Am29000 User’s Manual

%
>
Z
a)
m
O
z
0
e
O
)
M
=<
(@)
m
n

Am29000

Streamiined
Instruction
Processor

User's Manual

© 1987 Advanced Micro Devices

Advanced Micro Devices reserves the right to make changes in its products without
notice in order to improve design or performance characteristics.

This manual neither states nor implies any warranty of any kind, including but not
limited to implied warranties of merchantability or fitness for a particular application.
AMD assumes no responsibility for the use of any circuitry other than the circuitry
embodied in an AMD product. The information in this publication is believed to be
accurate in all respects at the time of publication, but is subject to change without
notice. AMD assuines no responsibility for any errors or omissions, and disclaims
responsibility for any consequences resulting from the use of the information
included herein. Additionally, AMD assumes no responsibility for the
functioning of undescribed features or parameters.

This Manual was written and edited by Mike Johnson, Manager of Microprocessor
Product Planning. '

Major contributions were provided by Gigy Baror, Brian Case, Philip Freidin,
Smeeta Gupta, Tim Olson and Dave Sorensen. '

Technical Writer:
Erand Kyllonen, Senior Technical Writer, Technical Communications

TABLE OF CONTENTS

PREFACE

1

FEATURES AND PERFORMANCE
1.1 DISTINCTIVE CHARACTERISTICS
1.2 INTRODUCTION . e
1.3 PERFORMANCE OVERVIEW

1.3.1 Cycle Time ...
.2 Four-Stage Plpehne
.3 System Interface
.4 Register File
.5 Instruction Execution
.6 Branch Target Cache
.7 Branching
.8 Loads and Stores
.9 Memory Management
.10 Interrupts and Traps .
.11 Floating-Point Arithmetic Unit
PTIMIZING COMPILERS .o
1.4.1 Optimizing-Compiler Overview
1.4.2 Optimizing-Compiler Operation
1.4.

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
O

3 The Am29000 and Optimizing Con.lia.ilers

ARCHITECTURE HIGHLIGHTS ...
2.1 ROGRAMMER'S OVERVIEW ...
.1 Program Modes .
.2 Visible Registers
.3 Instruction Set Overview
.4 Data Formats and Handling
.5 Interrupts and Traps
.6 . Memory Management
.7 Coprocessor Programming ...
.8 Timer Facility
.9 Trace Facility .
22 HARDWARE OVERVIEW
2.2.1 Four-Stage Pipeline...
2.2.2 Instruction Fetch Unit
2.2.3 Execution Unit .
2.2.4 Memory Management Unit ..
2.2.5 Processor Modes ...
23 SYSTEM INTERFACE OVERVIEW
2.3.1 Channel
2.3.2 Text/Development Interface
2.3.3 Clocks

P
2.
2.
2.
2.
2.
2.
2.
2.
2.

LU T T
»

Lo OO0V A dd sk

! 1 i 1

Pt ok pad pmd ek pd ek peed peed paid pd peed pd ok ek
)

P ek
'
[L T

1 ' 1 1 [} l})[‘\)['\)‘\)l\)k\)

N—=OOXRO~NAAANN U ERAWNDOAWVIE =

NNNNNNNPNNNNMNM

i

2.3.4 Master/Slave Operation
2.3.5 Coprocessor Attachment

3 PROGRAMMER REFERENCE

3.1

3.2

33

3.4

35

3.6

ww
o0 1

PROGRAM MODES

3.1.1 Supervisor Mode

3.1.2 User Mode ...

VISIBLE REGISTERS

3.2.1 General-Purpose Registers ...

3.2.2 Special-Purpose Registers ...

3.2.3 TLB Registers .

INSTRUCTION SET

.1 Integer Arithmetic

.2 Compare

.3 Logical

4 Shift

.5 Data Movement

.6 Constant ...

.7 Floating-Point

.8 Branch

.9 Miscellaneous cee

)ATA FORMATS AND HANDLING
Data Types ...
External Data Accesses ...
Addressing and Alignment ...

RRUPTS AND TRAPS

.1 Interrupts

.2 Traps .

3 WaitMode ...

.4 Interrupt Vectors ...

.5 Interrupt and Trap Handhng

.6

i

8

9

h}}}wwwwwwwww

Eumwgwwwuwuwww
W -

S

*WARN Trap .
Sequencing of Interrupts and Traps
Exception Reporting and Restarting
Exceptions During Interrupt and Trap Handhng

MORY MANAGEMENT

.1 Translation Look-Aside Buffer

.2 Address Translation

.3 Reload . .

3.6.4 Entry Invalidation ..

3.6.5 Protection

SERIALIZATION ..

INITIALIZATION ..

LWWLLWLWLWLWWLWW
UIUIUIUIU!UIUIUIUI

5

3.
3.
3.

O\O\O\

ii

t|\)N
NN
NN

(P4 1 4 L

o (o o o ot o o o o ot
OV VOAOAANAANDLPLPUWOOOANIDNIT -

2340 6 6 40 1 10 L0 () L0 LD .40 1) L) 4R
1 [} H 1 1
b b b

NN DY

NN OOUNPPLWNOOVUVWNNN -G

4 HARDWARE FEATURES ...
4.1 FOUR-STAGE PIPELINE...
4.2 INSTRUCTION FETCH UNIT ...
4.2.1 Instruction Prefetch Buffer ..
4.2.2 Branch Target Cache .
4.2.3 Non-Sequential Instruction Fetches
4.2.4 Program Counter Unit
43 EXECUTION UNIT
4.3.1 Register File
4.3.2 Address Unit ..
4.3.3 Arithmetic/Logic Unit
4.3.4 Field Shift Unit
4.3.5 Prioritizer ...
44 MEMORY MANAGEMENT UNIT
4.5 PIPELINE HOLD MODE .
5 SYSTEM INTERFACES
5.1 SIGNAL DESCRIPTION ...
5.2 CHANNEL DESCRIPTION
5.2.1 Channel Overview ...
2.2 User-Defined Signals
2.3 Instruction Accesses
2.4 Data Accesses
2.5 Reporting Errors
2.6 Access Protocols
2.7 Simple Accesses ...
2.8 Pipelined Accesses ...
2.9 Burst-Mode Accesses
2.10 Arbitration ...
2.11 Bus Sharing - Electrical Considerations
2.1
2.1

494499999 9ds

.13 Effect of the *LOCK Output
ST/DEVELOPMENT INTERFACE

3.1 Processor Status Outputs

3.2 CPU Control Inputs

3.3 Hardware Development

5.3.4 Hardware Testing ...
EXTERNAL INTERRUPTS AND TRAPS
PROCESSOR RESET . .
*WARN INPUT

CLOCKS .

5.7.1 Processor-Generated Clock

5.7.2 System-Generated Clock

5.7.3 Clock Synchronization

5.7.4 Electrical Specifications

53

L a

N aa
Yol

iii

2 Channel Behavior for Interrupts and Traps B

't '-lh-lk-fﬁ-h-h
NI NN ORI —

Sk e o o o e R

[}
Pt ek ek pd pd pd b e ek ped

PLWLLWWINAOOVWUMPBEWLWWRNRDINNFEOWR =000~ O\— —\O 000

i 1 g 1 5 1 1 1ttt v
R

UIUIUILIIUIUIUIMUIYIU\UIUIUIUIU!UIUIUIUI
WWWWWWWWIERINNNNPDNNNN =

5.8

MASTER/SLAVE CHECKING

5.8.1 Master/Slave Operation

5.8.2 Preventing Spurious Errors .
5.8.3 Switching Master and Slave Processors

COPROCESSOR INTERFACE

6.1

N
—

7.2

7.3

@
=

NNNTGNNNNNNNNONNNNNNNNNN NN

COPROCESSOR PROGRAMMING e
6.1.1 Overview of Coprocessor Operations
6.1.2 Coprocessor Transfers

6.1.3 Coprocessor Exceptions

.1.4 Coprocessor as a System Option

.5 Interrupted Coprocessor Operations
'OPROCESSOR ATTACHMENT

.1 Signal Description ...

.2 Coprocessor Communication

AMMING

X Yoluioy:
NNOH

g

P-<p—ap—ny—ap—ap—-y—np—ap—sp—ny—np—ap—np—n.—a
e o e e o e

Procedure Calls and Returns

Run-Time Checking
Operating-System Calls

Integer Multiplication
Integer Division ...
Trapping Arithmetic Instrucﬁons
Complementing a Boolean .

10 Generating Large Constants

1 Large Jump and Call Ranges

.12 No- -Ops . .

13 Character-Stnng Operatlons

4 Movement of Large Data Blocks ...

YSTEMS-PROGRAMMING CONSIDERATIONS
System Protection
Interrupts and Traps
Fast Context Switching
Memory Management .
Restarting Faulting External Accesses
Multi-Processing
Timer Facility
Trace Facility

LINE FEATURES EXPOSED TO SOFTWARE
Delayed Branch ...
Overlapped Loads and Stores
Delayed Effects of Registers

wawwomqmmhwwb

¢ Hiviviivivibibb
WMo Wl —

Wi o

iv

PICAHONbeGRANmﬂNGCONmbERNHONs'

Addressing General-Purpose Reglsters Indlrectly

Multi-Precision Integer Add'l.t;on and ‘Subtraction

L L tr
AR AN AR AR A AR A A AN R R IR RO
COON AN N BB [(VRVIE NN

llllllllT]T]T]I\]\]\]\]O\

wwwwwNNNtI\)NH»—-HHv—-Hp—ap—n—w—Hr—a

NANNFEOVOONNWHROORONIAOANUVMWNEAE RANOWOVOOO D -

\l\]\l\l\l\l\l\l\l\!\l}]\l\l\l\]\l\]\l\]\l\l

8 INSTRUCTION SET
8.1 INSTRUCTION-DESCRIPTION NOMENCLATURE ...
8.1.1 Operand Notation and Symbols
8.1.2 Operator Symbols ... e
8.1.3 Control-Flow Terminology ...
8.1.4 Assembler Syntax
8.2 ARITHMETIC/LOGIC STATUS RESULTS OF
INSTRUCTIONS e
8.2.1 Arithmetic/Logic Status Bits .
8.2.2 Arithmetic Operation Status Results.
8.2.3 Logical Operation Status Results

o0 00 OO0 OO0 OO 0.00000000000
[*- RN NeWe Yo, [0 S U

8.3 INSTRUCTION FORMATS -

8.4 INSTRUCTION DESCRIPTIONS ... 810

8.5 INSTRUCTION INDEX BY OPERATION CODE ... 8-127
Appendix A. Channel Operation Timing ... A-1
Appendix B. Register Summary ... el B-1

p—d
1
p—

[\ 3
R LT L) S RIS U U R SN B NV I SEAT L SUR SR

t

WWWLWLWLWLWLWLWLWLWLLWWWLWWLWLWWWLWW
OO RXNIAN NP WNN—O

71 1. 1. 1 & 1. 1. 1 1. 1. 1 1.1
WWWWWWIRNDDNDNN

WWWWWLWWWWWWWWWW
NHP ROV AW —

LIST OF FIGURES
Simplified System Diagram

Data-Unit Numbering Conventions
Am?29000 Data Flow

General Purpose Register Organization...
Register Bank Organization .
Special Purpose Registers

Vector Area Base Address

Current Processor Status

Configuration Register ...

Channel Address Register

Channel Data Register .

Channel Control Register

Register Bank Protect Register ..

Timer Counter Register ...

Timer Reload Register ...

Program Counter O Register

Program Counter 1 Register

Program Counter 2 Register

MMU Configuration Register

LRU Recommendation Register

Indirect Pointer C Register

Indirect Pointer A Register

Indirect Pointer B Reglster

Q Register

ALU Status Reglster

Byte Pointer

Funnel Shift Count

Load/Store Count Remaining ...

Translation Look-Aside Buffer Reglsters

TBL Entry Word 0
TBL Entry Word 1

Load/Store Instruction Format . .
Non-Coprocessor Load/Store Format ...

Byte and Half-Word Addressing With BO= 0 .
Byte and Half-Word Addressing With BO=1 .
Vector Table Entry .

Current Processor Status Reglster After an Interrupt or Trap
Current Processor Status Register Before Interrupt Return

vi

"
N

NN}
DR s s e L PRRR L

» L |L|»(I»uwwwwwwwwwwwwwuw
] [1 1 L t 1 1

NN
U'U'U'Abhhgﬁgc\u\mwwwNNHOO\O\OOO\JO\m-hAwO\OOOO\w W o

WLWWWLWWWLWLWLWLWWWWW
N O WO OO ==

36 Translation Look-Aside Buffer Organization .
37 Virtual Address for 1,2,4, and 8 Kbyte Pages
38 Address Translation Process

39 Current Processor Status Register After Reset .

Am29000 Data Flow

IPB State Transitions

Branch Target Cache Orgamzatlon

Branch Target Cache Lookup Process ...

Program Counter Unit ...

Register File and Register Address Generation Unit
Address Unit

\IG\UIAUJNH

1 Channel Access Flow Diagram (Instruction and Data) ...

2 Processor Burst Mode Instruction Accesses: Control Flow
3 Slave Burst Mode Instruction Accesses: Control Flow

4 Processor Burst-Mode Data Accesses: Control Flow ...

5 Slave Burst-Mode Data Accesses: Control Flow

6 Valid Transitions on CNTLO - CNTL1 Inputs ...

1 Coprocessor Load/Store Format
2 Coprocessor Attachment

1 Run-Time Stack Example .
2 Procedure Prologue and Epllogue
3 Activation Record

1 Instruction Format .
2 Frequently Occurring Instruction-Field Uses
3 Instruction Description Format .

1 General-Purpose Register Organization
2 Register Bank Organization

3 Special-Purpose Registers e

4 Translation Look-Aside Buffer Reg1sters
-5

3-
3-
3-
3-
4-
4-
4-
4-
4-
4-
4-
5-
5-
5-
5-
5-
5-
6-
6-
7-
7-
7-
8-
8-
8-
B-
B-
B-
B-
B Translation Look-Aside Buffer Entries ..

vil

Lh hh b b b OGS N

ll\)p—tb—n—u—-r—a
— O 00 AN RN\ [V, N No WV I Y] NWNOONPDN W 00 O\

Lo JR3 oo

(?OOO
ot 1 ——
NN W -

[seRvsRosRusRos

Tables

1
i

Am?29000 Instruction Set

-1 Integer Arithmetic Instructions ...
-2 Compare Instructions .
-3 Logical Instructions

-4 Shift Instructions e

-5 Data Movement Instructions

-6 Constant Instructions

-7 Floating-Point Instructions

-8 Branch Instructions

-9 Miscellaneous Instructions

-10 Vector Number Assignments ...
3-11 Interrupt and Trap Priority.Table

WWWUWWWWWWW [\]

A-1 Signal Summary
B-6 Register Field Summary

viii

>
<

AW WLWLWWWWWW
SN SN W I e NV, BTSN § oy

w >
o L

PREFACE

Am29000 DESIGN PHILOSOPHY

The Am29000 Streamlined Instruction Processor is the result of a design philosophy
which recognizes that processor performance must be considered in light of the
processor’s hardware and software environment. The key to maximizing performance lies
in the realization that the processor is part of an integrated system, and is itself a
collection of components which must be properly integrated.

Processor features must not be considered only on their own merits, but also in relation
to other components of the system. A particular feature which—considered
alone—increases one aspect of processor performance may actually decrease the
performance of the total system, because of the burden which it places elsewhere in
system. As an illustration, consider the factors involved in the execution time of any
processor task: ‘

TASK TIME = INSTRUCTIONS/TASK * CYCLES/INSTRUCTION * TIME/CYCLE

To minimize the time taken, it is necessary to minimize the above product. This is not
equivalent to minimizing all of the terms which contribute to the product; this, in fact, is
generally not possible due to the interaction of the terms.

As an example of the interaction of the above terms, consider the number of instructions
required for a task. An attempt to minimize this number—a more or less traditional
approach to processor architecture design—increases the average number of cycles required
for the execution of an instruction, because of the increased number of operations
performed by each instruction. In addition, cycle time is increased because of
instruction-decode time.

A second example of the interaction in the above equation appears in an attempt to reduce
the cycle time through the pipelining of operations. In theory, the cycle time can be
made arbitrarily small by the definition of an arbitrarily large number of pipeline stages.
In practice—at least in the case of general-purpose processors—pipelining rarely yields
much of its potential benefit. This is due to situations where the pipeline cannot be kept
fully occupied, such as when storage references and branches occur: In these situations,
additional pipeline stages increase the number of cycles required for an operation, and thus
affect the CYCLES/INSTRUCTION term.

OPTIMUM PERFORMANCE
Each of the terms in the above equation has some minimum bound for a given

implementation technology and task. In general, this minimum bound cannot be
approached without an offsetting increase in the other terms, making the overall product

ix

less-than-optimum. The question then arises, what combination of terms does yield an
optimum product? There are several things to note when answering this question.

The first observation is that the number of operations underlying a given task is more or
less fixed. Any single processor ultimately limits the time required for a task because it
has a single execution unit and a single instruction stream. The operations which must
be performed are reflected in the INSTRUCTIONS/TASK and CYCLES/INSTRUCTION
terms. These operations may be performed by relatively few instructions, where each
instruction takes multiple cycles to execute, or by a larger number of instructions, where
each takes a single cycle to execute. In the first case, the instructions are complex; in the
second, they are simple.

The point is that the trade-off between simple and complex instructions is not one-to-one.
For example, reducing the number of cycles per instruction by a factor of three does not
increase the number of instructions per task by the same factor. There are two reasons for
this. The first is that, even when an instruction set supports complex operations, a large
proportion of the instructions which are executed perform operations which could be
performed as well by simple instructions. The second is that simple instructions expose
more of the internal processor operation to an optimizing compiler. This allows the
compiler to tailor the organization and sequence of operations to the task at hand, thereby
reducing the total number of instructions executed.

PERFORMANCE LEVERAGE

Another important observation is that there is a tremendous amount of leverage in the
TIME/CYCLE and CYCLES/INSTRUCTION terms. As they are made smaller, they
have a proportionately greater effect on performance.

For example, a reduction of 10 nsec in the cycle time of a processor operating with a 200
nsec cycle time yields an increase of 5% in the processor’s performance. The same
improvement in a processor operating with a 50 nsec cycle time yields a 20% increase in
performance.

Correspondingly, a reduction of 0.2 in the number of cycles per instruction in a processor
which averages S cycles per instruction yields a 4% increase in performance. However,
the same reduction yields a 12.5% performance increase in a processor which averages 1.6
cycles per instruction.

CONCLUSION

The conclusion is that it is possible—and desirable—to yield somewhat in the number of
instructions executed for a given task, and more than make up for the performance impact
of this increase by reductions in the cycle time and in the number of cycles per
instruction. For example, if both the cycle time and the number of cycles per instruction
are reduced by a factor of three, while the number of instructions for a given task is
allowed to grow by 50%, the resulting task time is reduced by a factor of 6.

The Am29000 architecture was designed with the above effects in mind. Maximum
performance is obtained by the optimization of the product of the number of instructions
per task, the number of cycles per instruction, and the cycle time, not by minimizing one
factor at the expense of the others. This is accomplished by careful definition of all
processor components. In particular:

1)

The INSTRUCTIONS/TASK term is optimized by the definition of simple
instructions. The processor provides an efficient instruction set and a large

. number of general-purpose registers to an optimizing, high-level language

2)

3)

compiler. Most of the reductions in this term are accomplished by the compiler.
The number of instructions for a given task may be greater than the number of
instructions for processors with complex instruction sets. However, this increase
is more than offset by other improvements in processor performance.

The CYCLES/INSTRUCTION term is optimized by the data-flow structure and
performance-enhancing features of the processor. A large amount of processor
hardware is dedicated to achieving an average instruction-execution rate which is
close to single-cycle execution.

The TIME/CYCLE term is optimized by the implementation technology, the

processor system interface, and judicious use of pipelining. The simplicity of the
instruction set and processor features helps minimize the cycle time.

xi

Am23000 USER MANUAL OVERVIEW

This Manual contains information on the Am29000 processor which is essential for
computer hardware and software architects and system design engineers. Additional
information is available in the form of Data Sheets, Application Notes, and other
documentation which is provided with software products and hardware-development tools.

The information in this manual is organized into eight chapters, each viewing the
processor from a different perspective, and each with a specific objective:

Chapter 1 introduces the features and performance aspects of the
Am29000.

'Chapter 2 contains brief technical descriptions of the processor
architecture and implementation.

Chapter 3 describes the details of the Am29000 architecture.

Chapter 4 details the operation of the processor’s internal functional
units. :

Chapter 5 describes the operation of the external interfaces of the
Am29000.

Chapter 6 describes the attachment and use of coprocessors for the
Am29000

Chapter 7 discusses the implementation of software systems for the
processor, focusing on programming features which deserve more
coverage than is provided by other chapters.

- Chapter 8 specifies the instruction set of the Am29000. It describes
the instruction formats in detail, and provides a detailed description
of every instruction.

This Manual is organized around readers’ concerns and objectives. Each chapter focuses
on a particular aspect of the processor, and is organized so that it may be read
independently, insofar as possible.

For those readers desiring only a brief overview of the Am29000, Chapters 1 and 2
identify the outstanding features of the processor, and give a brief overview of the
processor. These chapters address both software and hardware concerns.

For software architects and system programmers interested mainly in software-related
issues, Chapters 3, 7, and 8 provide the necessary information.

xii

For hardware architects and systems hardware designers interested mainly in
hardware-related issues, Chapters 4 and 5 provide most of the required information;
Chapter 8 also provides some related information.

For those readers interested in the coprocessor interface, Chapter 6 describes the interface
both from a software and hardware point-of-view.

xiii

Xiv

CHAPTER 1
FEATURES AND PERFORMANCE

This chapter provides an evaluation of the Am29000 as an aid in considering a particular
application. A detailed technical description of the Am29000 is contained in subsequent
chapters. This chapter informally describes the features of the processor, concentrating on
features which distinguish the Am29000 from other available processors.

1.1 DISTINCTIVE CHARACTERISTICS

* Full 32-bit architecture.

» CMOS technology / TTL-compatible interfaces.

* 25 MHz nominal operating frequency.

« 17 million instructions per second sustained.

« 1.5 clock cycles per instruction average.

» 4 giga-byte virtual address space.

« Double-precision, Floating-Point Arithmetic Umt (Am29027)
» 192 general-purpose registers.

» Three-address instruction architecture.

» Non-multiplexed, pipelined address, instruction and data buses.
 Concurrent instruction and data accesses.

« Burst-mode access support.

« 512-byte Branch Target Cache on-chip.

» 64-entry Memory Management Unit on-chip.

* Demand paging.

« Fully pipelined.

» On-chip Timer Facility.

* On-chip clock generation.

* On-chip debugging support.

e Master/slave chip output checking.

1.2 INTRODUCTION

The Am29000 Streamlined-Instruction Processor is a high-performance, general-purpose,
32-bit microprocessor implemented in complementary metal-oxide semiconductor (CMOS)
technology. It supports a variety of applications, using a flexible architecture and rapid
execution of simple instructions which are common to a wide range of tasks.

The Am29000 efficiently performs operations common to all systems, while deferring most
decisions on system policies to the system architect. It is well-suited for application in
high-performance workstations, general-purpose super-microcomputers, high-performance

1-1

real-time controllers, laser printer controllers, network protocol converters, and many other
applications where high performance, flexibility, and the ability to program using standard
software tools is important.

The Am29000 instruction set has been influenced by the results of high-level-language,
optimizing-compiler research. It is appropriate for a variety of languages, because it
efficiently executes operations which are common to all languages. Consequently, the
Am29000 is an ideal target for high-level languages such as C, Fortran, Pascal, and Ada.

The Am29000 is packaged in a 169-pin, pin-grid-array (PGA) package, with 141 signal
pins, 27 power and ground pins, and 1 alignment pin. D.C. power dissipation is 1.5 Watts.
A representative system diagram is shown in Figure 1-1.

frT . Am29027

P
j') Floating Point < >
Arithmetic

Accelerator

ADDRESS Am29000 DATA
Streamlined N >
Instruction Ny
Processor
4 /
L/ L/
1 {32 INSTRUCTION 1182

L—N] Instruction
—/ ROM

32

Instruction
Memory

A4

Daté :
Memory < >

< ‘ _> Data Transfer < >
i Controller

I 08996A1-1A Ve
L 4
| System Bus]
7/ J

Figure 1-1. Simplified System Dlagram

1-2

1.3 PERFORMANCE OVERVIEW

The Am29000 provides a significant margin of performance over other processors in its
class, since the majority of processor features were defined with the maximum achievable
performance in mind. This section describes the features of the Am29000 from the
point-of-view of system performance.

1.3.1 CYCLE TIME

The Am29000 is implemented in CMOS technology, with a 1.2 micron effective
transistor-channel length. This technology allows the processor to operate at a frequency of
25 MHz. The processor cycle time is a single, 40 ns clock period. The processor interface
drivers can drive 80 pF loads at this frequency.

The Am29000 architecture and system interfaces are designed so that the processor cycle
time can decrease with technology improvements.

1.3.2 FOUR-STAGE PIPELINE

The Am29000 utilizes a four-stage pipeline, allowing it to execute one instruction every
clock cycle. The processor can complete an instruction on every cycle, even though four
cycles are required from the beginning of an instruction to its completion.

At a 25 MHz operating frequency, the maximum instruction execution rate is 25 million
instructions per second (MIPS). For most other processors, the maximum MIPS rate has
little meaning, because it can be achieved only under special circumstances. However, the
Am29000 pipeline is designed so that the Am29000 can operate at the maximum
instruction-execution rate a significant portion of the time.

Pipeline interlocks are implemented by processor hardware. Except for a few special cases,
it is not necessary to re-arrange programs to avoid pipeline dependencies.

1.3.3 SYSTEM INTERFACE

One of the most difficult tasks in the definition of a high-speed micro-processor is the
definition of an off-chip interface which supports the operating frequency of the processor,
and does not restrict the ability of the processor to fetch instructions and data. If the external
interface of a microprocessor cannot support an instruction fetch rate of one instruction
every cycle, there is little prospect that the processor will execute at this rate, even though it

supports such a rate internally.

1-3

The Am29000 accesses external instructions and data using three non-multiplexed buses.
These buses are collectively referred to as the channel. The channel protocol minimizes the
logic chains involved in a transfer, and provides a maximum transfer rate of 200 Mbyte/sec.

Separate Address, Instruction, and Data Buses

The Am29000 incorporates two 32-bit buses for instruction and data transfers, and a third
address bus which is shared between instruction and data accesses. This bus structure allows
simultaneous instruction and data transfers, even though the address bus is shared. The
channel achieves the performance of four separate 32-bit buses at a much reduced pin count.

Pipelined Addresses

The Am29000 address bus is pipelined, so that it can be released before an instruction or
data transfer is completed. This allows a subsequent access to begin before the first has
completed, and allows the processor to have two accesses in progress simultaneously.

Support of Burst Devices and Memories

Burst-mode accesses provide high transfer rates for instructions and data at sequential
addresses. For such accesses, the address of the first instruction or datum is sent, and
subsequent requests for instructions or data at sequential addresses do not require additional
address transfers. These instructions or data are transferred until either party involved in the
transfer terminates the access.

Burst-mode accesses can occur at the rate of one access per cycle after the first address has
been processed. At 25 MHz, the maximum achievable transfer bandwidth for either
instructions or data is 100 Mbyte/s.

Burst-mode accesses may occur to input/output devices, if the system design permits.
Interface to Fast Devices and Memories

.The processor can be interfaced to devices and memories which complete accesses within one
cycle. The channel protocol takes maximum advantage of such devices and memories, by
allowing data to be returned to the processor during the cycle in which the address is
transmitted. This allows a full range of memory-speed trade-offs to be made within a
particular system.

1.3.4 REGISTER FILE

An on-chip Register File containing 192 general-purpose registers allows most instruction
operands to be fetched without the delay of an external access. The Register File
incorporates several features which aid the retention of data required by an executing
program. Because of the number of general-purpose registers, the frequency of external

1-4

references for the Am29000 is significantly lower than the frequency of references in earlier
processors having only 16 or 32 registers..

Triple-port access to the Register File allows two source-operands to be fetched, in one
cycle, while a previously-computed result is written, Three, 32-bit internal buses prevent
contention in the routing of operands. All operand fetches and result write-backs for
instruction execution can be performed in a single cycle.

The registers allow efficient procedure linkage, by caching a portion of a compiler’s
run-time stack. On the average, procedure calls and returns can be executed 5 to 10 times
faster (on a cycle-by-cycle basis) than in processors which require the implementation of a
run-time stack in external memory (with the attendant loading and storing of registers on
procedure call and return).

The registers can contain variables, constants, addresses, and operating-system values. In
multi-tasking applications, they can be used to hold the processor status and variables for as
many as 8 different tasks. A register-banking option allows the register file to be divided
into segments which can be individually protected. In this configuration, a task switch can
occur in as few as 17 cycles.

1.3.5 INSTRUCTION EXECUTION

The Am29000 uses an Arithmetic/Logic Unit, a Field Shift Unit, and a Prioritizer to
execute most instructions. Each of these is organized to operate on 32-bit operands, and
provide a 32-bit result. All operations are performed in a single cycle.

Instruction operations are overlapped with operand fetch and result write-back to the Register
File. Pipeline forwarding logic detects pipeline dependencies and routes data as required,
avoiding delays which might arise from these dependencies.

1.3.6 BRANCH TARGET CACHE

In general, the Am29000 meets its instruction bandwidth requirements via instruction
prefetching. However, instruction prefetching is ineffective when a branch occurs. The
Am?29000, therefore, incorporates an on-chip Branch Target Cache to supply instructions for
a branch, if this branch has been taken previously, while a new prefetch stream is
established.

If branch-target instructions are in the Branch Target Cache, branches execute in a single
cycle. This has a very positive effect on processor performance, due to the amount of time

the processor could otherwise be idle waiting for the new instruction stream.

As an example, consider that successful branches are 20% of a dynamic instruction mix, and
that 5 cycles are required to restart the processor pipeline after a branch, For 20% of the

1-5

instructions, the processor would take one cycle to execute the branch instruction and wait 5
cycles to refill the instruction pipeline. The overhead of branch instructions would be 6
cycles. If the remaining 80% of the instructions require a single cycle to execute, the
latency involved in branching would reduce the average execution rate from one cycle per
instruction to two, thus halving the performance.

The Branch Target Cache in the Am29000 has a average hit rate of 60%. In other words, it
eliminates the branch latency for 60% of all successful branches on the average.

1.3.7 BRANCHING

Branch conditions in the Am29000 are based on Boolean data contained in general-purpose
registers, rather than on arithmetic condition codes. Using a condition-code register for the
purpose of branching—which is common in other processors—inhibits certain
optimizations, because the condition-code register is modified by many different
instructions. It is difficult for an optimizing compiler to schedule this shared use. By
treating branch conditions as any other instruction operand, the Am29000 avoids this
problem.

The Am29000 executes branches in a single cycle, for those cases where the target of the
branch is in the Branch Target Cache. The single-cycle branch is unusual for a pipelined
processor, and is due to processor hardware which allows much of the branch instruction
operation to be performed early in the execution of the branch. Single-cycle branching has a
dramatic effect on performance, since successful branches typically represent 15% to 25% of
a processor’s instruction mix. ‘

The techniques used to achieve single-cycle branching also minimize the execution time of
branches in those cases where the target is not in the Branch Target Cache. To keep the
pipeline operating at the maximum rate, the instruction following the branch, referred to as
the delay instruction, is executed regardless of the outcome of the branch. An optimizing
compiler can define a useful instruction for the delay instruction in approximately 90% of
branch instructions, thereby increasing the performance of branches.

1.3.8 LOADS AND STORES

The performance degradation of load and store operations is minimized in the Am29000 by
overlapping them with instruction execution, by taking advantage of pipelining, and by
organizing the flow of external data onto the processor so that the impact of external
accesses is minimized.

Overlapped Loads and Stores

In the Am29000, a load or store is performed concurrently with execution of instructions
which do not have dependencies on the load or store operation. An optimizing compiler can

1-6

schedule loads and stores in the instruction sequence so that, in most cases, data accesses are
overlapped with instruction execution.

Overlapped load and store operations can achieve up to a 30% improvement in performance
when data memory has a 2-cycle access time. Processor hardware detects dependencies while
overlapped loads and stores are being performed, so that dependencies have no software
implications.

A classical problem in the implementation of overlapped loads and stores is that of dealing
with address-translation exceptions in a demand-paged environment. Overlap is not possible
if any load or store which encounters an address-translation exception must be restarted by
the re-execution of the initiating instruction. In this case, the processor would have to hold
instruction execution until the success of every load or store were insured.

The Am29000 exception restart mechanism automatically saves information required to
restart any load or store, until the operation successfully completes. Thus, it allows the
overlapped execution of loads and stores while properly handling address-translation
exceptions.

A second problem in the implementation of overlapped loads concerns the handling of data
which is returned to the processor upon completion of the load. This data must be written
to the register file, but it contends for register-file write-cycles with other instructions which
are being overlapped with the load. This contention may be eliminated by adding a special
write port to the register file. However, due to the size of the register file in the Am29000,
a fourth port for writing incoming load data is not economical.

The Am25000 data-flow organization avoids the one-cycle penalty which would result from
the contention between load data and the results of overlapped instruction execution. Load
data is buffered in a latch while awaiting an opportunity to be written into the register file.
This opportunity is guaranteed to arise before the next load is executed. While the data is
buffered in this latch, it may be used as an instruction operand in place of the destination
register for the load.

Load Muiltiple and Store Multiple

These instructions allow the transfer of the contents of multiple registers to or from external
memories or devices. This transfer can occur at a rate of one register-content per cycle.

The advantage of Load Multiple and Store Multiple is best seen in task switching,
register-file saving and restoring, and in block data moves. In many systems, such
operations require a large percentage of execution time.

The load-multiple and store-multiple sequences are interruptible, so that they do not affect
interrupt latency.

1-7

Forwarding of Load Data

Data which is sent to the processor at the completion of a load is forwarded directly to the
appropriate execution unit if the data is required immediately by an instruction. This avoids
the common one-cycle delay from bus transfer to use of data, and reduces the access latency
of external data by one cycle.

1.39 MEMORY MANAGEMENT

A 64-entry Translation Look-Aside Buffer (TLB) on the Am29000 performs
virtual-to-physical address translation, avoiding the cycle which would be required to transfer
the virtual address to an external TLB. A number of enhancements improve the performance
of address translation:

1) Pipelining—The operation of the TLB is pipelined with other processor
operations.

2) Early Address Translation—Address translations for load, store, and branch
instructions occur during the cycle in which these instructions are executed. This
allows the physical address to be transferred externally in the next cycle.

3) Task Identifiers—Task Identifiers allow TLB entries to be matched to different
processes, so that TLB invalidation is not required during task switches.

4) Least-Recently-Used Hardware—This hardware allows immediate selection of a
TLB set to be replaced. ‘

5) Software Reload—Software reload allows the operating system to use a
page-mapping scheme which is best matched to its environment.
Paged-segmented, one-level-page, and two-level-page mapping can be supported.
Because Am29000 instructions execute at an average rate of nearly one instruction
per cycle, software reload has a performance approaching that of hardware TLB
reload.

-1.3.10 INTERRUPTS AND TRAPS

When the Am29000 takes an interrupt or trap, it does not automatically save its current
state information. This greatly improves the performance of temporary interruptions such
as TLB reload, floating-point emulation, or other simple operating system calls which
require no saving of state information.

In cases where the processor state must be saved, the saving and restoring of state
information is under the control of software. The methods and data structures used to handle
interrupts—and the amount of state saved—may be tailored to the needs of a particular
system.,

1-8

Interrupts and traps are dispatched through a 256-entry Vector Area, which directs the
processor to a routine to handle a given interrupt or trap. The Vector Area may be relocated
in memory by the modification of a processor register. There may be multiple Vector Areas
in the system, though only one is active at any given time.

The Vector Area is either a table of pointers to the interrupt and trap handlers, or a segment
of instruction memory (possibly read-only memory) containing the handlers themselves.
The choice between the two possible Vector Area definitions is determined by the
cost/performance trade-offs made for a particular system,

If the Vector Area is a table of vectors in data memory, it requires only 1 Kbyte of memory.
However, this structure requires that the processor perform a vector fetch every time an
interrupt or trap is taken. The vector fetch requires at least 3 cycles, in addition to the
number of cycles required for the basic memory access.

If the Vector Area is a segment of instruction memory, it requires a maximum of 64 Kbytes
of memory. The advantage of this structure is that the processor begins the execution of the
interrupt or trap handler in the minimum amount of time.

1.3.11 FLOATING-POINT ARITHMETIC UNIT

The Am29027 is a Double-Precision, Floating-Point Arithmetic Unit for the Am29000. It
can provide an order-of-magnitude performance increase over floating-point operations
performed in software. It performs both single-precision and double-precision operations,
using IEEE and other floating-point formats. The Am29027 also supports 32- and 64-bit
integer functions.

The Am29027 performs floating-point operations using combinatorial—rather than
sequential—logic, so that operations with the Am29027 require only five Am29000 cycles.
Floating-point operations may be overlapped with other processor operations. Furthermore,
the Am29027 incorporates pipeline registers and 8 operand registers, permitting very high
throughput for certain types of operations (such as array computations).

The Am29027 attaches directly to the Am29000,vusing the coprocessor interface. The
Am29000 can transfer two, 32-bit quantities to the Am29027 in one cycle.

The Am29027 is fully described in separate documentation.

1-9

1.4 OPTIMIZING COMPILERS

The number of instructions used to perform a given task is minimized by optimizing
compilers which are supplied for the Am29000. A full discussion of optimizing-compiler
technology is beyond the scope of this manual, but there are a few concepts which should be
mentioned here, because the Am29000 was designed to be an excellent target for optimizing
compilers.

1.41 OPTIMIZING-COMPILER OVERVIEW

In addition to performing the same tasks as any other compiler , an optimizing compiler
re-arranges the generated code to minimize its size and execution time. This optimization
occurs after the initial phases of code generation have been completed. The optimizer
inspects large portions of the compiled program for frequently-occurring cases where the
compiled results can be improved.

. Many optimization opportunities arise precisely because the code is compiler-generated.
Code translation is an automated process, so the initial phases of the compiler often generate
code that is much less than optimum. However, the optimizer can produce results which are
often better than those which can be produced by human assembly-language programmers,
because it can deal with large portions of the program and an immense amount of data
concerning program behavior.

1.42 OPTIMIZING-COMPILER OPERATION

Conceptually, the optimizer arranges program flow and the creation, modification, and use
of program data to minimize the amount of time required to perform a given task. The
reduction in program space is a normal side-benefit of the reduction in execution time. The
optimizer is concerned not only with data explicit in the high-level program, but also with
data created by other phases of the compiler in order to properly translate the program (for
example, temporary values created during the evaluation of expressions). Optimization
involves the following sorts of operations:

1) Reusing results rather than repeating computations. The optimizer attempts to
eliminate redundant computations by performing a computation once, and saving
the result for later use. Often these redundant computations are not apparent in the
original program, but are created by the underlying definitions of high-level
operations. -

2) Reducing the amount of code executed within loops. In many cases, only a few
computations change on different loop iterations. The optimizer attempts to
reduce the amount of work performed within loops to a minimum, by moving
loop-invariant computations outside of loops.

1-10

3) Replacing slow operations by faster ones. The optimizer can recognize special
cases of multiply and divide, for example, and replace them with faster shift and
add instructions. The slow operations, again, are often generated by earlier phases
of the compiler because these operations are most general, and the early
code-generation phases cannot recognize the special cases which allow the
operations to be replaced with faster ones.

4) Allocating processor registers so that they contain frequently-used data. This
reduces the number of relatively slow memory references, and replaces them by
faster register references.

5) Scheduling the execution of instructions. The optimizer attempts to move
instructions to a point in the program flow where they create fewer problems for
the processor pipeline. For example, a register load may be moved to a point in
the instruction sequence where its memory reference can be overlapped with other
instructions.

Most optimizations performed rely heavily on two types of information collected by the
optimizer: the first type deals with program flow, and the second with data dependencies
which arise because of the program flow. The optimizer can tailor the code to the high-level
task being compiled, not because it understands the task being performed by the high-level
program, but because it understands the dependencies which arise in the generated code. Asa
result, it can adjust the instruction sequence to minimize the performance impact of these
dependencies.

It is important to note that the optimizer does not directly optimize a given program, but
rather optimizes a special representation of the program which is suitable for analysis and
modification by the optimizer, which is, after all, just another program. The key to
optimization is that this representation be easy to analyze for program- and data-flow
information, and that it be easy to rearrange when optimizations are performed.

1.4.3 THE Am29000 AND OPTIMIZING COMPILERS
General Principles

The primary principle behind the Am29000 instruction set is that it matches the internal
representation used by optimizing compilers to perform optimization. As discussed above,
this representation is not arbitrary, but is rather strictly defined by the optimization
algorithms.

It is important to realize that optimizations performed for the Am29000 would have limited
effectiveness if applied to so-called complex-instruction processors. There are several
fundamental problems which limit the effectiveness of optimizations for these other
processors.

The first problem with complex instruction sets is that they normally provide a variety of
instruction sequences which perform the same function as a sequence of instructions in the
compiler’s internal representation, but do not match it exactly. The trade-offs made by a
compiler to decide among the available choices can get very complex.

In the first place, it is difficult for the compiler to determine the difference in execution time
between multiple instruction sequences, because of the amount of information involved.
For example, just changing the addressing mode of an instruction can change the execution
time. This is further complicated in the cases where the compiled program is to be run on
different implementations of the same processor, where execution times can depend on the
implementation. If there is only one instruction sequence to choose from, and if all
instructions execute in a single cycle, this problem is greatly reduced.

During the generation of code for a complex-instruction processor, it is nearly impossible to
guarantee that the choice of a given code sequence will not force a less-than-optimum choice
of code at some later point in the translation. Restrictions arise late in translation because
of decisions made earlier. Often, these restrictions arise because of interactions between
instructions; they are especially severe when instructions operate only on a specific register
or group of registers.

An additional problem with complex instruction sets is that optimizations applied to them
do not necessarily save execution time. An optimization may not be reflected in the final
compiled code, because the instruction set may inhibit the realization of the optimization.
However, in the case of the Am29000, an optimization is guaranteed to eliminate one or
more execution cycles, due to the fact that all processor operations are exposed to the
compiler. - :

The greatest benefit of exposing all processor operations to the compiler appears within
loops, which is where processors spend a great deal of their execution time. The problem
with complex instruction sets here is that, when an instruction set forces multiple
operations with one instruction, the processor spends much time performing redundant
computations within loops. Many times, the redundant computations are performed by
microcode, which cannot detect that a computation is loop-invariant, because it knows
nothing of loops. The compiler is in no position to do much about this, because it cannot
remove the loop-invariant computations from the micro-sequence; it is forced to accept the
definitions of the instructions as they are.

If an instruction set is defined so that all hardware-level operations are available to the
compiler, the compiler is free to construct any sequence of these operations. This allows
the movement of loop-invariant computations out of loops, which can result in tremendous
performance improvements.

Special Am29000 Features

In addition to the above considerations, there are several other central principles behind the
definition of the Am29000.

The Am29000 instruction set reduces the number of instructions required for most
general-purpose tasks, by providing a complete set of operations. The instruction set is
streamlined, but there is no attempt to minimize the number of instructions. Rather, the
goal is to minimize the number of instructions required to execute most high-level language
programs.

With a few minor exceptions, Am29000 instructions execute in a single cycle. As a result,
the performance of an Am29000 instruction sequence is very easy to predict, simplifying the
task of compiler instruction-selection. In addition, single-cycle instruction execution allows
the Am29000 to take the maximum advantage of a high-performance system design.
Instructions are executed at approximately the rate at which they are supplied to the
processor. The Am29000 does not artificially constrain the instruction-execution rate by
forcing instructions to require multiple cycles for execution.

The Am29000 contains a large number of registers which facilitate compiler optimizations.
These registers allow frequently-used variables to be accessed quickly, provide a large
number of temporary locations for the reuse of computational results, and simplify
inter-procedural communication. The compiler is free to allocate these registers as required
to improve performance. Register allocation is relatively simple, because there is such a
large number of registers.

For other processors which have fixed register-addressing, a compiler has difficulties
allocating the usage of registers, because registers must be allocated statically, at compile
time. Procedure calls present the greatest difficulty. It is impossible for the compiler to
determine exactly which procedures will be called during execution, and in what order they
will be called. Thus, it is impossible to precisely allocate the usage of registers across
procedure-call boundaries.

Since the Am29000 local registers are addressed relative to a Stack Pointer, compiler
register-allocation is greatly simplified. The local registers are allocated dynamically, during
execution. Thus, the compiler need not be concerned about the allocation of registers across
procedure boundaries; this is handled automatically by the local-register addressing.

Am29000 pipelining is exposed to the compiler, in the form of delayed branches and
overlapped loads and stores. The compiler is free to arrange instructions to reduce the
performance impact of the processor pipeline. However, the compiler arranges instructions
only because of the performance benefits. Pipeline interlocks in the Am29000 guarantee
correct operation in any case.

1-14

CHAPTER 2

ARCHITECTURE HIGHLIGHTS

This chapter gives a brief overview of the Am29000 architecture, grouped into
programming-related features, hardware features, and system interfaces. The technical
information given in this chapter is also contained in subsequent chapters. Much of the
detail is omitted here, since the objective is to provide a framework for understanding the
information in later chapters.

Where appropriate, section titles in this chapter are followed by references to sections
appearing in subsequent chapters. The referenced sections contain related detailed
information.

2.1 PROGRAMMER REFERENCE OVERVIEW

This section gives a brief description of the Am29000 from a programmer’s point of
view. It introduces the processor’s program modes, registers, and instructions. An
overview of the processor’s data formats and handling is given. This section also briefly
describes interrupts and traps, memory management, and the coprocessor interface.
Finally, the Timer Facility and Trace Facility are introduced.

2.1.1 PROGRAM MODES (see Section 3.1)
There are two mutually-exclusive modes of program execution; the Supervisor mode, and
the User mode. In the Supervisor mode, executing programs have access to all processor

resources. In the User mode, certain processor resources may not be accessed; any
attempted access causes a trap.

2.1.2 VISIBLE REGISTERS (see Section 3.2)

The Am29000 incorporates three classes of registers which are accessed and manipulated
by instructions: general-purpose registers, specxal-purpose registers, and Translation
Look-Aside Buffer (TLB) registers.

General-Purpose Registers (see Section 3.2.1)

The Am29000 has 192 general-purpose registers. General-purpose registers are not

dedicated to any special use, and are available for any appropriate program use.

2-1

Most processor instructions are three-address instructions. An instruction specifies any 3
of the 192 registers for use in instruction execution. Normally, two of these registers
contain source-operands for the instruction, and a third stores the result of the instruction.

The 192 registers are divided into 64 global and 128 local registers. Global registers are
addressed with absolute register-numbers, while local registers are addressed relative to an
internal Stack Pointer.

For fast procedure calling, a portion of a compiler’s run-time stack can be mapped into
the local registers. Statically-allocated variables, temporary values, and operating-system
parameters are kept in the global registers.

The Stack Pointer for local registers is mapped to Global Register 1. The Stack Pointer
is a full 32-bit virtual address for the top of the run-time stack.

The general-purpose registers may be accessed indirectly, with the register-number
specified by the content of a special-purpose register (see below) rather than by an
instruction field. Three independent indirect register-numbers are contained in three
separate special-purpose registers. The number for Global Register O specifies indirect
register-addressing. An instruction can specify an indirect register access for any or all of
the source operands or result.

General-purpose registers may be partitioned into segments of 16 registers for the purpose
of access protection. A register in a protected segment may be accessed only by a
program executing in the Supervisor mode. An attempted access (either read or write) by
a User-mode program causes a trap to occur.

Special-Purpose Registers (see Section 3.2.2)

The Am29000 contains 23 special-purpose registers. These registers provide controls and
data for certain processor functions.

Special-purpose registers are accessed by data movement only. Any special-purpose
register can be written with the contents of any general-purpose register, and any
general-purpose register can be written with the contents of any special-purpose register.
Operations cannot be directly performed on the contents of special-purpose registers.

Some special-purpose registers are protected, and can be accessed only in the Supervisor

mode. This restriction applies to both read and write accesses. An attempt by a
User-mode program to access a protected register causes a trap to occur.

2-2

The protected special-purpose registers are defined as follows:

1)

2)

3

4)

5)

6)

7

8)

9)

10)

11)

Vector Area Base Address—Defines the beginning of the interrupt/trap Vector
Area.

Old Processor Status—Stores a copy of the Current Processor Status (see below)
when an interrupt or trap is taken. It is later used to restore the Current
Processor Status on an interrupt return.

Current Processor Status—Contains control information associated with the

currently-executing process, such as interrupt disables and the Supervisor Mode
bit.

Configuration—Contains control information which normally varies only from
system to system, and is usually set only during system initialization.

Channel Address—Contains the address associated with an external access, and
retains the address if the access does not complete successfully. The Channel
Address Register, in conjunction with the Channel Data and Channel Control
registers described below, allow the restarting of unsuccessful external accesses.
This might be necessary for an access encountering a page fault in a
demand-paged environment, for example.

Channel Data—Contains data associated with a store operation, and retains the
data if the operation does not complete successfully.

Channel Control—Contains control information associated with a channel
operation, and retains this information if the operation does not complete
successfully.

Register Bank Protect—Restricts access of User-mode programs to specified
groups of sixteen registers. This facilitates register banking for multi-tasking
applications, and protects operating-system parameters kept in the global
registers from corruption by User-mode programs.

Timer Counter—Supports real-time control and other timing-related functions.

Timer Reload—Maintains synchronization of the Timer Counter. It includes
control bits for the Timer Facility.

Program Counter 0—Contains the address of the instruction being decoded when

an interrupt or trap is taken. The processor restarts this instruction upon
interrupt return.

2-3

12)

13)

14)

15)

Program Counter 1—Contains the address of the instruction being executed when
an interrupt or trap is taken. The processor restarts this instruction upon
interrupt return.

Program Counter 2—Contains the address of the instruction just completed when
an interrupt or trap is taken. This address is provided for information only, and
does not participate in an interrupt return.

MMU Configuration—Allows selection of various memory-management
options, such as page size.

LRU Recommendation—Simplifies the reload of entries in the Translation
Look-Aside Buffer (TLB) by providing information on the least-recently-used
entry of the TLB when a TLB miss occurs (see Section 2.1.6).

The unprotected special-purpose registers are defined as follows:

1)
2)
3
4)

5)

6)

7)

8)

Indirect Pointer C—Allows the indirect access of a general-purpose register.
Indirect Pointer A—Allows the indirect access of a general-purpose register.
Indirect Pointer B—Allows the indirect access of a general-purpose register.
Q—Provides additional operand bits for multiply and divide operations.

ALU Status—Contains information about the outcome of arithmetic and logical
operations, and holds residual control for certain instruction operations.

Byte Pointer—Contains an index of a byte or half-word within a word. This
register is also accessible via the ALU Status Register.

Funnel Shift Count—Provides a bit offset for the extraction of word-length fields
from double-word operands. This register is also accessible via the ALU Status
Register.

Load/Store Count Remaining—Maintains a count of the number of loads and
stores remaining for load-multiple and store-multiple operations. The count is
initialized to the total number of loads or stores to be performed before the
operation is initiated. This register is also accessible via the Channel Control
Register.

2-4

TLB Registers (see Section 3.2.3)

Translation Look-Aside Buffer (TLB) entries in the Am29000 Memory Management Unit
are accessed via 128 TLB registers. A single TLB entry appears as two TLB registers;
TLB registers are thus paired according to the corresponding TLB entry.

TLB registers are accessed by data movement only. Any TLB register can be written with
the contents of any general-purpose register, and any general-purpose register can be
written with the contents of any TLB register. Operations cannot be directly performed
on the contents of TLB registers.

TLB registers can be accessed only in the Supervisor mode. This restriction applies to
both read and write accesses. An attempt by a User-mode program to access a TLB
register causes a trap to occur.

2.1.3 INSTRUCTION SET OVERVIEW (see Section 3.3 and Chapter 8)

The three-address architecture of the Am29000 instruction set allows a compiler or
assembly-language programmer to prevent the destruction of operands, and aids register
allocation and operand reuse. Instruction operands may be contained in any two of the
192 general-purpose registers, and instruction results may be stored in any of the 192
general-purpose registers.

The compiler or assembly-language programmer has complete freedom to allocate register
usage. There is no dedication of a particular register or register group to a particular class
of operations. The instruction set is designed to minimize the number of side-effects and
implicit operations of instructions.

Most Am29000 instructions can specify an 8-bit constant as one of the source operands.
Larger constants are constructed using one or two additional instructions and a
general-purpose register. Relative branch instructions specify a 16-bit, signed, word
offset. Absolute branches specify a 16-bit word address.

The Am29000 instruction set contains 115 instructions. These instructions are divided
into 9 classes:

1) Integer Arithmetic—perform integer add, subtract, multiply, and divide operations.

2) Compare—perform arithmetic and logical comparisons. Some instructions in this
class allow the generation of a trap if the comparison condition is not met.

3) Logical—perform a set of bit-wise Boolean operations.

4) Shift—perform arithmetic and logical shifts, and allow the extraction of 32-bit
words from 64-bit double-words.

2-5

5) Data Movement—perform movement of data fields between registers, and the
movement of data to and from external devices and memories.

6) Constant—allow the generation of large constant values in registers.

7) Floating-Point—included for floating-point arithmetic, comparisons, and format
conversions. These instructions are not currently implemented directly in
processor hardware,

8) Branch—perform program jumps and subroutine calls.

9) Miscellaneous—perform miscellaneous control functions and operations not
provided by other classes.

The Am29000 executes all instructions in a single cycle, except for interrupt returns,
Load Multiple, and Store Multiple.

Table 2-1 shows a complete list of Am29000 instructions, listed alphabetically by
instruction mnemonic. Table 2-1 is provided only to give a general overview of the
instruction set. Section 3.3 defines the instructions grouped into classes, and Chapter 8
provides a detailed specification of the instruction set.

2.1.4 DATA FORMATS AND HANDLING (see Section 3.4)

This section introduces the data formats and data-manipulation mechanisms which are
supported by the Am29000.

Data Types (see Section 3.4.1)

A word is defined as 32 bits of data. A half-word consists of 16 bits, and a double-word
consists of 64 bits. Bytes are 8 bits in length. The Am29000 has direct support for
word-integer (signed and unsigned), word-logical, word-Boolean, half-word integer (signed
and unsigned), and character (byte) data.

Other data types, such as character strings, are supported with sequences of basic
instructions and/or external hardware. Single- and double-precision floating-point types
are defined for the Am29000, but are not directly supported by hardware.

The format for Boolean data used by the processor is such that the Boolean values TRUE
and FALSE are represented by 1 and 0, respectively, in the most-significant bit of a word.

2-6

Table 2-1. Am29000 Instruction Set

Mnemonic Instruction Name

ADD Add

ADDC Add with Carry

ADDCS Add with Carry, Signed

ADDCU Add with Carry, Unsigned

ADDS Add, Signed

ADDU Add, Unsigned

AND AND Logical

ANDN AND-NOT Logical

ASEQ Assert Equal To

ASGE Assert Greater Than or Equal To

ASGEU Assert Greater Than or Equal To, UnSIgned
ASGT Assert Greater Than

ASGTU Assert Greater Than, Unsigned

ASLE Assert Less Than or Equal To

ASLEU Assert Less Than or Equal To, Unsigned
ASLT Assert Less Than

ASLTU Assert Less Than, Unsigned

ASNEQ Assert Not Equal To

CALL Call Subroutine

CALLI Call Subroutine, Indirect

cLz Count Leading Zeros

CONST Constant

CONSTH Constant, High

CONSTN Constant, Negative

CPBYTE Compare Bytes

CPEQ Compare Equal To

CPGE Compare Greater Than or Equal To

CPGEU Compare Greater Than or Equal To, Unsigned
CPGT Compare Greater Than

CPGTU Compare Greater Than, Unsigned

CPLE Compare Less Than or Equal To

CPLEU Compare Less Than or Equal To, Unsigned
CPLT Compare Less Than

CPLTU Compare Less Than, Unsigned

CPNEQ Compare Not Equal To

CVDF Convert Floating-Point Double-Precision to Single- PreCIswn
CVDINT Convert Floating-Point Double-Precision to Integer
CVFD Convert Floating-Point Single-Precision to Double-Precision

Table 2-1. Am29000 Instruction Set (Continued)

- Mnemonic Instruction Name
CVFINT Convert Floating-Point Single-Precision to Integer
CVINTD Convert Interger to Floating-Point Double-Precision
CVINTF Convert Integer to Floating-Point Single-Precision
DADD Floating-Point Add, Double-Precision
DDIV Floating-Point Divide, Double-Precision
DEQ Floating-Point Equal To, Double-Precision
DGT Floating-Point Greater Than, Double-Precision
DIV Divide Step
DIvVo Divide Initialize
DIVIDE Integer Divide
DIVL Divide Last Step
DIVREM Divide Remainder
DLT Floating-Point Less Than, Double-Precision
DMUL Floating-Point Multiply, Double-Precision
DsSuUB Floating-Point Subtract, Double-Precision
EMULATE Trap to Software Emulaltion Routine
EXBYTE Extract Byte
EXHW Extract Half-Word
EXHWS Extract Half-Word, Sign-Extended
EXTRACT Extract Word, Bit-Aligned
FADD Floating-Point Add, Single-Precision
FDIV Floating-Point Divide, Single-Precision
FEQ Floating-Point Equal To, Single-Precision
FGT Floating-Point Greater Than, Single-Precision
FLT Floating-Point Less Than, Single-Precision
FMUL Floating-Point Multiply, Single-Precision
FSUB Floating-Point Subtract, Single-Precision
HALT Enter Halt Mode
INBYTE Insert Byte
INHW Insert Half-Word
INV Invalidate
IRET Interrupt Return
IRETINV Interrupt Return and Invalidate
JMP Jump
JMPF Jump False
JMPFDEC Jump False and Decrement
JMPFI Jump False Indirect
JMPI Jump Indirect

2-8

Table 2-1. Am29000 Instruction Set (Continued)

Mnemonic Instruction Name

JMPT Jump True

JMPTI Jump True Indirect

LOAD Load

LOADL Load and Lock

LOADM Load Multiple

LOADSET Load and Set

MFSR Move from Special Register

MFTLB Move from Translation Look-Aside Buffer Register
MTSR Move to Special Register
‘MTSRIM Move to Special Register Immediate
MTTLB Move to Translation Look-Aside Buffer Register
MUL Muttiply Step

MULL Multiply Last Step

MULTIPLY Integer Multiply

MULU Multiply Step, Unsigned

NAND NAND Logical

NOR NOR Logical

OR OR Logical

SETIP Set Indirect Pointers

SLL Shift Left Logical

SRA Shift Right Arithmetic

SRL Shift Right Logical

STORE Store

STOREL Store and Lock

STOREM Store Multiple

SuB Subtract

SUBC Subtract with Carry

SUBCS Subtract with Carry, Signed

SUBCU Subtract with Carry, Unsigned
SUBR Subtract Reverse

SUBRC Subtract Reverse with Carry
SUBRCS Subtract Reverse with Carry, Signed
SUBRCU Subtract Reverse with Carry, Unsigned
SUBRS Subtract Reverse, Signed

SUBRU Subtract Reverse, Unsigned

sSuBS Subtract, Signed

SuUBU Subtract Unsigned

XNOR Exclusive-NOR Logical

XOR Exclusive-OR Logical

Figure 2-1 illustrates the numbering conventions for data units contained in a word.
Within a word, bits are numbered in increasing order from right-to-left, starting with the
number O for the least-significant bit. Bytes and half-words within a word are numbered
in increasing order starting with the number 0. However, bytes and half-words may be
numbered right-to-left or left-to-right, as controlled by the Configuration Register.

B Within Word
31 23 15 7 0
T rririri | L LR L P T 111 LR L
Byte 0 Byte 1 Byte 2 Byte 3
OR
3 23 15 ! 7 0
rr1rririri rrryrinri | L L | L
Byte 3 Byte 2 Byte 1 Byte 0

Half-Words Within Words:
31 23 15 7 0
T 1rrrrrrirrriorinrii FtT 1717 1rrrurrirrrriroird
Half-Word 0 Half-Word 1
OR
31 23 ' 15 7 0
1T i1 t+r1rrrriyutinri Frtrrrro01vrrrrrurihi
Half-Word 1 Half-Word 0

Figure 2-1. Data-Unit Numbering Conventions

Note that the numbering of bits within words is strictly for notational convenience. In
contrast, the numbering conventions for bytes and half-words within words affect
processor operations.

External Data Accesses (see Section 3.4.2)

External accesses move data between the processor and external devices and memories.
These accesses occur only as a result of load and store instructions.

Load and store instructions move words of data to and from general-purpose registers.
Each load and store instruction moves a single word. There are load and store instructions
which support interlocking operations necessary for multi-processor exclusion,
synchronization, and communication.

2-10

For the movement of multiple words, Load Multiple and Store Multiple instructions
move the contents of sequentially-addressed external locations to or from
sequentially-numbered general-purpose registers. The Load Multiple and Store Multiple
allow the movement of up to 192 words at a maximum rate of one word per processor
cycle. The multiple load and store sequences may be interrupted, and restarted at the point
of interruption.

Load and store instructions provide no mechanism for computing the address associated
with the external data access. All addresses are contained in a general-purpose register at
the beginning of the access, or are given by an 8-bit instruction constant. Any address
computation must be performed explicitly before the load or store instruction is executed.
Since address computations are expressed directly, they are exposed for compiler
optimizations as any other computations are.

External data accesses are overlapped with instruction execution. Processor performance
is improved if instructions which follow loads do not immediately use
externally-referenced data. In this manner, the time required to perform the external access
is overlapped with subsequent instruction execution. Because of hardware interlocks, this
concurrency has no effect on the logical behavior of an executing program. ,

Addressing and Alignment (see Section 3.4.3)
External instructions and data are contained in one of four, 32-bit address-spaces:

1) Instruction/Data Memory.

2) Input/Output.

3) Coprocessor.

4) Instruction Read-Only Memory (Instruction ROM).

An address in the Instruction/Data Memory address-space may be treated as virtual or
physical, as determined by the Current Processor Status Register. Address translation for
data accesses is enabled separately from address translation for instruction accesses. A
program in the Supervisor mode may temporarily disable address translation for individual
loads and stores; this permits load-real and store-real operations.

Bits contained within load and store instructions distinguish between the Instruction/Data
Memory, Input/Output, and Coprocessor address-spaces. The Current Processor Status
register determines whether instruction accesses are directed to the Instruction/Data
Memory address-space or to the Instruction ROM address-space.

The Am29000 does not directly suppoft data accesses to the Instruction ROM
address-space. However, this capability is supported as a system option.

All addresses are interpreted as byte addresses, even though accesses are word-oriented.
The number of a byte within a word is given by the two least-significant address bits.
The number of a half-word within a word is given by the next-to-least-significant address
bit.

The Am29000 supports the direct external access of bytes and half-words as a system
option requiring external alignment hardware. However, the processor also supports
mechanisms for the indirect external access of bytes and half-words. These mechanisms
obviate the need for alignment hardware in the majority of systems.

The Am29000 sets a byte-position indicator in the ALU Status Register—as an option
for load instructions—with the two least-significant bits of the address for the load. To
load a byte or half-word, a word load is first performed. This load sets the byte-position
indicator, and a subsequent instruction extracts the byte or half-word of interest from the
accessed word. To store a byte or half-word, a load is also first performed; the byte or
half-word of interest is inserted into the accessed word, and the resulting word is then
stored.

Since only byte addressing is supported, it is possible that an address for the access of a
word or half-word is not aligned to the desired word or half-word. For a word access, an
unaligned address has a 1 in either or both of the two least-significant address bits. For a
half-word access, an unaligned address has a 1 in the least-significant address bit.

In many systems, address alignment can simply be ignored, with addresses truncated to
access the word or half-word of interest. However, as a user option, the Am29000 creates
a trap when a non-aligned access is attempted. The trap allows software emulation of
non-aligned accesses.

In the Am29000, all instructions are 32-bits in length, and are aligned on word-address
boundaries.

2.1.5 INTERRUPTS AND TRAPS (see Section 3.5)

Normal program flow may be preempted by an interrupt or trap for which the processor is
enabled. The effect on the processor is identical for interrupts and traps; the distinction is
in the different mechanisms by which interrupts and traps are enabled. It is intended that
interrupts be used for suspending current program execution and causing another program
to execute, while traps are used to report errors and exceptional conditions.

The interrupt and trap mechanism supports high-speed, temporary context switching as
well as user-defined interrupt-processing mechanisms.

2-12

Temporary Context Switching

The basic interrupt/trap mechanism of the Am29000 supports temporary context
switching. During the temporary context switch, the interrupted context is held in
processor registers. The interrupt or trap handler can return immediately to this context.

Temporary context switching is useful for instruction emulation, floating-point
operations, TLB reload routines, and so forth. It is similar to an invocation of a
microprogram. Many of its features are similar to microprogram execution: processor
context does not have to be saved, interrupts are disabled for the duration of the program,
and all processor resources are available, even if the context which was interrupted is in
the User mode. The associated routine may execute from instruction/data memory or
instruction ROM.

User-Defined Interrupt Processing

Since the basic interrupt/trap mechanism for the Am29000 keeps the interrupted context
in the processor, dynamically nested interrupts are not directly supported. The context in
the processor must be saved before another interrupt or trap can be taken.

The interrupt or trap handler executing during a temporary context switch is not required
to return to the interrupted context. This routine may optionally save the mterrupted
context, load a new one, and return to the new context.

The implementation of the saving and restoring of contexts is completely user-defined.
Thus, the context save/restore mechanism used (e.g. interrupt stack, program status word
area, etc.) and the amount of context saved may be tailored to the needs of the system.

Vector Area (see Section 3.5.4)

Interrupt and trap dispatching occurs through a relocatable Vector Area which
accommodates as many as 256 interrupt and trap handling routines. Entries into the
Vector Area are associated with various sources of irterrupts and traps; some are
pre-defined, while others are user-defined.

The Vector Area is either a table of vectors in data memory, where each vector points to
the beginning of an interrupt or trap handler, or it is a segment of instruction/data
memory (or instruction ROM) containing the actual routines. The latter configuration for
the Vector Area yields better interrupt performance, with the cost of additional memory.

2.1.6 MEMORY MANAGEMENT (see Section 3.6)
The Am29000 incorporates a Memory Management Unit (MMU) which accepts a 32-bit
virtual byte-address and translates it to a 32-bit physical byte-address in a single cycle.

The MMU is not dedicated to any particular address-translation architecture.

2-13

Address translation in the MMU is performed by a 64-entry Translation Look-Aside
Buffer (TLB), an associative table which contains the most-recently-used address
translations for the processor. If the translation for a given address cannot be performed
by the TLB, a TLB miss occurs, and causes a trap which allows the required translation to
be placed into the TLB.

Processor hardware maintains information for each TLB line indicating which entry was
least recently used; when a TLB miss occurs, this information is used to indicate the TLB
entry to be replaced. Software is responsible for searching system page tables and
modifying the indicated TLB entry as appropriate. This allows the page tables to be
defined according to the system environment.

TLB entries are modified directly by processor instructions. A TLB entry consists of 64
bits and appears as two word-length TLB registers which may be inspected and modified
by instructions.

TLB entries are tagged with a Task Identifier field, which allows the operating system to
create a unique 32-bit virtual address-space for each of 256 processes. In addition, TLB
entries provide support for memory protection and user-defined control information.

2.1.7 COPROCESSOR PROGRAMMING (see Section 6.1)

The coprocessor interface for the Am29000 allows a program to communicate with an

off-chip coprocessor for performing operations not directly supported by processor
hardware.

The coprocessor interface allows the program to transfer operands and operation codes to
the coprocessor, and then perform other operations while the coprocessor operation is in
progress. The results of the operation are read from the coprocessor by a separate transfer.
The processor may transfer multiple operands to the coprocessor without re-transferring
operation codes or reading intermediate results. As many as 64 bits of information can be
transferred to the coprocessor in a single cycle.

The Am29000 includes features which support the definition of the coprocessor as a

system option. In this case, coprocessor operations are emulated by software when the
coprocessor is not present in a system.

2.1.8 TIMER FACILITY (see Section 7.2.7)

The Timer Facility provides a counter for implementing a real-time clock or other
software timing functions. This facility is comprised of two special-purpose registers:
the Timer Counter Register, which decrements at a rate equal to the processor operating

2-14

frequency, and the Timer Reload Register, which re-initializes the Timer Counter Register
when it decrements to zero. The Timer Facility may optionally create an interrupt when
the Timer Counter decrements to zero.

2.1.9 TRACE FACILITY (see Section 7.2.8)

The Trace Facility allows a debug program to emulate single instruction stepping in a
program under test. This facility allows a trap to be generated after the execution of any
instruction in the program being tested.

Using the Trace Facility, the debug program can inspect and modify the state of the
program at every instruction boundary. The Trace Facility is designed to work properly
in the presence of normal system interrupts and traps.

2.2 HARDWARE OVERVIEW

This section briefly describes the operation of Am29000 hardware. It introduces the
processor pipeline and the three major internal functional units: the Instruction Fetch
Unit, the Execution Unit, and the Memory Management Unit. Finally, the processor’s
operational modes are described.

Figure 2-2 shows the Am29000 internal data-flow organization. The following sections
refer to the various components on this data-flow diagram.

Instruction .
Fetch Excmji:lon e
Unit
Memory
Management
nit
l ’ v
Instruction Address Data

Figure 2-2. Am29000 Data Flow

2-15

2.2.1 FOUR-STAGE PIPELINE (see Section 4.1)

The Am29000 implements a four-stage pipeline for instruction execution. The four
stages are: fetch, decode, execute, and write-back. The pipeline is organized so that the
effective instruction-execution rate is as high as one instruction per cycle. Data
forwarding and pipeline interlocks are handled by processor hardware. '

2.2.2 INSTRUCTION FETCH UNIT (see Section 4.2)

The Instruction Fetch Unit fetches instructions, and supplies instructions to other
functional units, It incorporates the Instruction Prefetch Buffer, the Branch Target Cache,
and the Program Counter Unit. All components of the Instruction Fetch Unit operate
during the fetch stage of the processor pipeline.

Instruction Prefetch Buffer (see Section 4.2.1)

Most instructions executed by the Am29000 are fetched from external instruction/data
memory. The processor prefetches instructions so that they are requested at least four
cycles before they are required for execution.

Prefetched instructions are stored in a four-word Instruction Prefetch Buffer while awaiting
execution. An instruction-prefetch request occurs whenever there is a free location in this
buffer (if the processor is otherwise enabled to fetch instructions). When a non-sequential
instruction fetch occurs, prefetching is terminated, and then restarted for the new
instruction stream.

Instruction prefetching de-couples the instruction-fetch rate from the instruction-access
latency. For example, an instruction may be transferred to the processor two cycles after
it is requested. However, as long as instructions are supplied to the processor at an
average rate of one instruction per cycle, this latency has no effect on the
instruction-execution rate.

Branch Target Cache (see Section 4.2.2)

The Am29000 incorporates a Branch Target Cache which contains as many as 128
instructions. The Branch Target Cache is a two-way, set-associative cache containing the
first four target instructions of a number of recently-taken branches. Each of the two sets
in the Branch Target Cache contains 64 instructions, and the 64 instructions are further
divided into 16 blocks of 4 instructions each.

The purpose of the Branch Target Cache is to provide instructions for the beginning of a
non-sequential instruction fetch sequence. This keeps the instruction pipeline full until
the processor can establish a new instruction-prefetch stream from the external
instruction/data memory.

The processor is organized so that branch instructions can execute in a single cycle if the
target instruction sequence is present in the Branch Target Cache.

Program Counter Unit (see Section 4.2.4)

The Program Counter Unit creates and sequences addresses of instructions as they are
executed by the processor.

2.2.3 EXECUTION UNIT (see Section 4.3)

The Execution Unit executes instructions. It incorporates the Register File, the Address
Unit, the Arithmetic/Logic Unit, the Field Shift Unit, and the Prioritizer. The Register
File and Address Unit operate during the decode stage of the pipeline. The
Arithmetic/Logic Unit, Field Shift Unit, and Prioritizer operate during the execute stage
of the pipeline. The Register File operates during the write-back stage.

Register File (see Section 4.3.1)

The general-purpose registers are implemented by a 192-location Register File. The
Register File can perform two read accesses and one write access in a single cycle.
Normally, two read accesses are performed during the decode pipeline-stage to fetch
operands required by the instruction being decoded. The write access during the same
cycle completes the write-back stage of a previously-executed instruction.

Addressing logic associated with the Register File distinguishes between the global and
local general-purpose registers, and it performs the Stack-Pointer addressing for the local
registers. Register File addressing functions are performed during the decode stage.

Address Unit (see Section 4.3.2)

The Address Unit evaluates addresses for branches, loads, and stores. It also assembles
instruction-immediate data and computes addresses for load-multiple and store-multiple
sequences.

Arithmetic/Logic Unit (see Section 4.3.3)

The ALU performs all logical, compare, and arithmetic operations (including multiply
step and divide step).

Field Shift Unit (see Section 4.3.4)

The Field Shift Unit performs N-bit shifts. The Field Shift Unit also performs byte and
half-word extract and insert operations, and it extracts words from double-words.

Prioritizer (see Section 4.3.5)

The Prioritizer provides a count of the number of leading zero bits in a 32-bit word; this
is useful for performing floating-point normalization, for example.

2.2.4 MEMORY MANAGEMENT UNIT (see Section 4.4)

The Memory Management Unit (MMU) performs address translation and
memory-protection functions for all branches, loads, and stores. The MMU operates
during the execute stage of the pipeline, so the physical address which it generates is
available at the beginning of the write-back stage.

All addresses for external accesses are physical addresses. MMU operation is pipelined
with external accesses, so that an address translation can occur while a previous access
completes.

Address translation is not performed for the addresses associated with instruction
prefetching, Instead, these addresses are generated by an instruction prefetch pointer which
is incremented by the processor. Address translation is performed only at the beginning
of the prefetch sequence (as the result of a branch instruction), and when the prefetch
pointer crosses a potential virtual-page boundary.

2.2.5 PROCESSOR MODES

The Am29000 operates in several different modes to accomplish various processor and
system functions. All modes except for Pipeline Hold (see below) are under direct control
of instructions and/or processor control inputs. The Pipeline Hold mode is normally
determined by the relative timing between the processor and its external system for certain
types of operations. The processor provides an external indication of its operational
mode.

Executi'ng

When the processor is in the Executing mode, it fetches and executes instructions as
described in this manual. External accesses occur as required.

2-18

Wait (see Section 3.5.3)

When the processor is in the Wait mode, it does not execute instructions, and performs no
external accesses. The Wait mode is controlled by the Current Processor Status Register.
The processor leaves this mode when an interrupt or trap for which it is enabled occurs, or
when a reset occurs.

Pipeline Hold (see Section 4.5)

Under certain conditions, processor pipelining might cause non-sequential instruction
execution or timing-dependent results of execution. For example, the processor might
attempt to execute an instruction which has not been fetched from instruction/data
memory.

For such cases, pipeline interlock hardware detects the anomalous condition and suspends
processor execution until execution can proceed properly. While execution is suspended
by the interlock hardware, the processor is in the Pipeline Hold mode. The processor
resumes execution when the pipeline interlock hardware determines that it is correct to do
sO.

Halt (see Section 5.3.3)

The Halt mode is provided so that the processor may be placed under the control of a
hardware-development system for the purposes of hardware and software debug. The
processor enters the Halt mode as the result of instruction execution, or as the result of
external controls. In the Halt mode, the processor neither fetches nor executes
instructions.

Step (see Section 5.3.3)

The Step mode allows a hardware-development system to step through processor pipeline
operation on a stage-by-stage basis. The Step mode is nearly identical to the Halt mode,
except that it enables the processor to enter the Executing mode while the pipeline
advances by one stage.

Load Test Instruction (see Section 5.3.3)

The Load Test Instruction mode permits a hardware-development system to access data
contained in the processor or system. ' This is accomplished by allowing the
hardware-development system to supply the processor with instructions, instead of having
the processor fetch instructions from instructiorn/data memory. The Load Test Instruction
mode is defined so that, once the processor has completed the execution of instructions
provided by the hardware-development system, it may resume the execution of its normal
instruction sequence.

Test (see Section 5.3.4)

The Test mode facilitates testing of hardware associated with the processor, by disabling
processor outputs so that they may be driven directly by test hardware. It also allows the
addition of a second processor to a system, to monitor the outputs of the first and signal
detected errors.

Reset (see Section 3.8 and Section 5.5)

The Reset mode provides initialization of certain processor registers and control state.
This is used for power-on reset, for eliminating unrecoverable error conditions, and for
supporting certain hardware debug functions.

2.3 SYSTEM INTERFACE OVERVIEW

This section briefly describes the features of the Am29000 which allow it to be connected
to other system components.

The two major interfaces of the Am29000, introduced in this section, are the channel and
the Test/Development interface. The other topics briefly described here are clock
generation, master/slave checking, and coprocessor attachment.

Section 5.1 contains a complete pin description of the Am29000. Appendix A contains
timing diagrams and related information.

2.3.1 CHANNEL (see Section 5.2)
The Am29000 channel consists of the following 32-bit buses and related controls:

1) An Instruction Bus, which transfers instructions into the processor.

2) AData Bus, which transfers data to and from the processor.

3) An Address Bus, which provides addresses for both instruction and data accesses.
The Address Bus is also used to transfer data to the coprocessor.

The channel performs accesses and data-transfers to all external devices and memories,
including instruction/data memories, instruction caches, instruction read-only memories,
data caches, input/output devices, bus converters, and coprocessors,

The channel defines three different access protocols. For simple accesses, the Am29000
holds the address valid throughout the entire access. This is appropriate for high-speed
devices which can complete an access in one cycle, and for low-cost devices which are
accessed infrequently (such as read-only memories containing initialization routines). For
high performance with other types of devices and memories, the channel provides
pipelined and burst-mode access protocols. :

2-20

In the case of pipelined accesses, the address transfer is decoupled from the corresponding
data or instruction transfer. After transmitting an address for a request, the processor may
transmit one more address before receiving the reply to the first request. This allows
address transfer and decoding to be overlapped with another access.

On the other hand, burst-mode accesses eliminate the address-transfer cycle completely.
Burst-mode accesses are defined so that once an address is transferred for a given access,
subsequent accesses to sequentially-increasing addresses may occur without re-transfer of
the address. The burst may be terminated at any time by either the processor or
responding device.

The Am29000 determines whether an access is simple, pipelined, or burst-mode on a
transfer-by-transfer (i.e. generally device-by-device) basis. However, an access which
begins as a simple access may be converted to a pipelined or burst-mode access at any
time during the transfer. This relaxes the timing constraints on the channel-protocol
implementation, since addressed devices to not have to respond immediately to a pipelined
or burst-mode request.

Except for the shared Address Bus, the channel maintains a strict division between
instruction and data accesses. In the most common situation, the system supplies the
processor with instructions using burst-mode accesses, with instruction addresses
transmitted to the system only when a branch occurs. Data accesses can occur
simultaneously without interfering with instruction transfer.

The Am29000 contains arbitration logic to support other masters on the channel. A
single external master can arbitrate directly for the channel, while multiple masters may
arbitrate using a daisy-chain or other method which requires no additional arbitration
logic. However, to increase arbitration performance in a multiple-master configuration,
an external channel arbiter should be used. This arbiter works in conjunction with the
processor’s arbitration logic.

2.3.2 TEST/DEVELOPMENT INTERFACE (see Section 5.3)

The Am29000 supports the attachment of a general-purpose hardware-development
system. This attachment is made directly to the processor in the system under
development, without the removal of the processor from the system. The
Test/Development Interface makes it possible for the hardware-development system to
gain control over the Am29000, and inspect and modify its internal state (e.g.
general-purpose register contents, TLB entries, etc.). In addition, the Am29000 may be
used to access other system devices and memories on behalf of the hardware-development
system.

The Test/Development Interface is comprised of controls and status signals provided on
the Am29000, as well as the Instruction and Data buses. The Halt, Step, Reset, and Load
Test Instruction modes allow the hardware-development system to control the operation of

2-21

the Am29000. The hardware-development system may supply the processor with
instructions on the Instruction Bus using the Load Test Instruction mode, Internal
processor state can be inspected and modified via the Data Bus.

2.3.3 CLOCKS (see Section 5.7)

The Am29000 generates and distributes a system clock at its operating frequency. This
clock is specially designed to reduce skews between the system clock and the processor’s
internal clocks. The internal clock-generation circuitry requires a single-phase oscillator
signal at twice the processor operating frequency.

For systems in which processor-generated clocks are not appropriate, the Am29000 also
can accept a clock from an external clock-generator. :

The processor decides between these two clocking arrangements, based on whether the
power supply to the clock-output driver is tied to +5 volts or to GROUND.

2.3.4 MASTER/SLAVE OPERATION (see Section 5.8)

Each Am29000 output has associated logic which compares the signal on the output with
the signal which the processor is providing internally to the output driver. The processor
signals situations where the output of any enabled driver does not agree with its input.

For a single processor, the output comparison detects short circuits in output signals, but
does not detect open circuits. It is possible to connect a second processor in parallel with
the first, where the second processor has its outputs disabled due to the Test mode. The
second processor detects open-circuit signals, as well as providing a check of the outputs
of the first processor.

2.3.5 COPROCESSOR ATTACHMENT (see Section 6.2)

A coprocessor for the Am29000 attaches directly to the processor channel. However, this
attachment has features which are different than those of other channel devices. The
coprocessor interface is designed to support a high operand-transfer rate and to support the
overlap of coprocessor operations with other processor operations, including other
external accesses.

The coprocessor is assigned a special address-space on the channel. This permits the
transfer of operands and other information on the Address Bus without interfering with
normal addressing functions. Since both the Address Bus and Data Bus are used for data
transfer, the Am29000 can transfer 64 bits of information to the coprocessor in one cycle.

2-22

CHAPTER 3

PROGRAMMER REFERENCE

This chapter contains a formal description of the Am29000 architecture. It concentrates
on the features of the Am29000 and their logical behavior. Chapter 7 discusses the use of
some of these features.

3.1 PROGRAM MODES

All system-protection features of the Am29000 are based on two mutually-exclusive
program modes: the Supervisor mode, and the User mode.

3.1.1 SUPERVISOR MODE

The processor is in the Supervisor mode whenever the Supervisor Mode (SM) bit of the
Current Processor Status Register (see Section 3.2.2) is 1. In this mode, executing
programs have access to all processor resources.

During the address cycle of a channel request, the Supervisor mode is indicated by the
SUP/*US output being High.

3.1.2 USER MODE

The processor is in the User mode whenever the SM bit in the Current Processor Status
Register is 0. In this mode, any of the following actions by an executing program causes
a Protection Violation trap to occur:

1) An attempted access of any TLB entry (see Section 3.2.3).

2) An attempted access of any general-purpose register for which a bit in the Register
Bank Protect Register is 1 (see Section 3.2.1).

3) An attempted execution of a load or store instruction for which the PA bit is 1
(see Section 3.4.2).

4) An attempted execution of one of the following instructions: Interrupt Return,
Interrupt Return and Invalidate, Invalidate, or Halt.

S) An attempted access of one of the following registers: Vector Area Base Address,
Old Processor Status, Current Processor Status, Configuration, Channel Address,
Channel Data, Channel Control, Register Bank Protect, Timer Counter, Timer
Reload, Program Counter 0, Program Counter 1, Program Counter 2, MMU
Configuration, LRU Recommendation (see Section 3.2.2).

6) An attempted execution of an assert or Emulate instruction which specifies a
vector number between 0 and 63, inclusive (see Section 3.5.4).

Devices and memories on the channel can also generate traps based on the value of the
SM bit. During the address cycle of a channel request, the User mode is indicated by the
SUP/*US output being Low.

3.2 VISIBLE REGISTERS

The Am29000 has three classes of registers which are accessible by instructions. These
are: general-purpose registers, special-purpose registers, and Translation Look-Aside
Buffer (TLB) registers. Any operation available in the Am29000 can be performed on the
general-purpose registers, while special-purpose registers and TLB registers are accessed
only by explicit data movement to or from general-purpose registers. Various protection
mechanisms prevent the access of some of these registers by User-mode programs.

A summary of the information in this section appears in Appendix B.

3.2.1 GENERAL-PURPOSE REGISTERS

The Am29000 incorporates 192 general-purpose registers. The organization of the
general-purpose registers is diagrammed in Figure 3-1.

General-purpose registers hold the following types of operands for program use:

1) 32-bit data addresses
- 2) 32-bit signed or unsigned integers
3) 32-bit branch-target addresses
4) 32-bit logical bit strings
5) 8-bit characters
6) 16-bit signed or unsigned integers
7) word-length Booleans :
8) single-precision floating-point numbers
9) double-precision floating-point numbers (in two register locations)..

Because a large number of general-purpose registers is provided, a large amount of
frequently-used data can be kept on-chip, where access time is fastest.

3-2

Absolute GENERAL-PURPOSE
REG # REGISTER
0 Indirect Pointer Access
1 Stack Pointer
2THRU 63 not implemented
(| & GLOBAL REGISTER 64
65 GLOBAL REGISTER 65
66 GLOBAL REGISTER 66
GLOBAL ° A
REGISTERS ﬁ o o
® []
126 GLOBAL REGISTER 126
(| 127 GLOBAL REGISTER 127
(1 128 LOCALREGISTER 125
129 LOCALREGISTER 126
130 LOCALREGISTER 127
131 LOCALREGISTER 0 <—|
LOCAL 132 LOCALREGISTER 1 STACK
REGISTERS ° ° Pol'gfﬁ
-]
[] [}
254 LOCALREGISTER 123
K 255 LOCAL REGISTER 124

Figure 3-1. General-Purpose Register Organization

Am29000 instructions can specify ‘two general-purpose registers for instruction
source-operands, and one general-purpose register for storing the instruction result. These
registers are specified by three 8-bit instruction fields containing register-numbers. A
register may be specified directly by the instruction, or indirectly by one of three
special-purpose registers.

Register Addressing

The general-purpose registers are partitioned into 64 global registers and 128 local
registers, differentiated by the most-significant bit of the register-number. The distinction
between global and local registers is the result of register-addressing considerations.

The following terminology is used to describe the addressing of general-purpose registers:

1) Register-number—this is a software-level number for a general-purpose register.
For example, this is the number contained in an instruction field.
Register-numbers range from O to 255.

2) Global register-number—this is a software-level number for a global register.
Global register-numbers range from 0 to 127.

3) Local register-number—this is a software-level number for a local register. Local
register-numbers range from 0 to 127.

4) Absolute register-number—this is a hardware-level number used to select a
general-purpose register in the Register File. Absolute register-numbers range
from O to 255.

Global Registers

‘When the most-significant bit of a register-number is 0, a global register is selected. The
seven least-significant bits of the register-number give the global register-number. For
global registers, the absolute register-number is equivalent to the register-number.

Global registers 2 through 63 are unimplemented. An attempt to access these registers
yields unpredictable results; however, they may be protected from User-mode access by
the Register Bank Protect Register (see below).

The register-numbers associated with Global Registers 0 and 1 have special meaning.
The number for Global Register O specifies that an indirect pointer is to be used as the
source of the register-number; there is an indirect pointer for each of the instruction
operand/result registers. Global Register 1 contains the Stack Pointer, which is used in
the addressing of local registers as explained below.

Local Register Stack Pointer

The Stack Pointer is a 32-bit register that may be an operand of an instruction as any
other general-purpose register. However, a shadow-copy of Global Register 1 is
maintained by processor hardware to be used in local-register addressing. This
shadow-copy is set only with the results of Arithmetic and Logical instuctions. If the
Stack Pointer is set with the result of any other instruction class, local registers cannot be
accessed predictably until the Stack Pointer is once again set with an Arithmetic or
Logical instruction.

A modification of the Stack Pointer has a delayed effect on the addressing of local
registers, as discussed in Section 7.3.3.

Local Registers

When the most-significant bit of a register-number is 1, a local register is selected. The
seven least-significant bits of the register-number give the local register-number. For
lIocal registers, the absolute register-number is obtained by adding the local
register-number to bits 8-2 of the Stack Pointer, truncating the result to seven bits; the
most-significant bit of the original register-number is unchanged (i.e. it remains a 1).

The Stack Pointer addition applied to local register-numbers provides alimited form of
base-plus-offset addressing within the local registers. The Stack Pointer contains the
32-bit base-address. This assists run-time storage management of variables for
dynamically-nested procedures (see Section 7.1.1).

Register Banking

For the purpose of access restriction, the general-purpose registers are divided into register
banks. Register banks consist of 16 registers (except for Bank 0, which contains
unimplemented registers 2 through 15), and are partitioned according to absolute
register-numbers, as shown in Figure 3-2,

The Register Bank Protect Register contains 16 protection bits, where each bit controls
User-mode accesses (read or write) to a bank of registers. Bits 015 of the Register Bank
Protect Register protect register banks 0 through 15, respectively.

When a bit in the Register Bank Protect Register is 1, and a register in the corresponding
bank is specified as an operand-register or result-register by a User-mode instruction, a
Protection Violation trap occurs. Note that protection is based on absolute
register-numbers; in the case of local registers, Stack-Pointer addition is performed before
protection checking.

When the processor is in Supervisor mode, the Register Bank Protect Register has no
effect on general-purpose-register accesses.

3-5

Indirect Accesses

Specification of Global Register 0 as an instruction operand-register or result-register
causes an indirect access fo the general-purpose registers. In this case, the absolute
register-number is provided by an indirect pointer contained in a special-purpose register.

Each of the three possible registers for instruction execution has an associated 8-bit
indirect pointer. Indirect register-numbers can be selected independently for each of the
three operands. Since the indirect pointers contain absolute register-numbers, the number
in an indirect pointer is not added to the Stack Pointer when local registers are selected.

Register Absolute

Bank Protect Register- General-Purpose

Register Bit Numbers Registers
0 2thru 15 (unimgﬁenmkgnted)
1 16 thru 31 (unimEf;nr:;nted)
2 32 thru 47 (unim;B)Ia:angeznted)
3 48 thru €3 (unimE;n;:nted)
4 64 thru 79 Bank 4
5 80 thru 95 Bank 5
6 96 thru 111 Bank 6
7 112 thru 127 Bank 7
8 128 thru 143 : Bank 8
9 144 thru 159 Bank 9
10 160 thru 175 Bank 10
11 176 thru 191 Bank 11
12 192 thru 207 Bank 12
13 208 thru 223 Bank 13
14 224 thru 239 Bank 14
15 240 thru 255 Bank 15

Figure 3-2. Register Bank Organization

3-6

The indirect pointers are set by the Move To Special Register, Floating-Point,
MULTIPLY, DIVIDE, SETIP, and EMULATE instructions.

For a Move To Special Register instruction, an indirect pointer is set with bits 9-2 of the
32-bit source operand. This provides consistency between the addressing of words in
general-purpose registers and the addressing of words in external devices or memories. A
modification of an indirect pointer using a Move To Special Register has a delayed effect
on the addressing of general-purpose registers, as discussed in Section 7.3.3.

For the remaining instructions, all three indirect pointers are set, simultaneously, with
the absolute register-numbers derived from the register-numbers specified by the
instruction. For any local registers selected by the instruction, the Stack-Pointer addition
is applied to the register-numbers before the indirect pointers are set.

Register-numbers stored into the indirect pointers are checked for bank-protection viola-
tions, except when an indirect pointer is set by a Move-To-Special-Register instruction.

3.2.2 SPECIAL-PURPOSE REGISTERS

The Am29000 contains 23 special-purpose registers. The organization of the
special-purpose registers is shown in Figure 3-3.

Special-purpose registers provide controls and data for certain processor operations. Some
special-purpose registers are updated dynamically by the processor, independent of
software controls. Because of this, a read of a special-purpose register following a write
does not necessarily get the data which was written.

Some special-purpose registers have fields which are reserved for future processor
implementations. When a special-purpose register is read, a bit in a reserved field is read
as a 0. An attempt to write a reserved bit with a 1 has no effect; however, this should be
avoided, because of upward-compatibility considerations.

The special-purpose registers are accessed by explicit data movement only. Instructions
which move data to or from a special-purpose register specify the special-purpose register
by an 8-bit field containing a special-purpose register-number. Register-numbers are
specified directly by instructions.

An attempted read of an unimplemented special-purpose register yields an unpredictable
value. An attempted write of an unimplemented special-purpose register has no effect;
however, this should be avoided, because of upward-compatibility considerations.

The special-purpose registers are partitioned into protected and unprotected registers,
differentiated by the most-significant bit of the register-number. If most-significant bit of
the register-number is O, the register is protected. If the most-significant bit of the
register-number is 1, the register is unprotected.

3-7

Specilal

Purpose
Reg. No. Protected Registers

0 Vector Area Base Address
1 Old Processor Status
2 Current Processor Status
3 Configuration

4 Channel Address

5 Channel Data

6 Channel Control

7 Register Bank Protect
8 Timer Counter

9 Timer Reload

10 Program Counter 0

11 Program Counter 1

12 Program Counter 2 -
13 MMU Configuration
14 LRU Recommendation

Unprotected Registers

128 Indirect Pointer C
129 Indirect Pointer A
130 Indirect Pointer B
131 Q

132 ALU Status

133 Byte Pointer

134 Funnel Shift Count
135 Load/Store Count Remaining 08996A 46

Figure 3-3. Special-Purpose Registers

Protected special-purpose registers are accessible only by programs executing in the
Supervisor mode. An attempted read or write of a protected special-purpose register by a
User-mode program causes a Protection Violation trap to occur.

Unprotected special-purpose registers are accessible by programs executing in both the
User and Supervisor modes.

Vector Area Base Address (Register 0)

This protected special-purpose register specifies the beginning address of the interrupt/trap
Vector Area. The Vector Area is either a table of 256 vectors which point to interrupt and
trap handling Toutines, or a segment of 256, 64-instruction blocks which directly contain
the interrupt and trap handling routines.

The organization of the Vector Area is determined by the Vector Fetch (VF) bit of the
Configuration Register. If the VF bit is 1 when an interrupt or trap is taken, the vector
number for the interrupt or trap (see Section 3.5.4) replaces bits 9-2 of the value in the
Vector Area Base Address Register (Figure 3-4) to generate the physical address for a
vector contained in instruction/data memory.

If the VF bit is 0, the vector number replaces bits 15-8 of the value in the Vector Area
Base Address Register to generate the physical address of the first instruction of the
interrupt or trap handler. The instruction fetch for this instruction is directed either to
instruction memory or instruction read-only memory as determined by the ROM Vector
Area (RV) bit of the Configuration Register.

31 23 15 7 0
rrrrirrrri171r1T il

VAB ojojojojojojojojojojojojojojojlo

08996A 1

Figure 3-4. Vector Area Base Address Register
Bits 31-16 : Vector Area Base (VAB)—The VAB field gives the beginning
address of the Vector Area. This address is constrained to begin on a 64-Kbyte
address-boundary in instruction/data memory or instruction read-only memory.
Bits 15-0 : Zeros—These bits force the alignment of the Vector Area.
OId Processor Status (Register 1)
This protected special-purpose register has the same format as the Current Processor

Status described below. The Old Processor Status stores a copy of the Current Processor
Status when an interrupt or trap is taken. This is required since the Current Processor

3-9

Status will be modified to reflect the status of the interrupt/trap handler.

During an interrupt return, the Old Processor Status is copied into the Current Processor
Status. This allows the Current Processor Status to be set as required for the routine
which is the target of the interrupt return,

Current Processor Status (Register 2)

This protected special-purpose reglster (see Figure 3-5) controls the behavior of the
processor and its ability to recognize exceptional events.

)

31 23 15 7 0
trrtrirvrrrrireid I
Reserved M

08996A 2 cAiTEETU K] WM Fii D

P TP FZ RE PD SM DA

Figure 3-5. Current Processor Status Register

Bits 31-16 : reserved.

Bit 15 : Coprocessor Active (CA)—The CA bit is set and reset under the control
of load and store instructions which transfer information to and from a coprocessor. This
bit indicates that the coprocessor is performing an operation at the time that an interrupt
or trap is taken. This notifies the interrupt or trap handler that the coprocessor contains
state information to be preserved. Note that this notification occurs because the CA bit
of the Old Processor Status is 1 in this case, not because of the value of the CA bit of the
Current Processor Status.

Bit 14 : Interrupt Pending (IP)—This bit allows software to detect the presence of
external interrupts while they are disabled. The IP bit is set if one or more of the external
signals *INTRO—*INTR3 is active, but the processor is disabled from taking the
resulting interrupt due to the value of the DA, DI, or IM bits. If all external interrupt
signals are subsequently de-asserted while still disabled, the IP bit is reset.

Bits 13-12 : Trace Enable, Trace Pending (TE, TP)—The TE and TP bits
implement a software-controlled, instruction single-step facility. Single-stepping is not
implemented directly, but rather emulated by trap sequences controlled by these bits. The
value of the TE bit is copied to the TP bit whenever an instruction completes execution.
When the TP bit is 1, a Trace trap occurs. Section 7.2.8 describes the use of these bits in
more detail.

Bit 11 : Trap Unaligned Access (TU)—The TU bit enables checking of address
alignment for external data-memory accesses. When this bit is 1, an Unaligned Access

3-10

trap occurs if the processor either generates an address for an external word which is not
aligned on a word address-boundary (i.e. either of the least-significant two bits is 1), or
generates an address for an external half-word which is not aligned on a half-word
address-boundary (i.e. the least-significant address bit is 1). When the TU bit is 0,
data-memory address alignment is ignored.

Alignment is ignored for input/output accesses and coprocessor transfers. The alignment
of instruction addresses is also ignored (unaligned instruction addresses can be generated
only by indirect jumps). Interrupt/trap vector addresses are always aligned properly.

Bit 10 : Freeze (FZ)—The FZ bit prevents certain registers from being updated
during interrupt and trap processing, except by explicit data movement. The affected
registers are: Channel Address, Channel Data, Channel Control, Program Counter 0,
Program Counter 1, Program Counter 2, and the ALU Status Register.

When the FZ bit is 1, these registers hold their values. An affected register can be
changed only by a Move To Special Register instruction. When the FZ bit is 0, there is
no effect on these registers, and they are updated by processor instruction execution as
described in this manual.

The FZ bit is set whenever an interrupt or trap is taken, holding critical state in the
processor so that it is not used unintentionally by the interrupt or trap handler.

Bit 9 ;: Lock (LK)—The LK bit controls the value of the *LOCK external signal. If
the LK bit is 1, the *LOCK signal is active, If the LK bit is 0, the *LOCK signal is
controlled by the execution of the instructions Load and Set, Load and Lock, and Store
and Lock. This bit is provided for the implementation of multi-processor synchronization
protocols. :

Bit 8 : ROM Enable (RE)—The RE bit enables instruction fetching from external
instruction read-only memory (ROM). When this bit is 1, the IREQT signal directs all
instruction requests to ROM. Instructions which are fetched from ROM are subject to
capture and re-use by the Branch Target Cache when it is enabled; the Branch Target
Cache distinguishes between instructions from ROM and those from non-ROM storage.
When this bit is 0, off-chip requests for instructions are directed to instruction/data
memory.

Bit 7 : WAIT Mode (WM)—The WM bit places the processor in the Wait mode.
When this bit is 1, the processor performs no operations. The Wait mode is reset by an
interrupt or trap for which the processor is enabled, or by the Reset mode.

Bit 6 : Physical Addressing/Data (PD)—The PD bit determines whether address
translation is performed for load or store operations. Address translation is performed for
an access only when this bit is 0, and the Physical Address (PA) bit in the load or store
instruction causing the access is also 0.

Bit 5 : Physical Addressing/Instructions (PI)—The PI bit determines whether
address translation is performed for external instruction accesses. Address translation is
performed only when this bit is 0.

Bit 4 : Supervisor Mode (SM)—The SM bit protects certain processor state, such
as protected special-purpose registers. When this bit is 1, the processor is in the
Supervisor mode, and access to all state is allowed. When this bit is 0, the processor is
in the User mode, and access to protected state is not allowed; an attempt to access (either
read or write) protected processor state causes a Protection Violation trap.

Section 3.1 describes the processor state protected from User-mode access.

For an external access, the User Access (UA) bit in the load or store instruction also
controls access to protected state. When the UA bit is 1, the Memory Management Unit
and channel perform the access as if the program causing the access were in User mode.
Bits 3-2 ; Interrupt Mask (IM)—The IM field is an encoding of the processor

priority with respect to external interrupts. The interpretation of the interrupt mask is
specified by the following table:

IMValue Result

00 *INTRO enabled

01 *INTRO—*INTR1 enabled
10 *INTRO—*INTR?2 enabled
11 *INTRO—*INTR3 enabled

Bit 1 : Disable Interrupts (DI)—The DI bit prevents the processor from being
interrupted by external interrupt requests *INTRO—*INTR3. When this bit is 1, the
processor ignores all external interrupts. However, note that traps (both internal and
external), Timer interrupts, and Trace traps will be taken. When this bit is 0, the

processor will take any interrupt enabled by the IM field, unless the DA bit is 1 (see
below).

Bit 0 : Disable All Interrupts and Traps (DA)—The DA bit prevents the
processor from taking any interrupts and most traps. When this bit is 1, the processor
ignores interrupts and traps, except for the *WARN, Instruction Access Exception, Data
Access Exception, and Coprocessor Exception traps. When this bit is 0, all traps will be
taken, and interrupts will be taken if otherwise enabled.

Configuration (Register 3)

This protected special-purpose register (see Figure 3-6) controls certain processor and
system options. Most fields are normally modified only during system initialization.
The Configuration Register is defined as follows:

3-12

31 23 15 7 0
T r1rriri FrT1T1T1ri1rri11rrrTrrorriori
PRL Reserved

08996A 3 LRViCP
VF BO CD
Figure 3-6. Configuration Register

Bits 31-24: Processor Release Level (PRL)—The PRL field is an 8-bit,
read-only identification number which specifies the processor version. The initial
processor version has a PRL field of zero.

Bits 23-5 : reserved.

Bit 4 : Vector Fetch (VF)—The VF bit determines the structure of the interrupt/trap
Vector Area. If this bit is 1, the Vector Area is defined as a block of 256 vectors which
specify the beginning addresses of the interrupt and trap handling routines. If the VF bit
is 0, the Vector Area is a segment of 256, 64-instruction blocks which contain the actual
routines.

Bit 3 : ROM Vector Area (RV)—If the VF bit is 0, the RV bit specifies whether
the Vector Area is contained in instruction memory (RV = 0) or instruction read-only
memory (RV = 1). The value of the RV bit is irrelevant if the VF bit is 1.

Bit 2 : Byte Order (BO)—The BO bit determines the ordering of bytes and
half-words within words. If the BO bit is O, bytes and half-words are numbered
left-to-right within a word. If the BO bit is 1, bytes and half-words are numbered
right-to-left. Section 3.4.3 describes the interpretation of the BO bit in more detail.

Bit 1 : Coprocessor Present (CP)—The CP bit indicates the presence of a
coprocessor which may be used by the processor. If this bit is 1, it enables the execution
of load and store instructions which have a Coprocessor Enable (CE) bit of 1. If the CP
bit is 0 and the processor attempts to execute a load or store instruction with a CE bit of
1, a Coprocessor Not Present trap occurs. This feature may be used to emulate
coprocessor operations as well as to protect the state of a coprocessor shared between
multiple processes.

Bit 0 : Branch Target Cache Disable (CD)—The CD bit determines whether or
not the Branch Target Cache is used for non-sequential instruction references. When this
bit is 1, all instruction references are directed to external instruction memory or
instruction ROM, and the Branch Target Cache is not used. When this bit is O, the
targets of non-sequential instruction fetches are stored in the Branch Target Cache and
re-used as described in Section 4.2.2. The value of the CD bit does not take effect until
the execution of the next branch instruction. '

3-13

load multlple and store-mult)ple operfmcms, and to restgrt other e);ternal accesses when ch
re sgryxced} The‘ s

The Channél Address Reglster 1s upttated'p he . ekecuuon of every load or store '
instruction, and on every load or store m a lo muitxple or store- muluple sequence,

31 f | 23 A 45 - i . 0
TTTTFTTTTI | TTTTITITT
A N ' QHA .

anne sacttqn (if the FZ bit of the Current Processor Status chlster 50 G
1 ,al data : accesses,,the gddress is mual if.address translation was enabled for the !,
ica ' Wa dgsablqd : Eor tr :sfers to the coprocessor, the CHA :

i pn, 'osc regxs,ter (Flg, ;
i extemal accesses pprozessor t!’ansfﬁl's :It: i§ also ?S@d to testart the ﬁrst stqre of an 2
e : mterrupted store‘multlgle tion ﬁnd 0] s’x‘art, othqr extemal accesses when possﬂ;le,; ST
. (e.g.y after TLB misses are SBrvit ed). ‘The res’cart.mg of. ternal accesses ;s~ descnbed inne
Secuon 7.2, 5 - v : e

31 ,237’
TT l'lFljllllIl

ad-multipls and store-multlple opefatlons,
) LB are W}ceﬂ}

’-" 1 encountered: an. excepuon or‘ was upted: before: complation. ’H;xis number s
L zem-hasﬁdf"-_for example, avalpe of 28 i i ' $ ’mmam;p be

Bit 12 : Lock Active (LA)—The LA bit is 1 if the current channel transaction is for
a Load and Lock or Store and Lock instruction; otherwise it is 0. Note that this bit is not
set as the result of the Lock (LK) bit in the Current Processor Status Register.

Bit 11 : reserved.

Bit 10 : Transaction Faulted (TF)—The TF bit indicates that the current channel
transaction did not complete due to some exceptional circumstance. This bit is set only
for exceptions reported via the *DERR input, and it causes a Data Access Exception or
Coprocessor Exception trap to occur (depending on the value of the CE bit) when itis 1.

The TF bit allows the proper sequencing of externally-reported errors which get preempted
by higher-priority traps (see Section 3.5.7). It is reset by software which handles the
resulting trap.

Bits 9-2 : Target Register (TR)—The TR field indicates the absolute
register-number of data operand for the current transaction (either a load target or store
data-source). Since the register-number in this fieid is absolute, it reflects the
Stack-Pointer addition when the indicated register is a local register.

Bit 1 : Not Needed (NN)—The NN bit indicates that, even though the Channel
Address, Channel Data, and Channel Control registers contain a valid representation of an
uncompleted load operation, the data requested is not needed. This situation arises when a
load instruction is overlapped with an instruction which writes the load target-register.

Bit 0 : Contents Valid (CV)—The CV bit indicates that the contents of the
Channel Address, Channel Data, and Channel Control registers are valid.

Register Bank Protect (Register 7)

This protected special-purpose register (Figure 3-10) protects banks of general-purpose
registers from User-mode program accesses.

The general-purpose registers are partitioned into 16 banks of 16 registers each (except
that Bank 0 contains 14 registers). The banks are organized as shown in Figure 3-2 of
Section 3.2.1.

31 23 15 : 7 0
A O T L L L A T L L B B

Reserved B15 . . . BO
08996A 7

Figure 3-10. Reglster Bank Protact Register

Bits 31-16 : reserved.

Bits 15-0 : Bank 15 through Bank 0 Protection Bits (B15-B0)—In the
Register Bank Protect Register, each bit is associated with a particular bank of registers,
and the bit number gives the associated bank number (e.g., B11 determines the protection
for Bank 11).

When a protection bit is 1, the corresponding bank is protected from access by programs
executing in the User mode. A Protection Violation trap occurs when a User-mode
program attempts to access (either read or write) a register in a protected bank. When a
bit in this register is 0, the corresponding bank is available to programs executing in the
User mode.

Supervisor-mode programs are not affected by the Register Bank Protect Register.

Register protection is based on absolute register-numbers. For local registers, the
protection checking is performed after the Stack-Pointer addition is performed.

Timer Counter (Register 8)

This protected special-purpose register (Figure 3-11) contains the counter for the Timer
Facility.

31 23 15 7 0
| L L L Ttrryrrrrrirvertdtrirrrrtrnririi
Reserved TCV

08996A 8
Figure 3-11. Timer Counter Reglster

Bits 31-24 : reserved.

Bits 23-0 : Timer Count Value (TCV)—The 24-bit TCV field decrements by
one on each processor clock. When the TCV field decrements to zero, it is reloaded with
the content of the Timer Reload Value field in the Timer Reload Register, At this time,
the Interrupt bit in the Timer Reload Register is set.

Timer Reload (Register 9)
This protected special-purpose register (Figure 3-12) maintains simchronization of the

Timer Counter Register, enables Timer interrupts, and maintains Timer Facility status
information,

3-17

L
Reserved

B}ts 31427

resel‘veﬂ. o

bit is Set.

" Bit 24 Interrupt Enabie (IE)-—-Wheh the ¥E; bt i§
‘enabled, and the Timer iriterfupt occurs whenever :hem*w
: ;Txmer mtermpt i dxsabled. ‘Note ﬁm_t ’I‘nrher i ts iy b

08096A 10"

Flgure 3‘13 Program Cotmtér 0 Reglstel‘

Bits 31-2 : Program Countet- o (PCO)——This field captures the wotd- address of an

instruction as it enters the decode stagé of the prdcessor prpehne, unless the Freeze (FZ)
bit of the Current PrOCessor Status RegiSter is lr ""If the FZbiti is 1, PCO holds its value.

mstmcuon in the decode stage' t}ie mterrupt or t1=ap has prevented this instruction from -
{ executmg The proéessor uses the PCO ﬁeld to re%tart thns mstrucuon on an mterrupt

Program CounteH (Regnster ;

Thrs protected specral-purpose regxs t (F‘ig‘imé
restart the mstructlon whrch was m
was taken. : B

08906A 11

Flguto~3—14. Isrcgi‘am co‘unter 1 Regléter

Bits 31-2 Program Couﬂter 1 (i’Cl)~a—Th3s field captures the WOrd-address of an
instruction s it enters the execute stage ‘of the ﬁrt)cessor pxpelme. unless the Freeze (FZ)
bit of the Current Px‘ocessor Status Reglster is; 1 If the FZ: brt is 1 PCl holds its’ value
When an mterrupt or trap is taken, 'the PCI field contams the word-address of the
instruction in the exécute stage; tl'ie mtemipt or trap has prevented this instruction from
completmg execuuon The prOCeSSOI' uses the PCl field td restart this mstrucuon on an
mterrupt return r . v

con

- Bits 1-0 Zeros——-These are:‘Zerocbits, smce mstrurmon addresses are always A
o ..word-ahgnedt ' Sy o . R

Program Counter 2 (Register 12)

This protected special-purpose register (Figure 3-15) reports the address of certain
instructions causing traps.

31 23 15 . 7 0
rrrrrrrrrrerrirrerrrirrriririred
PC2 ojo

08996A 12
Flgure 3-15. Program Counter 2 Reglster

Bits 31-2 : Program Counter 2 (PC2)—This field captures the word-address of an
instruction as it enters the write-back stage of the processor pipeline, unless the Freeze
(FZ) bit of the Current Processor Status Register is 1. If the FZ bit is 1, PC2 holds its
value.

When an interrupt or trap is taken, the PC2 field contains the word-address of the
instruction in the write-back stage. In certain cases, as described in Section 3.5.8, PC2
contains the address of the instruction causing a trap. The PC2 field is used to report the
address of this instruction, and has no other use in the processor.

Bits 1-0 : Zeros—These are zero-bits, since instruction addresses are always
word-aligned.

MMU Confuguration (Register 13)

This protected special-purpose register (Figure 3-16) specifies parameters associated with
the Memory Management Unit (MMU).

31 23 15 7 0
rFrtrrririrrrroviéy1rrvyruv iy vrrivyi I F1 1 eri
Reserved PS PID

08996A 13
Figure 3-16. MMU Configuration Register

Bits 31-10 : reserved.

Bits 9-8 : Page Size (PS)—The PS field specifies the page size for address
translation. The page size affects translation as discussed in Section 3.6.2. The PS field
has a delayed effect (see Section 7.3.3). At least one cycle of delay must separate an
instruction which sets the PS field and an instruction that performs address translation.
The PS field is encoded as follows:

3-20

%

Page Size

0 1 Kbyte
1 2 Kbyte
0 4 Kbyte
1 8 Kbyte

— OO

Bits 7-0 : Process Identifier (PID)—This 8-bit field is compared to Task
Identifier (TID) fields in Translation Look-aside Buffer entries when an address translation
is performed. For the address translation to be valid, the PID field must match the TID
field in an entry. This allows a separate 32-bit virtual-address space to be allocated to
each of 256 active processes.

LRU Recommendation (Register 14)

This protected special-purpose register (Figure 3-17) assists Translation Look-aside Buffer
(TLB) reloading by indicating the least-recently-used TLB entry in the required
replacement line.

31 23 15 7 0
rrvr101r1r01rr1r1v1r0r1r0rrvnrynrivt b 17 F T 1P T
Reserved LRU 0

08996A 14
Figure 3-17. LRU Recommendation Register

Bits 31-7 : reserved.

Bits 6-1 : Least Recently Used Entry (LRU)—The LRU field is updated
whenever a TLB miss occurs during an address translation. It gives the TLB
register-number of the TLB entry selected for replacement. The LRU field is also updated
whenever a memory-protection violation occurs; however, it has no interpretation in this
case.

Bit 0 : Zero—The appended O serves to identify Word O of the TLB entry.

Indirect Pointer C (Register 128)

This unprotected special-purpose register (Figure 3-18) provides the RC-operand

register-number (see Section 8.3) when an instruction RC field has the value zero (i.e.
when Global Register 0 is specified).

3-21

:'

R R R T e LT 6

T T II T T I-lv T 11 LELEN PLELELIUSLSLELEE B it SRR
Rese"’ed SRR FOR A 1 L1

 08996A 16 : 2
Flgure 3-18 lndlrect Pointer C Reglster
:‘iBltS 31-10 : reserved - | ‘r

Bits 9-2 : Indirect Pointer C (IPC)~—The 8-bit IPC field contams an absolute
. register-number for a general-purpose register. This number dxrectly selects a reglster
(Stack-Pomter addmon is not performed in the case of local reglsters)

: i

o 'Blts 1-0 Zeros—The IPC field is alxgned for compat:blhty wlm WOl’d'addreSSes SRR

‘ ‘Indlrect Pointer A (Register 129)

: .’_j-l";ThlS unprotected spec1al-purpose regxster (Flgure 3-19) provxdes the RA operand :
" ?register-nurrxber (see Section 8.3) when an mslructxon RA field has the value zero (1 e.
* - when Global Register 0 is specxﬁed) : .

53{[.} B NI T
[T TT T l l TTT | l TT; TTTTr T T T T e]
R UE Reserved I TIEEE SRR - SN i) 1] S

C esmte T
NP Flguro 3—19 Indlroct PolnterAReglster

.‘.“BllS 31—10 s ‘*-reserved

":; ‘ths 9—2 Indn'ect Pointer A (IPA)—-—The 8ab1t IPA fxeld c(mtams an absolute
’ glster-number for either a general-purpose register or a local register. This number

‘ ‘dlrectly selects a: reglster (Stack-Pointer addition is not performed in the case of local
reglsters) : v

Bits 1—0 Zeros—The IPA field i is ahgned for compaublhty with word~add:esses
: Indlrect Pointer B (Reglster 130) |
"Thxs unprotected specxal-purpose teglster (Flgure 3- -20) provides the RB- -operand

_ reglster-number (see Section 8.3) when an mst;ruotion RB field has the value zero (1 e.
‘_‘when Glb’oal Reglster01s spemfied) R N B S

322

o L2 B b
I:l‘llll*llllll ll‘.l'l_ﬂ‘,

! {'an 31-10 reSei-ved

,:’;‘.?ths 913 : Indxrect (
T x‘egxster-numbgy for a

vthe low-order blts of the dw:dend it coﬂtiltxs the q oﬁéﬁt at the eﬁd of the dmde Dunng : ‘ .
' a muluply operatioﬂ tlus ﬁéld hqlds the mumphet it éomains the low—order bxts of the R

| 0899A 19

Bits 31-12 : reserved.

Bit 11 : Divide Flag (DF)—The DF bit is used by the instructions which
implement division. This bit is set at the end of the division instructions either to 1 or
to the complement of the 33rd bit of the ALU. When a Divide Step instruction is
executed, then the DF bit determines whether an addition or subtraction operation is
performed by the ALU.

Bit 10 : Overflow (V)—The V bit indicates that the result of a signed,
two’s-complement ALU operation required more than 32 bits to correctly represent the
result. The value of this bit is determined by exclusive-ORing the ALU carry-out with
the carry-in to the most-significant bit for signed, two’s-complement operations. This bit
is not used for any special purpose in the processor, and is provided for information only.

Bit 9 : Negative (N)—The N bit is set with the value of the most-significant bit of
the result of an arithmetic or logical operation. If two’s-complement overflow occurs, the
N bit does not reflect the true sign of the result. This bit is used in divide operations.

Bit 8 : Zero (Z)—The Z bit indicates that the result of an arithmetic or logical
operation is zero. This bit is not used for any special purpose in the processor, and is
provided for information only.

Bit 7 : Carry (C)—The C bit stores the carry-out of the ALU for arithmetic
operations. It is used by the add-with-carry and subtract-with-carry instructions to
generate the carry into the Arithmetic/Logic Unit.

Bits 6-5 : Byte Pointer (BP)—The BP field holds a 2-bit pointer to a byte within a
word. Itis used by Insert Byte and Extract Byte instructions. The exact mapping of the
pointer value to the byte position depends on the value of the Byte Order (BO) bit in the
Configuration Register.

The most-significant bit of the BP field is used to determine the position of a half-word
within a word for the Insert Half-Word, Extract Half-Word, and Extract Half-Word,
Sign-Extended instructions. The exact mapping of the most-significant bit to the
half-word position depends on the value of the BO bit in the Configuration Register.

The BP field is set by a Move To Special Register instruction with either the ALU Status
Register or the Byte Pointer Register as the destination. It is also set with the low-order
two bits of the address for a load or store instruction if the Set Byte Pointer (SB) bit in
the instruction is 1.

Bits 4-0 : Funnel Shift Count (FC)—The FC field contains a 5-bit shift count
for the Funnel Shifter. The Funnel Shifter concatenates two source-operands into a
single, 64-bit operand and extracts a 32-bit result from this 64-bit operand; the FC field
specifies the number of bit positions from the most-significant bit of the 64-bit operand

3-24

to the most-significant bit of the 32-bit result. The FC field is used by the EXTRACT
instruction.

The FC field is set by a Move To Special Register instruction with either the ALU
Status Register or the Funnel Shift Count Register as the destination.

Byte Pointer (Register 133)

This unprotected special-purpose register (Figure 3-23) provides an alternate access to the
BP field in the ALU Status Register. .

31 23 15 - 7 0
I

olojo0j0j0|0] BP

08996A 20
Figure 3-23. Byte Pointer

Bits 31-2 : Zeros.

Bits 1-0 : Byte Pointer (BP)—This field allows a program to change the BP field
without affecting other fields in the ALU Status Register.

Funnel Shift Count (Register 134)

This unprotected special-purpose register (Figure 3-24) provides an alternate access to the
FC field in the ALU Status Register.

31 23 15 7 0
TTTrT

ojojojojoljoio FC

08996A 21
Figure 3-24. Funnel Shift Count

Bits 31-5 : Zeros.

Bits 4-0 : Funnel Shift Count (FC)—This field allows a program to change the
FC field without affecting other fields in the ALU Status Register.

Load/Store Count Remaining (Register 135)

This unprotected special-purpose register (Figure 3-25) provides alternate access to the CR
field in the Channel Control Register.

3-25

b - 'an 314

S orgamzatmn of the TLB reglsteni is, shown in Frgure 3-26

31

’ Fsgure 3-25 fLoadIStota Count Remalnln

- T‘Brts 7-10- _)
[change t the CR’ field without affec n
~ used to mmalue the value befor
o executed - g

32, 3 TLB REGISTEBS

¥ The Am29000 contams 128 Translatxon Look-A51de Buffer (TLB) regrsters The

o The TLB reglsters compnse the TLB entrres, and are provrded so that programs may
 inspect and alter TLB entries, ’I'hrs allows the loadmg, mvalrdauoru savmg, and restormg A
__ofTLBentnes : KR , SRR - "4

TLB registers have ﬁelds whxch are reserved for future processor unplementauons When

a TLB register is, read, a3 brt ina reserved ﬁeld is read as a 0. An attempt | to write @
- reserved bit wntl;n al has no effect however, thrs shouId be anorded . because of
o upward-comp;mbﬂlt col nde atr' . . ' T

TLB entnes are edeSSed‘as'reglsmrs numbered 0—~127 S inge o Wbrds are reqprred to:

BN f,:' completely speérf‘y aTLB entry, tWo regxstérs e'reqmred fo aehTLB entry The words '

T‘-B Reg# ' TLB Set 0
1,0 | TLBEntyLineOWord0 . |:
1 | TLBEdtyLine OWord 1
©*_TLB Entry Linet Word 0
~ TLBEntry Line 1 Word'1 -

PR T U

.
- B PR .
. B N
L]

62 | TLBEntry Line 31 Word 0
63 | TLBEntry Line 31 Word 1

o mBsat.
64 | ' TLB Entry Lina.0 Wordi0
o E;5 - TLB Entry LaneOWorcH B : }‘

: :126‘:; , TLB Entry Llne 31 Word 0‘"‘ B L
e TLBE"‘TV Une 31 Wordff 1 osooea 23

;. flguifg :3;.26,'. ‘»Trarislgtlon_ Look-aslde Buffer Registers - o

TLB Entry Word 0

&

The TLB Entry Word 0 regxster 1s shown in Fxgure 1}-27

3 xm s R R }
rrrrrirrrl [~|T | LS R 2N 0 N O | R L
| VIAG STt mo

08996A 24 S o SR SE uw
- VE SW UR UE

- Figure 3-27. TLB Entry Word .0,:;” SRR

327

Bits 31-15 : Virtual Tag (VTAG)—When the TLB is searched for an address
translation, the VTAG field of the TLB entry must match the most-significant 17, 16,
15, or 14 bits of the address being translated—for page sizes of 1, 2, 4, and 8 Kbytes,
respectively—for the search to be successful.

When software loads a TLB entry with an address translation, the most-significant 14 bits
of the Virtual Tag are set with the most-significant 14 bits of the virtual address whose
translation is being loaded into the TLB. The remaining 3 bits of the Virtual Tag must
be set either to the corresponding bits of the address, or to zeros, depending on the page
size, as follows (“A” refers to corresponding address bits):

Page Size VTAG 2-0 (TLB Word 0 bits 17-15)

1 Kbyte AAA
2 Kbyte AAO
4 Kbyte AQO0
8 Kbyte 000

Bit 14 : Valid Entry (VE)—If this bit is 1, the associated TLB entry is valid; if it is
0, the entry is invalid.

Bit 13 : Supervisor Read (SR)—If the SR bit is 1, Supervisor-mode load
operations from the virtual page are allowed; if it is 0, Supervisor-mode loads are not
allowed.

Bit 12 : Supervisor Write (SW)—If the SW bit is 1, Supervisor-mode store
operations to the virtual page are allowed; if it is 0, Supervisor-mode stores are not
allowed.

Bit 11 : Supervisor Execute (SE)—If the SE bit is 1, Supervisor-mode
instruction accesses to the virtual page are allowed if it is 0, Supervisor-mode instruction
accesses are not allowed.

Bit 10 : User Read (UR)—If the UR bit is 1, User-mode load operations from the
virtual page are allowed; if it is 0, User-mode loads are not allowed.

'Bit 9 : User Write (UW)—If the UW bit is 1, User-mode store operations to the
virtual page are allowed; if it is 0, User-mode stores are not allowed.

Bit 8 : User Execute (UE)-—If the UE bit is 1, User-mode instruction accesses to
the virtual page are allowed; if it is 0, User-mode instruction accesses are not allowed.

Bits 7-0 : Task Identifier (TID)—When the TLB is searched for an address
translation, the TID must match the Process Identifier (PID) in the MMU Configuration
Register for the translation to be successful. This field is allows the TLB entry to be
associated with a particular process.

. 3-28

TLB Entry Word 1

The TLB Entry Word 1 register is shown in Figure 3-28.

RPN res |PGM res U|F

08996A 25
Flgure 3-28. TLB Entry Word 1

Bits 31-10 : Real Page Number (RPN)—The RPN field gives the
most-significant 22, 21, 20, or 19 bits of the physical address of the page, for page sizes
" of 1, 2, 4, and 8 Kbytes, respectively. It is concatenated to bits 9-0, 10-0, 11-0, or
12-0 of the address being translated—for 1, 2, 4, and 8 Kbyte page sizes, respectively—to
form the physical address for the access.

When software loads a TLB entry with an address translation, the most-significant 19 bits
of the Real Page Number are set with the most-significant 19 bits of the physical address
associated with the translation. The remaining three bits of the Real Page Number must
be set either to the corresponding bits of the physical address, or to zeros, depending on -
the page size, as follows (“A” refers to corresponding address bits):

Page Size RPN 2-0 (TLB Word 1 bits 12-10)

1 Kbyte AAA
2 Kbyte AAO
4 Kbyte AQ0
8 Kbyte 000

Bits 7-6 : User Programmable (PGM)—These bits are placed on the
MPGMO-MPGM1 outputs when the address is transmitted for an access. They have no
predefined effect on the access: any effect is defined by logic external to the processor.

Bit 1 : Usage (U)—This bit indicates which entry in a given TLB line was least
recently used to perform an address translation. If this bit is a O, then the entry in Set 0
in the line is least-recently-used; if it is 1, then the entry in Set 1 is least-recently-used.
This bit has an equal value for both entries in a line. Whenever a TLB entry is used to
translate an address, the Usage bit of both entries in the line used for translation are set
according to the TLB set containing the translation. This bit is set whenever the
translation is valid, regardless of the outcome of memory-protection checking.

Bit 0 : Flag (F)—The Flag bit has no effect on address translation, and is affected

only by the MTTLB instruction. This bit is provided for software management of TLB
entries.

3-29

3.3 INSTRUCTION SET

The Am29000 implements 115 instructions. All instructions execute in a single cycle,
except for IRET, IRETINV, LOADM and STOREM. '

Most instruction deal with general-purpose registers for operands and results; however, in
most instructions, an 8-bit constant can be used in place of a register-based operand.
Some instructions deal with special- purpose registers, TLB registers, external devices and
memories, and coprocessors.

This section describes the 9 instruction classes in the Am29000, and provides a brief
summary of instruction operations. A detailed instruction specification is contained in
Chapter 8. Section 8.1 describes the nomenclature used here.

If the processor attempts to execute an instruction which is not implemented, an Illegal
Opcode trap occurs.

3.3.1 INTEGER ARITHMETIC

The Integer Arithmetic instructions perform add, subtract, multiply, an divide operations
on word-length integers. Certain instructions in this class cause traps if signed or
unsigned overflow occurs during the execution of the instruction. There is support for
multi-precision arithmetic on operands whose lengths are multiples of words. All
instructions in this class set the ALU Status Register. The integer arithmetic
instructions are shown in Table 3-1.

The MULTIPLY and DIVIDE instructions are not implemented directly by processor
hardware, but cause MULTIPLY and DIVIDE traps.

3.3.2 COMPARE

The Compare instructions test for various relationships between two values. For all
Compare instructions except the CPBYTE instruction, the comparisons are performed on
word-length signed or unsigned integers. There are two types of Compare instructions.
The first type places a Boolean value reflecting the outcome of the compare into a
general- purpose register. For the second type (assert instructions), instruction execution
continues only if the comparison is true; otherwise a trap occurs. The assert instructions
specify a vector for the trap (see Section 3.5.4).

The assert instructions support run-time operand checking and operating-system calls. If
the trap occurs in the User mode, and a trap number between 0 and 63 is specified by the
instruction, a Protection Violation trap occurs. The Compare instructions are shown in
Table 3-2.

3-30

Table 3-1 Integer Arithmetic Instructions

Mnemonic Operation Description
ADD DEST « SRCA + SRCB
ADDS DEST «SRCA + SRCB

IF signed overflow THEN Trap (Out Of Range)
ADDU DEST « SRCA + SRCB

IF unsigned overflow THEN Trap (Out Of Range)
ADDC DEST < SRCA +SRCB+C
ADDCS DEST < SRCA +SRCB+C

IF signed overflow THEN Trap (Out Of Range)
ADDCU DEST < SRCA + SRCB+C

IF unsigned overflow THEN Trap (Out Of Range)
SuB DEST < SRCA-SRCB
SUBS DEST « SRCA - SRCB

IF signed overflow THEN Trap (Out Of Range)
SUBU DEST « SRCA - SRCB

IF unsigned underflow THEN Trap (Out Of Range)
suBC DEST«SRCA-SRCB-1+C
SUBCS DEST «<SRCA-SRCB-1+C

IF signed overflow THEN Trap (Out Of Range)
SuBCU DEST «<SRCA-SRCB-1+C

IF unsigned underflow THEN Trap (Out Of Range)
SUBR DEST « SRCB - SRCA
SUBRS DEST < SRCB- SRCA

IF signed overflow THEN Trap (Out Of Rangs)
SUBRU DEST «- SRCB - SRCA

IF unsigned underflow THEN Trap (Out Of Rangs)
SUBRC DEST «SRCB-SRCA-1+C
SUBRCS DEST «SRCB-SRCA-1+C

IF signed overflow THEN Trap (Out Of Range)
SUBRCU DEST « SRCB-SRCA-1+C

IF unsigned underflow THEN Trap (Out Of Range)
MULTIPLY DEST//Q < SRCA » SRCB

(Continued) 08996A 26a

3-31

Table 3-1 Integer Arithmetic Instructions (Continued)

Mnemonic Operation Description
MUL Perform one-bit step of a multiply operation
MULL Complete a sequence of multiply steps
MULU Perform one-bit step of a multiply operation (unsigned)
DIVIDE DEST« (SRCA//Q)/SRCB (unsigned)
DIVO Intitialize for a sequence of divide steps (unsigned)
DIV Perform one-bit step of a divide operation (unsigned)
DIVL Complete a sequence of divide steps (unsigned)
DIVREM Generate remainder for divide operation (unsigned)
\ 08996A 26b
Table 3-2. Compare Instructions

Mnemonic Operation Description
CPEQ IF SRCA = SRCB THEN DEST<~ TRUE

ELSE DEST« FALSE
CPNEQ IF SRCA <> SRCB THEN DEST « TRUE

ELSE DEST « FALSE
CPLT IF SRCA < SRCB THEN DEST« TRUE

ELSE DEST « FALSE
CPLTU IF SRCA < SRCB (unsigned) THEN DEST «- TRUE

ELSE DEST « FALSE
CPLE IF SRCA <= SRCB THEN DEST <~ TRUE

ELSE DEST« FALSE
CPLEU IF SRCA <= SRCB (unsigned) THEN DEST «TRUE

ELSE DEST « FALSE
CPGT IF SRCA > SRCB THEN DEST« TRUE

ELSE DEST « FALSE

- GPGTU IF SRCA > SRCB (unsigned) THEN DEST < TRUE
ELSE DEST « FALSE
(Continued) 08996A 27a

3-32

Table 3-2. Compars Instructions (Continued)

Mnemonic Operation Description
CPGE IF SRCA >= SRCB THEN DEST < TRUE
ELSE DEST « FALSE
CPGEU IF SRCA >= SRCB (unsigned) THEN DEST «TRUE
ELSE DEST « FALSE
CPBYTE IF (SRCA.BYTEO = SRCB.BYTEQ) OR
(SRCA.BYTE1 = SRCB.BYTE1) OR
(SRCA.BYTE2 = SRCB.BYTE2) OR
(SRCA.BYTE3 = SRCB.BYTE3)THEN DEST «TRUE
ELSE DEST « FALSE
ASEQ IF SRCA = SRCB THEN Continue
ELSE Trap (VN)
ASNEQ IF SRCA <> SRCB THEN Continue
ELSE Trap (VN)
ASLT IF SRCA < SRCB THEN Continue
ELSE Trap (VN)
ASLTU IF SRCA < SRCB (unsigned) THEN Continue
ELSE Trap (VN)
ASLE IF SRCA <= SRCB THEN Continue
ELSE Trap (VN)
ASLEU IF SRCA <= SRCB (unsigned) THEN Continue
ELSE Trap (VN)
ASGT IF SRCA > SRCB THEN Continue
ELSE Trap (VN)
ASGTU IF SRCA > SRCB (unsigned) THEN Continue
ELSE Trap (VN)
ASGE IF SRCA >= SRCB THEN Continue
ELSE Trap (VN)
ASGEU IF SRCA >= SRCB (unsigned) THEN Continue
ELSE Trap (VN)

08996A 27b

3.3.3 LOGICAL

The Logical instructions perform a set of bit-by-bit Boolean functions on word-length bit
strings. All instructions in this class set the ALU Status Register. These instructions
are shown in Table 3-3.

3-33

Table 3-3. Logical Instructions

Mnemonic Operation Description
AND DEST « SRCA & SRCB
ANDN DEST « SRCA & ~SRCB
NAND DEST « ~(SRCA & SRCB)
OR DEST « SRCA | SRCB
NOR DEST « ~(SRCA | SRCB)
XOR DEST « SRCA " SRCB
XNOR DEST « ~(SRCA " SRCB)
08996A 28
3.3.4 SHIFT

The Shift instructions (Table 3-4) perform arithmetic and logical shifts. All but the
EXTRACT instruction operate on word-length data and produce a word-length result. The
EXTRACT instruction operates on double-word data and produces a word-length result. If
both parts of the double-word for the EXTRACT instruction are from the same source,
the EXTRACT operation is equivalent to a rotate operation. For each operation, the shift
count is a 5-bit integer, specifying a shift amount in the range of 0 to 31 bits.

Table 3-4. Shift Instructions

Mnemonic Operation Description

SLL DEST < SRCA << SRCB (zero fill) ’
SRL DEST ¢« SRCA >> SRCB (zero fill)

SRA DEST < SRCA >> SRCB (sign fill)

EXTRACT DEST ¢« high-order word of (SRCA// SRCB << FC)

08996A 29

3.3.5 DATA MOVEMENT

The Data Movement instructions (Table 3-5) move bytes, half-words, and words between
processor registers. In addition, they move data between general-purpose registers and
external devices, memories, and the coprocessor.

Table 3-5. Data Movement Instructions

Mnemonic Operation Description
LOAD DEST « EXTERNAL WORD [SRCB]
LOADL DEST « EXTERNAL WORD [SRCB]
assert *LOCK output during access
LOADSET DEST « EXTERNAL WORD [SRCB]
EXTERNAL WORD [SRCB] ¢ h'FFFFFFFF',
assert *LOCK output during access
LOADM DEST.. DEST + COUNT «
EXTERNAL WORD [SRCB] ..
EXTERNAL WORD [SRCB + COUNT - 4]
STORE EXTERNAL WORD [SRCB] «- SRCA
STOREL EXTERNAL WORD [SRCB] « SRCA
assert *LOCK output during access
STOREM EXTERNAL WORD [SRCB] ..
EXTERNAL WORD [SRCB + COUNT « 4] «
DEST.. DEST + COUNT
EXBYTE DEST « SRCB, with low-order byte replaced
by byte in SRCA selected by BP
EXHW DEST « SRCB, with low-order half-word replaced
by half-word in SRCA selected by BP
EXHWS DEST « half-word in SRCA selected by BP,
sign-extended to 32 bits
INBYTE DEST« SRCA, with byte selected by BP replaced
by low-order byte of SRCB
INHW DEST « SRCA, with half-word selected hy BP replaced
by low-order half-word of SRCB
MFSR DEST « SPECIAL
MFTLB DEST « TLB [SRCA]
MTSR SPDEST « SRCB
MTSRIM SPDEST « 0l16
MTTLB TLB [SRCA] < SRCB

08996A 30

3.3.6 CONSTANT

The Constant instructions (Table 3-6) provide the ability to place half-word and word -
constants into registers. Most instructions in the instruction set allow an 8-bit constant
as an operand. The Constant instructions allow the construction of larger constants.

Table 3-6. Constant Instructions

Mnemonic Operation Description
CONST DEST « 0l16
CONSTH Replace high-order half-word of SRCA by 116
CONSTN DEST « 1116
08996A 31

3.3.7 FLOATING-POINT

The Floating-Point instructions (Table 3-7) provide operations on single-precision
(32-bit) or double-precision (64-bit) floating-point data. In addition, they provide
conversions between single-precision, double-precision, and integer number
representations. In the current processor implementation, these instructions cause traps to
routines which perform the floating-point operations.

3.3.8 BRANCH

The Branch instructions (Table 3-8) control the execution flow of instructions. Branch
target addresses may be absolute, relative to the Program Counter (with the offset given
by a signed instruction constant), or contained in a general-purpose register. For
conditional jumps, the outcome of the jump is based on a Boolean value in a
general-purpose register. Procedure calls are unconditional, and save the return address in
a general-purpose register. All branches have a delayed effect; the instruction sequence
following the branch is executed regardless of the outcome of the branch.

3.3.9 MISCELLANEOUS
The Miscellaneous instructions (Table 3-9) perform various operations which cannot be

grouped into other instruction classes. In certain cases, these are control functions
available only to Supervisor-mode programs.

3-36

Table 3-7. Floating-Point Instructions

Mnemonic Operation Description
FADD DEST (single-precision) «- SRCA (single-precision)
+ SRCB (single-precision)
DADD DEST (double-precision) ¢~ SRCA (double-precision)
+ SRCB (double-precision)
FSUB DEST (single-precision) <~ SRCA (single-precision)
— SRCB (single-precision)
DSuUB DEST (double-precision) <~ SRCA (double-precision)
—~ SRCB (double-precision)
FMUL DEST (single-precision) «- SRCA (single-precision)
*» SRCB (single-precision)
DMUL DEST (double-precision) <~ SRCA (double-precision)
+ SRCB (double-precision)
FDIV DEST (single-precision) <~ SRCA (single-precision)/
SRCB (single-precision)
DDIV DEST (double-precision) <~ SRCA (double-precision)/
SRCB (double-precision)
FEQ IF SRCA (single-precision) = SRCB (single-precision)
THEN DEST« TRUE
ELSE DEST < FALSE
DEQ IF SRCA (double-precision) = SRCB (double-precision)
THEN DEST<« TRUE
ELSE DEST ¢« FALSE
FLT IF SRCA (single-precision) < SRCB (single-precision)
THEN DEST ¢ TRUE
ELSE DEST « FALSE
DLT IF SRCA (double-precision) < SRCB (double-precision)
THEN DEST« TRUE
ELSE DEST« FALSE
FGT IF SRCA (single-precision) > SRCB (single-precision)
THEN DEST« TRUE
ELSE DEST« FALSE
DGT IF SRCA (double-precision) > SRCB (double-precision)
THEN DEST« TRUE
ELSE DEST « FALSE
CVINTF DEST (single-precision) <~ SRCA (integer)
CVINTD DEST (double-precision) <~ SRCA (integer)
CVFINT DEST (integer) ¢~ SRCA (single-precision)
CVDINT DEST (integer) «<- SRCA (double-precision)
CVFD DEST (double-precision) <~ SRCA (single-precision)
CVDF DEST (single-precision) <~ SRCA (double-precision) 08996A 32

3-37

Table 3-8. Branch Instructions

Mnemonic Operation Description
CALL DEST« PC//00 + 8
PC «TARGET
Execute delay instruction
CALL! DEST « PC//00 + 8
PC «<SRCB
Execute delay instruction
JMP PC «<TARGET
Execute delay instruction
JMPI PC «SRCB
Execute delay instruction
JMPT IF SRCA = TRUE THEN PC <~ TARGET
Execute delay instruction
JMPTI IF SRCA = TRUE THEN PC < SRCB
Execute delay instruction
JMPF IF SRCA = FALSE THEN PC <~ TARGET
Execute delay instruction
JMPFI IF SRCA = FALSE THEN PC < SRCB
Execute delay instruction
JMPFDEC IF SRCA = FALSE THEN
SRCA«SRCA-1
PC« TARGET
ELSE
SRCA < SRCA-1
Execute delay instruction 08996A 33
Table 3-9. Miscellaneous Instructions
Mnemonic Operation Description
clz Determine number of leading zeros in a word
SETIP Set IPA, IPB, and IPC with operand register-numbers
EMULATE Load IPA and IPB with operand register-numbers, and Trap (VN)
INV Reset all Valid bits in Branch Target Cache to zeros
IRET Perform an interrupt return sequence
IRETINV Perform an interrupt return sequence, and reset all Valid bits
in Branch Target Cache to zeros
HALT Enter Halt mode on next cycle 08996A 34

. 3-38

3.4 DATA FORMATS AND HANDLING

This section describes the various data types supported by the Am29000, and the
mechanisms for accessing data in external devices and memories.The Am29000 includes
provisions for the external access of bytes, half-words, unaligned words, and unaligned
half-words. These accesses are also described in this section.

3.4.1 DATA TYPES

Most Am29000 instructions deal directly with word-length integer data; integers may be
either signed or unsigned, depending on the instruction. Some instructions (e.g. AND)
treat word-length operands as strings of bits. In addition, there is support for character,
half-word, and Boolean data types. Single-precision and double-precision floating- point
data types are defined, but not directly supported by processor hardware.

Byte Operations

The processor supports character data through extraction and insertion operations on
word-length operands, and by a compare operation on byte- length fields within words.
For sequences of characters within words, bytes are ordered either left-to-right or
right-to-left, depending on the BO bit of the Configuration Register (see Section 3.4.3).

The Extract Byte (EXBYTE) instruction replaces the low-order character of a destination
word with an arbitrary byte-aligned character from a source word. For the EXBYTE
instruction, the destination word can be a zero word, which effectively zero-extends the
character from the source operand.

The Insert Byte (INBYTE) instruction replaces an arbitrary byte-aligned character in a
destination word with the low-order character of a source word. For the INBYTE
instruction, the source operand can be a character constant specified by the instruction.

The Compare Bytes (CPBYTE) instruction compares:two word-length operands and gives
a result of TRUE if any corresponding bytes within the operands have equivalent values.
This allows programs to detect characters within words without first having to extract
individual characters, one-at-a-time, from the word of interest.

Half-word Operations
The processor supports half-word data through insertion and extraction operations on
word-length operands. For sequences of half-words within words, half-words are ordered

either left-to-right or right-to-left, depending on the Byte Order (BO) bit of the
Configuration Register (see Section 3.4.3).

3-39

The Extract Half-Word (EXHW) instruction replaces the low-order half- word of a
destination word with either the low-order or high-order half- word of a source word. For
the EXHW instruction, the destination word can be a zero word, which effectively
zero-extends the half-word from the source operand.

The Extract Half-Word, Sign-Extended (EXHWS) instruction is similar to the EXHW
instruction, except that it sign-extends the half-word in the destination word (i.e. it
replaces the most-significant 16 bits of the destination word with the most-significant bit
of the source half-word).

The Insert Half-Word (INHW) instruction replaces either the low-order or high-order
half-word in a destination word with the low-order half-word of a source word.

Boolean Data

Some instructions in the Compare class generate word-length Boolean results. Also,
conditional branches are conditional upon Boolean operands. The Boolean format used by
the processor is such that the Boolean values TRUE and FALSE are represented by a 1 or
0, respectively, in the most-significant bit of a word. The remaining bits are
unimportant: for the compare instructions, they are reset. Note that two’s-complement
negative integers are indicated by the Boolean value TRUE in this encoding scheme.

Floating-point Data

The floating-point format defined for the Am29000 conforms to the IEEE Floating-point
Standard P754.

Single-precision floating-point instructions operate on word-length floating-point
operands. Double-precision floating-point instructions operate on double-word operands.
The processor does not directly support mixed-mode floating-point operations, but
provides for all possible conversions between single-precision floating-point, double-
precision floating-point, and word-length integer data.

By convention, a double-precision floating-point operand is contained in two consecutive
general-purpose registers, beginning on an even-numbered register. The processor does
not enforce this restriction. However, it should be followed for compatibility with future
processor versions. '

3.4.2 EXTERNAL DATA ACCESSES

All processor external accesses occur between general-purpose registers and external
devices and memories. Accesses occur as the result of the execution of load and store
instructions. The load and store instructions specify which general-purpose register
receives the data (for a load) or supplies the data (for a store). The format of the load and
store instructions is shown in Figure 3-29. '

3-40

Addresses for accesses are given either by the content of a general- purpose register or by a
constant value specified by the load or store instruction. The load and store instructions
do not perform address computation directly. Any required address computations are
performed explicitly by other instructions.

31 23 15 7 0
I T U U O D LI LI LI U B I I B
XXXXXXXM CNTL RA RBorl

CE 0899A 35

Figure 3-29. Load/Store Instruction Format

In the load or store instruction, CE (Coprocessor Enable) bit (bit 23) determines whether
or not the access is directed to the coprocessor. If the CE bit is 0, the access is directed to
an external device or memory. If the CE bit is 1, data is transferred to or from the
coprocessor. The CE bit affects the interpretation of the Control (CNTL) field as well as
the channel protocol. Coprocessor accesses are discussed in Chapter 6. This section deals
with all other external accesses.

The format of the instructions which do not perform coprocessor data- transfers (i.e. in
which the CE bit is 0) is shown in Figure 3-30.

31 23 15 7 0
Frirrruri ol L L L
XX XX XXX M0 OPT RA RBorl

i PA L UA 08996A 36
AS SB
Figure 3-30. Non-Coprocessor Load/Store Format
In load and store instructions, the "RB or I" field specifies the address for access. The
address is either the content of a general-purpose register, with register-number RB, or a
constant of a value I (zero-extented to 32 bits). The M bit determines whether the register
or the constant is used.

The data for the access is written into the general-purpose register RA for a load, and is
supplied by register RA for a store.

The definitions for other fields in the load or store instruction are given below:

3-41

Bit 23 : Coprocessor Enable (CE)—The CE bit is 0 for a non-coprocessor load or
store.

Bit 22 : Address Space (AS)—If the AS bit is 0, the access is directed to
instruction/data memory. If the AS bit is 1, the access is directed to input/output.

Bit 21 : Physical Address (PA)—The PA bit may be used by a Supervisor-mode
program to disable address translation for an access. If the PA bit is 1, then address
translation is not performed for the access, regardless of the value of the Physical
Addressing/Data (PD) bit in the Current Processor Status Register. If the PA bit is 0,
address translation depends on the PD bit.

The PA bit may be 1 only for Supervisor-mode instructions. If itis 1 for a User-mode
instruction, a Protection Violation trap occurs,

Bit 20 : Set Byte Pointer (SB)—If the SB bit is 1, the Byte Pointer Register is
written with the two least-significant bits of the address for the access. These address bits
can control subsequent character and half-word operations. If the BP bit is 0, the Byte
Pointer Register is not affected.

Bit 19 : USER Access (UA)—The UA bit allows programs executing in the
Supervisor mode to emulate User-mode accesses. This allows checking of the
authorization of an access requested by a User-mode program.

If the UA bit is 1, the access associated with the instruction is performed in the User
mode, regardless of the value of the Supervisor Mode (SM) bit in the Current Processor
Status Register. In this case, the User mode affects only TLB protection-checking and the
SUP/*US output; it has no effect on the registers which can be accessed by the instruc-
tion. If the UA bit is 0, the program mode for the access is controlled by the SM bit.

Bits 18-16 : Option (OPT)—This field is placed on the OPT0-OPT2 outputs
during the address cycle of the access. There is a one-to-one correspondence between the
OPT field and the OPTO-OPT2 outputs; that is, the most-significant OPT bit is placed
on OPT2, and so on,

In a standard processor configuration, the OPT field controls the width of an external
access, supports the detection of unaligned accesses, and allows the contents of the
instruction read-only memory address-space to be accessed as data. In systems where such
accesses are not important, the OPT field may control external hardware in a
system-dependent fashion.

Bits 15-8 : (RA) The data for the access is written into the general- purpose register
RA for aload, and is supplied by register RA for a store.

Bits 7-0 : (RB or I) In load and store instructions, the “RB or I” field specifies the
address for the access. The address is either the content of a general-purpose register, with

3-42

register-number RB, or a constant value I (zero-extended to 32 bits). The M bit of the
operation code (bit 24) determines whether the register or the constant is used.

Load and store operations are overlapped with the execution of instructions which follow
the load or store instruction. Only one load or store may be in progress on any given
cycle. If a load or store instruction is encountered while another load or store operation is
in progress, the processor enters the Pipeline Hold mode until the first operation
completes. However, the address for the second operation may appear on the Address Bus
if the first operation is to a device or memory which supports pipelined operations (see
Section 5.2.8).

Load Operations

The processor provides the following instructions for performing load operations: Load
(LOAD), Load and Lock (LOADL), Load and Set (LOADSET), and Load Multiple
(LOADM). All of these instructions transfer data from an external device or memory into
one or more general-purpose registers.

The LOADL instruction supports the implementation of device and memory interlocks in
a multi-processor configuration. It activates the *LOCK output during the address cycle
of the access. '

The LOADSET instruction implements a binary semaphore. It loads a general-purpose
register and atomically writes the accessed location with a word which has 1 in every bit
position (that is, the write is indivisible from the read). The *LOCK output is asserted
during both the read and write access. Note that, if address translation is enabled for the
LOADSET instruction, the TLB memory-protection bits must allow both the read and
write access.

The LOADM loads a specified number of registers from sequential addresses, as explained
below.

Load operations are overlapped with the execution of instructions which follow the load
instruction. The processor detects any dependencies on the loaded data which subsequent
instructions may have, and, if such a dependency is detected, enters the Pipeline Hold
mode until the data is returned by the external device or memory. If a register which is
the target of an incomplete load is written with the result of a subsequent instruction, the
processor does not write the returning data into the register when the load completes; the
Not Needed (NN) bit in the Channel Control Register is set in this case.

Store Operations

The processor provides the following instructions for performing store operations: Store
(STORE), Store and Lock (STOREL), and Store Multiple (STOREM). All of these
instructions transfer data from one or more general-purpose registers to an external device

Or memory.

3-43

The STOREL instruction supports the implementation of device and memory interlocks
in a multi-processor configuration. It activates the *LOCK output during the address
cycle of the access.

The STOREM instruction stores a specified number of registers to sequential addresses, as
explained below.

Store operations are overlapped with the execution of instructions which follow the store
instruction. However, no data dependencies exist, since the store prevents any subsequent
accesses until it completes.

Multiple Accesses

Load Multiple (LOADM) and Store Multiple (STOREM) instructions move contiguous
words of data between general-purpose registers and external devices and memories. The
number of transfers is determined by the Load/Store Count Remaining Register.

The Load/Store Count Remaining (CR) field in the Load/Store Count Remaining
Register specifies the number of transfers to be performed by the next LOADM or
STOREM executed in the instruction sequence. The CR field is in the range of 0 to 255,
and is zero-based: a count value of O represents one transfer, and a count value of 255
represents 256 transfers. The CR field also appears in the Channel Control Register.

Before a LOADM or STOREM is executed, the CR field is set by a Move To Special
Register, A LOADM or STOREM uses the most recently written value of the CR field.
If an attempt is made to alter the CR field, and the Channel Control Register contains
information for an external access which has not yet completed, the processor enters the
Pipeline Hold mode until the access completes. Since the CR is set independently of the
LOADM and STOREM, the CR field may represent valid state of an interrupted program
even if the Contents Valid (CV) bit of the Channel Control Register is 0.

Note: Because of the pipelined implementation of LOADM and STOREM, at least one
instruction (e.g. the instruction which sets the CR field) must seperate two successive
LOADM and/or STOREM instructions.

After the CR field is set, the execution of a LOADM or STOREM begins the data
transfer. As with any other load or store operation, the LOADM or STOREM waits until
any pending load or store operation is complete before starting. The LOADM instruction
specifies the starting address and starting destination general-purpose register. The
STOREM instruction specifies the starting address and the starting source general-purpose
register.

During the execution of the LOADM or STOREM instruction, the processor updates the
address and register-number after every access, incrementing the address by four and the

3-44

register-number by 1. This continues until either all accesses are completed or an
interrupt or trap is taken.

For a load-multiple or store-multiple address sequence, addresses wrap from the largest
possible value (hexadecimal FFFFFFFF) to the smallest possible value (hexadecimal
00000000).

The processor increments absolute register-numbers during the load-multiple or
store-multiple sequence. Absolute register-numbers wrap from 127 to 128, and from 255
to 128. Thus, a sequence which begins in the global registers may transition to the local
registers, but a sequence which begins in the local registers remains in the local registers.
Also, note that the local registers are addressed circularly.

The normal restrictions on register accesses apply for the load-multiple and store-multiple
sequences. For example, if a protected general- purpose register is encountered in the
sequence for a User-mode program, a Protection Violation trap occurs.

Intermediate addresses are stored in the Channel Address Register, and register-numbers are
stored in the Target Register (TR) field of the Channel Control Register. For the
STOREM instruction, the data for every access is stored in the Channel Data Register
(this register is also set during the execution of the LOADM instruction, but has no
interpretation in this case). The CR field is updated on the completion of every access, so
that it indicates the number of accesses remaining in the sequence.

Load-multiple and store-multiple operations are indicated by the Multiple Operation (ML)
bit in the Channel Control Register. This bit may be 1 even though the CR field has a
value of zero (indicating that one transfer remains to be performed). The ML bit is used
to restart a multiple operation on an interrupt return; if it is set independently by a Move
To Special Register before a load or store instruction is executed, the results are
unpredictable.

While a multiple load or store is executing, the processor is in the Pipeline Hold mode,
suspending any subsequent instruction execution until the multiple access completes. If
an interrupt or trap is taken, the Channel Address, Channel Data, and Channel Control
registers contain the state of the multiple access at the point of interruption. The
multiple access may be resumed at this point, at a later time, by an interrupt return.

The processor attempts to complete multiple accesses using the burst-mode capability of
the channel (see Section 5.2.9). If the burst is preempted, the processor retransmits the
address at the point of preemption. If the external device or memory cannot support
burst-mode accesses, the processor transmits an address for every access. If the address
sequence causes a virtual page-boundary crossing, the processor preempts the burst-mode
access, translates the address for the new page, and re-establishes the burst-mode access
using the new physical address.

Option Bits

The Option field in the load and store instructions supports system functions which have
no direct hardware support in the processor, such as variable-length data accesses. The
standard definition of this field for a load or store, depending on the AS bit of the
instruction, is as follows:

AS OPT2 OPTI OPT0 Meaning

x 0 0 0 Word-length access

X 0 0 1 Byte access

X 0 1 0 Half-word access

X 0 1 1 24-bit access

0 1 0 0 Instruction ROM access (as data)
— all others — reserved

The processor enforces the above interpretation only if the Trap Unaligned Access (TU)
bit of the Current Processor Status Register is 1. If unaligned accesses, or any other

access defined by the OPT field, are not supported by the system, this field may have any
user-defined interpretation in system hardware.

Note that non-standard uses of the OPT bits have an implication on the portability of
software between different systems. Non-standard uses of this field should be restricted to
control-program routines, to maintain application-software compatibility. In any event, a
value of 000 for the OPT field should be defined to have no special effect on an access.

3.4.3 ADDRESSING AND ALIGNMENT
Address Spaces-
External instructions and data are contained in one of four, 32-bit address-spaces:

1) Instruction/Data Memory.

2) Input/Output.

3) Coprocessor.

4) Instruction Read-Only Memory (Instruction ROM).

An address in the Instruction/Data Memory address-space may be treated as virtual or
physical, as determined by the Current Processor Status Register. Address translation for
data accesses is enabled separately from address translation for instruction accesses. A
program in the Supervisor mode may temporarily disable address translation for individual
loads and stores; this permits load-real and store-real operations.

3-46

It is possible to partition physical instruction and data addresses into two, separate
physical address-spaces. However, virtual instruction and data addresses appear in the
same virtual address-space (i.e instruction/data memory).

The Coprocessor address-space is not an address-space in the strictest sense. The
Coprocessor address-space is defined so that transfers of operands and operation codes to
the coprocessor do not interfere with other external devices and memories.

The processor does not directly support the access of the Instruction ROM address-space
using loads and stores; this capability is defined as a system option.

- For data accesses, bits contained in load and store instructions distinguish between the
instruction/data memory, input/output and coprocessor address-spaces.

For instruction fetches, the ROM Enable (RE) bit of the Current Processor Status
Register distinguishes between the instruction/data and instruction ROM address-spaces.

Byte and Half-word Addressing

The Am29000 generates word-oriented byte addresses for accesses to external devices and
memories. Addresses are word-oriented because loads, stores, and instruction fetches
access words. However, addresses are byte addresses because they are sufficient to select
bytes within accessed words. For load and store operations, the processor provides means
for using the least-significant address bits to access bytes and half-words within external
words. ‘

The selection of a byte within a word is determined by the two least- significant bits of an
address, and the Byte Order (BO) bit of the Configuration Register. The selection of a
half-word within a word is determined by the next-to-least significant bit of an address,
and the BO bit. Figure 3-31 illustrates the addressing of bytes and half-words when the
BO bit is 0, and Figure 3-32 illustrates the addressing of bytes and half-words when the
BO bitis 1. In Figures 3-31 and 3-32, addresses are represented in hexadecimal notation.

In the processor, the two least-significant bits of an external address are reflected in the
Byte Pointer (BP) field of the ALU Status Register. The BO bit affects only the
interpretation of the BP field.

If the BO bit is 0, bytes are ordered within words such that a 00 in the BP field selects the
high-order byte of a word, and a 11 selects the low-order byte. If the BO bit is 1, a 00 in
the BP field selects the low-order byte of a word and a 11 selects the high-order byte.

If the BO bit is 0, half-words are ordered within words such that a O in the
most-significant bit of the BP field selects the high-order half- word, and a 1 selects the
low-order half-word. If the BO bit is 1, a 0 in the most-significant bit of the BP field
selects the low-order half- word of a word, and a 1 selects the high-order half-word. Note
that, since the least-significant bit of the BP field does not participate in the selection of

3-47

half-words, that the alignment of half-words is forced to half-word boundaries in this case,

Byte and Half-word Accesses

The processor allows the Byte Pointer Register to be set with the least- significant bits of
an address specified by any load or store instruction, except those which transfer
information to and from the coprocessor. The byte and half-word insert and extract
instructions can then be used to manipulate the byte or half-word of interest, after the
external word has been accessed. This provides a general-purpose mechanism for
manipulating external byte and half-word quantities, without the need for external
hardware support.

To load a byte or half-word, a load is first performed. This load sets the BP field with the
two least-significant bits of the address. A subsequent EXBYTE, EXHW, or EXHWS
instruction extracts the byte or half- word of interest from the accessed word.

31 23 15 7 0
rrrrrv1irrrrrer’rrrrrrrrrrrrrrerriirld
Word 00000000
Half-Word 00000000 Half-Word 00000002
Byte 00000000 Byte 00000001 Byte 00000002 Byte 00000003
rtrr1rrrrrrrirrrrrrrrrrrrrrrrrriyorTd
Word 00000004
Half-Word 00000004 Half-Word 00000006
Byte 00000004 Byte 00000005 Byte 00000006 Byte 00000007
IllIIIlIIII‘IIIfIrIIIIIIIIIIIIII
Word FFFFFFF8
Half-Word FFFFFFF8 Half-Word FFFFFFFA
Byte FFFFFFF8 Byte FFFFFFFQ Byte FFFFFFFA Byte FFFFFFFB
rrrrrrrerrrrrrrrrererrrrrrrrr1rrrurit

Word FFFFFFFC '
Half-Word FFFFFFFC Half-Word FFFFFFFE
Byte FFFFFFFC Byte FFFFFFFD Byte FFFFFFFE Byte FFFFFFFF
08996A 47

Figure 3-31. Byte and Half-Word Addressing with BO=0

3-48

To store a byte or half-word, a load is first performed, setting the BP field with the two
least-significant bits of the address. A subsequent INBYTE or INHW instruction inserts

the byte or half-word of interest into the accessed word, and the resulting word is then
stored.

External Hardware Support for Byte and Half-word Accesses

Load and store instructions contain an Option (OPT) field which is transmitted on the
OPTO-OPT?2 outputs during the address cycle of a load or store. The OPT field has a
standard definition which indicates the data length for an access. This field may be used in
conjunction with the two least-significant address bits to implement byte and half- word
manipulation in user-defined external hardware. '

31 23 15 7 0
rrrrryrrrrrrorrrrrrrreriyrovrirrriiriyihi
Word 00000000

Half-Word 00000002 Half-Word 00000000

Byte 00000003 Byte 00000002 Byte 00000001 Byte 00000000

rrrrrrerrrrierrertrtrertrtierrtryrtrtrenrird
Word 00000004

Half-Word 00000006 Half-Word 00000004
Byte 00000007 Byte 00000006 Byte 00000005 Byte 00000004

rrrrrrerrrrrrrerrrrrtrrerirtihrryrrirTiiTrd
Word FFFFFFF8

Halt-Word FFFFFFFA Half-Word FFFFFFF8

Byte FFFFFFFB Byte FFFFFFFA Byte FFFFFFFO Byte FFFFFFF8

rrrrrirrrrrrirrrrrrrrrrtrrrrirevyrrnid
Word FFFFFFFC

Half-Word FFFFFFFE Half-Word FFFFFFFG
Byte FFFFFFFF Byte FFFFFFFE Byte FFFFFFFD Byte FFFFFFFC

08996A 48

Figure 3-32. Byte and Half-Word Addressing with BO =1

3-49

Itis important to insure that the performance advantage of external hardware for byte and
half-word accesses justifies the hardware and performance costs. Compared to the basic
processor mechanism for byte and half-word accesses described above, external hardware
can reduce the time required for byte and half-word loads by, at best, one cycle. However,
there is most likely no reduction, because of the delay in the external alignment hardware.
The improvement for byte and half-word stores is more significant, since external
hardware can eliminate the extra load required by the basic processor mechanism.
However, byte and half-word stores are relatively rare in many systems.

External hardware for byte and half-word accesses can be expected to slow all external
accesses, since it appears in the critical memory- access path. Thus, the performance
advantages of this hardware is at least partially offset by the negative impact on all
accesses. When the hardware costs are also considered, it is likely that this hardware is
justified only in special cases, where byte and/or half-word accesses are relatively frequent.

Alighment of Words and Half-words

Since only byte addressing is supported, it is possible that an address for the access of a
word or half-word is not aligned to the desired word or half-word. The Am29000 either
ignores or forces alignment in most cases. However, some systems may require that
unaligned accesses be supported, for compatibility reasons. Because of this, the
Am29000 provides an option which creates a trap when a non-aligned access is attempted.
This trap allows software emulation of the non-aligned accesses, in a manner which is
appropriate for the particular system.

The detection of unaligned accesses is activated by a 1 in the Trap Unaligned Access (TU)
bit of the Current Processor Status Register. Unaligned-access detection is based on the
data length as indicated by the OPT field of a load or store instruction, and on the two
least- significant bits of the specified address. Only addresses for instruction/data memory
accesses are checked; alignment is ignored for input/output accesses and coprocessor
transfers.

An Unaligned Access trap occurs only if the TU bit is 1 and any of the following
combinations of OPT field and address bits is detected for a load or store to
instruction/data memory:

OPT2 OPT1 OPT0 Al AQ

0 0 0 1 0 Unaligned

0 0 0 0 1 word access

0 0 0 1 1

0 1 0 0 1 Unaligned

0 1 0 1 1 half-word access

3-50

The trab handler for the Unaligned Access trap is responsible for generating the correct
sequence of aligned accesses and performing any necessary shifting, masking and/or
merging. Note that virtual page-boundary crossing may have to be considered, also.

Alighment of Instructions

In the Am29000, all instructions are 32-bits in length, and are aligned on word-address
boundaries. The processor’s Program Counter is 30 bits in length, and the least-significant
two bits are always 00 for processor-generated instruction addresses. An unaligned address
can be generated by indirect jumps and calls. However, alignment is ignored by the
processor in this case, and it expects the system to force alignment (i.e., by interpreting the
two least-significant address bits as 00, regardless of their values).

Accessing Instructions as Data

To aid the external access of instructions and data on separate buses, the processor
distinguishes between instruction and data accesses. However, it does not support a logical
distinction between instruction and data address-spaces (except in the case of instruction
read-only memory). In particular, address translation in the Memory Management Unit is in
no way affected by this distinction (although memory protection is).

In systems where it is necessary to access instructions as data, this function should be
performed via the shared address-space. The OPT field provides for accessing instructions in
the instruction read-only memory address-space; however, this should be unnecessary in
most systems.

3.5 INTERRUPTS AND TRAPS

Interrupts and traps cause the Am29000 to suspend the execution of an instruction sequence
and begin the execution of a new sequence. The processor may or may not later resume the
execution of the original instruction sequence.

The distinction between interrupts and traps is largely one of causation and enabling.
Interrupts allow external devices and the Timer Facility to control processor execution, and
are always asynchronous to program execution. Traps are intended to be used for certain
exceptional events which occur during instruction execution, and are generally synchronous
to program execution.

Throughout this manual a distinction is made between the point at which an interrupt or
trap occurs and the point at which it is taken. An interrupt or trap is said to occur when all
conditions which define the interrupt or trap are met. However, an interrupt or trap which
occurs is not necessarily recognized by the processor, either because of various enables, or
because of the processor’s operational mode (e.g. Halt mode). An interrupt or trap is taken
when the processor recognizes the interrupt or trap and alters its behavior accordingly.

3-51

3.5.1 INTERRUPTS

Interrupts are caused by signals applied to any of the external inputs *INTRO—*INTR3, or
by the Timer Facility (see Section 7.2.7). The processor may be disabled from taking
certain interrupts by the masking capability provided by the Disable All Interrupts and Traps
(DA) bit, Disable Interrupts (DI) bit, and Interrupt Mask (IM) field in the Current Processor
Status Register.

The DA bit disables all interrupts and most traps. The DI bit disables external interrupts
without affecting the recognition of traps and Timer interrupts. The 2-bit IM field
selectively enables external interrupts as follows:

IM Value Result
00 *INTRO enabled
01 *INTRO—*INTR1 enabled
10 *INTRO-*INTR?2 enabled
11 *INTRO—*INTR3 enabled

Note that the *INTRO interrupt cannot be disabled by the IM field. Also, note that no
external interrupt is taken if either the DA or DI bit is 1. The Interrupt Pending bit in the
Current Processor Status indicates that one or more of the signals *INTRO-*INTR3 is

active, but that the corresponding interrupt is disabled due to the value of either DA, DI, or
IM.

3.5.2 TRAPS

Traps are caused by signals applied to one of the inputs *TRAPO-*TRAPI1, or by
exceptional conditions such as protection violations. Except for the Instruction Access
Exception, Data Access Exception, and Coprocessor Exception traps, traps are disabled by
the DA bit in the Current Processor Status; a 1 in the DA bit disables traps, and a 0 enables
traps. It is not possible to selectively disable individual traps.

3.5.3 WAIT MODE

A wait-for-interrupt capability is provided by the Wait mode. The processor is in the Wait
mode whenever the Wait Mode (WM) bit of the Current Processor Status is 1. While in
Wait mode, the processor neither fetches nor executes instructions, and performs no external
accesses. The Wait mode is exited when an interrupt or trap is taken.

Note that the processor can take only those interrupts or traps for which it is enabled, even
in the Wait mode. For example, if the processor is in the Wait mode with a DA bit of 1, it
can leave the Wait mode only via the Reset mode (see Section 3.8) or a *WARN trap (see
Section 3.5.6).

3-52

3.5.4 VECTOR AREA

Interrupt and trap processing relies on the existence of a user-managed Vector Area in
external instruction/data memory or instruction read-only memory (instruction ROM). The
Vector Area begins at an address specified by the Vector Area Base Address Register, and
provides for as many as 256 different interrupt and trap handling routines. The processor
reserves 32 routines for system operation and 32 routines for Floating-Point MULTIPLY
and DIVIDE instruction emulation. The number and definition of the remaining 192
possible routines are system-dependent,

The Vector Area has one of two possible structures as determined by the Vector Fetch (VF)
bit in the Configuration Register. The first structure, as described below, requires less
external memory than the second, but imposes the performance penalty of the vector table
lookup.

If the VF bit is 1, the structure of the Vector Area is a table of vectors in instruction/data
memory. The layout of a single vector is shown in Figure 3-33. Each vector gives the
beginning word-address of the associated interrupt or trap handling routine, and specifies, by
the R bit, whether the routine is contained in instruction/data memory (R = 0) or instruction
ROM R =1).

If the VF bit is 0, the structure of the Vector Area is a segment of contiguous blocks of
instructions in instruction/data memory or instruction ROM. The ROM Vector Area (RV)
bit of the Configuration Register determines whether the Vector Area is in instruction/data
memory (RV = 0) or instruction ROM (RV = 1). A 64-instruction block contains exactly
one interrupt or trap handling routine, and blocks are aligned on 64-instruction address
boundaries.

31 23 15 7 0
| I N U T T N N N N T N N N O N N N N B D IO I I BN B
Handler Starting Address v R]0O

08996A 37
Figure 3-33. Vector Table Entry

Vector Numbers

When an interrupt or trap is taken, the processor determines an 8-bit vector number
associated with the interrupt or trap. The vector number gives either the number of a vector
table entry or the number of an instruction block, depending on the value of the VF bit. If
the VF bit is 1, the physical address of the vector table entry is generated by replacing bits
9-2 of the value in the Vector Area Base Address Register with the vector number. If the VF
bit is 0, the physical address of the first instruction of the handling routine is generated by
replacing bits 15-8 of the value in the Vector Table Base Address Register with the vector
number.

Vector numbers are either predefined, or specified by an instruction causing the trap. The

3-83

assignment of vector numbers is shown in Table 3-10. Vector numbers 64 to 255 are for
use by trapping instructions; the definition of the routines associated with these numbers is

system-dependent.

Number

VOO NTAANDBEWN=O

22-31

32
33

35
. 36
37
38
39
40
41
42
43

45

Table 3-10. Vector Number Assignments

Type of Trap or Interrupt

Tllegal Opcode
Unaligned Access
Out of Range

. Coprocessor Not Present

Coprocessor Exception

Protection Violation

Instruction Access Exception

Data Access Exception

User-Mode Instruction TLB Miss
User-Mode Data TLB Miss
Supervisor-Mode Instruction TLB Miss
Supervisor-Mode Data TLB Miss
Instruction TLB Protection Violation
Data TLB Protection Violation
Timer

Trace

*INTRO

*INTR1

*INTR2

*INTR3

*TRAPO

*TRAP1

reserved

MULTIPLY
DIVIDE
reserved -
reserved
CVINTF
CVINTD
CVFINT
CVDINT
CVFD
CVDF
FEQ
DEQ
FGT
DGT

3-54

Table 3-10. Vector Number Assignments (Continued)

Number Type of Trap or Interrupt
46 FLT
47 DLT
48 FADD
49 DADD
50 FSUB
51 DSUB
52 FMUL
53 DMUL
54 FDIV
55 DDIV
56-63 reserved
64-255 Assert and EMULATE instruction traps

(vector number specified by instruction)

3.5.5 INTERRUPT AND TRAP HANDLING

Interrupt and trap handling consists of two distinct operations: taking the interrupt or trap,
and returning from the interrupt or trap handler. If the interrupt or trap handler returns
immediately to the interrupted routine, the interrupt or trap handler need not save and restore
the processor state.

Taking An Interrupt or Trap

The following operations are performed in sequence by the processor when an interrupt or
trap is taken:

1) Instruction execution is suspended.
2) Instruction fetching is suspended.

3) Any in-progress load or store operation is completed. Any additional operations
are cancelled in the case of load-multiple and store-multiple.

4) The contents of the Current Processor Status Register are copied into the Old
Processor Status Register.

5) The Current Processor Status register is modified as shown in Figure 3-34 (the
value “u” means unaffected). Note that setting the Freeze (FZ) bit freezes the
Channel Address, Channel Data, Channel Control, Program Counter 0, Program
Counter 1, Program Counter 2, and ALU Status Registers.

3-55

6) The address of the first instruction of the interrupt or trap handler is determined. If
the VF bit of the Configuration Register is 1, the address is obtained by fetching a
vector from instruction/data memory, using the physical address obtained from the
Vector Area Base Address Register and the vector number. If the VF bit is 0, the
instruction address is given directly by the Vector Area Base Address Register and
the vector number.

7) If the VF bit is 1, the R bit in the vector fetched in step 6 is copied into the RE
bit of the Current Processor Status Register, If the VF bit is 0, the RV bit of the
Configuration Register is copied into the RE bit. This step determines whether or
not the first instruction of the interrupt handler is in instruction ROM.

8) An instruction fetch is initiated using the instruction address determined in step 6.
At this point, normal instruction execution resumes.

31 23 15 7 0
11 11T rrrrrrroenrunri Bl
00000000DO0O0OO0COUOOO Ojululojojofl1iOjujof1ft1}1]u uli}t1
T E:E!E!E!E:E: H 52
Reserved i iTPIFZIREIPDiSM M DA
08996A 38 . CA TE TU LK WM Pl DI

Figure 3-34. Current Processor Status After an Interrupt or Trap

Note that the processor does not explicitly save the contents of any registers when an
interrupt is taken. If register saving is required, it is the responsibility of the interrupt or
trap handling routine. For proper operation, registers must be saved before any further
interrupts or traps may be taken.

Returning From an Interrupt or Trap

Two instructions are used to resume the execution of an interrupted program: Interrupt
Return (IRET), and Interrupt Return and Invalidate (IRETINV). These instructions are
identical except in one respect: the IRETINV instruction resets all Valid bits in the Branch
Target Cache, whereas the IRET instruction does not affect the Valid bits.

In some situations, the processor state must be properly set by software before the interrupt
return is executed. The following is a list of operations normally performed in such cases:

1) The Current Processor Status is configured as shown in Figure 3-35 (the value “x”
is a don’t care). Note that setting the FZ bit freezes the registers listed below so
that they may be set for the interrupt return.

2) The Oid Processor Status is set to the value of the Current Processor Status for
the target routine.

3) The Channel Address, Channel Data, and Channel Control registers are set to
restart or resume uncompleted channel operations of the target routine.

3-56

4) The Program Counter 1 and Program Counter 0 registers are set to the addresses of
the first and second instructions, respectively, to be executed in the target routine.

5) Other registers are set as required. These may include registers such as the ALU
Status, Q, and so forth, depending on the particular situation. Some of these
registers are not affected by the FZ bit, so they must be set in such a2 manner that
they are not modified unintentionally before the interrupt return.

31 23 15 7 0
Frrtrrrtrrrrreind]
00000000O00O0O0OOU O Ofxix|O]Ofx|{t|x|x|{O]ift]1fx x]1]1
' J‘E"":‘z‘:‘::i:

~"

Reserved ~ {Pi{TPiFZiRE{PD|{SM M ;DA
08996A 39 CATE TU LK WM PI DI

- Flgure 3-35. Current Procassor Status Before Interrupt Return

Once the processor registers are properly configured, as described above, an interrupt return
instruction performs the remaining steps necessary to return to the target routine. The
following operations are performed by the interrupt return instruction:

1) Any in-progress load or store operation is completed. If a load-multiple or
store-multiple sequence is in progress, the interrupt return is not executed until the
sequence completes.

2) Interrupts and traps are disabled, regardless of the settings of the DA, DI, and IM
fields of the Current Processor Status, for steps 3 through 10.

3) If the interrupt return instruction is an IRETINV, all Valid bits in the Branch
Target Cache are reset.

4) The contents of the Old Processor Status Register are copied into the Current
Processor Status Register. This normally resets the FZ bit allowing the Program
Counter 0, 1, 2, Channel Address, Data, Control, and ALU Status registers to
update normally. Since certain bits of the Current Processor Status Register are
always updated by the processor, this copy operation may be irrelevant for certain
bits (i.e., the Interrupt Pending bit).

5) If the Contents Valid (CV) bit of the Channel Control Register is 1, and the Not
Needed (NN) and Multiple Operation (ML) bits are both 0, an external access is
started. This operation is based on the contents of the Channel Address, Channel
Data, and Channel Control registers. The Current Processor Status Register
conditions the access—as is normally the case. Note that load-multiple and
store-multiple operations are not restarted at this point.

6) The address in Program Counter 1 is used to fetch an instruction. The Current
Processor Status Register conditions the fetch. This step is treated as a branch in

3-57

the sense that the processor searches the Branch Target Cache for the target of the
fetch.

7) The instruction fetched in step 6 enters the decode stage of the pipeline.

8) The address in Program Counter O is used to fetch an instruction. The Current
Processor Status Register conditions the fetch. This step is treated as a branch in
the sense that the processor searches the Branch Target Cache for the target of the
fetch.

9) The instruction fetched in step 6 enters the execute stage of the pipeline, and the
instruction fetched in step 8 enters the decode stage.

10) If the CV bit in the Channel Control Register is a 1, the NN bit is O, and the ML
bit is 1, a load-multiple or store-multiple sequence is started, based on the
contents of the Channel Address, Channel Data, and Channel Control registers.

11) Interrupts and traps are enabled per the appropriate bits in the Current Processor
Status Register.

12) The processor resumes normal operation.
Fast Interrupt Processing

The registers affected by the FZ bit of the Current Processor Status Register are those which
are modified by almost any usual sequence of instructions. Since the FZ bit is set by an
interrupt or trap, the interrupt or trap handler is able to execute while not disturbing the state
of the interrupted routine, though its execution is somewhat restricted. Thus, it is not
necessary in many cases for the interrupt or trap handler to save the registers which are
affected by the FZ bit.

The processor provides an additional benefit if the Program Counter 0 and Program Counter
1 Registers are not modified by the interrupt or trap handler. If Program Counters 0 and 1
contain the addresses of sequential instructions when an interrupt or trap is taken, and if they
are not modified before an interrupt return is executed, step 8 of the interrupt return sequence
above occurs as a sequential fetch—instead of a branch—for the interrupt return. The
performance impact of a sequential fetch in normally less than that of a non-sequential fetch.

Because the registers affected by the FZ bit are sometimes required for instruction execution,
it is not possible for the interrupt or trap handler to execute all instructions, unless the
required registers are first saved elsewhere (e.g. in one or more global registers). Most of the
restrictions due to register dependencies are obvious (e.g. the Byte Pointer for byte extracts),
and will not be discussed here. Other, less obvious restrictions are listed below:

1) Load Multiple and Store Multiple. The Channel Address, Channel Data, and
Channel Control registers are used to sequence load-multiple and store-multiple
operations, so these instructions cannot be executed while the registers are frozen.
However, note that other external accesses may occur; the Channel Address,

3-58

Channel Data, and Channel Control registers are required only to restart an access
after an exception, and the interrupt or trap handler is not expected to encounter
any exceptions.

2) Loads and stores which set the Byte Pointer. If the Set Byte Pointer (SB) of a
load or store instruction is 1, and the FZ bit is also 1, there is no effect on the
Byte Pointer. Thus, the execution of external byte and half-word accesses using
this mechanism is not possible.

3) Extended arithmetic. The Carry bit of the ALU Status Register is not updated
- while the FZ bit is 1.

4) Divide instructions. The Divide Flag of the ALU Status Register is not updated
when the FZ bit is 1.

If the interrupt or trap handler does not save the state of the interrupted routine, it cannot
allow additional interrupts and traps. Also, the operation of the interrupt or trap handler
cannot depend on any trapping instructions (e.g. Floating-Point instructions, illegal
operation codes, arithmetic overflow, etc.), since these are disabled. There are certain cases,
however, where traps are unavoidable; these are discussed in Section 3.5.9.

3.5.6 *"WARN TRAP

The processor recognizes a special trap, caused by the activation of the *WARN input,
which cannot be masked. The *WARN trap is intended to be used for severe system-error or
deadlock conditions. It allows the processor to be placed in a known, operable state, while
preserving much of its original state for error reporting and, possibly, recovery. Therefore,
it shares some features in common with the Reset mode as well as features common to
other traps described in this section.

The major differences between the ¥*WARN trap and other traps are:

1) The processor does not wait for an in-progress external access to complete before
taking the trap, since this access might not complete. However, the information
related to any outstanding access is retained by the Channel Address, Channel
Data, and Channel Control registers when the trap is taken.

2) The vector fetch operation is not performed, regardless of the VF bit of the
Configuration Register, when the *WARN trap is taken. The ROM Enable (RE)
bit in the Current Processor Status is set, and instruction fetching begins
immediately at address 16 in the instruction ROM. The trap handler can execute
directly from the instruction ROM without the need to access external (and
possibly non-functional or invalid) instruction/data memory.

3) The *WARN trap sets the Current Processor Status Register as for the Reset
Mode (see Figure 3-39, Section 3.8) rather than as for other traps (see Figure
3-34, Section 3.5.5). However, before the Current Processor Status Register is
set, its contents are copied to the Old Processor Status Register, as for other traps;
this is not the case for the Reset mode.

3-59

Note that *WARN trap may disrupt the state of the routine which is executing when it is
taken, prohibiting this routine from being restarted.

3.5.7 SEQUENCING OF INTERRUPTS AND TRAPS

On every cycle, the processor decides either to execute instructions or to take an interrupt or
trap. Since there are multiple sources of interrupts and traps, more than one interrupt or trap
may be pending on a given cycle.

To resolve conflicts, interrupts and traps are taken according to the priority shown in Table
3-11. In this table, interrupts and traps are listed in order of decreasing priority. This
section discusses the first three columns of Table 3-11. The last two columns are discussed
in Section 3.5.8.

In Table 3-11, interrupts and traps fall into one of two categories depending on the timing of
their occurrence relative to instruction execution. These categories are indicated in the third
column of the table by the labels ‘inst” and “async.” These labels have the following
meaning:

1) Inst-—generated by the execution or attempted execution of an instruction.

2) Async—generated asynchronous to and independent from the instruction being
executed, although it may be a result of an instruction previously executed.

The principle for interrupt and trap sequencing is that the highest priority interrupt or trap is
taken first. Other interrupts and traps remain active until they can be taken, or are
regenerated when they can be taken. This is accomplished, dependmg on the type of
interrupt or trap, as follows:

1) All traps in Table 3-11 with priority 13 or 14 are regenerated by the re-execution
of the causing instruction.

2) Most of the interrupts and traps of priority 4 through 12 must be held by external
hardware until they are taken. The exceptions to this are listed in 3) below.

3) The exceptions to 2) above are the Data Access Exception trap, the Coprocessor
Exception trap, the Timer interrupt, and the Trace trap. These are caused by bits
in various registers in the processor and are held by these registers until taken or
cleared. The relevant bits are: the Transaction Faulted (TF) bit of the Channel
Control Register for Data Access Exception and Coprocessor Exception traps, the
Interrupt (IN) bit of the Timer Reload Register for Timer interrupts, and the Trace
Pending (TP) bit of the Current Processor Status Register for Trace traps.

4) All traps of priority 2 and 3 in Table 3-11, except for the Unaligned Access trap,

are not regenerated. These traps are mutually exclusive, and are given high
priority because they cannot be regenerated; they must be taken if they occur. If

3-60

one of these traps occurs at the same time as a reset or *WARN trap, it is not
taken, and its occurrence is lost.

5) The Unaligned Access trap is regenerated internally when an external access is
restarted by the Channel Address, Channel Data, and Channel Control registers.
Note that this trap is not necessarily exclusive to the traps discussed in 4) above.

Table 3-11. Interrupt and Trap Priority Table

PRIORITY 'TYPE OF INTERRUPT OR TRAP INST/ASYNC | PC1 |Channel Regs
1 (highest) | *WARN async next | see Note 1
User-Mode Data TLB Miss inst next all
2 Supervisor-Mode Data TLB Miss inst next all
Data TLB Protection Violation inst next all
Unaligned Access inst next all
Coprocessor Not Present inst next all
Out of Range inst next N/A
3 Assert Instructions inst next N/A
Floating-Point Instructions inst next N/A
MULTIPLY inst next N/A
DIVIDE inst next N/A
EMULATE inst next N/A
4 Data Access Exception async next all
Coprocessor Exception async next all
5 *TRAPO async next multiple
6 *TRAP1 async next multiple
7 *INTRO async next multiple
8 *INTR1 async next multiple
9 *INTR2 async next multiple
10 *INTR3 async next multiple
11 Timer async next multiple
12 Trace async next multiple
User-Mode Instruction TLB Miss inst curr N/A
13 Supervisor-Mode Instr. TLB Miss inst curr N/A
Instruction TLB Protection Violation inst curr N/A
Instruction Access Violation inst curr N/A
14 lllegal Opcode inst curr N/A
(lowest) Protection Violation inst curr N/A
08996A 40

Notel: The Channel Address, Channel Data, and Channel Control registers are set for a

*WARN trap only if an external access is in progress when the trap is taken,

3-61

3.5.8 EXCEPTION REPORTING AND RESTARTING

When an instruction encounters an exceptional condition, the Program Counter 0, Program
Counter 1, and Program Counter 2 registers report the relevant instruction address(es), and
allow the instruction sequence to be restarted once the exceptional condition has been

remedied (if possible). Similarly, when an external access or coprocessor transfer encounters
an exceptional condition, the Channel Address, Channel Data, and Channel Control registers

report information on the access or transfer, and allow it to be restarted. This section
describes the interpretation and use of these registers.

Instruction Exceptions

The “PC1” column in Table 3-11 describes the value held in the Program Counter 1
Register (PC1) when the interrupt or trap is taken, For traps in the “inst” category, PC1
contains either the address of the instruction causing the trap, indicated by “curr,” or the
address of the instruction following the instruction causing the trap, indicated by “next”.

For interrupts and traps in the “async” category, PC1 contains the address of the first
instruction which was not executed due to the taking of the interrupt or trap. This is the
next instruction to be executed upon interrupt return, as indicated by “next” in the PC1
column. :

For traps caused by the execution of an instruction (for example, the Out of Range trap), the
Program Counter 2 Register contains the address of the instruction causing the trap. In all
of these cases, PC1 is in the “next” category.

The traps associated with instruction fetches (i.e. those of priority 13) occur only if the
processor attempts the execution of the associated instruction. An exception may be
detected during an instruction prefetch, but the associated trap does not occur if a
non-sequential fetch occurs before the processor attempts the execution of the invalid
instruction. This prevents the spurious indication of instruction exceptions.

Data Exceptions

The “Channel Regs” column of Table 3-11 indicates the cases for which the Channel
Address, Channel Data, and Channel Control registers contain information related to an
external access or coprocessor transfer (these registers are collectively termed “channel
registers” in the following discussion). For the cases indicated, the access or transfer did not
complete because of some exceptional condition. Note that the Channel Data Register
contains relevant information only in the case of a store.

For the *WARN trap, the channel registers are valid only if a load or store were in progress
when the trap was taken, Recall that the *WARN trap does not wait for any in-progress
access to complete. ’

For the traps with an “all” in the “Channel Regs” column of Table 3-11, the channel
registers contain information relevant to the trap in all cases. These traps are associated
with exceptional events during external accesses or coprocessor transfers.

3-62

For the traps with a “multiple” in the “Channel Regs” column, the channel registers might
contain information for restarting an interrupted load-multiple or store-multiple operation.

In these cases, the operation did not encounter an exception, but was simply cancelled for
latency considerations.

The information contained in the channel registers allows the processor to restart the related
operation during an interrupt return sequence, without any special assistance by software.
Software must only insure that the relevant information is retained in, or restored to, the
channel registers before an interrupt return is executed.

3.5.9 EXCEPTIONS DURING INTERRUPT AND TRAP HANDLING

In most cases, interrupt and trap handling routines are executed with the DA bit in the
Current Processor Status having a value of 1. Itis assumed that these routines do not create
many of the exceptions possible in most other processor routines, so most of these are
ignored.

If the assumption of no exceptions is not valid for a particular interrupt or trap handler, it is
important that the handler save the state of the processor and reset the FZ bit of the Current
Processor Status, so that the handler itself may be restarted properly. This must be
accomplished before any interrupts or traps can be taken. Of course, in this case, the state
(or the state of some other process) must be restored before an interrupt return is executed.

It is possible that errors reported via the *IERR and *DERR signals are associated with
hardware errors, independent of any routine being executed. For this reason, the Instruction
Access Exception, Data Access Exception, and Coprocessor Exception traps cannot be
disabled by the DA bit, and the processor may take one of these traps even while handling
another interrupt or trap.

If the processor does take an.unmaskable trap while handling another interrupt or trap, and
the state of the interrupt or trap handler is not reflected in processor registers, it is not
possible to return to the point at which the unmaskable trap is taken. When the
unmaskable trap is taken, the processor state saved is that state associated with the original
interrupt or trap, not with the unmaskable trap; however, the Old Processor Status Register
is modified to reflect the Current Processor Status Register of the interrupt or trap handler.
This situation, indicated by the DA bit being ! in the Old Processor Status Register, may
not be recoverable.

3-63

3.6 MEMORY MANAGEMENT

The Am29000 incorporates a Memory Management Unit (MMU) for performing
virtual-to-physical address translation and memory access protection. This section describes
the logical operation of the Memory Management Unit. Related issues are discussed in
Sections 7.2.4 and 7.2.5.

Address translation can be performed only for instruction/data memory accesses. No address
translation is performed for instruction ROM, input/output, coprocessor, or interrupt/trap
vector accesses.

3.6.1 TRANSLATION LOOK-ASIDE BUFFER

The MMU stores the most recently performed address translations in a special cache, the
Translation Look-Aside Buffer (TLB). All virtual addresses generated by the processor are
translated by the TLB. Given a virtual address, the TLB determines the corresponding
physical address.

The TLB reflects information in the processor system page tables, except that it specifies
the translation for many fewer pages; this restriction allows the TLB to be incorporated on
the processor chip where the performance of address translation is maximized.

A diagram of the TLB is shown in Figure 3-36. The TLB is a table of 64 entries, divided
into two equal sets, called Set 0 and Set 1. Within each set, entries are numbered 0 to 31.
Entries in different sets which have equivalent entry-numbers are grouped into a unit called a
line; there are thus 32 lines in the TLB, numbered O to 31.

Each TLB entry is 64 bits long, and contains mapping and protection information for a
single virtual page. TLB entries may be inspected and modified by processor instructions
executed in the Supervisor mode. The layout of TLB entries is described in Section 3.2.3.

The TLB stores information about the ownership of the TLB entries in an 8-bit Task
Identifier (TID) field in each entry. This makes it possible for the TLB to be shared by
several independent processes without the need for invalidation of the entire TLB as
processes are activated. It also increases system performance by permitting processes to
warm-start (i.e., to start execution on the processor with a certain number of TLB entries
remaining in the TLB from a previous execution).

Each TLB entry contains two bits to assist management of the TLB entries. These are the
Usage and Flag bits. The Usage bit indicates which set of the entry within a given line was
least-recently used to perform an address translation. Usage bits for two entries in the same
line are equivalent. The Flag bit has no effect on address translation, and is not affected by
the processor except by explicit writes to the TLB. This bit is provided only for use by
software.

The TLB contains other fields which are described in the following sections.

3-64

TLB SETO : TLB SET 1

Entry Entry
#
Line0 __o0_ N
Line 1 1 1
Line2 2 2
Line3 3 3
Line 4 4 4
o (] [[°
[] °) ° °
© [] [[o
Lin_e §1_ __ :_3_1__ 31
<§—— 64 bits —p» <«@— 64 bits —p>

08996A3-36

Figure 3-36. Translation Look-Aside Buffer Organization

3.6.2 ADDRESS TRANSLATION

For the purpose of address translation, the virtual instruction/data address-space of a process
is partitioned into regions of fixed size, called pages, which are mapped by the
address-translation process into equivalent-sized regions of physical memory, called page
frames. All accesses to instructions or data contained within a given page use the same
virtual-to-physical address translation.

Pages may be of size 1, 2, 4, or 8 Kbytes, as specified by the MMU Configuration
Register. Virtual addresses are partitioned into three fields for the address-translation
process, as shown in Figure 3-37. The partitioning of the virtual address is based on the
page size. The fields shown in Figure 3-37 are described in the following discussion.

3-65

1 Kbyte Page Size:

31 23 15 7
rrrrrttrrirtrirrred "TLB Line | I I D B O B
Virtual Tag Comparison Select Page Offset
2 Kbyte Page Size:
31 -23 15 7
rrrrerrribrrrrrd “TLB Line S T I D
Virtual Tag Comparison Select Page Offset
4 Kbyte Page Size:
31 23 15 7
rrrrrrorerbrivl "TLB Line tT T rrrrirri
Virtual Tag Comparison Select Page Offset
8 Kbyte Page Size:
31 23 15 7
Frrrrt el I'I | | "TLB Line rrrrrrernrrii
Virtual Tag Comparison Select Page Offset

08996A 41

Figure 3-37. Virtual Address for 1, 2, 4, and 8 Kbyte Pagés

Address Translation Controls

The processor attempts to perform address translation for the following external accesses:

1) Instruction accesses, if the Physical Addressing/Ihsu'uctions (PI) and ROM Enable
(RE) bits of the Current Processor Status are both 0.

2) User-mode accesses to instruction/data memory if the Physical Addressing/Data

(PD) bit of the Current Processor Status is 0.

3) Supervisor-mode accesses to instruction/data memory if the Physical Address (PA)
bit of the load or store instruction performing the access is 0, and the PD bit of

the Current Processor Status is 0.

Address translation is also controlled by the MMU Configuration Register. This register
specifies the virtual page size, and contains an 8-bit Process Identifier (PID) field. The PID
field specifies the process-number associated with the currently-running program. This
value is compared with Task Identifier (TID) fields of the TLB entries during address
translation. The TID field of a TLB entry must match the PID field for the translation to be

valid.

3-66

Address Translation Process

The address-translation process is diagrammed in Figure 3-38. Address translation is
performed by the following fields in the TLB entry: the Virtual Tag (VTAG), the Task
Identifier (TID), the Valid Entry (VE) bit, and the Real Page Number (RPN). To perform an
address translation, the processor accesses the TLB line whose number is given by certain
bits in the virtual address. The bits used depend on the page size as follows:

Page Size Yirtual Address Bits (for Line Access)

1 Kbyte - 14-10
2 Kbyte 15-11
4 Kbyte 16-12
8 Kbyte 17-13

The accessed line contains two TLB entries, which in turn contain two VTAG fields. The
VTAG fields are both compared to bits in the virtual address. This comparison depends on
the page size as follows (note that VTAG bit-numbers are relative to the VTAG field, not
the TLB entry):

Pace Si Virtual Address Bi VTAG Bi

1 Kbyte 31-15 16-0
2 Kbyte 31-16 16-1
4 Kbyte 31-17 16-2
8 Kbyte 31-18 16-3

Note: Certain bits of the VTAG field do not participate in the comparison for page sizes
larger than 1 Kbyte. These bits of the VTAG field are required to be zero-bits.

For an address translation to be valid, the following conditions must be met:

1) The virtual address bits match corresponding bits of the VTAG field as specified
above.

2) The TID field in the TLB entry matches the PID field in the MMU Configuration
Register. ‘

3) The VE bit in the TLB entry is 1.

4) Only one entry in the line meets conditions 1, 2, and 3 above. If this condition is
not met, the results of the translation may be treated as valid by the processor, but
the results are unpredictable.

If the address translation is valid for one TLB entry in the selected line, the RPN field in this
entry is used to form the physical address of the access. The RPN field gives the portion of
the physical address that depends on the translation; the remaining portion of the virtual
address—called the Page Offset—is invariant with address translation.

3-67

Virtual Address

89-€

[

T TLB SET0 TLBSET 1
!)] ' : ! \ !
: ' ! : ' : : '
5o) ! !
[Select] Co ! A .
1)
o Select Virtual Tag]V,PROT [Task IDJReal Page Number] PGM,U,FH Nirtual Tag[V,PROT|Task IDRReal Page Number] PGM,UF
]
L}
]
1
1
1]

: 5 o< = ,
MMU I |

Configuration

PID - - l_,(: r@

S

l ‘ll r.lSeIectII_.lsaect]

Control

TLB Miss Protection
Violation

Page Offset Real Page Number MPGMO-1

Physical Address - 08996A3-38

Figure 3-38. Address Translation Procass

The Page Offset comprises the low-order bits of the virtual address, and gives the location of
a byte (because of byte addressing) within the virtual page. This byte is located at the same
position in the physical page frame, so the Page Offset also comprises the low-order bits of
the physical address.

The 32-bit physical address is the concatenation of certain bits of the RPN field and Page

Offset, where the bits from each depend on the page size as follows (note that RPN
bit-numbers are relative to the RPN field, not the TLB entry):

1 Kbyte 21-0 9-0
2 Kbyte 21-1 100
4 Kbyte 21-2 11-0
8 Kbyte 21-3 120

Note: Certain bits of the RPN field are not used in forming the physical address for page
sizes greater than 1 Kbyte. These bits of the RPN are required to be zero-bits. In addition,
for certain instruction accesses, the Page Offset is incremented by 16 as described in Section
4.2.3.

Successful and Unsuccessful Translations

If an address translation is successful, the TLB entry is further used to perform protection
checking for the access. Bits in the TLB make it possible to restrict accesses
—independently for Supervisor-mode and User-mode accesses—to any combination of load,
store, and instruction accesses, or to no access. Section 3.6.5 describes protection in more
detail.

If the address translation is valid, and no protection violation is detected, the physical address
from the translation is placed on the processor’s Address Bus, and the access is initiated. If
the translation is not valid, or a protection violation is detected, a trap occurs. Depending
on the state of the channel interface, the access request may be placed on the Address Bus
with the signal *BINV asserted, even though the trap occurs.

Also, if the address translation is successful, and there is no protection violation, the PGM
bits from the TLB entry used for translation are placed on the MPGM0O-MPGM1 outputs
during the address cycle for the access. If address translation is not performed, these pins are
both Low for the address cycle.

If the TLB cannot translate an address, a TLB miss occurs. The MMU causes a trap if either
a TLB miss occurs, or the translation is successful and a protection violation is detected.
The processor distinguishes between traps caused by instruction and data accesses, and
between traps caused by User-and Supervisor-mode accesses, as follows:

3-69

Trap Vector Number Type of Trap

8 User-Mode Instruction TLB Miss

9 User-Mode Data TLB Miss
10 Supervisor-Mode Instruction TLB Miss
11 Supervisor-Mode Data TLB Miss
12 Instruction TLB Protection Violation
13 Data TLB Protection Violation

The distinction between the above traps is made to assist trap handling, particularly the
routines which load TLB entries.

3.6.3 RELOAD

So that the MMU may support a large variety of memory-management architectures, it does
not directly load TLB entries which are required for address translation. It simply causes a
TLB miss trap when an address translation is unsuccessful. The trap causes a
program—called the TLB reload routine—to execute. The TLB reload routine is defined
according to the structure and access method of the page table contained in an external device
or memory.

When a TLB miss trap occurs, the LRU Recommendation Register is written with the TLB
register-number for Word 0 of the TLB entry to be used by the TLB reload routine. For
instruction accesses, the Program Counter 1 Register contains the instruction address which
was not successfully translated. For data accesses, the Channel Address Register contains
the data address which was not successfully translated.

The TLB reload routine determines the translation for the address given by the Program
Counter 1 Register or Channel Address Register, as appropriate. The TLB reload routine
uses an external page table to determine the required translation, and loads the TLB entry
indicated by the LRU Recommendation Register so that it may perform this translation. In
a demand-paged environment, the TLB reload routine may additionally invoke a page-fault
handler when the translation cannot be performed.

TLB entries are written by the Move To TLB (MTTLB) instruction, which copies the
contents of a general-purpose register into a TLB register. The TLB register-number is
specified by bits 9-0 of a general purpose register. TLB entries are read by the Move From
TLB (MFTLB) instruction, which copies the contents of a TLB register into a general-
" purpose register. Again, the TLB register-number is specified by a general purpose register.

3.6.4 ENTRY INVALIDATION

There are two methods for invalidating TLB entries which are no longer required at a given
point in program execution. The first involves resetting the Valid Entry bit of a single

3-70

entry (this is done by a Move To TLB instruction). The second involves changing the value
of the Process Identifier (PID) field of the MMU Configuration Register; this invalidates all
entries whose Task Identifier (TID) fields do not match the new value.

If an entry is invalidated by changing the PID field, the TLB entry still remains valid in
some sense. If the PID field is changed again to match the TID field, the entry may once
again participate in address translation. This ability can be used to reduce the number of
TLB misses in a system during process switching. However, it is important to manage
TLB entries so that an invalid match cannot occur between the PID field and the TID field of
an old TLB entry.

3.6.5 PROTECTION

If an address translation is performed successfully as described in Section 3.6.2, the TLB
entry used in address translation is used to perform protection checking for the access. There
are 6 bits in the TLB entry for this purpose: Supervisor Read (SR), Supervisor Write (SW),
Supervisor Execute (SE), User Read (UR), User Write (UW), and User Execute (UE). These
bits restrict accesses, depending on the program mode of the access, as follows (the value
“x” is a don’t care): ‘

SM SR SW SE UR UW UE Typeof Access Allowed

No User access

User instruction

User store

User store or instruction

User load

User load or instruction

User load or store

Any User access

No Supervisor access
Supervisor instruction
Supervisor store

Supervisor store or instruction
Supervisor load

Supervisor load or instruction
Supervisor load or store

Any Supervisor access

Pt ek et bk et it = = OO OO OOOCO
et e b O QOO O MMM M M M M K
et OO k= e O O MM M P M M K
—_O s O OO M O M M M MK K R
P MR M KN N === OOOO
MoH MM MR MM == OO == OO0
,><><><><><><>¢><'-‘OHOHOHO

Note that for the Load and Set (LOADSET) instruction, the protection bits must be set to
allow both the load and store access.

If protection checking indicates that a given access is not allowed, a Data TLB Protection
Violation or Instruction TLB Protection Violation trap occurs. The cause of the trap is
determined by inspection of the Program Counter 1 Register for an Instruction TLB
Protection Violation, or by inspection of the contents of the Channel Address and Channel
Control registers for a Data TLB Protection Violation.

3-71

3.7 SERIALIZATION

Since the Am29000 overlaps external data references with other operations, it is necessary to
restrict these other operations so that the data reference may be restarted if necessary.

The restriction is, in general, that the processor cannot perform any operation that changes
the conditions under which the external access occurs. This is accomplished by serializing
certain operations; that is, by having the processor enter the Pipeline Hold mode if an
external access has not completed when the operation is attempted. Serialization is
performed for the following operations:

1) The execution of one of the following instructions:
Move to Special Register
Move to Special Register Immediate
Move To TLB
.Interrupt Return
Interrupt Return and Invalidate
Halt

2) The taking of an interrupt or trap, except for a *WARN trap.
If the processor is in the Pipeline Hold mode due to serialization, it enters the Executing
mode once the external access completes. Note that the processor may immediately take a

Data Access Exception or Coprocessor Exception trap instead of performing the operation
which originally caused the serialization.

3.8 INITIALIZATION

When power is first applied to the processor, it is in an unknown state, and must be placed
in a known state. Also, under certain circumstances, it may be necessary to place the
processor in a defined state. This is accomplished by the Reset mode, which is invoked by
activating the *RESET pin for the required duration. The Reset mode configures the
processor state as follows:

1) Instruction execution is suspended.

2) Instruction fetching is suspended.

3) Any interrupt or trap conditions are ignored.

4) The Current Processor Status Register is set as shown in Figure 3-39,

5) The Cache Disable bit of the Configuration Register is set.

6) The Contents Valid bit of the Channel Control Register is reset.

- 372

31 23 15 7 0
T

o|ojofo|ojojojojojojo|ojo|ojojo]jojojoOjOjOfjt1jOfjt|Ojtii1]t1fj0o Of1]1
g FO I S T T S R - T I S H HE
Reserved iPiTPiFZiRE:PDiSMIM DA

08996A 42 CA TE TU LK WM Pl DI

Figure 3-39. Current Processor Status Register In Reset Mode

Except as previously noted, the contents of all general-purpose registers,
special-purpose registers, and TLB registers are undefined. The contents of the Branch
Target Cache are also undefined.

The Reset mode also configures the processor to initiate an instruction fetch using an
address of 0. Since the ROM enable (RE) bit of the Current Processor Status is 1,
this fetch is directed to external instruction read-only memory. This fetch occurs
when the Reset mode is exited (i.e. when the *RESET input is de-asserted). Section
5.5 contains more information on this instruction fetch.

3-73

3-74

CHAPTER 4

HARDWARE FEATURES

This chapter describes the operation of the Am29000 pipeline, and the processor’s three
major functional units. The functional units are: the Instruction Fetch Unit, the Execution
Unit, and the Memory Management Unit. These units, which were shown in abstract form
in Figure 2-2, are shown in detail in Figure 4-1.

The operation of the functional units is coordinated by the Pipeline Hold mode, which
insures that operations are performed in the proper order. This chapter also describes the
Pipeline Hold mode.

Since this chapter describes the internal operation of the Am29000, it provides information
which may not be required by some users. However, it aids an understanding of the
behavior of the Am29000 under certain conditions, especially the behavior of the system
interfaces described in Chapter 5.

4.1 FOUR-STAGE PIPELINE

The Am29000 implements a four-stage pipeline for instruction execution. The four stages
are: fetch, decode, execute, and write-back. The pipeline is organized so that the effective
instruction-execution rate may be as high as one instruction per cycle.

During the fetch stage, the Instruction Fetch Unit (Section 4.2) determines the location of
‘the next processor instruction, and issues the instruction to the decode stage. The
instruction is fetched either from the Instruction Prefetch Buffer, the Branch Target Cache, or
an external instruction memory.

During the decode stage, the Execution Unit (Section 4.3) decodes the instruction selected
during the fetch stage, and fetches and/or assembles the required operands. It also evaluates
addresses for branches, loads, and stores.

During the execute stage, the Execution Unit performs the operation specified by the
instruction. In the case of branches, loads, and stores, the Memory Management Unit
(Section 4.4) performs address translation if required.

During the write-back stage, the results of the operation performed during the execute stage
are stored. In the case of branches, loads, and stores, the physical address resulting from
translation during the execute stage is transmitted to an external device or memory.

Most pipeline dependencies which are internal to the processor are handled by forwarding

logic in the processor. For those dependencies which result from the external system, the
Pipeline Hold mode insures proper operation.

4-1

In a few special cases (see Section 7.3) the processor pipeline is exposed to software
executing on the Am29000.

4.2 INSTRUCTION FETCH UNIT

The Instruction Fetch Unit performs the functions required to keep the processor pipeline
supplied with instructions. Since the processor can execute one instruction per cycle;
instructions must be supplied at this rate if the execution stage is to perform at the
maximum rate. To accomplish this, the Instruction Fetch Unit contains mechanisms for
requesting instructions from instruction memory before they are required for execution, and
for caching the most recently executed branch target instructions.

The Instruction Fetch Unit also incorporates the logic necessary to calculate and sequence
instruction addresses. The processor is word-oriented, but generates byte addresses for all
external accesses. Since all processor instructions are word-length, and are aligned on word-
address boundaries, the Instruction Fetch Unit deals only with 30-bit addresses. For external
instruction accesses, these addresses are appended with 00 in the two least-significant bits to

RSTTC O ~ T T e == == ~------- el T
i 1] ¥ '
| PC-BUS 30 —— — c [
| Branch Target ‘__{' 7 t ”1 Address *1 Register :
. 2Cg:r;932 | Unit Address |—1 A Register)
X Generator le
Program t
| oar , —>{ B 192x 32 '
i Unit ')
| | A]
1 A IR . 1-BUS N)
[J_A-BUS . < U
: Instruction \] ! eBys | 4 <} !
Prefetch 7 b e !
i Butfer 4 1]
| y | Read/ B)
. [T I Write)
X / MEMORY MANAGEMENT] Contdl
[} uNIT | ‘ !
: ! [TieReGH ! Avithmetic Logic Unit !
[' Translation Lookasid ! Field shift Unit '
f] ransiaton asice M-Bus t spodll' D-Bus joritizer]
: ' B:"""“m | Interface] Purpose Interface !
Protection Logic 3 b 4 ¥
| : 2x32x64 :)
! 1 Lenysao ; D-BUS - |_REs < -
|
i ! a2l J R-BUS !
¢ / [] f J
(RN R O Y [4
8
), 8
D!
32}
AD
Instru tgg
nstruction
Addfess
Bus Bus 08996A4-1A

Figure 4-1. Am29000 Data Flow

4-2

form the required 32-bit address (note that the two least-significant bits of an external
instruction address may not be 00 for indirect jumps).

4.2.1 INSTRUCTION PREFETCH BUFFER

All instructions executed by the processor are fetched either from the Branch Target Cache or
from external instruction memory (i.e. instruction/data memory or instruction read-only
memory). When instructions are fetched from the external memory, they are requested in
advance, to assist the timing of instruction accesses. The processor attempts to initiate the
fetch for any given instruction at least four cycles before it is required for execution.

Since instructions are requested in advance, based on a predicted need, it is possible that a
prefetched instruction is not required immediately for execution when the prefetch completes.
To accommodate this possibility, the Instruction Fetch Unit contains a four-word
Instruction Prefetch Buffer (IPB), as shown in Figure 4-1. The IPB is a circularly-addressed
buffer which acts as a first-in/first-out (FIFO) queue for instructions.

If instruction fetching is enabled, the processor requests an external instruction fetch on any
cycle for which the IPB contains an available location. Instructions are stored in the IPB as
they are returned from the external instruction memory. An instruction is stored into the
IPB location whose number is given by bits 3-2 of the instruction address.

The instruction is held in the IPB until it is required for execution. When required, the
instruction is sent to the decode stage, and the IPB location is freed to receive a subsequent
instruction.

Instruction Prefetch Stream

An instruction prefetch stream is established whenever the processor performs a
non-sequential instruction reference. Non-sequential references normally occur as the result
of successful branches, but may also result from the taking of an interrupt or trap (including
the *WARN trap), or an interrupt return.,

The non-sequential instruction fetch is initiated by placing an instruction-fetch request on
the Address Bus. Once an external instruction fetch has been initiated, the processor
generates prefetches for subsequent instructions based on the availability of IPB locations,
either by transmitting subsequent addresses, or by issuing burst-mode instruction requests. -

The addresses for prefetched instructions are computed by a word-length register called the
Instruction Fetch Pointer (IFP), which is maintained by the Instruction Fetch Unit. The
IFP latches the physical instruction-address obtained from the Memory Management Unit
whenever a non-sequential instruction reference occurs.

For instruction prefetches, an 8-bit incrementer associated with the IFP updates bits 9-2 of
the IFP to point to sequential instructions in the prefetch stream. The incrementer is

4-3

limited to 8 bits because it increments physical addresses, and thus cannot increment beyond
any possible virtual-page boundaries (recall that the minimum virtual page size is ‘1 Kbyte).
If the incrementer overflows, as indicated by a carry-out, prefetching is preempted. The
prefetch stream is later re-established, however, as described below.

The physical address in the IFP is always the address of the most-recently-prefetched
instruction, even though this address may not appear on the Address Bus for burst-mode
fetches. If the burst is externally preempted, the IFP is used to re-establish the burst at the
point of preemption.

Instruction Prefetch Buffer States

Four states are associated with each Instruction Prefetch Buffer location. The state-transition
diagram for these states is shown in Figure 4-2,

Available: The IPB location is free to receive a new fetch. It contains no valid
instruction, and is not due to receive any requested instruction.

Allocated: The IPB location has been scheduled to receive a requested instruction which
has not yet been returned from the external instruction memory.

Prefetch
with Exception

Instruction *IRDY or *IERR active,
Access Exception and Instruction Issued
Instruction

Issued

Available

Prefetch without
Exception

Branch
Instruction
Issued

Allocated

*JERR
*[RDY active

08996A4-2A

Figure 4-2. IPB State Transitions

4-4

Valid: The IPB location contains a valid instruction.

Error: The IPB location contains an instruction which was returned from the external
memory with an *IERR indication.

If all internal conditions are such that an instruction fetch can occur, the IPB location given
by bits 3-2 of the instruction address is set to the Allocated state, and the instruction is
requested externally. Once this instruction is returned to the processor, it is stored in the
IPB location. The location is set to the Valid or Error state (based on the *IERR input),
unless the instruction is immediately sent to the decode stage, in which case the buffer is set
to the Available state.

The instruction remains in the buffer until it is required for execution. When the instruction
is required, it is issued to the decode stage, and the IPB location is set to the Available state.
If the buffer were in the Error state, it is still set to the Available state, but an Instruction
Access Exception trap occurs.

It is possible for all IPB locations to be in the Available or Valid states, but only one is
allowed to be in the Allocated state at any given time. This restricts the number of
unsatisfied instruction prefetches to one, reducing the amount of logic required to keep track
of external fetches. It additionally restricts the number of apparent pipeline stages in the
external prefetch mechanism to one stage (the other stages involved in the four-stage
prefetch pipeline are the request stage and the processor’s fetch and decode stages). Larger
external prefetch pipelines may be implemented, but they are required to appear as
single-stage pipelines; at most one instruction can be returned to the processor from the old
instruction prefetch stream after a non-sequential fetch occurs.

When a non-sequential fetch occurs, all buffer locations are set to the Available state during
the execute stage of the non-sequential fetch. All instruction requesting for the previous
prefetch stream is terminated at this time. There is at most one instruction which will be
returned to the processor after instruction fetches are terminated; this instruction is returned
before any instruction associated with the new instruction stream is requested externally.

The Error state is provided only to handle errors reported via the *IERR input. However,
there are many other situations in which the IPB does not contain a valid instruction. These
situations arise because of errors, such as memory-management protection violations, and
because instruction fetching is sometimes preempted, such as is the case when the IFP adder
overflows. All of these cases are indicated by the fact that the IPB location is in the
Available state when the instruction is required for execution (note that the location should,
normally, at least be in the Allocated state when the instruction is required).

If the processor requires an instruction from an IPB location which is in the Available state,
it initiates the fetch for the instruction using the current value of the Program Counter.
This fetch resolves the exceptional condition. It either performs an address translation with
the proper address, eliminating page-boundary-crossing problems, or re-creates an error
condition, in which case a trap occurs,

4.2.2 BRANCH TARGET CACHE

The Branch Target Cache on the Am29000 allows fast access to instructions fetched
non-sequentially. A branch instruction may execute in a single cycle, if the branch target is
in the Branch Target Cache,

The target of a non-sequential fetch is in the Branch Target Cache if a similar fetch to the
same target has occurred recently enough that it has neither been replaced by the target of
another non-sequential fetch, nor invalidated by an INV or IRETINV instruction,

Branch Target Cache Organization

The organization of the Branch Target Cache is shown in Figure 4-3. To improve the ratio
of the number of branch targets found in the cache, compared to the number of attempted
cache accesses, two-way, set-associative mapping is used.

The Branch Target Cache is a 512-byte storage array divided into two sets each consisting of
64, 32-bit words (each instruction occupies a word). The sets are further divided into 16
blocks, numbered 0 to 15, which consist of 4 words each. Blocks in different sets with
equivalent block-numbers are organized into a unit called a line. '

SET SET 1
Block 0 o Block 0
IVaIid| Space ID] Address Tag Target Instruction rﬁlidl Space lD]Address Tag Target Instruction
Target+ 1 LINE O Target + 1
Target+ 2 Target + 2
Target+3 | _ _ . __._._._ Target+ 3
Block 1 . Block 1
l [
LINE 1
Block 2 o Block 2
L [
LINE 2
Block 3 _ Block 3
L 1
LINE 3

Block 15 Block15

Figure 4-3. Branch Target Cache Organization

4-6

To eliminate fragmentation within the Branch Target Cache, each branch target entry is
defined as a sequence of exactly four instructions, and is aligned on a cache-block boundary.
A branch target sequence may occupy at most one block. This best utilizes the on-chip
storage.

A 28-bit cache tag is associated with each four-word block. Of the 28 bits, 26 are derived
from the address (possibly virtual) of the instructions in the block, and are called the Address
Tag.

Note that the Address Tag is 26 bits in length, rather than 24 bits as might be implied by
the organization of the Branch Target Cache. The reason for this is that branch target
instruction-sequences are aligned on cache block boundaries. The result of this is that cache
blocks are not aligned with respect to memory addresses. Thus, two additional bits are
required in the Address Tag than would be required if cache locations were mapped one-to-one
to memory locations.

Two additional bits in the cache tag, called the Space Identification field (Space ID), indicate
the instruction memory from which the instructions were fetched (instruction/data or
read-only memory) and the program mode under which the instructions were fetched
(Supervisor or User). The encoding of these bits is described below:

Space ID In ion A

00 User Instruction/Data Memory

01 User Instruction Read-Only Memory

10 Supervisor Instruction/Data Memory

11 Supervisor Instruction Read-Only Memory

A Valid bit associated with each cache word indicates that the word contains a valid
instruction in the branch target sequence. There are thus four Valid bits for each cache
block. Cache invalidation instructions make it possible to reset all Valid Bits in a single
processor cycle. However, for the Invalidate instruction, the Valid bits are not reset until
the next branch is executed.

Branch Target Cache Operation

It is possible to disable the operation of the Branch Target Cache via the Branch Target
Cache Disable (CD) bit of the Configuration Register. If the CD bit is 1, all Branch Target
Cache entries are made to appear invalid. If the CD bit is O, there is no effect on Branch
Target Cache entries. However, note that a change in the CD bit does not take effect until
after the next non-sequential instruction fetch occurs.

When the Branch Target Cache is disabled, it continues to operate as described in this
section. However, entries are made to appear invalid, even though they may be valid. If the
Branch Target Cache is enabled after a period of being disabled, its contents reflect the most
recent instruction execution, and it operates accordingly.

4-7

The Branch Target Cache lookup process is diagrammed in Figure 4-4. A given branch
target sequence may be contained in one of two cache blocks, where these blocks are in the
same line. The sequence is contained in the line whose number is given by bits 5-2 of the
address of the first instruction of the sequence. A given branch target sequence is in a given
cache block only if the following conditions are met:

1) Bits 31-6 of the address for the first instruction in the sequence match the
corresponding bits in the Address Tag associated with the block.

2) The address of the first instruction in the block has a valid translation in the
Memory Management Unit, if it is a virtual address.

3) The instruction address-space as indicated by the Current Processor Status Register
matches the Space ID.

4) The CD bit of the Configuration Register was 0 for the previous non-sequential
instruction fetch.

Program Counter

- 00
[instruction Address|0o| |
[SB
SEL SETO (64)(32)1 SET 1 (64x32)l
26 4 ‘
Ao T T i)
4 Target Target

, \ 6, Target + 1 Target + 1

74 7 Target + 2 Target + 2

Target + 3 Target +3
| d 4
TAGS SET 0 (16x29) TAGS SET 1 (16x29) r T I

Space ID [Valid] Addr Tag Space ID [Valid| Addr Tag
08996A4-4A
3 A A
* Select
Current Processor Status
RE,SM,P! bits
Target
HivMiss Instruction
Out

Figure 4-4. Branch Target Cache Lookup Process

4-8

In addition to the above requirements, the Valid bit must be 1 for any entry retrieved from
the cache. Note that it is not required that all instructions in the sequence be present in the
cache for the block to be considered valid.

Whenever a non-sequential fetch occurs (either for a branch instruction, an interrupt, or a
trap), the address for the fetch is presented to the Branch Target Cache at the same time that
the address is translated by the Memory Management Unit. If the target instruction for the
non-sequential fetch is in the cache, it is presented for decoding in the next cycle. This
instruction is always the first instruction of the cache block, and its address matches the
cache tag. Subsequent instructions in the cache are presented for decoding as required in
subsequent cycles. However, their addresses do not necessarily match the Address Tag.

Branch Target Cache Replacement

If, on a non-sequential fetch, the target instruction is not found in the Branch Target Cache,
the address of the fetch selects a line to be used to store the instruction sequence of the new
branch target. The replacement block within the line is selected at random, based on the
processor clock. Random replacement has slightly better .performance than
least-recently-used replacement, and has a simpler implementation.

All Valid bits associated with the selected entry are reset, the Address Tag is set with the
appropriate address bits of the first instruction in the sequence, and the Space ID bits are set
according to the Current Processor Status Register.

Instructions from the new fetch stream are stored into the selected cache block as they are
issued to the decode stage. The first instruction is stored into the first word of the block, the
second instruction is stored into the second word, and so on'up to a maximum of four
instructions. The Valid bit for each word is set as the instruction is stored.

Special Cases of Branch Target Cache Entries

If a branch instruction appears as one of the first two instructions in a branch target
sequence, the branch is executed before the Branch Target Cache block is filled. In this case,
the cache block contains less than four valid instructions. The final valid instruction is the
delay instruction of the branch.

When a block is only partially filled due to a branch within the block, the behavior of the
cache during subsequent executions of the instructions in the block depends on the outcome
of this branch,

If the branch is subsequently successful, then the instructions following the delay
instruction of the branch are not needed, and the fact that they are not contained in the cache

is irrelevant.

If the branch is subsequently unsuccessful, then the instructions following the delay
instruction are required, and must be fetched externally. In this case, a required entry has a

4-9

Valid bit of 0. When the invalid entry is encountered, the Program Counter is used to create
an external instruction fetch for the missing instruction. When the fetch completes, the
instruction is stored in the cache location which was previously invalid, and the Valid bit for
this entry is set.

Since an instruction sequence in the four-word cache block is not necessarily aligned on a
four-word address-boundary, a virtual-page address-boundary may be crossed for the sequence
in the cache. The processor does not prefetch instructions beyond this boundary, so the
cache block is only partially filled in this case. If the processor requires instructions beyond
the boundary, it creates a fetch for them as described above for the case of a branch
instruction in the cache block.

When a fetch is created for a page-boundary crossing, this fetch is treated as a non-sequential
fetch; a new cache block is allocated, and the first four instructions at the boundary are
placed into the new cache block as they are returned by the instruction memory. Subsequent
references to the original cache block also encounter an invalid instruction at the page
boundary, and also create a special fetch for this instruction. However, since the
instructions beyond this boundary are in the Branch Target Cache, subsequent
boundary-crossings do not incur the instruction-fetch latency.

4.2.3 NON-SEQUENTIAL INSTRUCTION FETCHES

When a non-sequential instruction fetch occurs, the Memory Management Unit performs an
address translation for target instruction, if address translation is enabled. If the address
translation is valid, and the target of the fetch is not in the Branch Target Cache, an external
instruction fetch is initiated. If there is a Translation Look-Aside Buffer (TLB) miss or
memory-protection violation on this address, fetching is not initiated.

Instruction Fetch-Ahead

When a non-sequential fetch occurs, if the target of the fetch is found in the Branch Target
Cache, the processor normally begins instruction fetching four instructions beyond the
target. This behavior is termed fetch-ahead. The computation required to obtain the address
for the fetch-ahead is performed in parallel with address translation, by a 6-bit adder called the
Fetch-Ahead Adder (see Figure 4-1).

The Fetch-Ahead Adder is restricted to 6 bits so that the add cannot cause a page-boundary
crossing (recall that the minimum virtual page size is 1 Kbyte and that all instructions are
32 bits in length). If the adder were larger, then the results of the add might affect the
outcome of the address translation, and the add could not be performed in parallel with
address translation.

Fetch-Ahead Disabling

When the target of a non-sequential fetch is in the Branch Target Cache, there are two cases

4-10

for which a fetch-ahead is not initiated.

The first case occurs when the Fetch-Ahead Adder overflows during the address computation
for the fetch-ahead, as indicated by a carry out of the Fetch-Ahead Adder. Here, a page
boundary may have been crossed, making the address translation—which is performed
concurrently—invalid.

The second case occurs when the Branch Target Cache block containing the target
instruction does not have Valid bits set for all entries within the block. In this case, the
processor may have to fetch instructions for these entries, so it does not immediately initiate
prefetching beyond the block.

If fetch-ahead is not initiated for an instruction which the processor eventually requires, this
fetch is restarted on the cycle in which the missing instruction is required. The Program
Counter is used in both of these cases, guaranteeing that the proper instruction address is
used.

4.2.4 PROGRAM COUNTER UNIT

The Program Counter Unit, shown in Figure 4-5, forms and sequences instruction addresses
for the Instruction Fetch Unit. It contains the Program Counter (PC), the Program-Counter
Multiplexer (PC MUX), the Return Address Latch, and the Program-Counter Buffer (PC
Buffer).

The PC forms addresses for sequential instructions executed by the processor. The master of
the PC Register, PC L1, contains the address of the instruction being fetched in the
Instruction Fetch Unit. The slave of the PC Register, PC L2, contains the next sequenual
address, which may be fetched by the Instruction Fetch Unit in the next cycle.

The Return Address Latch passes the address of the instruction following the delayed
instruction of a call to the register file. This address is the return address of the call.

The PC Buffer stores the addresses of instructions in various stages of execution when an
interrupt or trap is taken. The registers in this buffer—Program Counters 0, 1, and 2 (PCO,
PC1, and PC2)—are normally updated from the PC as instructions flow through the
processor pipeline.

When an interrupt or trap is taken, the Freeze (FZ) bit in the Current Processor Status is
set, holding the quantities in the PC Buffer. When the FZ bit is set, PCO, PC1, and PC2
contain the addresses of the instructions in the decode, execute, and write-back stages of the
pipeline, respectively.

Upon the execution of an interrupt return, the target instruction stream is restarted using the

instruction addresses in PCO and PC1. Two registers are required here because the processor
implements delayed branches. An interrupt or trap may be taken when the processor is

4-11

executing the delay instruction of a branch and decoding the target of the branch. This
discontinuous instruction sequence must be properly restarted upon an interrupt return.
Restarting the instruction pipeline using two separate registers correctly handles this special
case; in this case PC1 points to the delay instruction of the branch, and PCO points to its
target. PC2 does not participate in the interrupt return, but is included to report the
addresses of instructions causing certain exceptions.

The PC is not defined as a special-purpose register. It cannot be modified or inspected by
instructions. Instead, the interrupting and restarting of the pipeline is done by the PC Buffer
registers PCO and PC1.

R-BUS
Branch Address
Target) PC-BUS Unit
7
Cache 1 30
3 A
30-bit
Incrementer E—E-C 0
S
it I— PC 1
[rcizd
L
’ L
Return
—[_PcMUX < PC 2 é
Branch r_r—_j Add{ess L
A
: D>
B-BUS 08996A 4-5

Figure 4-5. Program Counter Unit

4.3 EXECUTION UNIT

The Execution Unit performs most of the operations required for instruction execution. It
incorporates the Register File, the Address Unit, the Arithmetic/Logic Unit, the Field Shift
Unit, and the Prioritizer.

4-12

4.3.1 REGISTER FILE

The general-purpose registers are implemented by a triple-port, 192-location Register File.
The Register File performs two read accesses and one write access in a single cycle. If a
location is written and read in the same cycle, the data read is that written during the cycle.

The Register Address Generator, shown in Figure 4-6, computes register-numbers for
operands, detects pipeline data-dependencies, and calculates register-number sequences for
load-multiple and store-multiple operations.

Register Addressing

Register-numbers for instruction operands are computed during the decode stage. This-
computation is performed during the first half of a cycle, and the operands are read in the
second half of a cycle. Three multiplexers select two source-operand register-numbers and a
single destination register-number for any given instruction.

If the most-significant bit of a register-number is 0, the global registers are selected, and the
register-number is used directly as a register address. If the most-significant bit of the
register-number is 1, the local registers are selected, and the lower seven bits of the
register-number are added to the Stack Pointer to form the desired local-register address.

T e

! > to Channel Contdl Register
! ETR X
|
] i
INC DTR .
! Pipeline Pipeline .
' Dep ey Dey
I 1-BUS lLiglg] ! PortC
T A A 3 |
d 1
! 8y d M Addr A
[1 ° u T
] r X]
! X 3PORT
! : - REGISTER FILE
! 5 p Fipeine |
: i 1 192X 3
| . | .
] t
) T Addr B
] '
] i
! i
[Pipeline
i D 1
] 1
$ 02)
! D
] wl b agarc
| 20
! : PotA___ PontB
|
1
'
1
R ' A-BUS BBUS R-BUS
From Data Path 08996A4-6A

Figure 4-6. Register File and Reglster Address Generator

4-13

The Stack Pointer is a hardware shadow-copy of bits 8-2 of Global Register 1, and is
updated whenever Global Register 1 is written with the result of an Arithmetic or Logical
instruction. Global Register 1 is implemented as a full, 32-bit register in the Register File;
this register is distinct from the 192 locations which implement general-purpose registers.

If a register-number is zero (i.e. if Global Register O is specified as an operand), the Register
Address Generator selects the content of an indirect pointer as the register-number. There are
three indirect pointers, and each appears as a special-purpose register.

Pipeline Data-Dependencies

For the Register File, the pipeline delay in result write-back, compared to operand access,
creates situations where a result from a previous operation may be required as an operand
before it has been written into the register file. When one of these situations arises, a
pipeline data-dependency is said to exist.

The register-numbers for the write-back of instruction results require two buffering registers,
so that they are presented to the Register File during the write-back stage. In addition, the
register-numbers for uncompleted load operations are held until the load completes (these
register-numbers are held in the ETR Register shown in Figure 4-6).

Register read-address comparators detect pipeline data-dependencies, and activate multiplexers
to forward data directly to the required functional unit, without waiting for the data to be
written to the register file. The comparators activate the forwarding multiplexers if they
detect one of the following situations:

1) One of the source register-numbers matches the destination register-number of the
immediately-previous instruction.

2) One of the source register-numbers matches the target register- number (in the
ETR) of an outstanding load.

In the first case listed above, the result of the execute stage is selected as an operand, instead
of the output of the Register File port for which the forwarding condition is detected. In the
second case, data from the channel is selected. The comparison may cause the processor to
enter the Pipeline Hold mode if the load has not completed. However, data forwarding
allows data from the Data Bus to be used immediately, in the cycle after it is returned on the
Data Bus.

The content of the ETR is further compared to the register-numbers supplied to the
write-back stage. If the target register for a load is written with the result of an overlapped
instruction, the Not Needed (NN) bit in the Channel Control Register is set. If the
comparators determine that the NN bit should be set, they also inhibit the write-back of load
data on the completion of the load. The NN bit inhibits the restarting of the load operation
if an exception occurs.

4-14

Load-Muiltiple and Store-Multiple Sequences

During load-multiple and store-multiple operations, sequential register-numbers are
computed by an incrementer associated with the ETR/DTR pair shown in Figure 4-6. In the
case of store-multiple, the register-numbers are supplied as read addresses to the Register
File by the incrementer. The read addresses are latched by the DTR so that they may be
incremented further. In the case of load-multiple, target register-numbers are held by the
ETR as for any other load. However, the ETR is set with a sequence of incremented
addresses in this case.

4.3.2 ADDRESS UNIT

The Address Unit, shown in Figure 4-7, computes addresses for branch target instructions,
and load-multiple and store-multiple sequences. It also assembles instruction-immediate data
and creates addresses for restarting terminated instruction prefetch streams.

The Address Unit consists of a 30-bit adder, the Decode PC Register, the ADRF Latch, and
logic for formatting instruction-immediate data and generating the constants, zero and one.
The Decode PC Register holds the address of the instruction in the decode stage of the

pipeline,
I-BUS

[T

l23 lag-lie

s fi ' °r

Caoaed Cwx] Cwx]
8
Decode,
<o (MSB)14)
. _
4
16 118
,/
MUX 30y 16

132

IMM Datag

I 08996A4-7
B-BUS

Figure 4-7. Address Unit

4-15

Branch Target Addresses

Branch target addresses are either fetched from the Register File or calculated by the Address
Unit. The Address Unit calculates target addresses during the decode stage of branch
instructions. These addresses are of two possible types:

1) PC relative: the current PC value is added to a sign-extended, 16-bit offset field
from the branch instruction

2) Absolute: a zero-extended, 16-bit field of the branch instruction is used directly as
an instruction address.

For each of the above types of addresses, the 16-bit instruction field is aligned on a word
address-boundary (i.e. it is shifted left by two bits).

To calculate the branch target address, the Address Unit formats the 16-bit instruction field
as required and presents it to the 30-bit adder. This adder adds the formatted field either to the
contents of the Decode PC Register or to zero, as required for PC-relative and absolute
addresses, respectively.

Load-Multiple and Store-Multiple Addresses

During the execution of Load Multiple and Store Multiple instructions, addresses for the
access sequence are held in the ADRF Latch, An address in the ADRF Latch is updated, as
required for an access in the sequence, by the 30-bit adder in the Address Unit. The
formatting logic creates a constant offset of one for the update. The updated address is
presented to the Memory Management Unit for translation and protection checking, and is
placed into the ADRF Latch for further address computations.

For load-multiple and store-multiple operations performed using burst-mode accesses, the
physical address for each access does not appear on the Address Bus, but the addresses are
maintained in the processor so that they may be used to restart the burst-mode access upon
preemption.

Special Instruction Fetches

As discussed in Section 4.2, the processor must create special instruction fetches when it
encounters an invalid instruction in the middle of a Branch Target Cache block, or when it
attempts to fetch an instruction from an Instruction Prefetch Buffer location which is in the
Available state. The Address Unit routes the address for this fetch in a manner similar to the
routing of a branch target address. It passes the contents of the Decode PC (containing the
required instruction address) through the 30-bit adder, adding it to zero. This address is
presented to the Memory Management Unit for translation, and is used in the Instruction
Fetch Unit to complete the fetch.

4-16

4.3.3 ARITHMETIC/LOGIC UNIT

The Arithmetic/Logic Unit (ALU) performs 32-bit arithmetic and logical operations. The
arithmetic operations consist of addition, subtraction, addition with carry-in, subtraction
with carry-in, and primitives for multiplication and division. Instructions specify whether
or not a trap is generated on signed or unsigned arithmetic overflow.

The A and B operands may be complemented independently in the ALU; complementors for
data into the ALU are controlled by instructions. This allows subtraction and reverse
subtraction to be formed from addition, and allows certain logical operations (e.g. XNOR) to
be formed from other basic operations (e.g. XOR). The carry-in to the ALU can be 0, 1, or
the value of the Carry bit in the ALU Status Register. The carry-out of the ALU is used in
overflow detection, unsigned comparisons, multiplication, and division. It is stored in the
ALU Status Register for multi-precision arithmetic.

The ALU also evaluates relational expressions with the operators equal, not equal, less-than,
less-than-or-equal, greater-than, and greater-than-or-equal. Each comparison computes a
Boolean corresponding to a relation between two integers, or creates a trap (possibly) based
on this relation. The Boolean constants FALSE and TRUE are represented by a 0 and 1,
respectively, in the most-significant bit of a word.

The relational operators may be applied to either signed or unsigned operands. For unsigned
operands, these operators are implemented by recognizing that the ALU carry-out is the
Boolean result of an unsigned comparison if the two numbers are subtracted and the carry-in
is appropriately controlled. For comparison of signed numbers, the true sign of the result
(i.e. the resulting sign exclusive-ORed with the overflow indication) gives the result of the
compare.

The relational operatdrs equal-to and not-equal-to are independent of the data type. These
operators are implemented by a 32-bit equal-to-zero comparator.

The ALU also supports the 32-bit logical operations AND, OR, NAND, NOR, A
AND-NOT B, XOR, and XNOR.

4.3.4 FIELD SHIFT UNIT

The Field Shift Unit contains a Funnel Shifter, logic for performing word extracts, and logic
for performing byte and half-word extracts and inserts.

The Funnel Shifter is capable of performing N-bit shifts, where N is an integer between 0
and 31 inclusive given by a 5-bit shift count. The source of the shift count is specified by
the shift instruction; the shift count is given either by a constant field in the shift
instruction, bits 4-0 of a general-purpose register specified by the shift instruction, or by the
5-bit Funnel Shift Count field in the ALU Status Register.

4-17

Both arithmetic and logical shifts are supported, with the difference being the values stored
into vacated bits: arithmetic shifts fill these bits with the sign bit of the operand, while
logical shifts fill them with zero-bits. Arithmetic shifts are possible only for right shifts.

The Field Shift Unit operates on 32-bit words, 16-bit half-words, and 8-bit bytes. For byte
operations, the position of a byte operand within a word is supplied by the 2-bit Byte
Pointer (BP) field of the ALU Status Register. For half-word operations, the position of a
half-word operand is given by the most-significant bit of the BP field: the least-significant
bit is ignored. The processor supports either left-to-right or right-to-left byte and half-word
ordering within a word.

4.3.5 PRIORITIZER

The prioritizer counts the number of leading zero bits in an operand. The count of the
number of zero-bits up to the leading 1 is stored in the specified destination register. If the
operand does not contain a 1, the value stored is 32.

4.4 MEMORY MANAGEMENT UNIT

The Memory Management Unit (MMU) performs all memory-management functions
described in Section 3.6. Address translation is performed during the execute stage of any
load, store, or branch instruction which requires address translation, Address translation is
also performed whenever the processor requires an instruction which has not been prefetched;
as discussed in Section 4.2, address translation is performed in this case to resolve certain
exceptional events which occur during instruction prefetching.

Though the MMU is shared for instruction and data accesses, the processor pipeline is
arranged so that there is no contention for the MMU. In general, this is the result of the
instruction-set definition and the fact that instruction prefetch addresses are generated by the
Instruction Fetch Pointer (see Section 4.2.1).

Instruction addresses are normally translated only when branches are executed. Since loads
or stores cannot be executed at the same time, there is no contention for the MMU. If the
Instruction Fetch Pointer overflows, the address translation is deferred until the Instruction
Fetch Unit determines that the processor requires the associated instruction. Since
instruction execution cannot occur at this time, the MMU cannot be required for the
translation of a load or store address, and again there is no contention.

When the processor performs load-multiple and store-multiple operations, the MMU
translates the address associated with every access. This allows the load-multiple and
store-multiple address sequencing to be performed only in the virtual address space, rather
than both the virtual and physical address-spaces. Since the execution of Load Multiple and
Store Multiple instructions is not overlapped with the execution of other instructions, there
is no penalty associated with using the MMU for every access.

4-18

The MMU performs address translation in a single cycle. If an address translation is valid,
the results of the translation are placed on the Address Bus along with the instruction-access
or data-access request. In many cases, the address appears on the Address Bus during the
cycle immediately following address translation (it does not appear if the Address Bus is
occupied with another access). This address appears regardless of the outcome of memory
protection checking; this relaxes the timing constraints on protection checking, which can
be performed only after address translation is complete. If a protection violation is detected,
the processor activates the *BINV signal late in the first address cycle for the request.

4.5 PIPELINE HOLD MODE

The Pipeline Hold mode is activated whenever sequential processor operation cannot be
guaranteed. When this mode is active, the pipeline stages do not advance, and most internal
processor state is not modified. The processor places itself in the Pipeline Hold mode in the
following situations: ,

1) The processor requires an instruction which has either not been fetched or not been
returned by the external instruction memory.

2) The processor requires data from an in-progress load, and the access has not
completed.

3) The processor attempts to execute a load or store instruction while another load or
store is in progress.

4) The processor decodes an instruction which modifies any Translation Look-Aside
Buffer entry or special-purpose register, and there is a load or store in progress.
This is required for the serialization operation described in Section 3.7.

5) The processor is performing a sequence of load-multiple or store-multiple
accesses. The Pipeline Hold mode in this case prevents further instruction
execution until the completion of the load-multiple or store-multiple sequence.

6) The processor has taken an interrupt or trap, and the first instruction of the
interrupt or trap handler has not entered the execute stage. The Pipeline Hold
mode in this case prevents the processor pipeline from advancing until the
interrupt or trap handler can begin execution.

7) The processor has executed an interrupt return, and the target instruction of the
interrupt return has not entered the execute stage. The Pipeline Hold mode in this
case prevents the processor pipeline from advancing until the interrupt return
sequence is complete.

The Pipeline Hold mode is exited whenever the causing conditions no longer exist, or when
the *WARN or *RESET input is asserted.

4-19

4-20

CHAPTER 5
SYSTEM INTERFACES

This chapter describes the attachment of the Am29000 to its hardware environment. It

describes the channel, which allows the processor to communicate with external devices and”
memories. The Test/Development interface, provided for hardware development and testing,

is also described. In addition, this chapter includes sections on external interrupts, traps,

processor reset, clock generation, and master/slave checking.

In the signal descriptions of Section 5.1, certain outputs are described as being 3-state or
bi-directional outputs. However, all outputs (except MSERR) may be placed in a
high-impedance state by the Test mode. The 3-state and bi-directional terminology in this
section is for those outputs (except SYSCLK) which are disabled when the processor grants
the channel to another master.

5.1 SIGNAL DESCRIPTION

A0-A31 Address Bus (3-state output, synchronous)
The Address Bus transfers the byte address for all accesses except
burst-mode accesses. For burst-mode accesses, it transfers the address for
the first access in the sequence.

*BREQ Bus Request (input, synchronous)
~ This input allows other masters to arbitrate for control of the processor
channel.
*BGRT Bus Grant (output, synchronous)

This output signals to an external master that the processor is
relinquishing control of the channel in response to *BREQ.

*BINV Bus Invalid (output, synchronous)
This output indicates that the Address Bus and related controls are invalid.
It defines an idle cycle for the channel.

R/*W Read/Write (3-state output, synchronous)
This signal indicates whether data is being transferred from the processor
to the system, or from the system to the processor.

SUP/*US Supervisor/User Mode (3-state output, synchronous)
This output indicates the program mode for an access.

*LOCK

MPGMO0-
MPGM1

*PEN

I10-131

*IREQ

IREQT

*IRDY

*[ERR

Lock (3-state output, synchronous)

This output allows the implementation of various channel and device
interlocks. It may be active only for the duration of an access, or active
for an extended period of time under control of the Lock bit in the Current
Processor Status.

The processor does not relinquish the channel (in response to *BREQ)
when *LOCK is active.

MMU Programmable (3-state output, synchronous)

These outputs reflect the value of two PGM bits in the Translation
Look-Aside Buffer entry associated with the access. If no address
translation is performed, these signals are both Low.

Pipeline Enable (input, synchronous)

This signal allows devices which can support pipelined accesses (i.e.
which have input latches for the address and required controls) to signal
that a second access may begin while the first completes.

Instruction Bus (input, synchronous)
The Instruction Bus transfers instructions to the processor.

Instruction Request (3-state output, synchronous)
This signal requests an instruction access. When it is active, the address
for the access appears on the Address Bus.

Instruction Request Type (3-state output, synchronous)
This signal specifies the address-space of an instruction request, when
¥IREQ is active: '

IREQT @~ Meaning

0 Instruction/data memory access
1 Instruction read-only memory access

Instruction Ready (input, synchronous)

This input indicates that a valid instruction is on the Instruction Bus.
The processor ignores this signal if there is no pending instruction
access.

Instruction Error (inputi, synchronous)

This input indicates that an error occurred during the current instruction
access. The processor ignores the content of the Instruction Bus, and an
Instruction Access Exception trap occurs if the processor attempts to
execute the invalid instruction. The processor ignores this signal if there
is no pending instruction access.

5-2

*IBREQ

*IBACK

*PIA

D0-D31

*DREQ

DREQTO-
DREQT1

*DRDY

Instruction Burst Request (3-state output, synchronous)
This signal is used to establish a burst-mode instruction access and to
request instruction transfers during a burst-mode instruction access.
*IBREQ may be active even though the Address Bus is being used for a
data access. This signal becomes valid late in the cycle, with respect to
*IREQ.

Instruction Burst Acknowlege (input, synchronous)

This input is active whenever a burst-mode instruction access has been
established. It may be active even though no instructions are currently
being accessed. :

Pipelined Instruction Access (3-state output, synchronous)

If *IREQ is not active, this output indicates that an instruction access is
pipelined with another, in-progress, instruction access. The indicated
access cannot complete until the first access is complete. The
completion of the first access is signalled by the assertion of *IREQ.

Data Bus (bi-directional, synchronous)
The Data Bus transfers data to and from the processor, for load and store
operations.

Data Request (3-state output, synchronous)
This signal requests a data access. When it is active, the address for the
access appears on the Address Bus.

Data Request Type (3-state output, synchronous)
These signals specify the address-space of a data access, as follows (the

o 3

value “x” is a don’t care):

DREOT1 DREOQTQ Meaning

0 0 Instruction/data memory access
0 1 Input/output access
1 X Coprocessor transfer

An interrupt/trap vector request is indicated as a data-memory read. If
required, the system can identify the vector fetch by the STATO-STAT2
outputs.

Data Ready (input, synchronous) :

For loads, this input indicates that valid data is on the Data Bus. For
stores, it indicates that the access is complete, and that data need no
longer be driven on the Data Bus. The processor ignores this signal if
there is no pending data access.

5-3

*DERR

*DBREQ

*DBACK

*PDA

OPT0-OPT2

Data Error (input, synchronous)

This input indicates that an error occurred during the current data access.
For a load, the processor ignores the content of the Data Bus. For a
store, the access is terminated. In either case, a Data Access Exception
trap occurs. The processor ignores this signal if there is no pending data
access.

Data Burst Request (3-state output, synchronous)

This signal is used to establish a burst-mode data access and to request
data transfers during a burst-mode data access. *DBREQ may be active
even though the Address Bus is being used for an instruction access.
This signal becomes valid late in the cycle, with respect to *DREQ.

Data Burst Acknowlege (input, synchronous)

This input is active whenever a burst-mode data access has been
established. It may be active even though no data are currently being
accessed.

Pipelined Data Access (3-state output, synchronous)

If *DREQ is not active, this output indicates that a data access is
pipelined with another, in-progress, data access. The indicated access
cannot complete until the first access is complete. The completion of the
first access is signalled by the assertion of *DREQ.

Option Control (3-state output, synchronous)

These outputs reflect the value of bits 18-16 of the load or store
instruction which begins an access. Bit 18 of the instruction is reflected
on OPT2, bit 17 on OPT1, and bit 16 on OPTO.

The standard definitions of these signals (based on DREQT) are as
follows (the value “x” is a don’t,care):

DREQT1 DREQTQ OPT2 OPT1 OPTQ Meaning

SO OOO

Word-length access
Byte access
Half-word access
24-bit access
Instruction ROM
access (as data)
—all others— reserved

-_-OoO OO0

0
0
1
1
0

(=2 B]
O = O = O

If the interpretations above are irrelevant for a particular system, and
compatibility issues are not important, other interpretations of the
OPTO0-OPT2 signals may be used.

*CDA

*WARN

*INTRO-
*INTR3

*TRAPO-
TRAP1

STATO-
STAT2

Coprocessor Data Accept (input, synchronous)

This signal allows the coprocessor to indicate the acceptance of operands
or operation codes. For transfers to the coprocessor, the processor does
not expect a *DRDY response; an active level on *CDA performs the
function normally performed by *DRDY. *CDA may be active
whenever the coprocessor is able to accept transfers.

Warn (input, asynchronous, edge-sensitive)

A high-to-low transition on this input causes a non-maskable *WARN
trap to occur. This trap bypasses the normal trap vector fetch sequence,
and is useful in situations where the vector fetch may not work (e.g.
when data memory is faulty).

Interrupt Request (input, asynchronous)

These inputs generate prioritized interrupt requests. The interrupt caused
by *INTRO has the highest priority, and the interrupt caused by *INTR3
has the lowest priority. The interrupt requests are masked in prioritized
order by the Interrupt Mask field in the Current Processor Status
Register.

Trap Request (input, asynchronous)

These inputs generate prioritized trap requests. The trap caused by
*TRAPO has the highest priority. These trap requests are disabled by the
DA bit of the Current Processor Status Register.

CPU Status (output, synchronous)
These outputs indicate the state of the processor’s execution stage on the
previous cycle. They are encoded as follows:

'STAT2 STAT1 STATO Condition

0 0 0 Halt or Step Modes

0 0 1 Pipeline Hold Mode

0 1 0 Load Test Instruction Mode

0 1 1 Wait Mode

1 0 0 Interrupt Return

1 0 1 Taking Interrupt or Trap

1 1 0 Non-sequential Instruction Fetch
1 1 1 Executing Mode

5-5

CNTLO-
CNTL1

*RESET

*TEST

MSERR

SYSCLK

INCLK

CPU Control (input, asynchronous)
These inputs control the processor mode:

CNTLO CNTL1 Mode

Load Test Instruction

0 0

0 1 Step

1 0 Halt

1 1 Normal

Reset (input, asynchronous)
This input places the processor in the Reset mode.

Test Mode (input, asynchronous)

When this input is active, the processor is in Test mode. All outputs and
bi-directional lines, except MSERR, are forced to the high-impedance
state.

Master/Slave Error (output, synchronous)

This output shows the result of the comparison of processor outputs with
the signals provided internally to the off-chip drivers. If there is a
difference for any enabled driver, this line is asserted.

System Clock (bi-directional)

This is either a clock output with a frequency which is half that of
INCLK, or an input from an external clock generator at the processor’s
operating frequency.

Input Clock (input)

When the processor generates the clock for the system, this is an
oscillator input to the processor, at twice the processor’s operating
frequency. In systems where the clock is not generated by the processor,
this signal must be tied High or Low, except in certain master/slave
configurations as discussed in Section 5.8.

5.2 CHANNEL DESCRIPTION

The processor channel provides the bandwidth required for performance, while permitting the
connection of many different types of devices. This section describes the channel, and
methods of connecting devices and memories to the processor.

The channel is also used for transfers to and from the coprocessor. Coprocessor transfers are
described in Section 6.2.

Timing diagrams for operations described in this chapter appear in Appendix A.

5-6

5.2.1 CHANNEL OVERVIEW

The channel consists of three, 32-bit synchronous buses with associated control and status
signals: the Address Bus, Data Bus, and Instruction Bus. The Address Bus transfers
addresses and control information to devices and memories. The Data Bus transfers data to
and from devices and memories. The Instruction Bus transfers instructions to the processor
from instruction memories. In addition, a set of signals allow control of the channel to be
relinquished to an external master.

There are five logical groups of signals performing five distinct functions, as follows (since
some signals perform more than one function, a signal may appear in more than one group):

1) Instruction Address Transfer and Instruction Access Requests: A0-A31,
SUP/*¥US, MPGM0-MPGM 1, *PEN, *IREQ, IREQT, *PIA, *BINV.

2) Instruction Transfer: I0-I31, *IBREQ, *IRDY, *IERR, *IBACK.

3) Data Address Transfer and Data Access Requests: A0O-A31, R/*W, SUP/*US,
*LLOCK, MPGMO-MPGMI1, *PEN, *DREQ, DREQTO0-DREQT],
OPT(0-OPT?2, *PDA, *BINV.

4) Data Transfer: D0-D31, *DBREQ, *DRDY, *DERR, *DBACK, *CDA.
5) Arbitration: *BREQ, *BGRT, *BINV,
5.2.2 USER-DEFINED SIGNALS

Two types of user-defined outputs are available on the channel to control devices and
memories directly in a system-dependent manner. Each of these outputs is valid
simultaneously with—and for the same duration as—the address for an access.

The first set of user-defined signals, MPGMO0-MPGML1, is determined by the PGM bits in
the Translation Look-Aside Buffer entry used in translating the address for an access. If
address translation is not performed, these outputs are both Low.

The second set of signals, OPT0-OPT2, are determined by bits 18-16 of the load or store
instruction which initiates an access. These signals are valid only for data accesses, and
have a pre-defined interpretation for coprocessor data-transfers.

Standard interpretations of OPTO—OPT2 are given in Section 5.1. Since the OPT0-OPT2
signals are determined by instructions, they may have an impact on application-software
compatibility. If compatibility of application software among different systems is of con-
cern, then system hardware should use the given definitions of OPT0-OPT2. In any event,
a value of 000 on these signals should be defined to have no special effect on an access.

Note that the standard interpretations of OPT0-OPT2 apply only to accesses to

5-7

instruction/data memory and input/output. Other interpretations may be used for
coprocessor transfers.

For interrupt and trap vector fetches, the MPGM0-MPGM1 and OPT0-OPT2 outputs are
all Low.

5.2.3 INSTRUCTION ACCESSES

Instruction accesses occur to one of two address-spaces: instruction/data memory and
instruction read-only memory (instruction ROM). The distinction between these
address-spaces is made by the IREQT signal, which is in turn derived from the ROM Enable
(RE) bit of the Current Processor Status Register. These are truly distinct address-spaces;
each may be independently populated based on the needs of a particular system.

Instruction/data memory contains both instructions and data. Although the channel supports
separate instruction and data memories, the Memory Management Unit does not. In certain
systems, it may be required to access instructions via loads and stores, even though
instructions may be contained in physically-separate memories. For example, this
requirement might be imposed because of the need to load instructions into memory. Note
also that the OPT signals may be used to allow the access of instructions in instruction
ROM, using loads.

All processor instruction fetches are read-accesses, and the value of the R/*W signal is
irrelevant for instruction fetches. '

5.2.4 DATA ACCESSES

Data accesses occur to one of three address-spaces: instruction/data memory, input/output
(I/O), and the coprocessor. The distinction between these spaces is made by the °
DREQTO-DREQT]1 signals, which are in turn determined by the load or store instruction
which initiates a data access. Each of these address-spaces is distinct from the others.

The protocol for data transfers to and from the coprocessor is slightly different than the
protocol for instruction/data memory and I/O accesses. These transfers are described in
Section 6.2.

Data accesses may occur either from a slave device or memory to the processor (for a load),
or from the processor to a slave device or memory (for a store). The direction of transfer is
determined by the R/*W signal. In the case of a load, the processor requires that data on the
Data Bus be held valid only for a short time before the end of a cycle. In the case of a store,
the processor drives the Data Bus as soon as it becomes available, and holds the data valid
until the slave device or memory signals that the access is complete.

5.2.5 REPORTING ERRORS

The successful completion of an instruction access is indicated by an active level on the

5-8

*IRDY input, and the successful completion of a data access is indicated by an active level
on the *DRDY input. If there are exceptional conditions for which an instruction or data
access cannot complete successfully, the unsuccessful completion is indicated by an active
level on the *IERR or *DERR input, as appropriate.

If the processor receives an *IERR or *DERR in response to an instruction or data access, it
ignores the content of the Instruction or Data Bus and the value of *IRDY or *DRDY. An
*IERR repsonse causes an Instruction Access Exception trap, unless it is associated with an
instruction which the processor does not ultimately execute (because of a non-sequential
instruction fetch). A *DERR response always causes either a Data Access Exception trap or
a Coprocessor Exception Trap.

The processor supports the restarting of unsuccessful accesses upon an interrupt return. In
the case of an unsuccessful instruction access, the restart is performed by the Program
Counter 0 and Program Counter 1 registers. In the case of an unsuccessful data access, the
restart is performed by the Channel Address, Channel Data, and Channel Control registers.
In any event, the control program must determine whether or not an access can and/or should
be restarted.

The Instruction Access Exception and Data Access Exception traps cannot be masked. If
one of these traps occurs within an interrupt or trap handler, the processor state may not be
recoverable.

5.2.6 ACCESS PROTOCOLS

Figure 5-1 shows a control flow-chart for accesses performed by the Am29000. This
control flow applies independently to both instruction and data accesses. Since the processor
performs concurrent instruction and data accesses, these accesses may be at different points
in the control flow at any given point in time,

Note that the items on the flow chart of Figure S-1 do not represent actual states, and have
no particular relationship to processor cycles. The flow chart only provides a high-level
understanding of the control flow. Also, exceptions and error conditions are not shown.

The channel supports three protocols for accesses: simple, pipelined, and burst-mode. These
are described in the following sections. The various protocols are defined to accommodate
minimum-latency accesses as well as maximum-transfer-rate accesses. The protocols allow
an access to complete in a single cycle, although they support accesses requiring arbitrary
numbers of cycles. Address transfers for accesses may be independent of instruction or data
transfers.

5-9

PROCESSOR SLAVE DEVICE

NOACCESS

P] R R P Y B I T T T . . N

PRIMARY ACCESS

1 Initiate Access |

Assert *IREQ, ‘DREQ

Latch Result

NO Fipolind
or burst
Support?

Complete access

Drive result and
*IRDY or *DRDY

NO
YES

Assert ‘PEN m
Asse.rt *IBACK

Latch Address

Burst requested
and sugpone

<

N%ed an ?S{‘S‘\;{ resull)t gg%
access ¢ or*
? Burst-mode Access
soe Figures 5-2 thru 5-5
Primary
Access
Complete
P PR, (S R e e P
PIPELINED ACCESS
]

Initiate pipelined

>

access l
Assert *PIA, *PDA f Start Access
(optional)

nterrup

access complete
or Exg?eption

("IREQ, 'DE;EQ active

YES

Remove pipelined
fro

access
channel

De-assert *PIA, *PDA

m

T
[}
1
]
[}
[}
1
]
1
]
!
]
]
]
4
1)
1
L
]

08996AS-1A

Figure 5-1. Channel Flow Chart

5-10

5.2.7 SIMPLE ACCESSES

For a simple access, the processor holds the address valid throughout the entire access. This
protocol is used for single-cycle accesses, and for accesses to simple devices and memories.

On any cycle before the completion of the access, a simple access may be converted to a
pipelined access (by the assertion of *PEN) or to a burst-mode access (by the assertion of
*IBACK or *DBACK, if the processor is asserting *IBREQ or *DBREQ). Thus, the
protocol for simple accesses may also be used during the initial cycles of pipelined and/or
burst-mode accesses. This is advantageous, for example, in cases where the slave device or
memory either requires the address to be held for multiple cycles at the beginning of the
pipelined or burst-mode access, or cannot respond to the pipelined or burst-mode request
within one cycle.

5.2.8 PIPELINED ACCESSES

A pipelined access is one which starts before an earlier, in-progress access completes. The
in-progress access is called a primary access, and the second access is called a pipelined
access. A pipelined access is of the same type as the primary access. For example, an
instruction access which begins before the completion of a data access is not considered to
be a pipelined access, whereas a second data access is.

The Am29000 allows only one pipelined access at any given time.

Tradeoffs

For accesses which require more than one cycle to complete, pipelined accesses perform
better than simple accesses, because they allow the overlap of portions of two accesses.
However, devices and memories which support pipelined accesses are somewhat more
complex than devices and memories which support only simple accesses.

Support for pipelined operations is required for both the primary access and the pipelined
access. The slave performing the primary access must contain some means for storing the
address and other information about the access. The slave performing the pipelined access
must be able to restrict its use of the Instruction Bus or Data Bus, and must be prepared to
cancel the access (as explained below).

Pipelined Operation

Pipelined accesses are controlled by the signals *PEN, *PIA, and *PDA. Because of
internal data-flow constraints, the Am29000 does not perform a pipelined store operation
while a load is in progress. However, the protocol does not restrict pipelined operations.

Other channel masters may perform a pipelined store during a load.

Except as noted above, the processor attempts to perform pipelining for every access; the

5-11

input *PEN indicates whether or not pipelining is supported for a given access. The *PEN
input can be driven by individual devices, or can be tied active or inactive to enable or
disable system-wide pipelined accesses. The processor ignores the value of *PEN unless it
is performing an access.

The processor samples *PEN on every cycle during a primary access. If *PEN is active on
any cycle, the processor ceases to drive the address and associated controls for the primary
access in the next cycle. If the processor requires another access before the primary access
completes, it drives the address and controls for the second access, asserting *PIA or *PDA
to indicate that the second access is a pipelined access.

The output *IREQ or *DREQ, as appropriate, is not asserted for a pipelined access.
Devices and memories which cannot support pipelined accesses should therefore ignore *PIA
and/or *PDA, and base their operation upon *IREQ and/or *DREQ.

A device or memory which receives a request for a pipelined access may treat it as any other
access, with one exception: the pipelined access cannot use the Instruction and Data buses
nor the associated controls (e.g. *IRDY or *DRDY). In the case of a data read or instruction
access, the results of the pipelined access cannot be driven on the appropriate bus. In the
case of a data write, the data does not appear on the Data Bus. Any other operations for the
access, such as address decoding, can occur.

When the primary access completes (as indicated by *IRDY or *DRDY), the pipelined
access becomes a primary access. The processor indicates this by asserting *IREQ or
*DREQ, depending on the type of access. The device or memory performing the pipelined
access may complete the access as soon as *IREQ or *DREQ is asserted (possibly in the
same cycle). When the access becomes a primary access, it controls the channel as any
other primary access. For example, it may determine whether or not another pipelined
access can be performed.

When the pipelined access becomes a primary access, the output *PIA or *PDA remains
asserted for one cycle, to insure continuity of control within the slave device or memory. In
the cycle after *IREQ or *DREQ is asserted, *PIA or *PDA is de-asserted, unless the
processor initiates another pipelined access, in which case *PIA or *PDA remains asserted
for the new access.

Cancellation of Pipelined Accesses

If the processor takes an interrupt or trap before a pipelined access becomes a primary access,
the request for the pipelined access is removed from the channel. This may occur, for
example, when *IERR or *DERR is signalled for the primary access.

If the pipelined access is removed from the channel, the slave device or memory does not
receive an *IREQ or *DREQ for the pipelined access. Hence, the pipelined access does not
become a primary access, and cannot complete. A pipelined access may be cancelled in this
manner at any time before it becomes a primary access. Because of this, a pipelined access

5-12

should not change the state of a slave device or memory until the pipelined access becomes a
primary access.

5.2.9 BURST-MODE ACCESSES

A burst-mode access allows multiple instructions or data words at sequential addresses to be
accessed with a single address transfer. The number of accesses performed, and the timing of
each access within the sequence, is controlled dynamically by the burst-mode protocol.
Burst-mode accesses take advantage of sequential addressing patterns, and provide several
benefits over simple and pipelined accesses:

1) Simultaneous instruction and data accesses. Burst-mode accesses reduce the
utilization of the Address Bus. This is especially important for instruction
accesses, which are normally sequential. Burst-mode instruction accesses
eliminate most of the address transfers for instructions, allowing the Address Bus
to be used for simultaneous data accesses.

2) Faster access times. By eliminating the address transfer cycle, burst-mode accesses
allow addresses to be generated in a manner which improves access times.

3) Faster memory access modes. Many memories have special, high-bandwidth
access modes (e.g. static-column page mode and nibble mode). These modes
generally require a sequential addressing pattern, even though addresses may not be
explicitly presented to the memory for all accesses. Burst-mode accesses allow the
use of these access modes, without hardware to detect sequential addressing
patterns.

Burst-Mode Overview

The control-flow diagrams in Figures 5-2 and 5-3 illustrate the operation of the processor
and an instruction memory during a burst-mode instruction access. The control-flow
diagrams in Figures 5-4 and 5-5 illustrate the operation of the processor and a data memory
or device during a burst-mode data access. Note that transitions on these diagrams do not
necessarily correspond to processor cycles.

A burst-mode access is in one of the following operational conditions at any given time:

1. Established: The processor and slave device have successfully initiated the
burst-mode access. A burst-mode access which has been
established is either active or suspended. An established
burst-mode access may become preempted, terminated, or
cancelled.

2. Active: Instruction or data accesses and transfers are being performed as

the result of the burst-mode access. An active burst-mode
access may become suspended.

5-13

3. Suspended: No accesses or transfers are being performed as the result of the
burst-mode access, but the burst-mode access remains
established. Additional accesses and transfers may occur at
some later time (i.e. the burst-mode access may become active)
without the re-transmission of the address for the access.

4. Preempted: The burst-mode access can no longer continue because of some
condition, but the burst-mode access can be re-established
within a short amount of time.

m (“IBREQ, *IBACK Active)

ACTI VE

*IERR
Adtive

Non-sequential Fetch

1 kilo-byte boundry

U
1
1
]
' orchannel arbitration
1
]
1
1

YIRDY another
- Active mmafed in
IPBY location

available and

[}
1
1}
'
[}
]
]
1
[}
1
1
1
|
I

| S AD W,
' SUSPENDED IPBt location o
| *IRDY not available
IPB} Active or Hak or
location

available

1
1
[}
1
[}
]
1
L}
1

if no exception TLB miss or
retransmit address protection violation
11PB = Instruction Prefetch Buffer 08996A5-2A

Figure 5-2. Processor Burst-Mode Instruction Accesses:
Control Flow

5-14

5. Terminated: Allrequired accesses have been performed.

6. Cancelled: The burst-mode access can no longer continue because of some

R e - 4

exceptional condition. The access may be re-established only
after the exceptional condition has been corrected, if possible.

“IBREQ Successful
Active Fetch
*IBREQ
Active

Drive Instruction!
Activate *IRDY,

Activate
*IERR

“IBREQ
Inactive

Cannot
continue
SUSPENDED burst

Activate
‘IERR

IREQ
Active

Terminated,

Preempted, or

Cancelled by
Processor

Preempted Cancelled

0B996AS5-3A

Note: A similar state transition may be used to support suspended
burst-mode data accesses for a channel master other than the
processor.

Figure 5-3. Slave Burst-Mode Instruction Accesses: Control Flow

5-15

Each of the above conditions, except for the terminated condition, is under the control of
both the processor and slave device or memory. The terminated condition is determined by
the processor, since only the processor can determine that all required accesses have been
performed. The following sections discuss each of the above conditions with respect to the
burst-mode protocol.

m (*DBREQ, *DBACK Active)

ACTIVE

Final *DERR Active,
or interrupttrap taken

1 kilo-byte boundary
or channel arbitration

Latch
Data
if read

Latch
Data
if read

Cancelled

Preempted

if no exception TLBmissor
retransmit address protection violation 08996A5-4A

Note: The Am29000 does not suspend burst-mode data accesses.

Figure 5-4. Processor Burst-Mode Data Accesses: Control Flow

5-16

Establishing Burst-Mode Accesses

The Am29000 attempts to perform all instruction prefetches using burst-mode accesses.
For data accesses, the processor attempts to perform load-multiple and store-multiple
operations using burst-mode accesses. The processor indicates that it desires a burst-mode
access by asserting *IBREQ or *DBREQ during the cycle in which the initial address is
placed on the Address Bus (however, note that these signals become valid later in the cycle
than the address).

The inputs *IBACK and *DBACK indicate that a requested burst-mode access is supported.
The processor ignores the value of *IBACK unless it is performing an instruction access,
and it ignores the value of *DBACK unless it is performing a load-multiple or
store-multiple.

Cannot continue burst

*DBREQ Successful

]
)
]
'
]
]
Acive Access |
]
]
1]
1
]
1
]

Ac[l)ivated‘DRIlf) Activate
rive data i .
read DERR
_______________ o
Successful Unsuccessful
Access Access
*DBREQ
b
Inactive Acsivated'DR'lt) Activate eactivat
rive data i . .
read DERR DBACK
»
Terminalgd,
%gﬁ;"e’l’gd b‘;’,’ Preempted Cancalled
Processor
08996AS-5A

Figure 5-5. Slave Burst-Mode Data Accesses: Control Flow

5-17

When it desires a burst-mode access, the processor continues to drive *IBREQ or *DBREQ
on every cycle for which the address is valid on the Address Bus. During this time, the
device or memory involved in the access may assert *IBACK or *DBACK to indicate that it
can perform the burst-mode access. If ¥IBACK or *DBACK (as appropriate) is asserted
while the initial address appears on the Address Bus, the burst-mode access is established.

If the burst-mode access is not established on the first access, the processor attempts to
establish a burst-mode access on each subsequent address transfer, as long as there are more
accesses yet to be performed. During any subsequent access, the addressed device or memory
may establish a burst-mode access by asserting *IBACK or *DBACK. If the burst-mode
access is never established, the default behavior is to have the processor transmit an address
for every access.

Active and Suspended Burst-Mode Accesses

After the burst-mode access is established, *IBREQ and *DBREQ are used during subsequent
accesses to indicate that the processor requires at least one more access. If *IBREQ or
*DBREQ is active at the end of the cycle in which an access successfully completes (i.e.
when *IRDY or *DRDY is active), the processor requires another access. If the slave device
or memory has not previously preempted the burst-mode access, and does not preempt or
cancel (by asserting *IERR or *DERR) the burst-mode access in the cycle that the access
completes, the additional access must be performed.

The execution rate of instructions is known only dynamically, so that, in certain situations,
a burst-mode instruction access must be suspended. If *IBREQ is inactive during the cycle
in which an instruction access completes, the burst-mode access is suspended (if it is neither
preempted nor cancelled). The burst-mode access remains suspended unless the processor
requests a new instruction access (in which case *IREQ is asserted), or unless the instruction
memory preempts the burst-mode access.

A suspended burst-mode instruction access becomes active whenever the processor can accept
more instructions. The processor activates the burst-mode access by asserting *IBREQ. If
the instruction memory does not preempt the burst-mode access during this cycle, an
instruction access must be performed.

When a suspended burst-mode instruction access is activated, the resulting instruction access
is not permitted to complete in the cycle in which *IBREQ is asserted, but may complete in
the next cycle. The reason for this restriction is that the burst-mode protocol is defined such
that the combination of an active level on *IBREQ and *IRDY causes an instruction access
(as previously discussed). If the instruction access completes immediately in the cycle that a
suspended burst-mode access is activated, there is an ambiguity in the protocol: it is
possible to interpret a single-cycle assertion of *IBREQ as a request for two instructions.

The above ambiguity.is resolved by delaying the instruction access resulting from a
re-activated burst-mode access for a cycle. Since this restriction applies only when the
Instruction Prefetch Buffer is full and the instruction memory is capable of a very fast

5-18

access, the delayed instruction response has no performance impact.

The Am29000 does not suspend burst-mode data accesses, because the data transfers occur to
and from general-purpose registers, which are always available. However, other channel
masters may suspend burst-mode data accesses (during direct memory accesses, for example).
The principles for suspending burst-mode accesses are the same as those for instruction
accesses discussed above.

Processor Preemption, Termination, and Cancellation

The processor may preempt, terminate, or cancel a burst-mode access by de-asserting
*IBREQ or *DBREQ, and asserting *IREQ or *DREQ at some later point. Normally, the
processor receives one more instruction or data word after *IBREQ or *DBREQ is
de-asserted. However, this access may complete in the same cycle that *IBREQ or
*DBREQ is de-asserted. During the period after *IBREQ or *DBREQ is de-asserted and
before *IREQ or *DREQ is asserted, the burst-mode access is in a suspended condition. The
slave device or memory cannot—and need not—distinguish between preempted, terminated,
~and cancelled burst-mode accesses when they are caused by the processor.

The processor preempts a burst-mode access when an external channel master arbitrates for
the channel, or when a burst-mode fetch crosses a potential virtual-page boundary. Since the
minimum page size is 1 Kbyte, burst-mode instruction and data accesses are preempted
whenever the address sequence crosses a 1 Kbyte address-boundary. The burst is
re-established as soon as a new address translation is performed (if required). A new physical
address is transmitted when the burst-mode access is re-established.

Note that the preemption resulting from page boundaries is advantageous for devices or
memories which require counters to follow the burst-mode address sequence. Since all
burst-mode accesses are word accesses, and the processor re-transmits an address at every 1
Kbyte address-boundary, an 8-bit counter in the slave device or memory is sufficient to
follow the burst-mode address sequence. Additional address bits are simply latched.

The processor terminates a burst-mode access whenever all required instructions or data have
been accessed. In the case of instruction accesses, the burst-mode access is terminated when
a non-sequential fetch occurs. In the case of data accesses, the burst-mode access is
terminated whenever the load-multiple or store-multiple sequence is complete (as determined
by the Channel Control Register Load/Store Count Remaining field).

The processor cancels a burst-mode access when an interrupt or trap is taken. Note that a
trap may be caused by the burst-mode access, for example when a Translation Look-Aside
Buffer miss occurs on an address in the burst-mode sequence.

Cancelled burst-mode data accesses may be restarted at some (possibly much later) point in
execution via the Channel Address, Channel Data, and Channel Control registers. In this
case, the burst-mode access is restarted at the point at which it was cancelled, rather than at
the beginning of the original address sequence.

5-19

Slave Preemption and Cancellation

The slave device or memory involved in a burst-mode access may preempt the access by
de-asserting *IBACK or *DBACK. The processor samples *IBACK and *DBACK when
*IRDY and *DRDY are active, so that *IBACK and *DBACK may be de-asserted as the last
supported access is completed. However, *IBACK and *DBACK may also be de-asserted in
any cycle before the access completes. If *IBACK or *DBACK is de-asserted when the
processor is in a state where it expects an access, the access must be completed.

In general, the slave device or memory preempts the burst-mode access whenever it cannot
support any further accesses in the burst-mode sequence. This normally occurs whenever an
implementation-dependent address-boundary is encountered (for example, a cache-block
boundary), but may occur for any reason. By preempting the burst-mode access, the slave
receives a new request, with the address of the next instruction or data word required by the
Processor.

The slave device or memory may cancel a burst-mode access by asserting *IERR or *DERR
in response to a requested access. The signals *IBACK or *DBACK need not be de-asserted
at this time, but should be de-asserted in the next cycle.

Note that the *IERR and *DERR signals cause non-maskable traps, except in the case
where *IERR is asserted for an instruction which the processor does not execute.

5.2.10 ARBITRATION

External masters can gain access to the Address, Data, and Instruction buses by asserting the
*BREQ input. The processor completes any pending access, preempts any burst-mode
access, and asserts the *BGRT output. At this time, the processor places all channel
outputs associated with the Address, Data, and Instruction buses in the high-impedance state.

For the first cycle that *BGRT is asserted, the output *BINV is also asserted. If the external
master cannot control the Address Bus and associated controls in the cycle that *BGRT is
asserted, the active level on *BINV may be used to define an idle cycle for the channel (i.e.
any spurious access requests are ignored). The *BINV signal is asserted only for a single
cycle, so the external master must take control of the channel in the cycle after *BGRT is
asserted.

While the *BREQ input remains asserted, the processor continues to assert *BGRT. The
external master has control over the channel during this time.

To release the channel to the processor, the external master de-asserts *BREQ, but must
continue to control the channel for the first cycle in which *BREQ is de-asserted. In the
cycle after *BREQ is de-asserted, the processor asserts *BINV and de-asserts *BGRT; the
external master should release control of the channel at this time. On the following cycle,

5-20

the processor de-asserts *BINV, and is able to use the channel. The processor re-establishes
any burst-mode access preempted by arbitration.

The processor does not relinquish the channel when the *LOCK signal is active. This
prevents external masters from interfering with exclusive accesses.

5.2.11 BUS SHARING—ELECTRICAL CONSIDERATIONS

When buses are shared among multiple masters and slaves, it is important to avoid
situations where these devices are driving a bus at the same time. This may occur when
more than one master or slave is allowed to drive a bus in the same cycle, because bus
arbitration is incompletely or incorrectly performed. However, it also occurs when a master
or slave releases a bus in the same cycle that another master or slave gains control, and the
first master or slave is slow in disabling its bus drivers, compared to the point at which the
second master or slave begins to drive the bus. The latter situation is called a bus collision
in the following discussion.

In addition to the logical errors which can occur when multiple devices drive a bus

simultaneously, such situations may cause bus drivers to carry large amounts of electrical
" current. This can have a significant impact on driver reliability and power dissipation.
Since bus collisions usually occur for a small amount of time, they are of less concern, but
may contribute to high-frequency electro-magnetic emmisions.

The Am29000 channel is defined to prevent all situations where multiple drivers are driving
a bus simultaneously. However, bus collisions may be allowed to occur, depending on the
system design.

In the case of the Am29000 channel, arbitration for the channel prevents the processor from
driving the Address and Data buses at the same time as another channel master. If there is
more than one external master, the system design must include some means for insuring
that only one external master gains control of the channel, and that no external master gains
control of the channel at the same time as the processor.

When the processor relinquishes control of the channel to an external master, bus collisions
may be prevented by not allowing the external master to drive any bus while *BINV is
active. This insures that all processor outputs are disabled by the time the external master
takes control of the channel. However, there is nothing in the channel protocol to prevent
the external master from taking control as soon as *BGRT is asserted. .

Slave devices and memories are prevented from simultaneously driving the Instruction Bus
or Data Bus by allowing only the device or memory performing a primary access to drive
the appropriate bus.. When a pipelined access becomes a primary access, it may drive the
Instruction or Data Bus immediately, so that there is a potential bus collision if the
pipelined access is performed by a slave other than the slave performing the original primary
access. This bus collision may be prevented by restricting all slaves to driving the
Instruction and Data buses in the second half-cycle (using SYSCLK, for example). Since

5-21

the processor samples data only at the end of a cycle, this restriction does not affect
performance.

When the processor performs a store immediately following a load, it drives the Data Bus
for the store in the second cycle following the cycle in which the data for the load appears on
the Data Bus. This provides a complete cycle for the slave involved in the load to disable
its data drivers. The processor continues to drive the Data Bus until it receives a *\DRDY or
*DERR in response to the store; it ceases to drives the Data Bus in the cycle following the
response.

5.2.12 CHANNEL BEHAVIOR FOR INTERRUPTS AND TRAPS

If an interrupt or trap is taken, any burst-mode accesses are cancelled. If a request for a
pipelined access is on the Address Bus, this request is removed. Any other accesses are
completed, and no new accesses are started, other than those required for the interrupt or trap.

When interrupt or trap processing is complete, any cancelled burst-mode accesses
transactions are re-established, using the address of the access which was to be performed
next when the interrupt or trap was taken. Uncompleted pipelined accesses are restarted,
either by the interrupt return sequence in the case of an instruction access, or by restarting
the initiating instruction in the case of a data access.

Note that the restarting of a pipelined access is not performed by the Channel Address,
Channel Data, and Channel Control registers, since these registers may be required to restart
the primary access. The instruction initiating the pipelined access is not allowed to
complete until the primary access completes, so that the Program Counter 1 (PC1) Register
contains the address of the initiating instruction when a pipelined access is cancelled. The
address in PC1 can restart this instruction on interrupt return.

5.2.13 EFFECT OF THE *LOCK OUTPUT

The ¥LOCK output provides synchronization and exclusion of accesses in a multi-processor
environment. *LOCK has no pre-defined effect for a system, other than the fact that the
Am29000 does not grant the channel to an external master while ¥LOCK is active.

The *LOCK output is asserted for the address cycle of the Load-and-Lock and Store-and-Lock
instructions, and is asserted for both the read and write accesses of a Load and Set
instruction. *LOCK may also be active for an extended period of time, under control of the
Lock bit in the Current Processor Status Register. (The latter capability is available only to
Supervisor-mode programs.)

*LOCK may be defined to provide any level of resource locking for a particular system. For
example, it may lock the channel, an individual device or memory, or a location within a
device or memory.

§-22

When a resource is locked, it is available for access only by the processor with the
appropriate access privilege. The mechanisms for restricting accesses, and the methods for
reporting attempted violations of the restrictions, are system-dependent.

5.3 TEST/DEVELOPMENT INTERFACE

The Test/Development Interface consists of the inputs CNTLO-CNTLI1 and *TEST, and the
outputs STAT0-STAT2. The CNTLO-CNTL1 inputs provide control of processor
operation, and the STATO-STAT?2 outputs provide information about processor operation
for external monitoring.

An external hardware-development system uses CNTLO-CNTL1 and STATO-STAT? to
control the processor for the purposes of processor and system debug. '

A hardware tester uses the *TEST input to place all processor outputs in the high-impedance

state. This allows the tester to check other system logic by driving processor outputs
directly, without requiring that the processor be removed from the system.

5.3.1 PROCESSOR STATUS OUTPUTS

The STATO-STAT?2 outputs indicate certain information about processor modes, along with
other information about processor operation. In addition to being used during normal
processor operation, STATO-STAT2 may be used to provide feedback of processor behavior

when the processor is under the control of a hardware-development system.

The encoding of these signals is as follows:

STAT2 STAT1I STATQ Mode or Condition

0 0 0 Halt or Step Modes

0 0 1 Pipeline Hold Mode

0 1 0 Load Test Instruction Mode

0 1 1 Wait Mode

1 0 0 Interrupt Return

1 0 1 Taking Interrupt or Trap

1 1 0 Non-sequential Instruction Fetch
1 1 1 Executing Mode

On any given cycle, the STATO-STAT? signals reflect the state of the processor's execute
stage on the previous cycle. Where the conditions listed above are not mutually exclusive,
the condition listed first is the one reflected on STATO-STAT2.

5-23

For multiple-cycle operations (Load Multiple, Store Multiple, the taking of an interrupt or
trap, and interrupt return), the first cycle is indicated appropriately, and additional cycles are
indicated as Pipeline Hold cycles. The first cycle of the instructions Load Multiple, Store
Multiple, Interrupt Return, and Interrupt Return and Invalidate are indicated as “Executing
Mode” cycles. When an interrupt or trap is taken, the first cycle is indicated as “Taking
Interrupt or Trap”.

A Low level on STAT?2 indicates the processor is idle, and may be used as an indication of
processor performance. Since most processor instructions execute in a single cycle, and
since extra cycles spent executing multiple-cycle operations are counted as Pipeline Hold
cycles, a count of the number of cycles, within a given time interval, that the processor is
not idle (i.e. a count of the number of cycles for which STAT2 is High) is a close
approximation to the number of instructions executed within that interval. This provides an
approximation of the instruction execution rate. The only source of error in this
approximation are the cycles in which the processor takes an interrupt or trap. If desired,
this source of error can be eliminated by fully decoding the STATO-STAT2 outputs.

The STAT2 output may also be used to implement processor timeouts for reliability. For
example, a Low level on STAT2 may be used to start a hardware timeout counter, with a
High level resetting and stopping the counter. If the counter exceeds a maximum expected
count of idle cycles for a system, it is likely that an error has occurred. This error can be
reported by the *WARN trap (see Section 3.5.6 and Section 5.6).

5.3.2 CPU CONTROL INPUTS

Certain processor operational modes are under the control of the CNTLO-CNTL1 inputs.
These inputs have an effect on the processor mode as follows:

CNTLO CNTL1 Mode

0 0 Load Test Instruction
0 1 Step

1 0 Halt

1 1 ‘Normal

These inputs are asynchronous to the processor clock. In addition, changes on the
CNTLO-CNTLI1 inputs are restricted so that only CNTLO or CNTL1, but not both, may
change in any given processor cycle. The allowed transitions are shown in Figure 5-6.

5-24

Load Test
Instruction
00

Figure 5-6. Valld Transitions on CNTLO-CNTL1 Inputs

The restriction on CNTLO-CNTL.1 transitions allows these inputs to be driven directly by
an external hardware-development system or tester, without any intervening logic. A
violation of this restriction causes unpredictable processor operation. Proper operation is
insured by making only single-input changes on CNTLO—CNTL]1, and by restricting the
interval between all changes to be greater than a processor cycle.

Note that, because of the restriction described above, it is not possible to transition directly
between all possible modes which are controlled by these inputs. For example, the
processor cannot go from the Load Test Instruction mode to Normal operation without first
entering the Halt or Step modes.

5.3.3 HARDWARE DEVELOPMENT

The Halt, Step, and Load Test Instruction modes of operation are defined to support the
debug of the processor system (both hardware and software) in a development environment.
This section describes the use of these modes during debug, and describes the corresponding
activity on the CNTLO-CNTL1 and STAT0-STAT2 lines.

Halt Mode

The Halt mode allows a hardware-development system to stop processor operation while
preserving its internal state. The Halt mode is defined so that normal operation may resume
from the point at which the processor enters the Halt mode. All external accesses are
completed before the Halt mode is entered, so a minimum amount of system logic is
required to support the Halt mode.

5-25

The Halt mode is invoked by the application of a value of 10 to the CNTLO-CNTL1
inputs. The processor enters the Halt mode within 2 or 3 cycles after the CNTLO-CNTL1
inputs are changed (depending on synchronization time), except that it first completes any
external data access in progress.

The Halt mode is also entered as the result of the execution of a HALT instruction. When a
HALT instruction is executed, the processor enters the Halt mode on the next cycle, except
that it completes any external data accesses in progress. In this case, the processor remaing
in the Halt mode even though the CNTLO-CNTL]1 inputs are 11. However, the processor
cannot exit the Halt mode except as the result of the CNTLO-CNTL1 or *RESET inputs.
If the instruction following the Halt instruction has an exception (e.g., TLB Miss), the trap
associated with the exception is taken before the processor enters the Halt mode.

The STATO-STAT?2 lines have a value of 000 whenever the processor is in the Halt mode;
these outputs can be used as a verification that the processor is in the Halt mode.

If a burst-mode instruction access is established before the processor enters the Halt mode, it
remains established when the processor enters the Halt mode, but is suspended.

While in the Halt mode, the processor does not execute instructions, and performs no
external accesses. The Timer Facility does not operate (i.e. the Timer Counter Register does
not change).

The Halt mode is exited whenever the Reset mode is entered, or the CNTLO-CNTL1 lines .
place the processor into another mode. The only valid transitions on the CNTLO-CNTL1
lines from the value of 10 are to the value 00, which places the processor into the Load Test
Instruction mode, and to the value 11, which causes the processor to resume normal
execution.

Step Mode

The Step mode causes the Am29000 to execute at a rate determined by a hardware-
development system, allowing the hardware-development system to control and monitor
processor operation independent of speed mismatches. The Step mode is defined so that
normal operation may resume after stepping is complete. Since all external accesses are
completed during any step, a minimum amount of system logic is required to support the
slower rate of execution.

The Step mode is invoked by the application of a value of 01 to the CNTLO-CNTL1
inputs. The processor enters the Step mode within 2 or 3 cycles after the CNTLO-CNTL1
inputs are changed (depending on synchronization time), except that it first completes any
external data access in progress.

The STATO-STAT? lines have a value of 000 whenever the processor is in the Step mode;
these outputs can be used as a verification that the processor is in the Step mode.

5-26

If a burst-mode instruction access is established before the processor enters the Step mode, it
remains established when the processor enters the Step mode, but is suspended.

While in the Step mode, the processor does not execute instructions, and performs no
external accesses. The Timer Facility does not operate (i.e. the Timer Counter Register does
not change) while the processor is in the Step mode.

The Step mode is identical to the Halt mode in every respect except one. This difference is
apparent on the transition of the CNTLO-CNTL]1 lines from the value 01 (Step mode) to
the value 11 (Normal). On this transition, the processor steps. That is, the processor state
advances by one pipeline stage, and it completes any external access which is initiated by
this state change.

If the processor immediately enters the Pipeline Hold mode on a step, the step may require
multiple cycles to execute, since the processor pipeline cannot advance while the processor
is in the Pipeline Hold mode. The STATO-STAT?2 lines reflect the state of the processor
for every cycle of the step; STAT2 is High for one cycle, and only one cycle, before the step
completes.

The Timer Counter decrements by one for every cycle of the step; if the Timer Counter
decrements to zero, the usual Timer-Facility actions are performed, and a Timer interrupt
may occur.

After the step is performed, the processor re-enters the Step mode, and remains in the Step
mode even though the CNTLO-CNTLI1 inputs have the value 11 (this prevents the need for
a time-critical transition on the CNTLO-CNTL1 inputs). The processor remains in this
condition until the CNTLO-CNTL1 inputs transition to 10 or 01 (or *RESET is asserted).
The transition to 10 causes the processor to enter the Halt mode, and is used to clear the
Step mode. The transition to 01 causes the processor to remain in the Step mode, so that it
may perform additional steps.

Load Test Instruction Mode

The processor incorporates an Instruction Register (IR) which holds instructions while they
are decoded. In the Load Test Instruction mode, the IR is enabled to receive the content of
the Instruction Bus, regardless of the state of the processor's Instruction Fetch Unit. This
allows a hardware-development system to directly provide instructions for execution, thereby
providing means for the hardware-development system to examine and modify the internal
state of the processor without altering the processor's instruction stream.

The hardware-development system can place an instruction in the IR by first placing 00 on
CNTLO-CNTL1. The processor enters the Load Test Instruction mode within 2 or 3 cycles
after the CNTLO-CNTLI1 inputs are changed (depending on synchronization time), except
that it first preempts any established burst-mode instruction access. The Load Test
Instruction mode can be entered only from the Halt or Step modes. Note that the

5-27

burst-mode instruction access which is preempted here was previously suspended for the Halt
or Step modes.

The STATO-STAT? lines have a value of 010 while the processor is in the Load Test
Instruction mode; this may be used as a verification that the processor is loading the IR.

While the processor is in the Load Test Instruction mode, the IR is continually storing the
value on the Instruction Bus; any change in the value on this bus is reflected in the IR on
the next cycle. The hardware-development system can place a desired instruction into the IR
by driving this instruction on the Instruction Bus. ,The value of *IRDY and *IERR are
irrelevant.

The processor exits the Load Test Instruction mode in the second cycle following a change
on the CNTLO-CNTL1 inputs. The only valid change here is either to the Halt mode
(CNTLO-CNTLL1 = 10) or the Step mode (CNTLO-CNTL1 = 01).

When the Load Test Instruction mode is exited, the most recent value stored into the IR is
held. If the processor is placed in the Step mode, the IR is marked as having valid content,
enabling the processor to decode and execute the instruction. If the processor is placed in the
Halt mode, it ignores any instruction placed in the IR by the Load Test Instruction mode,
and reverts to its normal instruction-fetch mechanism.

Once the IR has been set by the Load Test Instruction mode, the instruction in the IR may
be executed via the Step mode as discussed in the previous sub-section. A single step is
sufficient to cause the execution of this instruction. However, because of pipelining,
multiple steps may be required before the instruction completes execution. If more than one
step is performed, the processor executes the instruction in the IR on every step. If it is
desired to step an instruction to completion without repeated execution, a NO-OP may be
set into the IR (using the Load Test Instruction mode) after the first step.

The Load Test Instruction mode may be used to cause the execution of any processor
instruction, except Load Multiple, Store Multiple, Interrupt Return, and Interrupt Return
and Invalidate. This allows inspection and modification of processor state. For example,
load and store instructions may be used to alter and inspect the contents of general-purpose
registers; in this case, the hardware-development system supplies and reads register values on
the Data Bus. Note that the external address for reading and writing registers in this manner
should not be allowed to interfere with other system addresses.

The contents of the Program Counter 0, Program Counter 1, Program Counter 2, Channel
Address, Channel Data, Channel Control, and ALU Status registers are not updated while
instructions are executed via the Load Test Instruction mode, except explicitly by Move To
Special Register instructions. Instructions executed using the Load Test Instruction mode
may access protected processor state even though the processor is in the User mode.

Instructions executed via the Load Test Instruction mode may be used to access an external
device or memory. Recall that the processor completes any data access before completing a

5-28

step. This allows the processor to access devices and memories on behalf of the
hardware-development system, and simplifies the timing constraints on the
hardware-development system.

During processor execution via the Load Test Instruction mode, the processor retains the
information required to resume normal operation. If any processor state is modified by the
hardware-development system, this state must be properly restored for normal operation to
resume properly.

Once all instructions have been executed via the Load Test Instruction mode, the Halt mode
(CNTLO-CNTL1 = 10) prepares the processor to resume normal operation. When the
CNTLO-CNTLI1 inputs transition to 11, the processor resumes normal operation, using a
sequence very similar to that used for an interrupt return.

Summary of Development-System Operation

When the capabilities provided by the Halt, Step, and Load Test Instruction Register modes
are combined, an extremely flexible test and development interface results. The following is
an example sequence performed by a hardware-development system during debug:

1) Halt the processor either by a HALT instruction or by a 10 on the
CNTLO-CNTLI1 inputs. The HALT instruction may be used as a primitive in the
implementation of a general instruction-breakpoint capability.

2) Load the IR with an instruction to inspect or alter the processor state. The
hardware-development system should wait for the value 010 on STATO-STAT2
(Load Test Instruction mode) before driving the Instruction Bus. After the IR is
loaded, the hardware-development system sets CNTLO-CNTL1 to 01 (Step mode).

3) Step the processor by a transition of CNTLO-CNTL1 from 01 to 11 and back to
01. Data may be supplied on the Data Bus during one of the steps.

4) Repeatsteps 2 and 3 as desired.

5) After the final step, enter the Halt mode by placing 10, instead of 01, on
CNTLO-CNTL1.

6) Resume normal execution by placing 11 on CNTLO-CNTL1.

5.3.4 HARDWARE TESTING

The Test mode in the Am29000 allows processor outputs to be driven directly for testing or
diagnostic purposes. The Test mode places all processor outputs (except MSERR) into the
high-impedance state, so that they do not interfere electrically with externally-supplied
signals. In all other respects, processor operation is unchanged.

5-29

The Test mode is invoked by an active level on the *TEST input, regardless of the
processor's operational mode (for example, the Test mode is not affected by the Halt mode).
The disabling of processor outputs is performed combinatorially. It occurs even though no
clocks are applied to the processor.

For some outputs, the transition to the high-impedance state which results from the Test
mode may occur at a much slower rate than applies during normal system operation (for
example, when the processor relinquishes the channel to another master). For this reason,
the Test mode may not be appropriate for special, user-defined purposes.

Note that SYSCLK is also placed in the high-impedance state by the Test mode. This
allows the testing of external clock-distribution circuits, but care must be taken to insure
that a high-impedance SYSCLK output does not have an adverse effect on the system.
Furthermore, if SYSCLK is disabled, and a signal is not externally supplied, processor state
may be lost.

5.4 EXTERNAL INTERRUPTS AND TRAPS

An external device causes an interrupt by asserting one of the *INTRO—*INTR3 inputs, and
causes a trap by asserting one of the *TRAPO-*TRAPI1 inputs. Transitions on each of
these inputs may be asynchronous to the processor clock; they are protected against
metastable states. For this reason, an assertion of one of these inputs which meets the
proper set-up-time criteria does not cause the corresponding interrupt or trap until the second
following cycle.

The *INTRO-*INTR3 inputs are prioritized with respect to each other and with respect to
the processor. For resolving conflicts between these inputs which may arise, the inputs are
prioritized in order, so that the interrupt caused by *INTRO has the highest priority, and the
interrupt caused by *INTR3 has the lowest priority.

The interrupts caused by *INTRO—*INTR3 may be masked by the Disable Interrupts (DI) or
Disable All Interrupts and Traps (DA) bits of the Current Processor Status Register. In
addition, the Interrupt Mask (IM) field of the Current Procesor Status Register sets the
priority of the processor with respect to these inputs. The IM field enables the
*INTRO-*INTR3 inputs as follows:

IMValue = Result

00 *INTRO enabled

01 *INTRO-*INTR1 enabled
10 *INTRO-*INTR2 enabled
11 *INTRO—*INTR3 enabled

Note that the interrupt caused by the *INTRO input cannot be disabled by the IM field.

5-30

If one of the *INTRO—*INTR3 inputs is active, and the resulting interrupt is disabled by the
DA bit, DI bit, or IM field, the Interrupt Pending (IP) bit of the Current Processor Status
Register is set. The IP bit is reset if the interrupt is enabled, or if all disabled external
interrupts are de-asserted.

The *TRAPO-*TRAP1 inputs are prioritized with respect to each other, so that the trap
caused by *TRAPO has priority over the trap caused by *TRAP1 when a conflict occurs.
Both *TRAPO and *TRAPI1 have priority over the *INTRO-*INTR3 inputs. The
*TRAPO—*TRAPI inputs cannot be selectively disabled. Both traps, however, can be
disabled by the DA bit in the Current Processor Status Register.

The *INTRO—*INTR3 and *TRAPO-*TRAPI inputs are level-sensitive. Once asserted,
they must be held active until the corresponding interrupt or trap is acknowledged by the
interrupt or trap handler (this acknowledgement is system-dependent, since there is no
interrupt-acknowledge mechanism defined for the processor).

If any of these inputs is asserted, then de-asserted before it is acknowledged, it is not
possible to predict (unless the interrupt or trap is masked) whether or not the processor has
taken the corresponding interrupt or trap. During interrupt and trap processing, the vector
number is determined in part by which of the *INTRO-*INTR3 and *TRAP0-*TRAP1
inputs is active. If the input causing an interrupt or trap is de-asserted before the vector
number is determined, the vector number is unpredictable, with the result that processor
operation is also unpredictable.

5.5 PROCESSOR RESET

When power is first applied to the processor, it is in an indeterminate state, and must be
placed in a known state. Also, under certain circumstances, it may be necessary to place the
processor in a defined state. This is accomplished by the RESET mode, which places the
processor into a pre-defined state (see Section 3.8).

The Reset mode is invoked by asserting the *RESET input, and can be entered only if the
SYSCLK pin is operating normally, whether or not the SYSCLK pin is being driven by
the processor (see Section 5.7). The Reset mode is entered within 4 processor cycles after
*RESET is asserted.

The Reset mode can be entered from any other processor mode (for example, the Reset mode
can be entered from the Halt mode). If the ¥*RESET input is asserted at the time that power
is first applied to the processor, the processor enters the Reset mode only after four cycles
have occurred on the SYSCLK pin.

The Reset mode is exited when the *RESET input is de-asserted. Either 3 or 4 cycles after
*RESET is de-asserted (depending on internal synchronization time), the processor performs
an initial instruction access on the channel. The initial instruction access is directed to

5-31

address 0 in the instruction read-only memory (instruction ROM). If instruction ROM is
not implemented in a particular system, another device or memory must respond to this
instruction fetch.

If the CNTLO-CNTL1 inputs are 10 or 01 when the initial instruction fetch completes, the
processor enters the Halt or Step mode, respectively. Before completion of the initial
instruction fetch, the CNTLO-CNTL1 inputs are irrelevant, except that the Load Test
Instruction mode cannot be directly entered from the Reset mode. If the CNTLO-CNTL1
inputs are 00 immediately after *RESET is de-asserted, the effect on processor operation is
unpredictable. If the CNTLO-CNTL1 inputs are 11, the processor enters the Executing
mode.

The processor samples the STATO-STAT1 output internally when *RESET is asserted. A
High level on STATO-STATT1 in this case is used to enable special test configurations, and
may cause the processor to be inoperable. When *RESET is asserted, the processor drives
STATO-STAT1 Low in order to disable these considerations. However, if processor outputs
are disabled by the Test mode, the processor is not able to drive STATO-STAT1. Thus, if
*RESET is asserted when the processor is in the Test mode, the STAT0-STAT1 pin must
be driven Low externally. (In a master/slave configuration, as described in Section 5.8,
STATO-STAT1 is driven Low by the master processor when *RESET is asserted).

5.6 *WARN INPUT

An inactive-to-active transition on the *WARN input causes a *WARN trap to be taken by
the processor. The *WARN trap cannot be disabled; the processor responds to the *WARN
input regardless of its internal condition, unless the *RESET input is also asserted. This
input is provided so that the system can gain control of the processor in emergency
situations, such as when system power is about to be removed or when a severe,
non-recoverable error occurs.

The *WARN input is edge-sensitive, so that an active level on the *WARN input for long
intervals does not cause the processor to take multiple *WARN traps. However, *WARN
must be held active for at least 4 cycles in order to be properly recognized by the processor.
The processor still takes the *WARN trap if *WARN is de-asserted after 4 cycles. Another
*WARN trap occurs if *WARN makes another inactive-to-active transition.

The processor enters the Executing mode when the *WARN input is asserted, regardless of
its previous operational mode. Either 7 or 8 cycles after *WARN is asserted (depending on
internal synchronization time), the processor performs a trap-handler instruction access on
the channel. This instruction access is directed to address 16 in the instruction read-only
memory (instruction ROM). If instruction ROM is not implemented in a particular system,
another device or memory must respond to this instruction fetch.

If the CNTLO-CNTL1 inputs are 10 or 01 when the trap-handler instruction fetch
completes, the processor enters the Halt or Step mode, respectively. Before the completion

5-32

of this instruction fetch, the CNTLO-CNTL1 inputs are irrelevant, except that the Load Test
Instruction mode cannot be directly entered after a *WARN trap is taken. If the
CNTLO-CNTL1 inputs are 00 immediately after *WARN is de-asserted, the effect on
processor operation is unpredictable. If the CNTLO-CNTL1 inputs are 11, the processor
remains in the Executing mode.

5.7 CLOCKS

The Am29000 supports two methods of system-clock generation and distribution. In one
arrangement, the processor generates a clock for the system at its operating frequency; this
clock appears on the SYSCLK pin, and may be distributed externally to other system
components. In the second arrangement, the system provides its own clock generation and
distribution; in this case, the processor receives the externally-generated clock on the
SYSCLK pin.

In both arrangements, the circuits which generate and buffer SYSCLK are designed to
minimize the apparent skew between internal processor clocks and external system clocks.

The processor provides a power-supply pin for the SYSCLK driver which is independent of
all other chip power-distribution. This electrically isolates other processor circuits from
noise which might be induced on the power supply by the SYSCLK driver. The separate
power supply is also used to decide between the two possible clocking arrangements.

5.7.1 PROCESSOR-GENERATED CLOCK

If power (i.e. +5 volts) is applied to the SYSCLK power-supply pin, the processor is
configured to generate clocks for the system. In this case, the SYSCLK pin is an output,
and the signal on INCLK is used to generate the system clock. The processor divides the
INCLK signal by two in the generation of SYSCLK, so INCLK should be driven at twice
the processor's operating frequency.

5.7.2 SYSTEM-GENERATED CLOCK

If the SYSCLK power-supply pin is grounded, the processor is configured to receive an
externally-generated clock. In this case, the SYSCLK pin is an input used directly as the
processor clock. SYSCLK should be driven at the processor's operating frequency. In this

configuration, the INCLK input should be tied High or Low, except in certain master/slave
configurations as discussed in Section 5.8.

5.7.3 CLOCK SYNCHRONIZATION
The SYSCLK pin is at a High level during the first half of the processor cycle, and at a

5-33

Low level during the second half of the processor cycle. Thus, a processor cycle begins on a
Low-to-High transition of SYSCLK. The definition of the beginning of the processor cycle
is independent of the clocking arrangement chosen for a particular system.

In some systems, it might be desirable to have two or more processors operate in lock-step
synchronization, with each processor driven by a common INCLK signal. In this case,
synchronization of the processors is achieved by the *RESET input. If the de-assertion of
*RESET meets a specified set-up time with respect to the Low-to-High transition of
INCLK, the SYSCLK output is guaranteed to be Low in the next half-cycle, Thus, all
processors may be synchronized as required.

5.7.4 ELECTRICAL SPECIFICATIONS

The electrical specifications for SYSCLK are different than the specifications for most other
processor inputs and outputs. In order to reduce clock-skew effects, the SYSCLK pin is
electrically compatible with the processor's CMOS circuits, rather than being compatible
with transistor-transistor-logic (TTL) circuits.

Note that the SYSCLK pin is placed in the high-impedance state by the Test mode. If an
externally-generated clock is not supplied in this case, processor state may be lost.

5.8 MASTER/SLAVE CHECKING

Each Am29000 output has associated logic which compares the signal on the output with
the signal which the processor is providing internally to the output driver. The comparison
between the two signals is made any time a given driver is enabled, and any time the driver
is disabled only because of the Test mode. If, when the comparison is made, the output of a
_ driver does not agree with its input, the processor asserts the MSERR output on the next
cycle.

When the processor asserts MSERR, it takes no other actions with respect to the detected
mis-comparison. In particular, no traps occur. ‘However, the MSERR may be used
externally to perform any system function, including the generation of a trap.

5.8.1 MASTER/SLAVE OPERATION

If there is a single processor in the system, the MSERR output indicates that a processor
driver is faulty, or that there is a short-circuit in a processor output. However, a much
higher level of fault detection is possible if a second processor (called a slave) is connected
in parallel with the first (called a master), where the slave processor has outputs disabled by
the Test mode.

The slave processor, by comparing its outputs to the outputs of the master processor,

5-34

performs a comprehensive check of the operation of the master processor. In addition, if the
slave processor is connected at the proper position on the channel, it may detect open
circuits and other faults in the electrical path between the master processor and its local
devices and memories. Note that the master processor still performs the comparison on its
outputs in this configuration.

5.8.2 PREVENTING SPURIOUS ERRORS

When two processors are connected in a master/slave configuration, it is necessary to
prevent spurious assertions of MSERR. These result from situations where the outputs of
the slave processor do not agree with the outputs of the master processor, but both
processors are operating correctly.

One source of spurious errors can be unpredictable values for unimplemented bits in
processor registers. This potential problem has been avoided by the Am29000 architecture;
all unimplemented bits are read as 0.

Another source of spurious errors is a lack of synchronization between the master and slave
processors. To maintain synchronization between the master and slave processors, it is first
necessary that they operate with identical clocks. This is accomplished by having the
master processor drive SYSCLK, with the slave processor receiving SYSCLXK as an input,
or by driving both processors' SYSCLK inputs with the same externally-generated clock.

However, the fact that both processors operate with the same clock is not sufficient to
guarantee synchronization. Asynchronous processor inputs, if they are truly asynchronous
to the operation of the master and slave processors, may affect the master processor a cycle
sooner or later than they affect the slave processor. For this reason, the relevant
asynchronous inputs (i.e. *WARN, *INTRO-*INTR3, *TRAPO-*TRAPI,
CNTLO-CNTL1, and *RESET) must be externally synchronized to both the master and
slave processors. Note that, in the case of *RESET, only the active-to-inactive transition
must be synchonized. '

5.8.3 SWITCHING MASTER AND SLAVE PROCESSORS

In some master/slave configurations, it might be desirable to give the slave processor
control over the system when an error is isolated to the master processor. It is possible to
grant control of the system to the slave processor by taking it out of the Test mode, and
placing the master processor into the Test Mode. Note that synchronization must be
maintained when this is accomplished (for example, using the Halt mode).

If the original master processor is configured to generate SYSCLXK in this case, the slave
processor must also generate SYSCLK when it becomes a master. Because of this, the
INCLK signal must be supplied to both the master and slave processors, with both
processors being configured to generate clocks.

5-35

In this master/slave configuration, the slave processor still receives SYSCLK from the
master processor as described previously. The slave processor does not drive SYSCLK
because of the Test mode. However, when the slave processor is taken out of the Test
mode, it is able to drive SYSCLK as required.

Note that this processor-switching scheme may be generalized to more than two processors.

5-36

CHAPTER 6

COPROCESSOR INTERFACE

A coprocessor for the Am29000 is an off-chip extension of the processor’s execution unit.
The Am29000 communicates with the coprocessor using a mechanism which is very
similar to the mechanism used to communicate with other external devices and memories.

However, because the coprocessor extends the instruction-execution capabilities of the
processor, transfers to and from the coprocessor are in terms of operands, operation codes,
results, and status information. This is in contrast to address and data transfers which occur
for other types of external accesses. This chapter describes the coprocessor interface, both
from a software and a hardware point-of-view.

6.1 COPROCESSOR PROGRAMMING
6.1.1 OVERVIEW OF COPROCESSOR OPERATIONS

A program executes the following steps to perform a coprocessor operation. This sequence
is intended only as a guide, since there are many possible variations:

1) Send operands to the coprocessor. The number of transfers to the coprocessor
depends on the number of operands, and the length of each operand. As many as
64 bits of information can be transferred in a single cycle.

2) Send an operation code and other operation information to the coprocessor. The
operation can be specified by as many as 64 bits of information.

3) Start the coprocessor operation. This can occur simultaneously with the
operation-code transfer of step 2.

4) Read the coprocessor results. The number of transfers from the coprocessor
depends on the number of results, and the length of each result.

The above sequence is defined so that coprocessor operations may be concurrent with other
processor operations, including external accesses. This is possible because coprocessor
operations are decoupled from the transfer of information to and from the coprocessor. Once
the operation is started, in step 3, the processor may continue further execution, overlapped
with coprocessor execution, until the coprocessor results are read.

Because the Am29000 implements overlapped loads, it can continue execution after
attempting to read a coprocessor result. However, if the processor attempts to use the result
before the operation is complete, the processor enters the Pipeline Hold mode until the
operation is complete.

6-1

In certain circumstances, it may be desired to perform multiple coprocessor operations before
any results are read. For example, certain array computations form a single result from
more than one operation. In this case, steps 1 through 3 above may be repeated—in any
combination desired and as many times as desired—before results are read. The coprocessor
interface allows the coprocessor to prevent the transfer of operands and/or operation codes if
it is not prepared to receive them.

6.1.2 COPROCESSOR TRANSFERS

All coprocessor transfers occur between general-purpose registers and the coprocessor. The
transfers occur as the result of the execution of load and store instructions for which the
Coprocessor Enable (CE) bit has a value 1. For a store, the information transferred to the
coprocessor is given either by the contents of two general-purpose registers, or by the
contents of a general-purpose register and an 8-bit constant. For a load, information is
transferred into a single general-purpose register in the Am29000.

The coprocessor model includes no provision for addressing. Although it is possible to
extend the coprocessor interface to include addressing, addressing is more appropriately
handled by normal external accesses defined for the processor (such as input/output).

The format of the instructions which transfer information to and from a coprocessor is
shown in Figure 6-1.

31 23 15 7 0
T T T 1T 11 T T T T T T T T T T T T T T 711
X X X X x x x M|] OPT RA RBorl

1 SA UA
08996A 43

Figure 6-1. Coprocessor Load/Store Format

For coprocessor stores, the RA and “RB or I” fields specify the source of data to be
transferred to the coprocessor. The RA field specifies a general-purpose register whose
contents are transferred to the coprocessor. The “RB or I” field specifies either a
general-purpose register whose contents are transferred to the coprocessor, or a zero-extended
constant which is transferred to the coprocessor. For the latter, the M bit of the operation
code (bit 24) determines whether the register or the constant is used, as with most
instructions. Note that as many as 64 bits of information may be transferred to the
coprocessor by a single store instruction.

For coprocessor loads, the data transferred from the coprocessor is written to the
general-purpose register given by RA; the “RB or I” field is unused in this case (however,

6-2

the contents of the specified register, or the zero-extended constant, does appear on the
Address Bus). In contrast to the coprocessor store, a load transfers only 32 bits of
information from the coprocessor.

Other bits in the coprocessor load and store instructions are defined as follows:

Bit 22: Transfer Control (TC)—This bit affects the behavior of the coprocessor for
the transfer, depending on whether the transfer is for a load or store, The definition of this
bit is by convention only, and is not enforced by the processor.

For transfers to the coprocessor (i.e. stores), a value of 1 for the TC bit causes a coprocessor
operation to start. For transfers from the coprocessor (i.e. loads) a value of 1 for the TC bit
causes the coprocessor to suppress exception-reporting. In either case, a value of O for the
TC bit has no special effect on the coprocessor.

Bit 21: Set Coprocessor Active (SA)—This bit is provided to signal the beginning
and end of a coprocessor operation, so that the proper action may be taken by software if the
operation is interrupted. '

An SA bit of 1 affects the Coprocessor Active (CA) bit in the Current Processor Status. If
the SA bit is 1 for a store, the CA bit is set. If the SA bit is 1 for a load, the CA bit is
reset. If the SA bit is 0, there is no effect on the CA bit.

Bit 20: Reserved

Bit 19: User Access (UA)—The UA bit allows programs executing in the Supervisor
mode to emulate User-mode coprocessor transfers. This allows checking of the
authorization of a transfer requested by a User-mode program. Note that this checking is
performed externally, since the processor imposes no restriction on User-mode coprocessor
transfers.

If the UA bit is 1, the coprocessor transfer is performed in the User mode, regardless of the
value of the Supervisor Mode (SM) bit in the Current Processor Status. In this case, the
User mode affects only the SUP/*US output; it has no effect on the registers which can be
accessed by the instruction. If the UA bit is 0, the program mode for the transfer is
controlled by the SM bit.

Bits 18-16: Option (OPT)—The OPT field is placed on the OPTO-OPT2 outputs
during the coprocessor transfer. There is a one-to-one correspondence between the OPT field
and the OPT0-OPT2 outputs; that is, the most-significant OPT bit is placed on OPT2, and
$O on.

The OPT bits define the quantities being transferred to or from the coprocessor. For

example, they can specify whether operands or operation codes are being transferred. The
interpretation of the OPT field depends on the definition of a given coprocessor.

6-3

The transfer of data to or from the coprocessor may be caused by any load or store
instruction defined for the processor; the operation of coprocessor transfers is very similar to
the operation of external accesses.

Coprocessor transfers are overlapped with the execution of instructions which sequentially
follow the coprocessor load or store instruction. However, only one load or store may be in
progress in any given cycle, whether or not the load or store is directed to a coprocessor.
The pipeline interlocks which apply to external accesses also apply to coprocessor transfers,
except that coprocessor-transfer interlocks are determined by the time taken by the
coprocessor to perform an operation, rather the time taken to perform an access.

Note that coprocessor transfers may be performed by Load Multiple and Store Multiple
instructions. However, register RB has no defined interpretation for a Store Multiple to the
coprocessor. For this reason, Store Multiple is defined to transfer multiple, 32-bit
quantities to the coprocessor. Similarly, a Load Multiple transfers multiple, 32-bit
quantities from the coprocessor. Note, however, that the incrementing address sequence
defined for Load Multiple and Store Multiple still appears on the Address Bus for
coprocessor transfers.

6.1.3 COPROCESSOR EXCEPTIONS

A Coprocessor Exception trap occurs if the coprocessor reports an exception (using the
*DERR signal) during a coprocessor transfer. The Coprocessor Exception may occur either
for a coprocessor load or store.

In the case of a load which reads a coprocessor result, the Coprocessor Exception can be used
to indicate that the result is incorrect because of some exceptional condition. In some cases,
the Am29000 might be able to correct the results of the operation.

In the case of a store to the coprocessor, the Coprocessor Exception can be used to indicate
that the coprocessor cannot accept the transfer because of some exceptional condition. For
example, it may indicate an error in a stream of calculations, where intermediate results are
not being read. As with the load, the Am29000 may be able to correct the exceptional
condition.

As noted above, the trap handler which executes as the result of the Coprocessor Exception
trap may attempt to correct the exceptional condition. In many cases, the trap handler must
be able to read the intermediate results of the operation from the coprocessor, along with
other information about the operation. When this information is read, it may be necessary
to suppress further exception-reporting, so that the trap handler does not create additional
Coprocessor Exception traps. For this reason, the TC bit in the coprocessor load or store
instruction allows the processor to read coprocessor results while suppressing
exception-reporting.

Additionally, the TC bit allows a program to read the result of a coprocessor operation

6-4

regardless of any errors which may have occurred. This provides an optional trapping
capability analogous to that provided for certain Am29000 arithmetic operations (for
example, Am29000 instructions allow an optional trap on arithmetic overflow).

6.1.4 COPROCESSOR AS A SYSTEM OPTION

When the coprocessor is a system option, coprocessor operations are performed by the
processor when the coprocessor is not present.

The coprocessor may be designed as a system option by use of the Coprocessor Present
(CP) bit of the Configuration Register. The CP bit is set during system initialization,
based on the presence (CP = 1) or absence (CP = 0) of the coprocessor. If the CP bitis 0
when the processor attempts to execute a coprocessor load or store instruction, a
Coprocessor Not Present trap occurs.

When a Coprocessor Not Present trap is taken, the Channel Address, Channel Data, and
Channel Control registers contain information related to the coprocessor transfer. This
information may be used by the trap handler to emulate the operation of the coprocessor.

6.1.5 INTERRUPTED COPROCESSOR OPERATIONS

The Coprocessor Active (CA) bit of the Current Processor Status may be used to indicate
the duration of a coprocessor operation. The value 1 in the CA bit indicates that the
coprocessor has begun an operation which has not completed (i.e. the final results have not
been read).

The CA bit is affected by the Set Coprocessor Active (SA) bit in the coprocessor load and
store instructions. If the SA bit is 1 for a store, the CA bit is set; if the SA bitis 1 for a
load, the CA bit is reset. The routine which accesses the coprocessor is responsible for
setting and resetting the CA bit appropriately.

If an interrupt or trap is taken during a coprocessor operation, and the CA bit has been
properly managed, the CA bit of the Old Processor Status signals to an interrupt or trap
handler that the interrupted routine had begun a coprocessor operation, but had not completed
the operation before the interrupt or trap was taken. In this case, the coprocessor contains
state information which must be preserved. This information may be saved and restored
across the interrupt or trap, or, alternatively, kept in the coprocessor.

Upon an interrupt or trap, the state information contained in the coprocessor depends on
both the operation being performed and the definition of the coprocessor. The methods used
to determine what state information must be saved, and the methods used to transfer this
information, are also dependent on the definition of the coprocessor.

Due to interrupt-latency considerations, it may be desirable to leave state information in the

6-5

coprocessor upon interrupt, rather than require that it always be saved. A problem arises,
however, when a routine other than the one which was originally interrupted attempts to use
the coprocessor. The coprocessor may be protected from such use by resetting the CP bit in
the Configuration Register. If another routine attempts to use the coprocessor in this case,
a Coprocessor Not Present trap occurs. The trap handler for this trap may either save the
coprocessor state and make the coprocessor available to the trapping routine, or return
control to the routine which was originally using the coprocessor.

Certain coprocessor operations may not be interruptible. For these operations, interrupts
may be disabled by the Disable Interrupts (DI) and/or Disable All Interrupts and Traps (DA)
bits in the Current Processor Status Register. However, this disabling can be performed
only by a program in the Supervisor mode. Any User-mode programs which perform
non-interruptible coprocessor operations incur the overhead of a call to a Supervisor-mode
program.

6.2 COPROCESSOR ATTACHMENT

Communication with the coprocessor occurs via the Am29000 channel. Figure 6-2
illustrates a typical coprocessor connection. For transfers to the coprocessor, 64 bits of data
are transferred in a single cycle, using the Address Bus and Data Bus simultaneously. For
transfers from the coprocessor, 32 bits of data are transferred in a cycle, using the Data Bus.

The width of transfers to the coprocessor is greater than the width of transfers from the
coprocessor because the Am29000 is optimized for computations performed on two,
word-length operands, with a single, word-length result. The operand/result data flow of the
processor is reflected in the interface to the coprocessor.

The protocol for coprocessor transfers is nearly identical to the protocol for other external
accesses on the channel. Minor differences result from the fact that there are no addresses for
coprocessor transfers, and from the fact that the coprocessor is operation-oriented, rather than
access-oriented.

6.2.1 SIGNAL DESCRIPTION

Coprocessor transfers are indicated on the channel by the DREQT1 output being High
during a request. The DREQTO output also affects the transfer, based on the R/*W signal,
as follows:

RAW DREOT1 DREQTO Meaning

Transfer to coprocessor

Transfer to coprocessor, start operation
Transfer from coprocessor

Transfer from coprocessor, suppress errors

—_—-0 O
bk ek ek
—_0 = O

6-6

VAN

Coprocessor

ADDRESS

— N Instruction
— 1 ROM

Am238000
Streamlined

DATA

Instruction

Processor

INSTRUCTION

32

Instruction
Memory

N

32 |/

Data
Memory <r

|
X

Data Transfer <

Controller

08996A6-2A

e

System Bus |

Flgure 6-2.

7

Coprocessor Attachment

6-7

r

The output DREQT1 is High only for coprocessor transfers. When the Address Bus is idle,
the default value for DREQT1 is Low. As a result, the coprocessor can base its operation
solely on DREQT1 and *BINV, without regard to *DREQ. Note that the interpretation of
DREQTO during a coprocessor transfer is by convention only.

The only signal unique to coprocessor transfers is the *CDA input. The coprocessor
de-asserts this signal whenever it can accept no transfers from the processor (normally, this
is because it is performing an operation).

The completion of a transfer to the coprocessor is indicated when the coprocessor asserts
*CDA. The input *DRDY is not used in this case. The performance of transfers to the
coprocessor is enhanced by the use of *CDA, since it eliminates the need for the coprocessor
to decode a transfer request and respond with ¥*DRDY, thereby eliminating the logic delay
involved. Note that the coprocessor normally de-asserts *CDA when it starts an operation,
so that *CDA can be independent of transfer requests.

6.2.2 COPROCESSOR COMMUNICATION

The Address Bus is used to transfer information to the coprocessor. Therefore, the
addressing function of other devices and memories on the channel must be disabled during
coprocessor transfers. Since DREQT]1 is High for all coprocessor transfers, it should be
used to inhibit the adress-decoding function of channel devices and memories, as well as to
indicate to the coprocessor that a transfer is occurring,

The OPT0-OPT2 outputs are used during coprocessor transfers to indicate the type of
transfer, or to provide other controls for the coprocessor. The interpretation of the
OPT(0-OPT?2 signals depends on the implementation of the coprocessor, and may also
depend on the R/*W signal.

Coprocessor Transfer Protocols

The protocols available for coprocessor transfers are based on the protocols for simple,
pipelined, and burst-mode data accesses discussed in Section 5.2, The protocols for
write-accesses are used for tranfers to the coprocessor, and the protocols for read-accesses are
used for transfers from the coprocessor.

The coprocessor transfers differ in several respects from the protocol for external data
accesses:

1) The *CDA signal consistently replaces the *DRDY for transfers to the
coprocessor. An active level on *CDA, for transfers to the coprocessor, has an
effect which is equivalent to the effect of an active level on *DRDY for normal
store-operations. Note that *DRDY is still used for transfers from the
COPIocessor.

2) The Address Bus does not contain an address during a coprocessor transfer, but
may contain data in the case of a transfer to the coprocessor. However, for
transfers from the coprocessor, the Address Bus is still sequenced as described in
Section 5.2, and the sequencing is determined by the same controls—except that
*CDA replaces *DRDY for transfers to the coprocessor. The contents of the
Address Bus are determined by the coprocessor load instruction, as for other load
instructions.

3) For any coprocessor transfer, an active level on *DERR causes a Coprocessor
Exception trap, rather than a Data Access Exception trap.

4) For burst-mode coprocessor transfers, the interpretation of sequential addressing is
undefined. For this reason, burst-mode transfers are normally restricted to 32 bits
of information for every transfer, regardless of whether the transfer is to or from
the coprocessor. Note, however, that the incrementing address sequence is still
present in the definition of a burst-mode coprocessor transfer, and may be useful in
some cases. '

Sequencing of *CDA

The coprocessor de-asserts *CDA whenever it cannot accept a transfer from the Am29000.
An inactive level on *CDA prevents the Am29000 from transferring operands or operation
codes to the coprocessor when these transfers might interfere with coprocessor operation.

Normally, the coprocessor de-asserts *CDA when it begins an operation. *CDA remains
inactive until the coprocessor has completed the operation, and can accept further transfers
from the processor. For some operations, a result may have to be read before the.
coprocessor can assert *CDA.

The coprocessor can acknowledge a transfer by asserting *CDA. However, it is generally
more efficient for the coprocessor to hold *CDA active as long as it can accept transfers. In
the latter case, multiple data-transfers can occur at a high rate, without involving long logic
delays. *CDA is related to the operation of the coprocessor in this case, rather than to the
transfer of data.

Exception Reporting

The coprocessor reports exceptions by the activation of *DERR during any coprocessor
transfer. This causes a Coprocessor Exception trap to occur. However, if the
DREQT(0-DREQT! signals have the value 11 for a transfer from the coprocessor,
exception-reporting should be suppressed, and *DERR should not be asserted. Note,
however, that the Am29000 does not enforce the suppression of exception reporting.

6-9

6-10

CHAPTER 7

PROGRAMMING

This chapter discusses programming topics as they relate to the Am29000. It focuses on
the use of processor resources which were more formally described in Chapter 3. The
presentation in this chapter is intended to be used as a guide in the implementation of
software systems for the processor, not as a strict definition of how these systems should be
implemented.

This chapter is organized into three sections. The first two sections discuss applications and
systems programming for the processor, and the third discusses certain features of the
processor pipeline which are exposed to—and must be properly handled by—software which
executes on the processor.

7.1 APPLICATIONS—PROGRAMMING CONSIDERATIONS

This section discusses topics of general concern in the implementation of applications
programs.

7.1.1 PROCEDURE CALLS AND RETURNS

The Am29000 is designed to minimize the overhead of calling a procedure. It allows the
functions of passing parameters to a procedure and returning results from a procedure to be
performed efficiently. ’

This efficiency is due largely to the definition of the local registers. The relative addressing
of local registers greatly reduces the overhead of run-time storage management for variables,
parameters, returned results, and other quantities required in procedure linkage.

Run-Time Stack Organization and Use

For programs written in a compiled, procedural language—such as C or Pascal—storage for
certain program variables and compiler data is allocated, during the execution of the
program, on a structure called a run-time stack. The compiler generates the instructions to
create and manage the run-time stack, and compiler-generated instructions are based on its
existence.

Figure 7-1 depicts part of a run-time stack as an example. The stack consists of
consecutive, overlapping structures which are called activation records. An activation record
contains dynamically-allocated information specific to a particular activation (i.e. call) of a
procedure.

Because of recursion, multiple copies of a procedure may be active at any given time. Each
active procedure has its own unique activation record, allocated somewhere on the run-time
stack. The variables required by a particular procedure activation are contained only in the
activation record associated with that activation. Thus, the variables for different activations
do not interfere with one another.

There are three activation records in the example shown in Figure 7-1. This stack
configuration was generated by procedure A calling procedure B, which in turn called
procedure C. The fact that procedure C is the currently-active procedure is reflected by its
activation record being on the top of the run-time stack. The Stack Pointer points to the
top of C’s activation record.

In Figure 7-1, the storage areas labelled “out args” and “in args” are shared between the called
procedure and the caller for the communication of parameters and results. These are called
the outgoing arguments area (for the caller) or the incoming arguments area (for the callee).
The areas labelled “locals” contain storage for local variables, temporary variables (for

example, for expression evaluation), and any other items required for the proper execution of
the procedure.

out args X
in args A Higher Memory
Activation Addresses
" Record for A locals A
out argsA
in argsB
Activation
locals B
© Record for B
out args B
inargs C
Activation
locals C
Record for G Lower Memory
Addresses
outargs C
Stack Pointer
{top of stack)
08996A 44

Figure 7-1. Run-time Stack Example

7-2

Management of the Run-Time Stack

When a procedure is called, a new activation record must be allocated on the run-time stack.
An activation record is allocated by subtracting from the Stack Pointer the number of
locations needed by the new activation record. The Stack Pointer is decremented so that
variables referenced during procedure execution are referenced in terms of positive offsets
from the Stack Pointer.

When storage for an activation record is allocated, the number of storage locations allocated
is the sum of the number of locations needed for: :

1. Local variables.
2. Temporary variables required by the compiler.
3. Restarting the caller, such as locations for return addresses.

4. Arguments of procedures which may be called in turn by the called procedure (the
outgoing arguments area).

Note that, in some cases, no storage is required for one or more of the above items. Also,
the incoming arguments area, though part of the activation record of the callee, is not
allocated storage at this time, because this storage was allocated as the outgoing arguments
area of the calling procedure.

An activation record is de-allocated by adding to the Stack Pointer the value which was
subtracted during allocation.

More than one run-time stack may be used. In particular, it is possible to split activation
records across multiple stacks. Storage is allocated and de-allocated on these stacks in
synchronism. The reasons for such a split are explained below.

Am29000 Local Registers as a Stack Cache

A compiler targeted to the Am29000 should use two run-time stacks for activation records:
one for often-used scalar data, and another for structured data and additional scalar data. The
scalar portion of the activation record can then be mapped into the processor’s local
registers, because of the Stack-Pointer addressing which applies to the local registers.

Allocation and de-allocation of activation records can occur largely within the confines of the
local registers. The result is that the currently-active portion of the scalar activation record
is cached in high-speed local registers. The term “stack cache” in this section refers to the
use of the local registers to cache a portion of the activation record stack.

The principle of locality of reference—which allows any cache to be effective—also applies
to the stack cache. The entries in the stack cache are likely to remain there for re-use,

7-3

because the dynamic nesting-depth of activated procedures tends to remain near a given depth
for long periods of time. As a result, the size of the run-time stack does not change very
much over long intervals of program execution.

Since activation records are allocated and de-allocated within the local registers, most
procedure linkage can occur without external references. Also, during procedure execution,
most data accesses occur without external references, because the scalar data in an activation
record is most frequently referenced. Activation records are typically small, so the 128
locations in the local register file can hold many activation records from the run-time stack.

Mapping of Activation Records to the Local Registers

Whenever a given location on the run-time stack is present in the local registers, it is
mapped to the same register. The absolute number of the register that a given location
occupies is given by bits 8-2 of the 32-bit memory address of the stack location. Thus,
stack quantities whose addresses differ by 512 (since addresses are byte addresses) are mapped
into the same local register.

Only one stack location can actually be mapped to a local register at any point in time.
‘When the run-time stack grows beyond the 128-word capacity of the local registers, some
movement of data between the stack cache and the scalar run-time stack in data memory
must occur.

The terms “overflow” and “underflow” are used to describe the two kinds of conditions
caused when the run-time stack cannot be contained completely within the stack cache.
Both overflow and underflow can occur during the normal execution of a program.

An overflow occurs when a procedure is called, but the activation record of the callee requires
more registers than can be allocated in the stack cache. In this case, the contents of a
number of registers must be moved to data memory. The number of registers involved must
be sufficient to allow the entire activation record of the callee to reside in the stack cache.

An underflow occurs when a procedure returns to the caller, and the entire activation record
of the caller is not resident in the stack cache. In this case, there are enough unallocated
registers to contain the activation record, since all locations below the activation record have
been de-allocated and are no longer valid. However, the non-resident portion of the caller’s
stack must be moved from the main-memory stack to the local registers. Underflow occurs
because overflow occurred at some previous point during program execution, and the
overflow caused part of the run-time stack to be moved to memory.

To use the stack cache properly, a compiler must not allow the size of an activation record
on the scalar stack to exceed the size of the local register file (128 locations). This is
required because the processor performs no dynamic management of the stack cache;
management is performed by software. The processor cannot detect a reference to a quantity
which is not in the stack cache. If the scalar portion of the activation record requires more
than 128 location, the excess may be kept on the activation record used for structured data.

7-4

The software which performs procedure linkage must insure that the entire scalar activation
record of the callee is in the local registers before the callee begins execution. The
activation record must remain in the local registers as long as the callee is executing, since
any quantity in the activation record may be referenced.

Implementation of the Stack Cache

The processor support for implementing a stack cache within the local register file consists
of the 32-bit Stack Pointer (mapped to Global Register 1) and three 7-bit adders for
computing local-register addresses. Overflow and underflow detection is performed by
software when an activation record is allocated or de-allocated.

In this scheme, the value by which the Stack Pointer is adjusted for allocation and
de-allocation of activation records must be a constant which can be determined by the
compiler, since the compiler generates the instructions to do the adjustment and to check for
overflow and underflow. The only problem in determining this constant is the outgoing
arguments area: the size of the area required here varies with the number of parameters passed
to procedures called in turn by the callee. The solution is to make the outgoing arguments
area large enough to accommodate the call with the largest number of parameters.

The instruction sequence which executes as a result of the procedure call is the procedure
prologue, and the sequence which executes as a result of the procedure return is the procedure
epilogue. The procedure prologue allocates the activation record and checks for overflow,
and the procedure epilogue de-allocates the activation record and checks for underflow. The
two instruction sequences are shown in Figure 7-2.

The layout of an activation record is shown in Figure 7-3. Quantities on this diagram (for
example, the size of the activation record “SIZE_A”) relate to quantities shown in Figure
7-2.

Hemmmm e > A: SUB GR1,GR1, #ALLOC_A (1)
procedure ASGEU #S_OVERFLOW, GR1, GR64 (2
prologue ADD LR1,GR1, #SIZE_A (3

K — >

Kmmm e >
body of
procedure

Ko > .

i > ADD GR1,GR1, #ALLOC_A (4)
procedure ASEQ 40#h,GR1,GR1 (5)
epilogue JMPI LRO (6)

. > ASLEU #S_UNDERFLOW, LR1,GR65 (7

Figure 7-2. Procedure Prologue and Epilogue

7-5

The procedure prologue consists of instructions (1), (2), and (3). Instruction (1) allocates
the new activation record by decrementing the Stack Pointer (GR1) by the number of words
in the new activation record. Instruction (2) compares the new value of the Stack Pointer
(SP) with the stack-cache lower bound in GR64 (this value could be kept in any global
register). If the new SP is below the lower bound of the stack cache, then an overﬂow has
occurred, and the ASGEU instruction causes a trap.

If a trap occurs, the trap handler moves the contents of some of the local registers to
instruction/data memory; the number of registers moved must be enough to allow the local
registers to accommodate the new activation record. The trap handler also adjusts the lower
bound of the stack cache (in this example, the lower bound is the value in GR64).

In the example of Figure 7-2, instruction (3) computes a pointer to the top of the new
activation record and stores it in the location marked LR1(pro) in Figure 7-3. The use of
this pointer is explained below. Note that LR1 is defined by the SP which was set by
instruction (1).

The procedure epilogue consists of instructions (4), (5), (6), and (7). Instruction (4)
de-allocates the activation record. Instruction (5) is a NO-OP (see Section 7.1.12), because a
change in the value of the SP must be separated by at least one cycle from a use of the SP
for local-register addressing. This restriction is caused by processor pipelining (see Section
7.3.3). The NO-OP can be replaced with a useful instruction, providing it does not reference
any local registers.

Incoming
Arguments
Size A Previous Pointer LR1 (epi) After
Previous Ret Epilogue
revious Heturn ; Instruction (4
Address LRO (epi) (4)
SP ¢4—
Locals
Outgoing Arguments
Allocation A Pointer LR (pro) ror
\ Prologue
Return Address LRO (proy | Instruction (1)
SP ¢4—
08996A 45

Figure 7-3. Activation Record

7-6

Instruction (6) is the return to the caller. The return address is in the location marked
LRO(epi) in Figure 7-3. This location is defined by the SP set in instruction (4). With the
new value of the SP, LR 1(epi) contains the pointer to the top of the activation record of the
caller, which was calculated during the procedure prologue of the caller. Instruction (7)
compares this pointer to the upper bound of the stack cache in GR65. If this pointer is
beyond the upper bound of the stack cache, then an underflow has occurred, and the ASLEU
instruction causes a trap. The trap handler loads the required number of local registers from
data memory, and adjusts the upper bound of the stack cache (in GR65).

The pointer to the top of the activation record computed in instruction (3) is needed to
perform the compare in instruction (7). This pointer is used by the epilogue of every
procedure that is called by the current procedure, to guarantee that the entire activation record
of the caller is resident in the stack cache. All references to the scalar activation record are
compiled as local-register references, and the entire activation record must be in the local
register, as the compiler assumed it would be. Since the value of the pointer does not
change during the execution of a procedure, it is computed only once—in the prologue.

The value in GR6S5 in this example is the virtual address of the boundary between the stack
cache and the run-time stack in main memory. This address points to the highest memory
location which is mapped to the local registers (e.g. adding 4 to this address gives the
address of the first unmapped location, which is in instruction/data memory).

The value in GR64 is the virtual address of the lower bound of the stack cache. It may or
may not point to a valid location; it is retained in a global register simply to make
bounds-checking more efficient. Both of these values are software-defined, and can be kept
in any global registers (except GR1). The values are maintained by the routines which
handle the movement of data between the stack cache and main memory.

7.1.2 ADDRESSING GENERAL-PURPOSE REGISTERS INDIRECTLY

Registers in the processor are usually addressed directly by fields within instructions.
However, indirect addressing of registers may be required in some situations, such as when a
program pointer is known to point to a variable which is resident in the register file.

Three special registers—Indirect Pointers A, B, and C—are provided, so that separate indirect
register-numbers can be set for each of the source and destination operands within an
instruction. Indirect Pointer C corresponds to the destination register RC, Indirect Pointer
A corresponds to the RA operand-register, and Indirect Pointer B corresponds to the RB
operand-register.

A given indirect pointer (the value in the corresponding register) is used to address the
register file whenever Global Register 0 is specified as a source or destination register. For
example, a value of 0 in the RA field of an instruction causes the content of the Indirect
Pointer A Register to be used to access the RA operand.

7-7

The indirect pointers can be set by the Move To Special Register and Floating-Point
instructions, and by the instructions EMULATE, MULTIPLY, DIVIDE, and Set Indirect
Pointers (SETIP). The Move To Special Register instructions set the indirect pointers
individually as special-purpose registers. The Floating-Point, MULTIPLY, DIVIDE, and
SETIP instructions set all three indirect pointers simultaneously, deriving the values which
are written into the pointers from the instruction fields RC, RA, and RB. The EMULATE
instruction sets all three indirect pointers, but only the Indirect Pointer A and Indirect
Pointer B registers are written with meaningful values.

When an indirect pointer is set by a Move To Special Register, bits 9-2 of the source
operand are copied to corresponding bits in the indirect pointer. This allows the addressing
of general-purpose registers, via the indirect pointers, to be consistent with the addressing of
words in external memories and devices.

When the indirect pointers are set from instruction fields, the resulting values reflect the
Stack-Pointer addition which is performed on local registers. In addition, register
bank-protection checking is performed on the values which are loaded. A Protection
Violation trap occurs if the values represent registers which cannot be accessed.

The indirect pointers may thus be used to access exactly those operands which would be
accessed by the instruction fields setting the indirect pointers. Consequently, a routine
which emulates an instruction operation can access, with no overhead, the source and
destination registers for the instruction being emulated. No copying of arguments and
results needs to be done.

When using indirect register-addressing, at least one cycle of delay must separate any
instruction which sets an indirect pointer and any instruction which de-references that
pointer. (It can’t access a general-purpose register using the indirect pointer.) This
restriction is the result of processor pipelining (see Section 7.3.3).

7.1.3 RUN-TIME CHECKING

The assert instructions provide programs with an efficient means of comparing two values
and causing a trap when a specified relation between the two values is not satisfied. Thus,
the instructions assert that some specified relation is true, and trap if the relation is not true.
This allows run-time checking—such as checking that a computed array index is within the
boundaries of the storage for an array—to be performed with a minimum performance
penalty.

Assert instructions are available for comparing two signed or unsigned operands. The
following relations are supported: equal-to, not-equal-to, less-than, less-than or equal-to,
greater-than, and greater-than-or-equal-to.

The assert instructions specify a vector number for the trap. However, only vector numbers
64 through 255 (inclusive) may be specified by User-mode programs. If a User-mode assert

7-8

instruction causes a trap, and the vector number is between 0 and 63 inclusive, a Protection
Violation trap occurs, instead of the specified trap.

Since the assert instructions allow the specification of the vector number, several traps may
be defined in the system, for different situations detected by the assert instructions.

7.1.4 OPERATING SYSTEM CALLS

An applications program can request a service from the operating system by using the
following instruction:

ASNE SYSTEM ROUTINE, GR1,GR1

This instruction always creates a trap, since it attempts to assert that the content of a
register is not equal to itself (the register number used here is irrelevant, as long as the
register is otherwise accessible).

The sYSTEM_ROUTINE vector number specified by the instruction invokes the execution of
the operating system routine which provides the requested service. This vector number may
have any value between 64 and 255, inclusive (vector numbers 0 through 63 are pre-defined
or reserved). Thus, as many as 192 different operating-system routines may be invoked
from the applications program.

In cases where the indirect pointers may be used, the EMULATE instruction allows two
operand/result registers to be specified to the operating-system routine. The instruction is:

EMULATE SYSTEM_ROUTINE, LR3,LR6

In this case, the SYSTEM_ROUTINE vector number performs the same function as in the
previous example. Here, however, LR3 and LR6 are specified as operand registers and/or
result-registers (these particular registers are used only for illustration). The
operating-system routine has access to these registers via the indirect pointers, allowing
flexible communication. 4

7.1.5 MULTI-PRECISION INTEGER ADDITION AND SUBTRACTION

The processor allows the Carry (C) bit of the ALU Status Register to be used as an operand
for add and subtract instructions. This provides for the addition and subtraction of operands
which are greater than 32 bits in length. For example, the following code implements a
96-bit addition with signed overflow detection.

ADD GR87,GR76,GR64
ADDC GR88,GR77,GR65
ADDCS GR89,GR78,GR66

7-9

Global registers GR76-GR78 contain the first operand, global registers GR64-GR66 contain
the second operand, and global registers GR87-GR89 contain the result. The first two add
instructions set the C bit, which is used by the second two instructions. If the addition
causes a signed overflow, then an Out of Range trap occurs; overflow is detected by the final
instruction.

7.1.6 INTEGER MULTIPLICATION

The processor performs integer multiplication by a series of multiply step instructions,
rather than by a single instruction. Note that, when the product of a constant and a variable
is to be computed, a more efficient sequence of shift and add instructions can usually be
found.

If a program requires the multiplication of two variables, the required sequence of multiply
steps may be executed in-line, or executed in a multiply routine called as a procedure. It
may be beneficial to precede a full multiply procedure with a routine to discover whether or
not the number of multiply steps may be reduced. This reduction is possible when the
operands do not use all of the available 32 bits of precision

The following routine multiplies two, 32-bit, signed integers:
; Signed 32 bit multiply.

; multiplier in GR70
; multiplicand in GR71
; result MSW in GR72
; result LSW in GR73

MTSR Q,GR70 ; multiplier to Q

MUL GR72,GR71, 00#h ; step 1. no initial
; partial product. Load GR72
; with multiplicand (GR71)
; i1f 1lsb of Q is 1, else
; load it with zero. Then
; down shift GR72 & Q by 1
; bit.

MUL GR72,GR71,GR72 ; step 2. conditional add
; of GR71 to GR72 depending
; on the least sig bit of Q.
; Then down shift GR72 & Q

; by 1 bit.
MUL GR72,GR71,GR72 ; step 3
MUL GR72,GR71,GR72 " ; step 4
MUL GR72,GR71,GR72 ; step 5
MUL GR72,GR71,GR72 ; step 6
MUL GR72,GR71,GR72 ; step 7

7-10

steps 8 thru 28

MUL GR72,GR71,GR72

MUL GR72,GR71,GR72
MUL GR72,GR71,GR72
MULL GR72,GR71,GR72
MFSR GR73,0Q

Ne e Ne Ne Mo N Ne e we N

The following routine multiplies two, 32-bit,

Ne N Ne e

Unsigned 32 bit multiply.

multiplier in GR70
multiplicand in GR71
result MSW in GR72
result LSW in GR73

MTSR Q,GR70

MULU GR72,GR71,00#h
MULU GR72,GR71,GR72
MULU GR72,GR71,GR72
MULU GR72,GR71,GR72
MULU GR72,GR71,GR72
MULU GR72,GR71,GR72
MOLU GR72,GR71,GR72

Ne Ne Ne Se Ne we Ne Ne N Se Ne Ve Ne e Ne Ne Ne N

step 29

step 30

step 31

step 32. conditional
subtract of GR71 to GR72
depending on the least sig
bit of Q. Then down shift
GR72 & Q by 1 bit.

get LSW of result into
GR73.

unsigned integers:

multiplier to Q

step 1. no initial
partial product. Load GR72
with multiplicand (GR71)
if 1sb of Q is 1, else
load it with zero. Then
down shift GR72 &« Q by 1
bit.

step 2. conditional add
of GR71 to GR72 depending
on the least sig bit of Q.
Then down shift GR72 & Q

by 1 bit.
step 3
step 4
step 5
step 6
step 7

7-11

steps 8 thru 28

MULU GR72,GR71,GR72 ; step 29

MULU GR72,GR71,GR72 ; step 30

MULU - GR72,GR71,GR72 ; step 31

MULU GR72,GR71,GR72 ; step 32

MFSR GR73,0Q ; get LSW of result into
; GR73.

7.1.7 INTEGER DIVISION

The processor performs integer division by a series of divide step instructions, rather than by
a single instruction. When the divisor is a power of 2, the divide should be accomplished
by a right shift.

If a program requires the division of two integers, the required sequence of divide steps may
be executed in-line, or executed in a divide routine called as a procedure. It may be beneficial
to precede a full divide procedure with a routine to discover whether or not the number of
divide steps may be reduced. This reduction is possible when the operands do not use all of
the available 32 bits of precision

The following routine divides a 64-bit, unsigned dividend by a 32-bit, unsigned divisor:
64-bit dividend. Most-significant word in GR71,

Least-significant word in GR70.
32-bit divisor in GR72.

~e ~e

~e we N

32-bit quotient in GR74
32-bit remainder in GR73

Ne we e

MTSR Q,GR70
DIVO GR73,GR71

set Q to low half of 64-bit number
do first step. GR73 & Q become
64 bit shift area for divide.

D R T

DIV GR73,GR73,GR72 divide step 1
. ; total of 31 DIV instructions
DIV GR73,GR73,GR72 divide step 31

DIVL GR73,GR73,GR72
DIVREM GR73,GR73,GR72
MFSR GR74,0Q

last divide step
remainder into GR73
resultant quotient into GR74

Ne Ne Ne N

7-12

The following routine divides a 32-bit, unsigned dividend by a 32-bit, unsigned divisor:

32-bit dividend in GR70.
32-bit divisor in GR71.

~e N»

~

32-bit quotient in GR73
32-bit remainder in GR72

Ne Se Ve

MTSR Q,GR70 ; set Q to 32-bit dividend

DIVO GR72,00#h ; do first step. GR72 & Q become
‘ ; 64-bit shift area for divide.

DIV GR72,GR72,GR71 ; divide step 1

. ; total of 31 DIV instructions

DIV GR72,GR72,GR71 ; divide step 31

DIVL GR72,GR72,GR71 ; last divide step

DIVREM GR72,GR72,GR71 ; remainder into GR72

MFSR GR73,0Q ; resultant quotient into GR73

The following routine divides a 64-bit, signed dividend by a 32-bit, signed divisor:

64-bit dividend. Most-significant word in GR71,
Least-significant word in GR70.
32-bit divisor in GR72.

32-bit quotient in GR74
32-bit remainder in GR73

Ne Ne Se Ne Ne Ne Ne N

ASNE DIVBYZERO,GR72, 00#h ; check for divide by zero
JMPF GR71, SKIP1 ; Jjmp if dividend positive
CONST GR75, 0000#h ; set flag to 0 for positive
CPEQ GR75,GR75,00#h ; set flag to TRUE if neg dividend
SUBR GR70,GR70,00#h ; negate low order word
SUBRC GR71,GR71,00#h ; negate high order word
SKIP1: '
JMPF GR72, SKIP2 ; jmp if divisor positive
OR GR72,GR72,GR72 ; NOP
CPEQ GR75,GR75,004#h ; toggle flag
SUBR GR72,GR72,00#h ; negate divisor
SKIP2:
MTSR Q,GR70 ; set Q to low half of 64-bit number
DIVO GR73,GR71 ; do first step. GR73 & Q become
; 64-bit shift area for divide.
DIV GR73,GR73,GR72 ; divide step 1

.

total of 31 DIV instructions

7-13

DIV GR73,GR73,GR72 ; divide step 31
DIVL GR73,GR73,GR72 ; last divide step
DIVREM GR73,GR73,GR72 ; remainder into GR73

MFSR GR74,0Q ; resultant quotient into GR74
CPLT GR76,GR74,004h ; set overflow flag if result is neg
JMPF SKIP3,,GR76 ; Jjump if result is positive

CPEQ GR77,GR77,GR77 ; set GR77 with constant 80000000
CPEQ GR76,GR77,GR74 ; if result is equal to 80000000 and

; need to negate answer, no overflow
CPNEQ GR76,GR76,GR75 ; update overflow flag
SKIP3:

JMPF POS, GR75 ; no correction if neg flag not set
ASEQ DIVOVRFLOW,GR76,00#h ; if flag set, we have overflow
SUBR GR74,GR74,00#h ; negate quotient

SUBR -GR73,GR73,00#h ; negate remainder
POS:

7.1.8 TRAPPING ARITHMETIC INSTRUCTIONS

The processor does not incorporate logic to directly support floating-point operations, nor
does it directly support full multiply and divide operations. However, instructions to
perform these operations are included in the instruction set. These instructions are included
in the anticipation of future processor implementations which might include hardware to
perform these operations.

In applications programs which must be fully object-code compatible with future processor
versions—while taking advantage of the performance of future versions—these instructions
should be used to perform floating-point, multiplication, and division operations.

In the Am29000, the Floating-Point, MULTIPLY, and DIVIDE instructions simply cause
traps. The indirect pointers are set at the time the trap occurs, so that a trap handler can gain
access to the operands of the instruction, and can determine where the result is to be stored.
The trap handler can directly emulate the execution of the instruction, or can perform the
instruction using an external coprocessor. ’

Note that interfacing to an external arithmetic coprocessor via the trapping arithmetic
instructions simplifies the definition of the coprocessor as a system option. If the
coprocessor is present, the trap handler uses the coprocessor to perform the arithmetic
operations. If the coprocessor is not present, the trap handler emulates the operation by
software. '

7.1.9 COMPLEMENTING A BOOLEAN
To complement a Boolean in the processor’s format, only the most-significant bit of the

Boolean word should be considered, since the least-significant 31 bits may or may not be
zeros. This is accomplished by the following instruction:

7-14

CPGE GR64,GR64,00#h

The Boolean is in GR64 in this example. This instruction is based on the observation that
" a Boolean TRUE is a negative integer, since the Boolean bit coincides with the integer sign
bit. If the operand of this instruction is a negative integer (i.e. TRUE), the result is the
Boolean FALSE. If the operand is non-negative (i.e. the Boolean FALSE), the result is
TRUE.

7.1.10 GENERATING LARGE CONSTANTS

Eight-bit constants are directly available to most instructions. Larger constants must be
generated explicitly by instructions and placed into registers before they can be used as
operands. The processor has three instructions for the generation of large data constants:
Constant (CONST); Constant, High (CONSTH); and Constant, Negative (CONSTN).

The CONST instruction sets the least-significant 16 bits of a register with a field in the
instruction; the most-significant 16 bits are zero-bits. This instruction allows a 32-bit,

positive constant to be generated with one instruction, when the constant lies in the range of
0 to 65535. ’

Any 32-bit constant may be generated with a combination of the CONST and CONSTH
instructions. The CONSTH instruction sets the most-significant 16 bits of a register with a
field in the instruction; the least-significant bits are set to the value of the corresponding
bits in a source operand-register. Thus, to create a 32-bit constant in a register, the CONST
instruction sets the least-significant 16 bits, and the CONSTH instruction sets the
most-significant 16 bits.

The CONSTN instruction sets the least-significant 16 bits of a register with a field in the
instruction; the most-significant 16 bits are one-bits. This instruction allows a 32-bit,
negative constant to be generated with one instruction, when the constant lies in the range
of —65536 to -1.

7.1.11 LARGE JUMP AND CALL RANGES

The 16-bit relative branch-displacement provided by processor instructions is sufficient in
the majority of cases. However, addresses with a greater range are occasionally needed. In
these cases, the CONST and CONSTH instructions generate the large branch-target address
in a register. An indirect jump or call then uses this address to branch to the appropriate
location.

When progam modules are compiled separately, the compiler cannot determine whether or
not the 16-bit displacement of a CALL instruction is sufficient to reach an external
procedure, even though it is sufficient in most cases. Instead of generating instructions for
the worst case (i.e. the CONST, CONSTH, and CALLI described above), it is more efficient

7-15

to generate a CALL as if it were appropriate, with the worst-case sequence (in this case,
CONST, CONSTH, and JMPI) also appearing in the generated code somewhere (at the end
of a compiled procedure, for example).

When the above scheme is used, the linker is able to determine whether or not the CALL is
sufficient. If it is not, the CALL can be re-targeted to the worst-case sequence in the code.

In other words, when the CALL is not sufficient, the linker causes the execution sequence to
be:

, *-~-CALL
|
|
|
*=>CONST
CONSTH
JMPI

In this manner, the longer execution time for the call occurs only when necessary.

7.1.12 NO-OPS

‘When a NO-OP is required for proper operation (for example, as described in Section 7.3.3),
itis important that the selected instruction not perform any operation, regardless of program
operating conditions. For example, the NO-OP cannot access general-purpose registers,

because a register may be protected from access in some situations. The suggested NO-OP
is:

ASEQ 40#h,GR1,GR1

This instruction asserts that the Stack Pointer (GR1) is equal to itself. Since the assertion
is always true, there is no trap. Note also that the Stack Pointer cannot be protected, and
that the assert instruction cannot affect any processor state.

7.1.13 CHARACTER-STRING OPERATIONS

The need to perform operations on character strings arises frequently in many systems. The
processor provides operations for manipulating character data, but these are frequently

inefficient for dealing with character strings, since the processor is optimized for 32-bit data
quantities.

It is much more efficient, in general, to perform character-string operations by operating on
units of four bytes each. These four-byte units are more suited to the processor’s data-flow
organization. However, there are several things to be considered when dealing with
four-byte units. :

7-16

Alignment of Bytes Within Words

Character strings are normally not aligned with respect to 32-bit words. Thus, when word
operations are used to perform character-string operations, alignment of the character strings
must be taken into account.

For example, consider a character string aligned on the third byte of a word which is moved
to a destination string aligned on the first byte of a word. If the movement is performed
word-at-a-time, rather than byte-at-a-time, the move must involve shift and merge
operations, since words in the destination character-string are split across word boundaries in
the source character-string.

The processor’s Funnel Shifter can be used to perform the alignment operations required
when character operations are performed in four-byte units. Though the Funnel Shifter
supports general, bit-aligned shift and merge operations, it is easily adapted to byte-aligned
operations.

For byte-aligned shift and merge operations, it is only necessary to insure that the two
most-significant bits of the Funnel Shift Count (FC) field of the ALU Status Register point
to a byte within a word, and that the three least-significant bits of the FC field are 000.

Detection of Characters Within Words

Most character-string operations require the detection of a particular character within the
string. For example, the end of a character string is identified by a special character in some
character-string representations. In addition, character strings are often searched for a specific
pattern. During such searches, the most-frequently executed operation is the search within
the character string for the first character of the pattern.

The processor provides a Compare Bytes (CPBYTE) instruction, which directly supports the
search for a character within a word. This instruction can provide a factor-of-four
performance increase in character-search operations, since it allows a character string to be
searched in four-byte units.

During the search, the words containing the character string are compared, a word at a time,
to a search key. The search key has the character of interest in every byte position. The
CPBYTE instruction then gives a result of TRUE if any character within the character-string
word matches a byte in the search key.

7.1.14 MOVEMENT OF LARGE DATA BLOCKS

The movement of large blocks of data—for example, to perform a memory-to-memory
move—can be performed by an alternating series of loads and stores. -However, it is
normally much more efficient to move large blocks of data by using an alternating series of
Load Multiple and Store Multiple instructions. These instructions take better advantage of

7-17

the data-movement capabilities of the processor, though they require the use of a large
number of registers.

During data movement, it is possible to perform alignment operations by a series of
EXTRACT instructions between the Load Multiple and Store Multiple. Also, since the
Load Multiple and Store Multiple are interruptible, these instructions may be used to move
large amounts of data without affecting interrupt latency.

7.2 SYSTEMS-PROGRAMMING CONSIDERATIONS

This section discusses topics of general concern in the implementation of control programs
and operating systems.

7.2.1 SYSTEM PROTECTION

The Am29000 provides protection of several different system resources. In general, this

protection is based on the value of the Supervisor Mode (SM) bit in the Current Processor
Status Register.

Memory Protection

Memory-access protection is provided by the Memory Management Unit. Each Translation
Look-Aside Buffer entry in the MMU contains protection bits which determine whether or
not a given routine can access the page associated with the entry.

There is a set of protection bits for Supervisor-mode programs, and a separate set for
User-mode programs. Thus, for the same virtual page, the access authority of programs
executing in the Supervisor mode can be different than the authority of programs executing
in User mode.

A Data TLB Protection Violation or Instruction TLB Protection Violation trap occurs if a
data or instruction access, respectively, is attempted, but is not allowed because of the value
of the protection bits.

Register Protection

General-purpose registers are protected by the Register Bank Protection Register. The
Register Bank Protection Register allows parameters for the operating system to be kept in
general-purpose registers, protected from corruption by User-mode programs. Additionally,
it allows processor registers to be partitioned among multiple tasks.

If a User-mode program attempts to access a protected general-purpose register, a Protection

Violation trap occurs. Supervisor-mode programs may access any general-purpose register, ,
regardless of protection.

7-18

The special-purpose registers numbered 0 to 127 (though not all are implemented) and all
Translation Look-Aside Buffer registers are protected from User-mode accesses. Any
attempted access of these registers by a User-mode program causes a Protection Violation
trap.

External Access Protection

Other than the protection offered by the Memory Management Unit, the processor provides
no specific protection for external devices and memories. However, the SUP/*US output
reflects the value of the SM bit during the address cycle of an external access. This can
signal external devices and memories to provide protection. Any protection violations can
be reported via the *DERR input.

Note that loads and stores to input/output devices are not protected from execution by
User-mode programs. Any protection of input/output devices must be performed by external
hardware. This allows certain devices to be accessed by User-mode programs, without
forcing the overhead of an operating-system call for all devices.

7.2.2 INTERRUPTS AND TRAPS

The Am29000 automatically saves only the Current Processor Status Register when an
interrupt or trap is taken; it is saved in the Old Processor Status Register., The processor
does not automatically save any other state when an interrupt or trap is taken, but rather
freezes the contents of the following registers:

1) Program Counters O, 1, and 2.
2) Channel Address, Channel Data, and Channel Control.
3) ALU Status.

When these registers are frozen, they are allowed to be updated only by Move To Special
Register instructions. The frozen condition is directly controlled by the Freeze (FZ) bit in
the Current Processor Status Register.

Since the Channel Address, Channel Data, and Channel Control registers are frozen when an
interrupt or trap is taken, the interrupt handler may perform any single-word loads and stores
without interfering with the restart state of a channel operation in the interrupted routine.
However, load-multiple and store-multiple operations have unpredictable results if performed
while the FZ bit is 1, since these operations are sequenced by the Channel Address, Channel
Data, and Channel Control registers.

7-19

Vector Area

As discussed in Section 3.5.4, interrupts and traps are dispatched through a 256-entry Vector
Area, which directs the processor to a routine to handle a given interrupt or trap. Only 64
entries of this area are required for basic processor operation (or 22, if Floating-Point,
MULTIPLY and DIVIDE instructions are not used).

The total number of Vector Area entries required is system-dependent, as determined by the
vector numbers which are specified in the assert and EMULATE instructions. The number
of entries can be resticted to reduce the memory requirements for the Vector Area, especially
when the Vector Area is organized as a sequence of 64-instruction blocks. However, there is
nothing to prevent an instruction from specifying a vector number in the range 64 to 255.
For this reason, it may not be possible to reduce the size of the Vector Area, since erroneous
instruction vector numbers might cause unpredictable results.

The Vector Area may be relocated by the Vector Area Base Address Register, and there may
be multiple Vector Areas in the system, with the Vector Area Base Address Register
pointing to the one which is currently active.

Interrupt Handling

For temporary program interruptions, such as for Translation Look-Aside Buffer reload, the
basic processor interrupt mechanism is sufficient to eliminate the need for the interrupt or
trap handler to save any state for the interrupted routine. This state may be left in the
appropriate registers while the handler executes. An interrupt return returns immediately to
the interrupted program.

Besides the direct performance advantage which results from not saving state for temporary
program interruptions, there is an additional advantage provided by the processor. When the
state of the interrupted routine remains in the appropriate registers, the processor can detect
that the Program Counter 0 and Program Counter 1 registers contain sequential addresses.
Instead of performing two non-sequential instruction fetches for the interrupt return in this
case, the processor initiates only a single non-sequential fetch (the second fetch is performed
as a sequential fetch). This reduces the overhead of the interrupt return for these routines.

Note that, when the state of an interrupted program remains in the processor, the processor
cannot be enabled to take any further interrupts until an interrupt return is executed.
Therefore, this capability should be restricted to time-critical routines, where the execution
time of the routine does not interfere with interrupt-latency considerations. (Note that the
Interrupt Pending bit of the Current Processor Status Register may be used to detect the
presence of external interrupts while these interrupts are disabled).

To support dynamically-nested interrupts and traps, the interrupt or trap handler must save
state as necessary for the application, using an appropriate data structure (such as an
interrupt stack or program status area). Once the state has been saved (or, alternately, while
it is being saved), the handler can load the state for a new program to be executed. An

7-20

interrupt return then initiates the execution of the new program.
interrupt Return

An interrupt return resumes the execution of a program whose processor state is contained in
the following registers:

1) Old Processor Status.
2) Program Counters 0 and 1.
3) Channel Address, Channel Data, and Channel Control.

This state is most likely different from the state of the program executing the interrupt
return. These registers must be set appropriately before an interrupt return is executed.
Note that the instruction sequence which sets these registers must have a Current Processor
Status which is equivalent to that of an interrupt or trap handler; the FZ bit must be 1, and
interrupts and traps must be disabled.

Simulation of Interrupts and Traps

Assert instructions may be used by a Supervisor-mode program to simulate the occurrence
of various interrupts and traps defined for the processor. A Supervisor-mode assert
instruction can specify a vector number between 0 and 63. If this instruction causes a trap,
the effect is to create an interrupt or trap which is similar to that associated with the
specified vector number.

Thus, the interrupt and trap routines defined for basic processor operation can be invoked
without creating any particular hardware condition. For example, an *INTR1 interrupt may
be simulated by an assert instruction which specifies a vector number of 17, without the
activation of the *INTR1 signal.

7.2.3 FAST CONTEXT SWITCHING

The Am29000 allows general-purpose registers to be partitioned among multiple tasks, so
that context switching can be very fast. However, in this configuration, fewer registers are
available to each task, and the local registers cannot be used as a stack cache (see Section
7.1.1). Thus, task-switch time is minimized at the possible expense of an increase in
procedure-call and procedure-execution time. Even so, this trade-off is appropriate in many
real-time applications.

The 128 local registers may be partitioned into 8 banks of 16 registers each, with a each
bank of registers allocated to one of 8 tasks resident in the processor. Partitioning can be
made transparent to resident tasks (except that each task has a small number of registers),
because the Stack Pointer can be set so that the first register in each bank is addressed as

7-21

Local Register 0. Even when two or more banks of local registers are combined into larger
banks, each of the larger banks can still start with Local Register 0. Registers within a
given bank can be protected from access by other tasks by the Register Bank Protect
Register.

Since the Stack Pointer does not affect the addressing of global registers, global registers
cannot be partitioned among multiple tasks. A task cannot be made to reference the proper
global registers unless the registers allocated to a given task are known before execution;
this restriction is too severe in most cases. Because of this, the global registers should be
restricted for use by the operating system, and protected from access by resident tasks.
Given this restriction, it is best to use the global registers to contain the processor state of
resident tasks.

The processor state which normally must be saved on a task switch consists of the contents
of the following registers:

1) Old Processor Status

2) Channel Address

3) Channel Data

4) Channel Control

5) Program Counter 0

6) Program Counter 1

7 Q

8) ALU Status
Thus, the processor state can be saved in 8 general-purpose registers, and the state for 8
resident tasks can be saved in the 64 global registers. This state is protected from access (by
resident tasks) by the Register Bank Protect Register.
In summary, the general-purpose registers can accommodate as many as 8 tasks resident in
the processor simultaneously. In this configuration, the global registers contain the
processor state for the tasks, and the local registers contain the program state (e.g. variables)
for the tasks. Each task has 16 general-purpose registers, numbered 0 to 15, which are used
in the normal way.
The above configuration allows a complete context switch to be performed by the

adjustment of the Stack Pointer and the movement of processor state to and from
general-purpose registers. These operations can be completed within 17 processor cycles.

7-22

7.2.4 MEMORY MANAGEMENT

This section discusses various issues involved in memory management as they relate to an
operating system. The focus is on virtual-addressing issues.

Virtual Page Size

The MMU Configurations Register determines the size of a virtual page mapped by the
Memory Management Unit. The choices for page size are 1, 2, 4, and 8 Kbytes. The
selection of page size is based on several considerations:

1) For agiven page size, any allocation of pages to a process will, on average, waste
half of one page. With smaller page sizes, the waste is smaller. In systems with
a large number of processes, each with a small amount of memory, small page
sizes can reduce waste significantly.

2) Smaller page sizes allow finer memory-protection granularity.

3) The maximum amount of memory that can be referenced by Translation
Look-Aside Buffer (TLB) entries is set by the number of TL.B entries and the page
size. Larger page sizes allow the fixed number of TLB entries to address more
memory, and generally reduce the number of TLB misses. For example, with
1-Kbyte pages, a process requiring 8 Kbytes of contiguous memory would create
eight TLB misses; with 8-Kbyte pages, the process would create only one TLB
miss.

4) The page is usually the unit of memory moved between memory and backing
storage. The design of the backing storage sub-system may also influence the
choice of page size, because of transfer-efficiency considerations. For example, if
the backing storage is a disk, the disk seek time is large compared to transfer time.
Thus, it is more efficient to transfer large amounts of data with a single seek.
Efficiency may also depend on disk organization (i.e. the number of seeks
possibly required to transfer a page).

Page Reference and Change Information

In a demand-paged environment, it is important to be able to collect information on the use
and modification of pages. The processor does not collect this information directly, but the
information may be collected by the operating system, without requiring hardware support.

Each TLB entry contains 6 bits which specify the type of accesses which are permitted for
the corresponding page. When a TLB entry is loaded, the TLB reload routine can set the
protection bits so that an access to the corresponding page is not allowed. If an access is
attempted, a TLB protection violation traps occurs. This trap may be used to signal that the
page is being referenced. After noting this fact, the trap handler may set the protection bits
to allow the access, and return to the trapping routine.

7-23

A technique similar to the one just described can be used to collect information on the
modification of a page. However, in this case, the TLB protection bits are initially set so
that a store is not allowed.

It is also possible to create reference information by noting references during TLB reload.
For example, reference bits are normally reset periodically, so that they reflect current
references. When reference bits are reset, the entire TLB may be invalidated. Reference bits
are then set as TLB entries are loaded. Note that this scheme relies on the fact that a TLB
miss implies a reference to the corresponding page. Also, this scheme does not account for
page change information.

The disadvantage of the above schemes is one of possible performance loss. This is the
result of the additional traps required to monitor page references and changes. If the
performance impact is unacceptable, references and changes can be easily monitored by
hardware which detects reads and writes to page frames in instruction/data memory.

Monitoring Critical Areas of Memory

In certain fault-tolerant systems, it is necessary to detect changes to critical areas of
memory, so that these changes may be immediately reflected on a non-volatile storage
device. To monitor critical memory areas, the TLB protection bits can be set so that any
change to the area causes a Data TLB Protection Violation trap. This trap signals that the
area is being modified. '

In this use of the protection bits, the trap handler does not set the bits to allow the access.
Rather, the trap handler must emulate the access, using the Channel Address, Channel Data,
and Channel Control registers. The Contents Valid (CV) bit of the Channel Control
Register is reset before the trapping routine is restarted, so that the trap does not re-occur.

TLB Miss Handling

The address translation performed by the MMU is ultimately determined by routines which
place entries into the Translation Look-Aside Buffer (TLB). TLB entries are normally based
on system page tables, which give the translation for a large number of pages. The TLB
simply caches the currently-needed translations, so that system page tables do not have to be
accessed for every translation.

If a required address translation cannot be performed by any entry in the TLB, a TLB miss
trap occurs. The trap handling routine—called the TLB reload routine—accesses the system
page tables to determine the required translation, and sets the appropriate TLB entry. Note
that the access requiring this translation can be restarted by the interrupt return at the end of
the TLB reload routine (see Section 7.2.5).

A large number of different page-table organizations are possible. Since the TLB reload
routine is a sequence of processor instructions, the page tables may have a structure and

7-24

access method which satisfies trade-offs of page table size, translation lookup time, and
memory-allocation strategies.

Another possibility supported by the TLB reload mechanism is that of a second-level TLB.
The TLB reload routine is not required to access the system page tables immediately upon a
TLB miss, but may access an external TLB which can be much larger than the processor’s
TLB. The amount of time required to access the external TLB is normally much smaller
than the amount of time required to access the page tables, leading to an overall
improvement in performance. Of course, if a translation is not in the external TLB, a page
table lookup must still be performed.

Because the TLB reload routine may depend on the type of access causing the TLB miss, the
processor differentiates between misses on instruction and data accesses by Supervisor-mode
and User-mode programs. This eliminates any time which might be spent by the TLB
reload routine in making the same determination. Performance is also enhanced by the LRU
Recommendation Register, which gives the TLB register-number for Word 0 of the TLB
entry to be replaced by the TLB reload routine (the least-recently-used entry).

Warm Start

When a process switch occurs, there is a high probability that most of the TLB entries of
the old process will not be used by the new process. Thus, the new process most likely
creates many TLB miss traps early in its execution. This is unavoidable on the first
initiation of a process, but may be prevented on subsequent initiations.

When a given process is suspended, the operating system can save a copy of its TLB
contents. When the task is restarted, the copy can be loaded back into the TLB. This warm
start prevents many of the process’ initial TLB misses, at the expense of the time required to
save and restore the copy of the TLB entries. However, this time may be much shorter than
the time required to perform all TLB reloads individually.

Note that, if this warm-start strategy is adopted, any change in address translation must be
reflected in all copies of TLB entries for all affected processes. If address translation is often
changed so that it affects more than one process, warm start may not be advantageous.

Minimum Number of Resident Pages

In any processor which supports demand-paging, there is a minimum number of pages
which must be resident for any active process. This minimum is determined by the
maximum number of pages which might be referenced by an atomic operation in the
processor’s architecture (e.g. an instruction, normally). If this maximum number is not
guaranteed to be resident in memory, some operations might never complete, since they
may never have all of the required pages resident in memory at one time.

7-25

For the Am29000, two pages are required for a process to make progress through the
system. The reason for this requirement is that the Am29000, on interrupt return, restarts
an interrupted Load Multiple or Store Multiple only after fetching two instructions (see
Section 3.5.5). The first of these instructions must be resident in memory—and mapped by
the TLB—and the page required to complete the Load Multiple or Store Multiple must also
be resident—and mapped by the TLB—for the interrupt return to complete successfully.

Branch Target Cache Considerations

The Branch Target Cache is accessed with virtual as well as physical addresses, depending on
whether address translation is enabled for instruction accesses. Because of this, the Branch
Target Cache may contain entries which might be considered valid, even though they are
not.

For example, address translation may be changed by a change in the Process Identifier of the
MMU Configuration Register. This change is not reflected in the Branch Target Cache
tags, so they do not necessarily perform valid comparisons. Also, the Branch Target Cache
does not differentiate between virtual and physical addresses, so that it may perform an

invalid comparison after address translation for instructions is enabled or disabled. ‘

If a TLB miss occurs during the address tanslation for a branch target instruction, the
processor considers the contents of the Branch Target Cache to be invalid. This is required
to properly sequence the LRU Recommendation Register, and does not solve the problem
just described. If the TLB is changed at some point, so that the TLB miss does not occur,
the Branch Target Cache may still perform an invalid comparison.

To avoid the above problem, the contents of the Branch Target Cache must be explicitly
invalidated. This can be accomplished by executing an Invalidate (INV) instruction
whenever an address translation is changed. The INV instruction causes all entries of the
Branch Target Cache to become invalid (after the next successful branch). However, since
the change in address translation rarely affects the program performing the change, the INV
may unnecessarily affect the performance of this program.

The IRETINYV instruction has the same effect on the Branch Target Cache as the INV
instruction, but can reduce the performance impact. The IRETINV delays invalidation until
an interrupt return is executed, eliminating the need to disrupt an operating-system routine
when it changes address translation. At the point of interrupt return; the contents of the
Branch Target Cache are most likely not of much use anyway.

Note that the Branch Target Cache is not invalidated when the Cache Disable (CD) bit of the
Configuration Register is set. When the CD bit is 1, the Branch Target Cache continues to
operate, but the processor considers its contents to be invalid. Thus, the CD bit cannot be
used to invalidate the cache, and, furthermore, the Branch Target Cache may have to be
invalidated whenever the CD bit is to be reset (i.e. when the cache is to be enabled),

7-26

The Branch Target Cache does not distinguish between virtual and physical addresses, but
does distinguish between the instruction/data memory and instruction read-only memory
(ROM) address-spaces, and between User-mode and Supervisor-mode addresses. Thus, the
Branch Target Cache does not have to be invalidated on transitions between these
address-spaces. This improves the performance of applications which make heavy use of
ROM-based and/or operating-system routines.

7.2.5 RESTARTING FAULTING EXTERNAL ACCESSES

In a demand-paged system environment, virtual pages and their associated virtual-to-physical
mappings are made available to programs on demand. In other words, the
memory-management routines generally execute only when a given page or mapping is
needed by a program. This need is signalled by a page fault trap caused by a program access
(normally, the page fault occurs during a TLB reload).

Since the page fault trap is part of normal system operation, and does not represent an error,
the access which causes the trap must be restarted—once the trapping condition is
remedied—in a manner that is not detectable to the program causing the trap.

Additionally, in the Am29000, the TLB reload mechanism relies on the ability to restart an
access which causes a TLB miss trap. This restart, also, must be accomplished in a manner
which cannot be detected by the trapping program. '

The Am29000 overlaps external accesses with the execution of instructions. Thus, traps
caused by accesses are imprecise: that is, the address of the instruction which initiated the
access cannot be determined by the trap handler. Since the address of the-initiating
instruction is unknown, the access cannot be restarted by re-executing this instruction.
Even if the address could be determined, the instruction might not be restartable, since an
instruction executed before the trap occurred may have altered the conditions of the access,
such as by altering the address source-register.

In order to provide for the restarting of loads and stores which cause exceptions, the
processor saves all information required to restart these accesses in the Channel Address,
Channel Data, and Channel Control registers. The Contents Valid (CV) and Not Needed
(NN) bits in the Channel Control Register indicate that the information contained in these
registers represents an access which must be restarted. The CV bit indicates that the access
did not complete, and the NN bit indicates whether or not the data from the access is required
by the processor.

Note that, since instruction execution is overlapped with external accesses, an instruction
which executes after a load may alter the destination-register for the load. If a trap occurs in
this situation, the access information in the Channel Address, Data, and Control registers is
correct, but the load cannot be restarted. The NN bit provides correct operation in this case.

7-27

When an interrupt or trap is taken, the handling routine has access to the Channel Address,
Data, and Control registers; the contents of these registers may contain information relevant
to an incomplete access, and can be preserved for restarting this access. Note that, since
these registers are frozen (due to the FZ bit of the Current Processor Status), they are not
available to monitor any external accesses in the interrupt or trap handler until their contents
are saved, and the FZ bit is reset.

The processor restarts an access, using the Channel Address, Channel Data, and Channel
Control registers, upon an interrupt return (IRET or IRETINV). The access is initiated if
the CV bit of the Channel Control Register is 1, and the NN bit is 0. The restart cannot be
detected in the logical operation of the restarted routine, although the timing of its execution
is altered.

The mechanism used to restart faulting accesses has the additional benefit of allowing a fast
interrupt-response time when the processor is performing a load-multiple or store-multiple
operation. Interrupted load-multiple and store-multiple operations are restarted as if they had
faulted. In this case, the operation resumes from the point of interruption, not the
beginning of the sequence. !

7.2.6 MULTI-PROCESSING

The Am29000 provides several facilitites for the implementation of multi-programming and
multi-processing systems. These facilities help provide mutual exclusion, synchronization,
and communication between multiple processes, whether these processes execute on a single
processor or multiple processors.

Binary semaphores are supported by the Load and Set (LOADSET) instruction. This
instruction loads the contents of an external location into a register and atomically sets the
contents of the location to the integer —1. This instruction requires no special hardware
support in the system, since all sequencing is performed by the processor. Also, the
LOADSET is available to User-mode programs. This eliminates the overhead of an
operating-system call in the use of binary semaphores.

The instructions Load and Lock (LOADL) and Store and Lock (STOREL) support the
locking of external devices and memories, or the locking of particular locations within an
external device or memory. This prevents access by any process or processor other than the
one which performed the lock, and provides the flexibility of locking in a manner
appropriate to the system and application. The LOADL and STOREL instructions are
available to User-mode programs.

To indicate that a LOADL or STOREL is being executed, the processor asserts the *LOCK

output during the external access. Since the processor cannot directly control the behavior
of external devices and memories, system hardware must support locking, if required.

7-28

Note also that the protocol for the locking and unlocking of devices and memories must be
defined by the system. For example, the protocol may be defined such that a LOADL locks
the device or memory, and a STOREL unlocks the device or memory. Between the
execution of the LOADL and the STOREL, the device can be accessed by the locking
process, with any combination of normal loads and stores.

For the implementation of a general-purpose exclusion, synchronization, and/or
communication scheme, the processor allows Supervisor-mode programs to set the Lock
(LK) bit in the Current Processor Status. This bit activates the *LOCK pin, and prevents
the processor from relinquishing the channel to another channel master. (If another master
already has control of the channel when the LK bit is set, the LK bit does not take affect
until control of the channel is returned to the processor).

The LK bit allows a Supervisor-mode program to execute with mutual exclusion for any
sequence of instructions. However, because interrupts must also be disabled for true
exclusion, this may have a negative impact on system performance if used improperly.

7.2.7 TIMER FACILITY

The processor has a built-in Timer Facility which can be configured to cause periodic
interrupts. The Timer Facility consists of 2 special-purpose registers—the Timer Counter
and the Timer Reload registers—which are accessible only to Supervisor-mode programs.
These registers implement timing functions independent of program execution.

Timer Facility Operation

The Timer Counter Register has a 24-bit Timer Count Value (TCV) field which decrements
by one on every processor cycle. If the TCV field decrements to zero, it is written with the
Timer Reload Value (TRV) field of the Timer Reload Register on the next cycle; the
Interrupt (IN) bit of the Timer Reload register is set at the same time. The reloading of the
TCV field by the TRV field maintains the accuracy of the Timer Facility.

The Timer Reload Register contains the 24-bit TRV field and the control bits Overflow
(OV), Interrupt (IN), and Interrupt Enable (IE). The TCV field and IN bit were described
above. If the IN bit is 1 and the IE bit also 1, a Timer interrupt occurs. If the IN bitis 1
when the TCV field decrements to zero, the OV bit is also set. The OV bit indicates that a
Timer interrupt may have occurred before a previous interrupt was serviced.

Timer Facility Initialization
To initialize the Timer Facility, the following steps should be taken in the specified order (it

is assumed that Timer interrupts are disabled by the DA bit of the Current Processor Status
Register during the following steps):

7-29

1) Set the TCV field with the desired interval count for the first timing interval.
Note that this interval must be sufficiently large to allow the execution of the
next step before the TCV field decrements to zero (this is normally the case).

2) Set the TRV field with the desired interval count for the second timing interval.
The OV and IN bits are reset, and the IE bit is set as desired. Note that the second
timing interval may be equivalent to the first timing interval.

Handling Timer Interrupts

The following is a suggested list of actions to be taken to handle a Timer interrupt:
1) Read the Timer Reload register into a general-purpose register.
2) ‘Reset the IN bit in the general-purpose register.

3) Set the TRV field in the general-purpose register to the desired value for the next
timing interval. Note that, at this time, the Timer Counter is timing the current
interval. Also, this step may be omitted, if all intervals are equivalent.

4) Write the contents of the general-purpose register back into the Timer Reload
register.

5) Test the general-purpose-register copy of the OV bit, and, if it is set, report the
error as appropriate.

6) Perform any system operations required for the Timer interrupt.
7) Execute an interrupt return.
Timer Facility Uses

Since the Timer Facility has a resolution of a single processor cycle, it may be used to
perform precise timing of system events. For example, it may be used to determine an
exact measurement of the number of cycles between two events in the system, or to perform
precise, time-critical control functions. Note that the Timer interrupt is enabled and disabled
separately from other processor interrupts, so that its priority can be separately specified.

The Timer Facility can be used to generate time intervals for collecting virtual page usage
information (see Section 7.2.4). For example, if memory management relies on a
working-set page-replacement algorithm, the Timer Facility can establish the working set
window. \

The Timer Facility can be shared among multiple processes. This sharing is accomplished
by the implementation of a queue for timer events, which are sorted in order of increasing
gvent time. On each occurence of a Timer interrupt, the TRV field is set for the interval

7-30

between the next two events in the queue, while the Timer Counter Register is counting the
current interval (because of a previous setting of the TRV field). The event at the beginning
of the queue identifies other system actions to be taken for the Timer mterrupt This event
is removed from the queue after the appropriate actions are taken.

7.2.8 TRACE FACILITY

Software debug is supported by the Trace Facility. The Trace Facility guarantees exactly
one trap after the execution of any instruction in a program being tested. This allows a
debug routine to follow the execution of instructions, and to determine the state of the
processor and system at the end of each instruction.

Tracing is controlled by the Trace Enable (TE) and Trace Pending (TP) bits of the Current
Processor Status. The value of the TE bit is always copied into the TP bit when an
instruction enters the write-back stage. A Trace trap occurs whenever the TP bitis 1. As
with most traps, the Trace trap can be disabled only by the DA b1t of the Current Processor
Status.

In order to trace the execution of a program, the debug routine performs an interrupt return
to cause the program to begin or resume execution. However, before the interrupt return is
executed, the TE and TP bits of the Old Processor Status are set with the values 1 and 0,
respectively. The interrupt return causes these bits to be copied into the TE and TP bits of
the Current Processor Status.

When the target of the interrupt return (whose address is contained in the Program Counter 1
Register when the interrupt return is executed) enters the write-back stage, the processor
copies the value of the TE bit into the TP bit. Since the TP bit is a 1, a Trace trap occurs.
This trap prevents any further instruction execution in the target routine until the interrupt
" is taken and the routine is resumed with’'an interrupt return. When the Trace trap is taken,
the TE and TP bits are both reset automatically, preventing any further Trace traps.

Since the Trace Facility is managed by the Old and Current Processor Status registers, it
operates properly in the event that the processor takes an interrupt or trap—which is
unrelated to the Trace Facility—before the above trace sequence completes. When the
unrelated interrupt or trap is taken, the state of the Trace Facility (i.e. the values of the TE
and TP bits) is copied into the Old Processor Status from the Current Processor Status. The
Trace Facility then resumes operation when the interrupted routine is restarted by an
interrupt return.

Note that it is possible to cause a Trace trap by directly setting the TP and/or TE bits in the

Current Processor Status Register. This may be accomplished only by a Supervisor-mode
program.

7-31

7.3 PIPELINE FEATURES EXPOSED TO SOFTWARE

In certain cases, the Am29000 pipeline is exposed during instruction execution, in that the
execution of certain instructions are dependent on the execution of previous instructions.
This section discusses the cases where the pipeline is exposed to software, and the resulting
effect on instruction execution.

7.3.1 DELAYED BRANCH

The effect of jump and call instructions is delayed by one cycle, to allow the processor
pipeline to achieve maximum throughput. When one of these branches is successful, the
instruction immediately following the jump or call is executed before the target instruction
of the jump or call is executed. Jump and call instructions are collectively referred to as

delayed branches, and the immediately-following instruction is called the delay instruction.

For example, in the following code fragment:

CPEQ GR88,GR96,GR97 (1)

JMPF LBL,GR88 (2)
SUB GR96,GR96, 01#h (3)
CONST GR96, 00#h (4)
LBL: CALL SORT, LRO (5)
ADD LR2,LR5,00#h (6)

CPNEQ LR3, LR2, 00#h (7)

The SUB instruction (3) is executed regardless of the outcome of the JMPF instruction (2).
Of course, if the JMPF is not successful, the CONST instruction (4) is also executed. If
the JMPF is successful, then the instruction sequence is: (3), (5), (6), and then the first
instruction of the SORT procedure. Note that the CALL instruction (5) is also a delayed
branch, so the instruction immediately following it, (6), is always executed. After the
SORT procedure executes the return sequence, the CPNEQ instruction (7) is the next
instruction executed.

The benefit of delayed branches is improved performance and a simplified processor
implementation. Performance is improved because the processor pipeline executes useful
instructions in a larger number of cycles, compared to an implementation without delayed
branches.

7-32

For example, ignoring all other effects on performance, and assuming that 15% of all
instructions are branches, then a processor without delayed branches would take at least 2
cycles for 15% of its instructions, leading to 0.85(1) + 0.15(2) = 1.15 cycles per
instruction, on average. This represents a 15% performance degradation compared to a
processor with delayed branches (assuming, for this simple example, that the delay
instruction is always useful).

The cost of having delayed branches is either the extra effort required when the compiler
takes advantage of delayed branches (by re-organizing code), or the extra NO-OP instruction
which the compiler inserts after every branch to guarantee correct program operation. Since
the compiler expends only a small amount of effort to avoid wasting time and space with
NO-OPs, and since the performance improvement resulting from this effort is significant,
delayed branches are beneficial overall.

When two immediately-adjacent branches. are taken, the target of the first branch preempts
execution of the delay cycle of the second branch, and the target of the second branch then
follows the target of the first branch. For example, in the following code fragment:

JMP Ll (L)
JMP L2 (2)
ADD GR68,GR68, 01#h (3)

Ll: SUB GR77,GR77,01#h (4)
SUBC GR68,GR68, 00#h {5)

L2: CONST GR77,f£f0f#h (6)

SUBR GR68,GR68, 01#h (7)
OR GR77,GR77,GR68 (8)

an unconditional JMP instruction (1) is followed immediately by another unconditional
JMP instruction (2). (In this example, unconditional JMPs are used; however, any two
immediately-adjacent taken branches exhibit the same behavior.) The sequence of executed
instructions in this case is: JMP instruction (1), JMP instruction (2), SUB instruction (4),
CONST instruction (6), SUBR instruction (7), OR instruction (8), and so on. Note that the
ADD instruction (3) is not executed. Also, the target of the first JMP instruction (1) was
merely visited; control did not continue sequentially from L1 but rather continued from L2.

7-33

7.3.2 OVERLAPPED LOADS AND STORES

The processor allows an external access to be overlapped with instruction execution. This
means that, while the access is being performed, the processor continues to execute
instructions, as long as the instructions and data required for execution are available.

In order to make full use of overlapped storage accesses, some instruction reorganization
may.be necessary. For example, in the following sequence:

LOOP: .

CONST LR3, #ARRAYBASE (1)

ADD LR5, LR3,LR4 (2)
LOAD LR6,LR5 (3)
ADD LR7, LR6, LR7 (4)
SUB LR4,LR4,01#h (5)
CPEQ LR8, LR4, 004h (6)
JMPF LOOP, LR8 (7N
ASEQ 404h, GR1,GR1 (8)

the ADD instruction (4) uses the result of the LOAD instruction (3). However, the
following four instructions do not depend on the result of the LOAD. Therefore, the ADD
instruction (4) can be moved past the JMPF (7)—since it will always be executed even if
the JMPF is taken—and replace the ASEQ instruction (8), used as a NO-OP. The resulting
sequence is:

LOOP: .

CONST LR3, #ARRAYBASE (1)

ADD LR5, LR3, LR4 (2)
LOAD LR6, LR5 (3)
SUB LR4,LR4,01%h (4)
CPEQ LR8, LR4, 00¢h (5)
JMPF LOOP, LR8 (6)
ADD LR7,LR6,LR7 (7)

The instructions (4) through (6) are likely to be executed while external mémory satisfies
the load request, resulting in improved throughput. The processor thus allows parallelism
to be exploited by instruction reordering.

The overlapped load feature may be used to improve processor performance, but imposes no
constraints on instruction sequences, as delayed branches do. The processor implements the
proper pipeline interlocks to make this parallelism transparent to a running program.

7.3.3 DELAYED EFFECTS OF REGISTERS

The modification of some registers has a delayed effect on processor behavior, because of the
processor pipeline. The affected registers are the Stack Pointer (Global Register 1), Indirect
Pointers A, B, and C, and the MMU Configuration Register.

An instruction which writes to the Stack Pointer can be followed immediately by an
instruction which reads the Stack Pointer. However, any instruction which references a
local register also uses the value of the Stack Pointer to calculate an absolute
register-number.

At least one cycle of delay must separate an instruction which updates the Stack Pointer and
an instruction which references a local register. In most systems, this affects procedure call
and return only (see Section 7.1.1). In general, though, an instruction which immediately
follows a change to the Stack Pointer should not reference a local register (however, note
that this restriction does not apply to a reference of a local register via an indirect pointer).

The indirect pointers have an implementation similar to the Stack Pointer, and exhibit
similar behavior. At least one cycle of delay must separate an instruction which modifies an
indirect pointer and an instruction which uses that indirect pointer to access a register.

At least one cycle of delay must separate a Move To Special Register which modifies the
Page Size (PS) field of the MMU Configuration Register and an instruction which performs
address translation. The latter instruction includes successful branches, loads, and stores.

Note that it is normally not possible to guarantee that the delayed effect of the Stack Pointer
and indirect pointers is visible to a program. If an interrupt or trap is taken immediately
after one of these registers is set, then the interrupted routine sees the effect in the following
instruction, because many cycles elapse between the two instructions. For this reason, a
program should not be written in a manner which relies on the delayed effect; the results of
this practice may be unpredictable. '

7-35

7-36

CHAPTER 8
INSTRUCTION SET

This chapter provides a specification of the Am29000 instruction set. Sections 8.1 through
8.3 describe the terminology used, the setting of the ALU Status Register by instructions,
and the instruction formats. Section 8.4 describes each instruction in detail; instructions are
presented alphabetically, by assembler mnemonic. Finally, Section 8.5 gives an index of
instructions by operation code.

8.1 INSTRUCTION-DESCRIPTION NOMENCLATURE
In order to simplify the specification of the instruction set, special terminology is used
throughout this chapter. This section defines the terminology and symbols used to describe

instruction operands, operations, and the assembly-language syntax.

This section does not describe all terminology used. It excludes certain descriptive terms
which have an obvious meaning.

8.1.1 OPERAND NOTATION AND SYMBOLS

Throughout this chapter, instruction operands are signed, two’s-complement, word integers,
unless otherwise noted. The term “register” is used consistently to denote a general-purpose

register; other types of registers are explicitly described.

The following notation is used in the description of instruction operands:

0116 16-bit immediate data, zero-extended to 32 bits.
1116 16-bit immediate data, ones-extended to 32 bits
BP The Byte Pointer (BP) field of the ALU Status Register. The BP field

selects a byte or half-word within a word, and is interpreted according to
the Byte Order bit of the Configuration Register.

C The Carry (C) bit of the ALU Status Register. The C bit is logically
zero-extended to 32 bits when it is involved in a word operation.

COUNT The value of the Count Remaining field of the Channel Control Register.

Note that COUNT does not refer to this field directly, but rather to the
value of the field at the beginning of a LOADM or STOREM instruction.

8-1

DEST

EXTERNAL
WORDI{n]

FALSE
FC
h'n’
I16
IPA

IPB

PC

Q

register RA
register RB
register RC

SPDEST

SPECIAL

special-
purpose
register SA

The general-purpose register which is the destination of an instruction, i.e.
the register used to store the result.

The word in an external device or memory with address n. This
terminology is also used for coprocessor words, except that the address n
either has no pre-defined interpretation or is a data item transferred to the
COpIoCessor.

The Boolean constant FALSE.

The Funnel Shift Count (FC) field of the ALU Status Register.

The hexadecimal constant n.

16-bit immediate data.

Indirect Pointer A Register.

Indirect Pointer B Register.

Indirect Pointer C Register.

The Program Counter Register. This register is not explicitly accessible
by instructions, but does appear as an operand for certain instructions., The
Program Counter always contains the word address of the instruction being
executed, and is 30 bits in length.

The Q Register.

These designate the general-purpose registers specified by the instruction
fields RA, RB, and RC (see Section 8.3).

The special-purpose register which is the destination of an instruction.

The content of a special-purpose register, used as an instruction operand.

Designates the sﬁecial-purpose register specified by the instruction field
SA (see Section 8.3).

SRCA

SRCB The contents of general-purpose registers, used as instruction operands.

SRCABYTEn

SRCB.BYTEn Designate the byte numbered n within the SRCA or SRCB operand.

TARGET The target-instruction address specified by a jump or call instruction. This
address is either absolute, or Program-Counter relative.

TLB[n} The Translation Look-aside Buffer Register with register-number n.

TRUE The Boolean constant TRUE.

TWIN The twin of a general-purpose register is the odd-numbered register whose

register is one greater than the register number for a given even-numbered
register. For example, Local Register 5 is the twin of Local Register 4.

8.1.2 OPERATOR SYMBOLS

The following symbols are used to describe instruction operations:

A << B
A>>B

AllB

A&B
A|B

A"B

A «—exp
A=B

A<>B

Left shift of the A operand by the shift amount given by the B operand.

Right shift of the A operand by the shift amount given by the B operand.
Concatentation. The B operand is appended to the A operand. In the resulting
quantity, the A operand makes up the high-order part, and the B operand makes
up the low-order part.

Bitwise AND.

Bitwise OR.

Bitwise exclusive-OR.

One’s-complement.

Assignment of the A location by the result of the expression on the right side.

Equal to.

Not equal to.

A>B Greater than,

A>=B Greater than or equal to,
A<B Less than.

A<=B Less than or equal to.
A+B Addition,

A-B Subtraction,

A+*B Multiplication.

A/B Division.

A.B A subrange which includes the A operand and the B operand. This symbol is
used for subranges of bits as well as subranges of words.

AORB Logical OR of two Boolean conditions.

8.1.3 CONTROL-FLOW TERMINOLOGY

The following terminology is used to describe the control functions performed during the
execution of various instructions:

Continue Continue execution of the current instruction sequence.

IF condition

THEN operations

ELSE operations The condition following the IF is tested. If the condition holds, the
operations following the THEN are performed. If the condition does not
hold, the operations following the ELSE are performed. If the ELSE is
not present and the condition -does not hold, no operation is performed.

signed overflow This condition is present when the result of an add or subtract of
two’s-complement operands cannot be represented by a signed, word
integer.

Trap(n) Specifies a trap with vector number n. The vector number n may be
specified indirectly, e.g. Trap (VN), or explicitly by symbolic name,
e.g. Trap (Out of Range).

unsigned
overflow

unsigned
underflow

This condition is present when the result of an add of unsigned operands
cannot be represented by an unsigned, word integer.

This condition is present when the result of a subtract of unsigned
operands cannot be represented by an unsigned integer, i.e. when the
result is less than zero.

Designates the trap vector number specifed by the instruction field VN
(see Section 8.3).

8.1.4 ASSEMBLER SYNTAX

This chapter does not contain a full description of the instruction assembler, but provides a
rudimentary description of the assembler syntax. The following notation is used to describe

assembler tokens:

ce Determines the Coprocessor Enable (CE) bit of a load or store instruction.

cntl Determines the 7-bit control field in a load or store instruction.

const8 Specifies a constant which can be expressed by 8 bits.

constl6 Specifies a constant which can be expressed by 16 bits.

ra

b

Ic These tokens name general-purpose registers. In a formal sense, these represent
the same token, since the name of a register does not depend on its instruction
use. However, three distinct tokens are used to clarify the relationship between
the assembler syntax, instruction operands, and instruction fields.

spid A symbolic identifier for a special-purpose register.

target A symbolic label for the target of a jump or call instruction.

vn Specifies a trap vector number.

8-5

8.2 ARITHMETIC/LOGIC STATUS RESULTS OF
INSTRUCTIONS

8.2.1 ARITHMETIC/LOGIC STATUS BITS

The arithmetic/logic status bits of the ALU Status Register are:

V Overflow
N Negative
Z Zero

C Camy

The C bit is used in extended arithmetic operations (i.e. on operands greater than 32 bits in
length), and the N bit is used in divide step operations. Other than these uses, the status
bits are not involved in instruction operations. In particular, they are not used to determine
the outcome of conditional jump instructions: Boolean values in registers are used instead
for this purpose. The status bits are primarily informational. '

Except for instructions which explicitly modify the ALU Status Register, the status bits are
modified only by the execution of instructions in the Arithmetic and Logical classes. The
Arithmetic and Logical instructions affect the status bits differently. The following two
sections describe the setting of the status bits by Arithmetic and Logical instructions.

When the Freeze (FZ) bit of the Current Processor Status Register is 1, the ALU Status
Register is not modified except by the Move To Special Register instruction.

8.2.2 ARITHMETIC OPERATION STATUS RESULTS

The Arithmetic instructions modify the V, N, Z, and C bits. These bits are set according to
the result of the operation performed by the instruction.

All instructions in the Arithmetic class—except for MULTIPLY and DIVIDE—perform an
add. In the case of subtraction, the subtract is performed by adding the two’s-complement or
one’s-complement of an operand to the other operand. The multiply step and divide step
operations also perform adds, again possibly complementing one of the operands before the
operation is performed. In general, the status bits are based on the results of the add.

If two’s complement overflow occurs during the add, the V bit of the ALU Status Register
is set; otherwise it is reset. Two’s complement overflow occurs when the carry-in to the
‘most-significant bit of the intermediate result differs from the carry-out. When this occurs,
the result cannot be represented by a signed, word integer. Note that the V bit is always set
in this manner, even when the result is unsigned.

The N bit of the ALU Status Register is set to the value of the most-significant bit of the
result of the add. Note that the divide step and multiply step operations may shift the result
after the operation is performed. In the cases where shifting occurs, the N bit may not agree
with the result which is written into a general-purpose register, since the N bit is based only
on the result of the add, not on the shift.

If the result of the add causes a zero word to be written to a general-purpose register, the Z
bit of the ALU Status Register is set; otherwise, it is reset. Note that the Z bit always
reflects the result written into a general-purpose register; if shifting is performed by a
multiply or divide step, the Z bit reflects the shifted value.

If there is a carry out of the add operation, the C bit is set; otherwise it is reset.
Correcting Out-of-Range Results

Some Arithmetic instructions cause an Out of Range trap if the arithmetic operation causes
an overflow or underflow. When an Out of Range trap occurs, the result of the
operation—though incorrect—is written into the destination register.

Furthermore, the Program Counter 2 Register contains the address of the trapping
instruction, and the ALU Status Register contains an indication of the cause of the trap. It
is possible, if required, for the trap handler to use this information to form the correct result.

The ALU Status indicates the cause of the Out of Range trap, based on the operation
performed, as follows:

1) Signed overflow. If the Out of Range trap is caused by signed, two’s-complement
overflow (this can occur for both signed adds and subtracts), the V bit is 1.

2) Unsigned overflow. If the Out of Range trap is caused by unsigned overflow (this can
occur only for unsigned adds), the C bit is 1.

3) Unsigned underflow. If the Out of Range trap is caused by unsigned underflow (this can
occur only for unsigned subtracts), the C bit is 0.

8.2.3 LOGICAL OPERATION STATUS RESULTS

The Logical instructions modify the N and Z bits. These bits are set according the result of
the instruction. The V and C bits are meaningless in regard to the logical instructions, so
they are not modified.

The N bit of the ALU Status Register is set to the value of the most-significant bit of the
result of the logical operation.

If the result of the logical operation is a zero word, the Z bit of the ALU Status Register is
set; otherwise, it is reset.

8-7

8.3 INSTRUCTION FORMATS

All instructions for the Am29000 are 32 bits in length, and are divided into four fields, as
shown in Figure 8-1. These fields have several alternative definitions, as discussed below.
In certain instructions, one or more fields are not used, and are reserved for future use. Even
though they have no effect on processor operation, bits in reserved fields should be 0, to
insure compatibility with future processor versions.

31 23 15 7 0
F1r1rirrnri | L L L | LR L L L 11T T P 1T 11
oP
“~ A N 7 N 4
08996A 8-1A # ~~ N ~~
A RC RA RB
n7..110 RBorl
115..18 - SA 19..12
VN » 17..10
CE//CNTL

Figure 8-1. Instruction Format

The instruction fields are defined as follows:

BITS 31-24
opP

This field contains an operation code, defining the operation to be
performed. In some instructions, the least-significant bit of the operation
code selects between two possible operands. For this reason, the
least-significant bit is sometimes labelled “A” or “M”, with the following
interpretations:

(Absolute) : The A bit is used to differentiate between Program-Counter
relative (A = 0) and absolute (A = 1) instruction addresses, when these
addresses appear within instructions.

(IMmediate) : The M bit selects between a register operand (M = 0) and an

immediate operand (M = 1), when the alternative is allowed by an
instruction,

8-8

RC

117.110

I15.18

VN

CE//CNTL

BITS 15-8
RA

SA

BITS 70
RB

RBorl

19..12

17..10

The RC field contains a global or local register-number.

This field contains the most-significant 8 bits of a 16-bit instruction
address. This is a word address, and may be Program-Counter relative or
absolute, depending on the A bit of the operation code.

This field contains the most-significant 8 bits of a 16-bit instruction
constant.

This field contains an 8-bit trap vector number.

This field controls a load or store access, as described in Sections 3.4.2 and
6.1.2.

The RA field contains a global or local register-number.

The SA field contains a special-purpose register-number.

The RB field contains a global or local register-number.

This field contains either a global or local register-number, or an 8-bit
instruction constant, depending on the value of the M bit of the operation
code. ‘

This field contains the least-significant 8 bits of a 16-bit instruction address.
This is a word address, and may be Program-Counter relative, or absolute,
depending on the A bit of the operation code.

This field contains the least-significant 8 bits of a 16-bit instruction
constant.

The fields described above may appear in many combinations. However, certain
combinations which appear frequently are shown in Figure 8-2.

8-9

Three operands, with possible 8-bit constant:

31 23 15 7 0
L L L L rtTrt1rrryrrrrurtri | L L L]
XXX XXX XM RC RA RBorl
Three operands, without constant:
31 23 15 = 7 0
F T TTITTJTITTITTTItrT rJrrrrrryrrgyrrrororTOd
X XX XXXXO0 RC RA RB
One register operand, with 16-bit constant:
31 23 15 7 0
rrTrrri1r1rrypryirqr1rrjyrrrronrioi TP rriirr
XXX XXX X1 115..18 RA 17..10
Jumps and calls with 16-bit Instruction address:
31 23 15 7 0
T 1T T 1T 't 1 r1T1r1rrriri 1T Trrti Trririruiriuo
X XXXXXXA 117..110 RA 19..12
Two operands with trap vector number:
31 23 15 7 0
T T T T T TITU I VPTT T TTIT T T Uit TT T TTT1
X X XXXXXM VN , RA RBorl
Loads and stores:
31 23 15 7 0
TTTTUTT1 T T T T T ITJTTTTTTI T T T TTT1
XXX XXX XM CNTL RBorl
C:E 08996A 8-2A

Figure 8-2. Frequently Occurring Instruction-Field Uses

8-10

8.4 INSTRUCTION DESCRIPTION

This section describes each Am29000 Instruction in detail. Figure 8-3 illustrates the layout
of the information given for each description.

Instruction
Mnemonic \i ADD ADD

——p Add
Instruction
Name / Operation: DEST « SRCA + SRCB
Brief operation Assembler
Description Syntax: ADDrc, ra, b
/ or
Assembler ADD rc, ra, const8
Syntax
P Status: V,N,Z,C
Arithmetic/Logic —_—
Status result Operands: SRCA content of register RA
Operand Specifi- SRCB M=0: content of register RB
cation — Describes M=1: | (zero-extend to 32 bits
instruction-fields
relation to operands, DEST register RC

and implicit operands
in some cases.

Instruction format \ 31 23 15 7 0
H 4 L L 1 IR BURNEEE RN LI DL B L)

~ Specifies field 0o0o0101oM RC RA | RBort |

options used OP =14,15 ADD

Operation Code —

— HEX format

Detailed description | Description: The SRCA operand is added to the

of Instruction SRCB operand, and the result is

operation placed into the DEST location.

Figure 8-3. Instruction-Description Format

ADD ADD
Add

Operation: DEST « SRCA + SRCB

Assembler
Syntax: ADD rc, ra, tb

or
ADD rc, ra, const8

Status: V,N, Z C

Operands: SRCA content of register RA
SRCB M =0: content of register RB
M=1:1 (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
LI T T L L L L L O L DL L LI B L L L L L
0001010M RC RA RBorl
OP = 14,15 ADD

Description: The SRCA operand is added to the SRCB operand, and the result
is placed into the DEST location.

8-12

ADDC | ADDC
Add with Carry

Operation: DEST « SRCA + SRCB + C
Assembler
Syntax: ADDC rc, ra, b

or
ADDC rc, ra, const8

Status: V,N, Z C

Operands: SRCA content of register RA
SRCB M =0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
LN U U N N O N N N N N N A N Y BN D B | B N N N B
00011 10M RC RA RBorl
OP=1C, 1D ADDC

Description: The SRCA operand is added to the SRCB operand and the value

of the ALU Status Carry bit, and the result is placed into the DEST
location.

ADDCS ADDCS
Add with Carry, Signed

Operation: DEST « SRCA + SRCB + C,
IF signed overflow THEN Trap (Out of Range)

Assembler

Syntax: ADDCS rc, ra, b
or
ADDCS rc, ra, const8

Status: V,N, Z C

Operands: SRCA content of register RA
SRCB M =0: content of register RB
M =1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
| SN T T O A U N D N N Y N N N N Y Y Y N A I N T B B
0001100M RC RA RBorl
OP =18, 19 ADDCS

Description: The SRCA operand is added to the SRCB operand and the value
of the ALU Status Carry bit, and the result is placed into the DEST
location. [f the add operation causes a two’s-complement signed
overflow, an Out of Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

ADDCU ~ ADDCU
Add with Carry, Unsigned '

Operation: DEST « SRCA + SRCB + C,
IF unsigned overflow THEN Trap (Out of Range)

Assembler

Syntax: ADDCU rc, ra, b
or
ADDCU rc, ra, const8

Status:. V,N, Z C

Operands: SRCA content of register RA
SRCB M =0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
T T 1T 1T T [T T T T T T T [T P T T T T T[T T T T TTrTrT
0001101M RC RA RBorl
OP=1A,1B ADDCU

Description: The SRCA operand is added to the SRCB operand and the value
of the ALU Status Carry bit, and the result is placed into the DEST
location. If the add operation causes an unsigned overflow, an Out
of Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

ADDS ADDS
Add, Signed

Operation: DEST « SRCA + SRCB
IF signed overflow THEN Trap (Out of Range)

Assembler

Syntax: ADDS rc, ra, tb
or
ADDS rc, ra, const8

Status: V,N, Z C

Operands: SRCA content of register RA
SRCB M = 0: content of register RB
M=1:1 (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
L L L L L L L L I L O L L L AL I L
00010O0O0M RC RA RBorl
OP =10, 11 _ ADDS

\

Description: The SRCA operand is added to the SRCB operand, and the result
is placed into the DEST location. If the add operation causes a
two’s-complement signed overflow, an Out of Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs. -

ADDU ADDU
Add, Unsigned

Operation: DEST « SRCA + SRCB
IF unsigned overflow THEN Trap (Out of Range)

Assembler
Syntax: ADDU rc, ra, b
or
ADDU re, ra, const8

Status: V,N, Z C

Operands: SRCA content of register RA
SRCB M = 0 : content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
N L L L L L L L L L B B
0001001TM RC RA RBorl
OP=12,13 ADDU

Description: The SRCA operand is added to the SRCB operand, and the result
is placed into the DEST location. If the add operation causes an
unsigned overflow, an Out of Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

AND AND
: AND Logical

Operation: DEST « SRCA & SRCB
Assembler
Syntax: AND rc, ra, b

or
AND rc, ra, const8

Status: N, Z

Operands: SRCA content of register RA

SRCB M =0 : content of register RB

M=1: 1 (zero-extended to 32 bits)

DEST register RC
31 23 15 7 0
SN L LU O N S O L O L O L O O B L B
1001000M RC RA RBorl

OP =90, 91 AND

Description: The SRCA operand is logically ANDed, bit-by-bit, with the SRCB
operand, and the result is placed into the DEST location.

8-18

ANDN ANDN
AND-NOT Logical

Operation: DEST « SRCA & ~SRCB
Assembler
Syntax: ANDN rc, ra, b

or
ANDN rc, ra, const8

Status: N, Z

Operands: SRCA content of register RA
SRCB M =0: content of register RB
M=1: 1| (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
I SO AR O LI L A L L L LA DL L L L L L L L
1001110M RC RA RBorl
OP=9C, 9D ANDN

Description: The SRCA operand is logically ANDed, bit-by-bit, with the
one's-complement of the SRCB operand, and the result is placed
into the DEST location.

ASEQ ASEQ
Assert Equal To
Operation: IF SRCA = SRCB THEN Continue
ELSE Trap (VN)
Assembler
Syntax: ASEQ wvn, ra, b
or
ASEQ vn, ra, const8
Status: Not affected
Operands: SRCA content of register RA
SRCB M =0: content of register RB
M=1: 1 (zero-extended to 32 bits)
VN Trap vector number
31 23 15 7 0
T T T T T T [T T T T T T T [T T T T T T T T T T T T 711
0111000M VN RA RBor |
OP =70, 71 ASEQ
Description: If the SRCA operand is equal to the SRCB operand, instruction

execution continues; otherwise, a trap with the specified vector
number occurs.

For programs in the User mode, a Protection Violation trap

occurs—instead of the assert trap—if a vector number between 0
and 63 is specified and the assert condition is not met.

8-20

ASGE | ASGE
Assert Greater Than or Equal To

Operation: IF SRCA >= SRCB THEN Continue
ELSE Trap (VN)

"Assembler

Syntax: ASGE vn,ra, b
or
ASGE vn, ra, const8

Status: Not affected

Operands: SRCA content of register RA

SRCB M =0: content of register RB

M =1: | (zero-extended to 32 bits)

VN Trap vector number

31 23 15 7 0
| T L L L L L T L I B L DL B
0o0101110M VN RA RBor|
OP=5C, 5D ASGE

Description: |If the value of the SRCA operand is greater than or equal to the
' value of the SRCB operand, instruction execution continues;
otherwise, a trap with the specified vector number occurs.

For programs in the User mode, a Protection Violation trap

occurs—instead of the assert trap—if a vector number between 0
and 63 is specified and the assert condition is not met.

8-21

ASGEU : ASGEU
Assert Greater Than or Equal To, Unsigned

Operation: IF SRCA >= SRCB (unsigned) THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASGEU vn, ra, 1b
or
ASGEU vn, ra, const8

Status: Not affected

Operands: SRCA content of register RA
SRCB M = 0: content of register RB
M =1: | (zero-extended to 32 bits)
VN Trap vector number
31 23 15 7 0
T T T T T 1T [T T T T T T T[T T T T ITT T[T TT Tl
010111 1M VN RA RBorl
OP = 5E, 5F ASGEU

Description: If the value of the SRCA operand is greater than or equal to the
value of the SRCB operand, instruction execution continues;
otherwise, a trap with the specified vector number occurs. For the
comparison, both operands are treated as unsigned integers.

For programs in the User mode, a Protection Violation trap

occurs—instead of the assert trap—if a vector number between 0
and 63 is specified and the assert condition is not met.

8-22

ASGT ASGT
Assert Greater Than

Operation: IF SRCA > SRCB THEN Continue
ELSE Trap (VN)

Assembler

Syntax: ASGT vn, ra, b
or
ASGT vn, ra, const8

Status: Not affected

Operandsi SRCA content of register RA
SRCB M = 0: content of register RB
M =1: | (zero-extended to 32 bits)
VN Trap vector number
31 23 - 15 7 0
I LT L L LI L L L LA L L B LA L L L IR L
0101100M VN RA RBorl
OP =58, 59 ASGT

Description: If the value of the SRCA operand is greater than the value of the
SRCB operand, instruction execution continues; otherwise, a trap
with the specified vector number occurs.

For programs in the User mode, a Protection Violation trap

occurs—instead of the assert trap—if a vector number between 0
and 63 is specified and the assert condition is not met.

8-23

ASGTU ASGTU
Assert Greater Than, Unsigned

Operation: IF SRCA > SRCB (unsigned) THEN Continue
ELSE Trap (VN)

Assembler

Syntax: ASGTU vn, ra, 1b
or
ASGTU vn, ra, const8

Status: Not affected

Operands: SRCA content of register RA

SRCB M =0 : content of register RB

M=1:1 (zero-extended to 32 bits)

VN Trap vector number

31 23 ‘ 15 7 0
L L L L L L T L O L LI L
0101101M VN ‘ RA RBorl
OP =5A, 5B ASGTU

Description: |If the value of the SRCA operand is greater than the value of the
SRCB operand, instruction execution continues; otherwise, a trap
with the specified vector number occurs. For the comparison,
both operands are treated as unsigned integers.

For programs in the User mode, a Protection Violation trap

occurs—instead of the assert trap—if a vector number between 0
and 63 is specified and the assert condition is not met.

8-24

ASLE ASLE
Assert Less Than or Equal To

Operation: IF SRCA <= SRCB THEN Continue
ELSE Trap (VN)

Assembler

Syntax: ASLE vn, ra, 1b
or
ASLE vn, ra, const8

Status: Not affected

Operands: SRCA content of register RA
SRCB ~ M=0: content of register RB
M =1: | (zero-extended to 32 bits)
VN Trap vector number
31 23 15 7 0
r T T T T T T [T T T T T T T T T T T TT T[T T T T T
0101010M VN RA RBorl
OP =54, 55 ASLE

Description: If the value of the SRCA operand is less than or equal to the value
of the SRCB operand, instruction execution continues; otherwise,
a trap with the specified vector number occurs.

For programs in the User mode, a Protection Violation trap

occurs—instead of the assert trap—if a vector number between 0
and 63 is specified and the assert condition is not met.

8-25

ASLEU ASLEU
Assert Less Than or Equal To, Unsigned

Operation: IF SRCA <= SRCB (unsigned) THEN Continue

ELSE Trap (VN)
Assembler
Syntax: ASLEU vn, ra, b
or

ASLEU vn, ra, const8

Status: Not affected

Operands: SRCA content of register RA

SRCB M =0: content of register RB

M =1: 1 (zero-extended to 32 bits)

VN Trap vector number

31 23 15 7 0
| N O T N I Y T N I N N N Y D N N N D N D Y A B
010101 1M VN RA RBorl
OP =56, 57 ASLEU

Description: If the value of the SRCA operand is less than or equal to the value
of the SRCB operand, instruction execution continues; otherwise,
a trap with the specified vector number occurs. For the
comparison, both operands are treated as unsigned integers.

For programs in the User mode, a Protection Violation trap

occurs— instead of the assert trap—if a vector number between 0
and 63 is specified and the assert condition is not met.

8-26

ASLT ASLT
Assert Less Than

Operation: IF SRCA < SRCB THEN Continue

ELSE Trap(VN)
Assembler
Syntax: ASLT vn,ra, b
or

ASLT vn, ra, const8

Status: Not affected

Operands: SRCA content of register RA

SRCB M =0 : content of register RB

M=1:1 (zero-extended to 32 bits)

VN Trap vector number

31 23 15 7 0
T T T T T I T [T T T T T P T [T P T T T T I I rTrTrTITl
6010100O0M VN RA RBorl
OP = 50, 51 ASLT

Description: If the value of the SRCA operand is less than the value of the
SRCB operand, instruction execution continues; otherwise, a trap
with the specified vector number occurs.

For programs in the User mode, a Protection Violation trap

occurs—instead of the assert trap—if a vector number between 0
and 63 is specified and the assert condition is not met.

8-27

ASLTU ASLTU
Assert Less Than, Unsigned

Operation: IF SRCA < SRCB (unsigned) THEN Continue
ELSE Trap (VN)

Assembler

Syntax: ASLTU vn,ra, b
or
ASLTU wvn, ra, const8

Status: Not affected

Operands: SRCA content of register RA

SRCB M =0: content of register RB
M=1: 1 (zero-extended to 32 bits)
VN Trap vector number
31 23 15 7 0
T T T T T T T [T T T T T T T[T T T T T T T[T T T T T
0101001M VN RA RBorl
OP =52, 53 ASLTU

Description: |If the value of the SRCA operand is less than the value of the
SRCB operand, instruction execution continues; otherwise, a trap
with the specified vector number occurs. For the comparison,
both operands are treated as unsigned integers.

For programs in the User mode, a Protection Violation trap

occurs—instead of the assert trap—if a vector number between 0
and 63 is specified and the assert condition is not met.

8-28

ASNEQ ASNEQ
Assert Not Equal To

Operation: IF SRCA <> SRCB THEN Continue
ELSE Trap (VN)

Assembler

Syntax: ASNEQ vn, ra, b
or
ASNEQ wvn, ra, const8

Status: Not affected

Operands: SRCA content of register RA

SRCB M =0: content of register RB

M =1:1 (zero-extended to 32 bits)

VN Trap vector number

31 23 15 7 0
T T T T T T T [T T I T T T [TP T T T P o[T T T T
0111001M VN RA RBorl
OP=72,73 ASNEQ

Description: If the SRCA operand is not equal to the SRCB operand, instruction
execution continues; otherwise, a trap with the specified vector
number occurs.

For programs in the User mode, a Protection Violation trap

occurs—instead of the assert trap—if a vector number between 0
and 63 is specified and the assert condition is not met.

8-29

CALL CALL
Call Subroutine ‘

Operation: DEST « PC//00 + 8

PC « TARGET
Execute delay instruction

Assembler
Syntax: CALL ra, target

Status: Not affected

Operands: TARGET A=0:117..110/19..12 (sign-extended to 30 bits) +PC
A=1:17..1H0/19..12 (zero-extended to 30 bits)

DEST register RA
31 23 15 7 0
| I L LR L L L | L L L LR L
1010100A 117..110 RA 19..12
OP = A8, A9 CALL

Description: The address of the second following instruction is placed into the
DEST location, and a non-sequential instruction fetch occurs to
the instruction address given by the TARGET operand. The
instruction following the CALL is executed before the
non- sequential fetch occurs.

8-30

CALLI CALLI
Call Subroutine, Indirect
Operation: DEST « PC//00 +8
PC «—SRCB
Execute delay instruction
Assembler ‘
Syntax: CALLI ra, b
Status: Not affected
Operands: SRCB content of register RB
DEST register RA
31 23 15 7 0
T T T T 1T 1T 1T [T T T T T T T [T T T T T I T[T T i iTTrTITd
11001000 reserved RA RB
OP=C8 CALLI
Description: The address of the second following instruction is placed into the

DEST location, and a non-sequential instruction fetch occurs to
the instruction address given by the SRCB operand. The
instruction following the CALLI is executed before the
non-sequential fetch occurs.

8-31

CLZ CLZ
Count Leading Zeros
Operation: Determine number of leading zeros in a word
Assembler
Syntax: CLZ ra, b
Status: Not affected
Operands: SRCB M =0 : content of register RB
M=1:1 (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
T T T T T 1T 1 [T P T T T T T[T T T T T T T T T T T T
000010O0M RC reserved RBorl
OP = 08,09 CLZ
Description: A count of the number of zero-bits to the first one-bit in the SRCB

operand is placed into the DEST location. If the most-significant bit
of the SRCB operand is 1, the resulting count is zero. If the SRCB
operand is zero, the resulting count is 32.

8-32

CONST
Constant

Operation: DEST « 0l16

Assembler
Syntax: CONST ra, const16

Status: Not affected

CONST

Operands: 0l16 115..18//17..10, (zero-extended to 32 bits)
DEST register RA
31 23 15 7 0
T T T T T T [T T T T T T T[T T T T T T T [T T T T 111
000000 11 115..18 RA 17..10
OP=03 CONST

Description: The 0116 operand is placed into the DEST location.

8-33

CONSTH CONSTH
Constant, High ‘
Operation: Replace high-order half-word of SRCA by 116
Assembler
Syntax: CONSTH ra, const16
Status: Not affected
Operands: SRCA content of register RA
116 115..18//17..10
DEST register RA
31 23 15 7 0
T T T T T T T J T T T T T T T[T T T T T T T [T T T T 1T 11
00000O0T1TO 115..18 RA 17..10
OP =02 CONSTH
Description:. The low-order half-word of the SRCA operand is appended to the

116 operand, and the result is placed into the DEST operand. Note
that the destination register for this instruction is the same as the
source register.

8-34

CONSTN CONSTN
Constant, Negative

Operation: DEST « 1116

Assembler
Syntax: CONSTN ra, const 16

Status: Not affected

Operands: 1116 115..18//17..10, (ones-extended to 32 bits)
DEST register RA
31 23 15 7 0
T T T T T T T [T T T T T T T[T T T T T T T[T T T ITT 11
00000001 115..18 RA 7..10
OP =01 CONSTN

Description: The 1116 operand is placed into the DEST location.

8-35

CPBYTE CPBYTE
Compare Bytes

Operation: IF (SRCABYTEO = SRCB.BYTEO) OR
(SRCABYTE1 = SRCB.BYTE1) OR
(SRCABYTE2 = SRCBBYTE2) OR
(SRCA.BYTE3 = SRCB.BYTE3) THEN

DEST « TRUE ELSE DEST « FALSE

Assembler

Syntax: CPBYTE rc, ra, b
or
CPBYTE rc, ra, const8

Status: Not affected

Operands: SRCA content of register RA

SRCB M =0: content of register RB

M =1:1 (zero-extended to 32 bits)

DEST register RC

31 23 15 7 0
N L L L L L L L L DL DL L L L L L L L L L L
001011 1M RC RA RBorl
OP =2E, 2F CPBYTE

Description: Each byte of the SRCA operand is compared to the corresponding
byte of the SRCB operand. If any corresponding bytes are equal,
a Boolean TRUE is placed into the DEST location; otherwise, a
Boolean FALSE is placed into the DEST location.

8-36

CPEQ CPEQ
Compare Equal To

Operation: IF SRCA = SRCB THEN DEST « TRUE
ELSE DEST « FALSE ‘

Assembler
Syntax: CPEQ rc,ra, b
or
CPEQ rc, ra, const8

Status: Not affected

Operands: SRCA content of register RA

SRCB M = 0 : content of register RB

M=1: 1 (zero-extended to 32 bits)

DEST register RC

31 23 15 7 0
| I T N N Y A N R Y NS Y R Y N N N N R Y Y Y N O
0110000M RC RA RBorl
OP =60, 61 CPEQ

Description: If the SRCA operand is equal to the SRCB operand, a Boolean
TRUE is placed into the DEST location; otherwise, a Boolean
FALSE is placed into the DEST location.

8-37

CPGE CPGE
Compare Greater Than or Equal To
Operation: IF SRCA >= SRCB THEN DEST « TRUE
ELSE DEST « FALSE
Assembler
Syntax: CPGE rc,ra, b
or
CPGE rc, ra, const8
Status: Not affected
Operands: SRCA content of register RA
SRCB M =0 : content of register RB
M =1:1 (zero-extended to 32 bits)
DEST register RC
31 23 ' 15 7 0
I T T T T T T [T T T T T T T [VT T T T T T[T T T T 1711
0100110M RC RA ~ RBorl
OP =4C, 4D CPGE '
Description: If the value of the SRCA operand is greater than or equal to the

value of the SRCB operand, a Boolean TRUE is placed into the

DEST location; otherwise, a Boolean FALSE is placed into the
DEST location.

8-38

CPGEU

CPGEU

Compare Greater Than or Equal To, Unsigned

Operation: IF SRCA >= SRCB (unsigned) THEN DEST « TRUE
ELSE DEST « FALSE
Assembler
Syntax: CPGEU rc, ra, tb
or
CPGEU rc, ra, const8
Status: Not affected
Operands: SRCA content of register RA
SRCB M =0 : content of register RB
M=1: 1 (zero-extended to 32 bits)
DEST register RC .
31 23 15 7 0
TT T T T T T [T T T T T T T[T T T T T T T] T T T T T T11
010011 1M RC RA RBorl
OP =4E, 4F CPGEU
Description: If the value of the SRCA operand is greater than or equal to the

value of the SRCB operand, a Boolean TRUE is placed into the
DEST location; otherwise, a Boolean FALSE is placed into the
DEST location. For the comparison, both operands are treated as
unsigned integers.

8-39

CPGT CPGT
Compare Greater Than
Operation: IF SRCA > SRCB THEN DEST « TRUE
ELSE DEST « FALSE '
Assembler
Syntax: CPGT rc,ra, b
or
CPGT rc, ra, const8
Status: Not affected
Operands: SRCA content of register RA
SRCB M =0 : content of register RB
M=1:1 (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
T T T I T T T [T P T T T T T [T T T T ITT T[T T T T T
0100100M RC RA RBorl
OP =48, 49 CPGT
Description: If the value of the SRCA operand is greater than the value of the

SRCB operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location.

8-40

CPGTU CPGTU
Compare Greater Than, Unsigned

Operation: IF SRCA > SRCB (unsigned) THEN DEST « TRUE
ELSE DEST« FALSE

Assembler

Syntax: CPGTU rc,ra, b
or
CPGTU rc, ra, const8

Status: Not affected

Operands: SRCA content of register RA

SRCB M =0: content of register RB

M=1:1 (zero-extended to 32 bits)

DEST register RC

31 23 15 7 0
T T T T T T 1T [T T T T T T T ITTTITTTITTTIT] TTTrTIrd
0100101M RC RA RBorl
OP =4A,4B CPGTU

Description: If the value of the SRCA operand is greater than the value of the
SRCB operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location. For
the comparison, both operands are treated as unsigned integers.

8-41

'CPLE | CPLE
Compare Less Than or Equal To

Operation: IF SRCA <= SRCB THEN DEST « TRUE
ELSE DEST « FALSE

Assembler

Syntax: CPLE rc,ra, b
or
CPLE rc, ra, const8

Status: Not affected

Operands: SRCA content of register RA
SRCB M =0: content of register RB
M=1: 1 (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
Y I N N O I N N NN D N N N NN N N N R O T N N N NN N D N AN
010001 0M RC ' RA RBor |
OP =44,45 CPLE

Description: If the value of the SRCA operand is less than or equal to the value

of theSRCB operand, a Boolean TRUE is placed into the DEST
location; otherwise, a Boolean FALSE is placed into the DEST
location.

8-42

CPLEU CPLEU
Compare Less Than or Equal To, Unsigned

Operation: IF SRCA <= SRCB (unsigned) THEN DEST « TRUE
ELSE DEST « FALSE

Assembler

Syntax: CPLEU rc, ra, b
or
CPLEU rg, ra, const8

Status: Not affected

Operands: SRCA content of register RA

SRCB M =0: content of register RB

M=1:1 (zero-extended to 32 bits)

DEST register RC

31 23 15 7 0
T T T T T T 1T [T T T T T T T[T T T T TT T[T T T T T
010001 1M RC : RA RBorl
OP =46, 47 CPLEU

Description: If the value of the SRCA operand is less than or equal to the value
of the SRCB operand, a Boolean TRUE is placed into the DEST
location; otherwise, a Boolean FALSE is placed into the DEST
location. For the comparison, both operands are treated as
unsigned integers.

8-43

CPLT CPLT
Compare Less Than

Operation: IF SRCA < SRCB THEN DEST « TRUE
ELSE DEST « FALSE

Assembler

Syntax: CPLT rc,ra, b
or
CPLT rc, ra, const8

Status: Not affected

Operands: SRCA content of register RA

SRCB M = 0 : content of register RB

M =1:1 (zero-extended to 32 bits)

DEST register RC

31 23 15 7 0
I L L L T O LALLM B
010000O0M RC RA RBorl
OP =40, 41 CPLT

Description: If the value of the SRCA operand is less than the value of the
SRCB operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location.

8-44

CPLTU CPLTU
Compare Less Than, Unsigned

Operation: IFSRCA < SRCB (unsigned) THEN DEST « TRUE
ELSE DEST « FALSE

Assembler

Syntax: CPLTU rc, ra, 1b
or
CPLTU rc, ra, const8

Status: Not affected’

Operands: SRCA content of register RA

SRCB M =0 : content of register RB

M=1: 1 (zero-extended to 32 bits)

DEST register RC

31 23 15 7 0
| NN [N N O [N N Y Y I N N N N N Y N Y Y N N N Y B
0100001M RC RA RBorl
OP = 42,43 CPLTU

Description: If the value of the SRCA operand is less than the value of the
SRCB operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location. For
the comparison, both operands are treated as unsigned integers.

CPNEQ CPNEQ
Compare Not Equal To
Operation: IF SRCA <> SRCBTHEN DEST « TRUE
ELSE DEST« FALSE
Assembler ‘
Syntax: CPNEQ rc, ra, tb
or
CPNEQ rc, ra, const8
Status: Not affected
Operands: SRCA content of register RA
SRCB M =0 : content of register RB
M=1: 1 (zero-extended to 32 bits)
DEST register RC
31 23 15 -7 0
| R R A Y N I N T D N N D B N D AN N R Y Y N N
0110001M RC RA RBorl
OP =62, 63 CPNEQ
Description: If the SRCA operand is not equal to the SRCB operand, a Boolean

8-46

TRUE is placed into the DEST location; otherwise, a Boolean
FALSE is placed into the DEST location.

CVDF CVDF
Convert Floating-Point Double-Precision to
Single-Precision

Operation: DEST (single-precision) «- SRCA (double-precision)

Assembler
Syntax: CVDF rcra

Status: Not affected

Operands: SRCA contents of register RA and the twin of register RA
DEST register RC
31 23 15 7 0
T T T T T T T [T T T T ITT T[T T T T T T T [T T T TT1
11101001 RC RA reserved
OP =E9 CVDF

Description: The SRCA operand, treated as a double-precision, floating-point
number, is converted to a single-precision, floating-point number,
and the result is placed into the DEST location.

Note: This instruction is not directly supported in processor
hardware. In the current implementation, this instruction causes a
CVDF trap. When the trap occurs, the IPA and IPC registers are
set to reference SRCA and DEST. The IPB register is also
affected, but its value has no interpretation.

8-47

CVDINT CVDINT
Convert Floating-Point Double-Precision to Integer

Operation: DEST (integer) « SRCA (double-precision)

Assembler
Syntax: CVDINT rc,ra

Status: Not affected

Operands: SRCA contents of register RA and the twin of register RA
DEST register RC
31 23 15 7 0
| NN N N N N N R A N N N N Y Y O A N A | B N N B
11100111 RC RA reserved
OP =E7 CVDINT

Description: The SRCA operand, treated as a double-precision, floating-point

number, is converted to an integer, and the result is placed into
the DEST location.

Note: This instruction is not directly supported in processor
hardware. In the current implementation, this instruction causes a
CVDINT trap. When the trap occurs, the IPA and IPC registers are
set to reference SRCA and DEST. The IPB register is also
affected, but its value has no interpretation.

8-48

CVFD CVFD
Convert Floating-Point Single-Precision to
Double-Precision

Operation: DEST (double-precision) «— SRCA (single-precision)

Assembler
Syntax: CVFD rcra

Status: Not affected

Operands: SRCA content of register RA
DEST register RC and the twin of register RC
31 23 15 7 0
T T T T T T T [T T T T T T T[T T T T T T T[T T T TTT1
11101000 RC RA reserved
OP =E8 CVFD

Description: The SRCA operand, treated as a single-precision, floating-point
number, is converted to a double-precision, floating-point number,
and the result is placed into the DEST location.

Note: This instruction is not directly supported in processor
hardware. In the current implementation, this instruction causes an
CVFD trap. When the trap occurs, the IPA and IPC registers are
set to reference SRCA and DEST. The IPB register is also
affected, but its value has no interpretation.

8-49

CVFINT - CVFINT
Convert Floating-Point Single-Precision to Integer

Operation: DEST (integer) « SRCA (single-precision)

Assembler
Syntax: CVFINT rc, ra

Status: Not affected

Operands: SRCA content of register RA
DEST register RC
31 23 15 7 0
T T T T T T T [T T T T T T T T T T T T T T[T T T TT Tl
11100110 RC RA reserved
OP =E6 CVFINT

Description: The SRCA operand, treated as a single-precision, floating-point
number, is converted to an integer, and the result is placed into
the DEST location. _

Note: This instruction is not directly supported in processor
hardware. Inthe current implementation, this instruction causes an
CVFINT trap. When the trap occurs, the IPA and IPC registers are
set to reference SRCA and DEST. The IPB register is also
affected, but its value has no interpretation.

8-50

CVINTD CVINTD
Convert Integer to Floating-Point Double-Precision

Operation: DEST (double-precision) « SRCA (integer)

Assembler
Syntax: CVINTD rcra

Status: Not affected

Operands: SRCA content of register RA
DEST register RC and the twin of register RC
31 23 15 7 0
LI S L L L L L AL L L L L O L L L I
11100101 RC RA reserved

OP=E5 CVINTD

Description: The SRCA operand is converted to a double-precision,
floating-point
number, and the result is placed into the DEST location.

Note: This instruction is not directly supported in processor
hardware. In the current implementation, this instruction causes an
CVINTD trap. When the trap occurs, the IPA and IPC registers are
set to reference SRCA and DEST. The IPB register is also
affected, but its value has no interpretation.

8-51

CVINTF | CVINTE
Convert Integer to Floating-Point Single-Precision

Operation: DEST (single-precision) <« SRCA (integer)

Assembler
Syntax: CVINTF rc,ra

Status: Not affected

Operands: SRCA content of register RA
DEST register RC
31 23 15 7 0
| L L A T N N N N N D D D T T D O T D D D I
11100100 RC RA reserved
OP=E4 CVINTF

Description: The SRCA operand is converted to a single-precision,

floating-point number, and the result is placed into the DEST
location.

Note: This instruction is not directly supported in processor
hardware. In the current implementation, this instruction causes an
CVINTF trap. When the trap occurs, the IPA and IPC registers are
set to reference SRCA and DEST. The IPB register is also
affected, but its value has no interpretation.

8-52

DADD

DADD
Floating-Point Add, Double-Precision

Operation: DEST (double-precision) « SRCA (double-precision) +
SRCB (double-precision)
Assembler
Syntax: DADD rc,ra,rb
Status: Not affected
Operands: SRCA contents of register RA and the twin of register RA
SRCB contents of register RB and the twin of register RB
DEST register RC and the twin of register RC
31 23 15 7 0
N N I N N N N N Y N N Y Y N N A N O A Y O
11110001 RC RA RB
OP =F1 DADD
Description: The SRCA operand is added to the SRCB operand, and the result

is placed into the DEST location. The operands and result of the
add are treated as double-precision, floating-point numbers.

Note: This instruction is not directly supported in processor
hardware. In the current implementation, this instruction causes a
DADD trap. When the trap occurs, the IPA, IPB, and IPC registers
are set to reference SRCA, SRCB, and DEST.

8-53

DDIV DDIV
Floating-Point Divide, Double-Precision

Operation: DEST (double-precision) « SRCA (double-precision) /

SRCB (double-precision)
Assembler
Syntax: DDIV rcra,rb
Status: Not affected
Operands: SRCA contents of register RA and the twin of register RA
SRCB contents of register RB and the twin of register RB
DEST register RC and the twin of register RC
31 23 15 7 0
| NN N TR T N T T N O N O A Y D D Y T T T 171 11
11110111 RC RA RB

OP=F7 DDIV

Description: The SRCA operand is divided by the SRCB operand, and the
result is placed into the DEST location. The operands and result of
the divide are treated as double-precision, floating-point numbers.

Note: This instruction is not directly supported in processor
hardware. In the current implementation, this instruction causes a
DDIV trap. When the trap occurs, the IPA, IPB, and IPC registers
are set to reference SRCA, SRCB, and DEST.

8-54

DEQ DEQ
Floating-Point Equal To, Double-Precision
Operation: IF SRCA (double-precision) = SRCB (double-precision)
THEN DEST « TRUE
ELSE DEST « FALSE
Assembler
Syntax: DEQ rc,ra, b
Status: Not affected
Operands: SRCA contents of register RA and the twin of register RA
SRCB contents of register RB and the twin of register RB
DEST register RC
31 23 15 7 0
| A I T N T O N N Y Y N N N Y N I Y N O N O B IO
11101011 RC RA RB
OP =EB DEQ
Description: If the SRCA operand is equal to the SRCB operand, a Boolean

TRUE is placed into the DEST location; otherwise, a Boolean
FALSE is placed into the DEST location. For the comparison the
SRCA and SRCB operands are treated as double-precision,
floating-point numbers.

Note: This instruction is not directly supported in processor
hardware. In the current implementation, this instruction causes a
DEQ trap. When the trap occurs, the IPA, IPB, and IPC registers
are set to reference SRCA, SRCB, and DEST.

8-55

DGT DGT
Floating-Point Greater Than, Double-Precision

Operation: IF SRCA (double-precision) > SRCB (double-precision)
THEN DEST « TRUE
ELSE DEST « FALSE

Assembler
Syntax: DGT rc,ra, b

Status: Not affected

Operands: SRCA contents of register RA and the twin of register RA
SRCB contents of register RB and the twin of register RB
DEST register RC
31 23 15 7 0
r T T r r 1 1 J T T T T T T T [T T T T T T T[T TTTTITTl1
11101101 RC RA RB
OP=ED DGT

Description: If the value of the SRCA operand is greater than the value of the
SRCB operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location. For
the comparison, the SRCA and SRCB operands are treated as
double-precision, floating-point numbers.

Note: This instruction is not directly supported in processor
hardware. In the current implementation, this instruction causes a
DGT trap. When the trap occurs, the IPA, IPB, and IPC registers
are set to reference SRCA, SRCB, and DEST.

8-56

DIV DIV
Divide Step

Operation: Perform one-bit step of a divide operation (unsigned)

Assembler
Syntax: DIV rc,ra, b

Status: V,N,Z,C

Operands: SRCA content of register RA
SRCB M =0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
L I O N L O L L L L L L L L I I L L L L L
0110101M RC RA RBorl
OP =6A, 6B DIV

Description: If the Divide Flag (DF) bit of the ALU Status Register is 1, the SRCB
operand is subtracted from the SRCA operand. If the DF bitis 0,
the SRCB operand is added to the SRCA operand.

The carry-out of the add or subtract operation is exclusive-ORed
with the value of the DF bit and the value of the Negative (N) bit of
the ALU Status Register; the resulting value is complemented and
placed into the DF bit. The sign of the result of the add or subtract
is placed into the N bit.

The content of the Q register is appended to the result of the add
or subtract, and the resulting 64-bit value is shifted left by one
bit-position; the value computed for the DF bit above fills the
vacated bit position. The high-order 32 bits of the 64-bit shifted
value are placed into the DEST location. The low- order 32 bits of
the shifted value are placed into the Q Register.

Examples of integer divide operations appear in Section 7.1.7.

8-57

DIVO DIVO
Divide Initialize
Operation: Initialize for a sequence of divide steps (unsigned)
Assembler
Syntax: DIVO rc,1b
or
DIVO rc, const8
Status: V,N,Z,C
Operands: SRCB M =0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
T T T T T T T [T T T T T T T[T T T T T T T [TT T TTIT1
0110100M RC reserved RBor|
OP =68, 69 DIVO
Description: The Divide Flag (DF) bit of the ALU Status Register is set. The sign

of the SRCB operand is placed into the Negative bit of the ALU
Status Register.

The content of the Q register is appended to the SRCB operand,
and the resulting 64-bit value is shifted left by one bit-position; a 0
fills the vacated bit position. The high-order 32 bits of the 64-bit
shifted value are placed into the DEST location. The low-order 32
bits of the shifted value are placed into the Q Register.

Examples of integer divide operations appear in Section 7.1.7.

8-58

DIVIDE DIVIDE
Integer Divide
Operation: DEST « (SRCA/Q) / SRCB (unsigned)
Assembler
Syntax: DIVIDE rc,ra, 1b
Status: Not affected
Operands: SRCA content of register RA
Q content of the Q Register
SRCB content of register RB
DEST register RC
31 23 15 7 0
T T T T T T T [T T T T T T T [T T T TT T T [T T T T 17T
11100001 RC RA RB
OP =E1 DIVIDE
Description: The content of the Q register is appended to the SRCA operand.

The resulting 64-bit value is divided by the SRCB operand, and
the result is placed into the DEST location.

This instruction does not check for a divide overflow condition.
Checking for divide overflow must occur before the instruction is
executed.

Note: This instruction is not directly supported in processor
hardware. In the current implementation, this instruction causes a
DIVIDE trap. When the trap occurs, the IPA, IPB, and IPC registers
are set to reference SRCA, SRCB, and DEST.

8-59

DIVL DIVL
Divide Last Step

Operation: Complete a sequence of divide steps (unsigned)

Assembler
Syntax: DIVL rc,ra, b

Status: V,N,ZC

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
T T T T T T T [T T T T T T T [T T T TT1T11d T T T T T 11
0110110M RC RA RBorl
OP =6C, 6D DIVL

Description: |f the Divide Flag (DF) bit of the ALU Status Register is 1, the SRCB
operand is subtracted from the SRCA operand. If the DF bit is 0,
the SRCB operand is added to the SRCA operand. The result is
placed into the DEST location.

The carry-out of the add or subtract operation is exclusive-ORed
with the value of the DF bit and the value of the Negative (N) bit of
the ALU Status Register; the resulting value is complemented and
placed into the DF bit. The sign of the result of the add or subtract
is placed into the N bit.

The content of the Q register is shifted left by one bit- position; the
value computed for the DF bit above fills the vacated bit position.
The shifted value is placed into the Q Register.

Examples of integer divide operations appear in Section 7.1.7.

8-60

DIVREM DIVREM
Divide Remainder

Operation: Generate remainder for divide operation (unsigned)

Assembler
Syntax: DIVREM rc,ra, b

Status: V,N,Z C

Operands: SRCA content of register RA
SRCB M =0 : content of register RB
M =1 : | (zero-extended to 32 bits)
DEST register RC
+ 31 23 15 7 0]
rrrrrrrfjrrrrrrrfyrrrrrrrJyprrrrrrr
0110111M RC RA RBorl
OP =6E, 6F DIVREM

Description: |If the Divide Flag (DF) bit of the ALU Status Register is 1, the SRCA
operand is placed into the DEST location.

If the DF bit is 0, the SRCB operand is édded to the SRCA
operand, and the result is placed into the DEST location.

Examples of integer divide operations appear in Section 7.1.7.

8-61

DLT DLT
Floating-Point Less Than, Double-Precision

Operation: IF SRCA (double-precision) < SRCB (double-precision)
THEN DEST « TRUE
ELSE DEST « FALSE

Assembler :
Syntax: DLT rc,ra, b

Status: Not affected

Operands: SRCA contents of register RA and the twin of reg‘ister RA
SRCB contents of register RB and the twin of register RB
DEST register RC
31 23 15 7 0
N R L L I T L S I LI B T N M T |
11101111 RC ' RA RB
OP=EF DLT

Description: |If the value of the SRCA operand is less than the valuE of the

" SRCB operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location. For
the comparison, the SRCA and SRCB operands are treated as
double-precision, floating-point numbers.

Note: This instruction is not directly supported in processor
hardware. In the current implementation, this instruction causes a
DLT trap. When the trap occurs, the IPA, IPB, and IPC registers
are set to reference SRCA, SRCB, and DEST.

8-62

DMUL DMUL
Floating-Point Multiply, Double-Precision

Operation: DEST (double-precision) « SRCA (double-precision) *
SRCB (double-precision)

Assembler
Syntax: DMUL rc,ra, b

Status: Not affected

Operands: SRCA contents of register RA and the twin of register RA
SRCB contents of register RB and the twin of register RB
DEST register RC and the twin of register RC
31 23 15 7 0
T T T T T 1T T [T T TT 1T T T 0 TT1 rTrTrl T T T 11711
11110101 RC RA RB
OP=F5 DMUL

Description: The SRCA operand is multiplied by the SRCB operand, and the
result is placed into the DEST location. The operands and result of

the multiply are treated as double-precision, floating-point
numbers.

Note: This instruction is not directly supported in processor
hardware. In the current implementation, this instruction causes a
DMUL trap. When the trap occurs, the IPA, IPB, and IPC registers
are set to reference SRCA, SRCB, and DEST.

8-63

DSUB DSUB
Floating-Point Subtract, Double-Precision

Operation: DEST (double-precision) «SRCA (double-precision) —
SRCB (double-precision)

Assembler
Syntax: DSUB rc,ra, 1b

Status: Not affected

Operands: SRCA contents of register RA and the twin of register RA

SRCB contents of register RB and the twin of register RB
DEST register RC and the twin of register RC
31 23 15 7 0
T T T 1T 111 | N N N N Y T N D B O T T T 11T 11
11110011 RC RA RB

OP =F3 DsSuB

Description: The SRCB operand is subtracted from the SRCA operand, and the
result is placed into the DEST location. The operands and result of
the subtract are treated as double-precision, floating-point
numbers. '

Note: This instruction is not directly supported in processor
hardware. In the current implementation, this instruction causes a
DSUB trap. When the trap occurs, the IPA, IPB, and IPC registers
are set to reference SRCA, SRCB, and DEST.

8-64

EMULATE EMULATE
Trap to Software Emulation Routine

Operation: Load IPA and IPB registers with operand register-numbers
and Trap (VN)

Assembler
Syntax: EMULATE vn,ra, b

Status: Not affected
Operands: Absolute register-numbers for registers RA and RB
VN Trap vector number

31 23 15 7 0
L L L LU
11111000 VN RA RB

OP=F8 EMULATE

Description: The IPA and IPB registers are set to the register-numbers of

registers RA and RB, respectively. A trap with the specified vector
number occurs.

Note that the IPC register is also affected by this instruction, but
that its value has no interpretation.

For programs in the User mode, a Protection Violation trap

occurs—instead of the EMULATE trap—if a vector number
between 0 and 63 is specified.

8-65

EXBYTE EXBYTE
Extract Byte

Operation: DEST « SRCB, with low-order byte replaced by byte in
SRCA selected by BP

Assembler
Syntax: EXBYTE rc,ra,b
or
EXBYTE rc, ra, const8

Status: Not affected

Operands: SRCA content of register RA

SRCB M =0: content of register RB

M=1: | (zero-extended to 32 bits)

DEST register RC

31 23 15 7 0
T T T T T T T [T T T T T T T [T T T T T T T VT TTITrr7rl
0000101TM RC RA RBorl
OP =0A, 0B EXBYTE

Description: A byte in the SRCA operand is selected by the Byte Position field
of the ALU Status Register and the Byte Order bit of the
Configuration Register. The selected byte replaces the low-order
byte of the SRCB operand, and the resulting word is placed into
the DEST location.

Note: The selection of bytes within words is specified in Section
3.4.3.

8-66

EXHW ' EXHW
Extract Half-Word
Operation: DEST « SRCB, with low-order half-word replaced by half-word in
SRCA selected by BP
Assembler
Syntax: EXHW rc,ra, b
or
EXHW rc, ra, const8
Status: Not affected
Operands: SRCA content of register RA
SRCB M = 0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
SN L T L O (L L L L L L L AL L I L L L L
0111110M RC RA RBori
OP= 7C,7D EXHW
Description: A half-word in the SRCA operand is selected by the Byte Position

field of the ALU Status Register and the Byte Order bit of the
Configuration Register. The selected half-word replaces the
low-order half-word of the SRCB operand, and the resulting word
is placed into the DEST location.

Note: The selection of half-words within words is specified in
Section 3.4.3.

8-67

EXHWS EXHWS
Extract Half-Word, Sign-Extended

Operation: DEST « half-word in SRCA selected by BP,
sign-extended to 32 bits

Assembler
Syntax: EXHWS rc,ra

Status: Not affected

Operands: SRCA content of register RA
DEST register RC
31 23 15 7 0
T T T T T T T[T T T T T T T [T T T T T T T[T T T T T
k%% 101111110 RC RA reserved
OP=7E
EXHWS

Description: A half-word in the SRCA operand is selected by theByte Position
field of the ALU Status Register and the Byte Order bit of the
Configuration Register. The selected half-word is sign-extended
to 32 bits, and the resulting word is placed into the DEST location.

Note: The selection of half-words within words is specified in
Section 3.4.3.

8-68

EXTRACT 'EXTRACT
Extract Word, Bit-Aligned

Operation: DEST « high-order word of (SRCA//SRCB << FC)

Assembler
Syntax: EXTRACT rc,ra,b
or
EXTRACT rc, ra, const8

Status: Not affected

Operands: SRCA content of register RA
SRCB M =0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
T T T T 1T T 1T [T T T T T T T[T T T T T T T T TTITITTrl
0111101M RC RA reserved
OP=7A7B EXTRACT

Description: The SRCB operand is appended to the SRCA operand, and the
resulting 64-bit value is shifted left by the number of bit- positions
specified by the Funnel Shift Count (FC) field of the ALU Status
register. The high-order 32 bits of the 64-bit shifted value are
placed into the DEST location.

If the SRCB operand is the same as the SRCA operand, the
EXTRACT instruction performs a rotate operation.

8-69

FADD FADD
Floating-Point Add, Single-Precision

Operation: DEST (single-precision) «SRCA (single-precision +

SRCB (single-precision)
Assembler
Syntax: FADD rc,ra, b
Status: Not affected
Operands:: SRCA content of register RA
SRCB content of register RB
DEST register RC
31 23 15 7 0
T T T T T T T [T T T T T T T[T T T TT T T[T TT T TTT 1T
11110000 RC RA RB
OP=F0 FADD

Description: The SRCA operand is added to the SRCB operand, and the result
is placed into the DEST location. The operands and result of the
addare treated as single-precision, floating-point numbers.

Note: This instruction is not directly supported in processor
hardware. In the current implementation, this instruction causes an
FADD trap. When the trap occurs, the IPA, IPB, and IPC registers
are set to reference SRCA, SRCB, and DEST.

8-70

FDIV FDIV
Floating-Point Divide, Single-Precision

Operation: DEST(single-precision) «SRCA (single-precision) /
SRCB (single-precision)
Assembler
Syntax: FDIV rc,ra, b

Status: Not affected

Operands: SRCA content of register RA
SRCB content of register RB
DEST register RC
31 23 15 7 0
T T T T T T T [T T T T T T T[T T T T T TT T 1T T11
11110110 RC RA RB
OP=F6 FDIV

Description: The SRCA operand is divided by the SRCB operand, and the

result is placed into the DEST location. The operands and result of
the divide are treated as single-precision, floating-point numbers.

Note: This instruction is not directly supported in processor
hardware. Inthe current implementation, this instruction causes an
FDIV trap. When the trap occurs, the IPA, IPB, and IPC registers
are set to reference SRCA, SRCB, and DEST.

8-71

FEQ : | : FEQ
Floating-Point Equal To, Single-Precision
Operation: IF SRCA (single-precision) = SRCB (single-precision)
THEN DEST « TRUE
ELSE DEST « FALSE
Assembler
Syntax: FEQ rc, ra, b
Status: Not affected
Operands: SRCA content of register RA
SRCB content of register RB
DEST register RC
31 23 15 7 0
T T T T T T T [T T I T T T T [T T T T T T T T T T T 1711
11101010 RC RA RB ‘
OP=EA FEQ
Description: If the SRCA operand is equal to the SRCB operand, a Boolean

TRUE is placed into the DEST location; otherwise, a Boolean
FALSE is placed into the DEST location. For the comparison, the
SRCA and SRCB operands are treated as single-precision,
floating-point numbers.

Note: This instruction is not directly supported in processor
hardware. Inthe current implementation, this instruction causes an
FEQ trap. When the trap occurs, the IPA, IPB, and IPC registers
are set to reference SRCA, SRCB, and DEST.

8-72

FGT FGT
Floating-Point Greater Than, Single-Precision

Operation: IF SRCA (single-precision) > SRCB(single-precision)
THEN DEST « TRUE
ELSE DEST « FALSE

Assembler
Syntax: FGT rc,ra, b

Status: Not affected

Operands: SRCA content of register RA
SRCB content of register RB
DEST register RC
31 23 15 7 0
T T T T T T T [T T T T T T T[T TT T TrT1 I B Y B
11101100 RC RA RB
OP =EC FGT

Description: If the value of the SRCA operand is greater than the value of the
SRCB operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location. For
the comparison, the SRCA and SRCB operands are treated as
single-precision, floating-point numbers.

Note: This instruction is not directly supported in processor
hardware. In the current implementation, this instruction causes an
FGT trap. When the trap occurs, the IPA, IPB, and IPC registers
are set to reference SRCA, SRCB, and DEST.

8-73

FLT FLT
Floating-Point Less Than, Single-Precision
Operation: IF SRCA (single-precision} < SRCB (single-precision)
THEN DEST « TRUE
ELSE DEST « FALSE
Assembler
Syntax: FLT rc,ra, b
Status: Not affected
Operands: SRCA content of register RA
SRCB content of register RB
DEST register RC
31 23 15 7 0
N L AL L U LI L L L L AL L L B L LI
11101110 RC RA RB
OP =EE ; FLT
Description: If the value of the SRCA operand is less than the value of the

SRCB operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location. For
the comparison, the SRCA and SRCB operands are treated as
single-precision, floating-point numbers.

Note: This instruction is not directly supported in processor
hardware. Inthe current implementation, this instruction causes an
FLT trap. When the trap occurs, the IPA, IPB, and IPC registers are
set to reference SRCA, SRCB, and DEST.

8-74

FMUL FMUL
Floating-Point Multiply, Single-Precision

Operation: DEST (single-precision) « SRCA (single-precision) *
SRCB (single-precision)

Assembler
Syntax: FMUL rc,ra, b

Status: Not affected

Operands: SRCA content of register RA
SRCB content of register RB
DEST register RC
31 23 15 7 0
T T T T T T T [T T T T T T T[T T T TTT1 T T T T 11
11110100 RC RA RB
OP=F4 FMUL

Description: The SRCA operand is multiplied by the SRCB operand, and the
result is placed into the DEST location. The operands and result of
the multiply are treated as single-precision, floating-point numbers.

Note: This instruction is not directly supported in processor
hardware. In the current implementation, this instruction causes an
FMUL trap. When the trap occurs, the IPA, IPB, and IPC registers
are set to reference SRCA, SRCB, and DEST.

8-75

FSUB FSUB
Floating-Point Subtract, Single-Precision

Operation: DEST (single-precision) «SRCA (single-precision) —
SRCB (single-precision)

Assembler
Syntax: FSUB rc,ra, b

Status: Not affected

Operands: SRCA content of register RA
"~ SRCB content of register RB
DEST register RC
31 23 15 7 0
S O T N O N I Y T R D T N N N Y D A Y O Y N N Y O
11110010 RC RA RB
OP=F2 FSUB

Description: The SRCB operand is subtracted from the SRCA operand, and the
result is placed into the DEST location. The operands and result of
the subtract are treated as single-precision, floating-point
numbers.

Note: This instruction is not directly supported in processor
hardware. Inthe current implementation, this instruction causes an
FSUB trap. When the trap occurs, the IPA, IPB, and IPC registers
are set to reference SRCA, SRCB, and DEST.

8-76

HALT HALT
Enter Halt Mode

Operation: Enter Halt mode on next cycle

Assembler
Syntax: HALT

Status: Not affected

Operands: not applicable

31 23 15 7 0
| LR L L 1 1T T 1 P v b rrrl
10001001 reserved reserved reserved

OP= 89 HALT

Description: The processor is placed into the Halt mode on the next cycle,
except that any external data accesses are completed.

This ‘instruction may be executed only by Supervisor-mode
programs. An attempted execution by a User-mode program
causes a Protection Violation trap to occur.

If the instruction following a Halt instruction has an exception (e.g.,

TLB Miss), the trap associated with this exception is taken before
the processor enters the Halt mode.

8-77

INBYTE INBYTE
Insert Byte

Operation: DEST « SRCA, with byte selected by BP
replaced by low-order byte of SRCB

Assembler
Syntax: INBYTE rc,ra, b
or
INBYTE rc, ra, const8:

Status: Not affected

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1:1 (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
| I I D N A AN N Y N N N N N A N N N N Y Y O Y A B R Y B O
0000110M RC RA RBorl
OP=0C, 0D INBYTE

Description: A byte in the SRCA operand is selected by the Byte Position field
of the ALU Status Register and the Byte Order bit of the
Configuration Register. The selected byte is replaced by the
low-order byte of the SRCB operand, and the resulting word is
placed into the DEST location.

Note: The selection of bytes within words is specified in Section
3.4.3.

8-78

INHW INHW
Insert Half-Word

Operation: DEST « SRCA, with half-word selected by BP replaced by

low-order half-word of SRCB
Assembler

Syntax: INHW rc,ra, 1b
or
INHW rc, ra, const8

Status: Not affected

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1:1 (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
T T T T T T 1T [T T T T T T T[T TT T ITTIT T T T ITrTITIT Tl
0111100M RC RA RBor |
OP=78,79 INHW

Description: A half-word in the SRCA operand is selected by the Byte Position
field of the ALU Status Register and the Byte Order bit of the
Configuration Register. The selected half-word is replaced by the
low-order half-word of the SRCB operand, and the resulting word
is placed into the DEST location.

Note: The selection of half-words within words is specified in
Section 3.4.3.

8-79

INV INV
Invalidate

Operation: Reset all Valid bits in Branch Target Cache

Assembler
Syntax: INV

Status: Not affected
Operands: not applicable

31 23 15 7 0
| L L I T 1T 1T 1T 1T 1 1T T 1T riti il
i0011 111 reserved reserved reserved

OP =9F INV

Description: This instruction causes all Branch Target Cache Valid bits to be
reset, on the exeuction of the next successful branch. This
causes all Branch Target Cache locations to become invalid.

This instruction may be executed only by Supervisor-mode

programs. An attempted execution by a User-mode program
causes a Protection Violation trap to occur.

8-80

IRET IRET
Interrupt Return
Operation: Perform an interrupt return sequence
Assembler
Syntax: IRET
Status: Not affected
Operands: not applicable
31 23 15 7 0
T T T T T T T [T T T T T T T [T T T T T T T [T T T T 1711
10001000 reserved reserved reserved
OP =88 IRET
Description: This instruction performs the interrupt return sequence described

in Section 3.5.5.

This instruction may be executed only by Supervisor-mode
programs. An attempted execution by a User-mode program
causes a Protection Violation trap to occur.

8-81

IRETINV IRETINV
Interrupt Return and Invalidate

Operation: Perform an interrupt return sequence, and reset all Valid bits in
Branch Target Cache '

Assembler
Syntax: IRETINV

Status: Not affected
Operands: not applicable

31 23 15 7 0
T T T T VT R L L | R L L L L | L L LR L
10001100 reserved reserved reserved

OP=8C IRETINV

Description: This instruction performs the interrupt return sequence described

in Section 3.5.5. When the sequence begins, all Branch Target
Cache Valid bits are reset to zeros. This causes all Branch Target
Cache locations to become invalid.

This instruction may be executed only by Supervisor-mode
programs. An attempted execution by a User-mode program
causes a Protection Violation trap to occur.

8-82

JMP JMP
Jump

Operation: PC « TARGET
Execute delay instruction

Assembler
Syntax: JMP target

Status: Not affected .

Operands: TARGET A=0: 117..110//19..12 (sign-extended to 30 bits) + PC
A=1: 117..110//19..12 (zero-extended to 30 bits)

31 23 15 7 0
| | L L L Frrrrii | L L
1010000A 17..110 reserved 19..12

OP = A0, At JMP

Description: A non-sequential instruction fetch occurs to the instruction
‘ address given by the TARGET operand. The instruction following
the JMP is executed before the non-sequential fetch occurs.

8-83

JMPF JMPF
Jump False
Operation: IFSRCA = FALSETHEN PC « TARGET
Execute delay instruction
Assembler
Syntax: JMPF ra, target
Status: Not affected
Operands: SRCA content of register RA
TARGET A=0: [17..110//19..12 (sign-extended to 30 bits) + PC
A=1: 117.110//19..12 (zero-extended to 30 bits)
31 23 15 7 0
L L L L O L L L
1010010A 117..110 RA 19..12
OP = A4,A5 JMPF

Description: If SRCA is a Boolean FALSE, a non-sequential instruction fetch

occurs to the instruction address given by the TARGET operand.
If SRCA is a Boolean TRUE, this instruction has no effect.

The instruction following the JMPF is executed regardless of the
value of SRCA.

8-84

JMPFDEC JMPFDEC
Jump False and Decrement

Operation: IFSRCA = FALSE THEN
SRCA « SRCA -1

PC « TARGET
ELSE

SRCA « SRCA -1
Execute delay instruction

Assembler
Syntax: JMPFDEC ra, target

Status: Not affected

Operands: SRCA content of register RA

TARGET A=0: [7..110/19..12 (sign-extended to 30 bits) +PC
A=1: 117..110//19..12 (zero-extended to 30 bits)

31 23 15 7 0
N N N A N N Y N N N Y O D N O N N N T IO O O A I
1011010A 17..110 RA 19..12

OP =B4,B5 JMPFDEC

Description: If SRCA is a Boolean FALSE, a non-sequential instruction fetch
occurs to the instruction address given by the TARGET operand.

If SRCA is a Boolean TRUE, this instruction has no effect on the
instruction-execution sequence.

The SRCA operand is decremented by one, regardless of whether
or not the non-sequential instruction fetch occurs. Note that a
negative number for the SRCA operand is a Boolean TRUE.

The instruction following the JMPFDEC is executed regardless of
the value of SRCA.

8-85

JMPFI JMPFI
‘ Jump False Indirect

Operation: IFSRCA = FALSETHENPC « SRCB
Execute delay instruction

Assembler
Syntax: JMPFl ra, b

Status: Not affected

Operands: SRCA content of register RA
SRCB content of register RB
31 23 15 7 0
T T T T T T T [T T T T T T T [T T T T T T T [T T T T 17711
11000100 reserved RA RB :
OP=C4 JMPFI

Description: The SRCA is a Boolean FALSE, a non-sequential instruction fetch
‘ occurs to the instruction address given by the SRCB operand.

If SRCA is a Boolean TRUE, this instruction has no effect.

The instruction following the JMPFI is executed regardless of the
value of SRCA.

8-86

JMPI JMPI
Jump Indirect

Operation: PC « SRCB
Execute delay instruction

Assembler
Syntax: JMPl b

Status: Not affected

Operands: SRCB content of register RB
31 23 15 7 0
| L L L L L L L | L L L F1r1b 10 iT11
11000000 reserved reserved RB
OP=C0 JMPI

Description: A non-sequential instruction fetch occurs to the instruction
address given by the SRCB operand. The instruction following
the JMPI is executed before the non-sequential fetch occurs.

8-87

JMPT JMPT
Jump True

Operation: IFSRCA = TRUETHEN PC « TARGET
Execute delay instruction

Assembler
Syntax: JMPT ra, target

Status: Not affected

Operands: SRCA content of register RA

TARGET A=0: 17.10/19..12 (sign-extended to 30 bits) + PC
A=1: 117.110//119..12 (zero-extended to 30 bits)

31 23 15 7 0
LR F1Trrririd r1T 1T rrii | S O I I
10101 10A 117..110 RA 19..12

OP = AC,AD JMPT

Description: If SRCA is a Boolean -TRUE, a non-sequential instruction fetch
occurs to the instruction address given by the TARGET operand.

If SRCA is a Boolean FALSE, this instruction has no effect.

The instruction following the JMPT is executed regardless of the
value of SRCA.

8-88

JMPTI JMPTI
Jump True Indirect

Operation: IFSRCA = TRUETHEN PC « SRCB
Execute delay instruction

Assembler
Syntax: JMPTI ra, b

Status: Not affected

Operands: SRCA content of register RA
SRCB content of register RB
31 23 15 7 0
T T T T T T T [T T T T T T T[T T T T T T T [T T T T T 711
11001100 reserved RA RB
OP=CC JMPTI

Description: The SRCA is a Boolean TRUE, a non-sequential instruction fetch
occurs to the instruction address given by the SRCB operand.

If SRCA is a Boolean FALSE, this instruction has no effect.

The instruction following the JMPTI is executed regardless of the
value of SRCA.

8-89

LOAD _ LOAD
Load

Operation: DEST « EXTERNAL WORD [SRCB]

Assembler

Syntax: LOAD ce, cntl, ra, b
or
LOAD ce, cntl, ra, const8

Status: Not affected

Operands: SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RA
31 23 . 15 7 0
T T T T T 11 I TT T T T [T T T T T T T [TTT T TT11
000101T1TM CNTL RA RBorl
oP=16,17 | LOAD
CE

Description: If the CE bit is 0, the external word addressed by the SRCB
operand is placed into the DEST location.

If the CE bit is 1, a word is transferred from the coprocessor into the
DEST location. The SRCB operand has no pre-defined
interpretation in this case, though it appears on the Address Bus.

The CNTL field of the LOAD instruction affects the access or
transfer as described in Sections 3.4.2 and 6.1.2.

8-90

LOADL LOADL
Load and Lock

Operation: DEST « EXTERNAL WORD [SRCB],
assert *LOCK output during access

Assembler

Syntax: LOADL ce,cntl, ra, b
or
LOADL ce, cntl, ra, const8

Status: Not affected

Operands: SRCB M=0: content of register RB
; M=1: | (zero-extended to 32 bits)
DEST register RA
31 23 15 7 0
T T T T T T T [T T T T T T T[T T T T T T T [T T T T 1T
0000011M , ONIL RA RBorl
OP-06,07 | LOADL
CE

Description: If the CE bit is 0, the external word addressed by the SRCB
operand is placed into the DEST location.

If the CE bit is 1, a word is transferred from the coprocessor into the
DEST location. The SRCB operand has no pre-defined
interpretation in this case, though it appears on the Address Bus.

The CNTL field of the LOADL instruction affects the access or
transfer as described in Sections 3.4.2 and 6.1.2.

The *LOCK output is asserted during the access or transfer.

8-91

LOADM LOADM
Load Multiple
Operation: DEST .. DEST + COUNT «
EXTERNAL WORD [SRCB]...EXTERNAL WORD
[SRCB+COUNT* 4]
Assembler
Syntax: LOADM ce,cntl, ra, b
or
LOADM ce, cntl, ra, const8
Status: Not affected
Operands: SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RA
31 23 15 7 0
I S O T T T T T T [T T T T T T T [T T T T 111
0011011M CNTL RA RBorl
OP-3637 ! LOADM
Description: If the CE bit is 0, external words at consecutive word-addresses,

beginning with the word addressed by the SRCB operand, are
placed into consecutive registers, beginning with the DEST
location.

If the CE bit is 1, multiple words are transferred from the
coprocessor into consecutive registers, beginning with the DEST
location. The SRCB operand has no pre-defined interpretation in
this case.

The total number of words accessed or transferred in the
sequence is specified by the Count Remaining field of the
Channel Control Register (which also appears in the Load/Store
Count Remaining Register) at the beginning of the access. The
CNTL field of the LOADM instruction affects the access or transfer
as described in Sections 3.4.2 and 6.1.2.

8-92

LOADSET LOADSET
Load and Set
Operatiion: DEST « EXTERNAL WORD [SRCB]
EXTERNAL WORD [SRCB] « h‘FFFFFFFF,
assert *LOCK output during access
Assembler
Syntax: LOADSET ce,cntl, ra, b
or
LOADSET ce, cntl, ra, const8
Status: Not affected
Operands: SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RA
31 23 15 7 0]
T T 1T 1T T T 1T [T T T T T T[T T T T T T [P T T T Tl
0010011M| CNTL RA RBor|
OP=26,27 LOADSET
Description: If the CE bit is 0, the external word addressed by the SRCB

operand is placed into the DEST location. After the DEST location
is altered, the external word addressed by the SRCB operand is
written, atomically, with a word consisting of a 1 in every bit
position.

If the CE bit is 1, a word is transferred from the coprocessor into the
DEST location. The SRCB operand has no pre-defined
interpretation in this case, though it appears on the Address Bus.
After the DEST location is altered, a word consisting of a 1 in every
bit position is transferred, atomically, to the coprocessor.

The CNTL field of the LOADSET instruction affects the access or
transfer as described in Sections 3.4.2 and 6.1.2.

The *LOCK output is asserted throughout the LOADSET
operation.

8-93

MFSR MFSR
Move from Special Register

Operation: DEST « SPECIAL

Assembler
Syntax: MFSR rc, spid

Status: Not affected

Operands: SPECIAL content of special-purpose register SA

DEST register RC
31 23 15 7 0
rT T T T T T [T T T T T T T T T T T T T T T 1 T T T T T T 11
11000110 RC SA reserved
OP=C6 MFSR ’

Description: The SPECIAL operand is placed into the DEST location.
For programs in the User mode, a Protection Violation trap occurs if

- SA specifies a protected special-purpose register. If a trap occurs,
the DEST location is not altered.

8-94

MFTLB MFTLB
Move from Translation Look-Aside Buffer Register

Operation: DEST « TLB [SRCA]

Assembler
Syntax: MFTLB rc, ra

Status: Not affected

Operands: SRCA content of register RA, bits 6..0
DEST register RC
31 23 15 7 0
| I I N I I T T T T T T T [T T T T 111 T T T T T 11
10110110 RC RA reserved
OP =B6 MFTLB

Description: The Translation Look-Aside Buffer (TLB) register whose

register-numbef is specified by the SCRA operand is placed into
the DEST location.

This instruction may be executed only by Supervisor-mode
programs. An attempted execution by a User-mode program
causes a Protection Violation trap to occur. If a trap occurs, the
DEST location is not altered.

8-95

MTSR MTSR
Move to Special Register .

Operation: @ SPDEST « SRCB

Assembler
Syntax: MTSR spid, b

Status: Not affected, unless the destination is the ALU Status Register

Operands: SRCB content of register RB

SPDEST special-purpose register SA

31 23 15 7 0
| L L L L L | L L L L | L L L L I L L L L
11001110 reserved SA RB

OP =CE MTSR

Déscription: The SRCB operand is placed into the SPECIAL location.
For programs in the User mode, a Protection Violation trap occurs if

SA specifies a protected special-purpose register. If atrap occurs,
the SPDEST location is not altered.

8-96

MTSRIM MTSRIM
Move to Special Register Inmediate

Operation: SPDEST « 0l16

Assembler
Syntax: MTSRIM spid, const16

Status: Not affected, unless the destination is the ALU Status Register

Operands: 0l16 115.. 18//17.. 10 (zero-extended to 32 bits)

SPDEST special-purpose register SA

31 23 15 7 0
Frririvtml T rrrirri rriroeni L
00000100 i15..18 SA 17..10

OP =04 MTSRIM

Description: The 0116 operand is placed into the SPECIAL location.

For programs in the User mode, a Protection Violation trap occurs if
SA specifies a protected special-purpose register. If a trap occurs,
the SPDEST location is not altered.

8-97

MTTLB MTTLB
Move to Translation Look-Aside Buffer Register

Operation: TLB [SRCA] « SRCB

Assembler .
Syntax: MTTLB ra, b

Status: Not affected

Operands: SRCA content of register RA, bits 6..0
SRCB content of register RB
31 23 15 7 0
T T T T T T T [T TP T T T T[T T T T I T T[T T T T 1Tl
10111110 reserved RA RB
OP =BE MTTLB

Description: The SRCB operand is placed into the Translation Look-Aside

Buffer (TLB) register whose register-number is specified by the
SCRA operand.

This instruction may be executed only by Supervisor-mode
programs. An attempted execution by a User-mode program
causes a Protection Violation trap to occur. If a trap occurs, the
TLB register is not altered.

8-98

MUL MUL
Multiply Step

Operation: Perform one-bit step of a multiply operation

Assembler
Syntax: MUL rc,ra, b

Status: V,N,Z,C

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
LN O OO L L L T L L I B
0110010M RC RA RBorl
OP =64, 65 MUL

Description: _If the least-significant bit of the Q Register is 1, the SRCA operand
is added to the SRCB operand. If the least-significant bit of the Q
register is 0, a zero word is added to the SRCB operand.

The content of the Q register is appended to the result of the add,
and the resulting 64-bit value is shifted right by one bit-position;
the true sign of the result of the add fills the vacated bit position
(i.e. the sign of the result is complemented if an overflow occurred
during the add operation). The high-order 32 bits of the 64-bit
shifted value are placed into the DEST location. The low-order 32
bits of the shifted value are placed into the Q Register.

Examples of integer multiply operations appear in Section 7.1.6.

8-99

MULL MULL
Multiply Last Step

Operation: Complete a sequence of multiply steps (for signed multiply)

Assembler
Syntax: MULL rc, ra, b

Status: V,N,Z,C

Operands: SRCA content of register RA

SRCB M=0: content of register RB

M=1: | (zero-extended to 32 bits)

DEST register RC

31 23 15 ' 7 0
T T T T T T T [T T T T I T T[T T T T T T T [T T T T 1711
0110011M RC RA RBorl
OP = 66, 67 MULL

Description: If the least-significant bit of the Q Register is 1, the SRCA operand
is subtracted from the SRCB operand. If the least-significant bit of

the Q register is 0, a zero word is subtracted from the SRCB
operand.

The content of the Q register is appended to the result of the
subtract, and the resulting 64-bit value is shifted right by one
bit-position; the true sign of the result of the subtract fills the
vacated bit position (i.e. the sign of the result is complemented if
an overflow occurred during the subtract operation). The
high-order 32 bits of the 64-bit shifted value are placed into the
DEST location. The low-order 32 bits of the shifted value are
placed into the Q Register.

Examples of integer multiply operations appear in Section 7.1.86.

8-100

MULTIPLY MULTIPLY
Integer Multiply
Operation: DEST/Q « SRCA * SRCB
Assembler -
Syntax: MULTIPLY rc, rab
Status: Not affected
Operands: SRCA content of register RA
SRCB content of register RB
DEST register RC
Q Q Register
31 23 15 7 0
T T T T T T [T T T T T T T [T T T T T T T[T T T T 111
11100000 RC RA RB
OP =E0 MULTIPLY
Description: The SRCA operand is multiplied by the SRCB operand. The

high-order 32 bits of the 64-bit result are placed into the DEST
location. The low-order 32 bits of the result are placed into the Q
Register.

Note: This instruction is not directly supported in processor
hardware. In the current implementation, this instruction causes a
MULTIPLY trap. When the trap occurs, the IPA, IPB, and IPC
registers are set to reference SRCA, SRCB, and DEST.

8-101

MULU MULU
Multiply Step, Unsigned

Operation: Perform one-bit step of a multiply operation (unsigned)

Assembler
Syntax: MULU rc,ra, b

Status: V,N,Z,C

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
A N N N N A D N N O Y Y N D N D D N Y Y O
0111010M RC RA RBorl
OP=74,75 MULU

Description: If the least-significant bit of the Q Register is 1, the SRCA operand
is added to the SRCB operand. If the least-significant bit of the Q
register is 0, a zero word is added to the SRCB operand.

The content of the Q register is appended to the result of the add,
and the resulting 64-bit value is shifted right by one bit-position;
the carry-out of the add fills the vacated bit position. The
high-order 32 bits of the 64-bit shifted value are placed into the
DEST location. The low-order 32 bits of the shifted value are
placed into the Q Register.

Examples of integer multiply operations appear in Section 7.1.6.

8-102

NAND NAND
NAND Logical

Operation: DEST « ~ (SRCA & SRCB)

Assembler

Syntax: NAND rc,ra, 1b
or
NAND rc, ra, const8

Status: N,Z

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
I T T T T T T [T T T T T T T[T T T T T T T [T T T T TT1
1001101M RC RA RBorl
OP=9A, 9B NAND

Description: The SRCA operand is logically ANDed, bit-by-bit, with the SRCB

operand. The one’s-complement of the result is placed into the
DEST location.

8-103

NOR NOR
NOR Logical

Operation: DEST « ~ (SRCA | SRCB)

Assembler

Syntax: NOR rc,ra,
or
NOR rc, ra, const8

Status: N, Z

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 , 7 0
I L L DO L L L L L SO LA LB LA L O
1001100M RC RA RBorl
OP =98, 99 NOR
Description: The SRCA operand is logically ORed, bit-by-bit, with the SRCB

operand. The one’s-complement of the result is placed into the
DEST location.

8-104

OR OR
OR Logical

Operation: DEST « SRCA | SRCB

Assembler

Syntax: OR rc,ra, b
or
OR rc, ra, const8

Status: N,Z

Operands: SRCA content of register RA
SRCB M =0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
L L L L L O L LD L L L D L L L o L L O L L I
1001001M RC RA RBorl
OP =92, 93 OR
Description: The SRCA operand is logically ORed, bit-by-bit, with the SRCB

operand, and the result is placed into the DEST location.

8-105

SETIP SETIP
Set Indirect Pointers

Operation: Load IPA, IPB, and IPC registers with operand register-numbers

Assembler
Syntax: SETIP rc,ra, b

Status: Not affected

Operands: Absolute register-numbers for registers RA, RB, and RC

31 23 15 7 0
T T T T T T T [T T T T T T T T T T T T T I T T T T TTT
10011110 RC RA RB
OP =9E SETIP
Description: The IPA, IPB, and IPC registers are set to the register-numbers of

registers RA, RB, and RC, respectively.
For programs in the User mode, a Protection Violation trap occurs if

RA, RB, or RC specifies a register which is protected by the
Register Bank Protect Register.

8-106

SLL SLL
Shift Left Logical

Operation: DEST « SRCA << SRCB (zerofill)

Assembler

Syntax: SLL rc, ra, b
or
SLL rc, ra, const8

Status: Not affected

Operands: SRCA content of register RA
SRCB M=0: content of register RB, bits 4..0
M=1: |, bits 4..0
DEST register RC
31 23 ' 15 7 ‘ 0
T 1T T T T T T [T T T T TTr rrrrrrtr [rrrrrri
1 00000O0M RC RA RBorl
OP =80, 81 SLL
Description: The SRCA operand is shifted left by the number of bit positions

specified by the SRCB operand; zeros fill vacated bit positions.
The result is placed into the DEST location.

8-107

SRA SRA
Shift Right Arithmetic

Operation: DEST <« SRCA >> SRCB (signfill)

Assembler

Syntax: SRA rcra b
or
SRA rc, ra, const8

Status: Not affected

Operands: SRCA -content of register RA
SRCB M=0: content of register RB, bits 4..0
M=1: |, bits 4.0
DEST register RC
31 23 15 7 0
T T T T T T T [T T T T T T T[T T T T T T T [T T T T T
100001 1M RC RA RBori
OP =86, 87 SRA
Description: The SRCA operand is shifted right by the number of bit positions

specified by the SRCB operand; the sign of the SRCA operand
fills vacated bit positions. The result is placed into the DEST
location.

8-108

SRL SRL
Shift Right Logical

Operation: DEST « SRCA >> SRCB (zero fill)

Assembler

Syntax: SRL rcrab
or
SRL rc, ra, const8

Status: Not affected

Operands: SRCA content of register RA
SRCB M=0: content of register RB, bits 4..0
M=1: |, bits 4..0
DEST register RC
31 23 15 7 0
| N N U L L L O B
1000001M RC RA RBorl
OP =82,83 SRL

Description: The SRCA operand is shifted right by the number of bit positions
specified by the SRCB operand; zeros fill vacated bit positions. The
result is placed into the DEST location.

8-109

STORE STORE
' Store

Operation: EXTERNAL WORD [SRCB] « SRCA

Assembler

Syntax: STORE ce,cntl,ra, b
or
STORE ce, cntl, ra, const8

Status: - Not affected

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
31 23 ' 15 7 0
T T T T T 1T T [P T T T T T T [T T T TTTIT T T iPrirrrIl
0001111M | CNTL RA RBorl
OP=1E 1F STORE
CE
Description: If the CE bit is 0, the SRCA operand is placed into the external

word addressed by the SRCB operand.

If the CE bitis 1, the SRCA and SRCB operands are transferred to
the coprocessor.

The CNTL field of the STORE instruction affects the access or
transfer as described in Sections 3.4.2 and 6.1.2.

8-110

STOREL ‘ : STOREL
Store and Lock »

Operation: EXTERNAL WORD [SRCB] « SRCA,
assert *LOCK output during access

Assembler
Syntax: STOREL ce,cntl, ra, b
or
STOREL ce, cmtl, ra, const8

Status: Not affected

Operands: SRCA content of register RA

SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)

23 15 7 0
I T T T T T T [T T T T T T T [T T T T T T T T T T T 1T 11
0000111Ml CNTL RA RBorl
OP =0E,0F ' STOREL
ce
Description: If the CE bit is 0, the SRCA operand is placed into the external

word addressed by the SRCB operand.

If the CE bit is 1, the SRCA and SRCB operands are transferred to
the coprocessor.

The CNTL field of the STOREL instruction affects the access or
transfer as described in Sections 3.4.2 and 6.1.2.

The *LOCK output is asserted during the access or transfer.

8-111

STOREM STOREM
Store Multiple

Operation: EXTERNAL WORD [SRCB]...EXTERNAL WORD [SRCB+COUNT * 4]
DEST... DEST + COUNT

Assembler

Syntax: STOREM ce, cntl, ra, rb
or
STOREM ce, cntl, ra, const8

Status: Not affected

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
31 23 15 ' 7 0
T T T T T T T [T T T T T T T [T T T T T T T [T T T T 17711
0011111M| CNTL RA RBorl
OP=3E,3F | STOREM
CcE
Description: If the CE bit is 0, the contents of consecutive registers, beginning

with the SRCA operand, are placed into external words a
consecutive word-addresses, beginning with the word addressed
by the SRCB operand.

If the CE bit is 1, the contents of consecutive registers, beginning
with the SRCA operand, are transferred to the coprocessor. The
SRCB operand has no pre-defined interpretation in this case.

The total number of words accessed or transferred in the
sequence is specified by the Count Remaining field of the
Channel Control Register (which also appears in the Load/Store
Count Remaining Register) at the beginning of the access. The
CNTL field of the STOREM instruction affects the access or
transter as described in Sections 3.4.2 and 6.1.2.

Note: The address and register-number sequences for the
STOREM instruction are specified in Section 3.4.2

8-112

SuUB SUB
Subtract '

Operation: DEST « SRCA - SRCB

Assembler

Syntax: SUB rc,ra, b
or
SUB rc, ra, const8

Status: V,N,Z,C

Operands: SRCA content of register RA

SRCB M=0: contentof register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 | 7 0
T T T T T T T [T T T T T T T [T T T T T T T [T T T T T T11
0010010M RC RA RBorl
OP =24, 25 SuB
Description: The SRCA operand is added to the two’s-complement of the

SRCB operand, and the result is placed into the DEST location.

8-113

SUBC SUBC
Subtract with Carry

Operation: DEST « SRCA -SRCB -1 + C
Assembler
Syntax: SUBC rcra b
or

SUBC rc, ra, const8

Status: V,N,Z,C

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
T T T T T T T [T T T T T I T [T T T T T T T T T T T
0010110M RC RA RBorl
OP=2C, 2D . SuBC
Description: The SRCA operand is added to the one’s-complement of the

SRCB operand and the value of the ALU Status Carry bit, and the
result is placed into the DEST location.

8-114

SUBCS | SUBCS
Subtract with Carry, Signed

Operation: DEST « SRCA -SRCB -1 + C
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: SUBCS rc,ra, b
or
SUBCS rc, ra,const8

Status: V,N,Z,C

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
r T T 7T 7T T T [T T T T T T T [T T T T T T T[T T T T 1T
0010100M RC RA RBorl
OP =28, 29 SUBCS
Description: The SRCA operand is added to the one’s-complement of the

SRCB operand and the value of the ALU Status Carry bit,and the
result is placed into the DEST location. If the add operation causes
atwo's-complement signed overflow, an Qut of Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

8-115

SUBCU SUBCU
Subtract with Carry, Unsigned

Operation: DEST« SRCA - SRCB -1+ C
IF unsigned underflow THEN Trap (Out of Range)

Assembler

Syntax: SUBCU rc,ra, b
or
SUBCU rc, ra, const8

Status: V,N,Z,C

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 : 15 7 0
L L L AL L L L L L L L L D DL L L A L L L L L
0010101M RC RA RBorl
OP =2A,2B SuBCU
Description: The SRCA operand is added to the one’s-complement of the

SRCB operand and the value of the ALU Status Carry bit, and the
result is placed into the DEST location. If the add operation causes
an unsigned underflow, an Out of Range trap occurs.

Note that the DEST location is altered whether or not an underflow
occurs.

8-116

SUBR SUBR
’ ‘ Subtract Reverse

Operation: DEST « SRCB - SRCA
Assembler
Syntax: SUBR rc, ra, b

or
SUBR rc, ra, const8

Status: V,N,Z C

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
| N S L L L L PO L DL L L L L DL L L L L L
0011010M RC RA RBorl
OP =34, 35 SUBR
Description: The SRCB operand is added to the two's-complement of the

SRCA operand, and the result is placed into the DEST location.

8-117

SUBRC SUBRC
Subtract Reverse with Carry

Operation: DEST« SRCB -SRCA -1 + C

Assembler

Syntax: SUBRC rc,ra, tb
or
SUBRC rc, ra, const8

Status: V,N,Z,C

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
R N N N N N N N N NN N N D N N N D O Y Y N Y AN N N I D O
0011110M RC " RA RBorl
OP =3C, 3D SUBRC
Description: The SRCB operand is added to the one’s-complement of the

SRCA operand and the value of the ALU Status Carry bit, and the
result is placed into the DEST location.

8-118

SUBRCS SUBRCS
Subtract Reverse with Carry, Signed

Operation: DEST« SRCB —SRCA -1 + C
IF signed overflow THEN Trap (Out of Range)

Assembler

Syntax; SUBRCS rc, ra, b

or
SUBRCS rc, ra, const8

Status: V,N,Z,C

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
r T T T T T T [T T T T T T T [T T T T T T T [T T T T T TT1
0011100M RC RA ‘ RBorl
OP =38, 39 SUBRCS
Description: The SRCB operand is added to the one’s-complement of the

SRCA operand and the value of the ALU Status Carry bit, and the
result is placed into the DEST location. If the add operation causes
a two’s-complement signed overflow, an Out of Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

8-119

SUBRCU SUBRCU
Subtract Reverse with Carry, Unsigned

Operation: DEST « SRCB - SRCA -1 + C
IF unsigned underflow THEN Trap (Out of Range)

~ Assembler

Syntax: SUBRCU rc,ra, b
or 4
SUBRCU rc, ra, const8

- Status: V,N,Z,C

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
N N N N N N T N N A I T Y Y N N Y Y N Y N I T O N O A
0011101M RC ‘RA RBorl
OP =3A, 3B SUBRCU
Description: The SRCB operand is added to the one's-complement of the

SRCA operand and the value of the ALU Status Carry bit, and the
result is placed into the DEST location. If the add operation causes
an unsigned underflow, an Out of Range trap occurs.

Note that the DEST location is altered whether or not an underflow
occurs.

8-120

SUBRS SUBRS
Subtract Reverse, Signed

Operation: DEST « SRCB - SRCA
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: SUBRS rc,ra, b
or
SUBRS rc, ra, const8

Status: V,N,Z,C

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
FrT T T T T T [T T T T T T T [T T T T T T T [T T T T 1T 1
001100O0M RC RA RBorl
OP =30, 31 SUBRS
Description: The SRCB operand is added to the two’s-complement of the

SRCA operand, and the result is placed into the DEST location. If
the add operation causes a two’s-complement signed overflow, an
Out of Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

8-121

SUBRU SUBRU
Subtract Reverse, Unsigned

Operation: DEST« SRCB - SRCA
IF unsigned underflow THEN Trap (Out of Range)

Assembler
Syntax: SUBRU rc, ra, rb
or

SUBRU rc, ra, const8

Status: V,N,Z,C

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
T T T T T T T [T T T T T T T [I T I T T T T[T T T T 1711
0011001M RC RA RBorl
OP=32,33 SUBRU
Description: The SRCB operand is added to the two's-complement of the

SRCA operand, and the result is placed into the DEST location. If
the add operation causes an unsigned underflow, an Out of
Range trap occurs.

Note that the DEST location is altered whether or not an underflow
occurs.

8-122

SUBS SUBS
Subtract, Signed

Operation: DEST« SRCA - SRCB
IF signed overflow THEN Trap (Out of Range)

Assembler

Syntax: SUBS rcra,b
or
SUBS rc, ra, const8

Status: V,N,Z2,C

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
T T T T T T T [T T T T T T T [T T T T T T T [T T T T 1T
001000O0M RC RA RBorl
OP =20, 21 SuUBS
Description: . The SRCA operand is added to the two’s-complement of the

SRCB operand, and the result is placed into the DEST location. If
the add operation causes a two's-complement signed overflow, an
Out of Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

8-123

SuBU SuUBU
Subtract, Unsigned

Operation: DEST « SRCA - SRCB
IF unsigned underflow THEN Trap (Out of Range)

Assembler
Syntax: SUBU rc, ra, b
or
SUBU rc, ra, const8

Status: V,N,ZC

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
T T T T T T T [T T T T T T T [T T T T T T T [T T T T T 711
0010001M RC RA RBorl
OP =22, 23 SUBU
Description: The SRCA operand is added to the two’s-complement of the

SRCB operand, and the result is placed into the DEST location. If
the add operation causes an unsigned underflow, an Out of
Range trap occurs,

Note that the DEST location is altered whether or not an underflow
occurs.

8-124

XNOR XNOR
Exclusive-NOR Logical

Operation: DEST « - (SRCA * SRCB)

Assembler
Syntax: XNOR rc,ra, b
or
XNOR rc, ra, const8

Status: N,Z

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
TN I N Y N N N D D N Y D Y BN N N N N D Y N A N N T I Y B
100101 1M RC RA RBorl
OP =96, 97 . XNOR
Description: The SRCA operand is logically exclusive-ORed, bit-by-bit, with the

SRCB operand. The one’s-complement of the result is placed into
the DEST location.

8-126

XOR XOR
Exclusive-OR Logical

Operation: DEST < SRCA *» SRCB

Assembler

Syntax: XOR rc, ra, b
or
XOR rc, ra, const8

Status: N,Z

Operands: SRCA content of register RA
SRCB M=0: content of register RB
M=1: | (zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
S O S O L L LA L O AL L L
1001010M RC RA RBorl
OP =94,95 XOR
Description: The SRCA operand is logically exclusive-ORed, bit-by-bit, with the

SRCB operand, and the result is placed into the DEST location.

8-126

8.5 INSTRUCTION INDEX BY OPERATION CODE

01
02

03

04
06,07
08,09
0A,0B
0C,0D
OE,OF
10,11
12,13
14,15
16,17
18,19
1A,1B
1C,1D
1E,1F
20,21
22,23
24,25
26,27
28,29
2A,2B
2C,2D
2E,2F
30,31
32,33
34,35
36,37
38,39
3A,3B
3C,3D
3E,3F
40,41
42,43
44,45
46,47
48,49
4A,4B
4C4D

CONSTN
CONSTH
CONST
MTSRIM
LOADL
CLZ
EXBYTE
INBYTE
STOREL
ADDS
ADDU
ADD
LOAD
ADDCS
ADDCU
ADDC
STORE
SUBS
SUBU
SUB
LOADSET
SUBCS
SUBCU
SUBC
CPBYTE
SUBRS
SUBRU
SUBR
LOADM
SUBRCS
SUBRCU
SUBRC
STOREM
CPLT
CPLTU
CPLE
CPLEU
CPGT
CPGTU
CPGE

Constant, Negative

Constant, High

Constant

Move to Special Register Inmediate
Load and Lock

Count Leading Zeros

Extract Byte

Insert Byte

Store and Lock

Add, Signed

Add, Unsigned

Add

Load

Add with Carry, Signed

Add with Carry, Unsigned

Add with Carry

Store

Subtract, Signed

Subtract, Unsigned

Subtract

Load and Set

Subtract with Carry, Signed
Subtract with Carry, Unsigned
Subtract with Carry

Compare Bytes

Subtract Reverse, Signed

Subtract Reverse, Unsigned

Subtract Reverse

Load Multiple

Subtract Reverse with Carry, Signed
Subtract Reverse with Carry, Unsigned
Subtract Reverse with Carry

Store Multiple

Compare Less Than

Compare Less Than, Unsigned
Compare Less Than or Equal To
Compare Less Than or Equal To, Unsigned
Compare Greater Than

Compare Greater Than, Unsigned
Compare Greater Than or Equal To

8-127

4E AF
50,51
52,53
54,55
56,57
58,59
5A,5B
5C,5D
SE,5F
60,61
62,63
64,65
66,67
68,69
6A,6B
6C,6D
6E,6F
70,71
72,73
74,75
78,79
TA,7B
7C,7D
TE
80,81
82,83
86,87
88

89

8C
90,91
92,93
94,95
96,97
98,99
9A.9B
9C,9D
9E

9F
AQ,Al
A4,A5
A8,A9
AC,AD

CPGEU
ASLT
ASLTU
ASLE
ASLEU
ASGT
ASGTU
ASGE
ASGEU
CPEQ
CPNEQ
MUL
MULL
DIVO
DIV
DIVL
DIVREM
ASEQ
ASNEQ
MULU
INHW
EXTRACT
EXHW
EXHWS
SLL
SRL
SRA
IRET
HALT
IRETINV
AND
OR
XOR
XNOR
NOR
NAND
ANDN
SETIP
INV
JMP
JMPF
CALL
JMPT

Compare Greater Than or Equal To, Unsigned
Assert Less Than

Assert Less Than, Unsigned

Assert Less Than or Equal To

Assert Less Than or Equal To, Unsigned
Assert Greater Than

Assert Greater Than, Unsigned

Assert Greater Than or Equal To

Assert Greater Than or Equal To, Unsigned
Compare Equal To

Compare Not Equal To

Multiply Step

Multiply Last Step

Divide Initialize

‘Divide Step

Divide Last Step

Divide Remainder

Assert Equal To

Assert Not Equal To
Multiply Step, Unsigned
Insert Half-Word

Extract Word, Bit-Aligned
Extract Half-Word

Extract Half-Word, Sign-Extended
Shift Left Logical

Shift Right Logical

Shift Right Arithmetic
Interrupt Return

Enter HALT Mode
Interrupt Return and Invalidate
AND Logical

OR Logical
Exclusive-OR Logical
Exclusive-NOR Logical
NOR Logical

NAND Logical
AND-NOT Logical

Set Indirect Pointers
Invalidate

Jump

Jump False

Call Subroutine

Jump True

8-128

B4,B5

BE
Co
C4
Cé6
C8
ccC
CE
EO
El
E4
ES
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
FO
F1
F2
F3
F4
F5
F6

F8

JMPFDEC
MFTLB
MTTLB
IMPI
IMPFI
MFSR
CALLI
IMPTI
MTSR
MULTIPLY
DIVIDE
CVINTF
CVINTD
CVEINT
CVDINT
CVED
CVDF
FEQ
DEQ
FGT
DGT
FLT
DLT
FADD
DADD
FSUB
DSUB
FMUL
DMUL
FDIV
DDIV
EMULATE

Jump False and Decrement

Move from Translation Look-aside Buffer Register
Move to Translation Look-aside Buffer Register
Jump Indirect

Jump False Indirect

Move from Special Register

Call Subroutine, Indirect

Jump True Indirect

Move to Special Register

Integer Multiply

Integer Divide

Convert Integer to Floating-Point Single-Precision
Convert Integer to Floating-Point Double-Precision
Convert Floating-Point Single-Precision to Integer
Convert Floating-Point Double-Precision to Integer
Convert Floating-Point Single-Precision to Double-Precision
Convert Floating-Point Double-Precision to Single-Precision
Floating-Point Equal To, Single-Precision

Floating-Point Equal To, Double-Precision

Floating-Point Greater Than, Single-Precision
Floating-Point Greater Than, Double-Precision
Floating-Point Less Than, Single-Precision

Floating-Point Less Than, Double-Precision

Floating-Point Add, Single-Precision

Floating-Point Add, Double-Precision

Floating-Point Subtract, Single-Precision

Floating-Point Subtract, Double-Precision

Floating-Point Multiply, Single-Precision

Floating-Point Multiply, Double-Precision

Floating-Point Divide, Single-Precision

Floating-Point Divide, Double-Precision

Trap to Software Emulation Routine

8-129

8-130

Appendices

APPENDIX A. CHANNEL OPERATION TIMING
Table A-1. Signal Summary

Signal Name Signal Function Type T ig;ﬁ:
A0 - A31 Address Bus 3-state output synch
*BGRT Bus Grant output synch
*BINV Bus Invalid output synch
*BREQ Bus Request input synch
*CDA Coprocessor Data Accept input synch
CNTLO - CNTL1 CPU Control input async
DO - D31 Data Bus bi-directional synch
*DBACK Data Burst Acknowlege input synch
*DBREQ Data Burst Request 3-state output synch
*DERR . Data Error input synch
*DRDY Data Ready input synch
*‘DREQ Data Request 3-state output synch
DREQTO - DREQT1 Data Request Type 3-state output synch
10 - 131 Instruction Bus input synch
*IBACK ~ Instruction Burst Acknowlege input synch
*IBREQ Instruction Burst Request 3-state output | synch
*IERR Instruction Error input synch
INCLK Input Clock input N/A
“INTRO - *INTR3 Interrupt Request input async
*IRDY Instruction Ready input synch
*IREQ Instruction Request 3-state output synch
IREQT Instruction Request Type 3-state output synch
08996A-A-T1
(Table Continued)

"The signals labeled " 3-state output” and "bi-directional" (except SYSCLK) are dis-
abled when the channel is granted to an external master. All outputs (except
MSERR) may be disabled by asserting the *TEST input.

A-1

Table A-1. Signal Summary (continued)

Signal Name Signal Function Type 1 ig;::
*LOCK Lock 3-state output synch
MPGMO - MPGM1 MMU Programmable 3-state output synch
MSERR Master/Salve Error output synch
OPTO - OPT2 Option Control 3-state output synch
*PDA Pipelined Data Access 3-state output synch
*PEN Pipeline Enable input synch
*PIA Pipelined Instructon Access 3-state output synch
RIrW Read/Write 3-state output synch
*RESET Resst input async
STATO - STAT2 CPU Status output synch
SUP/*US Supervisor/User Mode 3-state output synch
SYSCLK System Clock bi-directional N/A
*“TEST Test Mode input async
*TRAPO - *TRAP1 Trap Request input async
*WARN Warn edge-sensitive input | async

08996A-A-T2

TThe signals labeled " 3-state output" and "bi-directional” (except SYSCLK) are dis-
abled when the channel is granted to an external master. All outputs (except
MSERR) may be disabled by asserting the *TEST input.

A-2

Aos ADDRESS N
SUP/'US .
MPCM, . | ADDRESS N

IREQT

*IREQ |

*IBREQ [

‘BIN

0-31

‘IRD

*IER

*IBACK

INSTRUCTION READ - SIMPLE ACCESS

DIAGRAM 1
SIPO1 SF 12-17-86

A-3

0 or More
[¢—— Cycles
-
A ADDRESS N
0-31 'l’l
SUP/*US 1}
MPGMg. 4 ADDRESS N
IREQT 1}
*IREQ
‘PIA
*IBREQ
‘BINV
INSTR N
I0-31 X
*IRDY
*IERR
‘PEN
*IBACK
INSTRUCTION READ - SIMPLE ACCESS WITH *IRDY DELAYED
DIAGRAM 2

SIP02 SF 12-17-86

Ao.31 ADDRESS N X ADDRESS M
SUPIUS
MPGMo.1 | ADDRESS N X ADDRESS M
IREQT &
‘IREQ | / \
PIA | \

BNV |

INSTR N INSTR M

INSTRUCTION READ - PIPELINED ACCESS

DIAGRAM 3
SIPO3 SF 12-17-86

A-5

ADDRESS N

Ag.31

SUP/'US
MPGM _4

IREQT

ADDRESS N

*IREQ i

‘PIA

*IBREQ

*BINV

INSTR N

1031

*IRDY

*IERR

*PEN

‘IBACK

INSTRUCTION READ - ESTABLISHING BURST-MODE ACCESS

DIAGRAM 4
SIP04 SF 12-17-86

A-6

SYSCLK

N 1 ORMORE CYCLES

Ao-31

SUPI'US
MPGM g.1

IREQT

1+
*IREQ

1A
{4
‘PIA

*IBREQ

1t

‘BINV

INSTR N

N+1
lo-31

‘IRDY \

“ierr /

*PEN

*IBACK

\

114 - /
INSTRUCTION READ - BURST-MODE ACCESS SUSPENDED BY SLAVE

DIAGRAM 5
SIPO5 SF 12-17-86

A7

SYSCLK

Ao.31

SUPI'US
MPGM_4
IREQT

*IREQ

*PIA

*IBREQ

‘BINV

o X

*IRDY \

“ERR /

‘PEN

*IBACK

1 OR MORE CYCLES

//
L4

Fy}
”

INSTR N N+1 " N+2

\

DIAGRAM 6
SIP 06 SF 12-17-86

INSTRUCTION READ - BURST-MODE ACCESS SUSPENDED BY MASTER

A-8

SYSCLK
1 OR MORE CYCLES
'yl

01 ADDRESS N + 2

SUP/*US
MPGM0~1

IREQT

ADDRESS N +2

‘IREQ

‘PIA

‘IBREQ

‘BINV

*PEN

“IBACK
\

INSTRUCTION READ - BURST-MODE ACCESS PREEMPTED BY SLAVE

DIAGRAM 7
SIPO7 SF 12-17-86

A-9

.’
SYSCLK

1 OR MORE CYCLES —»je— 1 OR MORE CYCLES

‘PIA

*IBREQ

‘BINV

INSTR N N+1

1031 (

“IRDY
\

“iRR /

‘PEN

*IBACK

\

INSTRUCTION READ - BURST-MODE ACCESS SUSPENDED BY MASTER
AND LATER PREEMPTED BY SLAVE

DIAGRAM 8
SIP 33 SF 12-17-86

SYSCLK
1 ORMORE CYCLES

Apa1

SUP/*US
MPGM 01

IREQT

*IREQ

‘PIA

*IBREQ

*BINV

*PEN

*IBACK

INSTRUCTION READ - BURST-MODE ACCESS CANCELLED BY SLAVE

DIAGRAM 8.5A
SIP36 SF 12-17-86

A-11

SYSCLK

1 OR MORE CYCLES

A

0-31 X ADDRESS M OR N+2

SUP/*US
MPGMO_1

IREQT

ADDRESS MOR N+2

*IREQ

o
~
™~

*‘PIA

*IBREQ

*BINV

l0-31

“IRDY
\

‘l[ERR /

‘PEN

*IBACK
\

INSTRUCTION READ - BURST-MODE ACCESS ENDED BY MASTER
(PREEMPTED, TERMINATED, OR CANCELLED)

DIAGRAM 9
SIPC8 SF 12-17-86

A-12

Ao-31

ADDRESS N

X

SUP/*US

MPGM_; |

ADDRESS N

JREQT &

‘IREQ |

PIA |

‘IBREQ

‘BINV

l0-31

*IRDY

‘IERR

‘PEN

*IBACK

INSTRUCTION READ - TLB MISS OR PROTECTION VIOLATION

DIAGRAM 10
SIP09 SF 12-17-86

A-13

A0—31

ADDRESS N J ADDRESS M

SUP/*US

MPGM, ,

ADDRESS N X ADDRESS M

IREQT

‘IREQ

/

*PIA

\

‘IBREQ

*BINV

lo.a1

‘IRDY

*IERR

‘PEN

INSTR N

*IBACK

DIAGRAM 11A
SIP34 SF 12-17-86

INSTRUCTION READ - PIPELINED ACCESS WITH TLB MISS
OR PROTECTION VIOLATION

A-14

SYSCLK _/_—\—/—\—/—

ADDRESS N

Ag.31

SUP/'US
MPGMg_1
IREQT

ADDRESS N X

‘IREQ

*PIA

‘IBREQ

‘BINV

'0—31

*IRDY

‘IERR

‘PEN

*IBACK

INSTRUCTION READ - ERROR DETECTED BY SLAVE

DIAGRAM 12
SIP10 SF 12-17-86

A-15

SYSCLK _/——_/——\—/—

ADDRESS N

Ap-31

SUP/*US
*LOCK
MPGMo-1

OPT 0-2
DREQT ¢.1

ADDRESS N

RI‘'W

‘DREQ

‘PDA

‘DBREQ

‘BINV

Do.a4

*‘DRDY

‘DERR

‘PEN

‘DBACK

DATA READ - SIMPLE ACCESS

DIAGRAM 13
SIP11 SF 12-17-86

SYSCLK —/—\—/—_—/—

ADDRESS N

Ao-31

SUP/*US
*LOCK
MPGMp-1

OPT0-2
DREQT g.1

ADDRESS N

Rr'W

*‘DREQ

*PDA '

‘DBREQ

*BINV

Do.34

*DRDY

‘DERR

*‘PEN

*DBACK

DATA WRITE - SIMPLE ACCESS

DIAGRAM 14
SIP12 SF 12-17-86

A-17

SYSCLK

e3t |

SUP/*US
‘LOCK
MPGMg_4

OPT ¢.2
DREQT ¢.4

R*W

*‘DREQ

‘PDA

‘DBREQ

‘BINV

Do.a4

‘DRDY

‘DERR

‘PEN

‘DBACK

DIAGRAM 14.1
SIP40 SF 12-17-86

ooR Mo;\:l—/—\J
+—— CYCLES

ADDRESS N

l'
ADDRESS N

1}

DATA READ - SIMPLE ACCESS WITH *"DRDY DELAYED

A-18

SYSCLK

[CYCLES

7=
Aga1 ADDRESS N
SUP/'US
*LOCK 1t
MPGM_¢ ADDRESS N
OPT g.2 1t
DREQT g4

‘DREQ

*PDA

‘DBREQ

‘BINV

Do.ay

‘DRDY

‘DERR

‘PEN

*DBACK

DATA WRITE - SIMPLE ACCESS WITH *DRDY DELAYED

DIAGRAM 14.2
SIP41 SF 12-17-86

A-19

Ao.31

SUP/*US
‘LOCK
MPGMg.1 i

OPT -2
DREQT o-1

R*'W

*‘DREQ |

‘PDA

‘DBREQ

‘BINV

Dg.a1

*DRDY

‘DERR

‘PEN

‘DBACK

DATA READ FOLLOWED BY DATA WRITE - SIMPLE ACCESS

DIAGRAM 15
SIP13 SF 12-17-86

A-20

A0-31

ADDRESS N

ADDRESS N

A

SUP/*US

*LOCK
MPGMg_4
OPT g2

ADDRESS N

ADDRESS N

DREQT .4

R'W

*‘DREQ

‘PDA

*‘DBREQ

‘BINV

DATA N

Doy

*DRDY

‘DERR

‘PEN

*DBACK

DIAGRAM 15.1
SiP46 SF 12-17-86

TEST AND SET INSTRUCTION

A

0t | ADDRESS N x ADDRESS M

SUP/*US
*LOCK
MPGMg.

OPT g2 &
DREQT g-1

ADDRESS N X ADDRESS M

W |

*‘DRE

[\

*PDA |

‘DBREQ

‘BIN

Doar |

‘DRD!

*DERR |

DATA READ - PIPELINED ACCESS

DIAGRAM 16
SIP14 SF 12-17-86

A-22

ADDRESS M

0-31

SUP/*US
*LOCK
MPGMg_4

OPT g.2
DREQT g.4

ADDRESS M

R'W

‘DREQ

“PDA |

‘DBREQ

‘BINV

Do.31

*‘DRDY

‘DERR

‘PEN

‘DBACK

DATA WRITE - PIPELINED ACCESS

DIAGRAM 17
SIP15 SF 12-17-86

A-23

e [\

ADDRESS M

0-31

SUP/*US
‘LOCK
MPGMg_4

OPT g.2
DREQT g.4

ADDRESS M

RI'W

‘DREQ

‘PDA

‘DBREQ |

*BINV

Dg.a

*‘DRDY

‘DERR

‘PEN

‘DBACK

DATA READ FOLLOWED BY DATA WRITE - PIPELINED ACCESS
(NOT USED BY PROCESSOR)

DIAGRAM 18
SIP16 SF 12-17-86

- A-24

X ADDRESS N X " ADDRESS M

X ADDRESS N X ADDRESS M

‘DREQ

‘PDA |

‘DBREQ

‘BINV

DATA

DATA N

Dg.34

‘DRDY

‘DERR

*PEN

*‘DBACK

DATA WRITE FOLLOWED BY DATA READ - PIPELINED ACCESS

DIAGRAM 19
SIP17 SF 12-17-86

A-25

A

0-31

SUP/*US
*LOCK
MPGMg.4

OPT g.2
DREQT ¢-1

R/'W

“DREQ [

‘PDA

*‘DBREQ

‘BINV

DATA N N+1 N+2

Doy

*‘DRDY

*‘DERR

‘PEN

‘DBACK

DATA READ - ESTABLISHING BURST-MODE ACCESS

DIAGRAM 20
SIP18 SF 12-17-86

A-26

A0-31

SUP/*US
*LOCK
MPGMg_4

OPT g2
DREQT g.1

RI*'W

*‘DREQ

‘PDA

*‘DBREQ

‘BINV

Do.39

‘DRDY

‘DERR

*PEN

‘DBACK

DIAGRAM 21
SIP19 SF 12-17-86

ADDRESS N

ADDRESS N

DATA WRITE - ESTABLISHING BURST-MODE ACCESS

A-27

SYSCLK

1 OR MORE CYCLES
rr

A0-31

144
SUP/*'US
*LOCK
MPGM. 1
OPT g2
DREQT g1

R/'W

T
LLS

‘DREQ

'yl
”

*PDA

*‘DBREQ

7L
”

*BINV

DATA N N+1

Dy 3y (

“DRDY
\

‘DERR /

‘PEN

‘DBACK

\

st ¥ &

DATA READ - BURST-MODE ACCESS SUSPENDED BY SI.AVE

DIAGRAM 22
SIP20 SF 12-17-86

A-28

SYSCLK

A0-31

SUP/*US
‘LOCK
MPGMg_4

OPT g.2
DREQT ¢.1

RI‘W

‘DREQ

*PDA

*DBREQ

‘BINV

Do.a

“DRDY
\

0ERR /

‘PEN

“DBACK
\

DIAGRAM 23
SIP21 SF 12-17-86

1 ORMORE CYCLES
12

Iy
L 44

74
”

”
DATA N X N+1 X N+2

DATA WRITE - BURST-MODE ACCESS SUSPENDED BY SLAVE

A-29

SYSCLK

1 OR MORE CYCLES
L

A0-31

SUP/*US
‘LOCK
MPGMg_4

OPTg.2
DREQT g.4

ryl
7

RI'W

14
Li4

*DREQ

14
144

*PDA

*DBREQ / o \

‘BINV

Do.31 (

‘DRDY \

DATA N N+ 1 N+2

DERR /'

‘PEN

*DBACK

\

77

DATA READ - BURST-MODE ACCESS SUSPENDED BY MASTER
(NOT USED BY PROCESSOR)

DIAGRAM 24
SiP22 SF 12-17-86

A-30

SYSCLK

1 OR MORE CYCLES

A0-31

SuUPIUs
*LOCK
MPGMg_4

OPT o.2
DREQT g.1

RI‘'W

‘DREQ

-
>~

*PDA

1/
*DBREQ / \

*BINV

Dga; DATAN X N+1 N+2

“DRDY
\

*DERR /'

‘PEN

“DBACK
\

DATA WRITE - BURST-MODE SUSPENDED BY MASTER
(NOT USED BY PROCESSOR)

DIAGRAM 25
SIP23 SF 12-17-86

A-31

SYSCLK

1 OR MORE CYCLES
ryl

A

0-31 ADDRESS N +2

SUP/*US
‘LOCK
MPGM_4

OPT g2
DREQT g.4

ADDRESS N + 2

RI'W

1/
‘DREQ

‘PDA

‘DBREQ

‘BINV

Do <DATA N

‘DRDY \

N+1

*DERR /'

*PEN

“DBACK
\

DATA READ - BURST-MODE ACCESS PREEMPTED BY SLAVE

DIAGRAM 26
SIP24 SF 12-17-86

A-32

SYSCLK

A0-31

SUP/*US
‘LOCK
MPGMg_4
_ OPTo.2

DREQT g-1

R'W

*‘DREQ

*PDA

‘DBREQ

‘BINV

Do a1

“DRDY
\

‘DERR /

*PEN

“DBACK
\

1 ORMORE CYCLES

ADDRESSN +2

X

ADDRESS N +2

L4

~
>

DATA N N+2

DATA WRITE - BURST-MODE ACCESS PREEMPTED BY SLAVE

DIAGRAM 26.5

SiP25 SF 12-17-86

A-33

i
SYSCLK

1 OR MORE CYCLES—’Q'— 1 OR MORE CYCLES

Js .y

ADDRESSN +2

AO-31

SUP/*US
*LOCK
MPGMg. 4
OPT g.2
DREQT ¢-1

ADDRESSN +2

1} 15

RI'W - 1/ 1/

‘DREQ 1! 114 \

*PDA L4 i LLS

‘DBREQ

‘BINV

DATA N
Do.ay 4

‘DRDY \

0err /'

*PEN

“DBACK
\

DATA READ - BURST-MODE ACCESS SUSPENDED BY MASTER AND LATER
PREEMPTED BY SLAVE (NOT USED BY PROCESSOR)

DIAGRAM 26.6
SIP42 SF 12-17-86

A-34

)
SYSCLK

1 OR MORE CYCLES—»i¢— 1 OR MORE CYCLES

A0-31

SUP/*US
*LOCK
MPGMg_ 1

OPTg-2
DREQT ¢-1

Rr'W

‘DREQ

*PDA

‘DBREQ

‘DBACK

DATA WRITE - BURST-MODE ACCESS SUSPENDED BY MASTER AND LATER
PREEMPTED BY SLAVE (NOT USED BY PROCESSOR)

DIAGRAM 26.7
SIP43 SF 12-17-86

A-35

A

0-31

SUP/*US
“LOCK
MPGMg_4

OPT g.2
DREQT ¢.4

RI‘'W

‘DREQ

‘PDA

*‘DBREQ

‘BINV

Do.31 (DATA N

*DRDY \

0ERR /'

*PEN

“DBACK
\

DATA READ - BURST-MODE ACCESS CANCELLED BY SLAVE

DIAGRAM 27
SIP37 SF 12-17-86

A-36

SYSCLK _/—\—/—___/_

A0-31

SUP/IUS
‘LOCK
MPGMg_4

OPT g2
DREQT ¢-1

R/*'W

‘DREQ

‘PDA

*DBREQ

‘BINV

‘PEN

“DBACK
\

DATA WRITE - BURST-MODE ACCESS CANCELLED BY SLAVE

DIAGRAM 27.5
SIP38 SF 12-17-86

A-37

SYSCLK

1 OR MORE CYCLES

031 ADDRESS M OR N+2

SUP/rUS
‘LOCK
MPGMg_4

OPT g2
DREQT g.1

RI'W : i
71—\
*‘DREQ

‘PDA

ADDRESS MOR N+2

*‘DBREQ

‘BINV

Do.a1 @ATA N N+1

‘DRDY
\

*DERR /

*PEN

“DBACK
\

DATA READ - BURST-MODE ACCESS ENDED BY MASTER
(PREEMPTED, TERMINATED, OR CANCELLED)

DIAGRAM 28
SIP26 SF 12-17-86

A-38

SYSCLK

1 OR MORE CYCLES

031 ADDRESSMORN 42

SUP/*US
*LOCK
MPGM_¢

OPT 9.2

DREQT g.1

RIW /
'/
*DREQ \

‘PDA

‘DBREQ

*BINV

I 1
Dga; DATA N X N+ X DATA M

‘DRDY \

*DERR /

*PEN

“DBACK
\

DATA WRITE - BURST-MODE ACCESS ENDED BY MASTER
(PREEMPTED, TERMINATED, OR CANCELLED)

DIAGRAM 29
SIP27 SF 12-17-86

A-39

SYSCLK —/_—\—_/__—\—_/—

A

031 ADDRESS N

SUP/*US
*LOCK
MPGMg_4

OPT g-2
DREQT ¢.1

ADDRESS N X

R/I'W

*‘DREQ

*PDA |

‘DBREQ

*‘BINV

Dg.ay

‘DRDY

‘DERR

‘PEN

‘DBACK

DATA READ - TLB MISS OR PROTECTION VIOLATION

DIAGRAM 30
SIP28 SF 12-17-86

A-40

SYSCLK _/—_/——\—/_

A

0-31 ADDRESS N

SUP/*US
*LOCK
MPGMg_4

OPT o-2
DREQT g.4

ADDRESS N

RI'W

*‘DREQ

‘PDA

*‘DBREQ

‘BINV

DATA N

Dg.as

‘DRDY

‘DERR

‘PEN

*DBACK |

DATA WRITE - TLB MISS OR PROTECTION VIOLATION

DIAGRAM 31
SIP29 SF 12-17-86

A-41

Ao a1 X ADDRESS M

SUP/*US
‘LOCK
MPGMg_4

OPTq.2
DREQT .1

X ADDRESS M

RI'W

‘DREQ

‘DBREQ

*DBACK

DATA READ - PIPELINED ACCESS WITH TLB MISS OR PROTECTION VIOLATION

DIAGRAM 31.1A
SIP44 SF 12-17-86

A-42

A

SUP/'US
‘LOCK

MPGMg.q Fi

OPT g.2
DREQT g.1

RI'W

‘DREQ |
*PDA |

*DBREQ |

*BINV

Do 3y

*DRDY |

*DER

*DBACK |

oar fi

ADDRESS N

X ADDRESS M

A

ADDRESS N

X ADDRESS M

X

DATA WRITE - PIPELINED ACCESS WITH TLB MISS OR PROTECTION VIOLATION

DIAGRAM 31.2A
SIP45 SF 12-17-86

A-43

SYSCLK

0-31

SUP/*US
‘LOCK
MPGMg_4

OPT g-2
DREQT ¢.1

R/I'W

‘DREQ

*PDA

*‘DBREQ

*BINV

Do-3

‘DRDY

*DERR

*PEN

*‘DBACK

ADDRESS N

A

ADDRESS N

DIAGRAM 32
SIP30 SF 12-17-86

A-44

DATA READ - ERROR DETECTED BY SLAVE

ADDRESS N

Srru

MPGM, ,

ADDRESS N

ITYPE

REQ b

‘IPIP

*IBREQ

*BINV

INSTR N

l0-31

*IRDY

‘IERR

EPIP

*IBACK

INSTRUCTION READ - BURST TRANSFER CYCLE START

SIP32 SF
12-17-86

A-45

SYSCLK _/___\—/—___/_

Agas ADDRESS N

SUP/*US
‘LOCK
MPGMg_4 ADDRESS N

OPT g-2
DREQT g.1

RI‘'W

‘DREQ

‘PDA

‘DBREQ

‘BINV

Do.34

‘DRDY

*‘DERR

‘PEN

‘DBACK

DATA WRITE - ERROR DETECTED BY SLAVE

DIAGRAM 33
SIP31 SF 12-17-86

A-46

Sl A VU A VD W A W W

*BREQ \

"BGRT ' \ | EXTERNAL
L CHANNEL
[PROCESSOR > SHANNEL _

ADDRESS M

| I A

ADDRESS N

 ‘DREQ

‘PDA

‘DBREQ

Do.a

*‘DRDY

‘DERR

*PEN

*DBACK

DIAGRAM 34A CHANNEL TRANSFER FROM PROCESSOR TO EXTERNAL MASTER
SIP35 SF 12-17-86

A-47

e [\ T
*BREQ /

‘BGRT {

\ | PROCESSOR

e EXTERNAL CHANNEL MASTER | l— —

ADDRESS N ADDRESS M

‘DREQ

‘DBREQ

*DRDY

‘DERR

‘DBACK

DIAGRAM 35A CHANNEL TRANSFER FROM EXTERNAL MASTER TO PROCESSCR
§1P33 SF 12-17-86

A-48

APPENDIX B. REGISTER SUMMARY

Absolute GENERAL-PURPOSE
REG # REGISTER
0 Indirect Pointer Access
1 Stack Pointer
2 THRU 63 not implemented
(64 GLOBAL REGISTER 64
65 GLOBAL REGISTER 65
66 GLOBAL REGISTER 66
GLOBAL) °
REGISTERS < e °
o @
126 GLOBAL REGISTER 126
\ 127 GLOBAL REGISTER 127
([128 ~ LOCALREGISTER 125
129 LOCALREGISTER 126
130 LOCALREGISTER 127
131 LOCALREGISTER O 4——|
LOCAL 132 LOCAL REGISTER 1 STACK
REGISTERS ° . P‘f__‘:‘;ER
° °
e °
254 LOCAL REGISTER 123
\ 255 LOCAL REGISTER 124

08996A-Fig-B1

Figure B-1. General-Purpose Register Organization

B-1

Register Absolute
Bank Protect Register- General-Purpose
Register Bit Numbers Registers
0 2thru 15 (unimsﬁanr:gnted)
1 16 thru 31 (unimglinrﬁ;nted)
2 321thru 47 (unimg{aenr:eznted)
3 48thru 63 _ (unimgl:nmk:nted)
4 64 thru 79 Bank 4
5 80 thru 95 Bank 5
6 96 thru 111 Bank 6
7 112 thru 127 Bank 7
8 128 thru 143 Bank 8
9 144 thru 159 Bank 9
10 160 thru 175 Bank 10
11 176 thru 191 Bank 11
12 192 thru 207 Bank 12
13 208 thru 223 Bank 13
14 224 thru 239 ~ Bank 14
15 240 thru 255 Bank 15

08996A-Fig-B2

Figure B-2. Register Bank Organization

B-2

REG #

31 23 15 7 0
rrrrrirvrrirrrrerribd
VAB o|ojojojojojojojojojojojojojojo

Vector Area Base Address
31 23

15 7 0

FTrTrTrrirrrtvrriori
Reserved

Old Processor Status

31 23

$ f £ : $o &+ & o ¢ & ¢
............
A T - - 1

CAITE iTU {LK WMiPI | M iDA
IP TP FZ RE PD SM DI

15 7 0

FrT1rrirrrirrvyrrii
Reserved

Current Prbcessor Status

T : £ : :§ : : § £ : :
H : H H H H H H H : H
s § 0§ 3 8 P 8§ f § 3

CAITE iTU iLK WMiPI i IM iDA
P TP FZ RE PD SM DI

31 23 15 7 0
HERERERE Frirrrrrrrrrrrbernrtei
PRL Reserved
Configuration
e VF {BO: CD
RV cP
31 23 15 7 0

rrrrrrrirrrrrid

rrrrrrrrrirrrrrrred
CHA

Channel Address

31 23

15 7 0

trittirtirrrirrtl

FrTTTrrrrrirtrrerri
CHD

Channel Data

08996A-B3

Figure B-3. Special Purpose Registers (continued)

B-3

REG #

10

11

31 23 15 7 0
Frtrrrryprrernriei T Tt
CNTL CR TR
CE Channel Control LSST rs NN
ML LA TF cv
31 23 15 7 0

Frtyrrrirvinrnha
Reserved

Frrrrrrrrrtrrertriril
B150.-oouoct o-cooBO

Register Bank Protect

31 23 15 7 0
Frreiervryprirrerevrrdrtrrrrrrervrvriietrd
Reserved TCV
Timer Counter
31 23 15 7 0
L rrrrrrrrirrrirrrrrreirrbi
Reserved TRV
Timer f i
Reload ov i E
IN
31 23 15 7 0
rrrrirrrrirrerrrrerrrrtrritirir et
PCO o0
Program Counter 0
31 23 15 7 0
IIIIIIIIIFIIIIIIIIIIIIIIIIIII00
PCH
Program Counter 1 08996A-B3a

Figure B-3. Special Purpose Registers (continued)

B-4

REG #

12

13

14

128

129

130

Indirect Pointer B

31 23 15 7 0
ITTTTTr T TTrTrTrTrrrirrTrrTrTr T T T T T T d
PC2 0j0
Program Counter 2
31 23 15 7 0
ritrrqr1r1irrrrrrrrrrrrievrjpeypretbtronbt
Reserved PS PID
MMU Configuration
31 23 15 7 0
rtrrirr1raryrryrryrtirrrrievrtrrrjprrerni
Reserved LRU 0
LRU Recommendation
31 23 15 7 0
rrerrrirrrrrryrrrirrrrirqyrrrirriro
Reserved IPC 0}o
Indirect Pointer C
- 31 23 15 7 0
FTrrrrriyrrrrrirreytvrrrryrrrTirird
Reserved IPA 0]0
Indirect Pointer A
31 23 15 7 0
Frrrryrrrrrtrir1irirrrryir iy rirrria 0
Reserved IPB 0
08996A-B3b

Figure B-3. Special Purpose Registers (continued)

REG #

31 23 15 » 7 0
131 |||lllllllllllllQllllllllllHﬂI
Q
31 23 15 7 0
TT T T T I T I T T T T I T T T T 1T T I T 1711
132 Reserved FC
ALU Status DFiN o
V Z BP
31 23 15 7 0

133 |ojojojolojo|ojolololofolojolo]ojo|ofolofolojofolojolo [o|o]o|BP

Byte Pointer

31 23 15 7 0
L
134 |ololo|o|olo}ololo|ololo|olo]ojo]o]jololo]olololo]o]o]o FC

Funnel Shift Count

31 23 - 15 7 0
LR
135 Jololo|ololo|ololo}olo]ojolo]olo]ololo]o]olololo CR

)

08996A-Fig-B3c

Load/Store Count Remaining

Figure B-3. Special Purpose Registers:

B-6

37

3J

REG # TLB Set 0
0 TLB Entry Line 0 Word 0
1 TLB Entry Line 0 Word 1
2 TLB Entry Line 1 Word 0
3 TLB Entry Line 1 Word 1
¥ o :
60 TLB Entry Line 30 Word 0
61 TLB Entry Line 30 Word 1
62 TLB Entry Line 31 Word 0
63 TLB Entry Line 31 Word 1
TLB Set 1
64 TLB Entry Line 0 Word 0
65 TLB Entry Line 0 Word 1
66 TLB Entry Line 1 Word 0
67 TLB Entry Line 1 Word 1
£ = :
124 TLB Entry Line 30 Word 0
125 TLB Entry Line 30 Word 1
126 TLB Entry Line 31 Word 0
127 TLB Entry Line 31 Word 1

08996A-Fig-B4

Figure B-4. Translation Look-aside Buffer Registers

15

31 23 7
| BRI L I L R L L L L L L) UL
VTAG TID
Word 0 VE iSWiUR i UE
SR SE UwW
31 : 23 15 7
rrrri1rrrrrrr1ovvirnrrirnrii 1] LI
RPN res res 7
Word 1 PGM Ui
Figure B-5. Translation Look-aside Buffer Entries

B-7

Table B-6. Register Field Summary

Label Field Name Register Bit
BO Bank 0 Protection Bit Register Bank Protect 0
B1 Bank 1 Protection Bit Register Bank Protect 1
B2 Bank 2 Protection Bit Register Bank Protect 2
B3 Bank 3 Protection Bit Register Bank Protect 3
B4 Bank 4 Protection Bit Register Bank Protect 4
BS Bank 5 Protection Bit Register Bank Protect 5
B6 Bank 6 Protection Bit Register Bank Protect 6
B7 Bank 7 Protection Bit Register Bank Protect 7
B8 Bank 8 Protection Bit Register Bank Protect 8
B9 Bank 9 Protection Bit Register Bank Protect 9
B10 Bank 10 Protection Bit Register Bank Protect 10
B11 Bank 11 Protection Bit Register Bank Protect 11
B12 Bank 12 Protection Bit Register Bank Protect 12
B13 Bank 13 Protection Bit Register Bank Protect 13
B14 Bank 14 Protection Bit Register Bank Protect 14
B15 Bank 15 Protection Bit Register Bank Protect 15
BO Byte Order Configuration 2
BP Byte Pointer ALU Status 6-5

Byte Pointer 1-0
C Carny ALU Status 7
CA Coprocessor Active Current Processor Status 15

Old Processor Status 15
Cch Branch Target Cache Disable Configuration 0

CE Coprocessor Enable Channel Control 31
CHA Channel Address Channel Address 31-0
CHD Channel Data Channel Data 31-0
CNTL Control Channel Control 30-24

08996A-Fig-B6

(Table continued)

B-8

Table B-6. Register Field Summary (continued)

Label Field Name Register Bit
cP Coprocessor Present Configuration 1
CR Load/Store Count Remaining Channel Control 23-16

Load/Store Count Remaining| 7-0
cv Contents Valid Channel Control | 0
DA Disable All Interrupts and Traps Current Processor Status 0
Old Processor Status 0
DF Divide Flag ALU Status 11
DI Disable Interrupts Current Processor Status 1
Old Processor Status 1
F Flag TLB Entry Word 1 0
FC Funne! Shift Count ALU Status 4-0
Funnel Shift Count 4-0
Fz Freeze Current Processor Status 10
Old Processor Status 10
IE Interrupt Enable Timer Reload 24
M Interrupt Mask Current Processor Status 3-2
Old Processor Status 3-2
IN Interrupt Timer Reload 25
P Interrupt Pending Current Processor Status 14
Old Processor Status 14
IPA Indirect Pointer A Indirect Pointer A 9-2
IPB Indirect Pointer B Indirect Pointer B 9-2
IPC Indirect Pionter C Indirect Pionter C 9-2
LA Look Active Channel Control 12
LK Lock Current Processor Status 9
Old Processor Status 9

08996A-Fig-86a

(Table continued)

B-9

Table B-6. Register Field Summary (continued)

Label Field Name Register Bit
LRU Least Recently Used Entry LRU Recommendation 6-1
LS Load /Store Channel Control 15
ML Multiple Operation v Channel Control 14
N Negative ALU Status 9
NN Not Needed Channel Control 1
ov Overflow Timer Reload 26
PCO Program Counter 0 Program Counter 0 31-2
PC1 Program Counter 1 Program Counter 1 31-2
PC2 Program Counter 2 Program Counter 2 31-2
PD Physical Addressing/Data Current Processor Status 6

Old Processor Status 6
PGM User Programmable TLB Entry Word 1 7-6
Pl Physical Addressing/Instructions| Current Processor Status 5

Oid Processor Status 5
PID Process Identifier MMU Configuration 7-0
PRL Processor Release Level Configuration 31-24
PS Page Size MMU Configuration 0-8
Q. Quotient/Multiplier Q Register 31-0
RE ROM Enable Current Processor Status 8

Old Processor Status 8
RPN Real Page Number TLB Entry Word 1 31-10
RV ROM Vector Area Configuration 3
SE Supervisor Execute TLB Entry Word 0 11
SM Supervisor Mode Current Processor Status

Old Processor Status 4

08996A-Fig-B6b

(Table continued)

Table B-6. Register Field Summary (contiuned)

Label Field Name Register Bit
SR Supervisor Read TLB Entry Word 0 13
ST Set Channel Control 13
Sw Supervisor Write TLB Entry Word 0 12
TCV Timer Count Value Timer Counter 23-0
TE Trace Enable Current Processor Status 13

Old Processor Status 13
TF Transaction Faulted Channel Control 10
TID Task Identifier TLB Entry Word 0 7-0
TP Trace Pending Current Processor Status 12
Old Processor Status 12
TR Traget Register Channel Control 9-2
TRV Timer Reload Value Timer Reload 23-0
TU Trap Unaligned Access Current Processor Status 11
Old Processor Status 11
u ~ Usage TLB Entry Word 1 1
UE User Execute TLB Entry Word 0 8
UR User Read TLB Entry Word 0 10
uw User Write TLB Entry Word 0 9
v Overflow ALU Status 10
VAB Vector Area Base Vector Area Base Address | 31-16
VE Valid Entry TLB Entry Word 0 14
VF Vector Fetch Configuration 4
VTAG Virtual Tag TLB Entry Word 0 31-15
WM WAIT Mode Current Processor Status 7
Old Processor Status 7
Z Zero ALU Status 8

08996A-Fig-Béc

B-11

IndeX

INDEX

A

A (Absolute) 8-8

A0-A31 (Address Bus) 14, 5-1
access privilege 5-23

access protocol 2-20, 5-9

access types 3-71, 7-23

access, burst-mode 1-4

access, simple 2-21

access, simultaneous 5-21

access, triple-port 1-5

activation record 7-1, 7-2, 7-6, 7-7
activation record mapping 7-4

ADD 7-33

addition, integer 7-9

Address Bus (A0-A31) 14, 5-1
address bus, coprocessor operations 6-9
address bus, shared 2-21

address space, Coprocessor 2-11
address space, Input/Output 2-11
address space, Instruction ROM 2-11
address space, Instruction/Data 2-11
address spaces 3-46

Address Tag 4-8, 4-9

address transfer 2-21

address translation 2-14, 3-67, 3-68, 3-69, 4-18, 7-24
address translation controls 3-66
address translation exceptions 1-7
Address Unit 2-17, 4-12, 4-15, 4-16
address, absolute 4-16

address, physical 2-11

address, PC relative 4-16

address, virtual 2-11

addresses, intermediate 3-45
addresses, pipelined 1-4

addressing 2-11, 3-46

addressing, indirect 7-7

addressing, register 4-13

ADREF Latch 4-15, 4-16

alignment 2-11, 346

alignment, Branch Target Cache 4-10

alignment, bytes 7-17

alignment, half-words 3-50

alignment, instructions 3-51

alignment, words 3-50

ALU (Arithmetic/Logic Unit) 2-17, 4-12, 4-17, 8-6
ALU Status Register 3-8, 3-24, 3-57, 5-28, 7-19, 7-28
Am29000 1-3

Am?29000 features 1-1

Am?29000 special features 1-13

applications 7-1

arbitration 2-21, 5-7, 5-20

arguments, incoming 7-6

arguments, outgoing 7-6

arithmetic instruction traps 7-14

arithmetic operation 8-6

Arithmetic/Logic Unit (ALU) 2-17, 4-12, 4-17, 8-6
AS 3-41

ASEQ 7-16, 7-34

ASLEU instruction 7-7

ASNE 7-13,7-9

assembler syntax 8-5

assert compare 3-30

Assert instructions 3-30, 7-8, 7-9

B

B-Bus 4-15

*BGRT (Bus Grant) 5-1, 5-20

BINV 3-69

*BINV (Bus Invalid) 5-1, 5-20

B0-B15 Register Bank Protect bits (Banks 0-15) 3-16, 3-17
bank protect 3-6

BO (Byte Order) Configuration Reg. 3-13, 3-47, 3-48, 3-49
Boolean 3-30, 7-14

Boolean Compare 3-30

Boolean data 3-40

Boolean FALSE 7-15

Boolean TRUE 7-15

boundary crossings 4-10

BP (Byte Pointer) ALU Status Reg. 3-24

BP (Byte Pointer) Byte Pointer Reg. 3-25

BP 3-49, 8-1

branch displacement, relative 7-15

Branch instructions 3-36, 3-38

branch target 4-15, 4-16

Branch Target Cache 1-5, 2-16, 3-56, 3-58, 4-3, 4-6, 4-16, 7-26, 7-27

-2

Branch Target Cache lookup process 4-8
branch, relative 1-6, 2-5, 4-9, 7-32, 7-33
Branches, immediately adjacent 7-33
Branch Target Cache Disable (CD), Configuration Reg. 3-13, 4-7, 7-26
*BREQ (Bus Request) 5-1, 5-20

Burst 5-10, 5-13

Burst mode 4-16, 5-13, 5-15, 5-16, 5-25
Burst mode access 14, 5-9, 5-13, 5-17, 5-18
burst mode access protocol 2-20

burst mode cancellation 5-19

burst mode preemption 5-19

burst mode termination 5-19

Bus Grant (*BGRT) 5-1, 5-20

Bus Invalid (*BINV) 5-1, 5-20

Bus Request (*BREQ) 5-1, 5-20

bus sharing 5-21

byte addressing 3-47, 3-48, 349

byte alignment 7-17

byte operations 3-39

Byte Pointer Register 3-8, 3-25

Byte Order (BO), Configuration Reg. 3-13
Byte Pointer (BP) ALU Status Reg. 3-24
Byte Pointer (BP), Byte Pointer Reg. 3-25

C

C (Carry) ALU Status Reg. 3-24, 8-1, 8-6

CA (Coprocessor Active) 3-73, 6-5

CA (Coprocessor Active) Current Processor Status Reg. 3-10
CA (Coprocessor Active) Old Processor Status Reg. 3-10
Cache Block 4-9

Cache Disable (CD) 3-13, 4-7, 7-26

Cache replacement, random 4-9

Cache tag 4-7

Cache-block boundary 4-7

CALL 7-32

call, large range 7-15

CALLI7-15

calls, operating system 7-9

Carry (C), ALU Status Reg. 3-24, 7-9, 8-6

CD (Cache Disable) 3-13, 4-7, 7-26

*CDA (Coprocessor Data Accept) 54, 6-8

*CDA sequencing 6-9

CE (Coprocessor Enable) Channel Control Reg. 3-15, 3-41, 6-2
CE/CNTL 8-9

CHA (see Channel Address)

Channel 2-20, 5-6

Channel Address (CHA), Channel Addr. Reg. 3-8, 3-14, 3-45, 3-57, 3-62, 5-28, 7-19, 7-22
channel arbiter, external 2-21

Channel Control 3-57, 3-58, 3-62, 5-28, 7-19, 7-22
Channel Control Register 3-8, 3-15, 3-45

Channel Data (CHD), Channel Data Reg. 3-14, 3-57, 3-62, 5-28, 7-19, 7-22
Channel Data Register 3-8, 3-14

Channel Registers 3-62 ’

character detection 7-17

character-string 7-16, 7-17

CHD (see Channel Data)

clock synchronization 5-33

clock, processor-generated 5-32

clock, system-generated 5-32

clocks 2-22 '

CNTL (Control) Channel Control Reg. 3-15, 3-41
CNTLO-CNTL1 (CPU Control) 3-15, 5-5, 5-24, 5-25, 5-26, 5-27, 5-28, 5-31, 5-32
Compare 3-30

Compare Bytes (CPBYTE) 7-17

Compare instructions 3-32

compiler's run-time stack 1-5

compiler, optimizing1-10

compilers 1-9

complementing a Boolean 7-14

Configuration Register 2-3, 3-8, 3-13, 4-7, 7-26

CONST 7-13, 7-15, 7-32, 7-33, 7-34

Constant 3-33

Constant instructions 3-36

constant, 32-bit 7-15

constant, 8-bit 2-5

CONSTH 7-15

CONSTN 7-15

Contents Valid (CV), Channel Control Reg. 3-15, 3-44, 3-57, 3-58, 7-27
context switching 2-12, 2-13, 7-21, 7-22

context switching, temporary 2-13

contexts, saving and restoring 2-13

Control (CNTL), Channel Control Reg. 3-15

Coprocessor 6-1

Coprocessor Active (CA) 3-10, 6-5

coprocessor attachment 2-22

coprocessor communication 6-8

Coprocessor Data Accept (*CDA) 54, 6-8

Coprocessor Enable (CE), Channel Control Reg. 3-15, 6-2
coprocessor exception 3-53, 6-4, 6-9

Coprocessor exception trap 5-9

coprocessor interrupts 6-5

coprocessor Load/Store 6-2

coprocessor not present trap 3-53

coprocessor operations 6-1

Coprocessor transfer 5-3, 6-1, 6-2, 6-4, 6-6, 6-8

Coprocessor Present (CP), Configuration Reg. 3-13, 6-5

COUNT 8-1

CP (Coprocessor Present) Configuration Reg. 3-13, 6-5

CPBYTE (Compare Bytes) 3-30, 3-39, 7-17

CPEQ 7-13, 7-14

CPLT 7-14

CPNEQ 7-14, 7-32

CPU Control (CNTLO-CNTL1) 5-5, 5-24, 5-25, 5-26, 5-27, 5-28, 5-31, 5-32
CPU Status (STATO-STAT?) 5-5, 5-23, 5-25, 5-26, 5-27, 5-28, 5-31
CR (Load/Store Count Remaining) Channel Control Reg. 3-15

CR (Load/Store Count Remaining) Load/Store Count Remaining Reg. 3-26
CR 3-44

Current Processor Status 2-3

Current Processor Status Register 3-8, 3-10, 7-31

CV (Contents Valid) Channel Control Reg. 3-15, 3-44, 3-57, 3-58, 7-27
cycle time 1-2

CD (Branch Target Cache Disable) Configuration Reg. 3-13

D

DO0-D31 (Data Bus) 1-4, 5-3

DA (Disable All Interrupts) 3-10, 3-52, 3-57, 3-73, 5-30
daisy-chain 2-21

data access 5-8

Data access exception trap 5-9

Data Access request 5-7

data accesses, external 2-10, 2-11, 3-41

Data Address Transfer 5-7

data blocks, movement of large 7-17

Data Burst Acknowledge (*DBACK) 5-4, 5-10, 5-11, 5-16, 5-176, 5-18
Data Burst Request (*DBREQ) 5-4, 5-11, 5-16, 5-17, 5-18 :
Data Bus (D0-D31) 1-4, 5-3 -

data dependencies, pipeline 4-14

Data Error (*DERR) 3-63, 5-3, 5-9, 5-16

data exceptions 3-62

data formats 2-6, 3-39

data forwarding 4-14

data handling 3-39

Data Memory 4-7

Data movement instructions 3-34, 3-35

Data Ready (*DRDY) 5-3, 5-10, 5-12, 5-16

Data Request (*DREQ) 5-3, 5-10, 5-12, 5-19

I-5

Data Request Type (DREQTO0-DREQT1) 5-3, 5-8, 6-6

Data transfer 5-7

data types 2-6, 3-39

data-flow organization 1-7

data-unit numbering conventions 2-10

*DBACK (Data Burst Acknowledge) 5-4, 5-10, 5-11, 5-16, 5-17, 5-18
*DBREQ (Data Burst Request) 5-4, 5-11, 5-16, 5-17, 5-18
de-reference 7-8

Decode PC Register 4-15, 4-16

decode stage 4-1

delay cycle, indirect addressing 7-8

delayed branch 7-32, 7-33

Delayed effects, registers 7-35

demand paging 7-23, 7-25

*DERR (Data Error) 3-63, 5-3, 5-9, 5-16

DEST 8-2

DF (Divide Flag) ALU Status Reg. 3-24

DI (Disable Interrupts) 3-52, 3-57, 3-73, 5-30, 6-6

DI (Disable Interrupts) Current Processor Status Reg. 3-10

DI (Disable Interrupts) Old Processor Status Reg. 3-10

Disable All Interrupts and Traps (DA), Curr. Proc. Status Reg. 3-10
Disable All Interrupts and Traps (DA), Old Proc. Status Reg. 3-10
Disable Interrupts (DI), Current Processor Status Reg. 3-10
Disable Interrupts (DI), Old Processor Status Reg. 3-10

DIV 7-12,7-13

DIV(Q 7-12, 7-13

divide instructions 3-30, 3-59, 7-12

Divide Flag (DF), ALU Status Reg. 3-24 h
DIVL 7-12,7-13

DIVREM 7-12, 7-13, 7-14

double-precision 3-40

*DRDY (Data Ready) 5-3, 5-10, 5-12, 5-16

*DREQ (Data Request) 5-3, 5-10, 5-12, 5-19

DREQTO0-DREQT1 (Data Request Type) 5-3, 5-8, 6-6

DTR 4-13

dynamic-nesting-depth 7-4

E

EMULATE 7-8

Entry Word 3-28

ETR 4-13,4-14

exception reporting 3-62
exceptions, address translation 1-7
execute stage 4-1

Executing mode 2-18, 5-5

Execution Unit 2-15, 2-17, 4-1, 4-12

execution, single cycle 1-13

EXBYTE 3-39

EXHW (Extract Half-Word) 3-40

EXHWS (Extract Half-Word, Sign-extended) 3-40
extended arithmetic 3-59

external access 7-27

external access protection 7-19

external data access 3-40

external hardware support 3-49

external interrupts 5-29

external traps 5-29

EXTERNAL WORD(n] 8-2

EXTRACT 3-32, 7-18

Extract Half-Word (EXHW) 3-40

Extract Half-Word, Sign-extended (EXHWS) 3-40

F

F (Flag) TLB Entry Word 1 3-29, 3-68

FALSE 8-2

fast context switching 7-21, 7-22

FC (Funnel Shift Count) Funnel Shift Count Reg. 3-26, 7-17, 8-2
FC (Funnel Shift Count) ALU Status Reg. 3-24
fetch special instruction 4-16

fetch stage 4-1

Fetch-Ahead Adder 4-10, 4-11

Fetch-Ahead Adder overflow 4-11

fetch-ahead disabling 4-10

Field Shift Unit 2-18, 4-12, 4-17, 4-18

FIFO 4-3

first unmapped location 7-7

Flag (F), TLB Entry Word 1 3-29

floating-point 1-9, 7-14

Floating-Point data 3-40

Floating-Point instructions 3-36, 3-37, 7-8
Floating-Point Standard P754 3-40

Freeze (FZ) 3-56, 3-57, 3-58, 3-73, 4-11, 7-19, 8-6
Freeze (FZ), Current Processor Status Reg. 3-10
Freeze (FZ), Old Processor Status Reg. 3-10
Funnel Shift Count (FC), Funnel Shift Count Reg. 3-26
Funnel Shift Count Register 3-8, 3-26

Funnel-Shift Unit 4-17

Funnel Shift Count (FC), ALU Status Reg. 3-24

FZ (Freeze bit) 3-56, 3-57, 3-58, 3-73, 4-11, 7-19, 8-6
FZ (Freeze) Current Processor Status Reg. 3-10

FZ (Freeze) Old Processor Status Reg. 3-10

G

general-purpose registers 1-4, 2-1, 2-2, 3-2
generator, register address 4-13
global registers 3-3, 3-4, 4-13

H

Half-Word addressing 3-47, 3-48, 3-49
half-word constant 3-33

half-word operations 3-39, 3-40

Halt 5-5

Halt mode 2-19, 5-24, 5-25, 5-28
handler starting address 3-53

hardware development system 2-21, 5-27
hardware testing 5-29

0I16 (16-bit immediate data zero-extended to 32 bits) 8-1

1116 (16-bit immediate data, ones-extended to 32 bits) 8-1
*IBACK (Instruction Burst Acknowledge) 5-3, 5-10, 5-11, 5-14, 5-15, 5-18
*IBREQ (Instruction Burst Request) 5-3, 5-11, 5-14, 5-15, 5-18
I-Bus 4-15 :

10-131 (Instruction Bus) 5-2, 8-9,

116 (16-bit immediate data) 8-2

IE (Interrupt Enable) Timer Reload Reg. 3-18, 7-29

*IERR (Instruction Error) 3-63, 4-4, 5-2, 5-9, 5-14, 5-27

IFP (Instruction Fetch Pointer) 4-3

IFU 4-18 ‘

illegal opcode trap 3-53

IM (Interrupt Mask) Current Processor Status Reg. 3-10

IM (Interrupt Mask) Old Processor Status Reg. 3-10

M 3-52, 3-57, 3-73

immediate move to TLB 3-72

IN (Interrupt) Timer Reload Reg. 3-18, 7-29

in args 7-2

INBYTE 3-39, 3-49

INCLK (Input Clock) 5-6, 5-32, 5-33, 5-35

indirect access 3-6

indirect addressing 7-7, 7-8

indirect addressing delay cycle 7-8

indirect pointers 3-3, 7-7, 7-8, 7-35

Indirect Pointer A (IPA), Indirect Pointer A Reg. 3-8, 3-22
Indirect Pointer B (IPB), Indirect Pointer B Reg. 3-8, 3-23
Indirect Pointer C (IPC), Indirect Pointer C Reg. 3-8, 3-22
INHW (Insert Half-Word) 3-40, 3-49

" initialization 3-72

initialization, timer facility 7-29

Input Clock (INCLK) 5-6

Input/Output access 5-3

Insert Half-Word (INHW) 3-40

instruction access 3-66, 5-7, 5-8

instruction access as data 3-51

Instruction Access Exception 4-4

Instruction Address Transfer 5-7

instruction boundary 2-15

Instruction Burst Acknowledge (*IBACK) 5-3, 5-10, 5-11, 5-14, 5-15, 5-18
Instruction Burst Request (YIBREQ) 5-3, 5-11, 5-14, 5-15, 5-18
Instruction Bus (I10-I31) 1-4, 5-2

instruction description format 8-11 '

Instruction Error (*IERR) 3-63, 4-4, 5-2, 5-9, 5-14, 5-27
instruction exceptions 3-62

Instruction Fetch Pointer (IFP) 4-3, 4-18

Instruction Fetch Unit 2-15, 2-16, 4-1, 4-2

instruction fetch, external 4-10

instruction fetch-ahead 4-10

instruction formats 8-8

instruction overview 2-5

Instruction Prefetch Buffer (IPB) 4-34-16

instruction prefetch stream 4-3

Instruction Ready (*IRDY) 4-4, 5-2, 5-9, 5-10, 5-12, 5-14, 5-15, 5-16, 5-27
Instruction Register (IR) 5-27

Instruction Request (*IREQ) 5-2, 5-10, 5-12, 5-15, 5-19
Instruction Request Type (IREQT) 5-2

instruction ROM 3-47, 5-8

instruction set 2-7, 8-1

Instruction set 3-30

Instruction Transfer 5-7

instruction, listing by operation code 8-127

instruction, special 4-16

instruction-field uses 8-10

Instruction/Data memory 5-8

Instruction/Data memory access 5-3

instructions, Branch 3-36, 3-38

instructions, Compare 3-30, 3-32

instructions, Constant 3-36

instructions, Data Movement 3-34, 3-35

instructions, divide 3-59

instructions, Floating-Point 3-36, 3-37

instructions, integer arithmetic 3-31

instructions, logical 3-33, 3-34

instructions, miscellaneous 3-36, 3-38

instructions, shift 3-34

instructions, three address 2-2

integer addition 7-9

integer arithmetic 3-30, 3-31

integer division 7-12

integer multiplication 7-10

integer subtraction 7-9

interrupt and trap priority, 3-60, 3-61

Interrupt Enable (IE), Timer Reload Reg. 3-18

interrupt exceptions 3-63

interrupt handling 3-55, 7-20

Interrupt Mask (IM), Current Processor Status Reg. 3-10
Interrupt Mask (IM), Old Processor Status Reg. 3-10
interrupt occurrence 3-51

Interrupt Pending (IP), Current Processor Status Reg. 3-10
Interrupt Pending (IP), Old Processor Status Reg. 3-10
interrupt processing, user-defined 2-13

Interrupt Request (*INTRO-INTR3) 3-52, 3-54, 5-5, 5-29, 5-30
interrupt return 5-5, 3-72, 7-21

interrupt sequencing 3-60

interrupt simulation 7-21

interrupt taking 3-51, 3-55

Interrupt (IN), Timer Reload Reg. 3-18, 7-29

interrupt, fast processing 3-58

interrupts 1-8, 2-12, 2-15, 3-51, 3-52, 3-62, 3-63, 5-22, 7-19, 7-28
interrupts, coprocessor 6-5

interrupts, dynamically nested 2-13, 7-20

interrupts, external 5-29

*INTRO-INTR3 (Interrupt Request) 3-52, 3-54, 5-5, 5-29, 5-30
INV 4-6, 7-26

Invalidation 3-70

IP (Interrupt Pending) Current Processor Status Reg. 3-10
IP (Interrupt Pending) Old Processor Status Reg. 3-10

IP 3-73

1-10

IPA (Indirect Pointer A) Indirect Pointer A Reg. 3-22, 4-13, 8-2
IPB (Indirect Pointer B) Indirect Pointer B Reg. 3-23, 8-2

IPB (Instruction Prefetch Buffer) 4-3

IPB 4-13, 5-14

IPB allocated state 4-4

IPB available state 4-4

IPB error state 4-4, 4-5

IPB state transitions 4-4

IPB valid state 4-4

IPC (Indirect Pointer C) Indirect Pointer C Reg. 3-22, 4-13, 8-2
IR (Instruction Register) 5-27, 5-28

*IRDY (Instr. Ready) 4-4, 5-2, 5-9, 5-10, 5-12, 5-14, 5-15, 5-16, 5-27
*IREQ (Instruction Request) 5-2, 5-10, 5-12, 5-15, 5-19
IREQT (Instruction Request Type) 5-2

IRET 3-56, 7-28

IRETINV 3-56, 4-6, 7-26, 7-28

J

IMP 7-33
JMPF 7-13, 7-14, 7-32, 7-34
jump, large range 7-15

L

LA (Lock Active) Channel Control Reg. 3-15

large call range 7-15

large constants 7-15

large data blocks, movement 7-17

large jump range 7-15

Least Recently Used Entry (LRU), LRU Rec. Reg. 3-8, 3-21, 3-70, 7-24, 7-26
LK (Lock) 3-73, 7-29

LK (Lock) Current Processor Status Reg. 3-10

LK (Lock) Old Processor Status Reg, 3-10

LOAD (Load) 343, 7-34 '

Load and Lock (LOADL) 343, 5-22, 7-28

Load and Set (LOADSET) 3-43, 3-71, 7-28

load data, forwarding 1-8

Load Multiple (LOADM) 1-6, 3-43, 3-59, 4-15, 4-16, 5-23, 7-17
load operations 3-43

Load Test Instruction 5-5, 5-24, 5-25, 5-27, 5-28

Load Test Instruction mode 2-19

Load/ Store Count Remaining Register 3-8, 3-26

Load/Store instruction format 3-41

Load/Store instruction format, non-coprocessor 3-41

I-11

Load/Store instruction format 3-41
Load/Store instruction format, non-coprocessor 3-41
Load/Store (LS), Channel Control Reg. 3-15
Load/Store Count Remaining (CR), Channel Cont. Reg. 3-15
Load/Store Count Remaining (CR), Load/Store Cnt Rem. Reg. 3-26
LOADL (Load and Lock) 3-43, 5-22, 7-28
LOADM 1-6, 3-43, 3-59, 4-15, 4-16, 5-23, 7-17
loads and stores 1-6
Loads and Stores, overlapped 7-34
LOADSET (Load and Set) 3-43, 3-71, 7-28
local registers 3-3, 3-5, 4-13, 7-4
local registers, stack pointer 2-2
Lock (*LOCK) 5-1, 5-22
Lock (LK) 7-29
lock output 5-22
Lock (LK), Current Processor Status Reg. 3-10
Lock (LK), Old Processor Status Reg. 3-10
Lock Active (LA), Channel Control Reg. 3-15
-logical instructions 3-33, 3-34
logical operation 8-7
lower bound, Stack Cache 7-7
LRU (Least Recently Used Entry) LRU Rec. Reg. 3-8, 3-21, 3-70, 7-25, 7-26
LS (Load/Store) Channel Control Reg. 3-15

M

M (IMmediate) 8-8

mapping activation record 7-4

master and slave switching 5-34

master/slave checking 5-33

Master/Slave Error (MSERR) 5-6, 5-33

master/slave operation 2-22, 5-34

memory management 1-8, 2-13, 3-64, 7-23

Memory Management Unit 2-15, 2-18

memory protection 7-18, 7-23

memory, critical areas 7-24

merge, byte-aligned 7-17

MFSR 7-11, 7-12, 7-13, 7-14

MFTLB 3-70

MIPs 1-2

miscellaneous instructions 3-36, 3-38

ML (Multiple Operation) Channel Control Reg. 3-185, 3-45, 3-57
'MMU 3-66, 3-67, 4-9, 4-16, 4-18, 4-19, 7-19, 7-23

MMU Configuration Register 3-8, 3-20, 7-35

MMU Programmable (MPGM0-MPGM1) 3-69, 5-2, 5-7

Mode, Executing 5-5

1-12

Mode, Halt 5-5

Mode, Pipeline Hold 5-5

Mode, Step 5-5

Mode, Wait 5-5

Move To Special Register (MTSR) 3-72, 5-28, 7-8, 7-10, 7-11, 7-13, 8 6
monitoring critical areas 7-24

move immediate to TLB 3-72

MPGMO-MPGM1 (MMU Programmable) 3-69, 5-2, 5-7
MSERR (Master/Slave Error) 5-6, 5-33

MTSP 3-7, 7-19

MTSR (Move To Special Register) 3-72, 5-28, 7-8, 7-10, 7-11, 7-13, 8-6
MTTLB 3-70

MUL 7-10, 7-11

MULL 7-11

multi-precision 7-9

multi-processing 7-28

Multiple Access 3-44

multiple masters 2-21, 5-21

Multiple Operation (ML), Channel Control Reg. 3-15
multiple slaves 5-21

multiplication, integer 7-10

MULTIPLY 3-30, 7-8

MULU 7-11, 7-12

N

N (Negative) ALU Status Reg. 3-24, 8-6

NN (Not Needed) Channel Control Reg. 3-15, 3-57, 4-14, 7-27
NO-OP 7-6, 7-16, 7-33

nomenclature §-1

non-sequential fetch 4-9

non-sequential instruction fetch 4-10, 5-5

non-sequential reference 4-3

Normal 5-5

normal execution 5-26

Normal mode 5-24

notation 8-1

Not Needed (NN), Channel Control Reg. 3-15, 3-57, 4-14, 7-27
numbering conventions, data-unit 2-10

O

Old Processor Status Register 2-3, 3-8, 7-22, 7-31
OP (operation code) 8-8
operand checking, run-time 3-31

[-13

operating system calls 7-9

operation code (OP) 8-8

operator symbols 8-3

OPT (Option) 3-41, 3-46, 6-3

OPTO-OPT2 (Option Control) 3-49, 3-50, 5-4, 5-7
Option (OPT) 3-41, 3-46, 6-3

Option Control (OPT0-OPT2) 3-49, 3-50, 5-4, 5-7
OR 7-13, 7-33

organization, Branch Target Cache 4-6
organization, data flow 1-7

out args 7-2

out of range 3-53, 8-7

Out of Range trap 8-7

OV (Overflow) 7-29

OV (Overflow) Timer Reload Reg. 3-18
Overflow (OV) 7-29

overflow, signed 8-7

overflow, unsigned 8-7

Overflow (OV), Timer Reload Reg. 3-18
Overflow (V), ALU Status Reg. 3-24, 7-4, 8-6
overlapped loads 1-6

overlapped store 1-6

P

PA 3-41, 3-66

page change information 7-24

page fault 7-27

Page number, real 3-68

page offset 3-66, 3-69

page reference 7-23

page size 3-67, 3-69

page size, virtual 7-23

paging 7-25, 7-27

Page Size (PS), MMU Conﬁguratlon Reg 3-20

PC (Program Counter) 4-11, 8-2

PC Buffer 4-12

PC MUX 4-11, 4-12

PC-Bus 4-15

PCO (Program Counter 0) Program Counter O Reg. 3-19
PCO-PC2 3-62, 4-11, 4-12, 5-28, 7-19, 7-22

PC1 (Program Counter 1) Program Counter 1 Reg. 3-19, 5-22
PC2 (Program Counter 2) Program Counter 2 Reg. 3-20

PD (Physical Addressing/Data) Current Processor Status Reg. 3-10
PD (Physical Addressing/Data) Old Processor Status Reg. 3-10
PD 3-66, 3-73

1-14

*PDA (Pipelined Data Access) 5-4, 5-10, 5-12

*PEN (Pipeline Enable) 5-2, 5-10, 5-11, 5-12 .

PGM (User Programmable) TLB Entry Word 1 3-29, 3-68, 3-69
Physical Addressing/Data (PD), Curr. Proc. Status Reg. 3-10
Physical Addressing/Data (PD), Old Processor Status Reg. 3-10
Physical Addressing/Instructions (PI), Curr. Proc. Status Reg. 3-10
Physical Addressing/Instructions (PI), Old Proc. Status Reg. 3-10
PI (Physical Addressing/Instructions) Current Proc. Status Reg. 3-10
PI (Physical Addressing/Instructions) Old Proc. Status Reg. 3-10
PI 3-66, 3-73

*PIA (Pipelined Instruction Acknowledge) 5-3, 5-10, 5-12

PID (Process Identifier) MMU Configuration Reg. 3-20, 3-70, 3-71, 7-26
pipeline 1-8, 2-16, 4-1

pipeline data dependencies 4-14

pipeline dependency 4-13

Pipeline Enable (*PEN) 5-2

pipeline features exposed 7-1, 7-32

Pipeline Hold 3-45, 3-72, 4-1, 4-14

Pipeline Hold mode 2-19, 4-19, 5-5

pipeline interlocks 1-13

pipelined access 5-10, 5-9, 5-11

pipelined access protocol 2-20

Pipelined addresses 1-4 ‘

Pipelined Data Access (*PDA) 5-4, 5-10, 5-12

Pipelined Instruction Acknowledge (*PIA) 5-3, 5-10, 5-12

Port A 4-13 '

Port B 4-13

Port C 4-13

prefetching 1-5

primary access 5-10, 5-12

Prioritizer 2-18, 4-12, 4-18

Priority 5-29

priority, interrupts and traps 3-60, 3-61

PRL (Processor Release Level) Configuration Reg. 3-13
procedure calls 7-1

procedure epilogue 7-5, 7-6

procedure linkage 7-5

procedure prologue 7-5

procedure returns 7-1

Process Identifier (PID), MMU Configuration Reg. 3-20, 3-70, 3-71 7-26
processor 5-10

processor cancellation 5-19

processor modes 2-18

processor preemption 5-19

processor reset 5-30 |

processor state 7-22

1-15

processor termination 5-19

processor-generated clock 5-32

Processor Release Level (PRL), Configuration Reg. 3-13
Program Counter (PC) 3-51, 3-58, 3-62, 4-11, 7-22
Program Counter 0 Register (PC0) 3-8, 3-19
Program Counter 1 Register (PC1) 3-8, 3-19
Program Counter 2 Register (PC2) 3-8, 3-20
Program Counter Unit 2-17, 4-12

program modes 2-1

programmer reference 3-1

programming 7-1

programming, Coprocessor 2-14

protected segment 2-2

Protection 3-71

protection bits, supervisor mode 7-18
protection bits, TLB 7-24

protection bits, user mode 7-18

protection checking 4-16

_ protection violation 3-71

Protection Violation Trap 3-31, 7-8

protection violation, TLB 7-18

protection, external access 7-19

protection, memory 7-18

protection, register 7-18

protection, system 7-18

PS (Page Size) MMU Configuration Reg. 3-20

Q
Q (Quotient/Multiplier) Q Register 24, 3-8, 3-23, 3-57, 7-22, 8-2
R

R 3-53

R/*W (Read/Write) 5-1

RA Register 3-43, 8-2, 8-8, 8-9

RB or I 3-43, 8-8, 8-9

RB register 8-2, 8-8, 8-9

RC register 8-2, 8-8

RE (ROM Enable) Current Processor Status Reg. 3-10
RE (ROM Enable) Old Processor Status Reg. 3-10
RE 3-47, 3-66, 3-73

Read-Only Memory 4-7

Read/Write (R/*W) 5-1

Real Page Number (RPN), TLB Entry Word 1 3-29

1-16

recursion 7-2

reference, non-sequential 4-3

register address generator 4-13

register addressing 34, 4-13

register bank protect 3-6, 7-8

Register Bank Protect bits BO-B15 (Banks 0-15) 3-16, 3-17
Register Bank Protect Register 3-8, 3-16
register banks 3-5, 3-6, 7-21

register file 1-4, 2-17, 4-12, 4-13

register file port 4-14

register number 3-4

register protection 7-18

register RA 8-2

register RB 8-2

register RC 8-2

register read-address comparators 4-14
Register, ALU Status 2-4, 3-8, 3-24
Register, Byte Pointer 2-4, 3-8, 3-25
Register, Channel Address 2-3, 3-8, 3-14
Register, Channel Control 2-3, 3-8, 3-15
Register, Channel Data 2-3, 3-8, 3-14
Register, Configuration 2-3, 3-8, 3-13
Register, Current Processor Status 3-8, 3-10
Register, Funnel Shift Count 2-4, 3-8, 3-26
Register, Indirect Pointer A 2-4, 3-8, 3-22
Register, Indirect Pointer B 2-4, 3-8, 3-23
Register, Indirect Pointer C 2-4, 3-8, 3-22
Register, Load/ Store Count Remaining 2-4, 3-8, 3-26
Register, LRU Recommendation 2-4, 3-8, 3-21
Register, MMU Configuration 2-4, 3-8, 3-20
Register, Old Processor Status 3-8

Register, Program Counter 0 2-3, 3-8, 3-19
Register, Program Counter 1 2-4, 3-8, 3-19
Register, Program Counter 2 2-4, 3-8, 3-20
Register, Q 2-4, 3-8, 3-23, 3-57, 7-22, 8-2
Register, Register Bank Protect 2-3, 3-8, 3-16, 3-17
register, special-purpose 3-7

Register, Timer Counter 2-3, 3-8, 3-17
Register, Timer Reload 2-3, 3-8, 3-18
register, TLB 2-5

Register, Vector Area Base Address 3-8, 3-9
register-numbers, absolute 3-45

registers 3-2 ‘

registers, delayed effects 7-35

registers, global 2-2, 3-3, 3-4

registers, local 2-2, 3-3, 3-5

1=-17

registers, local, stack pointer 2-2

registers, protected 3-7, 3-8

registers, special-purpose, protected 2-2

registers, unimplemented 3-6

registers, unprotected 3-8

relational operators 4-17

relative branch 2-5

Reload 3-70

reserved fields 3-7

Reset (*RESET) 4-19, 5-6, 5-25

*RESET (Reset) 4-19, 5-6, 5-25

Reset mode 2-20, 3-73, 5-30, 5-31

resident pages 7-25

restart 7-28

restarting after faulty external access 7-27

ROM 4-7 ‘

ROM Enable (RE), Current Processor Status Reg. 3-10
ROM Enable (RE), Old Processor Status Reg. 3-10
ROM Vector Area (RV), Configuration Reg. 3-13
RPN (Real Page Number) TLB.Entry Word 1 3-29, 3-67, 3-69
Run-time checking 7-8

Run-time Stack 7-1, 7-2, 7-4

RV (ROM Vector Area) Configuration Reg. 3-13, 3-56

S

SA (Set Coprocessor Active) 6-3

SA (Special-Purpose Register number) 8-2

SB 3-41

SE (Supervisor Execute) TLB Entry Word 0 3-28, 3-71
segment, protected 2-2

serialization 3-72

Set (ST), Channel Control Reg. 3-15

Set Coprocessor Active (SA) 6-3

Set Indirect Pointers (SETIP) 7-8

SETIP (Set Indirect Pointers) 7-8

Shift instructions 3-34

shift, byte-aligned 7-17

simple access 5-9, 5-11

simulation, interrupts 7-21

slave cancellation 5-20

slave device 5-10

Slave Mode 5-11

slave preemption 5-20

SM (Supervisor Mode) Current Processor Status Reg. 3-10
SM (Supervisor Mode) Old Processor Status Reg. 3-10

1-18

SM 3-71, 3-73

SORT 7-32

SP (Stack Pointer) 7-7

Space ID 4-6

Space Identification Field 4-7

SPDEST 8-2

SPECIAL 8-2

special-purpose registers 3-7

spurious errors 5-34

SR (Supervisor Read) TLB Entry Word 0 3-28, 3-71
SRCA 8-3

SRCA.BYTEn 8-3

SRCB 8-3

SRCB.BYTEn 8-3

ST (Set) Channel Control Reg. 3-15

Stack Cache 7-3, 7-7

Stack Cache implementation 7-5

Stack Cache, lower bound 7-7

Stack Pointer (SP) 1-13, 2-2, 3-3, 3-5, 4-13, 7-3, 7-7, 7-16, 7-35
Stack Pointer adjustment 7-5

stack, compiler's run-time 1-5

stack, run-time 7-1, 7-2

STATO-STAT?2 (CPU Status) 5-5, 5-23, 5-25, 5-26, 5-27, 5-28, 5-31
status results, arithmetic 8-6

status results, logic 8-6

Step 5-5, 5-28

Step mode 2-19, 5-24, 5-25, 5-26

STORE 3-44

store and lock 3-44, 5-22, 7-29

Store Multiple 1-7, 3-44, 3-59, 4-15, 4-16, 5-23, 7-17
Supervisor Execute (SE), TLBstore operations 3-44
STOREL 3-44, 5-22, 7-29

STOREM 1-7, 3-44, 3-59, 4-15, 4-16

SUB 7-32,7-33

SUBR 7-13, 7-14, 7-33

SUBRC 7-13

subtraction, integer 7-9

SUP/*US (Supervisor/User) 3-1, 5-1,

Supervisor Instruction 4-7

Supervisor mode (SM) 2-1, 3-1, 5-9

Supervisor Read (SR), TLB Entry Word 0 3-28
Supervisor Write (SW), TLB Entry Word 0 3-28
Supervisor-mode access 3-66

Supervisor/User (SUP/*US) 3-1, 5-1

Supervisor Mode (SM), Current Processor Status Reg. 3-10
Supervisor Mode (SM), Old Processor Status Reg. 3-10

1-19

switch task 7-22

symbols 8-1

synchronization, clock 5-33

syntax, assembler 8-5

SYSCLK (System Clock) 5-6, 5-29, 5-32, 5-33, 5-34, 5-35
system diagram 1-3

system interface 2-20

system protection 7-18

system-generated clock 5-32

systems programming 7-18

T

Taking Interrupt or Trap 5-5

target 4-8

TARGET 8-3

target instruction 4-6

Target Register (TR), Channel Control Reg. 3-15

Task ID 3-68

task identifiers 1-8

task switch 7-22

Task Identifier (TID), TLB Entry Word 0 2-14, 3-28

TC (Transfer Control) 6-3

TCV (Timer Count Value) Timer Counter Reg. 3-17, 7-29
TE (Trace Enable) 3-73, 7-31

TE (Trace Enable) Current Processor Status Reg. 3-10

TE (Trace Enable) Old Processor Status Reg. 3-10
temporary variables 7-3

terminology 8-4

*TEST (Test mode) 2-20, 5-6, 5-29, 5-31
Test/Development interface 2-21, 5-23

TF (Transaction Faulted) Channel Control Reg. 3-15

TID (Task Identifier) TLB Entry Word 3-28, 3-66, 3-67, 3-71
Timer Count Value (TCV) Timer Counter Reg. 3-17, 3-18, 7-29
Timer Counter Register 3-8, 3-17, 5-26, 7-30

Timer Facility 2-14, 5-26, 7-29

timer interrupts 7-30

Timer Reload Register 3-8, 3-18, 7-30

Timer Reload Value (TRV) 7-29

TLB (Translation Look-aside Buffer) 1-8, 2-14, 3-64, 3-66, 3-67, 3- 68 4-19
TLB Entry Word 3-27, 3-28, 3-29

TLB line select 3-66

TLB miss 5-14

TLB Miss handling 7-24

TLB organization 3-65

TLB registers 2-5

TLB reload 7-20, 7-24

TLB set 3-27, 3-65

TLB, second-level 7-25

TLB[N] 8-3

TP (Trace Pending) 3-73, 7-31

TP (Trace Pending) Current Processor Status Reg. 3-10

TP (Trace Pending) Old Processor Status Reg. 3-10

TR (Target Register) Channel Control Reg. 3-15, 3-45
Trace Enable (TE) 3-73, 7-31

Trace Facility 2-15, 7-31

Trace Pending (TP) 7-31

Trace Enable (TE), Current Processor Status Reg. 3-10
Trace Enable (TE), Old Processor Status Reg. 3-10

Trace Pending (TP), Current Processor Status Reg. 3-10
Trace Pending (TP), Old Processor Status Reg. 3-10

Trace Trap 7-31

Transaction Faulted (TF), Channel Control Reg. 3-15
Transfer Control (TC) 6-3

transfer, coprocessor 6-1, 6-6

Translation Look-aside Buffer (TLB) 1-8, 2-14, 3-64, 3-66, 3-67, 3-68, 4-19
translation, early address 1-8

translation, instruction address 4-18

translation, Load Multiple address 4-18

translation, Store Multiple address 4-18

translation, visual to physical 1-8

trap handler 3-51, 3-55, 7-24

Trap Request (*TRAPO-TRAP1) 3-52, 3-54, 5-5, 5-30

trap sequencing 3-60

trap taking 3-55

Trap Unaligned Access 3-46, 3-46, 3-50, 3-73
*TRAPO-TRAPI1 (Trap Request) 3-52, 3-54, 5-5, 5-30

traps 1-8, 2-12, 2-15, 3-51, 3-52, 3-62, 3-63, 5-22, 7-19, 7-28
Traps, arithmetic instructions 7-14

traps, external 5-29

Trap Unaligned Access (TU), Current Processor Status Reg. 3-10
Trap Unaligned Access (TU), Old Processor Status Reg. 3-10
Triple-port access 1-5

TRUE 8-3

TRV (Timer Reload Value) Timer Reload Reg. 3-18, 7-29
TU (Trap Unaligned Access) Current Processor Status Reg. 3-10
TU (Trap Unaligned Access) Old Processor Status Reg. 3-10
TU 3-46, 3-50, 3-73

TWIN 8-3

U

U (Usage) TLB Entry Word 1 3-29, 3-68

UA (User Access) 3-41, 6-3

UE (User Execute) TLB Entry Word 0 3-28, 3-71
unaligned access 3-50, 3-53

underflow 7-4

underflow, signed 8-7

underflow, unsigned 8-7

UR (User Read) TLB Entry Word 0 3-28, 3-71
Usage (U), TLB Entry Word 1 3-29, 3-68

User Access (UA) 341, 6-3

User Execute (UE), TLB Entry Word 0 3-28
User Instruction/Data Memory 4-7

User mode 2-1, 3-1

User Read (UR), TLB Entry Word 0 3-28, 3-71
User Write (UW), TLB Entry Word 0 3-28
User-defined 5-7

User-mode access 3-66

User Programmable (PGM), TLB Entry Word 1 3-29, 3-68, 3-69
UW (User Write) TLB Entry Word 0 3-28, 3-71

\'

V (Overflow) ALU Status Reg. 3-24, 8-6

V. PROT 3-68

VAB (Vector Area Base) Vector Area Base Address Reg. 3-9
valid bits, Branch Target Cache 4-7, 4-8

valid instructions in Cache 4-9

valid transitions 5-24

VE (Valid Entry) TLB Entry Word 0 3-28, 3-67, 4-6
Vector Area 1-9, 2-13, 3-53, 7-20

Vector Area Base (VAB), Vector Area Base Address Reg. 3-9
Vector Area Base address 2-3

Vector Area Base Address Register 3-8, 3-9, 3-53, 3-55
Vector Fetch (VF), Configuration Reg. 3-13

vector number 3-53, 3-55, 7-9

vector number assignment 3-53, 3-54

vector table entry 3-53

vectors, table of 2-13

VF (Vector Fetch) Configuration Reg. 3-13, 3-53, 3-55
virtual address 3-68, 3-69, 7-7

virtual address for page sizes 3-66

virtual address space 4-18

Virtual page size 7-23

Virtual Tag (VTAG) 3-28, 3-68

virtual-page boundary 5-19

visual to physical address translation 1-8

VN 8-5, 8-9

VTAG (Virtual Tag) TLB Entry Word 0 3-28, 3-67

w

Wait mode 2-19, 3-52, 3-73, 5-5

WAIT Mode (WM), Current Processor Status Reg. 3-10
WAIT Mode (WM), Old Processor Status Reg. 3-10
warm start 7-25

Warn (*WARN) 3-52, 3-59, 4-19, 5-5, 5-31, 5-32
WARN trap differences 3-59

WM (WAIT Mode) Current Processor Status Reg. 3-10
WM (WAIT Mode) Old Processor Status Reg. 3-10
word constant 3-33

write-back 4-1, 4-14

Z

Z (Zero) ALU Status Reg. 3-24, 8-6
zero (Z) 8-6

©Advanced Micro Devices
Printed in USA

&

ADVANCED
MICRO

DEVICES, INC.

901 Thompson Place
P O. Box 3453
Sunnyvale,
California 94088
(408) 732-2400
TWX: 910-339-9280
TELEX: 34-6306
TOLL FREE

(800) 538-8450

TD-WCT 10 K 2/87
PID 08996A

