-logical instructions update a specified CR bit with the result of a logical operation on a specified pair of
CR bit fields.

• Conditional branch instructions can test a CR bit as one of the branch conditions.

Figure 2-7. Special Purpose Register General (SPRG0–SPRG7)
0:31 General data Software value; no hardware usage.

Figure 2-8. Processor Version Register (PVR)
0:31 Assigned PVR value

AMCC Proprietary

http://www.manualslib.com/

 40

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

If a CR field is set by a compare instruction, the bits are set as described in the next section.

The CR is part of the user programming model.

2.3.3.1 CR Fields After Compare Instructions

Compare instructions compare the values of two 32-bit registers. The two types of compare instructions, arithmetic
and logical, are distinguished by the interpretation given to the 32-bit values. For arithmetic compares, the values
are considered to be signed, where 31 bits represent the magnitude and the most-significant bit is a sign bit. For
logical compares, the values are considered to be unsigned, so all 32 bits represent magnitude. There is no sign
bit. As an example, consider the comparison of 0 with 0xFFFFFFFF. In an arithmetic compare, 0 is larger, because
0xFFFF FFFF represents –1; in a logical compare, 0xFFFFFFFF is larger.

A compare instruction can direct its CR update to any CR field. The first data operand of a compare instruction
specifies a GPR. The second data operand specifies another GPR, or immediate data derived from the IM field of
the immediate instruction form. The contents of the GPR specified by the first data operand are compared with the
contents of the GPR specified by the second data operand (or with the immediate data). See descriptions of the
compare instructions (page 24-34 through page 24-37) for precise details.

2.3.3.2 The CR0 Field

After the execution of compare instructions that update CR[CR0], CR[CR0] is interpreted as described in “CR
Fields After Compare Instructions” on page 40. The “dot” forms of arithmetic and logical instructions also alter
CR[CR0]. After most instructions that update CR[CR0], the bits of CR0 are interpreted as follows:

Figure 2-9. Condition Register (CR)
0:3 CR0 Condition Register Field 0

4:7 CR1 Condition Register Field 1

8:11 CR2 Condition Register Field 2

12:15 CR3 Condition Register Field 3

16:19 CR4 Condition Register Field 4

20:23 CR5 Condition Register Field 5

24:27 CR6 Condition Register Field 6

28:31 CR7 Condition Register Field 7

LT (bit 0) The first operand is less than the second operand.

GT (bit 1) The first operand is greater than the second operand.

EQ (bit 2) The first operand is equal to the second operand.

SO (bit 3) Summary overflow; a copy of XER[SO].

LT (bit 0) Less than 0; set if the most-significant bit of the 32-bit result is 1.

GT (bit 1) Greater than 0; set if the 32-bit result is non-zero and the most-significant bit
of the result is 0.

EQ (bit 2) Equal to 0; set if the 32-bit result is 0.

SO (bit 3) Summary overflow; a copy of XER[SO] at instruction completion.

AMCC Proprietary

http://www.manualslib.com/

 41

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

The CR[CR0]LT, GT, EQ subfields are set as the result of an algebraic comparison of the instruction result to 0,
regardless of the type of instruction that sets CR[CR0]. If the instruction result is 0, the EQ subfield is set to 1. If the
result is not 0, either LT or GT is set, depending on the value of the most significant bit of the result.

When updating CR[CR0], the most significant bit of an instruction result is considered a sign bit, even for
instructions that produce results that are not usually thought of as signed. For example, logical instructions such as
and., or., and nor. update CR[CR0]LT, GT, EQ using such an arithmetic comparison to 0, although the result of
such a logical operation is not actually an arithmetic result.

If an arithmetic overflow occurs, the “sign” of an instruction result indicated in CR[CR0]LT, GT, EQ might not
represent the “true” (infinitely precise) algebraic result of the instruction that set CR0. For example, if an add.
instruction adds two large positive numbers and the magnitude of the result cannot be represented as a twos-
complement number in a 32-bit register, an overflow occurs and CR[CR0]LT, SO are set, although the infinitely
precise result of the add is positive.

Adding the largest 32-bit twos-complement negative number, 0x8000 0000, to itself results in an arithmetic
overflow and 0x0000 0000 is recorded in the target register. CR[CR0]EQ, SO is set, indicating a result of 0, but the
infinitely precise result is negative.

The CR[CR0]SO subfield is a copy of XER[SO]. Instructions that do not alter the XER[SO] bit cannot cause an
overflow, but even for these instructions CR[CR0]SO is a copy of XER[SO].

Some instructions set CR[CR0] differently or do not specifically set any of the subfields. These instructions include:

• Compare instructions

cmp, cmpi, cmpl, cmpli

• CR logical instructions

crand, crandc, creqv, crnand, crnor, cror, crorc, crxor, mcrf

• Move CR instructions

mtcrf, mcrxr
• stwcx.

The instruction descriptions provide detailed information about how the listed instructions alter CR[CR0].

2.3.4 The Time Base

The PowerPC Architecture provides a 64-bit time base. Time Base on page 130 describes the architected time
base. Access to the time base is through two 32-bit time base registers (TBRs). The least-significant 32 bits of the
time base are read from the Time Base Lower (TBL) register and the most-significant 32 bits are read from the
Time Base Upper (TBU) register.

User-mode access to the time base is read-only, and there is no explicitly privileged read access to the time base.

The mftb instruction reads from TBL and TBU. Writing the time base is accomplished by moving the contents of a
GPR to a pair of SPRs, which are also called TBL and TBU, using mtspr.

Table 2-4 shows the mnemonics and names of the TBRs.

Table 2-4. Time Base Registers
Mnemonic Register Name Access

TBL Time Base Lower (Read-only) Read-only

TBU Time Base Upper (Read-only) Read-only

AMCC Proprietary

http://www.manualslib.com/

 42

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.3.5 Machine State Register (MSR)

The Machine State Register (MSR) controls processor core functions, such as the enabling or disabling of
interrupts and address translation.

The MSR is written from a GPR using the mtmsr instruction. The contents of the MSR can be read into a GPR
using the mfmsr instruction. MSR[EE] is set or cleared using the wrtee or wrteei instructions.
The MSR contents are automatically saved, altered, and restored by the interrupt-handling mechanism. See
Machine State Register (MSR) on page 114.

2.3.6 Device Control Registers

Device Control Registers (DCRs) are used to control various on-chip system functions such as the operation of on-
chip buses, peripherals, and certain processor behaviors. The DCR access instructions are mtdcr (move-to-device
control register) and mfdcr (move-from-device control register), which move data between GPRs and the DCRs.

Some DCRs are directly accessed, that is, they are accessed using their DCR numbers. Other DCRs are indirectly
accessed. Such DCRs are accessed by writing an offset to a directly accessed DCR and then reading the data at
the offset in another directly accessed DCR.

2.4 Data Types and Alignment

The data types consist of bytes (eight bits), halfwords (two bytes), words (four bytes), and strings (1 to 128 bytes).
Figure 2-10 shows the byte, halfword, and word data types and their bit and byte definitions for big endian
representations of values. Note that PowerPC bit numbering is reversed from industry conventions; bit 0
represents the most significant bit of a value.

Data is represented in either twos-complement notation or in an unsigned integer format; data representation is
independent of alignment issues.

The address of a data object is always the lowest address of any byte comprising the object.

All instructions are words, and are word-aligned (the lowest byte address is divisible by 4).

Figure 2-10. PPC405 Data Types

Byte

Halfword

Word

Bit

3 2 10

0 31

Byte

0 15

 10

0

0

7

Bit

Bit

Byte

Byte

AMCC Proprietary

http://www.manualslib.com/

 43

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.4.1 Alignment for Storage Reference and Cache Control Instructions

The storage reference instructions (loads and stores; see Table 2-14) move data to and from storage. The data
cache control instructions listed in Table 2-23, control the contents and operation of the data cache unit (DCU).
Both types of instructions form an effective address (EA). The method of calculating the EA for the storage
reference and cache control instructions is detailed in the description of those instructions. See Instruction Set on
page 157 for more information.

Cache control instructions ignore the five least significant bits of the EA; no alignment restrictions exist in the DCU
because of EAs. However, storage control attributes can cause alignment exceptions. When data address
translation is disabled and a dcbz instruction references a storage region that is non cacheable, or for which write-
through caching is the write strategy, an alignment exception is taken. Such exceptions result from the storage
control attributes, not from EA alignment.

The alignment exception enables system software to emulate the write-through function. Alignment requirements
for the storage reference instructions and the dcread instruction depend on the particular instruction. Table 2-5,
summarizes the instructions that cause alignment exceptions.

The data targets of instructions are of types that depend upon the instruction. The load/store instructions have the
following “natural” alignments:

• Load/store word instructions have word targets, word-aligned.

• Load/ store halfword instructions have halfword targets, halfword-aligned.

• Load/store byte instructions have byte targets, byte-aligned (that is, any alignment).

Misalignments are addresses that are not naturally aligned on data type boundaries. An address not divisible by
four is misaligned with respect to word instructions. An address not divisible by two is misaligned with respect to
halfword instructions. The PPC405 implementation handles misalignments within and across word boundaries, but
there is a performance penalty because additional cycles are required.

2.4.2 Alignment and Endian Operation

The endian storage control attribute does not affect alignment behavior. In little endian storage regions, the
alignment of data is treated as it is in big endian storage regions; no special alignment exceptions occur when
accessing data in little endian storage regions. Note that the alignment exceptions that apply to big endian region
accesses also apply to little endian storage region accesses.

2.4.3 Summary of Instructions Causing Alignment Exceptions

Table 2-5 summarizes the instructions that cause alignment exceptions and the conditions under which the
alignment exceptions occur.

Table 2-5. Alignment Exception Summary

Instructions Causing Alignment Exceptions Conditions

dcbz EA in non cacheable or write-through storage

dcread, lwarx, stwcx. EA not word-aligned

AMCC Proprietary

http://www.manualslib.com/

 44

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.5 Byte Ordering

The following discussion describes the “endianness” of the PPC405 core, which, by default and in normal use is
“big endian.” The PPC405 also contains “little endian” peripherals and supports the attachment of external little
endian peripherals.

If scalars (individual data items and instructions) were indivisible, there would be no such concept as “byte
ordering.” It is meaningless to consider the order of bits or groups of bits within the smallest addressable unit of
storage because nothing can be observed about such order. Only when scalars, which the programmer and
processor regard as indivisible quantities, can comprise more than one addressable unit of storage does the
question of byte order arise.

For a machine in which the smallest addressable unit of storage is the 32-bit word, there is no question of the
ordering of bytes within words. All transfers of individual scalars between registers and storage are of words, and
the address of the byte containing the high-order eight bits of a scalar is no different from the address of a byte
containing any other part of the scalar.

For the PowerPC Architecture, as for most computer architectures currently implemented, the smallest
addressable unit of storage is the 8-bit byte. Other scalars are halfwords, words, or doublewords, which consist of
groups of bytes. When a word-length scalar is moved from a register to storage, the scalar is stored in four
consecutive byte addresses. It thus becomes meaningful to discuss the order of the byte addresses with respect to
the value of the scalar: that is, which byte contains the highest-order eight bits of the scalar, which byte contains
the next-highest-order eight bits, and so on.

Given a scalar that contains multiple bytes, the choice of byte ordering is essentially arbitrary. There are 4! = 24
ways to specify the ordering of four bytes within a word, but only two of these orderings are sensible:

• The ordering that assigns the lowest address to the highest-order (“leftmost”) eight bits of the scalar, the next
sequential address to the next-highest-order eight bits, and so on.

This ordering is called big endian because the “big end” (most significant end) of the scalar, considered as a
binary number, comes first in storage.

• The ordering that assigns the lowest address to the lowest-order (“rightmost”) eight bits of the scalar, the next
sequential address to the next-lowest-order eight bits, and so on.

This ordering is called little endian because the “little end” (least significant end) of the scalar, considered as a
binary number, comes first in storage.

2.5.1 Structure Mapping Examples

The following C language structure, s, contains an assortment of scalars and a character string. The comments
show the value assumed to be in each structure element; these values show how the bytes comprising each
structure element are mapped into storage.

struct {
int a; /* 0x1112_1314 word */
long long b; /* 0x2122_2324_2526_2728 doubleword */
char *c; /* 0x3132_3334 word */
char d[7]; /* 'A','B','C','D','E','F','G' array of bytes */
short e; /* 0x5152 halfword */
int f; /* 0x6162_6364 word */

} s;

AMCC Proprietary

http://www.manualslib.com/

 45

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

C structure mapping rules permit the use of padding (skipped bytes) to align scalars on desirable boundaries. The
structure mapping examples show each scalar aligned at its natural boundary. This alignment introduces padding
of four bytes between a and b, one byte between d and e, and two bytes between e and f. The same amount of
padding is present in both big endian and little endian mappings.

2.5.1.1 Big Endian Mapping

The big endian mapping of structure s follows. (The data is highlighted in the structure mappings. Addresses, in
hexadecimal, are below the data stored at the address. The contents of each byte, as defined in structure s, is
shown as a (hexadecimal) number or character (for the string elements).

2.5.1.2 Little Endian Mapping

Structure s is shown mapped little endian.

2.5.2 Support for Little Endian Byte Ordering

Except as noted, this book describes the processor as if it operated only in a big endian fashion. In fact, the
PowerPC Embedded Environment also supports little endian operation.

The PowerPC little endian mode, defined in the PowerPC Architecture, is not implemented.

11 12 13 14
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

21 22 23 24 25 26 27 28
0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

31 32 33 34 'A' 'B' 'C' 'D'
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

'E' 'F' 'G' 51 52
0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

61 62 63 64
0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27

14 13 12 11
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

28 27 26 25 24 23 22 21
0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

34 33 32 31 'A' 'B' 'C' 'D'
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

'E' 'F' 'G' 52 51
0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

64 63 62 61
0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27

AMCC Proprietary

http://www.manualslib.com/

 46

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.5.3 Endian (E) Storage Attribute

The endian (E) storage attribute supports direct connection of the PPC405 to little endian peripherals and to
memory containing little endian instructions and data. For every storage reference (instruction fetch or load/store
access), an E storage attribute is associated with the storage region of the reference. The E attribute specifies
whether that region is organized as big endian (E = 0) or little endian (E = 1).

When address translation is enabled (MSR[IR] = 1 or MSR[DR] = 1), the E field in the corresponding TLB entry
controls the endianness of a memory region. When address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0),
the SLER controls the endianness of a memory region.

Bytes in storage that are accessed as little endian are arranged in true little endian format. The PPC405 does not
support the little endian mode defined in the PowerPC architecture and used in PPC401xx and PPC403xx
processors. Furthermore, no address modification is performed when accessing storage regions programmed as
little endian. Instead, the PPC405 reorders the bytes as they are transferred between the processor and memory.

The on-the-fly reversal of bytes in little endian storage regions is handled in one of two ways, depending on
whether the storage access is an instruction fetch or a data access (load/store). The following sections describe
byte reordering for the two kinds of storage accesses.

2.5.3.1 Fetching Instructions from Little Endian Storage Regions

Instructions are words (four bytes) that are aligned on word boundaries in memory. As such, instructions in a big
endian memory region are arranged with the most significant byte (MSB) of the instruction word at the lowest
address.

Consider the big endian mapping of instruction p at address 00, where, for example, p = add r7, r7, r4:

On the other hand, in the little endian mapping instruction p is arranged with the least significant byte (LSB) of the
instruction word at the lowest numbered address:

When an instruction is fetched from memory, the instruction must be placed in the instruction queue in the proper
order. The execution unit assumes that the MSB of an instruction word is at the lowest address. Therefore, when
instructions are fetched from little endian storage regions, the four bytes of an instruction word are reversed before
the instruction is decoded. In the PPC405, the byte reversal occurs between memory and the instruction cache unit
(ICU). The ICU always stores instructions in big endian format, regardless of whether the memory region
containing the instruction is programmed as big endian or little endian. Thus, the bytes are already in the proper
order when an instruction is transferred from the ICU to the decode stage of the pipeline.

Table 2-6. Big Endian Mapping

MSB LSB

0x00 0x01 0x02 0x03

Table 2-7. Little Endian Mapping

LSB MSB

0x00 0x01 0x02 0x03

AMCC Proprietary

http://www.manualslib.com/

 47

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

If a storage region is reprogrammed from one endian format to the other, the storage region must be reloaded with
program and data structures in the appropriate endian format. If the endian format of instruction memory changes,
the ICU must be made coherent with the updates. The ICU must be invalidated and the updated instruction
memory using the new endian format must be fetched so that the proper byte ordering occurs before the new
instructions are placed in the ICU.

2.5.3.2 Accessing Data in Little Endian Storage Regions

Unlike instruction fetches from little endian storage regions, data accesses from little endian storage regions are
not byte-reversed between memory and the DCU. Data byte ordering, in memory, depends on the data type (byte,
halfword, or word) of a specific data item. It is only when moving a data item of a specific type from or to a GPR that
it becomes known what type of byte reversal is required. Therefore, byte reversal during load/store accesses is
performed between the DCU and the GPR.

When accessing data in a little endian storage region:

• For byte loads/stores, no reordering occurs.

• For halfword loads/stores, bytes are reversed within the halfword.

• For word loads/stores, bytes are reversed within the word.

Note that this applies, regardless of data alignment.

The big endian and little endian mappings of the structure s, shown in “Structure Mapping Examples” on page 44,
demonstrate how the size of an item determines its byte ordering. For example:

• The word a has its four bytes reversed within the word spanning addresses 0x00–0x03.

• The halfword e has its two bytes reversed within the halfword spanning addresses 0x1C–0x1D.

Note that the array of bytes d, where each data item is a byte, is not reversed when the big endian and little endian
mappings are compared. For example, the character 'A' is located at address 0x14 in both the big endian and little
endian mappings.

In little endian storage regions, the alignment of data is treated as it is in big endian storage regions. Unlike
PowerPC little endian mode, no special alignment exceptions occur when accessing data in little endian storage
regions.

2.5.3.3 PowerPC Byte-Reverse Instructions

For big endian storage regions, normal load/store instructions move the more significant bytes of a register to and
from the lower-numbered memory addresses. The load/store with byte-reverse instructions move the more
significant bytes of the register to and from the higher numbered memory addresses.

As Figure 2-11 through Figure 2-14 illustrate, a normal store to a big endian storage region is the same as a byte-
reverse store to a little endian storage region. Conversely, a normal store to a little endian storage region is the
same as a byte-reverse store to a big endian storage region.

Figure 2-11 illustrates the contents of a GPR and memory (starting at address 00) after a normal load/store in a big
endian storage region.

AMCC Proprietary

http://www.manualslib.com/

 48

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Note that the results are identical to the results of a load/store with byte-reverse in a little endian storage region, as
illustrated in Figure 2-12.

Figure 2-13 illustrates the contents of a GPR and memory (starting at address 00) after a load/store with byte-
reverse in a big endian storage region.

Figure 2-11. Normal Word Load or Store (Big Endian Storage Region)

Figure 2-12. Byte-Reverse Word Load or Store (Little Endian Storage Region)

Figure 2-13. Byte-Reverse Word Load or Store (Big Endian Storage Region)

GPR

LSBMSB

Memory

0x00 0x01 0x02 0x03

11 12 13 14

11 12 13 14

GPR

LSBMSB

Memory

0x00 0x01 0x02 0x03

11 12 13 14

11 12 13 14

GPR

LSBMSB

Memory

0x00 0x01 0x02 0x03

11 12 13 14

14 13 12 11

AMCC Proprietary

http://www.manualslib.com/

 49

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Note that the results are identical to the results of a normal load/store in a little endian storage region, as illustrated
in Figure 2-14.

The E storage attribute augments the byte-reverse load/store instructions in two important ways:

• The load/store with byte-reverse instructions do not solve the problem of fetching instructions from a storage
region in little endian format.
Only the endian storage attribute mechanism supports the fetching of little endian program images.

• Typical compilers cannot make general use of the byte-reverse load/store instructions, so these instructions
are ordinarily used only in device drivers written in hand-coded assembler.
Compilers can, however, take full advantage of the endian storage attribute mechanism, enabling application
programmers working in a high-level language, such as C, to compile programs and data structures into little
endian format.

2.6 Instruction Processing

The instruction pipeline, illustrated in Figure 2-15, contains three queue locations: prefetch buffer 1 (PFB1),
prefetch buffer 0 (PFB0), and decode (DCD). This queue implements a pipeline with the following functional
stages: fetch, decode, execute, write-back and load write-back. Instructions are fetched from the instruction cache
unit (ICU), placed in the instruction queue, and eventually dispatched to the execution unit (EXU).

Instructions are fetched from the ICU at the request of the EXU. Cacheable instructions are forwarded directly to
the instruction queue and stored in the ICU cache array. Non cacheable instructions are also forwarded directly to
the instruction queue, but are not stored in the ICU cache array. Fetched instructions drop to the empty queue
location closest to the EXU. When there is room in the queue, instructions can be returned from the ICU two at a
time. If the queue is empty and the ICU is returning two instructions, one instruction drops into DCD while the other
drops into PFB0. PFB1 buffers instructions when the pipeline stalls.

Branch instructions are examined in DCD and PFB0 while all other instructions are decoded in DCD. All
instructions must pass through DCD before entering the EXU. The EXU contains the execute, write-back and load
write-back stages of the pipe. The results of most instructions are calculated during the execute stage and written
to the GPR file during the write back stage. Load instructions write the GPR file during the load write-back stage.

Figure 2-14. Normal Word Load or Store (Little Endian Storage Region)

GPR

LSBMSB

Memory

0x00 0x01 0x02 0x03

11 12 13 14

14 13 12 11

AMCC Proprietary

http://www.manualslib.com/

 50

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.7 Branch Processing

The PPC405, which provides a variety of conditional and unconditional branching instructions, uses the branch
prediction techniques described in Branch Prediction on page 52.

2.7.1 Unconditional Branch Target Addressing Options

The unconditional branches (b, ba, bl, bla) carry the displacement to the branch target address as a signed 26-bit
value (the 24-bit LI field right-extended with 0b00). The displacement enables unconditional branches to cover an
address range of ±32MB.

For the relative (AA = 0) forms (b, bl), the target address is the current instruction address (CIA, the address of the
branch instruction) plus the signed displacement.

For the absolute (AA = 1) forms (ba, bla), the target address is 0 plus the signed displacement. If the sign bit (LI[0])
is 0, the displacement is the target address. If the sign bit is 1, the displacement is a negative value and wraps to
the highest memory addresses. For example, if the displacement is 0x3FF FFFC (the 26-bit representation of –4),
the target address is 0xFFFF FFFC (0 – 4B, or 4 bytes below the top of memory).

2.7.2 Conditional Branch Target Addressing Options

The conditional branches (bc, bca, bcl, bcla) carry the displacement to the branch target address as a signed 16-
bit value (the 14-bit BD field right-extended with 0b00). The displacement enables conditional branches to cover an
address range of ±32KB.

For the relative (AA = 0) forms (bc, bcl), the target address is the CIA plus the signed displacement.

For the absolute (AA = 1) forms (bca, bcla), the target address is 0 plus the signed displacement. If the sign bit
(BD[0]) is 0, the displacement is the target address. If the sign bit is 1, the displacement is negative and wraps to
the highest memory addresses. For example, if the displacement is 0xFFFC (the 16-bit representation of –4), the
target address is 0xFFFF FFFC (0 – 4B, or 4 bytes from the top of memory).

Figure 2-15. PPC405 Instruction Pipeline

EXU

DCD

PFB0

PFB1

ICU

Fetch

Dispatch

Queue
Instruction

AMCC Proprietary

http://www.manualslib.com/

 51

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.7.3 Conditional Branch Condition Register Testing

Conditional branch instructions can test a CR bit. The value of the BI field specifies the bit to be tested (bit 0–31).
The BO field controls whether the CR bit is tested, as described in the following section.

2.7.4 BO Field on Conditional Branches

The BO field of the conditional branch instruction specifies the conditions used to control branching, and specifies
how the branch affects the CTR.

Conditional branch instructions can test one bit in the CR. This option is selected when BO[0] = 0; if BO[0] = 1, the
CR does not participate in the branch condition test. If this option is selected, the condition is satisfied (branch can
occur) if CR[BI] = BO[1].

Conditional branch instructions can decrement the CTR by one, and after the decrement, test the CTR value. This
option is selected when BO[2] = 0. If this option is selected, BO[3] specifies the condition that must be satisfied to
allow a branch to be taken. If BO[3] = 0, CTR ≠ 0 is required for a branch to occur. If BO[3] = 1, CTR = 0 is required
for a branch to occur.

If BO[2] = 1, the contents of the CTR are left unchanged, and the CTR does not participate in the branch condition
test.

Table 2-8 summarizes the usage of the bits of the BO field. BO[4] is further discussed in “Branch Prediction on
page 52.

Table 2-8. Bits of the BO Field
BO Bit Description

BO[0]
CR Test Control
0 Test CR bit specified by BI field for value specified by BO[1]
1 Do not test CR

BO[1]
CR Test Value
0 Test for CR[BI] = 0.
1 Test for CR[BI] = 1.

BO[2]
CTR Test Control
0 Decrement CTR by one and test whether CTR satisfies the condition specified by BO[3].
1 Do not change CTR, do not test CTR.

BO[3]
CTR Test Value
0 Test for CTR ≠ 0.
1 Test for CTR = 0.

BO[4]
Branch Prediction Reversal
0 Apply standard branch prediction.
1 Reverse the standard branch prediction.

AMCC Proprietary

http://www.manualslib.com/

 52

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Table 2-9 lists specific BO field contents, and the resulting actions; z represents a mandatory value of 0, and y is a
branch prediction option discussed in Branch Prediction on page 52.

2.7.5 Branch Prediction

Conditional branches present a problem to the instruction fetcher. A branch might be taken. The branch EXU
attempts to predict whether or not a branch is taken before all information necessary to determine the branch
direction is available. This decision is called a branch prediction. The fetcher can then prefetch instructions starting
at the predicted branch target address. If the prediction is correct, time is saved because the branched-to
instruction is available in the instruction queue. Otherwise, the instruction pipeline stalls while the correct
instruction is fetched into the instruction queue. To be effective, branch prediction must be correct most of the time.

The PowerPC Architecture enables software to reverse the default branch prediction, which is defined as follows:

Predict that the branch is to be taken if ((BO[0] ∧ BO[2]) ∨ s) = 1

where s is the sign bit of the displacement for conditional branch (bc) instructions, and 0 for bclr and bcctr
instructions.

(BO[0] ∧ BO[2]) = 1 only when the conditional branch tests nothing (the “branch always” condition). Obviously, the
branch should be predicted taken for this case.

If the branch tests anything, (BO[0] ∧ BO[2]) = 0, and s entirely controls the prediction. The default prediction for
this case was decided by considering the relative form of bc, which is commonly used at the end of loops to control
the number of times that a loop is executed. The branch is taken every time the loop is executed except the last, so
it is best if the branch is predicted taken. The branch target is the beginning of the loop, so the branch
displacement is negative and s = 1.

If branch displacements are positive (s = 0), the branch is predicted not taken. If the branch instruction is any form
of bclr or bcctr except the “branch always” forms, then s = 0, and the branch is predicted not taken.

There is a peculiar consequence of this prediction algorithm for the absolute forms of bc (bca and bcla). As
described in Unconditional Branch Target Addressing Options on page 50, if the algebraic sign of the displacement
is negative (s = 1), the branch target address is in high memory. If the algebraic sign of the displacement is positive
(s = 0), the branch target address is in low memory. Because these are absolute-addressing forms, there is no
reason to treat high and low memory differently. Nevertheless, for the high memory case the default prediction is
taken, and for the low memory case the default prediction is not taken.

Table 2-9. Conditional Branch BO Field
BO Value Description

0000y Decrement the CTR, then branch if the decremented CTR ≠ 0 and CR[BI]=0.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and CR[BI] = 0.

001zy Branch if CR[BI] = 0.

0100y Decrement the CTR, then branch if the decremented CTR ≠ 0 and CR[BI] = 1.

0101y Decrement the CTR, then branch if the decremented CTR=0 and CR[BI] = 1.

011zy Branch if CR[BI] = 1.

1z00y Decrement the CTR, then branch if the decremented CTR ≠ 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

AMCC Proprietary

http://www.manualslib.com/

 53

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

BO[4] is the prediction reversal bit. If BO[4] = 0, the default prediction is applied. If BO[4] = 1, the reverse of the
standard prediction is applied. For the cases in Table 2-14 where BO[4] = y, software can reverse the default
prediction. This should only be done when the default prediction is likely to be wrong. Note that for the “branch
always” condition, reversal of the default prediction is not allowed.

The PowerPC Architecture requires assemblers to provide a way to conveniently control branch prediction. For any
conditional branch mnemonic, a suffix may be added to the mnemonic to control prediction, as follows:

+ Predict branch to be taken

− Predict branch to be not taken

For example, bcctr+ causes BO[4] to be set appropriately to force the branch to be predicted taken.

2.8 Speculative Accesses

The PowerPC Architecture permits implementations to perform speculative accesses to memory, either for
instruction fetching, or for data loads. A speculative access is defined as any access which is not required by a
sequential execution model.

For example, prefetching instructions beyond an undetermined conditional branch is a speculative fetch; if the
branch is not in the predicted direction, the program, as executed, never needs the instructions from the predicted
path.

Sometimes speculative accesses are inappropriate. For example, attempting to fetch instructions from addresses
that cannot contain instructions can cause problems.To protect against errant accesses to “sensitive” memory or
I/O devices, the PowerPC Architecture provides the G (guarded) storage attribute, which can be used to specify
memory pages from which speculative accesses are prohibited. (Actually, speculative accesses to guarded
storage are allowed in certain limited circumstances; if an instruction in a cache block will be executed, the rest of
the cache block can be speculatively accessed.)

2.8.1 Speculative Accesses in the PPC405

The PPC405 does not perform speculative loads.

Two methods control speculative instruction fetching. If instruction address translation is enabled (MSR[IR] = 1),
the G (guarded) field in the translation lookaside buffer (TLB) entries controls speculative accesses.

If instruction address translation is disabled (MSR[IR] = 0), the Storage Guarded Register (SGR) controls
speculative accesses for regions of memory. When a region is guarded (speculative fetching is disallowed),
instruction prefetching is disabled for that region. A fetch request must be completely resolved (no longer
speculative) before it is issued. There is a considerable performance penalty for fetching from guarded storage, so
guarding should be used only when required.

Note that, following any reset, the PPC405 operates with all of storage guarded.

Note that when address translation is enabled, attempts to fetch from guarded storage result in instruction storage
exceptions. Guarded memory is in most often needed with peripheral status registers that are cleared
automatically after being read, because an unintended access resulting from a speculative fetch would cause the
loss of status information. Because the MMU provides 64 pages with a wide range of page sizes as small as 1KB,
fetching instructions from guarded storage should be unnecessary.

AMCC Proprietary

http://www.manualslib.com/

 54

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.8.1.1 Prefetch Distance Down an Unresolved Branch Path

The fetcher will speculatively access up to 19 instructions down a predicted branch path, whether taken or
sequential, regardless of cachability.

2.8.1.2 Prefetch of Branches to the CTR and Branches to the LR

When the instruction fetcher predicts that a bctr or blr instruction will be taken, the fetcher does not attempt to fetch
an instruction from the target address in the CTR or LR if an executing instruction updates the register ahead of the
branch. (See Instruction Processing on page 49 for a description of the instruction pipeline). The fetcher
recognizes that the CTR or LR contains data left from an earlier use and that such data is probably not valid.

In such cases, the fetcher does not fetch the instruction at the target address until the instruction that is updating
the CTR or LR completes. Only then are the “correct” CTR or LR contents known. This prevents the fetcher from
speculatively accessing a completely “random” address. After the CTR or LR contents are known to be correct, the
fetcher accesses no more than five instructions down the sequential or taken path of an unresolved branch, or at
the address contained in the CTR or LR.

2.8.2 Preventing Inappropriate Speculative Accesses

A memory-mapped I/O peripheral, such as a serial port having a status register that is automatically reset when
read provides a simple example of storage that should not be speculatively accessed. If code is in memory at an
address adjacent to the peripheral (for example, code goes from 0x0000 0000 to 0x0000 0FFF, and the peripheral
is at 0x0000 1000), prefetching past the end of the code will read the peripheral.

Guarding storage also prevents prefetching past the end of memory. If the highest memory address is left
unguarded, the fetcher could attempt to fetch past the last valid address, potentially causing machine checks on
the fetches from invalid addresses. While the machine checks do not actually cause an exception until the
processor attempts to execute an instruction at an invalid address, some systems could suffer from the attempt to
access such an invalid address. For example, an external memory controller might log an error.

System designers can avoid problems from speculative fetching without using the guarded storage attributes. The
rest of this section describes ways to prevent speculative instruction fetches to sensitive addresses in unguarded
memory regions.

2.8.2.1 Fetching Past an Interrupt-Causing or Interrupt-Returning Instruction

Suppose a bctr or blr instruction closely follows an interrupt-causing or interrupt-returning instruction (sc, rfi, or
rfci). The fetcher does not prevent speculatively fetching past one of these instructions. In other words, the fetcher
does not treat the interrupt-causing and interrupt-returning instructions specially when deciding whether to predict
down a branch path. Instructions after an rfi, for example, are considered to be on the determined branch path.

To understand the implications of this situation, consider the code sequence:

 handler: aaa
bbb
rfi

subroutine: bctr

When executing the interrupt handler, the fetcher does not recognize the rfi as a break in the program flow, and
speculatively fetches the target of the bctr, which is really the first instruction of a subroutine that has not been
called. Therefore, the CTR might contain an invalid pointer.

To protect against such a prefetch, the software must insert an unconditional branch hang (b $) just after the rfi.
This prevents the hardware from prefetching the invalid target address used by bctr.

AMCC Proprietary

http://www.manualslib.com/

 55

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Consider also the above code sequence, with the rfi instruction replaced by an sc instruction used to initialize the
CTR with the appropriate value for the bctr to branch to, upon return from the system call. The sc handler returns
to the instruction following the sc, which can’t be a branch hang. Instead, software could put a mtctr just before
the sc to load a non-sensitive address into the CTR. This address will be used as the prediction address before the
sc executes. An alternative would be to put a mfctr or mtctr between the sc and the bctr; the mtctr prevents the
fetcher from speculatively accessing the address contained in the CTR before initialization.

2.8.2.2 Fetching Past tw or twi Instructions

The interrupt-causing instructions, tw and twi, do not require the special handling described in Fetching Past an
Interrupt-Causing or Interrupt-Returning Instruction on page 54. These instructions are typically used by
debuggers, which implement software breakpoints by substituting a trap instruction for the instruction originally at
the breakpoint address. In a code sequence mtlr followed by blr (or mtctr followed by bctr), replacement of
mtlr/mtctr by tw or twi leaves the LR/CTR uninitialized. It would be inappropriate to fetch from the blr/bctr target
address. This situation is common, and the fetcher is designed to prevent the problem.

2.8.2.3 Fetching Past an Unconditional Branch

When an unconditional branch is in DCD in the instruction queue, the fetcher recognizes that the sequential
instructions following the branch are unnecessary. These sequential addresses are not accessed. Addresses at
the branch target are accessed instead.

Therefore, placing an unconditional branch just before the start of a sensitive address space (for example, at the
“end” of a memory area that borders an I/O device) guarantees that addresses in the sensitive area will not be
speculatively fetched.

2.8.2.4 Suggested Locations of Memory-Mapped Hardware

The preferred method of protecting memory-mapped hardware from inadvertent access is to use address
translation, with hardware isolated to guarded pages (the G storage attribute in the associated TLB entry is set
to 1.) The pages can be as small as 1KB. Code should never be stored in such pages.

If address translation is disabled, the preferred protection method is to isolate memory-mapped hardware into
regions guarded using the SGR. Code should never be stored in such regions. The disadvantage of this method,
compared to the preferred method, is that each region guarded by the SGR consumes 128MB of the address
space.

Table 2-10 shows two address regions of the PPC405. Suppose a system designer can map all I/O devices and all
ROM and SRAM devices into any location in either region. The choices made by the designer can prevent
speculative accesses to the memory-mapped I/O devices.

A simple way to avoid the problem of speculative reads to peripherals is to map all storage containing code into
Region 2, and all I/O devices into Region 1. Thus, accesses to Region 2 would only be for code and program data.
Speculative fetches occurring in Region 2 would never access addresses in Region 1. Note that this hardware
organization eliminates the need to use of the G storage attribute to protect Region 1. However, Region 1 could be
set as guarded with no performance penalty, because there is no code to execute or variable data to access in
Region 1.

Table 2-10. Example Memory Mapping
0x7800 0000 – 0x7FFF FFFF (SGR bit 15) 128MB Region 2

0x7000 0000 – 0x77FF FFFF (SGR bit 14) 128MB Region 1

AMCC Proprietary

http://www.manualslib.com/

 56

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

The use of these regions could be reversed (code in Region 1 and I/O devices in Region 2), if Region 2 is set as
guarded. Prefetching from the highest addresses of Region 1 could cause an attempt to speculatively access the
bottom of Region 2, but guarding prevents this from occurring. The performance penalty is slight, under the
assumption that code infrequently executes the instructions in the highest addresses of Region 1.

2.8.3 Summary

Software should take the following actions to prevent speculative accesses to sensitive data areas, if the sensitive
data areas are not in guarded storage:

• Protect against accesses to “random” values in the LR or CTR on blr or bctr branches following rfi, rfci, or sc
instructions by putting appropriate instructions before or after the rfi, rfci, or sc instruction. See Fetching Past
an Interrupt-Causing or Interrupt-Returning Instruction on page 54.

• Protect against “running past” the end of memory into a bordering I/O device by putting an unconditional
branch at the end of the memory area. See Fetching Past an Unconditional Branch on page 55.

• Recognize that a maximum of 19 words can be prefetched past an unresolved conditional branch, either down
the target path or the sequential path. See Prefetch Distance Down an Unresolved Branch Path on page 54.

Of course, software should not code branches with known unsafe targets (either relative to the instruction counter,
or to addresses contained in the LR or CTR), on the assumption that the targets are “protected” by code
guaranteeing that the unsafe direction is not taken. The fetcher assumes that if a branch is predicted to be taken, it
is safe to fetch down the target path.

2.9 User and Supervisor Modes

In the PowerPC Book-E architecture defines two operating states or modes,” supervisor (privileged), and user (non
privileged). The mode in which the processor is operating is controlled by MSR[PR]. When MSR[PR] is 0, the
processor is in supervisor mode and can execute all instructions and access all registers, including privileged ones.
When MSR[PR] is 1, the processor is in user mode and can only execute non privileged instructions and access
non privileged registers. An attempt to execute a privileged instruction or to access a privileged register while in
user mode causes a Privileged Instruction exception type program interrupt to occur.

Note that the name “PR” for the MSR field refers to a historical alternative name for user mode, whic is “problem
state.” Hence the value 1 in the field indicates “problem state,” and not “privileged” as one might expect. After a
reset, MSR[PR] = 0.

2.9.1 MSR Bits and Exception Handling

The current value of MSR[PR] is saved, along with all other MSR bits, in the SRR1 (for non-critical interrupts) or
SRR3 (for critical interrupts) upon any interrupt, and MSR[PR] is set to 0. Therefore, all exception handlers operate
in privileged mode.

Attempting to execute a privileged instruction while in user mode causes a privileged violation program exception
(see Program Interrupt on page 123). The PPC405 does not execute the instruction, and the program counter is
loaded with EVPR[0:15] || 0x0700, the address of an exception processing routine.

The PRR field of the Exception Syndrome Register (ESR) is set when an interrupt was caused by a privileged
instruction program exception. Software is not required to clear ESR[PPR].

2.9.2 Privileged Instructions

The instructions listed in Table 2-11 are privileged and cannot be executed in user mode.

AMCC Proprietary

http://www.manualslib.com/

 57

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.9.3 Privileged SPRs

Most SPRs are privileged. The only defined non privileged SPRs are the LR, CTR, XER, USPRG0, and SPRG4–7
(read access only), TBU (read access only), and TBL (read access only). These registers are read using the mftb
instruction, rather than the mfspr instruction. TBL and TBU are written (with different addresses) using mtspr,
which is privileged for these registers. Except for moves to and from non privileged SPRs, attempts to execute
mfspr and mtspr instructions while in user mode result in privileged violation program exceptions.

In a mfspr or mtspr instruction, the 10-bit SPRN field specifies the SPR number of the source or destination SPR.
The SPRN field contains two five-bit subfields, SPRN0:4 and SPRN5:9. The assembler handles the unusual
register number encoding to generate the SPRF field. In the machine code for the mfspr and mtspr instructions,
the SPRN subfields are reversed (ending up as SPRF5:9 and SPRF0:4) for compatibility with the POWER
Architecture.

In the PowerPC Architecture, SPR numbers having a 1 in the most-significant bit of the SPRF field are privileged.

The following example illustrates how SPR numbers appear in assembler language coding and in machine coding
of the mfspr and mtspr instructions.

In assembler language coding, SRR0 is SPR 26. Note that the assembler handles the unusual register number
encoding to generate the SPRF field.

mfspr r5,26

Table 2-11. Privileged Instructions
dcbi
dccci
dcread
iccci
icread
mfdcr
mfmsr
mfspr For all SPRs except CTR, LR, SPRG4–SPRG7, and XER. See “Privileged SPRs” on page 57

mtdcr
mtmsr
mtspr For all SPRs except CTR, LR, XER. See “Privileged SPRs” on page 57

rfci
rfi
tlbia
tlbre
tlbsx
tlbsync
tlbwe
wrtee
wrteei

AMCC Proprietary

http://www.manualslib.com/

 58

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

When the SPR number is considered as a binary number (0b0000011010), the most-significant bit is 0. However,
the machine code for the instruction reverses the subfields, resulting in the following SPRF field: 0b1101000000.
The most-significant bit is 1; SRR0 is privileged.

When an SPR number is considered as a hexadecimal number, the second digit of the three-digit hexadecimal
number indicates whether an SPR is privileged. If the second digit is odd (1, 3, 5, 7, 9, B, D, F), the SPR is
privileged.

For example, the SPR number of SRR0 is 26 (0x01A). The second hexadecimal digit is odd; SRR0 is privileged. In
contrast, the LR is SPR 8 (0x008); the second hexadecimal digit is not odd; the LR is non-privileged.

2.9.4 Privileged DCRs

The mtdcr and mfdcr instructions themselves are privileged, in all cases. All DCRs are privileged.

2.10 Synchronization

The PPC405 supports the synchronization operations of the PowerPC Book-E architecture. There are three kinds
of synchronization defined by the architecture, each of which is described in the following sections.

2.10.1 Context Synchronization

The context of a program is the environment in which the program executes. For example, the mode (user or
supervisor) is part of the context, as are the address translation space and storage attributes of the memory pages
being accessed by the program. Context is controlled by the contents of certain registers and other resources,
such as the MSR and the translation lookaside buffer (TLB).

Under certain circumstances, it is necessary for the hardware or software to force the synchronization of a
program’s context. Context synchronizing operations include all interrupts except Machine Check, as well as the
isync, sc, rfi, and rfci instructions. Context synchronizing operations satisfy the following requirements:

1. The operation is not initiated until all instructions preceding the operation have completed to the point at which
they have reported any and all exceptions that they will cause.

2. All instructions preceding the operation must complete in the context in which they were initiated. That is, they
must not be affected by any context changes caused by the context synchronizing operation, or any instruc-
tions after the context synchronizing operation.

3. If the operation is the sc instruction (which causes a System Call interrupt) or is itself an interrupt, then the
operation is not initiated until no higher priority interrupt is pending (see Interrupt Handling on page 109).

4. All instructions that follow the operation must be re-fetched and executed in the context that is established by
the completion of the context synchronizing operation and all of the instructions which preceded it.

Note that context synchronizing operations do not force the completion of storage accesses, nor do they enforce
any ordering amongst accesses before and/or after the context synchronizing operation. If such behavior is
required, then a storage synchronizing instruction must be used (see Storage Ordering and Synchronization on
page 60).

Also note that architecturally Machine Check interrupts are not context synchronizing. Therefore, an instruction that
precedes a context synchronizing operation can cause a Machine Check interrupt after the context synchronizing
operation occurs and additional instructions have completed. For the PPC405, this can only occur with Data
Machine Check exceptions, and not Instruction Machine Check exceptions.

AMCC Proprietary

http://www.manualslib.com/

 59

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

The following scenarios use pseudocode examples to illustrate these limitations of context synchronization.
Subsequent text explains how software can further guarantee “storage ordering.”

1. Consider the following instruction sequence:

STORE non cacheable to address XYZ
isync
XYZ instruction

In this sequence, the isync instruction does not guarantee that the XYZ instruction is fetched after the STORE has
occurred to memory. There is no guarantee which XYZ instruction will execute; either the old version or the new
(stored) version might.

2. Consider the following instruction sequence, which assumes that the PPC405 uses DCRs to provide bus
region control:

STORE non cacheable to address XYZ
isync
mtdcr to change a bus region containing XYZ

In this sequence, there is no guarantee that the STORE will occur before the mtdcr changing the bus region
control DCR. The STORE could fail because of a configuration error.

Consider an interrupt that changes privileged mode. An interrupt is a context synchronizing operation, because
interrupts cause the MSR to be updated. The MSR is part of the processor context; the context synchronizing
operation guarantees that all instructions that precede the interrupt complete using the preinterrupt value of
MSR[PR], and that all instructions that follow the interrupt complete using the postinterrupt value.

Consider, on the other hand, some code that uses mtmsr to change the value of MSR[PR], which changes the
privileged mode. In this case, the MSR is changed, changing the context. It is possible, for example, that
prefetched privileged instructions expect to execute after the mtmsr has changed the operating mode from
privileged mode to user mode. To prevent privileged instruction program exceptions, the code must execute a
context synchronization operation, such as isync, immediately after the mtmsr instruction to prevent further
instruction execution until the mtmsr completes.

eieio or sync can ensure that the contents of memory and DCRs are synchronized in the instruction stream. These
instructions guarantee storage ordering because all memory accesses that precede eieio or sync are completed
before subsequent memory accesses. Neither eieio nor sync guarantee that instruction prefetching is delayed
until the eieio or sync completes. The instructions do not cause the prefetch queues to be purged and instructions
to be refetched. See “Storage Ordering and Synchronization” on page 60 for more information.

Instruction cache state is part of context. A context synchronization operation is required to guarantee instruction
cache access ordering.

3. Consider the following instruction sequence, which is required for creating self-modifying code:

STORE Change data cache contents
dcbst Flush the new data cache contents to memory
sync Guarantee that dcbst completes before subsequent instructions begin
icbi Context changing operation; invalidates instruction cache contents.
isync Context synchronizing operation; causes refetch using new instruction cache context

text and new memory context, due to the previous sync.

If software wishes to ensure that all storage accesses are complete before executing a mtdcr to change a bus
region (Example 2), the software must issue a sync after all storage accesses and before the mtdcr. Likewise, if
the software is to ensure that all instruction fetches after the mtdcr use the new bank register contents, the
software must issue an isync, after the mtdcr and before the first instruction that should be fetched in the new
context.

AMCC Proprietary

http://www.manualslib.com/

 60

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

isync guarantees that all subsequent instructions are fetched and executed using the context established by all
previous instructions. isync is a context synchronizing operation; isync causes all subsequently prefetched
instructions to be discarded and refetched.

The following example illustrates the use of isync with debug exceptions:

mtdbcr0 Enable an instruction address compare (IAC) event
isync Wait for the new Debug Control Register 0 (DBCR0) context to be established
XYZ This instruction is at the IAC address; an isync was necessary to guarantee that the

IAC event occurs at the execution of this instruction

2.10.2 Execution Synchronization

Execution synchronization is a subset of context synchronization. An execution synchronizing operation satisfies
the first two requirements of context synchronizing operations, but not the latter two. That is, execution
synchronizing operations guarantee that preceding instructions execute in the “old” context, but do not guarantee
that subsequent instructions operate in the “new” context.

There are three execution synchronizing operations: eieio, mtmsr, and sync. Note that all context synchronizing
instructions are also implicitly execution synchronizing, since context synchronization is a superset of execution
synchronization.

Because mtmsr is execution synchronizing, it guarantees that previous instructions complete using the old MSR
value. (For example, using mtmsr to change the endian mode.) However, to guarantee that subsequent
instructions use the new MSR value, we have to insert a context synchronization operation, such as isync.

Note that PowerPC Book-E imposes additional requirements on updates to MSR[EE] (the external interrupt enable
bit). Specifically, if a mtmsr, wrtee, or wrteei instruction sets MSR[EE] = 1, and an External Input, Decrementer, or
Fixed Interval Timer exception is pending, the interrupt must be taken before the instruction that follows the
MSR[EE]-updating is executed. In this sense, these MSR[EE]-updating instructions can be thought of as being
context synchronizing with respect to the MSR[EE] bit, in that it guarantees that subsequent instructions execute
(or are prevented from executing and an interrupt taken) according to the new context of MSR[EE].

Finally, while sync and eieio are execution synchronizing, they are also more restrictive in their requirement of
memory ordering. Stating that an operation is execution synchronizing does not imply storage ordering. This is an
additional specific requirement of sync and eieio.

2.10.3 Storage Ordering and Synchronization

Storage synchronization enforces ordering between storage access instructions executed by the PPC405. The
sync instruction guarantees that all previous storage references complete with respect to the PPC405 before the
sync instruction completes (therefore, before any subsequent instructions begin to execute). The sync instruction
is execution synchronizing. Consider the following use of sync:

Consider the following use of sync:

stw Store to peripheral
sync Wait for store to actually complete
mtdcr Reconfigure device

The eieio instruction guarantees the order of storage accesses. All storage accesses that precede eieio complete
before any storage accesses that follow the instruction, as in the following example:

stb X Store to peripheral, address X; this resets a status bit in the device
eieio Guarantee stb X completes before next instruction
lbz Y Load from peripheral, address Y; this is the status register updated by stb X.

AMCC Proprietary

http://www.manualslib.com/

 61

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

eieio was necessary, because the read and write addresses are different, but affect each other

The PPC405 implements both sync and eieio identically, in the manner described above for sync. In the PowerPC
Architecture, sync can function across all processors in a multiprocessor environment; eieio functions only within
its executing processor. The PPC405 does not provide hardware support for multiprocessor memory coherency, so
sync does not guarantee memory ordering across multiple processors.

2.11 Implemented Instruction Set Summary

This section provides an overview of the various types and categories of instructions implemented within the
PPC405. In addition, Instruction Set on page 157 provides a complete alphabetical listing of every implemented
instruction.

Appendix A Instruction Summary on page 357 alphabetically lists each instruction and extended mnemonic and
provides a short-form description. Appendix B Instructions by Category on page 395 provides short-form
descriptions of instructions, grouped by the instruction categories listed in Table 2-12.

Table 2-12 summarizes the PPC405 instruction set functions by categories. Instructions within each category are
described in subsequent sections.

Table 2-12. PPC405 Instruction Set Summary

Category Subcategory Instruction Types

Integer

Integer Storage Access load, store

Integer Arithmetic add, subtract, negate, multiply, multiply-accumulate, multiply halfword, divide

Integer Logical and, andc, or, orc, xor, nand, nor, xnor, extend sign, count leading zeros

Integer Compare compare, compare logical, compare immediate

Integer Rotate rotate and insert, rotate and mask

Integer Shift shift left, shift right, shift right algebraic

Branch branch, branch conditional, branch to LR, branch to CTR

Processor Control

Condition Register Logical crand, crandc, cror, crorc, crnand, crnor, crxor, crxnor, move CR field

Register Management move to/from SPR, move to/from DCR, move to/from CR

System Linkage system call, return from interrupt, return from critical interrupt, return from machine
check interrupt

Trap trap

Interrupt Control move to/from MSR, return from interrupt, return from critical interrupt, return from
machine check interrupt, write to external interrupt enable bit

Processor Synchronization synchronize

Storage Control
Cache Management data allocate, data invalidate, data touch, data zero, data flush, data store, data

read, instruction invalidate, instruction touch

TLB Management read, write, search, synchronize

AMCC Proprietary

http://www.manualslib.com/

 62

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.11.1 Instructions Specific to the PowerPC Embedded Environment

To support functions required in embedded real-time applications, the PowerPC processors define instructions that
are not defined in the PowerPC Architecture.

Table 2-13 lists the instructions specific to PowerPC embedded processors. Programs using these instructions are
not portable to PowerPC implementations that are not part of the PowerPC 400 family of embedded processors.

In the table, the syntax [s] indicates that the instruction has a signed form. The syntax [u] indicates that the
instruction has an unsigned form. The syntax [.] indicates that the instruction has a “record” form that updates
CR[CR0], and a “non-record” form.

2.11.2 Storage Reference Instructions

Table 2-14 lists the PPC405 storage reference instructions. Load/store instructions transfer data between memory
and the GPRs. These instructions operate on bytes, halfwords, and words. Storage reference instructions also
support loading or storing multiple registers, character strings, and bytereversed data.

In the table, the syntax [u] indicates that an instruction has an “update” form that updates the RA addressing
register with the calculated address, and a “non-update” form. The syntax [x] indicates that an instruction has an
“indexed” form, which forms the address by adding the contents of the RA and RB GPRs and a “base +
displacement” form, in which the address is formed by adding a 16-bit signed immediate value (included as part of
the instruction word) to the contents of RA GPR.

Table 2-13. Implementation-specific Instructions

dccci
dcread
iccci
icread

macchw[s][u]
machhw[s][u]
maclhw[s][u]
nmacchw[s]
nmachhw[s]
nmaclhw[s]

mulchw[u]
mulhhw[u]
mullhw[u]

mfdcr
mtdcr
rfci
tlbre
tlbsx[.]
tlbwe
wrtee
wrteei

Table 2-14. Storage Reference Instructions
Loads Stores

Byte Halfword Word Multiple/String Byte Halfword Word Multiple/String

lbz[u][x]
lha[u][x]
lhbrx
lhz[u][x]

lwarx
lwbrx
lwz[u][x]

lmw
lswi
lswx

stb[u][x]
sth[u][x]
sthbrx

stw[u][x]
stwbrx
stwcx.

stmw
stswi
stswx

AMCC Proprietary

http://www.manualslib.com/

 63

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.11.3 Arithmetic Instructions

Arithmetic operations are performed on integer operands stored in GPRs. Instructions that perform operations on
two operands are defined in a three-operand format; an operation is performed on the operands, which are stored
in two GPRs. The result is placed in a third, operand, which is stored in a GPR. Instructions that perform operations
on one operand are defined using a two-operand format; the operation is performed on the operand in a GPR and
the result is placed in another GPR. Several instructions also have immediate formats in which an operand is
contained in a field in the instruction word.

Most arithmetic instructions have versions that can update CR[CR0] and XER[SO, OV], based on the result of the
instruction. Some arithmetic instructions also update XER[CA] implicitly. See Condition Register (CR) on page 39
and Fixed Point Exception Register (XER) on page 37 for more information.

Table 2-15 lists the PPC405 arithmetic instructions. In the table, the syntax [o] indicates that an instruction has an
“o” form that updates XER[SO,OV], and a “non-o” form. The syntax [.] indicates that the instruction has a “record”
form that updates CR[CR0], and a “non-record” form.

Table 2-16 lists additional arithmetic instructions for multiply-accumulate and multiply halfword operations. In the
table, the syntax [o] indicates that an instruction has an “o” form that updates XER[SO,OV], and a “non-o” form.
The syntax [.] indicates that the instruction has a “record” form that updates CR[CR0], and a “non-record” form.

Table 2-15. Arithmetic Instructions
Add Subtract Multiply Divide Negate

add[o][.]
addc[o][.]
adde[o][.]
addi
addic[.]
addis
addme[o][.]
addze[o][.]

subf[o][.]
subfc[o][.]
subfe[o][.]
subfic
subfme[o][.]
subfze[o][.]

mulhw[.]
mulhwu[.]
mulli
mullw[o][.]

divw[o][.]
divwu[o][.] neg[o][.]

Table 2-16. Multiply-Accumulate and Multiply Halfword Instructions
Multiply-Accumulate Negative-Multiply- Accumulate Multiply Halfword

macchw[o][.]
macchws[o][.]
macchwsu[o][.]
macchwu[o][.]
machhw[o][.]
machhws[o][.]
machhwsu[o][.]
machhwu[o][.]
maclhw[o][.]
maclhws[o][.]
maclhwsu[o][.]
maclhwu[o][.]

nmacchw[o][.]
nmacchws[o][.]
nmachhw[o][.]
nmachhws[o][.]
nmaclhw[o][.]
nmaclhws[o][.]

mulchw[.]
mulchwu[.]
mulhhw[.]
mulhhwu[.]
mullhw[.]
mullhwu[.]

AMCC Proprietary

http://www.manualslib.com/

 64

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.11.4 Logical Instructions

Table 2-17 lists the PPC405 logical instructions. In the table, the syntax [.] indicates that the instruction has a
“record” form that updates CR[CR0], and a “non-record” form.

2.11.5 Compare Instructions

These instructions perform arithmetic or logical comparisons between two operands and update the CR with the
result of the comparison.

Table 2-18 lists the PPC405 compare instructions

.

2.11.6 Branch Instructions

These instructions unconditionally or conditionally branch to an address. Conditional branch instructions can test
condition codes set by a previous instruction and branch accordingly. Conditional branch instructions can also
decrement and test the CTR as part of branch determination, and can save the return address in the LR.The target
address for a branch can be a displacement from the current instruction address (a relative address), an absolute
address, or contained in the CTR or LR.

See Branch Processing on page 50 for more information on branch operations.

Table 2-19 lists the PPC405 branch instructions. In the table, the syntax [l] indicates that the instruction has a “link
update” form that updates LR with the address of the instruction after the branch, and a “non-link update” form. The
syntax [a] indicates that the instruction has an “absolute address” form, in which the target address is formed
directly using the immediate field specified as part of the instruction, and a “relative” form, in which the target
address is formed by adding the immediate field to the address of the branch instruction).

Table 2-17. Logical Instructions

And
And with

Complement Nand Or
Or with

Complement Nor Xor Equivalence Extend Sign

Count
Leading
Zeros

and[.]
andi.
andis.

andc[.] nand[.]
or[.]
ori
oris

orc[.] nor[.]
xor[.]
xori
xoris

eqv[.] extsb[.]
extsh[.] cntlzw[.]

Table 2-18. Compare Instructions
Arithmetic Logical

cmp
cmpi

cmpl
cmpli

Table 2-19. Branch Instructions
Branch

b[l][a]
bc[l][a]
bcctr[l]
bclr[l]

AMCC Proprietary

http://www.manualslib.com/

 65

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.11.6.1 CR Logical Instructions

These instructions perform logical operations on a specified pair of bits in the CR, placing the result in another
specified bit. These instructions can logically combine the results of several comparisons without incurring the
overhead of conditional branch instructions. Software performance can significantly improve if multiple conditions
are tested at once as part of a branch decision.

Table 2-20 lists the PPC405 condition register logical instructions.

2.11.6.2 Rotate Instructions

These instructions rotate operands stored in the GPRs. Rotate instructions can also mask rotated operands.

Table 2-21 lists the PPC405 rotate instructions. In the table, the syntax [.] indicates that the instruction has a
“record” form that updates CR[CR0], and a “non-record” form.

2.11.6.3 Shift Instructions

These instructions shift operands stored in the GPRs.

Table 2-22 lists the PPC405 shift instructions. Shift right algebraic instructions implicitly update XER[CA]. In the
table, the syntax [.] indicates that the instruction has a “record” form that updates CR[CR0], and a “non-record”
form.

Table 2-20. CR Logical Instructions

crand
crandc
creqv
crnand

crnor
cror
crorc
crxor
mcrf

Table 2-21. Rotate Instructions
Rotate and Insert Rotate and Mask

rlwimi[.] rlwinm[.]
rlwnm[.]

Table 2-22. Shift Instructions

Shift Left Shift Right
Shift Right
Algebraic

slw[.] srw[.] sraw[.]
srawi[.]

AMCC Proprietary

http://www.manualslib.com/

 66

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.11.6.4 Cache Management Instructions

These instructions control the operation of the ICU and DCU. Instructions are provided to fill or invalidate
instruction cache blocks. Instructions are also provided to fill, flush, invalidate, or zero data cache blocks, where a
block is defined as a 32-byte cache line.

Table 2-23 lists the PPC405 cache management instructions.

2.11.7 Interrupt Control Instructions

mfmsr and mtmsr read and write data between the MSR and a GPR to enable and disable interrupts. wrtee and
wrteei enable and disable external interrupts. rfi and rfci return from interrupt handlers. Table 2-24 lists the
PPC405 interrupt control instructions.

2.11.8 TLB Management Instructions

The TLB management instructions read and write entries of the TLB array in the MMU, search the TLB array for an
entry which will translate a given address, and invalidate all TLB entries. There is also an instruction for
synchronizing TLB updates with other processors, but because the PPC405 is for use in uniprocessor
environments, this instruction performs no operation.

Table 2-25 lists the TLB management instructions. In the table, the syntax [.] indicates that the instruction has a
“record” form that updates CR[CR0], and a “non-record” form.

Table 2-23. Cache Management Instructions
DCU ICU

dcba
dcbf
dcbi
dcbst
dcbt
dcbtst
dcbz
dccci
dcread

icbi
icbt
iccci
icread

Table 2-24. Interrupt Control Instructions
mfmsr
mtmsr
rfi
rfci
wrtee
wrteei

AMCC Proprietary

http://www.manualslib.com/

 67

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

2.11.9 Processor Control Instructions

These instructions move data between the GPRs and SPRs, the CR, and DCRs in the PPC405, and provide traps,
system calls, and synchronization controls.

Table 2-26 lists the processor management instructions in the PPC405.

2.11.10 Extended Mnemonics

In addition to mnemonics for instructions supported directly by hardware, the PowerPC Architecture defines
numerous extended mnemonics.

An extended mnemonic translates directly into the mnemonic of a hardware instruction, typically with carefully
specified operands. For example, the PowerPC Architecture does not define a “shift right word immediate”
instruction, because the “rotate left word immediate then AND with mask,” (rlwinm) instruction can accomplish the
same result:

rlwinm RA,RS,32–n,n,31

However, because the required operands are not obvious, the PowerPC Architecture defines an extended
mnemonic:

srwi RA,RS,n

Extended mnemonics transfer the problem of remembering complex or frequently used operand combinations to
the assembler, and can more clearly reflect a programmer’s intentions. Thus, programs can be more readable.

Refer to the following chapter and appendixes for lists of the extended mnemonics:

• Instruction Set on page 157 lists extended mnemonics under the associated hardware instruction mnemonics.

• Instruction Summary on page 357 lists extended mnemonics alphabetically, along with the hardware instruc-
tion mnemonics.

Table B-5 in Instructions by Category on page 395 lists all extended mnemonics.

Table 2-25. TLB Management Instructions
tlbia
tlbre
tlbsx[.]
tlbsync
tlbwe

Table 2-26. Processor Control Instructions

eieio
isync
sync

mcrxr
mfcr
mfdcr
mfspr

mtcrf
mtdcr
mtspr
sc
tw
twi

AMCC Proprietary

http://www.manualslib.com/

 68

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

AMCC Proprietary

http://www.manualslib.com/

 69

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

3. Cache Operations
The PPC405 incorporates two internal caches, a 16-KB instruction cache and a 16-KB data cache. Instructions
and data can be accessed in the caches much faster than in main memory.

The instruction cache unit (ICU) controls instruction accesses to main memory and stores frequently used
instructions to reduce the overhead of instruction transfers between the instruction pipeline and external memory.
Using the instruction cache minimizes access latency for frequently executed instructions.

The data cache unit (DCU) controls data accesses to main memory and stores frequently used data to reduce the
overhead of data transfers between the GPRs and external memory. Using the data cache minimizes access
latency for frequently used data.

3.1 ICU Features
• Programmable address pipelining and prefetching for cache misses and non cacheable lines
• Support for non-cacheable hits from lines contained in the line fill buffer
• Programmable non cacheable requests to memory as 4 or 8 words (or half line or line)
• Bypass path for critical words
• Non-blocking cache for hits during fills
• Flash invalidate (one instruction invalidates entire cache)
• Programmable allocation for fetch fills, enabling program control of cache contents using the icbt instruction
• Virtually indexed, physically tagged cache arrays
• Support for 64- and 32-bit PLB slaves
• A rich set of cache control instructions

3.2 DCU Features
• Address pipelining for line fills
• Support for load hits from non cacheable and non-allocated lines contained in the line fill buffer
• Bypass path for critical words
• Non-blocking cache for hits during fills
• Write-back and write-through write strategies controlled by storage attributes
• Programmable non cacheable load requests to memory as lines or words.
• Handling of up to two pending line flushes.
• Holding of up to three stores before stalling the core pipeline
• Physically indexed, physically tagged cache arrays
• Support for 64- and 32-bit PLB slaves
• A rich set of cache control instructions

ICU Organization on page 69 and DCU Organization on page 72 describe the organization and provide overviews
of the ICU and the DCU.

3.3 ICU Organization

The ICU manages instruction transfers between external cacheable memory and the instruction queue in the
execution unit.

The ICU contains a two-way set-associative 16-KB cache memory. Each way is organized in 256 lines of eight
words (eight instructions) each.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

As shown in Table 3-1, tag ways A and B store instruction address bits A0:21 for each line in cache ways A and B.
Instruction address bits A19:26 serve as the index to the cache array. The two cache lines that correspond to the
same line index (one in each way) are called a congruence class.

When a cache line is to be loaded, the cache way to receive the line is determined by using an least recently-used
(LRU) policy. The index, determined by the instruction address, selects a congruence class. Within a congruence
class, the line which was accessed most recently is retained, and the other line is marked as LRU, using an LRU
bit in the tag array. The line to receive the incoming data is the LRU line. After the cache line fill, the LRU bit is then
set to identify as least-recently-used the line opposite the line just filled.

Figure 3-1 shows the relationships between the ICU and the instruction pipeline.

Table 3-1. Instruction Cache Organization

Tags (Two-way Set) Instructions (Two-way Set)

Way A Way B Way A Way B

A0:21 Line 0 A A0:21 Line 0 B Line 0 A Line 0 B

A0:21 Line 1 A A0:21 Line 1 B Line 1 A Line 1 B

•
•
•

•
•
•

•
•
•

•
•
•

A0:21 Line 254 A A0:21 Line 254 B Line 254 A Line 254 B

A0:21 Line 255 A A0:21 Line 255 B Line 255 A Line 255 B

Figure 3-1. Instruction Flow

Execute

PFB1

PFB0

Decode

Addresses from Fetcher

Instruction
Arrays
Tag

Arrays

Addresses to Memory

Instructions from Memory

Bypass Path

Instruction Queue

70

http://www.manualslib.com/

 71

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

3.3.1 ICU Operations

Instructions from cacheable memory regions are copied into the instruction cache array. The fetcher can access
instructions much more quickly from a cache array than from memory. Cache lines are loaded either target-word-
first or sequentially. Target-word-first fills start at the requested word, continue to the end of the line, and then wrap
to fill the remaining words at the beginning of the line. Sequential fills start at the first word of the cache line and
proceed sequentially to the last word of the line.

The bypass path handles instructions in cache-inhibited memory and improves performance during line fill
operations. If a request from the fetcher obtains an entire line from memory, the queue does not have to wait for
the entire line to reach the cache. The target word (the word requested by the fetcher) is sent on the bypass path to
the queue while the line fill proceeds, even if the selected line fill order is not target-word-first.

Cache line fills always run to completion, even if the instruction stream branches away from the rest of the line. As
requested instructions are received, they go to the fetcher from the fill register before the line fills in the cache. The
filled line is always placed in the ICU; if an external memory subsystem error occurs during the fill, the line is not
written to the cache. During a clock cycle, the ICU can send two instructions to the fetcher.

3.3.2 Instruction Cachability Control

When instruction address translation is enabled (MSR[IR] = 1), instruction cachability is controlled by the I storage
attribute in the translation lookaside buffer (TLB) entry for the memory page. If TLB_entry[I] = 1, caching is
inhibited; otherwise caching is enabled. Cachability is controlled separately for each page, which can range in size
from 1KB to 16MB. Translation Lookaside Buffer (TLB) on page 92 describes the TLB.

When instruction address translation is disabled (MSR[IR] = 0), instruction cachability is controlled by the
Instruction Cache Cachability Register (ICCR). Each field in the ICCR (ICCR[S0:S31]) controls the cachability of a
128MB region (see Real-Mode Storage Attribute Control on page 105). If ICCR[Sn] = 1, caching is enabled for the
specified region; otherwise, caching is inhibited.

The performance of the PPC405 is significantly lower while fetching instructions from cache inhibited regions.

Following system reset, address translation is disabled and all ICCR bits are reset to 0 so that no memory regions
are cacheable. Before regions can be designated as cacheable, the ICU cache array must be invalidated. The iccci
instruction must execute before the cache is enabled. Address translation can then be enabled, if required, and the
TLB or the ICCR can then be configured for the required cachability.

3.3.3 Instruction Cache Synonyms

The following information applies only if instruction address translation is enabled (MSR[IR] = 1) and 1KB or 4KB
page sizes are used. See Memory Management on page 91 for information about address translation and page
sizes.

An instruction cache synonym occurs when the instruction cache array contains multiple cache lines from the same
real address. Such synonyms result from combinations of:

• Cache array size
• Cache associativity
• Page size
• The use of effective addresses (EAs) to index the cache array

For example, the instruction cache array has a "way size" of 8KB (16KB array/2 ways). Thus, 11 bits (EA19:29) are
needed to select a word (instruction) in each way. For the minimum page size of 1KB, the low order eight bits
(EA22:29) address a word in a page. The high order address bits (EA0:21) are translated to form a real address
(RA), which the ICU uses to perform the cache tag match. Cache synonyms could occur because the index bits

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

(EA19:29) overlap the translated RA bits. For 1KB pages, overlap in EA19:21 and RA19:21 could result in as many as
8 synonyms. In other words, data from the same RA could occur as many as 8 locations in the cache array.
Similarly, for 4KB pages, EA0:19 are translated. Differences in EA19 and RA19 could result in as many as 2
synonyms. For the next largest page size (16KB), only EA 0:17 are translated. Because there is no overlap with
index bits EA19:21, synonyms do not occur.

In practice, cache synonyms occur when a real instruction page having multiple virtual mappings exists in multiple
cache lines. For 1KB pages, all EAs differing in EA19:21 must be cast out of cache, using an icbi instruction for each
such EA (up to eight per cache line in the page). For 4KB pages, all EAs differing in EA19 must be cast out in the
same manner (up to two per cache line in the page). For larger pages, cache synonyms do not occur, and casting
out any of the multiple EAs removes the physical information from the cache.

Programming Note: To prevent the occurrence of cache synonyms, use only page sizes greater than the
cache way size (8KB), if possible. For the PPC405, the minimum such page size is 16KB.

3.3.4 ICU Coherency

The ICU does not “snoop” external memory or the DCU. Programmers must follow special procedures for ICU
synchronization when self-modifying code is used or if a peripheral device updates memory containing instructions.

The following code example illustrates the necessary steps for self-modifying code. This example assumes that
addr1 is both data and instruction cacheable.

stw regN, addr1 # the data in regN is to become an instruction at addr1
dcbst addr1 # forces data from the data cache to memory
sync # wait until the data actually reaches the memory
icbi addr1 # the previous value at addr1 might already be in

the instruction cache; invalidate it in the cache
isync # the previous value at addr1 may already have been

pre-fetched into the queue; invalidate the queue
so that the instruction must be re-fetched

3.4 DCU Organization

The DCU manages data transfers between external cacheable memory and the general-purpose registers in the
execution unit.

The DCU contains a two-way set-associative 16KB cache memory. Each way is organized in 256 lines of eight
words (32 bytes) each.

As shown in Table 3-2, tag ways A and B store data address bits A0:19 for each line in cache ways A and B. Data
address bits A18:26 serve as the index to the cache array. The two cache lines that correspond to the same line
index (one in each way) are called a congruence class.

72

http://www.manualslib.com/

 73

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

A bypass path handles data operations in cache-inhibited memory and improves performance during line fill
operations.

3.4.1 DCU Operations

Data from cacheable memory regions are copied from external memory into lines in the data cache array so that
subsequent cache operations result in cache hits. Loads and stores that hit in the DCU are completed in one cycle.
For loads, GPRs receive the requested byte, halfword, or word of data from the data cache array. The DCU
supports byte-writeability to improve the performance of byte and halfword store operations.

Cache operations require a line fill when they require data from cacheable memory regions that are not currently in
the DCU. A line fill is the movement of a cache line (eight words) from external memory to the data cache array.
Eight words are copied from external memory into the fill buffer, either targetword-first or sequentially. Loading
order is controlled by the PLB slave. Target-word-first fills start at the requested word, continue to the end of the
line, and then wrap to fill the remaining words at the beginning of the line. Sequential fills start at the first word of
the cache line and proceed sequentially to the last word of the line. In both types of fills, the fill buffer, when full, is
transferred to the data cache array. The cache line is marked valid when it is filled.

Loads that result in a line fill, and loads from non cacheable memory, are sent to a GPR. The requested byte,
halfword, or word is sent from the DCU to the GPR from the fill buffer, using a cache bypass mechanism. Additional
loads for data in the fill buffer can be bypassed to the GPR until the data is moved into the data array.

Stores that result in a line fill have their data held in the fill buffer until the line fill completes. Additional stores to the
line being filled will also have their data placed in the fill buffer before being transferred into the data cache array.

To complete a line fill, the DCU must access the tag and data arrays. The tag array is read to determine the tag
addresses, the LRU line, and whether the LRU line is dirty. A dirty cache line is one that was accessed by a store
instruction after the line was established, and can be inconsistent with external memory. If the line being replaced
is dirty, the address and the cache line must be saved so that external memory can be updated. During the cache
line fill, the LRU bit is set to identify the line opposite the line just filled as LRU.

When a line fill completes and replaces a dirty line, a line flush begins. A flush copies updated data in the data
cache array to main storage. Cache flushes are always sequential, starting at the first word of the cache line and
proceeding sequentially to the end of the line.

Table 3-2. Data Cache Organization

Tags (Two-way Set) Data (Two-way Set)

Way A Way B Way A Way B

A0:19 Line 0 A A0:19 Line 0 B Line 0 A Line 0 B

A0:19 Line 1 A A0:19 Line 1 B Line 1 A Line 1 B

•
•
•

•
•
•

•
•
•

•
•
•

A0:19 Line 254 A A0:19 Line 254 B Line 254 A Line 254 B

A0:19 Line 255 A A0:19 Line 255 B Line 255 A Line 255 B

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

Cache lines are always completely flushed or filled, even if the program does not request the rest of the bytes in
the line, or if a bus error occurs after a bus interface unit accepts the request for the line fill. If a bus error occurs
during a line fill, the line is filled and the data is marked valid. However, the line can contain invalid data, and a
machine check exception occurs.

3.4.2 DCU Write Strategies

DCU operations can use write-back or write-through strategies to maintain coherency with external cacheable
memory.

The write-back strategy updates only the data cache, not external memory, during store operations. Only modified
data lines are flushed to external memory, and then only when necessary to free up locations for incoming lines, or
when lines are explicitly flushed using dcbf or dcbst instructions. The write-back strategy minimizes the amount of
external bus activity and avoids unnecessary contention for the external bus between the ICU and the DCU.

The write-back strategy is contrasted with the write-through strategy, in which stores are written simultaneously to
the cache and to external memory. A write-through strategy can simplify maintaining coherency between cache
and memory.

When data address translation is enabled (MSR[DR] = 1), the W storage attribute in the TLB entry for the memory
page controls the write strategy for the page. If TLB_entry[W] = 0, write-back is selected; otherwise, write-through
is selected. The write strategy is controlled separately for each page. Translation Lookaside Buffer (TLB) on
page 92 describes the TLB.

When data address translation is disabled (MSR[DR] = 0), the Data Cache Write-through Register (DCWR) sets
the storage attribute. Each bit in the DCWR (DCWR[W0:W31]) controls the write strategy of a 128MB storage
region (see Real-Mode Storage Attribute Control on page 105). If DCWR[Wn] = 0, write-back is enabled for the
specified region; otherwise, write-through is enabled.

Programming Note: The PowerPC Architecture does not support memory models in which write-through is
enabled and caching is inhibited.

3.4.3 DCU Load and Store Strategies

The DCU can control whether a load receives one word or one line of data from main memory. For cacheable
memory, the load without allocate (LWOA) field of the CCR0 controls the type of load resulting from a load miss. If
CCR0[LWOA] = 0, a load miss causes a line fill. If CCR0[LWOA] = 1, load misses do not result in a line fill, but in a
word load from external memory. For infrequent reads of non-contiguous memory, setting CCR0[LWOA] = 1 may
provide a small performance improvement.

For non cacheable memory and for loads misses when CCR0[LWOA] = 1, the load word as line (LWL) field in the
CCR0 affects whether load misses are satisfied with a word, or with eight words (the equivalent of a cache line) of
data. If CCR0[LWL] = 0, only the target word is bypassed to the core. If CCR0[LWL] = 1, the DCU saves eight
words (one of which is the target word) in the fill buffer and bypasses the target data to the core to satisfy the load
word request. The fill buffer is not written to the data cache array.

Setting CCR0[LWL] = 1 provides the fastest accesses to sequential non cacheable memory. Subsequent loads
from the same line are bypassed to the core from the fill buffer and do not result in additional external memory
accesses. The load data remains valid in the fill buffer until one of the following occurs: the beginning of a
subsequent load that requires the fill buffer, a store to the target address, a dcbi or dccci instruction issued to the
target address, or the execution of a sync instruction. Non cacheable loads to guarded storage never cause a line
transfer on the PLB even if CCR0[LWL] = 1. Subsequent loads to the same non cacheable storage are always
requested again from the PLB.

74

http://www.manualslib.com/

 75

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

For cacheable memory, the store without allocate (SWOA) field of the CCR0 controls the type of store resulting
from a store miss. If CCR0[SWOA] = 0, a store miss causes a line fill. If CCR0[SWOA] = 1, store misses do not
result in a line fill, but in a single word store to external memory.

3.4.4 Data Cachability Control

When data address translation is disabled (MSR[DR] = 0), data cachability is controlled by the Data Cache
Cachability Register (DCCR). Each bit in the DCCR (DCCR[S0:S31]) controls the cachability of a 128MB region
(see Real-Mode Storage Attribute Control on page 105). If DCCR[Sn] = 1, caching is enabled for the specified
region; otherwise, caching is inhibited.

When data address translation is enabled (MSR[DR] = 1), data cachability is controlled by the I bit in the TLB entry
for the memory page. If TLB_entry[I] = 1, caching is inhibited; otherwise caching is enabled. Cachability is
controlled separately for each page, which can range in size from 1KB to 16MB. Translation Lookaside Buffer
(TLB) on page 92 describes the TLB.

Programming Note: The PowerPC Architecture does not support memory models in which write-through is
enabled and caching is inhibited.

The performance of the PPC405 is significantly lower while accessing memory in cache-inhibited regions.

Following system reset, address translation is disabled and all DCCR bits are reset to 0 so that no memory regions
are cacheable. The dccci instruction must execute 256 times before regions can be designated as cacheable. This
invalidates all congruence classes before enabling the cache. Address translation can then be enabled, if required,
and the TLB or the DCCR can then be configured for the desired cachability.

Programming Note: If a data block corresponding to the effective address (EA) exists in the cache, but the
EA is non cacheable, loads and stores (including dcbz) to that address are considered programming errors
(the cache block should previously have been flushed). The only instructions that can legitimately access such
an EA in the data cache are the cache management instructions dcbf, dcbi, dcbst, dcbt, dcbtst, dccci, and
dcread.

3.4.5 DCU Coherency

The DCU does not provide snooping. Application programs must carefully use cache-inhibited regions and cache
control instructions to ensure proper operation of the cache in systems where external devices can update
memory.

3.5 Cache Instructions

For detailed descriptions of the instructions described in the following sections, see Instruction Set on page 157

In the instruction descriptions, the term “block” is synonymous with cache line. A block is the unit of storage
operated on by all cache block instructions.

3.5.1 ICU Instructions

The following instructions control instruction cache operations:

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

3.5.2 DCU Instructions

Data cache flushes and fills are triggered by load, store and cache control instructions. Cache control instructions
are provided to fill, flush, or invalidate cache blocks.

The following instructions control data cache operations:

icbi Instruction Cache Block Invalidate
Invalidates a cache block.

icbt Instruction Cache Block Touch
Initiates a block fill, enabling a program to begin a cache block fetch before the program
needs an instruction in the block.
The program can subsequently branch to the instruction address and fetch the
instruction without incurring a cache miss.
This is a privileged instruction.

iccci Instruction Cache Congruence Class Invalidate
Invalidates the instruction cache array.
This is a privileged instruction.

icread Instruction Cache Read
Reads either an instruction cache tag entry or an instruction word from an instruction
cache line, typically for debugging. Fields in CCR0 control instruction behavior (see
Cache Control and Debugging Features on page 77).
This is a privileged instruction.

dcba Data Cache Block Allocate
Speculatively establishes a line in the cache and marks the line as modified.
If the line is not currently in the cache, the line is established and marked as modified
without actually filling the line from external memory.
If dcba references a non cacheable address, dcba is treated as a no-op.
If dcba references a cacheable address, write-through required (which would otherwise
cause an alignment exception), dcba is treated as a no-op.

dcbf Data Cache Block Flush
Flushes a line, if found in the cache and marked as modified, to external memory; the
line is then marked invalid.
If the line is found in the cache and is not marked modified, the line is marked invalid but
is not flushed.
This operation is performed regardless of whether the address is marked cacheable.

dcbi Data Cache Block Invalidate
Invalidates a block, if found in the cache, regardless of whether the address is marked
cacheable. Any modified data is not flushed to memory.
This is a privileged instruction.

dcbst Data Cache Block Store
Stores a block, if found in the cache and marked as modified, into external memory; the
block is not invalidated but is no longer marked as modified.
If the block is marked as not modified in the cache, no operation is performed.
This operation is performed regardless of whether the address is marked cacheable.

76

http://www.manualslib.com/

 77

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

3.6 Cache Control and Debugging Features

Registers and instructions are provided to control cache operation and help debug cache problems. For ICU
debug, the icread instruction and the Instruction Cache Debug Data Register (ICDBDR) are provided. See ICU
Debugging on page 80 for more information. For DCU debug, the dcread instruction is provided. See DCU
Debugging on page 81 for more information. CCR0 controls the behavior of the icread and the dcread
instructions.

dcbt Data Cache Block Touch
Fills a block with data, if the address is cacheable and the data is not already in the
cache. If the address is non cacheable, this instruction is a no-op.

dcbtst Data Cache Block Touch for Store
Implemented identically to the dcbt instruction for compatibility with compilers and other
tools.

dcbz Data Cache Block Set to Zero
Fills a line in the cache with zeros and marks the line as modified.
If the line is not currently in the cache (and the address is marked as cacheable and
non-write-through), the line is established, filled with zeros, and marked as modified
without actually filling the line from external memory. If the line is marked as either non
cacheable or write-through, an alignment exception results.

dccci Data Cache Congruence Class Invalidate
Invalidates a congruence class (both cache ways).
This is a privileged instruction.

dcread Data Cache Read
Reads either a data cache tag entry or a data word from a data cache line, typically for
debugging. Bits in CCR0 control instruction behavior (see Cache Control and Debugging
Features on page 77).
This is a privileged instruction.

Figure 3-2. Core Configuration Register 0 (CCR0)
0:5 Reserved

6 LWL Load Word as Line
0 The DCU performs load misses or non-

cacheable loads as words, halfwords, or bytes,
as requested

1 For load misses or non cacheable loads, the
DCU moves eight words (including the target
word) into the line fill buffer

7 LWOA Load Without Allocate
0 Load misses result in line fills
1 Load misses do not result in a line fill, but in non

cacheable loads

8 SWOA Store Without Allocate
0 Store misses result in line fills
1 Store misses do not result in line fills, but in non

cacheable stores

9 DPP1 DCU PLB Priority Bit 1
0 DCU PLB priority 0 on bit 1
1 DCU PLB priority 1 on bit 1

DCU logic dynamically controls DCU priority bit 0.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

10:11 IPP ICU PLB Priority Bits 0:1
00 Lowest ICU PLB priority
01 Next to lowest ICU PLB priority
10 Next to highest ICU PLB priority
11 Highest ICU PLB priority

12 DPE Data Cache Parity Enable
0 Disable
1 Enable

13 DPP Data Cache Parity Precision
0 Imprecise
1 Precise

14 U0XE Enable U0 Exception
0 Disables the U0 exception
1 Enables the U0 exception

15 LDBE Load Debug Enable
0 Disable
1 Enable

When enabled, load data is visible on data-side
OCM.

16:17 Reserved

18 IPE Instruction Cache Parity Enable
0 Disable
1 Enable

19 TPE Translation Lookaside Buffer (TLB) Parity Enable
0 Disable
1 Enable

20 PFC ICU Prefetching for Cacheable Regions
0 Disables prefetching for cacheable regions
1 Enables prefetching for cacheable regions

21 PFNC ICU Prefetching for Non Cacheable Regions
0 Disables prefetching for non cacheable regions
1 Enables prefetching for non cacheable regions

22 NCRS Non cacheable ICU request size
0 Requests are for four-word lines
1 Requests are for eight-word lines

23 FWOA Fetch Without Allocate
0 An ICU miss results in a line fill.
1 An ICU miss does not cause a line fill, but results

in a non cacheable fetch.

24:26 Reserved

27 CIS Cache Information Select
0 Information is cache data.
1 Information is cache tag.

28 PRS Parity Read Select
Information passed is selected by CCR0[CIS] and
CCR0[CWS].
0 Pass data or tag
1 Pass parity information

29:30 Reserved

31 CWS Cache Way Select
0 Cache way is A.
1 Cache way is B.

78

http://www.manualslib.com/

 79

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

3.6.1 CCR0 Programming Guidelines

Several fields in CCR0 affect ICU and DCU operation. Altering these fields while the cache units are involved in
PLB transfers can cause errant operation, including a processor hang.

To guarantee correct ICU and DCU operation, specific code sequences must be followed when altering CCR0
fields.

CCR0[IPP] and [FWOA] affect ICU operation. If these fields are altered, execution of the following code sequence
(Sequence 1) is required:

! SEQUENCE 1 Altering CCR0[IPP, FWOA]
! Turn off interrupts

mfmsr RM
addis RZ,r0,0x0002 ! CE bit
ori RZ,RZ,0x8000 ! EE bit
andc RZ,RM,RZ ! Turn off MSR[CE,EE]
mtmsr RZ

! sync
sync

! Touch code sequence into i-cache
addis RX,r0,seq1@h
ori RX,RX,seq1@l
icbt r0,RX

! Call function to alter CCR0 bits
b seq1

back:
! Restore MSR to original value

mtmsr RM
•
•
•

! The following function must be in cacheable memory
.align 5 ! Align CCR0 altering code on a cache line boundary.
seq1:
icbt r0,RX ! Repeat ICBT and execute an ISYNC to guarantee CCR0
isync ! altering code has been completely fetched across the PLB.
mfspr RN,CCR0 ! Read CCR0.
andi/ori RN,RN,0xXXXX ! Execute and/or function to change any CCR0 bits.

! Can use two instructions before having to touch
! in two cache lines.

mtspr CCR0, RN ! Update CCR0.
isync ! Refetch instructions under new processor context.
b back ! Branch back to initialization code.

CCR0[DPP1] and [U0XE] affect DCU operation. If these fields are altered, execution of the following code
sequence (Sequence 2) is required. Note that Sequence 1 includes Sequence 2, so Sequence 1 can be used to
alter any CCR0 fields.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

In the following sample code, registers RN, RM, RX, and RZ are any available GPRs.

!SEQUENCE 2 Alter CCR0[DPP1, U0XE)
! Turn off interrupts

mfmsr RM
addis RZ,r0,0x0002 ! CE bit
ori RZ,RZ,0x8000 ! EE bit
andc RZ,RM,RZ ! Turn off MSR[CE,EE]
mtmsr RZ

! sync
sync

! Alter CCR0 bits
mfspr RN,CCR0 ! Read CCR0.
andi/ori RN,RN,0xXXXX ! Execute and/or function to change any CCR0 bits.
mtspr CCR0, RN ! Update CCR0.
isync ! Refetch instructions under new processor context.

! Restore MSR to original value
mtmsr RM

CCR0[CIS, CWS] do not require special programming.

3.6.2 ICU Debugging

The icread instruction enables the reading of the instruction cache entries for the congruence class specified by
EA18:26. The cache information is read into the ICDBDR; from there it can subsequently be moved, using an
mfspr instruction, into a GPR. ICU tag information is placed into the ICDBDR as shown.

If CCR0[CIS] = 0, the data is a word of ICU data from the addressed line, specified by EA27:29. If CCR0[CWS] = 0,
the data is from the A-way; otherwise; the data from the B-way.

If CCR0[CIS] = 1, the cache information is the cache tag. If CCR0[CWS] = 0, the tag is from the A-way; otherwise,
the tag is from the B-way.

Programming Note: The instruction pipeline does not wait for data from an icread instruction to arrive
before attempting to use the contents the ICDBDR. The following code sequence ensures proper results:

icread r5,r6 # read cache information
isync # ensure completion of icread
mficdbdr r7 # move information to GPR

Figure 3-3. Instruction Cache Debug Data Register (ICDBDR)
0:21 TAG Cache Tag

22:26 Reserved

27 V Cache Line Valid
Not valid
Valid

28:30 Reserved

31 LRU Least Recently Used (LRU)
A-way LRU
B-way LRU

80

http://www.manualslib.com/

 81

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

3.6.3 DCU Debugging

The dcread instruction provides a debugging tool for reading the data cache entries for the congruence class
specified by EA18:26. The cache information is read into a GPR.

If CCR0[CIS] = 0, the data is a word of DCU data from the addressed line, specified by EA27:29. If EA30:31 are not
00, an alignment exception occurs. If CCR0[CWS] = 0, the data is from the A-way; otherwise; the data is from the
B-way.

If CCR0[CIS] = 1, the cache information is the cache tag. If CCR0[CWS] = 0, the tag is from the Away; otherwise
the tag is from the B-way.

DCU tag information is placed into bits 0:19 of a GPR.

Note: A “dirty” cache line is one which has been accessed by a store instruction after it was established, and can
be inconsistent with external memory.

3.7 DCU Performance

DCU performance depends upon the application, but, in general, cache hits complete in one cycle without stalling
the CPU pipeline. Under certain conditions and limitations of the DCU, the pipeline stalls (stops executing
instructions) until the DCU completes current operations.

Several factors affect DCU performance, including:
• Pipeline stalls
• DCU priority
• Simultaneous cache operations
• Sequential cache operations

3.7.1 Pipeline Stalls

The CPU issues commands for cache operations to the DCU. If the DCU can immediately perform the requested
cache operation, no pipeline stall occurs. In some cases, however, the DCU cannot immediately perform the
requested cache operation, and the pipeline stalls until the DCU can perform the pending cache operation.

In general, the DCU, when hitting in the cache array, can execute a load/store every cycle. If a cache miss occurs,
the DCU must retrieve the line from main memory. For cache misses, the DCU stores the cache line in a line fill
buffer until the entire cache line is received. The DCU can accept new DCU commands while the fill progresses. If
the instruction causing the line fill is a load, the target word is bypassed to the GPR during the cycle after it
becomes available in the fill buffer. When the fill buffer is full, it must be moved into the tag and data arrays. During
this time, the DCU cannot begin a new cache operation and stalls the pipeline if new DCU commands are
presented. Storing a line in the line fill buffer takes three cycles, unless the line being replaced has been modified.
In that case, the operation takes four cycles.

The DCU can accept up to two load commands. If the data for the first load command is not immediately available,
the DCU can still accept the second load command. If the load data is not required by subsequent instructions,
those instructions will continue to execute. If data is required from either load command, the CPU pipeline will stall
until the load data has been delivered. The pipeline will also stall until the second load has read the data array if a
subsequent data cache command is issued.

In general, if the fill buffer is being used and the next load or store command requires the fill buffer, only one
additional command can be accepted before causing additional DCU commands to stall the pipeline.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

The DCU can accept up to three outstanding store commands before stalling the CPU pipeline for additional data
cache commands.

The DCU can have two flushes pending before stalling the CPU pipeline.

DCU cache operations other than loads and stores stall the CPU pipeline until all prior data cache operations
complete. Any subsequent data cache command will stall the pipeline until the prior operation is complete.

3.7.2 Cache Operation Priorities

The DCU uses a priority signal to improve performance when pipeline stalls occur. When the pipeline is stalled
because of a data cache operation, the DCU asserts the priority signal to the PLB. The priority signal tells the
external bus that the DCU requires immediate service, and is valid only when the data cache is requesting access
to the PLB. The priority signal is asserted for all loads that require external data, or when the data cache is
requesting the PLB and stalling an operation that is being presented to the data cache.

Table 3-3 provides examples of when the priority is asserted and deasserted.

3.7.3 Simultaneous Cache Operations

Some cache operations can occur simultaneously to improve DCU performance. For example, combinations of line
fills, line flushes, word load/stores, and operations that hit in the cache can occur simultaneously. Cache operations
other than loads/stores cannot begin until the PLB completes all previous operations.

3.7.4 Sequential Cache Operations

Some common cache operations, when performed sequentially, can limit DCU performance: sequential
loads/stores to non cacheable storage regions, sequential line fills, and sequential line flushes.

In the case of sequential cache hits, the most commonly occurring operations, the DCU loads or stores data every
cycle. In such cases, the DCU does not limit performance.

However, when a load from a non cacheable storage region is followed by multiple loads from noncallable regions,
the loads can complete no faster than every four cycles, assuming that the addresses are accepted during the
same cycle in which it is requested, and that the data is returned during the cycle after the load is accepted.

Similarly, when a store to a non cacheable storage region is followed by multiple stores to non cacheable regions
the fastest that the stores can complete is every other cycle. The DCU can have accepted up to three stores before
additional DCU commands will stall waiting for the prior stores to complete.

Table 3-3. Priority Changes With Different Data Cache Operations

Instruction Requesting PLB Priority Next Instruction Priority

Any load from external memory 1 N/A N/A

Any store 0 Any other cache operation not being accepted by the DCU. 1

dcbf 0 Any cache hit. 0

dcbf/dcbst 0 Load non-cache. 1

dcbf/dcbst 0 Another command that requires a line flush. 1

dcbt 0 Any cache hit. 0

dcbi/dccci/dcbz 0 N/A N/A

82

http://www.manualslib.com/

 83

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Sequential line fills can limit DCU performance. Line fills occur when a load/store or dcbt instruction misses in the
cache, and can be pipelined on the PLB interface such that up to two requests can be accepted before stalling
subsequent requests. The subsequent operations will wait in the DCU until the first line fill completes. The line fills
must complete in the order that they are accepted.

Sequential line flushes from the DCU to main memory also limit DCU performance. Flushes occur when a line fill
replaces a valid line that is marked dirty (modified), or when a dcbf instruction flushes a specific line. If two flushes
are pending, the DCU stalls any new data cache operations until the first flush finishes and the second flush
begins.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

84

http://www.manualslib.com/

 85

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

4. On-Chip Memory (OCM)
The on-chip memory (OCM) subsystem consists of a memory controller that connects the PPC405 processor core
to an SRAM array. OCM is ideal for applications requiring low latency access to critical instructions and data. OCM
can provide performance that is identical to cache hits, yet, unlike a cache, the OCM never misses. Instructions
and data stored in the OCM are always available because OCM contents only change under program control.
Therefore, if the programmer avoids instruction-side and data-side OCM access contention, OCM can provide
information availability that is superior to a cache line locking scheme. OCM is superior because it can provide
single cycle performance identical to cache hits without locking down portions of the cache. This results in more
effective cache utilization for the processor.

Instructions and data returned from OCM interface do not flow through the PPC405 CPU caches. The caches
remain available for caching from other memory sources accessed across the PLB interface. The system designer
must ensure that each address has a single access path into the PPC405 CPU for a given software process. Each
address that is requested should be found in either the OCM address space or the PLB address space, but not in
both.

Code to initialize OCM should execute in non-OCM address space in a region marked as non cacheable. The
initialization code should invalidate the cache arrays (in the ICU and DCU, as appropriate) to ensure that no
addresses to be programmed as OCM space are in the cache. After programming the OCM address and control
registers, the OCM address space should remain marked as non-cacheable.

Read and write accesses to the OCM array share a single access port. OCM accesses have the following
priorities:

1. Data-side OCM reads (loads)

2. Data-side OCM writes (stores)

3. Instruction-side OCM read (fetches)

Data-side OCM reads occur in one cycle. Data-side writes also complete in one cycle, though they can be
preempted by higher priority data-side reads. Instruction-side OCM reads occur by default (that is, after a reset) in
two cycles. However, when the Instruction-Side Two-Cycle Mode field of the OCM Instruction-Side Control
Register (if it exists) is set to 0, instruction-side OCM reads occur in one cycle, unless preempted by higher priority
data-side transfers. Two-cycle mode is provided for chips that cannot make instruction-side timing to the processor
core. The PPC405 processor core, however, meets the timing requirement. Therefore, programmers should set the
OCM Instruction-Side Control Register (if it exists) to 0 during chip initialization.

The OCM can also transfer data between the PLB and internal SRAM.

The OCM has the following features:
• Supports two non-overlapping memory banks configurable as 16 KB
• Simultaneous PLB, Instruction-side OCM and Data-side OCM access
• PLB3 slave cycles support the following

- 64 bit slave attachment addressable by any PLB master
- Single-beat read and write (1 to 8 bytes)
- 4-, 8- and 16-word line read and write
- Doubleword and word read and write bursts
- Slave-terminated doubleword and word bursts
- Master-terminated variable-length bursts
- Data parity generation and checking
- Read/Write protection per bank

• Instruction-side interface supports the following data parity checking
• Data-side interface supports the following:

- 1-wait state OCM access with 1-deep write buffer

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

- Data parity generation and checking
- Read/Write protection per bank

• Processor side data port has the highest access priority (maintains predictable memory accesses to the OCM).

4.1 OCM Addressing

The address space for the instruction-side OCM and the data side OCM are defined by the OCM Instruction-Side
Address Range Compare Register (OCM0_ISARC) and OCM Data-Side Address Range Compare Register
(OCM0_DSARC), respectively. These registers are implemented as 6-bit registers that define the most significant
address bits of the respective OCM address space. Using six bits defines a 64MB address space. The instruction
side and data side can share a 64MB address space, or each can have its own 64MB address space. The address
spaces are fully relocatable on 64MB boundaries within the 4GB address space of the PPC405, but the
programmer must assign OCM address space to avoid conflicts with other assigned addresses. See Programming
Model on page 31 for information about the PPC405 memory map.

Figure 4-1 illustrates OCM address usage. The OCM SRAM array size is 4KB. Address bits 20:31 select byte
addresses for data-side accesses. Address bits 30:31 are ignored for instruction-side accesses, because
instruction-side accesses return either one or two words per transfer.

Note that the instruction-side and data-side OCM address spaces overlap physically, even if defined as distinct
logical address spaces, because the 4KB SRAM is shared. There is no distinction between data space or
instruction space, except as defined by the programmer.

Addresses in the OCM array are aliased throughout the larger OCM address spaces. The larger OCM address
spaces are filled with multiple images of the 4KB SRAM. Aliased addresses refer to the same physical memory
locations.

Programming Note: To avoid possible memory coherency problems when using aliased addresses, align
aliased addresses on 16KB boundaries rather than on 4KB boundaries. See Store Data Bypass Behavior and
Memory Coherency on page 86 for details.

If address translation is enabled (MSR[IR, DR] = 1), one or more TLB entries for the OCM address space must
exist to validate accesses. However, the virtual addresses are not translated, and 32-bit effective addresses
(virtual addresses) are presented to OCM.

Data-side OCM contents can use big endian or little endian byte ordering. Instruction-side OCM contents must use
big endian byte ordering. See Byte Ordering on page 44 for detailed information about byte ordering.

4.2 Store Data Bypass Behavior and Memory Coherency

The OCM subsystem provides only one mechanism, data-side store operations, for writing both instructions and
data into the OCM array. However, two independent mechanisms request read access of OCM contents; one for
instruction-side fetches and the other for data-side loads.

Figure 4-1. OCM Address Usage

0 5 6 19 20 31

OCM Address Space OCM SRAM

86

http://www.manualslib.com/

 87

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

The following description applies only to applications that alias the OCM address space and perform a mix of data-
side loads and stores. It does not apply to applications that use data-side stores only to initialize OCM with
instructions.

If a data-side OCM store is followed in the next cycle by a data-side load, the load actually accesses the OCM
array before the store. This is due to the nature of the processor pipeline, the cycle availability of the store data,
and the fact that data-side loads have a higher priority than data-side stores. In this scenario, store data is queued
in a register while the load accesses the array. Further, if the store is immediately followed by a sequence of
consecutive loads, it remains in the queue until the last of the consecutive loads has accessed the OCM array. The
queued store data is written into the OCM array in the first cycle that does not have a data-side load operation
accessing the array.

Consider a scenario where such a situation causes store data to be held in the store data queue. If any of the loads
access the same address as the address of the store operation whose data is being held in the store data queue,
there is a need to bypass the store data from the store data queue to provide the correct data to the load operation.

A bypass is determined to be required by comparing the pending store address with the load address. However,
the comparison is done with a 16KB address representation for the load and store operations, not the 4KB address
(the physical size of the PPC405 OCM array). If the 16KB address compares, the store data is bypassed to the
load operation. This implies that a bypass results for address aliasing only when the OCM addresses match at a
16KB multiple, which corresponds to a match of address bits 18:29 (a word address that is further specified by byte
enables). Although the physical address space is aliased at 4KB multiples, the bypass determination is made at
16KB multiples. Therefore, if bits 18:19 of an aliased load address do not match bits 18:19 of the 16KB store
address of the data being held in the store data queue, the load data will not be coherent. Instead of returning the
most recently stored data, which is being held in the store data queue, the load returns “old” data previously stored
in and accessed from the OCM array.

Table 4-1 provides examples that describe bypass behavior when address aliasing is used.

Example 1 provides the most basic example, in which the load and store addresses are the same. This results in
the load accessing the queued store data, bypassing the OCM array to satisfy the load.

Example 2 shows two different addresses that are not aliased (both addresses are in the 4KB SRAM address
space). No bypass occurs, and the load returns the correct data from the OCM array.

Examples 3 and 4 show aliased addresses that do not bypass data because the addresses do not compare within
a 16KB address space. In both examples, address bits 18:19 do not match. In both examples, the load does not
return the most recently stored data from the store data queue; the load returns the “old’ data from the array. To
avoid such problems, alias on 16KB boundaries. If addresses are aliased on 4KB boundaries, place at least one
instruction that does not access the data-side OCM between a load and a store to the same aliased address so the
store data has a cycle to be written into the array.

Table 4-1. Examples of Store Data Bypass

Example Store Address Load Address 4KB Aliased Address 16KB Aliased Address Bypass

1 0x00000100 0x00000100 Same Same Yes

2 0x00000100 0x00000400 No No No

3 0x00000100 0x00001100 Yes No, loads old data No

4 0x00000100 0x00005100 Yes No, loads old data No

5 0x00000100 0x00004100 Yes Yes Yes

6 0x00000100 0x00008100 Yes Yes Yes

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

Examples 5 and 6 bypass data out of the store data queue because the aliased addresses compare within a 16KB
address space. In both examples, address bits 18:29 match, and load data is returned from the store data queue.

4.3 OCM Registers

The OCM controller uses Device Control Registers (DCRs) to store or access data in the OCM. DCRs are unique
to the chip in which this processor is instantiated and are not a part of the processor. Refer to the appropriate chip
user’s manual for details on the DCRs.

88

http://www.manualslib.com/

 89

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

90

http://www.manualslib.com/

 91

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

5. Memory Management
The PPC405 memory management unit (MMU) performs address translation and protection functions. With
appropriate system software, the MMU supports:

• Translation of effective addresses to real addresses

• Independent enabling of instruction and data address translation and protection

• Page-level access control using the translation mechanism

• Software control of page replacement strategy

• Additional virtual-mode control of protection using zones

• Real-mode write protection

5.1 MMU Overview

The instruction and integer units generate 32-bit effective addresses (EAs) for instruction fetches and data
accesses, respectively. Instruction EAs are generated for sequential instruction fetches, and for instruction fetches
causing changes in program flow (branches and interrupts). Data EAs are generated for load/store and cache
control instructions. The MMU translates EAs into real addresses; the instruction cache unit (ICU) and data cache
unit (DCU) use real addresses to access memory.

The PPC405 MMU supports demand-paged virtual memory and other memory management schemes that depend
on precise control of effective to real address mapping and flexible memory protection. Translation misses and
protection faults cause precise interrupts. Sufficient information is available to correct the fault and restart the
faulting instruction.

The MMU divides storage into pages. A page represents the granularity of EA translation and protection controls.
Eight page sizes (1KB, 4KB, 16KB, 64KB, 256KB, 1MB, 4MB, 16MB) are simultaneously supported. A valid entry
for a page containing the EA to be translated must be in the translation lookaside buffer (TLB) for address
translation to be performed. EAs for which no valid TLB entry exists cause TLB-miss interrupts.

5.2 Address Translation

Fields in the Machine State Register (MSR) control the use of the MMU for address translation. The instruction
relocate (IR) field of the MSR controls translation for instruction accesses. The data relocate (DR) field of the MSR
controls the translation mechanism for data accesses. These fields, specified independently, can be changed at
any time by a program in supervisor state. Note that all interrupts clear MSR[IR, DR] and place the processor in the
supervisor state. Subsequent discussion about translation and protection assumes that MSR[IR, DR] are set,
enabling address translation.

The processor references memory when it fetches an instruction, and when it executes load/store, branch, and
cache control instructions. Processor accesses to memory use EAs to references a memory location. When
translation is enabled, the EA is translated into a real address, as illustrated in Figure 5-1 on page 92. The ICU or
DCU uses the real address for the access. (When translation is not enabled, the EA is already a real address.)

In address translation, the EA is combined with an 8-bit process ID (PID) to create a 40-bit virtual address. The
virtual address is compared to all of the TLB entries. A matching entry supplies the real address for the storage
reference. Figure 5-1 on page 92 illustrates the process.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

5.3 Translation Lookaside Buffer (TLB)

The TLB is hardware that controls translation, protection, and storage attributes. The instruction and data units
share a unified fully-associative TLB, in which any page entry (TLB entry) can be placed anywhere in the TLB. TLB
entries are maintained under program control. System software determines the TLB entry replacement strategy
and the format and use of page state information. A TLB entry contains the information required to identify the
page, to specify translation and protection controls, and to specify the storage attributes.

5.3.1 Unified TLB

The unified TLB (UTLB) contains 64 entries; each has a TLBHI (tag) portion and a TLBLO (data) portion, as
described in Figure 5-2 on page 93. TLBHI contains 36 bits; TLBLO contains 32 bits. When translation is enabled,
the UTLB tag portion compares some or all of EA0:21 with some or all of the effective page number EPN0:21,
based on the size bits SIZE0:2. All 64 entries are simultaneously checked for a match. If an entry matches, the
corresponding data portion of the UTLB provides the real page number (RPN), access control bits (ZSEL, EX,
WR), and storage attributes (W, I, M, G, E, U0).

Figure 5-1. Effective-to-Real Address Translation Flow

[0:n–1] [n:31]

OffsetEffective Page Address

[0:7]

PID

Effective Page Address OffsetPID

32-bit EA

Unified TLB
64-entry Fully-associative Array

OffsetReal Page Number

32-bit Real Address

[8:n+7]

[0:n–1] [n:31]

[n+8:39]

[24:31][0:23]

40-bit Virtual Address

Note:n is determined by page size.
See Table 5-1, “TLB Fields Related to
Page Size,” on page -94.

PID Register

92

http://www.manualslib.com/

 93

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

The virtual address space is extended by adding an 8-bit translation ID (TID) loaded from the Process ID (PID)
register during a TLB access. The PID identifies one of 255 unique software entities, usually used as a process or
thread ID. TLBHI[TID] is compared to the PID during a TLB look-up.

Tag and data entries are written by copying data from GPRs and the PID, using the tlbwe instruction. Tag and data
entries are read by copying data to GPRs and the PID, using the tlbre instruction. Software can search for specific
entries using the tlbsx instruction.

5.3.2 TLB Fields

Each TLB entry describes a page that is enabled for translation and access controls. Fields in the TLB entry fall
into four categories:

• Information required to identify the page to the hardware translation mechanism

• Control information specifying the translation

• Access control information

• Storage attribute control information

5.3.2.1 Page Identification Fields

When an EA is presented to the MMU for processing, the MMU applies several selection criteria to each TLB entry
to select the appropriate entry. Although it is possible to place multiple entries into the TLB to match a specific EA
and PID, this is considered a programming error, and the result of a TLB lookup for such an EA is undefined. The
following fields in the TLB entry identify the page. Except as noted, all comparisons must succeed to validate an
entry for subsequent use.

EPN (effective page number, 22 bits)

Compared to some number of the EA0:21 bits presented to the MMU. The number of bits corresponds to the page
size.

The exact comparison depends on the page size, as shown in Table 5-1.

Figure 5-2. TLB Entries

0 21 22 24

ZSELRPN

TLBHI
0

SIZEEPN V

27 29 3 031

W I M GEX WR

TID

(Tag entry)
21 2522 352824

23 28

PID
0 24

ID

31
(Process ID)

23

TLBLO (Data entry)

26 27

E U0

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

SIZE (page size, 3 bits)

Selects one of the eight page sizes, 1KB–16MB, listed in Table 5-1.

V (valid,1 bit)

Indicates whether a TLB entry is valid and can be used for translation.

A valid TLB entry implies read access, unless overridden by zone protection. TLB_entry[V] can be written using a
tlbwe instruction. The tlbia instruction invalidates all TLB entries.

TID (translation ID, 8 bits)

Loaded from the PID register during a tlbwe operation. The TID value is compared with the PID value during a TLB
access. The TID provides a convenient way to associate a translation with one of 255 unique software entities,
typically a process or thread ID maintained by operating system software. Setting TLBHI_entry[TID] = 0x00
disables TID-PID comparison and identifies a TLB entry as valid for all processes; the value of the PID register is
then irrelevant.

5.3.2.2 Translation Field

When a TLB entry is identified as matching an EA (and possibly the PID), TLBLO_entry[RPN] defines how the EA
is translated.

RPN (real page number, 22 bits)

Replaces some, or all, of EA0:21, depending on page size. For example, a 16KB page uses EA0:17 for comparison.
The translation mechanism replaces EA0:17 with TLBLO_entry[RPN]0:17 to form the physical address, and EA18:31
becomes the real page offset, as illustrated in Figure 5-1 on page 92.

Programming Note: Software must set all unused bits of RPN (as determined by page size) to 0. See
Table 5-1.

Table 5-1. TLB Fields Related to Page Size

Page Size SIZE Field n Bits Compared EPN to EA Comparison RPN Bits Set to 0

1KB 000 22 EPN0:21 ↔ EA0:21 —

4KB 001 20 EPN0:19 ↔ EA0:19 RPN20:21
16KB 010 18 EPN0:17 ↔ EA0:17 RPN18:21
64KB 011 16 EPN0:15 ↔ EA0:15 RPN16:21

256KB 100 14 EPN0:13 ↔ EA0:13 RPN14:21
1MB 101 12 EPN0:11 ↔ EA0:11 RPN12:21
4MB 110 10 EPN0:9 ↔ EA0:9 RPN10:21

16MB 111 8 EPN0:7 ↔ EA0:7 RPN8:21

94

http://www.manualslib.com/

 95

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

5.3.2.3 Access Control Fields

Several access controls are available in the UTLB entries.

ZSEL (zone select, 4 bits)

Selects one of 16 zone fields (Z0—Z15) from the Zone Protection Register (ZPR). The ZPR field bits can modify
the access protection specified by the TLB_entry[V, EX, WR] bits of a TLB entry. Zone protection is described in
detail in “Zone Protection” on page 103.

EX (execute enable, 1 bit)

When set (TLBLO_entry[EX] = 1), enables instruction execution at addresses within a page. ZPR settings can
override TLBLO_entry[EX]; see “Zone Protection” on page 103, for more information.

WR (write-enable 1 bit)

When set (TLBLO_entry[WR] = 1), enables store operations to addresses in a page. ZPR settings can override
TLBLO_entry[WR]; see “Zone Protection” on page 103.

5.3.2.4 Storage Attribute Fields

TLB entries contain bits that control and provide information about the storage control attributes. Four of the
attributes (W, I, M, and G) are defined in the PowerPC Architecture. The E storage attribute is defined in the
PowerPC Embedded Environment.

W (write-through,1 bit)

When set (TLBLO_entry[W] = 1), stores are specified as write-through. If data in the referenced page is in the data
cache, a store updates the cached copy of the data and the external memory location. Contrast this with a write-
back strategy, which updates memory only when a cache line is flushed.

In real mode, the Data Cache Write-through Register (DCWR) controls the write strategy.

Note that the PowerPC Architecture does not support memory models in which write-through is enabled and
caching is inhibited. It is considered a programming error to use these memory models; the results are undefined.

I (caching inhibited,1 bit)

When set (TLBLO_entry[I] = 1), a memory access is completed by using the location in main memory, bypassing
the cache arrays. During the access, the accessed location is not put into the cache arrays.

In real mode, the Instruction Cache Cachability Register (ICCR) and Data Cache Cachability Register (DCCR)
control cachability. In these registers, the setting of the bit is reversed; 1 indicates that a storage control region is
cacheable, rather than caching inhibited.

Note that the PowerPC Architecture does not support memory models in which write-through is enabled and
caching is inhibited. It is considered a programming error to use these memory models; the results are undefined.

It is considered a programming error if the target location of a load/store, dcbz, or fetch access to caching inhibited
storage is in the cache; the results are undefined. It is not considered a programming error for the target locations
of other cache control instructions to be in the cache when caching is inhibited.

M (memory coherent,1 bit)

For implementations that support multiprocessing, the M storage attribute improves the performance of memory
coherency management. Because the PPC405 does not provide multi-processor support or hardware support for
data coherency, the M bit is implemented, but has no effect.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

G (guarded,1 bit)

When set (TLBLO_entry[G] = 1), indicates that the hardware cannot speculatively access the location for pre-
fetching or out-of-order load access. The G storage attribute is typically used to protect memory-mapped I/O from
inadvertent access. Attempted execution of an instruction from a guarded data storage address while instruction
address translation is enabled results in an instruction storage interrupt because data storage and memory
mapped I/O (MMIO) addresses are not used to contain instructions.

An instruction fetch from a guarded region does not occur until the execution pipeline is empty, thus guaranteeing
that the access is necessary and therefore not speculative. For this reason, performance is degraded when
executing out of guarded regions, and software should avoid unnecessarily marking regions of instruction storage
as guarded.

In real mode, the Storage Guarded Register (SGR) controls guarding.

U0 (user-defined attribute, 1 bit)

When set (TLBLO[U0] = 1), indicates the user-defined attribute applies to the data in the associated page.

In real mode, the Storage User-defined 0 Register (SU0R) controls the setting of the U0 storage attribute.

E (endian, 1 bit)

When set (TLBLO[E] = 1), indicates that data in the associated page is stored in true little endian format.

In real mode, the Storage Little-Endian Register (SLER) controls the setting of the E storage attribute.

5.3.3 Shadow Instruction TLB

To enhance performance, four instruction-side TLB entries are kept in a four-entry fully-associative shadow array.
This array, called the instruction TLB (ITLB), helps to avoid TLB contention between instruction accesses to the
TLB and load/store operations. Replacement and invalidation of the ITLB entries is managed by hardware. See
“Shadow TLB Consistency” on page 97 for details.

The ITLB can be considered a level-1 instruction-side TLB; the UTLB serves as the level-2 instruction-side TLB.
The ITLB is used only during instruction fetches for storing instruction address translations. Each ITLB entry
contains the translation information for a page. The processor uses the ITLB for address translation of instruction
accesses when MSR[IR] = 1.

5.3.3.1 ITLB Accesses

The instruction unit accesses the ITLB independently of the rest of the MMU. ITLB accesses are transparent to the
executing program, except that ITLB hits contribute to higher overall instruction throughput by allowing data
address translations to occur in parallel. Therefore, when instruction accesses hit in the ITLB, the address
translation mechanisms in the UTLB are available for use by data accesses simultaneously.

The ITLB requests a new entry from the UTLB when an ITLB miss occurs. A four-cycle latency occurs at each ITLB
miss that is also a UTLB hit; the latency is longer if it is also a UTLB miss, or if there is contention for the UTLB from
the data side. A round-robin replacement algorithm replaces existing entries with new entries.

96

http://www.manualslib.com/

 97

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

5.3.4 Shadow Data TLB

To enhance performance, eight data-side TLB entries are kept in a eight-entry fully-associative shadow array. This
array, called the data TLB (DTLB), helps to avoid TLB contention between instruction accesses to the TLB and
load/store operations. Replacement and invalidation of the DTLB entries is managed by hardware. See “Shadow
TLB Consistency” on page 97 for details.

The DTLB can be considered a level-1 data-side TLB; the UTLB serves as the level-2 data-side TLB. The DTLB is
used only during instruction execute for storing data address translations. Each DTLB entry contains the
translation information for a page. The processor uses the DTLB for address translation of data accesses when
MSR[DR] = 1.

5.3.4.1 1 DTLB Accesses

The execute unit accesses the DTLB independently of the rest of the MMU. DTLB accesses are transparent to the
executing program, except that DTLB hits contribute to higher overall instruction throughput by allowing instruction
address translations to occur in parallel. Therefore, when data accesses hit in the DTLB, the address translation
mechanisms in the UTLB are available for use by instruction accesses simultaneously.

The DTLB requests a new entry from the UTLB when a DTLB miss occurs. A three-cycle latency occurs at each
DTLB miss that is also a UTLB hit; the latency is longer if it is also a UTLB miss. If there is contention for the UTLB
from the instruction side, the data side has priority. A round-robin replacement algorithm replaces existing entries
with new entries.

5.3.5 Shadow TLB Consistency

To help maintain the integrity of the shadow TLBs, the processor invalidates the ITLB and DTLB contents when the
following context-synchronizing events occur:

• isync instruction

• Processor context switch (all interrupts, rfi, rfci)

• sc instruction

If software updates a translation/protection mechanism (UTLB, PID, ZPR, or MSR) and must synchronize these
updates with the ITLB and DTLB, the software must perform the necessary context synchronization.

A typical example is the manipulation of the TLB by an operating system within an interrupt handler for a TLB miss.
Upon entry to the interrupt handler, the contents of the ITLB and DTLB are invalidated and translation is disabled.
If the operating system simply made the TLB updates and returned from the handler (using rfi or rfci), no
additional explicit software action would be required to synchronize the ITLB and DTLB.

If, instead, the operating system enables translation within the handler and then performs TLB updates within the
handler, those updates would not be effective in the ITLB and DTLB until rfi or rfci is executed to return from the
handler. For those TLB updates to be reflected in the ITLB and DTLB within the handler, an isync must be issued
after TLB updates finish. Failure to properly synchronize the shadow TLBs can cause unexpected behavior.

Programming Note: As a rule of thumb, follow software manipulation of an translation mechanism (if
performed while translation is active) with a context-synchronizing operation (usually isync).

Figure 5-3 illustrates the relationship of the shadow TLBs and UTLB in address translation:

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

Figure 5-3. ITLB/DTLB/UTLB Address Resolution

Generate I-side
Effective Address

Extract Real
Address from ITLB

Continue I-cache
Access

Perform ITLB
Look-up

Translation Disabled
(MSR[IR]=0)

Translation Enabled
(MSR[IR] = 1)

I-Side TLB Miss
or

D-Side TLB Miss

No Translation

Translation Enabled
(MSR[DR] = 1)

Translation Disabled
(MSR[DR] = 0)

No Translation

Generate D-side
Effective Address

Perform DTLB
Look-up

ITLB MissITLB Hit

Perform UTLB
Look-up

DTLB Miss DTLB Hit

Extract Real
Address from UTLB

Access

Continue I-cache
or D-cache

Access

UTLB MissUTLB Hit

Extract Real
Address from DTLB

Route Address
to ITLB

Route Address
to DTLB

Exception

98

http://www.manualslib.com/

 99

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

5.4 TLB-Related Interrupts

The processor relies on interrupt handling software to implement paged virtual memory, and to enforce protection
of specified memory pages.

When an interrupt occurs, the processor clears MSR[IR, DR]. Therefore, at the start of all interrupt handlers, the
processor operates in real mode for instruction accesses and data accesses. Note that when address translation is
disabled for an instruction fetch or load/store, the EA is equal to the real address and is passed directly to the
memory subsystem (including cache units). Such untranslated addresses bypass all memory protection checks
that would otherwise be performed by the MMU.

When translation is enabled, MMU accesses can result in the following interrupts:

• Data storage interrupt

• Instruction storage interrupt

• Data TLB miss interrupt

• Instruction TLB miss interrupt

5.4.1 Data Storage Interrupt

A data storage interrupt is generated when data address translation is active, and the desired access to the EA is
not permitted for one of the following reasons:

• In the problem state

– icbi, load/store, dcbz, or dcbf with an EA whose zone field is set to no access (ZPR[Zn] = 00). In this
case, dcbt and dcbtst no-op, rather than cause an interrupt. Privileged instructions cannot cause data
storage interrupts.

– Stores, or dcbz, to an EA having TLB[WR] = 0 (write access disabled) and ZPR[Zn] ≠ 11. (The privileged
instructions dcbi and dccci are treated as “stores”, but cause program interrupts, rather than data storage
interrupts.)

• In supervisor state

– Data store, dcbi, dcbz, or dccci to an EA having TLB[WR] = 0 and ZPR[Zn] other than 11 or 10.

dcba does not cause data storage exceptions (cache line locking or protection). If conditions occur that would
otherwise cause such an exception, dcba is treated as a no-op.

Zone Protection on page 103 describes zone protection in detail. See Data Storage Interrupt on page 120 for a
detailed discussion of the data storage interrupt.

5.4.2 Instruction Storage Interrupt

An instruction storage interrupt is generated when instruction address translation is active and the processor
attempts to execute an instruction at an EA for which fetch access is not permitted, for any of the following reasons:

• In the problem state

– Instruction fetch from an EA with ZPR[Zn] = 00.

– Instruction fetch from an EA having TLB_entry[EX] = 0 and ZPR[Zn] ≠ 11.

– Instruction fetch from an EA having TLB_entry[G] = 1.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

• In the supervisor state

– Instruction fetch from an EA having TLB_entry[EX] = 0 and ZPR[Zn] other than 11 or 10.

– Instruction fetch from an EA having TLB_entry[G] = 1.

See Zone Protection on page 103 for a detailed discussion of zone protection. See Instruction Storage Interrupt on
page 121 for a detailed discussion of the instruction storage interrupt.

5.4.3 Data TLB Miss Interrupt

A data TLB miss interrupt is generated if data address translation is enabled and a valid TLB entry matching the EA
and PID is not present. The interrupt applies to data access instructions and cache operations (excluding cache
touch instructions).

See Data TLB Miss Interrupt on page 127 for a detailed discussion.

5.4.4 Instruction TLB Miss Interrupt

The instruction TLB miss interrupt is generated if instruction address translation is enabled and execution is
attempted for an instruction for which a valid TLB entry matching the EA and PID for the instruction fetch is not
present.

See Instruction TLB Miss Interrupt on page 127 for a detailed discussion.

5.5 TLB Management

The processor does not imply any format for the page tables or the page table entries because there is no
hardware support for page table management. Software has complete flexibility in implementing a replacement
strategy, because software does the replacing. For example, software can “lock” TLB entries that correspond to
frequently used storage by electing to never replace them, so that those entries are never cast out of the TLB.

TLB management is performed by software with some hardware assist, consisting of:

• Storage of the missed EA in the Save/Restore Register 0 (SRR0) for an instruction-side miss, or in the Data
Exception Address Register (DEAR) for a data-side miss.

• Instructions for reading, writing, searching, and invalidating the TLB, as described briefly in the following sub-
sections. See Instruction Set on page 157 for detailed instruction descriptions.

5.5.1 TLB Search Instructions (tlbsx/tlbsx.)

tlbsx locates entries in the TLB, to find the TLB entry associated with an interrupt, or to locate candidate entries to
cast out. tlbsx searches the UTLB array for a matching entry. The EA is the value to be matched; EA =
(RA|0)+(RB).

If the TLB entry is found, its index is placed in RT26:31. RT can then serve as the source register for a tlbre or
tlbwe instruction to read or write the entry, respectively. If no match is found, the contents of RT are undefined.

tlbsx. sets the Condition Register (CR) bit CR0EQ. The value of CR0EQ depends on whether an entry is found:
CR0EQ = 1 if an entry is found; CR0EQ = 0 if no entry is found.

100

http://www.manualslib.com/

 101

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

5.5.2 TLB Read/Write Instructions (tlbre/tlbwe)

TLB entries can be accessed for reading and writing by tlbre and tlbwe, respectively. Separate extended
mnemonics are available for the TLBHI (tag) and TLBLO (data) portions of a TLB entry.

5.5.3 TLB Invalidate Instruction (tlbia)

tlbia sets TLB_entry[V] = 0 to invalidate all TLB entries. All other TLB entry fields remain unchanged.

Using tlbwe to set TLB_entry[V] = 0 invalidates a specific TLB entry.

5.5.4 TLB Sync Instruction (tlbsync)

tlbsync guarantees that all TLB operations have completed for all processors in a multi-processor system.
PPC405 provides no multiprocessor support, so this instruction performs no function. The instruction is included to
facilitate code portability.

5.6 Recording Page References and Changes

When system software manages virtual memory, the software views physical memory as a collection of pages.
Each page is associated with at least one TLB entry. To manage memory effectively, system software often must
know whether a particular page has been referenced or modified. Note that this involves more than knowing
whether a particular TLB entry was used to reference or alter memory, because multiple TLB entries can translate
to the same page.

When system software manages a demand-paged environment, and the software needs to replace the contents of
a page with other data, previously referenced pages (accessed for any purpose) are more likely to be maintained
than pages that were never referenced. If the contents of a page must be replaced, and data contained in that page
was modified, system software generally must write the contents of the modified page to the backing store before
replacing its contents. System software must maintain records to control the environment.

Similarly, when system software manages TLB entries, the software often must know whether a particular TLB
entry was referenced. When the system software must select a TLB entry to cast out, previously referenced entries
are more likely to be maintained than entries which were never referenced. System software must also maintain
records for this purpose.

The PPC405 does not provide hardware reference or change bits, but TLB miss interrupts and data storage
interrupts enable system software to maintain reference information for TLB entries and their associated pages,
respectively.

A possible algorithm follows. First, the TLB entries are built, with each TLB_entry[V, WR] = 0. System software
retains the index and EPN of each entry.

The first attempt by application code to access a page causes a TLB miss interrupt, because its TLB entry is
marked invalid. The TLB miss handler records the reference to the TLB entry (and to the associated page) in a
data structure, then sets TLB_entry[V] = 1. (Note that TLB_entry[V] can be considered a reference bit for the TLB
entry.) Subsequent read accesses to the page associated with the TLB entry proceed normally.

In the example just given for recording TLB entry references, the first write access to the page using the TLB entry,
after the entry is made valid, causes a data storage interrupt because write access was turned off. The TLB miss
handler records the write to the page in a data structure, for use as a “changed” flag, then sets TLB_entry[WR] = 1
to enable write access. (Note that TLB_entry[WR] can be considered a change bit for the page.) Subsequent write
accesses to the page proceed normally.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

5.7 Access Protection

The PPC405 provides virtual-mode access protection. The TLB entry enables system software to control general
access for programs in the problem state, and control write and execute permissions for all pages. The TLB entry
can specify zone protection that can override the other access control mechanisms supported in the TLB entries.

TLB entry and zone protection methods also support access controls for cache operation and string loads/stores.

5.7.1 Access Protection Mechanisms in the TLB

For MMU access protection to be in effect, one or both of MSR[IR] or MSR[DR] must be set to one to enable
address translation. MSR[IR] enables protection on instruction fetches, which are inherently read-only. MSR[DR]
enables protection on data accesses (loads/stores).

5.7.1.1 General Access Protection

The translation ID (TLB_entry[TID]) provides the first level of MMU access protection. This 8-bit field, if non-zero, is
compared to the contents of TLB_entry[PID]. These fields must match in a valid TLB entry if any access is to be
allowed. In typical use, it is assumed that a program in the supervisor state, such as a real-time operating system,
sets the process ID (PID) before starting a problem state program that is subject to access control.

If TLB_entry[TID] = 0x00, the associated memory page is accessible to all programs, regardless of their PID. This
enables multiple processes to share common code and data. The common area is still subject to all other access
protection mechanisms. Figure 5-4 illustrates the Process ID Register.

5.7.1.2 Execute Permissions

If instruction address translation is enabled, instruction fetches are subject to MMU translation and have MMU
access protection. Fetches are inherently read-only, so write protection is not needed. Instead, using
TLB_entry[EX], a memory page is marked as executable (contains instructions) or not executable (contains only
data or memory-mapped control hardware).

If an instruction is pre-fetched from a memory page for which TLB_entry[EX] = 0, the instruction is tagged as an
error. If the processor subsequently attempts to execute this instruction, an instruction storage interrupt results.
This interrupt is precise with respect to the attempted execution. If the fetcher discards the instruction without
attempting to execute it, no interrupt will result.

Zone protection can alter execution protection.

5.7.1.3 Write Permissions

If MSR[DR] = 1, data loads and stores are subject to MMU translation and are afforded MMU access protection.
The existence of a TLB entry describing a memory page implies read access; write access is controlled by
TLB_entry[WR].

If a store (including those caused by dcbz, dcbi, or dccci) is made to an EA having TLB_entry[WR] = 0, a data
storage interrupt results. This interrupt is precise.

Figure 5-4. Process ID (PID)
0:23 Reserved

24:31 Process ID

102

http://www.manualslib.com/

 103

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Zone protection can alter write protection (see “Zone Protection” on page 103). In addition, only zone protection
can prevent read access of a page defined by a TLB entry.

5.7.1.4 Zone Protection

Each TLB entry contains a 4-bit zone select (ZSEL) field. A zone is an arbitrary identifier for grouping TLB entries
(memory pages) for purposes of protection. As many as 16 different zones may be defined. Any zone can have
any number of member pages.

Each zone is associated with a 2-bit field (Z0-Z15) in the ZPR. The values of the field define how protection is
applied to all pages that are member of that zone. Changing the value of the ZPR field can alter the protection
attributes of all pages in the zone. Without ZPR, the change would require finding, reading, altering, and rewriting
the TLB entry for each page in a zone, individually. The ZPR provides a much faster means of altering the
protection for groups of memory pages.

The ZSEL values 0-15 select ZPR fields Z0-Z15, respectively.

The fields are defined within the ZPR as follows:

While it is common for TLB_entry[EX, WR] to be identical for all member pages in a group, this is not required. The
ZPR field alters the protection defined by TLB_entry[EX] and TLB_entry[WR], on a page-by-page basis, as shown
in the ZPR illustration. An application program (presumed to be running in the problem state) can have execute
and write permissions as defined by TLB_entry[EX] and TLB_entry[WR] for the individual pages, or no access
(denies loads, as well as stores and execution), or complete access. Figure 5-5 shows the Zone Protection
Register.

Figure 5-5. Zone Protection Register (ZPR)

0:1 Z0

TLB page access control for all pages in this zone.

In the problem state (MSR[PR] = 1):
00 No access
01 Access controlled by applicable TLB_entry[EX,

WR]
10 Access controlled by applicable TLB_entry[EX,

WR]
11 Accessed as if execute and write permissions

(TLB_entry[EX, WR]) are granted

In the supervisor state (MSR[PR] = 0):
00 Access controlled by applicable TLB_entry[EX,

WR]
01 Access controlled by applicable TLB_entry[EX,

WR]
10 Accessed as if execute and write permissions

(TLB_entry[EX, WR]) are granted
11 Accessed as if execute and write permissions

(TLB_entry[EX, WR]) are granted

2:3 Z1 See the description of Z0.

4:5 Z2 See the description of Z0.

6:7 Z3 See the description of Z0.

8:9 Z4 See the description of Z0.

10:11 Z5 See the description of Z0.

12:13 Z6 See the description of Z0.

14:15 Z7 See the description of Z0.

16:17 Z8 See the description of Z0.

18:19 Z9 See the description of Z0.

20:21 Z10 See the description of Z0.

22:23 Z11 See the description of Z0.

24:25 Z12 See the description of Z0.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

Setting ZPR[Zn] = 00 for a ZPR field is the only way to deny read access to a page defined by an otherwise valid
TLB entry. TLB_entry[EX] and TLB_entry[WR] do not support read protection. Note that the icbi instruction is
considered a load with respect to access protection; executed in user mode, it causes a data storage interrupt if
MSR[DR] = 1 and ZPR[Zn] = 00 is associated with the EA.

For a given ZPR field value, a program in supervisor state always has equal or greater access than a program in
the problem state. System software can never be denied read (load) access for a valid TLB entry.

5.7.2 Access Protection for Cache Control Instructions

Architecturally the instructions dcba, dcbi, and dcbz are treated as “stores” because they can change data, or
cause loss of data by invalidating a dirty line (a modified cache block).

Table 5-2 summarizes the conditions under which the cache control instructions can cause data storage interrupts.

If data address translation is enabled, and write permission is denied (TLB_entry[WR] = 0), dcbi and dcbz can
cause data storage interrupts. dcbz can cause a data storage interrupt when executed in the problem state and all
access is denied (ZPR[Zn] = 00); dcbi cannot cause a data storage interrupt because it is a privileged instruction.

The dcba instruction enables “speculative” line establishment in the cache arrays; the established lines do not
cause a line fill. Because the effects of dcba are speculative, interrupts that would otherwise result when
ZPR[Zn] = 00 or TLB_entry[WR] = 0 do not occur. In such cases, dcba is treated as a no-op.

The dccci instruction can also be considered a “store” because it can change data by invalidating a dirty line;
however, dccci is not address-specific (it affects an entire congruence class regardless of the operand address of
the instruction). To restrict possible damage from an instruction which can change data and yet avoids the
protection mechanism, the dccci instruction is privileged.

26:27 Z13 See the description of Z0.

28:29 Z14 See the description of Z0.

30:31 Z15 See the description of Z0.

Table 5-2. Protection Applied to Cache Control Instructions

Instruction
Possible Data Storage interrupt

When ZPR[Zn] = 00 When TLB_entry[WR] = 0

dcba No (instruction no-ops) No (instruction no-ops)

dcbf Yes No

dcbi No Yes

dcbst Yes No

dcbt No (instruction no-ops) No

dcbtst No (instruction no-ops) No

dcbz Yes Yes

dccci No Yes

dcread No No

icbi Yes No

icbt No (instruction no-ops) No

iccci No No

icread No No

104

http://www.manualslib.com/

 105

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

If data address translation is enabled, dccci can cause data storage interrupts when TLB_entry[WR] = 0; the
operand is treated as if it were address-specific. dccci cannot cause a data storage interrupt when ZPR[Zn] = 00,
because it is a privileged instruction.

Because dccci can cause data storage and TLB -miss interrupts, use of dccci is not recommended when
MSR[DR] = 1; if dccci is used. Note that the specific operand address can cause an interrupt.

Architecturally, dcbt and dcbtst are treated as “loads” because they do not change data; they cannot cause data
storage interrupts when TLB_entry[WR] = 0.

The cache block touch instructions dcbt and dcbtst are considered “speculative” loads; therefore, if a data storage
interrupt would otherwise result from the execution of dcbt or dcbtst when ZPR[Zn] = 00, the instruction is treated
as a no-op and the interrupt does not occur. Similarly, TLB miss interrupts do not occur for these instructions.

Architecturally, dcbf and dcbst are treated as “loads”. Flushing or storing a line from the cache is not
architecturally considered a “store” because a store was performed to update the cache, and dcbf or dcbst only
update main memory. Therefore, neither dcbf nor dcbst can cause data storage interrupts when
TLB_entry[WR] = 0. Because neither instruction is privileged, they can cause data storage interrupts when
ZPR[Zn] = 00 and data address translation is enabled.

dcread is a “load” from a non-specific address, and is privileged. Therefore, it cannot cause data storage interrupts
when ZPR[Zn] = 00 or TLB_entry[WR] = 0.

icbi and icbt are considered “loads” and cannot cause data storage interrupts when TLB_entry[WR] = 0. icbi can
cause data storage interrupts when ZPR[Zn] = 00.

The iccci instruction cannot change data; an instruction cache line cannot be dirty. The iccci instruction is
privileged and is considered a load. It does not cause data storage interrupts when ZPR[Zn] = 00 or
TLB_entry[WR] = 0.

Because iccci can cause a TLB miss interrupt, using iccci is not recommended when data address translation is
enabled; if it is used, note that the specific operand address can cause an interrupt.

icread is considered a “load” from a non-specific address, and is privileged. Therefore, it cannot cause data
storage interrupts when ZPR[Zn] = 00 or TLB_entry[WR] = 0.

5.7.3 Access Protection for String Instructions

The stswx instruction with string length equal to 0(XER[TBC] = 0) is a no-op.

When data address translation is enabled and the Transfer Byte Count (TBC) field of the Fixed Point Exception
Register (XER) is 0, neither lswx nor stswx can cause TLB miss interrupts, or data storage interrupts when
ZPR[Zn] = 0 or TLB_entry[WR] = 0.

5.8 Real-Mode Storage Attribute Control

The PowerPC Architecture and the PowerPC Embedded Environment define several SPRs to control the following
storage attributes in real mode: W, I, G,U0, and E. Note that the U0 and E attributes are not defined in the
PowerPC Architecture. The E attribute is defined in the PowerPC Embedded Environment, and the U0 attribute is
implementation-specific. No storage attribute control register is implemented for the M storage attribute because
the PPC405 does not provide multi-processor support or hardware support for data coherency.

These SPRs, called storage attribute control registers, control the various storage attributes when address
translation is disabled. When address translation is enabled, these registers are ignored, and the storage attributes
supplied by the TLB entry are used (see TLB Fields on page 93).

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

The storage attribute control registers divide the 4GB real address space into thirty-two 128MB regions. In a
storage attribute control register, bit 0 controls the lowest addressed 128MB region, bit 1 the next higher-
addressed 128MB region, and so on. EA0:4 specify a storage control region.

For detailed information on the function of the storage attributes, see “Storage Attribute Fields” on page 95.

5.8.1 Storage Attribute Control Registers

Figure 5-6 shows a generic storage attribute control register. The storage attribute control registers have the same
bit numbering and address ranges.

5.8.1.1 Data Cache Write-through Register (DCWR)

The DCWR controls write-through policy (the W storage attribute) for the data cache unit (DCU). Write-through is
not applicable to the instruction cache unit (ICU).

After any reset, all DCWR bits are set to 0, which establishes a write-back write strategy for all regions.

The PowerPC Architecture does not support memory models in which write-through is enabled and caching is
inhibited.

5.8.1.2 Data Cache Cachability Register (DCCR)

The DCCR controls the I storage attribute for data accesses and cache management instructions. Note that the
polarity of the bits in this register is opposite to that of the I attribute in the TLB; DCCR[Sn] = 1 enables caching,
while TLB_entry[I] = 1 inhibits caching.

Figure 5-6. Generic Storage Attribute Control Register
Bit Address Range Bit Address Range

0 0x0000 0000 –0x07FF FFFF 16 0x8000 0000 –0x87FF FFFF

1 0x0800 0000 –0x0FFF FFFF 17 0x8800 0000 –0x8FFF FFFF

2 0x1000 0000 –0x17FF FFFF 18 0x9000 0000 –0x97FF FFFF

3 0x1800 0000 –0x1FFF FFFF 19 0x9800 0000 –0x9FFF FFFF

4 0x2000 0000 –0x27FF FFFF 20 0xA000 0000 –0xA7FF FFFF

5 0x2800 0000 –0x2FFF FFFF 21 0xA800 0000 –0xAFFF FFFF

6 0x3000 0000 –0x37FF FFFF 22 0xB000 0000 –0xB7FF FFFF

7 0x3800 0000 –0x3FFF FFFF 23 0xB800 0000 –0xBFFF FFFF

8 0x4000 0000 –0x47FF FFFF 24 0xC000 0000 –0xC7FF FFFF

9 0x4800 0000 –0x4FFF FFFF 25 0xC800 0000 –0xCFFF FFFF

10 0x5000 0000 –0x57FF FFFF 26 0xD000 0000 –0xD7FF FFFF

11 0x5800 0000 –0x5FFF FFFF 27 0xD800 0000 –0xDFFF FFFF

12 0x6000 0000 –0x67FF FFFF 28 0xE000 0000 –0xE7FF FFFF

13 0x6800 0000 –0x6FFF FFFF 29 0xE800 0000 –0xEFFF FFFF

14 0x7000 0000 –0x77FF FFFF 30 0xF000 0000 –0xF7FF FFFF

15 0x7800 0000 –0x7FFF FFFF 31 0xF800 0000 –0xFFFF FFFF

106

http://www.manualslib.com/

 107

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

After any reset, all DCCR bits are set to 0. No memory regions are cacheable. Before memory regions can be
designated as cacheable in the DCCR, it is necessary to execute the dccci instruction once for each congruence
class in the DCU cache array. This procedure invalidates all congruence classes. The DCCR can then be
reconfigured, and the DCU can begin normal operation.

The PowerPC Architecture does not support memory models in which write-through is enabled and caching is
inhibited.

5.8.1.3 Instruction Cache Cachability Register (ICCR)

The ICCR controls the I storage attribute for instruction fetches. Note that the polarity of the bits in this register is
opposite of that of the I attribute (ICCR[Sn] = 1 enables caching, while TLB_entry[I] = 1 inhibits caching).

After any reset, all ICCR bits are set to 0. No memory regions are cacheable. Before memory regions can be
designated as cacheable in the ICCR, it is necessary to execute the iccci instruction. This procedure invalidates all
congruence classes. The ICCR can then be reconfigured, and the ICU can begin normal operation.

5.8.1.4 Storage Guarded Register (SGR)

The SGR controls the G storage attribute for instruction and data accesses.

This attribute does not affect data accesses; the PPC405 does not perform speculative loads or stores.

After any reset, all SGR bits are set to 1, marking all storage as guarded. For best performance, system software
should clear the guarded attribute of appropriate regions as soon as possible. If MSR[IR] = 1, the G attribute comes
from the TLB entry. Attempting to execute from a guarded region in translate mode causes an instruction storage
interrupt. See Instruction Storage Interrupt on page 121 for more information.

5.8.1.5 Storage User-defined 0 Register (SU0R)

The Storage User-defined 0 Register (SU0R) controls the user-defined (U0) storage attribute for instruction and
data accesses.

After any reset, all SU0R bits are set to 0.

5.8.1.6 Storage Little-Endian Register (SLER)

The SLER controls the E storage attribute for instruction and data accesses.

This attribute determines the byte ordering of storage. Byte Ordering on page 44 provides a detailed description of
byte ordering in the PowerPC Embedded Environment.

After any reset, all SLER bits are set to 0 (big endian).

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

108

http://www.manualslib.com/

 109

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

6. Interrupt Handling
An interrupt is the action in which the processor saves its old context (MSR and instruction pointer) and begins
execution at a pre-determined interrupt-handler address, with a modified MSR. Exceptions are events which, if
enabled, cause the processor to take an interrupt. Exceptions are generated by signals from internal and external
peripherals, instructions, internal timer facilities, debug events, or error conditions.

Table 6-2 on page 113 lists the interrupts handled by the PPC405 in the order of interrupt vector offsets. Detailed
descriptions of each interrupt follow, in the same order. Table 6-2 also provides an index to the descriptions.

Several registers support interrupt handling and control.General Interrupt Handling Registers on page 114
describes the general interrupt handling registers:

• Data Exception Address Register (DEAR)

• Exception Syndrome Register (ESR)

• Exception Vector Prefix Register (EVPR)

• Machine State Register (MSR)

• Save/Restore Registers (SRR0–SRR3)

6.1 Architectural Definitions and Behavior

Precise interrupts are those for which the instruction pointer saved by the interrupt must be either the address of
the excepting instruction or the address of the next sequential instruction. Imprecise interrupts are those for which
it is possible (but not required) for the saved instruction pointer to be something else, possibly prohibiting
guaranteed software recovery.

Note that “precise” and “imprecise” are defined assuming that the interrupts are unmasked (enabled to occur)
when the associated exception occurs. Consider an exception that would cause a precise interrupt, if the interrupt
was enabled at the time of the exception, but that occurs while the interrupt is masked. Some exceptions of this
type can cause the interrupt to occur later, immediately upon its enabling. In such a case, the interrupt is not
considered precise with respect to the enabling instruction, but imprecise (“delayed precise”) with respect to the
cause of the exception.

Asynchronous interrupts are caused by events which are independent of instruction execution. All asynchronous
interrupts are precise, and the following rules apply:

1. All instructions prior to the one whose address is reported to the interrupt handling routine (in the save/restore
register) have completed execution. However, some storage accesses generated by these preceding instruc-
tions may not have completed.

2. No subsequent instruction has begun execution, including the instruction whose address is reported to the
interrupt handling routine.

3. The instruction having its address reported to the interrupt handler may appear not to have begun execution, or
may have partially completed.

Synchronous interrupts are caused directly by the execution (or attempted execution) of instructions. Synchronous
interrupts can be either precise or imprecise.

For synchronous precise interrupts, the following rules apply:

1. The save/restore register addresses either the instruction causing the exception or the next sequential instruc-
tion. Which instruction is addressed is determined by the interrupt type and status bits.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

2. All instructions preceding the instruction causing the exception have completed execution. However, some
storage accesses generated by these preceding instructions may not have completed.

3. The instruction causing the exception may appear not to have begun execution (except for causing the excep-
tion), may have partially completed, or may have completed, depending on the interrupt type.

4. No subsequent instruction has begun execution.

Refer to PowerPC Embedded Environment for an architectural description of imprecise interrupts.

Machine check interrupts are a special case typically caused by some kind of hardware or storage subsystem
failure, or by an attempt to access an invalid address. A machine check can be indirectly caused by the execution
of an instruction, but not recognized or reported until long after the processor has executed past the instruction that
caused the machine check. As such, machine check interrupts cannot properly be thought of as synchronous, nor
as precise or imprecise. For machine checks, the following general rules apply:

1. No instruction following the one whose address is reported to the machine check handler in the save/restore
register has begun execution.

2. The instruction whose address is reported to the machine check handler in the save/restore register, and all
previous instructions, may or may not have completed successfully. All previous instructions that would ever
complete have completed, within the context existing before the machine check interrupt. No further interrupt
(other than possible additional machine checks) can occur as a result of those instructions.

6.2 Behavior of the PPC405 Implementation

All interrupts, except for machine checks, are handled precisely. Precise handling implies that the address of the
excepting instruction (for synchronous exceptions other than the system call exception), or the address of the next
instruction to be executed (asynchronous exceptions and the system call exception), is passed to an interrupt
handling routine. Precise handling also implies that all instructions that precede the instruction whose address is
reported to the interrupt handling routine have executed and that no subsequent instruction has begun execution.
The specific instruction whose address is reported may not have begun execution or may have partially completed,
as specified for each precise interrupt type.

Synchronous precise interrupts include most debug event interrupts, program interrupts, instruction and data
storage interrupts, TLB miss interrupts, system call interrupts, and alignment interrupts.

Asynchronous precise interrupts include the critical and noncritical external interrupts, and can be caused by on-
chip peripherals, timer facility interrupts, and some debug events.

In the PPC405, machine checks are handled as critical interrupts (see Critical and Noncritical Interrupts on
page 112). If a machine check is associated with an instruction fetch, the critical interrupt save/restore register
contains the address of the instruction being fetched when the machine check occurred.

The synchronism of instruction-side machine checks (errors that occur while attempting to fetch an instruction from
external memory) requires further explanation. Fetch requests to cacheable memory that miss in the instruction
cache unit (ICU) cause an instruction cache line fill (eight words). If any instructions (words) in the fetched line are
associated with an exception, an interrupt occurs upon attempted execution and the cache line is invalidated.

It is improper to declare an exception when an erroneous word is passed to the fetcher; the address could be the
result of an incorrect speculative access. It is quite likely that no attempt will be made to execute an instruction from
the erroneous address. An instruction-side machine check interrupt occurs only when execution is attempted. If an
exception occurs, execution is suppressed, SRR2 contains the erroneous address, and the indicates that an
instruction-side machine check occurred. Although such an interrupt is clearly asynchronous to the erroneous
memory access, it is handled synchronously with respect to the attempted execution from the erroneous address.

110

http://www.manualslib.com/

 111

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Except for machine checks, all PPC405 interrupts are handled precisely:

• The address of the excepting instruction (for synchronous exceptions, other than the system call exception) or
the address of the next sequential instruction (for asynchronous exceptions and the system call exception) is
passed to the interrupt handling routine.

• All instructions that precede the instruction whose address is reported to the interrupt handling routine have
completed execution and that no subsequent instruction has begun execution. The specific instruction whose
address is reported might not have begun execution or might have partially completed, as specified for each
interrupt type.

6.3 Interrupt Handling Priorities

The PPC405 processor handles only one interrupt at a time. Multiple simultaneous interrupts are handled in the
priority order shown in Table 6-1 (assuming, of course, that the interrupt types are enabled). Multiple interrupts can
exist simultaneously, each of which requires the generation of an interrupt. The architecture does not provide for
simultaneously reporting more than one interrupt of the same class (critical or non-critical). Therefore, interrupts
are ordered with respect to each other. A masking mechanism is available for certain persistent interrupt types.

When an interrupt type is masked, and an event causes an exception which would normally generate an interrupt
of that type, the exception persists as a status bit in a register. However, no interrupt is generated. Later, if the
interrupt type is enabled (unmasked), and the exception status has not been cleared by software, the interrupt due
to the original exception event is finally generated.

All asynchronous interrupt types can be masked. In addition, certain synchronous interrupt types can be masked.

Table 6-1. Interrupt Handling Priorities

Priority Interrupt Type Critical or
Noncritical Causative Conditions

1 Machine check—data Critical External bus error during data-side access

2 Debug—IAC Critical IAC debug event (in internal debug mode)

3 Machine check—instruction Critical Attempted execution of instruction for which an external bus error occurred
during fetch

4 Debug—EXC, UDE Critical EXC or UDE debug event (in internal debug mode)

5 Critical interrupt input Critical Active level on the critical interrupt input by the UIC

6 Watchdog timer—first time-out Critical Posting of an enabled first time-out of the watchdog timer in the TSR

7 Instruction TLB Miss Noncritical Attempted execution of an instruction at an address and process ID for which
a valid matching entry was not found in the TLB

8 Instruction storage —
ZPR[Zn] = 00

Noncritical Instruction translation is active, execution access to the translated address is
not permitted because ZPR[Zn] = 00 in user mode, and an attempt is made to
execute the instruction

9 Instruction storage —
TLB_entry[EX] = 0

Noncritical Instruction translation is active, execution access to the translated address is
not permitted because TLB_entry[EX] = 0, and an attempt is made to execute
the instruction

Instruction storage —
TLB_entry[G] = 1 or
SGR[Gn] = 1

Noncritical Instruction translation is active, the page is marked guarded, and an attempt is
made to execute the instruction

10 Program Noncritical Attempted execution of illegal instructions, TRAP instruction, privileged
instruction in problem state

System call Noncritical Execution of the sc instruction

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

6.4 Critical and Noncritical Interrupts

The PPC405 processes interrupts as noncritical and critical. The following interrupts are defined as noncritical:
data storage, instruction storage, an active external interrupt input, alignment, program, system call, programmable
interval timer (PIT), fixed interval timer (FIT), data TLB miss, and instruction TLB miss. The following interrupts are
defined as critical: machine check interrupts (instruction- and data-side), debug interrupts, interrupts caused by an
active critical interrupt input, and the first time-out from the watchdog timer.

When a noncritical interrupt is taken, Save/Restore Register 0 (SRR0) is written with the address of the excepting
instruction (most synchronous interrupts) or the next sequential instruction to be processed (asynchronous
interrupts and system call).

If the PPC405 was executing a multicycle instruction (multiply, divide, or cache operation), the instruction is
terminated and its address is written in SRR0.

Aligned scalar loads/stores that are interrupted do not appear on the PLB. An aligned scalar load/store cannot be
interrupted after it is requested on the PLB, so the Guarded (G) storage attribute does not need to prevent the
interruption of an aligned scalar load/store.

To enhance performance, the DCU can respond to non cacheable load requests by retrieving a line instead of a
word. This is controlled by CCR0[LWL]. Note, however, that If CCR0[LWL] = 1, and the target non cacheable
region is also marked as guarded (the G storage attribute is set to 1), that the DCU will request on the PLB only
those bytes requested by the CPU.

Load/store multiples, load/store string, and misaligned scalar loads/stores that cross a word boundary can be
interrupted and restarted upon return from the interrupt handler.

When load instructions terminate, the addressing registers are not updated. This ensures that the instructions can
be restarted; if the addressing registers were in the range of registers to be loaded, this would be an invalid form in
any event. Some target registers of a load instruction may have been written by the time of the interrupt; when the
instruction restarts, the registers will simply be written again. Similarly, some of the target memory of a store
instruction may have been written, and is written again when the instruction restarts.

11 Data TLB miss Noncritical Valid matching entry for the effective address and process ID of an attempted
data access is not found in the TLB

12 Data storage—ZPR[Zn] = 00 Noncritical Data translation is active and data-side access to the translated address is not
permitted because ZPR[Zn] = 00 in user mode

13 Data storage—
TLB_entry[WR] = 0

Noncritical Data translation is active and write access to the translated address is not
permitted because TLB_entry[WR] = 0

Data storage—
TLB_entry[U0] = 1 or
SU0R[Un] = 1

Noncritical Data translation is active and write access to the translated address is not
permitted because TLB_entry[U0] = 1 or SU0R[Un] = 1

14 Alignment Noncritical dcbz to non cacheable address or write-through storage; non-word aligned
dcread, lwarx, and stwcx, as described in Table 6-10

15 Debug—BT, DAC, DVC, IC,
TIE

Critical BT, DAC, DVC, IC, TIE debug event (in internal debug mode)

16 External interrupt input Noncritical Active level on the external interrupt input by the UIC

17 Fixed Interval Timer (FIT) Noncritical Posting of an enabled FIT interrupt in the TSR

18 Programmable Interval Timer
(PIT)

Noncritical Posting of an enabled PIT interrupt in the TSR

Table 6-1. Interrupt Handling Priorities (Continued)

Priority Interrupt Type Critical or
Noncritical Causative Conditions

112

http://www.manualslib.com/

 113

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Save/Restore Register 1 (SRR1) is written with the contents of the MSR; the MSR is then updated to reflect the
new machine context. The new MSR contents take effect beginning with the first instruction of the interrupt
handling routine.

Interrupt handling routine instructions are fetched at an address determined by the interrupt type. The address of
the interrupt handling routine is formed by concatenating the 16 high-order bits of the EVPR and the interrupt
vector offset. (A user must initialize the EVPR contents at power-up using an mtspr instruction.)

Table 6-2 on page 113 shows the interrupt vector offsets for the interrupt types. Note that there can be multiple
sources of the same interrupt type; interrupts of the same type are mapped to the same interrupt vector, regardless
of source. In such cases, the interrupt handling routine must examine status registers to determine the exact
source of the interrupt.

At the end of the interrupt handling routine, execution of an rfi instruction forces the contents of SRR0 and SRR1 to
be written to the program counter and the MSR, respectively. Execution then begins at the address in the program
counter.

Critical interrupts are processed similarly. When a critical interrupt is taken, Save/Restore Register 2 (SRR2) and
Save/Restore Register 3 (SRR3) hold the next sequential address to be processed when returning from the
interrupt, and the contents of the MSR, respectively. At the end of the critical interrupt handling routine, execution
of an rfci instruction writes the contents of SRR2 and SRR3 into the program counter and the MSR, respectively.

Table 6-2. Interrupt Vector Offsets
Offset Interrupt Type Interrupt Class Category Page

0x0100 Critical input interrupt Asynchronous precise Critical 118

0x0200 Machine check—data — Critical 118

Machine check—instruction — Critical 118

0x0300 Data storage interrupt—
MSR[DR]=1 and ZPR[Zn] = 0 or
TLB_entry[WR] = 0 or TLB_entry[U0] = 1
or SU0R[Un] = 1

Synchronous precise Noncritical

120

0x0400 Instruction storage interrupt Synchronous precise Noncritical 121

0x0500 External interrupt (external to the
processor core)

Asynchronous precise Noncritical 122

0x0600 Alignment Synchronous precise Noncritical 123

0x0700 Program Synchronous precise Noncritical 123

0x0C00 System Call Synchronous precise Noncritical 124

0x1000 PIT Asynchronous precise Noncritical 125

0x1010 FIT Asynchronous precise Noncritical 125

0x1020 Watchdog timer Asynchronous precise Critical 126

0x1100 Data TLB miss Synchronous precise Noncritical 127

0x1200 Instruction TLB miss Synchronous precise Noncritical 127

0x2000 Debug—BT, DAC, DVC, IAC, IC, TIE Synchronous precise Critical
128

Debug—EXC, UDE Asynchronous precise Critical

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

6.5 General Interrupt Handling Registers

The general interrupt handling registers are the Machine State Register (MSR), SRR0–SRR3, the Exception
Vector Prefix Register (EVPR), the Exception Syndrome Register (ESR), and the Data Exception Address Register
(DEAR).

6.5.1 Machine State Register (MSR)

The MSR is a 32-bit register that holds the current context of the PPC405. When a noncritical interrupt is taken, the
MSR contents are written to SRR1; when a critical interrupt is taken, the MSR contents are written to SRR3. When
an rfi or rfci instruction executes, the contents of the MSR are read from SRR1 or SRR3, respectively.

Programming Note: The rfi and rfci instructions can alter reserved MSR fields.

The MSR contents can be read into a General Purpose Register (GPR) using an mfmsr instruction. The contents
of a GPR can be written to the MSR using an mtmsr instruction. The MSR[EE] bit may be set/cleared atomically
using the wrtee or wrteei instructions.

Figure 6-1. Machine State Register (MSR)
0:12 Reserved

13 WE Wait State Enable
0 The processor is not in the wait state.
1 The processor is in the wait state.

If MSR[WE] = 1, the processor remains in the wait
state until an interrupt is taken, a reset occurs, or
an external debug tool clears WE.

14 CE Critical Interrupt Enable
0 Critical interrupts are disabled.
1 Critical interrupts are enabled.

Controls the critical interrupt input and watchdog
timer first time-out interrupts.

15 Reserved

16 EE External Interrupt Enable
0 Asynchronous interrupts (external to the

processor core) are disabled.
1 Asynchronous interrupts are enabled.

Controls the non-critical external interrupt input,
PIT, and FIT interrupts.

17 PR Problem State
0 Supervisor state (all instructions allowed).
1 Problem state (some instructions not allowed).

18 Reserved

19 ME Machine Check Enable
0 Machine check interrupts are disabled.
1 Machine check interrupts are enabled.

20 Reserved

21 DWE Debug Wait Enable
0 Debug wait mode is disabled.
1 Debug wait mode is enabled.

22 DE Debug Interrupts Enable
0 Debug interrupts are disabled.
1 Debug interrupts are enabled.

23:25 Reserved

26 IR Instruction Relocate
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.

114

http://www.manualslib.com/

 115

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

6.5.2 Save/Restore Registers 0 and 1 (SRR0–SRR1)

SRR0 and SRR1 are 32-bit registers that hold the interrupted machine context when a noncritical interrupt is
processed. On interrupt, SRR0 is set to the current or next instruction address and the contents of the MSR are
written to SRR1. When an rfi instruction is executed at the end of the interrupt handler, the program counter and
the MSR are restored from SRR0 and SRR1, respectively.

The contents of SRR0 and SRR1 can be written into GPRs using the mfspr instruction. The contents of GPRs can
be written to SRR0 and SRR1 using the mtspr instruction.

6.5.3 Save/Restore Registers 2 and 3 (SRR2–SRR3)

SRR2 and SRR3 are 32-bit registers that hold the interrupted machine context when a critical interrupt is
processed. On interrupt, SRR2 is set to the current or next instruction address and the contents of the MSR are
written to SRR3. When an rfci instruction is executed at the end of the interrupt handler, the program counter and
the MSR are restored from SRR2 and SRR3, respectively.

The contents of SRR2 and SRR3 can be written to GPRs using the mfspr instruction. The contents of GPRs can
be written to SRR2 and SRR3 using the mtspr instruction.

27 DR Data Relocate
0 Data address translation is disabled.
1 Data address translation is enabled.

28:31 Reserved

Figure 6-2. Save/Restore Register 0 (SRR0)
0:29 SRR0 receives an instruction address when a non-

critical interrupt is taken; the Program Counter is
restored from SRR0 when the rfi instruction
executes.

30:31 Reserved

Figure 6-3. Save/Restore Register 1 (SRR1)
0:31 SRR1 receives a copy of the MSR when an

interrupt is taken; the MSR is restored from SRR1
when rfi executes.

Figure 6-4. Save/Restore Register 2 (SRR2)
0:29 SRR2 receives an instruction address when a

critical interrupt is taken; the Program Counter is
restored from SRR2 when rfci executes.

30:31 Reserved

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

Because critical interrupts do not automatically clear MSR[ME], SRR2 and SRR3 can be corrupted by a machine
check interrupt, if the machine check occurs while SRR2 and SRR3 contain valid data that has not yet been saved
by the critical interrupt handler.

Because critical interrupts do not automatically clear MSR[ME], SRR2 and SRR3 can be corrupted by a machine
check interrupt, if the machine check occurs while SRR2 and SRR3 contain valid data that has not yet been saved
by the critical interrupt handler.

6.5.4 Exception Vector Prefix Register (EVPR)

The EVPR is a 32-bit register whose high-order 16 bits contain the prefix for the address of an interrupt handling
routine. The 16-bit interrupt vector offsets (shown in Table 6-2) are concatenated to the right of the high-order 16
bits of the EVPR to form the 32-bit address of an interrupt handling routine.

The contents of the EVPR can be written to a GPR using the mfspr instruction. The contents of a GPR can be
written to EVPR using the mtspr instruction.

6.5.5 Exception Syndrome Register (ESR)

The ESR is a 32-bit register whose bits help to specify the exact cause of various synchronous interrupts. These
interrupts include instruction side machine checks, data storage interrupts, and program interrupts, instruction
storage interrupts, and data TLB miss interrupts.

Instruction Machine Check Handling on page 119 describes instruction machine checks. Data Storage Interrupt on
page 120 describes data storage interrupts. Program Interrupt on page 123 describes program interrupts.

Although interrupt handling routines are not required to reset the ESR, it is recommended that instruction machine
check handlers reset the ESR; Instruction Machine Check Handling on page 119 describes why such resets are
recommended.

The contents of the ESR can be written to a GPR using the mfspr instruction. The contents of a GPR can be
written to the ESR using the mtspr instruction.

Figure 6-5. Save/Restore Register 3 (SRR3)
0:31 SRR3 receives a copy of the MSR when a critical

interrupt is taken; the MSR is restored from SRR3
when rfci executes.

Figure 6-6. Exception Vector Prefix Register (EVPR)
0:15 EVP Exception Vector Prefix

16:31 Reserved

Figure 6-7. Exception Syndrome Register (ESR)
0 MCI Machine check—instruction

0 Instruction machine check did not occur.
1 Instruction machine check occurred.

1:3 Reserved

116

http://www.manualslib.com/

 117

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

In general, ESR bits are set to indicate the type of precise interrupt that occurred; other bits are cleared. However,
the machine check—instruction (ESR[MCI]) bit behaves differently. Because instruction-side machine checks can
occur without an interrupt being taken (if MSR[ME] = 0), ESR[MCI] can be set even while other ESR-setting
interrupts (program, data storage, DTLB-miss) occurring. Thus, data storage and program interrupts leave
ESR[MCI] unchanged, clear all other ESR bits, and set the bits associated with any data storage or program
interrupts that occurred. Enabled instruction-side machine checks (MSR[ME] = 1) set ESR[MCI] and clear the data
storage and program interrupt bits.

If a machine check—instruction interrupt occurs but is disabled (MSR[ME] = 0), it sets but leaves the data storage
and program interrupt bits alone. If a machine check—instruction interrupt occurs while MSR[ME] = 0, and the
instruction upon which the machine check—instruction interrupt is occurring also is some other kind of ESR-setting
instruction (program, data storage, DTLB-miss, or instruction storage interrupt), ESR[MCI] is set to indicate that a
machine check—instruction interrupt occurred; the other ESR bits are set or cleared to indicate the other interrupt.
These scenarios are summarized in Table 6-3.

4 PIL Program interrupt—illegal
0 Illegal Instruction error did not occur.
1 Illegal Instruction error occurred.

5 PPR Program interrupt—privileged
0 Privileged instruction error did not occur.
1 Privileged instruction error occurred.

6 PTR Program interrupt—trap
0 Trap with successful compare did not occur.
1 Trap with successful compare occurred.

7 Reserved

8 DST Data storage interrupt—store fault
0 Excepting instruction was not a store.
1 Excepting instruction was a store (includes dcbi,

dcbz, and dccci).

9 DIZ Data/instruction storage interrupt—zone fault
0 Excepting condition was not a zone fault.
1 Excepting condition was a zone fault.

10:15 Reserved

16 U0F Data storage interrupt—U0 fault
0 Excepting instruction did not cause a U0 fault.
1 Excepting instruction did cause a U0 fault.

17:31 Reserved

Table 6-3. ESR Alteration by Various Interrupts
Scenario ECR[MCI] ESR4: ESR8:9, 16

Program interrupt Unchanged Set to type Cleared

Data storage interrupt Unchanged Cleared Set to Type

Data TLB miss interrupt Unchanged Cleared Cleared

Machine check—instruction Set to 1 Cleared Cleared

Disabled MCI, no others Unchanged Unchanged Unchanged

Disabled MCI and program interrupt Unchanged Set to type Cleared

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

6.5.6 Data Exception Address Register (DEAR)

The DEAR is a 32-bit register that contains the address of the access for which one of the following synchronous
precise errors occurred: alignment error, data TLB miss, or data storage interrupt. The contents of the DEAR can
be written to a GPR using the mfspr instruction. The contents of a GPR can be written to the DEAR using the
mtspr instruction.

6.6 Critical Input Interrupts

The UICCR can be programmed so that any UIC interrupt can be presented as a critical interrupt input to the
processor core. Critical interrupts are recognized only if enabled by MSR[CE].

MSR[CE] also enables the watchdog timer first-time-out interrupt. However, the watchdog interrupt has a different
interrupt vector than the critical pin interrupt. See Watchdog Timer Interrupt on page 126.

After detecting a critical interrupt, if no synchronous precise interrupts are outstanding, the PPC405 immediately
takes the critical interrupt and writes the address of the next instruction to be executed in SRR2. Simultaneously,
the contents of the MSR are saved in SRR3. MSR[CE] is reset to 0 to prevent another critical interrupt or the
watchdog timer first time-out interrupt from interrupting the critical interrupt handler before SRR2 and SRR3 get
saved. MSR[DE] is reset to 0 to disable debug interrupts during the critical interrupt handler.

The MSR is also written with the values shown in Table 6-4. The high-order 16 bits of the program counter are then
loaded with the contents of the EVPR and the low-order 16 bits of the program counter are loaded with 0x0100.
Interrupt processing begins at the address in the program counter.

Inside the interrupt handling routine, after the contents of SRR2/SRR3 are saved, critical interrupts can be enabled
again by setting MSR[CE] = 1.

Executing an rfci instruction restores the program counter from SRR2 and the MSR from SRR3, and execution
resumes at the address in the program counter.

6.7 Machine Check Interrupts

When an external bus error occurs on an instruction fetch, and execution of that instruction is subsequently
attempted, a machine check—instruction interrupt occurs.

When an external bus error occurs while attempting data accesses, a machine check—data interrupt occurs.

Figure 6-8. Data Exception Address Register (DEAR)
0:31 Address of Data Error (synchronous)

Table 6-4. Register Settings during Critical Input Interrupts
SRR2 Written with the address of the next instruction to be executed

SRR3 Written with the contents of the MSR

PC EVPR[0:15] || 0x0100

118

http://www.manualslib.com/

 119

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

When an instruction-side machine check interrupt occurs, the PPC405 stores the address of the excepting
instruction in SRR2. When a data-side machine check occurs, the PPC405 stores the address of the next
sequential instruction in SRR2. Simultaneously, for all machine check interrupts, the contents of the MSR are
loaded into SRR3.

The MSR Machine Check Enable bit (MSR[ME]) is reset to 0 to disable another machine check from interrupting
the machine check interrupt handling routine. The other MSR bits are loaded with the values shown in Table 6-5
and Table 6-6 on page 120. The high-order 16 bits of the program counter are then written with the contents of the
EVPR and the low-order 16 bits of the program counter are written with 0x0200. Interrupt processing begins at the
new address in the program counter.

Executing an rfci instruction restores the program counter from SRR2 and the MSR from SRR3, and execution
resumes at the address in the program counter.

6.7.1 Instruction Machine Check Handling

When a machine check occurs on an instruction fetch, and execution of that instruction is subsequently attempted,
a machine check—instruction interrupt occurs. If enabled by MSR[ME], the processor reports the machine check—
instruction interrupt by vectoring to the machine check handler (EVPR[0:15] || 0x0200), setting. Note that only a
bus error can cause a machine check—instruction interrupt. Taking the vector automatically clears MSR[ME] and
the other MSR fields.

Note that it is improper to declare a machine check—instruction interrupt when the instruction is fetched, because
the address is possibly the result of an incorrect speculation by the fetcher. It is quite likely that no attempt will be
made to execute an instruction from the erroneous address. The interrupt will occur only if execution of the
instruction is subsequently attempted.

When a machine check occurs on an instruction fetch, the erroneous instruction is never validated in the instruction
cache unit (ICU). Fetch requests to cacheable memory that miss in the ICU cause an instruction cache line fill
(eight words). If any words in the fetched line are associated with an error, an interrupt occurs upon attempted
execution and the cache line is invalidated. If any word in the line is in error, the cache line is invalidated after the
line fill.

is set, even if MSR[ME] = 0. This means that if a machine check—instruction interrupt occurs while running in code
in which MSR[ME] is disabled, the machine check—instruction interrupt is recorded, but no interrupt occurs.
Software running with MSR[ME] disabled can sample to determine whether at least one machine check—
instruction interrupt occurred during the disabled execution.

If a new machine check—instruction interrupt occurs after MSR[ME] is enabled again, the new machine check—
instruction interrupt is recorded, and the machine check—instruction interrupt handler is invoked. However,
enabling MSR[ME] again does not cause a machine Check interrupt to occur simply due to the presence of
indicating that a machine check—instruction interrupt occurred while MSR[ME] was disabled. The machine
check—instruction interrupt must occur while MSR[ME] is enabled for the machine check interrupt to be taken.
Software should, in general, clear the bits before returning from a machine check interrupt to avoid any ambiguity
when handling subsequent machine check interrupts.

Table 6-5. Register Settings during Machine Check—Instruction Interrupts
SRR2 Written with the address that caused the machine check.

SRR3 Written with the contents of the MSR

PC EVPR[0:15] || 0x0200

ESR MCI ← 1. All other bits are cleared.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

6.7.2 Data Machine Check Handling

When a machine check occurs on an data access, a machine check—data interrupt occurs. To determine the
cause of a machine check, examine the various error reporting registers of the external PLB slaves.

6.8 Data Storage Interrupt

The data storage interrupt occurs when the desired access to the effective address is not permitted for any of the
following reasons:

• A U0 fault: any store to an EA with the U0 storage attribute set and CCR0[U0XE] = 1

• In the problem state with data translation enabled:

– A zone fault, which is any user-mode storage access (data load, store, icbi, dcbz, dcbst, or dcbf) with an
effective address with (ZPR field) = 00. (dcbt and dcbtst will no-op in this situation, rather than cause an
interrupt. The instructions dcbi, dccci, icbt, and iccci, being privileged, cannot cause zone fault data stor-
age interrupts.)

– Data store or dcbz to an effective address with the WR bit clear and (ZPR field) ¼ 11. (The privileged
instructions dcbi and dccci are treated as “stores,” but will cause privileged program interrupts, rather than
data storage interrupts.)

• In the supervisor state with data translation enabled:

– Data store, dcbi, dcbz, or dccci to an effective address with the WR bit clear and (ZPR field) other than 11
or 10.

Programming Note: The icbi, icbt, and iccci instructions are treated as loads from the addressed byte with
respect to address translation and protection. Instruction cache operations use MSR[DR], not MSR[IR], to
determine translation of their operands. Instruction storage interrupts and Instruction-side TLB Miss Interrupts
are associated with the fetching of instructions, not with the execution of instructions. Data storage interrupts
and data TLB miss interrupts are associated with the execution of instruction cache operations.

When a data storage interrupt is detected, the PPC405 suppresses the instruction causing the interrupt and writes
the instruction address in SRR0. The Data Exception Address Register (DEAR) is loaded with the data address
that caused the access violation. ESR bits are loaded as shown in Table 6-7 on page 121 to provide further
information about the error. The current contents of the MSR are loaded into SRR1, and MSR bits are then loaded
with the values shown in Table 6-7 on page 121.

The high-order 16 bits of the program counter are then loaded with the contents of the EVPR and the low-order 16
bits of the program counter are loaded with 0x0300. Interrupt processing begins at the new address in the program
counter. Executing the return from interrupt instruction (rfi) restores the contents of the program counter and the
MSR from SRR0 and SRR1, respectively, and the PPC405 resumes execution at the new program counter
address.

For instructions that can simultaneously generate program interrupts (privileged instructions executed in Problem
State) and data storage interrupts, the program interrupt has priority.

Table 6-6. Register Settings during Machine Check—Data Interrupts
SRR2 Written with the address of the next sequential instruction.

SRR3 Written with the contents of the MSR

PC EVPR[0:15] || 0x0200

120

http://www.manualslib.com/

 121

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

6.9 Instruction Storage Interrupt

The instruction storage interrupt is generated when instruction translation is active and execution is attempted for
an instruction whose fetch access to the effective address is not permitted for any of the following reasons:

• In Problem State:

– Instruction fetch from an effective address with (ZPR field) = 00.

– Instruction fetch from an effective address with the EX bit clear and (ZPR field) ¼ 11.

– Instruction fetch from an effective address contained within a Guarded region (G=1).

• In Supervisor State:

– Instruction fetch from an effective address with the EX bit clear and (ZPR field) other than 11 or 10.

– Instruction fetch from an effective address contained within a Guarded region (G=1).

SRR0 will save the address of the instruction causing the instruction storage interrupt.

ESR is set to indicate the following conditions:

• If ESR[DIZ] = 1, the excepting condition was a zone fault: the attempted execution of an instruction address
fetched in user-mode with (ZPR field) = 00.

• If ESR[DIZ] = 0, then the excepting condition was either EX = 0 or G = 1.

The interrupt is precise with respect to the attempted execution of the instruction. Program flow vectors to
EVPR[0:15] || 0x0400.

The following registers are modified to the specified values:

Table 6-7. Register Settings during Data Storage Interrupts
SRR0 Written with the EA of the instruction causing the data storage interrupt

SRR1 Written with the value of the MSR at the time of the interrupt

PC EVPR[0:15] || 0x0300

DEAR Written with the EA of the failed access

ESR DST ← 1 if excepting operation is a store
DIZ ← 1 if access failure caused by a zone protection fault (ZPR[Zn] = 00 in
user mode)
U0F ← 1 if access failure caused by a U0 fault (the U0 storage attribute is set
and CCR0[U0XE] = 1)
MCI ← unchanged
All other bits are cleared.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

6.10 External Interrupt

External interrupts (external to the processor core) are triggered by active levels non-critical interrupts in the UIC.
All external interrupting events are presented to the processor as a single external interrupt. External interrupts are
enabled or disabled by MSR[EE].

Programming Note: MSR[EE] also enables PIT and FIT interrupts. However, after timer interrupts, control
passes to different interrupt vectors than for the interrupts discussed in the preceding paragraph. Therefore,
these timer interrupts are described in Programmable Interval Timer (PIT) Interrupt on page 125 and Fixed
Interval Timer (FIT) Interrupt on page 125.

6.10.1 External Interrupt Handling

When MSR[EE] = 1 (external interrupts are enabled), a noncritical external interrupt occurs, and this interrupt is the
highest priority interrupt condition, the processor immediately writes the address of the next sequential instruction
into SRR0. Simultaneously, the contents of the MSR are saved in SRR1.

When the processor takes a noncritical external interrupt, MSR[EE] is set to 0. This disables other external
interrupts from interrupting the interrupt handler before SRR0 and SRR1 are saved. The MSR is also written with
the other values shown in Table 6-9. The high-order 16 bits of the program counter are written with the contents of
the EVPR and the low-order 16 bits of the program counter are written with 0x0500. Interrupt processing begins at
the address in the program counter.

Executing an rfi instruction restores the program counter from SRR0 and the MSR from SRR1, and execution
resumes at the address in the program counter.

Table 6-8. Register Settings during Instruction Storage Interrupts
SRR0 Set to the EA of the instruction for which execute access was not permitted

SRR1 Set to the value of the MSR at the time of the interrupt

PC EVPR[0:15] || 0x0400

ESR DIZ ← 1 If access failure due to a zone protection fault (ZPR[Zn] = 00 in user
mode)
Note: If ESR[DIZ] is not set, the interrupt occurred because TBL_entry[EX]
was clear in an otherwise accessible zone, or because of an instruction fetch
from a storage region marked as guarded. See “Exception Syndrome Register
(ESR)” on page 116 for details of ESR operation.
MCI ← unchanged
All other bits are cleared.

Table 6-9. Register Settings during External Interrupts
SRR0 Written with the address of the next sequential instruction

SRR1 Written with the contents of the MSR

PC EVPR[0:15] || 0x0500

122

http://www.manualslib.com/

 123

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

6.11 Alignment Interrupt

Alignment interrupts are caused by dcbz instructions to non cacheable or write-through storage and misaligned
dcread, lwarx, or stwx. instructions. Table 6-10 summarizes the instructions and conditions causing alignment
interrupts.

Execution of an instruction causing an alignment interrupt is prohibited from completing. SRR0 is written with the
address of that instruction and the current contents of the MSR are saved into SRR1. The DEAR is written with the
address that caused the alignment error. The MSR bits are written with the values shown in Table 6-11. The high-
order 16 bits of the program counter are written with the contents of the EVPR and the low-order 16 bits of the
program counter are written with 0x0600. Interrupt processing begins at the new address in the program counter.

Executing an rfi instruction restores the program counter from SRR0 and the MSR from SRR1, and execution
resumes at the address in the program counter.

Alignment interrupts cannot be disabled. To avoid overwrites of SRR0 and SRR1 by alignment interrupts that occur
within a handler, interrupt handlers should save these registers as soon as possible.

6.12 Program Interrupt

Program interrupts are caused by attempting to execute:

• An illegal instruction

• A privileged instruction while in the problem state

• Executing a trap instruction with conditions satisfied

The ESR bits that differentiate these situations are listed and described in Table 6-12. When a program interrupt
occurs, the appropriate bit is set and the others are cleared. These interrupts are not maskable.

Table 6-10. Alignment Interrupt Summary

Instructions Causing Alignment Interrupts Conditions

dcbz EA in non cacheable or write-through storage

dcread, lwarx, stwcx. EA not word-aligned

Table 6-11. Register Settings during Alignment Interrupts
SRR0 Written with the address of the instruction causing the alignment interrupt

SRR1 Written with the contents of the MSR

PC EVPR[0:15] || 0x0600

DEAR Written with the address that caused the alignment violation

Table 6-12. ESR Usage for Program Interrupts
Bits Interrupts Cause

ESR[PIL] Illegal instruction Opcode not recognized

ESR[PPR] Privileged instruction Attempt to use a privileged instruction in the problem state

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

The program interrupt handler does not need to reset the ESR.

When one of the following occurs, the PPC405 does not execute the instruction, but writes the address of the
excepting instruction into SRR0:

• Attempted execution of a privileged instruction in problem state

• Attempted execution of an illegal instruction (including memory management instructions when memory man-
agement is disabled

Trap instructions can be used as a program interrupt or a debug event, or both (see Debug Events on page 147 for
information about debug events). When a trap instruction is detected as a program interrupt, the PPC405 writes the
address of the trap instruction into SRR0. See tw on page 341 and twi on page 344 (both in Instruction Set on
page 157) for a detailed discussion of the behavior of trap instructions with various interrupts enabled.

After any program interrupt, the contents of the MSR ar MSR[APA] = 0, an attempt to execute an instruction
intended for an APU causes a program interrupt if MSR[APE] = 0e written into SRR1 and the MSR bits are written
with the values shown in Table 6-13. The high-order 16 bits of the program counter are written with the contents of
the EVPR; the low-order 16 bits of the program counter are written with 0x0700. Interrupt processing begins at the
new address in the program counter.

Executing an rfi instruction restores the program counter from SRR0 and the MSR from SRR1, and execution
resumes at the address in the program counter.

6.13 System Call Interrupt

System call interrupts occur when a sc instruction is executed. The PPC405 writes the address of the instruction
following the sc into SRR0. The contents of the MSR are written into SRR1 and the MSR bits are written with the
values shown in Table 6-14. The high-order 16 bits of the program counter are then written with the contents of the
EVPR and the low-order 16 bits of the program counter are written with 0x0C00. Interrupt processing begins at the
new address in the program counter.

Executing an rfi instruction restores the program counter from SRR0 and the MSR from SRR1, and execution
resumes at the address in the program counter.

ESR[PTR] Trap Excepting instruction is a trap

Table 6-13. Register Settings during Program Interrupts
SRR0 Written with the address of the excepting instruction

SRR1 Written with the contents of the MSR

PC EVPR[0:15] || 0x0700

ESR Written with the type of program interrupt. (see Table 6-12)
MCI ← unchanged
All other bits are cleared.

Table 6-12. ESR Usage for Program Interrupts (Continued)
Bits Interrupts Cause

124

http://www.manualslib.com/

 125

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

6.14 Programmable Interval Timer (PIT) Interrupt

For a discussion of the PPC405 timer facilities, see Timer Facilities on page 129. The PIT is described in
Programmable Interval Timer (PIT) on page 131.

If the PIT interrupt is enabled by TCR[PIE] and MSR[EE], the PPC405 initiates a PIT interrupt after detecting a
time-out from the PIT. Time-out is detected when, at the beginning of a clock cycle, TSR[PIS] = 1. (This occurs on
the cycle after the PIT decrements on a PIT count of 1.) The PPC405 immediately takes the interrupt. The address
of the next sequential instruction is saved in SRR0; simultaneously, the contents of the MSR are written into SRR1
and the MSR is written with the values shown in Table 6-15. The high-order 16 bits of the program counter are then
written with the contents of the EVPR and the low-order 16 bits of the program counter are written with 0x1000.
Interrupt processing begins at the address in the program counter.

To clear a PIT interrupt, the interrupt handling routine must clear the PIT interrupt bit, TSR[PIS]. Clearing is
performed by writing a word to TSR, using an mtspr instruction, that has 1 in bit positions to be cleared and 0 in all
other bit positions. The data written to the TSR is not direct data, but a mask; a 1 clears the bit and 0 has no effect.

Executing an rfi instruction restores the program counter from SRR0 and the MSR from SRR1, and execution
resumes at the address in the program counter.

6.15 Fixed Interval Timer (FIT) Interrupt

For a discussion of the PPC405 timer facilities, see Timer Facilities on page 129. The FIT is described in Fixed
Interval Timer (FIT) on page 132.

If the FIT interrupt is enabled by TCR[FIE] and MSR[EE], the PPC405 initiates a FIT interrupt after detecting a
time-out from the FIT. Time-out is detected when, at the beginning of a clock cycle, TSR[FIS] = 1. (This occurs on
the second cycle after the 0 → 1 transition of the appropriate time-base bit.) The PPC405 immediately takes the
interrupt. The address of the next sequential instruction is written into SRR0; simultaneously, the contents of the
MSR are written into SRR1 and the MSR is written with the values shown in Table 6-16. The high-order 16 bits of
the program counter are then written with the contents of the EVPR and the low-order 16 bits of the program
counter are written with 0x1010. Interrupt processing begins at the address in the program counter.

Table 6-14. Register Settings during System Call Interrupts
SRR0 Written with the address of the instruction following the sc instruction

SRR1 Written with the contents of the MSR

PC EVPR[0:15] || 0x0C00

Table 6-15. Register Settings during Programmable Interval Timer Interrupts
SRR0 Written with the address of the next instruction to be executed

SRR1 Written with the contents of the MSR

PC EVPR[0:15] || 0x1000

TSR PIS ← 1

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

To clear a FIT interrupt, the interrupt handling routine must clear the FIT interrupt bit, TSR[FIS]. Clearing is
performed by writing a word to TSR, using an mtspr instruction, that has 1 in any bit positions to be cleared and 0
in all other bit positions. The data written to the TSR is not direct data, but a mask; a 1 clears a bit and 0 has no
effect.

Executing an rfi instruction restores the program counter from SRR0 and the MSR from SRR1, and execution
resumes at the address in the program counter.

6.16 Watchdog Timer Interrupt

For a general description of the PPC405 timer facilities, see Timer Facilities on page 129 The watchdog timer
(WDT) is described in Watchdog Timer on page 133.

If the WDT interrupt is enabled by TCR[WIE] and MSR[CE], the PPC405 initiates a WDT interrupt after detecting
the first WDT time-out. First time-out is detected when, at the beginning of a clock cycle, TSR[WIS] = 1. (This
occurs on the second cycle after the 0→1 transition of the appropriate time-base bit while TSR[ENW] = 1 and
TSR[WIS] = 0.) The PPC405 immediately takes the interrupt. The address of the next sequential instruction is
saved in SRR2; simultaneously, the contents of the MSR are written into SRR3 and the MSR is written with the
values shown in Table 6-17. The high-order 16 bits of the program counter are then written with the contents of the
EVPR and the low-order 16 bits of the program counter are written with 0x1020. Interrupt processing begins at the
address in the program counter.

To clear the WDT interrupt, the interrupt handling routine must clear the WDT interrupt bit TSR[WIS]. Clearing is
done by writing a word to TSR (using mtspr), with a 1 in any bit position that is to be cleared and 0 in all other bit
positions. The data written to the status register is not direct data, but a mask; a 1 causes the bit to be cleared, and
a 0 has no effect.

Executing the return from critical interrupt instruction (rfci) restores the contents of the program counter and the
MSR from SRR2 and SRR3, respectively, and the PPC405 resumes execution at the contents of the program
counter.

Table 6-16. Register Settings during Fixed Interval Timer Interrupts
SRR0 Written with the address of the next sequential instruction

SRR1 Written with the contents of the MSR

PC EVPR[0:15] || 0x1010

TSR FIS ← 1

Table 6-17. Register Settings during Watchdog Timer Interrupts
SRR2 Written with the address of the next sequential instruction

SRR3 Written with the contents of the MSR

PC EVPR[0:15] || 0x1020

TSR WIS ← 1

126

http://www.manualslib.com/

 127

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

6.17 Data TLB Miss Interrupt

The data TLB miss interrupt is generated if data translation is enabled and a valid TLB entry matching the EA and
PID is not present. The address of the instruction generating the untranslatable effective data address is saved in
SRR0. In addition, the hardware also saves the data address (that missed in the TLB) in the DEAR. The ESR is set
to indicate whether the excepting operation was a store (includes dcbz, dcbi, dccci). The interrupt is precise.
Program flow vectors to EVPR[0:15] || 0x1100.

The following registers are modified to the values specified in Table 6-18.

Programming Note: Data TLB miss interrupts can happen whenever data translation is enabled. Therefore,
ensure that SRR0 and SRR1 are saved before enabling translation in an interrupt handler.

6.18 Instruction TLB Miss Interrupt

The instruction TLB miss interrupt is generated if instruction translation is enabled and execution is attempted for
an instruction for which a valid TLB entry matching the EA and PID for the instruction fetch is not present. The
instruction whose fetch caused the TLB miss is saved in SRR0.

The interrupt is precise with respect to the attempted execution of the instruction. Program flow vectors to
EVPR[0:15 || 0x1200.

The following are modified to the values specified in Table 6-19.

Programming Note: Instruction TLB miss interrupts can happen whenever instruction translation is active.
Therefore, insure that SRR0 and SRR1 are saved before enabling translation in an interrupt handler.

Table 6-18. Register Settings during Data TLB Miss Interrupts
SRR0 Set to the address of the instruction generating the effective address for

which no valid translation exists.

SRR1 Set to the value of the MSR at the time of the interrupt

PC EVPR[0:15] || 0x1100

DEAR Set to the effective address of the failed access

ESR DST ← 1 if excepting operation is a store operation (includes dcbi, dcbz,
and dccci).
MCI ← unchanged
All other bits are cleared.

Table 6-19. Register Settings during Instruction TLB Miss Interrupts
SRR0 Set to the address of the instruction for which no valid translation exists.

SRR1 Set to the value of the MSR at the time of the interrupt

PC EVPR[0:15] || 0x1200

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

6.19 Debug Interrupt

Debug interrupts can be either synchronous or asynchronous. These debug events generate synchronous
interrupts: branch taken (BT), data address compare (DAC), data value compare (DVC), instruction address
compare (IAC), instruction completion (IC), and trap instruction (TIE). The exception (EXC) and unconditional
(UDE) debug events generate asynchronous interrupts. See Debug Events on page 147 for more information
about debug events.

For debug events, SRR2 is written with an address, which varies with the type of debug event, as shown in
Table 6-20.

SRR3 is written with the contents of the MSR and the MSR is written with the values shown in Table 6-21. The
high-order 16 bits of the program counter are then written with the contents of the EVPR; the low-order 16 bits of
the program counter are written with 0x2000. Interrupt processing begins at the address in the program counter.

Executing an rfci instruction restores the program counter from SRR2 and the MSR from SRR3, and execution
resumes at the address in the program counter.

Table 6-20. SRR2 during Debug Interrupts
Debug Event Address Saved in SRR2

BT
DAC
IAC
TIE

Address of the instruction causing the event

DVC
IC

Address of the instruction following the instruction that causing the event

EXC Interrupt vector address of the initial exception that caused the exception debug event

UDE Address of next instruction to be executed at time of UDE

Table 6-21. Register Settings during Debug Interrupts
SRR2 Written with an address as described in Table 6-20

SRR3 Written with the contents of the MSR

PC EVPR[0:15] || 0x2000

DBSR Set to indicate type of debug event.

128

http://www.manualslib.com/

 129

Revision 1.01 - February 19, 2007 PPC405 Processor

Preliminary User’s Manual

7. Timer Facilities
The PPC405 processor core provides four timer facilities: a time base, a Programmable Interval Timer (PIT), a
fixed interval timer (FIT), and a watchdog timer. The PIT is a Special Purpose Register (SPR). These facilities,
which are driven by the same base clock, can, among other things, be used for:

• Time-of-day functions
• Data logging functions
• Peripherals requiring periodic service
• Periodic task switching

Additionally, the watchdog timer can help a system to recover from faulty hardware or software.

Figure 7-1 shows the relationship of the timers and the clock source to the time base.

Figure 7-1. Relationship of Timer Facilities to the Time Base

TBU (32 bits)

Bit 3 (229 clocks)

Bit 7 (225 clocks)

Bit 11 (221 clocks)

Bit 15 (217 clocks)

Bit 11 (221 clocks)

Bit 15 (217 clocks)

Bit 19 (213 clocks)

Bit 23 (29 clocks)

Watchdog Timer Events

FIT Events

Time Base (Incrementer)

31

TBL (32 bits)

31 00

PIT (Decrementer)

(32 bits)

310

Zero Detect PIT Events

Clock Source
- CPU for 405EZ
- OPB for 405EX

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.01 - February 19, 2007PPC405 Processor

Preliminary User’s Manual

7.1 Time Base

The PPC405 implements a 64-bit time base as required in The PowerPC Architecture. The time base, which
increments once during each period of the source clock, provides a time reference.

Read access to the time base is through the mftb instruction. mftb provides user-mode read-only access to the
time base. The TBR numbers (0x10C and 0x10D; TBL and TBU, respectively) that specify the time base registers
to mftb are not SPR numbers. However, the PowerPC Architecture allows an implementation to handle mftb as
mfspr. Accordingly, these register numbers cannot be used for other SPRs. PowerPC compilers cannot use mftb
with register numbers other than those specified in the PowerPC Architecture as read-access time base registers
(0x10C and 0x10D).

Write access to the time base, using mtspr, is privileged. Different register numbers are used for read access and
write access. Writing the time base is accomplished by using SPR 0x11C and SPR 0x11D (TBL and TBU, respec-
tively) as operands for mtspr.

The period of the 64-bit time base is approximately 2925 years for a 200 MHz clock source. The time base does
not generate interrupts, even when it wraps. For most applications, the time base is set once at system reset and
only read thereafter. Note that the FIT and the watchdog timer (discussed below) are driven by 0→1 transitions of
bits from the TBL. Transitions caused by software alteration of TBL have the same effect as transitions caused by
normal incrementing of the time base. Figure 7-2 illustrates the TBL.

Figure 7-3 illustrates the TBU.

Table 7-1 summarizes the TBRs, instructions used to access the TBRs, and access restrictions.

Figure 7-2. Time Base Lower (TBL)
0:31 Time Base Lower Current count; low-order 32 bits of time base.

Figure 7-3. Time Base Upper (TBU)
0:31 Time Base Upper Current count, high-order 32 bits of time base.

Table 7-1. Time Base Access

Instructions Register
Number Access Restrictions

• TBU
• Upper

32 bits

• mftbu RT
• Extended mnemonic for
• mftb RT,TBU

• 0x10D • Read-only

• mttbu RS
• Extended mnemonic for
• mtspr TBU,RS

• 0x11D • Privileged; write-only

• TBL
• Lower

32 bits

• mftb RT
• Extended mnemonic for
• mftb RT,TBL

• 0x10C • Read-only

• mttbl RS
• Extended mnemonic for
• mtspr TBL,RS

• 0x11C • Privileged; write-only

130

http://www.manualslib.com/

 131

Revision 1.01 - February 19, 2007 PPC405 Processor

Preliminary User’s Manual

7.1.1 Reading the Time Base

The following code provides an example of reading the time base. mftb moves the low-order 32 bits of the time
base to a GPR; mftbu moves the high-order 32 bits of the time base to a second GPR.
loop:

mftbu Rx # load from TBU
mftb Ry # load from TBL
mftbu Rz # load from TBU
cmpw Rz, Rx # see if old = new
bne loop # loop/reread if rollover occurred

The comparison and loop ensure that a consistent pair of values is obtained.

7.1.2 Writing the Time Base

The following code provides an example of writing the time base. Writing the time base is privileged. mttbl moves
the contents of a GPR to the low-order 32 bits of the time base; mttbu moves the contents of a second GPR to the
high-order 32 bits of the time base.

lwz Rx, upper # load 64-bit time base value into Rx and Ry
lwz Ry, lower
li Rz, 0
mttbl Rz # force TBL to 0 to avoid rollover while writing TBU
mttbu Rx # set TBU
mttbl Ry # set TBL

7.2 Programmable Interval Timer (PIT)

The PIT is a 32-bit SPR that decrements at the same rate as the time base. The PIT is read and written using
mfspr and mtspr, respectively. Writing to the PIT also simultaneously writes to a hidden reload register. Reading
the PIT using mfspr returns the current PIT contents; the hidden reload register cannot be read. When a non-zero
value is written to the PIT, it begins to decrement. A PIT event occurs when a decrement occurs and the PIT count
is set to 1. When a PIT event occurs, the following occurs:

1. If the PIT is in auto-reload mode (the ARE field of the Timer Control Register (TCR) is 1), the PIT is loaded with
the last value an mtspr wrote to the PIT. A decrement from a PIT count of 1 immediately causes a reload; no
intermediate PIT content of 0 occurs.
If the PIT is not in auto-reload mode (TCR[ARE] = 0), a decrement from a PIT count of 1 simply causes a PIT
content of 0.

2. TSR[PIS] is set to 1.

3. If enabled (TCR[PIE] = 1 and the EE field of the Machine State Register (MSR) is 1), a PIT interrupt is taken.
See “Programmable Interval Timer (PIT) Interrupt” on page 10-44 for details of register behavior during a PIT
interrupt.

The interrupt handler should use software to reset the PIS field of the Timer Status Register (TSR). This is done by
using mtspr to write a word to the TSR having a 1 in TSR[PIS] and any other bits to be cleared, and a 0 in all other
bits. The data written to the TSR is not direct data, but a mask. A 1 clears a bit; a 0 has no effect.

Using mtspr to force the PIT to 0 does not cause a PIT interrupt. However, decrementing that was ongoing at the
instant of the mtspr instruction can cause the appearance of an interrupt. To eliminate the PIT as a source of inter-
rupts, write a 0 to TCR[PIE], the PIT interrupt enable bit.

To eliminate all PIT activity:

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.01 - February 19, 2007PPC405 Processor

Preliminary User’s Manual

1. Write a 0 to TCR[PIE]. This prevents PIT activity from causing interrupts.

2. Write a 0 to TCR[ARE]. This disables the PIT auto-reload feature.

3. Write zeroes to the PIT to halt PIT decrementing. Although this action does not cause a pit PIT interrupt to
become pending, a near-simultaneous decrement to 0 might have done so.

4. Write a 1 to TSR[PIS] (PIT Interrupt Status bit). This clears TSR[PIS] to 0 (see “Timer Status Register (TSR)”
on page 11-8). This also clears any pending PIT interrupt. Because the PIT stops decrementing, no further PIT
events are possible.

If the auto-reload feature is disabled (TCR[ARE] = 0) when the PIT decrements to 0, the PIT remains 0 until soft-
ware uses mtspr to reload it.

After a reset, TCR[ARE] = 0, which disables the auto-reload feature. Figure 7-4 illustrates the PIT.

7.2.1 Fixed Interval Timer (FIT)

The FIT provides timer interrupts having a repeatable period. The FIT is functionally similar to an auto-reload PIT,
except that only a smaller fixed selection of interrupt periods are available.

The FIT exception occurs on 0→1 transitions of selected bits from the time base, as shown in Table 7-2.

The TSR[FIS] field logs a FIT exception as a pending interrupt. A FIT interrupt occurs if TCR[FIE] and MSR[EE] are
enabled at the time of the FIT exception. “Fixed Interval Timer (FIT) Interrupt” on page 10-44 describes register
settings during a FIT interrupt.

The interrupt handler should reset TSR[FIS]. This is done by using mtspr to write a word to the TSR having a 1 in
TSR[FIS] and any other bits to be cleared, and a 0 in all other bits. The data written to the TSR is not direct data,
but a mask. A 1 clears a bit and a 0 has no effect.

Figure 7-4. Programmable Interval Timer (PIT)
0:31 Programmed interval remaining Number of clocks remaining until the PIT event

Table 7-2. FIT Controls

TCR[FP] TBL Bit Period
(Time Base Clocks)

Period
(200 Mhz Clock)

0, 0 23 29 clocks 2.56 μsec

0, 1 19 213 clocks 40.96 μsec

1, 0 15 217 clocks 0.655 msec

1, 1 11 221 clocks 10.49 msec

132

http://www.manualslib.com/

 133

Revision 1.01 - February 19, 2007 PPC405 Processor

Preliminary User’s Manual

7.3 Watchdog Timer

The watchdog timer aids system recovery from software or hardware faults.

A watchdog timeout occurs on 0→1 transitions of a selected bit from the time base, as shown in Table 7-3.

If a watchdog timeout occurs while TSR[WIS] = 0 and TSR[ENW] = 1, a watchdog interrupt occurs if the interrupt is
enabled by TCR[WIE] and MSR[CE]. “Watchdog Timer” on page 11-6 describes register behavior during a
watchdog interrupt.

The interrupt handler should reset the TSR[WIS] bit. This is done by using mtspr to write a word to the TSR having
a 1 in TSR[WIS] and any other bits to be cleared, and a 0 in all other bits. The data written to the TSR is not direct
data, but a mask. A 1 clears a bit and a 0 has no effect.

If a watchdog timeout occurs while TSR[WIS] = 1 and TSR[ENW] = 1, a hardware reset occurs if enabled by a non-
zero value of TCR[WRC]. In other words, a reset can occur if a watchdog timeout occurs while a previous
watchdog timeout is pending. The assumption is that TSR[WIS] was not cleared because the processor could not
execute the watchdog handler, leaving reset as the only way to restart the system. Note that after TCR[WRC] is set
to a non-zero value, it cannot be reset by software. This prevents errant software from disabling the watchdog timer
reset capability. After a reset, the initial value of TCR[WRC] = 00.

Figure 7-5 illustrates the watchdog state machine. The values shown for ENW and WIS relate to the actions
described in Figure 7-4 and the operating mode descriptions that follow Figure 7-4.

Table 7-3. Watchdog Timer Controls

TCR[WP] TBL Bit Period
(Time Base Clocks)

Period
(200 MHz Clock)

0,0 15 217 clocks 0.655 msec

0,1 11 221 clocks 10.49 msec

1,0 7 225 clocks 0.168 sec

1,1 3 229 clocks 2.684 sec

Figure 7-5. Watchdog State Machine

WIS = 0

Time-out, no interrupt

Watchdog timeout occurred, watchdog

Time-out, no interrupt Time-out

(2) SW Loop

(3) SW Loop

(1) Interrupt
Handler

(2) Interrupt
Handler

interrupt will occur if enabled

Value of TCR[WRC]

00 No reset will occur
01 Core reset
10 Chip reset
11 System reset

ENW = 0

WIS = 0

ENW = 1

WIS = 1

ENW = 0

WIS = 1

ENW = 1

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.01 - February 19, 2007PPC405 Processor

Preliminary User’s Manual

The controls described in Figure 7-4 imply three different modes of using the watchdog timer. The modes assume
that TCR[WRC] was set to allow processor reset by the watchdog timer:

1. Always take a pending watchdog interrupt, and never attempt to prevent its occurrence. (This mode is
described in the preceding text.)

a. Clear TSR[WIS] in the watchdog timer handler.

b. Never use TSR[ENW].

2. Always take a pending watchdog interrupt, but avoid it whenever possible by delaying a reset until a second
watchdog timer occurs.

This assumes that a recurring code loop of known maximum duration exists outside the interrupt handlers, or
that a FIT interrupt handler is operational. One of these mechanisms clears TSR[ENW] more frequently than
the watchdog period.

a. Clear TSR[ENW] to 0 in loop or in FIT interrupt handler.
To clear TSR[ENW], use mtspr to write a 1 to TSR[ENW] (and to any other bits that are to be cleared), with
0 in all other bit locations.

b. Clear TSR[WIS] in watchdog timer handler.
It is not expected that a watchdog interrupt will occur every time, but only if an exceptionally high execution
load delays clearing of TSR[ENW] in the usual time frame.

3. Never take a watchdog interrupt.

This assumes that a recurring code loop of reliable duration exists outside the interrupt handlers, or that a FIT
interrupt handler is operational. This method only guarantees one watchdog timeout period before a reset
occurs.

a. Clear TSR[WIS] in the loop or in FIT handler.

b. Never use TSR[ENW] but have it set.

Table 7-4. Watchdog Timer State Machine

Enable Next Watchdog
TSR[ENW]

Watchdog Timer
Status

TSR[WIS]
Action When Timer Interval Expires

0 0 Set TSR[ENW] = 1.

0 1 Set TSR[ENW] = 1.

1 0
Set TSR[WIS] = 1.
If TCR[WIE] = 1 and MSR[CE] = 1, then interrupt.

1 1
Cause the watchdog reset action specified by TCR[WRC].
On reset, copy current TCR[WRC] to TSR[WRS] and clear TCR[WRC], disabling the
watchdog timer.

134

http://www.manualslib.com/

 135

Revision 1.01 - February 19, 2007 PPC405 Processor

Preliminary User’s Manual

7.4 Timer Status Register (TSR)

The TSR can be accessed for read or write-to-clear.

Status registers are generally set by hardware and read and cleared by software. The mfspr instruction reads the
TSR. Clearing the TSR is performed by writing a word to the TSR, using mtspr, having a 1 in all fields to be cleared
and a 0 in all other fields. The data written to the TSR is not direct data, but a mask. A 1 clears the field and a 0 has
no effect.

7.5 Timer Control Register (TCR)

The TCR controls PIT, FIT, and watchdog timer operation.

The TCR[WRC] field is cleared to 0 by all processor resets. This field is set only by software. However, hardware
does not allow software to clear the field after it is set. After software writes a 1 to a bit in the field, that bit remains
a 1 until any reset occurs. This prevents errant code from disabling the watchdog timer reset function.

All processor resets clear TCR[ARE] to 0, disabling the auto-reload feature of the PIT.

Figure 7-6. Timer Status Register (TSR)

0 ENW

Enable Next Watchdog
0 Action on next watchdog event is to set

TSR[ENW] = 1.
1 Action on next watchdog event is governed by

TSR[WIS].

Software must reset TSR[ENW] = 0 after each
watchdog timer event.

1 WIS
Watchdog Interrupt Status
0 No Watchdog interrupt is pending.
1 Watchdog interrupt is pending.

2:3 WRS

Watchdog Reset Status
00 No Watchdog reset has occurred.
01 Core reset was forced by the watchdog.
10 Chip reset was forced by the watchdog.
11 System reset was forced by the watchdog.

4 PIS
PIT Interrupt Status
0 No PIT interrupt is pending.
1 PIT interrupt is pending.

5 FIS
FIT Interrupt Status
0 No FIT interrupt is pending.
1 FIT interrupt is pending.

6:31 Reserved

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.01 - February 19, 2007PPC405 Processor

Preliminary User’s Manual

Figure 7-7. Timer Control Register (TCR)

0:1 WP

Watchdog Period
00 217 clocks
01 221 clocks
10 225 clocks
11 229 clocks

2:3 WRC

Watchdog Reset Control
00 No Watchdog reset will occur.
01 Core reset will be forced by the Watchdog.
10 Chip reset will be forced by the Watchdog.
11 System reset will be forced by the Watchdog.

TCR[WRC] resets to 00.
This field can be set by software, but cannot be
cleared by software, except by a software-induced
reset.

4 WIE
Watchdog Interrupt Enable
0 Disable watchdog interrupt.
1 Enable watchdog interrupt.

5 PIE
PIT Interrupt Enable
0 Disable PIT interrupt.
1 Enable PIT interrupt.

6:7 FP

FIT Period
00 29 clocks
01 213 clocks
10 217 clocks
11 221 clocks

8 FIE
FIT Interrupt Enable
0 Disable FIT interrupt.
1 Enable FIT interrupt.

9 ARE
Auto Reload Enable
0 Disable auto reload.
1 Enable auto reload.

Disables on reset.

10:31 Reserved

136

http://www.manualslib.com/

 137

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

8. Debugging
The debug facilities of the PPC405 include support for debug modes for debugging during hardware and software
development, and debug events that allow developers to control the debug process. Debug registers control the
debug modes and debug events. The debug registers are accessed through software running on the processor or
through a JTAG debug port. The debug interface is the JTAG debug port. The JTAG debug port can also be used
for board test.

The debug modes, events, controls, and interface provide a powerful combination of debug facilities for a wide
range of hardware and software development tools.

8.1 Development Tool Support

The RISCWatch™ product is an example of a development tool that uses the external debug mode, debug events,
and the JTAG debug port to implement a hardware and software development tool. The RISCTrace™ feature of
RISCWatch is an example of a development tool that uses the real-time instruction trace capability of the PPC405.

8.2 Debug Interfaces

The PPC405 provides JTAG and trace interfaces to support hardware and software test and debug. Typically, the
JTAG interface connects to a debug port external to the PPC405; the debug port is typically connected to a JTAG
connector on a processor board.

The trace interface connects to a trace port, also external to the PPC405, that is typically connected to a trace
connector on the processor board.

8.3 IEEE 1149.1 Test Access Port (JTAG Debug Port)

The IEEE 1149.1 Test Access Port (TAP), commonly called the JTAG (Joint Test Action Group) debug port, is an
architectural standard described in IEEE Std 1149.1–1990, IEEE Standard Test Access Port and Boundary
Scan Architecture. The standard describes a method for accessing internal chip facilities using a four- or five-
signal interface.

The JTAG debug port, originally designed to support scan-based board testing, is enhanced to support the
attachment of debug tools. The enhancements, which are designed to the IEEE 1149.1 specifications for vendor-
specific extensions, are compatible with standard JTAG hardware for boundary-scan system testing.

JTAG Signals The JTAG debug port implements the four required JTAG signals: TCK,
TMS, TDI, and TDO, and the optional TRST signal.

JTAG Clock
Requirements

The frequency of the TCK signal can range from DC to one-half of the
internal chip clock frequency.

JTAG Reset
Requirements

The JTAG debug port logic is reset at the same time as a system reset.
Upon receiving TRST, the JTAG debug port returns to the Test-Logic Reset
state.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

8.3.1 JTAG Connector

A 16-pin male 2x8 header connector is suggested as the JTAG debug port connector. This connector definition
matches the requirements of the RISCWatch debugger. The connector is described in detail in RISCWatch
Debugger User’s Guide.

8.3.2 JTAG Instructions

The JTAG debug port provides the standard extest, idcode, sample/preload, and bypass instructions and the
optional highz and clamp instructions. Invalid instructions behave as the bypass instruction.

8.3.3 JTAG Boundary Scan

Boundary Scan Description Language (BSDL), IEEE 1149.1b-1994, is a supplement to IEEE 1149.1-1990 and
IEEE 1149.1a-1993 Standard Test Access Port and Boundary-Scan Architecture. BSDL, a subset of the IEEE
1076-1993 Standard VHSIC Hardware Description Language (VHDL), allows a rigorous description of testability
features in components which comply with the standard. BSDL is used by automated test pattern generation tools
for package interconnect tests and by electronic design automation (EDA) tools for synthesized test logic and
verification. BSDL supports robust extensions that can be used for internal test generation and to write software for
hardware debug and diagnostics.

The primary components of BSDL include the logical port description, the physical pin map, the instruction set, and
the boundary register description.

The logical port description assigns symbolic names to the pins of a chip. Each pin has a logical type of in, out,
inout, buffer, or linkage that defines the logical direction of signal flow.

The physical pin map correlates the logical ports of the chip to the physical pins of a specific package. A BSDL
description can have several physical pin maps; each map is given a unique name.

Instruction set statements describe the bit patterns that must be shifted into the Instruction Register to place the
chip in the various test modes defined by the standard. Instruction set statements also support descriptions of
instructions that are unique to the chip.

The boundary register description lists each cell or shift stage of the Boundary Register. Each cell has a unique
number: the cell numbered 0 is the closest to the Test Data Out (TDO) pin; the cell with the highest number is
closest to the Test Data In (TDI) pin. Each cell contains additional information, including: cell type, logical port
associated with the cell, logical function of the cell, safe value, control cell number, disable value, and result value.

Table 8-1. JTAG Instructions
Instruction Code Comments

Extest 1111000 IEEE 1149.1 standard.

1111001 Reserved.

Sample/Preload 1111010 IEEE 1149.1 standard.

IDCode 1111011 IEEE 1149.1 standard.

Private xxxx100 Private instructions

HighZ 1111101 IEEE 1149.1a-1993 optional

Clamp 1111110 IEEE 1149.1a-1993 optional

Bypass 1111111 IEEE 1149.1 standard.

138

http://www.manualslib.com/

 139

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

8.3.4 JTAG Implementation

PPC405 JTAG interface I/Os (TDI, TDO, TMs, TCK, and TRST) are 5V tolerant and do not contain internal pull up
resistors.

The optional JTAG instructions, idcode and highz, offer additional JTAG functionality. The idcode instruction returns
the PPC405 JTAG ID, which is unique for each chip version. The highz instruction disables all chip outputs
regardless of whether they are included in the JTAG boundary scan chain.

The PPC405 provides boundary scan structures on all digital I/O signals.

PPC405 boundary scan structures are defined as follows:
1. All digital pins labeled in the IOSpeclist as functional inputs are observe only.
2. All digital pins labeled as outputs are drive only and are always actively driven during JTAG except when the

HIGHZ command is selected on the JTAG TAP controller.
3. All digital pins labeled as 3-state ouputs or bidirectional drive when explicitly enabled by means of the

appropriate boundary scan cell. They are forced to a disabled state in the presence of the HIGHZ command.
When the driver is disabled, the input state of a bidirectional signal can be observed.

4. Analog pins are not observable.

8.3.5 JTAG ID Register

In most cases, there is a register that enables manufacturing, part number, and version information to be
determined through the TAP. The mfdcr instruction is used to read this register.

Refer to data sheet for the chip in question to see the value assigned to the JTAG ID.

8.4 Trace Port

The PPC405 implements a trace status interface to support the tracing of code running in real-time. This interface
enables the connection of an external trace tool, such as RISCWatch, and allows for user-extended trace
functions. A software tool with trace capability, such as RISCWatch with RISCTrace, can use the data collected
from this port to trace code running on the processor. The result is a trace of the code executed, including code
executed out of the instruction cache if it was enabled. Information on trace capabilities, how trace works, and how
to connect the external trace tool is available in RISCWatch Debugger User’s Guide.

8.5 Debug Modes

The PPC405 supports the following debug modes, each of which supports a type of debug tool or debug task
commonly used in embedded systems development:

• Internal debug mode, which supports ROM monitors

• External debug mode, which supports JTAG debuggers

• Debug wait mode, which supports processor stopping or stepping for JTAG debuggers while servicing
interrupts

• Real-time trace mode, which supports trigger events for real-time tracing

Internal and external debug modes can be enabled simultaneously. Both modes are controlled by fields in Debug
Control Register 0 (DBCR0). Real-time trace mode is available only if internal, external, and debug wait modes are
disabled.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

8.5.1 Internal Debug Mode

Internal debug mode provides access to architected processor resources and supports setting hardware and
software breakpoints and monitoring processor status. In this mode, debug events generate debug interrupts,
which can interrupt normal program flow so that monitor software can collect processor status and alter processor
resources.

Internal debug mode relies on exception handling software at a dedicated interrupt vector and an external
communications path to debug software problems. This mode, used while the processor executes instructions,
enables debugging of operating system or application programs.

In this mode, debugger software is accessed through a communications port, such as a serial port, external to the
processor core.

To enable internal debug mode, the Debug Control Register 0 (DBCR0) field IDM is set to 1 (DBCR0[IDM] = 1). To
enable debug interrupts, MSR[DE] = 1. A debug interrupt occurs on a debug event only if DBCR0[IDM] = 1 and
MSR[DE] = 1.

8.5.2 External Debug Mode

External debug mode provides access to architected processor resources and supports stopping, starting, and
stepping the processor, setting hardware and software breakpoints, and monitoring processor status. In this mode,
debug events cause the processor to become architecturally frozen. While the processor is frozen, normal
instruction execution stops and architected processor resources can be accessed and altered. External bus activity
continues in external debug mode.

The JTAG mechanism can pass instructions to the processor for execution, allowing a JTAG debugger to display
and alter processor resources, including memory.

The JTAG mechanism prevents the occurrence of a privileged exception when a privileged instruction is executed
while the processor is in user mode.

Storage access control by a memory management unit (MMU) remains in effect while in external debug mode; the
debugger may need to modify MSR or TLB values to access protected memory.

Because external debug mode relies only on internal processor resources, it can be used to debug system
hardware and software.

In this mode, access to the processor is through the JTAG debug port.

To enable external debug mode, DBCR0[EDM] = 1. To enable debug interrupts, MSR[DE] = 1. A debug interrupt
occurs on a debug event only if DBCR0[EDM] = 1 and MSR[DE] = 1.

8.5.3 Debug Wait Mode

In debug wait mode, debug events cause the PPC405 to enter a state in which interrupts can be serviced while the
processor appears to be stopped.

Debug wait mode provides access to architected processor resources in a manner similar to external debug mode,
except that debug wait mode allows the servicing of interrupt handlers. It supports stopping, starting, and stepping
the processor, setting hardware and software breakpoints, and monitoring processor status. In this mode, if a
debug event caused the processor to become architecturally frozen, an interrupt causes the processor to run an
interrupt handler and return to the architecturally frozen state upon returning from the interrupt handler. While the
processor is frozen, normal instruction execution stops and architected processor resources can be accessed and
altered. External bus activity continues in debug wait mode.

140

http://www.manualslib.com/

 141

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

The processor enters debug wait mode when internal and external debug modes are disabled
(DBCR0[IDM, EDM] = 0), debug wait mode is enabled (MSR[DWE] = 1), debug wait is enabled by the JTAG
debugger, and a debug event occurs.

For example, while the PPC405 is in debug wait mode, an external device might generate an interrupt that requires
immediate service. The PPC405 can service the interrupt (vector to an interrupt handler and execute the interrupt
handler code) and return to the previous stopped state.

Debug wait mode relies only on internal processor resources, so it can be used to debug both system hardware
and software problems. This mode can also be used for software development on systems without a control
program, or to debug control program problems.

In this mode, access to the processor is through the JTAG debug port.

8.5.4 Real-time Trace Debug Mode

Real-time trace debug mode supports the generation of trigger events for tracing the instruction stream being
executed out of the instruction cache in real-time. In this mode, debug events can be used to control the collection
of trace information through the use of trigger event generation. The broadcast of trace information is independent
of the use of debug events as trigger events.This mode does not alter the processor performance.

A trace event occurs when internal and external debug modes are disabled (DBCR0[IDM, EDM] = 0) and a debug
events occurs.

When a trace event occurs, a trace device can capture trace signals that provide the instruction trace information.
Most trace events generated from debug events are blocked when internal debug, external debug, or debug wait
modes are enabled

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

8.6 Processor Control

The PPC405 provides the following debug functions for processor control. Not all facilities are available in all
debug modes.

8.7 Processor Status

The processor execution status, exception status, and most recent reset can be monitored.

8.8 Debug Registers

Several debug registers, available to debug tools running on the processor, are not intended for use by application
code. Debug tools control debug resources such as debug events. Application code that uses debug resources
can cause the debug tools to fail, as well as other unexpected results, such as program hangs and processor
resets.

Application code should not use the debug resources, including the debug registers.

Instruction Step The processor is stepped one instruction at a time, while stopped, using the JTAG
debug port.

Instruction Stuff While the processor is stopped, instructions can be stuffed into the processor and
executed using the JTAG debug port.

Halt The processor can be stopped by activating an external halt signal on an external
event, such as a logic analyzer trigger. This signal freezes the processor
architecturally. While frozen, normal instruction execution stops and architected
processor resources can be accessed and altered using the JTAG debug port.
Normal execution resumes when the halt signal is deactivated.

Stop The processor can be stopped using the JTAG debug port. Activating a stop
causes the processor to become architecturally frozen. While frozen, normal
instruction execution stops and the architected processor resources can be
accessed and altered using the JTAG debug port.

Reset An external reset signal, the JTAG debug port, or DBCR0 can request core, chip,
and system resets.

Debug Events A debug event triggers a debug operation. The operation depends on the debug
mode. For more information and a list of debug events, see “Debug Events” on
page 147.

Freeze Timers The JTAG debug port or DBCR0 can control timer resources. The timers can be
enabled to run, freeze always, or freeze on a debug event.

Trap Instructions The trap instructions tw and twi can be used, with debug events, to implement
software breakpoints.

Execution Status The JTAG debug port can monitor processor execution status to determine
whether the processor is stopped, waiting, or running.

Exception Status The JTAG debug port can monitor the status of pending synchronous exceptions.
Most Recent Reset The JTAG debug port or an mfspr instruction can be used to read the Debug

Status Register (DBSR) to determine the type of the most recent reset.

142

http://www.manualslib.com/

 143

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

8.8.1 Debug Control Registers

The debug control registers (DBCR0 and DBCR1)can enable and configure debug events, reset the processor,
control timer operation during debug events, enable debug interrupts, and set the processor debug mode.

8.8.1.1 Debug Control Register 0 (DBCR0)

Figure 8-1. Debug Control Register 0 (DBCR0)

0 EDM
External Debug Mode
0 Disabled
1 Enabled

1 IDM
Internal Debug Mode
0 Disabled
1 Enabled

2:3 RST

Reset
00 No action
01 Core reset
10 Chip reset
11 System reset

Causes a processor reset request when set by
software.
Attention: Writing 01, 10, or 11 to this field
causes a processor reset request.

4 IC
Instruction Completion Debug Event
0 Disabled
1 Enabled

5 BT
Branch Taken Debug Event
0 Disabled
1 Enabled

6 EDE
Exception Debug Event
0 Disabled
1 Enabled

7 TDE
Trap Debug Event
0 Disabled
1 Enabled

8 IA1
IAC 1 Debug Event
0 Disabled
1 Enabled

9 IA2
IAC 2 Debug Event
0 Disabled
1 Enabled

10 IA12
Instruction Address Range Compare 1–2
0 Disabled
1 Enabled

Registers IAC1 and IAC2 define an address range
used for IAC address comparisons.

11 IA12X

Enable Instruction Address Exclusive Range Com-
pare 1–2
0 Inclusive
1 Exclusive

Selects the range defined by IAC1 and IAC2 to be
inclusive or exclusive.

12 IA3
IAC 3 Debug Event
0 Disabled
1 Enabled

13 IA4
IAC 4 Debug Event
0 Disabled
1 Enabled

14 IA34
Instruction Address Range Compare 3–4:
0 Disabled
1 Enabled

Registers IAC3 and IAC4 define an address range
used for IAC address comparisons.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

8.8.1.2 Debug Control Register 1 (DBCR1)

15 IA34X
Instruction Address Exclusive Range Compare 3–4:
0 Inclusive
1 Exclusive

Selects range defined by IAC3 and IAC4 to be
inclusive or exclusive.

16 IA12T
Instruction Address Range Compare 1-2 Toggle:
0 Disabled
1 Enable

Toggles range 12 inclusive, exclusive
DBCR[IA12X] on debug event.

17 IA34T
Instruction Address Range Compare 3–4 Toggle:
0 Disabled
1 Enable

Toggles range 34 inclusive, exclusive
DBCR[IA34X] on debug event.

18:30 Reserved

31 FT
Freeze Timers on Debug Event:
0 Timers not frozen
1 Timers frozen

Figure 8-2. Debug Control Register 1 (DBCR1)

0 D1R
DAC1 Read Debug Event:
0 Disabled
1 Enabled

1 D2R
DAC 2 Read Debug Event:
0 Disabled
1 Enabled

2 D1W
DAC 1 Write Debug Event:
0 Disabled
1 Enabled

3 D2W
DAC 2 Write Debug Event:
0 Disabled
1 Enabled

4:5 D1S

DAC 1 Size:
00 Compare all bits
01 Ignore lsb (least significant bit)
10 Ignore two lsbs
11 Ignore five lsbs

Address bits used in the compare:

Byte address
Halfword address
Word address
Cache line (8-word) address

6:7 D2S

DAC 2 Size:
00 Compare all bits
01 Ignore lsb (least significant bit)
10 Ignore two lsbs
11 Ignore five lsbs

Address bits used in the compare:

Byte address
Halfword address
Word address
Cache line (8-word) address

8 DA12
Enable Data Address Range Compare 1:2:
0 Disabled
1 Enabled

Registers DAC1 and DAC2 define an address
range used for DAC address comparisons

9 DA12X
Data Address Exclusive Range Compare 1:2:
0 Inclusive
1 Exclusive

Selects range defined by DAC1 and DAC2
to be inclusive or exclusive

10:11 Reserved

144

http://www.manualslib.com/

 145

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

8.8.2 Debug Status Register (DBSR)

The DBSR contains status on debug events and the most recent reset; the status is obtained by reading the DBSR.
The status bits are normally set by debug events or by any of the three reset types.

Clearing DBSR fields is performed by writing a word to the DBSR, using the mtdbsr extended mnemonic, having
a 1 in all bit positions to be cleared and a 0 in the all other bit positions. The data written to the DBSR is not direct
data, but a mask. A 1 clears the bit and a 0 has no effect.

Application code must not use the DBSR.

12:13 DV1M

Data Value Compare 1 Mode:
00 Undefined
01 AND

10 OR

11 AND-OR

Type of data comparison used:

All bytes selected by DBCR1[DV1BE] must com-
pare to the appropriate bytes of DVC1.

One of the bytes selected by DBCR1[DV1BE] must
compare to the appropriate bytes of DVC1.

The upper halfword or lower halfword must com-
pare to the appropriate halfword in DVC1. When
performing halfword compares set DBCR1[DV1BE]
= 0011, 1100, or 1111.

14:15 DV2M

Data Value Compare 2 Mode:
00 Undefined
01 AND

10 OR

11 AND-OR

Type of data comparison used

All bytes selected by DBCR1[DV2BE] must com-
pare to the appropriate bytes of DVC2.

One of the bytes selected by DBCR1[DV2BE] must
compare to the appropriate bytes of DVC2.

The upper halfword or lower halfword must com-
pare to the appropriate halfword in DVC2. When
performing halfword compares set DBCR1[DV2BE]
= 0011, 1100, or 1111.

16:19 DV1BE
Data Value Compare 1 Byte:
0 Disabled
1 Enabled

Selects which data bytes to use in data value com-
parison

20:23 DV2BE
Data Value Compare 2 Byte:
0 Disabled
1 Enabled

Selects which data bytes to use in data value com-
parison

24:31 Reserved

Figure 8-3. Debug Status Register (DBSR)

0 IC
Instruction Completion Debug Event:
0 Event did not occur
1 Event occurred

1 BT
Branch Taken Debug Event:
0 Event did not occur
1 Event occurred

2 EDE
Exception Debug Event:
0 Event did not occur
1 Event occurred

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

3 TIE
Trap Instruction Debug Event:
0 Event did not occur
1 Event occurred

4 UDE
Unconditional Debug Event:
0 Event did not occur
1 Event occurred

5 IA1
IAC1 Debug Event:
0 Event did not occur
1 Event occurred

6 IA2
IAC2 Debug Event:
0 Event did not occur
1 Event occurred

7 DR1
DAC1 Read Debug Event:
0 Event did not occur
1 Event occurred

8 DW1
DAC1 Write Debug Event:
0 Event did not occur
1 Event occurred

9 DR2
DAC2 Read Debug Event:
0 Event did not occur
1 Event occurred

10 DW2
DAC2 Write Debug Event:
0 Event did not occur
1 Event occurred

11 IDE

Imprecise Debug Event:
0 No circumstance that would cause a debug

event (if MSR[DE] = 1) occurred
1 A debug event would have occurred, but debug

exceptions were disabled (MSR[DE] = 0)

12 IA3
IAC3 Debug Event:
0 Event did not occur
1 Event occurred

13 IA4
IAC4 Debug Event:
0 Event did not occur
1 Event occurred

14:21 Reserved

22:23 MRR

Most Recent Reset:
No reset has occurred since last cleared by soft-
ware.
0 Core reset
1 Chip reset
System reset

This field is set to a value, indicating the type of
reset, when a reset occurs.

24:31 Reserved

146

http://www.manualslib.com/

 147

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

8.8.3 Instruction Address Compare Registers (IAC1–IAC4)

The PPC405 can take a debug event upon an attempt to execute an instruction from an address. The address,
which must be word-aligned, is defined in an IAC register. The DBCR0[IA1, IA2] fields of DBCR0 controls the
instruction address compare (IAC) debug event.

8.8.4 Data Address Compare Registers (DAC1–DAC2)

The PPC405 can take a debug event upon storage or cache references to addresses specified in the DAC
registers. The specified addresses in the DAC registers are EAs of operands of storage references or cache
instructions.The fields DBCR1[D1R], [D2R] and DBCR[D1W], [D2W] control the DAC-read and DAC-write debug
events, respectively.

Addresses in the DAC registers specify exact byte EAs for DAC debug events. However, one may want to take a
debug event on any byte within a halfword (ignore the least significant bit (LSb) of the DAC), on any byte within a
word (ignore the two LSbs of DAC), or on any byte within eight words (ignore four LSbs of DAC). DBCR1[D1S,
D2S] control the addressing options.

Errors related to execution of storage reference or cache instructions prevent DAC debug events.

8.8.5 Data Value Compare Registers (DVC1–DVC2)

The PPC405 can take a debug event upon storage or cache references to addresses specified in the DAC
registers, that also require the data at that address to match the value specified in the DVC registers. The data
address compare for a DVC events works the same as for a DAC event. Cache operations do not cause DVC
events. If the data at the address specified matches the value in the corresponding DVC register a DVC event will
occur. The fields DBCR1[DV1M, DV2M] control how the data value are compared.

Errors related to execution of storage reference or cache instructions prevent DVC debug events.

8.8.6 Debug Events

Debug events, enabled and configured by DBCR0 and DBCR1 and recorded in the DBSR, cause debug
operations. A debug event occurs when an event listed in Table 8-2 on page 148 is detected. The debug operation
is performed after the debug event.

Figure 8-4. Instruction Address Compare Registers (IAC1–IAC4)
0:29 Instruction Address Compare Word Address Omit two low-order bits of complete address.

30:31 Reserved

Figure 8-5. Data Address Compare Registers (DAC1–DAC2)

0:31 Data Address Compare (DAC) Byte Address DBCR0[D1S] determines which address bits are
examined.

Figure 8-6. Data Value Compare Registers (DVC1–DVC2)
0:31 Data Value to Compare

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

In internal debug mode, the processor generates a debug interrupt when a debug event occurs. In external debug
mode, the processor stops when a debug event occurs. When internal and external debug mode are both enabled,
the processor stops on a debug event with the debug interrupt pending. When external and internal debug mode
are both disabled, and debug wait mode is enabled the processor stops, but can be restarted by an interrupt. When
all debug modes are disabled, debug events are recorded in the DBSR, but no action is taken.

Table 8-2 lists the debug events and the related fields in DBCR0, DBCR1, and DBSR. DBCR0 and DBCR1 enable
the debugs events, and the DBSR fields report their occurrence.

8.8.7 Instruction Complete Debug Event

This debug event occurs after the completion of an instruction. If DBCR0[IDM] = 1, DBCR0[EDM] = 0 and
MSR[DE] =0 this debug event is disabled.

8.8.8 Branch Taken Debug Event

This debug event occurs before execution of a branch instruction determined to be taken. If DBCR0[IDM] = 1,
DBCR0[EDM] = 0 and MSR[DE] =0 this debug event is disabled.

8.8.9 Exception Taken Debug Event

This debug event occurs after an exception. Exception debug events always include the non-critical class of
exceptions. When DBCR0[IDM] = 1 and DBCR0[EDM] = 0 the critical exceptions are not included.

Table 8-2. Debug Events

Event Enabling
DBCR0, DBCR1 Fields

Reporting
DBSR Fields Description

Instruction Completion IC IC Occurs after completion of an instruction.

Branch Taken BT BT Occurs before execution of a branch instruction deter-
mined to be taken.

Exception Taken EDE EXC Occurs after an exception.

Trap Instruction TDE TIE Occurs before execution of a trap instruction where the
conditions are such that the trap will occur.

Unconditional UDE UDE Occurs immediately upon being set by the JTAG debug
port.

Instruction Address
Compare

IA1, IA2, IA3, IA4, IA12,
IA12X, IA12T, IA34,
IA34X, IA34T

IA1, IA2, IA3, IA4
Occurs before execution of an instruction at an address
that matches an address defined by the Instruction
Address Compare Registers (IAC1–IAC4).

Data Address Com-
pare

D1R, D1W, D1S, D2R,
D2W, D2S,
DA12, DA12X

DR2,DW2
Occurs before execution of an instruction that accesses a
data address that matches the contents of the specified
DAC register.

Data Value Compare DV1M, DV2M, DV1BE,
DV2BE DR1, DW1

Occurs after execution of an instruction that accesses a
data address for which a DAC occurs, and for which the
value at the address matches the value in the specified
DVC register.

Imprecise IDE Indicates that another debug event occurred while
MSR[DE] = 0

148

http://www.manualslib.com/

 149

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

8.8.10 Trap Taken Debug Event

This debug event occurs before execution of a trap instruction where the conditions are such that the trap will
occur. When trap is enabled for a debug event, external debug mode is enabled, internal debug mode is enabled
with MSR[DE] enabled, or debug wait mode is enabled, a trap instruction will not cause a program exception.

8.8.11 Unconditional Debug Event

This debug event occurs immediately upon being set by the JTAG debug port.

8.8.12 IAC Debug Event

This debug event occurs before execution of an instruction at an address that matches an address defined by the
Instruction Address Compare Registers (IAC1–IAC4). DBCR0[IA1, IA2, IA3, IA4] enable IAC debug events IAC
can be defined as an exact address comparison to one of the IACn registers or on a range of addresses to
compare defined by a pair of IACn registers.

8.8.12.1 IAC Exact Address Compare

In this mode each IACn register specifies an exact address to compare. These are enabled by setting
DBCR0[IAn] = 1 and disabling IAC range compare (DBCR0[IA12X] = 0 for IAC1 and IAC2 and DBCR0[IA23X] = 0
for IAC3 and IAC4). The corresponding DBSR[IAn] bit displays the results of the debug event.

8.8.12.2 IAC Range Address Compare

In this mode a pair of IACn registers are used to define a range of addresses to compare:

Range 1:2 corresponds to IAC1 and IAC2
Range 3:4 corresponds to IAC3 and IAC4

To enable Range 1:2, DBCR0[IA12] = 1 and DBCR0[IA1] or DBCR0[IA2] =1. An IAC event will be seen in the
DBSR[IAn] field that corresponds to the enabled DBCR0[IAn] field. If DBCR0[IA1] and DBCR0[IA2] are enabled,
the results of the event are reported in both DBSR fields. Setting DBCR0[IA12] =1 prohibits IAC1 and IAC2 from
being used for exact address compares.

To enable Range 3:4, DBCR0[IA34] = 1 and DBCR0[IA3] or DBCR0[IA4] =1. An IAC event will be seen in the
DBSR[IAn] field that corresponds to the enabled DBCR0[IAn] field. If DBCR0[IA3] and DBCR0[IA4] are enabled,
the results of the event will be reported in both DBSR fields. Setting DBCR0[IA34] =1 prohibits IAC3 and IAC4 from
being used for exact address compares.

Ranges can be defined as inclusive, as shown in the preceding examples, or exclusive, using DBCR0[IA12X]
(corresponding to range 1:2) and DBCR0[IA34X] (corresponding to range 3:4), as follows:

DBCR0[IA12] = 1: Range 1:2 = IAC1 ≤ range < IAC2.
DBCR0[IA12X] = 1: Range 1:2 = Range low < IAC1 or IAC2 ð≤ Range high
DBCR0[IA34] = 1: Range 3:4 = IAC3 ≤ range < IAC4.
DBCR0[IA34X] = 1: Range 3:4 = Range low < IAC3 or IAC4 ≤ Range high

Figure 8-7 shows the range selected in an inclusive IAC range address compare. Note that the address in IAC1 is
considered part of the range, but the address in IAC2 is not, as shown in the preceding examples. The thick lines
indicate that the indicated address is included in the compare results.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

Figure 8-8 shows the range selected in an inclusive IAC range address compare. Note that the address in IAC1 is
not considered part of the range, but the address in IAC2 is, along with the highest memory address, as shown in
the preceding examples.

To toggle the range from inclusive to exclusive or from exclusive to inclusive on a IAC range debug event,
DBCR0[IA12T] (corresponding to range 1:2) and DBCR0[IA34T] (corresponding to range 3:4) are used. If these
fields are set, the DBCR0[IA12X] or DBCR0[IA34X] fields toggle on an IAC debug event, changing the defined
range.

If a toggle is enabled (DBCR0[IA12T] for range 1:2 or DBCR0[IA34T] = 1 for range 3:4), and DBCR0[IDM] =1,
DBCR0[EDM] = 0, and MSR[DE] = 0, IAC range comparisons for the corresponding toggle field are disabled.

8.8.13 DAC Debug Event

This debug event occurs before execution of an instruction that accesses a data address that matches the contents
of the specified DAC register. DBCR1[D1R, D2R, D1W, D2W] enable DAC debug events for address comparisons
on DAC1 and DAC2 for read instructions, DAC2 for read instructions, DAC1 for write instructions, DAC2 for write
instructions respectively. Loads are reads and stores are writes. DAC can be defined(DBCR1[D1R, D2R])as an
exact address comparison to one of the DACn registers or a range of addresses to compare defined by DAC1 and
DAC2 registers.

8.8.13.1 DAC Exact Address Compare

In this mode, each DACn register specifies an exact address to compare. These registers are enabled by setting
one or more of DBCR1[D1R,D2R,D1W,D2W] = 1, and disabling DAC range compare DBCR1[DA12X] = 0. The
corresponding DBSR[DR1,DR2,DW1,DW2] field displays the results of a DAC debug event.

The address for a DAC is the effective address (EA) of a storage reference instruction. EAs are always generated
within a single aligned word of memory. Unaligned load and store, strings, and multiples generate multiple EAs to
be used in DAC comparisons.

Data address compare (DAC) debug events can be set to react to any byte in a larger block of memory, in addition
to reacting to a byte address match. The DAC Compare Size fields (DBCR1[D1S, D2S]) allow DAC debug events
to react to byte, halfword, word, or 8-word line address by ignoring a number of LSBs in the EA.

Figure 8-7. Inclusive IAC Range Address Compares

Figure 8-8. Exclusive IAC Range Address Compares

IAC1 IAC2

0 FFFF FFFF

IAC1 IAC2

0 FFFF FFFF

150

http://www.manualslib.com/

 151

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

The user must determine how the addresses of interest are accessed, relative to byte, halfword, word, string, and
unaligned storage instructions, and adjust the DAC compare size field appropriately to cover the addresses of
interest.

For example, suppose that a DAC debug event should react to byte 3 of a word-aligned target. A DAC set for exact
compare would not recognize a reference to that byte by load/store word or load/store halfword instructions,
because the byte address is not the EA of such instructions. In such a case, the D1S field must be set for a wider
capture range (for example, to ignore the two least significant bits (LSBs) if word operations to the misaligned byte
are to be detected). The wider capture range may result in excess debug events (events that are within the
specified capture range, but reflect byte operations in addition to the desired byte). Such excess debug events
must be handled by software.

While load/store string instructions are inherently byte addressed the processor will generate EAs containing the
largest portion of an aligned word address as possible. It may not be possible to DAC on a specific individual byte
using load/store string instructions.

8.8.13.2 DAC Range Address Compare

In this mode, the pair of DAC1 and DAC2 registers are used to define a range of addresses to compare.

To enable DAC range, DBCR1[DA12] = 1 and one or more of DBCR1[D1R,D2R,D1W,D2W] =1. The DAC event is
seen on the DBSR[DR1,DR2,DW1,DW2] field that corresponds to the DBCR1[D1R,D2R,D1W,D2W] field that is
enabled. For example, if DBCR1[D1R] and DBCR1[D2R] are enabled, the results of a DAC debug event are
reported on DBSR[DR1, DR2]. Setting DBCR1[DA12] =1 prohibits DAC1 and DAC2 from being used for exact
address compares.

Ranges are defined to be inclusive or exclusive, using the DBCR1[DA12X], as follows:

DBCR1[DA12] = 1: Range = DAC1 ≤ range < DAC2.
DBCR1[DA12X] = 1: Range = Range low < DAC1 or DAC2 ≤ Range high.

Figure 8-9 shows the range selected in an inclusive DAC range address compare. Note that the address in DAC1
is considered part of the range, but the address in DAC2 is not, as shown in the preceding examples. The thick
lines indicate that the indicated address is included in the compare results.

Figure 8-10 shows the range selected in an exclusive DAC range address compare. Note that the address in DAC1
is not considered part of the range, but the address in DAC2 is, along with the highest memory address, as shown
in the preceding examples.

DAC 1 Size
00 Compare all bits
01 Ignore LSB (least significant bit)
10 Ignore two LSBs
11 Ignore five LSBs

Byte address
Halfword address
Word address
Cache line (8-word) address

Figure 8-9. Inclusive DAC Range Address Compares

DAC1 DAC2

0 FFFF FFFF

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

The DAC Compare Size fields (DBCR1[D1S, D2S]) are not used by DAC range comparisons.

8.8.13.3 DAC Applied to Cache Instructions

Some cache instructions can cause DAC debug events. There are several special cases.

Table 8-3 summarizes possible DAC debug events by cache instruction:

Architecturally, the dcbi and dcbz instructions are “stores.” These instructions can change data, or cause the loss
of data by invalidating a dirty line. Therefore, they can cause DAC-write debug events.

The dccci instruction can also be considered a “store” because it can change data by invalidating a dirty line.
However, dccci is not address-specific; it affects an entire congruence class regardless of the operand address of
the instruction. Because it is not address-specific, dccci does not cause DAC-write debug events.

Architecturally, the dcbt, dcbtst, dcbf, and dcbst instructions are “loads.” These instructions do not change data.
Flushing or storing a cache line from the cache is not architecturally a “store” because a store had already updated
the cache; the dcbf or dcbst instruction only updates the copy in main memory.

Figure 8-10. Exclusive DAC Range Address Compares

Table 8-3. DAC Applied to Cache Instructions

Instruction
Possible DAC Debug Event

DAC-Read DAC-Write

dcba No Yes

dcbf No Yes

dcbi No Yes

dcbst No Yes

dcbt Yes No

dcbz No Yes

dccci No No

dcread No No

dcbtst Yes No

icbi Yes No

icbt Yes No

iccci No No

icread No No

DAC1 DAC2

0 FFFF FFFF

152

http://www.manualslib.com/

 153

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

The dcbt and dcbtst instructions can cause DAC-read debug events regardless of cachability.

Although dcbf and dcbst are architecturally “loads,” these instructions can create DAC-write (but not DAC-read)
debug events. In a debug environment, the fact that external memory is being written is the event of interest.

Even though dcread and dccci are not address-specific (they affect a congruence class regardless of the
instruction operand address), and are considered “loads,” in the PPC405 they do not cause DAC debug events.

All ICU operations (icbi, icbt, iccci, and icread) are architecturally treated as “loads.” icbi and icbt cause DAC
debug events. iccci and icread do not cause DAC debug events in the PPC405.

8.8.13.4 DAC Applied to String Instructions

An stswx instruction with a string length of 0 is a no-op. The lswx instruction with the string length equal to 0 does
not alter the RT operand with undefined data, as allowed by the PowerPC Architecture. Neither stswx nor lswx
with zero length causes a DAC debug event because storage is not accessed by these instructions.

8.8.14 Data Value Compare Debug Event

A data value compare (DVC) debug event can occur only after execution of a load or store instruction to an
address that compares with the address in one of the DACn registers and has a data value that matches the
corresponding DVCn register. Therefore, a DVC debug event requires both the data address comparison and the
data value comparison to be true. A DVCn debug event when enabled in the DBCR1 supersedes a DACn debug
event since the DVCn and the DACn both use the same DACn register.

DVC1 debug events are enabled by setting the appropriate DAC enable DBCR1[D1R,D1W] to cause an address
comparison and by setting any bit combination in the DBCR1[DV1BE]. DVC2 debug events are enabled by setting
the appropriate DAC enable DBCR1[D2R,D2W] to cause an address comparison and by setting any bit
combination in the DBCR1[DV1BE]. Each bit in DBCR1[DV1BE, DV2BE] corresponds to a byte in DVC1 and
DVC2. Exact address compare and range address compare work the same for DVC as for a simple DAC.

DBSR[DR1] and DBSR[DW1] record status for DAC1 debug events. Which DBSR bit is set depends on the setting
of DBCR1[D1R] and DBCR[D1W]. If DBCR1[D1R] = 1, DBSR[DR1] = 1, assuming that a DVC event occurred.
Similarly, if DBCR1[D1W] = 1, DBSR[DW1] = 1, assuming that a DVC event occurred.

Similarly, DBSR[DR2] and DBSR[DW2] record status for DAC2 debug events. Which DBSR bit is set depends on
the setting of DBCR1[D2R] and DBCR[D2W]. If DBCR1[D2R] = 1, DBSR[DR2] = 1, assuming that a DVC event
occurred. Similarly, if DBCR1[D2W] = 1, DBSR[DW2] = 1, assuming that a DVC event occurred.

In the following example, a DVC1 event is enabled by setting DBCR1[D1R] = 1, DBCR1[D1W] = 1, DBCR1[DA12]
= 0, and DBCR1[DV1BE] = 0000. When the data address and data value match the DAC1 and DVC1, a DVC1
event is recorded in DBSR[DR1] or DBSR[DW1], depending on whether the operation is a load (read) or a store
(write). This example corresponds to the last line of Table 8-4.

In Table 8-4 on page 154, n is 1 or 2, depending on whether the bits apply to DAC1, DAC2, DVC1, and DVC2
events. “Hold” indicates that the DBSR holds its value unless cleared by software. “RA” indicates that the operation
is a read (load) and the data address compares (exact or range). “WA” indicates that the operation is a write (store)
and the data address compares (exact or range). “RV” indicates that the operation is a read (load), the data
address compares (exact or range), and the data value compares according to DBCR1[DVCn].

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

The settings of DBCR1[DV1M] and DBCR1[DV2M] are more precisely defined in Table 8-6 on page 155 and
Table 8-7 on page 155. (n enables the table to apply to DBCR1[DV1M, DV2M] and DBCR1[DV1BE, DV2BE]).
DVnBEm indicates bytes selected (or not selected) for comparison in DBCR1[DVnBE].

When DBCR1[DVnM] = 01, the comparison is an AND; all bytes must compare to the appropriate bytes of DVC1.

When DBCR1[DVnM] = 10, the comparison is an OR; at least one of the selected bytes must compare to the
appropriate bytes of DVC1.

When DBCR1[DVnM] = 11, the comparison is an AND-OR (halfword) comparison. This is intended for use when
DBCR1[DVnBE] is set to 0011, 0111, or 1111. Other values of DBCR1[DVnBE] can be compared, but the results
are more easily understood using the AND and OR comparisons. In Table 8-5, “not” is ¬, AND is ∧, and OR is ∨.

Table 8-6 illustrates comparisons for aligned DVC accesses, that is, words, halfwords, or bytes on naturally aligned
boundaries (all byte accesses are aligned).

Table 8-4. Setting of DBSR Bits for DAC and DVC Events
DBCR1 DBSR

DACn Event DVCn Enabled DVCn Event [DnR] [DnW] [DA12] [DRn] [DWn]

0 — — — — — Hold Hold

— — — 0 0 — Hold Hold

1 0 — 0 1 — Hold WA

1 0 — 1 0 — RA Hold

1 0 — 1 1 — RA WA

1 1 0 — — — Hold Hold

1 1 1 0 1 — Hold WV

1 1 1 1 0 — RV Hold

1 1 1 1 1 — RV WV

Table 8-5. Comparisons Based on DBCR1[DVnM]
DBCR1[DVnM] Setting Operation Comparison

00 — Undefined

01 AND

(¬DVnBE0 ∨ (DVC1[byte 0] = data[byte 0])) ∧
(¬DVnBE1 ∨ (DVC1[byte 1] = data[byte 1])) ∧
(¬DVnBE2 ∨ (DVC1[byte 2] = data[byte 2])) ∧
(¬DVnBE3 ∨ (DVC1[byte 3] = data[byte 3]))

10 OR

(DVnBE0 ∧ (DVC1[byte 0] = data[byte 0])) ∨
(DVnBE1 ∧ (DVC1[byte 1] = data[byte 1])) ∨
(DVnBE2 ∧ (DVC1[byte 2] = data[byte 2])) ∨
(DVnBE3 ∧ (DVC1[byte 3] = data[byte 3]))

11 AND-OR

(DVnBE0 ∧ (DVC1[byte 0] = data[byte 0])) ∧
(DVnBE1 ∧ (DVC1[byte 1] = data[byte 1])) ∨
(DVnBE2 ∧ (DVC1[byte 2] = data[byte 2])) ∧
(DVnBE3 ∧ (DVC1[byte 3] = data[byte 1]))

154

http://www.manualslib.com/

 155

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

For halfword accesses, the halfword value is replicated in the “empty” halfword in the DVC register, for example, if
the low-order halfword is to be compared, its value is stored in the low-order halfword and the high-order halfword
of the register. Similarly, a byte value is replicated in each byte in the register.

Table 8-7 illustrates comparisons for misaligned DVC accesses. In the “DVC1” and “DVC2” columns, “x” indicates
a don’t care.

Note: Misaligned accesses stop the processor on the instruction causing the compare hit. The second part of an
instruction is not performed if the first part of the compare hits.

8.8.15 Imprecise Debug Event

The imprecise debug event is not an independent debug event, but indicates that a debug event occurred while
MSR[DE] = 0. This is useful in internal debug mode if a debug event occurs while in a critical interrupt handler. On
return from interrupt, a debug interrupt occurs if MSR[DE] = 1. If DBSR[IDE] = 1, the debug event causing the
interrupt occurred sometime earlier, not immediately after a debug event.

Table 8-6. Comparisons for Aligned DVC Accesses
Access DBCR1[DVnBE] Setting Value Operation

Word All Word value AND

Halfword (Low-Order) All Halfword value replicated AND-OR

Halfword (High-Order) All Halfword value replicated AND-OR

Byte All Byte value replicated OR

Table 8-7. Comparisons for Misaligned DVC Accesses

Access Operation DVC1 (Hex) DVC2 (Hex) DBCR1[DV1BE]
Setting

DBCR1[DV2BE]
Setting

DBCR1[D2S]
Setting

Word (Offset 1) AND xx112233 44xx xxxx 123 0 01

Word (Offset 2) AND xxxx1122 3344xxxx 23 01 10

Word (Offset 3) AND xxxxxx11 223344xx 3 012 10

Halfword
(Offset 1)

AND xx1122xx 12 12 10

Halfword
(Offset 3)

AND xxxxxx11 22xxxxxx 3 0 10

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

156

http://www.manualslib.com/

 157

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

9. Instruction Set
Descriptions of the PPC405 instructions follow. Each description contains the following elements:

• Instruction names (mnemonic and full)

• Instruction syntax

• Instruction format diagram

• Pseudocode description

• Prose description

• Registers altered

• Architecture notes identifying the associated PowerPC Architecture component

Where appropriate, instruction descriptions list invalid instruction forms and exceptions, and provide programming
notes.

9.1 Instruction Set Portability

To support embedded real-time applications, the instruction sets of the PPC405 and other controllers implement
the PowerPC Embedded Environment, which is not part of the PowerPC Architecture defined in The PowerPC
Architecture: A Specification for a New Family of RISC Processors.

Programs using these instructions are not portable to PowerPC implementations that do not implement the
PowerPC Embedded Environment.

The PPC405 implements a number of implementation-specific instructions that are not part of the PowerPC Archi-
tecture or the PowerPC Embedded Environment, which are listed in Table 9-1. In the table, the syntax [o] indicates
that an instruction has an o form, which updates the XER[SO,OV] fields, and a non-o form. The syntax [.] indicates
that an instruction has a record form, which updates CR[CR0], and a non-record form.

9.2 Instruction Formats

For more detailed information about instruction formats, including a summary of instruction field usage and instruc-
tion format diagrams for the PPC405, see “Instruction Formats” on page 157.

Instructions are four bytes long. Instruction addresses are always word-aligned.

Table 9-1. Implementation-Specific Instructions

dccci
dcread
iccci
icread

macchw[o][.]
macchws[o][.]
macchwsu[o][.]
macchwu[o][.]
machhw[o][.]
machhws[o][.]
machhwsu[o][.]
machhwu[o][.]
maclhw[o][.]
maclhws[o][.]
maclhwsu[o][.]
maclhwu[o][.]

mfdcr
mtdcr
mulchw[.]
mulchwu[.]
mulhhw[.]
mulhhwu[.]
mullhw[.]
mullhwu[.]

nmacchw[o][.]
nmacchws[o][.]
nmachhw[o][.]
nmachhws[o][.]
nmaclhw[o][.]
nmaclhws[o][.]

rfci
tlbre
tlbsx[.]
tlbwe
wrtee
wrteei

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

Instruction bits 0 through 5 always contain the primary opcode. Many instructions have an extended opcode in
another field. The remaining instruction bits contain additional fields. All instruction fields belong to one of the
following categories:

• Defined

These instructions contain values, such as opcodes, that cannot be altered. The instruction format diagrams
specify the values of defined fields.

• Variable

These fields contain operands, such as general purpose register selectors and immediate values, that may
vary from execution to execution. The instruction format diagrams specify the operands in variable fields.

• Reserved

Bits in a reserved field should be set to 0. In the instruction format diagrams, reserved fields are shaded.

If any bit in a defined field does not contain the expected value, the instruction is illegal and an illegal instruction
exception occurs. If any bit in a reserved field does not contain 0, the instruction form is invalid and its result is
architecturally undefined. Unless otherwise noted, the execute all invalid instruction forms without causing an
illegal instruction exception.

9.3 Pseudocode

The pseudocode that appears in the instruction descriptions provides a semi-formal language for describing
instruction operations.

The pseudocode uses the following notation:

= Assignment

∧ AND logical operator

¬ NOT logical operator

∨ OR logical operator

⊕ Exclusive-OR (XOR) logical operator

+ Twos complement addition

– Twos complement subtraction, unary minus

× Multiplication

÷ Division yielding a quotient

% Remainder of an integer division; (33 % 32) = 1.

|| Concatenation

=, ≠ Equal, not equal relations

<, > Signed comparison relations

, Unsigned comparison relations

if...then...else... Conditional execution; if condition then a else b, where a and b represent one or more pseudocode
statements. Indenting indicates the ranges of a and b. If b is null, the else does not appear.

do Do loop. “to” and “by” clauses specify incrementing an iteration variable; “while” and “until” clauses specify
terminating conditions. Indenting indicates the scope of a loop.

leave Leave innermost do loop or do loop specified in a leave statement.

n A decimal number

<
u >

u

158

http://www.manualslib.com/

 159

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

0xn A hexadecimal number

0bn A binary number

FLD An instruction or register field

FLDb A bit in a named instruction or register field

FLDb:b A range of bits in a named instruction or register field

FLDb,b, . . . A list of bits, by number or name, in a named instruction or register field

REGb A bit in a named register

REGb:b A range of bits in a named register

REGb,b, . . . A list of bits, by number or name, in a named register

REG[FLD] A field in a named register

REG[FLD, FLD . . .] A list of fields in a named register

REG[FLD:FLD] A range of fields in a named register

GPR(r) General Purpose Register (GPR) r, where 0 ≤ r ≤ 31.

(GPR(r)) The contents of GPR r, where 0 ≤ r ≤ 31.

DCR(DCRN) A Device Control Register (DCR) specified by the DCRF field in an mfdcr or mtdcr instruction

SPR(SPRN) An SPR specified by the SPRF field in an mfspr or mtspr instruction

TBR(TBRN) A Time Base Register (TBR) specified by the TBRF field in an mftb instruction

GPRs RA, RB, . . .

(Rx) The contents of a GPR, where x is A, B, S, or T

(RA|0) The contents of the register RA or 0, if the RA field is 0.

c0:3 A four-bit object used to store condition results in compare instructions.
nb The bit or bit value b is replicated n times.

xx Bit positions which are don’t-cares.

CEIL(x) Least integer ≥ x.

EXTS(x) The result of extending x on the left with sign bits.

PC Program counter.

RESERVE Reserve bit; indicates whether a process has reserved a block of storage.

CIA Current instruction address; the 32-bit address of the instruction being described by a sequence of
pseudocode. This address is used to set the next instruction address (NIA). Does not correspond to any
architected register.

NIA Next instruction address; the 32-bit address of the next instruction to be executed. In pseudocode, a
successful branch is indicated by assigning a value to NIA. For instructions that do not branch, the NIA is
CIA +4.

MS(addr, n) The number of bytes represented by n at the location in main storage represented by addr.

EA Effective address; the 32-bit address, derived by applying indexing or indirect addressing rules to the
specified operand, that specifies an location in main storage.

EAb A bit in an effective address.

EAb:b A range of bits in an effective address.

ROTL((RS),n) Rotate left; the contents of RS are shifted left the number of bits specified by n.

MASK(MB,ME) Mask having 1s in positions MB through ME (wrapping if MB > ME) and 0s elsewhere.

instruction(EA) An instruction operating on a data or instruction cache block associated with an EA.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

9.3.1 Operator Precedence

Table 9-2 lists the pseudocode operators and their associativity in descending order of precedence:

9.4 Register Usage

Each instruction description lists the registers altered by the instruction. Some register changes are explicitly
detailed in the instruction description (for example, the target register of a load instruction). Other registers are
changed, with the details of the change not included in the instruction description. This category frequently includes
the Condition Register (CR) and the Fixed-point Exception Register (XER). For discussion of the CR, see Condi-
tion Register (CR) on page 39. For discussion of XER, see Fixed Point Exception Register (XER) on page 37.

9.5 Alphabetical Instruction Listing

The following pages list the instructions available in the PPC405 in alphabetical order.

Table 9-2. Operator Precedence

Operators Associativity

REGb, REG[FLD], function evaluation Left to right

nb Right to left

¬, – (unary minus) Right to left

×, ÷ Left to right

+, – Left to right

|| Left to right

=, ≠, <, >, , Left to right

∧, ⊕ Left to right

∨ Left to right

← None

<
u >

u

160

http://www.manualslib.com/

 161

Revision 1.02 - September 10, 2007 PPC405 Processor
add

AddPreliminary User’s Manual

add
Add

(RT) ← (RA) + (RB)

The sum of the contents of register RA and the contents of register RB is placed into register RT.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

add RT, RA, RB OE= 0, Rc= 0
add. RT, RA, RB OE= 0, Rc= 1
addo RT, RA, RB OE= 1, Rc= 0
addo. RT, RA, RB OE= 1, Rc= 1

31 RT RA RB OE 266 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor
addc
Add Carrying Preliminary User’s Manual

addc
Add Carrying

(RT) ← (RA) + (RB)
if (RA) + (RB) 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA and register RB is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Registers Altered
• RT

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

addc RT, RA, RB OE= 0, Rc= 0
addc. RT, RA, RB OE= 0, Rc= 1
addco RT, RA, RB OE= 1, Rc= 0
addco. RT, RA, RB OE= 1, Rc= 1

31 RT RA RB OE 10 Rc

0 6 11 16 21 22 31

>
u

162

http://www.manualslib.com/

 163

Revision 1.02 - September 10, 2007 PPC405 Processor
adde

Add ExtendedPreliminary User’s Manual
adde
Add Extended

(RT) ← (RA) + (RB) + XER[CA]
if (RA) + (RB) + XER[CA] 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA, register RB, and XER[CA] is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Registers Altered
• RT

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

adde RT, RA, RB OE= 0, Rc= 0
adde. RT, RA, RB OE= 0, Rc= 1
addeo RT, RA, RB OE= 1, Rc= 0
addeo. RT, RA, RB OE =1, Rc=1

31 RT RA RB OE 138 Rc

0 6 11 16 21 22 31

>
u

AMCC Proprietary

http://www.manualslib.com/

 164

Revision 1.02 - September 10, 2007 PPC405 Processor
addi

Add ImmediatePreliminary User’s Manual
addi
Add Immediate

(RT) ← (RA|0) + EXTS(IM)

If the RA field is 0, the IM field, sign-extended to 32 bits, is placed into register RT.

If the RA field is nonzero, the sum of the contents of register RA and the contents of the IM field, sign-extended to
32 bits, is placed into register RT.

Registers Altered
• RT

Programming Note

To place an immediate, sign-extended value into the GPR specified by RT, set RA = 0.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

addi RT, RA, IM

14 RT RA IM

0 6 11 16 31

Table 9-3. Extended Mnemonics for addi

Mnemonic Operands Function Other Registers
Altered

la RT, D(RA)

Load address (RA ≠ 0); D is an offset from a base address
that is assumed to be (RA).
(RT) ← (RA) + EXTS(D)

Extended mnemonic for
addi RT,RA,D

li RT, IM

Load immediate.
(RT) ← EXTS(IM)

Extended mnemonic for
addi RT,0,IM

subi RT, RA, IM

Subtract EXTS(IM) from (RA|0).
Place result in RT.

Extended mnemonic for
addi RT,RA,−IM

AMCC Proprietary

http://www.manualslib.com/

 165

Revision 1.02 - September 10, 2007 PPC405 Processor
addic

Add Immediate CarryingPreliminary User’s Manual
addic
Add Immediate Carrying

(RT) ← (RA) + EXTS(IM)
if (RA) + EXTS(IM) 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA and the contents of the IM field, sign-extended to 32 bits, is placed into
register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Registers Altered
• RT

• XER[CA]

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

addic RT, RA, IM

12 RT RA IM

0 6 11 16 31

Table 9-4. Extended Mnemonics for addic

Mnemonic Operands Function Other Registers
Altered

subic RT, RA, IM

Subtract EXTS(IM) from (RA)
Place result in RT; place carry-out in XER[CA].

Extended mnemonic for
addic RT,RA,−IM

>
u

AMCC Proprietary

http://www.manualslib.com/

 166

Revision 1.02 - September 10, 2007 PPC405 Processor
addic.

Add Immediate Carrying and RecordPreliminary User’s Manual
addic.
Add Immediate Carrying and Record

(RT)� ← (RA) + EXTS(IM)
if (RA) + EXTS(IM) 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA and the contents of the IM field, sign-extended to 32 bits, is placed into
register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Registers Altered
• RT

• XER[CA]

• CR[CR0]LT, GT, EQ, SO

Programming Note

addic. is one of three instructions that implicitly update CR[CR0] without having an RC field. The other instructions
are andi. and andis..

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

addic. RT, RA, IM

13 RT RA IM

0 6 11 16 31

Table 9-5. Extended Mnemonics for addic.

Mnemonic Operands Function Other Registers
Altered

subic. RT, RA, IM

Subtract EXTS(IM) from (RA).
Place result in RT; place carry-out in XER[CA].

Extended mnemonic for
addic. RT,RA,−IM

CR[CR0]

>
u

AMCC Proprietary

http://www.manualslib.com/

 167

Revision 1.02 - September 10, 2007 PPC405 Processor
addis

Add Immediate ShiftedPreliminary User’s Manual
addis
Add Immediate Shifted

(RT)� ← (RA|0) + (IM || 160)

If the RA field is 0, the IM field is concatenated on its right with sixteen 0-bits and placed into register RT.

If the RA field is nonzero, the contents of register RA are added to the contents of the extended IM field. The sum
is stored into register RT.

Registers Altered
• RT

Programming Note

An addi instruction stores a sign-extended 16-bit value in a GPR. An addis instruction followed by an ori instruc-
tion stores an arbitrary 32-bit value in a GPR, as shown in the following example:

addis RT, 0, high 16 bits of value
ori RT, RT, low 16 bits of value

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

addis RT, RA, IM

15 RT RA IM

0 6 11 16 31

Table 9-6. Extended Mnemonics for addis

Mnemonic Operands Function Other Registers
Altered

lis RT, IM

Load immediate shifted.
(RT) ← (IM || 160)

Extended mnemonic for
addis RT,0,IM

subis RT, RA, IM

Subtract (IM || 160) from (RA|0).
Place result in RT.

Extended mnemonic for
addis RT,RA,−IM

AMCC Proprietary

http://www.manualslib.com/

 168

Revision 1.02 - September 10, 2007 PPC405 Processor
addme

Add to Minus One ExtendedPreliminary User’s Manual
addme
Add to Minus One Extended

(RT) ← (RA) + XER[CA] + (–1)
if (RA) + XER[CA] + 0xFFFF FFFF 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA, XER[CA], and –1 is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Registers Altered
• RT

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

addme RT, RA OE= 0, Rc= 0
addme. RT, RA OE= 0, Rc= 1
addmeo RT, RA OE=1, Rc= 0
addmeo. RT, RA OE =1, Rc=1

31 RT RA OE 234 Rc

0 6 11 16 21 22 31

>
u

AMCC Proprietary

http://www.manualslib.com/

 169

Revision 1.02 - September 10, 2007 PPC405 Processor
addze

Add to Zero ExtendedPreliminary User’s Manual
addze
Add to Zero Extended

(RT) ← (RA) + XER[CA]
if (RA) + XER[CA] 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA and XER[CA] is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Registers Altered
• RT

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

addze RT, RA OE=0, Rc=0
addze. RT, RA OE=0, Rc=1
addzeo RT, RA OE=1, Rc=0
addzeo. RT, RA OE=1, Rc=1

31 RT RA OE 202 Rc

0 6 11 16 21 22 31

>
u

AMCC Proprietary

http://www.manualslib.com/

 170

Revision 1.02 - September 10, 2007 PPC405 Processor
and
ANDPreliminary User’s Manual

and
AND

(RA) ← (RS) ∧ (RB)

The contents of register RS are ANDed with the contents of register RB; the result is placed into register RA.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

and RA, RS, RB Rc=0
and. RA, RS, RB Rc=1

31 RS RA RB 28 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 171

Revision 1.02 - September 10, 2007 PPC405 Processor
andc

AND with ComplementPreliminary User’s Manual
andc
AND with Complement

(RA) ← (RS) ∧ ¬(RB)

The contents of register RS are ANDed with the ones complement of the contents of register RB; the result is
placed into register RA.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

andc RA,RS,RB Rc=0
andc. RA,RS,RB Rc=1

31 RS RA RB 60 Rc

0 6 11 16 21 2 31

AMCC Proprietary

http://www.manualslib.com/

 172

Revision 1.02 - September 10, 2007 PPC405 Processor
andi.

AND ImmediatePreliminary User’s Manual
andi.
AND Immediate

(RA) ← (RS) ∧ (160 || IM)

The IM field is extended to 32 bits by concatenating 16 0-bits on its left. The contents of register RS is ANDed with
the extended IM field; the result is placed into register RA.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO

Programming Note

The andi. instruction can test whether any of the 16 least-significant bits in a GPR are 1-bits.

andi. is one of three instructions that implicitly update CR[CR0] without having an Rc field. The other instructions
are addic. and andis..

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

andi. RA, RS, IM

28 RS RA IM

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 173

Revision 1.02 - September 10, 2007 PPC405 Processor
andis.

AND Immediate ShiftedPreliminary User’s Manual
andis.
AND Immediate Shifted

(RA) ← (RS) ∧ (IM || 160)

The IM field is extended to 32 bits by concatenating 16 0-bits on its right. The contents of register RS are ANDed
with the extended IM field; the result is placed into register RA.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO

Programming Note

The andis. instruction can test whether any of the 16 most-significant bits in a GPR are 1-bits.

andis. is one of three instructions that implicitly update CR[CR0] without having an Rc field. The other instructions
are addic. and andi..

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

andis. RA, RS, IM

29 RS RA IM

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 174

Revision 1.02 - September 10, 2007 PPC405 Processor
b

BranchPreliminary User’s Manual
b
Branch

If AA = 1 then
LI ← target6:29
NIA ← EXTS(LI || 20)

else
LI ← (target – CIA)6:29
NIA ← CIA + EXTS(LI || 20)

if LK = 1 then
(LR) ← CIA + 4

PC ← NIA

The next instruction address (NIA) is the effective address of the branch. The NIA is formed by adding a displace-
ment to a base address. The displacement is obtained by concatenating two 0-bits to the right of the LI field and
sign-extending the result to 32 bits.

If the AA field contains 0, the base address is the address of the branch instruction, which is also the current
instruction address (CIA). If the AA field contains 1, the base address is 0.

Program flow is transferred to the NIA.

If the LK field contains 1, then (CIA + 4) is placed into the LR.

Registers Altered
• LR if LK contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

b target AA=0, LK=0
ba target AA=1, LK=0
bl target AA=0, LK=1
bla target AA=1, LK=1

18 LI AA LK

0 6 30 31

AMCC Proprietary

http://www.manualslib.com/

 175

Revision 1.02 - September 10, 2007 PPC405 Processor
bc

Branch ConditionalPreliminary User’s Manual
bc
Branch Conditional

if BO2 = 0 then
CTR ← CTR – 1

if (BO2 = 1 ∨ ((CTR = 0) = BO3)) ∧ (BO0 = 1 ∨ (CRBI = BO1)) then
if AA = 1 then

BD ← target16:29
NIA ← EXTS(BD || 20)

else
BD ← (target – CIA)16:29
NIA ← CIA + EXTS(BD || 20)

else
NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

PC ← NIA

If bit 2 of the BO field contains 0, the CTR decrements.

The BI field specifies a bit in the CR to be used as the condition of the branch.

The next instruction address (NIA) is the effective address of the branch. The NIA is formed by adding a displace-
ment to a base address. The displacement is obtained by concatenating two 0-bits to the right of the BD field and
sign-extending the result to 32 bits.

If the AA field contains 0, the base address is the address of the branch instruction, which is also the current
instruction address (CIA). If the AA field contains 1, the base address is 0.

The BO field controls options that determine when program flow is transferred to the NIA. The BO field also
controls branch prediction, a performance-improvement feature. See Branch Prediction on page 52 for a complete
discussion.

If the LK field contains 1, then (CIA + 4) is placed into the LR.

Registers Altered
• CTR if BO2 contains 0

• LR if LK contains 1

bc BO, BI, target AA=0, LK= 0
bca BO, BI, target AA =1, LK= 0
bcl BO, BI, target AA= 0, LK=1
bcla BO, BI, target AA =1, LK=1

16 BO BI BD AA LK

0 6 11 16 30 31

AMCC Proprietary

http://www.manualslib.com/

 176

Revision 1.02 - September 10, 2007 PPC405 Processor
bc

Branch ConditionalPreliminary User’s Manual

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 9-7. Extended Mnemonics for bc, bca, bcl, bcla

Mnemonic Operands Function Other Registers
Altered

bdnz

target

Decrement CTR; branch if CTR ≠ 0.
Extended mnemonic for
bc 16,0,target

bdnza Extended mnemonic for
bca 16,0,target

bdnzl Extended mnemonic for
bcl 16,0,target (LR) ← CIA + 4.

bdnzla Extended mnemonic for
bcla 16,0,target (LR) ← CIA + 4.

bdnzf

cr_bit, target

Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 0.

Extended mnemonic for
bc 0,cr_bit,target

bdnzfa Extended mnemonic for
bca 0,cr_bit,target

bdnzfl Extended mnemonic for
bcl 0,cr_bit,target (LR) ← CIA + 4.

bdnzfla Extended mnemonic for
bcla 0,cr_bit,target (LR) ← CIA + 4.

bdnzt

cr_bit, target

Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 1.

Extended mnemonic for
bc 8,cr_bit,target

bdnzta Extended mnemonic for
bca 8,cr_bit,target

bdnztl Extended mnemonic for
bcl 8,cr_bit,target (LR) ← CIA + 4.

bdnztla Extended mnemonic for
bcla 8,cr_bit,target (LR) ← CIA + 4.

bdz

target

Decrement CTR; branch if CTR = 0.
Extended mnemonic for
bc 18,0,target

bdza Extended mnemonic for
bca 18,0,target

bdzl Extended mnemonic for
bcl 18,0,target (LR) ← CIA + 4.

bdzla Extended mnemonic for
bcla 18,0,target (LR) ← CIA + 4.

AMCC Proprietary

http://www.manualslib.com/

 177

Revision 1.02 - September 10, 2007 PPC405 Processor
bc

Branch ConditionalPreliminary User’s Manual

bdzf

cr_bit, target

Decrement CTR
Branch if CTR = 0 AND CRcr_bit = 0.

Extended mnemonic for
bc 2,cr_bit,target

bdzfa Extended mnemonic for
bca 2,cr_bit,target

bdzfl Extended mnemonic for
bcl 2,cr_bit,target (LR) ← CIA + 4.

bdzfla Extended mnemonic for
bcla 2,cr_bit,target (LR) ← CIA + 4.

bdzt

cr_bit, target

Decrement CTR
Branch if CTR = 0 AND CRcr_bit = 1.

Extended mnemonic for
bc 10,cr_bit,target

bdzta Extended mnemonic for
bca 10,cr_bit,target

bdztl Extended mnemonic for
bcl 10,cr_bit,target (LR) ← CIA + 4.

bdztla Extended mnemonic for
bcla 10,cr_bit,target (LR) ← CIA + 4.

beq

[cr_field,] target

Branch if equal
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+2,target

beqa Extended mnemonic for
bca 12,4∗cr_field+2,target

beql Extended mnemonic for
bcl 12,4∗cr_field+2,target (LR) ← CIA + 4.

beqla Extended mnemonic for
bcla 12,4∗cr_field+2,target (LR) ← CIA + 4.

bf

cr_bit, target

Branch if CRcr_bit = 0.
Extended mnemonic for
bc 4,cr_bit,target

bfa Extended mnemonic for
bca 4,cr_bit,target

bfl Extended mnemonic for
bcl 4,cr_bit,target LR

bfla Extended mnemonic for
bcla 4,cr_bit,target LR

Table 9-7. Extended Mnemonics for bc, bca, bcl, bcla (Continued)

Mnemonic Operands Function Other Registers
Altered

AMCC Proprietary

http://www.manualslib.com/

 178

Revision 1.02 - September 10, 2007 PPC405 Processor
bc

Branch ConditionalPreliminary User’s Manual

bge

[cr_field,] target

Branch if greater than or equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+0,target

bgea Extended mnemonic for
bca 4,4∗cr_field+0,target

bgel Extended mnemonic for
bcl 4,4∗cr_field+0,target LR

bgela Extended mnemonic for
bcla 4,4∗cr_field+0,target LR

bgt

[cr_field,] target

Branch if greater than.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+1,target

bgta Extended mnemonic for
bca 12,4∗cr_field+1,target

bgtl Extended mnemonic for
bcl 12,4∗cr_field+1,target LR

bgtla Extended mnemonic for
bcla 12,4∗cr_field+1,target LR

ble

[cr_field,] target

Branch if less than or equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+1,target

blea Extended mnemonic for
bca 4,4∗cr_field+1,target

blel Extended mnemonic for
bcl 4,4∗cr_field+1,target LR

blela Extended mnemonic for
bcla 4,4∗cr_field+1,target LR

blt

[cr_field,] target

Branch if less than
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+0,target

blta Extended mnemonic for
bca 12,4∗cr_field+0,target

bltl Extended mnemonic for
bcl 12,4∗cr_field+0,target (LR) ← CIA + 4.

bltla Extended mnemonic for
bcla 12,4∗cr_field+0,target (LR) ← CIA + 4.

Table 9-7. Extended Mnemonics for bc, bca, bcl, bcla (Continued)

Mnemonic Operands Function Other Registers
Altered

AMCC Proprietary

http://www.manualslib.com/

 179

Revision 1.02 - September 10, 2007 PPC405 Processor
bc

Branch ConditionalPreliminary User’s Manual

bne

[cr_field,] target

Branch if not equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+2,target

bnea Extended mnemonic for
bca 4,4∗cr_field+2,target

bnel Extended mnemonic for
bcl 4,4*cr_field+2,target (LR) ← CIA + 4.

bnela Extended mnemonic for
bcla 4,4∗cr_field+2,target (LR) ← CIA + 4.

bng

[cr_field,] target

Branch if not greater than.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+1,target

bnga Extended mnemonic for
bca 4,4∗cr_field+1,target

bngl Extended mnemonic for
bcl 4,4∗cr_field+1,target (LR) ← CIA + 4.

bngla Extended mnemonic for
bcla 4,4∗cr_field+1,target (LR) ← CIA + 4.

bnl

[cr_field,] target

Branch if not less than; use CR0 if cr_field is omitted.
Extended mnemonic for
bc 4,4∗cr_field+0,target

bnla Extended mnemonic for
bca 4,4∗cr_field+0,target

bnll Extended mnemonic for
bcl 4,4∗cr_field+0,target (LR) ← CIA + 4.

bnlla Extended mnemonic for
bcla 4,4∗cr_field+0,target (LR) ← CIA + 4.

bns

[cr_field,] target

Branch if not summary overflow.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+3,target

bnsa Extended mnemonic for
bca 4,4∗cr_field+3,target

bnsl Extended mnemonic for
bcl 4,4∗cr_field+3,target (LR) ← CIA + 4.

bnsla Extended mnemonic for
bcla 4,4∗cr_field+3,target (LR) ← CIA + 4.

Table 9-7. Extended Mnemonics for bc, bca, bcl, bcla (Continued)

Mnemonic Operands Function Other Registers
Altered

AMCC Proprietary

http://www.manualslib.com/

 180

Revision 1.02 - September 10, 2007 PPC405 Processor
bc

Branch ConditionalPreliminary User’s Manual

bnu

[cr_field,] target

Branch if not unordered.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+3,target

bnua Extended mnemonic for
bca 4,4∗cr_field+3,target

bnul Extended mnemonic for
bcl 4,4∗cr_field+3,target (LR) ← CIA + 4.

bnula Extended mnemonic for
bcla 4,4∗cr_field+3,target (LR) ← CIA + 4.

bso

[cr_field,] target

Branch if summary overflow.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+3,target

bsoa Extended mnemonic for
bca 12,4∗cr_field+3,target

bsol Extended mnemonic for
bcl 12,4∗cr_field+3,target (LR) ← CIA + 4.

bsola Extended mnemonic for
bcla 12,4∗cr_field+3,target (LR) ← CIA + 4.

bt

cr_bit, target

Branch if CRcr_bit = 1.
Extended mnemonic for
bc 12,cr_bit,target

bta Extended mnemonic for
bca 12,cr_bit,target

btl Extended mnemonic for
bcl 12,cr_bit,target (LR) ← CIA + 4.

btla Extended mnemonic for
bcla 12,cr_bit,target (LR) ← CIA + 4.

bun

[cr_field], target

Branch if unordered.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+3,target

buna Extended mnemonic for
bca 12,4∗cr_field+3,target

bunl Extended mnemonic for
bcl 12,4∗cr_field+3,target (LR) ← CIA + 4.

bunla Extended mnemonic for
bcla 12,4∗cr_field+3,target (LR) ← CIA + 4.

Table 9-7. Extended Mnemonics for bc, bca, bcl, bcla (Continued)

Mnemonic Operands Function Other Registers
Altered

AMCC Proprietary

http://www.manualslib.com/

 181

Revision 1.02 - September 10, 2007 PPC405 Processor
bcctr

Branch Conditional to Count RegisterPreliminary User’s Manual
bcctr
Branch Conditional to Count Register

if BO2 = 0 then
CTR ← CTR – 1

if (BO2 = 1 ∨ ((CTR = 0) = BO3)) ∧ (BO0 = 1 ∨ (CRBI = BO1)) then
NIA ← CTR0:29 || 20

else
NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

PC ← NIA

The BI field specifies a bit in the CR to be used as the condition of the branch.

The next instruction address (NIA) is the target address of the branch. The NIA is formed by concatenating the 30
most significant bits of the CTR with two 0-bits on the right.

The BO field controls options that determine when program flow is transferred to the NIA. The BO field also
controls branch prediction, a performance-improvement feature. See Branch Prediction on page 52 for a complete
discussion.

If the LK field contains 1, then (CIA + 4) is placed into the LR.

Registers Altered
• CTR if BO2 contains 0

• LR if LK contains 1

Invalid Instruction Forms
• Reserved fields

• If bit 2 of the BO field contains 0, the instruction form is invalid, but the pseudocode applies. If the branch
condition is true, the branch is taken; the NIA is the contents of the CTR after it is decremented.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

bcctr BO, BI LK = 0
bcctrl BO, BI LK =1

19 BO BI 528 LK

0 6 11 16 21 31

Table 9-8. Extended Mnemonics for bcctr, bcctrl

Mnemonic Operands Function Other Registers
Altered

bctr
Branch unconditionally to address in CTR.

Extended mnemonic for
bcctr 20,0

bctrl Extended mnemonic for
bcctrl 20,0 (LR) ← CIA + 4.

AMCC Proprietary

http://www.manualslib.com/

 182

Revision 1.02 - September 10, 2007 PPC405 Processor
bcctr

Branch Conditional to Count RegisterPreliminary User’s Manual

beqctr

[cr_field] Branch, if equal, to address in CTR
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+2

beqctrl Extended mnemonic for
bcctrl 12,4∗cr_field+2 (LR) ← CIA + 4.

bfctr
cr_bit Branch, if CRcr_bit = 0, to address in CTR.

Extended mnemonic for
bcctr 4,cr_bit

bfctrl Extended mnemonic for
bcctrl 4,cr_bit (LR) ← CIA + 4.

bgectr

[cr_field] Branch, if greater than or equal, to address in CTR. Use
CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+0

bgectrl Extended mnemonic for
bcctrl 4,4∗cr_field+0 (LR) ← CIA + 4.

bgtctr

[cr_field] Branch, if greater than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+1

bgtctrl Extended mnemonic for
bcctrl 12,4∗cr_field+1 (LR) ← CIA + 4.

blectr

[cr_field] Branch, if less than or equal, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+1

blectrl Extended mnemonic for
bcctrl 4,4∗cr_field+1 (LR) ← CIA + 4.

bltctr

[cr_field] Branch, if less than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+0

bltctrl Extended mnemonic for
bcctrl 12,4∗cr_field+0 (LR) ← CIA + 4.

bnectr

[cr_field] Branch, if not equal, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+2

bnectrl Extended mnemonic for
bcctrl 4,4∗cr_field+2 (LR) ← CIA + 4.

bngctr

[cr_field] Branch, if not greater than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+1

bngctrl Extended mnemonic for
bcctrl 4,4∗cr_field+1 (LR) ← CIA + 4.

Table 9-8. Extended Mnemonics for bcctr, bcctrl (Continued)

Mnemonic Operands Function Other Registers
Altered

AMCC Proprietary

http://www.manualslib.com/

 183

Revision 1.02 - September 10, 2007 PPC405 Processor
bcctr

Branch Conditional to Count RegisterPreliminary User’s Manual

bnlctr

[cr_field] Branch, if not less than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+0

bnlctrl Extended mnemonic for
bcctrl 4,4∗cr_field+0 (LR) ← CIA + 4.

bnsctr

[cr_field] Branch, if not summary overflow, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+3

bnsctrl Extended mnemonic for
bcctrl 4,4∗cr_field+3 (LR) ← CIA + 4.

bnuctr

[cr_field] Branch, if not unordered, to address in CTR; use CR0 if
cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+3

bnuctrl Extended mnemonic for
bcctrl 4,4∗cr_field+3 (LR) ← CIA + 4.

bsoctr

[cr_field] Branch, if summary overflow, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+3

bsoctrl Extended mnemonic for
bcctrl 12,4∗cr_field+3 (LR) ← CIA + 4.

btctr
cr_bit Branch if CRcr_bit = 1 to address in CTR.

Extended mnemonic for
bcctr 12,cr_bit

btctrl Extended mnemonic for
bcctrl 12,cr_bit (LR) ← CIA + 4.

bunctr

[cr_field] Branch if unordered to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+3

bunctrl Extended mnemonic for
bcctrl 12,4∗cr_field+3 (LR) ← CIA + 4.

Table 9-8. Extended Mnemonics for bcctr, bcctrl (Continued)

Mnemonic Operands Function Other Registers
Altered

AMCC Proprietary

http://www.manualslib.com/

 184

Revision 1.02 - September 10, 2007 PPC405 Processor
bclr

Branch Conditional to Link RegisterPreliminary User’s Manual
bclr
Branch Conditional to Link Register

if BO2 = 0 then
CTR ← CTR – 1

if (BO2 = 1 ∨ ((CTR = 0) = BO3)) ∧ (BO0 = 1 ∨ (CRBI = BO1)) then
NIA ← LR0:29 || 20

else
NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

PC ← NIA

If bit 2 of the BO field contains 0, the CTR is decremented.

The BI field specifies a bit in the CR to be used as the condition of the branch.

The next instruction address (NIA) is the target address of the branch. The NIA is formed by concatenating the 30
most significant bits of the LR with two 0-bits on the right.

The BO field controls options that determine when program flow is transferred to the NIA. The BO field also
controls branch prediction, a performance-improvement feature. See Branch Prediction on page 52 for a complete
discussion.

If the LK field contains 1, then (CIA + 4) is placed into the LR.

Registers Altered
• CTR if BO2 contains 0

• LR if LK contains 1

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

bclr BO, BI LK = 0
bclrl BO, BI LK =1

19 BO BI 16 LK

0 6 11 16 21 31

Table 9-9. Extended Mnemonics for bclr, bclrl

Mnemonic Operands Function Other Registers
Altered

blr
Branch unconditionally to address in LR.

Extended mnemonic for
bclr 20,0

blrl Extended mnemonic for
bclrl 20,0 (LR) ← CIA + 4.

AMCC Proprietary

http://www.manualslib.com/

 185

Revision 1.02 - September 10, 2007 PPC405 Processor
bclr

Branch Conditional to Link RegisterPreliminary User’s Manual

bdnzlr

Decrement CTR.
Branch if CTR ≠ 0 to address in LR.

Extended mnemonic for
bclr 16,0

bdnzlrl Extended mnemonic for
bclrl 16,0 (LR) ← CIA + 4.

bdnzflr
cr_bit

Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 0 to address in LR.

Extended mnemonic for
bclr 0,cr_bit

bdnzflrl Extended mnemonic for
bclrl 0,cr_bit (LR) ← CIA + 4.

bdnztlr
cr_bit

Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 1 to address in LR.

Extended mnemonic for
bclr 8,cr_bit

bdnztlrl Extended mnemonic for
bclrl 8,cr_bit (LR) ← CIA + 4.

bdzlr

Decrement CTR.
Branch if CTR = 0 to address in LR.

Extended mnemonic for
bclr 18,0

bdzlrl Extended mnemonic for
bclrl 18,0 (LR) ← CIA + 4.

bdzflr
cr_bit

Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 0 to address in LR.

Extended mnemonic for
bclr 2,cr_bit

bdzflrl Extended mnemonic for
bclrl 2,cr_bit (LR) ← CIA + 4.

bdztlr
cr_bit

Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 1 to address in LR.

Extended mnemonic for
bclr 10,cr_bit

bdztlrl Extended mnemonic for
bclrl 10,cr_bit (LR) ← CIA + 4.

beqlr
[cr_field]

Branch if equal to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+2

beqlrl Extended mnemonic for
bclrl 12,4∗cr_field+2 (LR) ← CIA + 4.

bflr
cr_bit

Branch if CRcr_bit = 0 to address in LR.
Extended mnemonic for
bclr 4,cr_bit

bflrl Extended mnemonic for
bclrl 4,cr_bit (LR) ← CIA + 4.

Table 9-9. Extended Mnemonics for bclr, bclrl (Continued)

Mnemonic Operands Function Other Registers
Altered

AMCC Proprietary

http://www.manualslib.com/

 186

Revision 1.02 - September 10, 2007 PPC405 Processor
bclr

Branch Conditional to Link RegisterPreliminary User’s Manual

bgelr
[cr_field]

Branch, if greater than or equal, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+0

bgelrl Extended mnemonic for
bclrl 4,4∗cr_field+0 (LR) ← CIA + 4.

bgtlr
[cr_field]

Branch, if greater than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+1

bgtlrl Extended mnemonic for
bclrl 12,4∗cr_field+1 (LR) ← CIA + 4.

blelr
[cr_field]

Branch, if less than or equal, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+1

blelrl Extended mnemonic for
bclrl 4,4∗cr_field+1 (LR) ← CIA + 4.

bltlr
[cr_field]

Branch, if less than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+0

bltlrl Extended mnemonic for
bclrl 12,4∗cr_field+0 (LR) ← CIA + 4.

bnelr
[cr_field]

Branch, if not equal, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+2

bnelrl Extended mnemonic for
bclrl 4,4∗cr_field+2 (LR) ← CIA + 4.

bnglr
[cr_field]

Branch, if not greater than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+1

bnglrl Extended mnemonic for
bclrl 4,4∗cr_field+1 (LR) ← CIA + 4.

bnllr
[cr_field]

Branch, if not less than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+0

bnllrl Extended mnemonic for
bclrl 4,4∗cr_field+0 (LR) ← CIA + 4.

bnslr
[cr_field]

Branch if not summary overflow to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+3

bnslrl Extended mnemonic for
bclrl 4,4∗cr_field+3 (LR) ← CIA + 4.

Table 9-9. Extended Mnemonics for bclr, bclrl (Continued)

Mnemonic Operands Function Other Registers
Altered

AMCC Proprietary

http://www.manualslib.com/

 187

Revision 1.02 - September 10, 2007 PPC405 Processor
bclr

Branch Conditional to Link RegisterPreliminary User’s Manual

bnulr
[cr_field]

Branch if not unordered to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+3

bnulrl Extended mnemonic for
bclrl 4,4∗cr_field+3 (LR) ← CIA + 4.

bsolr
[cr_field]

Branch if summary overflow to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+3

bsolrl Extended mnemonic for
bclrl 12,4∗cr_field+3 (LR) ← CIA + 4.

btlr
cr_bit

Branch if CRcr_bit = 1 to address in LR.
Extended mnemonic for
bclr 12,cr_bit

btlrl Extended mnemonic for
bclrl 12,cr_bit (LR) ← CIA + 4.

bunlr
[cr_field]

Branch if unordered to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+3

bunlrl Extended mnemonic for
bclrl 12,4∗cr_field+3 (LR) ← CIA + 4.

Table 9-9. Extended Mnemonics for bclr, bclrl (Continued)

Mnemonic Operands Function Other Registers
Altered

AMCC Proprietary

http://www.manualslib.com/

 188

Revision 1.02 - September 10, 2007 PPC405 Processor
cmp

ComparePreliminary User’s Manual
cmp
Compare

c0:3 ← 40
if (RA) < (RB) then c0 ← 1
if (RA) > (RB) then c1 ← 1
if (RA) = (RB) then c2 ← 1
c3 ← XER[SO]
n ← BF
CR[CRn] ← c0:3

The contents of register RA are compared with the contents of register RB using a 32-bit signed compare.

The CR field specified by the BF field is updated to reflect the results of the compare and the value of XER[SO] is
placed into the same CR field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CR[CRn] where n is specified by the BF field

Invalid Instruction Forms
• Reserved fields

Programming Note

The PowerPC Architecture defines this instruction as cmp BF,L,RA,RB, where L selects operand size for 64-bit
PowerPC implementations. For all 32-bit PowerPC implementations, L = 0 is required (L = 1 is an invalid form);
hence for PPC405, use of the extended mnemonic cmpw BF,RA,RB is recommended.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

cmp BF, 0, RA, RB

31 BF RA RB 0

0 6 9 11 16 21 31

Table 9-10. Extended Mnemonics for cmp

Mnemonic Operands Function Other Registers
Altered

cmpw [BF,] RA, RB
Compare Word; use CR0 if BF is omitted.

Extended mnemonic for
cmp BF,0,RA,RB

AMCC Proprietary

http://www.manualslib.com/

 189

Revision 1.02 - September 10, 2007 PPC405 Processor
cmpi

Compare ImmediatePreliminary User’s Manual
cmpi
Compare Immediate

c0:3 ← 40
if (RA) < EXTS(IM) then c0 ← 1
if (RA) > EXTS(IM) then c1 ← 1
if (RA) = EXTS(IM) then c2 ← 1
c3 ← XER[SO]
n ← BF
CR[CRn] ← c0:3

The IM field is sign-extended to 32 bits. The contents of register RA are compared with the extended IM field, using
a 32-bit signed compare.

The CR field specified by the BF field is updated to reflect the results of the compare and the value of XER[SO] is
placed into the same CR field.

Registers Altered
• CR[CRn] where n is specified by the BF field

Invalid Instruction Forms
• Reserved fields

Programming Note

The PowerPC Architecture defines this instruction as cmpi BF,L,RA,IM, where L selects operand size for 64-bit
PowerPC implementations. For all 32-bit PowerPC implementations, L = 0 is required (L = 1 is an invalid form);
hence for the PPC405, use of the extended mnemonic cmpwi BF,RA,IM is recommended.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

cmpi BF, 0, RA, IM

11 BF RA IM

0 6 9 11 16 31

Table 9-11. Extended Mnemonics for cmpi

Mnemonic Operands Function Other Registers
Altered

cmpwi [BF,] RA, IM

Compare Word Immediate.
Use CR0 if BF is omitted.

Extended mnemonic for
cmpi BF,0,RA,IM

AMCC Proprietary

http://www.manualslib.com/

 190

Revision 1.02 - September 10, 2007 PPC405 Processor
cmpl

Compare LogicalPreliminary User’s Manual
cmpl
Compare Logical

c0:3 ← 40
if (RA) (RB) then c0 ← 1
if (RA) (RB) then c1 ← 1
if (RA) (RB) then c2 ← 1
c3 ← XER[SO]
n ← BF
CR[CRn] ← c0:3

The contents of register RA are compared with the contents of register RB, using a 32-bit unsigned compare.

The CR field specified by the BF field is updated to reflect the results of the compare and the value of XER[SO] is
placed into the same CR field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CR[CRn] where n is specified by the BF field

Invalid Instruction Forms
• Reserved fields

Programming Notes

The PowerPC Architecture defines this instruction as cmpl BF,L,RA,RB, where L selects operand size for 64-bit
PowerPC implementations. For all 32-bit PowerPC implementations, L = 0 is required (L = 1 is an invalid form);
hence for PPC405, use of the extended mnemonic cmplw BF,RA,RB is recommended.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

cmpl BF, 0, RA, RB

31 BF RA RB 32

0 6 9 11 16 21 31

Table 9-12. Extended Mnemonics for cmpl

Mnemonic Operands Function Other Registers
Altered

cmplw [BF,] RA, RB

Compare Logical Word.
Use CR0 if BF is omitted.

Extended mnemonic for
cmpl BF,0,RA,RB

<
u

>
u

=

AMCC Proprietary

http://www.manualslib.com/

 191

Revision 1.02 - September 10, 2007 PPC405 Processor
cmpli

Compare Logical ImmediatePreliminary User’s Manual
cmpli
Compare Logical Immediate

c0:3 ← 40
if (RA) (160 || IM) then c0 ← 1
if (RA) (160 || IM) then c1 ← 1
if (RA) (160 || IM) then c2 ← 1
c3 ← XER[SO]
n ← BF
CR[CRn] ← c0:3

The IM field is extended to 32 bits by concatenating 16 0-bits to its left. The contents of register RA are compared
with IM using a 32-bit unsigned compare.

The CR field specified by the BF field is updated to reflect the results of the compare and the value of XER[SO] is
placed into the same CR field.

Registers Altered
• CR[CRn] where n is specified by the BF field

Invalid Instruction Forms
• Reserved fields

Programming Note

The PowerPC Architecture defines this instruction as cmpli BF,L,RA,IM, where L selects operand size for 64-bit
PowerPC implementations. For all 32-bit PowerPC implementations, L = 0 is required (L = 1 is an invalid form);
hence for the PPC405, use of the extended mnemonic cmplwi BF,RA,IM is recommended.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

cmpli BF, 0, RA, IM

10 BF RA IM

0 6 9 11 16 31

Table 9-13. Extended Mnemonics for cmpli

Mnemonic Operands Function Other Registers
Changed

cmplwi [BF,] RA, IM

Compare Logical Word Immediate.
Use CR0 if BF is omitted.

Extended mnemonic for
cmpli BF,0,RA,IM

<
u

>
u

=

AMCC Proprietary

http://www.manualslib.com/

 192

Revision 1.02 - September 10, 2007 PPC405 Processor
cntlzw

Count Leading Zeros WordPreliminary User’s Manual
cntlzw
Count Leading Zeros Word

n ← 0
do while n < 32

if (RS)n = 1 then leave
n ← n + 1

(RA) ← n

The consecutive leading 0 bits in register RS are counted; the count is placed into register RA.

The count ranges from 0 through 32, inclusive.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

cntlzw RA, RS Rc=0
cntlzw. RA, RS Rc=1

31 RS RA 26 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 193

Revision 1.02 - September 10, 2007 PPC405 Processor
crand

Condition Register ANDPreliminary User’s Manual
crand
Condition Register AND

CRBT ← CRBA ∧ CRBB

The CR bit specified by the BA field is ANDed with the CR bit specified by the BB field; the result is placed into the
CR bit specified by the BT field.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

crand BT, BA, BB

19 BT BA BB 257

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 194

Revision 1.02 - September 10, 2007 PPC405 Processor
crandc

Condition Register AND with ComplementPreliminary User’s Manual
crandc
Condition Register AND with Complement

CRBT ← CRBA ∧ ¬CRBB

The CR bit specified by the BA field is ANDed with the ones complement of the CR bit specified by the BB field; the
result is placed into the CR bit specified by the BT field.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

crandc BT, BA, BB

19 BT BA BB 129

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 195

Revision 1.02 - September 10, 2007 PPC405 Processor
creqv

Condition Register EquivalentPreliminary User’s Manual
creqv
Condition Register Equivalent

CRBT ← ¬(CRBA ⊕ CRBB)

The CR bit specified by the BA field is XORed with the CR bit specified by the BB field; the ones complement of the
result is placed into the CR bit specified by the BT field.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

creqv BT, BA, BB

19 BT BA BB 289

0 6 11 16 21 31

Table 9-14. Extended Mnemonics for creqv

Mnemonic Operands Function Other Registers
Altered

crset bx
CR set.

Extended mnemonic for
creqv bx,bx,bx

AMCC Proprietary

http://www.manualslib.com/

 196

Revision 1.02 - September 10, 2007 PPC405 Processor
crnand

Condition Register NANDPreliminary User’s Manual
crnand
Condition Register NAND

CRBT ← ¬(CRBA ∧ CRBB)

The CR bit specified by the BA field is ANDed with the CR bit specified by the BB field; the ones complement of the
result is placed into the CR bit specified by the BT field.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

crnand BT, BA, BB

19 BT BA BB 225

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 197

Revision 1.02 - September 10, 2007 PPC405 Processor
crnor

Condition Register NORPreliminary User’s Manual
crnor
Condition Register NOR

CRBT ← ¬(CRBA ∨ CRBB)

The CR bit specified by the BA field is ORed with the CR bit specified by the BB field; the ones complement of the
result is placed into the CR bit specified by the BT field.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

crnor BT, BA, BB

19 BT BA BB 33

0 6 11 16 21 31

Table 9-15. Extended Mnemonics for crnor

Mnemonic Operands Function Other Registers
Altered

crnot bx, by
CR not.

Extended mnemonic for
crnor bx,by,by

AMCC Proprietary

http://www.manualslib.com/

 198

Revision 1.02 - September 10, 2007 PPC405 Processor
cror

Condition Register ORPreliminary User’s Manual
cror
Condition Register OR

CRBT ← CRBA ∨ CRBB

The CR bit specified by the BA field is ORed with the CR bit specified by the BB field; the result is placed into the
CR bit specified by the BT field.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

cror BT, BA, BB

19 BT BA BB 449

0 6 11 16 21 31

Table 9-16. Extended Mnemonics for cror

Mnemonic Operands Function Other Registers
Altered

crmove bx, by
CR move.

Extended mnemonic for
cror bx,by,by

AMCC Proprietary

http://www.manualslib.com/

 199

Revision 1.02 - September 10, 2007 PPC405 Processor
crorc

Condition Register OR with ComplementPreliminary User’s Manual
crorc
Condition Register OR with Complement

CRBT ← CRBA ∨ ¬CRBB

The condition register (CR) bit specified by the BA field is ORed with the ones complement of the CR bit specified
by the BB field; the result is placed into the CR bit specified by the BT field.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

crorc BT, BA, BB

19 BT BA BB 417

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 200

Revision 1.02 - September 10, 2007 PPC405 Processor
crxor

Condition Register XORPreliminary User’s Manual
crxor
Condition Register XOR

CRBT ← CRBA ⊕ CRBB

The CR bit specified by the BA field is XORed with the CR bit specified by the BB field; the result is placed into the
CR bit specified by the BT field.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

crxor BT, BA, BB

19 BT BA BB 193

0 6 11 16 21 31

Table 9-17. Extended Mnemonics for crxor

Mnemonic Operands Function Other Registers
Altered

crclr bx
Condition register clear.

Extended mnemonic for
crxor bx,bx,bx

AMCC Proprietary

http://www.manualslib.com/

 201

Revision 1.02 - September 10, 2007 PPC405 Processor
dcba

Data Cache Block AllocatePreliminary User’s Manual
dcba
 Data Cache Block Allocate

EA ← (RA|0) + (RB)
DCBA(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the data block at the EA is in the data cache and the EA is marked as cacheable and non-write-through, the data
in the cache block is architecturally undefined. For the PPC405, the cache data block is set to 0.

If the data block at the EA is not in the data cache and the EA is marked as cacheable and not marked as write-
through, a cache block is established and set to an architecturally-undefined value. Note that no data is read from
main storage, as described in the programming note.

If the data block at the EA is marked as non cacheable, a no-op occurs.

If the data block at the EA is in the data cache and marked as write-through, architecturally the data in the cache
block can be left unmodified. Alternatively, the data block at the EA can be undefined in the data cache and in main
storage. For the PPC405, a no-op occurs.

If the data block at the EA is not in the data cache and marked as write-through, architecturally the instruction can
establish a cache block and set the block to 0, or a no-op can occur. For the PPC405, a no-op occurs.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

Because dcba can establish an address in the data cache without copying the contents of that address from main
storage, the address established can be invalid with respect to main storage. A subsequent operation may cause
the address to be copied back to main storage, for example, to make room for a new cache block; a machine check
exception could occur under these circumstances.

dcba provides a hint that a block of storage will soon be stored to or no longer needed; there is no need to retain
the data in the block. Establishing the line in the cache, without reading from main storage, improves performance.

Exceptions

This instruction is considered a “store” with respect to data storage exceptions. However, this instruction does not
cause data storage exceptions or data TLB-miss exceptions. If conditions occur that would otherwise cause such
exceptions, dcba is treated as a no-op.

dcba RA, RB

31 RA RB 758

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 202

Revision 1.02 - September 10, 2007 PPC405 Processor
dcba

Data Cache Block AllocatePreliminary User’s Manual

This instruction is considered a “store” with respect to data address compare (DAC) debug exceptions. See Data
Storage Interrupt on page 120.

Architecture Note

This instruction is part of the PowerPC Embedded Virtual Environment.

AMCC Proprietary

http://www.manualslib.com/

 203

Revision 1.02 - September 10, 2007 PPC405 Processor
dcbf

Data Cache Block FlushPreliminary User’s Manual
dcbf
Data Cache Block Flush

EA ← (RA|0) + (RB)
DCBF(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the data block corresponding to the EA is in the data cache and marked as modified (stored into), the data block
is copied back to main storage and then marked invalid in the data cache. If the data block is not marked as modi-
fied, it is simply marked invalid in the data cache. The operation is performed whether or not the EA is marked as
cacheable.

If the data block at the EA is not in the data cache, no operation is performed.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Exceptions

This instruction is considered a “load” with respect to data storage exceptions. See Data Storage Interrupt on
page 120.

This instruction is considered a “store” with respect to data address compare (DAC) debug exceptions. See Debug
Interrupt on page 128.

Architecture Note

This instruction is part of the PowerPC Embedded Virtual Environment.

dcbf RA, RB

31 RA RB 86

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 204

Revision 1.02 - September 10, 2007 PPC405 Processor
dcbi

Data Cache Block InvalidatePreliminary User’s Manual
dcbi
Data Cache Block Invalidate

EA ← (RA|0) + (RB)
DCBI(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the data block at the EA is in the data cache, the data block is marked invalid, regardless of whether or not the
EA is marked as cacheable. If modified data existed in the data block prior to the operation of this instruction, that
data is lost.

If the data block at the EA is not in the data cache, no operation is performed.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

Execution of this instruction is privileged.

Exceptions

This instruction is considered a “store” with respect to data storage exceptions. See Data Storage Interrupt on
page 120.

This instruction is considered a “store” with respect to data address compare (DAC) debug exceptions. See Debug
Interrupt on page 128.

Architecture Note

This instruction is part of the PowerPC Embedded Operating Environment.

dcbi RA, RB

31 RA RB 470

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 205

Revision 1.02 - September 10, 2007 PPC405 Processor
dcbst

Data Cache Block StorePreliminary User’s Manual
dcbst
Data Cache Block Store

EA ← (RA|0) + (RB)
DCBST(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0, and is the contents of register RA otherwise.

If the data block at the EA is in the data cache and marked as modified, the data block is copied back to main
storage and marked as unmodified in the data cache.

If the data block at the EA is in the data cache, and is not marked as modified, or if the data block at the EA is not
in the data cache, no operation is performed.

The operation specified by this instruction is performed whether or not the EA is marked as cacheable.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Exceptions

This instruction is considered a “load” with respect to data storage exceptions. See Data Storage Interrupt on
page 120.

This instruction is considered a “store” with respect to data address compare (DAC) debug exceptions. See Debug
Interrupt on page 128.

Architecture Note

This instruction is part of the PowerPC Embedded Virtual Environment.

dcbst RA, RB

31 RA RB 54

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 206

Revision 1.02 - September 10, 2007 PPC405 Processor
dcbt

Data Cache Block TouchPreliminary User’s Manual
dcbt
Data Cache Block Touch

EA ← (RA|0) + (RB)
DCBT(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

If the data block at the EA is not in the data cache and the EA is marked as cacheable, the block is read from main
storage into the data cache.

If the data block at the EA is in the data cache, or if the EA is marked as non cacheable, no operation is performed.

This instruction is not allowed to cause data storage exceptions or data TLB miss exceptions. If execution of the
instruction would cause such an exception, then no operation is performed, and no exception occurs.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

The dcbt instruction allows a program to begin a cache block fetch from main storage before the program needs
the data. The program can later load data from the cache into registers without incurring the latency of a cache
miss.

Exceptions

This instruction is considered a “load” with respect to data storage exceptions. See Data Storage Interrupt on
page 120.

This instruction is considered a “load” with respect to data address compare (DAC) debug exceptions. See Debug
Interrupt on page 128.

Architecture Note

This instruction is part of the PowerPC Embedded Virtual Environment.

dcbt RA, RB

31 RA RB 278

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 207

Revision 1.02 - September 10, 2007 PPC405 Processor
dcbtst

Data Cache Block Touch for StorePreliminary User’s Manual
dcbtst
 Data Cache Block Touch for Store

EA ← (RA|0) + (RB)
DCBTST(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the data block at the EA is not in the data cache and the EA address is marked as cacheable, the data block is
loaded into the data cache.

If the EA is marked as non cacheable, or if the data block at the EA is in the data cache, no operation is performed.

This instruction is not allowed to cause data storage exceptions or data TLB miss exceptions. If execution of the
instruction would cause such an exception, then no operation is performed, and no exception occurs.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

The dcbtst instruction allows a program to begin a cache block fetch from main storage before the program needs
the data. The program can later store data from GPRs into the cache block, without incurring the latency of a cache
miss.

Architecturally, dcbtst brings data into the cache in “Exclusive” mode, which allows the program to alter the
cached data. “Exclusive” mode is part of the MESI protocol for multi-processor systems, and is not implemented.
The implementation of the dcbtst instruction is identical to the implementation of the dcbt instruction.

Exceptions

This instruction is considered a “load” with respect to data storage exceptions. See Data Storage Interrupt on
page 120.

This instruction is considered a “load” with respect to data address compare (DAC) debug exceptions. See Debug
Interrupt on page 128.

Architecture Note

This instruction is part of the PowerPC Embedded Virtual Environment.

dcbtst RA, RB

31 RA RB 246

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 208

Revision 1.02 - September 10, 2007 PPC405 Processor
dcbz

Data Cache Block Set to ZeroPreliminary User’s Manual
dcbz
 Data Cache Block Set to Zero

EA ← (RA|0) + (RB)
DCBZ(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the data block at the EA is in the data cache and the EA is marked as cacheable and non-write-through, the data
in the cache block is set to 0.

If the data block at the EA is not in the data cache and the EA is marked as cacheable and non-write-through, a
cache block is established and set to 0. Note that nothing is read from main storage, as described in the program-
ming note.

If the data block at the EA is marked as either write-through or as non cacheable, an alignment exception occurs.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

Because dcbz can establish an address in the data cache without copying the contents of that address from main
storage, the address established may be invalid with respect to the storage subsystem. A subsequent operation
may cause the address to be copied back to main storage, for example, to make room for a new cache block; a
machine check exception could occur under these circumstances.

If dcbz is attempted to an EA which is marked as non cacheable, the software alignment exception handler should
emulate the instruction by storing zeros to the block in main storage. If a data block corresponding to the EA exists
in the cache, but the EA is non cacheable, stores (including dcbz) to that address are considered programming
errors (the cache block should previously have been flushed).

If the EA is marked as write-through, the software alignment exception handler should emulate the instruction by
storing zeros to the block in main storage. An EA that is marked as write-through required should also be marked
as cacheable; when dcbz is attempted to such an address, the alignment exception handler should maintain
coherency of cache and memory.

Exceptions

An alignment exception occurs if the EA is marked as non cacheable or as write-through.

This instruction is considered a “store” with respect to data storage exceptions. See Data Storage Interrupt on
page 120.

dcbz RA, RB

31 RA RB 1014

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 209

Revision 1.02 - September 10, 2007 PPC405 Processor
dcbz

Data Cache Block Set to ZeroPreliminary User’s Manual

This instruction is considered a “store” with respect to data address compare (DAC) debug exceptions. See Debug
Interrupt on page 128.

Architecture Note

This instruction is part of the PowerPC Embedded Virtual Environment.

AMCC Proprietary

http://www.manualslib.com/

 210

Revision 1.02 - September 10, 2007 PPC405 Processor
dccci

Data Cache Congruence Class InvalidatePreliminary User’s Manual
dccci
 Data Cache Congruence Class Invalidate

EA ← (RA|0) + (RB)
DCCCI(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

Both cache lines in the congruence class specified by EA18:26 are invalidated, whether or not they match the EA. If
modified data existed in the cache congruence class before the operation of this instruction, that data is lost.

The operation specified by this instruction is performed whether or not the EA is marked as cacheable.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

Execution of this instruction is privileged.

This instruction is intended for use in the power-on reset routine to invalidate the entire data cache tag array before
enabling the data cache. A series of dccci instruction should be executed, one for each congruence class. Cach-
ability can then be enabled.

Exceptions

 See Access Protection for Cache Control Instructions on page 104.

The execution of an dccci instruction can cause a data TLB miss exception, at the specified EA, regardless of the
non-specific intent of that EA.

This instruction does not cause data address compare (DAC) debug exceptions. See Debug Interrupt on page 128.

Architecture Note

This instruction is implementation-specific and may not be portable to other implementations.

dccci RA, RB

31 RA RB 454

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 211

Revision 1.02 - September 10, 2007 PPC405 Processor
dcread

Data Cache ReadPreliminary User’s Manual
dcread
Data Cache Read

EA ← (RA|0) + (RB)
if ((CCR0[CIS] = 0) ∧ (CCR0[CWS] = 0)) then (RT) ← (d-cache data, way A)
if ((CCR0[CIS] = 0) ∧ (CCR0[CWS] = 1)) then (RT) ← (d-cache data, way B)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 0)) then (RT) ← (d-cache tag, way A)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 1)) then (RT) ← (d-cache tag, way B)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

This instruction is a debugging tool for reading the data cache entries for the congruence class specified by
EA18:26. The cache information is read into register RT.

If CCR0[CIS] = 0, the information is a word of data cache array data from the addressed congruence class. The
word is specified by EA27:29. If EA30:31 are not 00, an alignment exception occurs. If CCR0[CWS] = 0, the data is
from the A-way; otherwise; the data is from the B-way.

If CCR0[CIS] = 1, the information is a cache tag from the addressed congruence class. If CCR0[CWS] = 0, the tag
is from the A-way; otherwise the tag is from the B-way.

Data cache tag information is placed into register RT as shown:

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Programming Note

Execution of this instruction is privileged.

dcread RT, RA, RB

31 RT RA RB 486

0 6 11 16 21 31

0:19 TAG Cache Tag

20:25 Reserved

26 D
Cache Line Dirty
0 Not dirty
1 Dirty

27 V
Cache Line Valid
0 Not valid
1 Valid

28:30 Reserved

31 LRU
Least Recently Used (LRU)
0 A-way LRU
1 B-way LRU

AMCC Proprietary

http://www.manualslib.com/

 212

Revision 1.02 - September 10, 2007 PPC405 Processor
dcread

Data Cache ReadPreliminary User’s Manual

Exceptions

If EA is not word-aligned, an alignment exception occurs.

This instruction is considered a “load” with respect to data storage exceptions, but cannot cause a data storage
exception. See Access Protection for Cache Control Instructions on page 104.

The execution of an dcread instruction can cause a data TLB miss exception, at the specified EA, regardless of
the non-specific intent of that effective address.

This instruction is considered a “load” with respect to data address compare (DAC) debug exceptions. See Debug
Interrupt on page 128.

Architecture Note

This instruction is implementation-specific and may not be portable to other implementations.

AMCC Proprietary

http://www.manualslib.com/

 213

Revision 1.02 - September 10, 2007 PPC405 Processor
divw

Divide WordPreliminary User’s Manual
divw
 Divide Word

(RT) ← (RA) ÷ (RB)

The contents of register RA are divided by the contents of register RB. The quotient is placed into register RT.

Both the dividend and the divisor are interpreted as signed integers. The quotient is the unique signed integer that
satisfies:

dividend = (quotient × divisor) + remainder

where the remainder has the same sign as the dividend and its magnitude is less than that of the divisor.

If an attempt is made to perform (0x8000 0000 ÷ –1) or (n ÷ 0), the contents of register RT are undefined; if the Rc
field also contains 1, the contents of CR[CR0]LT, GT, EQ are undefined. Either invalid division operation sets
XER[OV, SO] to 1 if the OE field contains 1.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[OV, SO] if OE contains 1

Programming Note

The 32-bit remainder can be calculated using the following sequence of instructions:
divw RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient × divisor
subf RT,RT,RA # RT = remainder

The sequence does not calculate correct results for the invalid divide operations.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

divw RT, RA, RB OE=0, Rc=0
divw. RT, RA, RB OE=0, Rc=1
divwo RT, RA, RB OE=1, Rc=0
divwo. RT, RA, RB OE=1, Rc=1

31 RT RA RB OE 491 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 214

Revision 1.02 - September 10, 2007 PPC405 Processor
divwu

Divide Word UnsignedPreliminary User’s Manual
divwu
Divide Word Unsigned

(RT) ← (RA) ÷ (RB)

The contents of register RA are divided by the contents of register RB. The quotient is placed into register RT.

The dividend and the divisor are interpreted as unsigned integers. The quotient is the unique unsigned integer that
satisfies:

dividend = (quotient × divisor) + remainder

If an attempt is made to perform (n ÷ 0), the contents of register RT are undefined; if the Rc also contains 1, the
contents of CR[CR0]LT, GT, EQ are also undefined. The invalid division operation also sets XER[OV, SO] to 1 if the
OE field contains 1.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[OV, SO] if OE contains 1

Programming Note

The 32-bit remainder can be calculated using the following sequence of instructions
divwu RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient × divisor
subf RT,RT,RA # RT = remainder

This sequence does not calculate the correct result if the divisor is zero.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

divwu RT, RA, RB OE=0, Rc=0
divwu. RT, RA, RB OE=0, Rc=1
divwuo RT, RA, RB OE=1, Rc=0
divwuo. RT, RA, RB OE=1, Rc=1

31 RT RA RB OE 459 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 215

Revision 1.02 - September 10, 2007 PPC405 Processor
eieio

Enforce In Order Execution of I/OPreliminary User’s Manual
eieio
Enforce In Order Execution of I/O

The eieio instruction ensures that all loads and stores preceding eieio complete with respect to main storage
before any loads and stores following eieio access main storage.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

Architecturally, eieio orders storage access, not instruction completion. Therefore, non-storage operations after
eieio could complete before storage operations that were before eieio. The sync instruction guarantees ordering
of both instruction completion and storage access. For the PPC405, the eieio instruction is implemented to behave
as a sync instruction.

To write code that is portable between various PowerPC implementations, programmers should use the mnemonic
that corresponds to the desired behavior.

Architecture Note

This instruction is part of the PowerPC Embedded Virtual Environment.

eieio

31 854

0 6 21 31

AMCC Proprietary

http://www.manualslib.com/

 216

Revision 1.02 - September 10, 2007 PPC405 Processor
eqv

EquivalentPreliminary User’s Manual
eqv
Equivalent

(RA) ← ¬((RS) ⊕ (RB))

The contents of register RS are XORed with the contents of register RB; the ones complement of the result is
placed into register RA.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

eqv RA, RS, RB Rc=0
eqv. RA, RS, RB Rc=1

31 RS RA RB 284 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 217

Revision 1.02 - September 10, 2007 PPC405 Processor
extsb

Extend Sign BytePreliminary User’s Manual
extsb
Extend Sign Byte

(RA) ← EXTS(RS)24:31

The least significant byte of register RS is sign-extended to 32 bits by replicating bit 24 of the register into bits 0
through 23 of the result. The result is placed into register RA.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

extsb RA, RS Rc=0
extsb. RA, RS Rc=1

31 RS RA 954 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 218

Revision 1.02 - September 10, 2007 PPC405 Processor
extsh

Extend Sign HalfwordPreliminary User’s Manual
extsh
Extend Sign Halfword

(RA) ← EXTS(RS)16:31

The least significant halfword of register RS is sign-extended to 32 bits by replicating bit 16 of the register into bits
0 through 15 of the result. The result is placed into register RA.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

extsh RA, RS Rc=0
extsh. RA, RS Rc=1

31 RS RA 922 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 219

Revision 1.02 - September 10, 2007 PPC405 Processor
icbi

Instruction Cache Block InvalidatePreliminary User’s Manual
0.Instruction Seticbi
Instruction Cache Block Invalidate

EA ← (RA|0) + (RB)
ICBI(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the instruction block at the EA is in the instruction cache, the cache block is marked invalid.

If the instruction block at the EA is not in the instruction cache, no additional operation is performed.

The operation specified by this instruction is performed whether or not the EA is marked as cacheable in the ICCR.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

Instruction cache operations use MSR[DR], not MSR[IR], to determine translation of their operands.

When data translation is disabled, cachability for the EA of the operand of instruction cache operations is deter-
mined by the ICCR, not the DCCR.

Exceptions

Instruction storage exceptions and instruction-side TLB miss exceptions are associated with instruction fetching,
not with instruction execution. Exceptions that occur during the execution of instruction cache operations cause
data-side exceptions (data storage exceptions and data TLB miss exceptions).

This instruction is considered a “load” with respect to data storage exceptions. See Debug Interrupt on page 128.

This instruction is considered a “load” with respect to data address compare (DAC) debug exceptions.

Architecture Note

This instruction is part of the PowerPC Embedded Virtual Environment.

icbi RA, RB

31 RA RB 982

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 220

Revision 1.02 - September 10, 2007 PPC405 Processor
icbt

Instruction Cache Block TouchPreliminary User’s Manual
icbt
Instruction Cache Block Touch

EA← (RA|0) + (RB)
ICBT(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the instruction block at the EA is not in the instruction cache, and is marked as cacheable, the instruction block is
loaded into the instruction cache.

If the instruction block at the EA is in the instruction cache, or if the EA is marked as non cacheable, no operation is
performed.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

This instruction allows a program to begin a cache block fetch from main storage before the program needs the
instruction. The program can later branch to the instruction address and fetch the instruction from the cache
without incurring the latency of a cache miss.

Instruction cache operations use MSR[DR], not MSR[IR], to determine translation of their operands. When data
translation is disabled, cachability for the effective address of the operand of instruction cache operations is deter-
mined by the ICCR, not the DCCR.

Exceptions

Instruction storage exceptions and instruction-side TLB miss exceptions are associated with instruction fetching,
not with instruction execution. Exceptions occurring during execution of instruction cache operations cause data
storage and data TLB miss exceptions.

If the execution of an icbt instruction would cause a data TLB miss exception, no operation is performed and no
exception occurs.

This instruction is considered a “load” with respect to protection exceptions, but cannot cause data storage excep-
tions. This instruction is also considered a “load” with respect to data address compare (DAC) debug exceptions.

Architecture Note

This instruction is part of the PowerPC Embedded Operating Environment.

icbt RA, RB

31 RA RB 262

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 221

Revision 1.02 - September 10, 2007 PPC405 Processor
iccci

Instruction Cache Congruence Class InvalidatePreliminary User’s Manual
iccci
Instruction Cache Congruence Class Invalidate

EA ← (RA|0) + (RB)
ICCCI(ICU cache array)

This instruction invalidates the entire ICU cache array. The EA is not used; previous implementations have used
the EA for protection checks. The instruction form is maintained for software and tool compatibility.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

Execution of this instruction is privileged.

This instruction is intended for use in the power-on reset routine to invalidate the entire cache tag array before
enabling the cache. Cachability can then be enabled.

Architecture Note

This instruction is implementation-specific and may not be portable to other implementations.

iccci RA, RB

31 RA RB 966

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 222

Revision 1.02 - September 10, 2007 PPC405 Processor
icread

Instruction Cache ReadPreliminary User’s Manual
icread
Instruction Cache Read

EA ← (RA|0) + (RB)
if ((CCR0[CIS] = 0) ∧ (CCR0[CWS] = 0)) then (ICDBDR) ← (i-cache data, way A)
if ((CCR0[CIS] = 0) ∧ (CCR0[CWS] = 1)) then (ICDBDR) ← (i-cache data, way B)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 0)) then (ICDBDR) ← (i-cache tag, way A)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 1)) then (ICDBDR) ← (i-cache tag, way B)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

This instruction is a debugging tool for reading the instruction cache entries for the congruence class specified by
EA18:26. The cache information is read into the Instruction Cache Debug Data Register (ICDBDR), from where it
can be read into a GPR using the extended mnemonic mficdbdr.

If CCR0[CIS] = 0, the information is a word of instruction cache data from the addressed line. The word is specified
by EA27:29. If CCR0[CWS] = 0, the data is from the A-way, otherwise from the B-way.

If (CCR0[CIS] = 1), the information is a cache tag from the addressed congruence class. If (CCR0[CWS] = 0), the
tag is from the A-way, otherwise from the B-way.

Instruction cache tag information is placed in the ICDBDR as shown:

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• ICDBDR

Invalid Instruction Forms
• Reserved fields

Programming Note

Execution of this instruction is privileged.

The instruction pipeline does not automatically wait for data from icread to arrive at the ICDBDR before attempting
to use the contents of the ICDBDR. Therefore, insert an isync instruction between icread and mficdbdr.

icread RA, RB

31 RA RB 998

0 6 11 16 21 31

0:21 TAG Cache Tag

22:26 Reserved

27 V
Cache Line Valid
0 Not valid
1 Valid

28:30 Reserved

31 LRU
Least Recently Used (LRU)
0 A-way LRU
1 B-way LRU

AMCC Proprietary

http://www.manualslib.com/

 223

Revision 1.02 - September 10, 2007 PPC405 Processor
icread

Instruction Cache ReadPreliminary User’s Manual

icread r5,r6 # read cache information
isync # ensure completion of icread
mficdbdr r7 # move information to GPR

Instruction cache operations use MSR[DR], not MSR[IR], to determine translation of their operands. When data
translation is disabled, cachability for the EA of the operand of instruction cache operations is determined by the
ICCR, not the DCCR.

Exceptions

Instruction storage exceptions and instruction-side TLB miss exceptions are associated with instruction fetching,
not with instruction execution. Exceptions that occur during the execution of instruction cache operations cause
data-side exceptions (data storage exceptions and data TLB miss exceptions).

The execution of icread can cause a data TLB miss exception, at the specified EA, regardless of the non-specific
intent of that EA.

This instruction is considered a “load” and cannot cause a data storage exception.

This instruction is considered a “load” with respect to data address compare (DAC) debug exceptions, but will not
cause DAC debug events.

Architecture Note

This instruction is implementation-specific and may not be portable to other implementations.

AMCC Proprietary

http://www.manualslib.com/

 224

Revision 1.02 - September 10, 2007 PPC405 Processor
isync

Instruction SynchronizePreliminary User’s Manual
isync
Instruction Synchronize

The isync instruction is a context synchronizing instruction.

isync provides an ordering function for the effects of all instructions executed by the processor. Executing isync
insures that all instructions preceding the isync instruction execute before isync completes, except that storage
accesses caused by those instructions need not have completed.

No subsequent instructions are initiated by the processor until isync completes. Finally, execution of isync causes
the processor to discard any prefetched instructions, with the effect that subsequent instructions are fetched and
executed in the context established by the instructions preceding isync.

isync has no effect on caches.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

See the discussion of context synchronizing instructions in Synchronization on page 58.

The following code example illustrates the necessary steps for self-modifying code. This example assumes that
addr1 is both data and instruction cacheable.

stw regN, addr1 # data in regN is to become an instruction at addr1
dcbst addr1 # forces data from the data cache to memory
sync # wait until the data actually reaches the memory
icbi addr1 # the previous value at addr1 might already be in

the instruction cache; invalidate in the cache
isync # the previous value at addr1 might already have been

pre-fetched into the queue; invalidate the queue
so that the instruction must be re-fetched

Architecture Note

This instruction is part of the PowerPC Embedded Virtual Environment.

isync

19 150

0 6 21 31

AMCC Proprietary

http://www.manualslib.com/

 225

Revision 1.02 - September 10, 2007 PPC405 Processor
lbz

Load Byte and ZeroPreliminary User’s Manual
lbz
Load Byte and Zero

EA ← (RA|0) + EXTS(D)
(RT) ← 240 || MS(EA,1)

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by
sign-extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of register
RA otherwise.

The byte at the EA is extended to 32 bits by concatenating 24 0-bits to its left. The result is placed into register RT.

Registers Altered
• RT

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lbz RT, D(RA)

34 RT RA D

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 226

Revision 1.02 - September 10, 2007 PPC405 Processor
lbzu

Load Byte and Zero with UpdatePreliminary User’s Manual
lbzu
Load Byte and Zero with Update

EA ← (RA|0) + EXTS(D)
(RA) ← EA
(RT) ← 240 || MS(EA,1)

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by
sign-extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of register
RA otherwise. The EA is placed into register RA.

The byte at the EA is extended to 32 bits by concatenating 24 0-bits to its left. The result is placed into register RT.

Registers Altered
• RA

• RT

Invalid Instruction Forms
• RA=RT

• RA=0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lbzu RT, D(RA)

35 RT RA D

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 227

Revision 1.02 - September 10, 2007 PPC405 Processor
lbzux

Load Byte and Zero with Update IndexedPreliminary User’s Manual
lbzux
Load Byte and Zero with Update Indexed

EA ← (RA|0) + (RB)
(RA) ← EA
(RT) ← 240 || MS(EA,1)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise. The EA is placed into
register RA.

The byte at the EA is extended to 32 bits by concatenating 24 0-bits to its left. The result is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA

• RT

Invalid Instruction Forms
• Reserved fields

• RA=RT

• RA=0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lbzux RT, RA, RB

31 RT RA RB 119

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 228

Revision 1.02 - September 10, 2007 PPC405 Processor
lbzx

Load Byte and Zero IndexedPreliminary User’s Manual
lbzx
Load Byte and Zero Indexed

EA ← (RA|0) + (RB)
(RT) ← 240 || MS(EA,1)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The byte at the EA is extended to 32 bits by concatenating 24 0-bits to its left. The result is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lbzx RT,RA, RB

31 RT RA RB 87

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 229

Revision 1.02 - September 10, 2007 PPC405 Processor
lha

Load Halfword AlgebraicPreliminary User’s Manual
0.Instruction Setlha
Load Halfword Algebraic

EA ← (RA|0) + EXTS(D)
(RT) ← EXTS(MS(EA,2))

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by
sign-extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of register
RA otherwise.

The halfword at the EA is sign-extended to 32 bits and placed into register RT.

Registers Altered
• RT

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lha RT, D(RA)

42 RT RA D

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 230

Revision 1.02 - September 10, 2007 PPC405 Processor
lhau

Load Halfword Algebraic with UpdatePreliminary User’s Manual
lhau
Load Halfword Algebraic with Update

EA ← (RA) + EXTS(D)
(RA) ← EA
(RT) ← EXTS(MS(EA,2))

An effective address (EA) is formed by adding a displacement to the base address in register RA. The displace-
ment is obtained by sign-extending the 16-bit D field to 32 bits. The EA is placed into register RA.

The halfword at the EA is sign-extended to 32 bits and placed into register RT.

Registers Altered
• RA

• RT

Invalid Instruction Forms
• RA = RT

• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lhau RT, D(RA)

43 RT RA D

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 231

Revision 1.02 - September 10, 2007 PPC405 Processor
lhaux

Load Halfword Algebraic with Update IndexedPreliminary User’s Manual
lhaux
Load Halfword Algebraic with Update Indexed

EA ← (RA) + (RB)
(RA) ← EA
(RT) ← EXTS(MS(EA,2))

An effective address (EA) is formed by adding an index to the base address in register RA. The index is the
contents of register RB. The EA is placed into register RA.

The halfword at the EA is sign-extended to 32 bits and placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA

• RT

Invalid Instruction Forms
• Reserved fields

• RA = RT

• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lhaux RT, RA, RB

31 RT RA RB 375

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 232

Revision 1.02 - September 10, 2007 PPC405 Processor
lhax

Load Halfword Algebraic IndexedPreliminary User’s Manual
lhax
Load Halfword Algebraic Indexed

EA ← (RA|0) + (RB)
(RT) ← EXTS(MS(EA,2))

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The halfword at the EA is sign-extended to 32 bits and placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lhax RT, RA, RB

31 RT RA RB 343

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 233

Revision 1.02 - September 10, 2007 PPC405 Processor
lhbrx

Load Halfword Byte-Reverse IndexedPreliminary User’s Manual
lhbrx
Load Halfword Byte-Reverse Indexed

EA ← (RA|0) + (RB)
(RT) ← 160 || MS(EA +1,1) || MS(EA,1)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The halfword at the EA is byte-reversed. The resulting halfword is extended to 32 bits by concatenating 16 0-bits to
its left. The result is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lhbrx RT, RA, RB

31 RT RA RB 790

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 234

Revision 1.02 - September 10, 2007 PPC405 Processor
lhz

Load Halfword and ZeroPreliminary User’s Manual
lhz
Load Halfword and Zero

EA ← (RA|0) + EXTS(D)
(RT) ← 160 || MS(EA,2)

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by
sign-extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of register
RA otherwise.

The halfword at the EA is extended to 32 bits by concatenating 16 0-bits to its left. The result is placed into register
RT.

Registers Altered
• RT

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lhz RT, D(RA)

40 RT RA D

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 235

Revision 1.02 - September 10, 2007 PPC405 Processor
lhzu

Load Halfword and Zero with UpdatePreliminary User’s Manual
lhzu
Load Halfword and Zero with Update

EA ← (RA) + EXTS(D)
(RA) ← EA
(RT) ← 160 || MS(EA,2)

An effective address (EA) is formed by adding a displacement to the base address in register RA. The displace-
ment is obtained by sign-extending the 16-bit D field to 32 bits. The EA is placed into register RA.

The halfword at the EA is extended to 32 bits by concatenating 16 0-bits to its left. The result is placed into register
RT.

Registers Altered
• RA

• RT

Invalid Instruction Forms
• RA = RT

• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lhzu RT, D(RA)

41 RT RA D

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 236

Revision 1.02 - September 10, 2007 PPC405 Processor
lhzux

Load Halfword and Zero with Update IndexedPreliminary User’s Manual
lhzux
Load Halfword and Zero with Update Indexed

EA ← (RA) + (RB)
(RA) ← EA
(RT) ← 160 || MS(EA,2)

An effective address (EA) is formed by adding an index to the base address in register RA. The index is the
contents of register RB. The EA is placed into register RA.

The halfword at the EA is extended to 32 bits by concatenating 16 0-bits to its left. The result is placed into register
RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA

• RT

Invalid Instruction Forms
• Reserved fields

• RA = RT

• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lhzux RT, RA, RB

31 RT RA RB 311

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 237

Revision 1.02 - September 10, 2007 PPC405 Processor
lhzx

Load Halfword and Zero IndexedPreliminary User’s Manual
lhzx
Load Halfword and Zero Indexed

EA ← (RA|0) + (RB)
(RT) ← 160 || MS(EA,2)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The halfword at the EA is extended to 32 bits by concatenating 16 0-bits to its left. The result is placed into register
RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lhzx RT, RA, RB

31 RT RA RB 279

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 238

Revision 1.02 - September 10, 2007 PPC405 Processor
lmw

Load Multiple WordPreliminary User’s Manual
lmw
Load Multiple Word

EA ← (RA|0) + EXTS(D)
r ← RT
do while r ≤ 31

if ((r ≠ RA) ∨ (r = 31)) then
(GPR(r)) ← MS(EA,4)

r ← r + 1
EA ← EA + 4

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by
sign-extending the 16-bit D field in the instruction to 32 bits. The base address is 0 if the RA field is 0 and is the
contents of register RA otherwise.

A series of consecutive words starting at the EA are loaded into a set of consecutive GPRs, starting with register
RT and continuing to and including GPR(31). Register RA is not altered by this instruction (unless RA is GPR(31),
which is an invalid form of this instruction). The word which would have been placed into register RA is discarded.

Registers Altered
• RT through GPR(31).

Invalid Instruction Forms
• RA is in the range of registers to be loaded, including the case RA = RT = 0.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lmw RT, D(RA)

46 RT RA D

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 239

Revision 1.02 - September 10, 2007 PPC405 Processor
lswi

Load String Word ImmediatePreliminary User’s Manual
lswi
Load String Word Immediate

EA ← (RA|0)
if NB = 0 then

CNT ← 32
else

CNT ← NB
n ← CNT
RFINAL ← ((RT + CEIL(CNT/4) – 1) % 32)
r ← RT – 1
i ← 0
do while n > 0

if i = 0 then
r ← r + 1
if r = 32 then

r ← 0
if ((r ≠ RA) ∨ (r = RFINAL)) then

(GPR(r)) ← 0
if ((r ≠ RA) ∨ (r = RFINAL)) then

(GPR(r)i:i+7) ← MS(EA,1)
i ← i + 8
if i = 32 then

i ← 0
EA ← EA + 1
n ← n – 1

An effective address (EA) is determined by the RA field. If the RA field contains 0, the EA is 0. Otherwise, the EA is
the contents of register RA.

The NB field specifies the byte count CNT. If the NB field contains 0, the byte count is CNT = 32. Otherwise, the
byte count is CNT = NB.

A series of CNT consecutive bytes in main storage, starting at the EA, are loaded into CEIL(CNT/4) consecutive
GPRs, four bytes per GPR, until the byte count is exhausted. Bytes are loaded into GPRs; the byte at the lowest
address is loaded into the most significant byte. Bits to the right of the last byte loaded into the last GPR are set to
0.

The set of loaded GPRs starts at register RT, continues consecutively through GPR(31), and wraps to register 0,
loading until the byte count is exhausted, which occurs in register RFINAL. Register RA is not altered (unless
RA = RFINAL, an invalid form of this instruction). Bytes which would have been loaded into register RA are
discarded.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT and subsequent GPRs as described above.

lswi RT, RA, NB

31 RT RA NB 597

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 240

Revision 1.02 - September 10, 2007 PPC405 Processor
lswi

Load String Word ImmediatePreliminary User’s Manual

Invalid Instruction Forms
• Reserved fields

• RA is in the range of registers to be loaded

• RA = RT = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

AMCC Proprietary

http://www.manualslib.com/

 241

Revision 1.02 - September 10, 2007 PPC405 Processor
lswx

Load String Word IndexedPreliminary User’s Manual
lswx
Load String Word Indexed

EA ← (RA|0) + (RB)
CNT ← XER[TBC]
n ← CNT
RFINAL ← ((RT + CEIL(CNT/4) – 1) % 32)
r ← RT – 1
i ← 0
do while n > 0

if i = 0 then
r ← r + 1
if r = 32 then

r ← 0
if (((r ≠ RA) ∧ (r ≠ RB)) ∨ (r = RFINAL)) then

(GPR(r)) ← 0
if (((r ≠ RA) ∧ (r ≠ RB)) ∨ (r = RFINAL)) then

(GPR(r)i:i+7) ← MS(EA,1)
i ← i + 8
if i = 32 then

i ← 0
EA ← EA + 1
n ← n – 1

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

A byte count CNT is obtained from XER[TBC].

A series of CNT consecutive bytes in main storage, starting at the EA, are loaded into CEIL(CNT/4) consecutive
GPRs, four bytes per GPR, until the byte count is exhausted. Bytes are loaded into GPRs; the byte having the
lowest address is loaded into the most significant byte. Bits to the right of the last byte loaded in the last GPR used
are set to 0.

The set of consecutive GPRs loaded starts at register RT, continues through GPR(31), and wraps to register 0,
loading until the byte count is exhausted, which occurs in register RFINAL. Register RA is not altered (unless
RA = RFINAL, which is an invalid form of this instruction). Register RB is not altered (unless RB = RFINAL, which is
an invalid form of this instruction). Bytes which would have been loaded into registers RA or RB are discarded.

If XER[TBC] is 0, the byte count is 0 and the contents of register RT are undefined.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT and subsequent GPRs as described above.

Invalid Instruction Forms
• Reserved fields

• RA or RB is in the range of registers to be loaded.

lswx RT, RA, RB

31 RT RA RB 533

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 242

Revision 1.02 - September 10, 2007 PPC405 Processor
lswx

Load String Word IndexedPreliminary User’s Manual

• RA = RT = 0

Programming Note

If XER[TBC] = 0, the contents of register RT are unchanged and lswx is treated as a no-op.

The PowerPC Architecture states that, if XER[TBC] = 0 and if the EA is such that a precise data exception would
normally occur (if not for the zero length), lswx is treated as a no-op and the precise exception will not occur. Data
storage exceptions and alignment exceptions are examples of precise data exceptions.

However, the PowerPC Architecture makes no statement regarding imprecise exceptions related to lswx with
XER[TBC] = 0. The PPC405 generates an imprecise exception (machine check) on this instruction when all of the
following conditions are true:

• The instruction passes all protection bounds checking

• The address is cacheable

• The address is passed to the data cache

• The address misses in the data cache (resulting in a line fill request)

• The address encounters some form of bus error

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

AMCC Proprietary

http://www.manualslib.com/

 243

Revision 1.02 - September 10, 2007 PPC405 Processor
lwarx

Load Word and Reserve IndexedPreliminary User’s Manual
lwarx
Load Word and Reserve Indexed

EA ← (RA|0) + (RB)
RESERVE ← 1
(RT) ← MS(EA,4)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The word at the EA is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Execution of the lwarx instruction sets the reservation bit.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Programming Note

lwarx and the stwcx. instruction should paired in a loop, as shown in the following example, to create the effect of
an atomic operation to a memory area used as a semaphore between asynchronous processes. Only lwarx can
set the reservation bit to 1. stwcx. sets the reservation bit to 0 upon its completion, whether or not stwcx. sent
(RS) to memory. CR[CR0]EQ must be examined to determine whether (RS) was sent to memory.

loop: lwarx # read the semaphore from memory; set reservation
“alter” # change the semaphore bits in register as required
stwcx. # attempt to store semaphore; reset reservation
bne loop # an asynchronous process has intervened; try again

If the asynchronous process in the code example had paired lwarx with a store other than stwcx., the reservation
bit would not have been cleared in the asynchronous process, and the code example would have overwritten the
semaphore.

Exceptions

An alignment exception occurs if the EA is not word-aligned.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lwarx RT, RA, RB

31 RT RA RB 20

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 244

Revision 1.02 - September 10, 2007 PPC405 Processor
lwbrx

Load Word Byte-Reverse IndexedPreliminary User’s Manual
lwbrx
Load Word Byte-Reverse Indexed

EA ← (RA|0) + (RB)
(RT) ← MS(EA+3,1) || MS(EA+2,1) || MS(EA+1,1) || MS(EA,1)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The word at the EA is byte-reversed: the least significant byte becomes the most significant byte, the next least
significant byte becomes the next most significant byte, and so on. The resulting word is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lwbrx RT, RA, RB

31 RT RA RB 534

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 245

Revision 1.02 - September 10, 2007 PPC405 Processor
lwz

Load Word and ZeroPreliminary User’s Manual
lwz
Load Word and Zero

EA ← (RA|0) + EXTS(D)
(RT) ← MS(EA,4)

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by
sign-extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of register
RA otherwise.

The word at the EA is placed into register RT.

Registers Altered
• RT

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lwz RT, D(RA)

32 RT RA D

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 246

Revision 1.02 - September 10, 2007 PPC405 Processor
lwzu

Load Word and Zero with UpdatePreliminary User’s Manual
lwzu
Load Word and Zero with Update

EA ← (RA) + EXTS(D)
(RA) ← EA
(RT) ← MS(EA,4)

An effective address (EA) is formed by adding a displacement to the base address in register RA. The displace-
ment is obtained by sign-extending the 16-bit D field to 32 bits. The EA is placed into register RA.

The word at the EA is placed into register RT.

Registers Altered
• RA

• RT

Invalid Instruction Forms
• RA = RT

• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lwzu RT, D(RA)

33 RT RA D

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 247

Revision 1.02 - September 10, 2007 PPC405 Processor
lwzux

Load Word and Zero with Update IndexedPreliminary User’s Manual
lwzux
Load Word and Zero with Update Indexed

EA ← (RA) + (RB)
(RA) ← EA
(RT) ← MS(EA,4)

An effective address (EA) is formed by adding an index to the base address in register RA. The index is the
contents of register RB. The EA is placed into register RA.

The word at the EA is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA

• RT

Invalid Instruction Forms
• Reserved fields

• RA = RT

• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lwzux RT, RA, RB

31 RT RA RB 55

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 248

Revision 1.02 - September 10, 2007 PPC405 Processor
lwzx

Load Word and Zero IndexedPreliminary User’s Manual
lwzx
Load Word and Zero Indexed

EA ← (RA|0) + (RB)
(RT) ← MS(EA,4)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The word at the EA is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lwzx RT, RA, RB

31 RT RA RB 23

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 249

Revision 1.02 - September 10, 2007 PPC405 Processor
macchw

Multiply Accumulate Cross Halfword to Word Modulo SignedPreliminary User’s Manual
macchw
Multiply Accumulate Cross Halfword to Word Modulo Signed

prod0:31 ← (RA)16:31 x (RB)0:15 signed

temp0:32 ← prod0:31 + (RT)

(RT) ← temp1:32

The low-order halfword of RA is multiplied by the high-order halfword of RB. The signed product is summed with
the contents of RT and the sum is stored in a 33-bit temporary register. The contents of RT are replaced by the
low-order 32 bits of the temporary register.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

macchw RT, RA, RB OE=0, Rc=0
macchw. RT, RA, RB OE=0, Rc=1
macchwo RT, RA, RB OE=1, Rc=0
macchwo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 172 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 250

Revision 1.02 - September 10, 2007 PPC405 Processor
macchws

Multiply Accumulate Cross Halfword to Word Saturate SignedPreliminary User’s Manual
macchws
Multiply Accumulate Cross Halfword to Word Saturate Signed

prod0:31 ← (RA)16:31 x (RB)0:15 signed

temp0:32 ← prod0:31 + (RT)

if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 || 31(¬RT0))

else (RT) ← temp1:32

The low-order halfword of RA is multiplied by the high-order halfword of RB. The signed product is summed with
the contents of RT and the sum is stored in a 33-bit temporary register.

If a result does not overflow, the low-order 32 bits of the temporary register are stored in RT.

If a result overflows, the returned result is the nearest representable value. Thus, if a result is less than –231, the
value stored in RT is –231. Likewise, if a result is greater than 231 – 1, the value stored in RT is 231 – 1.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

macchws RT, RA, RB OE=0, Rc=0
macchws. RT, RA, RB OE=0, Rc=1
macchwso RT, RA, RB OE=1, Rc=0
macchwso. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 236 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 251

Revision 1.02 - September 10, 2007 PPC405 Processor
macchwsu

Multiply Accumulate Cross Halfword to Word Saturate UnsignedPreliminary User’s Manual
macchwsu
Multiply Accumulate Cross Halfword to Word Saturate Unsigned

prod0:31 ← (RA)16:31 x (RB)0:15 unsigned

temp0:32 ← prod0:31 + (RT)

(RT) ← (temp1:32 ∨ 32temp0)

The low-order halfword of RA is multiplied by the high-order halfword of RB. The unsigned product is summed with
the contents of RT and the sum is stored in a 33-bit temporary register.

If a result does not overflow, the low-order 32 bits of the temporary register are stored in RT.

If a result overflows, the returned result is the nearest representable value. Thus, if a result is greater than 232 – 1,
the value stored in RT is 232 – 1.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

macchwsu RT, RA, RB OE=0, Rc=0
macchwsu. RT, RA, RB OE=0, Rc=1
macchwsuo RT, RA, RB OE=1, Rc=0
macchwsuo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 204 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 252

Revision 1.02 - September 10, 2007 PPC405 Processor
macchwu

Multiply Accumulate Cross Halfword to Word Modulo UnsignedPreliminary User’s Manual
macchwu
Multiply Accumulate Cross Halfword to Word Modulo Unsigned

prod0:31 ← (RA)16:31 x (RB)0:15 unsigned

temp0:32 ← prod0:31 + (RT)

(RT) ← temp1:32

The low-order halfword of RA is multiplied by the high-order halfword of RB. The unsigned product is summed with
the contents of RT and the sum is stored in a 33-bit temporary register. The contents of RT are replaced by the
low-order 32 bits of the temporary register.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

macchwu RT, RA, RB OE=0, Rc=0
macchwu. RT, RA, RB OE=0, Rc=1
macchwuo RT, RA, RB OE=1, Rc=0
macchwuo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 140 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 253

Revision 1.02 - September 10, 2007 PPC405 Processor
machhw

Multiply Accumulate High Halfword to Word Modulo SignedPreliminary User’s Manual
machhw
Multiply Accumulate High Halfword to Word Modulo Signed

prod0:31 ← (RA)0:15 x (RB)0:15 signed

temp0:32 ← prod0:31 + (RT)

(RT) ← temp1:32

The high-order halfword of RA is multiplied by the high-order halfword of RB. The signed product is summed with
the contents of RT and the sum is stored in a 33-bit temporary register. The contents of RT are replaced by the
low-order 32 bits of the temporary register.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

machhw RT, RA, RB OE=0, Rc=0
machhw. RT, RA, RB OE=0, Rc=1
machhwo RT, RA, RB OE=1, Rc=0
machhwo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 44 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 254

Revision 1.02 - September 10, 2007 PPC405 Processor
machhws

Multiply Accumulate High Halfword to Word Saturate SignedPreliminary User’s Manual
machhws
Multiply Accumulate High Halfword to Word Saturate Signed

prod0:31 ← (RA)0:15 x (RB)0:15 signed

temp0:32 ← prod0:31 + (RT)

if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 || 31(¬RT0))

else (RT) ← temp1:32

The high-order halfword of RA is multiplied by the high-order halfword of RB. The signed product is summed with
the contents of RT and the sum is stored in a 33-bit temporary register.

If a result does not overflow, the low-order 32 bits of the temporary register are stored in RT.

If a result overflows, the returned result is the nearest representable value. Thus, if a result is less than –231, the
value stored in RT is –231. Likewise, if a result is greater than 231 – 1, the value stored in RT is 231 – 1.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

machhws RT, RA, RB OE=0, Rc=0
machhws. RT, RA, RB OE=0, Rc=1
machhwso RT, RA, RB OE=1, Rc=0
machhwso. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 108 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 255

Revision 1.02 - September 10, 2007 PPC405 Processor
machhwsu

Multiply Accumulate High Halfword to Word Saturate UnsignedPreliminary User’s Manual
machhwsu
Multiply Accumulate High Halfword to Word Saturate Unsigned

prod0:31 ← (RA)0:15 x (RB)0:15 unsigned

temp0:32 ← prod0:31 + (RT)

(RT) ← (temp1:32 ∨ 32temp0)

The high-order halfword of RA is multiplied by the high-order halfword of RB. The unsigned product is summed
with the contents of RT and the sum is stored in a 33-bit temporary register.

If a result does not overflow, the low-order 32 bits of the temporary register are stored in RT.

If a result overflows, the returned result is the nearest representable value. Thus, if a result is greater than 232 – 1,
the value stored in RT is 232 – 1.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

machhwsu RT, RA, RB OE=0, Rc=0
machhwsu. RT, RA, RB OE=0, Rc=1
machhwsuo RT, RA, RB OE=1, Rc=0
machhwsuo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 76 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 256

Revision 1.02 - September 10, 2007 PPC405 Processor
machhwu

Multiply Accumulate High Halfword to Word Modulo UnsignedPreliminary User’s Manual
machhwu
Multiply Accumulate High Halfword to Word Modulo Unsigned

prod0:31 ← (RA)0:15 x (RB)0:15 unsigned

temp0:32 ← prod0:31 + (RT)

(RT) ← temp1:32

The high-order halfword of RA is multiplied by the high-order halfword of RB. The unsigned product is summed
with the contents of RT and the sum is stored in a 33-bit temporary register. The contents of RT are replaced by the
low-order 32 bits of the temporary register.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

machhwu RT, RA, RB OE=0, Rc=0
machhwu. RT, RA, RB OE=0, Rc=1
machhwuo RT, RA, RB OE=1, Rc=0
machhwuo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 12 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 257

Revision 1.02 - September 10, 2007 PPC405 Processor
maclhw

Multiply Accumulate Low Halfword to Word Modulo SignedPreliminary User’s Manual
maclhw
Multiply Accumulate Low Halfword to Word Modulo Signed

prod0:31 ← (RA)16:31 x (RB)16:31 signed

temp0:32 ← prod0:31 + (RT)

(RT) ← temp1:32

The low-order halfword of RA is multiplied by the low-order halfword of RB. The signed product is summed with the
contents of RT and the sum is stored in a 33-bit temporary register. The contents of RT are replaced by the low-
order 32 bits of the temporary register.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

maclhw RT, RA, RB OE=0, Rc=0
maclhw. RT, RA, RB OE=0, Rc=1
maclhwo RT, RA, RB OE=1, Rc=0
maclhwo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 428 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 258

Revision 1.02 - September 10, 2007 PPC405 Processor
maclhws

Multiply Accumulate Low Halfword to Word Saturate SignedPreliminary User’s Manual
maclhws
Multiply Accumulate Low Halfword to Word Saturate Signed

prod0:31 ← (RA)16:31 x (RB)16:31 signed

temp0:32 ← prod0:31 + (RT)

if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 || 31(¬RT0))

else (RT) ← temp1:32

The low-order halfword of RA is multiplied by the low-order halfword of RB. The signed product is summed with the
contents of RT and the sum is stored in a 33-bit temporary register.

If a result does not overflow, the low-order 32 bits of the temporary register are stored in RT.

If a result overflows, the returned result is the nearest representable value. Thus, if a result is less than –231, the
value stored in RT is –231. Likewise, if a result is greater than 231 – 1, the value stored in RT is 231 – 1.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

maclhws RT, RA, RB OE=0, Rc=0
maclhws. RT, RA, RB OE=0, Rc=1
maclhwso RT, RA, RB OE=1, Rc=0
maclhwso. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 492 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 259

Revision 1.02 - September 10, 2007 PPC405 Processor
maclhwsu

Multiply Accumulate Low Halfword to Word Saturate UnsignedPreliminary User’s Manual
maclhwsu
Multiply Accumulate Low Halfword to Word Saturate Unsigned

prod0:31 ← (RA)16:31 x (RB)16:31 unsigned

temp0:32 ← prod0:31 + (RT)

(RT) ← (temp1:32 ∨ 32temp0)

The low-order halfword of RA is multiplied by the low-order halfword of RB. The unsigned product is summed with
the contents of RT and the sum is stored in a 33-bit temporary register.

If a result does not overflow, the low-order 32 bits of the temporary register are stored in RT.

If a result overflows, the returned result is the nearest representable value. Thus, if a result is greater than 232 – 1,
the value stored in RT is 232 – 1.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

maclhwsu RT, RA, RB OE=0, Rc=0
maclhwsu. RT, RA, RB OE=0, Rc=1
maclhwsuo RT, RA, RB OE=1, Rc=0
maclhwsuo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 460 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 260

Revision 1.02 - September 10, 2007 PPC405 Processor
maclhwu

Multiply Accumulate Low Halfword to Word Modulo UnsignedPreliminary User’s Manual
maclhwu
Multiply Accumulate Low Halfword to Word Modulo Unsigned

prod0:31 ← (RA)16:31 x (RB)16:31 unsigned

temp0:32 ← prod0:31 + (RT)

(RT) ← temp1:32

The low-order halfword of RA is multiplied by the low-order halfword of RB. The unsigned product is summed with
the contents of RT and the sum is stored in a 33-bit temporary register. The contents of RT are replaced by the
low-order 32 bits of the temporary register.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

maclhwu RT, RA, RB OE=0, Rc=0
maclhwu. RT, RA, RB OE=0, Rc=1
maclhwuo RT, RA, RB OE=1, Rc=0
maclhwuo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 396 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 261

Revision 1.02 - September 10, 2007 PPC405 Processor
mcrf

Move Condition Register FieldPreliminary User’s Manual
mcrf
Move Condition Register Field

m ← BFA
n ← BF
(CR[CRn]) ← (CR[CRm])

The contents of the CR field specified by the BFA field are placed into the CR field specified by the BF field.

Registers Altered
• CR[CRn] where n is specified by the BF field.

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mcrf BF, BFA

19 BF BFA 0

0 6 9 11 14 21 31

AMCC Proprietary

http://www.manualslib.com/

 262

Revision 1.02 - September 10, 2007 PPC405 Processor
mcrxr

Move to Condition Register from XERPreliminary User’s Manual
25.Instruction Setmcrxr
Move to Condition Register from XER

n ← BF
(CR[CRn]) ← XER0:3
XER0:3 ← 40

The contents of XER0:3 are placed into the CR field specified by the BF field. XER0:3 are then set to 0.

This transfer is positional, by bit number, so the mnemonics associated with each bit are changed. See Table 9-18
for clarification.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CR[CRn] where n is specified by the BF field.

• XER[SO, OV, CA]

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mcrxr BF

31 BF 512

0 6 9 21 31

Table 9-18. Transfer Bit Mnemonic Assignment

Bit XER Usage CR Usage

0 SO LT

1 OV GT

2 CA EQ

3 Reserved SO

AMCC Proprietary

http://www.manualslib.com/

 263

Revision 1.02 - September 10, 2007 PPC405 Processor
mfcr

Move From Condition RegisterPreliminary User’s Manual
mfcr
Move From Condition Register

(RT) ← (CR)

The contents of the CR are placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mfcr RT

31 RT 19

0 6 11 21 31

AMCC Proprietary

http://www.manualslib.com/

 264

Revision 1.02 - September 10, 2007 PPC405 Processor
mfdcr

Move from Device Control RegisterPreliminary User’s Manual
mfdcr
Move from Device Control Register

DCRN ← DCRF5:9 || DCRF0:4
(RT) ← (DCR(DCRN))

The contents of the DCR specified by the DCRF field are placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

• Invalid DCRF values

Programming Note

Execution of this instruction is privileged.

The DCR number (DCRN) specified in the assembler language coding of mfdcr refers to a DCR number. The
assembler handles the unusual register number encoding to generate the DCRF field.

Architecture Note

This instruction is implementation-specific and may not be portable to other implementations.

mfdcr RT, DCRN

31 RT DCRF 323

0 6 11 21 31

AMCC Proprietary

http://www.manualslib.com/

 265

Revision 1.02 - September 10, 2007 PPC405 Processor
mfmsr

Move From Machine State RegisterPreliminary User’s Manual
25.Instruction Setmfmsr
Move From Machine State Register

(RT) ← (MSR)

The contents of the MSR are placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Programming Note

Execution of this instruction is privileged.

Architecture Note

This instruction is part of the PowerPC Embedded Operating Environment.

mfmsr RT

31 RT 83

0 6 11 21 31

AMCC Proprietary

http://www.manualslib.com/

 266

Revision 1.02 - September 10, 2007 PPC405 Processor
mfspr

Move From Special Purpose RegisterPreliminary User’s Manual
mfspr
Move From Special Purpose Register

SPRN ← SPRF5:9 || SPRF0:4
(RT) ← (SPR(SPRN))

The contents of the SPR specified by the SPRF field are placed into register RT. See Special Purpose Registers on
page 354 for a listing of SPR mnemonics and corresponding SPRN and SPRF values.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

• Invalid SPRF values

Programming Note

Execution of this instruction is privileged if instruction bit 11 contains 1. See User and Supervisor Modes on
page 56.

The SPR number (SPRN) specified in the assembler language coding of mfspr refers to an SPR number (see
Special Purpose Registers on page 354 for a list of SPRN values). The assembler handles the unusual register
number encoding to generate the SPRF field. Also, see Privileged SPRs on page 57 for information about privi-
leged SPRs.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mfspr RT, SPRN

31 RT SPRF 339

0 6 11 21 31

AMCC Proprietary

http://www.manualslib.com/

 267

Revision 1.02 - September 10, 2007 PPC405 Processor
mfspr

Move From Special Purpose RegisterPreliminary User’s Manual

Table 9-19. Extended Mnemonics for mfspr

Mnemonic Operands Function
Other

Registers
Changed

mfccr0
mfctr
mfdac1
mfdac2
mfdear
mfdbcr0
mfdbcr1
mfdbsr
mfdccr
mfdcwr
mfdvc1
mfdvc2
mfesr
mfevpr
mfiac1
mfiac2
mfiac3
mfiac4
mficcr
mficdbdr
mflr
mfpid
mfpit
mfpvr
mfsgr
mfsler
mfsprg0
mfsprg1
mfsprg2
mfsprg3
mfsprg4
mfsprg5
mfsprg6
mfsprg7
mfsrr0
mfsrr1
mfsrr2
mfsrr3
mfsu0r
mftcr
mftsr
mfxer
mfzpr

RT

Move from special purpose register SPRN.
Extended mnemonic for
mfspr RT,SPRN

See Special Purpose Registers on page 354 for a list of
valid SPRN values.

AMCC Proprietary

http://www.manualslib.com/

 268

Revision 1.02 - September 10, 2007 PPC405 Processor
mftb

Move From Time BasePreliminary User’s Manual
mftb

Move From Time Base

TBRN ← TBRF5:9 || TBRF0:4
(RT) ← (TBR(TBRN))

The contents of the time base register (TBR) specified by the TBRF field are placed into register RT. The following
table lists the TBRN and TBRF values.

If TBRN is a value other than those listed in the table, the results are boundedly undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

• Invalid TBRF values

Programming Notes

The mnemonic mftb serves as both a hardware mnemonic and an extended mnemonic. The assembler recog-
nizes an mftb mnemonic having two operands as the hardware form; an mftb mnemonic having one operand is
recognized as the extended form.

The TBR number (TBRN) specified in the assembler language coding of the mftb instruction refers to a TBR
number listed in the preceding table. The assembler handles the unusual register number encoding to generate the
TBRF field.

Architecture Note

This instruction is part of the PowerPC Embedded Virtual Environment.

mftb RT, TBRN

31 RT TBRF 371

0 6 11 21 31

Table 9-20. Extended Mnemonics for mftb

Register
Mnemonic Register Name

TBRN
TBRF Access

Decimal Hex

TBL Time Base Lower 268 0x10C 0x188 Read-only

TBU Time Base Upper 269 0x10D 0x1A8 Read-only

Table 9-21. Extended Mnemonics for mftb

Mnemonic Operands Function Other Registers
Altered

mftb RT
Move the contents of TBL into RT.

Extended mnemonic for
mftb RT,TBL

mftbu RT
Move the contents of TBU into RT.

Extended mnemonic for
mftb RT,TBU

AMCC Proprietary

http://www.manualslib.com/

 269

Revision 1.02 - September 10, 2007 PPC405 Processor
mtcrf

Move to Condition Register FieldsPreliminary User’s Manual
mtcrf
Move to Condition Register Fields

mask ← 4(FXM0) || 4(FXM1) || ... || 4(FXM6) || 4(FXM7)
(CR) ← ((RS) ∧ mask) ∨ ((CR) ∧ ¬mask)

Some or all of the contents of register RS are placed into the CR as specified by the FXM field.

Each bit in the FXM field controls the copying of 4 bits in register RS into the corresponding bits in the CR. The
correspondence between the bits in the FXM field and the bit copying operation is shown in the following table:

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mtcrf FXM, RS

31 RS FXM 144

0 6 11 12 20 21 31

FXM Bit Number Bits Controlled

0 0:3

1 4:7

2 8:11

3 12:15

4 16:19

5 20:23

6 24:27

7 28:31

Table 9-22. Extended Mnemonics for mtcrf

Mnemonic Operands Function Other Registers
Altered

mtcr RS
Move to CR.

Extended mnemonic for
mtcrf 0xFF,RS

AMCC Proprietary

http://www.manualslib.com/

 270

Revision 1.02 - September 10, 2007 PPC405 Processor
mtdcr

Move To Device Control RegisterPreliminary User’s Manual
mtdcr
Move To Device Control Register

DCRN ← DCRF5:9 || DCRF0:4
(DCR(DCRN)) ← (RS)

The contents of register RS are placed into the DCR specified by the DCRF field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• DCR(DCRN)

Invalid Instruction Forms
• Reserved fields

• Invalid DCRF values

Programming Note

Execution of this instruction is privileged.

The DCR number (DCRN) specified in the assembler language coding of mtdcr refers to a DCR number. The
assembler handles the unusual register number encoding to generate the DCRF field.

Architecture Note

This instruction is implementation-specific and may not be portable to other implementations.

mtdcr DCRN, RS

31 RS DCRF 451

0 6 11 21 31

AMCC Proprietary

http://www.manualslib.com/

 271

Revision 1.02 - September 10, 2007 PPC405 Processor
mtmsr

Move To Machine State RegisterPreliminary User’s Manual
25.Instruction Setmtmsr
Move To Machine State Register

(MSR) ← (RS)

The contents of register RS are placed into the MSR.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• MSR

Invalid Instruction Forms
• Reserved fields

Programming Note

The mtmsr instruction is privileged and execution synchronizing.

Architecture Note

This instruction is part of the PowerPC Embedded Operating Environment.

mtmsr RS

31 RS 146

0 6 11 21 31

AMCC Proprietary

http://www.manualslib.com/

 272

Revision 1.02 - September 10, 2007 PPC405 Processor
mtspr

Move To Special Purpose RegisterPreliminary User’s Manual
mtspr
Move To Special Purpose Register

SPRN ← SPRF5:9 || SPRF0:4
(SPR(SPRN)) ← (RS)

The contents of register RS are placed into register RT. See Special Purpose Registers on page 354 for a listing of
SPR mnemonics and corresponding SPRN and SPRF values.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• SPR(SPRN)

Invalid Instruction Forms
• Reserved fields

• Invalid SPRF values

Programming Note

Execution of this instruction is privileged if instruction bit 11 is a 1. See Privileged SPRs on page 57 for more infor-
mation.

The SPR number (SPRN) specified in the assembler language coding of the mtspr instruction refers to an SPR
number (see Special Purpose Registers on page 354 for a list of SPRN values). The assembler handles the
unusual register number encoding to generate the SPRF field.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mtspr SPRN, RS

31 RS SPRF 467

0 6 11 21 31

AMCC Proprietary

http://www.manualslib.com/

 273

Revision 1.02 - September 10, 2007 PPC405 Processor
mtspr

Move To Special Purpose RegisterPreliminary User’s Manual

Table 9-23. Extended Mnemonics for mtspr

Mnemonic Operands Function Other Registers
Altered

mtccr0
mtctr
mtdac1
mtdac2
mtdbcr0
mtdbcr1
mtdbsr
mtdccr
mtdcwr
mtdear
mtdvc1
mtdvc2
mtesr
mtevpr
mtiac1
mtiac2
mtiac3
mtiac4
mticcr
mticdbdr
mtlr
mtpid
mtpit
mtpvr
mtsgr
mtsler
mtsprg0
mtsprg1
mtsprg2
mtsprg3
mtsprg4
mtsprg5
mtsprg6
mtsprg7
mtsrr0
mtsrr1
mtsrr2
mtsrr3
mtsu0r
mttcr
mttsr
mtxer
mtzpr

RS

Move to special purpose register SPRN.
Extended mnemonic for
mtspr SPRN,RS

See Special Purpose Registers on page 354 for a list of
valid SPRN values.

AMCC Proprietary

http://www.manualslib.com/

 274

Revision 1.02 - September 10, 2007 PPC405 Processor
mulchw

Multiply Cross Halfword to Word SignedPreliminary User’s Manual
25.Instruction Setmulchw
Multiply Cross Halfword to Word Signed

(RT)0:31 ← (RA)16:31 x (RB)0:15 signed

The low-order halfword of RA is multiplied by the high-order halfword of RB. The resulting signed product replaces
the contents of RT.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

mulchw RT, RA, RB Rc=0
mulchw. RT, RA, RB Rc=1

4 RT RA RB 168 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 275

Revision 1.02 - September 10, 2007 PPC405 Processor
mulchwu

Multiply Cross Halfword to Word UnsignedPreliminary User’s Manual
mulchwu
Multiply Cross Halfword to Word Unsigned

(RT)0:31 ← (RA)16:31 x (RB)0:15 unsigned

The low-order halfword of RA is multiplied by the high-order halfword of RB. The resulting unsigned product
replaces the contents of RT.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

mulchwu RT, RA, RB Rc=0
mulchwu. RT, RA, RB Rc=1

4 RT RA RB 136 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 276

Revision 1.02 - September 10, 2007 PPC405 Processor
mulhhw

Multiply High Halfword to Word SignedPreliminary User’s Manual
mulhhw
Multiply High Halfword to Word Signed

(RT)0:31 ← (RA)0:15 x (RB)0:15 signed

The high-order halfword of RA is multiplied by the high-order halfword of RB. The resulting signed product replaces
the contents of RT.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

mulhhw RT, RA, RB Rc=0
mulhhw. RT, RA, RB Rc=1

4 RT RA RB 40 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 277

Revision 1.02 - September 10, 2007 PPC405 Processor
mulhhwu

Multiply High Halfword to Word UnsignedPreliminary User’s Manual
mulhhwu
Multiply High Halfword to Word Unsigned

(RT)0:31 ← (RA)0:15 x (RB)0:15 unsigned

The high-order halfword of RA is multiplied by the high-order halfword of RB. The resulting unsigned product
replaces the contents of RT.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

mulhhwu RT, RA, RB Rc=0
mulhhwu. RT, RA, RB Rc=1

4 RT RA RB 8 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 278

Revision 1.02 - September 10, 2007 PPC405 Processor
mulhw

Multiply High WordPreliminary User’s Manual
mulhw
Multiply High Word

prod0:63 ← (RA) × (RB) signed
(RT) ← prod0:31

The 64-bit signed product of registers RA and RB is formed. The most significant 32 bits of the result is placed into
register RT.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Programming Note

The most significant 32 bits of the product, unlike the least significant 32 bits, may differ depending on whether the
registers RA and RB are interpreted as signed or unsigned quantities. mulhw generates the correct result when
these operands are interpreted as signed quantities. mulhwu generates the correct result when these operands
are interpreted as unsigned quantities.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mulhw RT, RA, RB Rc=0
mulhw. RT, RA, RB Rc=1

31 RT RA RB 75 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 279

Revision 1.02 - September 10, 2007 PPC405 Processor
mulhwu

Multiply High Word UnsignedPreliminary User’s Manual
mulhwu
Multiply High Word Unsigned

prod0:63 ← (RA) × (RB) unsigned
(RT) ← prod0:31

The 64-bit unsigned product of registers RA and RB is formed. The most significant 32 bits of the result are placed
into register RT.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Programming Note

The most significant 32 bits of the product, unlike the least significant 32 bits, may differ depending on whether the
registers RA and RB are interpreted as signed or unsigned quantities. The mulhw instruction generates the correct
result when these operands are interpreted as signed quantities. The mulhwu instruction generates the correct
result when these operands are interpreted as unsigned quantities.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mulhwu RT, RA, RB Rc=0
mulhwu. RT, RA, RB Rc=1

31 RT RA RB 11 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 280

Revision 1.02 - September 10, 2007 PPC405 Processor
mullhw

Multiply Low Halfword to Word SignedPreliminary User’s Manual
mullhw
Multiply High Halfword to Word Signed

(RT)0:31 ← (RA)16:31 x (RB)16:31 signed

The low-order halfword of RA is multiplied by the low-order halfword of RB. The resulting signed product replaces
the contents of RT.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

mullhw RT, RA, RB Rc=0
mullhw. RT, RA, RB Rc=1

4 RT RA RB 424 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 281

Revision 1.02 - September 10, 2007 PPC405 Processor
mullhwu

Multiply Low Halfword to Word UnsignedPreliminary User’s Manual
mullhwu
Multiply High Halfword to Word Unsigned

(RT)0:31 ← (RA)16:31 x (RB)16:31 unsigned

The low-order halfword of RA is multiplied by the low-order halfword of RB. The resulting unsigned product
replaces the contents of RT.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

mullhwu RT, RA, RB OE=0, Rc=0
mullhwu. RT, RA, RB OE=0, Rc=1

4 RT RA RB 392 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 282

Revision 1.02 - September 10, 2007 PPC405 Processor
mulli

Multiply Low ImmediatePreliminary User’s Manual
mulli
Multiply Low Immediate

prod0:47 ← (RA) × EXTS(IM) signed
(RT) ← prod16:47

The 48-bit product of register RA and the sign-extended IM field is formed. Both register RA and the IM field are
interpreted as signed quantities. The least significant 32 bits of the product are placed into register RT.

Registers Altered
• RT

Programming Note

The least significant 32 bits of the product are correct, regardless of whether register RA and field IM are inter-
preted as signed or unsigned numbers.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mulli RT, RA, IM

7 RT RA IM

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 283

Revision 1.02 - September 10, 2007 PPC405 Processor
mullw

Multiply Low WordPreliminary User’s Manual
mullw
Multiply Low Word

prod0:63 ← (RA) × (RB) signed
(RT) ← prod32:63

The 64-bit signed product of register RA and register RB is formed. The least significant 32 bits of the result is
placed into register RT.

If the signed product cannot be represented in 32 bits and OE=1, XER[SO, OV] are set to 1.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE=1

Programming Note

The least significant 32 bits of the product are correct, regardless of whether register RA and register RB are inter-
preted as signed or unsigned numbers. The overflow indication is correct only if the operands are regarded as
signed numbers.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mullw RT, RA, RB OE=0, Rc=0
mullw. RT, RA, RB OE=0, Rc=1
mullwo RT, RA, RB OE=1, Rc=0
mullwo. RT, RA, RB OE=1, Rc=1

31 RT RA RB OE 235 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 284

Revision 1.02 - September 10, 2007 PPC405 Processor
nand
NANDPreliminary User’s Manual

nand
NAND

(RA) ← ¬((RS) ∧ (RB))

The contents of register RS is ANDed with the contents of register RB; the ones complement of the result is placed
into register RA.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

nand RA, RS, RB Rc=0
nand. RA, RS, RB Rc=1

31 RT RA RB 476 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 285

Revision 1.02 - September 10, 2007 PPC405 Processor
neg

NegatePreliminary User’s Manual
neg
Negate

(RT) ← ¬(RA) + 1

The twos complement of the contents of register RA are placed into register RT.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE=1

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

neg RT, RA OE=0, Rc=0
neg. RT, RA OE=0, Rc=1
nego RT, RA OE=1, Rc=0
nego. RT, RA OE=1, Rc=1

31 RT RA OE 104 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 286

Revision 1.02 - September 10, 2007 PPC405 Processor
nmacchw

Negative Multiply Accumulate Cross Halfword to Word ModuloPreliminary User’s Manual
nmacchw
Negative Multiply Accumulate Cross Halfword to Word Modulo Signed

nprod0:31 ← –((RA)16:31 x (RB)0:15) signed

temp0:32 ← nprod0:31 + (RT)

(RT) ← temp1:32

The low-order halfword of RA is multiplied by the high-order halfword of RB. The negated signed product is
summed with the contents of RT and the sum is stored in a 33-bit temporary register. The contents of RT are
replaced by the low-order 32 bits of the temporary register.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

nmacchw RT, RA, RB OE=0, Rc=0
nmacchw. RT, RA, RB OE=0, Rc=1
nmacchwo RT, RA, RB OE=1, Rc=0
nmacchwo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 174 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 287

Revision 1.02 - September 10, 2007 PPC405 Processor
nmacchws

Negative Multiply Accumulate Cross Halfword to Word SaturatePreliminary User’s Manual
nmacchws
Negative Multiply Accumulate High Halfword to Word Saturate Signed

nprod0:31 ← –((RA)16:31 x (RB)0:15 signed

temp0:32 ← nprod0:31 + (RT)

if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 || 31(¬RT0))

else (RT) ← temp1:32

The low-order halfword of RA is multiplied by the high-order halfword of RB. The negated signed product is
summed with the contents of RT and the sum is stored in a 33-bit temporary register.

If a result does not overflow, the low-order 32 bits of the temporary register are stored in RT.

If a result overflows, the returned result is the nearest representable value. Thus, if a result is less than –231, the
value stored in RT is –231. Likewise, if a result is greater than 231 – 1, the value stored in RT is 231 – 1.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

nmacchws RT, RA, RB OE=0, Rc=0
nmacchws. RT, RA, RB OE=0, Rc=1
nmacchwso RT, RA, RB OE=1, Rc=0
nmacchwso. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 238 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 288

Revision 1.02 - September 10, 2007 PPC405 Processor
nmachhw

Negative Multiply Accumulate High Halfword to Word ModuloPreliminary User’s Manual
nmachhw
Negative Multiply Accumulate High Halfword to Word Modulo Signed

nprod0:31 ← –((RA)0:15 x (RB)0:15) signed

temp0:32 ← nprod0:31 + (RT)

(RT) ← temp1:32

The high-order halfword of RA is multiplied by the high-order halfword of RB. The negated signed product is
summed with the contents of RT and the sum is stored in a 33-bit temporary register. The contents of RT are
replaced by the low-order 32 bits of the temporary register.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

nmachhw RT, RA, RB OE=0, Rc=0
nmachhw. RT, RA, RB OE=0, Rc=1
nmachhwo RT, RA, RB OE=1, Rc=0
nmachhwo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 46 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 289

Revision 1.02 - September 10, 2007 PPC405 Processor
nmachhws

Negative Multiply Accumulate High Halfword to Word SaturatePreliminary User’s Manual
nmachhws
Negative Multiply Accumulate High Halfword to Word Saturate Signed

nprod0:31 ← –((RA)0:15 x (RB)0:15) signed

temp0:32 ← nprod0:31 + (RT)

if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 || 31(¬RT0))

else (RT) ← temp1:32

The high-order halfword of RA is multiplied by the high-order halfword of RB. The negated signed product is
summed with the contents of RT and the sum is stored in a 33-bit temporary register.

If a result does not overflow (i.e., it is accurately representable in 32 bits), the low-order 32 bits of the temporary
register are stored in RT.

If a result overflows, the returned result is the nearest representable value. Thus, if a result is less than –231, the
value stored in RT is –231. Likewise, if a result is greater than 231 – 1, the value stored in RT is 231 – 1.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

nmachhws RT, RA, RB OE=0, Rc=0
nmachhws. RT, RA, RB OE=0, Rc=1
nmachhwso RT, RA, RB OE=1, Rc=0
nmachhwso. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 110 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 290

Revision 1.02 - September 10, 2007 PPC405 Processor
nmaclhw

Negative Multiply Accumulate Low Halfword to Word Modulo SignedPreliminary User’s Manual
nmaclhw
Negative Multiply Accumulate Low Halfword to Word Modulo Signed

nprod0:31 ← –((RA)16:31 x (RB)16:31) signed

temp0:32 ← nprod0:31 + (RT)

(RT) ← temp1:32

The low-order halfword of RA is multiplied by the low-order halfword of RB. The negated signed product is summed
with the contents of RT and the sum is stored in a 33-bit temporary register. The contents of RT are replaced by the
low-order 32 bits of the temporary register.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

nmaclhw RT, RA, RB OE=0, Rc=0
nmaclhw. RT, RA, RB OE=0, Rc=1
nmaclhwo RT, RA, RB OE=1, Rc=0
nmachlwo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 430 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 291

Revision 1.02 - September 10, 2007 PPC405 Processor
nmaclhws

Negative Multiply Accumulate High Halfword to Word SaturatePreliminary User’s Manual
nmaclhws
Negative Multiply Accumulate Low Halfword to Word Saturate Signed

nprod0:31 ← –((RA)16:31 x (RB)16:31) signed

temp0:32 ← nprod0:31 + (RT)

if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 || 31(¬RT0))

else (RT) ← temp1:32

The low-order halfword of RA is multiplied by the low-order halfword of RB. The negated signed product is summed
with the contents of RT and the sum is stored in a 33-bit temporary register.

If a result does not overflow, the low-order 32 bits of the temporary register are stored in RT.

If a result overflows, the returned result is the nearest representable value. Thus, if a result is less than –231, the
value stored in RT is –231. Likewise, if a result is greater than 231 – 1, the value stored in RT is 231 – 1.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the architectural
requirements for APUs of the PowerPC Embedded Environment. As such, it is not part of the PowerPC Architec-
ture, nor is it part of the PowerPC Embedded Environment. Programs that use this instruction may not be portable
to other implementations.

nmaclhws RT, RA, RB OE=0, Rc=0
nmaclhws. RT, RA, RB OE=0, Rc=1
nmaclhwso RT, RA, RB OE=1, Rc=0
nmachlwso. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 494 Rc

0 6 11 16 21 22 31

AMCC Proprietary

http://www.manualslib.com/

 292

Revision 1.02 - September 10, 2007 PPC405 Processor
nor
NORPreliminary User’s Manual

nor
NOR

(RA) ← ¬((RS) ∨ (RB))

The contents of register RS is ORed with the contents of register RB; the ones complement of the result is placed
into register RA.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

nor RA, RS, RB Rc=0
nor. RA, RS, RB Rc=1

31 RT RA RB 124 Rc

0 6 11 16 21 31

Table 9-24. Extended Mnemonics for nor, nor.

Mnemonic Operands Function Other Registers
Altered

not
RA, RS

Complement register.
(RA) ← ¬(RS)

Extended mnemonic for
nor RA,RS,RS

not. Extended mnemonic for
nor. RA,RS,RS CR[CR0]

AMCC Proprietary

http://www.manualslib.com/

 293

Revision 1.02 - September 10, 2007 PPC405 Processor
or
ORPreliminary User’s Manual

or
OR

(RA) ← (RS) ∨ (RB)

The contents of register RS is ORed with the contents of register RB; the result is placed into register RA.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

or RA, RS, RB Rc=0
or. RA, RS, RB Rc=1

31 RS RA RB 444 Rc

0 6 11 16 21 31

Table 9-25. Extended Mnemonics for or, or.

Mnemonic Operands Function Other Registers
Altered

mr
RT, RS

Move register.
(RT) ← (RS)

Extended mnemonic for
or RT,RS,RS

mr. Extended mnemonic for
or. RT,RS,RS CR[CR0]

AMCC Proprietary

http://www.manualslib.com/

 294

Revision 1.02 - September 10, 2007 PPC405 Processor
orc

OR with ComplementPreliminary User’s Manual
orc
OR with Complement

(RA) ← (RS) ∨ ¬(RB)

The contents of register RS is ORed with the ones complement of the contents of register RB; the result is placed
into register RA.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

orc RA, RS, RB Rc=0
orc. RA, RS, RB Rc=1

31 RT RA RB 412 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 295

Revision 1.02 - September 10, 2007 PPC405 Processor
ori

OR ImmediatePreliminary User’s Manual
ori
OR Immediate

(RA) ← (RS) ∨ (160 || IM)

The IM field is extended to 32 bits by concatenating 16 0-bits on the left. Register RS is ORed with the extended IM
field; the result is placed into register RA.

Registers Altered
• RA

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

ori RA, RS, IM

24 RS RA IM

0 6 11 16 31

Table 9-26. Extended Mnemonics for ori

Mnemonic Operands Function Other Registers
Changed

nop
Preferred no-op; triggers optimizations based on no-ops.

Extended mnemonic for
ori 0,0,0

AMCC Proprietary

http://www.manualslib.com/

 296

Revision 1.02 - September 10, 2007 PPC405 Processor
oris

OR Immediate ShiftedPreliminary User’s Manual
oris
OR Immediate Shifted

(RA) ← (RS) ∨ (IM || 160)

The IM Field is extended to 32 bits by concatenating 16 0-bits on the right. Register RS is ORed with the extended
IM field and the result is placed into register RA.

Registers Altered
• RA

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

oris RA, RS, IM

25 RS RA IM

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 297

Revision 1.02 - September 10, 2007 PPC405 Processor
rfci

Return From Critical InterruptPreliminary User’s Manual
rfci
Return From Critical Interrupt

(PC) ← (SRR2)
(MSR) ← (SRR3)

The program counter (PC) is restored with the contents of SRR2 and the MSR is restored with the contents of
SRR3.

Instruction execution returns to the address contained in the PC.

Registers Altered
• MSR

Programming Note

Execution of this instruction is privileged and context-synchronizing.

Architecture Note

This instruction part of the PowerPC Embedded Operating Environment.

rfci

19 51

0 6 21 31

AMCC Proprietary

http://www.manualslib.com/

 298

Revision 1.02 - September 10, 2007 PPC405 Processor
rfi

Return From InterruptPreliminary User’s Manual
rfi
Return From Interrupt

(PC) ← (SRR0)
(MSR) ← (SRR1)

The program counter (PC) is restored with the contents of SRR0 and the MSR is restored with the contents of
SRR1.

Instruction execution returns to the address contained in the PC.

Registers Altered
• MSR

Invalid Instruction Forms
• Reserved fields

Programming Note

Execution of this instruction is privileged and context-synchronizing.

Architecture Note

This instruction is part of the PowerPC Embedded Operating Environment.

rfi

19 50

0 6 21 31

AMCC Proprietary

http://www.manualslib.com/

 299

Revision 1.02 - September 10, 2007 PPC405 Processor
rlwimi

Rotate Left Word Immediate then Mask InsertPreliminary User’s Manual
rlwimi
Rotate Left Word Immediate then Mask Insert

r ← ROTL((RS), SH)
m ← MASK(MB, ME)
(RA) ← (r ∧ m) ∨ ((RA) ∧ ¬m)

The contents of register RS are rotated left by the number of bit positions specified in the SH field. A mask is gener-
ated, having 1-bits starting at the bit position specified in the MB field and ending in the bit position specified by the
ME field, with 0-bits elsewhere.

If the starting point of the mask is at a higher bit position than the ending point, the 1-bits portion of the mask wraps
from the highest bit position back around to the lowest. The rotated data is inserted into register RA, in positions
corresponding to the bit positions in the mask that contain a 1-bit.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

rlwimi RA, RS, SH, MB, ME Rc=0
rlwimi. RA, RS, SH, MB, ME Rc=1

20 RS RA SH MB ME Rc

0 6 11 16 21 26 31

Table 9-27. Extended Mnemonics for rlwimi, rlwimi.

Mnemonic Operands Function Other Registers
Altered

inslwi
RA, RS, n, b

Insert from left immediate (n > 0).
(RA)b:b+n-1 ← (RS)0:n-1

Extended mnemonic for
rlwimi RA,RS,32−b,b,b+n−1

inslwi. Extended mnemonic for
rlwimi. RA,RS,32−b,b,b+n−1 CR[CR0]

insrwi
RA, RS, n, b

Insert from right immediate. (n > 0)
(RA)b:b+n-1 ← (RS)32-n:31

Extended mnemonic for
rlwimi RA,RS,32−b−n,b,b+n−1

insrwi. Extended mnemonic for
rlwimi. RA,RS,32−b−n,b,b+n−1 CR[CR0]

AMCC Proprietary

http://www.manualslib.com/

 300

Revision 1.02 - September 10, 2007 PPC405 Processor
rlwinm

Rotate Left Word Immediate then AND with MaskPreliminary User’s Manual
rlwinm
Rotate Left Word Immediate then AND with Mask

r ← ROTL((RS), SH)
m ← MASK(MB, ME)
(RA) ← r ∧ m

The contents of register RS are rotated left by the number of bit positions specified in the SH field. A mask is gener-
ated, having 1-bits starting at the bit position specified in the MB field and ending in the bit position specified by the
ME field with 0-bits elsewhere.

If the starting point of the mask is at a higher bit position than the ending point, the 1-bits portion of the mask wraps
from the highest bit position back around to the lowest. The rotated data is ANDed with the generated mask; the
result is placed into register RA.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

rlwinm RA, RS, SH, MB, ME Rc=0
rlwinm. RA, RS, SH, MB, ME Rc=1

21 RS RA SH MB ME Rc

0 6 11 16 21 26 31

Table 9-28. Extended Mnemonics for rlwinm, rlwinm.

Mnemonic Operands Function Other Registers
Altered

clrlwi
RA, RS, n

Clear left immediate. (n < 32)
(RA)0:n-1 ← n0

Extended mnemonic for
rlwinm RA,RS,0,n,31

clrlwi. Extended mnemonic for
rlwinm. RA,RS,0,n,31 CR[CR0]

clrlslwi
RA, RS, b, n

Clear left and shift left immediate.
(n ≤ b < 32)
(RA)b-n:31-n ← (RS)b:31
(RA)32-n:31 ← n0
(RA)0:b-n-1 ← b-n0

Extended mnemonic for
rlwinm RA,RS,n,b−n,31−n

clrlslwi. Extended mnemonic for
rlwinm. RA,RS,n,b−n,31−n CR[CR0]

clrrwi
RA, RS, n

Clear right immediate. (n < 32)
(RA)32-n:31 ← n0
Extended mnemonic for

rlwinm RA,RS,0,0,31−n

clrrwi. Extended mnemonic for
rlwinm. RA,RS,0,0,31−n CR[CR0]

AMCC Proprietary

http://www.manualslib.com/

 301

Revision 1.02 - September 10, 2007 PPC405 Processor
rlwinm

Rotate Left Word Immediate then AND with MaskPreliminary User’s Manual

extlwi
RA, RS, n, b

Extract and left justify immediate. (n > 0)
(RA)0:n-1 ← (RS)b:b+n-1
(RA)n:31 ← 32-n0

Extended mnemonic for
rlwinm RA,RS,b,0,n−1

extlwi. Extended mnemonic for
rlwinm. RA,RS,b,0,n−1 CR[CR0]

extrwi
RA, RS, n, b

Extract and right justify immediate. (n > 0)
(RA)32-n:31 ← (RS)b:b+n-1
(RA)0:31-n ← 32-n0

Extended mnemonic for
rlwinm RA,RS,b+n,32−n,31

extrwi. Extended mnemonic for
rlwinm. RA,RS,b+n,32−n,31 CR[CR0]

rotlwi
RA, RS, n

Rotate left immediate.
(RA) ← ROTL((RS), n)

Extended mnemonic for
rlwinm RA,RS,n,0,31

rotlwi. Extended mnemonic for
rlwinm. RA,RS,n,0,31 CR[CR0]

rotrwi
RA, RS, n

Rotate right immediate.
(RA) ← ROTL((RS), 32−n)

Extended mnemonic for
rlwinm RA,RS,32−n,0,31

rotrwi. Extended mnemonic for
rlwinm. RA,RS,32−n,0,31 CR[CR0]

slwi
RA, RS, n

Shift left immediate. (n < 32)
(RA)0:31-n ← (RS)n:31
(RA)32-n:31 ← n0

Extended mnemonic for
rlwinm RA,RS,n,0,31−n

slwi. Extended mnemonic for
rlwinm. RA,RS,n,0,31−n CR[CR0]

srwi
RA, RS, n

Shift right immediate. (n < 32)
(RA)n:31 ← (RS)0:31-n
(RA)0:n-1 ← n0

Extended mnemonic for
rlwinm RA,RS,32−n,n,31

srwi. Extended mnemonic for
rlwinm. RA,RS,32−n,n,31 CR[CR0]

Table 9-28. Extended Mnemonics for rlwinm, rlwinm. (Continued)

Mnemonic Operands Function Other Registers
Altered

AMCC Proprietary

http://www.manualslib.com/

 302

Revision 1.02 - September 10, 2007 PPC405 Processor
rlwnm

Rotate Left Word then AND with MaskPreliminary User’s Manual
rlwnm
Rotate Left Word then AND with Mask

r ← ROTL((RS), (RB)27:31)
m ← MASK(MB, ME)
(RA) ← r ∧ m

The contents of register RS are rotated left by the number of bit positions specified by the contents of register
RB27:31. A mask is generated, having 1-bits starting at the bit position specified in the MB field and ending in the bit
position specified by the ME field with 0-bits elsewhere.

If the starting point of the mask is at a higher bit position than the ending point, the ones portion of the mask wraps
from the highest bit position back to the lowest. The rotated data is ANDed with the generated mask and the result
is placed into register RA.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

rlwnm RA, RS, RB, MB, ME Rc=0
rlwnm. RA, RS, RB, MB, ME Rc=1

23 RS RA RB MB ME Rc

0 6 11 16 21 26 31

Table 9-29. Extended Mnemonics for rlwnm, rlwnm.

Mnemonic Operands Function Other Registers
Altered

rotlw
RA, RS, RB

Rotate left.
(RA) ← ROTL((RS), (RB)27:31)

Extended mnemonic for
rlwnm RA,RS,RB,0,31

rotlw. Extended mnemonic for
rlwnm. RA,RS,RB,0,31 CR[CR0]

AMCC Proprietary

http://www.manualslib.com/

 303

Revision 1.02 - September 10, 2007 PPC405 Processor
sc

System CallPreliminary User’s Manual
sc
System Call

(SRR1) ← (MSR)
(SRR0) ← (PC)
PC ← EVPR0:15 || 0x0C00
(MSR[WE, EE, PR, DR, IR]) ← 0

A system call exception is generated. The contents of the MSR are copied into SRR1 and (4 + address of sc
instruction) is placed into SRR0.

The program counter (PC) is then loaded with the exception vector address. The exception vector address is
calculated by concatenating the high halfword of the Exception Vector Prefix Register (EVPR) to the left of 0x0C00.

The MSR[WE, EE, PR, DR, IR] bits are set to 0.

Program execution continues at the new address in the PC.

The sc instruction is context synchronizing.

Registers Altered
• SRR0

• SRR1

• MSR[WE, EE, PR, DR, IR]

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

sc

17 1

0 6 30 31

AMCC Proprietary

http://www.manualslib.com/

 304

Revision 1.02 - September 10, 2007 PPC405 Processor
slw

Shift Left WordPreliminary User’s Manual
slw
Shift Left Word

n ← (RB)27:31
r ← ROTL((RS), n)
if (RB)26 = 0 then

m ← MASK(0, 31 – n)
else

m ← 320
(RA) ← r ∧ m

The contents of register RS are shifted left by the number of bits specified by the contents of register RB27:31. Bits
shifted left out of the most significant bit are lost, and 0-bits fill vacated bit positions on the right. The result is
placed into register RA.

If RB26 = 1, register RA is set to zero.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

slw RA, RS, RB Rc=0
slw. RA, RS, RB Rc=1

31 RS RA RB 24 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 305

Revision 1.02 - September 10, 2007 PPC405 Processor
sraw

Shift Right Algebraic WordPreliminary User’s Manual
sraw
Shift Right Algebraic Word

n ← (RB)27:31
r ← ROTL((RS), 32 – n)
if (RB)26 = 0 then

m ← MASK(n, 31)
else

m ← 320
s ← (RS)0
(RA) ← (r ∧ m) ∨ (32s ∧ ¬m)
XER[CA] ← s ∧ ((r ∧ ¬m) ≠ 0)

The contents of register RS are shifted right by the number of bits specified the contents of register RB27:31. Bits
shifted out of the least significant bit are lost. Register RS0 is replicated to fill the vacated positions on the left. The
result is placed into register RA.

If register RS contains a negative number and any 1-bits were shifted out of the least significant bit position,
XER[CA] is set to 1; otherwise, it is set to 0.

If bit 26 of register RB contains 1, register RA and XER[CA] are set to bit 0 of register RS.

Registers Altered
• RA

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

sraw RA, RS, RB Rc=0
sraw. RA, RS, RB Rc=1

31 RS RA RB 792 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 306

Revision 1.02 - September 10, 2007 PPC405 Processor
srawi

Shift Right Algebraic Word ImmediatePreliminary User’s Manual
srawi
Shift Right Algebraic Word Immediate

n ← SH
r ← ROTL((RS), 32 – n)
m ← MASK(n, 31)
s ← (RS)0
(RA) ← (r ∧ m) ∨ (32s ∧ ¬m)
XER[CA] ← s ∧ ((r ∧ ¬m)≠0)

The contents of register RS are shifted right by the number of bits specified in the SH field. Bits shifted out of the
least significant bit are lost. Bit RS0 is replicated to fill the vacated positions on the left. The result is placed into
register RA.

If register RS contains a negative number and any 1-bits were shifted out of the least significant bit position,
XER[CA] is set to 1; otherwise, it is set to 0.

Registers Altered
• RA

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

srawi RA, RS, SH Rc=0
srawi. RA, RS, SH Rc=1

31 RS RA SH 824 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 307

Revision 1.02 - September 10, 2007 PPC405 Processor
srw

Shift Right WordPreliminary User’s Manual
srw
Shift Right Word

n ← (RB)27:31
r ← ROTL((RS), 32 – n)
if (RB)26 = 0 then

m ← MASK(n, 31)
else

m ← 320
(RA) ← r ∧ m

The contents of register RS are shifted right by the number of bits specified the contents of register RB27:31. Bits
shifted right out of the least significant bit are lost, and 0-bits fill the vacated bit positions on the left. The result is
placed into register RA.

If bit 26 of register RB contains a one, register RA is set to 0.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

srw RA, RS, RB Rc=0
srw. RA, RS, RB Rc=1

31 RS RA RB 536 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 308

Revision 1.02 - September 10, 2007 PPC405 Processor
stb

Store BytePreliminary User’s Manual
stb
Store Byte

EA ← (RA|0) + EXTS(D)
MS(EA, 1) ← (RS)24:31

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by
sign-extending the 16-bit D field to 32 bits. The base address is 0 when the RA field is 0, and is the contents of
register RA otherwise.

The least significant byte of register RS is stored into the byte at the EA.

Registers Altered
• None

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stb RS, D(RA)

38 RS RA D

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 309

Revision 1.02 - September 10, 2007 PPC405 Processor
stbu

Store Byte with UpdatePreliminary User’s Manual
stbu
Store Byte with Update

EA ← (RA) + EXTS(D)
MS(EA, 1) ← (RS)24:31
(RA) ← EA

An effective address (EA) is formed by adding a displacement to the base address in register RA. The displace-
ment is obtained by sign-extending the 16-bit D field to 32 bits. The EA is placed into register RA.

The least significant byte of register RS is stored into the byte at the EA.

Registers Altered
• RA

Invalid Instruction Forms

RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stbu RS, D(RA)

39 RS RA D

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 310

Revision 1.02 - September 10, 2007 PPC405 Processor
stbux

Store Byte with Update IndexedPreliminary User’s Manual
stbux
Store Byte with Update Indexed

EA ← (RA) + (RB)
MS(EA, 1) ← (RS)24:31
(RA) ← EA

An effective address (EA) is formed by adding an index to the base address in register RA. The index is the
contents of register RB. The EA is placed into register RA.

The least significant byte of register RS is stored into the byte at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA

Invalid Instruction Forms
• Reserved fields

• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stbux RS, RA, RB

31 RS RA RB 247

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 311

Revision 1.02 - September 10, 2007 PPC405 Processor
stbx

Store Byte IndexedPreliminary User’s Manual
stbx
Store Byte Indexed

EA ← (RA|0) + (RB)
MS(EA, 1) ← (RS)24:31

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

The least significant byte of register RS is stored into the byte at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stbx RS, RA, RB

31 RS RA RB 215

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 312

Revision 1.02 - September 10, 2007 PPC405 Processor
sth

Store HalfwordPreliminary User’s Manual
25.Instruction Setsth
Store Halfword

EA ← (RA|0) + EXTS(D)
MS(EA, 2) ← (RS)16:31

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by
sign-extending the 16-bit D field to 32 bits. The base address is 0 when the RA field is 0 and is the contents of
register RA otherwise.

The least significant halfword of register RS is stored into the halfword at the EA in main storage.

Registers Altered
• None

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

sth RS, D(RA)

44 RS RA D

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 313

Revision 1.02 - September 10, 2007 PPC405 Processor
sthbrx

Store Halfword Byte-Reverse IndexedPreliminary User’s Manual
sthbrx
Store Halfword Byte-Reverse Indexed

EA ← (RA|0) + (RB)
MS(EA, 2) ← (RS)24:31 || (RS)16:23

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

The least significant halfword of register RS is byte-reversed. The result is stored into the halfword at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

sthbrx RS, RA, RB

31 RS RA RB 918

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 314

Revision 1.02 - September 10, 2007 PPC405 Processor
sthu

Store Halfword with UpdatePreliminary User’s Manual
sthu
Store Halfword with Update

EA ← (RA) + EXTS(D)
MS(EA, 2) ← (RS)16:31
(RA) ← EA

An effective address (EA) is formed by adding a displacement to the base address in register RA. The displace-
ment is obtained by sign-extending the 16-bit D field to 32 bits. The EA is placed into register RA.

The least significant halfword of register RS is stored into the halfword at the EA.

Registers Altered
• RA

Invalid Instruction Forms
• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

sthu RS, D(RA)

45 RS RA D

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 315

Revision 1.02 - September 10, 2007 PPC405 Processor
sthux

Store Halfword with Update IndexedPreliminary User’s Manual
sthux
Store Halfword with Update Indexed

EA ← (RA) + (RB)
MS(EA, 2) ← (RS)16:31
(RA) ← EA

An effective address (EA) is formed by adding an index to the base address in register RA. The index is the
contents of register RB. The EA is placed into register RA.

The least significant halfword of register RS is stored into the halfword at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA

Invalid Instruction Forms
• Reserved fields

• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

sthux RS, RA, RB

31 RS RA RB 439

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 316

Revision 1.02 - September 10, 2007 PPC405 Processor
sthx

Store Halfword IndexedPreliminary User’s Manual
sthx
Store Halfword Indexed

EA ← (RA|0) + (RB)
MS(EA, 2) ← (RS)16:31

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

The least significant halfword of register RS is stored into the halfword at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

sthx RS, RA, RB

31 RS RA RB 407

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 317

Revision 1.02 - September 10, 2007 PPC405 Processor
stmw

Store Multiple WordPreliminary User’s Manual
stmw
Store Multiple Word

EA ← (RA|0) + EXTS(D)
r ← RS
do while r ≤ 31

MS(EA, 4) ← (GPR(r))
r ← r + 1
EA ← EA + 4

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by
sign-extending the 16-bit D field to 32 bits. The base address is 0 when the RA field is 0, and is the contents of
register RA otherwise.

The contents of a series of consecutive registers, starting with register RS and continuing through GPR(31), are
stored into consecutive words starting at the EA.

Registers Altered
• None

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stmw RS, D(RA)

47 RS RA D

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 318

Revision 1.02 - September 10, 2007 PPC405 Processor
stswi

Store String Word ImmediatePreliminary User’s Manual
stswi
Store String Word Immediate

EA ← (RA|0)
if NB = 0 then

n ← 32
else

n ← NB
r ← RS – 1
i ← 0
do while n > 0

if i = 0 then
r ← r + 1

if r = 32 then
r ← 0

MS(EA,1) ← (GPR(r)i:i+7)
i ← i + 8
if i = 32 then

i ← 0
EA ← EA + 1
n ← n – 1

An effective address (EA) is determined by the RA field. If the RA field contains 0, the EA is 0; otherwise, the EA is
the contents of register RA.

A byte count is determined by the NB field. If the NB field contains 0, the byte count is 32; otherwise, the byte count
is the contents of the NB field.

The contents of a series of consecutive GPRs (starting with register RS, continuing through GPR(31), wrapping to
GPR(0), and continuing to the final byte count) are stored, starting at the EA. The bytes in each GPR are accessed
starting with the most significant byte. The byte count determines the number of transferred bytes.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stswi RS, RA, NB

31 RS RA NB 725

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 319

Revision 1.02 - September 10, 2007 PPC405 Processor
stswx

Store String Word IndexedPreliminary User’s Manual
stswx
Store String Word Indexed

EA ← (RA|0) + (RB)
n ← XER[TBC]
r ← RS – 1
i ← 0
do while n > 0

if i = 0 then
r ← r + 1

if r = 32 then
r ← 0

MS(EA, 1) ← (GPR(r)i:i+7)
i ← i + 8
if i = 32 then

i ← 0
EA ← EA + 1
n ← n – 1

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

A byte count is contained in XER[TBC].

The contents of a series of consecutive GPRs (starting with register RS, continuing through GPR(31), wrapping to
GPR(0), and continuing to the final byte count) are stored, starting at the EA. The bytes in each GPR are accessed
starting with the most significant byte. The byte count determines the number of transferred bytes.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

If XER[TBC] = 0, stswx is treated as a no-op.

The PowerPC Architecture states that if XER[TBC] = 0 and if the EA is such that a precise data exception would
normally occur (if not for the zero length), stswx is treated as a no-op and the precise exception will not occur.
Data storage exceptions and alignment exceptions are examples of precise data exceptions.

However, the architecture makes no statement regarding imprecise exceptions related to stswx when
XER[TBC] = 0. PowerPC processors generate an imprecise exception (machine check) on this instruction when all
of the following conditions are true:

• The instruction passes all protection bounds checking

• The address is cacheable

stswx RS, RA, RB

31 RS RA RB 661

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 320

Revision 1.02 - September 10, 2007 PPC405 Processor
stswx

Store String Word IndexedPreliminary User’s Manual

• The address is passed to the data cache

• The address misses in the data cache (resulting in a line fill request)

• The address encounters some form of bus error (non-configured, for example)

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

AMCC Proprietary

http://www.manualslib.com/

 321

Revision 1.02 - September 10, 2007 PPC405 Processor
stw

Store WordPreliminary User’s Manual
stw
Store Word

EA ← (RA|0) + EXTS(D)
MS(EA, 4) ← (RS)

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by
sign-extending the 16-bit D field to 32 bits. The base address is 0 when the RA field is 0, and is the contents of
register RA otherwise.

The contents of register RS are stored at the EA.

Registers Altered
• None

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stw RS, D(RA)

36 RS RA D

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 322

Revision 1.02 - September 10, 2007 PPC405 Processor
stwbrx

Store Word Byte-Reverse IndexedPreliminary User’s Manual
stwbrx
Store Word Byte-Reverse Indexed

EA ← (RA|0) + (RB)
MS(EA, 4) ← (RS)24:31 || (RS)16:23 || (RS)8:15 || (RS)0:7

An EA is formed by adding an index to a base address. The index is the contents of register RB. The base address
is 0 when the RA field is 0, and is the contents of register RA otherwise.

The contents of register RS are byte-reversed: the least significant byte becomes the most significant byte, the
next least significant byte becomes the next most significant byte, and so on. The result is stored into the word at
the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stwbrx RS, RA, RB

31 RS RA RB 662

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 323

Revision 1.02 - September 10, 2007 PPC405 Processor
stwcx.

Store Word Conditional IndexedPreliminary User’s Manual
stwcx.
Store Word Conditional Indexed

EA ← (RA|0) + (RB)
if RESERVE = 1 then

MS(EA, 4) ← (RS)
RESERVE ← 0
(CR[CR0]) ← 20 || 1 || XERso

else
(CR[CR0]) ← 20 || 0 || XERso

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

If the reservation bit contains 1 when the instruction is executed, the contents of register RS are stored into the
word at the EA and the reservation bit is cleared. If the reservation bit contains 0 when the instruction is executed,
no store operation is performed.

CR[CR0] is set as follows:

• CR[CR0]LT, GT are cleared

• CR[CR0]EQ is set to the state of the reservation bit at the start of the instruction

• CR[CR0]SO is set to the contents of the XER[SO] bit

Registers Altered
• CR[CR0]LT, GT, EQ, SO

Programming Note

lwarx and the stwcx. instruction should paired in a loop, as shown in the following example, to create the effect of
an atomic operation to a memory area used as a semaphore between asynchronous processes. Only lwarx can
set the reservation bit to 1. stwcx. sets the reservation bit to 0 upon its completion, whether or not stwcx. sent
(RS) to memory. CR[CR0]EQ must be examined to determine whether (RS) was sent to memory.

loop: lwarx # read the semaphore from memory; set reservation
“alter” # change the semaphore bits in register as required
stwcx. # attempt to store semaphore; reset reservation
bne loop # an asynchronous process has intervened; try again

If the asynchronous process in the code example had paired lwarx with a store other than stwcx., the reservation
bit would not have been cleared in the asynchronous process, and the code example would have overwritten the
semaphore.

Exceptions

An alignment exception occurs if the EA is not word-aligned.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stwcx. RS, RA, RB

31 RS RA RB 150

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 324

Revision 1.02 - September 10, 2007 PPC405 Processor
stwu

Store Word with UpdatePreliminary User’s Manual
stwu
Store Word with Update

EA ← (RA) + EXTS(D)
MS(EA, 4) ← (RS)
(RA) ← EA

An effective address (EA) is formed by adding a displacement to the base address in register RA. The displace-
ment is obtained by sign-extending the 16-bit D field to 32 bits. The EA is placed into register RA.

The contents of register RS are stored into the word at the EA.

Registers Altered
• RA

Invalid Instruction Forms
• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stwu RS, D(RA)

37 RS RA D

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 325

Revision 1.02 - September 10, 2007 PPC405 Processor
stwux

Store Word with Update IndexedPreliminary User’s Manual
stwux
Store Word with Update Indexed

EA ← (RA) + (RB)
MS(EA, 4) ← (RS)
(RA) ← EA

An effective address (EA) is formed by adding an index to the base address in register RA. The index is the
contents of register RB. The EA is placed into register RA.

The contents of register RS are stored into the word at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA

Invalid Instruction Forms
• Reserved fields

• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stwux RS, RA, RB

31 RS RA RB 183

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 326

Revision 1.02 - September 10, 2007 PPC405 Processor
stwx

Store Word IndexedPreliminary User’s Manual
stwx
Store Word Indexed

EA ← (RA|0) + (RB)
MS(EA,4) ← (RS)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB.
The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

The contents of register RS are stored into the word at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stwx RS, RA, RB

31 RS RA RB 151

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 327

Revision 1.02 - September 10, 2007 PPC405 Processor
subf

Subtract FromPreliminary User’s Manual
subf
Subtract From

(RT) ← ¬(RA) + (RB) + 1

The sum of the ones complement of register RA, register RB, and 1 is stored into register RT.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

subf RT, RA, RB OE=0, Rc=0
subf. RT, RA, RB OE=0, Rc=1
subfo RT, RA, RB OE=1, Rc=0
subfo. RT, RA, RB OE=1, Rc=1

31 RT RA RB OE 40 Rc

0 6 11 16 21 22 31

Table 9-30. Extended Mnemonics for subf, subf., subfo, subfo.

Mnemonic Operands Function Other Registers
Altered

sub

RT, RA, RB

Subtract (RB) from (RA).
(RT) ← ¬(RB) + (RA) + 1.

Extended mnemonic for
subf RT,RB,RA

sub. Extended mnemonic for
subf. RT,RB,RA CR[CR0]

subo Extended mnemonic for
subfo RT,RB,RA XER[SO, OV]

subo. Extended mnemonic for
subfo. RT,RB,RA

CR[CR0]
XER[SO, OV]

AMCC Proprietary

http://www.manualslib.com/

 328

Revision 1.02 - September 10, 2007 PPC405 Processor
subfc

Subtract From CarryingPreliminary User’s Manual
subfc
Subtract From Carrying

(RT) ← ¬(RA) + (RB) + 1
if ¬(RA) + (RB) + 1 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of register RA, register RB, and 1 is stored into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Registers Altered
• RT

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

subfc RT, RA, RB OE=0, Rc=0
subfc. RT, RA, RB OE=0, Rc=1
subfco RT, RA, RB OE=1, Rc=0
subfco. RT, RA, RB OE=1, Rc=1

31 RT RA RB OE 8 Rc

0 6 11 16 21 22 31

Table 9-31. Extended Mnemonics for subfc, subfc., subfco, subfco.

Mnemonic Operands Function Other Registers
Altered

subc

RT, RA, RB

Subtract (RB) from (RA).
(RT) ← ¬(RB) + (RA) + 1.
Place carry-out in XER[CA].

Extended mnemonic for
subfc RT,RB,RA

subc. Extended mnemonic for
subfc. RT,RB,RA CR[CR0]

subco Extended mnemonic for
subfco RT,RB,RA XER[SO, OV]

subco. Extended mnemonic for
subfco. RT,RB,RA

CR[CR0]
XER[SO, OV]

>
u

AMCC Proprietary

http://www.manualslib.com/

 329

Revision 1.02 - September 10, 2007 PPC405 Processor
subfe

Subtract From ExtendedPreliminary User’s Manual
subfe
Subtract From Extended

(RT) ← ¬(RA) + (RB) + XER[CA]
if ¬(RA) + (RB) + XER[CA] 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of register RA, register RB, and XER[CA] is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Registers Altered
• RT

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

subfe RT, RA, RB OE=0, Rc=0
subfe. RT, RA, RB OE=0, Rc=1
subfeo RT, RA, RB OE=1, Rc=0
subfeo. RT, RA, RB OE=1, Rc=1

31 RT RA RB OE 136 Rc

0 6 11 16 21 22 31

>
u

AMCC Proprietary

http://www.manualslib.com/

 330

Revision 1.02 - September 10, 2007 PPC405 Processor
subfic

Subtract From Immediate CarryingPreliminary User’s Manual
subfic
Subtract From Immediate Carrying

(RT) ← ¬(RA) + EXTS(IM) + 1
if ¬(RA) + EXTS(IM) + 1 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of RA, the IM field sign-extended to 32 bits, and 1 is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Registers Altered
• RT

• XER[CA]

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

subfic RT, RA, IM

8 RT RA IM

0 6 11 16 31

>
u

AMCC Proprietary

http://www.manualslib.com/

 331

Revision 1.02 - September 10, 2007 PPC405 Processor
subfme

Subtract from Minus One ExtendedPreliminary User’s Manual
subfme
Subtract from Minus One Extended

(RT) ← ¬(RA) – 1 + XER[CA]
if ¬(RA) + 0xFFFF FFFF + XER[CA] 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of register RA, –1, and XER[CA] is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

• XER[CA]

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

subfme RT, RA OE=0, Rc=0
subfme. RT, RA OE=0, Rc=1
subfmeo RT, RA OE=1, Rc=0
subfmeo. RT, RA OE=1, Rc=1

31 RT RA OE 232 Rc

0 6 11 16 21 22 31

>
u

AMCC Proprietary

http://www.manualslib.com/

 332

Revision 1.02 - September 10, 2007 PPC405 Processor
subfze

Subtract from Zero ExtendedPreliminary User’s Manual
subfze
Subtract from Zero Extended

(RT) ← ¬(RA) + XER[CA]
if ¬(RA) + XER[CA] 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of register RA and XER[CA] is stored into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Registers Altered
• RT

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

subfze RT, RA OE=0, Rc=0
subfze. RT, RA OE=0, Rc=1
subfzeo RT, RA OE=1, Rc=0
subfzeo. RT, RA OE=1, Rc=1

31 RT RA OE 200 Rc

0 6 11 16 21 22 31

>
u

AMCC Proprietary

http://www.manualslib.com/

 333

Revision 1.02 - September 10, 2007 PPC405 Processor
sync

SynchronizePreliminary User’s Manual
sync
Synchronize

The sync instruction guarantees that all instructions initiated by the processor preceding sync will complete before
sync completes, and that no subsequent instructions will be initiated by the processor until after sync completes.
When sync completes, all storage accesses that were initiated by the processor before the sync instruction will
have been completed with respect to all mechanisms that access storage.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None.

Invalid Instruction Forms
• Reserved fields

Programming Note

Architecturally, the eieio instruction orders storage access, not instruction completion. Therefore, non-storage
operations that follow eieio could complete before storage operations that precede eieio. The sync instruction
guarantees ordering of instruction completion and storage access. For the PPC405, the eieio instruction is imple-
mented to behave as a sync instruction.

To write code that is portable between various PowerPC implementations, programmers should use the mnemonic
that corresponds to the desired behavior.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

sync

31 598

0 6 21 31

AMCC Proprietary

http://www.manualslib.com/

 334

Revision 1.02 - September 10, 2007 PPC405 Processor
tlbia

TLB Invalidate AllPreliminary User’s Manual
tlbia
TLB Invalidate All

All of the entries in the TLB are invalidated and become unavailable for translation by clearing the valid (V) bit in
the TLBHI portion of each TLB entry. The rest of the fields in the TLB entries are unmodified.

Registers Altered
• None.

Invalid Instruction Forms
• None.

Programming Note

This instruction is privileged. Translation is not required to be active during the execution of this instruction. The
effects of the invalidation are not guaranteed to be visible to the programming model until the completion of a
context synchronizing operation.

Architecture Note

This instruction is part of the PowerPC Embedded Operating Environment.

tlbia

31 370

0 6 21 31

AMCC Proprietary

http://www.manualslib.com/

 335

Revision 1.02 - September 10, 2007 PPC405 Processor
tlbre

TLB Read EntryPreliminary User’s Manual
tlbre
TLB Read Entry

if WS4 = 1
(RT) ← TLBLO[(RA26:31)]

else
(RT) ← TLBHI[(RA26:31)]
(PID) ← TID from TLB[(RA26:31)]

The contents of the selected TLB entry is placed into register RT (and possibly into PID).

Bits 26:31 of the contents of RA is used as an index into the TLB. If this index specifies a TLB entry that does not
exist, the results are undefined.

The WS field specifies which portion (TLBHI or TLBLO) of the entry is loaded into RT. If TLBHI is being accessed,
the PID SPR is set to the value of the TID field in the TLB entry.

If the WS field is not 0 or 1, the instruction form is invalid and the result is undefined.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

• PID (if WS = 0)

Invalid Instruction Forms
• Reserved fields

• Invalid WS value

Programming Notes

This instruction is privileged. Translation is not required to be active during the execution of this instruction.

The contents of RT after the execution of this instruction are interpreted as follows:
If WS = 0 (TLBHI):

RT[0:21] ← EPN[0:21]
RT[22:24] ← SIZE[0:2]
RT[25] ← V
RT[26] ← E
RT[27] ← U0
RT[28:31] ← 0
PID[24:31] ← TID[0:7]; (note that the TID is copied to the PID, not to RT)

If WS = 1 (TLBLO):
RT[0:21] ← RPN[0:21]
RT[22:23] ← EX,WR
RT[24:27] ← ZSEL[0:3]
RT[28:31] ← WIMG

tlbre RT, RA, WS

31 RT RA WS 946

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 336

Revision 1.02 - September 10, 2007 PPC405 Processor
tlbre

TLB Read EntryPreliminary User’s Manual

Architecture Note

This instruction part of the PowerPC Embedded Operating Environment.

Table 9-32. Extended Mnemonics for tlbre

Mnemonic Operands Function Other Registers
Altered

tlbrehi RT, RA

Load TLBHI portion of the selected TLB entry into RT.
Load the PID register with the contents of the TID field of
the selected TLB entry.
(RT) ← TLBHI[(RA)]
(PID) ← TLB[(RA)]TID

Extended mnemonic for
tlbre RT,RA,0

tlbrelo RT, RA

Load TLBLO portion of the selected TLB entry into RT.
(RT) ← TLBLO[(RA)]

Extended mnemonic for
tlbre RT,RA,1

AMCC Proprietary

http://www.manualslib.com/

 337

Revision 1.02 - September 10, 2007 PPC405 Processor
tlbsx

TLB Search IndexedPreliminary User’s Manual
tlbsx
TLB Search Indexed

EA ← (RA|0) + (RB)
if Rc = 1

CR[CR0]LT ← 0
CR[CR0]GT ← 0
CR[CR0]SO ← XER[SO]

if Valid TLB entry matching EA and PID is in the TLB then
(RT) ← Index of matching TLB Entry
if Rc = 1

CR[CR0]EQ ← 1
else

(RT) Undefined
if Rc = 1

CR[CR0]EQ ← 0

An effective address is formed by adding an index to a base address. The index is the contents of register RB. The
base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The TLB is searched for a valid entry which translates EA and PID. See XREF for details. The record bit (Rc) spec-
ifies whether the results of the search will affect CR[CR0] as shown above. The intention is that CR[CR0]EQ can be
tested after a tlbsx. instruction if there is a possibility that the search may fail.

Registers Altered
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Invalid Instruction Forms
• None.

Programming Note

This instruction is privileged. Translation is not required to be active during the execution of this instruction.

Architecture Note

This instruction part of the PowerPC Embedded Operating Environment.

tlbsx RT, RA, RB Rc=0
tlbsx. RT, RA, RB Rc=1

31 RT RA RB 914 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 338

Revision 1.02 - September 10, 2007 PPC405 Processor
tlbsync

TLB SynchronizePreliminary User’s Manual
tlbsync
TLB Synchronize

The tlbsync instruction is provided in the PowerPC architecture to support synchronization of TLB operations
among the processors of a multi-processor system. In the PPC405, this instruction performs no operation, and is
provided to facilitate code portability.

Registers Altered
• None.

Invalid Instruction Forms
• None.

Programming Notes

This instruction is privileged. Translation is not required to be active during the execution of this instruction.

Since the PPC405 does not support tightly-coupled multiprocessor systems, tlbsync performs no operation.

Architecture Note

This instruction is part of the PowerPC Embedded Operating Environment.

tlbsync

31 566

0 6 21 31

AMCC Proprietary

http://www.manualslib.com/

 339

Revision 1.02 - September 10, 2007 PPC405 Processor
tlbwe

TLB Write EntryPreliminary User’s Manual
tlbwe
TLB Write Entry

if WS4 = 1
TLBLO[(RA26:31)] ← (RS)

else
TLBHI[(RA26:31)] ← (RS)
TID of TLB[(RA26:31)] ← (PID24:31)

The contents of the selected TLB entry is replaced with the contents of register RS (and possibly PID).

Bits 26:31 of the contents of RA are used as an index into the TLB. If this index specifies a TLB entry that does not
exist, the results are undefined.

The WS field specifies which portion (TLBHI or TLBLO) of the entry is replaced from RS. For instructions that
specify TLBHI, the TID field in the TLB entry is supplied from PID24:31.

If the WS field is not 0 or 1, the instruction form is invalid and the result is undefined.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None.

Invalid Instruction Forms
• Reserved fields

• Invalid WS value

Programming Notes

This instruction is privileged. Translation is not required to be active during the execution of this instruction.

The effects of this update are not guaranteed to be visible to the programming model until the completion of a
context synchronizing operation. For example, updating a zone selection field within the TLB while in supervisor
code should be followed by an isync instruction (or other context synchronizing operation) to guarantee that the
desired translation and protection domains are used.

tlbwe writes the TLB fields from RS and the PID as follows:
If WS = 0 (TLBHI):

EPN[0:21] ← RS[0:21]
SIZE[0:2] ← RS[22:24]
V ← RS[25]
E ← RS[26]
U0 ← RS[27]
TID[0:7] ← PID[24:31]; (note that the TID is written from the PID, not RS)

If WS = 1 (TLBLO):
RPN[0:21] ← RT[0:21]
EX,WR ← RS[22:23]
ZSEL[0:3] ← RS[24:27]
WIMG ← RS[28:31]

tlbwe RS, RA, WS

31 RS RA WS 978

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 340

Revision 1.02 - September 10, 2007 PPC405 Processor
tlbwe

TLB Write EntryPreliminary User’s Manual

Architecture Note

This instruction part of the PowerPC Embedded Operating Environment.

Table 9-33. Extended Mnemonics for tlbwe

Mnemonic Operands Function Other Registers
Altered

tlbwehi RS, RA

Write TLBHI portion of the selected TLB entry from RS.
Write the TID register of the selected TLB entry from the
PID register.
TLBHI[(RA)] ← (RS)
TLB[(RA)]TID ← (PID24:31)

Extended mnemonic for
tlbwe RS,RA,0

tlbwelo RS, RA

Write TLBLO portion of the selected TLB entry from RS.
TLBLO[(RA)] ← (RS)

Extended mnemonic for
tlbwe RS,RA,1

AMCC Proprietary

http://www.manualslib.com/

 341

Revision 1.02 - September 10, 2007 PPC405 Processor
tw

Trap WordPreliminary User’s Manual
tw
Trap Word

if (((RA) (RB) ∧ TO0 = 1) ∨
((RA) (RB) ∧ TO1 = 1) ∨
((RA) (RB) ∧ TO2 = 1) ∨
((RA) (RB) ∧ TO3 = 1) ∨
((RA) (RB) ∧ TO4 = 1)) then TRAP (see details below)

Register RA is compared with register RB. If any comparison condition selected by the TO field is true, a TRAP
occurs. The behavior of a TRAP depends upon the debug mode of the processor, as described below:

• If TRAP is not enabled as a debug event (DBCR[TDE] = 0 or DBCR[EDM,IDM] = 0,0):

TRAP causes a program interrupt. See Program Interrupt on page 123.
(SRR0) ← address of tw instruction
(SRR1) ← (MSR)
(ESR[PTR]) ← 1
(MSR[WE, EE, PR, DR, IR]) ← 0
PC ← EVPR0:15 || 0x0700

• If TRAP is enabled as an external debug event (DBCR[TDE] = 1 and DBCR[EDM] = 1):

TRAP goes to the debug stop state, to be handled by an external debugger with hardware control.
(DBSR[TIE]) ← 1

In addition, if TRAP is also enabled as an internal debug event (DBCR[IDM] = 1)
and debug exceptions are disabled (MSR[DE] = 0), then report an imprecise event:

(DBSR[IDE]) ← 1
PC ← address of tw instruction

• If TRAP is enabled as an internal debug event and not an external debug event (DBCR[TDE] = 1 and
DBCR[EDM,IDM] = 0,1) and debug exceptions are enabled (MSR[DE] = 1):

TRAP causes a debug interrupt. See Debug Interrupt on page 128.
(SRR2) ← address of tw instruction
(SRR3) ← (MSR)
(DBSR[TIE]) ← 1
(MSR[WE, EE, PR, CE, DE, DR, IR]) ← 0
PC ← EVPR0:15 || 0x2000

• If TRAP is enabled as an internal debug event and not an external debug event (DBCR[TDE] = 1 and
DBCR[EDM,IDM] = 0,1) and Debug Exceptions are disabled (MSR[DE] = 0):

TRAP reports the debug event as an imprecise event and causes a program interrupt. See Program Interrupt on
page 123.

(SRR0) ← address of tw instruction
(SRR1) ← (MSR)
(ESR[PTR]) ← 1
(DBSR[TIE,IDE]) ← 1,1
(MSR[WE, EE, PR, DR, IR]) ← 0
PC ← EVPR0:15 || 0x0700

tw TO, RA, RB

31 TO RA RB 4

0 6 11 16 21 31

<
>
=
<
u

>
u

AMCC Proprietary

http://www.manualslib.com/

 342

Revision 1.02 - September 10, 2007 PPC405 Processor
tw

Trap WordPreliminary User’s Manual

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

This instruction is inserted into the execution stream by a debugger to implement breakpoints, and is not typically
used by application code.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 9-34. Extended Mnemonics for tw

Mnemonic Operands Function Other Registers
Altered

trap
Trap unconditionally.

Extended mnemonic for
tw 31,0,0

tweq RA, RB
Trap if (RA) equal to (RB).

Extended mnemonic for
tw 4,RA,RB

twge RA, RB
Trap if (RA) greater than or equal to (RB).

Extended mnemonic for
tw 12,RA,RB

twgt RA, RB
Trap if (RA) greater than (RB).

Extended mnemonic for
tw 8,RA,RB

twle RA, RB
Trap if (RA) less than or equal to (RB).

Extended mnemonic for
tw 20,RA,RB

twlge RA, RB
Trap if (RA) logically greater than or equal to (RB).

Extended mnemonic for
tw 5,RA,RB

twlgt RA, RB
Trap if (RA) logically greater than (RB).

Extended mnemonic for
tw 1,RA,RB

twlle RA, RB
Trap if (RA) logically less than or equal to (RB).

Extended mnemonic for
tw 6,RA,RB

twllt RA, RB
Trap if (RA) logically less than (RB).

Extended mnemonic for
tw 2,RA,RB

twlng RA, RB
Trap if (RA) logically not greater than (RB).

Extended mnemonic for
tw 6,RA,RB

twlnl RA, RB
Trap if (RA) logically not less than (RB).

Extended mnemonic for
tw 5,RA,RB

AMCC Proprietary

http://www.manualslib.com/

 343

Revision 1.02 - September 10, 2007 PPC405 Processor
tw

Trap WordPreliminary User’s Manual

twlt RA, RB
Trap if (RA) less than (RB).

Extended mnemonic for
tw 16,RA,RB

twne RA, RB
Trap if (RA) not equal to (RB).

Extended mnemonic for
tw 24,RA,RB

twng RA, RB
Trap if (RA) not greater than (RB).

Extended mnemonic for
tw 20,RA,RB

twnl RA, RB
Trap if (RA) not less than (RB).

Extended mnemonic for
tw 12,RA,RB

Table 9-34. Extended Mnemonics for tw (Continued)

Mnemonic Operands Function Other Registers
Altered

AMCC Proprietary

http://www.manualslib.com/

 344

Revision 1.02 - September 10, 2007 PPC405 Processor
twi

Trap Word ImmediatePreliminary User’s Manual
twi
Trap Word Immediate

if (((RA) EXTS(IM) ∧ TO0 = 1) ∨
((RA) EXTS(IM) ∧ TO1 = 1) ∨
((RA) EXTS(IM) ∧ TO2 = 1) ∨
((RA) EXTS(IM) ∧ TO3 = 1) ∨
((RA) EXTS(IM) ∧ TO4 = 1)) then TRAP (see details below)

Register RA is compared with the IM field, which has been sign-extended to 32 bits. If any comparison condition
selected by the TO field is true, a TRAP occurs. The behavior of a TRAP depends upon the Debug Mode of the
processor, as described below:

• If TRAP is not enabled as a debug event (DBCR[TDE] = 0 or DBCR[EDM,IDM] = 0,0):

TRAP causes a program interrupt. See Program Interrupt on page 123.
(SRR0) ← address of twi instruction
(SRR1) ← (MSR)
(ESR[PTR]) ← 1
(MSR[WE, EE, PR, DR, IR]) ← 0
PC ← EVPR0:15 || 0x0700

• If TRAP is enabled as an External debug event (DBCR[TDE] = 1 and DBCR[EDM] = 1):

TRAP goes to the Debug Stop state, to be handled by an external debugger with hardware control of the PPC405.
(DBSR[TIE]) ← 1

In addition, if TRAP is also enabled as an Internal debug event (DBCR[IDM] = 1)
and Debug Exceptions are disabled (MSR[DE] = 0), then report an imprecise event:
(DBSR[IDE]) ← 1

PC ← address of twi instruction

• If TRAP is enabled as an Internal debug event and not an External debug event (DBCR[TDE] = 1 and
DBCR[EDM,IDM] = 0,1) and Debug Exceptions are enabled (MSR[DE] = 1):

TRAP causes a Debug interrupt. See Debug Interrupt on page 128.
(SRR2) ← address of twi instruction
(SRR3) ← (MSR)
(DBSR[TIE]) ← 1
(MSR[WE, EE, PR, CE, DE, DR, IR]) ← 0
PC ← EVPR0:15 || 0x2000

• If TRAP is enabled as an Internal debug event and not an External debug event (DBCR[TDE] = 1 and
DBCR[EDM,IDM] = 0,1) and Debug Exceptions are disabled (MSR[DE] = 0):

TRAP will report the debug event as an imprecise event and will cause a Program interrupt. See Program Interrupt
on page 123.

(SRR0) ← address of twi instruction
(SRR1) ← (MSR)
(ESR[PTR]) ← 1
(DBSR[TIE,IDE]) ← 1,1
(MSR[WE, EE, PR, DR, IR]) ← 0
PC ← EVPR0:15 || 0x0700

twi TO, RA, IM

3 TO RA IM

0 6 11 16 31

<
>
=
<
u

>
u

AMCC Proprietary

http://www.manualslib.com/

 345

Revision 1.02 - September 10, 2007 PPC405 Processor
twi

Trap Word ImmediatePreliminary User’s Manual

Registers Altered
• None

Programming Note

This instruction is inserted into the execution stream by a debugger to implement breakpoints, and is not typically
used by application code.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 9-35. Extended Mnemonics for twi

Mnemonic Operands Function Other Registers
Altered

tweqi RA, IM
Trap if (RA) equal to EXTS(IM).

Extended mnemonic for
twi 4,RA,IM

twgei RA, IM
Trap if (RA) greater than or equal to EXTS(IM).

Extended mnemonic for
twi 12,RA,IM

twgti RA, IM
Trap if (RA) greater than EXTS(IM).

Extended mnemonic for
twi 8,RA,IM

twlei RA, IM
Trap if (RA) less than or equal to EXTS(IM).

Extended mnemonic for
twi 20,RA,IM

twlgei RA, IM
Trap if (RA) logically greater than or equal to EXTS(IM).

Extended mnemonic for
twi 5,RA,IM

twlgti RA, IM
Trap if (RA) logically greater than EXTS(IM).

Extended mnemonic for
twi 1,RA,IM

twllei RA, IM
Trap if (RA) logically less than or equal to EXTS(IM).

Extended mnemonic for
twi 6,RA,IM

twllti RA, IM
Trap if (RA) logically less than EXTS(IM).

Extended mnemonic for
twi 2,RA,IM

twlngi RA, IM
Trap if (RA) logically not greater than EXTS(IM).

Extended mnemonic for
twi 6,RA,IM

twlnli RA, IM
Trap if (RA) logically not less than EXTS(IM).

Extended mnemonic for
twi 5,RA,IM

twlti
RA, IM Trap if (RA) less than EXTS(IM).

Extended mnemonic for
twi 16,RA,IM

twnei RA, IM
Trap if (RA) not equal to EXTS(IM).

Extended mnemonic for
twi 24,RA,IM

twngi RA, IM
Trap if (RA) not greater than EXTS(IM).

Extended mnemonic for
twi 20,RA,IM

AMCC Proprietary

http://www.manualslib.com/

 346

Revision 1.02 - September 10, 2007 PPC405 Processor
twi

Trap Word ImmediatePreliminary User’s Manual

twnli RA, IM
Trap if (RA) not less than EXTS(IM).

Extended mnemonic for
twi 12,RA,IM

Table 9-35. Extended Mnemonics for twi (Continued)

Mnemonic Operands Function Other Registers
Altered

AMCC Proprietary

http://www.manualslib.com/

 347

Revision 1.02 - September 10, 2007 PPC405 Processor
wrtee

Write External EnablePreliminary User’s Manual
wrtee
Write External Enable

MSR[EE] ← (RS)16

The MSR[EE] is set to the value specified by bit 16 of register RS.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• MSR[EE]

Invalid Instruction Forms:
• Reserved fields

Programming Note

Execution of this instruction is privileged.

This instruction is used to provide atomic update of MSR[EE]. Typical usage is:
mfmsr Rn #save EE in Rn[16]
wrteei 0 #Turn off EE
• #Code with EE disabled
•
•
wrtee Rn #restore EE without affecting any MSR changes that occurred in the disabled code

Architecture Note

This instruction part of the PowerPC Embedded Operating Environment.

wrtee RS

31 RS 131

0 6 11 21 31

AMCC Proprietary

http://www.manualslib.com/

 348

Revision 1.02 - September 10, 2007 PPC405 Processor
wrteei

Write External Enable ImmediatePreliminary User’s Manual
wrteei
Write External Enable Immediate

MSR[EE] ← E

MSR[EE] is set to the value specified by the E field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• MSR[EE]

Invalid Instruction Forms:
• Reserved fields

Programming Note

Execution of this instruction is privileged.

This instruction is used to provide an atomic update of MSR[EE]. Typical usage is:
mfmsr Rn #save EE in Rn[16]
wrteei 0 #Turn off EE
• #Code with EE disabled
•
•
wrtee Rn #restore EE without affecting any MSR changes that occurred in the disabled code

Architecture Note

This instruction part of the PowerPC Embedded Operating Environment.

wrteei E

31 E 163

0 6 16 17 21 31

AMCC Proprietary

http://www.manualslib.com/

 349

Revision 1.02 - September 10, 2007 PPC405 Processor
xor
XORPreliminary User’s Manual

xor
XOR

(RA) ← (RS) ⊕ (RB)

The contents of register RS are XORed with the contents of register RB; the result is placed into register RA.

Registers Altered
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• RA

Architecture Note

This instruction part of the PowerPC Embedded Operating Environment.

xor RA, RS, RB Rc=0
xor. RA, RS, RB Rc=1

31 RS RA RB 316 Rc

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

 350

Revision 1.02 - September 10, 2007 PPC405 Processor
xori

XOR ImmediatePreliminary User’s Manual
xori
XOR Immediate

(RA) ← (RS) ⊕ (160 || IM)

The IM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of register RS are XORed
with the extended IM field; the result is placed into register RA.

Registers Altered
• RA

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

xori RA, RS, IM

26 RS RA IM

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 351

Revision 1.02 - September 10, 2007 PPC405 Processor
xoris

XOR Immediate ShiftedPreliminary User’s Manual
xoris
XOR Immediate Shifted

(RA) ← (RS) ⊕ (IM || 160)

The IM field is extended to 32 bits by concatenating 16 0-bits on the right. The contents of register RS are XORed
with the extended IM field; the result is placed into register RA.

Registers Altered
• RA

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

xoris RA, RS, IM

27 RS RA IM

0 6 11 16 31

AMCC Proprietary

http://www.manualslib.com/

 352

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

AMCC Proprietary

http://www.manualslib.com/

 353

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

10. Register Summary
Registers are grouped into categories, based on access mode: General Purpose Registers (GPRs), Special
Purpose Registers (SPRs), Time Base Registers (TBRs), the Machine State Register (MSR), the Condition
Register (CR), Device Control Registers (DCRs), and memory-mapped I/O (MMIO) registers.

This chapter provides an alphabetical listing and bit definitiions for all the registers provided by the PPC405
processor.

10.1 Reserved Registers

Any register numbers not listed in the tables which follow are reserved, and should be neither read nor written.
These reserved register numbers may be used for additional functions in future processors.

10.2 Reserved Fields

For all registers with fields marked as reserved, the reserved fields should be written as zero and read as
undefined. That is, when writing to a reserved field, write a zero to that field. When reading from a reserved field,
ignore that field.

The recommended coding practice is to perform the initial write to a register with reserved fields as described in the
preceding paragraph, and to perform all subsequent writes to the register using a read-modify-write strategy: read
the register, alter desired fields with logical instructions, and then write the register.

10.3 General Purpose Registers

The PPC405 processor core provides 32 General Purpose Registers (GPRs). The contents of these registers can
be loaded from memory using load instructions and stored to memory using store instructions. GPRs are also
addressed by all integer instructions.

10.4 Machine State Register and Condition Register

The CR and MSR are accessed by means of special instructions,and do not require addressing.

Table 10-1. PPC405 General Purpose Registers

Mnemonic Register Name GPR Number Access See
Page

GPR0–GPR31 General Purpose Register 0:31 0x00–0x1F Read/Write 35

Table 10-2. PPC405 General Purpose Registers

Mnemonic Register Name Number Access See
Page

CR Condition Register NA Read/Write 39

MSR Machine State Register NA Read/Write 114

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

10.5 Special Purpose Registers

Special Purpose Registers (SPRs), which are part of the PowerPC Embedded Environment, are accessed using
the mtspr and mfspr instructions. SPRs control the use of the debug facilities, timers, interrupts, storage control
attributes, and other architected processor resources.

Table 10-3 lists the SPRs, their mnemonics and names, their SPR numbers (SPRNs), and the corresponding
SPRF numbers and access mode. Any SPR numbers that are not listed are reserved and should be neither read
nor written. The columns under the SPRN heading list the register numbers used as operands in assembler
language coding of the mfspr and mtspr instructions. The column labeled “SPRF” lists the corresponding fields
contained in the machine code of mfspr and mtspr. The SPRN field contains the five-bit subfields of the SPRF
field, which are reversed in the machine code for the mfspr and mtspr instructions
(SPRN ← SPRF5:9 || SPRF0:4) for compatibility with the POWER Architecture. Note that the assembler handles
the special coding transparently.

All SPRs are privileged, except the Count Register (CTR), the Link Register (LR), SPR General Purpose Registers
(SPRG4–SPRG7, read-only), User SPR General Purpose Register (USPRG0), and the Fixed-point Exception
Register (XER). Note that access to the Time Base Lower (TBL) and Time Base Upper (TBU) registers, when
addressed as SPRs, is write-only and privileged. However, when addressed as Time Base Registers (TBRs), read
access to these registers is not privileged. See “Time Base Registers” on page 355. for more information.

Table 10-3. Special Purpose Registers

Mnemonic Register Name SPRN SPRF Access See
Page

CCR0 Core Configuration Register 0 0x3B3 0x27D Read/Write 77

CTR Count Register 0x009 0x120 Read/Write 36

DAC1 Data Address Compare 1 0x3F6 0x2DF Read/Write 147

DAC2 Data Address Compare 2 0x3F7 0x2FF Read/Write 147

DBCR0 Debug Control Register 0 0x3F2 0x25F Read/Write 143

DBCR1 Debug Control Register 1 0x3BD 0x3BD Read/Write 144

DBSR Debug Status Register 0x3F0 0x21F Read/Clear 145

DCCR Data Cache Cachability Register 0x3FA 0x35F Read/Write 106

DCWR Data Cache Write-through Register 0x3BA 0x35D Read/Write 106

DEAR Data Error Address Register 0x3D5 0x2BE Read/Write 118

DVC1 Data Value Compare 1 0x3B6 0x2DD Read/Write 147

DVC2 Data Value Compare 2 0x3B7 0x2FD Read/Write 147

ESR Exception Syndrome Register 0x3D4 0x29E Read/Write 116

EVPR Exception Vector Prefix Register 0x3D6 0x2DE Read/Write 116

IAC1 Instruction Address Compare 1 0x3F4 0x29F Read/Write 147

IAC2 Instruction Address Compare 2 0x3F5 0x2B5 Read/Write 147

IAC3 Instruction Address Compare 3 0x3B4 0x29D Read/Write 147

IAC4 Instruction Address Compare 4 0x3B5 0x2BD Read/Write 147

ICCR Instruction Cache Cachability Register 0x3FB 0x37F Read/Write 105

ICDBDR Instruction Cache Debug Data Register 0x3D3 0x27E Read-only 80

LR Link Register 0x008 0x100 Read/Write 37

PID Process ID 0x3B1 0x23D Read/Write 102

PIT Programmable Interval Timer 0x3DB 0x37E Read/Write 131

354

http://www.manualslib.com/

 355

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

10.6 Time Base Registers

The PowerPC Architecture provides a 64-bit time base. Timer Facilities on page 129 describes the architected time
base. In the PPC405, the time base is implemented as two 32-bit time base registers (TBRs). The low-order 32 bits
of the time base are read from the TBL and the high-order 32 bits are read from the TBL.

User-mode access to the TBRs is read-only, and there is no explicitly privileged read access to the time base.

The mftb instruction reads from TBL and TBU. (Writing the time base is accomplished by moving the contents of a
GPR to a pair of SPRs, which are also called TBL and TBU, using the mtspr instruction.)

Table 10-4 shows the mnemonics, names, and numbers of the TBRs. The columns under “TBRN” list the register
numbers used as operands in assembler language coding of the mftb and mtspr instructions. The column labeled
“TBRF” lists the corresponding fields contained in the machine code of mftb and mtspr. The TBRN field contains
two five-bit subfields of the TBRF field; the subfields are reversed in the machine code for the mftb and mtspr
instructions (TBRN ← TBRF5:9 || TBRF0:4). Note that the assembler handles the special coding transparently.

PVR Processor Version Register 0x11F 0x3E8 Read-only 39

SGR Storage Guarded Register 0x3B9 0x33D Read/Write 107

SLER Storage Little Endian Register 0x3BB 0x37D Read/Write 107

SPRG0 SPR General 0 0x110 0x208 Read/Write 39

SPRG1 SPR General 1 0x111 0x228 Read/Write 39

SPRG2 SPR General 2 0x112 0x248 Read/Write 39

SPRG3 SPR General 3 0x113 0x268 Read/Write 39

SPRG4 SPR General 4 0x104 0x088 Read-only 39

SPRG4 SPR General 4 0x114 0x288 Read/Write 39

SPRG5 SPR General 5 0x105 0x0A8 Read-only 39

SPRG5 SPR General 5 0x115 0x2A8 Read/Write 39

SPRG6 SPR General 6 0x106 0x0C8 Read-only 39

SPRG6 SPR General 6 0x116 0x2C8 Read/Write 39

SPRG7 SPR General 7 0x107 0x0E8 Read-only 39

SPRG7 SPR General 7 0x117 0x2E8 Read/Write 39

SRR0 Save/Restore Register 0 0x01A 0x340 Read/Write 115

SRR1 Save/Restore Register 1 0x01B 0x360 Read/Write 115

SRR2 Save/Restore Register 2 0x3DE 0x3DE Read/Write 115

SRR3 Save/Restore Register 3 0x3DF 0x3FE Read/Write 115

SU0R Storage User-defined 0 Register 0x3BC 0x39D Read/Write 105

TBL Time Base Lower 0x11C 0x388 Write-only 130

TBU Time Base Upper 0x11D 0x3A8 Write-only 130

TCR Timer Control Register 0x3DA 0x35E Read/Write 135

TSR Timer Status Register 0x3D8 0x31E Read/Clear 135

USPRG0 User SPR General 0 0x100 0x008 Read/Write 39

XER Fixed Point Exception Register 0x001 0x020 Read/Write 37

ZPR Zone Protection Register 0x3B0 0x21D Privileged 103

Table 10-3. Special Purpose Registers (Continued)

Mnemonic Register Name SPRN SPRF Access See
Page

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

10.7 Device Control Registers

DCRs may be used to control various on-chip system functions, such as the operation of on-chip buses,
peripherals, and certain processor function behaviors. The DCR access instructions are mtdcr (move to device
control register) and mfdcr (move from device control register), which move data between GPRs and the DCRs.
Some DCRs are directly accessed, that is, they are accessed using their DCR numbers. Other DCRs are indirectly
accessed. Such DCRs are accessed by writing an offset to a directly accessed DCR and then reading the data at
the offset in another directly accessed DCR.

DCRs are unique to the chip in which this processor is instantiated and are not a part of the processor. Refer to the
appropriate chip user’s manual for details on the DCRs.

Table 10-4. Time Base Registers

Mnemonic Register Name
TBRN

TBRF Access
Decimal Hex

TBL Time Base Lower (Read-only) 268 0x10C 0x188 Read-only

TBU Time Base Upper (Read-only) 269 0x10D 0x1A8 Read-only

356

http://www.manualslib.com/

 357

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Appendix A. Instruction Summary
This appendix contains PPC405 instructions summarized alphabetically and by opcode.

Appendix A.1 on page 357, illustrates the PPC405 instruction forms (allowed arrangements of fields within
instructions).

Appendix A.2 on page 362 lists all PPC405 mnemonics, including extended mnemonics, alphabetically. A short
functional description is included for each mnemonic.

Appendix A.3 on page 388, lists all PPC405 instructions, sorted by primary and secondary opcodes. Extended
mnemonics are not included in the opcode list.

A.1 Instruction Formats

Instructions are four bytes long. Instruction addresses are always word-aligned.

Instruction bits 0 through 5 always contain the primary opcode. Many instructions have an extended opcode in
another field. Remaining instruction bits contain additional fields. All instruction fields belong to one of the following
categories:

• Defined

These instructions contain values, such as opcodes, that cannot be altered. The instruction format diagrams
specify the values of defined fields.

• Variable

These fields contain operands, such as GPR selectors and immediate values, that can vary from execution to
execution. The instruction format diagrams specify the operands in the variable fields.

• Reserved

Bits in reserved fields should be set to 0. In the instruction format diagrams, /, //, or /// indicate reserved fields.

If any bit in a defined field does not contain the expected value, the instruction is illegal and an illegal instruction
exception occurs. If any bit in a reserved field does not contain 0, the instruction form is invalid; its result is
architecturally undefined. The PPC405 executes all invalid instruction forms without causing an illegal instruction
exception.

A.1.1 Instruction Fields

PPC405 instructions contain various combinations of the following fields, as indicated in the instruction format
diagrams that follow the field definitions. Numbers, enclosed in parentheses, that follow the field names indicate bit
positions; bit fields are indicated by starting and stopping bit positions separated by colons.

AA (30) Absolute address bit.

0 The immediate field represents an address relative to the current instruction address (CIA).
The effective address (EA) of the branch is either the sum of the LI field sign-extended to 32
bits and the branch instruction address, or the sum of the BD field sign-extended to 32 bits and
the branch instruction address.

1 The immediate field represents an absolute address. The EA of the branch is either the LI field
or the BD field, sign-extended to 32 bits.

BA (11:15) Specifies a bit in the CR used as a source of a CR-logical instruction.

BB (16:20) Specifies a bit in the CR used as a source of a CR-logical instruction.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

BD (16:29) An immediate field specifying a 14-bit signed twos complement branch displacement. This field is
concatenated on the right with 0b00 and sign-extended to 32 bits.

BF (6:8) Specifies a field in the CR used as a target in a compare or mcrf instruction.

BFA (11:13) Specifies a field in the CR used as a source in a mcrf instruction.

BI (11:15) Specifies a bit in the CR used as a source for the condition of a conditional branch instruction.

BO (6:10) Specifies options for conditional branch instructions. See BO Field on Conditional Branches on
page 51.

BT (6:10) Specifies a bit in the CR used as a target as the result of a CR-Logical instruction.

D (16:31) Specifies a 16-bit signed twos-complement integer displacement for load/store instructions.

DCRN (11:20) Specifies a device control register (DCR).

FXM (12:19) Field mask used to identify CR fields to be updated by the mtcrf instruction.

IM (16:31) An immediate field used to specify a 16-bit value (either signed integer or unsigned).

LI (6:29) An immediate field specifying a 24-bit signed twos complement branch displacement; this field is
concatenated on the right with b'00' and sign-extended to 32 bits.

LK (31) Link bit.

0 Do not update the link register (LR).
1 Update the LR with the address of the next instruction.

MB (21:25) Mask begin.

Used in rotate-and-mask instructions to specify the beginning bit of a mask.

ME (26:30) Mask end.

Used in rotate-and-mask instructions to specify the ending bit of a mask.

NB (16:20) Specifies the number of bytes to move in an immediate string load or store.

OPCD (0:5) Primary opcode. Primary opcodes, in decimal, appear in the instruction format diagrams
presented with individual instructions. The OPCD field name does not appear in instruction
descriptions.

OE (21) Enables setting the OV and SO fields in the fixed-point exception register (XER) for extended
arithmetic.

RA (11:15) A GPR used as a source or target.

RB (16:20) A GPR used as a source.

Rc (31) Record bit.

0 Do not set the CR.
1 Set the CR to reflect the result of an operation.

See Condition Register (CR) on page 39 for a further discussion of how the CR bits are set.

RS (6:10) A GPR used as a source.

RT (6:10) A GPR used as a target.

SH (16:20) Specifies a shift amount.

SPRF (11:20) Specifies a special purpose register (SPR).

TO (6:10) Specifies the conditions on which to trap, as described under tw and twi instructions.

XO (21:30) Extended opcode for instructions without an OE field. Extended opcodes, in decimal, appear in the
instruction format diagrams presented with individual instructions. The XO field name does not
appear in instruction descriptions.

358

http://www.manualslib.com/

 359

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

XO (22:30) Extended opcode for instructions with an OE field. Extended opcodes, in decimal, appear in the
instruction format diagrams presented with individual instructions. The XO field name does not
appear in instruction descriptions.

A.1.2 Instruction Format Diagrams

The instruction formats (also called forms) illustrated in Figure A-1 through Figure A-9 are valid combinations of
instruction fields. Table A-2 on page -388 indicates which form is utilized by each PPC405 opcode. Fields indicated
by slashes (/, //, or ///) are reserved. The figures are adapted from the PowerPC User Instruction Set Architecture.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

A.1.2.1 I-Form

A.1.2.2 B-Form

A.1.2.3 SC-Form

A.1.2.4 D-Form

Figure A-1. I Instruction Format

OPCD LI

0 6 31

Figure A-2. B Instruction Format

OPCD BO BI BD AA LK

0 6 11 16 30 31

Figure A-3. SC Instruction Format

OPCD /// /// /// 1 /

0 6 11 16 30 31

Figure A-4. D Instruction Format

OPCD RT RA D

OPCD RS RA SI

OPCD RS RA D

OPCD RS RA UI

OPCD BF / L RA SI

OPCD BF / L RA UI

OPCD TO RA SI

0 6 11 16 31

360

http://www.manualslib.com/

 361

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

A.1.2.5 X-Form

A.1.2.6 XL-Form

Figure A-5. X Instruction Format

OPCD RT RA RB XO Rc

OPCD RT RA RB XO /

OPCD RT RA NB XO /

OPCD RT RA WS XO /

OPCD RT /// RB XO /

OPCD RT /// /// XO /

OPCD RS RA RB XO Rc

OPCD RS RA RB XO 1

OPCD RS RA RB XO /

OPCD RS RA NB XO /

OPCD RS RA WS XO /

OPCD RS RA SH XO Rc

OPCD RS RA /// XO Rc

OPCD RS /// RB XO /

OPCD RS /// /// XO /

OPCD BF / L RA RB XO /

OPCD BF // BFA // /// XO Rc

OPCD BF // /// /// XO /

OPCD BF // /// U XO Rc

OPCD BF // /// /// XO /

OPCD TO RA RB XO /

OPCD BT /// /// XO Rc

OPCD /// RA RB XO /

OPCD /// /// /// XO /

OPCD /// /// E // XO /

0 6 11 16 21 31

Figure A-6. XL Instruction Format

OPCD BT BA BB XO /

OPCD BC BI /// XO LK

OPCD BF // BFA // /// XO /

OPCD /// /// /// XO /

0 6 11 16 21 31

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

A.1.2.7 XFX-Form

A.1.2.8 X0-Form

A.1.2.9 M-Form

A.2 List of Implemented Instructions—Alphabetical

Table A-1 summarizes the PPC405 instruction set, including required extended mnemonics. All mnemonics are
listed alphabetically, without regard to whether the mnemonic is realized in hardware or software. When an
instruction supports multiple hardware mnemonics (for example, b, ba, bl, bla are all forms of b), the instruction is
alphabetized under the root form. The hardware instructions are described in detail in Instruction Set on page 157
which is also alphabetized under the root form. That section also describes the instruction operands and notation.

Programming Note: Bit 4 of the BO field provides a hint about the most likely outcome of a conditional
branch. (See Branch Prediction on page 52 for a detailed description of branch prediction.) Assemblers should
set BO4 = 0 unless a specific reason exists otherwise. In the BO field values specified in the table below,
BO4 = 0 has always been assumed. The assembler must allow the programmer to specify branch prediction.
To do this, the assembler supports a suffixes for the conditional branch mnemonics:

+ Predict branch to be taken.

− Predict branch not to be taken.

Figure A-7. XFX Instruction Format

OPCD RT SPRF XO /

OPCD RT DCRF XO /

OPCD RT / FXM / XO /

OPCD RS SPRF XO /

OPCD RS DCRF XO /

0 6 11 16 21 31

Figure A-8. XO Instruction Format

OPCD RT RA RB OE XO Rc

OPCD RT RA RB OE XO Rc

OPCD RT RA /// / XO Rc

0 6 11 16 21 22 31

Figure A-9. M Instruction Format

OPCD RS RA RB MB ME Rc

OPCD RS RA SH MB ME Rc

0 6 11 16 21 26 31

362

http://www.manualslib.com/

AMCC Proprietary 363

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

For example, bc could also be coded as bc+ or bc–, and bne could also be coded bne+ or bne–.
These alternate codings set BO4 = 1 only if the requested prediction differs from the standard
prediction.See Branch Prediction on page 52 for more information.

Table A-1. PPC405 Instruction Syntax Summary
Mnemonic Operands Function Other Registers Changed Page

add RT, RA, RB Add (RA) to (RB).
Place result in RT.

161
add. CR[CR0]
addo XER[SO, OV]
addo. CR[CR0]

XER[SO, OV]
addc RT, RA, RB Add (RA) to (RB).

Place result in RT.
Place carry-out in XER[CA].

162
addc. CR[CR0]
addco XER[SO, OV]
addco. CR[CR0]

XER[SO, OV]
adde RT, RA, RB Add XER[CA], (RA), (RB).

Place result in RT.
Place carry-out in XER[CA].

163
adde. CR[CR0]
addeo XER[SO, OV]
addeo. CR[CR0]

XER[SO, OV]
addi RT, RA, IM Add EXTS(IM) to (RA|0).

Place result in RT.
164

addic RT, RA, IM Add EXTS(IM) to (RA|0).
Place result in RT.
Place carry-out in XER[CA].

166

addic. RT, RA, IM Add EXTS(IM) to (RA|0).
Place result in RT.
Place carry-out in XER[CA].

CR[CR0] 166

addis RT, RA, IM Add (IM || 160) to (RA|0).
Place result in RT.

167

addme RT, RA Add XER[CA], (RA), (-1).
Place result in RT.
Place carry-out in XER[CA].

168
addme. CR[CR0]
addmeo XER[SO, OV]
addmeo. CR[CR0]

XER[SO, OV]
addze RT, RA Add XER[CA] to (RA).

Place result in RT.
Place carry-out in XER[CA].

169
addze. CR[CR0]
addzeo XER[SO, OV]
addzeo. CR[CR0]

XER[SO, OV]
and RA, RS, RB AND (RS) with (RB).

Place result in RA.
170

and. CR[CR0]
andc RA, RS, RB AND (RS) with ¬(RB).

Place result in RA.
171

andc. CR[CR0]
andi. RA, RS, IM AND (RS) with (160 || IM).

Place result in RA.
CR[CR0] 172

andis. RA, RS, IM AND (RS) with (IM || 160).
Place result in RA.

CR[CR0] 173

http://www.manualslib.com/

364 AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

b target Branch unconditional relative.
LI ← (target – CIA)6:29
NIA ← CIA + EXTS(LI || 20)

174

ba Branch unconditional absolute.
LI ← target6:29
NIA ← EXTS(LI || 20)

bl Branch unconditional relative.
LI ← (target – CIA)6:29
NIA ← CIA + EXTS(LI || 20)

(LR) ← CIA + 4.

bla Branch unconditional absolute.
LI ← target6:29
NIA ← EXTS(LI || 20)

(LR) ← CIA + 4.

bc BO, BI, target Branch conditional relative.
BD ← (target – CIA)16:29
NIA ← CIA + EXTS(BD || 20)

CTR if BO2 = 0. 175

bca Branch conditional absolute.
BD ← target16:29
NIA ← EXTS(BD || 20)

CTR if BO2 = 0.

bcl Branch conditional relative.
BD ← (target – CIA)16:29
NIA ← CIA + EXTS(BD || 20)

CTR if BO2 = 0.
(LR) ← CIA + 4.

bcla Branch conditional absolute.
BD ← target16:29
NIA ← EXTS(BD || 20)

CTR if BO2 = 0.
(LR) ← CIA + 4.

bcctr BO, BI Branch conditional to address in CTR.
Using (CTR) at exit from instruction,
NIA ← CTR0:29 || 20.

CTR if BO2 = 0. 181
bcctrl CTR if BO2 = 0.

(LR) ← CIA + 4.
bclr BO, BI Branch conditional to address in LR.

Using (LR) at entry to instruction,
NIA ← LR0:29 || 20.

CTR if BO2 = 0. 184
bclrl CTR if BO2 = 0.

(LR) ← CIA + 4.
bctr Branch unconditionally to address in CTR.

Extended mnemonic for
bcctr 20,0

181

bctrl Extended mnemonic for
bcctrl 20,0

(LR) ← CIA + 4.

bdnz target Decrement CTR.
Branch if CTR ≠ 0.
Extended mnemonic for

bc 16,0,target

175

bdnza Extended mnemonic for
bca 16,0,target

bdnzl Extended mnemonic for
bcl 16,0,target

(LR) ← CIA + 4.

bdnzla Extended mnemonic for
bcla 16,0,target

(LR) ← CIA + 4.

bdnzlr Decrement CTR.
Branch if CTR ≠ 0 to address in LR.
Extended mnemonic for

bclr 16,0

175

bdnzlrl Extended mnemonic for
bclrl 16,0

(LR) ← CIA + 4.

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

AMCC Proprietary 365

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

bdnzf cr_bit, target Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 0.
Extended mnemonic for

bc 0,cr_bit,target

175

bdnzfa Extended mnemonic for
bca 0,cr_bit,target

bdnzfl Extended mnemonic for
bcl 0,cr_bit,target

(LR) ← CIA + 4.

bdnzfla Extended mnemonic for
bcla 0,cr_bit,target

(LR) ← CIA + 4.

bdnzflr cr_bit Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 0 to address in LR.
Extended mnemonic for

bclr 0,cr_bit

175

bdnzflrl Extended mnemonic for
bclrl 0,cr_bit

(LR) ← CIA + 4.

bdnzt cr_bit, target Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 1.
Extended mnemonic for

bc 8,cr_bit,target

175

bdnzta Extended mnemonic for
bca 8,cr_bit,target

bdnztl Extended mnemonic for
bcl 8,cr_bit,target

(LR) ← CIA + 4.

bdnztla Extended mnemonic for
bcla 8,cr_bit,target

(LR) ← CIA + 4.

bdnztlr cr_bit Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 1 to address in LR.
Extended mnemonic for

bclr 8,cr_bit

175

bdnztlrl Extended mnemonic for
bclrl 8,cr_bit

(LR) ← CIA + 4.

bdz target Decrement CTR.
Branch if CTR = 0.
Extended mnemonic for

bc 18,0,target

175

bdza Extended mnemonic for
bca 18,0,target

bdzl Extended mnemonic for
bcl 18,0,target

(LR) ← CIA + 4.

bdzla Extended mnemonic for
bcla 18,0,target

(LR) ← CIA + 4.

bdzlr Decrement CTR.
Branch if CTR = 0 to address in LR.
Extended mnemonic for

bclr 18,0

175

bdzlrl Extended mnemonic for
bclrl 18,0

(LR) ← CIA + 4.

bdzf cr_bit, target Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 0.
Extended mnemonic for

bc 2,cr_bit,target

175

bdzfa Extended mnemonic for
bca 2,cr_bit,target

bdzfl Extended mnemonic for
bcl 2,cr_bit,target

(LR) ← CIA + 4.

bdzfla Extended mnemonic for
bcla 2,cr_bit,target

(LR) ← CIA + 4.

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

366 AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

bdzflr cr_bit Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 0 to address in LR.
Extended mnemonic for

bclr 2,cr_bit

175

bdzflrl Extended mnemonic for
bclrl 2,cr_bit

(LR) ← CIA + 4.

bdzt cr_bit, target Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 1.
Extended mnemonic for

bc 10,cr_bit,target

175

bdzta Extended mnemonic for
bca 10,cr_bit,target

bdztl Extended mnemonic for
bcl 10,cr_bit,target

(LR) ← CIA + 4.

bdztla Extended mnemonic for
bcla 10,cr_bit,target

(LR) ← CIA + 4.

bdztlr cr_bit Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 1to address in LR.
Extended mnemonic for

bclr 10,cr_bit

184

bdztlrl Extended mnemonic for
bclrl 10,cr_bit

(LR) ← CIA + 4.

beq [cr_field], target Branch if equal.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bc 12,4∗cr_field+2,target

184

beqa Extended mnemonic for
bca 12,4∗cr_field+2,target

beql Extended mnemonic for
bcl 12,4∗cr_field+2,target

(LR) ← CIA + 4.

beqla Extended mnemonic for
bcla 12,4∗cr_field+2,target

(LR) ← CIA + 4.

beqctr [cr_field] Branch if equal to address in CTR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bcctr 12,4∗cr_field+2

181

beqctrl Extended mnemonic for
bcctrl 12,4∗cr_field+2

(LR) ← CIA + 4.

beqlr [cr_field] Branch if equal to address in LR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bclr 12,4∗cr_field+2

184

beqlrl Extended mnemonic for
bclrl 12,4∗cr_field+2

(LR) ← CIA + 4.

bf cr_bit, target Branch if CRcr_bit = 0.
Extended mnemonic for

bc 4,cr_bit,target

175

bfa Extended mnemonic for
bca 4,cr_bit,target

bfl Extended mnemonic for
bcl 4,cr_bit,target

(LR) ← CIA + 4.

bfla Extended mnemonic for
bcla 4,cr_bit,target

(LR) ← CIA + 4.

bfctr cr_bit Branch if CRcr_bit = 0 to address in CTR.
Extended mnemonic for

bcctr 4,cr_bit

181

bfctrl Extended mnemonic for
bcctrl 4,cr_bit

(LR) ← CIA + 4.

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

AMCC Proprietary 367

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

bflr cr_bit Branch if CRcr_bit = 0 to address in LR.
Extended mnemonic for

bclr 4,cr_bit

184

bflrl Extended mnemonic for
bclrl 4,cr_bit

(LR) ← CIA + 4.

bge [cr_field], target Branch if greater than or equal.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bc 4,4∗cr_field+0,target

175

bgea Extended mnemonic for
bca 4,4∗cr_field+0,target

bgel Extended mnemonic for
bcl 4,4∗cr_field+0,target

(LR) ← CIA + 4.

bgela Extended mnemonic for
bcla 4,4∗cr_field+0,target

(LR) ← CIA + 4.

bgectr [cr_field] Branch if greater than or equal to address in CTR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bcctr 4,4∗cr_field+0

181

bgectrl Extended mnemonic for
bcctrl 4,4∗cr_field+0

(LR) ← CIA + 4.

bgelr [cr_field] Branch if greater than or equal to address in LR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bclr 4,4∗cr_field+0

184

bgelrl Extended mnemonic for
bclrl 4,4∗cr_field+0

(LR) ← CIA + 4.

bgt [cr_field], target Branch if greater than.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bc 12,4∗cr_field+1,target

175

bgta Extended mnemonic for
bca 12,4∗cr_field+1,target

bgtl Extended mnemonic for
bcl 12,4∗cr_field+1,target

(LR) ← CIA + 4.

bgtla Extended mnemonic for
bcla 12,4∗cr_field+1,target

(LR) ← CIA + 4.

bgtctr [cr_field] Branch if greater than to address in CTR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bcctr 12,4∗cr_field+1

181

bgtctrl Extended mnemonic for
bcctrl 12,4∗cr_field+1

(LR) ← CIA + 4.

bgtlr [cr_field] Branch if greater than to address in LR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bclr 12,4∗cr_field+1

184

bgtlrl Extended mnemonic for
bclrl 12,4∗cr_field+1

(LR) ← CIA + 4.

ble [cr_field], target Branch if less than or equal.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bc 4,4∗cr_field+1,target

175

blea Extended mnemonic for
bca 4,4∗cr_field+1,target

blel Extended mnemonic for
bcl 4,4∗cr_field+1,target

(LR) ← CIA + 4.

blela Extended mnemonic for
bcla 4,4∗cr_field+1,target

(LR) ← CIA + 4.

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

368 AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

blectr [cr_field] Branch if less than or equal to address in CTR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bcctr 4,4∗cr_field+1

181

blectrl Extended mnemonic for
bcctrl 4,4∗cr_field+1

(LR) ← CIA + 4.

blelr [cr_field] Branch if less than or equal to address in LR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bclr 4,4∗cr_field+1

184

blelrl Extended mnemonic for
bclrl 4,4∗cr_field+1

(LR) ← CIA + 4.

blr Branch unconditionally to address in LR.
Extended mnemonic for

bclr 20,0

184

blrl Extended mnemonic for
bclrl 20,0

(LR) ← CIA + 4.

blt [cr_field], target Branch if less than.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bc 12,4∗cr_field+0,target

175

blta Extended mnemonic for
bca 12,4∗cr_field+0,target

bltl Extended mnemonic for
bcl 12,4∗cr_field+0,target

(LR) ← CIA + 4.

bltla Extended mnemonic for
bcla 12,4∗cr_field+0,target

(LR) ← CIA + 4.

bltctr [cr_field] Branch if less than to address in CTR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bcctr 12,4∗cr_field+0

181

bltctrl Extended mnemonic for
bcctrl 12,4∗cr_field+0

(LR) ← CIA + 4.

bltlr [cr_field] Branch if less than to address in LR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bclr 12,4∗cr_field+0

184

bltlrl Extended mnemonic for
bclrl 12,4∗cr_field+0

(LR) ← CIA + 4.

bne [cr_field], target Branch if not equal.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bc 4,4∗cr_field+2,target

175

bnea Extended mnemonic for
bca 4,4∗cr_field+2,target

bnel Extended mnemonic for
bcl 4,4∗cr_field+2,target

(LR) ← CIA + 4.

bnela Extended mnemonic for
bcla 4,4∗cr_field+2,target

(LR) ← CIA + 4.

bnectr [cr_field] Branch if not equal to address in CTR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bcctr 4,4∗cr_field+2

181

bnectrl Extended mnemonic for
bcctrl 4,4∗cr_field+2

(LR) ← CIA + 4.

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

AMCC Proprietary 369

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

bnelr [cr_field] Branch if not equal to address in LR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bclr 4,4∗cr_field+2

184

bnelrl Extended mnemonic for
bclrl 4,4∗cr_field+2

(LR) ← CIA + 4.

bng [cr_field], target Branch if not greater than.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bc 4,4∗cr_field+1,target

175

bnga Extended mnemonic for
bca 4,4∗cr_field+1,target

bngl Extended mnemonic for
bcl 4,4∗cr_field+1,target

(LR) ← CIA + 4.

bngla Extended mnemonic for
bcla 4,4∗cr_field+1,target

(LR) ← CIA + 4.

bngctr [cr_field] Branch if not greater than to address in CTR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bcctr 4,4∗cr_field+1

181

bngctrl Extended mnemonic for
bcctrl 4,4∗cr_field+1

(LR) ← CIA + 4.

bnglr [cr_field] Branch if not greater than to address in LR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bclr 4,4∗cr_field+1

184

bnglrl Extended mnemonic for
bclrl 4,4∗cr_field+1

(LR) ← CIA + 4.

bnl [cr_field], target Branch if not less than.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bc 4,4∗cr_field+0,target

175

bnla Extended mnemonic for
bca 4,4∗cr_field+0,target

bnll Extended mnemonic for
bcl 4,4∗cr_field+0,target

(LR) ← CIA + 4.

bnlla Extended mnemonic for
bcla 4,4∗cr_field+0,target

(LR) ← CIA + 4.

bnlctr [cr_field] Branch if not less than to address in CTR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bcctr 4,4∗cr_field+0

181

bnlctrl Extended mnemonic for
bcctrl 4,4∗cr_field+0

(LR) ← CIA + 4.

bnllr [cr_field] Branch if not less than to address in LR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bclr 4,4∗cr_field+0

184

bnllrl Extended mnemonic for
bclrl 4,4∗cr_field+0

(LR) ← CIA + 4.

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

370 AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

bns [cr_field], target Branch if not summary overflow.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bc 4,4∗cr_field+3,target

175

bnsa Extended mnemonic for
bca 4,4∗cr_field+3,target

bnsl Extended mnemonic for
bcl 4,4∗cr_field+3,target

(LR) ← CIA + 4.

bnsla Extended mnemonic for
bcla 4,4∗cr_field+3,target

(LR) ← CIA + 4.

bnsctr [cr_field] Branch if not summary overflow to address in CTR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bcctr 4,4∗cr_field+3

181

bnsctrl Extended mnemonic for
bcctrl 4,4∗cr_field+3

(LR) ← CIA + 4.

bnslr [cr_field] Branch if not summary overflow to address in LR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bclr 4,4∗cr_field+3

184

bnslrl Extended mnemonic for
bclrl 4,4∗cr_field+3

(LR) ← CIA + 4.

bnu [cr_field], target Branch if not unordered.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bc 4,4∗cr_field+3,target

175

bnua Extended mnemonic for
bca 4,4∗cr_field+3,target

bnul Extended mnemonic for
bcl 4,4∗cr_field+3,target

(LR) ← CIA + 4.

bnula Extended mnemonic for
bcla 4,4∗cr_field+3,target

(LR) ← CIA + 4.

bnuctr [cr_field] Branch if not unordered to address in CTR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bcctr 4,4∗cr_field+3

181

bnuctrl Extended mnemonic for
bcctrl 4,4∗cr_field+3

(LR) ← CIA + 4.

bnulr [cr_field] Branch if not unordered to address in LR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bclr 4,4∗cr_field+3

184

bnulrl Extended mnemonic for
bclrl 4,4∗cr_field+3

(LR) ← CIA + 4.

bso [cr_field], target Branch if summary overflow.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bc 12,4∗cr_field+3,target

175

bsoa Extended mnemonic for
bca 12,4∗cr_field+3,target

bsol Extended mnemonic for
bcl 12,4∗cr_field+3,target

(LR) ← CIA + 4.

bsola Extended mnemonic for
bcla 12,4∗cr_field+3,target

(LR) ← CIA + 4.

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

AMCC Proprietary 371

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

bsoctr [cr_field] Branch if summary overflow to address in CTR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bcctr 12,4∗cr_field+3

181

bsoctrl Extended mnemonic for
bcctrl 12,4∗cr_field+3

(LR) ← CIA + 4.

bsolr [cr_field] Branch if summary overflow to address in LR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bclr 12,4∗cr_field+3

184

bsolrl Extended mnemonic for
bclrl 12,4∗cr_field+3

(LR) ← CIA + 4.

bt cr_bit, target Branch if CRcr_bit = 1.
Extended mnemonic for

bc 12,cr_bit,target

175

bta Extended mnemonic for
bca 12,cr_bit,target

btl Extended mnemonic for
bcl 12,cr_bit,target

(LR) ← CIA + 4.

btla Extended mnemonic for
bcla 12,cr_bit,target

(LR) ← CIA + 4.

btctr cr_bit Branch if CRcr_bit = 1 to address in CTR.
Extended mnemonic for

bcctr 12,cr_bit

181

btctrl Extended mnemonic for
bcctrl 12,cr_bit

(LR) ← CIA + 4.

btlr cr_bit Branch if CRcr_bit = 1,
to address in LR.
Extended mnemonic for

bclr 12,cr_bit

184

btlrl Extended mnemonic for
bclrl 12,cr_bit

(LR) ← CIA + 4.

bun [cr_field], target Branch if unordered.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bc 12,4∗cr_field+3,target

175

buna Extended mnemonic for
bca 12,4∗cr_field+3,target

bunl Extended mnemonic for
bcl 12,4∗cr_field+3,target

(LR) ← CIA + 4.

bunla Extended mnemonic for
bcla 12,4∗cr_field+3,target

(LR) ← CIA + 4.

bunctr [cr_field] Branch if unordered to address in CTR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bcctr 12,4∗cr_field+3

181

bunctrl Extended mnemonic for
bcctrl 12,4∗cr_field+3

(LR) ← CIA + 4.

bunlr [cr_field] Branch if unordered,
to address in LR.
Use CR0 if cr_field is omitted.
Extended mnemonic for

bclr 12,4∗cr_field+3

184

bunlrl Extended mnemonic for
bclrl 12,4∗cr_field+3

(LR) ← CIA + 4.

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

372 AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

clrlwi RA, RS, n Clear left immediate. (n < 32)
(RA)0:n−1 ← n0
Extended mnemonic for

rlwinm RA,RS,0,n,31

300

clrlwi. Extended mnemonic for
rlwinm. RA,RS,0,n,31

CR[CR0]

clrlslwi RA, RS, b, n Clear left and shift left immediate.
(n ≤ b < 32)
(RA)b−n:31−n ← (RS)b:31
(RA)32−n:31 ← n0
(RA)0:b−n−1 ← b−n0
Extended mnemonic for

rlwinm RA,RS,n,b−n,31−n

300

clrlslwi. Extended mnemonic for
rlwinm. RA,RS,n,b−n,31−n

CR[CR0]

clrrwi RA, RS, n Clear right immediate. (n < 32)
(RA)32−n:31 ← n0
Extended mnemonic for

rlwinm RA,RS,0,0,31−n

300

clrrwi. Extended mnemonic for
rlwinm. RA,RS,0,0,31−n

CR[CR0]

cmp BF, 0, RA, RB Compare (RA) to (RB), signed.
Results in CR[CRn], where n = BF.

188

cmpi BF, 0, RA, IM Compare (RA) to EXTS(IM), signed.
Results in CR[CRn], where n = BF.

189

cmpl BF, 0, RA, RB Compare (RA) to (RB), unsigned.
Results in CR[CRn], where n = BF.

190

cmpli BF, 0, RA, IM Compare (RA) to (160 || IM), unsigned.
Results in CR[CRn], where n = BF.

191

cmplw [BF,] RA, RB Compare Logical Word.
Use CR0 if BF is omitted.
Extended mnemonic for

cmpl BF,0,RA,RB

190

cmplwi [BF,] RA, IM Compare Logical Word Immediate.
Use CR0 if BF is omitted.
Extended mnemonic for

cmpli BF,0,RA,IM

191

cmpw [BF,] RA, RB Compare Word.
Use CR0 if BF is omitted.
Extended mnemonic for

cmp BF,0,RA,RB

188

cmpwi [BF,] RA, IM Compare Word Immediate.
Use CR0 if BF is omitted.
Extended mnemonic for

cmpi BF,0,RA,IM

189

cntlzw RA, RS Count leading zeros in RS.
Place result in RA.

192
cntlzw. CR[CR0]
crand BT, BA, BB AND bit (CRBA) with (CRBB).

Place result in CRBT.
193

crandc BT, BA, BB AND bit (CRBA) with ¬(CRBB).
Place result in CRBT.

194

crclr bx Condition register clear.
Extended mnemonic for

crxor bx,bx,bx

200

creqv BT, BA, BB Equivalence of bit CRBA with CRBB.
CRBT ← ¬(CRBA ⊕ CRBB)

195

crmove bx, by Condition register move.
Extended mnemonic for

cror bx,by,by

198

crnand BT, BA, BB NAND bit (CRBA) with (CRBB).
Place result in CRBT.

196

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

AMCC Proprietary 373

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

crnor BT, BA, BB NOR bit (CRBA) with (CRBB).
Place result in CRBT.

197

crnot bx, by Condition register not.
Extended mnemonic for

crnor bx,by,by

197

cror BT, BA, BB OR bit (CRBA) with (CRBB).
Place result in CRBT.

198

crorc BT, BA, BB OR bit (CRBA) with ¬(CRBB).
Place result in CRBT.

199

crset bx Condition register set.
Extended mnemonic for

creqv bx,bx,bx

195

crxor BT, BA, BB XOR bit (CRBA) with (CRBB).
Place result in CRBT.

200

dcba RA, RB Speculatively establish the data cache block which contains
the effective address (RA|0) + (RB).

201

dcbf RA, RB Flush (store, then invalidate) the data cache block which
contains the effective address (RA|0) + (RB).

203

dcbi RA, RB Invalidate the data cache block which contains the effective
address (RA|0) + (RB).

204

dcbst RA, RB Store the data cache block which contains the effective
address (RA|0) + (RB).

205

dcbt RA, RB Load the data cache block which contains the effective
address (RA|0) + (RB).

206

dcbtst RA,RB Load the data cache block which contains the effective
address (RA|0) + (RB).

207

dcbz RA, RB Zero the data cache block which contains the effective
address (RA|0) + (RB).

208

dccci RA, RB Invalidate the data cache congruence class associated with
the effective address (RA|0) + (RB).

210

dcread RT, RA, RB Read either tag or data information from the data cache
congruence class associated with the effective address
(RA|0) + (RB).
Place the results in RT.

211

divw RT, RA, RB Divide (RA) by (RB), signed.
Place result in RT.

213
divw. CR[CR0]
divwo XER[SO, OV]
divwo. CR[CR0]

XER[SO, OV]
divwu RT, RA, RB Divide (RA) by (RB), unsigned.

Place result in RT.
214

divwu. CR[CR0]
divwuo XER[SO, OV]
divwuo. CR[CR0]

XER[SO, OV]
eieio Storage synchronization. All loads and stores that precede

the eieio instruction complete before any loads and stores
that follow the instruction access main storage.
Implemented as sync, which is more restrictive.

215

eqv RA, RS, RB Equivalence of (RS) with (RB).
(RA) ← ¬((RS) ⊕ (RB))

216
eqv. CR[CR0]
extlwi RA, RS, n, b Extract and left justify immediate. (n > 0)

(RA)0:n−1 ← (RS)b:b+n−1
(RA)n:31 ← 32−n0
Extended mnemonic for

rlwinm RA,RS,b,0,n−1

300

extlwi. Extended mnemonic for
rlwinm. RA,RS,b,0,n−1

CR[CR0]

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

374 AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

extrwi RA, RS, n, b Extract and right justify immediate. (n > 0)
(RA)32−n:31 ← (RS)b:b+n−1
(RA)0:31−n ← 32−n0
Extended mnemonic for

rlwinm RA,RS,b+n,32−n,31

300

extrwi. Extended mnemonic for
rlwinm. RA,RS,b+n,32−n,31

CR[CR0]

extsb RA, RS Extend the sign of byte (RS)24:31.
Place the result in RA.

217
extsb. CR[CR0]
extsh RA, RS Extend the sign of halfword (RS)16:31.

Place the result in RA.
218

extsh. CR[CR0]
icbi RA, RB Invalidate the instruction cache block which contains the

effective address (RA|0) + (RB).
219

icbt RA, RB Load the instruction cache block which contains the
effective address (RA|0) + (RB).

220

iccci RA, RB Invalidate instruction cache. 221
icread RA, RB Read either tag or data information from the instruction

cache congruence class associated with the effective
address (RA|0) + (RB).
Place the results in ICDBDR.

222

inslwi RA, RS, n, b Insert from left immediate. (n > 0)
(RA)b:b+n−1 ← (RS)0:n−1
Extended mnemonic for

rlwimi RA,RS,32−b,b,b+n−1

299

inslwi. Extended mnemonic for
rlwimi. RA,RS,32−b,b,b+n−1

CR[CR0]

insrwi RA, RS, n, b Insert from right immediate. (n > 0)
(RA)b:b+n−1 ← (RS)32−n:31
Extended mnemonic for

rlwimi RA,RS,32−b−n,b,b+n−1

299

insrwi. Extended mnemonic for
rlwimi. RA,RS,32−b−n,b,b+n−1

CR[CR0]

isync Synchronize execution context by flushing the prefetch
queue.

224

la RT, D(RA) Load address. (RA ≠ 0)
D is an offset from a base address that is assumed to be
(RA).
(RT) ← (RA) + EXTS(D)
Extended mnemonic for

addi RT,RA,D

164

lbz RT, D(RA) Load byte from EA = (RA|0) + EXTS(D) and pad left with
zeroes,
(RT) ← 240 || MS(EA,1).

225

lbzu RT, D(RA) Load byte from EA = (RA|0) + EXTS(D) and pad left with
zeroes,
(RT) ← 240 || MS(EA,1).
Update the base address,
(RA) ← EA.

226

lbzux RT, RA, RB Load byte from EA = (RA|0) + (RB) and pad left with
zeroes,
(RT) ← 240 || MS(EA,1).
Update the base address,
(RA) ← EA.

227

lbzx RT, RA, RB Load byte from EA = (RA|0) + (RB) and pad left with
zeroes,
(RT) ← 240 || MS(EA,1).

228

lha RT, D(RA) Load halfword from EA = (RA|0) + EXTS(D) and sign
extend,
(RT) ← EXTS(MS(EA,2)).

229

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

AMCC Proprietary 375

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

lhau RT, D(RA) Load halfword from EA = (RA|0) + EXTS(D) and sign
extend,
(RT) ← EXTS(MS(EA,2)).
Update the base address,
(RA) ← EA.

230

lhaux RT, RA, RB Load halfword from EA = (RA|0) + (RB) and sign extend,
(RT) ← EXTS(MS(EA,2)).
Update the base address,
(RA) ← EA.

231

lhax RT, RA, RB Load halfword from EA = (RA|0) + (RB) and sign extend,
(RT) ← EXTS(MS(EA,2)).

232

lhbrx RT, RA, RB Load halfword from EA = (RA|0) + (RB), then reverse byte
order and pad left with zeroes,
(RT) ← 160 || MS(EA+1,1) || MS(EA,1).

233

lhz RT, D(RA) Load halfword from EA = (RA|0) + EXTS(D) and pad left
with zeroes,
(RT) ← 160 || MS(EA,2).

234

lhzu RT, D(RA) Load halfword from EA = (RA|0) + EXTS(D) and pad left
with zeroes,
(RT) ← 160 || MS(EA,2).
Update the base address,
(RA) ← EA.

235

lhzux RT, RA, RB Load halfword from EA = (RA|0) + (RB) and pad left with
zeroes,
(RT) ← 160 || MS(EA,2).
Update the base address,
(RA) ← EA.

236

lhzx RT, RA, RB Load halfword from EA = (RA|0) + (RB) and pad left with
zeroes,
(RT) ← 160 || MS(EA,2).

237

li RT, IM Load immediate.
(RT) ← EXTS(IM)
Extended mnemonic for

addi RT,0,value

164

lis RT, IM Load immediate shifted.
(RT) ← (IM || 160)
Extended mnemonic for

addis RT,0,value

167

lmw RT, D(RA) Load multiple words starting from EA = (RA|0) + EXTS(D).
Place into consecutive registers RT through GPR(31).
RA is not altered unless RA = GPR(31).

238

lswi RT, RA, NB Load consecutive bytes from EA=(RA|0).
Number of bytes n=32 if NB=0, else n=NB.
Stack bytes into words in CEIL(n/4)
consecutive registers starting with RT, to
RFINAL ← ((RT + CEIL(n/4) – 1) % 32).
GPR(0) is consecutive to GPR(31).
RA is not altered unless RA = RFINAL.

239

lswx RT, RA, RB Load consecutive bytes from EA=(RA|0)+(RB).
Number of bytes n=XER[TBC].
Stack bytes into words in CEIL(n/4)
consecutive registers starting with RT, to
RFINAL ← ((RT + CEIL(n/4) – 1) % 32).
GPR(0) is consecutive to GPR(31).
RA is not altered unless RA = RFINAL.
RB is not altered unless RB = RFINAL.
If n=0, content of RT is undefined.

241

lwarx RT, RA, RB Load word from EA = (RA|0) + (RB) and place in RT,
(RT) ← MS(EA,4).
Set the Reservation bit.

243

lwbrx RT, RA, RB Load word from EA = (RA|0) + (RB) then reverse byte
order,
(RT) ← MS(EA+3,1) || MS(EA+2,1) ||
 MS(EA+1,1) || MS(EA,1).

244

lwz RT, D(RA) Load word from EA = (RA|0) + EXTS(D) and place in RT,
(RT) ← MS(EA,4).

245

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

376 AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

lwzu RT, D(RA) Load word from EA = (RA|0) + EXTS(D) and place in RT,
(RT) ← MS(EA,4).
Update the base address,
(RA) ← EA.

246

lwzux RT, RA, RB Load word from EA = (RA|0) + (RB) and place in RT,
(RT) ← MS(EA,4).
Update the base address,
(RA) ← EA.

247

lwzx RT, RA, RB Load word from EA = (RA|0) + (RB) and place in RT,
(RT) ← MS(EA,4).

248

macchw RT, RA, RB prod0:31 ← (RA)16:31 x (RB)0:15 signed
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

249

macchw. CR[CR0]

macchwo XER[SO, OV]

macchwo. CR[CR0]
XER[SO, OV]

macchws RT, RA, RB prod0:31 ← (RA)16:31 x (RB)0:15 signed
temp0:32 ← prod0:31 + (RT)
if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

250

macchws. CR[CR0]

macchwso XER[SO, OV]

macchwso. CR[CR0]
XER[SO, OV]

macchwsu RT, RA, RB prod0:31 ← (RA)16:31 x (RB)0:15 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← (temp1:32 ∨ 32temp0)

251

macchwsu. CR[CR0]

macchwsuo XER[SO, OV]

macchwsuo. CR[CR0]
XER[SO, OV]

macchwu RT, RA, RB prod0:31 ← (RA)16:31 x (RB)0:15 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

252

macchwu. CR[CR0]

macchwuo XER[SO, OV]

macchwuo. CR[CR0]
XER[SO, OV]

machhw RT, RA, RB prod0:15 ← (RA)16:31 x (RB)0:15 signed
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

253

machhw. CR[CR0]

machhwo XER[SO, OV]

machhwo. CR[CR0]
XER[SO, OV]

machhws RT, RA, RB prod0:31 ← (RA)0:15 x (RB)0:15 signed
temp0:32 ← prod0:31 + (RT)
if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

254

machhws. CR[CR0]

machhwso XER[SO, OV]

machhwso. CR[CR0]
XER[SO, OV]

machhwsu RT, RA, RB prod0:31 ← (RA)0:15 x (RB)0:15 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← (temp1:32 ∨ 32temp0)

255

machhwsu. CR[CR0]

machhwsuo XER[SO, OV]

machhwsuo. CR[CR0]
XER[SO, OV]

machhwu RT, RA, RB prod0:31 ← (RA)0:15 x (RB)0:15 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

256

machhwu. CR[CR0]

machhwuo XER[SO, OV]

machhwuo. CR[CR0]
XER[SO, OV]

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

AMCC Proprietary 377

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

maclhw RT, RA, RB prod0:31 ← (RA)16:31 x (RB)16:31 signed
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

257

maclhw. CR[CR0]

maclhwo XER[SO, OV]

maclhwo. CR[CR0]
XER[SO, OV]

maclhws RT, RA, RB prod0:31 ← (RA)16:31 x (RB)16:31 signed
temp0:32 ← prod0:31 + (RT)
if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

258

maclhws. CR[CR0]

maclhwso XER[SO, OV]

maclhwso. CR[CR0]
XER[SO, OV]

maclhwsu RT, RA, RB prod0:31 ← (RA)16:31 x (RB)16:31 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← (temp1:32 ∨ 32temp0)

259

maclhwsu. CR[CR0]

maclhwsuo XER[SO, OV]

maclhwsuo. CR[CR0]
XER[SO, OV]

maclhwu RT, RA, RB prod0:31 ← (RA)16:31 x (RB)16:31 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

260

maclhwu. CR[CR0]

maclhwuo XER[SO, OV]

maclhwuo. CR[CR0]
XER[SO, OV]

mcrf BF, BFA Move CR field, (CR[CRn]) ← (CR[CRm])
where m ← BFA and n ← BF.

261

mcrxr BF Move XER[0:3] into field CRn, where n←BF.
CR[CRn] ← (XER[SO, OV, CA]).
(XER[SO, OV, CA]) ← 30.

262

mfcr RT Move from CR to RT,
(RT) ← (CR).

263

mfdcr RT, DCRN Move from DCR to RT,
(RT) ← (DCR(DCRN)).

264

mfmsr RT Move from MSR to RT,
(RT) ← (MSR).

265

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

378 AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

mfccr0
mfctr
mfdac1
mfdac2
mfdear
mfdbcr0
mfdbcr1
mfdbsr
mfdccr
mfdcwr
mfdvc1
mfdvc2
mfesr
mfevpr
mfiac1
mfiac2
mfiac3
mfiac4
mficcr
mficdbdr
mflr
mfpid
mfpit
mfpvr
mfsgr
mfsler
mfsprg0
mfsprg1
mfsprg2
mfsprg3
mfsprg4
mfsprg5
mfsprg6
mfsprg7
mfsrr0
mfsrr1
mfsrr2
mfsrr3
mfsu0r
mftcr
mftsr
mfxer
mfzpr

RT Move from special purpose register (SPR) SPRN.
Extended mnemonic for

mfspr RT,SPRN
See Table 10-3 on page 354 for listing of valid SPRN
values.

266

mfspr RT, SPRN Move from SPR to RT,
(RT) ← (SPR(SPRN)).

266

mftb RT, TBRN Move from TBR to RT,
(RT) ← (TBR(TBRN)).

268

mftb RT Move the contents of TBL into RT,
(RT) ← (TBL)
Extended mnemonic for

mftb RT,TBL

268

mftbu RT Move the contents of TBU into RT,
(RT) ← (TBU)
Extended mnemonic for

mftb RT,TBU

268

mr RT, RS Move register.
(RT) ← (RS)
Extended mnemonic for

or RT,RS,RS

293

mr. Extended mnemonic for
or. RT,RS,RS

CR[CR0]

mtcr RS Move to Condition Register.
Extended mnemonic for

mtcrf 0xFF,RS

269

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

AMCC Proprietary 379

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

mtcrf FXM, RS Move some or all of the contents of RS into CR as specified
by FXM field,
mask ← 4(FXM0) || 4(FXM1) || ... ||

4(FXM6) || 4(FXM7).
(CR)←((RS) ∧ mask) ∨ (CR) ∧ ¬mask).

269

mtdcr DCRN, RS Move to DCR from RS,
(DCR(DCRN)) ← (RS).

270

mtmsr RS Move to MSR from RS,
(MSR) ← (RS).

271

mtccr0
mtctr
mtdac1
mtdac2
mtdbcr0
mtdbcr1
mtdbsr
mtdccr
mtdear
mtdcwr
mtdvc1
mtdvc2
mtesr
mtevpr
mtiac1
mtiac2
mtiac3
mtiac4
mticcr
mticdbdr
mtlr
mtpid
mtpit
mtpvr
mtsgr
mtsler
mtsprg0
mtsprg1
mtsprg2
mtsprg3
mtsprg4
mtsprg5
mtsprg6
mtsprg7
mtsrr0
mtsrr1
mtsrr2
mtsrr3
mtsu0r
mttbl
mttbu
mttcr
mttsr
mtxer
mtzpr

RS Move to SPR SPRN.
Extended mnemonic for

mtspr SPRN,RS

See Table 10-3 on page 354 for listing of valid SPRN
values.

272

mtspr SPRN, RS Move to SPR from RS,
(SPR(SPRN)) ← (RS).

272

mulchw RT, RA, RB (RT)0:31 ← (RA)16:31 x (RB)0:15 signed 274

mulchw. CR[CR0]

mulchwu RT, RA, RB (RT)0:31 ← (RA)16:31 x (RB)0:15 unsigned 275

mulchwu. CR[CR0]

mulhhw RT, RA, RB (RT)0:31 ← (RA)0:15 x (RB)0:15 signed 276

mulhhw. CR[CR0]

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

380 AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

mulhhwu RT, RA, RB (RT)0:31 ← (RA)0:15 x (RB)0:15 unsigned 277

mulhhwu. CR[CR0]

mullhw RT, RA, RB (RT)0:31 ← (RA)16:31 x (RB)16:31 signed 280

mullhw. CR[CR0]

mullhwu RT, RA, RB (RT)16:31 ← (RA)16:31 x (RB)16:31 unsigned 281

mullhwu. CR[CR0]

mulhw RT, RA, RB Multiply (RA) and (RB), signed.
Place high-order result in RT.
prod0:63 ← (RA) × (RB) (signed).
(RT) ← prod0:31.

278
mulhw. CR[CR0]

mulhwu RT, RA, RB Multiply (RA) and (RB), unsigned.
Place high-order result in RT.
prod0:63 ← (RA) × (RB) (unsigned).
(RT) ← prod0:31.

279
mulhwu. CR[CR0]

mulli RT, RA, IM Multiply (RA) and IM, signed.
Place low-order result in RT.
prod0:47 ← (RA) × IM (signed)
(RT) ← prod16:47

282

mullw RT, RA, RB Multiply (RA) and (RB), signed.
Place low-order result in RT.
prod0:63 ← (RA) × (RB) (signed).
(RT) ← prod32:63.

283
mullw. CR[CR0]
mullwo XER[SO, OV]
mullwo. CR[CR0]

XER[SO, OV]
nand RA, RS, RB NAND (RS) with (RB).

Place result in RA.
284

nand. CR[CR0]
neg RT, RA Negative (twos complement) of RA.

(RT) ← ¬(RA) + 1
285

neg. CR[CR0]
nego XER[SO, OV]
nego. CR[CR0]

XER[SO, OV]

nmacchw RT, RA, RB nprod0:31 ← –((RA)16:31 x (RB)0:15) signed
temp0:32 ← nprod0:31 + (RT)
(RT) ← temp1:32

286

nmacchw. CR[CR0]

nmacchwo XER[SO, OV]

nmacchwo. CR[CR0]
XER[SO, OV]

nmacchws RT, RA, RB nprod0:31 ← –((RA)16:31 x (RB)0:15) signed
temp0:32 ← nprod0:31 + (RT)
if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

287

nmacchws. CR[CR0]

nmacchwso XER[SO, OV]

nmacchwso. CR[CR0]
XER[SO, OV]

nmachhw RT, RA, RB nprod0:31 ← –((RA)0:15 x (RB)0:15) signed
temp0:32 ← nprod0:31 + (RT)
(RT) ← temp1:32

288

nmachhw. CR[CR0]

nmachhwo XER[SO, OV]

nmachhwo. CR[CR0]
XER[SO, OV]

nmachhws RT, RA, RB nprod0:31 ← –((RA)0:15 x (RB)0:15) signed
temp0:32 ← nprod0:31 + (RT)
if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 ||31(¬RT0))
else (RT) ← temp1:32

289

nmachhws. CR[CR0]

nmachhwso XER[SO, OV]

nmachhwso. CR[CR0]
XER[SO, OV]

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

AMCC Proprietary 381

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

nmaclhw RT, RA, RB nprod0:31 ← –((RA)16:31 x (RB)16:31) signed
temp0:32 ← nprod0:31 + (RT)
if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 ||31(¬RT0))
else (RT) ← temp1:32

290

nmaclhw. CR[CR0]

nmaclhwo XER[SO, OV]

nmaclhwo. CR[CR0]
XER[SO, OV]

nmachlws RT, RA, RB nprod0:31 ← –((RA)0:15 x (RB)0:15) signed
temp0:32 ← nprod0:31 + (RT)
if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 ||31(¬RT0))
else (RT) ← temp1:32

291

nmachlws. CR[CR0]

nmachlwso XER[SO, OV]

nmachlwso. CR[CR0]
XER[SO, OV]

nop Preferred no-op, triggers optimizations based on no-ops.
Extended mnemonic for

ori 0,0,0

295

nor RA, RS, RB NOR (RS) with (RB).
Place result in RA.

292
nor. CR[CR0]
not RA, RS Complement register.

(RA) ← ¬(RS)
Extended mnemonic for

nor RA,RS,RS

292

not. Extended mnemonic for
nor. RA,RS,RS

CR[CR0]

or RA, RS, RB OR (RS) with (RB).
Place result in RA.

293
or. CR[CR0]
orc RA, RS, RB OR (RS) with ¬(RB).

Place result in RA.
294

orc. CR[CR0]
ori RA, RS, IM OR (RS) with (160 || IM).

Place result in RA.
295

oris RA, RS, IM OR (RS) with (IM || 160).
Place result in RA.

296

rfci Return from critical interrupt
(PC) ← (SRR2).
(MSR) ← (SRR3).

297

rfi Return from interrupt.
(PC) ← (SRR0).
(MSR) ← (SRR1).

298

rlwimi RA, RS, SH, MB,
ME

Rotate left word immediate, then insert according to mask.
r ← ROTL((RS), SH)
m ← MASK(MB, ME)
(RA) ← (r ∧ m) ∨ ((RA) ∧ ¬m)

299
rlwimi. CR[CR0]

rlwinm RA, RS, SH, MB,
ME

Rotate left word immediate, then AND with mask.
r ← ROTL((RS), SH)
m ← MASK(MB, ME)
(RA) ← (r ∧ m)

300
rlwinm. CR[CR0]

rlwnm RA, RS, RB, MB,
ME

Rotate left word, then AND with mask.
r ← ROTL((RS), (RB)27:31)
m ← MASK(MB, ME)
(RA) ← (r ∧ m)

302
rlwnm. CR[CR0]

rotlw RA, RS, RB Rotate left.
(RA) ← ROTL((RS), (RB)27:31)
Extended mnemonic for

rlwnm RA,RS,RB,0,31

302

rotlw. Extended mnemonic for
rlwnm. RA,RS,RB,0,31

CR[CR0]

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

382 AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

rotlwi RA, RS, n Rotate left immediate.
(RA) ← ROTL((RS), n)
Extended mnemonic for

rlwinm RA,RS,n,0,31

300

rotlwi. Extended mnemonic for
rlwinm. RA,RS,n,0,31

CR[CR0]

rotrwi RA, RS, n Rotate right immediate.
(RA) ← ROTL((RS), 32−n)
Extended mnemonic for

rlwinm RA,RS,32−n,0,31

300

rotrwi. Extended mnemonic for
rlwinm. RA,RS,32−n,0,31

CR[CR0]

sc System call exception is generated.
(SRR1) ← (MSR)
(SRR0) ← (PC)
PC ← EVPR0:15 || x'0C00'
(MSR[WE, PR, EE, PE, DR, IR]) ← 0

303

slw RA, RS, RB Shift left (RS) by (RB)27:31.
n ← (RB)27:31.
r ← ROTL((RS), n).
if (RB)26 = 0 then m ← MASK(0, 31 – n)
else m ← 320.
(RA) ← r ∧ m.

304
slw. CR[CR0]

slwi RA, RS, n Shift left immediate. (n < 32)
(RA)0:31−n ← (RS)n:31
(RA)32−n:31 ← n0
Extended mnemonic for

rlwinm RA,RS,n,0,31−n

300

slwi. Extended mnemonic for
rlwinm. RA,RS,n,0,31−n

CR[CR0]

sraw RA, RS, RB Shift right algebraic (RS) by (RB)27:31.
n ← (RB)27:31.
r ← ROTL((RS), 32 – n).
if (RB)26 = 0 then m ← MASK(n, 31)
else m ← 320.
s ← (RS)0.
(RA) ← (r ∧ m) ∨ (32s ∧ ¬m).
XER[CA] ← s ∧ ((r ∧ ¬m) ≠ 0).

305
sraw. CR[CR0]

srawi RA, RS, SH Shift right algebraic (RS) by SH.
n ← SH.
r ← ROTL((RS), 32 – n).
m ← MASK(n, 31).
s ← (RS)0.
(RA) ← (r ∧ m) ∨ (32s ∧ ¬m).
XER[CA] ← s ∧ ((r ∧ ¬m)≠0).

306
srawi. CR[CR0]

srw RA, RS, RB Shift right (RS) by (RB)27:31.
n ← (RB)27:31.
r ← ROTL((RS), 32 – n).
if (RB)26 = 0 then m ← MASK(n, 31)
else m ← 320.
(RA) ← r ∧ m.

307
srw. CR[CR0]

srwi RA, RS, n Shift right immediate. (n < 32)
(RA)n:31 ← (RS)0:31−n
(RA)0:n−1 ← n0
Extended mnemonic for

rlwinm RA,RS,32−n,n,31

300

srwi. Extended mnemonic for
rlwinm. RA,RS,32−n,n,31

CR[CR0]

stb RS, D(RA) Store byte (RS)24:31 in memory at
EA = (RA|0) + EXTS(D).

308

stbu RS, D(RA) Store byte (RS)24:31 in memory at
EA = (RA|0) + EXTS(D).
Update the base address,
(RA) ← EA.

309

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

AMCC Proprietary 383

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

stbux RS, RA, RB Store byte (RS)24:31 in memory at
EA = (RA|0) + (RB).
Update the base address,
(RA) ← EA.

310

stbx RS, RA, RB Store byte (RS)24:31 in memory at
EA = (RA|0) + (RB).

311

sth RS, D(RA) Store halfword (RS)16:31 in memory at
EA = (RA|0) + EXTS(D).

312

sthbrx RS, RA, RB Store halfword (RS)16:31 byte-reversed in memory at EA =
(RA|0) + (RB).
MS(EA, 2) ← (RS)24:31 || (RS)16:23

313

sthu RS, D(RA) Store halfword (RS)16:31 in memory at
EA = (RA|0) + EXTS(D).
Update the base address,
(RA) ← EA.

314

sthux RS, RA, RB Store halfword (RS)16:31 in memory at
EA = (RA|0) + (RB).
Update the base address,
(RA) ← EA.

315

sthx RS, RA, RB Store halfword (RS)16:31 in memory at
EA = (RA|0) + (RB).

316

stmw RS, D(RA) Store consecutive words from RS through GPR(31) in
memory starting at
EA = (RA|0) + EXTS(D).

317

stswi RS, RA, NB Store consecutive bytes in memory starting at EA=(RA|0).
Number of bytes n=32 if NB=0, else n=NB.
Bytes are unstacked from CEIL(n/4)
consecutive registers starting with RS.
GPR(0) is consecutive to GPR(31).

318

stswx RS, RA, RB Store consecutive bytes in memory starting at
EA=(RA|0)+(RB).
Number of bytes n=XER[TBC].
Bytes are unstacked from CEIL(n/4)
consecutive registers starting with RS.
GPR(0) is consecutive to GPR(31).

319

stw RS, D(RA) Store word (RS) in memory at
EA = (RA|0) + EXTS(D).

321

stwbrx RS, RA, RB Store word (RS) byte-reversed in memory at EA = (RA|0) +
(RB).
MS(EA, 4) ← (RS)24:31 || (RS)16:23 ||

(RS)8:15 || (RS)0:7

322

stwcx. RS, RA, RB Store word (RS) in memory at EA = (RA|0) + (RB)
only if reservation bit is set.
if RESERVE = 1 then

MS(EA, 4) ← (RS)
RESERVE ← 0
(CR[CR0]) ← 20 || 1 || XERso

else
(CR[CR0]) ← 20 || 0 || XERso.

323

stwu RS, D(RA) Store word (RS) in memory at
EA = (RA|0) + EXTS(D).
Update the base address,
(RA) ← EA.

324

stwux RS, RA, RB Store word (RS) in memory at
EA = (RA|0) + (RB).
Update the base address,
(RA) ← EA.

325

stwx RS, RA, RB Store word (RS) in memory at
EA = (RA|0) + (RB).

326

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

384 AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

sub RT, RA, RB Subtract (RB) from (RA).
(RT) ← ¬(RB) + (RA) + 1.
Extended mnemonic for

subf RT,RB,RA

327

sub. Extended mnemonic for
subf. RT,RB,RA

CR[CR0]

subo Extended mnemonic for
subfo RT,RB,RA

XER[SO, OV]

subo. Extended mnemonic for
subfo. RT,RB,RA

CR[CR0]
XER[SO, OV]

subc RT, RA, RB Subtract (RB) from (RA).
(RT) ← ¬(RB) + (RA) + 1.
Place carry-out in XER[CA].
Extended mnemonic for

subfc RT,RB,RA

328

subc. Extended mnemonic for
subfc. RT,RB,RA

CR[CR0]

subco Extended mnemonic for
subfco RT,RB,RA

XER[SO, OV]

subco. Extended mnemonic for
subfco. RT,RB,RA

CR[CR0]
XER[SO, OV]

subf RT, RA, RB Subtract (RA) from (RB).
(RT) ← ¬(RA) + (RB) + 1.

327
subf. CR[CR0]
subfo XER[SO, OV]
subfo. CR[CR0]

XER[SO, OV]
subfc RT, RA, RB Subtract (RA) from (RB).

(RT) ← ¬(RA) + (RB) + 1.
Place carry-out in XER[CA].

328
subfc. CR[CR0]
subfco XER[SO, OV]
subfco. CR[CR0]

XER[SO, OV]
subfe RT, RA, RB Subtract (RA) from (RB) with carry-in.

(RT) ← ¬(RA) + (RB) + XER[CA].
Place carry-out in XER[CA].

329
subfe. CR[CR0]
subfeo XER[SO, OV]
subfeo. CR[CR0]

XER[SO, OV]
subfic RT, RA, IM Subtract (RA) from EXTS(IM).

(RT) ← ¬(RA) + EXTS(IM) + 1.
Place carry-out in XER[CA].

330

subfme RT, RA, RB Subtract (RA) from (–1) with carry-in.
(RT) ← ¬(RA) + (–1) + XER[CA].
Place carry-out in XER[CA].

331
subfme. CR[CR0]
subfmeo XER[SO, OV]
subfmeo. CR[CR0]

XER[SO, OV]
subfze RT, RA, RB Subtract (RA) from zero with carry-in.

(RT) ← ¬(RA) + XER[CA].
Place carry-out in XER[CA].

332
subfze. CR[CR0]
subfzeo XER[SO, OV]
subfzeo. CR[CR0]

XER[SO, OV]
subi RT, RA, IM Subtract EXTS(IM) from (RA|0).

Place result in RT.
Extended mnemonic for

addi RT,RA,−IM

164

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

AMCC Proprietary 385

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

subic RT, RA, IM Subtract EXTS(IM) from (RA).
Place result in RT.
Place carry-out in XER[CA].
Extended mnemonic for

addic RT,RA,−IM

165

subic. RT, RA, IM Subtract EXTS(IM) from (RA).
Place result in RT.
Place carry-out in XER[CA].
Extended mnemonic for

addic. RT,RA,−IM

CR[CR0] 166

subis RT, RA, IM Subtract (IM || 160) from (RA|0).
Place result in RT.
Extended mnemonic for

addis RT,RA,−IM

167

sync Synchronization. All instructions that precede sync
complete before any instructions that follow sync begin.
When sync completes, all storage accesses initiated prior
to sync will have completed.

333

tlbia All TLB entries are invalidated and become unavailable for
translation by clearing the valid (V) bit in the TLBHI portion
of each TLB entry. The rest of the TLB fields unmodified.

334

tlbre RT, RA,WS If WS = 0:
Load TLBHI of the selected TLB entry into RT.
Load PID with the contents of the TID field of the selected
TLB entry.
(RT) ← TLBHI[(RA)]
(PID) ← TLB[(RA)]TID

If WS = 1:
Load TLBLO portion of the selected TLB entry into RT.
(RT) ← TLBLO[(RA)]

335

tlbrehi RT, RA Load TLBHI of the selected TLB entry into RT.
Load PID with the contents of the TID field of the selected
TLB entry.
(RT) ← TLBHI[(RA)]
(PID) ← TLB[(RA)]TID
Extended mnemonic for

tlbre RT,RA,0

335

tlbrelo RT, RA Load TLBLO of the selected TLB entry into RT.
(RT) ← TLBLO[(RA)]
Extended mnemonic for

tlbre RT,RA,1

335

tlbsx RT, RA, RB Search the TLB for a valid entry that translates the EA.
EA = (RA|0) + (RB).
If found,

(RT) ← Index of TLB entry.
If not found,

(RT) Undefined.

337

tlbsx. If found,
(RT) ← Index of TLB entry.
CR[CR0]EQ ← 1.

If not found,
(RT) Undefined.
CR[CR0]EQ ← 1.

CR[CR0]LT,GT,SO

tlbsync tlbsync does not complete until all previous TLB-update
instructions executed by this processor have been received
and completed by all other processors.
For the PPC405, tlbsync is a no-op.

338

tlbwe RS, RA,WS If WS = 0:
Write TLBHI of the selected TLB entry from RS.
Write the TID field of the selected TLB entry from the PID
register.
TLBHI[(RA)] ← (RS)
TLB[(RA)]TID ← (PID)24:31
If WS = 1:
Write TLBLO portion of the selected TLB entry from RS.
TLBLO[(RA)] ← (RS)

339

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

386 AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

tlbwehi RS, RA Write TLBHI of the selected TLB entry from RS.
Write the TID field of the selected TLB entry from the PID
register.
TLBHI[(RA)] ← (RS)
TLB[(RA)]TID ← (PID)24:31
Extended mnemonic for

tlbwe RS,RA,0

339

tlbwelo RS, RA Write TLBLO of the selected TLB entry from RS.
TLBLO[(RA)] ← (RS)
Extended mnemonic for

tlbwe RS,RA,1

339

trap Trap unconditionally.
Extended mnemonic for

tw 31,0,0

341

tweq RA, RB Trap if (RA) equal to (RB).
Extended mnemonic for

tw 4,RA,RB
twge Trap if (RA) greater than or equal to (RB).

Extended mnemonic for
tw 12,RA,RB

twgt Trap if (RA) greater than (RB).
Extended mnemonic for

tw 8,RA,RB
twle Trap if (RA) less than or equal to (RB).

Extended mnemonic for
tw 20,RA,RB

twlge Trap if (RA) logically greater than or equal to (RB).
Extended mnemonic for

tw 5,RA,RB
twlgt Trap if (RA) logically greater than (RB).

Extended mnemonic for
tw 1,RA,RB

twlle Trap if (RA) logically less than or equal to (RB).
Extended mnemonic for

tw 6,RA,RB
twllt Trap if (RA) logically less than (RB).

Extended mnemonic for
tw 2,RA,RB

twlng Trap if (RA) logically not greater than (RB).
Extended mnemonic for

tw 6,RA,RB
twlnl Trap if (RA) logically not less than (RB).

Extended mnemonic for
tw 5,RA,RB

twlt Trap if (RA) less than (RB).
Extended mnemonic for

tw 16,RA,RB
twne Trap if (RA) not equal to (RB).

Extended mnemonic for
tw 24,RA,RB

twng Trap if (RA) not greater than (RB).
Extended mnemonic for
tw 20,RA,RB

twnl Trap if (RA) not less than (RB).
Extended mnemonic for

tw 12,RA,RB
tw TO, RA, RB Trap exception is generated if, comparing (RA) with (RB),

any condition specified by TO is true.
341

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

AMCC Proprietary 387

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

tweqi RA, IM Trap if (RA) equal to EXTS(IM).
Extended mnemonic for

twi 4,RA,IM

344

twgei Trap if (RA) greater than or equal to EXTS(IM).
Extended mnemonic for

twi 12,RA,IM
twgti Trap if (RA) greater than EXTS(IM).

Extended mnemonic for
twi 8,RA,IM

twlei Trap if (RA) less than or equal to EXTS(IM).
Extended mnemonic for

twi 20,RA,IM
twlgei Trap if (RA) logically greater than or equal to EXTS(IM).

Extended mnemonic for
wi 5,RA,IM

twlgti Trap if (RA) logically greater than EXTS(IM).
Extended mnemonic for

twi 1,RA,IM
twllei Trap if (RA) logically less than or equal to EXTS(IM).

Extended mnemonic for
twi 6,RA,IM

twllti Trap if (RA) logically less than EXTS(IM).
Extended mnemonic for

twi 2,RA,IM
twlngi Trap if (RA) logically not greater than EXTS(IM).

Extended mnemonic for
twi 6,RA,IM

twlnli Trap if (RA) logically not less than EXTS(IM).
Extended mnemonic for

twi 5,RA,IM
twlti Trap if (RA) less than EXTS(IM).

Extended mnemonic for
twi 16,RA,IM

twnei Trap if (RA) not equal to EXTS(IM).
Extended mnemonic for

twi 24,RA,IM
twngi Trap if (RA) not greater than EXTS(IM).

Extended mnemonic for
twi 20,RA,IM

twnli Trap if (RA) not less than EXTS(IM).
Extended mnemonic for

twi 12,RA,IM
twi TO, RA, IM Trap exception is generated if, comparing (RA) with

EXTS(IM), any condition specified by TO is true.
344

wrtee RS Write value of RS16 to MSR[EE]. 347
wrteei E Write value of E to MSR[EE]. 348
xor RA, RS, RB XOR (RS) with (RB).

Place result in RA.
349

xor. CR[CR0]
xori RA, RS, IM XOR (RS) with (160 || IM).

Place result in RA.
350

xoris RA, RS, IM XOR (RS) with (IM || 160).
Place result in RA.

351

Table A-1. PPC405 Instruction Syntax Summary (Continued)
Mnemonic Operands Function Other Registers Changed Page

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

A.3 List of Instructions—by Opcode

All instructions are four bytes long and word aligned. All instructions have a primary opcode field (shown as field
OPCD in Figure A-1 through Figure A-9, beginning on page -360) in bits 0:5. Some instructions also have a
secondary opcode field (shown as field XO in Figure A-1 through Figure A-9). PPC405 instructions, sorted by
primary and secondary opcode, are listed in Table A-2.

The “Form” indicated in the table refers to the arrangement of valid field combinations within the four-byte
instruction. See “Instruction Formats,” on page -357, for the field layouts of each form.

Form X has a 10-bit secondary opcode field, while form XO uses only the low-order 9-bits of that field. Form XO
uses the high-order secondary opcode bit (the tenth bit) as a variable; therefore, every form XO instruction really
consumes two secondary opcodes from the 10-bit secondary-opcode space. The implicitly consumed secondary
opcode is listed in parentheses for form XO instructions in the following table.

Table A-2. PPC405 Instructions by Opcode
Primary
Opcode Secondary Opcode Form Mnemonic Operands Page

3 D twi TO, RA, IM 344

4 8 X mulhhwu RT, RA, RB 277

mulhhwu.
4 12 (524) XO machhwu RT, RA, RB 256

machhwu.
machhwuo
machhwuo.

4 40 X mulhhw RT, RA, RB 276

mulhhw.
4 44 (556) XO machhw RT, RA, RB 253

machhw.
machhwo
machhwo.

4 46 (558) XO nmachhw RT, RA, RB 288

nmachhw.
nmachhwo
nmachhwo

4 76 (588) XO machhwsu RT, RA, RB 255

machhwsu.
machhwsuo
machhwsuo.

4 108 (620) XO machhws RT, RA, RB 254

machhws.
machhwso
machhwso.

4 110 (622) XO nmachhws RT, RA, RB 289

nmachhws.
nmachhwso
nmachhwso.

388

http://www.manualslib.com/

 389

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

4 136 X mulchwu RT, RA, RB 275

mulchwu.
4 140 (652) XO macchwu RT, RA, RB 252

macchwu.
macchwuo
machhwuo.

4 168 X mulchw RT, RA, RB 274

mulchw.
4 172 (684) XO macchw RT, RA, RB 249

macchw.
macchwo
macchwo.

4 174 (686) XO nmacchw RT, RA, RB 286

nmacchw.
nmacchwo
nmacchwo.

4 204 (716) XO macchwsu RT, RA, RB 251

macchwsu.
macchwsuo
macchwsuo.

4 236 (748) XO macchws RT, RA, RB 250

macchws.
macchwso
macchwso.

4 238 (750) XO nmacchws RT, RA, RB 287

nmacchws.
nmacchwso
nmacchwso.

4 392 X mullhwu RT, RA, RB 281

mullhwu.
4 396 (908) XO maclhwu RT, RA, RB 260

maclhwu.
maclhwuo
maclhwuo.

4 424 X mullhw RT, RA, RB 280

mullhw.
4 428 (940) XO maclhw RT, RA, RB 257

maclhw.
maclhwo
maclhwo.

Table A-2. PPC405 Instructions by Opcode (Continued)
Primary
Opcode Secondary Opcode Form Mnemonic Operands Page

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

4 430 (942) XO nmaclhw RT, RA, RB 290

nmaclhw.
nmaclhwo
nmaclhwo.

4 492 (972) XO maclhws RT, RA, RB 258

maclhws.
maclhwso
maclhwso.

4 460 (1004) XO maclhwsu RT, RA, RB 259

maclhwsu.
maclhwsuo
maclhwsuo.

4 494 (1006) XO nmaclhws RT, RA, RB 291

nmaclhws.
nmaclhwso
nmaclhwso.

7 D mulli RT, RA, IM 282
8 D subfic RT, RA, IM 330
10 D cmpli BF, 0, RA, IM 191
11 D cmpi BF, 0, RA, IM 189
12 D addic RT, RA, IM 165
13 D addic. RT, RA, IM 166
14 D addi RT, RA, IM 164
15 D addis RT, RA, IM 167
16 B bc BO, BI, target 175

bca
bcl
bcla

17 SC sc 303
18 I b target 174

ba
bl
bla

19 0 XL mcrf BF, BFA 261
19 16 XL bclr BO, BI 184

bclrl
19 33 XL crnor BT, BA, BB 197
19 50 XL rfi 298
19 51 XL rfci 297
19 129 XL crandc BT, BA, BB 194
19 150 XL isync 224
19 193 XL crxor BT, BA, BB 200
19 225 XL crnand BT, BA, BB 196
19 257 XL crand BT, BA, BB 193
19 289 XL creqv BT, BA, BB 195

Table A-2. PPC405 Instructions by Opcode (Continued)
Primary
Opcode Secondary Opcode Form Mnemonic Operands Page

390

http://www.manualslib.com/

 391

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

19 417 XL crorc BT, BA, BB 199
19 449 XL cror BT, BA, BB 198
19 528 XL bcctr BO, BI 181

bcctrl
20 M rlwimi RA, RS, SH, MB, ME 299

rlwimi.
21 M rlwinm RA, RS, SH, MB, ME 300

rlwinm.
23 M rlwnm RA, RS, RB, MB, ME 302

rlwnm.
24 D ori RA, RS, IM 295
25 D oris RA, RS, IM 296
26 D xori RA, RS, IM 350
27 D xoris RA, RS, IM 351
28 D andi. RA, RS, IM 172
29 D andis. RA, RS, IM 173
31 0 X cmp BF, 0, RA, RB 188
31 4 X tw TO, RA, RB 341
31 8 (520) XO subfc RT, RA, RB 328

subfc.
subfco
subfco.

31 10 (522) XO addc RT, RA, RB 162
addc.
addco
addco.

31 11 XO mulhwu RT, RA, RB 281
mulhwu.

31 19 X mfcr RT 263
31 20 X lwarx RT, RA, RB 243
31 23 X lwzx RT, RA, RB 248
31 24 X slw RA, RS, RB 304

slw.
31 26 X cntlzw RA, RS 192

cntlzw.
31 28 X and RA, RS, RB 170

and.
31 32 X cmpl BF, 0, RA, RB 190
31 40 (552) XO subf RT, RA, RB 327

subf.
subfo
subfo.

31 54 X dcbst RA, RB 205
31 55 X lwzux RT, RA, RB 247
31 60 X andc RA, RS, RB 171

andc.

Table A-2. PPC405 Instructions by Opcode (Continued)
Primary
Opcode Secondary Opcode Form Mnemonic Operands Page

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

31 75 XO mulhw RT, RA, RB 280
mulhw.

31 83 X mfmsr RT 265
31 86 X dcbf RA, RB 203
31 87 X lbzx RT, RA, RB 228
31 104 (616) XO neg RT, RA 285

neg.
nego
nego.

31 119 X lbzux RT, RA, RB 227
31 124 X nor RA, RS, RB 292

nor.
31 131 X wrtee RS 347
31 136 (648) XO subfe RT, RA, RB 329

subfe.
subfeo
subfeo.

31 138 (650) XO adde RT, RA, RB 163
adde.
addeo
addeo.

31 144 XFX mtcrf FXM, RS 269
31 146 X mtmsr RS 271
31 150 X stwcx. RS, RA, RB 323
31 151 X stwx RS, RA, RB 326
31 163 X wrteei E 348
31 183 X stwux RS, RA, RB 325
31 200 (712) XO subfze RT, RA, RB 332

subfze.
subfzeo
subfzeo.

31 202 (714) XO addze RT, RA 169
addze.
addzeo
addzeo.

31 215 X stbx RS, RA, RB 311
31 232 (744) XO subfme RT, RA, RB 331

subfme.
subfmeo
subfmeo.

31 234 (746) XO addme RT, RA 168
addme.
addmeo
addmeo.

Table A-2. PPC405 Instructions by Opcode (Continued)
Primary
Opcode Secondary Opcode Form Mnemonic Operands Page

392

http://www.manualslib.com/

 393

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

31 235 (747) XO mullw RT, RA, RB 283
mullw.
mullwo
mullwo.

31 246 X dcbtst RA,RB 207
31 247 X stbux RS, RA, RB 310
31 262 X icbt RA, RB 220
31 266 (778) XO add RT, RA, RB 161

add.
addo
addo.

31 278 X dcbt RA, RB 206
31 279 X lhzx RT, RA, RB 237
31 284 X eqv RA, RS, RB 216

eqv.
31 311 X lhzux RT, RA, RB 236
31 316 X xor RA, RS, RB 349

xor.
31 323 XFX mfdcr RT, DCRN 264
31 339 XFX mfspr RT, SPRN 266
31 343 X lhax RT, RA, RB 232
31 370 X tlbia 334
31 371 XFX mftb RT, TBRN 268
31 375 X lhaux RT, RA, RB 231
31 407 X sthx RS, RA, RB 315
31 412 X orc RA, RS, RB 294

orc.
31 439 X sthux RS, RA, RB 315
31 444 X or RA, RS, RB 293

or.
31 451 XFX mtdcr DCRN, RS 270
31 454 X dccci RA, RB 210
31 459 (971) XO divwu RT, RA, RB 214

divwu.
divwuo
divwuo.

31 467 XFX mtspr SPRN, RS 272
31 470 X dcbi RA, RB 204
31 476 X nand RA, RS, RB 284

nand.
31 486 X dcread RT, RA, RB 211
31 491 (1003) XO divw RT, RA, RB 213

divw.
divwo
divwo.

31 512 X mcrxr BF 262
31 533 X lswx RT, RA, RB 241

Table A-2. PPC405 Instructions by Opcode (Continued)
Primary
Opcode Secondary Opcode Form Mnemonic Operands Page

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

31 534 X lwbrx RT, RA, RB 244
31 536 X srw RA, RS, RB 307

srw.
31 566 X tlbsync 338
31 597 X lswi RT, RA, NB 239
31 598 X sync 333
31 661 X stswx RS, RA, RB 319
31 662 X stwbrx RS, RA, RB 322
31 725 X stswi RS, RA, NB 318
31 758 X dcba RA, RB 201
31 790 X lhbrx RT, RA, RB 233
31 792 X sraw RA, RS, RB 305

sraw.
31 824 X srawi RA, RS, SH 306

srawi.
31 854 X eieio 215
31 914 X tlbsx RT, RA, RB 337

tlbsx.
31 918 X sthbrx RS, RA, RB 313
31 922 X extsh RA, RS 218

extsh.
31 946 X tlbre RT, RA,WS 335
31 954 X extsb RA, RS 217

extsb.
31 966 X iccci RA, RB 221
31 978 X tlbwe RS, RA,WS 339
31 982 X icbi RA, RB 219
31 998 X icread RA, RB 222
31 1014 X dcbz RA, RB 208
32 D lwz RT, D(RA) 245
33 D lwzu RT, D(RA) 246
34 D lbz RT, D(RA) 225
35 D lbzu RT, D(RA) 226
36 D stw RS, D(RA) 321
37 D stwu RS, D(RA) 324
38 D stb RS, D(RA) 308
39 D stbu RS, D(RA) 309
40 D lhz RT, D(RA) 234
41 D lhzu RT, D(RA) 235
42 D lha RT, D(RA) 229
43 D lhau RT, D(RA) 230
44 D sth RS, D(RA) 312
45 D sthu RS, D(RA) 314
46 D lmw RT, D(RA) 238
47 D stmw RS, D(RA) 317

Table A-2. PPC405 Instructions by Opcode (Continued)
Primary
Opcode Secondary Opcode Form Mnemonic Operands Page

394

http://www.manualslib.com/

 395

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Appendix B. Instructions by Category
Instruction Set on page 157 contains detailed descriptions of the instructions, their operands, and notation.

Table B-1 summarizes the instruction categories in the PPC405 instruction set. The instructions within each
category are listed in subsequent tables.

B.1 Implementation-Specific Instructions

To meet the functional requirements of processors for embedded systems and real-time applications, the PPC405
defines the implementation-specific instructions summarized in Table B-2.

Table B-1. PPC405 Instruction Set Categories
Storage Reference load, store
Arithmetic and Logical add, subtract, negate, multiply, divide, and, andc, or, orc, xor, nand, nor, xnor, sign extension, count

leading zeros, multiply accumulate
Comparison compare, compare logical, compare immediate
Branch branch, branch conditional, branch to LR, branch to CTR
CR Logical crand, crandc, cror, crorc, crnand, crnor, crxor, crxnor, move CR field
Rotate/Shift rotate and insert, rotate and mask, shift left, shift right
Cache Control invalidate, touch, zero, flush, store, read
Interrupt Control write to external interrupt enable bit, move to/from MSR, return from interrupt, return from critical interrupt
Processor Management system call, synchronize, trap, move to/from DCRs, move to/from SPRs, move to/from CR

Table B-2. Implementation-specific Instructions

Mnemonic Operands Function Other Registers
Changed Page

dccci RA, RB Invalidate the data cache congruence class associated with the
effective address (EA) (RA|0) + (RB).

210

dcread RT, RA, RB Read either tag or data information from the data cache
congruence class associated with the EA (RA|0) + (RB).
Place the results in RT.

211

iccci RA, RB Invalidate instruction cache. 221

icread RA, RB Read either tag or data information from the instruction cache
congruence class associated with the EA (RA|0) + (RB).
Place the results in ICDBDR.

222

macchw RT, RA, RB prod0:31 ← (RA)16:31 x (RB)0:15 signed
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

222

macchw. CR[CR0]

macchwo XER[SO, OV]

macchwo. CR[CR0]
XER[SO, OV]

macchws RT, RA, RB prod0:31 ← (RA)16:31 x (RB)0:15 signed
temp0:32 ← prod0:31 + (RT)
if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

250

macchws. CR[CR0]

macchwso XER[SO, OV]

macchwso. CR[CR0]
XER[SO, OV]

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

macchwsu RT, RA, RB prod0:31 ← (RA)16:31 x (RB)0:15 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← (temp1:32 ∨ 32temp0)

251

macchwsu. CR[CR0]

macchwsuo XER[SO, OV]

macchwsuo. CR[CR0]
XER[SO, OV]

macchwu RT, RA, RB prod0:31 ← (RA)16:31 x (RB)0:15 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

252

macchwu. CR[CR0]

macchwuo XER[SO, OV]

macchwuo. CR[CR0]
XER[SO, OV]

machhw RT, RA, RB prod0:15 ← (RA)16:31 x (RB)0:15 signed
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

253

machhw. CR[CR0]

machhwo XER[SO, OV]

machhwo. CR[CR0]
XER[SO, OV]

machhws RT, RA, RB prod0:31 ← (RA)0:15 x (RB)0:15 signed
temp0:32 ← prod0:31 + (RT)
if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

254

machhws. CR[CR0]

machhwso XER[SO, OV]

machhwso. CR[CR0]
XER[SO, OV]

machhwsu RT, RA, RB prod0:31 ← (RA)0:15 x (RB)0:15 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← (temp1:32 ∨ 32temp0)

255

machhwsu. CR[CR0]

machhwsuo XER[SO, OV]

machhwsuo. CR[CR0]
XER[SO, OV]

machhwu RT, RA, RB prod0:31 ← (RA)0:15 x (RB)0:15 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

256

machhwu. CR[CR0]

machhwuo XER[SO, OV]

machhwuo. CR[CR0]
XER[SO, OV]

maclhw RT, RA, RB prod0:31 ← (RA)16:31 x (RB)16:31 signed
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

257

maclhw. CR[CR0]

maclhwo XER[SO, OV]

maclhwo. CR[CR0]
XER[SO, OV]

Table B-2. Implementation-specific Instructions (Continued)

Mnemonic Operands Function Other Registers
Changed Page

396

http://www.manualslib.com/

 397

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

maclhws RT, RA, RB prod0:31 ← (RA)16:31 x (RB)16:31 signed
temp0:32 ← prod0:31 + (RT)
if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

258

maclhws. CR[CR0]

maclhwso XER[SO, OV]

maclhwso. CR[CR0]
XER[SO, OV]

maclhwsu RT, RA, RB prod0:31 ← (RA)16:31 x (RB)16:31 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← (temp1:32 ∨ 32temp0)

259

maclhwsu. CR[CR0]

maclhwsuo XER[SO, OV]

maclhwsuo. CR[CR0]
XER[SO, OV]

maclhwu RT, RA, RB prod0:31 ← (RA)16:31 x (RB)16:31 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

260

maclhwu. CR[CR0]

maclhwuo XER[SO, OV]

maclhwuo. CR[CR0]
XER[SO, OV]

mulchw RT, RA, RB (RT)0:31 ← (RA)16:31 x (RB)0:15 signed 274

mulchw. CR[CR0]

mulchwu RT, RA, RB (RT)0:31 ← (RA)16:31 x (RB)0:15 unsigned 275

mulchwu. CR[CR0]

mulhhw RT, RA, RB (RT)0:31 ← (RA)0:15 x (RB)0:15 signed 276

mulhhw. CR[CR0]

mulhhwu RT, RA, RB (RT)0:31 ← (RA)0:15 x (RB)0:15 unsigned 277

mulhhwu. CR[CR0]

mullhw RT, RA, RB (RT)0:31 ← (RA)16:31 x (RB)16:31 signed 280

mullhw. CR[CR0]

mullhwu RT, RA, RB (RT)16:31 ← (RA)0:15 x (RB)16:31 unsigned 281

mullhwu. CR[CR0]

nmacchw RT, RA, RB nprod0:31 ← –((RA)16:31 x (RB)0:15) signed
temp0:32 ← nprod0:31 + (RT)
(RT) ← temp1:32

286

nmacchw. CR[CR0]

nmacchwo XER[SO, OV]

nmacchwo. CR[CR0]
XER[SO, OV]

nmacchws RT, RA, RB nprod0:31 ← –((RA)16:31 x (RB)0:15) signed
temp0:32 ← nprod0:31 + (RT)
if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

287

nmacchws. CR[CR0]

nmacchwso XER[SO, OV]

nmacchwso. CR[CR0]
XER[SO, OV]

Table B-2. Implementation-specific Instructions (Continued)

Mnemonic Operands Function Other Registers
Changed Page

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

B.2 Instructions in the PowerPC Embedded Environment

To meet the functional requirements of processors for embedded systems and real-time applications, the PowerPC
Embedded Environment defines instructions that are not part of the PowerPC Architecture.

Table B-3 summarizes the PPC405 instructions in the PowerPC Embedded Environment.

nmachhw RT, RA, RB nprod0:31 ← –((RA)0:15 x (RB)0:15) signed
temp0:32 ← nprod0:31 + (RT)
(RT) ← temp1:32

288

nmachhw. CR[CR0]

nmachhwo XER[SO, OV]

nmachhwo. CR[CR0]
XER[SO, OV]

nmachhws RT, RA, RB nprod0:31 ← –((RA)0:15 x (RB)0:15) signed
temp0:32 ← nprod0:31 + (RT)
if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

289

nmachhws. CR[CR0]

nmachhwso XER[SO, OV]

nmachhwso. CR[CR0]
XER[SO, OV]

nmaclhw RT, RA, RB nprod0:31 ← –((RA)16:31 x (RB)16:31) signed
temp0:32 ← nprod0:31 + (RT)
(RT) ← temp1:32

290

nmaclhw. CR[CR0]

nmaclhwo XER[SO, OV]

nmaclhwo. CR[CR0]
XER[SO, OV]

nmaclhws RT, RA, RB nprod0:31 ← –((RA)16:31 x (RB)16:31) signed
temp0:32 ← nprod0:31 + (RT)
if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

291

nmaclhws. CR[CR0]

nmaclhwso XER[SO, OV]

nmaclhwso. CR[CR0]
XER[SO, OV]

Table B-3. Instructions in the IBM PowerPC Embedded Environment

Mnemonic Operands Function Other Registers
Changed Page

dcba RA, RB Speculatively establish the data cache block which contains the EA
(RA|0) + (RB).

201

dcbf RA, RB Flush (store, then invalidate) the data cache block which contains
the EA (RA|0) + (RB).

203

dcbi RA, RB Invalidate the data cache block which contains the EA
(RA|0) + (RB).

204

dcbst RA, RB Store the data cache block which contains the EA (RA|0) + (RB). 205

dcbt RA, RB Load the data cache block which contains the EA (RA|0) + (RB). 206

dcbtst RA,RB Load the data cache block which contains the EA (RA|0) + (RB). 207

Table B-2. Implementation-specific Instructions (Continued)

Mnemonic Operands Function Other Registers
Changed Page

398

http://www.manualslib.com/

AMCC Proprietary 399

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

dcbz RA, RB Zero the data cache block which contains the EA (RA|0) + (RB). 208

eieio Storage synchronization. All loads and stores that precede the eieio
instruction complete before any loads and stores that follow the
instruction access main storage.

Implemented as sync, which is more restrictive.

215

icbi RA, RB Invalidate the instruction cache block which contains the EA
(RA|0) + (RB).

219

icbt RA, RB Load the instruction cache block which contains the EA
(RA|0) + (RB).

220

isync Synchronize execution context by flushing the prefetch queue. 224

mfdcr RT, DCRN Move from DCR to RT,
(RT) ← (DCR(DCRN)).

264

mfmsr RT Move from MSR to RT,
(RT) ← (MSR).

265

mfspr RT, SPRN Move from SPR to RT,
(RT) ← (SPR(SPRN)).
Privileged for all SPRs except
LR, CTR, TBHU, TBLU, and XER.

266

mftb RT Move the contents of a Time Base Register (TBR) into RT,
TBRN ← TBRF5:9 || TBRF0:4
(RT) ← (TBR(TBRN))

268

mtdcr DCRN, RS Move to DCR from RS,
(DCR(DCRN)) ← (RS).

270

mtmsr RS Move to MSR from RS,
(MSR) ← (RS).

271

mtspr SPRN, RS Move to SPR from RS,
(SPR(SPRN)) ← (RS).
Privileged for all SPRs except
LR, CTR, and XER.

272

rfci Return from critical interrupt
(PC) ← (SRR2).
(MSR) ← (SRR3).

297

rfi Return from interrupt.
(PC) ← (SRR0).
(MSR) ← (SRR1).

298

tlbia All of the entries in the TLB are invalidated and become unavailable
for translation by clearing the valid (V) bit in the TLBHI portion of
each TLB entry. The rest of the fields in the TLB entries are
unmodified.

334

tlbre RT, RA,WS If WS = 0:
Load TLBHI portion of the selected TLB entry into RT.
Load the PID register with the contents of the TID field of the
selected TLB entry.
(RT) ← TLBHI[(RA)]
(PID) ← TLB[(RA)]TID

If WS = 1:
Load TLBLO portion of the selected TLB entry into RT.
(RT) ← TLBLO[(RA)]

335

Table B-3. Instructions in the IBM PowerPC Embedded Environment (Continued)

Mnemonic Operands Function Other Registers
Changed Page

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

B.3 Privileged Instructions

Table B-4 lists instructions that are under control of the MSR[PR] bit. These instructions are not allowed to be
executed when MSR[PR] = 1:

tlbsx RT,RA,RB Search the TLB array for a valid entry which translates the EA
EA = (RA|0) + (RB).
If found,

(RT) ← Index of TLB entry.
If not found,

(RT) Undefined.

337

tlbsx. If found,
(RT) ← Index of TLB entry.
CR[CR0]EQ ← 1.

If not found,
(RT) Undefined.
CR[CR0]EQ ← 1.

CR[CR0]LT,GT,SO

tlbsync tlbsync does not complete until all previous TLB-update
instructions executed by this processor have been received and
completed by all other processors.

For the PPC405, tlbsync is a no-op.

338

tlbwe RS, RA,WS If WS = 0:
Write TLBHI portion of the selected TLB entry from RS.
Write the TID field of the selected TLB entry from the PID register.
TLBHI[(RA)] ← (RS)
TLB[(RA)]TID ← (PID)24:31

If WS = 1:
Write TLBLO portion of the selected TLB entry from RS.
TLBLO[(RA)] ← (RS)

339

wrtee RS Write value of RS16 to MSR[EE]. 347

wrteei E Write value of E to MSR[EE]. 348

Table B-4. Privileged Instructions

Mnemonic Operands Function Other Registers
Changed Page

dcbi RA, RB Invalidate the data cache block which contains the EA (RA|0) + (RB). 204

dccci RA, RB Invalidate the data cache congruence class associated with the EA
(RA|0) + (RB).

210

dcread RT, RA, RB Read either tag or data information from the data cache congruence
class associated with the EA (RA|0) + (RB).
Place the results in RT.

211

iccci RA, RB Invalidate instruction cache. 221

icread RA, RB Read either tag or data information from the instruction cache
congruence class associated with the EA (RA|0) + (RB).
Place the results in ICDBDR.

221

mfdcr RT, DCRN Move from DCR to RT,
(RT) ← (DCR(DCRN)).

264

mfmsr RT Move from MSR to RT,
(RT) ← (MSR).

265

Table B-3. Instructions in the IBM PowerPC Embedded Environment (Continued)

Mnemonic Operands Function Other Registers
Changed Page

400

http://www.manualslib.com/

AMCC Proprietary 401

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

mfspr RT, SPRN Move from SPR to RT,
(RT) ← (SPR(SPRN)).
Privileged for all SPRs except
LR, CTR, TBHU, TBLU, and XER.

272

mtdcr DCRN, RS Move to DCR from RS,
(DCR(DCRN)) ← (RS).

270

mtmsr RS Move to MSR from RS,
(MSR) ← (RS).

271

mtspr SPRN, RS Move to SPR from RS,
(SPR(SPRN)) ← (RS).
Privileged for all SPRs except
LR, CTR, and XER.

272

rfci Return from critical interrupt
(PC) ← (SRR2).
(MSR) ← (SRR3).

297

rfi Return from interrupt.
(PC) ← (SRR0).
(MSR) ← (SRR1).

298

tlbre RT, RA,WS If WS = 0:
Load TLBHI portion of the selected TLB entry into RT.
Load the PID register with the contents of the TID field of the selected
TLB entry.
(RT) ← TLBHI[(RA)]
(PID) ← TLB[(RA)]TID

If WS = 1:
Load TLBLO portion of the selected TLB entry into RT.
(RT) ← TLBLO[(RA)]

335

tlbsx RT,RA,RB Search the TLB array for a valid entry which translates the EA
EA = (RA|0) + (RB).
If found,

(RT) ← Index of TLB entry.
If not found,

(RT) Undefined.

337

tlbsx. If found,
(RT) ← Index of TLB entry.
CR[CR0]EQ ← 1.

If not found,
(RT) Undefined.
CR[CR0]EQ ← 1.

CR[CR0]LT,GT,SO

tlbwe RS, RA,WS If WS = 0:
Write TLBHI portion of the selected TLB entry from RS.
Write the TID field of the selected TLB entry from the PID register.
TLBHI[(RA)] ← (RS)
TLB[(RA)]TID ← (PID)24:31

If WS = 1:
Write TLBLO portion of the selected TLB entry from RS.
TLBLO[(RA)] ← (RS)

339

wrtee RS Write value of RS16 to the External Enable
bit (MSR[EE]).

347

wrteei E Write value of E to the External Enable
bit (MSR[EE]).

348

Table B-4. Privileged Instructions (Continued)

Mnemonic Operands Function Other Registers
Changed Page

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

B.4 Assembler Extended Mnemonics

In the appendix “Assembler Extended Mnemonics” of the PowerPC Architecture, it is required that a PowerPC
assembler support at least a minimal set of extended mnemonics. These mnemonics encode to the opcodes of
other instructions; the only benefit of extended mnemonics is improved usability. Code using extended mnemonics
can be easier to write and to understand. Table B-5 lists the extended mnemonics required for the PPC405.

Note for every Branch Conditional mnemonic:

Bit 4 of the BO field provides a hint about the most likely outcome of a conditional branch. (Branch Prediction on
page 52 describes branch prediction). Assemblers should set BO4 = 0 unless a specific reason exists otherwise. In
the BO field values specified in the following table, BO4 = 0 has always been assumed. The assembler must allow
the programmer to specify branch prediction. To do this, the assembler will support a suffix to every conditional
branch mnemonic, as follows:

+ Predict branch to be taken.

– Predict branch not to be taken.

As specific examples, bc also could be coded as bc+ or bc−, and bne also could be coded bne+ or bne−. These
alternate codings set BO4 = 1 only if the requested prediction differs from the standard prediction (see Branch
Prediction on page 52).

Table B-5. Extended Mnemonics for PPC405

Mnemonic Operands Function Other Registers
Changed Page

bctr Branch unconditionally to address in CTR.
Extended mnemonic for
bcctr 20,0

181

bctrl Extended mnemonic for
bcctrl 20,0

(LR) ← CIA + 4

bdnz target Decrement CTR.
Branch if CTR ≠ 0.

Extended mnemonic for
bc 16,0,target

175

bdnza Extended mnemonic for
bca 16,0,target

bdnzl Extended mnemonic for
bcl 16,0,target

(LR) ← CIA + 4.

bdnzla Extended mnemonic for
bcla 16,0,target

(LR) ← CIA + 4.

bdnzlr Decrement CTR.
Branch, if CTR ≠ 0,to address in LR.

Extended mnemonic for
bclr 16,0

175

bdnzlrl Extended mnemonic for
bclrl 16,0

(LR) ← CIA + 4.

402

http://www.manualslib.com/

 403

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

bdnzf cr_bit, target Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 0.

Extended mnemonic for
bc 0,cr_bit,target

175

bdnzfa Extended mnemonic for
bca 0,cr_bit,target

bdnzfl Extended mnemonic for
bcl 0,cr_bit,target

(LR) ← CIA + 4.

bdnzfla Extended mnemonic for
bcla 0,cr_bit,target

(LR) ← CIA + 4.

bdnzflr cr_bit Decrement CTR.
Branch, if CTR ≠ 0 AND CRcr_bit = 0, to address in LR.

Extended mnemonic for
bclr 0,cr_bit

175

bdnzflrl Extended mnemonic for
bclrl 0,cr_bit

(LR) ← CIA + 4.

bdnzt cr_bit, target Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 1.

Extended mnemonic for
bc 8,cr_bit,target

175

bdnzta Extended mnemonic for
bca 8,cr_bit,target

bdnztl Extended mnemonic for
bcl 8,cr_bit,target

(LR) ← CIA + 4.

bdnztla Extended mnemonic for
bcla 8,cr_bit,target

(LR) ← CIA + 4.

bdnztlr cr_bit Decrement CTR.
Branch, if CTR ≠ 0 AND CRcr_bit = 1, to address in LR.

Extended mnemonic for
bclr 8,cr_bit

175

bdnztlrl Extended mnemonic for
bclrl 8,cr_bit

(LR) ← CIA + 4.

bdz target Decrement CTR.
Branch if CTR = 0.

Extended mnemonic for
bc 18,0,target

175

bdza Extended mnemonic for
bca 18,0,target

bdzl Extended mnemonic for
bcl 18,0,target

(LR) ← CIA + 4.

bdzla Extended mnemonic for
bcla 18,0,target

(LR) ← CIA + 4.

bdzlr Decrement CTR.
Branch, if CTR = 0, to address in LR.

Extended mnemonic for
bclr 18,0

175

bdzlrl Extended mnemonic for
bclrl 18,0

(LR) ← CIA + 4.

Table B-5. Extended Mnemonics for PPC405 (Continued)

Mnemonic Operands Function Other Registers
Changed Page

AMCC Proprietary

http://www.manualslib.com/

 404

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

bdzf cr_bit, target Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 0.

Extended mnemonic for
bc 2,cr_bit,target

175

bdzfa Extended mnemonic for
bca 2,cr_bit,target

bdzfl Extended mnemonic for
bcl 2,cr_bit,target

(LR) ← CIA + 4.

bdzfla Extended mnemonic for
bcla 2,cr_bit,target

(LR) ← CIA + 4.

bdzflr cr_bit Decrement CTR.
Branch, if CTR = 0 AND CRcr_bit = 0 to address in LR.

Extended mnemonic for
bclr 2,cr_bit

175

bdzflrl Extended mnemonic for
bclrl 2,cr_bit

(LR) ← CIA + 4.

bdzt cr_bit, target Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 1.

Extended mnemonic for
bc 10,cr_bit,target

175

bdzta Extended mnemonic for
bca 10,cr_bit,target

bdztl Extended mnemonic for
bcl 10,cr_bit,target

(LR) ← CIA + 4.

bdztla Extended mnemonic for
bcla 10,cr_bit,target

(LR) ← CIA + 4.

bdztlr cr_bit Decrement CTR.
Branch, if CTR = 0 AND CRcr_bit = 1, to address in LR.

Extended mnemonic for
bclr 10,cr_bit

184

bdztlrl Extended mnemonic for
bclrl 10,cr_bit

(LR) ← CIA + 4.

beq [cr_field,] target Branch if equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+2,target

184

beqa Extended mnemonic for
bca 12,4∗cr_field+2,target

beql Extended mnemonic for
bcl 12,4∗cr_field+2,target

(LR) ← CIA + 4.

beqla Extended mnemonic for
bcla 12,4∗cr_field+2,target

(LR) ← CIA + 4.

beqctr [cr_field] Branch, if equal, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+2

181

beqctrl Extended mnemonic for
bcctrl 12,4∗cr_field+2

(LR) ← CIA + 4.

Table B-5. Extended Mnemonics for PPC405 (Continued)

Mnemonic Operands Function Other Registers
Changed Page

AMCC Proprietary

http://www.manualslib.com/

 405

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

beqlr [cr_field] Branch, if equal, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+2

184

beqlrl Extended mnemonic for
bclrl 12,4∗cr_field+2

(LR) ← CIA + 4.

bf cr_bit, target Branch if CRcr_bit = 0.
Extended mnemonic for
bc 4,cr_bit,target

175

bfa Extended mnemonic for
bca 4,cr_bit,target

bfl Extended mnemonic for
bcl 4,cr_bit,target

(LR) ← CIA + 4.

bfla Extended mnemonic for
bcla 4,cr_bit,target

(LR) ← CIA + 4.

bfctr cr_bit Branch, if CRcr_bit = 0, to address in CTR.
Extended mnemonic for
bcctr 4,cr_bit

181

bfctrl Extended mnemonic for
bcctrl 4,cr_bit

(LR) ← CIA + 4.

bflr cr_bit Branch, if CRcr_bit = 0, to address in LR.
Extended mnemonic for
bclr 4,cr_bit

184

bflrl Extended mnemonic for
bclrl 4,cr_bit

(LR) ← CIA + 4.

bge [cr_field,] target Branch if greater than or equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+0,target

175

bgea Extended mnemonic for
bca 4,4∗cr_field+0,target

bgel Extended mnemonic for
bcl 4,4∗cr_field+0,target

(LR) ← CIA + 4.

bgela Extended mnemonic for
bcla 4,4∗cr_field+0,target

(LR) ← CIA + 4.

bgectr [cr_field] Branch, if greater than or equal, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+0

181

bgectrl Extended mnemonic for
bcctrl 4,4∗cr_field+0

(LR) ← CIA + 4.

bgelr [cr_field] Branch, if greater than or equal, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+0

184

bgelrl Extended mnemonic for
bclrl 4,4∗cr_field+0

(LR) ← CIA + 4.

Table B-5. Extended Mnemonics for PPC405 (Continued)

Mnemonic Operands Function Other Registers
Changed Page

AMCC Proprietary

http://www.manualslib.com/

 406

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

bgt [cr_field,] target Branch if greater than.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+1,target

175

bgta Extended mnemonic for
bca 12,4∗cr_field+1,target

bgtl Extended mnemonic for
bcl 12,4∗cr_field+1,target

(LR) ← CIA + 4.

bgtla Extended mnemonic for
bcla 12,4∗cr_field+1,target

(LR) ← CIA + 4.

bgtctr [cr_field] Branch, if greater than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+1

181

bgtctrl Extended mnemonic for
bcctrl 12,4∗cr_field+1

(LR) ← CIA + 4.

bgtlr [cr_field] Branch, if greater than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+1

184

bgtlrl Extended mnemonic for
bclrl 12,4∗cr_field+1

(LR) ← CIA + 4.

ble [cr_field,] target Branch if less than or equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+1,target

175

blea Extended mnemonic for
bca 4,4∗cr_field+1,target

blel Extended mnemonic for
bcl 4,4∗cr_field+1,target

(LR) ← CIA + 4.

blela Extended mnemonic for
bcla 4,4∗cr_field+1,target

(LR) ← CIA + 4.

blectr [cr_field] Branch, if less than or equal, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+1

181

blectrl Extended mnemonic for
bcctrl 4,4∗cr_field+1

(LR) ← CIA + 4.

blelr [cr_field] Branch, if less than or equal, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+1

184

blelrl Extended mnemonic for
bclrl 4,4∗cr_field+1

(LR) ← CIA + 4.

blr Branch, unconditionally, to address in LR.
Extended mnemonic for
bclr 20,0

184

blrl Extended mnemonic for
bclrl 20,0

(LR) ← CIA + 4.

Table B-5. Extended Mnemonics for PPC405 (Continued)

Mnemonic Operands Function Other Registers
Changed Page

AMCC Proprietary

http://www.manualslib.com/

 407

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

blt [cr_field,] target Branch if less than.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+0,target

175

blta Extended mnemonic for
bca 12,4∗cr_field+0,target

bltl Extended mnemonic for
bcl 12,4∗cr_field+0,target

(LR) ← CIA + 4.

bltla Extended mnemonic for
bcla 12,4∗cr_field+0,target

(LR) ← CIA + 4.

bltctr [cr_field] Branch, if less than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+0

181

bltctrl Extended mnemonic for
bcctrl 12,4∗cr_field+0

(LR) ← CIA + 4.

bltlr [cr_field] Branch, if less than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+0

184

bltlrl Extended mnemonic for
bclrl 12,4∗cr_field+0

(LR) ← CIA + 4.

bne [cr_field,] target Branch if not equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+2,target

175

bnea Extended mnemonic for
bca 4,4∗cr_field+2,target

bnel Extended mnemonic for
bcl 4,4∗cr_field+2,target

(LR) ← CIA + 4.

bnela Extended mnemonic for
bcla 4,4∗cr_field+2,target

(LR) ← CIA + 4.

bnectr [cr_field] Branch, if not equal, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+2

181

bnectrl Extended mnemonic for
bcctrl 4,4∗cr_field+2

(LR) ← CIA + 4.

bnelr [cr_field] Branch, if not equal, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+2

184

bnelrl Extended mnemonic for
bclrl 4,4∗cr_field+2

(LR) ← CIA + 4.

Table B-5. Extended Mnemonics for PPC405 (Continued)

Mnemonic Operands Function Other Registers
Changed Page

AMCC Proprietary

http://www.manualslib.com/

 408

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

bng [cr_field,] target Branch, if not greater than.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+1,target

175

bnga Extended mnemonic for
bca 4,4∗cr_field+1,target

bngl Extended mnemonic for
bcl 4,4∗cr_field+1,target

(LR) ← CIA + 4.

bngla Extended mnemonic for
bcla 4,4∗cr_field+1,target

(LR) ← CIA + 4.

bngctr [cr_field] Branch, if not greater than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+1

181

bngctrl Extended mnemonic for
bcctrl 4,4∗cr_field+1

(LR) ← CIA + 4.

bnglr [cr_field] Branch, if not greater than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+1

184

bnglrl Extended mnemonic for
bclrl 4,4∗cr_field+1

(LR) ← CIA + 4.

bnl [cr_field,] target Branch if not less than.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+0,target

175

bnla Extended mnemonic for
bca 4,4∗cr_field+0,target

bnll Extended mnemonic for
bcl 4,4∗cr_field+0,target

(LR) ← CIA + 4.

bnlla Extended mnemonic for
bcla 4,4∗cr_field+0,target

(LR) ← CIA + 4.

bnlctr [cr_field] Branch, if not less than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+0

181

bnlctrl Extended mnemonic for
bcctrl 4,4∗cr_field+0

(LR) ← CIA + 4.

bnllr [cr_field] Branch, if not less than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+0

184

bnllrl Extended mnemonic for
bclrl 4,4∗cr_field+0

(LR) ← CIA + 4.

Table B-5. Extended Mnemonics for PPC405 (Continued)

Mnemonic Operands Function Other Registers
Changed Page

AMCC Proprietary

http://www.manualslib.com/

 409

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

bns [cr_field,] target Branch if not summary overflow.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+3,target

175

bnsa Extended mnemonic for
bca 4,4∗cr_field+3,target

bnsl Extended mnemonic for
bcl 4,4∗cr_field+3,target

(LR) ← CIA + 4.

bnsla Extended mnemonic for
bcla 4,4∗cr_field+3,target

(LR) ← CIA + 4.

bnsctr [cr_field] Branch, if not summary overflow, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+3

181

bnsctrl Extended mnemonic for
bcctrl 4,4∗cr_field+3

(LR) ← CIA + 4.

bnslr [cr_field] Branch, if not summary overflow, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+3

184

bnslrl Extended mnemonic for
bclrl 4,4∗cr_field+3

(LR) ← CIA + 4.

bnu [cr_field,] target Branch if not unordered.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+3,target

175

bnua Extended mnemonic for
bca 4,4∗cr_field+3,target

bnul Extended mnemonic for
bcl 4,4∗cr_field+3,target

(LR) ← CIA + 4.

bnula Extended mnemonic for
bcla 4,4∗cr_field+3,target

(LR) ← CIA + 4.

bnuctr [cr_field] Branch, if not unordered, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+3

181

bnuctrl Extended mnemonic for
bcctrl 4,4∗cr_field+3

(LR) ← CIA + 4.

bnulr [cr_field] Branch, if not unordered, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+3

184

bnulrl Extended mnemonic for
bclrl 4,4∗cr_field+3

(LR) ← CIA + 4.

Table B-5. Extended Mnemonics for PPC405 (Continued)

Mnemonic Operands Function Other Registers
Changed Page

AMCC Proprietary

http://www.manualslib.com/

 410

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

bso [cr_field,] target Branch if summary overflow.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+3,target

175

bsoa Extended mnemonic for
bca 12,4∗cr_field+3,target

bsol Extended mnemonic for
bcl 12,4∗cr_field+3,target

(LR) ← CIA + 4.

bsola Extended mnemonic for
bcla 12,4∗cr_field+3,target

(LR) ← CIA + 4.

bsoctr [cr_field] Branch, if summary overflow, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+3

181

bsoctrl Extended mnemonic for
bcctrl 12,4∗cr_field+3

(LR) ← CIA + 4.

bsolr [cr_field] Branch, if summary overflow, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+3

184

bsolrl Extended mnemonic for
bclrl 12,4∗cr_field+3

(LR) ← CIA + 4.

bt cr_bit, target Branch if CRcr_bit = 1.
Extended mnemonic for
bc 12,cr_bit,target

175

bta Extended mnemonic for
bca 12,cr_bit,target

btl Extended mnemonic for
bcl 12,cr_bit,target

(LR) ← CIA + 4.

btla Extended mnemonic for
bcla 12,cr_bit,target

(LR) ← CIA + 4.

btctr cr_bit Branch if CRcr_bit = 1,
to address in CTR.

Extended mnemonic for
bcctr 12,cr_bit

181

btctrl Extended mnemonic for
bcctrl 12,cr_bit

(LR) ← CIA + 4.

btlr cr_bit Branch, if CRcr_bit = 1, to address in LR.
Extended mnemonic for
bclr 12,cr_bit

184

btlrl Extended mnemonic for
bclrl 12,cr_bit

(LR) ← CIA + 4.

Table B-5. Extended Mnemonics for PPC405 (Continued)

Mnemonic Operands Function Other Registers
Changed Page

AMCC Proprietary

http://www.manualslib.com/

 411

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

bun [cr_field,] target Branch if unordered.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+3,target

175

buna Extended mnemonic for
bca 12,4∗cr_field+3,target

bunl Extended mnemonic for
bcl 12,4∗cr_field+3,target

(LR) ← CIA + 4.

bunla Extended mnemonic for
bcla 12,4∗cr_field+3,target

(LR) ← CIA + 4.

bunctr [cr_field] Branch, if unordered, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+3

181

bunctrl Extended mnemonic for
bcctrl 12,4∗cr_field+3

(LR) ← CIA + 4.

bunlr [cr_field] Branch, if unordered, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+3

184

bunlrl Extended mnemonic for
bclrl 12,4∗cr_field+3

(LR) ← CIA + 4.

clrlwi RA, RS, n Clear left immediate. (n < 32)
(RA)0:n−1 ← n0

Extended mnemonic for
rlwinm RA,RS,0,n,31

300

clrlwi. Extended mnemonic for
rlwinm. RA,RS,0,n,31

CR[CR0]

clrlslwi RA, RS, b, n Clear left and shift left immediate.
(n ≤ b < 32)
(RA)b−n:31−n ← (RS)b:31
(RA)32−n:31 ← n0
(RA)0:b−n−1 ← b−n0

Extended mnemonic for
rlwinm RA,RS,n,b−n,31−n

300

clrlslwi. Extended mnemonic for
rlwinm. RA,RS,n,b−n,31−n

CR[CR0]

clrrwi RA, RS, n Clear right immediate. (n < 32)
(RA)32−n:31 ← n0

Extended mnemonic for
rlwinm RA,RS,0,0,31−n

300

clrrwi. Extended mnemonic for
rlwinm. RA,RS,0,0,31−n

CR[CR0]

cmplw [BF,] RA, RB Compare Logical Word.
Use CR0 if BF is omitted.

Extended mnemonic for
cmpl BF,0,RA,RB

190

cmplwi [BF,] RA, IM Compare Logical Word Immediate.
Use CR0 if BF is omitted.

Extended mnemonic for
cmpli BF,0,RA,IM

191

cmpw [BF,] RA, RB Compare Word.
Use CR0 if BF is omitted.

Extended mnemonic for
cmp BF,0,RA,RB

188

Table B-5. Extended Mnemonics for PPC405 (Continued)

Mnemonic Operands Function Other Registers
Changed Page

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary 412

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

cmpwi [BF,] RA, IM Compare Word Immediate.
Use CR0 if BF is omitted.

Extended mnemonic for
cmpi BF,0,RA,IM

189

crclr bx Condition register clear.
Extended mnemonic for
crxor bx,bx,bx

200

crmove bx, by Condition register move.
Extended mnemonic for
cror bx,by,by

198

crnot bx, by Condition register not.
Extended mnemonic for
crnor bx,by,by

197

crset bx Condition register set.
Extended mnemonic for
creqv bx,bx,bx

195

extlwi RA, RS, n, b Extract and left justify immediate. (n > 0)
(RA)0:n−1 ← (RS)b:b+n−1
(RA)n:31 ← 32−n0

Extended mnemonic for
rlwinm RA,RS,b,0,n−1

300

extlwi. Extended mnemonic for
rlwinm. RA,RS,b,0,n−1

CR[CR0]

extrwi RA, RS, n, b Extract and right justify immediate. (n > 0)
(RA)32−n:31 ← (RS)b:b+n−1
(RA)0:31−n ← 32−n0

Extended mnemonic for
rlwinm RA,RS,b+n,32−n,31

300

extrwi. Extended mnemonic for
rlwinm. RA,RS,b+n,32−n,31

CR[CR0]

inslwi RA, RS, n, b Insert from left immediate. (n > 0)
(RA)b:b+n−1 ← (RS)0:n−1

Extended mnemonic for
rlwimi RA,RS,32−b,b,b+n−1

299

inslwi. Extended mnemonic for
rlwimi. RA,RS,32−b,b,b+n−1

CR[CR0]

insrwi RA, RS, n, b Insert from right immediate. (n > 0)
(RA)b:b+n−1 ← (RS)32−n:31

Extended mnemonic for
rlwimi RA,RS,32−b−n,b,b+n−1

299

insrwi. Extended mnemonic for
rlwimi. RA,RS,32−b−n,b,b+n−1

CR[CR0]

la RT, D(RA) Load address. (RA ≠ 0)
D is an offset from a base address that is assumed to be (RA).

(RT) ← (RA) + EXTS(D)
Extended mnemonic for

addi RT,RA,D

164

li RT, IM Load immediate.
(RT) ← EXTS(IM)

Extended mnemonic for
addi RT,0,value

164

lis RT, IM Load immediate shifted.
(RT) ← (IM || 160)

Extended mnemonic for
addis RT,0,value

167

Table B-5. Extended Mnemonics for PPC405 (Continued)

Mnemonic Operands Function Other Registers
Changed Page

http://www.manualslib.com/

AMCC Proprietary 413

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

mfccr0
mfctr
mfdac1
mfdac2
mfdear
mfdbcr0
mfdbcr1
mfdbsr
mfdccr
mfdcwr
mfdvc1
mfdvc2
mfesr
mfevpr
mfiac1
mfiac2
mfiac3
mfiac4
mficcr
mficdbdr
mflr
mfpid
mfpit
mfpvr
mfsgr
mfsler
mfsprg0
mfsprg1
mfsprg2
mfsprg3
mfsprg4
mfsprg5
mfsprg6
mfsprg7
mfsrr0
mfsrr1
mfsrr2
mfsrr3
mfsu0r
mftcr
mftsr
mfxer
mfzpr

RT Move from special purpose register (SPR) SPRN.
Extended mnemonic for
mfspr RT,SPRN

See Table 10-3 on page 354 for listing of valid SPRN values.

266

mftb RT Move the contents of TBL into RT,
(RT) ← (TBL)

Extended mnemonic for
mftb RT,TBL

268

mftbu RT Move the contents of TBU into RT,
(RT) ← (TBU)

Extended mnemonic for
mftb RT,TBU

268

mr RT, RS Move register.
(RT) ← (RS)

Extended mnemonic for
or RT,RS,RS

293

mr. Extended mnemonic for
or. RT,RS,RS

CR[CR0]

mtcr RS Move to Condition Register.
Extended mnemonic for
mtcrf 0xFF,RS

269

Table B-5. Extended Mnemonics for PPC405 (Continued)

Mnemonic Operands Function Other Registers
Changed Page

http://www.manualslib.com/

AMCC Proprietary 414

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

mtccr0
mtctr
mtdac1
mtdac2
mtdbcr0
mtdbcr1
mtdbsr
mtdccr
mtdear
mtdcwr
mtdvc1
mtdvc2
mtesr
mtevpr
mtiac1
mtiac2
mtiac3
mtiac4
mticcr
mticdbdr
mtlr
mtpid
mtpit
mtpvr
mtsgr
mtsler
mtsprg0
mtsprg1
mtsprg2
mtsprg3
mtsprg4
mtsprg5
mtsprg6
mtsprg7
mtsrr0
mtsrr1
mtsrr2
mtsrr3
mtsu0r
mttcr
mttsr
mtxer
mtzpr

RS Move to SPR SPRN.
Extended mnemonic for

mtspr SPRN,RS

See Table 10-3 on page 354 for listing of valid SPRN values.

272

nop Preferred no-op; triggers optimizations based on no-ops.
Extended mnemonic for
ori 0,0,0

295

not RA, RS Complement register.
(RA) ← ¬(RS)

Extended mnemonic for
nor RA,RS,RS

292

not. Extended mnemonic for
nor. RA,RS,RS

CR[CR0]

rotlw RA, RS, RB Rotate left.
(RA) ← ROTL((RS), (RB)27:31)

Extended mnemonic for
rlwnm RA,RS,RB,0,31

302

rotlw. Extended mnemonic for
rlwnm. RA,RS,RB,0,31

CR[CR0]

Table B-5. Extended Mnemonics for PPC405 (Continued)

Mnemonic Operands Function Other Registers
Changed Page

http://www.manualslib.com/

 415

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

rotlwi RA, RS, n Rotate left immediate.
(RA) ← ROTL((RS), n)

Extended mnemonic for
rlwinm RA,RS,n,0,31

300

rotlwi. Extended mnemonic for
rlwinm. RA,RS,n,0,31

CR[CR0]

rotrwi RA, RS, n Rotate right immediate.
(RA) ← ROTL((RS), 32−n)

Extended mnemonic for
rlwinm RA,RS,32−n,0,31

300

rotrwi. Extended mnemonic for
rlwinm. RA,RS,32−n,0,31

CR[CR0]

slwi RA, RS, n Shift left immediate. (n < 32)
(RA)0:31−n ← (RS)n:31
(RA)32−n:31 ← n0

Extended mnemonic for
rlwinm RA,RS,n,0,31−n

300

slwi. Extended mnemonic for
rlwinm. RA,RS,n,0,31−n

CR[CR0]

srwi RA, RS, n Shift right immediate. (n < 32)
(RA)n:31 ← (RS)0:31−n
(RA)0:n−1 ← n0

Extended mnemonic for
rlwinm RA,RS,32−n,n,31

300

srwi. Extended mnemonic for
rlwinm. RA,RS,32−n,n,31

CR[CR0]

sub RT, RA, RB Subtract (RB) from (RA).
(RT) ← ¬(RB) + (RA) + 1.

Extended mnemonic for
subf RT,RB,RA

327

sub. Extended mnemonic for
subf. RT,RB,RA

CR[CR0]

subo Extended mnemonic for
subfo RT,RB,RA

XER[SO, OV]

subo. Extended mnemonic for
subfo. RT,RB,RA

CR[CR0]
XER[SO, OV]

subc RT, RA, RB Subtract (RB) from (RA).
(RT) ← ¬(RB) + (RA) + 1.
Place carry-out in XER[CA].

Extended mnemonic for
subfc RT,RB,RA

328

subc. Extended mnemonic for
subfc. RT,RB,RA

CR[CR0]

subco Extended mnemonic for
subfco RT,RB,RA

XER[SO, OV]

subco. Extended mnemonic for
subfco. RT,RB,RA

CR[CR0]
XER[SO, OV]

subi RT, RA, IM Subtract EXTS(IM) from (RA|0).
Place result in RT.

Extended mnemonic for
addi RT,RA,−IM

164

Table B-5. Extended Mnemonics for PPC405 (Continued)

Mnemonic Operands Function Other Registers
Changed Page

AMCC Proprietary

http://www.manualslib.com/

 416

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

subic RT, RA, IM Subtract EXTS(IM) from (RA).
Place result in RT.
Place carry-out in XER[CA].

Extended mnemonic for
addic RT,RA,−IM

165

subic. RT, RA, IM Subtract EXTS(IM) from (RA).
Place result in RT.
Place carry-out in XER[CA].

Extended mnemonic for
addic. RT,RA,−IM

CR[CR0] 166

subis RT, RA, IM Subtract (IM || 160) from (RA|0).
Place result in RT.

Extended mnemonic for
addis RT,RA,−IM

167

Table B-5. Extended Mnemonics for PPC405 (Continued)

Mnemonic Operands Function Other Registers
Changed Page

AMCC Proprietary

http://www.manualslib.com/

 417

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

B.5 Storage Reference Instructions

The PPC405 uses load and store instructions to transfer data between memory and the general purpose registers.
Load and store instructions operate on byte, halfword and word data. The storage reference instructions also
support loading or storing multiple registers, character strings, and byte-reversed data. Table B-6 shows the
storage reference instructions available for use in the PPC405.

tweqi RA, IM Trap if (RA) equal to EXTS(IM).
Extended mnemonic for
twi 4,RA,IM

344

twgei Trap if (RA) greater than or equal to EXTS(IM).
Extended mnemonic for
twi 12,RA,IM

twgti Trap if (RA) greater than EXTS(IM).
Extended mnemonic for
twi 8,RA,IM

twlei Trap if (RA) less than or equal to EXTS(IM).
Extended mnemonic for
twi 20,RA,IM

twlgei Trap if (RA) logically greater than or equal to EXTS(IM).
Extended mnemonic for
twi 5,RA,IM

twlgti Trap if (RA) logically greater than EXTS(IM).
Extended mnemonic for
twi 1,RA,IM

twllei Trap if (RA) logically less than or equal to EXTS(IM).
Extended mnemonic for
twi 6,RA,IM

twllti Trap if (RA) logically less than EXTS(IM).
Extended mnemonic for
twi 2,RA,IM

twlngi Trap if (RA) logically not greater than EXTS(IM).
Extended mnemonic for
twi 6,RA,IM

twlnli Trap if (RA) logically not less than EXTS(IM).
Extended mnemonic for
twi 5,RA,IM

twlti Trap if (RA) less than EXTS(IM).
Extended mnemonic for
twi 16,RA,IM

twnei Trap if (RA) not equal to EXTS(IM).
Extended mnemonic for
twi 24,RA,IM

twngi Trap if (RA) not greater than EXTS(IM).
Extended mnemonic for
twi 20,RA,IM

twnli Trap if (RA) not less than EXTS(IM).
Extended mnemonic for
twi 12,RA,IM

Table B-5. Extended Mnemonics for PPC405 (Continued)

Mnemonic Operands Function Other Registers
Changed Page

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary 418

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Table B-6. Storage Reference Instructions

Mnemonic Operands Function Other Registers
Changed Page

lbz RT, D(RA) Load byte from EA = (RA|0) + EXTS(D) and pad left with zeroes,
(RT) ← 240 || MS(EA,1).

225

lbzu RT, D(RA) Load byte from EA = (RA|0) + EXTS(D) and pad left with zeroes,
(RT) ← 240 || MS(EA,1).
Update the base address,
(RA) ← EA.

226

lbzux RT, RA, RB Load byte from EA = (RA|0) + (RB) and pad left with zeroes,
(RT) ← 240 || MS(EA,1).
Update the base address,
(RA) ← EA.

227

lbzx RT, RA, RB Load byte from EA = (RA|0) + (RB) and pad left with zeroes,
(RT) ← 240 || MS(EA,1).

228

lha RT, D(RA) Load halfword from EA = (RA|0) + EXTS(D) and sign extend,
(RT) ← EXTS(MS(EA,2)).

229

lhau RT, D(RA) Load halfword from EA = (RA|0) + EXTS(D) and sign extend,
(RT) ← EXTS(MS(EA,2)).
Update the base address,
(RA) ← EA.

230

lhaux RT, RA, RB Load halfword from EA = (RA|0) + (RB) and sign extend,
(RT) ← EXTS(MS(EA,2)).
Update the base address,
(RA) ← EA.

231

lhax RT, RA, RB Load halfword from EA = (RA|0) + (RB) and sign extend,
(RT) ← EXTS(MS(EA,2)).

232

lhbrx RT, RA, RB Load halfword from EA = (RA|0) + (RB), then reverse byte order and
pad left with zeroes,
(RT) ← 160 || MS(EA+1,1) || MS(EA,1).

233

lhz RT, D(RA) Load halfword from EA = (RA|0) + EXTS(D) and pad left with
zeroes,
(RT) ← 160 || MS(EA,2).

234

lhzu RT, D(RA) Load halfword from EA = (RA|0) + EXTS(D) and pad left with
zeroes,
(RT) ← 160 || MS(EA,2).
Update the base address,
(RA) ← EA.

235

lhzux RT, RA, RB Load halfword from EA = (RA|0) + (RB) and pad left with zeroes,
(RT) ← 160 || MS(EA,2).
Update the base address,
(RA) ← EA.

236

lhzx RT, RA, RB Load halfword from EA = (RA|0) + (RB) and pad left with zeroes,
(RT) ← 160 || MS(EA,2).

237

lmw RT, D(RA) Load multiple words starting from EA = (RA|0) + EXTS(D).
Place into consecutive registers, RT through GPR(31).
RA is not altered unless RA = GPR(31).

238

lswi RT, RA, NB Load consecutive bytes from EA = (RA|0).
Number of bytes n = 32 if NB = 0, else n = NB.
Stack bytes into words in CEIL(n/4)
consecutive registers starting with RT, to
RFINAL ← ((RT + CEIL(n/4) – 1) % 32).
GPR(0) is consecutive to GPR(31).
RA is not altered unless RA = RFINAL.

239

http://www.manualslib.com/

AMCC Proprietary 419

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

lswx RT, RA, RB Load consecutive bytes from EA=(RA|0)+(RB).
Number of bytes n = XER[TBC].
Stack bytes into words in CEIL(n/4) consecutive registers starting
with RT, to
RFINAL ← ((RT + CEIL(n/4) – 1) % 32).
GPR(0) is consecutive to GPR(31).
RA is not altered unless RA = RFINAL.
RB is not altered unless RB = RFINAL.
If n=0, content of RT is undefined.

241

lwarx RT, RA, RB Load word from EA = (RA|0) + (RB)and place in RT,
(RT) ← MS(EA,4).
Set the Reservation bit.

243

lwbrx RT, RA, RB Load word from EA = (RA|0) + (RB) then reverse byte order,
(RT) ← MS(EA+3,1) || MS(EA+2,1) ||
 MS(EA+1,1) || MS(EA,1).

244

lwz RT, D(RA) Load word from EA = (RA|0) + EXTS(D) and place in RT,
(RT) ← MS(EA,4).

245

lwzu RT, D(RA) Load word from EA = (RA|0) + EXTS(D) and place in RT,
(RT) ← MS(EA,4).
Update the base address,
(RA) ← EA.

246

lwzux RT, RA, RB Load word from EA = (RA|0) + (RB) and place in RT,
(RT) ← MS(EA,4).
Update the base address,
(RA) ← EA.

247

lwzx RT, RA, RB Load word from EA = (RA|0) + (RB) and place in RT,
(RT) ← MS(EA,4).

248

stb RS, D(RA) Store byte (RS)24:31 in memory at
EA = (RA|0) + EXTS(D).

308

stbu RS, D(RA) Store byte (RS)24:31 in memory at
EA = (RA|0) + EXTS(D).
Update the base address,
(RA) ← EA.

309

stbux RS, RA, RB Store byte (RS)24:31 in memory at
EA = (RA|0) + (RB).
Update the base address,
(RA) ← EA.

310

stbx RS, RA, RB Store byte (RS)24:31 in memory at
EA = (RA|0) + (RB).

311

sth RS, D(RA) Store halfword (RS)16:31 in memory at
EA = (RA|0) + EXTS(D).

312

sthbrx RS, RA, RB Store halfword (RS)16:31 byte-reversed in memory at
EA = (RA|0) + (RB).
MS(EA, 2) ← (RS)24:31 || (RS)16:23

313

sthu RS, D(RA) Store halfword (RS)16:31 in memory at
EA = (RA|0) + EXTS(D).
Update the base address,
(RA) ← EA.

314

sthux RS, RA, RB Store halfword (RS)16:31 in memory at
EA = (RA|0) + (RB).
Update the base address,
(RA) ← EA.

315

sthx RS, RA, RB Store halfword (RS)16:31 in memory at
EA = (RA|0) + (RB).

316

stmw RS, D(RA) Store consecutive words from RS through GPR(31) in memory
starting at
EA = (RA|0) + EXTS(D).

317

Table B-6. Storage Reference Instructions (Continued)

Mnemonic Operands Function Other Registers
Changed Page

http://www.manualslib.com/

AMCC Proprietary 420

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

B.6 Arithmetic and Logical Instructions

Table B-7 lists the arithmetic and logical instructions. Arithmetic operations are performed on integer or ordinal
operands stored in registers. Instructions using two operands are defined in a three-operand format, where the
operation is performed on the operands stored in two registers, and the result is placed in a third register.
Instructions using one operand are defined in a two-operand format, where the operation is performed on the
operand in one register, and the result is placed in another register. Several instructions have immediate formats,
in which one operand is coded as part of the instruction itself. Most arithmetic and logical instructions can optionally
set the Condition Register (CR) based on the outcome of the instruction.

stswi RS, RA, NB Store consecutive bytes in memory starting at EA=(RA|0).
Number of bytes n = 32 if NB = 0, else n = NB.
Bytes are unstacked from CEIL(n/4) consecutive registers starting
with RS.
GPR(0) is consecutive to GPR(31).

318

stswx RS, RA, RB Store consecutive bytes in memory starting at EA=(RA|0)+(RB).
Number of bytes n = XER[TBC].
Bytes are unstacked from CEIL(n/4)
consecutive registers starting with RS.
GPR(0) is consecutive to GPR(31).

319

stw RS, D(RA) Store word (RS) in memory at
EA = (RA|0) + EXTS(D).

321

stwbrx RS, RA, RB Store word (RS) byte-reversed in memory at EA = (RA|0) + (RB).
MS(EA, 4) ← (RS)24:31 || (RS)16:23 ||

(RS)8:15 || (RS)0:7

322

stwcx. RS, RA, RB Store word (RS) in memory at EA = (RA|0) + (RB) only if the
reservation bit is set.
if RESERVE = 1 then

MS(EA, 4) ← (RS)
RESERVE ← 0
(CR[CR0]) ← 20 || 1 || XERso

else
(CR[CR0]) ← 20 || 0 || XERso.

323

stwu RS, D(RA) Store word (RS) in memory at EA = (RA|0) + EXTS(D).
Update the base address,
(RA) ← EA.

324

stwux RS, RA, RB Store word (RS) in memory at EA = (RA|0) + (RB).
Update the base address,
(RA) ← EA.

325

stwx RS, RA, RB Store word (RS) in memory at
EA = (RA|0) + (RB).

326

Table B-7. Arithmetic and Logical Instructions

Mnemonic Operands Function Other Registers
Changed Page

add RT, RA, RB Add (RA) to (RB).
Place result in RT.

add. CR[CR0]

addo XER[SO, OV]

addo. CR[CR0]
XER[SO, OV]

Table B-6. Storage Reference Instructions (Continued)

Mnemonic Operands Function Other Registers
Changed Page

http://www.manualslib.com/

 421

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

addc RT, RA, RB Add (RA) to (RB).
Place result in RT.
Place carry-out in XER[CA].

161

addc. CR[CR0]

addco XER[SO, OV]

addco. CR[CR0]
XER[SO, OV]

adde RT, RA, RB Add XER[CA], (RA), (RB).
Place result in RT.
Place carry-out in XER[CA].

162

adde. CR[CR0]

addeo XER[SO, OV]

addeo. CR[CR0]
XER[SO, OV]

addi RT, RA, IM Add EXTS(IM) to (RA|0).
Place result in RT.

163

addic RT, RA, IM Add EXTS(IM) to (RA|0).
Place result in RT.
Place carry-out in XER[CA].

addic. RT, RA, IM Add EXTS(IM) to (RA|0).
Place result in RT.
Place carry-out in XER[CA].

CR[CR0]

addis RT, RA, IM Add (IM || 160) to (RA|0).
Place result in RT.

addme RT, RA Add XER[CA], (RA), (-1).
Place result in RT.
Place carry-out in XER[CA].

164

addme. CR[CR0] 166

addmeo XER[SO, OV] 166

addmeo. CR[CR0]
XER[SO, OV]

167

addze RT, RA Add XER[CA] to (RA).
Place result in RT.
Place carry-out in XER[CA].

168

addze. CR[CR0]

addzeo XER[SO, OV]

addzeo. CR[CR0]
XER[SO, OV]

and RA, RS, RB AND (RS) with (RB).
Place result in RA.

170

and. CR[CR0]

andc RA, RS, RB AND (RS) with ¬(RB).
Place result in RA.

171

andc. CR[CR0]

andi. RA, RS, IM AND (RS) with (160 || IM).
Place result in RA.

CR[CR0] 172

andis. RA, RS, IM AND (RS) with (IM || 160).
Place result in RA.

CR[CR0] 173

cntlzw RA, RS Count leading zeros in RS.
Place result in RA.

192

cntlzw. CR[CR0]

Table B-7. Arithmetic and Logical Instructions (Continued)

Mnemonic Operands Function Other Registers
Changed Page

AMCC Proprietary

http://www.manualslib.com/

 422

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

divw RT, RA, RB Divide (RA) by (RB), signed.
Place result in RT.

213

divw. CR[CR0]

divwo XER[SO, OV]

divwo. CR[CR0]
XER[SO, OV]

divwu RT, RA, RB Divide (RA) by (RB), unsigned.
Place result in RT.

214

divwu. CR[CR0]

divwuo XER[SO, OV]

divwuo. CR[CR0]
XER[SO, OV]

eqv RA, RS, RB Equivalence of (RS) with (RB).
(RA) ← ¬((RS) ⊕ (RB))

216

eqv. CR[CR0]

extsb RA, RS Extend the sign of byte (RS)24:31.
Place the result in RA.

217

extsb. CR[CR0]

extsh RA, RS Extend the sign of halfword (RS)16:31.
Place the result in RA.

218

extsh. CR[CR0]

mulhw RT, RA, RB Multiply (RA) and (RB), signed.
Place hi-order result in RT.
prod0:63 ← (RA) × (RB) (signed).
(RT) ← prod0:31.

280

mulhw. CR[CR0]

mulhwu RT, RA, RB Multiply (RA) and (RB), unsigned.
Place hi-order result in RT.
prod0:63 ← (RA) × (RB) (unsigned).
(RT) ← prod0:31.

281

mulhwu. CR[CR0]

mulli RT, RA, IM Multiply (RA) and IM, signed.
Place lo-order result in RT.
prod0:47 ← (RA) × IM (signed)
(RT) ← prod16:47

282

mullw RT, RA, RB Multiply (RA) and (RB), signed.
Place lo-order result in RT.
prod0:63 ← (RA) × (RB) (signed).
(RT) ← prod32:63.

283

mullw. CR[CR0]

mullwo XER[SO, OV]

mullwo. CR[CR0]
XER[SO, OV]

nand RA, RS, RB NAND (RS) with (RB).
Place result in RA.

284

nand. CR[CR0]

neg RT, RA Negative (two’s complement) of RA.
(RT) ← ¬(RA) + 1

285

neg. CR[CR0]

nego XER[SO, OV]

nego. CR[CR0]
XER[SO, OV]

nor RA, RS, RB NOR (RS) with (RB).
Place result in RA.

292

nor. CR[CR0]

or RA, RS, RB OR (RS) with (RB).
Place result in RA.

293

or. CR[CR0]

Table B-7. Arithmetic and Logical Instructions (Continued)

Mnemonic Operands Function Other Registers
Changed Page

AMCC Proprietary

http://www.manualslib.com/

 423

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

orc RA, RS, RB OR (RS) with ¬(RB).
Place result in RA.

294

orc. CR[CR0]

ori RA, RS, IM OR (RS) with (160 || IM).
Place result in RA.

295

oris RA, RS, IM OR (RS) with (IM || 160).
Place result in RA.

296

subf RT, RA, RB Subtract (RA) from (RB).
(RT) ← ¬(RA) + (RB) + 1.

327

subf. CR[CR0]

subfo XER[SO, OV]

subfo. CR[CR0]
XER[SO, OV]

subfc RT, RA, RB Subtract (RA) from (RB).
(RT) ← ¬(RA) + (RB) + 1.
Place carry-out in XER[CA].

328

subfc. CR[CR0]

subfco XER[SO, OV]

subfco. CR[CR0]
XER[SO, OV]

subfe RT, RA, RB Subtract (RA) from (RB) with carry-in.
(RT) ← ¬(RA) + (RB) + XER[CA].
Place carry-out in XER[CA].

329

subfe. CR[CR0]

subfeo XER[SO, OV]

subfeo. CR[CR0]
XER[SO, OV]

subfic RT, RA, IM Subtract (RA) from EXTS(IM).
(RT) ← ¬(RA) + EXTS(IM) + 1.
Place carry-out in XER[CA].

330

subfme RT, RA, RB Subtract (RA) from (–1) with carry-in.
(RT) ← ¬(RA) + (–1) + XER[CA].
Place carry-out in XER[CA].

331

subfme. CR[CR0]

subfmeo XER[SO, OV]

subfmeo. CR[CR0]
XER[SO, OV]

subfze RT, RA, RB Subtract (RA) from zero with carry-in.
(RT) ← ¬(RA) + XER[CA].
Place carry-out in XER[CA].

332

subfze. CR[CR0]

subfzeo XER[SO, OV]

subfzeo. CR[CR0]
XER[SO, OV]

xor RA, RS, RB XOR (RS) with (RB).
Place result in RA.

349

xor. CR[CR0]

xori RA, RS, IM XOR (RS) with (160 || IM).
Place result in RA.

350

xoris RA, RS, IM XOR (RS) with (IM || 160).
Place result in RA.

351

Table B-7. Arithmetic and Logical Instructions (Continued)

Mnemonic Operands Function Other Registers
Changed Page

AMCC Proprietary

http://www.manualslib.com/

 424

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

B.7 Condition Register Logical Instructions

CR logical instructions combine the results of several comparisons without incurring the overhead of conditional
branching. These instructions can significantly improve code performance if multiple conditions are tested before
making a branch decision. Table B-8 summarizes the CR logical instructions.

B.8 Branch Instructions

The architecture provides conditional and unconditional branches to any storage location. The conditional branch
instructions test condition codes set previously and branch accordingly. Conditional branch instructions may
decrement and test the Count Register (CTR) as part of determination of the branch condition and may save the
return address in the Link Register (LR). The target address for a branch may be a displacement from the current
instruction address (CIA), or may be contained in the LR or CTR, or may be an absolute address.

Table B-8. Condition Register Logical Instructions

Mnemonic Operands Function Other Registers
Changed Page

crand BT, BA, BB AND bit (CRBA) with (CRBB).
Place result in CRBT.

193

crandc BT, BA, BB AND bit (CRBA) with ¬(CRBB).
Place result in CRBT.

194

creqv BT, BA, BB Equivalence of bit CRBA with CRBB.
CRBT ← ¬(CRBA ⊕ CRBB)

195

crnand BT, BA, BB NAND bit (CRBA) with (CRBB).
Place result in CRBT.

196

crnor BT, BA, BB NOR bit (CRBA) with (CRBB).
Place result in CRBT.

197

cror BT, BA, BB OR bit (CRBA) with (CRBB).
Place result in CRBT.

198

crorc BT, BA, BB OR bit (CRBA) with ¬ (CRBB).
Place result in CRBT.

199

crxor BT, BA, BB XOR bit (CRBA) with (CRBB).
Place result in CRBT.

200

mcrf BF, BFA Move CR field, (CR[CRn]) ← (CR[CRm])
where m ← BFA and n ← BF.

263

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary 425

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

B.9 Comparison Instructions

Comparison instructions perform arithmetic and logical comparisons between two operands and set one of the
eight condition code register fields based on the outcome of the comparison. Table B-10 shows the comparison
instructions supported by the PPC405.

Table B-9. Branch Instructions

Mnemonic Operands Function Other Registers
Changed Page

b target Branch unconditional relative.
LI ← (target – CIA)6:29
NIA ← CIA + EXTS(LI || 20)

174

ba Branch unconditional absolute.
LI ← target6:29
NIA ← EXTS(LI || 20)

bl Branch unconditional relative.
LI ← (target – CIA)6:29
NIA ← CIA + EXTS(LI || 20)

(LR) ← CIA + 4.

bla Branch unconditional absolute.
LI ← target6:29
NIA ← EXTS(LI || 20)

(LR) ← CIA + 4.

bc BO, BI, target Branch conditional relative.
BD ← (target – CIA)16:29
NIA ← CIA + EXTS(BD || 20)

CTR if BO2 = 0. 175

bca Branch conditional absolute.
BD ← target16:29
NIA ← EXTS(BD || 20)

CTR if BO2 = 0.

bcl Branch conditional relative.
BD ← (target – CIA)16:29
NIA ← CIA + EXTS(BD || 20)

CTR if BO2 = 0.
(LR) ← CIA + 4.

bcla Branch conditional absolute.
BD ← target16:29
NIA ← EXTS(BD || 20)

CTR if BO2 = 0.
(LR) ← CIA + 4.

bcctr BO, BI Branch conditional to address in CTR.
Using (CTR) at exit from instruction,
NIA ← CTR0:29 || 20.

CTR if BO2 = 0. 181

bcctrl CTR if BO2 = 0.
(LR) ← CIA + 4.

bclr BO, BI Branch conditional to address in LR.
Using (LR) at entry to instruction,
NIA ← LR0:29 || 20.

CTR if BO2 = 0. 184

bclrl CTR if BO2 = 0.
(LR) ← CIA + 4.

Table B-10. Comparison Instructions

Mnemonic Operands Function Other Registers
Changed Page

cmp BF, 0, RA, RB Compare (RA) to (RB), signed.
Results in CR[CRn], where n = BF.

188

cmpi BF, 0, RA, IM Compare (RA) to EXTS(IM), signed.
Results in CR[CRn], where n = BF.

189

cmpl BF, 0, RA, RB Compare (RA) to (RB), unsigned.
Results in CR[CRn], where n = BF.

190

http://www.manualslib.com/

AMCC Proprietary 426

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

B.10 Rotate and Shift Instructions

Rotate and shift instructions rotate and shift operands which are stored in the general purpose registers. Rotate
instructions can also mask rotated operands. Table B-11 shows the PPC405 rotate and shift instructions.

cmpli BF, 0, RA, IM Compare (RA) to (160 || IM), unsigned.
Results in CR[CRn], where n = BF.

191

Table B-11. Rotate and Shift Instructions

Mnemonic Operands Function Other Registers
Changed Page

rlwimi RA, RS, SH, MB,
ME

Rotate left word immediate, then insert according to mask.
r ← ROTL((RS), SH)
m ← MASK(MB, ME)
(RA) ← (r ∧ m) ∨ ((RA) ∧ ¬m)

299

rlwimi. CR[CR0]

rlwinm RA, RS, SH, MB,
ME

Rotate left word immediate, then AND with mask.
r ← ROTL((RS), SH)
m ← MASK(MB, ME)
(RA) ← (r ∧ m)

300

rlwinm. CR[CR0]

rlwnm RA, RS, RB, MB,
ME

Rotate left word, then AND with mask.
r ← ROTL((RS), (RB)27:31)
m ← MASK(MB, ME)
(RA) ← (r ∧ m)

302

rlwnm. CR[CR0]

slw RA, RS, RB Shift left (RS) by (RB)27:31.
n ← (RB)27:31.
r ← ROTL((RS), n).
if (RB)26 = 0 then m ← MASK(0, 31 – n)
else m ← 320.
(RA) ← r ∧ m.

304

slw. CR[CR0]

sraw RA, RS, RB Shift right algebraic (RS) by (RB)27:31.
n ← (RB)27:31.
r ← ROTL((RS), 32 – n).
if (RB)26 = 0 then m ← MASK(n, 31)
else m ← 320.
s ← (RS)0.
(RA) ← (r ∧ m) ∨ (32s ∧ ¬m).
XER[CA] ← s ∧ ((r ∧ ¬m) ≠ 0).

305

sraw. CR[CR0]

srawi RA, RS, SH Shift right algebraic (RS) by SH.
n ← SH.
r ← ROTL((RS), 32 – n).
m ← MASK(n, 31).
s ← (RS)0.
(RA) ← (r ∧ m) ∨ (32s ∧ ¬m).
XER[CA] ← s ∧ ((r ∧ ¬m)≠0).

306

srawi. CR[CR0]

srw RA, RS, RB Shift right (RS) by (RB)27:31.
n ← (RB)27:31.
r ← ROTL((RS), 32 – n).
if (RB)26 = 0 then m ← MASK(n, 31)
else m ← 320.
(RA) ← r ∧ m.

307

srw. CR[CR0]

Table B-10. Comparison Instructions (Continued)

Mnemonic Operands Function Other Registers
Changed Page

http://www.manualslib.com/

 427

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

B.11 Cache Control Instructions

Cache control instructions allow the user to indirectly control the contents of the data and instruction caches. The
user may fill, flush, invalidate and zero blocks (16-byte lines) in the data cache. The user may also invalidate
congruence classes in both caches and invalidate individual lines in the instruction cache.

B.12 Interrupt Control Instructions

The interrupt control instructions allow the user to move data between general purpose registers and the machine
state register, return from interrupts and enable or disable maskable external interrupts. Table B-13 shows the
interrupt control instruction set.

Table B-12. Cache Control Instructions

Mnemonic Operands Function Other Registers
Changed Page

dcba RA, RB Speculatively establish the data cache block which contains the EA
(RA|0) + (RB).

201

dcbf RA, RB Flush (store, then invalidate) the data cache block which contains the EA
(RA|0) + (RB).

203

dcbi RA, RB Invalidate the data cache block which contains the EA (RA|0) + (RB). 204

dcbst RA, RB Store the data cache block which contains the EA (RA|0) + (RB). 205

dcbt RA, RB Load the data cache block which contains the EA (RA|0) + (RB). 206

dcbtst RA,RB Load the data cache block which contains the EA (RA|0) + (RB). 207

dcbz RA, RB Zero the data cache block which contains the EA (RA|0) + (RB). 208

dccci RA, RB Invalidate the data cache congruence class associated with the EA
(RA|0) + (RB).

210

dcread RT, RA, RB Read either tag or data information from the data cache congruence
class associated with the EA (RA|0) + (RB).
Place the results in RT.

211

icbi RA, RB Invalidate the instruction cache block which contains the EA
(RA|0) + (RB).

219

icbt RA, RB Load the instruction cache block which contains the EA (RA|0) + (RB). 220

iccci RA, RB Invalidate instruction cache. 221

icread RA, RB Read either tag or data information from the instruction cache
congruence class associated with the EA (RA|0) + (RB).
Place the results in ICDBDR.

221

Table B-13. Interrupt Control Instructions

Mnemonic Operands Function Other Registers
Changed Page

mfmsr RT Move from MSR to RT,
(RT) ← (MSR).

265

mtmsr RS Move to MSR from RS,
(MSR) ← (RS).

271

rfci Return from critical interrupt
(PC) ← (SRR2).
(MSR) ← (SRR3).

297

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary 428

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

B.13 TLB Management Instructions

The TLB management instructions read and write entries of the TLB array in the MMU, search the TLB array for an
entry which will translate a given address, invalidate all TLB entries, and synchronize TLB updates with other
processors.

rfi Return from interrupt.
(PC) ← (SRR0).
(MSR) ← (SRR1).

298

wrtee RS Write value of RS16 to the External Enable bit (MSR[EE]). 347

wrteei E Write value of E to the External Enable bit (MSR[EE]). 348

Table B-14. TLB Management Instructions

Mnemonic Operands Function Other Registers
Changed Page

tlbia All of the entries in the TLB are invalidated and become unavailable
for translation by clearing the valid (V) bit in the TLBHI portion of
each TLB entry. The rest of the fields in the TLB entries are
unmodified.

334

tlbre RT, RA,WS If WS = 0:
Load TLBHI portion of the selected TLB entry into RT.
Load the PID register with the contents of the TID field of the
selected TLB entry.
(RT) ← TLBHI[(RA)]
(PID) ← TLB[(RA)]TID

If WS = 1:
Load TLBLO portion of the selected TLB entry into RT.
(RT) ← TLBLO[(RA)]

335

tlbsx RT,RA,RB Search the TLB array for a valid entry which translates the EA
EA = (RA|0) + (RB).
If found,

(RT) ← Index of TLB entry.
If not found,

(RT) Undefined.

337

tlbsx. If found,
(RT) ← Index of TLB entry.
CR[CR0]EQ ← 1.

If not found,
(RT) Undefined.
CR[CR0]EQ ← 1.

CR[CR0]LT,GT,SO

tlbsync tlbsync does not complete until all previous TLB-update instructions
executed by this processor have been received and completed by all
other processors.

For the PPC405, tlbsync is a no-op.

338

tlbwe RS, RA,WS If WS = 0:
Write TLBHI portion of the selected TLB entry from RS.
Write the TID field of the selected TLB entry from the PID register.
TLBHI[(RA)] ← (RS)
TLB[(RA)]TID ← (PID)24:31

If WS = 1:
Write TLBLO portion of the selected TLB entry from RS.
TLBLO[(RA)] ← (RS)

339

Table B-13. Interrupt Control Instructions (Continued)

Mnemonic Operands Function Other Registers
Changed Page

http://www.manualslib.com/

 429

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

B.14 Processor Management Instructions

The processor management instructions move data between GPRs and SPRs and DCRs in the PPC405; these
instructions also provide traps, system calls and synchronization controls.

Table B-15. Processor Management Instructions

Mnemonic Operands Function Other Registers
Changed Page

eieio Storage synchronization. All loads and stores that precede the eieio
instruction complete before any loads and stores that follow the
instruction access main storage.

Implemented as sync, which is more restrictive.

215

isync Synchronize execution context by flushing the prefetch queue. 224

mcrxr BF Move XER[0:3] into field CRn, where n←BF.
CR[CRn] ← (XER[SO, OV, CA]).
(XER[SO, OV, CA]) ← 30.

262

mfcr RT Move from CR to RT,
(RT) ← (CR).

263

mfdcr RT, DCRN Move from DCR to RT,
(RT) ← (DCR(DCRN)).

264

mfspr RT, SPRN Move from SPR to RT,
(RT) ← (SPR(SPRN)).

265

mtcrf FXM, RS Move some or all of the contents of RS into CR as specified by FXM
field,
mask ← 4(FXM0) || 4(FXM1) || ... || 4(FXM6) || 4(FXM7).
(CR)←((RS) ∧ mask) ∨ (CR) ∧ ¬mask).

269

mtdcr DCRN, RS Move to DCR from RS,
(DCR(DCRN)) ← (RS).

270

mtspr SPRN, RS Move to SPR from RS,
(SPR(SPRN)) ← (RS).

271

sc System call exception is generated.
(SRR1) ← (MSR)
(SRR0) ← (PC)
PC ← EVPR0:15 || 0x0C00
(MSR[WE, PR, EE, PE, DR, IR]) ← 0

303

sync Synchronization. All instructions that precede sync complete before
any instructions that follow sync begin.
When sync completes, all storage accesses initiated before sync
will have completed.

333

tw TO, RA, RB Trap exception is generated if, comparing (RA) with (RB), any
condition specified by TO is true.

341

twi TO, RA, IM Trap exception is generated if, comparing (RA) with EXTS(IM), any
condition specified by TO is true.

344

AMCC Proprietary

http://www.manualslib.com/

 430

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Appendix C. Code Optimization and Instruction Timings
The code optimization guidelines in “Code Optimization Guidelines” and the information describing instruction
timings in Instruction Timings on page 431 can help compiler, system, and application programmers produce high-
performance code and determine accurate execution times.

C.1 Code Optimization Guidelines

The following guidelines can help to reduce program execution times.

C.1.1 Condition Register Bits for Boolean Variables

Compilers can use Condition Register (CR) bits to store boolean variables, where 0 and 1 represent False and
True values, respectively. This generally improves performance, compared to using General Purpose Registers
(GPRs) to store boolean variables. Most common operations on boolean variables can be accomplished using the
CR Logical instructions.

C.1.2 CR Logical Instruction for Compound Branches

For example, consider the following pseudocode:

if (Var28 || Var29 || Var30 || Var 31) branch to target

Var28–Var31 are boolean variables, maintained as bits in the CR[CR7] field (CR28:31). The value 1 represents
True; 0 represents False.

This could be coded with branches as:

bt 28, target
bt 29, target
bt 30, target
bt 31, target

Generally faster, functionally equivalent code, using CR Logical instructions, follows:

crcr 2, 28, 29
cror 2, 2, 30
cror 2, 2, 31
bt 2, target

C.1.3 Cache Usage

Code and data can be organized, based on the size and structure of the instruction and data cache arrays, to
minimize cache misses.

In the cache arrays, any two addresses in which Am:26 (the index) are the same, but which differ in A0:m-1 (the tag),
are called congruent. (This describes a two-way set-associative cache.) A27:31 define the 32 bytes in a cache line,
the smallest object that can be brought into the cache. Only two congruent lines can be in the cache
simultaneously; accessing a third congruent line causes the removal from the cache of one of the two lines
previously there

Table C-1 illustrates the value of m and the index size for the various cache array sizes.

AMCC Proprietary

http://www.manualslib.com/

 431

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Moving new code and data into the cache arrays occurs at the speed of external memory. Much faster
execution is possible when all code and data is available in the cache. Organizing code to uniformly use
Am:26 minimizes the use of congruent addresses.

C.1.4 CR Dependencies

For CR-setting arithmetic, compare, CR-logical, and logical instructions, and the CR-setting mcrf, mcrxr, and
mtcrf instructions, put two instructions between the CR-setting instruction and a Branch instruction that uses a bit
in the CR field set by the CR-setting instruction.

C.1.5 Branch Prediction

Use the Y-bit in branch instructions to force proper branch prediction when there is a more likely prediction than the
standard prediction. See Branch Prediction on page 52 for a more information about branch prediction.

C.1.6 Alignment

For speed, align all accesses on the appropriate operand-size boundary. For example, load/store word operands
should be word-aligned, and so on. Hardware does not trap unaligned accesses; instead, two accesses are
performed for a load or store of an unaligned operand that crosses a word boundary. Unaligned accesses that do
not cross word boundaries are performed in one access.

Align branch targets that are unlikely to be hit by “fall-through” code on cache line boundaries (such as the address
of functions such as strcpy), to minimize the number of unused instructions in cache line fills.

C.2 Instruction Timings

The following timing descriptions consider only “first order” effects of cache misses in the ICU (instruction-side) and
DCU (data-side) arrays.

The timing descriptions do not provide complete descriptions of the performance penalty associated with cache
misses; the timing descriptions do not consider bus contention between the instruction-side and the data-side, or
the time associated with performing line fills or flushes. Unless specifically stated otherwise, the number of cycles
apply to systems having zero-wait memory access.

C.2.1 General Rules

Instructions execute in order.

All instructions, assuming cache hits, execute in one cycle, except:

• Divide instructions execute in 35 clock cycles.

• Branches execute in one or three clock cycles, as described in “Branches.”

• MAC and multiply instructions execute in one to five cycles as described in “Multiplies.”

• Aligned load/store instructions that hit in the cache execute in one clock cycle/word. See “Alignment” for infor-
mation on execution timings for unaligned load/stores.

• In isolation, a data cache control instruction takes two cycles in the processor pipeline. However, subsequent
DCU accesses are stalled until a cache control instruction finishes accessing the data cache array.

Note: Note that subsequent DCU accesses do not remain stalled while transfers associated with previous
data cache control instructions continue on the PLB.

AMCC Proprietary

http://www.manualslib.com/

 432

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

C.2.2 Branches

Branch instructions are decoded in prefetch buffer 0 (PFB0) and the decode stage of the instruction pipeline.
Branch targets, whether the branch is known or predicted taken, can be fetched from the PFB0 and DCD stages.
Incorrectly predicted branches can be corrected from the DCD or EXE (execute) stages of the pipeline.

Branches can be known taken or known not taken, or can have address or condition dependencies. Branches
having address dependencies are never predicted taken. The directions of conditional branches having no address
dependencies are statically predicted.

Conditional branches may depend on the results of an instruction that is changing the CR or the CTR.

Address dependencies can occur when:

• A bclr instruction that is known taken, or unresolved, follows (immediately, or separated by only one instruc-
tion) a link updating instruction (mtlr or a branch and link).

• A bcctr instruction that is known taken, or unresolved, follows (immediately, or separated by only one instruc-
tion) a counter updating instruction (mtctr or a branch that decrements the counter).

Instruction timings for branch instructions follow:

• A branch known not taken (BKNT) executes in one clock cycle. By definition a BKNT does not have address or
condition dependencies.

• A branch known taken (BKT) by definition has no condition dependencies, but can have address dependen-
cies.A BKT without address dependencies can execute in one clock cycle if it is first decoded from the PFB0
stage, or in two clock cycles if it is first decoded in the DCD stage. A BKT having address dependencies can
execute in two clock cycles if there is one instruction between the branch and the address dependency, or in
three clock cycles if there are no instructions between the branch and address dependency.

• A branch predicted not taken (BPNT), which must have condition dependencies, executes in one clock cycle if
the prediction is correct. If the prediction is incorrect, the branch can take two or three cycles. If there was one
instruction between the branch and the instruction causing the condition dependency, the branch executes in
two cycles. If there were no instructions between the branch and the instruction causing the condition depen-
dency, the branch executes in three clock cycles.

• A branch that is correctly predicted taken (BPT), which must have condition dependencies, executes in one
clock cycle, if it is first decoded from the PFB0 stage, or two clock cycles if it is first decoded in the DCD stage.
If the prediction is incorrect, the branch can take two or three cycles. If there is one instruction between the
branch and the instruction causing the condition dependency, the branch executes in two cycles. If there are
no instructions between the branch and the instruction causing the condition dependency, the branch executes
in three clock cycles.

C.2.3 Multiplies

For multiply instructions having two word operands, hardware internal to the core automatically detects smaller
operand sizes (by examining sign bit extension) to reduce the number of cycles necessary to complete the
multiplication.

The PPC405 also supports multiply accumulate (MAC) instructions and multiply instructions having halfword
operands.

Word and halfword multiply instructions are pipelined in the execution unit and use the same multiplication
hardware. Because these instructions are pipelined in the execution stage they have latency and reissue rate cycle
numbers. Under conditions to be described, a second multiply or MAC instruction can begin execution before the

AMCC Proprietary

http://www.manualslib.com/

 433

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

first multiply or MAC instruction completes. When these conditions are met, the reissue rate cycle numbers should
be used; otherwise, the latency cycle numbers should be used. (A MAC or multiply instruction can follow another
MAC or a multiply and still meet the conditions that support the use of the reissue rate cycle numbers.

Use reissue rate cycle numbers for multiply or MAC instructions that are followed by another multiply or MAC
instruction, and do not have an operand dependency from a previous multiply or MAC instruction. However, one
operand dependency is allowed for reissue rate cycle numbers. Internal forwarding logic allows the accumulate
value of a first MAC instruction to be used as the accumulate value of a second MAC instruction without affecting
the reissue rate.

Use latency cycle numbers for multiply or MAC instructions that are not followed by another multiply or MAC, or
that have an operand dependency from a previous multiply or MAC instruction. However, accumulate-only
dependencies between adjacent MAC instructions use reissue rate cycle numbers.

An operand dependency exists when a second multiply or MAC instruction depends on the result of a first multiply
or MAC instruction.

Table C-1 summarizes the multiply and MAC instruction timings. In the table, the syntax “[o]” indicates that the
instruction has an “o” form that updates XER[SO,OV], and a “non-o” form. The syntax “[.]” indicates that the
instruction has a “record” form that updates CR[CR0], and a “non-record” form.

C.2.4 Scalar Load Instructions

Generally, the PPC405 executes cacheable load instructions that hit in the data cache array or line fill buffer, or
non cacheable load instructions that hit in the line fill buffer (when enabled), in one cycle. However, the pipelined
nature of load instructions can even cause loads that hit in the cache or line fill buffer to appear to take extra cycles
under some conditions.

If a load is followed by an instruction that uses the load target as an operand, a load-use dependency exists. When
the load target is returned, it is forwarded to the operand register of the “using” instruction. This forwarding results
in an additional cycle of latency to a load immediately followed by a “using” instruction, causing the load to appear
to execute in two cycles.

Because the PPC405 can execute instructions that follow load misses if no load-use dependency exists, the load
and the “using” instruction should be separated by two “non-using” instructions when possible. If only one
instruction can be placed between the load and the “using” instruction, the load appears to execute in two cycles.

Table C-1. Multiply and MAC Instruction Timing

Operation Reissue Rate Cycles Latency Cycles

MAC

MAC and negative MAC instructions 1 2
Halfword x Halfword

mullhw[.], mullhwu[.], mulhhw[.], mulhhwu[.],
mulchw[.], mulchwu[.] 1 2

mulli[.], mullw[o][.],
mulhw[.], mulhwu[.] 2 3

Halfword x Word
mulli[.], mullw[o][.],
mulhw[.], mulhwu[.] 2 3

Word × Word

mullw[o][.], mulhw[.], mulhwu[.] 4 5

AMCC Proprietary

http://www.manualslib.com/

 434

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

C.2.5 Scalar Store Instructions

Cacheable stores that miss in the DCU, and non cacheable stores, are queued in the data cache so that the store
appears to execute in a single cycle if operand-aligned. Under certain conditions, the DCU can pipeline up to three
store instructions. (See Cache Operations on page 69 for more information.) stwcx. instructions that do not cause
alignment errors execute in two cycles.

C.2.6 Alignment in Scalar Load and Store Instructions

The PPC405 requires an extra cycle to execute scalar loads and stores having unaligned big or little endian data
(except for lwarx and stwcx., which require word-aligned operands). If the target data is not operand aligned, and
the sum of the least two significant bits of the effective address (EA) and the byte count is greater than four, the
PPC405 decomposes a load or store scalar into two load or store operations. That is, the PPC405 never presents
the DCU with a request for a transfer that crosses a word boundary. For example, a lwz with an EA of 0b11 causes
the PPC405 to decompose the lwz into two load operations. The first load operation is for a byte at the starting
effective address; the second load operation is for three bytes, starting at the next word address.

C.2.7 String and Multiple Instructions

Calculating execution times for string and multiple instructions (lmw and stmw) instructions requires an
understanding of data alignment, and of the behavior of the string instructions with respect to alignment.

In the following example, the string contains 21 bytes. The first three bytes do not begin on a word boundary,
and the final two bytes do not end on a word boundary. The PPC405 handles any unaligned leading bytes as
a special case, then moves as many bytes as aligned words as possible, and finally handles any unaligned
trailing bytes as a special case.

In the following example, arrows indicate word boundaries (the address is an exact multiple of four); shaded
boxes represent unaligned bytes.

The execution time of the string instruction is the sum of the:

1. Cycles required to handle unaligned leading bytes; if any, add one clock cycle.

In the example, there are unaligned leading bytes; this transfer adds one clock cycle.

2. Cycles required to handle the number of word-aligned transfers required. Assuming data cache hits, each
word-aligned transfer requires one clock cycle.

In the example, there are four aligned words; this transfer requires four clock cycles.

3. Cycles required to handle unaligned trailing bytes; if any, add one clock cycle.

In the example, there are unaligned trailing bytes; this transfer adds one clock cycle.

A string instruction operating on the example 21-byte string requires six clock cycles.

AMCC Proprietary

http://www.manualslib.com/

 435

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

C.2.8 Loads and Store Misses

Cacheable stores that miss in the DCU, and non cacheable stores, are queued internally in the DCU so that the
store instruction appears to execute in one cycle. Under certain conditions, the DCU can pipeline up to three store
instructions. (See the Cache Operations on page 69 for more information.)

Because the PPC405 can execute instructions that follow load misses if no load-use dependency exists, the load
and the “using” instruction should be separated by “non-using” instructions whenever possible. The number of load
miss penalty cycles incurred by a load that misses in the DCU or DCU line fill buffer is reduced by one cycle for
every non-use instruction following the load. When the number of non-use instructions following the load is equal to
or greater than the number of cycles that it takes to obtain the load data, the load instruction appears to execute in
a single cycle. The number of cycles that it takes to obtain load data when it misses in the data cache and line fill
buffer depends on whether operand forwarding is enabled or disabled and the system memory timing.

C.2.9 Instruction Cache Misses

Refer to Instruction Processing on page 49 for detailed information about the instruction queue and instruction
fetching. Table C-2 illustrates instruction cache penalties for cacheable and non cacheable fetches that miss in the
ICU array and line fill buffer.

Table C-2 assumes that:

• The PPC405 and processor local bus (PLB) run at the same frequency

• The PLB returns an address acknowledge during the first cycle in which the DCU asserts the PLB request

• The target instruction is returned in the cycle following the address acknowledge cycle

The penalty cycles shown for sequential ICU requests assume that the DCD stage and pre-fetch queue are filled
with single-cycle non branching instructions or BKNT branch instructions. The penalty cycles for the remaining two
rows are for taken branches from DCD and PFB0, respectively.

Table C-2. Instruction Cache Miss Penalties

Type of ICU Request Miss Penalty Cycles
Sequential 3
Branch Taken from DCD 5
Branch Taken from PFB0 4

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

436

http://www.manualslib.com/

Index
Preliminary User’s Manual

AMCC Confidential and Proprietary 437

PPC405 Processor

Index

A
about this book 17
add 161
add. 161
addc 162
addc. 162
addco 162
addco. 162
adde 163
adde. 163
addeo 163
addeo. 163
addi 164
addic 165
addic. 166
addis 167
addme 168
addme. 168
addmeo 168
addmeo. 168
addo 161
addo. 161
addze 169
addze. 169
addzeo 169
addzeo. 169
alignment interrupts

register settings 123
and 170
and. 170
andc 171
andc. 171
andi. 172
andis. 173
architecture 22

B
b 174
ba 174
bc 175
bca 175
bcctr 181
bcctrl 181
bcl 175
bcla 175
bclr 184
bclrl 184
bctr 181
bctrl 181
bdnz 176
bdnza 176
bdnzf 176
bdnzfa 176

bdnzfl 176
bdnzfla 176
bdnzflr 185
bdnzflrl 185
bdnzl 176
bdnzla 176
bdnzlr 185
bdnzlrl 185
bdnzt 176
bdnzta 176
bdnztl 176
bdnztla 176
bdnztlr 185
bdnztlrl 185
bdz 176
bdza 176
bdzf 177
bdzfa 177
bdzfl 177
bdzfla 177
bdzflr 185
bdzflrl 185
bdzl 176
bdzla 176
bdzlr 185
bdzlrl 185
bdzt 177
bdzta 177
bdztl 177
bdztla 177
bdztlr 185
bdztlrl 185
beq 177
beqa 177
beqctr 182
beqctrl 182
beql 177
beqlr 185
beqlrl 185
bf 177
bfa 177
bfctr 182
bfctrl 182
bfl 177
bfla 177
bflr 185
bflrl 185
bge 178
bgea 178
bgectrl 182
bgel 178
bgela 178
bgelr 186
bgelrl 186
bgrctr 182
bgt 178
bgta 178
bgtctr 182
bgtctrl 182

http://www.manualslib.com/

438 AMCC Confidential and Proprietary

PPC405 Processor Revision 1.02 - September 10, 2007

Preliminary User’s Manual

bgtl 178
bgtla 178
bgtlr 186
bgtlrl 186
big endien 45
bl 174
bla 174
ble 178
blea 178
blectr 182
blectrl 182
blel 178
blela 178
blelr 186
blelrl 186
blr 184
blrl 184
blt 178
blta 178
bltctr 182
bltctrl 182
bltl 178
bltla 178
bltlr 186
bltlrl 186
bne 179
bnea 179
bnectr 182
bnectrl 182
bnel 179
bnela 179
bnelr 186
bnelrl 186
bng 179
bnga 179
bngctr 182
bngctrl 182
bngl 179
bngla 179
bnglr 186
bnglrl 186
bnl 179
bnla 179
bnlctr 183
bnlctrl 183
bnll 179
bnlla 179
bnllr 186
bnllrl 186
bns 179
bnsa 179
bnsctr 183
bnsctrl 183
bnsl 179
bnsla 179
bnslr 186
bnslrl 186
bnu 180
bnua 180

bnuctr 183
bnuctrl 183
bnul 180
bnula 180
bnulr 187
bnulrl 187
branch prediction 402

controlling through mnemonics 53
branch processing 50
bso 180
bsoa 180
bsoctr 183
bsoctrl 183
bsol 180
bsola 180
bsolr 187
bsolrl 187
bt 180
bta 180
btctr 183
btctrl 183
btl 180
btla 180
btlr 187
btlrl 187
bun 180
buna 180
bunctr 183
bunctrl 183
bunl 180
bunla 180
bunlr 187
bunlrl 187
byte ordering 44

C
cache 69

control 77
data

features 69
organization 72
performance 81

debug 77
instruction

features 69
organization 69

instructions
DAC debug events 152

CCR0 77
clrlslwi 300
clrlslwi. 300
clrlwi 300
clrlwi. 300
clrrwi 300
clrrwi. 300
cmp 188
cmpi 189

http://www.manualslib.com/

AMCC Confidential and Proprietary 439

Revision 1.02 - September 10, 2007

Preliminary User’s Manual
PPC405 Processor

cmpl 190
cmpli 191
cmplw 190
cmplwi 191
cmpw 188
cmpwi 189
cntlzw 192
cntlzw. 192
code optimization 430
conditional branches

mnemonics used to control prediction 53
conventions 19
CR 39, 353
crand 193
crandc 194
crclr 200
creqv 195
critical input interrupts

register settings 118
crmove 198
crnand 196
crnor 197
crnot 197
cror 198
crorc 199
crset 195
crxor 200
CTR 36

D
DAC1–DAC2 147
data alignment 42
data storage interrupts

register settings 121
data type 42
DBCRx 143
DBSR 145
dcba

functions 76
dcbf 203

functions 76
dcbi 204

functions 76
dcbst 205

functions 76
dcbt 206

functions 77
dcbtst

functions 77
dcbz 208

functions 77
dccci 210

functions 77
DCCR 106
DCR 42
dcread 211

functions 77

DCU (data cache unit)
priority changes 82
tag information in GPRs 81

DCWR 106
DEAR 118
debugging 137

boundary scan chain 138
debug interfaces 137

JTAG test access port 137
trace status port 139

development tools 137
events 147
modes 139

external 140
internal 140
real-time trace 141
wait 140

processor control 142
processor status 142
registers 142

device control registers 356
divw 213
divw. 213
divwo 213
divwo. 213
divwu 214
divwu. 214
divwuo 214
divwuo. 214
DTLB (data translation lookaside buffer)

miss interrupts 100
DVC1–DVC2 147

E
eieio 215
eqv 216
eqv. 216
ESR 116
ESR (Exception Status Register)

usage for program interrupts 123
EVPR 116
exceptions

defined 109
registers during debug exceptions 128

exceptions. See also interrupts
extended memonics

beqlr 185
extended menmonics

blectrl 182
bnlctrl 183

extended mnemonicd
bngla 179

extended mnemonics
alphabetical 402
bctr 181
bctrl 181
bdnz 176

http://www.manualslib.com/

440 AMCC Confidential and Proprietary

PPC405 Processor Revision 1.02 - September 10, 2007

Preliminary User’s Manual

bdnza 176
bdnzf 176
bdnzfa 176
bdnzfkr 185
bdnzfl 176
bdnzfla 176
bdnzflrl 185
bdnzl 176
bdnzla 176
bdnzlr 185
bdnzlrl 185
bdnzt 176
bdnzta 176
bdnztl 176
bdnztla 176
bdnztlr 185
bdnztlrl 185
bdz 176
bdza 176
bdzf 177
bdzfa 177
bdzfl 177
bdzfla 177
bdzflr 185
bdzflrl 185
bdzl 176
bdzla 176
bdzlr 185
bdzlrl 185
bdzt 177
bdzta 177
bdztl 177
bdztla 177
bdztlr 185
bdztlrl 185
beq 177
beqa 177
beqctr 182
beqctrl 182
beql 177
beqlrl 185
bf 177
bfa 177
bfctr 182
bfctrl 182
bfl 177
bfla 177
bflr 185
bflrl 185
bge 178
bgea 178
bgectr 182
bgectrl 182
bgel 178
bgela 178
bgelr 186
bgelrl 186
bgt 178
bgta 178

bgtctr 182
bgtctrl 182
bgtl 178
bgtla 178
bgtlr 186
bgtlrl 186
ble 178
blea 178
blectr 182
blel 178
blela 178
blelr 186
blelrl 186
blr 184
blrl 184
blt 178
blta 178
bltctr 182
bltctrl 182
bltl 178
bltla 178
bltlr 186
bltlrl 186
bne 179
bnea 179
bnectrl 182
bnel 179
bnela 179
bnelr 186
bnelrl 186
bng 179
bnga 179
bngctr 182
bngctrl 182
bngl 179
bnglr 186
bnglrl 186
bnl 179
bnla 179
bnlctr 183
bnll 179
bnlla 179
bnllr 186
bnllrl 186
bns 179
bnsa 179
bnsctr 183
bnsctrl 183
bnsl 179
bnsla 179
bnslr 186
bnslrl 186
bnu 180
bnua 180
bnuctr 183
bnuctrl 183
bnul 180
bnula 180
bnulr 187

http://www.manualslib.com/

AMCC Confidential and Proprietary 441

Revision 1.02 - September 10, 2007

Preliminary User’s Manual
PPC405 Processor

bnulrl 187
bsalr 187
bso 180
bsoa 180
bsoctr 183
bsoctrl 183
bsol 180
bsola 180
bsolrl 187
bt 180
bta 180
btctr 183
btctrl 183
btl 180
btla 180
btlr 187
btlrl 187
bun 180
buna 180
bunctr 183
bunctrl 183
bunl 180
bunla 180
bunlr 187
bunlrl 187
clrlslwi 300
clrlslwi. 300
clrlwi 300
clrlwi. 300
clrrwi 300
clrrwi. 300
cmplw 190
cmplwi 191
cmpw 188
cmpwi 189
crclr 200
crmove 198
crnot 197
crset 195
extlwi 301
extlwi. 301
extrwi 301
extrwi. 301
for addi 164
for addic 165
for addic. 166, 268
for addis 167
for bc, bca, bcl, bcla 176
for bcctr, bcctrl 181
for bclr, bclrl 184
for cmp 188
for cmpi 189
for cmpl 190
for cmpli 191
for creqv 195
for crnor 197
for cror 198
for crxor 200
for mfspr 267

for mtcrf 269
for mtspr 273
for nor, nor. 292
for or, or. 293
for ori 295
for rlwimi, rlwimi. 299
for rlwinm, rlwinm. 300
for rlwnm, rlwnm. 302
for subf, subf., subfo, subfo. 327
for subfc, subfc., subfco, subfco. 328
for tlbre 336
for tw 342
for twi 345
inslwi 299
inslwi. 299
insrwi 299
insrwi. 299
li 164
lis 167
mftb 268
mftbu 268
mr 293
mr. 293
mtcr 269
nop 295
not 292
not. 292
rotlw 302
rotlw. 302
rotlwi 301
rotlwi. 301
rotrwi 301
rotrwi. 301
slwi 301
slwi. 301
srwi 301
srwi. 301
sub 327
sub. 327
subc 328
subc. 328
subco 328
subco. 328
subi 164
subic 165
subic. 166
subis 167
subo 327
subo. 327
tblrehi 336
tblrelo 336
tblwehi 340
tblwelo 340
trap 342
tweq 342
tweqi 345
twge 342
twgei 345
twgle 342

http://www.manualslib.com/

442 AMCC Confidential and Proprietary

PPC405 Processor Revision 1.02 - September 10, 2007

Preliminary User’s Manual

twgt 342
twgti 345
twle 342
twlei 345
twlgei 345
twlgt 342
twlgti 345
twlle 342
twllei 345
twllt 342
twllti 345
twlng 342
twlngi 345
twlnl 342
twlnli 345
twlt 343
twlti 345
twne 343
twnei 345
twng 343
twngi 345
twnl 343
twnli 346

extended mnemonics for
tlbre 340

external interrupts
register settings 122

extlwi 301
extlwi. 301
extrwi 301
extrwi. 301
extsb 217
extsb. 217

F
FIT 132
FIT (fixed interval timer)

interrupts, causes 125
interrupts, register settings 126

fixed interval timer. See FIT

G
GPR 353
GPR0-GPR31 35

H, I, J, K
IAC1–IAC4 147
icbi 219

function 76
icbt 220

function 76
iccci 221

function 76

ICCR 107
ICDBDR (Instruction Cache Debug Data Register)

programming note 80
ICDBR 80
icread 222

function 76
programming note 80

inslwi 299
inslwi. 299
insrwi 299
insrwi. 299
instruction

add 161
add. 161
addc 162
addc. 162
addco 162
addco. 162
adde 163
adde. 163
addeo 163
addeo. 163
addi 164
addic 165
addic. 166
addis 167
addme 168
addme. 168
addmeo 168
addmeo. 168
addo 161
addo. 161
addze 169
addze. 169
addzeo 169
addzeo. 169
and 170
and. 170
andc 171
andc. 171
andi. 172
andis. 173
b 174
ba 174
bc 175
bca 175
bcctr 181
bcctrl 181
bcl 175
bcla 175
bclr 184
bclrl 184
bl 174
bla 174
cmp 188
cmpi 189
cmpl 190
cmpli 191
cntlzw 192

http://www.manualslib.com/

AMCC Confidential and Proprietary 443

Revision 1.02 - September 10, 2007

Preliminary User’s Manual
PPC405 Processor

cntlzw. 192
crand 193
crandc 194
creqv 195
crnand 196
crnor 197
cror 198
crorc 199
crxor 200
dcbf 203
dcbi 204
dcbst 205
dcbt 206
dcbz 208
dccci 210
dcread 211
divw 213
divw. 213
divwo 213
divwo. 213
divwu 214
divwu. 214
divwuo 214
divwuo. 214
eieio 215
eqv 216
eqv. 216
extsb 217
extsb. 217
icbi 219
icbt 220
iccci 221
icread 222
isync 224
lbz 225
lbzu 226
lbzx 228
lha 229
lhau 230
lhax 232
lhbrx 233
lhz 234
lhzu 235
lhzux 236
lhzx 237
lmw 238
lswi 239
lswx 241
lwarx 243
lwz 245
lwzu 246
lwzux 247
lwzx 248
macchw 249
macchws 250
macchwsu 251
macchwu 252
machhw 253
machhwsu 255

machhwu 256
maclhw 257
maclhws 258, 291
maclhwu 260
mcrf 261
mcrxr 262
mfcr 263
mfdcr 264
mfmsr 265
mfspr 266
mtcrf 269
mtdcr 270
mtspr 272
mulchw 274
mulchwu 275
mulhhw 276
mulhhwu 277
mulhwu 279
mulhwu. 279
mullhw 280
mullhwu 281
mulli 282
mullw 283
mullw. 283
mullwo 283
mullwo. 283
nand 284
nand. 284
neg 285
neg. 285
nego 285
nego. 285
nmacchw 286
nmacchws 287
nmachhw 288
nmachhws 289
nmaclhw 290
nmaclhws 291
nor 292
nor. 292
or 293
or. 293
orc 294
orc. 294
ori 295
oris 296
rfci 297
rfi 298
rlwimi 299
rlwimi. 299
rlwinm 300
rlwinm. 300
rlwnm 302
rlwnm. 302
sc 303
slw 304
slw. 304
sraw 305
sraw. 305

http://www.manualslib.com/

444 AMCC Confidential and Proprietary

PPC405 Processor Revision 1.02 - September 10, 2007

Preliminary User’s Manual

srawi 306
srawi. 306
srw 307
srw. 307
stb 308
stbu 309
stbux 310
stbx 311
sth 312
sthbrx 313
sthu 314
sthux 315
sthx 316
stmw 317
stswi 318
stswx 319
stw 321
stwbrx 322
stwcx. 323
stwu 324
stwux 325
stwx 326
subf 327
subf. 327
subfc 328
subfc. 328
subfco 328
subfco. 328
subfe 329
subfe. 329
subfeo 329
subfeo. 329
subfic 330
subfme 331
subfme. 331
subfmeo 331
subfmeo. 331
subfo 327
subfo. 327
subfze 332
subfze. 332
subfzeo 332
subfzeo. 332
sync 333
tlbia 334
tlbre 335
tlbsx 337
tlbsx. 337
tlbsync 338
tlbwe 339
tw 341
twi 344
wrtee 347
wrteei 348
xor 349
xori 350

instruction fields 357
instruction formats 357

diagrams 359

instruction forms 357, 359
instruction processing 49
instruction storage interrupts

register settings 122
instruction summary 357

by category 395
instruction timing 430
instruction timings 431

branches and cr logicals 432
general rules 431
instruction cache misses 435
loads and stores 435
strings 434

instructions 157
alphabetical, including extended mnemonics 362
arithmetic and logical 420
branch 424
cache

DAC debug events 152
cache control 427
comparison 425
condition register logical 424
extended mnemonics 402
format diagrams 359
formats 357
forms 357, 359
interrupt control 427
list 160
opcodes 388
portability 157
privileged 400
processor management 429
pseudocode 158
registers 160
rotate and shift 426
specific to PowerPC Embedded Controllers 398
storage reference 417
TLB management 428

interrrupt
priority 111

interrupt
critical 112
data storage 120
debug 128
external 122
handling 109
input 118
instruction storage 121
machine check 118
non-critical 112
registers 114
TLB miss 127

interrupts
alignment

register settings 123
data storage

register settings 121
defined 109
DTLB miss 100

http://www.manualslib.com/

AMCC Confidential and Proprietary 445

Revision 1.02 - September 10, 2007

Preliminary User’s Manual
PPC405 Processor

external
register settings 122

FIT, causes 125
FIT, register settings 126
handling priorities, illustrated 111
instruction storage

register settings 122
machine check—instruction

register settings 119
program

ESR usage 123
register settings 124

register settings during critical 118
vector offsets, illustrated 113
WDT, causes 126
WDT, register settings 126

isync 224

L
lbz 225
lbzu 226
lbzx 228
lha 229
lhau 230
lhax 232
lhbrx 233
lhz 234
lhzu 235
lhzux 236
lhzx 237
li 164
lis 167
little endien 45
lmw 238
LR 37
lswi 239
lswx 241
lwarx 243
lwz 245
lwzu 246
lwzux 247
lwzx 248

M
macchw 249
macchws 250
macchwsu 251
macchwu 252
machhw 253
machhwsu 255
machhwu 256
machine check—instruction interrupts

register settings 119
maclhw 257
maclhws 258, 291

maclhwu 260
mcrf 261
mcrxr 262
memory management 91

address translation 91
overview 91

mfcr 263
mfdcr 264
mfmsr 265
mfspr 266
mftb 268
mftbu 268
MMU (memory management unit)

DTLB miss interrupts 100
mr 293
mr. 293
MSR 114, 353
mtcr 269
mtcrf 269
mtdcr 270
mtspr 272
mulchw 274
mulchwu 275
mulhhw 276
mulhhwu 277
mulhwu 279
mulhwu. 279
mullhw 280
mullhwu 281
mulli 282
mullw 283
mullw. 283
mullwo 283
mullwo. 283

N
nand 284
nand. 284
neg 285
neg. 285
nego 285
nego. 285
nmacchw 286
nmacchws 287
nmachhw 288
nmachhws 289
nmaclhw 290
nmaclhws 291
nop 295
nor 292
nor. 292
not 292
not. 292
notation 357

http://www.manualslib.com/

446 AMCC Confidential and Proprietary

PPC405 Processor Revision 1.02 - September 10, 2007

Preliminary User’s Manual

O
on-chip memory 85

addressing 86
coherency 86
registers 88

opcodes 388
optimization

coding guidelines 430
alignment 431
boolean variables 430
branch prediction 431
dependency upon CR 431

or 293
or. 293
orc 294
orc. 294
organization, processor 23
ori 295
oris 296
overview 21

P
PID 102
PIT 131
primary opcodes 388
privileged mode

registers 34
processor 21
program interrupts

ESR usage 123
register settings 124

programming model 31
programming model, processor 26
programming note

instruction pipeline 80
PVR 39

R
real mode storage 105
register summary 353
registers

CCR0 77
CR 39
CTR 36
DAC1–DAC2 147
DBCRx 143
DBSR 145
DCCR 106
DCWR 106
DEAR 118
device control 356
during debug exceptions 128
DVC1–DVC2 147
ESR 116

EVPR 116
GPR0-GPR31 35
IAC1–IAC4 147
ICCR 107
ICDBR 80
LR 37
MSR 114
PID 102
PIT 131
PVR 39
SGR 107
SLER 107
SPRG0-SPRG7 39
SSR0-SSR1 115
SSR2-SSR3 115
SU0R 107
supervisor, illustrated 34
TBH 130
TBL 130
TCR 135
TSR 135
user, illustrated 34
USPRG0 39
XER 37
ZPR 103

registers general 32
reservation bit 243, 323
rfci 297
rfi 298
rlwimi 299
rlwimi. 299
rlwinm 300
rlwinm. 300
rlwnm 302
rlwnm. 302
rotlw 302
rotlw. 302
rotlwi 301
rotlwi. 301
rotrwi 301
rotrwi. 301
rxtended mnemonics

bnectr 182

S
sc 303
secondary opcodes 388
SGR 107
SLER 107
slw 304
slw. 304
slwi 301
slwi. 301
speculative access 53
SPR 35, 354
SPRG0-SPRG7 39
SPRs (special purpose registers)

http://www.manualslib.com/

AMCC Confidential and Proprietary 447

Revision 1.02 - September 10, 2007

Preliminary User’s Manual
PPC405 Processor

listed, with page references 36
sraw 305
sraw. 305
srawi 306
srawi. 306
srw 307
srw. 307
srwi 301
srwi. 301
SSR0-SSR1 115
SSR2-SSR3 115
stb 308
stbu 309
stbux 310
stbx 311
sth 312
sthbrx 313
sthu 314
sthux 315
sthx 316
stmw 317
storage addressing 31
stswi 318
stswx 319
stw 321
stwbrx 322
stwcx. 323
stwu 324
stwux 325
stwx 326
SU0R 107
sub 327
sub. 327
subc 328
subc. 328
subco 328
subco. 328
subf 327
subf. 327
subfc 328
subfc. 328
subfco 328
subfco. 328
subfe 329
subfe. 329
subfeo 329
subfeo. 329
subfic 330
subfme 331
subfme. 331
subfmeo 331
subfmeo. 331
subfo 327
subfo. 327
subfze 332
subfze. 332
subfzeo 332
subfzeo. 332
subi 164

subic 165
subic. 166
subis 167
subo 327
subo. 327
summary, instructions 61
supervisor mode 56
sync 333
synchronization operation 58

T
TBH 130
TBL 130
tblrehi 336
tblrelo 336
tblwehi 340
tblwelo 340
TCR 135
time base 41, 130
time base registers 355
timers 129
timings

instruction 431
branches and cr logicals 432
general rules 431
instruction cache misses 435
loads and stores 435
strings 434

TLB 92
interrupts 99

TLB interrupts 100
tlbia 334
tlbre 335
tlbsx 337
tlbsx. 337
tlbsync 338
tlbwe 339
trap 342
TSR 135
tw 341
tweq 342
tweqi 345
twge 342
twgei 345
twgle 342
twgt 342
twgti 345
twi 344
twle 342
twlei 345
twlgei 345
twlgt 342
twlgti 345
twlle 342
twllei 345
twllt 342
twllti 345

http://www.manualslib.com/

AMCC Confidential and Proprietary

PPC405 Processor Revision 1.02 - September 10, 2007

Preliminary User’s Manual

twlng 342
twlngi 345
twlnl 342
twlnli 345
twlt 343
twlti 345
twne 343
twnei 345
twng 343
twngi 345
twnl 343
twnli 346

U, V, W
user mode 56

registers 34
USPRG0 39
virtual memory

access protection 102
pages 101

watchdog timer 133
WDT (watchdog timer)

interrupts, causes 126
interrupts, register settings 126

wrtee 347
wrteei 348

X
XER 37
xor 349
xori 350

Z
ZPR 103

448

http://www.manualslib.com/

 449

Revision 1.02 - September 10, 2007 PPC405 Processor

Preliminary User’s Manual

Revision Log
Revision

Level Date Contents of Modification

1.00 Jan. 24, 2007 Initial creation of separate 405 processor UM.

1.01 Feb. 19, 2007 Add bit definitions to CCR0 register for 405EZ chip.

1.02 Sept. 10, 2007
Change clock source for 405EZ to CPU.
Correct AMCC phone numbers.

AMCC Proprietary

http://www.manualslib.com/

AMCC Proprietary

Revision 1.02 - September 10, 2007PPC405 Processor

Preliminary User’s Manual

450

http://www.manualslib.com/

