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PREFACE 

The Am29000 changes the meaning of "high performance" for 32-bit CMOS Reduced Instruction 
Set Computers (RISCs)! 

First generation RISCs provided performance in the 4 to 5 million instructions per second (MIPS) 
range. But, the first member of the Am29000 family of RISC microprocessors can sustain per­
formance in the 10 to 25 MIPS range! 

The Am29000 brings high performance to a wide range of cost-sensitive applications ranging 
from personal computers and embedded controllers using DRAM or VD RAM (1 Oto 17 MIPS), to 
extremely high-performance engineering workstations and multi-user systems, using cache or 
SAAM (17 to over 25 MIPS). 

The Am29000 family of microprocessors gives the computer-system designer an entire spectrum 
of cost-effective system-performance solutions using a single hardware-software platform. 

The 29000 provides many features for easing the performance burden placed on system 
memory so that slower and lower-cost memory systems can be used at any given level of 
system performance. 

This handbook provides Am29000-memory-system design information and specific examples that 
will be helpful in determining how to design a memory system to give you the best cosVperform­
ance ratio available to fit your Am29000 application. 

Chapters 1, 2 and 3 review: 

• performance of the Am29000 32-bit CMOS microprocessor; 
• memory-system .architectures, key factors and trade-offs; 

implementation details; 
• important memory-design assumptions and introduction to common 

notations and conventions. 

Chapters 4, 5, 6, and 7 provide detailed memory-design examples: 

• high-speed static RAM; 
• medium-speed SAAM; 
• static-column DRAM; 
•video DRAM. 

Chapter 8 provides a comparison of features and performance for each example using 
consistent ground rules. 

Chapter 9 provides simulated performance information for different memory speeds and 
interfaces using the Dhrystone 1.1 benchmark. 

Appendix A covers memory-array loading-delay calculations using transmission-line and 
RLC-circuit analysis. · · 

Appendix B discusses the constraints on a single-cycle memory system with tips on how 
to build one. 
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OVERVIEW 
,., : 

The Am29000 Streamlined .Instruction Processor is the first in a new generation of 
CMOS 32-bit high-performance microprocessors built by Advanced Micro Devices. 
Based .. on Reduced Instruction Set Computer (RISC) architecture principles, it provides 
the following features: · 

• the ability to execute one instruction virtually everf clo'ck cycle;. 

• a· ·sfre~mlin.~d set of instructions, generally less co~plex.than those of prior-genera­
tion processors'so that each instruction.can complete execution in one clock cycle, 
while 'still providir1g support for' all the basic and most frequently needed algorithm 
steps. These simpler instructions serve to b~eak complex algorithms down into a 
series of simple steps that are then exposed to 'powerful optimization techniques 
embodied in the latest generation· of language compilers; 

large on-chip instruction.cache and register set,. so ·that 1accesses to external sys­
. tern memory can be. reduced such that the system can take advantage of the fast 

.!: access speed available with on-chip registers.and cache .. ; 

• :. load-store method of access to external resources that separates internal (register­
to:.register) .instructions and memory~l/O (register-to-external) instructions into 
activities that can often·be executed in parallel; 

• independent instruction and data buses 'that ·provide support for concurrent and 
continuous accesses of external instruction and data memory, so that instruction 
memory can feed the processor's voracious appetite for· a new instruction execution 
in each cycle while the data-memory bus· still provides access to data operands. 

· Through the use of the. above RISC techniques and the latest in advanced high-speed 
CMOS·technology, the Am29000 is: able to sustain' performance of 20 to 25 Million 
Instructions Per Second (MIPS), with a peak pf 30 MIPS, when clocked at 30 MHz. This 
is roughly. equivalent to between 19 and 24 times the performance of a VAX 11/7801

• 

To sustain the above level of performance, the. memory system must be able to supply 
the microprocessor at a rate of almost one instruction every clock cycle. This instruc­
tion;.per~cycle rate combined with the fast cycle time of the Am29000 makes the mem­
orfsysterri architecture a critical element in supporting the overall system performance. 
Indeed .• to maintain performance above 20 MIPS with the Am2900.0 requires very high-
speed memories or caches.. · · · 

·However,· it is equally important to·understand'that the Am2~ooo•can also achieve very 
good performance in the 10 to 17 MIPS range when used in conjunction with inexpen­
sive static-column DRAM or video DRAM, at clock rates from 16 MHz to 25 MHz. DRAM 
systems have a far lower cost per word than static RAM or caches and, when lower 
speed versions of the Am29000 are also used, the system cost can be further de­
creased. Yet in this kind of lower-cost design, the system performance still far exceeds 
that of comparably priced prior-generation microprocessors, and even that of many 
current-generation RISC microprocessors. 
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The Am29000 offers a single hardware platform and an extensive set of software tools 
for use in a wide spectrum of cost-effective, high-performance systems. It, thus, pro­
vides a high performance-to-cost ratio and a clear upgrade path to the best possible 
performance without requiring a change in processor architecture or software. 

Because the Am29000 is designed to minimize internal execution-pipeline latency while 
allowing the memory system as much latency as possible, slower and lower-cost mem­
ory systems can be used.without a crippling loss of system performance. In exchange 
for access latency, the Am29000 demands high information throughput via burst-mode 
memory access. The memory system is expected to sustain a burst-access rate of one 
access per cycle, but the memory is permitted to have some initial access latency to 
begin the burst access. As a result,. low-speed memory systems can use techniques like 
pipelining and bank~interleaving to sustain th.e burst-access rate required by the 
Am29000. In addition, burst.:mode access is intrinsically supported by modern dynamic­
memory devices that have the property of high-speed sequentiafaccess after a slower 
initial random-access time. Examples of these mem'ory devices are: DRAM with page 
mode, nibble mode, static-column mode, or video (serial output).capability. 

The allowance for initial latency is provided via a number of Am29000 features: 

• For instruction accesses, the Am29000 contains an on-chip Branch Target Cache 
(BTC) that provides up to three cycles for· the memory to begin supplying a se­
quential burst of instructions without incurring a performance penalty. 

• For data accesses, the Am29000.can overlap memory loads and stores with 
instruction execution. So, memory latency occurs in parallel with continued in­
struction execution. The programmer or compiler can schedule a memory access 
in (ldvance of when the data is r~quired .. 

• Once data is read from the memory, it is forwarded directly to the execution stage 
for use in the next cycle. This, again, minimizes the internal pipeline latency to 
allow additional.access time in the memory. 

• The large register file (192 registers) of the Am29000 acts as an on-chip stack 
cache to help- reduce the number of off-chip data ac,cesses. · 

• The on-chip Memory Management Unit (MMU) minimizes pipeline latency by 
making translated addresses available to the memory early.in.the cycle following 
execute. Additionally, the MMU simplifies the memory design by performing the 
address-translation task on-chip. · · 

• Finally, the Am29000. uses separate non-;mul~iplexed data arid instruction buses to 
simplify the memory interface and maximize, .the inf~rm~tion transfer rate. 

This handbook shows how to use the Am29000 in a non~cache memory environment 
with standard currently available memory devices. Examples of four specific memory 
systems are shown, each of which.is capable of sustaining single-cycle burst access for 
an Am29000 operating at 25 MHz. 

:. I 
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The memory implementations are: 

• High-speed static RAM; 

• Medium-speed static RAM with interleaved banks; 

• Static-column DRAM with interleaved banks; 

• Video DRAM with interleaved banks. 

Each implementation explains the trade-offs in system memory size, cost, and the 
latency associated with initial access. Additionally, the performance of each implemen­
tation is simulated and described. Block diagrams, timing diagrams, state-machine 
diagrams, PAL equations, and component lists are included. · 

NOTES: 
1. The 20 MIPS of sustained performance is based on a system using two Am29062 

Integrated Cache Units, one each on the instruction and data buses. These cache 
units have an initial access time of two cycles (1 wait state) and single-cycle burst­
access time (zero wait-state burst mode). Benchmark programs run on this model 
include: Dhrystone V2.0, grep, diff, and nroff, all of which meet or exceed the 
sustained-performance quote of 20 MIPS. The 25 MIPS sustained-performance 
quote is based on using separate static RAMs for instructions and data, able to 
support single-cycle (zero wait state) access in both initial and burst modes. Most 
competitive RISC microprocessors claim sustained performance assuming single­
cycle (zero wait state) memory or cache units, although some only state peak 
performance, which for the Am29000 is equal to the 30 MHz clock rate, available 
since June '88. 

2. Warning: These are paper designs; they have not been implemented in hardware. 
The designs are, therefore, subject to the usual number of oversights, mistakes, 
and outright blunders that lie hidden in the depths of any complex and untried plan. 
However, the static-column-DRAM and video-DRAM designs have been function­
ally simulated on an Apollo workstation with Mentor CAD software. Behavioral 
models for memories, PALs, SSI and MSI logic, and the Am29000 were provided 
by Logic Automation. Therefore, to the best of our test vectors, we believe the 
static-column-DRAM and video-DRAM designs work correctly. 
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BASIC ISSUES FOR ALL 
Am29000 MEMORY DESIGNS 

ARCHITECTURE 
·How you organize a memory system for the Am29000 is driven by a number of factors, 
and getting the most outofone feature requires trade-offs in other factors. The follow­
ing discussion. will give you guidelines for'what you need to be concerned about in a 
_memory system. Additionally, this chapter will show you where you can make some 
reasonable compromises in the design to get the best of most worlds. 

Key Memory System Factors Defined 

Access Speed - The whole point of using the Am29000 is to get a three to five times 
improvement in performance over the "other guy's solution". Memory access speed is 
the key element in determining the performance of an Am29000 system. But, there are 
two separate measures of access speed. The balance between them allows the 
Am29000 a wide range of performance-to-cost trade-offs. 

One sp'eed issue is how fast can you get to any random word of memory; this is initial 
access time. The other main issue is how fast can subsequent sequential words of 
mem<?ry be accessed; this is burst access time. 

Initial access time is different from burst access time because: 

• When a new address is supplied by the processor, all bus devices must decode 
the address to determine whether or not to respond. So, an initial access re­
quires some time to decode the address and begin the access of a memory word. 
,But, a burst access is always to the next word in sequence after either an initial 
.access or a previous bur~t access. Therefore, the burst access does not require 
any address decode time; the memory block already knows it is selected and only 
needs to increment the address from the last access. Further, the memory block 
does not need any special logic, i.e., added delay, to deal with the possibility of a 
burst access crossing memory chip or block boundaries because the Am29000 
processor will always supply a new address at every 256-word address 
boundary. 

• In the case of a memory block that recognizes its address, the selected word of 
. memory must be accessed. Some memory devices, like DRAMs, require more 

time to access a random word of memory than to access a sequential word. 
This is generally due to the upper (row) and lower (column) half of the memory 
address being time multiplexed to the DRAM. Therefore, a random-word access 
requires both a row address and a column address to be provided. A burst 
access needs only a new column address, or in some memories, only a signal to 
shift out the next sequential word. Thus, access to a random location (new row 
and column address) takes longer than access to a sequential word. 
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• Also, when a new row is ac~essed, DRAM memories 'require-delay time between 
the end of a previous access and the beginning of the new row access. This time 
is in addition to the delay time associated with transferring the new row address. 
This added delay is called precharge time. Therefore, when a random access 
immediately follows a previous access to the same memory, the new initial 
access incurs the precharge time delay. 

• In a bank"'.interleaved memory system, the first access in a series gains no benefit 
from the overlapping of acc.ess time between memory banks since all the banks 
must g'o through a f_ull bank access time .. be.fore the first (initial) word is available. 
Therefore, the initial acc~ss is always longer than subsequent burst accesses in 
an interleaved· memory architect~re. This is covered.in more detail later. 

Generally, an initial access is slower than. a burst acc~ss due to th.e address decode, 
row-address entry, initial bank access a·nd precharge delays which may be required for 
an initial access but do not apply to a burst access. 

1,, . 

Memory Size ~ In a dedicated controller application, a few kilobytes of code and data 
space may be all you need.- If so, the speed and simplicity 'of memory can be maxi­
mized by using Static RAMs (SAAM). _But, 'if you need a fe'v'.V megabytes to handle an 
engineering workstation task, board space,· power, and cost considerations will usually 
drive out SRAMs in favor of DRAMs. With DRAMs, system speed usually drops a little 
and complexity goes up a little. · · · · · · · 

Board Space - For a given memory size, the required board area for the memory 
varies widely depending on memory density, which is technology r~lated. SRAMs 
provide speed and design simplicity but, they are far less dense than DRAMs and 
consume a good deal of board space. DRAMs pack the needed me~ory size into the 
s~allest board space at the cost of.initial acces·s sp·eed and design complexity. 

Power- Memory speed usually implies high power consumption! SRAMs are gener­
ally used for speed and to get large memory size you use a lot of SRAMs. The result is 
that for a given memory size, SRAMs consume much m.ore power than DRAMs. 

Cost__:_ Money always matters!·Building your entire 8.;Mbyte system memory out of 
20-ns SAAM is generally out of the question unless you've just won the lottery. So, cost 
will generally impact the size, speed, and structure of memory; 

Memory Structure - Cost, power, and board-space considerations favor DRAM 
memory. Speed, and simplicity considerations favor SAAM. Besides the two extremes 

. of using only SAAM or only DRAM, there is also the option of a multi-bank interleave 
access structure. Bank-interleave schemes allow.slower memories to achieve the same 
performance as a single bank of higher speed memory during the critical burst access 
mode. In the case of.SAAM, it means less costly memories can still provide maximum 

·,burst performance;· For DRAMs, it means that these slower memories can still give 
··maximum burst performance. Where maximum speed is required along with large size, 

a compromise structure can be used with a little SAAM and a lot of DRAM. That option 
is called cache memory and, due to its complexity, is best handled as a topic of its own 
in a separate discussion. 
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Complexity - The simplest memory system probably consists of one bank of ROM for 
instructions and one bank of SRAM for data, with each bank capable only of simple 
accesses. That way there is virtually no control logic, no address decode logic, no 
buffers, and no refresh problems to deal with. Of course that structure may not provide 
enough speed, flexibility, or memory size. The other end of the complexity spectrum 
would involve something like dual- or quad-interleave DRAM banks with burst access 
ability. There you get to deal with refresh issues, bank sequencing, address counters, 
and dual porting of the instruction bank for both instruction and data accesses. The 
complexity buys memory size, lower power, and burst access speed at the cost of 
additional control logic and buffering. 

Throughput - The Am29000 is a synchronous machine. The timing of all its actions is 
in relationship to its clock. Information flow to or from the microprocessor must occur in 
units of time that are integer multiples. of the system: clock cycle. That means that if the 
access time of the memory does not fit into a single clock cycle then two cycles will be 
taken. Even if the access time only misses by a few nanoseconds, a whole cycle of 
time is lost. Depending on how often that situation comes up, it can be a better deal to 
slow the system clock down by a few nanoseconds so that most of the memory ac­
cesses can occur in a single cycle. Thus the overall throughput of the system can be 
significantly improved in some cases.by slowing the systemdown. Sometimes the the 
option of slowing down the memory to match a sligh.tly slower system clock can result in 
significant savings in cost and complexity. The only way to know for sure is to simulate 
different speed memory configurations with the Am29000 architectural simulator soft-
ware known as the SIM29K. · 

Bus Structure - The Am29000 has three separate buses: · 
' ' . ' 

• Address Bus, which is shared.between instruction, data, 1/0, and co-processor 
accesses; 

• Instruction Bus, which is used to move instructions from the system memory to 
the processor; · 

• Data Bus, which is used to move data between the processor, system memory, 
1/0 devices, and co-processors via load and store operations. 

Together, these buses and their related control lines are referred to as the channel. 
This channel allows for concurrent access of instructions and data when the instruction 
and/or data memories are accessed via pipeline or burst requests. As shown in 
Figure 2-1, this structure strongly favors' memory systems that have separate memory 
blocks for holding instruction and data so as to allow simultaneous access. 

With regard to the Am2900Q, the data bus is bidirectional, the .address bus is "output 
only", and the instruction bus is "input only''. So, by definitionthe processor cannot write 
information to the instruction bus. Th~refore when separate data and instruction mem­
ory blocks are used with the Am29000, the system design must provide a way to load 
the instruction memory since the processor cannot directly write information into the 
instruction memory via the instruction bus. This issue is covered in more detail later. 
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What's the best memory architecture? Well, it. all depends on your goals for the system 
as a whole. 

• If you are building an embedded controller like a network node processor, digital 
signal processor, or a mainframe-computer 1/0 processor, the main requirement 
is system speed. If the memory requirement is small, up to a megabyte or so, 
then high-speed SRAM works very well. 

For small niemory systems the cost, power consumption, and board space of 
SRAM is reasonable and the speed will be the best possible. Initial access time 
will be one-to-three cycles and burst access speed will be single cycle in a 
25 MHz clock-rate system. Average sustained performance will be in the 16 to 
18 MIPS range. Peak performance can reach 25 MIPS with any memory system, 
but its the sustainable performance that counts. 

Note: performance estimates throughout this document are based on the use of a 
25-MHz system clock frequency. 

• If you are building a mainframe computer or high-performance engineering 
workstation, then system speed and large memory capacity are important. Here, 
a cache memory architecture, such as the one shown in Figure 2-2, provides the 
best possible performance with access to a large main ·memory. 

The cache could be built from SRAMs or with the Am29062 Integrated Cache 
Unit, a single-chip cache controller with an BK-byte internal cache memory. The 
main memory can be built from relatively slow and inexpensive DRAMs that 
provide a main memory as large as needed. The cache memory supports a two-

. cycle initial access and single-cycle burst access. Performance would again be in 
the 16-to-18 MIPS range. 
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Figure 2·2 
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• Use external I-Cache and D-Cache for maximum performance with: 
- Unlimited memory size 
- Common instruction and data space 

Cache Memory for Instructions and Data 

• If system performance and memory size are important, but less important than 
system cost and complexity, there is another architecture with cache-like perform­
ance but at far less cost and complexity. That is a design using Static Column 
DRAM (SCDRAM). 

A SCDRAM memory design using interleaved memory banks has an initial row 
access time of four to six cycles with single-cycle burst accesses. But SCDRAMs 
also provide a very important caching function. The static column capability of 

. the SC DRAM means that once a given row is addressed for the first time, all 
subsequent accesses within that row can be made by simply changing the col­
umn address. Those accesses within the row may be to any random address 
and do not incur the timing overhead of multiplexed row and column addresses. 
Random access within the row can occur in three cycles. Subsequent burst 
accesses are single cycle. 

In effect, the SCDRAM has a built in "cache" with one row of words in it. The time 
to do a complete "cache" reload is the initial row access time of four to six cycles. 

This "cache" is put to best use when memory accesses tend to be sequential and 
localized. When the accesses are sequential the burst mode of access give~ 
excellent performance. Even when the accesses are not sequential, as long as 
the accesses remain local to one row of the memory the initial access time is held 
down to three cycles, which is nearly what would be achieved with fast SRAM. 
Certainly the above access characteristics are typical for instruction memory. 
Also, many programs have data access patterns that would also benefit from the 
improved access speed within ro'-'.\'S. · 

In a dual-bank interleaved SCDRAM memory using sixty-four 1 Mbit by 1-bit 
SCDRAMs, the "cache" size is 2K words (BK bytes) resulting from the two 
banks of memory each with a 1 K-bit row "cache" in each memory. The total 
memory size is 2M words (BM bytes) resulting from the two 1 Mbit by 32-bit 
memory banks. 
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Figure 2·3 · 

The performance of this system would be in the 14 to 16 MIPS range, which is 
amazing system performance while using a relatively simple architecture and low­
cost memories. 

The Am29000's internal Branch Target Cache (BTC), burst-access bus protocols, 
large register file, independent instruction and data buses, and overlapped load 
and store operations are all key features that allow the Am29000 to give premium 
performance with low-cost.DRAM memories. 

• For a simpler, lower-cost, medium-speed application, a Video DRAM (VD RAM) 
memory architecture may be appropriate. VDRAM does not have quite the same 
"caching" ability of the SCDRAM but it does provide dual porting of a large com­
mon memory array. 

One port of the VDRAM is a serial shift register that holds one row of bits from the 
internal DRAM array.· A by-4 organization memory has four shifters. This row is 
shifted out providing consecutive memory words. Just what the instruction bus of 
the Am29000 needs! The other VDRAM port is a bidirectional random-access 
bus that allows read or write operations on any word of the internal DRAM array. 
That is just what the data bus of the Am29000 needs! 

The two ports are controlled by a common address input of the VDRAM. As 
shown in Figure 2-3, that matches nicely with the common address of the 
Am29000. Once the shifter port is loaded with a row of data, the shifter operation 
is independent of the internal DRAM array and the random 1/0 port. This allows 
simultaneous access to both instructions and data by the Am29000. 

So, the VDRAM allows a single bank of fairly dense memory to serve both the 
instruction and data buses of the Am29000 in a very simple and efficient manner. 
The trade-off here is in speed. The initial access time for a VD RAM is four to 
seven .cycles. Its burst access speed for instructions can still be single cycle with 
a 25 MHz shift rate on the serial port. Its burst access speed on the random 1/0 
port is limited by the speed of page-mode access which requires cycling of a 
column address strobe; thus data-burst accesses are three to four cycles each. 
This could be improved by bank interleaving the design. 
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Even with this slower access time the system performance is still in the 
10-to-12 MIPS range. Considering the simplicity and low cost of the design, that 
is a very respectable performance. 

So, whatever the system requirement, the Am29000 has the flexibility to support a wide 
range of cost-performance trade-offs. And, at whatever cost level, the Am29000 will be 
at the top of the performance scale against any other monolithic CMOS 32-bit pro­
cessor. 

Just as a point of reference, both the Motorola 68020 and Intel 80386 are at their maxi­
mum performance (and cost) of about-5 MIPS when using SRAM cache-memory sys­
tems. The Am29000 runs three-to-five times faster in a similar system and, even with 
the simple VDRAM system described above, the Am29000 is double the performance. 

If you think MIPS is not an "apples-to-apples" measure of performance, you're right, so 
go look at Chapters 8 and 9 on benchmark performance. The Am29000 still beats the 
competition by three-to-five times on equivalent benchm.ark programs! 

MEMORY IMPLEMENTATION ISSUES 
Once you get past the big decision of what the overall. architecture will be, you come 
upon the details. This section discusses several implementation details that are com­
mon to nearly all the memory archi.tectures discussed. Thus, each memory design will 
have to cope with the issues discussed in the following paragraphs. 

Address-Space and Address-Block Decoding 
The Am29000 distinguishes between multiple address spaces for any given address 
val.ue. So, in most designs, an instruction/data memory should not respond to instruc­
tion ROM address space and vice versa. Similarly, data memories should not respond 
to 1/0 or coprocessor address space. 

Also, there may be multiple blocks of physical memory in any one address space. 
Therefore, most memory interfaces will include some degree of block address decoding. 

System Access to Instruction RAM Memories 
As noted earlier, the Am29000 makes best use of memory systems that contain sepa­
rate instruction and data memories for simultaneous access to instructions and data. In 
a memory system with separate instruction and data-memory blocks, the data-memory 
block is straightforward. The memory-data 1/0 pins are simply connected to the 
Am29000 data bus. All reading and writing of the data memory is done via the data 
bus. Access to the data memory can thus be by either the processor or any other bus 
master. · 

In the case of the instruction memory block there is an added twist. With respect to the 
Am29000, the instruction bus is used only for instruction input (fetching) by the proces­
sor. The processor thus cannot drive the instruction bus. Therefore the instruction 
memory cannot be directly loaded (written) with information by the processor via the 
instruction bus in a manner analogous to the way data memory is loaded via the data 
bus. 
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·. Why is the instruction bus only used for input by the processor? 

• In virtually all systems the instruction memory spends the vast majority of its time 
being read each cycle to fetch instructions for the processor. Very little of the 
instruction memory bandwidth is needed to load the instruction memory with new 
instruction information. In fact, many. types of systems only need to load the 
instruction memory during the power-up sequence. And, some store instructions 
in PROM so the processor never writes instruction words. · 

• · Not putting output drivers on the instruction bus saves silicon area for more 
valuable_ function~ and simplifies certain electrical design issues for the pro­
cessor. 

• There are other ways for the system design to provide more efficient means to 
load and pertorm diagnostics on the instruction memory. 

Here are some 'of the ways to provide system access 'to the instruction memory: 

• The. instruction memory may have some additional buffering and control logic so 
that the memory can read information onto either the instruction or data bus. 
Also, the data input of the instruction memory would be connected to the 
Am29000 data bus. This configuration would allow the instruction memory to be 
both read and written ·via the data bus by either the Am29000 or another bus 
master. 

• A OMA controller with acces·s to both the instruction an·d data buses could be 
used to request the. chanriel from the processor and then access the instruction 
memory via the instruction bus, in which case, the instruction memory block 
would be exactly like the data-memory block. The system restriction would be 
that the Direct Memory Access (OMA) controller would be the pnly means of 
writing information into the instruction memory. . . ·, ' ;• 

• Dual-port memory such as a VDRAM could be used to ·build the instruction 
memory. One port, the video shifter port, of the ·memory would provide read 
access for the instruction bus and the other port would provide read and write 
access via the data bus. · · · ·· · 

This scheme has an additional benefit: the VDRAMs simplify the whole memory 
structure. Since the two ports share access to the same internal memory array, 
there need be rio internal distinction betWeen'instruction and data information. 
The VD RAMs can thus be used to serve as both instruction and data memory 
within a single device. As shown in Figure 2-3, VDRAMs thereby support both 
the simultaneous access of instruction·and data'from a common memory array, 

·and a data:bus access path·to instru.ction memory. 

Simple Dual-Bus-Port Instruction Memory . 
The first method above would implement a simple dual-port access scheme for the 
instruction memory via buffers and arbitration logic. The arbitration logic is needed 
because this multi-port structure for an instruction memory creates a problem for the 
memory interface logic. That is, whenever instruction and data accesses are addressed 
to the same block of instruction RAM, the data accesses will contend with instruction 
accesses. The memory interface logic must, therefore, arbitrate access to the memory. 
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This situation can occur when either the 29000 processor or a OMA device in the sys­
tem accesses the instruction RAM via the data bus. In each case, the interface logic is 
faced with a slightly different set of conditions as outlined below. 

• If the 29000 processor is performing the data access, there can be a conflict with 
the processor's own instruction fetching activity. In this case, the data access is 
the result of instruction execution and in order for program execution to continue 
the data access must eventually complete. The data access request can occur 
during a burst-instruction fetch or an instruction fetch can occur during the data 
access if the data access is a burst request. If at the time the data access starts, 
the processor is in the middle of an instruction burst access, it is necessary to 
preempt the instruction access in order to complete the data access. If an in­
struction fetch begins during a data burst request, the instruction fetch must be 
held off until the data access is completed. 

• In the case of a OMA device access, the processor will release the bus to the 
control of the OMA device so it is not possible for the processor to start an in­
struction fetch during burst-data accesses .. But, it is still possible that the OMA 
access will begin during an already established (but suspended) instruction-burst 
request. Here again, the memory must be able to preempt the instruction-burst 
request and proceed with the data access. 

Instruction Bus OMA 
The second method outlined above requires hardware outside of the memory system. 
All access to the instruction memory is done for the processor by a Direct Memory 
Access (OMA) controller, specifically one that can access both the instruction and data 
buses. A OMA controller with this capability can request the processor to give up all the 
buse.s (address, data, and instruction) so that the controller has complete access to all 
memory and 1/0 devices. · 

Once the controller owns the buses, there is no rule that prevents it from both reading 
and writing information in the instruction memory via the instruction bus. The processor 
lacks this capability because it was never designed to drive the instruction bus. But, as 
1,ong as the. instruction memory can handle it, there is no problem with a OMA controller 
doing it. By having access to both the instruction and data buses, the OMA controller 
can transfer information between 1/0 devices, instruction memory, data memory, and 
ROM memory.. . 

In fact, if it can be assumed that the OMA controller will move all the information to and 
from· the insfruction memory (including the performance of memory diagnostics), there is 
no reason for the instruction memory to have a second port for access to the data bus. 
In this case, the control logic and buffering of the instruction me.mqry can be very 
simple, in fact, identical to that of the data memory. · 

True Dual-Port Instruction Memory 
True dual.-port memory used by the third approach noted above, provides not only dual­
bu.s access but also includes built-in structures that allow simultaneous access to the 
. memory array from both the instruction and data buses; VO RAM is one very elegant 
and economical means to provide this type of memory: There are of course other true 
dual-port memories or dual-access memory controllers. 
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Memory Control Signals and Protocol · 

The Plpellne Enable Signal 
A casual review of the Am29000 bus control lines will show that there are separate but 
equivalent Request and Response control line sets for instruction and data accesses. 
The exception to this rule is t!le·Pipeline Enable (PEN) signal. This response signal 
·must be shared between all instruction and data accesses. Therefore it is important to 
note that the only device thafshould drive the PEN signal, in a given cycle, is a device 
being selected by a valid address on the address bus (selected during a primary ac-

. cess). The PEN signal should be tied high (or low) only when all bus devices will (or will 
not) handle 'pipelined acc~sses. · ' · ., 

Request and Burst. Acknowledge Slgnais 
When a sequence of consecutive instruction or data words needs to be accessed by the 
Am29000, a burst access is requested via the Instruction Burst Request (IBREQ) or 
Data Burst Request (DBREQ) signals. The initial address of this burst access is an­
nounced by the respective Instruction Request (IREQ) or Data Request (DREQ) signal 

· going active. While. either IREQ or DREQ is active, the address bus has a valid address 
· for the access. · · · · · 

The burst request is ac.cepted and a burst tran.sfer is established when the addressed 
memory responds with the Instruction Burst Acknowledge (IBACK) or Data Burst Ac­
knowledge (DBACK). In the.cycle following the assertion of the Burst Acknowledge 

·signal, the Am29000 will de-ass'ert the (IREQ o{ DREQ) signals and remove the initial 
., address of the burst access. This frees the address bus for use in other bus accesses. 

The point being emphasized here Is that a Burst Acknowledge signal is the cause tot a 
Request signal and its associated address to g'o invalid immediately after a burst trans-
fer is established. · 

This ·distinction is imp6rtarit to understand when implementing a burst memory. It is a 
common error for a memory designer to assume that the initial access IREQ or DREQ 

·signal and·the initiaJburst addresswill remain active and valid until the first Instruction 
Heady (IRDY) or ~ata .Ready (DROY) response is given by the memory. 

A key example that points out the importance of having· the correct understanding is the 
following situation: a burst access is suspended or ended by the processor. Note the 
memory has no way to tell the difference between suspension or completion of a burst 
access. A riew burst access ~f the same type (instruction or data) as the previous one 
·is started by the processor. · · · · · 

·In this situation,. the merr1ory is waiting for a'res.umption of the firs·t burst access. While 
waiting, the memory holds either the IBACK or DBACK signal active~ Therefore, when 
the new burst access begins, the memory Burst Acknowledge signal (IBACK or DBACK) 
will be active during the initial address cycle of the new burst access. This establishes 

. ; the new. burst access and the processor will"remove its Request signal (IREQ or DREQ) 
· and initial address ffom the bus in the· following cycle. That means that the Request 
·signal and address are valid for only one cycle. The memory thus must be able to 
·capture·the new address and initiate a' new burst access·sequence at the end of the first 
(and only) cycle in which the new burst access appears on the proce'ssor bus. 
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In this situation, the memory control logic does not have any way of making the proces­
sor hold the new address.and control information valid for more than the first cycle of 
the new burst access. The memory control logic must be designed to "switch gears" in 
less than a cycle. The logic must go from ''waiti11g for a burst access to resume" to 
"starting a new burst access" in one cycle. 

As noted above it is a common error for a memory designer to think the memory could 
.use the lack of a Ready response to hold, off the beginning of the.ryew burst access for a 
cycle or two so that the memory control logic would have time to get its state machine 

. turned around. Wrong! · · 

Of course, one way to avoid the aboye problem is to make the IBACK or DBACK signals 
combinatorial and dependent on the inactive state of the Memory Request signals 
during the burst phase of a memory access. This causes the IBACK or DBACK signal 
to go inactive during the first cycle of a new access when the related Memory Request 
(IREQ or DREQ) goes active. This, in turn, holds the address on the bus longer and 
may eliminate the need for address registers. · 

Although, in general, for better overall systef'11 perfor.mance, each memory system 
should be designed to capture a new address in the minimum time possible so that the 
address bus can be released for use in a another access. 

Burst Preemption - The Last Word 
A burst access is preempted.by de-asserting the IBACK or DBACK signal. If the related 
burst request signal (IBREQ orDBREQ) was active in.the cyclebefore Burst Acknowl­
edge (IBACK or DBACK) was de-asserted, one last word of information must be trans­
ferred bef9re the burst access is ended. That word can be transferred in the same 
cycle that burst acknowledge is de-asserted or in some later cycle but, until it is trans­
ferred the burst .access is not complete and no ne~ access of t~e memory may begin. 

Burst Access Reactivation 
When a burst access is suspended (IBREQ or DBREQ made inactive by the processor) 

. , and the access later resumed, it is a requirement of the bus protocol that Memory 
Ready signal (fRDY or DROY) may not be active in the same cycle that Burst Request 
(IBREQ or DBREQ) is first reasserted. Therefore memory interfaces must de-assert the 
Ready signal when a burst access is suspended. 

Memory Response Control Signals _ 
The IRDY and DROY, the Instruction Error (IERR) and Data Error (DERR), the PEN, 
and the IBACK and DBACK signals .from the memory interface to the processor are 
critical indicators that must be in a valid state at the end of each clock cycle. In systems 
with multiple memory control interfaces, each interface must be able to drive these 
response control. signals. Only one memory interface can actively drive these signals in 
each clock cycle. As.different memory interfaces are addressed by the processor, the 
control over these signals must pass from interface to interface. This transfer of control 
must be accomplished within a single cycle to ensure that the lines are valid on each 
cycle. 

;At a 25 MHz cycle rate, it is nearly impossible_ to implement the transfer of control by 
selectively driving the control lines via 3-state buffers as is commonly done in slower 
memory systems. Wire ORing with open-collector drivers is also impractical. 
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The solution is to logically OR the respective ·control lines from each memory interface 
via an SSI logic gate such as a NOR or AND gate. Where there.are several memory 
interfaces to be logically ORed, a PAL such as the AmPAL 16L8 may be used in the 
place of SSI logic gates. 

Write Enable of Memories 
For memories that are able to perform data-write operations in a single clock cycle, e.g., 
CMOS static RAMs, the Write Enable (WE) signal to these memories must be a pulse 
that occurs during the latter half of the write cycle. The Am29000 has a data hold time 
of 4 to 20 ns after the rising edge of System Clock (SYSCLK). If the memory being 
used has a non-zero data-input hold time relative to the active edge of WE, then that 
edge must occur early enough for the Am29000 to satisfy the memory-data-input hold 
time. 

For most single-cycle memories, this situation implies that SYSCLK is a convenient 
signal to use as a WE qualifying signal to ensure that WE ends at the rising edge of 
SYSCLK. The delay of the final write-enable logic gate can then be masked by the 
propagation delay of a buffer on the data lines so that the WE signal, at the memory, 
ends at or before the time data goes invalid. · 

Byte and Half-Word Accesses 
The Am29000 implements full-word read and write operations on word-address bounda­
ries directly in hardware. Access to a specific byte within a word is provided by instruc­
tions for byte extract or insert operations on internal registers. Similarly, access to a 
half-word located on a half-word address boundary is done via half-word extract or 
insert instructions. These instructions can be used to manipulate a byte or half-word of 
interest, with actual memory access occurring via full-word loads and stores. 

Word and half-word accesses that are not aligned on respective word or half-word 
address boundaries can be accomplished via software trap routines executed when a 
non-aligned access is attempted. 

This software approach to' byte, half-word, and unaligned accesses provides a general­
purpose mechanism for manipulating external byte and half-word quantities, without the 
requirement for special support hardware~ In most cases, this approach produces an 
overall performance gain by allowing a shorter system cycle time. The shorter cycle 
time results from the elimination of any requirement for masking, alignment and control 
hardware in the critial memory-access path. 

In cases where it is desired to improve the performance of byte and half-word access 
via external alignment and control logic, the Am29000 provides a means of controlling 
the external hardware. Three of the code values on the Option (OPT)0-2 lines are set 
aside by convention to indicate word,· half-word, and byte accesses. These codes can 
control the alignment and masking of data on load operations and the selection of byte 
WE signals during store operations (the encoding of OPT bits is shown in the Am 29000 
Users Manual, Chapter 3). 

The decision to add external hardware should be carefully considered to insure that the 
performance advantage for the byte and half-word accesses justifies the hardware and 
performance costs. 
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Compared to.the basic processor mechanism for byte and half-word accesses de­
scribed above, external.hardware can reduce the time for byte and half-word loads by 
zero to 12 or more cycles. In the case of a simple (address boundary aligned) byte or 
half-word load, there could be zero cycles saved if the added delay of the external 
hardware increases the memory access path delay to the point that a memory wait state 
must be added. In the case of an unaligned access, the software approach using a trap 
routine could incur 12 or more cycles of. overhead in the trap .execution. 

The improvement for byte and half-word stores is more significant, since external hard­
ware can eliminate the extra load (for a load-modify-store sequence) required by the 
basic processor mechanism. 

So, to determine performance and cost effects ot' external byte and half-word support 
hardware, the system designer must weigh the cost against the following performance 
factors for software-vs-hardware approaches: 

• Percentage of simple byte and half-word accesses 

• · Percentage of unaligned accesses . 

• Performance penalty of hardware in added wait-states multiplied by the number 
of affected accesses; or performance penalty of hardware in added system cycle 
time multiplied by the number of cycles executed 

• Performance penalty of software overhead from byte and half-word insert and 
extract instructions or overhead in trap routine execution, multiplied by the num­
ber of accesses 

If external hardware is used in combination with the OPT0-2 lines, it is very important 
that the already defined code conventions be followed. Failure to do so will make the 

. non-standard system implementation incompatible with every compiler known to be 
under development for use with the Ari129000. All Am29000 compilers can generate 
the already defined OPT0-2 codes for use in byte and half-word accesses. 

The Late-Late Show Signals 
Three memory control signals from the Am29000 arrive rather late in each clock cycle 
and require some special handling. The signals are IBREQ, DBREQ and Buslnvalid 
(BINV). . . 

The first two will, in the worst case, be valid 14 ns after the falling edge of SYSCLK. 
The falling edge of SYSCLK is defined as occuring at.1/2T ns ± 1 ns into the clock 
cycle, where T is the total clock-cycle length. That means, in a 40 ns clock cycle, the 
falling edge of SYSCLK, at worst, occurs 21 ns into the cycle·. Therefore IBREQ and 
DBREQ are valid by 35 ns into the cycle. That leaves a thin 5 ns worth of set-up time 
for any logic that needs to use those signals. Any good design engineer can subtract 
another nanosecond or so to account for some clock skew in the system wiring. So that 

··leaves a mere 4 ns of set-up time.· So, the most you can hope to do with these signals 
is to capture their state in a very fast register. 
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The timing for BINV signal is a bit more leisurely. The BINV signal is valid 7 ns after the 
falling edge of SYSCLK, which puts it at 28 ns into the clock cycle. That leaves 12 to 11 
ns for set-up time. 'This is a little better but still, in most cases, this signal is also simply 
registered and used in the following cycle. 

Bus Invalid!? Now What? 
First, a little discussion on just what the BINV signal is all about. 

• BINV is involved in the transfer of channel ownership. It goes active during the 
cycle when the Am29000 releases control of all buses and control lines to another 
channel master that has requested ·the channel. It also goes active during the 
cycle that the Am29000 retakes control over the channel being returned to the 
proce~sor by another channel master .. 

During the cycles thatBINV is active in this situation, all the channel lines are in a 
state of transition. One channel master is putting its drivers into a high-imped­
ance state and the other has yet to begin actively driving the channel. Therefore 
there is no guarantee as to what the logic levels on the channel might be and all 
control lines and bus lines should simply be ignored while BINV is active. 

• BINV is also used in several situations where the processor has made a Request 
signal and an address active on the channel but, late in the cycle, the processor 
recognizes that the Request is incorrect or not necessary. 

In these situations the meaning of BINV is only defined as applying to the access 
being started. ·Any burst or pipelined access, already in progress, in the unaf­
fected portion of the channel is considered able to continue during the BINV 
cycle. 

One such situation is when a Memory Management Unit (MMU)-translated ad­
dress is placed on the address bus to begin a new access and the processor 
recognizes that the address is actually invalid due to a protection violation in the 
Translation Look-Aside Buffer. The new address is effectively cancelled by BINV 
going active late in the cycle. 

· Another situation involves the cancelling of an -access because the processor 
identifies it as no longer needed. This can occur when a jump instruction is im­
mediately followed by another jump. The second jump instruction eliminates the 
need for any instruction that would have followed the first jump. This recognition 
causes the processor to cancel the memory access for instructions following the 
firstjump via BINV going active; 

I • 

Again, in these situations BINV is only defined to disrupt the access being started 
in the cycle that it is active. An access on the alternate bus continues even 
though BINV is active. 

Although there are these situations in which an active BINV applies to only part of the 
channel activity, it is recommended that BINV always be used to ignore any bus control 
or data signal during the cycle BINV is active. 
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From the viewpoint of a memory system it is difficult to separate the channel ownership 
transfer situation from the other situations in which the BINV signal goes active. Thus it 
requires significant extra logic to properly ignore only some signal activity on the chan­
nel. when BINV is active. 

The logic to properly do this must monitor the BREQ, Bus Grant (BGRT), IREQ, DREQ, 
and BINV signals. The logic would follow a sequence like that below. 

When BGRT first goes active, it indicates a transfer of channel ownership from the 
processor to another channel master. The first contiguous set of BINV active cycles to 
follow BGRT going active identifies a period when all channel signals should be ignored. 
When BINV goes inactive at the end of ttie channel~transfer sequence, there begins a 
period during which any further assertions of the BINV signal indicates that only the 
access request being initiated with BINV asserted needs to be ignored. The above 
period ends when BREQ first goes inactive, which indicates the return of control over 
the channel back to the processor. The first contiguous set of BINV active cycles to 
.follow, BREQ going inactive identifies another period during which all channel signals 
should be ignored. Following this period, any future assertions of BINV apply only to 
the request being started in conjuction with BINV going active, until BGRT again goes 
acti~e to start the above cycle over again. · 

, All the above just gets more complicated if there is more than one other channel master 
in the system which could pass control of the channel on to yet another channel master 
without first returning control to the processor. In this case BINV recognition logic would 
have to keep track of all channel master BREQ and BGRT lines. 

Now, for all that effort, the savings would be one extra cycle of information transfer on 
an unaffected bus for each cycle BINV is asserted, if the unaffected bus is in fact ready 
to transfer information during the cycle. This. savings would ocqur less than 0.01 % of 
the time .. · · · 

Therefore it is best to simply define BINV as a signal that defines an idle cycle for the 
entire channel. Design the memory.system so that no action (change of state) occurs 
as a result of any.signal on the channel when BINV is active. 

Memory Error Signals 
The Am29000 has error inputs (IERR, DERR) for both instruction and data bus ac­
cesses. These signals are only monitored by the Am29000 when an instruction or data 
access is pending. Therefore, it is required that if an error condition such as a parity 

·error is to be reported, the appropriate error signal must be driven active at or before the 
time when the memory Ready (IRDY, DROY) signals would normally go active. In some 
cases this may require that the access time of the memory be increased to allow time 
for error-det~ction logic to check the validity of data. 

An alternative to requiring memory error signals to be valid with or before memory ready 
signals would be to use the WARN, TRAPO, TRAP1, or INTRO-INTR3 signals in a 
subsequent cycle to abort the affected process. Another alternative to extending the 
memory cycle time, to allow time for Error Detection or Correction (EDC), is to add a 
pipeline stage to the memory access path. This would provide an entire cycle time to 
perform an EDC function, while increasing only the initial access time by one cycle. 
Subsequent burst accesses could continue to be single cycle. 
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Invalid Address Situation 
If no valid bus device is addressed by a bus-access attempt,· no ready response will 
ever be provided. This would cause a bus master to hang-up forever waiting for some 
response. It is therefore advisable to have some kind of timeout mechanism for bus 
accesses. If an invalid address is accessed by mistake the timeout .mechanism can end 
th9 access with· an error response. · · · ·· 

Address and Control Driver Issues 
- In the' high speed memor}t designs for the Am29000 the emphasis is on using the 

slowest memory possible while still achieving the necessary speed. This means that 
control logic and signal drivers must be the fastest available. That means that D-speed 
(10 ns) PALs are recommened for control logic devices and that these devices directly 
drive address lines and control lines of the memori'es. · · 

Directly driving the memories eliminates the added delay of separate buffers often used 
to drive memory-array signals. But, PAL devices generally have worst-case delay times 
specified when driving only 50 pF load capacitance.· Often a memory array will have 
32 or more memory devices, each with an input capacitance of 5 pF to 1 O pF. In addi­
tion, typical strip-line PC board traces will add an additional 20 pF of capacitance and 
100 to 200 nH of inductance per foot of trace length.· Such a me.iTiory array can easily 
represent an inductive and capacitive load with 180 pF to ~ 340 pF of capacitance and 
~ 100 nH of inductance. It is therefore required that the worst-case delay times for the 
affected PAL.outp,uts be increased to account for the added load. 

Appendix A provides an analysis of how to determine the appropriate added delay 
value. 

Speer;I Limit . . . . 
· It can be useful to determine and analyze ttie limiting factors for memory speed. For 
any memory architecture, there are three signal paths with critical timing: 

• The address-to~data valid path during a read access. 

. . . 

• The address to end of write path during a write access. 

• T_he channel master control signal active to response signal active path during 
any access. 

There are also two access cycles of interest: the initial access and the burst access . 
. For this analysis the channel master of interest is the Am29000. 

Address-to-Data Valid Path 
For the address-to-data valid path ·in an initial access cycle; t'he memory system is 
subject to th~ followin.g key parameter~ : 

• Clock-to-ProcessorAddress, Data and Control Signals Valid, 

• Addr.ess Control·Logic Delay, 

• Memory Access Time, · 
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• Data Bus Buffer Delay, 

• And Data Set-Up Time. 

In a burst-access cycle, the same parameters are used except that the clock-to-address 
and control signals valid delay and the address and control logic delay are replaced by 
the clock-to-output delay of the memory address counter. 

Clock-to-Processor Address and Control Signals Valid - during the first access to 
a non-sequential location in memory, the processor must provide a new address and 
instruction or data-request control signals to indicate a new memory request is being 
made. This parameter is currently 14 ns for the Am29000. 

Address/Control Logic Delay - some memory designs will need to select between 
the initial address and the output of an address counter used for burst access cycles. 
The logic to select the address will add some delay. If D-speed PALs are used for this 
logic, the delay will be 1 O ns (assuming only a 50 pF load on the PAL output). 

Memory Access Time - this is one factor the memory designer has some control 
over. The speed limit of the memory system is reached when this delay goes to zero. 

Data Bus Buffer Delay - generally a buffer is used to isolate the memory-array out­
puts from the processor data bus. The propagation delay through the buffer must be 
considered. One of the fastest buffers available is a 7 4FCT244A with 4.3 ns pro­
pagation delay. 

Data Set-Up Time - the Am29000 data input set-up time is 6 ns. 

Thus the address-to-data path for an initial access is at best 34.3 ns when the memory 
access time is zero. This then implies that most memory implementations will have an 
initial access time of at least two cycles. 

In a burst-access cycle the speed limit is set by the clock-to-output time of the address 
counter (8 ns for a D-speed PAL), data-buffer delay, and the processor set-up time. 
They total 18.3 ns leaving 21.7 ns for memory access time in a 40 ns cycle time system. 
Therefore burst accesses can be single cycle with the use of fast SRAMs. Bank inter­
leaved memory can achieve single-cycle burst access even with much slower memory. 

Address-to-End of Write Path 
For the address-to-end of write path in an initial access cycle the following are key 
parameters that the memory system is subject to: 

• Clock-to-Processor Address, Data and Control Signals Valid; 

• Address/Control Logic Delay, in parallel with Data Bus Buffer Delay; 

• Memory Address and Data Set-Up Time to Write Enable Active. 

In a burst-access cycle, the same parameters are used except that the clock-to-address 
and control-signals-valid delay and the address and control logic delay are replaced by 

, the clock-to-output delay of the memory address counter. That means the clock-to­
data-valid delay may predominate. 
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Clock-to-Processor Address, Data and Control Signals Valid - during the first 
access to a non-sequential location in memory, the processor must provide a new 
address and data request control signals to indicate a new memory request is being 
made. This parameter is currently 14 ns forthe Am29000. 

Address/Control Logic Delay - some memory designs will need to select between 
the initial address and the output of an address counter used for burst access cycles. 
The logic to select the address will add some delay. If D speed PALs are used for this 
logic, the delay will be 10 ns (assuming only a 50 pF load on the PAL output). 

Data Bus Buffer Delay - generally a buffer is used to isolate the memory-array out­
puts from the processor data bus. The propagation delay through the buffer must be 
considered. The fastest buffer available is a 74FCT244A with 4.3 ns propagation delay. 
During an initial access this delay is masked by the address/contol logic delay. During 

, the burst access this delay adds to the .data valid delay. · 

Memory Address and Data Set-Up Time to Write Enable Active - this is one factor 
the memory designer has some control over. The speed limit of the memory system is 
reached when this delay goes to zero. 

Thus the address-to-end of write path for an initial access is at best 24 ns when the 
memory set-up time is zero. This then implies that a write access may be completed 
within one cycle if the real memory set-up time can be held below 16 ns. 

In a burst-access cycle the speed limit is set by the clock-to-data valid delay plus the 
data bus buffer delay. They total 18.3 ns leaving 21.7 ns for memory set-up time in a 
40 ns cycle time system. Therefore, burst accesses can also be single cycle. 

Control to Response Path 
For the control signal to response signal path the time restrictions are the same in all 
access cycles. The key parameters are: 

• , Clock-to-output time of a register; 

• Propagation delay of a PAL; 

· • Propagation delay of a logical OR gate ·on the response signals from each mem­
ory block; 

• And controlsignal set-up time of the processor. 

The clock-to-output delays. internal to a D-speed PAL are worst-case 8 ns. 

The propagation delay of a D-speed PAL is 1 O ns. 

The propagation delay of the memory response signal OR gate can range from 6 to 
10 ns. · 

The set-up time for control signals to the Am29000 is 12 ns. 

All those times total to 40 ns. This makes single-cycle operation possible in a 40 ns 
cycle-time system. 
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Exceeding the' Limit · 
It is possible to build specially restricted memories that do.not need the address/control 
logic delay or the data bus buffer delay. This is done by having only a single bank of 
memory for instructions or data. There is, then, no need for address decode or bus 
isolation. Such a memory could have single-cycle initial access by using a 13 ns ac­
cess-time memory. In this type of memory, the worst-case path delay involves the Chip 
Enable (CE) signal on memory, which is controlled by the system clock. Using the clock 
.to control the CE signal eliminates bus contention between the processor and memory 
and possible false WE signals. The worst.:case delay of the clock is 21 ns and the 
processor set-up time adds ari additional 6 ns of delay. That leaves 13 ns for the 
memory in a 40 ns cycle-time system. · 

Refer.to the description and diagrams in appendix B for more details regarding specially 
restricted single-cycle-access memory designs. 

Bank Interleaving 
Memories with 20 ns or faster access times are neither easy to find nor inexpensive to 
buy. Based on the above timing discussions it is easy to see that it would be very 
desirable to find a way to use slower memories. 

A simple way to reduce the ·memory-access speed requirement by half or more is to 
make use of a bank-interleave memory architecture. In bank interleaving, one set of 
memories contains. the even words in memory and. another set contains the odd words 
of memory. The two banks are accessed on alternate clock cycles so that each bank is 
allowed two cycles of access time. · The banks alternately supply data words so that 
there is one new data word available in each bus cycle. This scheme of course relies 
on sequential word accesses which is exactly the nature of a burst access by the 
Am29000. This scheme can be further extended to three, four, five, etc. bank-memory 
systems in order to further lengthen the allowable memory access time. The penalty is 

·extended initial access time and the complexity of the control logic. Only the initial 
. access requires the full delay of a two-cycle access. 

Speed Emphasis 
In the discussion of memories, a careful separation of the· initial access and burst ac­
cess times has been made. This is important to help.make the trade-off of memory­
access speed and initial access time clear. Single-cycle burst-access speed can be 
maintained even with rather slow memories given that the initial access speed can 
suffer~ Where burst accesses are the predominant mode of memory access and where 
the bursts are relatively long, the initial access time can be amortized across many 
accesses. In this case, slow interleaved memory is ideal. But, the more often a non­
sequential access is done, the more the initial access time lowers the overall memory 
system performance. 

Instruction accesses are alw.~ys attempted in bu~st mode. Stati~tically "average" in­
struction streams branch every six to ten instructions. Therefore the initial access time 
of instruction fetches can be amortized across six to ten cycles of access. Burst access 
spee.d is thus important to instruction accesses. 

Further: the branch target cache can hide up to three ~ycles of an instruction memory's 
initial access time when the target of the branch is in the cache. The hit rate of the 
branch target cache is .application dependent of course but typical hit ratios of 50 to 
60% are common in benchmarks that have been run. Thus t~e importance of burst 
access time, over initial access time, is further emphasized. 
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Data accesses are different because most are individual load or store operations. They 
are more often done as individual non-sequential reads or writes of single words. Burst 
'accesses are done usually only. at context switch time and during some procedure 

· . entries and exits. This means that over 95% of data accesses are to non-sequential 
locations. Therefore, the initial access time is a much more important factor for data 
memories than for instruction memories. Consequently, it is best to emphasize burst 
access speed in instruction memories and initi.al access speed in data memories. 

Test Hardware Interface 
Memory designs must account for the special needs of diagnostics hardware. The key 
issue here is that development .systems will, at times, want to take control of buses and 
control lines in a system under test. In particular, to perform reads and writes of 
Am29000 internal registers, a development system may want to masquerade as a 
system memory device during a diagnostic load or store operation. Doing this allows a 
development system to directly observe and control register values. 

When this is done, the memories in a prototype system need to recognize when the 
development system takes control of system buses so that the memories will not con­
tend with the development system for control of the buses. 

One method for doing this is described. It is the method used by Advanced Micro 
Devices in its own Am29000 hardware and software development support system, the 
Advanced Development And Prototyping Tool (ADAPT29K). 

The ADAPT29K operates as a system monitor and controller that allows logic-analyzer­
like tracking of the Am29000 system activity. It.also is able to insert diagnostic instruc­
tions into the normal Am29000 instruction stream, read and write processor registers, 
and read and write system memory . 

. · The ADAPT29K is inserted into a system via the Am29000 socket. An adapter fits into 
the Am29000 socket and an Am29000 is then plugged into the top of the adapter. This 
allows the ADAPT29K access to all the signal pins of the Am29000. 

At various times the ADAPT29K will drive the following lines: DATA 0-31, INSTRUC­
TION 0-31,RESET, DROY, DERR, STAT1, CNTLO, and CNTL1. 

The ADAPT29K system must.somehow indicate when it will take control of the above 
lines from the the system under test. Two means of indicating this are provided: use of 
pin 169 on the Am29000 socket and the use·of a special code on the OPT bits 0-2. 

Pin· .169 is the device-locator pin that allows chip insertion in only the correct orientation 
and is the only pin not used by the Am29000. This pin can, therefore, be driven by the 
ADAPT29K as an indication to the system being debugged that the ADAPT29K is taking 
control of some of the Am29000 signal lines. · · 

·The prototype system under development can simply use the signal on pin 169 as a 
disable of'the selection logic for ali'system memories: This will ensure that when pin 
169 is driven, the ADAPT29K system will be free to take control of the prototype system 
buses. 

This plan is simple but not without problems. Pin 169 may not always be available in 
future package tYp.es for the Am29000. Also, it is an "extra" signal not normally planned 
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for in the system. Its advantage is that it is a simple, direct, and "pre-decoded" in­
dication that the ADAPT29K is taking control. Its disadvantage is that it is not a con­
sistent and intrinsic part of an Am29000 system. It requires that the system under test 
be modified to expect this special signal that will only come from specific development 
hardware. 

Recognizing the limitations of pin 169, the ADAPT29K system provides another way to 
signal its use of system buses. 

The ADAPT29K defines one of the reserved codes for the OPTO-OPT2 bits as the 
equivalent of the pin 169 signal. During a load or store operation, the OPTO-OPT2 bits 
displaying "11 O" is defined to mean that the ADAPT29K will control the Instruction bus, 
Data bus, Ready, and Error lines; even though the address presented would appear to 
be directed at some other system device (note, OPTO is the Least Significant Bit (LSB) 
corresponding to the zero in the "11 O" code). The ADAPT29K system uses this defini­
tion when reading or writing an AM29000 internal register. To do this, a load or store 
instruction is used with the OPTO-OPT2 bits set to "11 O". When the load or store is 
executed, the OPTO-OPT2 code appears on the bus and is used to cause the system 
memory to not respond while the development system directly moves data to or from 
the Am29000. 

This scheme has the advantage of not requiring any "special" signal connections be­
tween the prototype and development systems. All communication is via the standard 
Am29000 socket. Also, it may be possible to make use of decoding circuits already 
present for the OPTO-OPT2 bits to decode the needed signal equivalent to the pin 169 
indication, thus saving on special-purpose hardware. 

The ADAPT29K uses both the pin 169 and OPTO-OPT2 signals, so that allowing the de­
signer of the prototype system can choose which way to support intervention by the 
development system. 

In the case of a read or write of Am29000 registers, the ADAPT29K jams a load or store 
test instruction with OPT 0-2 bits set to "11 O" and pin 169 low. At the appropriate 
moment, the DADY and DERR pins are driven by the ADAPT29K. It is necessary that 
memory not respond or drive the instruction or data lines during this operation. It is also 
required that the DADY and DERR lines be either open collector or 3-stated by the 
prototype system when pin 169 is low or the OPTO-OPT2 bits = "110". 

In the case of a read or write of memory, the ADAPT29K jams a load or store test 
instruction with the OPT 0-2 bits set to 000. Pin 169 is driven high when the Am29000 
is single stepped. In this case the memory should respond normally when pin 169 is 
high. Note: This implies that the ADAPT29K requires the ability to read and write the in­
struction memory via the data bus! 
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ASSUMPTIONS 

MEMORY DESIGN ASSUMPTIONS 
In each of the memory design examples presented in Chapters 4 through 7, the follow­
ing assumptions were made: 

· • All designs are intended to operate in a 40 ns clock-cycle system (25 Mhz clock 
frequency}. 

• The Am29000 Synchronous Input Setup Time (data sheet parameter 9A} is 6 ns 
as shown in May '88 data sheet, rather than 8 ns as reflected in February '87 
data sheet. Similarly, the Am29000 Synchronous Input Setup Time (data sheet 
parameter 9) is 12 ns. 

• Any other system bus master observes the same bus protocol as the Am29000 
processor. Examples: new addresses are provided for each 1 K byte boundary 
crossing; read and write operations may not be mixed within a burst transaction. 

• , Each memory monitors pin 169 of the Am29000 socket for interface with the 
Am29000 Advanced Development And Prototyping Tool (ADAPT29K}. 

• Memories do not drive memory response lines or data lines when not also driving 
memory Ready or Error signals. This ensures that the memories do not contend 
with test hardware during diagnostic operations. 

• Memories implement only word-write operations.Implementing byte-write control 
logic is a simple extension to the designs presented here. Byte-write logic will (in 
those ever famous words} be left as an exercise for the reader. 

PROGRAMMABLE ARRAY LOGIC (PAL) NOTATIONS 
Depending on the nature of the output signal being described, there are two basic types 
of PAL-related equations used in this handbook: registered and combinatorial. 

The registered equation is for a PAL circuit whose output signal is a function of the 
inputs that must pass through a register. Thus, the output signal is dependent on a 
clock (transfer} signal. A registered equation is identified by the special operator":=". 
For example: 

X :=A• B + C 

The combinatorial equation , on the other hand, is for a PAL circuit with an output signal 
based on only its input signals. That is, the output signal is a propagation-time-delayed 
function of the inputs without any intervening state elements . A combinatorial equation 
is identified by operator"=". For example: 
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ABBREVIATIONS AND ACRONYMS 
,:r::-' 

Abbreviation and acronym definitions are provided on a first-occurrence basis in 
the text. 

NOTATIONAL CONVENTIONS 
Chapters 4 through 7 use the notational conventions included in the the following 
paragraphs. 

Boolean· Notations 
The Boolean equations use the conventional Boolean symbols for identifying logic 
connectives such as AND and OR. By way of review, the logic connectives for Boolean 
symbols are: . · 

•=AND 
,·· .. 

+=.OR.. .. 

The complement of a variable used in a Boolean equation.is represented by an overbar 
above the variable. For example: 

., ,·. .. ' ' 

• The complement of X is -X. The complement of a variable is also referred to as 
the "negation": or."not" operation. 

• Double overbar is used over a.variable when.a complemented variable is nested 
in br.ackets and the bracketed expression is also complemented. For example: 

Ii xx= A • B • (C. + D} 

.,, ,· ·.,. 
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Figure 4·1 

HIGH SPEED STATIC RAM 

OVERVIEW 
Let's start off our memory design examples with the simple. "brute force" approach to the 
architecture shown in Figure 4-1. 

We will use one block of Static RAM (SRAM) for instruction memory and one block of 
SRAM for data memory. The block will contain high speed SRAM th.at is fast enough to 
support accessing one word per clock cycle during burst transfers. Each block is 16K 
words deep and each word is 32 bits wide. The instruction memory block will have a 
read only port for sending instructions to the Am29000 and a read/write port tied to the 
Am29000 data bus. The read/write port allows access to the instruction memory via the 
data bus for instruction loading and memory diagnostics. The data memory will have a 
single read/write port connection to the Am29000 data bus. 

The "brute force" description applied to this architecture refers mainly to the very high 
speed required of the memories and interface control logic. The memories will need to 
access data in 20 ns or less and the control logic must be made from Programmable 
Array Logic (PAL) devices with propagation delays of only 1 O ns. At this time, those 
components are rather expensive and power hungry. But, making use of this raw speed 
allows the interface logic and overall structure of the memory to be very simple while 
providing very close to the best achievable memory system access time. 
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Figure 4·2 

The initial access time will be two clock cycles: one cycle for decode and one for ac­
cess. For burst accesses, each access beyond the initial access will occur in a single 
clock cycle. 

INSTRUCTION MEMORY 

Interface Logic Block Diagram 
Refe~ ~o the block diag~.a~ in Figure 4-2. 
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Memory 
The center of the memory block is of course the memory itself. The memories are 16K 
x 4-bit SRAMs with separate data in and out lines. The access time is 20 ns and eight 
devices are required to form the 32-bit wide instruction word for the Am29000. 

Bus Buffers 
The memory data outputs are connected to the data-bus lines via high speed buffers 
(U20-U23). These buffers are required to isolate the memory outputs from the data bus 
whenever the memory is accessing instruction words. This isolation allows another 
data memory block to use the data lines at the same time that instructions are being 
fetched from this memory block. 

The memory data inputs are also connected to the data bus lines via buffers 
(U16-U19). These buffers provide delay time to the data lines during write cycles which 
helps to ensure that data is still valid at the time Write Enable (WE) goes inactive at the 
end of each write cycle. As will be shown later the WE signal goes inactive one gate 
delay later than the end of each cycle. Also, note that if this block of memory were 
made up of multiple banks of memory_ devices instead of the single bank used in this 
design, then these buffers might be needed to isolate the heavier capacitive load of 
multiple memory banks from the data bus lines. 

It is worth noting that the memory data 1/0 connection to the data bus could also be 
achieved through the use of bidirectional buffers, but doing so would require very care­
ful management of the buffer and memory output enable signals to prevent driver 
contention. Using separate unidirectional buffers keeps the design simple and robust. 

The memory data outputs are also connected to the instruction bus lines via buffers 
(U24-U27). These buffers serve to isolate the data outputs of this memory blocks from 
those outputs of other memory blocks which may also drive the instruction bus. Also 
the buffers would serve to isolate the capacitive load of this memory block from the in­
struction bus if the block contained a larger number of memory banks. 

Address Registers and Counters 
To support burst accesses the lower eight address bits to the memory come from a 
loadable counter. The 8-bit counter is built from two AmPAL16R6 D-speed PALs 
(U5, US). The D-speed PALs are used because their clock-to-output delay is signifi­
cantly less than standard MSI 8-bit counters. Also, the use of PALs allows additional 
functions to be integrated into the same packages used for the counter function. 

The upper eight bits of memory address need not come from a counter since the 
Am29000 will always output a new address when a 256-word boundary is crossed. The 
upper eight bits of address are simply registered. The register is built from remaining 
functions in one of the AmPAL 16R6D PALs that form the lower 8-bit counters (US) and 
from part of an additional AmPAL16R6D PAL (U4). 

Registered Control Signals 
As noted earlier, the timing of the IBREQ, DBERQ, and BINV control signals require that 
they be registered by a low setup-time register. A 74F175 register is used for this. Also 
two other signals, IBACK and DBACK, are also registered. Remaining registers in the 
third AmPAL16R6D PAL (U4) are used for this purpose. 
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Interface Control Logic 
This logic must generate the memory response signals, manage the loading and count­
ing of memory addresses, and control the WE signal to the memory. The logic functions 

• needed for this require two D-speed PALs, an AmPAL 16R4 and an Am PAL 16L8 (U1, 
U3). Also, the final level of gating on memory WE and the memory response lines is 
shown in Figures 4-2 and 4-3. 

In Figure 4-2, the WE line of the memory is driven from a 7 4F32 OR gate which com­
bines. the WE signal from the Interface Control logic with the SYSCLK signal. The_ 
simple OR gate is .used to ensure mini.mum propagation delay so that the memory WE 
signal will go inactive as soon as possible after the rising edge of SYSCLK. 

In Figure 4-3, the memory respcmse lines from multiple memory blocks are logically 
ORed together before being presented to the Am29000. The lines are ORed in 
AmPAL 16L8 D-speed PALs. Each PAL can implement two of the seven input negative 
logic OR gates that are shown .. These final gates are r~quired by the high speed nature 
of these signals as was explained in Chapter 2, Basic Memory Design Issues. Also 

. note that if the IERR, DERR or PEN signals were implemented by this design, those 
signals ~ould require similar gating to t~at shown in Figure 4-3. 

Again referring to Figure 4-3, note that Pin 169 of the Am29000 is used as an output 
enable on the DROY OR gate to provide test hardware the ability to take control of this 
line. This was described in Chapter 2, Test Hardware Interface section. 
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Figure 4·4 

Memory Interface Logic Equations 

Design Choices 
In this memory interface it is assumed that other blocks ofinstruction or data memory 
may be added later. and that there may be valid addresses in address spaces other than 
instruction/data space. This means that this memory will only respond with IBACK or 
DBACK active when this block has b~en selected by valid addresses in the instruction/ 

. data space. This requires that at least some of the more significant address lines above 
the address range·of this memory blockbe monitored to determine when this memory 
block is addressed. Also, it means the IREQT, DREQTO, · DREQT1, and Pin 169 lines 
must be monitored to determine that an ·address is valid and lies in the instruction/data 
space. 

The support of burst accesses implies the need for a state machine with three states, 
which will control the transitions between no activity on the burst acknowledge lines and 
activity on either the IBACK or DBACK line. This state machine also can ease the man­
agement of transitions between instruction and data accesses when preemption is 
required. The state diagram for this state machine is shown in Figure 4-4. 

Another design choice is that when an instruction burst access is in progress and a data 
access to the same block of instruction memory is attempted, the instruction access will 
be preempted immediately. The data access will then complete before any further 
instruction access will be allowed. This approach prevents the processor pipeline from 

. stalling while the instruction prefetch queue fills before instruction access is suspended, 
as would occur if instruction accesses were given priority. 

Logic Details - Signal-by-Signal 
All signals are described in active-high terms so that the design is a little easier to 
follow. The signals as implemented in the final PAL outputs will often be active low as 
required by the actual circuit design. The actual PAL definition files are included in 
Figures 4-5 through 4-9. 

NOTE: All PAL equations in this handbook use the following convention: 

• Where a PAL equation uses a colon followed by an equals sign (:=),the equation 
result is REGISTERED, i.e., registered PAL outputs are used. 

• Where a PAL equation uses only an equals sign(=), the equation signals are 
COMBINATORIAL PAL outputs.· 

(IME+ DME) 
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IDLE - This is the default state of the interface state machine. It is characterized by 
Instruction Burst ACKnowledge (IBACK) and the Data Burst ACKnowledge (DBACK ) 
signals both being inactive. This state serves as a way .of identifying when the memory 
is not being accessed and could be placed into a low~ power mode. It should be noted 
that the IDLE state is not the sole determin.er of when a low power mode can be used. 
Referring to the explanation of the.Chip Enable (CE) signal provides a more complete 
understanding of low power mode requirements.· The m·ore important use of the IDLE 
state is as a delay cycle in the transition between. an active instruction burst access 
being preempted and the start of the preempting qata access. The delay is needed to 
allow the completion of the final instruction access in the cycle that the IBACK signal is 
de-asserted_ and the instructio11 burst access is pre-empted. 

IME - IME is the indication that the address of this memory block is present on the 
upper address lines, an instruction request is active, Pin 169 is inactive (test hardware 
has not taken control}, and instru.ction/d.ata address space is indicated. In other words 
this memory block is receiving a valid instruction access request. This example of a 
memory system design will assume that the addr~ss of this memory block is equal to 
A31 • A30 • A29. The equation for this signal is: · · · 

IME = IREQ • IREQT • A31 • A30 .• A29 • Pin169 

DME - DME is the indication that the address of this memory block is present on the 
upper address lines, a data request is· active, Pin· 169 is inactive, and instruction/data 
address space is indicated. in other words; this memory block is rec·eiving a valid data 
access request. This example design will as~ume that the address of this memory 
block is equal to A31 • A30 • A29. Note that for instruction accesses, the memory 
address for this block is A31 =zero and that for the data accesses, the memory address 
for this block is A31 = one. This allows instruction memory for instruction accesses to 
be l_ocated at address zero while having the window for data bus· access to the instruc­
tion memory located at a different base address. This allows the separate data memory 
block used in this design to have its base address also at zero. Thus both the instruc­
tion and data memories are located at address zero in their respective address spaces. 

The equation for this signal is: 

DME = DREQ • DREQTO • DREQT1. • A31 ~ A30 ~ A29 -. · Pin169 

IEXIT - Instruction EXIT (IEXIT) is an intermediate equation term not actually imple­
mented as an output of the SRAM State Generator PAL. The logic of the term is used 
in the generation of IBACK but the name IEXIT is simply a documentation convenience. 

The IEXIT equation is: 

IEXIT = DME 
+ IREQ • IME 

A data request to this memory block for instruction data space will take priority over an 
instruction fetch in progress. Also, if a new instruction fetch stream is started for either 
another block of memory or to instruction ROM, this memory interface can return to the 
IDLE state. 
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DEXIT - Like IEXIT, Data EXIT (DEXIT) is a term used only for documentation 
convenience. 

The DEXIT equation is: 

DEXIT = IME • DBREQ.D 
+ DREQ • DME 

An instruction request to this memory block for instruction/data space when data burst 
· request was inactive in the last cycle will end any suspended data access. Requiring 
data burst request to be inactive will hold off instruction fetches until the current data 
access is complete or suspended. Also, if a new data access stream is started to 
another block of memory, to 1/0 space, or to coprocessor space, this memory interface 
can return to the IDLE state. 

IBACK - Instruction Burst ACKnowledge (IBACK) is the indication that the interface 
. state machine is in an active or suspended instruction burst access. The signal is syn­

onymous with the ... lnstruction.ACCESS (IACCESS) state in Figure 4-4. The equation is: 

IBACK := IME • DBACK 
+ IEXIT • IBACK 

The IACCEs's state is 'entered when an instruction request to instruction data space 
with the address of this memory block is active and a data access is not currently active. 
The DBACK term will give an active data access priority by holding off instruction ac­
cesses until the data access completes. 

Once in the IACCESS state the interface will stay there until one of the IEXIT conditions 
is satisfied. · · 

DBACK - The Data Burst ACKnowledge (DBACK) is the indication that the interface 
state machine is in an active or suspended data b~rst access. The signal is synony-
mous with the DACCESS state in Figure 4-4. The equation is: · 

DBACK := DME • IBACK 
+ DEXIT • DBACK 

The Data ACCESS (DACCESS) state is. enterep when a data request to instruction/data 
space with the address of this memory block.is active and an instruction access is not 
currently active. The IBACK term will hold off the beginning of a data access until any 
active instruction access is preempted. 

Once in the DACCESS state the interface ~ill stay· there until one of the data exit condi­
. tions is satisfied. 
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LD - LoaD (LO) is the signal which 'enables the lower address bit counter/registers and 
the upper address bit registers to load a new address on the next rising edge of 
SYSCLK. The equation is: 

LD = DBACK • IREQ • ILOAD 
+ IBACK • DREQ • DLOAD 

When an instruction request is active, load is prevented from being active while a data 
access is active or suspended. In other words, when the state machine is in the DAC­
CESS state a load 'that would result from an instruction request is suppressed. 

Also load is prevented if there was a load in the last cycle. In the case of a burst re­
quest this prevents ·1oad from being active during the second cycle of a burst request at 
which time the count signal to the address counters must be active and cause the 
counters to increment. 

Similarly for the case that Data REQuest (DREQ) is active, load is prevented when the 
state machine is in the IACCESS state or when load was active in the last cycle. The 
LD signal is combinatorial so that it will be active during the first cycle of a new instruc­
tion or data request. 

ILOAD - The Instruction LOAD (ILOAD) is a delayed version of the load signal with the 
qualification thatit is active only when a load occurred for an instruction fetch which was 
addre.ssed_ to this memory block and the instruction/data space. 

ILOAD := DBACK • IME • LOAD 

ILOAD is used in the generation of the Instruction ReaDY (IRDY) signal. 

DLOAD -The Data LOAD (DLOAD).is a delayed version of the load signal with the 
qualification that it is active only when a load occwred for a data access which was 
addressed _to this memory block and the instruction/data space. 

DLOAD := IBACK • DME • DLOAD 

DLOAD is used in the generation of the Data ReaDy (DROY) signal. 

CNT - The CouNT (CNT) signal cause·s the address counters to increment on the next 
rising edge of SYSCLK. · · 

CNT = IBREO.D • BINV.D • !BACK 
+ DBREO.D • DBACK • BINV.D 

CNT is active in the second cycle and beyond of each instruction or data access when 
the respective burst request was active in the previous cycle. During BINV active cycles 
no counting is allowed since the Burst Request signals are presumed to be invalid. 

IBACK.D -The IBACK Delayed ( IBACK.D) is simply a one cycle delayed version of 
IBACK. 

IBACK.D := IBACK 

It is used in the generation of IRDY. 
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DBACK.D -The DBACK Delayed (DBACK.D) is simply a one cycle delayed version of 
DBACK. 

DBACK.D := DBACK 

It is used in the generation of DROY. 

IRDY - Instruction ReaDY (IRDY) indicates that there is valid read data on the instruc­
tion bus. 

IRDY = ILOAD • BINV.D 
+ IBREO.D • BINV.D • IBACK.D 

This static memory design will always be ready with data in the c;ycle after a new in­
struction request which is implied by ILOAD. ·But IRDY should never be active if the bus 
was invalid on the previous cycle when the load of address information occurred. The 
Bus INValid Delayed (BINV.D) signal must be used to prevent IRDY from going active. 

A case that shows the need for this is when control of the bus is transferred between 
bus masters. When this occurs, the bus is guaranteed to be invalid for at least one 
cycle. If during the invalid cycle the memory control and address lines were seen as a 
valid instruction request, then load would go active and ILOAD would be active in the 
next cycle. This would cause IRDY to be active. during the first cycle of the new bus 
masters first instruction fetch. That would be incorrect since the memory would not 
have read valid information in time for the first cycle of th~ instruction fetch. Thus 
qualification with BINV.D is required. 

The memory will also be ready when IBREQ was active with IBACK in the previous 
cycle. IBACK is required as a qualifier so that when an access is preempted the contin­
ued presence of IBREQ will not cause a false ready indication. 

Note that BINV.D is again used as a qualifier for the same reasons noted earlier. 

The reason that IRDY must be a combinatorial signal is that IBREQ comes very late in 
the previous cycle and must be registered. There is no time to perform logic on IBREQ 
in the previous cycle before SYSCLK rises. This means that the information that IBREQ 
was active in the last cycle is not available until the cycle in which IRDY should go 
active. 

DROY~ Data ReaDY (DROY) is the equivalent of IRDY for data accesses and there­
fore uses the same equation with data terms substituted for instruction terms. 

DROY = DLOAD • BINV.D 
+ DBREQ.D • BINV.D • DBACK.D 

DOE - Data Output Enable (DOE) is the same equation as DROY except that the 
Read/Write line is added as a qualifier. This prevents the data bus read buffer output 
·enable from going active on a write cycle. Note: the Am29000 Read/Write (R/W) signal 
has been designated simply as RW in the equation. 

DOE = DLOAD • BINV.D • RW 
+ DBREO.D • BINV.D • DBACK.D • RW 
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WE- Write Enable (WE) has nearly the same equation as for DOE except that it is 
qualified by the inverse of the read/write line. · 

WE = DLOAD • BINV.D • RW 
+ DBREQ.D • BINV.D • DBACK.D • RW 

In the block diagram of Figure 4-2 you can see that WE is further qualified by SYSCLK. 
This added qualification will create a pulse that is the result of the overlapped low time 
of WE and SYSCLK. This means that the pulse is coincident with SYSCLK low time 
when WE is active. 

WE is the result of an 8 ns clock to output delay of PAL registers combined with the 
propagation delay of a PAL which is 1 O ns. The worst-case time is then 18 ns for WE to 
become valid. The earliest possible occurrence of SYSCLK going low is one half the 
cycle time plus or minus 1 ns. In this case that is 20 ns - 1 ns = 19 ns. The importance 
of the timing is that the WE signal must be valid at or before the falling edge of SYSCLK 
in order to prevent unwanted glitches on the WE line to the memories. 

CE - Chip Enable (CE) in this design would only be used to lower the dynamic power 
of the system by switching off the memories when they are not being accessed. An 
equation for this would be: 

CE := IBACK • DBACK • IME 
+ IBACK • DBACK • DME 
+ IBACK 
+ DBACK 

This equation will not allow the memory to go into a deselected or low power mode until 
the cycle following a transition to the IDLE state. This ensures that the memory is still 
active on the last access of a preempted instruction burst request. 

In this design however there weren't enough outputs on the PALs to add this feature 
conveniently. So, the CE signal was left out of the design. 

Pal Definition Files 
The PAL definition equations are provided in Figures 4-5 through 4-9. 

NOTE: All PAL equations in this handbook use the following conventions: 

• Where a PAL equation uses a colon followed by an equals sign(:=), the equation 
result is REGISTERED i.e. registered PAL outputs are used. 

• Where a PAL equation uses only an equals sign(=), the equation signals are 
COMBINATORIAL PAL outputs. 

• The Device Pin list is shown near the top of each figure as two lines of signal 
names. The names occur in pin order, numbered from the left to right 1 through 
20. The polarity of each name indicates the actual input or output signal polarity. 
Signals within the equations are shown' as active high, e.g., where signal names 
in the pin list are ABC, the equation is C =A· 8; the inputs are A= low, B =low, 
then the C output will be low. · · 
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Figure 4·5 

AmPAL 16R6D SRAM Address Counter~Non-interleaved, Section O 
Device U6 

CLK CNT LO-_A02 A03 A04 A05 A06 A07. GNO 
OE NC12 002 003 004 005 006 007 COUT VCC 

002 := LO • A02 
+ LO • CNT • 002 
+ LO • CNT • 002 

003 := LO • A03 
+ LO • CNT • 003 
+ LO • CNT • 002 • 003 
+ LO • CNT • 002 • 003 

004 := LO • A04 
+ LO • CNT • 004 
+ LO • CNT • 002 • 003 • 004 
+ LO • CNT • 002 • 004 
+ LO • CNT • 003 • 004 

005 := LO • A05 
+ LO • CNT • 005 
+ LO • CNT • 002 • 003 • 004 • 005 
+ LO • CNT • 002 • 005 
+ LO • CNT • 003 • 005 
+ LO • CNT • 004 • 005 

006 := LO • A06 
+ LO • CNT • 006 
+ LO • CNT • 002 • 003 • 004 • 005 • 006 
+ LO • CNT • 002 • 006 
+ LO • CNT • 003 • 006 
+ LO • CNT • 004 • 006 
+ LO • CNT • 005 • 006 

007 := LO • A07 
+ LO • CNT. • 007 
+ LO • CNT • 002 • 003 • 004 • 005 • 006 • 007 
+ LO • CNT • 002 • 007 . 
+ LO • CNT • 003 • 007 
+ LO • CNT • 004 • 007 
+ LO • CNT • 005 • 007 
+ LO • CNT • 006 • 007 

COUT = 002 • 003 • 004 • 005 • 006 • 007 
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Figure 4·6 

Figure 4·7 

AmPAL 16R6D SRAM Address Counter-Non-interleaved, Section 1 
Device US 

CLK CNT LD A08 A09 A10 A11 A12 A13 GND 
OE CIN 008 009 010 011 012 013 NC19 VCC 

008 := LD • A08 
+ LD • CNT • 008 
+ LD • CN T • CIN • 008 
+ LD • CNT • CIN • 008 

009 := LD • A09 
+ LD • CNT • 009 
+ LD • CNT • CIN • 008 • 009 
+ LD • CNT • CIN • 009 
+ LD • CNT • 008 • 009 

010 := LD • A10 
+ LD • 010 

011 := LD • A11 
+ LD • 011 

012 := LD • A12 
+ LD • 012 

013 := LD • A13 
+ LD • 013 

AmPAL 16R6D SRAM Address Counter-Non-interleaved, Section 2 
Device U4 

CLK NC02 LD A14 A15 A16 A17 TBACi< D8ACK GND 
OE NC12 014 015 016 017 IBACK.D DBACK.D NC19 VCC 

014 ·- LD • A14 
+ LD • 014 

015 ·- LD • A15 
+ LD • 015 

016 ·- LD • A16 
+ LD • 016 

017 ·- LD • A17 
+ LD • 017 

BACK.D ·- IBACK 

DBACK.D := DBACK 
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Figure 4·8 

Figure 4·9 

AmPAL 16L8D SRAM Control Signal Generator~Non-interleaved 
,·Device U3 

IBACK DBACK ILOAD DLOAD IBACK.D DBACK.D IBREQ.D DBREQ.D BINV.D GND 
OREO IRDY DROY IREQ RW DOE WE CNT LD VCC 

IRDY = BINV.D • ILOAD 
+ BINV.D • IBREQ.D • IBACK.D 

DROY = BINV.D • DLOAD 
+ BINV.D • DBREQ.D • DBACK.D 

DOE BINV.D • RW • DLOAD 
+ BINV.D • RW • DBREQ.D •· DBACK.D 

LD IREQ • DBACK • ILOAD 
+ DREQ • IBACK • DLOAD 

CNT IBREQ.D • IBACK • BINV.D 
+ DBREQ.D • DBACK • BINV.D 

WE BINV.D • RW • DLOAD 
+ BINV.D • RW • DBACK.D • DBREQ.D 

AmPAL 16R4D SRAM State Generator-Non-interleaved 
Device U1 

CLK IREQ IREQT A31 A30 A29 Pin169 DREQTO DREQT1 GND 
OE DREQ DBREQ.D IBACK DBACK ILOAD DLOAD IME DME VCC 

IBACK · := DBACK • IME 
+ IEXIT • IBACK 

DBACK := BACK • DME 
+ DEXIT • DBACK 

ILOAD := DBACK • IME • ILOAD 

DLOAD := IBACK • DME • DLOAD 

IME IREQ • TREaf • A31 • A30 • A29 • Pin169 

DME DREQ • DREQTO • DREQT1· •· A31 • A30 • A29 • Pin169 

NOTE: The terms IEXIT and DEXIT used in the IBACK and DBACK equations are for clarity. 
Their true representations are as follows: · 

IEXIT DME 
+ IREQ • IME 

DEXIT IME • DBREQ.D 
+ DREQ • DME 
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Figure 4·10 

Intra-Cycle Timing · 
This memory architecture has two basic cycle timings. The first is a cycle used to 
decode the memory address and control signals from the processor. At the end of this 
decode cycle, the address is loaded into the address counter and the selected block of 
memory begins a burst access in the· next clock cycle. 'The second cycle timing is that 
of a burst access. 

The combination of a decode cycle followed by the first burst access cycle defines the 
two cycle initial access time. Each subsequent burst access requires one cycle. 

Within the decode cycle the address timing path is made up of the following. 

• The Am29000 clock to address and control signals valid delay of 14 ns, 

• Address decode logic PAL delay of 10 ns (device U1), 

• And the set-up time of the address counter PALs of 1 O ns (devices, U4, US, U6). 

Assuming D-speed PALs those times total 34 ns. See Figure 4-1 O 

Also, within the decode cycle time is the control signal to response signal path. This 
delay path is made up of the following: 

• Clock to output time of registers within the control logic state machine PAL of 
8 ns (devices, U1, U4), 

· • Propagation delay of th'e control logic PAL, 10 ns (device, U3), 

• Propagation delay of a logic OR gate on the response signals·from each memory 
block, 1 O ns, 

• And control signal set-up time of the processor; 12 ns. 

Again assuming D-speed PALs, these times total 40 ns. 
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Figure 4·11 

Within the burst access cycle the address tC? data path timing is determined by: 
' ~ . 

• the clock-to-output time of the address counter (8 ns for a D-speed, PAL) plus 
added. delay due to capacitive and inductiye loading by the memory array of the 
PAL outputs. Since this .load exceeds the standard data sheet test loads, the 
analysis in Appendix A is used to estimate the added delay. The resulting esti­
mated delay is 1.5 ns. The. total delay is then an 8. ns clock-to-output time plus 
1.5 ns added delay for a grand total of 9.5 ·ns. . 

• Memory access time of 20 ns; 

• Da~a buffer delay of 4.3 ns; 

• : And the processor set-up time of 6 ns; 

As shown in Figure 4-11, those delays total 39.8 ns worst case. 

F~r the control signal·to response signal path the time restrictions are the same in either 
the initial access or burst access cycles. The total delay is again 40 ns. 

Inter-Cycle Timing 
This section gives three.examples of the cycle-by-cycle interaction between an 
Am~9000.processor and the high-speed static memory system just defined in this 
Chapter. Each timing diagram includes the Am29000 control and response signals as 
well as all the internal signals of the memory control logic. 
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Instruction Burst Read 
The waveform diagram provided in Figure 4-12, shows a burst read of instruction mem­
ory~ In the first clock cycle the Am29000 initiates a read.operation by making IREQ and 
a9dress active. The access is a burst operation since the IBREQ signal also goes 
active late in the cycle. As a result, the address is decoded to signal IME indicating that 
this instruction memory is selected. Also, the LD signal goes active causing the mem­
ory address counters and latches to capture the address on the bus at the next rising 
edge of SYSCLK. . 

In cycle two, the address counters present the first address to the memory. The mem­
ory will access the selected data and have it on the bus in time for the Am29000 to 
receive it at the end of this clock cycle. Since the data is valid, the IRDY signal from the 
memory goes active. The registered value of IBREQ from cycle one is now available as 
the signal IBREQ.D. This in combination with IBACK causes the CNT signal to go 
active. This .will increment the address counter at the next rising edge of SYSCLK. 

In cycles three and four, the second and third instruction words are read from memory. 
In cycle four the IBREQ signal goes inactive signaling a suspension of the burst 
access. · ·,· 

In cycle five, the memory control circuits see the absence of IBREQ.D and immediately 
make IRDY inactive. CNT also goes inactive to hold the address value until the burst is 
resumed. The suspension of the burst was only one cycle long because IBREQ again 
goes active in this cycle.· · 

In cycle six, IBREQ.D is detected and IRDY immediately made active. CNT goes active 
again to continue the incrementing of address. 

Cycles seven and beyond simply continue the burst access. 

Instruction Burst Write 
Figure 4-13 shows an example very similar to that of Figure 4-12. The difference is that 
this access is a burst write operation to the instruction memory. 

The flow of control signals is the same as for the instruction access just described. The 
only differences are that data words are now take·n from the bus at those times when 
they would have been supplied during a read; data bus control and response signals are 
substituted for the equivalent instruction signals, e.g. DREQ goes active instead of 
IREQ; and the write enable signal is active. · 

Note that there maybe a gHtch on the write enable signal at the beginning of cycle three 
that is the result of switching on the DBACK.D .and DLOAD lines. This glitch does not 
reach the memory write enable input since that is gated by SYSCLK via the OR 
gate (U7) in Figure 4-2. 

Instruction Burst Preempt by Data Access 
Figure 4-14 shows the interaction of a burst instruction access and a data read access 
addressed to the same block of memory. 
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Figure 4·12 
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Table 4·1 

The first two cycles occur as previously described for the instruction burst read. In the 
third cycle, a data access is started by DREQ going active. The address is recognized 
as selecting this block of memory which is signaled by DME going active. Since data 
accesses are given priority over instruction accesses, the instruction access must now 
be preempted. The memory control state machine exits the !ACCESS state and returns 
to the IDLE state in cycle four. This causes IBACK to go inactive, in cycle three, thus 
preempting the instruction access. 

In cycle four, the last word of the instruction burst is supplied by the memory. Also, the 
LD signal goes active to enable the address counters to capture the data access initial 
address. 

In cycle five, the instruction burst request is removed from the bus and the first word of 
the data access is presented to the bus. Since the DBREQ signal has not been active, 
the data access in this case is a single word rather than a burst. 

In cycle six, the DREQ signal goes inactive as a result of the DROY in cycle five, which 
in turn allows IREQ to go active to re-establish the preempted burst instruction access. 
The appearance of IREQ and IME causes the control state machine to return to the 
IDLE state in the next cycle. 

In cycle seven, the load signal goes active to capture the instruction address. 

In cycle eight the control state machine re-enters the !ACCESS state with IBACK going 
active. The first word of instruction is placed on the bus with IRDY. Also, CNT goes 
active to increment the address for the instruction fetch. The instruction burst is thus re­
established. 

Parts List 
The parts list for the Am29000 High-Speed SRAM Interface is provided in Table 4-1. 

Am29000 High-Speed SRAM Interface Parts List 

Item No. 

U1 
U2 
U3 
U4-U6 
U7 
U8-U15 
U16-U19 
U20-U27 

DATA MEMORY 

Quantity 

1 
1 
1 
3 
1 
8 
4 
8 

27 pkgs 

Device Description 

AmPAL16R4D 
74F175 
AmPAL16L8D 
AmPAL16R6D 
74F32 
PC41982-20 
IDT74FCT244 
IDT74FCT244A 

As shown in Figure 4-1 the instruction and data memories for the Am29000 are sepa­
rate structures. The data memory can be an exact subset of the instruction memory 
design. In fact the exact same design can be used by tying the instruction related 
control signals to the inactive state. But, since the data memory is a subset, it is also 
possible to save a few chips by eliminating the instruction related control signals and 
rearranging the distribution of logic terms between PALs. 
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Figure 4·15 
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Figure 4·16 

Figure 4·17 

As shown in Figure 4-15 versus Figure 4-2. it is possible to eliminate devices U 1, 
AmPAL16R4D; U2, 74F175; and U24-U27, 74FT244A: a total of 6 chips. The output 
buffers for the instruction bus are not needed, the 7 4F175 register in the instruction 
memory can be shared with the data memory, and by rearranging logic terms as shown 
in Figures 4-16 and 4-17 the AmPAL16R4D PAL (U1) can be eliminated. 

All other aspects of the design are the same as for the instruction memory described in 
the previous section. 

AmPAL 16LSD SRAM Control Signal Generator­
Non-Interleaved Data Memory Only Version. 
Device U3 

A31 A30 A29 Pin169 DBACK DBACK.D DREOTO DREOT1 DBREO.D GND 
BINV.D OREO DROY DME RW DOE WE CNT LO VCC 

DROY = BINV.D • DLOAD 
+ BINV.D • DBREO.D • DBACK.D 

DOE BINV.D • RW • DLOAD 
+ BINV.D • RW • DBREO.D • DBACK.D 

LO OREO • DLOAD 

CNT DBREO.D • DBACK • BINV.D 

WE BINV.D • RW • DLOAD 
+ BINV.D • AW • DBACK.D • DBREO.D 

DME OREO • DREOTO • DREOT1 • A31 • A30 • A29 • Pin169 

AmPAL 16RSD SRAM Address Counter­
Non·lnterleaved, Section 2 Data Memory Only Version 
Device U4 

CLK OREO LO A14 A15 A16 A17 DME NC07 GND OE NC12 014 015 
016 017 DBACK DBACK. D DLOAD VCC 

014 := LD • A14 
+ LO • 014 

015 := LD • A15 
+ LO • 015 

016 :::::: LO • A16 
+ LO • 016 

017 := LO • A17 
+ LO • 017 

DBACK.D := DBACK 

DLOAD := LD • DLOAD 
+ DREO • DBACK 
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MEDIUM SPEED STATIC RAM 
WITH INTERLEAVED BANKS 

OVERVIEW 
As can be seen from the last chapter, the simple "brute force" approach to memory 
design has its problems. Even with some of the fastest and most expensive static 
RAMs available, it is barely possible to meet the timing constraints of a single-cycle 
burst-access memory in a 25 MHz clock rate system .. 

Fortunately there is a fairly simple way to ease the timing constraints on the memory 
while still providing single cycle burst access at 25 MHz. This is called bank interleaving. 

What is Interleaved Memory? 
In a bank interleaved memory system, two or more separate memory banks are used to 
split up and overlap the memory-access workload. Each bank is assigned alternate 
words from the total memory space. In a 2-bank interleaved memory, one bank would 
contain all the odd words in the memory space and the second bank would contain all 
the even words. In a 4-bank memory, each bank would contain one out of every four 
words; the first bank would have words 0, 4, 8, ... , the second bank would have words 1, 
5, 9, ... , the third bank would have words 2, 6, 10, ... , the fourth bank would have words 
3, 7, 11, ... , etc. · · 

For a burst access, the memory block is always used in a fixed sequential order. 
While one bank is transferring data on the system memory bus, the other bank(s) can 
be accessing data needed for a subsequent cycle. By staggering and overlapping the 
access time for each bank, the individual banks are allowed access times equal to one 
cycle for each bank of interleaved memory. A 2-bank memory allows two cycles of 
access time for each bank; a 4-bank memory allows four cycles. While each bank is 
allowed multiple access cycles, the system memory bus sees a new data transfer on 
each cycle, thus maintaining single-cycle burst access while using slower memories. 

The trade-off involved is that the access time to the.first word of a non-sequential ad­
dress is determined by the access time of the individual bank selected. In a 2-bank 
memory this generally means the minimum initial access time is two cycles. It may be 
more than two cycles depending on how much time is used for address decoding. A 
4-bank memory may need at least four cycles, etc. In addition, the control logic is more 
complex. 

A Basic Two-Bank Design 
The memory design described in this chapter is a simple extension of the memory 
design from the last chapter. 

There are still separate blocks of memory for instruction and data, as was shown in 
Figure 4-1. Within each memory block, there are two banks of memory interleaved as 
odd and even words. Each bank is 64K words deep with each word being 32-bits wide. 
The total for the instruction memory block is then 128K words. The same is true for the 
data memory. 
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Figure 5·1 
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It is possible to use "55 ns access time" SRAM memories for all memory banks. The 
first cycle of a non-sequential access will require one cycle for address decode and two 
cycles for the first word accessed. Essentially, the inter-cycle timing is the same as for 
the high-speed SRAM memory of the last chapter except that each burst access is two 
cycles long. Overlapping the memory bank access time allows this longer access time 
to be hidden from the system viewpoint except on the first word of a non-sequential 
access. The end result is a memory that provides 3-cycle access time for the first word 
of a non-sequential access and single cycle access for subsequent words in a burst 
transfer. 

The instruction memory block will have a read only port for sending instructions to the 
Am29000 and a read/write port tied to the Am29000 data bus. The read/write port 
provides access to the instruction memory via the data bus to allow instruction loading 
and memory diagnostics. The data memory will have a single read/write port connection 
to the Am29000 data bus. 

INSTRUCTION MEMORY 

Interface Logic Block Diagram 
Refer to the block diagrams in Figures 5-1 through 5-4. 

The Memory ' 
The memories are 64K x 1-bit SRAMs with separate data in and out lines. The access 
speed is 55 ns. Thirty-two devices are required in each bank to form the 32-bit wide 
instruction word for the Am29000. The two banks require a total of 64 RAM chips. 
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Figure 5·2 
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Bus Buffers 
The memory data outputs are connected to the data bus lines via high-speed buffers. 
These buffers are required to isolate the memory outputs from the data bus whenever 
the memory is accessing instruction words. This isolation allows another data memory 
block to use the data lines while the instruction-memory block is fetching instructions. 

The memory data inputs are connected to the data bus lines via Am29825A registers. 
These registers provide two advantages. They have a clock-to-output delay significantly 
shorter than the clock-to-data output valid time for the Am29000 (10 ns vs 18 ns); 
this makes it possible to meet the "data setup to end of write time" for 55 ns memories 
(~30 ns) within the 40 ns clock cycle time. Also, they allow data to be removed from the 
bus one cycle earlier than would be the case if simple buffers were used; this makes a 
write operation one cycle faster than an equivalent read operation. 

As will be shown later, the memory Write Enable (WE) signal goes inactive one 
D-speed PAL clock-to-output delay later than the end of each cycle. It is therefore nec­
essary to ensure that data at the output of the data registers is held at least until the 
worst-case clock-to-output time of the PAL to satisfy the memory's zero hold time on 
data with respect to WE signal going inactive. To guarantee this, two separate register 
banks are used, one. for each bank of memory. Each register-bank clock is enabled 
only on the cycle that data is taken from the bus for the related memory bank. This 
ensures that the registered data is stable throughout the cycle and that data is being 
written during the following cycle to satisfy the hold time on data. 

The memory data outputs are also connected to the instruction bus lines via buffers. 
These buffers serve to isolate the data outputs of this memory block from those outputs 
of other memory blocks which may also drive the instruction bus. Also, the buffers 
serve to isolate the even and odd banks of this memory block from each other so that 
simultaneous data access can go on in each bank independently. 



Address Reglste.rs and Counters 
To support burst accesses the lower seven address bits to each memory bank come 
from a loadable counter. An 8-bit counter is used to provide the address so that the 
least significant bit of the counter can be used to track which memory bank is connected 
to the data or instruction bus on each cycle. The 8-bit counter is built from one 
AmPAL16R4 and one AmPAL16R6 D-speed PALs. The D-speed PALs are used be­
cause their clock-to-output delay is significantly faster than standard MSI 8-bit counters. 
Also, the use of PALs allows additional functions to be integrated into the same pack­
ages used for the counter function. 

The upper nine bits of memory address need not come from a counter since the 
Am29000 will· always output a new address when a 256 word boundary is crossed. The 
upper nine bits of address are simply registered by an Am29823A 9-bit register. 

A separate set of address counter and register logic is used to address each memory 
bank. This is done for two reasons. One is that when one bank is connected to the 
data or instruction bus, the other bank will be accessing the next word in sequence. 
This requires that the two banks have independently incremented addresses. The 
address for each bank will increment on different cycles. The second reason is that 
each bank of memory presents a heavy capacitive load to the address counter and reg­
ister outputs. Giving each bank its own counter and register keeps the capacitive load 
reasonable and thus maintains system speed. 

For these same reasons the memory Chip Enable (CE) signal, and Data Register 
Enable (DREGEN) control logic for each bank is integrated into the same PALs as are 
used for the address counters. 

Registered Control Signals 
As noted earlier, the timing of the IBREQ, DBREQ, and BINV control signals require that 
they be registered by a low setup time register such as a 7 4F175 register. 

Interface Control Logic 
This logic must generate the memory response signals, manage the loading and count­
ing of memory addresses, and control the data buffer output enables. The logic func­
tions needed for this require four PALs, two AmPAL16R4D and two AmPAL16L88. 

In Figure 5-2, device U1 an AmPAL 16L88 performs address decode for instruction and 
data accesses. Its outputs indicate when this memory block has been addressed. 

Device U2, also an Am PAL 16L88 produces the Load (LO) and Count enable (CNT) 
signals for the address counters. 

Device U3 is the instruction portion of the memory interface state machine which man­
ages the Instruction Ready ( IRDY) response signal and the Instruction bus buffer 
Output Enable (IOE) signals. 

Device U4 performs the same state machine function as in U3 with reference to the 
Data Ready ( DROY) and Data bus buffer Output Enable (DOE) signals. 

Response Signal Gating 
As noted in the last chapter, the memory response signals from all system bus devices 
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Figure 5·5 
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are logically ORed together before being returned.to the Am29000 processor. An 
example of this circuitry was shown in Figure 4-3. These gates are not counted as part 
of the components within the memory design since they are shared by all the bus 
devices in the system and as.such are part of the overhead needed in any Am29000 
system. 

Memory Interface Logic Equations 

State Machine 
The control logic for this memory (devices, U3 and U4, Figure 5-2) can be thought of as 
a Mealy-type state machine in which the outputs are a function of the inputs and the 
present state of the machine. This structure is required since some of the output signals 
must be based on inputs which are not valid until the same cycle in which the outputs 
are required to effect control of the memory. 

As shown in Figure 5-5, this state machine can be described as having five states. 
These states control the enabling of activity on the Burst Acknowledge, output buffer 

DME•DLOAD.D 

Interleaved SRAM Control State Machine 
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enable, and Ready lines. IDLE is the default state of the interface state machine. It is 
characterized by Instruction Burst Acknowledge (IBACK) and Data Burst Acknowledge 
(DBACK) both being inactive. This state serves as a way of identifying when the mem­
ory is not being accessed and could be placed into a low-power mode. Note: A more 
detailed explanation of power-mode usage is provided in the discussion of the CE 
signal. . The more important use of this state is as a delay cycle in the transition between 
an active instruction burst access being preempted and the start of the preempting data 
access. The delay is needed to allow the completion of the final instruction access in 
the cycle that IBACK is deasserted and the instruction burst access is preempted. A 
transition to either the Instruction Start (ISTART) or Data Start (DSTART) state occurs 
when an address selecting this memory block is placed on the address bus. 

The !START state occurs during the first cycle.of memory access following a new 
instruction address being presented on the address bus. During this state the IOE and 
IRDY lines are held inactive and the IBACK line is active. This state is used as a delay 
to account for the initial access time of both the even and odd memory banks when a 
new address is presented on the bus. The transition to the Instruction Access 
(IACCESS) state is unconditional. 

The IACCESS state is used during the second cycle of a new address access and 
during all subsequent burst access cycles, whether active or suspended. In this state 
the IOE and IRDY lines are allowed to be active as required by the active or suspended 
status of an instruction burst request. When a new instruction address selecting this 
memory block appears on the bus a transition to the !START state will occur. If a new 
instruction address appears which does not select this memory block then a transition to 
the IDLE state occurs. ·Also, ifa data address selecting this memory block appears 
there will be a transition to the IDLE state to force a preemption of the current instruction 
access. The state machine remains in the !ACCESS state as the default if no other 
state transition condition appears. 

The DSTART state is equivalent to the !START state but results from a data address 
which selects this memory block. One other difference is that the DROY line will be 
active in this cycle during a write operation. The transition to the Data Access 
(DACCESS) state is unconditional. · 

The DACCESS state is equivalentto the IACCESS state.· Transition from this state is 
different only in that the transition to the IDLE state will occur only when a data access 
completed and a new data or instruction access starts. A data access will not be 
preempted by an instruction access to this memory. 

Logic Detall~lgnal-by-Slgnal 
All signals are described in active high terms so that the design is a little easier to 
follow. The signals as implemented in the final PAL outputs will often be active low as 
required by the actual circuit design. The actual PAL Definition files.are included in 
Figures 5-6 through 5-11. 

Note that in the equations, an equal sign indicates a combinatorial signal and a colon 
followed by an equal sign indicates a registered PAL output. 

IME - In this memory interface, it is assumed that other blocks of instruction or data 
. memory may be added later, and that there may be valid addresses in address spaces 
other than instruction/data space. 
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This means that this memory will only respond with IBACK or DBACK active when this 
block has been selected by valid addresses in the instruction/data space. This requires 
that at least some of the more significant address lines above the address range of this 
memory block be monitored to determine when this memory block is addressed. Also, 
it means the IREQT, DREQTO, DREQT1, and Pin 169 lines must be monitored to 
determine that an address is valid and lies in the instruction/data space. 

IME (Instruction for ME) is the indication that the address of this memory block is pres­
ent on the upper address lines, an instruction request is active, Pin 169 is inactive 
(test hardware has not taken control), and instruction/data address space is indicated . 

. In other words this memory block is receiving .a valid instruction access request. 
This example design will assume that the address of this memory block is equal to 
A31 • A30 • A29 • A28 • A27. The equation for this signal is: 

IME = IREO • IREOT • A31 • A30 • A29 · • A28 • A27 • Pin169 

CME - DME (Data for ME) is the indication that the address of this memory block is 
present on the upper address lines, a data request is active, Pin 169 is inactive, and 
instruction/data address space is indicated. In other words this memory block is receiv­
ing a valid data access request. This example design will assume that the address of 
this memory block is equal to A31 • A30 • A29 • A28. • A27. Note that for instruction 

·accesses the memory address for this block had A31 =zero where the data accesses 
to this block are valid for A31 =one. This allows instruction memory for instruction 
accesses to be located at address zero while having the window for data bus access to 
the instruction memory located at a different base address. This allows the separate 
data memory block used in this design to have its base address also at zero. Thus 
both the instruction and data memories are located at address zero in their respective 
address spaces. 

The equation for this signal is: 

OME = OREO • OREOTO • OREOT1 • A31. • A30 • A29 • A28 • A27 • Pin169 

ME - The ME (instruction or data for ME)· is in effect an OR of the IME and DME 
signals and is used to indicate when this memory block is addressed for either instruc­
tion or data accesses. The ME signal is used to determine when the CE signal for the 
memory banks will be active. The equation is: 

ME = IREO • iREOf • A31 • A30 • A29 • A28 • A27 • Pin169 
+ OREO • OREOTO • OREQT1 • A31 • A30 • A29 • A28 • A27 • Pin169 

IEXIT- Instruction EXIT (IEXIT) is an intermediate equation term not actually imple­
mented as an output of the SAAM State Generator, Device u3; The logic of the term is 
used in the generation of IBACK but the name IEXIT is simply a documentation conven-
ience. .· · 

The IEXIT equation is: 

IEXIT = nME 
+ IREO • IME 

A data request to this memory block for instruction data space will take priority over an 
instruction fetch in progress. Also, if a new instruction fetch stream is started for either 
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another block of memory or ~o instruction ROM this memory interface can return to the 
idle state. 

DEXIT -Like IEXIT, Data EXIT (DEXIT) is a.term used only for documentation conven­
ience. 

The DEXIT (DEXIT) equation is: 

DEXIT = IME • DBREQ.D 
+ OREO • DME 

An instruction request to this memory block for instruction/data space when the DBREQ 
signal was inactive in the last cycle will end any suspended data access. Requiring 
DBREQ to be inactive will hold off instruction fetchE:1S until the current data access is 
complete or suspended. Also, if a new data access stream is started for, another block 
of memory, to 1/0 space, or to coprocessor space, this memory interface can return to 
the idle state. 

IBACK - The Instruction Burst Acknowledge (IBACK) signal is sent to the Am29000 as 
an indication that the interface state machine is in an active or suspended instruction 
access. The equation is: 

IBACK := IME ~ · DBACK • BINV 
+ IEXIT • IBACK 

The IBACK active state is entered when an instruction request to instruction data space 
with the address of this memory block is active and a data access is not currently active. 
The DBACK term will give an active data access priority by holding off instruction ac­
cesses until the data access is completed. The BINV input will prevent an access from 
beginning in the event bus signals are invalid. 

Once IBACK is active it will stay active until one of the !EXIT conditions is satisfied. 

IBACK.D -.The Instruction Burst Acknowledge Delayed (IBACK.D) signal is simply a 
one cycle delayed version of IBACK. 

IBACK. D := IBACK 

· It is used in.the generation of IRDY, IOEO, and IOE1 .. 

DBACK - The Data Burst Acknowledge (DBACK) signal is sent to the Am29000 as an 
indication that the interface state machine is in an active or suspended data access. 
The equation is: 

DBACK := DME • IBACK • BINV 
+ DEXIT • DBACK 

The DBACK active state is entered when a data request-to-instruction/data space with 
. the a~dress of this memory block is active and an instruction acces.s is not currently 
active. The IBACK term will hold off the beginning of a data access until any active 
instruction access is preempted. The BINV input is used to ignore bus signals during 
invalid cycles. 
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Once DBACK is active it will stay active until one of the data exit (DEXIT) conditions is 
satisfied. 

DBACK.D - This is simply a one cycle delayed version of DBACK. 

DBACK.D := DBACK 

It is used in the generation of DROY. 

LOAD - Load (LO) is the signal which enables the lower address bit counters and the 
upper address bit registers to load a new address on the next rising edge of SYSCLK. 
The equation is: · 

LD = IREQ • DBACK • ILOAD • ILOAD.D 
+ DREQ • IBACK • DLOAD • DLOAD.D 

When an instruction request (IREQ) is active, LD is prevented from being active while a 
data access is active or suspended. In other words, when the state machine is in the 
'DSTART or DACCESS state, a load which would otherwise result from an IREQ is sup­
pressed. This prevents the changing of the address counter values until the instruction 
access can be preempted and terminated. 

The LD signal is also limited to being one cycle long by suppressing LD when either 
Instruction LOAD (ILOAD) or Instruction LOAD Delayed (ILOAD.D) is active. These 
signals are delayed versions of the LD signal and they suppress LD during the two 
cycles following the initial appearance of IREQ. The LO signal must be suppressed 
during this time so that the count (CNT) signal to the address counters may be active 
and cause the counters to increment. Further suppression beyond the cycle that 
ILOAD.D is active is not needed since IRDY will go active during the ILOAD.D cycle. 
IRDY going active will cause IREQ to go inactive in the following cycle if no new instruc­
tion address is needed. If IREQ is active following the ILOAD.D cycle then a new 
·instruction address is present and a new LO signal pulse will be allowed. Also note that 
if the instruction access is done in burst mode, the appearance of IBACK during the 
ILOAD active cycle will cause IREQ to go inactive for the duration of the burst access. 

Similarly, for the case that OREO is active, load is prevented when the IBACK is active 
or when load was active in the last two cycles. 

The LD signal is combinatorial so that it can be active during the first cycle of a new 
instruction or data request. 

ILOAD - The Instruction LOAD (ILOAD) is a delayed version of the LD signal with a 
qualification. The qualification is that the ILOAD is active when: 

• Load occurs for an instruction fetch. 
• The bus is valid during the cycle that, IREQ is active. 
• The instructio.n fetch is ~ddressed to this memory block. 

This qualification prevents false starts in me_mory access due to an invalid bus situation. 

ILOAD := DBACK ; IME • ILOAD • ILOAD.D • BINV · 
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!LOAD is used in the generation of the IRDY, IOEO, IOE1, CNT, and LO signals. Like 
LO, ILOAD is limited to be a single cycle in duration. 

ILOAD.D - The Instruction LOAD.Delayed (ILOAD.D) signal is simply a delayed ver­
sion of the ILOAD signal. The equation is: 

ILOAD.D := !LOAD 

DLOAD - Data LOAD (DLOAD) is a delayed version of the LO signal with the qualifica­
tion that it is active only when a load occurred for a data access which was addressed 
to this memory block and the instruction/data space. 

DLOAD := IBACK • DME • DLOAD • DLOAD.D • BINV.D 

DLOAD is used in the generation of the'DRDY, DOEO, DOE1, CNT, and LO signals. 
Like LO, DLOAD is limited to be a single cycle in duration. 

DLOAD.D -The Data LOAD.Delayed (DLOAD.D) signal is simply a delayed version of 
the DLOAD signal in the same way that ILOAD.D is a delayed version of ILOAD. The 
equation is: · 

DLOAD.D := DLOAD 

CNT·- The Count (CNT) signal causes the address counters to increment on the next 
rising edge of SYSCLK. 

CNT !LOAD 
+ DLOAD 
+ BINV.D • IBREO.D • !BACK 
+ BINV.D • DBREQ.D • DBACK 

The CNT signal will be active when the respective IBREQ or DBREQ and !BACK or 
DBACK signals are active in .the previous cycle, given also that the bus was not invalid. 

A CNT signal is forced during the !LOAD or DLOAD cycle to ensure that the LSB of the 
even counter is pointing to the correct memory bank in the event that no burst request is 
active. In other words when a single access is requested. 

Note that for both the even and odd bank counters, only the upper seven bits are used 
as the lower address bits to memory. The LSB of the counters serve to cause the 
memory bank address to increment on every other cycle that the CNT signal is active. 

The CNT equation provides a count enable to the even counter during both even and 
odd word initial address accesses. This would appear to be an extra cycle of counting 
for the even bank. This is done for the following reason: when a burst access begins on 
an odd word boundary, it is necessary to have the even bank access the even word that 
follows the initial odd word. This means that the address going to the even bank will 
always to be one greater than the address going to the odd bank. This requires that the 
initial address from the address bus be incremented to point to the next higher even 
bank memory word. This could be accomplished by placing a combinatorial incremen­
ter in the address path to the even bank address counter, but incrementer logic is 
already defined as a part of the address counter. When the initial access address is 
odd, the even bank need not begin its access cycle until the third clock cycle of the 
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access. This means that the even bank address counter can be loaded with the initial 
address at the end of the first cycle of the access and incremented in the counter at the 
end of the second cycle. In effect this makes use of the incrementer logic already in the 
counter to increment the even address to point to the next even word in sequence. 

IRDY -The Instruction Ready (IRDY) indicates that there is valid read data on the in­
struction bus. 

IRDY - ILOAD.D 
+ BINV.D • IBREO.D • IBACK.D • ILOAD 

This static memory design will always be ready with data in the second cycle after a 
new instruction request as implied by ILOAD.D. The memory will also be ready when 
IBREQ was active with IBACK in the previous cycle. IBACK is required as a qualifier so 
that when an access is preempted the continued presence of IBREQ will not cause a 
false ready indication. The BINV.D signal is used to prevent false ready indications if 
the bus was invalid in the previous cycle. Note that situation can occur during a sus­
pended access when the processor grants the bus to another bus master. The ILOAD 
signal prevents IRDY from going active during the ILOAD cycle of a new instruction 
access when that access immediately follows a previous suspended burst access. In 
that situation the IBACK signal would already be active during the initial IREQ cycle of 
the new access. And if the new access is a burst access the IBREQ signal would also 
go active during the initial IREQ cycle. Without the ILOAD signal, that combination of 
events would cause IRDY to go active one cycle too early for the new access. 

The reason that IRDY must be a combinatorial signal is that IBREQ comes very late in 
the previous cycle and must be registered. There is no time to perform logic on IBREQ 
in the previous cycle before SYSCLK rises. This means that the information that IBREQ 
was active in the last cycle is not available until the cycle in which IRDY should go 
active for a resumption of a suspended burst access. 

IOEO arid IOE1 - The Instruction Output Enable (IOE) signal controls for the even and 
odd memory banks are used to control which bank is allowed to drive the instruction bus 
during each cycle. The signals use essentially the same logic as IRDY except that each 

· signal is further qualified by the output of the LSB of the even bank counter (Q02E). This 
bit keeps track of which memory bank is ready to provide data to the instruction bus. 
The even bank.is enabled when IRDY is active and the Q02E bit is one. The odd bank 
is enabled when IRDY is active and Q02E is zero. 

· IOEO 002E • ILOAD.D 
+ BINV.D • 002E • IBREQ.D • IBACK.D • ILOAD 

IOE1 Q02E • ILOAD.D. . 
+ BINV.D • 002E • IBREQ.D • IBACK.D • ILOAD 

DROY~ The Data ReaDY (DROY) is the equivalent of IRDY for data accesses and 
therefore uses the .same equation with data-respective terms substituted for instruction 
terms. The one additional change is that a term is added to cause DROY to occur 
one cycle early during write operations. This is done because the data to be written is 
taken from the data bus into a register before actually being stored in the memory. 
This maintains. the same memory timing used during read operations but write data is 
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removed from the bus one cycle earlier than when DROY would normally go active 
during a data read operation. 

DROY RW • DLOAD 
+ RW • DLOAD.D 
+ BINV.D • DBREQ.D • DBACK.D • DLOAD 

DOEO and DOE1 - The Data Buffer Output Enable (DOE1/DOE2) signals serve the 
same function for DROY as does the IOEO & IOE1 signals do for·IRDY. The description 
for them is the same as for the IOE signals. The only difference being that the DOE 
signals will be active only during read operations. 

DOEO 002E • RW • DLOAD.D 
+ BINV.D • 002E • RW • DBREQ.D • DBACK.D • DLOAD 

DOE1 002E • RW • DLOAD.D 
+ BINV.D • 002E • RW • DBREQ.D • DBACK.D • DLOAD 

WE - The Write Enable (WE) signal is a registered signal that goes active during the 
second cycle of each two cycle access period for each word access of a memory 
bank. The WE signal will go active only during write. operations. 

Since it is registered, it will stay active throughout the second _cycle of each access 
period in order to satisfy the required WE signal pulse width.of 35 ns. The WE signal 
will go active only if a DROY signal for the data was active in theprevious cycle which 
indicates that the memory has registered valid data from the data bus ready to be 
written into the memory bank. ·The WE signal is also qualified by wh.ich bank the signal 
is being generated for and by the indication of which bank should be written in the 
second cycle of the access period during a given clock. This last qualifier is effectively 
the LSB of the even bank counter. In the case of the odd ba.nk counter the value of the 
LSB output of the even bank counter is brought into the equation via the A02 input of 
the odd counter (note that since the even bank counter 002 output is low true, the 
inverted_ A02 input is used in the equation). The equation shown here has an input 
called ODD. That input is strapped high or low depending on which bank counter is 
being implemented. The reason for this is that the same set of PAL equations that 
implement the lower even and odd bank .counters can be the same given that this ODD 
input is tied to the appropriate voltage. This allows one equation set to be used for the 
lower half of both bank counters. Note that the bank WE signal is implemented in the 
lower of the two bank counter PALs. The equation is as follows: 

WE ·- ODD • DROY • A02 • RW 
+ ODD • DROY • 002 • RW 

DREGEN - Data REGi~ter ENable (DREGEN) is the signal that enables the write data 
register on the D input of each memory bank to load new data. The equation used is 
similar to that used for WE except that a combinatorial output is used so that the regis­
ter will load at the end of the DROY active cycle. Also the equation .is simpler since the 
register loading only needs to be restricted by the active bank indication served by the 

. LSB bit of the even counter. 

DREGEN ODD • A02 
+ ODD • 002 

MEDIUM SPEED STATIC RAM WITH INTERLEAVED BANKS 5·13 



CE - The Chip Enable (CE) signal for this memory block is used to lower the dynamic 
power of the system by switching off the memories when they are not being accessed. 
The equation for this is: 

CE ·- LD • ME 
+ LD • CE 

This block enable is based on the OR of the IME and DME signals. When this block is 
addressed with either an instruction or data access, the memories receive CE signal on 
the next cycle.· This selection is held until the next time the load signal is active in this 
memory block. 

It is worth noting that this equation will not allow the memory to go into a deselected or 
low power mode until the cycle following: a transition to the IDLE state. This ensures 
that the memory is still active on the last access of a preempted instruction burst re-
quest. · 

ADDRESS COUNTERS - There is one address counter for each bank of memory. 
Each is implemented with one AmPAL 16R4D and one AmPAL16R6D device (Figures 5-
3: US, U9;· Figure ?-4: U10,U11 ): The counter function is split across. two PALs due to 
the number of product terms required to implement the upper bits of the counter. The 
lower half of the counter produces a carryout signal to the upper counter half. The 
equations for the counters are the same except for a diffe.rence 'in treatment of the LSB 
between banks. This allows the same logic to be used for both bank counters with a 
single input used to select logic specific to the even or odd bank usage. The selecting 
input is called ODD. Whe·n the co.unter PAL is used in the even bank this input is tied 
·high and tied low f6r use in the odd bank~ · · 

· · The LSB bit of each counter is used as the means to control the ·urning of when the 
upper seven bits of each counter will increment. The upper bits of each counter will in­
crement on every cycle that the count signal is ·active and the LSB is. also active. 

, . ' . . .. I. , 

The value of the LSB in each counter will be different·in any given·cycle,·which will 
caµse the upper·bits oflhe·counters to increment 'on different cycles with regard to each 
other.· In other words, the the upper seven bits of ttie counters W.ill be out of phase in 
terms of when they increment: This allows one bank of memory to start the access of 
the next word in sequence while the other bank completes the access of the current 
word. · · · · . ·· 

A little added explanation may be in order here. Beyond the first completed access of a 
burst transfer the counter activity is consistent arid mechanical. For every cycle that 
IBREQ or DBREQ and the appropriate burst acknowledge signal is active, both count­
ers will receive a cou~t enable signal. The LSB of the counters will be of opposite 
polarity so that the upper seven bi!s of each counter increment on alternate cycles. The 
LSB of the counters then act as accurate ·indicators of when· each bank of memory is 
actively writing data from .the bl.is.or provid,ing data to the .b~s. The difficulty in manag­
ing the counters comes during the first access· in a burst transfer. At that time, the 
memory address is the Single source for the initial counter value for both counters. 
Depending on whether the initial address is ·odd br even, the odd or even bank of mem­
ory is accessed; consequently that bank's counter must be incremented first so the 
address counters can begin the alternating c'ounting s~heme needed in all the following 
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burst transfers. In addition, if the initial address is odd, the even bank memory address 
must be incremented to point to the next even word in sequence before the even bank 
can begin a valid access of data. 

There are various ways to manipulate the counter values so that the counters have the 
needed output values and increment in the right sequence. They involve decisions 
about whether one or two separate count enable signals will be used; whether incre­
menter logic will be placed in frontof the even bank counter orinstead the even bank 
counter will be incremented one extra.time before its first use; and whether the LSB of 
one or both counters will initially be forced to values different from the initial address in 
order to.make the counting sequence begin correctly. The following describes the 
counter implementation for this particular design, this scheme was chosen because it 
appeared to minimize the number of required PALs. 

The LSB of the even counter is simply treated as the LSB of an 8-bit counter. It is 
loaded from the memory address at the end of the first cycle in each new memory 
access. It is incremented (toggled) at the end of each cycle in which the count signal is . 
active. The output of the even bank LSB (Q02E) is used· in several other equations 
where bank selection information is needed. When Q02E is high ifiridicates that the 
even memory bank is in the second half of an access sequence (the access sequence 
is two cycles long). During thissecond half of the sequence, data will be provided to the 
bus on a r·ead or data will be written from the data bus registers during a write operation. 
When Q02E is low it indicates that t~e odd bank is in the second half of its sequence. 

The LSB of the odd counter is handled a little differently. By examining the required 
counting sequence for the odd counter during both even and odd initial accesses it can 
be seen that the LSB of the odd counter is almost always a one cycle delayed version of 
the even bank counter LSB. The only cycle where this might differ would be during the 
first cycle after the load of a new memory address where the odd counter LSB could be 
loaded with the LSB of the initial address. If thi_s were done it would be necessary to 
provide a separate count enable on the odd bank counter fo prevent incrementing the 
odd bank before the first address was used. That count-enable scheme would differ 
from the one required by the even bank counter which must always increment in the first 
cycle after the initial address load. By always forcing the odd counter LSB to zero when 
an initial address is loaded it is possible to have only one count-enable signal. The LSB 
being zero always prevents the increment of the upper seven bits of the odd counter 
during the first cycle following an address load. The LSB of the odd counter can then 
be used to produce the delayed version of the even bank counter LSB by simply loading 
the odd bank counter LSB from Q02E on each cycle that the count' enable is active. 
The upper seven bits of _the odd counter still increment only at the end of cycles in which 
the odd counter LSB is one and the count enable ·is active. 

This scheme simplifies the counter control logic somewhat and provides that a single 
control signal (Q02E) is used to manage all bank selection issues throughout the de­
sign. 

The equation for the LSB of the counter is shown below. The remainder of the counter 
equations are shown in Figures 5-10 and 5-11: 

002 ·- LD • ODD ~ A02 
+ LD • ODD • A02 
+ LD • ODD • CNT • 002 
+ LD • ODD • CNT • 002 

MEDIUM SPEED STATIC RAM WITH INTERLEAVED BANKS 5·15 



Figure 5·6 

Figure 5·7 

PAL Definition Files 
The PAL equations are given in Figures 5-6 to 5-11. 

Note: All PAL equations in this handbook use the follwing convention: 

• Where a PAL equation uses a colon followed by an equals'sign (:=),the equation 
result is REGISTERED (i.e. registered PAL outputs are used). · 

• Where a PAL equation uses only an equals sign (=),the equation signals are 
COMBINATORIAL PAL outputs. 

• 'The Device pin list is shown near the top of each figure as two lines of signal 
· names. The names occur in pin order, numbered from left to right 1 through 20. 

The polarity of each name indicates the actual input or output signal polarity. 
Signals within the equatio·ns are shown as active high, e.g., where signal names in 
the pin list are: ABC, the equation is C =A• B; the inputs are: A= low, B =low; 
then thee output will be low. . 

AmPAL 16L8B SRAM. State Decoder-Interleaved 
Device U1 

IREQ,.DREQ IREQT A31 A30 A29 A28 A27 PIN169 GND 
DREQTO IME DREQT1 ME NC15 NC16 NC17 NC18 DME VCC 

IME = IREQ ~ iREOf • A31 • A30 • A29 • A28 • A27 • PIN169 

DME = .DREQ • DR~QTO • DREOT1 • A31 • A30 • A29 • A28 • A27 • PIN169 

ME IREQ • iREOf • A31 • A30 • A29 • A28 • A27 • PIN169 
+ DREQ • DREQTO • DREQT1 • A31 • A30 • A29 • A28 • A27 • PIN169 

AmPAL 16R4D ·SRAM State· Generator-Interleaved Instruction Section 
Device U3 

CLK IME ·DME IREQ DBACK IBREQ.D NC07 BINV.D Q02E GND 
OE IOEO IOE1 IBACK IBACK.D ILOAD.D ILOAD IRDY BINV VCC 

IBACK := ·DBACK • IME • BINV 
· + IEXIT • IBACK 

IBACK.D := IBACK 

ILOAD := . DBACK • ILOAD • ILOAD.D • IME • BINV 

ILOAD.D .- ILOAD 

. IOEO Q02E • ILOAD.D 
+ BINV.D • Q02E • IBREQ • IBACK.D • ILOAD 

IOE~ Q02E • ILOAD.D 
+ BINV.D • Q02E • IBREQ.D • IBACK.D • ILOAD 

IRDY ILOAD.D 
+ BINV.D • IBREQ.D • IBACK.D • ILOAD 
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Figure 5·8 

Figure 5·9 

NOTE: The term IEXIT used in the IBACK equation is for clarity. 
Its true representation is as.follows:. 

IEXIT = DME 
+ IREO • IME 

AmPAL16R4D SRAM State Generator-Interleaved Data Section 
Device U4 

CLK IME DME OREO Ti3ACR DBREO.D RW BINV.D 002E GND 
OE DOEO DOE1 DBACK DBACK.D DLOAD.D DLOAD DROY BINV VCC 

DBACK ·- IBACK • DME • BINV 
+ DEXIT • DBACK 

DBACK.D ·- DBACK 

DLOAD ·- IBACK • DLOAD • DLOAD.D • DME • BINV 

DLOAD.D ·- DLOAD 

DOEO Q02E • RW • DLOAD.D . 
+ BINV.D • 002E • RW • DBREQ.D • DBACK.D • DLOAD 

DOE1 002E • RW • DLOAD.D 
+ BINV.D • 002E • RW • DBREO.D • DBACK.D • DLOAD 

· DADY RW • DLOAD 
+ RW • DLOAD.D 
+ BINV.D • DBREO.D • DBACK.D • DLOAD 

NOTE: The term DEXIT used in the DBACK equation is for clarity. 
Its true representation is as follows: 

DEXIT = ME • DBREO.D 
+ OREO • DME 

AmPAL16LSB SRAM Counter Control-Interleaved 
Device U2 

IREO DREQ 0BACK T8ACK DLOAD ILOAD DLOAD.D ILOAD.D NC09 GND 
BINV.D LD IBREQ.D DBREO.D NC15 NC16 NC17 NC18 CNT VCC 

LD = IREQ • DBACK • ILOAD • TCOA5 
+ DREQ • IBACK • DLOAD • DLOAD.D 

CNT = BINV.D • IBREO.D • IBACK 
+ BINV.D • DBREO.D • DBACK 
+ ILOAD 
+ DLOAD 
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Figure 5·10 

AmPAL 16R4D SRAM Address Counter­
Interleaved LSB ODD or Even Bank 
Devices U9, U11 

CLK CNT [5 A02 A03 A04 ODD DADY RW GND 
OE NC12 DREGEN 002 003 004 WE NC18 COUT VCC 

002 ·- ODD • LD • A02 
+ ODD • LD • A02 
+ . ODD • LD • CNT • 002 
+ ODD • LD • CNT • 002 

003 := LD • A03 
+ LD • CNT • 003 
+ LD • CNT • 002 • 003 
+ LD • CNT • 002 • 003 

004 ·- LD • A04 
+ LD • CNT • 004 
+ LD • CNT • 002 • 003 • 004 
+ LD • CNT • 002 • 004 
+ LD • CNT • 003 • 004 

COUT 002 • 003 • 004 

WE ·- ODD • RW • DRDY • A02 . 
+ ODD • RW • DRDY • 002 

DREGEN ODD • A02 
+ ODD • 002 

5·18 MEDIUM SPEED STATIC RAM WITH INTERLEAVED BANKS 



Figure 5·11 

AmPAL16R6D SRAM Address Counter­
Interleaved MSB Even or Odd Bank 
Devices US, U1 O 

CLK CNT LD A05. A06 A07 A08 A09 ME GND 
OE CIN 005 006 007 008 009 CE NC19 VCC 

005 ·- LD • A05 
+ LD • CNT • 005 
+ LD • CNT • CIN • 005 
+ LD • CNT • CIN • 005 

006 ·- LD • A06 

007 

+ LD • CNT • 006 
+ LD • CNT • CIN • 005 • 006 
+ LD • CNT • CIN • 006 
+ LD • CNT • 005 • 006 

·- LD • A07 
+ LO • CNT • 007 
+ LD • CNT • CIN • 005 • 006 
+ LD • CNT • CIN • 007 
+ LD • CNT • 005 • 007 
+ LD • CNT • 006 • 007 

008 ·- LD • A08 
+ LD • CNT • 008 

• 007 

+ LD • CNT • CIN • 005 • 006 • 007 • 008 
+ LD • CNT • CIN • 008 
+ LD • CNT • 005 • 008 
+ LD • CNT • 006 • 008 
+ LD • CNT • 007 • 008 

009 ·- LO • A09 
+ LD • CNT • 009 
+ LD • CNT • CIN • 005 • 006 • 007 • 008 • 009 
+ LD • CNT • CIN • 009 
+ LD • CNT • 005 • 009 
+ LD • CNT • 006 • 009 
+ LD • CNT • 007 • 009 
+ LD • CNT • 008 • 009 

CE ·- LD • ME 
+ LD • CE 
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Figure 5·12 

Intra-Cycle Timing.· 
This memory architecture has two basic cycle timings. The first is a cycle used to 
decode the memory address and control signals from the· processor. At the end of this 
decode cycle the address will be loaded into the address counter and the selected block 
of memory will begin a burst access in the next clock cycle. The second cycle timing is 
that of a burst access. · 

The first burst access time is the time required to access one of the memory banks. 
This time is designed to fit within two clock cycles. Thus, the initial burst access time 
will be two cycles. 

The combination of a decode cycle followed by the first burst access time defines the 
three cycle initial access time. Each subsequent burst access requires one cycle due to 
the interleaving of two memory banks. 

Within the decode cycle the address timing path is made up of: 

• The Am29000 clock to address and control valid delay of 14 ris, 

• Address decode logic PAL delay of 1 O ns, 

• And the set-up time of the address counter PAL, 1 O ns .. 

Assuming D-speed PALs those times total 34 ns. See Figure 5-12. Also, within the 
decode cycle time is the control signal to response signal path. This delay path is made 
up of: 

• Clock-to-output time of registers within the control logic state machine PAL, 8 ns; 

• Propagation delay of the control logic PAL, 1 O ns; 

• Propagation delay of a logical OR gate on the response signals from each mem­
ory block, 1 O ns; , 

• And control signal set-up time of the processor, 12 ns. 

Address Decode Path 

t co , Am29000 Sync Out 

t pd, Control PAL 

t su, Address PAL 

Control Path 

t co , Control PAL 

t pd, Control PAL 

t pd, Response PAL 

t SU J Am29000 Sync In 

10117A-5.12A 

~ I 10 
134 ns 

~ 

Interleaved Bank SRAM Memory Decode Cycle 
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Figure 5·13 

Again assuming D-speed PALs, these times total 40 ns as shown in Figure 5-13. 

Within the burst access cycle the address to data path timing is determined by: 

• The clock-to-output time of the address counter, 8 ns for a D-speed PAL, plus 
added delay for heavy capacitive and inductive load. The added delay is deter­
mined by the method shown in Appendix A. 

The estimated delay is 5 ns. The total delay is then 8 ns, clock to output, plus 
5 ns added delay for a total of 13 ns; 

• Memory access time (55 ns}, 

• Data buffer delay (FCT244A = 4.3 ns), 

• And the processor set-up time (6 ns). 

Those delays total 78.3 ns worst case. 

For the control signal-to-response signal path the time restrictions are the same in either 
the initial access or burst access cycles. The total delay is again 40 ns. 

Inter-Cycle Timing 
This section gives five examples of the cycle-by-cycle interaction between an Am29000 
processor and the Medium Speed Interleaved Bank Static Memory system just defined 
in this chapter. Each timing diagram includes the Am29000 control and response 
signals as well as all the internal signals of the memory control logic. 

Instruction Burst Read-Even Initial Address 
The first example is shown in Figure 5-14. It is a burst read of instruction memory with 
the initial address beginning at an even address; 

In the first clock, cycle the Am29000 initiates a read operation by making IREQ and ad­
dress active. The access will be a burst operation since the IBREQ signal also goes 
active late in the cycle. As a result the address is decoded to signal IME indicating that 

Address to Data Path 

t co, Address PAL I + J t Id , Memory Load Delay &. 
<55 

t aa , Memory -
4 3 

78.3 ns 

t pd , Bus Buffer · -·-

t su , Am29000 Sync In Data 6 

10117A-5.13A 

Interleaved Bank SRAM Burst Cycle 
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this instruction memory is selected. Also, the LO signal goes active causing the mem­
ory address counters and latches to capture the address on the bus at the next rising 
edge of SYSCLK. 

In cycle two the address counters present the first address to the memory. The memory 
accesses the selected data so that it is on the bus in time for the Am29000 to receive it 
at the end of the third clock cycle. The registered value of IBREQ from cycle one is now 
available as the signal IBREQ.D. This, in combination with IBACK, causes the CNT 
signal to go active. When CNT goes active, it increments the address counter at the 
next rising edge of SYSCLK. 

In cycles three, four and five, the first, second and third instruction words are read from 
memory. In each cycle the data is valid and the IRDY signal from the memory goes 
active. The IOEO and IOE1 alternate being active as data from each bank is ready to be 
placed on the instruction bus. Since the initial address was even, the even bank output 
enable (IOEO) goes active first. Note that the memory addresses shown are the output 
of the 8-bit address counters and only the upper seven bits serve as the lower address 
bits to the memory. The LSB serves only to control the counters so that the memory 
addresses increment on every other cycle that CNT is active. In cycle five, the IBREQ 
signal goes inactive signaling a suspension of the burst access. 

In cycle six, the memory control circuits see the absence of IBREQ.D and immediately 
make IRDY inactive. CNT also goes inactive to hold the address value until the burst is 
resumed. The suspension of the burst is only one cycle long because IBREQ again 
goes active in this cycle. 

In cycle seven, IBREQ.D is detected and IRDY immediately made active. CNT goes 
, active again to continue the incrementing of address. 

This sequence of IBREQ going active every other cycle is repeated through cycles 
seven, eight, and nine to show how the address counting and instruction output enables 
behave during repeated suspensions and resumptions. 

Instruction Burst Read-Odd Initial Address 
Th.is example is the same as the last except that the initial address is odd. This is 
reflected in IOEO and IOE1 going active in the reverse order from the last example. 
Also, the memory address for the even memory bank is incremented during cycle two 
so that the next even word following the initial odd address is accessed as shown in 
Figure 5-15.- · 

Instruction Burst Write 
Figures 5-16 and 5-17 show examples very similar to that of the instruction access 
figures. The difference is that these accesses are burst-write operations to the instruc­
tion memory. 
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The flow of control signals is the same as for the instruction accesses just described. 
The only differences are: 

• That data words are now taken from the bus one cycle earlier than those times 
when. they would have been supplied during a read; , 

• · Data bus control and response signals are substituted fo.r the equivalent instruc- · 
tion signals, e.g. DREQ goes active instead ot.IREQ; 

• : D!3REQ goes inactive in cycle 4 rather than cycle 5 as IBREQ did; 

The DREGEN signals enable the write data registers that take data to be written 
from the bus; · 

• · And the WE signals are active. 

Instruction Burst Preempt by Data Acces's 
Figure 5-18 shows the interaction of a burst instruction access and a data read access 
addressed to the same block of memory. 

The.first ~o cycles occur as previously described for the instruction burst read. 

In the third cycle, a data access is started by DREQ going active. The address is recog­
, nized as selecting this block of memory which is signaled by DME going active. 

Since data accesses are:given priority over instruction accesses, the instruction access 
must now be preempted. The memory control state machine exits the !ACCESS state 
and returns to the IDLE state jn cycle four. This will cause IBACK to go inactive thus 
preemp~ing the instruction;access. In.cycle four the last word of the instruction burst is 
supplied by the memory. Also, the LD signal goes active to enable the address count-
ers to capture the data access initial address. · 

In cycle five, IBREQ is removed from the b'us. 

In cycle:six, the DREQ signal goes inactive as a result of the DBACK in cycle five, which 
in turn allows IREQ to go active to re-establish the preempted burst instruction access. 
The word resulting from the data access is presented to the bus along with DROY. . 
Since the DBREQ signal has not been active, the data access in this case is a single 
word rather than a burst. The appearance of IREQ, IME and the absence of DBREQ. 
causes the control state machine to return to the IDLE state in the next cycle. 

In' cycle seven, the load signal goes active to capture the instruction address. 

In cycle eight, the control state machine re-enters the !ACCESS state with IBACK going 
active. Also, CNT goes active to increment the LSB of address for the instruction fetch. 
In cycle nine, the first word of instruction is placed on the bus with· IRDY. The instruc­
tion burst is thus re-established. · 
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Table 5-1 

Parts List 
The part list for the Am29000 M_edium-speed Bank Interleaved Static RAM Interface is 
provided in Table S-1. 

Am29000 Medium-speed Bank Interleaved 
Static RAM Interface Parts List 

Item No. 

U1-U2 
U3-U4,U9,U11 
us 
U6,U7 
U8,U10 
U12-U7S 
U76-U79,U84-U87 
U80-U9S,U88-U99 

DATA MEMORY 

Quantity 

2 
4 
1 
2 
2 
64 
8 
16 

99 pkgs 

Device Description 

AmPAL16L8D 
AmPAL16R4D 
74F17S 
Am29823A 
AmPAL16R6D 
IDT7187S-SS or CY7C187-SS 
Am2982SA 
74FTC244A 

As shown in Chapter 4, Figure 4-1, the instruction and data memories for the Am29000 
are separate structures. The data memory can be an exact subset of the instruction­
memory design. In fact the exact same design can be used by tying the instruction­
related control signals to the inactive state. But, since the data memory is a subset, it is 
also possible to save a few chips by eliminating the instruction related control signals 
and rearranging the distribution of logic terms between PALs. 

With reference to the instruction-memory design defined in this chapter, the following 
changes may be made to convert it to a data memory: 

• All instruction-related inputs can be removed and all the affected equations 
simplified; 

• U3, the instruction-state machine PAL, can therefore be removed entirely; 

• The CNT signal can be moved to U4 and the LD signal can be moved to U 1. 
Therefore U2 can be eliminated; 

•. The 7 4F17S from the instruction memory can also be used to supply the delayed 
control signals to the data memory, thus eliminating the need for US; 

• And finally, the instruction bus output buffers can be eliminated. 

In total the design can be reduced by 11 chips. The details of the logic equation simpli­
fications will be left as an exercise for the reader. All other aspects of the design are the 
same as for the instruction memory described in the previous section. 
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STATIC COLUMN DRAM 
WITH INTERLEAVED BANKS 

OVERVIEW 

-DRAM Advantages and.Am29000 DRAM Support 
The SRAMs used in the last two designs provide the fastest initial access times. But, 
SRAMs are not very dense and therefore.consume a large amount of board space for a 
given size memory system. Also, they tend to be expensive ~nd consume a good deal 
of power for a given size memory. 

Dynamic RAMs can provide far more memory at lower cost and power in the available 
board space than is possible with SRAM. The main penalty in using DRAMs is a loss of 
speed in the initial memory access time. Burst-access performance can be maintained 
by the use of bank interleaving and Static Column DRAMs (SCDRAM). Fortunately the 
Am29000 provides features that help compensate for a slower initial access time of 
system memory. 

The Am29000 branch target cache stores the first four instructionsfrom the 32 most 
recently accessed branch target addresses. So, wh~ri a branch instruction is executed, 
if the branch target address resides in the branch target cache, the first four instructions 
after the branch will come from the internal cache. At the same time, the address of the 
first instruction following those. in the cache will be pl~ced qn the address bus. In effect, 
'the first three cycles of. the memory's initial access time will be hidden by the continued 
execution of instructions from the branch target cache; "Note: three cycles are saved 
rather than four due to a cycle in which returning instructions rnust wait in the instruction 
prefetch buffer. 

' r, r 

The Am29000 accesses virtually all its instructions in burst mode. This means that the 
initial access time of the system memory dm be ammoritizedover multiple cycles of a 
burst access. This again lowers the penalty of a sl.owe.r initial access time. 

. ' ' 

The large register file of the Am.29000 in effect provides a.data cache for the most 
frequently used operands. This significantly reduces the numb~r. of times that memory 
needs to be accessed for data as compared with what is required by most competitive 
microprocessors. Also, the Am29000 load and store operations may be overlapped 
with the execution of other instructions, which again reduces the impact of a slower 

. initial access-time memory system~ · 

As a result, DRAMs can significantly increase the size of .system memory, while also 
improving system performance-to:.price ratio. The costper bit of memory in the system 
drops dramatically while performance is reduced only slight~y. · 

Memory Structure 
The memory design described in this chapter is an extension of the memory de$igns 
from the previous chapters. There are also separate blocks of memory for instruction 
and data as was shown in Figure 4-1. Within each memory block, there are two banks 
of memory interleaved as odd and even words. For a description of interleaved memory 
architecture, see the overview section of the last chapter. 
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Each bank is 1 M words deep with each word being 32-bits wide. The total for the 
instruction memory block is then 2Mwords (BM bytes). The same is true for the data 
memory. 

SCDRAM memories with BS ns access times are used for all memory banks. A non­
sequential access requires one cycle for address decode and three cycles for the first 
word accessed. The low RAS access time allows a 4-cycle intial access time for the 
memory system; 100 ns RAS access time memories may be used if the intial access 
time is extended to five cycles. Essentially the burst access timing is the same as for 
the medium speed SRAM of the last chapter, each burst access is two cycles long. 

· Overlapping the memory bank access time allows this longer access time to be hidden 
from the system viewpoint, except on the first word of a non-sequential access. The 

· result is a: memory that provides four cycle access time for the first word of a non­
sequential access and single cycle access for subsequent words in a burst transfer. 

· The instruction memory bank has a read-only port for sending instructions to the 
Am29000 and a read/write port tied to the Am29000 data bus., This port provides 
access. via the data bus for instruction loading and memory diagnostics. The data 
memory has a single read/write port connection to the Am29000 data bus. 

INSTRUCTION MEMORY 

· lnterfac'e Logic Block Diagram 
Refer to the block diagram in Figure 6-1. 

The Memor}t 
The memories are 1 M x 1 ~bitSCDRAMs with ~eparate data in and out lines. The ac­
cess time is 85. ns: Thirty.:two devices are required in each bank to form the 32-bit wide 
i~struction wor~ tor the Am29000. These ar~ ~hown as devices U21 through UBS. 

SCDRAMs are used to provide for access to sequential words within two clock cycles at 
25 MHz and to simplify the required logic design. SCD.RAMs have an advantage over 
.standard DRAMS in that'once a row is accessed, additional accesses within the same 
rov-1 ca~ be done simply by changing the column address and waiting the access time 
delay of 45 ns. Standard DRAMs with page mode access ability require that the Col­
umn. Address Strobe (CAS) be cycled for each new word accessed. Eliminating the 
need to cycle CAS simplifies the logic design and most SCDRAMs have faster access 
cycle tim~s in static column mode than do·equivale'nt DRAMs in page mode. 

One additional "potential" advantage for either Page Mode or SCDRAMs is that the 
access time to words within an already selected row is much less than that required if 
the needed word lies in a different row. It is possible to reduce the initial access time of 
the memory whenever a non-seque~tial access begins in a row that is already being 
accessed. This is done by comparing all addresses from the processor with any 
currently active .row address.. If a match is ide'ntified the memory control logic can 
simply access the needed word rather tha·n precharging the memory and giving a new 
row address. This can reduce the initial access time from five to three cycles (pre­
charge time between row addresses adds one· clock cycle to the basic 4-cycle initial 
access time). 
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Figure 6·1 
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This advantage is describedabove·as "potential" because in the interest of keeping the 
design simple, this memory design does not implement the comparators or control logic 
needed to utilize the possible improvements from Page or Static Column modes (an­
other exercise for the reader). 

Data Bus Output Buffers ' 
The memory data outputs are connected to the data bus lines via high-speed buffers. 
These buffers are required to isolate the memory outputs from the data bus whenever 
the memory is accessing instruction words. This isolation allows another data memory 
block to use the data lines at the same time that instructions are being fetched from this 
memory block. The?e are shown as devices U95 through U 102. 

Data Bus Input Latches 
The memory data inputs are connected to the data bus lines via Am29C843A latches. 
These are shown as devices U86 through U94 .. 
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Latches are. used for the following reasons: · 

1 . CH IP SELECT is used as. the .write-enable qualifier. 

2. The CHIP SELECT signal is a registered output of the memory control logic and 
therefore its edge transitions occur one clock-to-output delay of a D-speed PAL 
after the system clock time (3 to 8 ns plus memqry loading.delay). 

3. Write data to the memories mus.t be valid at orbefore the falling edge of the CHIP 
SELECT signal . 

4. Write data must be held valid for at least 20 ns after the falling edge of the CHIP 
SELECT signal . 

' . 
5. The CHIP SELECTsignal minimum pulse width is 25 ns. 

6. The data output valid delay from the Am29000 processor is 18 ns. 

Due to the above, it is not possible to V(rit.e data directly from the processor data bµs 
since the data may not be valid until after the falling edge of the CHIP SELECT signal 
during burst write cycleswhere new data is placed on the bus in each cycle (as a result 
of items '2, 3 and 6 above). 

A register clocked by the rising edge of system clock would not have a clock-to-output 
. delay fast enough to ensure meeting the data setup time to the CHIP SELECT signal . 

(Item 2) 

A register clocked by the falling edge of system clock may not satisfy the required hold 
time relative to the CHIP SELECT signal, assuming a single register set is used and is 
simply clocked_ on eachfalling edge of system clock. (Items 2 and 4) 

Dual register sets, one for each bank, clocked on every other falling edge of system 
clock could work. However, the worst-case timing margin for data setup time to the 
CHIP SELECT signal is very small, due to clock-gating logic plus clock;.to-output time of 
a register. 

Dual latch sets, one for each bank, latch enabled every other cycle by the active bank 
indicator. (Q02E) and a delayed system clock, will al_so work. Latches allow data to flow 
through to the memory inputs prior to the falling edge of the CHIP SELECT signal. The 
latches also hold the data valid for the required time after the CHIP SELECT signal. 
Both functions are accomplished· with reasonable timing margins. · 

So with all the abo~e in mind, data latches were chosetn for use in the input data path to 
the memories. Using this data latching approach· means that data is removed from the 
bus one cycle earlier than would be the case if simple buffers could be used; this makes 
a write operation one cycle faster than an equivalent read operation. · · 
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Instruction Bus Buffers 
The memory data outputs are also connected to the instruction bus lines via buffers. 
These buffers serve to isolate the data outputs of this memory block from those outputs 
of other memory blocks which may also drive the instruction bus. Also the buffers serve 
to isolate the even and odd banks of this memory block from each other so that simulta­
neous data access can go on in each bank independently. These buffers are shown as 
devices U103 through U110. 

Address Registers and Counters 
To support burst accesses the lower seven address bits to each memory bank come 
from a loadable counter. An 8-bit counter is used to provide the address so that the 
least significant bit of the counter can be used to track which memory bank is connected 
to the data or instruction bus on each cycle. The upper seven bits of the counter are 
used as the least significant address bits to each memory bank. 

Each 8-bit counter is built from one AmPAL16R4 and one AmPAL16R6 D-speed PALs. 
The counters f6r both banks are shown as devices US, U7, U9, and U10. The D-speed 
PALs are used because their clock-to-output delay is significantly faster than standard 
MSI 8-bit counters. Also, the use of PALs allow additional functions to be integrated 
into the same packages used for the counter function. 

The upper 14 bits of memory address need not come from a counter since the 
Am29000 will always output a new address when a 256 word boundary is crossed. 
The upper 14 bits of address are simply latched. A latch is used so that the address 
can flow through to the memories during the decode cycle and be setup before the 
falling edge of Row Address Strobe (RAS). 

Address bits 1 O through 12 are latched within the PALs which are used to implement 
the lower half of each bank address counter. 

The upper 10 address bits (address bits 13 through 22) are latched in a pair of 
Am PAL 16L8D PALs which also generate the needed latch-enable term. These are 
shown as devices US and U11. 

A separate set of address counter logic is used to address each memory bank. This is 
done because when one bank is connected to the data or instruction bus, the other 
bank will be accessing the next word in sequence. This requires that the two banks 
have independently incremented addresses. The address for each bank will increment 
on different cycles. 

Memory Address Multiplexers 
The upper and lower 1 O bits of memory address must be multiplexed into the address 
inputs of the memories. Discrete multiplexers are used rather than simply controlling 
the output enables of the address counters and latches to form a three-state multi­
plexer. This was done to provide tighter control over the timing of the multiplexer 
switching between sources. The input switching delay of the multiplexer is no worse 
than what the three-state enable delays would be if the three-state multiplexer approach 
was used, although they do add undesired delay in the burst access address to data 
timing in read operations. Multiplexing is done via 7 4F158 multiplexers shown as 
devices U12-U14 and U114-U116. 

STATIC COLUMN DRAM WITH INTERLEAVED BANKS 6·5 



Registered Control Signals 
As noted earlier, the timing of the Instruction Burst REQuest (IBREQ), Data Burst 
REQuest (DBERQ) , and Bus INValid (BINV) control signals require that they be 
registered by a low setup time register. A 74F175 register, U3 spo~n in Figure 6-1, is 
used as a low setup time register. 

Interface Control Logic 
This logic must generate the memory response signals, manage the loading and count­
ing of memory addresses, generate RAS and the CHIP SELECT signals, control the 
data buffer output enables, and perform memory refresh. The logic functions needed 
for this.require 10 PALs: two AmPAL20L8B, two AmPAL16R4D, four AmPAL16R6D, 
one Am PAL 16L8B, and one AmPAL22V1 OA. . 

In Figure 6-1, device U1 an AmPAL16L8B produces the load and count enable signals 
for the address counters. · · 

Device U2, an AmPAL22V1 OA provides a. refresh interval counter and refresh request 
logic. 

Devices U4 and U5 AmPAL20L8B PALs perform address decode for instruction and 
data accesses. Their outputs indicate when this memory block has been addressed, 
when an access is to begin, and when an access is terminated . 

. Devices U15 through U20, four AmPAL16R6D and two AmPAL16R4D PALs, form a 
complex state machine that controls the RAS, CHIP SELECT, output buffer enables, 
write enables, and memory response signals. 

Response. Signal Gating 
As noted in the last chapter, the memory response signals from all ,system bus devices 
are logically ORed together before being returned to the Am29000 processor. An 
example of this circuitry was shown in Figure 4-3. These gates are. not counted as part 
of the components within the memory design since they are shared by all the bus 
devices in the system and as such are part of the overhead needed in any Am29000 
system. · 

Me~orv Interface Logi~ Equations. 

· State Machine · 
The control logic for this memory can be thought of as a Mealy-type state machine in 
which the outputs are a function of the inputs and the present state of the machine. 
This structure is required since some of the .output signals must be based on inputs 
which are not valid until the same cycle in which the O!Jtputsare required to effect 
control of the memory. ·· 

As shown in Figure 6-2, this state machine can be described as having 15 states. 
These states control the enabling of activity on the memory RAS, CHIP SELECT, 

·burst acknowledge, output buffer enable.and ready lines .. 

. IDLE is the default state of the interface state machine. -It is·characterized by Instruction 
Burst ACKnowledge (!BACK) and Data Burst ACKnowledge (DBACK) both being inac­
tive and no refresh activity in progress. This state serves as a way of identifying when 
the memory is not being accessed and could be placed into a low power mode. This 
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Figure 6·2 

state also serves as a p'recharge cycle for the memory when a transition is made be­
tween instruction, data, and refresh sequences. A transition to either the Instruction 
RAS (IRAS} or Data RAS (ORAS) states occurs when an address selecting this memory 
block is placed on the address bus. A transition to the Refresh Request 1 (RQ1} state 
occurs when a refresh request is active. Refresh will take priority over any pending 
instruction or data access request. 

The IRAS state occurs during the first cycle of memory access following a new instruc­
tion address being presented on the address bus. During this state the instruction 
output buffer enables and Ready response lines are held inactive and the IBACK and 
RAS 'lines go active. The address latches are closed to hold the memory address. 
RAS is used as the input to a delay line whose output will switch the address mux to the 
column address after the row address hold time is satisfied. The transition to the 
Instruction Column Address Strobe (IC~~} state is unconditional. 

During the ICAS state the memory CHIP SELECT signal goes active to start the first 
access cycle. Since the.CHIP SELECT access time for the memories used is 45 ns, it 
will take two cycles to access the memory, propagate data through the data buffers, and 
meet the setup time of the processor. Therefore the transition to the Instruction AC­
CESS (!ACCESS} state is unconditional. 

(REFRESH+ ISTART + DSTART) 

SCDRAM Memory State Diagram 

STATIC COLUMN DRAM WITH INTERLEAVED BANKS 6·7 



The !ACCESS state is used during the third cycle of a new address access and during 
all subsequent burst access cycles, whether active or susperideq. In this state the 
instruction output buffer enable and ready lines are allowed to be active as required by 
the active or suspended status of an instruction burst request. When a new instruction 
address appears on the bus, a transition to the PreCharge (PC) state will occur. Also, if 
a data address selecting this memory block appears there will be a transition to the PC 
state to force a preemption of the current instruction access. The same is true when a 
refresh request is pending. The state machine remains in the !ACCESS state as the 
default if no other state transition condition appears. · 

During the PC state, both burst acknowledge signals will go inactive along with RAS. 
The PC state will preempt any burst access and begin.the RAS.precharge required 
before any new row address is applied to the memory. The precharge period for the 
memory used is 80 ns so a second cycle of precharge will be done during the IDLE 
cycle which unconditionally follows the PC cycle. Another important use of the PC state 
is as a delay cycle in the transitio11 between ar:i active instruction burst access being 
preempted and the start of the preempting data access. The delay is needed to allow 
the completion of the final instruction access in the. cycle that IBAC~ is deasserted and 
the in.struction burst access is preempted. 

There are two data access sequences, one for read, and another for write accesses. 

During a read access the sequence is the same as for an instruction access except that 
during the Data ACCESS (DACCESS) cycles the DROY and Data Output Enable (DOE) 
signals are allowed to be active instead of the instruction related control signals. The 
read DACCESS state is exited when a refresh is pending, or when a data access is 
suspended. The exit transition is to the PC state. 

A data write access is a little different in that during a write, the CHIP SELECT signal is 
cycled to act as the write enable gate to the memories. This means that data to be 
written is latched from the.bus in the cycle prior to CHIP SELECT being made active. 
Therefore the DROY signal will go active one cycle before the CHIP SELECT goes 
active. This creates a problem that is solved by·the Write Burst Preempt (WBP1 and 
WBP2) states. 

It is important to note that when the RFRQ1 signal is active, it will preempt a DACCESS 
and that a write operation is, in effect, pipelined. Data to be written is removed from the 
bus in the cycle before the write operation is enabled. So in the cycle that DBACK is 
made inactive to preempt the access, there may be one last data word being accepted 
from the bus. This word must be written in the following cycle. Also, at the point that a 
refresh request goes active, DBACK will still be active and will not be made inactive until 
the beginning of the next cycle. So, from the time that refresh request goes active until 
the last write cycle in memory is done, two cycles will occur~ These cycles are labeled 
WBP1 and WBP2. During WBP1 the DBACK signal is made inactive to preempt the 

. access, and data from th.e previous bus cycle is written. During WBP2 the last data 
word accepted from the bus is written, at which point the· exit to the PC state is made. 

Finally there is the refresh sequence. Once the IDLE state is reached and a refresh is 
pending, the refresh sequence will start as the highest priority task of the memory. In 
fact, during the IDLE cycle, CHIP SELECT will go active to setup for a CAS-before-RAS 
refresh cycle. This type of refresh cycle makes use of the SCDRAM internal refresh 
counters to supply the refresh address. During RQ1, RAS is made active as during 
IRAS and ORAS cycles. The RQ2 and RQ3 cycles are used to supply two additional 
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wait states to make up the three cycles needed to satisfy the minimum RAS active time 
of 85 ns. 

Logic Details-Signal by Signal 
All signals are described in active high terms so that the design·is a little easier to 
follow. The signals as implemented in the final Programmable Array Logic (PAL) out­
puts will often be active low as required by the actual circuit design. The actual PAL 
Definition files are included in Figures 6-3 through 6-18 at the end of this chapter. 

NOTE: All PAL equations in this handbook use the following convention: 

1. Where a PAL equation uses a colon followed by an equals sign (:=),the equation 
signals are REGISTERED PAL outputs. 

2. Where a PAL equation uses only an equals .sign ("7). the equation signals are 
COMBINATORIAL PAL outputs 

RFREQ (Refresh Request) -Funny thing about dynamic memories, they're very for­
getful. They need to be completely refreshed every 4 ms, which translates into at least 
one row refreshed every 15.6 µson average. To keep track of this time a counter is 
used. Once a refresh interval has passed, a latch is used to remember that a refresh is 
requested while the counter continues to count the next interval. Once the refresh has 
been performed, the latch is cleared. 

The counter and refresh request latch is implemented in an AmPAL22V1 OA. Nine of 
the outputs form the counter, which is incremented by the system clock at 25 MHz. This 

· gives up to 512 x 40 ns = 20.48 µs refresh periods. The synchronous preset term for all 
the registers is programmed to go active on a count value of 389 which will produce a 
refresh interval of 390 cycles x 40 ns = 15.6 µs. The one remaining output is used to 
implement the refresh request latch .. That latch function (registered output) is also set 
by the synchronous preset term. 

The equations for the counter are shown in Figure 6-3. Below are the preset and 
refresh latch equation: 

SYNCHRONOUS PRESET = RFQ2 • RFQ3 • RFQ4 • RFQS • RFQ6 • RFQ7 
~ RFOB • RFQ9 • RFQ10 

RFRQO := RFRQO • (RFACK • RQ1) . · 

Refresh Sequence Equations ~A refresh of 'the memory requires multiple clocks so 
that the minimum RAS active time of 100 ns can be satisfied. To manage this the 
following equations are used. 

RFACK- The Refresh Acknowledge (RFACK) is used to begin a refresh sequence 
and to clear the pending refresh request. A refresh may begin when the state machine 
has returned to the IDLE state indicated by IBACK and DBACKI being inactive. The 
DBACKI signal is an internal version of DBACK which is active until all data write cycles 
are completed: RFACK is held active until the end of the sequence, indicated by 
RFRQ1 • RQ3. . 

· RFACK ·- DBACKI • IBACK • RFR01 
+ RFACK. ~ (RFRQ1 • RQ3) 
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RQ1, RQ2, RQ3 - The three cycles needed for a refresh are tracked by RQ1, RQ2, 
and RQ3. RQ1 will not go active until the cycle following the IDLE state. This is con­
trolled by R01 • PC1 • RFACK which is only true during IDLE. The RQ1 signal is held 
active for all three refresh cycles to provide a single signal to identify when a refresh is 
in progress. The RQ2 and RQ3 signals simply follow RQ1 with RQ3 signaling the last 
cycle of the refresh sequence. 

RQ1 := RQ1 • PC1 • RFACK 
+ RQ1 • RQ3 

RQ2 := RQ1 • RQ3 

RQ3 := RQ2 • RQ3 

REXIT- The Refresh EXIT (REXIT) signal is used to switch off the RAS signal at the 
end of a refresh sequence. RQ3 causes an exit and the RFACK term causes REXIT to 
be active outside of a refresh sequence to disable other equation terms using REXIT as 
a holding input during a refresh sequence. 

REXIT = RFACK 
+ RQ3 

IME - The use of the Instruction for ME (IME) signal is based on the assumption that 
other blocks of instruction or data memory may be added later and that there may be 
valid addresses in address spaces other than instruction/data space. 

This means that this memory will only respond with IBACK or DBACK active when this 
block has been selected by valid addresses in the instruction/data space. This requires 
that at least some of the more significant address lines above the address range of this 

· memory block be monitored to determine when this memory block is addressed. Also, it 
means the Instruction Request Type (IREQT) and Pin 169 lines must be monitored to 
determine that an address is valid and lies in the instruction/data space. Further, when 
a refresh request is pending the memory will not recognize its address. This will ensure 
refresh has the highest priority during the IDLE state. 

IME is the indication that the address of this memory block is present on the upper 
address lines, an instruction request is active, Pin 169 is inactive (test hardware has not 
taken control), no refresh is pending, and instruction/data address space is indicated. In 
other words this memory block is receiving a valid in.struction access request. This 
example design will assume that the address of this memory block is equal to A31 • A30 
• A29 • A28 • A27. T.he equation .tor this signal is: 

IME = IREQ • IREQT • A31 • A30 • A29 • A28 • A27 • Pin169 • RFRQ1 

Note that IME is not directly implemented as a PAL o·utput in this design. The terms are 
used in the generation of the l~TART and IEXIT terms.· 

DME - The Data ME (DME) signal is the indication that the address of this memory 
block is present on the upper address lines, a data request is active, Pin 169 is inactive, 
refresh is not active, and instruction/data address space is indicated. In other words this 
memory block is receiving a valid data access request. This example design will as­
sume that the address of this merriory block is equal to A31 · • A30 • A29 • A28 • A27. 
Note that for instruction accesses the memory address for this block had A31 =zero 
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where the data accesses to this block are valid for A31 = one.· This allows instruction 
memory for instruction accesses to be located at address zero while having the window 
for data bus access to the instruction memory located at a different base address. This 
allows the separate data memory block used in this design to have its base address 
also at zero. Thus both the instruction and data memories are located at address zero 
in their respective address spaces. 

The equation for this signal is: 

DME = DREQ • DREQTO • DREQT1 • A31 • A30 • A29 • A28 • A27 • Pin169 
• REFRQ1 

As with IME this term is not directly implemented. 

ISTART- The Instruction START (!START) signal causes the transition from IDLE to 
IRAS states. It is valid only in the IDLE or IACESS state with no refresh sequence start­
ing, identified by not being in any other state via DBACKI • RFACK • PC1. So when in 
the IDLE or IACESS state and IME is active, !START is active. 

ISTART = DBACKI • RFACK • PC1 • IME 

DSTART-The Data START (DSTART) signal is similar to !START except with DME 
as the qualifier. 

DSTART = IBACK • RFACK • PC1 • DME 

START - The ST ART signal is used to restart RAS following precharge when there is 
still an active access in progress:· This condition occurs when an instruction or data 
access is suspended and· a new instruction or data access is started. In that situation 
the memory must be precharged before the new address is presented along with RAS. 
During this PC time the appropriate burst acknowledge signal is held active so as not to 
preempt the new access. 

START= PC1 • PC2 • IBACK 
+ PC1 • PC2 • DBACKI 
+ PC1 • PC2 • RFACK 

IEXIT - The Instruction EXIT (IEXIT) equation identifies when it is time to leave the 
!ACCESS state. IEXIT is true if no instruction access is in progress. The IBACK input 
causes this so that other equations that use IEXIT to hold a term active will have that 
holding term made invalid when the IEXIT equation has no valid meaning i.e. when no 
instruction access is active. 

IEXIT is also active when a data access, a refresh, or an instruction access not ad­
dressing this memory is pending. But, each of these conditions for IEXIT is restricted in 
one special situation. 

When an instruction access is suspended and a new instruction access begins, IBACK 
is already active in the first cycle of the new instruction. The IBACK signal being active 
tells the processor that the address has been captured by the memory and a new ad­
dress may be placed on the bus, perhaps one for a data access. 
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So, the memory is committed to accessing at least one instruction word for the new 
instruction access even though the address for the new access may change to begin yet 

. another access. 

Therefore any subsequent data access, refresh, or instruction access must be held off 
until at least one word of the new instruction access can be read. Note that this can 
take several cycles since, when a new instruction access starts after a previously sus­
pended one, the memory must be precharged followed by the normal sequence of RAS 
and CHIP SELECT signals before the new instruction access is complete. 

This restriction is applied by not allowing an exit until after the PC states and instruction 
access sequence are complete. These are represented by PC1, PC2, and 101 in the 
final equation . 

. As noted before, the DME term is a documentation convenience. In the IEXIT equation 
this term is directly expanded so that all inputs of DME are inputs to IEXIT. This elimi­
nates a level of logic delay that would be needed if DME were implemented as the 
output of another PAL. 

The IEXIT equation is: 

IEXIT = DME ~ 101 • PC1 • PC2 
+ IREO • 101 • PC1 • PC2 
+ RFRQ1 • 101 • PC1 • PC2 
+ IBACK 

A data request to this memory block for instruction data space takes priority over an 
instruction fetch in progress. Also, if a new instruction fetch stream is started, this 
memory interface can. return to the idle state. 

DEXIT - The description of IEXIT applies directly to the Data EXIT {DEXIT) signal; the 
logic is the same with data respective signals substituted for instruction terms. The only 
difference is that the first exit term is a little different. A data access terminates when 
there is no further data burst requested. This approach is an optimization for use with 
the Am29000. It makes use of the fact that the Am29000 will never suspend a data 
transfer and burst data transfers will always go to completion in a single contiguous 
burst access. When a burst simple or piplelined access ends, the memory immediately 
goes into precharge so the memory will be ready for subsequent accessess with a 
minium initial access delay. 

· DEXIT 001 • PC1 • PC2 • DBREO.D 
+ 1501 • PC1 • PC2 • RFRQ1 
+ DBACKI 

IBACK ~The Instruction Burst ACKnowledge {IBACK) signal is applied to the 
Am29000 and is in effect the indication that the interface state machine is in an active or 
suspended instruction access. The equation is: 

IBACK := BINV • ISTART 
+ IEXIT 

The IBACK active state is entered when iSTART is active and the bus state is valid on 
the same cycle. Note here that the BINV input is used directly rather than the registered 
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form of BINV.D: The timing of BINV is such thatitwill just meet the setup time of a D­
speed PAL input. The BINV signal is required as the qualifier since ISTART is a combi­
natorial signal. IBACK will remain active until one of the IEXIT conditions is active or 
the bus goes invalid. 

IBACK.D- The IBACK Delayed (IBACK.D) signal is simply a one cycle delayed ver­
sion of IBACK. 

IBACK.D := IBACK 

It is used in the. generation of IRDY, Instruction Output Enable (IOE)O, and IOE1. 

DBACK-The Data Burst Acknowledge (DBACK) signal is appli.ed to the Am29000 
and is in effect the indication to the processor a burst access is allowed. DBACK is es­
sentially the same as· 1BACK but with data respective terms sub.stituted. 

DBACK :=' BINV • DSTART 
+ DEXIT 

DBACK.D - The DBACK Delayed (DBACK..D) signal is simply a one cycle delayed 
version of DBACK. 

DBACK.D := DBACK 

It.is used in the generation of. DROY. 
... . 

DBACKI - The DBACK Internal (DBACKI) signal is ~.memory .interface internal version 
of DBACK to the Am29000 and is in effect the indication that the interface state ma­
chine is in an active or suspended data access. This sigr:ial will stay active during the 
DWBP states after DBACK has gone inactive to preempt a data burst write operation. 
The equation is: 

DBACKI := BINV • DSTART 
+ DEXIT 
+ DWBP 

Instruction Initial Access States - Signals 101, 102, and 103 are used to control the 
state transitions from IRAS to !ACCESS during the first instruction access. 101 goes 
active during IRAS and remains active for two additional cycles.· 101 will go active when 
there is a valid IST ART or when there was a previously suspended. instruction access 
and a new instruction access was accepted; indicated by PC1 • PC2 • IBACK. 102 and 
103 follow 101 with 103 indicating the last cycle of the initial.access. 

IQ: BINV • 101 • ISTART • IBACK 
+ 101' • PC1 • PC2 • IBACK. 
+ 101 • 103 

102: = 101 • 103 

103 = 102 • 103 
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Data Initial Access States - These .equations are the same as for IQ1-IQ3 with data 
respective inputs. · · 

001 := BINV • 001 • OSTART • OBACK 
+ 001 • PC1 • PC2 • OBACK 
+ 001 • 003 

002 := 001 • 003 

003 := 002 • 003 

~ ' . , · 

Data Write Burst Preempt States·.:._ When a data write operation is forced to preempt 
by a refresh request there are two additiona.1 ~rite cycles that must be completed before 
PC is started. These states are tracked by.the· Data Write Burst Preempt (DWBP), 
DWBP1 I and DWBP2 signals .. DWBP starts ttie sequence' when a data write is in 
progress, with burst request active, after the initial data write is completed, and a refresh 
is pending. DWBP1 and DWBP2 simply follow.J:?WBP to indic~te trose states. 

OWBP = OBACKI • RW • OBREQ.O • RFR01 • 001 • DWBP2 

DWBP1 :='. DWBP1 • DWBP 

DWBP2 := DWBP2 • DWBP1 

Precharge States - At the end of any access, the RAS lines must be made inactive to 
precharge internal memory buses before another access with a·different row address 
may begin. Two cycles are needed and are indicated by the signals PC1 and PC2. 
PC1 is active during the PC state and PC2 is active during the first cycle of the IDLE 

· · state. PC1 goes active·as the result of an IEXIT condition during instruction access, a 
DEXIT condition during data access following any Data Write Burst Preempt (DWBP) 
cycles,·and atthe end.of a refresh sequence. ·.PC2 simply follows PC1. 

PC1 := PC1 • IBACK • IEXIT 
+ PC1 • DBACKI • DWBP • DEXIT' i· 
+ PC1 • RQ3 

PC2 := PC1 • PC2 
', •''. 

LO - The Load (LD) signal enables the lower address.bit counters and the upper ad­
dress bit latches to load a new address on ·the next' rising edge ofSystem Clock 
(SYSCLK). The equation is: 

. . 
LD. = 101 • PC1 • 'DBACKI • IREO. 

+ 001 • PC1 • IBACK • OREO 

When an Instruction Request (IREQ) signal js active.~ load is prevented from being 
active while a data access is active or suspended. In other words, when the state 
machine is in a data access state a load that would result from an instruction request is 
suppressed. This prevents the changing of the address counter values until the data 
access ends. Similarly, for the case that Data Request (DREQ) signal is active, load is 
prevented when IBACK is active. 

The LD signal is limited in length to one cycle by 101 or DQ1 during an initial access. 
It is limited to one cycle by PC1 when a new access begins during a previously 
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suspended access. Limiting the LO signal to one cycle ensures that the correct address 
is captured and that LO does notinterfere with the incrementing of the counters. The 
LD·signal is combinatorial so that it can be active during the first cycle of a new instruc­
tion or data request. 

Address Cou.nters - There is one address counter for each bank of memory. Each is 
implemented with one AmPAL16R4D and one AmPAL16R6D device. The counter 
function is split across two PALs due to the number of product terms required to imple­
ment the upper bits of the counter. Th~ lower half of the counter produces a carry out to 
the upper counter half. The equations for both bank counters are the same. These 
equations are shown in Figures 6-13 througl:) 6-16. 

The LSB bit of each counter is used as the means to control the timing of when the 
upper seven bits of each counter will increment. Note that only the upper seven bits of 
the counter are used as the low seven bits of address to'the memory in a bank. This is 
because, with tWo interleaved banks, the maximum length burst access is split between 
the banks so each bank counter will never increment more than 128 times. 

The upper bits of each counter increment on every cycle that the count signal is active 
and the LSB is also active. The only exception to the latter condition is during a bus 
invalid cycle where BINV signal is used to prevent counting when burst request may be 
invalid. · 

The value of the LSB bit in each counter is different in any given cycle, which causes 
the upper bits of the counters to increment on different cycles with regard to each other. 
In other words, the upper seven bits of the counters will be out of phase in terms of 
when they increment. This allows one bank of memory to start the access of the next 
word in sequence while the other bank completes the access of the current word. 

Count Signals - There are two Count (CNT) signals defined in this design, CNTO and 
CNT1, one for the even bank and one for the odd bank. This is because the even bank 
always increments one cycle earlier than the odd bank during the jnitial access of mem­
ory. Once the counting is started out of phase between banks, the bank counters are 
always incremented together to maintain the phase relationship. The CNT signals 
cause the address counters to increment on the next rising edge of SYSCLK. 

The CNTO controls the even bank counter. During either a data or instruction read 
operation, the first active cycle of CNTO is during the DCAS or ICAS states indicated by 
the first cycle in which 002 or 102 is active. When the initial address selects an even 
word of memory, this first count cycle increments only the LSB of the even bank 
counter. This does not affect the memory address, but it makes the LSB high; this is 
used as an indication in other equations that data from the even bank is to be placed on 
the system bus. If the initial address selects an· odd word, this first count cycle incre­
ments the whole even bank counter to point to the next even word in sequence after the 
initial odd word that will come from the odd memory bank. In this case, the LSB bit is 
low and indicates that the word, that is ready to be placed on the system bus, comes 
from the odd bank. 

In the following cycle, 102 or 002 is still active, which ensures one more cycle of count. 
Any further count cycles come from burst-request signals being;active during !ACCESS 
or DACCESS states. 
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Note that in case a burst access is suspended and a new access of the same type 
begins, the address of the new access is loaded into the counter and the memory 
precharges in preparation for a new RAS cycle. During the precharge cycles, the incre­
menting of the counter must be inhibited by PC1 and PC2 so as not to change the 
address stored in the counter before the RAS and the CHIP SELECT signal cycles for 
the new access. 

The CNTO signal is handled differently during a data write in that any increment during 
I03·or 003 must be qualified by a burst request in the previous cycle. This is needed 
because in a write operation, the first Data Ready (DROY) signal active cycle comes 
one cycle earlier than in a read operation. 

CNTO = IBACK • 102 
+ . IBACK • 101 • PC1 • PC2 • IBREO.O 
+ OBACKI • RW • 002 · 
+ OBACKI • RW • 001 • PC1 • PC2 • OBREO.O 
+ OBACKI • RW • 002 • 003 
+ OBACKI • RW • 003 • OBREO.O 
+ OBACKI • RW ~ 001 • PC1 • PC2 • OBREO.O 

The CNT1 signal controls ,the odd bank counter. This equation is essentially the same 
as CNTO except that the first cycle in which CNT1 is active is always one later than it 
would have been in CNTO. 

CNT1 IBACK • 103 
+ IBACK • 101 • PC1 • PC2 •· IBREO.O 
+ OBACKI • RW • 003 
+ OBACKI • RW • 001 • PC1 • PC2 • OBREO.O 
+ OBACKI • RW • 003 • OBREO.O 
+ OBACKI • RW • 001 • PC1 • PC2 • OBREO.O 

IRDY - The Instruction Ready (IRDY) signal indicates that there is valid read data on 
the instruction bus. 

IROY = 103· 
+ BINV.O • 101 • PC1 • PC2 • IBREO.O • IBACK.O 

This memory design is always ready with data in the 103 cycle. 

The memory is also ready when IBREO is active with IBACK in the previous cycle. But, 
again the special situation of a suspended burst operation followed by a new access of 
the same type, is handled by adding 101 • PC1 • PC2 to the equation. This prevents 
IRDY from going active until the new access has had time to precharge and readdress 
the memory. The BINV.D input is used to prevent false ready indications due to signals 
on the bus being invalid. 

IBACK.D is required as a qualifier so that when an access is preempted the continued 
presence of IBREO will not cause a false ready indication. The BINV.D signal is used to 
prevent false ready indications if the bus was invalid in the previous cycle. Note that 

· situation can occur during a suspended access when the processor grants the bus to 
another bus master. 
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The· reason that IRDY must be a combinatorial signal is that IBREQ comes very late in 
the previous cycle and must be registered. There is no time to perform logic on IBREQ 
in the previous cycle before SYSCLK rises. This means that the information that IBREQ 
was active in the last cycle .is not available until the cycle in which IRDY should go 
active for a resumption of a suspended burst access. 

IOEO and IOE1 - The Instruction Output Enable (IOE} signals are used to control 
which bank is allowed to drive the instruction bus during each cycle. The signals use 
essentially the same logic as IRDY except that each signal is further qualified by the 
output of the LSB bit of the even bank counter (Q02E). This bit keeps track of which 
memory bank is ready to provide data to the instruction bus. The even bank is enabled 
when IRDY is active and the Q02E bit is active. The odd bank is enabled when IRDY is 
active and Q02E is inactive. 

IOEO = 002E • 103 
+ BINV.D • 002E • 101 • PC1 • PC2 • IBREO.D • IBACK.D 

IOE1 = 002E • 103 
+ BINV.D • 002E • 101 • PC1 • PC2 • IBREO.D • IBACK.D 

.D~DY -The.Data Ready (DROY} is the equivalent oflRDY for data accesses and 
therefore uses the same equation with data respective terms substituted for instruction 
terms. The one additional change is that a term is added to cause DROY to occur one 
cycle early during write operations. This is done because the data to be written is taken 
from the data bus into a latch before actually being stored in the memory. This main­
tains the same memory timing used during read operations but write data is removed 
from the bus one cycle earlier than when DROY would normally go active during a data 
read operation. 

DADY.= RW • D03 . . . . 
+ BINV.O • RW ~ 001 • PC1 • PC2 • OBREO.O • OBACK.D 
+ RW • 002 • 003 . 
+ BINV.D • RW • 003 • OBREO.O • DBACK.O 
+ BINV.D • RW • D01 • PC1 • PC2 • DBREO.D • DBACK.O 

DOEO and DOE1 - The Data Output Enable (DOE} sig.nals ser\te the same function for 
DROY as the IOEO and IOE1 signals serve for IRDY. Theirsignal descriptions are the 
same as for the IOE signals. The only difference is that the DOE signals are active only 
during read operations. · 

OOEO = RW • 002E • D03 
+ BINV.D • RW • 002E • 001 • PC1 • PC2 • OBREO.D • DBACK.O 

OOE1 = RW • 002E • 003 
+ BINV.D ~ RW • 002E • 001 • PC1 • PC2 • OBREO.O •: OBACK.O 

WE - Write Enable (WE} is a registered signal that goes active during the first 002 
active cycle. It stays active throughout the data write operation. The CHIP SELECT 
signal is.used in this design as the actual write gating signal. This was done to reduce 
the number of write signal outputs. Address, RAS and the CHIP SELECT lines have 
been duplicated in this design so that only half of each memory bank is driven by a 
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given output. This reduces the capacitive and inductive loading on each output so as to 
improve signal speed. Since the CHIP SELECT signal lines have already been doubled 
they are used as the write gate. The write enable line can thus be made active early in 
the cycle to have additional time to drive a heavier load. 

WEO := DBACKI • RW 
WE1 := DBACKI • RW 

Data Latch Enables - Data Latch Enable O and 1 (DLEO and DLE1) are the signals 
that enable the write data latches on the D input of each memory bank to load new data. 

The latches are enabled on every other cycle so that data is held valid long enough to 
satisfy the hold time after the CHIP SELECT signal goes active. The Q02E counter 
output is used to control which latch is enabled on a given cycle. A delayed version of 
the system clock is used to further place a window on the latch enable. This is an 8 ns 
delay generated in U111. Only during the high time of the delayed clock signal will the 
data be allowed through the latch. This is done to ensure that data is latched before the 
end of the system clock cycle when the processor begins changing the data value for 
the next write cycle. That could not be guaranteed by Q02E alone since it is a regis­
tered output with a clock-to-output delay. This is also the reason that the clock used is a 
delayed version of the system clock. This clock is delayed long enough to ensure that 
the worst-case clock~to-output time on Q02E has passed before enabling the latch. 
This ensures that no data is lost by having the latch enabled during the switching transi­
tion of Q02E as might happen if simply the system clock were used instead of the 
delayed clock. 

OLEO = Q02E • CLKD 
DLE1 = Q02E • CLKD 

Row Address Strobes - There are five duplicated ·Row Address Strobe (RAS) lines. 
Four are used to drive the memories and one drives the delay line used to switch the 
address mux at the appropriate time. Multiple lines are used to split the capacitive and 
inductive load of the memory array to improve signal speed. · 

RAS is made active by a valid ISTART, DSTART or START condition. RAS is held 
active until an exit condition exists for the type of access' .in progress. 

RASOH := BINV • RASOH • START 
+ BINV • RASOH • DSTART 
+ BINV • RASOH • START 
+ RASOH • IEXIT 
+ RASOH • DEXIT 
+ RASOH • REXIT 
+ RASOH • DWBP 

Chip Select Lines - As with the RAS lines, the CHIP SELECT lines are duplicated to 
split the memory load. 

The CHIP SELECT signal goes active in the cycle after RAS dui'ing instruction or data 
accesses. During a data write access the CHIP SELECT signal is enabled only when 
the appropriate bank is written with data. This is controlled with the Q02E line from the 
even bank address counter. CHIP SELECT signal during write is further gated by 
DRDY being active on the previous cycle which ensures that a write only occurs when 
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valid data was taken from the bus. Only in the case of a refresh sequence will CHIP 
SELECT signal be made active prior to RAS. This will initiate a CAS before RAS re­
fresh cycle in the memories. In this case the CHIP SELECT signal is made active 

. during the IDLE state. 

CASOH := RAS • IBACK 
+ RAS • DBACKI • RW 
+ RAS • DBACKI • AW • 002E • DROY 
+ RAS • IBACK • DBACKI • RFR01 

CAS1H := RAS • IBACK 
+ RAS • DBACKI • RW 
+ RAS • DBACKI • AW • 002E • DROY 
+ RAS • IBACK • DBACKI • RFR01 

Upper Address Bits Latch - The address bits, 13 through 22, are latched by two 
D-speed PALs. All the bit equations are the same. Data is flow through when the 
Address Latch Enable (ALE) term is active and latched when ALE is inactive. An addi­
tional term ANDs the data input and output to prevent any possible loss of data during 
the ALE transition that might be caused by timing skew on ALE within the PAL (note the 
ALE "term" is a documentation convenience only; where ALE is shown, the actual logic 
definition of ALE is substituted). The ALE term is made active each cycle by a delayed 
version of the system clock. The delayed clock is used for the same reasons described 
for the OLE signals. During the initial access of. an instruction or data word ALE is 
prevented from going active by the 101 and 001 terms. ALE is also held inactive 
during PC1 and PC2. This is done to preserve the address when a suspended access 
is followed by another access of the same type. In this case the address must be held 
while the memory is precharged and during the RAS cycle of the new access. 

LA22 = ALE • A22 
+ ALE • LA22 
+ A22 • LA22 

ALE = 101 • 001 • PC1 • PC2 • CLKD 

PAL Definition Files 
The PAL definition files are provided in Figures 6-3 through 6-18. 

NOTE: All PAL equations in this Application Note use the following convention: 

1. Where a PAL equation uses a colon followed by an equals sign (:=),the equation 
signals are REGISTERED PAL outputs. 

2. Where a PAL equation uses only an equals sign(=), the equation signals are 
COMBINATORIAL PAL outputs. 

3. The device pin list is shown near the top of each figure as two lines of signal 
names. The names occur in pin order, numbered from left to right 1 through 20. 
The polarity of each name indicates the actual input or output signal polarity. 
Signals within the equations are shown as active high, e.g., where signal names 
in the pin list are: ABC; the equation is C =A• B; the inputs are A= low, 
B =low; then the C output will be low. 
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Figure 6·3 

AmPAL22V1 OA SCDRAM Refresh Counter/Request Generator 
Device U2 

CLK RFACK RQ1 RQ2 RQ3 NC6 NC7 NCB NC9 NC10 NC11 GND 
NC13 RFRQO RFQ2 RFQ3 RFQ4 RFQ5 RFQ6 RFQ7 RFQ8 RFQ10 RFQ9 VCC 

RFQ2 ·- RFQ2 

RFQ3 ·- RFQ2 • RFQ3 
+ RFQ2 • RFQ3 

RFQ4 := RFQ2 • RFQ3 • RFQ4 
+ RFQ2 • RFQ4 
+ RFQ3 • RFQ4 

RFQ5 ·- RFQ2 • RFQ3 • RFQ4 • RFQ5 
+ RFQ2 • RFQS 
+ RFQ3 • RFQS 
+ RFQ4 • RFQS 

RFQ6 := RFQ2 • RFQ3 • RFQ4 • RFQS • RFQ6 
+ RFQ2 • RFQ6 
+ RFQ3 • RFQ6 
+ RFQ4 • RFQ6 
+ RFQ5 • RFQ6 

RFQ7 ·- RFQ2 • . RFQ3 • RFQ4 • RFQS • RFQ6 • RFQ7 
+ RFQ2 • RFQ7 
+ RFQ3 • RFQ7 
+ RFQ4 • RFQ7 
+ RFQ5 • RFQ7 
+ RFQ6 • RFQ7 

RFQ8 ·- RFQ2 • RFQ3 • RFQ4 • RFQS • RFQ6 • RFQ7 • RFQ8 
+ RFQ2 • RFQ8 
+ RFQ3 • RFQ8 
+ RFQ4 • RFQ8 
+ RFQS • RFQ8 
+ RFQ6 • RFQ8 
+ RFQ7 • RFQ8 

RFQ9 ·- RFQ2 • RFQ3 • RFQ4 • RFQS • RFQ6 • RFQ7 • RFQ8 • RFQ9 
+ RFQ2 · • RFQ9 · 
+ RFQ3 • RFQ9 
+ RFQ4 • RFQ9 
+ RFQS • RFQ9 
+ RFQ6 • RFQ9 
+ RFQ7 • RFQ9 
+ RFQ8 • RFQ9 
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Figure 6·3 (Continued) 

Figure 6·4 

. Device U2 (Continued) 

RFQ10 := RFQ2 • · RFQ3 • RFQ4 • RFQS • RFQ6 • RFQ7 • RFQ8 • RFQ9 • RFQ10 
+ RFQ2 • RFQ10 
+ · RFQ3 • RFQ10 
+ RFQ4 • RFQ10 
+ RFQS • RFQ10 
+ RFQ6 • RFQ10 
+ RFQ7 • RFQ10 
+ RFQ8 • RFQ10 
+ RFQ9 • RFQ10 

SYNCHRONOUS PRESET = RFQ2 • RFQ3 • RFQ4 · • RFQS • RFQ6 • RFQ7 • RFQ8 
• RFQ9 • RFQ10 

RFRQ1 := RFRQ1 • (RFACK • RQ1) 

AmPAL16R6D DRAM Refresh State Generator-Interleaved 
Device U15 

CLK IBACK DBACKI RFRQ1 DBREQ.D 001 PC1 RW NC9 GND 
OE DWBP DWBP1 DWBP2 RFACK RQ1 RQ2 RQ3 REXIT VCC 

RFACK := DBACKI • IBACK • RFRQ1 
+ RFACK • (RFRQ1 • RQ3) 

RQ1 := RQ1 • PC1 • RFACK 
+ RQ1 • RQ3 

RQ2 := RQ1 • RQ3 

RQ3 := RQ2 • RQ3 

REXIT RF ACK 
+ RQ3 

DWBP DBACKI • RW • DBREQ.D • RFRQ1 • DQt • DWBP2 

DWBP1 := DWBP1 • DWBP 

DWBP2 := DWBP2 • DWBP1 
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Figure 6·5 

Figure 6·6 

AmPAL 16R6D DRAM Precharge State Generator-Interleaved 
Device U16 

CLK !START DSTART IEXIT NCS DEXIT NC7 .RQ3 BINV GND 
OE DWBP IBACK DBACK DBACKI PC1 PC2 'NC18 NC19 VCC 

IBACK := BINV • ISTART 
+ IEXIT 

DBACK := BINV • DSTART 
+ DEXIT 

DBACKI ::::: BINV • · DSTART .. 
+ DEXIT 
+ DWBP 

PC1 := PC1 • IBACK • IEXIT 
+ PC1 • DBACKI •.' DWBP . • DEXIT 
+ PC1 • RQ3 

PC2 := P.C 1 • PC2 

. ' •' ' . 

AmPAL20L8B DRAM State Decoder-Interleaved 
Device U4 

. . ~ 

RFRQ1 IREQ DREQTO DREQT1 IREQT PiN169 A31 A30 .. •A29 A28 A27 GND 
RFACK OREO ISTART IEXIT IBACK DBACKI PC1 PC2 START NC18 101 VCC 

ISTART = DBACKI • RFACK • PC1 • IME 

START= PC1 • PC2 • IBACK 
+ PC1 • PC2 • DBACKI 
+ PC1 • PC2 • RFACK 

IEXIT TO'f • PC1 • PC2 • DME 
+ TO'f • PC1 • PC2 • IREQ 
+ TO'f • PC1 • PC2 • RFRQ1 
+ IBACK. 

· .. i' 

NOTE: In the above equations, IME and DME ·are·:used only for clarity. The actual input terms 
should be substituted when compiling this device. 

DME = DREQ • DREQTO • DREQT1 • A31 • A30 • A29 • A28 • A27 • PIN169 
• RFRQ1 

IME = IREQ • IREQT • A31 • A30 • A29 • A28 • A27 • PIN169 • RFRQ1 
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Figure 6·7 

Figure 6·8 

AmPAL20LBB DRAM. State Decoder..;...lnterleaved 
Device US 

RFR01 .IREO DREOTO DREOT1 PiN169 IREOT A31 · A30 A29,:A28 A27 GND 
RFACK OREO DSTART DEXIT DBREO.D IBACK DBACKI PC1 PC2 NC18 001 VCC 

DSTART = IBACK • RFACK • PC1 • DME 
,i 

DEXIT 001 • PC1 • PC2 • IME • DBREO.D 
+ 001 • PC1 • PC2 • RFR01 
+ DBACKI 

NOTE: In the above equations, IME and DME are used only for clarity. The actual input terms 
should be substituted when compiling this device .. 

IME = IREO • IREOT • A31 • A30 • A29 • A28 • A27 • PIN169 • RFR01 

DME~= OREO • DREOTO • DREOT1 : A31 • A30 ~ .A29 • A28 • A27 • PIN169 • RFR01 

AmPAL16R4D DRAM Instruction State Generator-Interleaved 
Device U17 

CLK IBACK ISTART IPC1 IPC2 1'052E IBREO.D IBINV.D IBINV IGND 
OE IOEO IOE1 101 102 103 IBACK.D IRDY NC19 VCC 

IBACK.D := IBACK 

101 := BINV • 101 • IST ART • IBACK 
+ 101 • PC1 • PC2 • IBACK 
+ 101 • 103 

102 := 101 • 103 

103 := 102 • 103 

IRDY 103 
+ BINV.D • 101 • PC1 • PC2 • IBREO.D • IBACK.D 

IOEO 002E • 103 
+ BINV.D • 002E • 101 • PC1 • PC2 • IBREO.D • IBACK.D 

IOE1 002E • 103 
+ BINV.D • 002E • 101 • PC1 • PC2 • IBREO.D • IBACK.D 
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Figure 6·9 

AmPAL 16R4D DRAM Data State Generator-Interleaved 
Device U18 

CLK DSTART DBACK PC1 PC2 Q02E DBREO.D BINV RW GND 
OE DOEO DOE1 001 002 003 DBACK.D DROY BINV.D VCC 

DBACK.D := DBACK 

001 := BINV • 001 • DSTART • DBACK 
+ 001 • PC1 • PC2 • DBACK 
+ 001 • 003 

002 := 001 • 003 

003 := 002 .• ' 003 

DROY RW • 003 
+ BINV.D • RW • 001 • PC1 • PC2 • DBREO.D • DBACK.D 
+ RW • 002 • 003 
+ BINV.D • RW • 003 • DBREO.D • DBACK.D 
+ BINV.D •. RW • 001 • PC1 • PC2 • DBREO.D. • DBACK.D 

DOEO RW • 002E • 003 
+ BINV.D • RW • 002E • 001 • PC1 • PC2 • DBREO.D • DBACK.D 

DOE1 RW • 002E • 003 
+ BINV.D • RW • 002E • 001 • PC1 • PC2 • DBREO.D • DBACK.D 
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Figure 6·10 

AmPAL16R6D DRAM RAS Generator-Interleaved 
Device U19 

CLK ISTART DSTART IEXIT NCS DEXIT NC7 REXIT BINV GND 
OE START RASOH .RASOL RAS1H RAS1L RAS NC18 DWBP VCC 

RASOH := BINV • RASOH • ISTART 
+ BINV • RASOH • DSTART 
+ BINV • RASOH • START 
+ RASOH • IEXIT 
+ RASOH • DEXIT 
+ RASOH • REXIT 
+ RASOH • DWBP 

RASOL := BINV • RASOL • ISTART 
+ BINV • RASOL • DSTART 
+ BINV • RASOL • START 
+ RASOL • IEXIT 
+ RASOL • DEXIT 
+ RASOL • REXIT 
+ RASOL • DWBP 

RAS1H := BINV • RAS1H • ISTART 
+ BINV • RAS1H • DSTART 
+ BINV • RAS1H • START 
+ RAS1H • IEXIT 
+ RAS1H • DEXIT 
+ RAS1H • REXIT 
+ RAS1H • DWBP 

RAS1L := BINV • RAS1L • ISTART 
+ BINV • RAS1L • DSTART 
+ BINV • RAS1L • START 
+ RAS1 L • IEXIT 
+ RAS1 L • DEXIT 
+ RAS1L • REXIT 
+ RAS1 L • DWBP 

RAS := BINV • RAS • ISTART 
+ BINV • RAS • DSTART 
+ BINV • RAS • START 
+ RAS • IEXIT 
+ RAS • DEXIT 
+ RAS • REXIT 
+ RAS • DWBP 
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Figure 6·11 

Figure 6·12 

AmPAL16R6D. DRAM CAS Generator-Interleaved 
Device U20 

CLK 002E IBACK DBACKI RFACK RAS RFR01 RW DROY GND 
OE NC12 CASOH CASOL CAS1 H CAS1 L WEO WE1 NC19 VCC 

CASOH := RAS • IBACK 
+ RAS • DBACKI • RW 
+ RAS • DBACKI • RW • 002E • DROY 
+ RAS • IBACK • DBACKI • RFR01 

CASOL := RAS • IBACK 
+ RAS • DBACKI • RW 
+ RAS • DBACKI • RW • 002E • DROY 
+ RAS • IBACK • DBACKI • RFR01 . 

CAS1H := RAS • IBACK 
+ RAS • DBACKI • RW 
+ RAS • DBACKI • RW • 002E • DROY 
+ RAS • IBACK • DBACKI • RFR01 

CAS1L := RAS • IBACK 
+ RAS • DBACKI • RW 
+ RAS • DBACKI • RW • 002E • DROY 
+ RAS • IBACK • DBACKI • RFR01 

WEO := DBACKI • RW 

WE1 := DBACKI • RW 

AmPAL 16LSB DRAM Counter Load-Interleaved 
Device U1 

IBREO.D DBREO.D IBACK DBACKI 101 102 103 IREO. OREO GND 
RW CNTO LO 001 1502 003 PC1 PC2 CNT1 VCC 

LO = TQf • PC1 • DBACKI • IREO 
+ 001 • PC1 • IBACK • OREO 

CNTO = IBACK • 102 
+ IBACK • iOf • PC1 • PC2 • IBREO.D 
+ DBACKI • RW • 002 
+ DBACKI • RW • 001 • PC1 • PC2 •. DBREO.D 
+ DBACKI • RW • 002 • 003 
+ DBACKI • RW • 003 • DBREO. 
+ DBACKI • RW • 001 • PC1 • PC2 • DBREO.D 

CNT1 = IBACK • 103 
+ IBACK • iOf • PC1 • PC2 • IBREO.D 
+ DBACKI • RW • 003 
+ DBACKI • RW • 001 • PC1 • PC2 • DBREO.D 
+ DBACKI • RW • 003 • DBREO.D 
+ DBACKI • RW • 001 • PC1 • PC2 • DBREO.D 
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Figure 6·13 

AmPAL16R4D DRAM Address Counter­
Interleaved Section 0-Even Bank 
Device U6 

CLK CNTO LD A02 A03 A04 A05 NC8 CLKD GND 
OE DLEO DLE1 002E 003E 004E QOSE BINV COUTO VCC 

Q02E := LD • A02 • BINV 
+ LD • CNTO • 002E • BINV 
+ LD • CNTO • 002E • BINV 
+ BINV • 002E 

003E := LD • A03 • BINV 
+ LD • CNTO • 003E • BINV 
+ LD • CNTO • 002E • Q03E • BINV 
+ LD • CNTO • 002E • Q03E • BINV 
+ BINV • 003E 

004E := LD • A04 • BINV 
+ LD • CNTO • 004E • BINV 
+ LD • CNTO • Q02E • Q03E • Q04E • BINV 
+ LD • CNTO • 002E • Q04E • BINV 
+ LD • CNTO • 003E • Q04E • BINV 
+ BINV • 004E 

Q05E := LD • A05 • BINV 
+ LD • CNTO • 005E • BINV 
+ LD • CNTO • 002E • Q03E • Q04E • QOSE • BINV 
+ LD • CNTO • 002E • QOSE • BINV 
+ LD • CNTO • 003E • Q05E • BINV 
+ LD • CNTO • 004E • QOSE • BINV 
+ BINV • Q05E 

COUTO = 002E • 003E • Q04E • QOSE 

DLEO = 002E + CLKD 

DLE1 = 002E + CLKD 
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Figure 6·14 

AmPAL 16R6D DRAM Address Counter­
Interleaved Section 1-Even Bank 
Device U7 

CLK CNTO LD A06 AO? A08 A09 A10 M1 GND 
OE CINO Q06E Q07E QOBE Q09E 010 011 BINV VCC 

Q06E := LD • A06 • BINV 
+ LD • CNTO • 006E • BINV 
+ LD • CNTO • CINO • Q06E • BINV 
+ LD • CNTO • CINO • Q06E • BINV 
+ BINV • Q06E 

Q07E := LD • A08 • BINV 
+ LD • CNTO • Q07E • BINV 
+ LD • CNTO • CINO • Q06E • Q07E • BINV 
+ LD • CNTO • CINO • Q07E • BINV 
+ LD • CNTO • Q06E • 007E • BINV 
+ BINV • Q07E 

008E := LD • A09 • BINV 
+ LD • CNTO • 008E • BINV 
+ LD • CNTO • CINO • Q06E • Q07E • QOBE • BINV 
+ LD • CNTO • CINO • Q08E • BINV 
+ LD • CNTO • 006E • Q08E • BINV 
+ LD • CNTO • Q07E • 008E · • BINV 
+ BINV • Q08E · 

009E := LD • A09 • BINV 
+ LD • CNTO • 009E • BINV 
+ LD • CNTO • CINO • Q06E • Q07E • 008E •. Q09E • BINV 
+ LD • CNTO • CINO • 009E • BINV 
+ LD • CNTO • 006E • 009E • BINV 
+ LD • CNTO • Q07E • 009E • BINV 
+ LD • CNTO • 008E • 009E • BINV 
+ BINV • 009E 

NOTE: Even bank counter holds 010 and 011, odd bank counter holds 012 and 013. 

010 := LD • A10 + LD • 010 
011 := LD • A11 + LD • 011 
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Figure 6-15 

AmPAL 16R4D DRAM Address Counter~ 
Interleaved Section 0-0dd Bank 
Device U9 

CLK CNT1 LO A02 A03 A04 A05 NC8 NC9 GNO 
OE NC12 NC13 0020 0030 0040 0050 BINV COUT1 VCC 

0020 := LO • A02 • BINV 
+ LO • CNT1 • 0020 • BINV 
+ LO • CNT1 • 0020 • BINV 
+ BINV • 0020 

0030 := LO • A03 • BINV 
+ LO • CNT1 • 0030 • BINV 
+ LO • CNT1 • 0020 • 0030 • BINV 
+ LO • CNT1 • 0020 • 0030 • BINV 
+ BINV • 0030 

0040 := LO • A04 • BINV 
+ LO • CNT1 • 0040 • BINV 
+ LO • CNT1 • 0020 • 0030 • 0040 • BINV 
+ LO • CNT1 • 0020 • 0040 • BINV 
+ LO • CNT1 • 0030 ~ 0040 • BINV 
+ BINV • 0040 

0050 := LO • A05 • BINV 
+ LO • CNT1 • 0050 • BINV 
+ LO • CNT1 • 0020 • 0030 • 0040 • 0050 • BINV 
+ LO • CNT1 • 0020 • 0050 • BINV 
+ LO • CNT1 • 0030 • 0050 • BINV 
+ LO • CNT1 • 0040 • 0050 • BINV 
+ BINV • 0050 . 

COUT1 = 0020 • 0030 • 0040 • 0050 
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Figure 6·16 

AmPAL 16R6D DRAM Address Counter­
Interleaved Section 1-0dd Bank 
Device U16 

CLK CNT1 LD A06 AO? A08 A09 A12 A13 GND 
OE CIN1 0060 0070 0080 0090 012 013 BINV VCC 

0060 ·- LD • A06 • BINV 
+ LD • CNT1 • 0060 • BINV 
+ LD • CNT1 • CIN1 • 0060 • BINV 
+ LD • CNT1 • CIN1 • 0060 • BINV 
+ BINV • 0060 

0070 ·- LD • A08 • BINV 
+ LD • CNT1 • oo7o •. BINV 
+ LD • CNT1 • CIN1 • 0060 • 0070 • BINV 
+ LD • CNT1 • CIN1 • 0070 • BINV 
+ LD • CNT1 • 0060 • 0070 • BINV 
+ BINV • 0070 

0080 ·- LD • A09 • BINV . 
+ LD • CNT1 • 0080 • BINV 
+ LD • CNT1 • CIN1 • 0060 • 0070 • 0080 • BINV 
+ LD • CNT1 • CIN1 • 0080 • BINV 
+ LD • CNT1 • 0060 • 0080 • BINV 
+ LD • .CNT1 • 0070 • 0080 • BINV 
+ BINV • 0080 

0090 ·- LD • A09 • BINV 
+ LD • CNT1 • 0090 · • BINV 
+ LD • CNT1 • CIN1 • 0060 • oo7o • 0080 • 0090 • BINV 
+ LD • CNT1 • CIN1 • 0090 • BINV 
+ LD • CNT1 • 0060 • 0090 • BINV 
+ LD • CNT1 • 0070 • 0090 • BINV 
+ LD • CNT1 • 0080 • 0090 • BINV 
+ BINV • 0090 

NOTE: Even bank counter holds 010, 011 and odd bank counter holds 012, 013 

012 := LD • A12 
+ LD • 012 

013 ·- LD • A13 
+ LD • 013 
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Figure 6-17 

Figure 6-18 

AmPAL16LSD DRAM Row Address Latch-Interleaved 
Device US 

CLKD 101 A13 A14 A15 A16 A17 PC1 PC2 GND 
DQ1 NC12 LA13 LA14 LA15 LA16 LA17 NC18 NC19 VCC 

LA13 = ALE • A13 
. + ALE • LA13 

+ A13 • LA13 

LA14· = ALE • A14 
+ ALE • LA14 
+ A14 • LA14 

LA15 = ALE • A15 
. + ALE • LA15 
+ A15 • LA15 

LA16 = ALE •. A16 
+ ALE • LA16 . 
+ A16 • LA16 

LA17 = ALE • A17 
+ ALE • LA17 
+ A17 • LA17 

NOTE: The term ALE is used for clarity only. The true form of ALE is: 

ALE = 101 • 001. • PC1 • PC2 • CLKD 

AmPAL 16LBD DRAM Row Address Latch-Interleaved 
Device U11 

CLKD 101 A18 A19 A20 A21 A22 PC1 PC2 GND 
001 NC12 LA18 LA19 LA20 LA21 LA22 NC18 NC19 VCC 

LA18 = ALE • A18 
+ ALE • LA18 
+ A18 • LA18 

LA19 = ALE • A19 
+ ALE • LA19 
+ A19 • LA19 

LA20 = ALE • A20 
+ ALE • LA20 
+ A20 • LA20 

LA21 = ALE • A21 
+ ALE • LA21 
+ A21 • LA21 

LA22 = ALE • A22 
+ ALE • LA22 
+ A22 • LA22 

NOTE: The term ALE is used for clarity only. The true form of the ALE signal is: 

ALE = 101 • 001 • PC1 • PC2 • CLKD 
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Intra-Cycle Timing 
This memory architecture has three basic cycle timings. The first is a cycle used to 
decode the memory address and control signals from the processor. At the end of this 
decode cycle, the address is loaded into the address counter and the selected block of 
memory begins its initial access in the next clock cycle. Following the decode cycle is 
the row-address cycle in which the row address is made active at the beginning of the 
cycle, and in which the address multiplexer is later switched between the row address 
and the column address. · 

I 
I 

The third cycle timing is that of a burst access. The first burst access time is the time 
required to access one of the memory banks. This time is designed to fit within two 
clock cycles, so the initial burst-access time will be two cycles. 

The combination of a decode cycle, followed by the row-address cycle, followed by the 
first burst-access time defines a 4-cycle initial access time. 

After the initial access, all burst accesses use the 2-clock-cycle timing of the initial burst 
access. Because two memory banks are interleaved, the apparent access time from 
the viewpoint of the system bus is only one cycle per burst access following the initial 
access. 

Decode Timing 
Within the decode cycle the address timing path is made up of: 

• The Am29000 clock to address and control valid delay of 14 ns, 

• Address decode logic PAL delay of 10 ns, (devices, U4 and U5). 

• And the setup time of the address counter PAL, 10 ns (devices, U6-U11 ). 

Assuming D-speed PALs, those times total 34 ns, as shown in Figure 6-19. 

Also, within the decode cycle time is the control signal to response signal path. In fact 
this timing path is present in every cycle in the sense that the memory response signals 
must be valid in every clock cycle. This delay path is made up of: 

• Clock-to-output time of registers within the control logic state machine PAL, 8 ns; 

• Propagation delay of the control logic PAL, 1 O ns; 

• Propagation delay of a logical OR gate on the response signals from each mem­
ory block, 1 O ns; 

• And control signal setup time of the processor, 12 ns. 

Again assuming D-speed PALs, these times total 40 ns, as shown in Figure 6-19. 
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Figure 6·19 
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Figure 6·20 

Row Address Timing 
Within the row address cycle the RAS line goes low which initiates a time delay signal 
which later causes the address multiplexer to change from the row to the column ad­
dress as shown in Figure 6-20. 

The RAS delay path is made up of: 

• Clock-to-output time of RAS signal registers within the· control logic state machine 
PAL (8 ns} plus an added delay due to capacitive and inductive loading by the 
memory array of the PAL outputs. Since this load is in excess of standard data 
sheet test loads, the equations in appendix A are used to estimate the added 
delay. That delay estimate is 6.5 ns. ·This is added to the 8 ns {standard 50 pf 
load} delay of the RAS line for a total of 14.5 ns worst case. 

The Address path is made up of: 

• Clock to Output time of RAS output not loaded by memory array, 8 ns. 

• Delay line time, 16 ns. 

• Minimum and maximum switch time of the multiplexer, 4 ns to 9.5 ns. 

• Memory load delay of 6.5 ns. 

This works out to satisfy the 15 ns of required hold time of address after RAS goes 
active. Also the column address is settled by 40 ns into the cycle. 
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Figure 6·21 

Burst Timing . 
Within the burst access cycle the address to data path timing is determined by: 

• The clock to output time of the address counter (8 ns for aD-speed, PAL) 

• Propagation delay of multiplexer (7 ns) plus added delay for heavy capacitive 
and inductive load as determined in Appendix A. The added delay is estimated 
to be 6 ns. 

• Memory access time in static column mode, 45 ns), 

• Data buffer delay {FCT244A = 4.3 ns), 

• And the processor set-up time (6 ns). 

Those delays total 76.3 ns worst case as shown in Figure 6-21. 

Inter-Cycle Timing 
Inter-cycle timing for instruction, data read and data write cycles are provided in Figures 
6-22 through 6-24. 
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Figure 6·22 
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Figure 6-23 
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Figure 6·24 
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Table 6·1 

Parts List 
The part list for the Am29000 Interleaved Dynamic RAM Interface is provided in 
Table 6-1. 

Am29000 Interleaved Dynamic RAM Interface Parts List 

Item No. 

U1 
U2 
U4,U5 
U6,U9,U17,U18 
U7,U10,U15,U16, U19, U20 
US, U11 . 
U21-U85 
U3 
U12-U14, U114-U116 
U86-U94 

· U95-U110 
U111 

DATA MEMORY 

Quantity 
' 1 

1 
2 
4 
6 
2 

64 
1 
6 
8 

. 16 
1 

112 pkgs 

Device Description . 

AmPAL16L8B 
AmPAL22V1 OA 
AmPAL20L8B _ 
AmPAL16R4D 
AmPAL16R6D 
AmPAL16L8D 
TC511002-85 
74F175 
74F158 
Am29C843A 
IDT74FCT244A 
MTTLDL-8 

As shown in Figure 4-1 the instruction and data memories for the Am29000 are sepa-. 
rate structures .. The data memory can be an exact subset of the instruction memory , 
design. In fact the exact same design can be used by tying the instruction-related 

• control signals to the inactive state. But, since the data memory is a subset, it is also 
possible to save afew chips by .eliminating the instruction,.related control signals and re­
arranging the distribuUon of logic terms between PALs. 

With reference to the ins!ruction memory design defined in this chapter, the following· 
· changes may be· made to convert it to a data memory: · 

• All instruction related inputs can be removed and all the affected equations 
simplified; · · · · 

• U17, the instruction-state machine PAL, can therefore be removed entirely; 

• The START signal can be moved to U16; therefore U4 can be eliminated; 

• The 74F175 from the instruction-memory can also be used to supply the delayed 
control signals to the data memory, thus eliminating the need for U3; 

• The ALE function from U8 and U11 can be moved to U1. Therefore U8 and U11 
could be replaced by a single .10-bit latch such as the 29841 A; 

• And finally, the instruction-bus output buffers can be eliminated. 

In total, the design can be reduced by 12 chips. The details of the logic equation simpli­
fications will be left as an exercize for the reader. All other aspects of the design are the 
same as for the instruction memory described in the previous section. 
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VIDEO DRAM 
WITH INTERLEAVED BANKS 

OVERVIEW 

Video DRAM Advantages 
Video DRAM (VDRAM) offers an excellent way to reduce the complexity and compo­
nent count of the memory system. A VDRAM has a dual-ported internal memory array. 
The first port allows read and write random access to the memory array just as a stan­
dard DRAM does. The second port is a serial shift register which is loaded from (and in 
some cases may be written to) one row of the memory array in a single access cycle. 
Once the serial shift register is loaded, it may be shifted independently of the random­
access port. In effect, a VDRAM provides independent and concurrent access to a com­
mon memory array via these two ports. A single address bus provides access to either 
port. 

This memory architecture greatly simplifies the interface to. the Am29000. The shifter 
port can be connected to the instruction bus to provid~ sequential instruction streams. 
The random-access port can be connected to the data bus to provide read and write 
random access to data structures. And, both.ports are addressed via the Am29000 
address bus. · 

This nicely places both the instruction and data space in a common memory, thus 
significantly reducing the complexity of control logic and eliminating the need for many 
data buffers. Shared instruction and data space in a common memory also results in 
more efficient use of total memory space. This often results in a significant reduction in 
required memory size, therefore reduced component count. Due to the ability to concur­
rently access instructions and data, the VDRAM memory is still able to provide perform­
ance near that of the SCDRAM design from the last chapter. 

The drawbacks to VDRAM are: a slower initial access time, lower density of currently 
available memories, and higher per memory cost, although much of the higher cost is 
offset by the lower cosfof control and buffer logic in the system. Soon-to-be-available 
1 Mbit VD RAMs will remove the density limitation as compared with currently available 
1 Mbit DRAMs, although their initial cost will be high compared to the same density 
DRAMs. . 

Currently available VDRAMs also are unable to provide serial shifter ports fast enough 
to support a 40 ns instruction access time. To provide single-cycle burst instruction 
access speed, the current VDRAMs must be dual-bank interleaved. Again, future 
VDRAM may have the speed needed to eliminate dual-banking requirements. Where 
lower cost and simplicity is more important than a 20% clock-rate reduction, the system 
clock can be slowed to 20 MHz so that a single bank of VDRAM can keep up with the 
demands of the instruction bus. 

As was described in the last chapter, the Am29000 provides unique features that allow 
the use of slower memories such as the VDRAM without the severe performance 
reductions that plague other high-performance microprocessors when using similar 
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Figure 7·1 

memory systems As a result, VDRAM memories can significantly reduce system com­
plexity and provide a fairly dense system memory, while also improving system perform­
ance-to-price ratio. The cost of the memory system drops while performance is reduced 
only slightly. 

Memory Features 
The memory design described in this chapter is an extension of the memory designs 
from the previous chapters. The first major difference, however, is that there is a single 
block of memory for instruction and data as shown in Figure 7-1. Within the memory 
block, there are two banks of memory interleaved as odd and even words. For a de­
scription of interleaved memory architecture see the overview section of Chapter 5, 
which discusses the bank-interleaved~SRAM concept. 

Each bank is 64K words deep with each word being 32 bits wide. The total for the whole 
memory block is then 128K words (512K bytes). It is possible to use 120 ns access­
time VDRAMs for both memory banks. 

A non-sequential instruction access requires one cycle for address decode plus five ad­
ditional cycles for the first word accessed. The burst access timing is similar to that used 
in previous chapters;. each burst access is two cycles long. Overlapping the memory 
bank access time allows this longer access time to be hidden from the system viewpoint 
except on the first word of a non-sequential instruction access. The end result is a 
memory that provides 6-cycle access time for the first word of a non-sequential instruc­
tion access and single-cycle access for subsequent words in a burst transfer. A data 
read access requires one cycle for address decode plus four additional cycles to com­
plete the access. 
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A data write access requires one cycle for address decode plus two cycles or three 
cycles (depending on the memory used) to take data from the bus. The write operation 
continues internal to the memory for one or two additional cycles but the data bus is 
released after data is taken from the bus. · 

No burst accesses are supported for data. So, all data read accesses are five cycles 
long and all write accesses are three or four cycles long. That is assuming the memory 
has internally completed a write operation and/or RAS precharge before the next ac­
cess begins. If write completion time or RAS precharge time has not been satisfied, a 
subsequent data access can require up to eight cycles to complete. This is based on 
the worst-case data read immediately following a data-write operation. 

The VDRAM random access read/write port is connected to the Am29000 data bus. The 
serial-access shifter port is connected to the Am29000 instruction bus. 

INTERFACE LOGIC BLOCK DIAGRAM (Figure 7-1) 

The Memory 
The memories are 64K x 4 bit VDRAMs supplied by either Fujitsu (MB81461-12) or 
NEC (PD41264-12). These memories have common data in and out lines. Their access 
speed is 120 ns. Eight devices are required in each bank to form the 32-bit wide instruc­
tion word for the Am29000. These are shown as devices U15 through U30. 

VDRAM is used in this design to illustrate the savings in complexity, component count, 
and cost that the VDRAM architecture can provide when used with the Am29000. 
Largely those savings come from the fact that the instruction and data words can reside 
in a common memory array that still allows concurrent dual port access. Using one 
memory array, instead of split instruction and data memories, eliminates one entire set 
of memory control logic and data buffers. Also, the number of remaining control-logic 
and data-buffer circuits is reduced, since external buffers are no longer needed to 
support both data and instruction ports into the instruction memory. 

Further, the·VDRAM structure allows the boundary between instruction and data space 
to be flexible and dynamic, thereby providing for more efficient u~e of memory than a 
system that splits memory. This, in turn, may lead to reduced memory requirements in 
general. 

Data Bus Transceivers 
The memory random access data 1/0 port is connected to the Am29000 data bus lines 
via high-speed Am29C863 transceivers, U31 through U38 in Figure 7-2. These provide 
sufficient drive current to· hand.le any reasonable capacitive load on the data bus. 

In a system known to have minimal capacitive load on the data bus, it is possible to 
eliminate these transceivers. Note: if this is done, the Row Address Strobe (RAS), 
Transfer/Output Enable (TR/OE) and Serial Output Enable (SOE) signals of the VDRAM 
may need to be qualified by address line 2 (AX2) during data accesses so only one 
memory bank can be output enabled for each access. A side benefit of doing this may 
be lower power consumption by the memory system. 
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Instruction Bus Buffers . 
The memory serial-data outputs are connected to the instruction bus lines via buffers. 
These buffers s~rve to isolate the data outputs of this memory block from those outputs 
of other memory blocks which may also drive the instruction bus. Also, the buffers serve 
to isolate the even and odd banks of this memory block from each other so that simulta­
neous data access can go on in each bank independently. These buffers are shown as 
devices U39 through U46 in Figure 7-2. 

Address Multiplexers 
The upper and lower eight bits of memory address must be multiplexed into the address 
inputs of the memories. Discrete multiplexers are used to perform this function. These 
devices are shown as US through US. 

Note that in this design, unlike all previous chapters, .the address is taken directly from 
the bus and through the multiplexers to the memories. No latching or registering of the 
address is done. This approach was taken to reduce the component count and com­
plexity of the design as part of the overall goal of illustrating a lower cost memory de­
sign. Doing this requires that the memory control logic force the Am29000 to hold the 
address stable on the b,us until after the RAS and Column Address Strobes (CAS) have 
gone active. This is done by delaying the assertion of IBACK, or PEN during instruction 
or data accesses respectively. 

This reduces system performance somewhat, at least as compared with a split instruc-
. tion and data men:iory system, or, a system in which there are multiple blocks of 

VDRAM in which one block could be addressed for an instruction fetch while another 
block is addressed for a data access. This is because the processor must, at times, hold 
an address on the bus when it might otherwise have been able to begin another access 
on an alternate memory block, assuming a memory that latches the address. 

But, in a system having a single block of VD RAM, there is no benefit to latching the 
address from the bus. This is because the memory can not be ready. to begin another 
access until the access in progress is completed and the memory has completed the 
pre charge cycles that. must occur between all non-sequential accesses. 

NOTE: A word of warning, don;t use inverting buffers or multiplexers on VD RAM ad­
dress lines. Inverted random access 110 (DQ) port addressing would conflict with the 
sequentually incremented addressing required by the design of the serial port. 

· Bank Selector 
Since a VDRAM uses a shift mechanism to provide the serial output of instructions, 
there is no need for an address counter. The initial address for an instruction burst 
request determines the starting location in the memory row to be shifted out. All subse­
quent instruction _words are read by providing a shift clock to the VD RAM. Also, because 
the VDRAM shifter row is 256 words, the Am29000 always provides a new address at 
the right time _when a row boundary is crossed. In addition no address counter is re­
quired for data accesses since no burst data accesses are ~upported in this memory 
design. 

This design does, however, use bank interleaving to overcome the access delay of the 
VDRAM serial shifter port, so there must be a way provided to keep track of which bank 
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Figure 7·2 

should be output enabled on to the instruction bus during any given cycle. Also, a way is 
needed to control the shift clock to each bank so that the instruction accesses are 
overlapped properly. 

This tracking function is provided by registering address line A02 at the beginning of an 
access and then toggling the registered bit for each completed instruction access. This 
registered output is called Q02E as in the past chapters. 

Registered Control Signals 
As noted earlier, the timing of the IBREQ, DBERQ, and BINV control signals require that 
they be registered by a low-setup-time register; a F175 register, U_4, shown in Figure 
7-2 is used. -

Interface Control Logic . 
This logic must generate the memory response signals, manage the loading of memory 
addresses, generate RAS and CAS signals, control the .data buffer output enables, and 

·perform memory refresh. The logic functions needed for this require 9 PALs: one 
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AmPAL20L8B, three AmPAL 16R4D, two AmPAL 16R6D, one AmPAL 16L8D, one 
AmPAL22V10A, and one AmPAL18P8B. 

Referring to Figure 7-2, device U1, an AmPAL 18P8B, serves to increment the memory 
address for the even bank when the initial address of an instruction access is odd. This 
causes the even bank to access the next even-bank word following the initial odd word. 

Device U2, an AmPAL20L8B PAL, performs address decode for instruction and data 
accesses. Its outputs indicate whe,n this memory bloqk has been ad~ressed and an 
access is to begin. , 

Device U3, an AmPAL22V1 OA, acts as a refresh-interval counter and refresh-request 
logic. 

Devices U9 through U14, two Am PAL 16R6D, three Am PAL t6'R4D PALS, and an 
AmPAL 16L8D form a state machine that controls the RAS, CAS, shift clock, transfer 
cycle enable, bank selector, output buffer enables, write enables, and memory-response 
signals. ·· 

Response Signal Gating 
As noted in the last chapter, the memory-response signals from all system bus devices 
are logically ORed together before being returned to the Am29000 processor. An ex­
ample of this circuitry Was shown in Figure 4-3. These gates are not included in the 
component count of this memory design since they are shared by all the bus devices in 
the system, and as such, are part of the overhead needed in any Am29000 system: 

MEMORY INTERFACE LOGIC EQUATIONS 

State Machine 
The control logic for this memory can be thought of as a Mealy-type state machine in, 
which the outputs are a function of the inputs and the present state of the machine. This 
structure is required since some of the outpu(signals must be based on inputs which· 
are not valid until the same cycle in which the 'Outputs· are required to effect control of 
the memory. As shown in Figure 7-3, this state machine can be described as having 18 
states. 

IDLE is the default state of the interface state machine. It is.characterized by there being 
no instruction access in progress, or no data access in progress, and no refresh activity 
in progress. This state serves as a way of identifying when the memory is not being 
accessed and could be placed into a'low power mode. This state also serves as a 
precharge cycle for the memory when a transition i,s made between instruction, data, 
and refresh sequences. A transition to either the IRAS or ORAS states occurs when an 
address selecting this memory block is placed on ~he address bus. A transition to the 
R01 state occurs when a refresh request is active. Refresh takes priority over any 
pending instruction or data-access request. There are five "Virtual States" shown in 
Figure 7-3; they are 101 through 104: and IACC. These states are needed due to the fact 
that the serial data (SD) port of, the VDRAM operates independently of the random 
access 1/0 (DO) port after a row transfer cycle is completed. The states help illustrate 
what might be called the "split personality" of the state machine. Once a transfer cyCle 
begins, there are in effect two active states in this state machine. One state tracks the 
activity of the serial port control signals, and the other tracks the activity of signals 
associated with the random access 1/0 port. 
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Figure 7.3 
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The active states might be thoug~t of as two tokens labeled SD and DQ being moved 
around a game board. The DQ token is neverallowed to follow the dotted line to the 
virtual states. The SD token is always in one of the virtual states or the IDLE state, it 
never enters any of the other states. When the SD token enters the IDLE state, it cannot 
leave until the DQ token is also in IDLE and the ISTART condition is true. 

When this situation occurs, the SD token moves to the IQ1 state and the DQ token 
moves to the IRAS state. This would represent the beginning of a row transfer to the 
serial-shift port. The DQ token then tracks the progress of RAS, CAS, and address 
signals applied to the VDRAM. When the transfer sequence is finished, the DQ token 
goes through the precharge states and returns to IDLE. The SD token proceeds through 
the IQ states counting off the delay needed until the first instruction is ready at the 
output of the SD port. In the IQ2 state, IBACK is made active to release the address 
bus. In IQ3 and IQ4, the shift clock and bank select signals begin operation, to effect the 
access of the first instruction word. In IACCESS, IRDY is allowed to go active. During 
subsequent cycles of an instruction burst access, the active state remains IACCESS. 
While the active state for instruction accessing is !ACCESS, the DQ token is free to 
move through data-access states or refresh states completely independently of the 
instruction access in progress. When an instruction burst ends, the SD token returns to 
IDLE and must wait until the DQ token completes an access or refresh sequence fol­
lowed by precharge before a new transfer cycle may begin. 

The IRAS state occurs during the first cycle of a row transfer to the SD port following a 
new instruction address being presented on the address bus. During this state, the 
instruction output buffer enables and Ready response lines are held inactive and the 
RAS lines go active. RAS is used as the input to a delay line whose output will switch 
the address mux to the column address after the row address hold time is satisfied. The 
transition to the ICAS state is unconditional. 

During the ICAS state CAS goes active to start the transfer cycle. Since the RAS mini­
mum pulse width is 120 ns, and minimum CAS pulse width is 60 ns, a WAIT state 
follows the ICAS state before the unconditional transition to the first precharge state. 

During the precharge states, RAS goes inactive. The precharge period for the memory 
used is 100 ns so a second and third precharge cycle is done during the PC2 and IDLE 
states, which unconditionally follow the PC1 cycle. 

During a DQ port read sequence, the ORAS state generates RAS and the address-mux 
select signals. The DCAS state makes CAS active. Since the access time from CAS is 
60 ns,.the total of GAS-clock-to-output delay, plus access time, plus data-buffer delays, 
plus processor set-up time is in excess of 95 ns, which will require a WAIT cycle, finally 
followed by the DACCESS cycle. During DACCESS, the DROY signal is made active. 

The DQ port write access is different only in that the DROY signal may be made active 
during DCAS since the data from the bus is written into the memory by the falling edge 
of the CAS signal. Doing this allows the processor to begin a new address cycle on the 
address bus during the WAIT cycle. This may help improve system performance if the 
new address is directed at a different memory block that can immediately begin a new 
access. The WAIT cycle is used to fulfill the minimum CAS active time requirement. The 
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DAGGESS simplifies the design by allowing ~h~ logic that controls the state transitions 
to be the same for both read.and write operations. 

Finally there is the refresh sequence. Once the IDLE state is reached and a refresh is 
pending, the refresh sequence starts as the highest priority task of the memory. In fact, 
during the IDLE cycle, GAS will go active to setup for a GAS -before-RAS refresh cycle. 
This type of refresh cycle makes use of the VDRAM irtternal refresh counters to supply 
the refresh address. During RQ1, .RAS is made active as during IRAS and ORAS 
cycles. The RQ2 and RQ3 cycles are used to supply two additional wait states to make 
up the three cycles needed to satisfy the minimum RAS active time of 120 ns. 

Logic Details-Signal By Signal 
All signals are described in active high terms so that the design is a little easier to 
follow. The signals as implemented in the final PAL outputs are often active low as 
required by the actual circuit design.The actual PAL Definition files are included in 
Figures 7-4 through 7:-12 at the end of this section. 

NOTE: All PAL equations use the following convention: 

• Where a PAL equation uses a colon followed by an equals sign (:=),the equation 
signals are REGISTERED PAL outputs. 

• Where a PAL equation uses only an equals sign (=),the equation signals are 
COMBINATORIAL PAL outputs. 

RFQ (Refresh Request) 
Funny thing about dynamic me·mories, they're very forgetful. They need to be com­
pletely refreshed every 4 ms. Which translates into at least one row refreshed every 
15.6 µson average. To keep track of this time,a counter is used. Once a refresh inter­
val has passed, a latch is' used to remember that a refresh is requested while the 
counter continues to count the next interval. Once the refresh has been performed the 
latch is cleared. 

The counter and refresh requestlatch is implemented in an AmPAL22V10A. Nine of the 
outputs form the counter which is incremented by the system clock at 25MHz. This 
gives up to 512 x 40 ns = 20.48 µs refresh periods. The synchronous preset term for all 
the registers is programmed to go active on a count value of. 389 which will produce a 
refresh interval of 390 cycles x 40 ns· = 15.6 µs. The one remaining output is used to 
implement the refresh request latch. That latch function (registered output) is also set by 
the synchronous preset term. · · 

The equations for the counter are shown in Figure 7-4. Below are the preset and refresh 
latch equation: 

SYNCHRONOUS PRESET = RFQ2 • RFQ3 • RFQ4 • RFQ5 • RFQ6 • RFQ7 • RFQB 
• RFQ9 • RFQ10 

RFROO := RFRQO • (RFACK • RQ1) 
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Refresh Sequence Equations 
A refresh of the memory requires multiple clocks so that the minimum RAS active time 
of 120 ns can be satisfied. To manage this, the following equations are used. 

RFACK-The Refresh Acknowledge (RFACK) signal is used to begin a refresh se­
quence and to clear the pending refresh request. The RFACK signal goes active when 
the state machine (DO token) re-enters the IDLE state as controlled by 101 and D01. 
RFACKis held active until the refresh request is cleared, indicated by RFRQO • RQ3. 

RFACK := DQ1 • 101· • RFRQO 
+ RFACK • (RFREQO • RQ3) 

RQ1, RQ2, RQ3 - The three cycles needed for a refresh are tracked by R01, R02, 
and R03. R01 will not go active until the cycle following the IDLE state. This is con­
trolled by RQ1 •PC1 • RFACK which is only true during IDLE. R01 is held active for all 
three refresh cycles to provide a single signal to identify when a refresh is in progress. 
R02 and R03 simply follow R01 with R03 signaling the last cycle of the refresh se­
quence. 

RQ1 := RQ1 · • PC1 • RFACK 
+ RQ1 • RQ3 

R02 := RQ1 • R03 
RQ3 := RQ2 • RQ3 

IME 
The use of the Instruction for ME (IME) signal is based on the assumption that other 
blocks of instruction or data memory may be added later and that there may be valid 
addresses in address spaces other than instruction/data space. 

This means that this memory will only respond with IBACK or DROY active when this 
block has been selected by valid addresses in the instruction/data space. This requires 
that at least some of the more significant address lines above the address range of this 
memory block be monitored to determine when this memory block is addressed. Also, it 
means the Instruction Request Type (IREOT), Data Request Type (DREOT 0, 
DREOT1), and Pin 169 lines must be monitored to determine that an address is valid 
and lies in the instruction/data space. 

IME is the indication that the address of this memory block is present on the upper 
address lines, an instruction request is active, Pin 169 is inactive (test hardware has not 
taken control), and instruction/data address space is indicated. In other words this 
memory block is receiving a valid instruction access request. This example design will 
assume that the address of this memory block is equal to A31 • A30 • A29 • A28 • A27 
• A26 • A25 • A24 • A23. The equation for this signal is: 

IME = IREQ • IREQT • A31 • A30 • A29 • A28 • A27 • A26 • A25 • A24 • A23 
• Pin169 

Note that IME is not directly implemented as a PAL output in this design. The terms are 
used in the generation of the !START term. 
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DME 
The Data for ME (DME) signal is the indication that the address of this memory block is 
present on the upper address lines, a data request is active, Pin 169 is inactive, and 
instruction/data address space is indicated. In other words this memory block is receiv­
ing a valid data access request. This example design will assume that the address of 
this memory block is equal to: A31 • A30 • A29 • A28 • A27 • A26 • A25 • A24 • A23. 
Note that for this design both the instruction and data blocks reside in the same address 
space. This is possible because of the common memory array of the VDRAM that is 
accessible to either the instruction serial port or the data 1/0 port. 

The equation for this signal is: 

DME = OREO • DREOTO • DREOT1 • A31 • A30 • A29 • A28 • A27 • A26 • A25 • 
A24 • A23 • Pin169 

As with IME, this term is not directly implemented. 

ISTART 
The Instruction Start (ISTART) signal causes the transition from IDLE to IRAS and 101 
states. It is valid only in the IDLE state with no refresh sequence starting, identified by 
not being in any other state via 101 • 001 • RFACK • PC1. • PC2 • RFROO. So when 
in the IDLE state and IME is active, ISTART is active. · 

ISTART = f5f • 001 • RFACK • PC1 • PC2 • RFROO • IME 

DST ART . 
The Data Start (DST ART) signal is the same as ISTART e·xcept that DME is the quali-
fier. . 

DSTART = 101 • 001 • RFACK • PC1 • PC2 • RFROO • DME 

IBACK 
The Instruction Burst Acknowledge (IBACK) signal is applied to the Am29000 and is in 
effect the indication that the interface state machine is in an active or suspended in-
struction access. The equation is: · 

IBACK = 102 
+ IREO • IBACK 

The IBACK_ active state is entered during the 102 state. IBACK is delayed until 102 in 
order to hold the instruction address active on the bus until the CAS signal has gone 
active, thus eliminating the need for address latches or registers. 

IBACK remains active until a new instruction access begins. The IBACK signal is combi­
natorial so that it will go inactive in the same cycle that IREO goes active. This is re­
quired to hold the address on the bus until a new row transfer sequence can begin. The 
address must be held since there are no address latches or registers in this design to 
take the address from the bus. Address latches or registers would be required if IBACK 
were left active throughout the IREO cycle. 

This places a timing constraint on the IBACK response signal path that is different from 
all the earlier memory designs. IREO is a signal that will not be stable until 14 ns into a 
cycle. The D-speed PAL logic that implements the IBACK logic has a propagation delay 
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of 1 O ns. The Am29000 has a response signal setup time of 12 ns. These total 36 ns, 
which means that the logic OR gate used to combine all IBACK response signals in the 
system (Figure 4-3) must have a worst-case propagation delay of 4 ns. That is not easy 
to achieve when several IBACK response lines in the system must be logically ORed. 

A solution to this is to move a copy of the VDRAM-block IBACK logic down into the PAL 
used to implement the IBACK response signal logical OR gate. That will eliminate one 
level of PAL delay. The equation for the response OR-gate function would then become: 

IBACK = IBACKO 
+ IBACK1 
+ IBACK2 
+ IBACK3 
+ IBACK4 
+ IBACKS 
+ 102 
+ IREO • IBACK 

where the numbered IBACK inputs are the IBACK signals from other bus devices 
and the IQ2 + IREO • IBACK inputs are from the VDRAM control logic. 

The IBACK logic defined earlier remains to provide a version of IBACK local to the 
VDRAM control logic. That version of the IBACK is not as time critical since it will simply 
be registered. Only IBACK.D is needed by other parts of the VDRAM control logic. 

IBACK.D 
The IBACK Delayed (IBACK'.D) signal is simply a 1-cycle delayed version of IBACK. 
The logic for IBACK is implemented directly in the IBACK.D equation. 

IBACK.D := 102 
+ IREO • BACK 

It is used in the generation of IRDY, IOEO, IOE1, and CNT. 

Instruction Initial Access States · 
Signals IQ1, IQ2, IQ3, and IQ4 are used to control the state transitions from 101 to 
IACCESS and IRAS through WAIT, during the first instruction access. The IQ1 signal 
goes active during the IQ1 and IRAS states and remains active for four additional 
cycles. IQ1 will go active only when there is a valid IST ART. 

The IQ2, IQ3, and IQ4 signals are used to count the five cycles during which IQ1 is 
active. IQ3 is inactive during the fifth cycle· after IQ1 goes active. This is used as a way 
of identifying the fifth cycle as the condition of IQ3 • IQ4. This eliminates the need for an 
additional signal to directly indicate the fifth cycle. 

101 := BINV • .iCff • ISTART 
+ 101 • (00• 04) ' 

102 == .101 • (103 • 04) 
103 == 102 • 104 
104 := 103 
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Data Initial Access States 
These equations are similar in function to the IQ1-IQ4 signals. They control state 
transitions during data accesses. DQ1 goes active during the DQ1 state as a result of a 
valid DSTART signal during the IDLE state. DQ2 through DQ4 simply count off the four 
DQ states. 

001 ·- BINV • 001 • OSTART 
+ 001 • 004 

002 ·- 001 • 004 

003 ·- 002 • 004 

004 ·- 003. • 004 

Precharge States 
At the end of any DQ port access, the RAS lines must be made inactive to precharge 
internal memory buses before another access with a different row address may begin. 
Three cycles are needed and are indicated by the signals PC1 and PC2. The PC1 
signal is active during the PC1 state and the PC2 state. The PC2 signal is active during 
the PC2 state and the first IDLE state that follows the PC2 state. PC1 goes active 
following the third cycle of any instruction, data, or refresh sequence. In other words, 
once the minimum RAS pulse width requirement is satisfied, RAS is made inactive to 
begin precharging for the next access. In the case of a data read where the output data 
must be held valid after RAS goes inactive, the CAS signal is kept active to hold the 
data. · 

PC1 := PC1 • 103 . 
+ PC1 • 003 
+ PC1 • R03 
+ PC1 • PC2 

PC2 := PC1 

LD 
The Load (LO) signal enables address bit A02 to be loaded into the bank selection 
register (Q02E) on the next rising edge of SYSCLK. The equation is: 

LO = IREO • 101 

In this design bank selection is only meaningful for an instruction access since no burst 
data accesses are supported. LD is thus active as a result of IREQ except during the 
access time of the first instruction word. This limitation in effect turns off LD after an 
instruction access begins so that LD will not interfere with the bank selection bit toggling 
activity that must go on during the initial access. 

The LD signal is combinatorial so that it can be active during the first cycle of a new 
instruction request. 
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Bank Select Signal 
The Q02E register bit is us.ed to indicate which.memory bank should provide valid 

·instruction data to the instruction 'bus in,any given cycle. Each time another instruction 
word is accessed this bit is toggled. The.bit is originally loaded from the address-bus bit 
A02. 

Q02E := LD • AX2 
+ LD • CNT • 03 • 04 • 002E 
+ LD • 103 • 002E 
+ LO • 104 • 002E 
+ LD • CNT • 002E • BINV 
+ LD • CNT • Q02E • BINV 

The use of BINV input will prevent Q02E from changing state during a cycle in which the 
bus is invalid. This prevents a state change in the memory resulting from bus control 
signals which may be invalid. 

Q02E is used directly in the generation of the serial shift clock for the VDRAM. Before 
the first word in the serial shifter is available at the SD output of the VDRAM, one serial 
shift clock rising edge· must occur. The 103 and 104 signals are used to force the first 
rising edges on the serial shift clock for each memory bank. After· the 101 signal goes 
invalid any further toggling of the 'bank select signal and the serial port shift clock will 
come as a result of valid IBR~O cycles. : · 

Even Bank Address lncrementer and LSB Latch 
In this design, the lack of address counters requires a new way of satisfying the need to 
increment the even bank address before the first word access, when the initial address 
is odd. To deal with this need, an AmPAL18P8B is used to.build a flow-through incre­
menter. The increment function is selective in that when address bit A02 is low, indicat­
ing an even word initial address, no increment is done and the ·address passes through 
unchanged. When A02 is high, the memory address is incremented. The A02 bit is used 
to select which bank is read or written during a data access. Thus, the A02 bit is re­
quired to be stable throughout the entire access. So that it may be held stable after the 
address bus is released, the A02 bit is latched within the incrementer by the 001 signal. 
The equations for the increment and latch functions are sho~n in Figure 7-12. 

Count Signal 
The Count (CNT) signal in this design is reduced to being an enable .on the toggling 
action of the 002E bit. Following the initial instruction word access, determined by 1QT, 
the CNT signal is active for each valid instruction burst request, determined by IBREO.D 
and IBACK.D. 

CNT = 1QT • IBREO.D ;• IBACK.D 

Transfer Cycle Enable and DQ Port Output Enable 
On a VDRAM, there is a dual function signal, called Transfer (TR), which controls when 
a row transfer cycle is performed and also when the random 1/0 data port is output 
enabled. When TR is active during the active edge of RAS, a transfer cycle is per­
formed. 
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The timing of TR is critical when performing this function. It must stay active for a mini­
mum of 90 or 100 ns after RAS goes active when the Fujitsu VD RAM 
(MB81461-12) or NEC VDRAM (PD41264-12) respectively is used. The signal must 
also be inactive 25 ns or 1 O ns respectively before the serial shift clock may go from low 
to high, to clock out the first instruction word. 

To make the above timing constraint fit within the 6-cycle initial access time of this 
memory design, a delay line must be used to precisely set the duration of the TR signal. 
A separate RAS signal, which is not loaded by the capacitance of either memory bank, 
is the input to the delay line. The output for a 90 ns delay is TEXIT1 and for a 100 ns 

· delay is TEXIT2. More details of this timing are provided in the intra-cycle timing section 
of this chapter. 

TR goes active with IREQ, so that TR is set up before RAS goes active. TR latches 
· itself active until the appropriate TEXIT signal goes active. The NEC input is strapped to 

low when the NEC memory is·used, or to high when the Fujitsu VDRAM is used. 

Finally, when 002 is active during a non-transfer cycle of a read operation, the active 
TR signal enables the DO port output. 

TRO :::: 001 • IREO 
+ 001 • TRO • NEC • TEXIT1 
+ 001 • TRO • NEC ~ TEXIT2 
+ 002. • WE1 

Shift Clock 
The signal that clocks each new instruction out of the serial port is referred to as SAS. 
This signal must be low at the time TR goes inactive and it must remain low for the 
25 ns or 1 O ns period noted earlier. Once that timing constraint is satisfied, the next 
rising edge of SAS clocks the serial port output. SAS is held low while 101 is active and 
104 is inactive. After that time, SAS is controlled by the 002,E bank selection signal so 
that a new instruction is clocked out every other system clock cycle when the CNT 
signal is active. 

There is a special requirement on SAS immediately following system power-on time. 
The SAS signal must be cycled at least eight times before proper device operation is 
achieved following a power-on sequence. To ensure.this.is done, the system reset 
signal is used to connect the system clock to SAS. This ensures SAS is cycled during 
the system power-on reset time. 

SASO = RESET • SYSCLK 
+ RESET • 101 • 104 
+ RESET • 104 • 002 
+ RESET • 101 • 002E 

SAS1 = RESET • SYSCLK 
. i. RESET • 101 • 104 

+ RESET • 104 • 002E 
+ RESET • 101· • 002E 
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IRDY 
The Instruction Ready (IRDY) signal indicates that there is valid read data on the in­
struction bus. 

IRDY = 03 • 104 
+ BINV.D • 101 • IBREO.D • IBACK.D 

This memory design is always ready with data in the IACCESS state indicated by 
. 103. 104. 

The memory is also ready when IBREQ is active with IBACK in the previous cycle with 
no invalid bus condition, following the initial instruction word access. 

The reason that IRDY must be a combinatorial signal is. that IBREQ comes very late in 
the previous cycle and must be registered. There is no IBREQ qualifying time available 
in the previous cycle before SYSCLK rises. This means that the information that IBREQ 
was active in the last cycle is not available until the cycle in which IRDY should go 
active for a resumption of a suspended burst access: 

IOEO and IOE1 
The Instruction Output Enable (IOE) signals control the even and odd memory banks 
are used to control which bank is allowed to drive the instruction bus during each cycle. 
The signals use essentially the same logic as IRDY except that each signal is further 
qualified by the bank select signal (Q02E). This bit keeps track of which memory bank is 
ready to provide data to the instruction bus. The even bank is enabled when IRDY is 
active and the Q02E bit is one. The odd bank is enabled when IRDY is active and Q02E 
is zero. 

IOEO = 002E • 103 • 104 
+ BINV.D • 002E • 01 • IBREO.D • IBACK.D 

IOE1 . :::, 002E • 03 • 104 , 
+ BINV.D • 002E • TQf • IBREO.D • IBACK.D 

DROY 
The Data Ready (DROY) signal is the equivalent of IRDY, but for data accesses. The 
difference is that since no burst accesses are supported, DROY will go active only once 
in each simple access during the DACCESS state in a read, or during DCAS or WAIT in 
a write operation. Due to different data hold times for the Fujitsu and NEC VDRAM the 
DROY must be held until the WAIT state when using the NEC VDRAM. 

DROY = WEO • 004 
+ WEO • 002 • 003 • NEC 
+ WEO • 003 • 004 • NEC 

DOEO and DOE1 
The Data buffer Output Enable (DOE) signals serve the same function for DROY as 
does the IOEO & IOE1 signals do for IRDY. They are active only during read operations 
and the selected bank is determined by the latched ve~sion of address bit 2 (AX2). 

DOEO = WEO • AX2 • 003 
DOE1 = WEO • AX2 • 003 
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Pipeline Enable 
During a read operation the data address is no longer needed on the address bus 
following the DCAS state. So, to help improve system performance, the Pipeline ENable 
(PEN) signal response is. made active during the DCAS state. This active PEN signal 
tells the processor that the address is no longer needed and it allows the processor to 
place a new address on the bus. In cases where the next address to be issued is for an 
instruction or data access from a different block of memory, the next access can begin 
while the current data access finishes. 

PEN = 002 • 003 

WE 
Write Enable (WE) signal is not allowed to be active during the row transfer sequence 
that begins each non-sequential instruction access. This is because no write operations 
are supported for the serial port. During a data access, the read/write line is latched by 
the DQ2 signal at the end of the DCAS state. 

Two WE signals are defined simply to reduce the capacitive load on the signals. There 
is one WE for each bank. 

WEO = 01 • 001 • 002 • RW 
+ 101 • 001 • 002 • WEO 

WE1 = 101 • 001 • 002 • RW 
+ 101 · • 001 • 002 • WE1 

Row Address Strobes 
There are three duplicate Row Address Strobe (RAS) lines. Two are used to drive the 
memories and one drives the delay line used to switch the address mux at the appropri­
ate time and to control the duration of the transfer signal. Multiple lines are used to split 
the capacitive and inductive load of the memory array to improve signal speed. 

RAS is made active by a valid ISTART, DSTART or refresh condition. RAS is held 
active for 3 cycles to satisfy the minimum pulse-width requirement on RAS. 

RAS := BINV • RAS • ISTART 
+ BINV • RAS • OSTART 
+ BINV • RAS • PC1 • RFACK 
+ RAS • 101 • 103 
+ RAS • 001 • 003 
+ RAS • RFACK • R03 

Column Address Strobes 
As with the RAS lines, the CAS lines are duplicated to split the memory load. CAS goes 
active in the cycle after RAS during instruction or data accesses. During a data write 
access CAS is enabled only when the appropriate bank is written with data. This is 
controlled by the latched value of the address bit 2 (AX2). Only in the case of a refresh 
sequence will CAS be made active prior to RAS. This will initiate a CAS before RAS 
refresh cycle in the memories. In this case CAS is made active during the IDLE state. 

CASO := RAS • 101 
+ RAS • 001 • AX2 
+ RAS • 01 • 001 • RFROO 

CAS1 := RAS • 101 + RAS • 001 • AX2 
+ RAS • 01 • 001 • RFROO 
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Figure 7-4 

PAL DEFINITION FILES 
The PAL definition files are provided in Figures 7-4 through 7-12. 

NOTE: All PAL equations in this handbook use the following convention: 

• Where a PAL equation uses a colon followed by an equals sign (:=),the equation 
signals are REGISTERED PAL outputs. 

• Where a PAL equation uses only an equals sign (=),.the equation signals are 
COMBINATORIAL PAL outputs. 

• The Device Pin list is shown near the top of each figure as two lines of signal 
names. The names occur. in pin order, numbered from left to right 1 through 20. 
The polarity of each name indicates the actual input or output signal polarity. 
Signals within the equations are shown as active high, e.g., where signal names 
in the pin list are: A BC; the equation is C =A • B; the inputs are A= low, B = 
low; then the C output will be low. 

AmPAL22V1 OA VRAM Refresh Counter/Request Generator 
Device U3 

CLK RFACK RQ1 R02 RQ3 NC6 NC7 NC8 NC9 NC10 NC11 GND 
NC13 RFRQO RFQ2 RFQ3 RFQ4 RFQ5 RFQ6 RFQ7 RFQ8 RFQ10 RFQ9 VCC 

RFQ2 := RFQ2 

RFQ3 := RFQ2 • RFQ3 
+ RFQ2 • RFQ3 

RFQ4 := RFQ2 • RFQ3 • RFQ4 
+ .RFQ2 • RFQ4 
+ RFQ3 • RFQ4 

RFQ5 := RFQ2 • RFQ3 • RFQ4 • RFQS 
+ RFQ2 • RFQS 
+ RFQ3 • RFQS 
+ RFQ4 • RFQS 

RFQ6 := RFQ2 • RFQ3 • RFQ4 • RFQS • RFQ6 
+ RFQ2 • RFQ6 
+ RFQ3 • RFQ6 
+ RFQ4 • RFQ6 
+ RFQS • RFQ6 

RFQ7 := RFQ2 • RFQ3 • RFQ4 • RFQS • RFQ6 • RFQ7 
+ RFQ2 • RFQ7 
+ RFQ3 • RFQ7 
+ RFQ4 • RFQ7 
+ RFQS • RFQ7 
+ RFQ6 • RFQ7 
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Figure 7.4 (Continued) 

Figure 7·5 

Device U3 (Continued) 

RF08 := RF02 • RF03 • RF04 • RFQ5 • RF06 • RF07 • RFOS 
+ RF02 • RF08 
+ RF03 • RF08 
+ RF04 • RF08 
+ RFOS • RF08 
+ RF06 • RF08 
+ RF07 • RF08 

RF09 := RF02 • RF03 • RF04 • RFQS • RFQ6 • RF07 • RF08 • RF09 
+ RF02 • RF09 
+ RF03 • RFQ9 
+ RF04 • RF09 
+ RFOS • RF09 
+ RF06 • RF09 
+ RF07 • RF09 
+ RFOB • RF09 

RF010 := RF02 • RF03 • RF04 • RFQS • RFQ6 • RF07 • RFQ8 . • RF09 • RF010 
+ RF02 • RF010 
+ RF03 • RF010 
+ RF04 • RF010 
+ RFOS ·• RF010 
+ RFQ6 • RF010 
+ RF07 • RF010 · 
+ RFQ8 • RF010 
+ RF09 • RF010 

SYNCHRONOUS PRESET = RF02 • RF03 • RFQ4 • RFOS • RF06 • RF07 • RFOB 
• RFQ9 • RF010 

RFRQO := RFROO • (RFACK • R01) 

AmPAL20L8B VRAM State Decoder-Interleaved 
Device U2 

IREO DREOTO IREOT A31 A30 A29 A28 A27 A26 A25 A24 GND 
OREO DREOT1 !START RFROO RFACK PIN169 101 001 PC1 -DS_T_A_R_T A23 VCC 

ISTART = 101 • 001 • RFACK • PC1 • PC2 • RFROO • IME 

DSTART = 101 • 001 • RFACK • PC1 • PC2 • RFROO • DME 

NOTE: In the above equations, IME and DME are used only for clarity. The actual input terms 
should be substituted when compiling this device. · 

IME IREO • IREQT • A31 • A30 • A29 • A28 • A27 • A26 • A25 • A24 • A23 
• PIN169 

DME OREO • DREQTO. • DREQT1 • A31 • A30 • A29 • A28 • A27 • A26 • A25 
• A24 • A23 • PIN169 
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Figure 7·6 

Figure 7.7 

AmPAL 16R4D VRAM Instruction State Generator-Interleaved 
Device U9 

CLK IREO !START NC4 NCS 002E IBREO.D BINV BINV.D GND 
OE IOEO IOE1 101 102 103 104 IRDY IBACK.D VCC 

101 := BINV • iCff • !START 
+ 101 • (103 • 104) 

102 := 101 • (103 • 104) 

103 := 102 • 104 

104 := 103 

IRDY = 103 • 104 
+ BINV.D • 101 • IBREO.D • IBACK.D 

IOEO = 002E • 103 • 104 
+ BINV.D • 002E • 101 • IBREO.D • IBACK.D 

IOE1 = 002E • 103 • 104 
+ BINV.D • 002E • 101 • IBREO.D • IBACK.D 

AmPAL 16R4D VRAM Data State Generatof-lnterleaved 
Device U10 

CLK DSTART AX2 WEO NEC NC6 NC? BINV NC9 GND 
OE DOEO DOE1 D01 · D02 D03 D04 DADY PEN VCC 

D01 := BINV • D01 • DSTART 
+ D01 • D04 

D02 := D01 • D04 

003 := 002 • D04 

D04 := D03 ·• D04 

DADY = WEO • D04 
+ WEO • D02 • D03 • NEC 
+ WEO • 003 • D04 • NEC 

DOEO WEO • AX2 • D03 

DOE1 = 'WEO • AX2 • D03 

PEN·= 002 • D03 
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Figure 7·8 

Figure 7·9 

AmPAL 16LBD VRAM Transfer .. Generator-Interleaved 
Device U14 

002E TEXIT1 TEXIT2 001 002 IREO WE1 NEC NC9 GNO 
SYSCLK SASO TRO RESET 101 104 NCH TR1 SA$1 VCC . 

SASO = RESET • SYSCLK 
+ RESET • 101 • 104 
+ RESET • 104 • 002E 
+ RESET • 101 • 002E 

SAS1 = RESET • SYSCLK 
+ RESET • 101 • 104 
+ RESET • 104 • 002E 
+ RESET • 101 • 002E 

TRO = 001 • IREO 
+ 001 • TRO • NEC • TEXIT1 
+ 001 • TRO • NEC • TEXIT2 
+ 002 • WE1 

TR1 = 001 • IREO 
+ 001 • TR1 • NEC • TEXIT1 
+ 001 • TR1 • NEC • TEXIT2 
+ 002 • WE1 

AmPAL16R6D VRAM RAS Generator-Interleaved 
Device U12 

CLK ISTART OSTART 101 001 103 003 R03 BINV GNO 
OE RFACK RASO RAS1 RAS PC1 PC2 NC18 NC19 VCC 

RASO := BINV • RASO • !START 
+ BINV • RASO. • OSTART 
+ BINV • RASO • PC1 • RFACK 
+ RASO • 101 • 103 
+ RASO • 001 • 003 
+ RASO • RFACK • R03 

RAS1 := BINV • RAS1 • !START 
+ BINV • RAS1 • OSTART 
+ BINV • RAS1 • PC1 • RFACK 
+ RAS1 • 101 • 103 
+ RAS1 • 001 • 003 
+ RAS1 • RFACK • R03 

RAS := BINV • RAS • ISTART 
+ BINV • RAS • OSTART 
+ BINV • RAS • PC1 • RFACK 
+ RAS • 101 • 103 
+ RAS • 001 • 003 
+ RAS • RFACK • R03 

PC1 := PC1 • 103 
+ PC1 • 003 
+ PC1 • R03 
+ PC1 • PC2 

PC2 := PC1 
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Figure 7·10 

Figure 7·11 

AmPAL 16R6D VRAM CAS Generator-Interleaved 
Device U13 

CLK PC1 101 001 002 RAS RFROO RW AX2 GNO 
OE WEO CASO CAS1 . RFACK. R01 R02 R03 WE1 VCC 

CASO := RAS • 101 
+ RAS • 001 • AX2 

+ RAS • 101 • 001 • RFROO 

CAS1 := RAS • 101 
+ RAS • 001 • AX2 
+ RAS • 101 • 001 • RFROO 

WEO TQ1 • 001 • 002 • RW 
+ 101 • 001 • 002 • WEO 

WE1 101 • 001 • 002 • RW 
+ 01 • 001 • 002 • WE1 

RFACK := TQ1 • 101 • RFROO 
+ RFACK • (RFROO • R03) 

R01 := R01 • PC1 • RFACK 
+ R01 • R03 

R02 := R01 • R03 

R03 := R02 • R03 

AmPAL 16R4D VRAM Counter Load-Interleaved 
Device U11 

CLK NC2 IBREO.O IREO TQ1 102 103 104 BINV GNO 
OE CNT IBACK 002E IBACK.O NC16 NC17 LO AX2 VCC 

LO IREO • 101 

CNT 101 • IBREO.O • IBACK.O 

002E := LO • AX2 
+ LO • CNT • 103 • 104 ·• 002E 
+ LO • 103 • 002E 
+ LO • 104 • 002E 
+ LO • CNT • 002E • BINV 
+ LO • CNT • 002E • BINV 

IBACK.O := 102 
+ IREO • IBACK 
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Figure 7·12 

AmPAL18P8B VRAM Address lncrementer 
Device U1 

001 · A02 A03 A04 AOS A06 A07 AOB A09 GND 
NC11 AX9 AXB AX7 AX6 AXS AX4 AX3 AX2 VCC 

AX2 = DQ1 • A02 
+ DQ1 • AX2. 

AX3 = A02 • A03 
+ A02 • A03 

AX4 = A02 • A04 
+ A02 • A03 • A04 
+ A02 • A03 • A04 

AXS = A02 • AOS 
+ A02 • A03 • A04 • AOS 
+ A02 • A03 • AOS 
+ A02 • A04 • AOS 

AX6 = A02 • A06 
+ A02 • A03 • A04 • AOS • A06 
+ A02 • A03 • A06 
+ A02 • A04 • A06 
+ A02 • AOS • A06 

AX7 = A02 • A07 
+ A02 • A03 • A04 • AOS • A06 • A07 
+ A02 • A03 • A07 
+ A02 • A04 • A07 
+ A02 • AOS • A07 
+ A02 • A06 • A07. 

AXB = A02 • AOB . 
+ A02 • A03 • A04. • AOS • A06 • A07 • AOB 
+ A02 • A03 • AOB .. 
+ A02 • A04 • AOB 
+ A02 • AOS • AOB 
+ A02 • A06 • AOB 
+ A02 • A07 • AOB 

AX9· = A02 • A09 
+ A02 • A03 • A04 • AOS • A06 • A07 • AOB • A09 
+ A02 • A03 • A09 
+ A02 • A04 • A09 
+ A02 • AOS • A09 
+ A02 • A06 • A09 
+ A02 • A07 • A09 
+ A02 • AOB • A09 

VIDEO DRAM WITH INTERLEAVED BANKS 7·23 



INTRA-CYCLE TIMING 
This memory architecture has five timing sequences of interest. The first is a cycle used 
to decode the memory address and control signals from the processor. At the end of 
this decode cycle, the RAS registers are loaded to begin the initial access of memory, if 
the address selects the memory block. , 

Following the decode cycle, is the Row Address cycle, in which the row address strobe 
is made active at the beginning of the cycle, and in which the address multiplexer is 
later switched between the row address and the column address. 

The third timing is a data access, where the CAS signal goes active to begin a read 
operation or perform a write operation. 

The fourth is the critical timing sequence between RAS going active and the first shift 
clock (SAS) active edge which occurs in the row transfer of the initial access of an 
instruction burst. 

The fifth timing is that of a burst access. This is the timing between SAS going high and 
a valid instruction being transferred to the processor. This time is designed to fit within 
two clock cycles. 

The combination of a decode cycle followed by the row-address cycle and by a data­
read access time defines a five cycle read of data. Subsequent data-read operations 
may be six cycles long if the next data address appears during the PC2 precharge state. 

For a data write, the access time is made up of a decode cycle followed by a data write, 
in which DROY is active in the second or third cycle after decode. The write operation 
thus takes three to four cycles. Subsequent data-write cycles may take up to six cycles 
to complete if the next address appears during the data WAIT state, i.e., during the 
memory-precharge time. A read following a write could take up to eight cycles to com­
plete if it started during the precharge time ot' the previous access. 

The initial access ti!'11e of an instruction access is made .UP of a decode cycle, plus a row 
transfer sequence, plus the first burst access. This totals 6 cycles. Again this could be 
extended up to nine cycles if the instruction address were to appear during the pre­
charge time following a data write operation or up to seven cycles if it followed a data 

· read. 

After the initial access, all burst instruction accesses use a 2-clock-cycle timing. Be­
cause two memory banks are interleaved, the apparent access time from the viewpoint 
of the system· bus :fs only one cycle per burst access !ollowing the initial access. 

Decode Timing 
Within the decode cycle the address timing path is '.made up of: 

• The Am29000 clock to address & control valid delay of 14 ns, 

• Address decode logic PAL delay of 1 O ns, 

• And the set-up time of the RAS PAL, 10 ns. 
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Figure 7·13 

Figure 7·14 

Assuming 0-speed PALs, those times total 34 ns as shown in Figure 7-13. 

· Also, within the decode cycle time is the control signal to response signal path. In fact 
this timing path is present in every cycle in the sense that the memory response signals 
must be valid in every clock cycle. This delay path is made up of: 

. . 
• Clock-to-output time of registers within the control logic state machine PAL, 8 ns; 

• Propagation delay of the control logic PAL, 10 ns; 

• Propagation delay of a logical OR gate on the response signals from each mem­
ory block, 1 o ns; 

• And control signal set-up time of the processor, 12 ns. 

Again assuming 0-speed PALs, these delay path times total 40 ns . 
• ' • l 

Row Address Timing 
Referring to Figure 7-14, within the row-address cycle, the RAS line.goes low which 
initiates a timedelay sigrial which· later causes the address multiplexer to change from 
the row to the column address. · · · 

10117A-7.13A 

t co, 

t Id, 

t pd, 

t mux min, 

t mux max, 

"t. Id, 

10117A-7.14A 

Address Path 
t co, Am29000 Output 

t pd, Control PAL 

t SU, Counter PAL 

Control Path 
t co, Control.PAL 

t pd, Control PAL 

t pd, Response PAL 

t SU, Am_29000 Setup 

VDRAM lnterleave_d Bank Memory Decode Cycle 

PAL RAS Output 

Memory Load Delay 

Del_ay Line 

Address MUX Switching Delay 

Address MUX Switching Delay 

Memory Load Delay 

Min RAS Address Hold Time 

Clock Cycle Time 

8· 

6.5 

·20 
,·,, 

4 

9.5 

6.5 

-17.5ns-

Max Time-to-Column.Address. -----. 44 ns -. ----­

Row Address Timing 
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This delay path is made up of: 

• . Clock-to-output time of RA.S signal registe.rs within the control-logic state machine 
PAL (8 ns) plus an added delay due to capacitive.and:inductive loading by the 
memory array of the PAL outputs. Since this load is· in excess of standard data 
sheet test loads, the equations in Appendix A are used to estimate the added 
delay. The estimated delay i~ 6.5 ns. This is added to the 8 ns (standard 50 pF 
load) delay of the RAS line for a total of 14.5 ns worst case. 

• Mux switch control signal delay path·, which runs in parallel with the memory RAS 
delay just described. This mux.signal delay is made up·of the clock-to-output 
delay of a lightly loaded RAS signal (8 ns) plus th~ delay line time (20 ns); 

• Mini.mum and maximum switching time of the address multiplexer, 4 ns to 9.5 ns, 
plus added delay for heavy loading (same as calculated above), 6.5 ns. 

Thus the memory RAS signals are stable no later than 14.5 ns into the cycle and the 
address mux output can change no sooner ,than 32 ns (assuming RAS outputs from the 

. same PAL will always have similar.delays). So the address hold time after RAS is 17.5 
· · ns. This works· out to satisfy the 1 S ns. of required hold time of address after RAS goes 
· active. Also the column address is settled by no. laterthan 44 ns in to the cycle. So, the 

column address will be set up prior the CAS going active in the next cycle. 

CAS-to-Data Ready 
In a data read operation the Column Address Strobe (CAS) signal-to-end of DRDY cycle 
is made up of: 

• CAS signal clock-to-output time (8 ns) pl.LI? added delay for heavier-than-normal 
output loading, as determined above,. (6.5 ns). 

• Memory access delay from CAS (60 ns). 

• Data bus transceiver propagation delay (10 ns). 

• Processor set-up time (6 n~) .. 

This totals 90.5 ns, which translates into just a little more than two cycles. Therefore 
DADY is not made active until the s~cond cycle following the DCAS state. 

In a data-write operation, the data is written by the falling edge of CAS. But the data 
hold time relative to RAS going active may also have to be satisfied before DRDY is 
made active-to free the address and data buses. 

For the Fujitsu memory, only the data hold ti~e relative-to-GAS is required, this is 30 ns 
after CAS active. The Am29000 will provide a minimum of 4 ns data hold time. The data 
transceiver will provide an additional minimum of 4 ns hold time beyond the end of the 
DCAS cycle. As shown in Figure 7-15, these will ensure meeting the hold time if DRDY 
is active in the DCAS cycle. 

For the NEC memory the hold time relative .to RAS is the longer delay path, this is 95 ns 
froni RAS going active. This implies' that the data must be held 29.5 ns into the WAIT 
state after DCAS. So, in this case DADY must not go active until the WAIT state after 
DCAS as shown in·Figure 7-16. 
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Figure 7·15 

Figure 7·16 

RAS-to-Shift Clock Timing 
Referring to Figure 7-16, in order to maintain a 6 cycle initial instruction access time 
only 3 cycles can be used for the· timing of signals between RAS and SAS. In that time 
the TR signal must be active for 90 ns to 100 ns after RAS and it must be inactive 25 ns 
to 1 O ns before SAS goes active, depending on the memory used. That is to say the 
least, a tight fit. The timing is as follews: 

· • Clock-to-memory RAS delay (8 ns) plus the added delay for heavy output loading 
of 6.5 ns for a total of 14.5 ns. 

Data Read 

t co, PAL RAS Output 

t Id, Memory Load Delay 

t aa, Memory Access Time 

t pd, Buffer Delay 

t su •. Am29000 Setup 

Data Write 

t co, PAL CAS Output 

t Id, Memory Load Delay 

t h, Am29000 Min Data Hold 

t pd, Tranceiver Min Delay 

Clock Cycle Time 

CAS-to-Data Ready Delay 

Min Data Hold Relative to CAS 
for Fujitsu Memory 

10117A-7.15A 10117A-7.15A 

8 

6.5 

60 

10 

6 

8, 

6.5 

4 

4 
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-------90.5 ns-----+ 

-33.5ns-

CAS to Data Ready Timing 

t co, PAL RAS Output 8 
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t co, PAL CAS Output 8 
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t h, Min RAS Address Hold Time 95 

Clock Cycle Time 40 ns 

Min Delay into D Wait Cycle, 9.5 ns-
RAS Address Hold Time for 
NEC Memor}' '· 

10117A-7.16A 

NEC Memory Write Data Hold Time 
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Figure 7·17 

• In parallel with the memory RAS, a separate·copy of RAS which is not loaded by 
:·the memory,array is used.to drive the delay line which determines the end of the 
: TR signal. Its .clock~to-output d~lay time is 8 ns; -

• Delayline time of 90 .or 100 ns. 

• Propagation delay of the PAL wh.ich gene.ratesTR from the output of the delay 
line is a minimum of 3 ns and a .maximum of 1 O ns plus an output loading delay of 
6.5 ns. · 

• The SAS output is combinatorial and is dependent on input signals that are regis­
tered. So its minimum delay is the minimum clock-to-output delay plus the mini­
mum propagation delay of a D-speed PAL plus the added delay for memory 
loading (3 ns + 3 ns + 6.5 ns = 12.5 ns). Its maximum delay consists of 8 ns of 
clock-to-output delay, 10 ns of propagation delay and a loading delay of 6.5 ns for 
a total delay of 24.5:ns. 

Assuming minimum delays in the TR and SAS signals and maximum delays in the RAS 
signals, the hold time for TR will just be metfor either the NEC or Fujitsu memories. For 
the Fujitsu memory the TR setup time before SAS will also just be met as shown in 
Figure 7-:17; For the NEC memory there is 5 ns of margin as shown in Figure 7-18. 

The above relies on the fact that all RAS outputs are implemented in the same PAL and 
that TR and SAS outputs reside in the same PAL. The PAL outputs for related signals 
will thus always track each other as tc>' minimum or maximum delay times. 
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Figure 7·18 

Figure 7·19 

Burst Timing 
Within the burst access cycle the address to data path timing is determined by: 

• The clock-to-output time of Q02E (8 ns for a D-speed, PAL) 

• Propagation delay of SAS PAL (10 ns) plus added delay for heavy capacitive and 
inductive load as was done for the RAS line. The same derating delay of 6.5 ns 
will apply. 

• Memory access time for serial port, 40 ns, 

• Data buffer delay (F244 .= 6.2 ns), 

• And the processor set-up time (6 ns). 

Those delays produce a worst-case total 76.7 ns as shown in Figure 7-19 

NEC Memory 
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Table 7·1 

INTER·CYCLE TIMING . ' 

, , Inter-cycle timing for instruction, data read and data write cycles are provided in 
Figures 7-20 through 7-22. 

PARTS LIST 
·The part list lorthe Am29000 Interleaved Video :RAM· interface is provided in Table 7-1. 

Am29000 Interleaved Video RAM Interface Parts List 

Item No. 

U1 
U2 
U3 
U4 
U5-U8 
U9-U11 
U12,U13 
U14 
U15-U30 
U31-U38 
U39-U46 

. U47 

Quantity 

1 
1 
1 
1 
4 
3 
2 
1 
16 
8 
8 
1 

47 pkgs 
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. · Device Description 

AmPAL18P8B 
AmPAL20L8B 
AmPAL22V10A 
74F175 
74F157 
AmPAL16R4D 
AmPAL16R6D 
AmPAL16L8D 
MB81461-12 or PD41264 
Am29C863 
74F244 " 
XTJLDM-100 

''•, 
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MEMORY EXAMPLE COMPARISONS 

This chapter compares each of the example designs presented in.this handbook. The 
areas of comparison are given below. 

• Memory block address range. 

• Memory board space consumption. 

• Memory power consumption. 

• Memory cost. 

Memory access speed. 

• System benchmark performance. 

The ground rules for each comparison are discussed and the chapter summary 
provides a table that shows all the results. Consistent ground rules are used in the 
calculations. Different ground rules will give different results; however, the ratios will 
remain roughly the same. · ' , · 

MEMORY BLOCK ADDRESS RANGE 
The non-interleaved SRAM example of Chapter 4 provides a single bank of 16K words 
for the instruction blo.ck and a simila.r bank for the data memory block. The bank 
interleaved SRAM example of Chapter 5 provides dual 64K-word banks in the 
instruction and data memory blocks. So, the instruction and data blocks each contain 
,128K words of memory. 

The SCDRAM example of Chapter 6 provides dual 1 M-word banks in each memory 
block. So, the instruction.and data blocks each contain 2M words of memory. 

The VDRAM example of Chapter 7 provides dual 64K-word banks for a common­
instruction and data-block address space. So, the combined instruction and data block 
contains 128K words of memory. · 

MEMORY BOARD SPACE CONSUMPTION 
The consumption of board space is estimated by the quick and crude method of dividing 
the total pin count by a pins-per-square inch density factor .. Accuracy of this method is 
open to question but the intent is to provide a quick and .9onsistent way of indicating the 
relative board space required by each design. 
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Tables 8-1 through 8-4 show the parts list and pin count for each design. Those tables 
are used as the basis of comparison. Each table lists only the parts needed to 
implement the instruction memory block (except the VDRAM design}. For ease of 
calculation, the data-memory-block is assumed to be identical to the instruction block; 
therefore the total pin count is double that shown in each of the Tables 8-1 through 8-3. 
The value in Table 8-4 is not to be doubled since the VDRAM design supports both 
instruction and data memories in a s,ingle memory block. 

The density factor is 40 pins per square inch. Thus, the total square inches estimated 
for each design is shown in Table 8-5., 

Table 8·1 Am29000 High-speed Static RAM,lnterface Parts List 

Qty Device Pins/ Pins Power/. Power Cost/ Cost 
Description Device Total Device Total Device Total 

mW mW. $ $ 

1 AmPAL16R4D 20 20 , 945 945 5.00 5.00 
1 74F175 16 16 187 187 .60 .60 
1 AmPAL16L8D 20 .. 20 945 945 5.00 5.00 
3 AmPAL16R6D 20 60 945 2835 5.00 15.00 
1 74F32 14 14 51 51 .50 .50 
8 P4C1982-20 28 224 550 4400 15.00 120.00 
4 IDT7 4FCT244 20 80 345 1380 1.50 6.00 
8 IDT74FCT244A 20 160 345 5520 2.00 16.00 

27 594 16263 168.10 

Table 8·2 Am29000 Medium-speed Bank lnterl~aved 
Static RAM Interface Parts List 

Qty Device Pins/ Pins Power/ Power Cost/ Cost 
Description Device Total Device Total Device Total 

mW mW $ $ 

2 AmPAL16L8D 20 40 945 1890 5.00 10.00 
4 ·AmPAL16R4D 20 80 945 3780 5.00 20.00 
1 74Fi75 16 16 187 ... 187 .60 60 
2 Am29823A 24 48 550 1100 2.00 4.00 
2 AmPAL16R6D 20 40 945 1890 5.00 10.00 
64 IDT7187S.;55 22' 1408 660 42240 5.00 320.00 

or CY7C187-55 
8 Am29825A. 24' 192 517 4136 2.00 16.00 
16 '74AS244 20 320 495 . 7920 1.50 24.00 

99 2144 63143 404.60 
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Table 8·3 

Am29000 Interleaved Dynamic RAM Interface Parts List 

Qty Device Pins/ .Pins Power/ Power Cost/ Cost 
Description Device Total Device Total Device Total 

mW mW $ $ 

1 AmPAL16L88 20 20 945 945 5.00 5.00 
1 AmPAL22V1 OA 24 24 990 990 6.00 6.00 
2. AmPAL20L88 .20 40 945 1890 3.00 6.00 
4 AmPAL16R4D 20 80 945 . 3780 5.00 20.00 
6 AmPAL16R6D 20 160 945 5670 5.00 30.00 
2 AmPAL16L8D 20 40 945. :1890 5.00 10.00 
64 TC511002-100 18 1152 330 21120 25.00 1600.00 
1 74F175 16 16 187 187 .60 .60 

.6 74F158 16 120 .83 498 .60 3.60 
8 Am29C843 24 192 488 3904 2.00 16.00 
16 IDT7 4FCT244A 20 80 345 1380 2.00 32.00 
1 MTTLDL-8 16 16 330 ,330. 5.00 5.00 

112 1940 42584 1734.20 

Table 8·4 Am29000 Interleaved Video RAM Interface Parts List 

Qty Device Pins/ Pins Power/ Power Cost/ Cost 
Description Device ·Total Device Total Device Total 

mW mW $ $ 

1 AmPAL18P88 20 20 945 945 3.00 3.00 
1 AmPAL20L88 20 20 945 945 3.00 3.00 
1 AmPAL22V1 QA 24 24 990 : ·. 990 6.00 6.00 
1 74F175 16 16 187 187 .60 .60 
4 74F158 16 64 83 332 .60 2.40 
3 AmPAL16R4D 20 60 945 2835 5.00 15.00 
2 AmPAL16R6D 20 40. 945 1890 . 5.00 10.00 
1 AmPAL16L8D 20 20 945 945 5.00 5.00 

16 MB81461-12 24 384 523 .. 8368 6.00 96.00 
or PD41264 

8 Am29C863 24 192 643 5144 2.00 16.00 
8 74F244 20 160 495 3960 1.00 8.00 
1 XTTLDM-100 16 16 550 550 5.00 5.00 

·--
47 1016 27091 170.00 

MEMORY POWER CONSUMPTION 
The power consumption for each design is estimated by totaling the worst-case power 
consumption (maximum supply current times maximum operating V cc at 25 MHz signal 
toggle rate) for all devices. 
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These power-consumption parameters are not to be considered representative of the 
power consumption normally expected in these designs. They represent the absolute 
maximum possible. consumption in the extremely unusual event that all devices simul­
taneously operated at maximum power consumption. These power estimates are used 
only as a means to consistently determine relative power consumption between the 
designs .. 

As was done before in the last section,.the values from Tables 8-1 through 8-3 are 
doubled to estimate the power use for both instruction and data memory blocks. The 
value of Table 8-4 is not doubled since the VDRAM design supports both instruction and 
data memories in a single memory block. The estimated total power consumption 
results are shown in Table 8-5. 

MEMORY COST 
The cost of a memory syste'm is difficult to estimate because the prices of individual 
devices change with the market place over time and prices can vary widely depending 
on the required volume of devices. The prices used for this comparison are rough 
"ballpark" numbers that were obtained in March 1988 for quantities of 1 K per logic 
device and 1 OK per memory device. 

Tables 8-1 through 8-4 show the estimated cost for each memory block. Table 8-5 
summarizes the costs, again doubling the cost of the first three designs to account for 
both the instruction and data-memory blocks. 

MEMORY ACCESS SPEED 
The access speed of each design is summarized in Table 8-5. 

Non·lnterleav.ed SRAM 
The high-speed non-interleaved SRAM design has an initial access time of two cycles 
(one wait state) and a single-cycle (zero wait state) burst access time for all subsequent 
sequential accesses. This performance is the same for either the instruction-memory or 
data memory block. 

Bank-Interleaved SRAM 
The medium-speed bank-interleaved SRAM design has an initial access time of three 
cycles (two wait states) and single cycle (zero wait state) burst access. Again this is 
true for both instruction and data-memory blocks. 

SC DRAM 
The SCDRAM design provides a basic initial access time of four cycles (three wait 
states) and single-cycle (zero wait state) burst access. However, with dynamic 
memories, the initial access time is not always consistent. Dynamic memories introduce 
some overhead cycles into the normal access sequence. This overhead comes in the 
form of refresh sequences and precharge time. 

The SCRAM requires an average refresh sequence of 5 cycles every 15.6 µs. If a 
refresh sequence preempts a burst. access, that access incurs additional overhead 
because it is forced to resend an address to re-establish the burst access. This will 
require a 4-cycle initial access time in addition to the 5-cycle refresh sequence. 
Depending on how often a burst access is in progress at the time a refresh is required; 
the refresh sequence could require up to nine cycles out of every 390 cycles (refresh 
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period in cycles = 15.6 µs/40 ns = 390). Thus, refresh can cost up to 2.3% of the overall 
. memory performancewhen the memory i.s constantly being accessed. Refresh 
sequences that occur when the memory is otherwis~ not in use cost nothing, since the 
refresh does not contend with system use of the memory. 

Precharge overhead is required each time a new memory request and address are 
presented to the memory. The new address is presumed to access any random 
location and thus requires a full row and column address ~equence.to initiate the new 
access. Whenever one row address is changed to a new row address there is a 
required 2-cycle precharge delay between the ~nd of the first access and the beginning 
of the second. 

In cases where a previous access has ended one or more cycles before a new access 
begins there is no precharge penalty since the precharge time between accesses has 
already been satisfied. If a previous access has not ended at the time a new address is 
presented, the new access must be delayed during the required pre charge time. This 
situation is very common. From the vie~ point.of the memory, this is almost always the 
situation if burst accesses are assumed to be the normal mode of access. The 
Am29000 bus protocol provides nl?tice of a bllrst-access cancellation (end) by the 
appearance of the next memory-request address. Until the new request appears, a 
memory system must assume that any burst access is either active or suspended (but 
not ended). Therefore, for the instruction-memory block, where burst accesses are 
almost always used by the Am29000, the memory control logic is designed to always 

. assume burst accesses. Virtually every new memory.request (initial access) incurs the 
2-cycle precharge· delay in addition to ttie normal initial access delay. Note that since 
the Idle state serves both as a precharge cycle and an address decode cycle, the 
precharge time is overlapped with the first cycle of the new initial access. The total 
initi~I access time is thus five cycles in the above case. 

The only exceptions to this occur when a different instruction memory block is 
addressed and the instruction memory block of interest recognizes the address of a 
different block as the end ofany suspended burst access. This recognition of the end of 
a burst allows .the memory of interest to go through the precharge delay prior to the 
beginning of any subsequent access. Thus, any following access to the memory block 
of interest will only incur the basic 4-cycle initial access delay:· 

The data-memory block can take advantage of the f?ct t~at the Am29000 processor 
never converts a simple or pipelined access into. a burst access; Any burst access is 
indicated from the very beginning of the memory request. Also, a ·data burst access is 
never suspended. Together these facts indicate that a data memory can always 

. recognize the end of an access as signaled by Data Burst Request (DBREQ) being 
inactive. This allows the data-memory logic to .end an access and satisfy the precharge 
delay, in many cases, before a new access request appears. The.refore the data­
memory block can most often incur only the normal 4-cycle initial access delay without 

· any precharge overhead. 

Th~ bottom line of this ·whole dissertation is that the instruction-memory block almost 
always incurs precharge delay in addition to the .initial access delay; therefore the 
typical access time is five cycles. The data-memory block can however avoid the 
precharge· overhead in most cases the typical initial access time is four cycles. Finally, 
for either memory block, burst access cycles are always single cycle. 
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A valuable enhancement for the above design would be the addition of a row-address 
comparator and a modification to the control state machine to allow the memory 
interface logic to recognize when a new memory request address lies in the row 
currently being accessed. Remember that with SCDRAM, access to any random 
location within the currently addressed row requires only that the column address be 
changed. There is no precharge or row address transfer time required. When the 
memory interface logic compares the current row address with the new request address 
and determines a match, the control state machine can pass the new column address 
on to the memories and completely avoid any need to precharge or go through the 
normaI"initiaJ access sequence. This means that for any access within the current row, 
the initial access time can be reduced to three cycles: One cycle to recognize the 
situation and two cycles to access the first word. Again all burst accesses would still be 
single cycle. The preemption for Refresh would guarantee that the maximum RAS 
pulse width would not be violated. 

Although this design option was not implemented in the SC DRAM design shown in 
Chapter 6, the design changes required have been estimated as the addition of two 
74AS866 comparators and one AmPAL 16R4. The performance of a design with row 
comparators was simulated and is included in the final summary, Table 8-5. 

VD RAM 
The VDRAM design has·a basic initial access time of six cycles (five wait states) for 
instructions and five cycles (fo'ur wait states) for data read. Data-write initial access time 
is three or four cycles depending on the particular memory used to implement the 
design. The burst access time for instructions is single cycle and no burst accesses are 
supported ·for data. 

Like the SCDRAM described in the last section the VDRAM design requires similar 
overhead cycles for refresh and precharge functions. The overhead for refresh affects 
data accesses much more often than instruction accesses. This is because the shifter 
port used for instructions on a VDRAM operates independently of the data 1/0 port. 
Once an instruction access is initiated, subsequent burst accesses require no 
interaction with the data 1/0 port. This means that refresh sequences that involve the 
data 1/0 port can go on in parallel with instruction accesses. It is only when a new 
instruction request appears during a refresh sequence that the instruction request is 
delayed by the refresh activity. The refresh interval is 390 clock cycles for the VDRAM 
and a refresh sequence requires six cycles; so, the ma>cimum percentage of cycles that 
may be lost to refresh overhead is 1.5%. · 

The VDRAM requires a precharge time of three cycles between the end of one access 
and the beginning of another. In cases where a previous access has ended two or 
more cycles before a new access begins, there is no precharge penalty since the 
precharge time between accesses has already been satisfied. As noted for the 
SCDRAM design, the Idle state serves both.as a precharge cycle and an address 
decode cycle. The precharge time is overlapped with the first cycle of the new initial 
access; thus only a two cycle space between ac~ess~s is required. 

In the situation that a previous access has not ended at the time a new address is 
presented, the ne;vv access must be delayed during the required precharge time. 

There is one additional overhead delay in the event that a new memory request follows 
a data write operation before the write and precharge sequence is complete. When this 
happens the new access will be delayed by up to three cycles. 
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SYSTEM BENCHMARK PERFORMANCE 
Advanced Micro Devices provides an architectural simulator program for evaluating the 
Am29000. The simulator executes compiled or assembled code and provides a 
detailed analysis of the Am29000 performance for that code. It provides the ability to 
define the access time expected from instruction memory, ROM, and data memory. 
This allows performance on standard benchmark programs to be evaluated across a 
wide range of performance variations in the Am29000-system memory. The simulator 
is limited with regard to DRAM or VDRAM memory designs, since it is unable to 

· simulate refresh or precharge delays. Therefore, the actual performance of dynamic­
memory-based systems will be slightly less than that indicated by the results of 
simulation. In the case of the SCDRAM example, some of this error in reported 
performance is compensated for by listing the initial access time as five cycles for 
instruction accesses. That access time includes the normal precharge delay that the 
SCDRAM memory experiences. 

The benchmark chosen for comparison of the example memory designs is called 
Dhrystone version 1.1. This program is designed as a statistically correct mix of 
instructions that is representative of a wide range of frequently executed programs. 
This benchmark program has been executed on virtually all microprocessor systems 
sold, so comparison with competing microprocessor solutions should be relatively easy. 

The Dhrystone 1.1 benchmark program was compiled with the High c· compiler for the 
Am29000. The results of benchmark execution are shown in Table 8-5. 

SUMMARY 
Table 8-5 brings together a summary of all the features and performance factors for 
each of the example designs. In addition to the four designs shown in Chapters 4 
through 7, two other variations are estimated and shown. 

As a comparison to the SCDRAM design, a column is added to show a SCDRAM 
design including row-address comparators. 

For VDRAM, a column is added to show how newer 1 M bit densityVDRAMs would 
compare with the design based on the older technology 256K-bit VD RAMs. The 1 M-bit 
VDRAMs are assumed to require an 18-pin package, have power consumption equal to 
the 256K-bit VDRAMs, and to cost $50 each (double the assumed price of SCDRAM). 

* Trademark of Metaware Inc. 
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Table 8·5 

Memory Design Example Feature and Performance Summary Showing 
System Totals for Instruction and Data Memory 

Design ·Example 

Comparison High Medium. SC DRAM SC DRAM VDRAM VDRAM 
Item Speed Speed With 256K 1M 

SRAM SRAM Row Add Bit Bit 
Compare Type Type 

Total Words 
of Memory 32K .256K 4M 4M 128K 512K 

Board Space 
Consumption 29.7 107.2 97 100.8 25.4 26.2 
sq in. 

Board Space 
Consumption 1103 2445 43240 ' 41610 5160 20010 
words/sq in. 

Power 
Consumption 32526 .126286 .85168 88753 27091 27091 
mW 

Power 
Consumption 1.007 2.08 49.25 47.26 4.84 19.35 
words/mW 

Cost 
$ 336 809.2 3468.4 3488.4 170 874 

Cost 
words/$ . 97.5 323.9 1209.3 1202.4 771 600 

Access Speed 
in Cycles 

Instructions 
Initial 2 3 5 3 to 4 6 6 
Burst 1 1 1 1 1 1 

Data 
Initial 2 3 4 3 to 4 5 5 
Burst 1 1 1 1 NA NA 

Benchmark 
Performance 

dhrystones/s 37203 32271 28108 31183 21946 21946 
MIPS 19.4 16.87 14.71 16.31 11.53 11.53 
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As expected, the SAAM designs provide the best performance while consuming the 
most power and board space per word of memory. 

SCDAAM provides the highest density, lowest power, and lowest cost-per-word memory 
system with only a 25% performance reduction as compared with the high speed SAAM 
design. When row-address comparators are included, the performance jumps to within 
16% of the high-speed SAAM design and within 3.3% of the medium speed SAAM 
design. 

The VDAAM design shows a lower density than SCDAAM even when comparing 
designs with equal bit-density memory devices. This is mainly due to the much higher 
ratio of control logic to memory devices involved in the specific VDAAM example 
design. Since VDAAMS have a "by 4" organization, far fewer memory devices are 
needed per bank of memory but the number of memory control devices remains nearly 
the same for one to several banks of memory devices. For a design of equal system­
memory size (same number of memory devices), the control logic would become a 
much lower percentage of the overall device count in a VDAAM design. For equal-bit­
density memory devices, i.e. 1 M-bit SCDAAM vs 1 M-bit VDAAM, and equal memory­
system size, the board-space density of the SCDAAM and VDAAM designs should be 
more closely matched with VDAAM having an advantage due to simpler and smaller 
control logic. 

The primary advantage of VDAAM is in the simpler control and interface logic vs any 
equivalent size SCDAAM design. This is especially true when the system performance 
requirements can be relaxed to slow the clock rate enough that the VDAAM shifter port 
can keep up with the Am29000 cycle rate without the use of dual bank memory-system 
design. 

A further advantage is the ability to make more efficient use of a common instruction 
and data memory address space, thus, potentially reducing overall memory-system size 
requirements. At 11.5 MIPS and 21946 dhrystones the VDAAM still provides very 
respectable performance. 

Bottom line: the Am29000 sustains the best performance in town with high-speed 
memories and maintains high performance when connected directly to low-cost, high­
density, dynamic memories. 

Expensive and complex cache memory support can be avoided entirely while sustaining 
performance well beyond that available from other microprocessor solutions. 

That's the price/performance advantage unique to the Am29000. 
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Am29000 DHRYSTONE 1.1 
MEMORY BENCHMARKS 
by Drew Dutton, Southwest Area Technical Manager 

The Am29000 processor has been specifically designed to reduce the cost of memory 
necessary to sustain the bandwidth requirements of near single-cycle performance. 
Such techniques as pipelining accesses and banking or interleaving memory have been 
used throughout the years to improve system performance and both these techniques 

· are available with the Am29000. This chapter is intended to demonstrate the wide 
range of memory speeds that still provide the necessary performance level for a system 
as well as pointing out the importance of memory issues other than access speed 
alone. 

Table 9-1 contains the simulated performance of different memory speeds and inter­
faces using the Dhrystone 1.1 benchmark compiled on the High C* compiler for the 
Am29000. With 4-cycle first access memory, 33,471 Dhrystones and 17.49 MIPS 
performance can still be achieved. The range in performance runs from 41,920 
Dhrystones and 21.82 MIPS to 10,550 Dhrystones and 5.56 MIPS. The lowest perform­
ance was not with the slowest memory but.with only simple memory accesses allowed. 
In general, the most significant changes in performance were due to memory interface 
changes and not memory speed changes. 

All of the benchmark information was gathered using the Advanced Micro Devices 
Am29000 Architectural Simulator Version 4 running on an IBM-PC/AT with 640K bytes 
of memory. This simulator models the complete behavior of the Am29000 processor 
and has been verified against actual hardware. Am29000 memory is mapped into the 
IBM-PC memory and its speed is modeled with user-specified parameters. The results 

, · in Table 9-1 reflect data gathered by changing these memory parameters and re­
running the·Dhrystone 1.1 benchmark for each unique memory configuration. Read and 
write timing were assumed to be the same. None of the memory models use a cache, 
but Static Column DRAM(SCDRAM) with address comparators is simulated. The 
simulatordoes not simulate any refresh or pre-charge of DRAMs. Therefore, the actual 
performance of a DRAM-based system would be slightly lower than that simulated. 

To read the benchmark table, first note the number of Dh,.Ystones per second. This is 
the measure of performance provided by a particular memory architecture. After listing 
the. number of clock cycles necessary to execute 50 passes through the Dhrystone loop, 
the actual speed is given for the three different memories in the simulated system. 
These memories are Instruction memory, ROM memory and Data memory. Memory 
speed is listed in system clock cycles. The Dhrystone number assumes that each of 
these clock cycles is 40 ns and that the system clock is 25 MHz. Although faster ver­
sions of the Am29000 are now available, this was the basis for performance measure­
ments. 

For each memory, there are several parameters listed. First, are the number of clock 
cycles necessary to complete a simple, non-burst, non-pipeline access. For example, if 
the instruction memory was able to respond in 120 ns (after taking into consideration 
29000 timing parameters) the memory would be listed as three cycles for a simple 

* High C is a trademark of MetaWare Inc. 
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access (two wait states). If it were 180 ns, the memory would have been listed as four 
cycles for a simple access (three wait states). If the memory system can provide data in 
bursts, then the speed of burst access is listed by first stating the number of clocks 
necessary to initiate a burst and then the number of clocks for each 32-bit word during 
the burst. The time to do the first burst access is the same as the time necessary to do 
a simple access in all the examples shown and is thus listed in the same column as a 
simple access. Subsequent burst accesses are always one cycle for the examples 
shown. · · · 

.If the memory is a SC DRAM, then it is possible to have faster access when within a 
column. Therefore, the speed of a first access within a static column and the size of the 
static column (in 32-bit words) are listed for this type of memory in the table. 

The access speed of Instruction memory is listed first; ROM, which cannot burst in this 
version of the simulator, then Data memory follow. After the speed of the memories is 

. listed, the number of system clock cycles, the number of Am29000 instructions exe­
cuted and the resulting MIP rate are shown . 

. Notes And Conclusion 
·Although the highest performance was gained through the use of zero-wait-state mem­
ory designs, the huge cost differential between these designs and designs utilizing one 
wait state with pipelined and burst accesses makes it clear that a more optimal cosV 
performance trade-off exists using slower memory with a more sophisticated interface. 
For the Dhrystone 1.1 benchmark compiled on the pre-release version of the MetaWare 
High C cornpiler, perhaps the best cosVperformance trade-off exists with a SCDRAM 
design. The three-wait-state DRAM design, using one-wait-state access when within a 
static column, provides 33,471 Dhrystones/second and 17.49 MIPS. This same DRAM 
design without pipelined access on the data bus provides 29,630 Dhrystones/second. 

Support for single-cycle burst is important to sustain single-cycle execution whenever 
possible. Pipelining on the data bus is an important performance aid due to a high num­
ber of loads followed by branches produced by the compiler. A different benchmark or 
different compiler may not have such a strong need for data pipelining. It should also be 
noted that this benchmark does not use the Load-Multiple or Store-Multiple instructions 
and therefore never.does a data.burst. 

The Am29000 sustains a very high MIP/Dhrystone rate when provided with single-cycle 
· ··burst on the instruction bus and pipelined accesses on the data bus. Even with 

. 6-cycle first-access memory, the Am29000 can provide over 30,000 Dhrystones and 
15 MIPs!· 
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Table 9.1 Statistics of Dhrystone 1.1 Simulation 

Dhrystone Instruction Memo~ ROM Data Memo~ 
Performance Simple/ Simple/ 

Dhrystones 
per 

Second 

41920 

39698 

33471 

32271 

30104 

26032 

25629 

20062 

19047 

13011 

11708 

>10550 

Time for 
50Passes 

Cycles 

29818 

31487 

37345 

38734 

41522 

48017 

48771 

62305 

65626 

96068 

106764 

1st Burst 
Access 
Cycles 

4 

3 

6 

4 

2 

6 

3 

4 

5 

118476 > 5 

Access 
Mode 

see note 

burst 

simple 

burst SC 

burst 

burst SC 

burst 

pipeline 

burst 

pipeline 

pipeline 

pipeline 

bioeline< 

Simple 
Access 
Cycles 

4 

3 

6 

4 

2 

6 

3 

4 

5 

::5 

1st Burst 
Access 
Cycles 

4 

3 

6 

4 

2 

6 

3 

4 

5 

.··s:=:: 

Access 
Mode 

see note 

burst 

simple 

burst SC 

pipeline 

burst SC 

simple 

pipeline 

simple 

pipeline 

simple 

pipeline 

simole 

Note: Access Mode Definitions -
Simple- Simple Accesses only, no Burst or Pipeline Access Support 

Pipeline- Simple and Pipeline Accesses only; no Burst Access Support 
Burst- Simple, Pipeline, and Burst Access Supported. Pipeline Enable or 

Burst Acknowledge Signals are active during the first Access cycle. 
All Burst Accesses beyond the first are completed in a single cycle. 

User Mode 
Cycles 

30749 

32406 

38368 

39800 

42576 

49191 

49955 

63671 

67103 

97923 

108848 

120652 

Supervisor 
Mode 

Cycles 

187 

189 

226 

221 

244 

247 

314 

291 

437 

580 

695 

695 

Simulation Performance 

Cycles 

30936 

32595 

38594 

40021 

42820 

49438 

50269 

63962 

67540 

98503 

10943 

121347 

I 
Total 

Seconds J MIPS I Cycles/Inst 

0.00123744 

0.00130380 

21.82 

20.71 

0.00154376 17.49 

0.00160084 16.87 

0.001171280 15.77 

0.00197752 13.66 

0.00201076 13.43 

0.00255848 10.56 

0.00270160 10.00 

0.00394012 6.85 

0.00438172 6.16 

0.00485388 5.56 

1.15 

1.21 

1.43 

1.48 

1.59 

1.83 

1.86 

2.37 

2.50 

3.65 

4.06 

4.49 

Simple SC, - Burst, Pipeline, or Simple Access with Static Column DRAM Address 
Pipeline SC, Comparators assumes one cycle to decode a hit within a previously 

Burst SC accessed Static Column, plus one cycle for the first access. 
Subsequent burst accesses are single cycle. A Static Column size 
of 1024 words is assumed. 
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Figure A·1 

MEMORY ARRAY LOADING 
DE'LAY CALCULA~l~NS 

OVERVIEW. 
An array of memory devices may present an inductive and capacitive load much larger 
and more complex than normally anticipated by most signal driver specifications. Most 

. dev,ices are sp~cified. with propag~tion delays or clock-to-output delays that assume 
only a,local capacitive and resistive load. As shown ill ~igure A-1, a typical test load 
circuit would be the driving device output connected to a voltage divider with integrating 
capacitor (R,=200 n, R

2
=390 n and CL=50. pF). · 

. A memorY array can ·easily present a capacitive load of 1 BO pF to over 400 pF with 
·. in,ductiv~ loadingpf greater than 170 nH /foot of printed circuit board trace. In addition, 

depending on the memory layot:Jt, the 'memory array may appear to the driving device 
like a lumped RLC circuit or like a transmi$Sion line. 

The heavy load presented by a memory array can significantly slow the apparent 
output-driver switching speeds and may also cause unwanted overshoot or undershoot 
of the affected signal. Therefore it is. important to take into account how a memory array 
affects the output~delay specifications of any device driving memory-array signals. 

MEMORY ARRAY MODELS 
Depending on the physical layout of the memory array and on the switching speed of a 
memory signal driver, a memory array may be modeled by either a lumped RLC circuit 
or as a distributed RLC n~two.rk (also called a transmission line) similar to the models 
shown in Figure A-2. · 

A transmission line model is appropriate when twice the propagation delay time, from 
the signal driver to .. the end of the memory signal trace, significantly exceeds the rise or 
fall time of the drivi.ng signal. In this situation, the distributed nature of the capacitive 
and inductive loads presented by memories and printed circuit board traces, in effect, 
prevents the driver from "seeing" the entire load during the signal switching rise or fall 
time. Changes in voltage and current levels must propagate to the end of the trans­
mission line and any reflections returned back to the source before the driver "sees" the 
effect of the entire I.cad. In 'his case the propagation delay of the transmission line 

5V'. 

Output 0-----.------..--<• Test Point 

10117A·A.1 

Typical Signal Driver Test Load 
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Figure A·2 

determines the worst-case delay to be added to the propagation delay or clock-to-output 
delay specified for a memory signal driver. · 

When twice the propagation delay to end of the memory signal trace is significantly 
shorter than the switching rise or fall time of the signal driver, the memory array is better 
modeled by a lumped RLC circuit (sometimes called a resonant or tank circuit). This is 
because the effect of the entire load is seen by the driver as the output is switched and 
the entire load determines the switching speed of the output. 

DETERMINING MEMORY LOAD FACTORS· 
As shown in Figure A-3, the printed circuit board (pcb) trace capacitance, inductance 
and impedance is a function of the. pcb material and trace dimensions. The primary 
characteristics are defined as: 

Er= Relative dielectric constant of board material. Typical materials are G-10 (Er= 
4. 7 to 5) and FR-4 (Er = 4.5 to 5.2) with the Er values determined by exact 
details of board construction and specification of test condition when determining 
ttie value of Er. An average value of 5 is used as the value of Er in all 
calculations showh. · 

+ 

VD river 

10117A·A.2 

C Trace r r CDRAM 

RLC Model 

'"--..--" '"--..--" 
DRAM #1 DRAM #2 

Distributed RLC Model 
(Transmission Line) 

'"--..--" 
DRAM #N 

RLC and Transmission Line Models 
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Figure A·3 

w = Width of the trace in inches. 0.01 inches is used as a typical value for memory 
trace width. · 

h = Height of the trace above a ground plane in inches. 0.03 inches is used as a 
typical value. 

t = Thickness of trace in inches. 0.003 is used as a typical value for 2-ounce copper 
traces. 

Calculations for trace loads shown in this appendix are for microstrip lines. 

Strip line values are significantly different and the references listed at the end of the 
appendix should be consulted for appropriate. calculations. 

Characteristic Impedance 
Trace impedance (Zo) is defined as: 

87 

In ( 

5.98 h ) Zo =·, y (Er+ 1.41) 0.8 w + t 

87 ( 5.98 (0.03) ) 

v In 0.8 (0.01) ~ 0.003 . (5 + 1.41) 

95.93 .n 

Mlcrostrlp Cross-Section 

Ground Plane 

Strip Line 

Ground Plane 

10117A·A.3 Strlpline Cross Section 

PCB Trace Dimensions 
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Characteristic Propagation Delay · 
The trace propagation (tpd) velocity is defined as: · ·· 

tpd 1,Q17 v/ (0.475Er + O.E??) ns/ft 

1.774 ns/ft 

Capacitance 
The capacitive load comes from the pcb trace capacitance and the input capacitance of 
each memory device. The input capacitance is typically specified in the memory 
datasheet. The appropriate value is simply multiplied by the number of memories 
attached to the signal trace in question. The printed circuit board trace capacitance is 
determined by the physical ·characteristics of the board and trace dimensions. 

Large area capacitance is determined as·: .. 

0.224 Er A Where: C is in picofarads 
c Er is the board material dielectric constant. 

h A is the electrode surface area in square inches. 
h is the. height (separation) of the electrode 

above the ground plane. 

But at the typical dimensions ofj traces used on a pcb, fringe capacitance becomes a 
very significant component·of the trace capacitance., Calculating this directly is very 
complex. The trace capacitance (Co) is more easily determined as a function of the 
trace impedance and propagation ·delay: 

Co 1 OOO(tpd/Zo) pF/ft 

1000(1.774 I 95.93) 

19.5 pF/ft 

For transmission line calculations the distributed capacitance (Cd) of the memories is 
the parameter of interest. This is a value for capacitance per distance along the trace. 
This is layout dependenfand is defined by the spacing between memory packages. For 
a standard 0.3-inch-wide DIP, it is assumed thafmemories may be placed along a 
signal trace at a spacing of two per inch or 24 per foot of trace. Assuming an average 
input capacitance of 7 pF, the value of Cd is determined as: 

input c~padtance pF/me.mory 7 pF 
Cd 168 pF/ft 

spacing in feet/memory . 0.0416 ft 
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Inductance 
Trace inductance (Lo), like trace capacitance, is rather complex to determine directly. 
The value of Lo is easierto determine as a function of the trace impedance and 
capacitance: 

Lo (Zo)2 Co pH/ft 

95.932 (18.5) 

170.18 nH/ft . 

Significant inductance is also found in the output and ground pins and bond wires of the 
signal driver package. These inductances total 15 nH to 25 nH. The driver inductance 
is worth noting because all the current flowing to-or-from the trace passes through the 
driver. The memory devices have similar inductance on their inputs but most memories 
have very low input current loads so that their input inductance will not have a 
significant effect on the driving signal. 

Loaded Trace Impedance 
When the capacitance of the memories is added to the characteristic capacitance of the 
signal trace, the characteristic line impedance (Zo') changes significantly. The new 
value of Zo is determined as: 

Zo' 
Zo 

V (1 +Cd/Co) 

95.93 

v (1.+ 168/18.5) 

30.21 n 

Loaded Propagation Delay 
Similarly the propagation delay is affected when the capacitive load of the memories is 
taken into account. The new value of tpd is determined as: 

tpd' tpd V (1 ·+Cd/Co) 

1.774 v (1+ 168/18.5) 

5.633 ns/ft 

LAYOUT EFFECTS 
Depending on how the array of memory chips is laid out, it is possible to force the 
memory system to look like either a transmission line or a lumped RLC circuit. 

If all the memories are attached along a single set of serially routed signal traces then 
each trace will act as a transmission line. Assuming a typical memory array of 32 
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Figure A·4 

devices the traces would need to be 1.33 feet long. Using the calculations shown in the 
last section, two times the.line propagation delay would be 14.6 ns. This value 
surpasses the 2 to 5 ns ris~ or fall time of a typical high-speed buffer. So this layout 
should be treated as a transmission line. 

If all the memories are very closely grouped to the driver by splitting the signal traces 
into a tree-like structure with very few memories on each branch. The root-to-branch­
end length can be made very short. Assuming the same memory array of 32 devices 
split into 8 branches of 4 devices each, the branch length could be limited to about 4 
inches. This assumes 2 inches of each branch contains memory devices and there is 
about 2 ·inches of routing required between the driver output and the first memory on 
any one.branch. In this configuration the propagation delay to the end of a branch is 
1.87 ns .. Two times the the delay is 3.75 ns which is within the range of normal rise and 

· fall times for a signal driver .. This means that the memory array will behave more like a 
lumped RLC circuit than like a transmission line. · 

Non-Interleaved SRAM Layout 

·oooo DODD >·sRAMs 

Bank-Interleaved SRAM Layout 

. [] 
Memory Layout Models 
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LAYOUT MODELS 
Chapters 4 through 7 of this handbook show four different memory systems. The 
medium-speed bank interleaved SRAM design and the SCDRAM design each use 32 
memory devices per bank of memory. The VDRAM design and high-speed non­
interleaved SRAM design use only eight memories per bank. Memory layout models of 
the SRAM, SCDRAM and VDRAM designs are shown in Figure A-4. 

The non-interleaved SRAM design uses as few memory devices as possible and places 
the memory devices as close to the processor as possible. The eight memories are 
placed into two rows of four devices each. This gives a two-branch tree structure to the 
pcb trace' layout. Each branch is assumed to be 4 inches in length with memories 
placed two per inch along 2 inches of the trace and the remaining 2 inches of trace used 
for routing to the· processor. , 

For the bank-interleaved-SAAM design, the layout places the 32 memories into 4 rows 
of 8 devices each. This creates a tree structure with each branch being 4 inches long, 
assuming that memories are placed two per inch along the trace. To allow for trace 
routing from the driver to each branch, 2 inches will be added to each branch. 
Therefore, the "driver to end of branch length" will be 6 inches. 

The SCDRAM design is a subset of the above in that dual RAS and CAS drivers are 
provided so that the set of 32 memories may be broken into two separate tree 
structures, each with two branches. This maintains the driver-to-end-of-branch length at 
6 inches; however, it lower~ the total capacitive and inductive load on each driver. 

The VDRAM model is a subset of the above. The eight memories will be placed on a 
single trace 6 inches long. 

TRANSMISSION LINES OR RLC CIRCUITS? 
From the discussion of memory loading factors, it can be seen, that a representative 
value of propagation delay for a memory trace is about 5 ns per foot. With trace lengths 
of 6 inches, the two propagation delays time of a trace will remain at 5 ns. That value 
very closely approximates the rise and fall times of common signal drivers, which for D­
speed PALs can range from 2 to 5 ns. 

So, opinion is divided on whether the RLC circuit or the transmission line model is more 
accurate in the above situation. Therefore the memory designs are analyzed with both 
models and the most. conservative delay values that result are used in the design timing 
estimates. 

TRANSMISSION LINE MODEL-THE BASICS 
In the ideal transmission-line model, the line is infinitely long with a constant charac­
teristic impedance. A signal sent down such a line, will travel along the line without 
distortion. The propagation rate is determined by the dielectric constant surrounding the 
signal line, and by the capacitive loading of the line. A less than infinitely long line can 
be made to appear so, if the end of the line is terminated by a resistance equal to the 
characteristic impedance. 
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Figure A·S 

When this ideal is not met, due to variations in imp~dance or a mismatch in the term­
inating (load) impedance of theline, there are resulting voltage and current reflections 
that travel back along the line. The magnitude of the reflection is directly related to the 
difference between the load impedance a·nd characteristic li,ne impedance. This re­
lationship is given by: 

Similarly, when those reflections reach the source end of the line they will in turn be 
. reflected back toward the load end of the line if the source impedance does not match 
the line impedance. The reflection coefficient at the source is: · 

Rs+Zo 

To determine the voltage at a given point on the transmission line, at a given time, the 
model of Figure A-5 is used. · · 

VoH _:11 
VoL ~ 1.- E5(t) t .. o 

tr 

V (X,t) = VA (t) [U (t -·tpd X) + PL U (t..:. tpd (21- X) 

+PL Ps U (t-tpd (21+ X)) +Pt Ps U (t-tpd (41-X)) 
2 2 . 0 . 

+ PL Ps (t-tpd (4~+ X)) + ... ] + Vdc
1 

VA =voltage at point A, 
X = the distance to an arbitrary point on the line 

1 =total line length, 

t pd = propagation delay of the line in ns/unit distance, 

To =ltpd, 
U(t) =a unit step function occurring at t = O, and 

Es (t) = internal voltage swing in the circu~ (VoH - VoL ) 

10117A·A.5 

Transmission Line Models 
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Table A·1 

Memory Specific Example 

Determining Transmission Line Impedance and Propagation Delay. 
In each of the layout models described for the memory system, the branch length 
remains nearly the same. There are small variations in capacitive loading depending on 
the specific memories used, but in general, each model looks very similar. 

Each transmission line has a two-inch section with no capacitive memory load followed 
by 2 to 4 inches of trace with two memories per inch. This structure complicates the 
model a little since it looks like a 95 n transmission line connected to a 30 n impedance 
line. This results in different propagation times along the trace and signal reflections at 
the points.of impedance change. ' · 

To simplify the model for the remaining discussion the memory capacitance is viewed 
as distributed across the entire length of the line, e.g., Cd= 24 devices/ft x 7 pF/device 
x (4 in. memory loaded length/6 in. total length)= 112 pF/ft. This more closely approx­
imates the overall delay of the line and simplifies the analysis to deal only with reflec­
tions at the source and load ends of the transmission line. 

So, for 7.PF per memory input loading, the transmission line impedance and propa­
gation delay would b~: 

Zo' 
Zo 

V (1 +Cd/Co) 

95.93 

v (1 + 11~/18.5) 

36.12 n 

tpd' tpd ,j(1 +Cd/Co) 

1.774v(1+112/18.5) 

4.71 ns/ft 

A table for various input capacitance levels is shown in Table A-1, that reflects the effect 
on respective impedances and delays using the calculations methods just outlined: 

Input Capacitance Levels 

pF/lnput Cd Zo' t ' 
pF/ft n n~ft 

5 80 41.5 4.09 

. ·s 96 38.5 4.41 

7 112 36.12 4.71 

8 128 34.08 4.99 

9 144 32.36 5.25 

10 160 30.88 5.51 
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Load Impedance 
For this analysis the load impedance will be assumed to be infinite, resulting from no 
termination resistance being placed at the end <;>f the line . 

. Source Impedance 
The source impedance is that of a D-speed PAL output. The output impedance for this 
type of device (and for most TTL outputs) is different for the output-low condition verses 
the output-high condition .. 

For the output-low condition a worst-case impedance estimate can be made by dividing 
V oL by l0 L. For a D-speed AmPAL 16L8, that would be 0.5 V/.024 A= 20.8 n. This is 
truly the worst possible case with static output conditions. The. output driver is able to 
hold that voltage level forever as long as the output current does not exceed the 24 mA 
limit. That, however, is not representative of the actual output impedance apparent 
during the few nanoseconds that it takes to switch the output from high to low. Based 
on the experience of PAL circuit designers, a more realistic estimate is about 5 n. 

For the ·output-high condition, a worst-case impedance is more difficult to define. Its 
output impedance varies as the output voltage rises. When the driver begins to pull the 
output up,.the output current provided by the driver is much more than is available when 
the output is held at V oH' Determined empirically, the typical value for the high-level 
output impedance during low-to-high switching is about 25 n. 

Source Voltage Swing 
The data-sheet-guaranteed worst-case output high and low voltages for a TTL driver 
are: V

0
H = 2.4 V and V0 L = 0.5 V. But, these are rarely seen in actual circuits. More 

realistic output levels typical of a D-speed PAL are: V oH = 4 V and V oL = 0.2 V. This 
gives a voltage swing of 3.8 V. 

Output rise time is measured from V oL = 0.2 V to the TTL standard V,L = 2 V. The fall 
time is measured from the V oH = 4 V to the TTL standard. v,L = 0.8 V. 

High-to-Low Transition Analysis 
In general the high-to-low transition of the signal.driver is the more·interesting event to 
analyze. This is because the undershoot that results from the unterminated 
transmission line is a critical parameter for many memories. Too much undershoot and 
the memories can be damaged. 

Also, reflections (of the undershoot) at the source end of the line can result in positive 
transitions above v,L (input-low voltage threshold). Any transitions above v,L delay the 
settling time to a valid input-low level. 

The analysis begins by filling in the variables of Figure A-5. 

· L Es(t) is set equal to the voltage swing of the source, -3.8 V. 

2. Zo is the load impedance of the line assuming 7 pF/input memories, 36.12 n. 

3. Ro is the source impedance for the output-low condition, 5 n. 

4. VA(t) is the voltage swing resulting at point A (source end) on the transmission 
line, calculated to be -3.338 V. 
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Table A·2 

5. U(t) is the unit impulse function which is equal to zero for values of t less than 
zero, and equal to one fort greater than or equal to zero. This function is used 
because, according to theory, the rise or fall time of the driving voltage source is 
not affected by the capacitance of the transmission line. Therefore, the U(t) 

. function serves to switch on VA(t) or the reflected values of VA(t) at the 
appropriate times. 

6. PL is the coefficient of reflection atthe. load and is calculated to be nearly equal 
to one. 

7. P s is the coefficient of reflection at the source and is calculated to be -0. 7568. 

8. t is the total line length of 0.5 ft. 

9. tpd is the propagation delay of 4.71 ns. 

10. T 0 is the propagation delay time down one length of the line; tpd times t. 

· 11 ~ The points of interest on the transmission line for this analysis will be at the 
source and load ends of the line at times that are integer multiples of t d' 

Therefore X will be equal to 0, tpd' 2 t d' ... which would be (X times 4.71 ns 
times 0.5 ft) o, 2.355 ns, 4;71 ns, 7.0S5 ns ... etc. 

12. Vdc is the steady state voltage of the transmission line before the signal voltage 
transition at t = 0, 4 V. 

The values shown in Table A-2 were calculated using the equation~ of Figure A-5. 

Values Calculated From Equations Provided in Figure A·S. 

VA VB 
TD Volts Volts 

0 0.662 4.0 

0.662 -2.676 

2 -0.150 -2.676 

3 -0.150 2.376 

4 0.465 2.376 

5 0.465 -1.447 

6 0.00 -1.447 

7 0.00 1.447 

8 0.352 1.447 

9 0.352 -0.743 

10 0.085 -0.743 

11 0.085 0.914 

12 0.287 0.914 
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Figure A·G 

Even after 12 transitions of the line (28 ns), the signal level has not settled to below the 
valid input-low level as a result of the reflections at the source and load impedance 
mismatches. 

Note, a listing ·of the BASIC language program used to calculate the above table 
(sometimes referred to as a lattice diagram) is shown in Figure A-10. 

Overshoot and Undershoot 
Also, from the above table, it can be seen that undershoot in excess of -2.5 V is present 
on the line. That degree of undershoot can be damaging to DRAMs. Some SRAMs are 
designed to handle up to -3 V undershoot, but even if the memory can handle the 
voltage stress, the settling time delay to a valid low level is still excessive. 

Overshoot values can also be calculated for the low-to-high transition situation. The 
overshoot will reach values near 4.7 Vwhich is not a threat to any standard memory 
device. 

Termination 
From the above discussion, it is clear that something must be done to reduce the 
qegree of refl~ctions at load or source end of the transmission line. This can be done 
by adding .a resistance load to either end of the line. The load can be a resistor-to-
g round or a voltage divider between power and ground in which case the load value is 
the Thevenin equivalent. This method, shown in Figure A-6, is called parallel 
termination. 

When done at the load end of the line, this is the best way to terminate the line in terms 
of signal settling time. Proper parallel termination gets rid of reflection entirely at the 
load end of the line. Therefore only one propagation delay time down the line is re­
quired before the entire line settles to the desired voltage level. 

Driver 

Ro 

R1llR2= RL 
Driver 

Ro 

Zo 

RL 

10117A-A.6 Where Z 0 = RL 

Parallel Termination 
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Figure A-7 

But there is a problem with this method. Parallel termination to power or ground at the 
near 30 n characteristic impedance of the loaded transmission line would overwhelm 
the de-drive capability of a D-speed PAL output used to drive the line. This is especially 
true w_hen considering the de load of parallel terminatio!1 on multiple transmission lines 
tied to one driver. 

So, unless a high-current driver is used with the memory array, parallel termination is 
not appropriate. If parallel termination is used, the added propagation time of the. 
high-current driver must be traded off with the shorter settling time of the signal. 

Another more common termination method is called serial damping. With this method, 
a resistor is placed in series with the driver and transmission line. The value of the 
resistance is chosen to be equal to the line impedance when added to the driver ! 

impedance. In this way, when looking at the source end of the transmission line,:the 
combination ofthe driver impedance arid series resistance matches the line impedance. 

I 
I 

With a matched impedance at the source end of the line, there can only be reflections at 
the load end of the line. Thus, when reflections from the load end of the transmission 
line return to the source end of the line, the entire line will have settled to the desired 
voltage level. 

So, with series damping the settling time is equal to tWo times the propagation delay of 
the line. Also, there is no de load imposed by the termination resistance so a standard 
signal driver can be used. · 

As shown in Figure A-7, where multiple transmission !Ines are tied to a single driver, 
each transmission line should have its own serial-:damping resistor to match the 
impedance to each line. Very often, mem<?ry system designers will use a single resistor 

Driver 

Driver 

10111A-A.1 Where R 0 + Rs= Z 0 

Series Damping 
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Figure A·8 

Step b. 

10117A-A.8 

Step a. 

Ct .;. Ctotal 

Cr= Crrace 

CM= CMemory 

· Lr= L Trace 

LP= L Package 

Rs= Rseries 

RLC.Model Simplication Steps 
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Figure A·9 

between the driver and all the transmission lines as a compromise that reduces 
component count at the cost of a higher, but acceptable, degree of signal reflections. 

Therefore, in all of the memory designs presented in this handbook, serial damping­
resistors are used in all memory address and control lines. The resistor value used is in 
the range of 20 to 30 n. The exact value should be determined empirically to minimize 
reflections. 

RLC MODEL 
The RLC model lumps all the capacitive and inductive loads into single elements 
arranged as shown in Figure A-8. The distributed capacitive loads of the memories on 
each branch of the memory layout can be totaled, then the capacitance on each branch 
is considered to be in parallel and is thus totaled into the value for a single equivalent 
component. 

Similarly, the inductive loads in each branch are totaled since those elements lie in 
series. Then the inductance for each branch is viewed as being in parallel with the 
inductors of the other branches and thus their value is divided by the number of 
branches to determine the value for a single equivalent component. To that component 
is added the inductance of the driver package pins and internal bond wires. The output 
switching voltage generators, output impedances, and any damping resistance is then 
added. Since the output voltage swing is the same for either a high-to-low or a low-to­
high transition, the model can be simplified one additional step to that shown in Figure 
A-9. In this model, the equations for either switching transition are the same; only the 
polarity of the voltage and the value of the output resistance is changed. 

R total L total 

C total 

l 
10117A-A.9 

Final RLC Model 
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This model is then analyzed with LaPlace transforms to yield an equation for current 
flow overtime: ·. · ... : 

A ,, 

It 
e-at sin B t 11 

LB 

Where: 

VCc - R2~ B 
~ L2 

•.1. 

'' ... 

R· 11;-:,:· 

a 
2L 

A= voltage switching step function magnitude; , ; . I ~ : ; 

'· ~ -
R2 

> 4 L2 . LC 

The output voltage is·t~en:· · . 

V~ut ~ -Z J: r 1 d1 

,'.;, 

·;• r,; 

a 
A ( 1 - ( e-at (- sin B t + cos B t) ) ) 

B 

.,. .. 

. 1.l . . , 

,, ,i,,'" •.. 

It should be noted that this model will predict overshoot, undershoot, and delay values 
somewhat in excess of that expected for a real implementation. This is mainly due to 
the use of a step function to model the initial voltage transition rather than the use of a 
ramp function which would better model the rise or fall time to be found in a real system 
example. This model also does not deal with the amount of delay related to a standard 
test load which is already accounted for by worst-case delay values of the driver as 
shown in its data sheet. To obtain a more accurate estimate of the RLC circuit's added 
delay, the difference between the driver's data sheet worst-case delay and the driver's 
intrinsic (no output load) delay should be subtracted from 'the RLC circuit delay 
estimate. The driver's intrinsic delay can be determined by experimentation or through 
consultation with the device manufacturer. 

Memory Specific Exampl.e 

Determining Element Values 
The initial transition voltage is set by V oH-V oL' which as noted before is about 3.8 V for a 
D-speed PAL output. The voltage step is positive on low-to-high transitions and 
negative for high-to.:.low transitions. The source impedances are the same as used 
earlier. High-to-low transition is 5 n and low-to-high transition is 25 n. Damping will 
initially be set to zero to see what sort of overshoot and undershoot occurs in an 
undamped circuit. 
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·Driver output inductance is assumed to be 20 nH. The trace inductance is derived from 
the ·pcb characteristics defined earlier. The value f,ound was 170 nH per foot of trace 
length. Since each branch of the memory layout is 6 inches long, the value per branch 
is 85 nH. With.four branches viewed in parallel, the effective inductance is 21.25 nH. 

Assuming each memory.input has 7 pF of capacitance, the 32 memories in the layout 
total 224 pF. 

The trace capacitance is derived from the pcb characteristics defined earlier. The value 
found was 18.5 pF per foot of trace length. The total branch length in this design is two 
feet, therefore total trace. capacitance is 37 pF~ 

The Results . . . ·.. . . 
A simple program written in the BASIC language was used to calculate the ALC model 
behavior based on the above equations and input parameters. A listing of this program 
is shown in table A-11 (located at the end of the chapter). The result was to predict 
that, with no damping resistance, the undershoot would reach a maximum of -2.1 V 
wit~ a,. subsequent rebound to t 1.5 V .. In fact, a high~to-low transition would not settle 
below 0.8 V until after 22 ns. The lo~-to-high transition settled above 2.4 V within 6 ns. 

This result obviously is unacceptable both in the level of undershoot, which could 
damage memories and in the excessive settling time. The circuit was modified to 
include a 5 n damping resistor. The high-to-low transition undershoot was then limited 
to -0.8 V and the settling time to a level below 0.8 V was reduced to 6 ns. The low-to­
high transition time remained at nearly 6 ns . 

. _DESl~N .EX~MPL,.E DELAY VALUES. 
T.he memory_ system la,ading de!ay yalues used in each of the memory design example 
chapters are derived below. 

'. .Non-Interleaved SRAM Example 
As noted in Chapter 4, the total of all the otherdelay elements in this SAAM design 
example already equal 38.3 ns , leaving little room for an overly conservative estimate 

_of.the addeddelay associated with driving the memory array. So, lets look at refining 
the. above estimates. 

The transmission line delay of 2.4 ns is essentially equal to the typical rise or fall time of 
a PAL output driver. Thus, the driver "sees" most of.the load during the output transition 
time. That load of 52 pF and 48 nH (including driver package inductance) is nearly 

· equal to the test load used to determine the·worst case .output delay time quoted for the 
'driver. Therefore; a transmission~line model does not appear to be valid for this design 
situation. 

The ALC model predicts the delay for driving the entire load .and thus that delay should 
be added to the propagation delay measured for a driver with zero load ( intrinsic driver 
propagation delay). But, the data-sheet values for driver delay only indicate the delay 
when driving a 50 pF capacitive load combined with driv.er package inductance and 
some small inductance from the test lo_ad circuit layout. This is essentially equal to the 
load presented by this.SAAM design. Therefore, it is fairly reasonable to assume that 
the worst case delays quoted for the dri_ver already include the ti_me required to drive the 
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load presented by this memory design. But, for the sake of being a little conservative, 
· the difference between D-speed PAL driver intrinsic delay and delay with test load was 

determined experimentally. The intrinsic delay is about 1.3 ns less than the delay with 
the test load. Adjusting the estimated RLC delay to account for delay already included 
in the quoted worst-case delay (2.8 ns-1.3 ns) leaves 1.5 ns of excess delay predicted 

· by the RLC model. This value will be used as the estimated RLC delay. 

The remaining designs, to be honest, allow more room to be conservative and thus will 
use the_ raw delay values from the transmission line and RLC models. 

Bank-Interleaved SRAM Example 
This memory design uses four branches, each 6 inches long. The SRAM memory 
device used has an input capac_itance of 5 pF for all inputs. 

The transmission-line model predicts a delay of 4 ns that must be added to the output 
delay of the memory driver. A 20 to 30 n damping resistor is used on each branch. 

The RLC model predicts a delay of 5 ns. The undershoot in this case is -1.2 V which is 
allowable for the SRAM memories that are able to handle -3 V. The assumptions for 
this model are: 

• an inductive load of 42 nH, 
• a capacitive load of 200 pF, 
• a 5 n damping resistor. 

SCDRAM Example 
The SCDRAM devices used have 5 pF capacitive input on address lines but 7 pF on 
each control line such as RAS, CAS, WE. So address lines are modeled separately 
from the control lines. 

The address lines are assumed to be laid out like the SRAM examples with four 
branches containing 32 memories. The fransmission line model predicts the same 4 ns 
delay as seen in the SRAM example. However, the RLC model for the SCDRAM is 
different. In order to limit the undershoot to less than -1 Vas required by the SCDRAM, 
the RLC model damping resistor value is set at 8 to 10 n. This produces an undershoot 
of-0.8 Vanda delay of 6 ns. 

For the control lines a different layout model is used.· Two separate dual-branch traces 
are used to drive the memories so that only 16 devices will load each memory driver. 
This was done early in the design in the hopes that it would improve the signal speed 

·with the.very small cost of four additional PAL outputs being required. As it turns out, 
neither delay model predicts a very significant improvement. The transmission line 
model predicts a 4.7 ns delay. The RLC model predicts a 6.5 ns delay. Assuming an 
inductive load of 62 nH, a capacitive load of 150 pF, a 15 n damping resistor, and 
-0.8 V undershoot. 

VDRAM ·Example 
The VDRAM design needs only eight memory devices per bank since the memories are 
each four bits wide. These are placed on a single 6-inch trace. The input capacitance 
ranges from 5 pF to 1 O pF depending on input and manufacturer. The worst case value 
of 1 O pF is assumed. The transmission line model predicts 5.5 ns delay. The RLC 
model predicts 6.5 ns delay, assuming an inductive load of 105 nH, a capacitive load of 
120 pF, a 22 n damping resistor, and -0.7 V undershoot. 

A·18 ·MEMORY ARRAY LOADING DELAY CALCULATIONS 



Table A·3 

Damping Resistors 
Note that for each of the damping resistor values shown in the RLC models, the value of 
the common damping resistor is essentially the Thevenin equivalent of having one 
resistor for each branch between the driver and the branch, where the value the resistor 
is in the 20 to 30 n range. This fits nicely with the transmission line model that requires 
a serial damping resistor on each branch. So, for the sake· of having a common layout 
plan, it assumed that all the memory designs implement the needed damping resistance 
by placing resistors on each signal branch. 

Summary , 
Table A-3 summarizes the results of the delay model analysis on each design example. 
For the sake of being conservative, the longest delay value is used in each case. In 
each case this turns out to be the value predicted by the RLC model. 

Summary of Delay Model Analysis Results 

Example Capacitance Transmission RLC Model 
of Input Line Delay Delay 

pF ns ns 

Non Interleaved 
SRAM 5 NIA 1.5 

Bank Interleaved 
SRAM 5 4 5 

SC DRAM 5 4 6 
7 4.7 6.5 

VD RAM 10 5.5 6.5 
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10 REM******************* Transmission Line Analyzer ****************** 
20 REM **************************************************************** 
30 REM 
40 REM ********************** input initial values ******************** 
50.VOH = 4 
60 VOL = 0 .2 
70 RL 5. 
80 RH = 25 
90 RD = 22 
100 ER = 5 
120 CL = 7E-12 
130 T 0.003 
140 H = 0.03 
150 w = 0.01 
160 SP= 0.75 
170 RLOAD = 1E+09 
180 L = 6 
900 RE~*****~************ parameter.display************************* 
1000 CLS 
1001 PRINT "Memory System Transmission. Line Analyzer" 
1010 PRINT 
1020 PRINT "Type the number of the value you wish to change:" 
1030 PRINT 
1040 PRINT 
1050 PRINT " 0) no changes" 
1060 PRINT " l)Voh",VOH;"V" 
1070 PRINT " 2)Vol",VOL;"V" 
1080 PRINT" 3)Rh",RH;"ohms",,"totem pole resistance to VCC" 
1090 PRINT" 4)Rl",RL;"ohms",,"totem pole resistance to GND" 
1100 PRINT " 5)Rd",RD;"ohms",,"series damping resistance" 
1120 PRINT" 6)Er",ER,,"relative dielectric of pcb" 
1130 PRINT" 7)w",W;"inches",,"width of pcb trace" 
1140 PRINT" 8)h",H;"inches",,"height of pcb trace above ground" 
1150 PRINT" 9)t",T;"inches",,"thickness of pcb trace" 
1160 PRINT " 10)1",L;"inches",,"length of pcb trace" 
1170 PRINT" ll)Cl",CL;"F",,"capacitance of memory input" 
1175 PRINT" 12)Sp",SP;"inches",,"spacing between memories" 
1176 PRINT" 13)Rl",RLOAD;"ohms",,"end of line load resistance" 
1180 PRINT 
1183 PRINT"change number"; 
1185 INPUT VARIABLE 
1190 IF VARIABLE >=0 AND VARIABLE <= 13 THEN GOTO 1220 
1200 PRINT" invalid parameter number ... please reenter choice" 
1210 GOTO 1000 
1215 REM ******************* parameter modification********************* 
1220 ON VARIABLE GOSUB 
2100,2200,2300,2400,2500,2600,2700,2800,2900,3000,3100,3200,3300 
1230 IF VARIABLE = 0 THEN GOSUB 10000 
2000 GOTO 1000 
2100 PRINT" Voh = (volts) "; 
2110 INPUT VOH 
2120 RETURN 
2200 PRINT "Vol 
2210 INPUT VOL 
2220 RETURN 

(volts) "; 
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2300 PRINT "Roh (ohms) "; 

2310 INPUT RH 
2320 RETURN 
2400 PRINT "Rol (ohms) II; 

2410 INPUT RL 
2420 RETURN 
2500 PRINT "Rd (ohms) ,, i 

2510 INPUT RD 
2520 RETURN 
2600 PRINT "Er ,, ; 
2610 INPUT ER 
2620 RETURN 
2700 PRINT "w (inches) II j 

2710 INPUT W 
2720 RETURN 
2800 PRINT "h (inches) ,, ; 
2810 INPUT H 
2820 RETURN 
2900 PRINT "t (inches) II; 

2910 INPUT T 
2920 RETURN 
3000 PRINT "l (inches) "; 

3010 INPUT L 
3020 RETURN 
3100 PRINT "Cl (Farads) II j 

3110 INPUT CL 
3120 RETURN 
3200 PRINT "Sp (inches) II j 

3210 INPUT SP 
3220 RETURN 
3300 PRINT "Rl (ohms) ,, ; 
3310 INPUT RLOAD 
3320 RETURN 
10000 REM *********** calculate transmission line characteristics******* 
10100 ZO = (87/SQR(ER + 1.41))*LOG((5.98*H)/(.8*W+T)) 
10110 TPDO = 1.017*SQR(.475*ER + 0.67) 
10120 CO= 1000*(TPD0/ZO) 
10130 CD= (CL/SP)*l2*1E+12 
10140 Zl= ZO/SQR(l+(CD/CO)) 
10150 TPDl = TPDO * SQR(l+(CD/CO)) 
10160 ES = VOH-VOL 
10190 PL= (RLOAD-Zl)/(RLOAD+Zl) 
10200 RSOURCEHL = RD + RL 
10210 PSHL = (RSOURCEHL - Zl) / (RSOURCEHL + Zl). 
10220 RSOURCELH = RD + RH 
10230 PSLH = (RSOURCELH - Zl)/(RSOURCELH + Zl) 
10240 VDCHL = VOH 
10250 VDCLH = VOL 
10270 VAHL = -l*ES*(Zl/(Zl+RSOURCEHL)) 
10280 VALH = ES*(Zl/(Zl+RSOURCELH)) 
10290 REM********************* display line characteristics ************ 
10300 CLS 
·10310·PRINT "Transmission Line Analysis" 
10320 PRINT 
10330 PRINT 
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10340 PRINT"Driver voltage step =",~ES,"Volts" 
10350 PRINT"Driver source impedance, high to low",RL,'"ohms" 
10360 PRINT"Driver source impedance, low to high",RH,"ohms" 
10370 PRINT"Damping resistance",,RD,"ohms" 
10380 PRINT"Line impedance",,Zl,"ohms" 
10390 PRINT"Line capacitance",,CD*(L/12)+CO*(L/12),"picoFarads" 
10400 PRINT"Line inductance",, (Z0"2*CO*. 001) * (L/12), "nanoHenrys" 
10410 PRINT"Line length",,,L,"inches" 
10415 PRINT"Line propagation rate",,TPDl,"ns/ft" 
10420 PRINT" Line propagation delay",, (L/12) *TPDl, "ns" 
10430 PRINT"Load impedance",,RLOAD,"ohms" 
10440 PRINT 
10450 PRINT 
10460 PRINT 
10470 PRINT"hit return when ready to proceed ... "; 
11000 REM ************* lattice diagram calculations ****************** 
11010 CLS 
11020 PRINT "Lattice Diagrams for High to Low and Low to High 

Transitions" 
11030 PRINT 
11040 PRINl' TAB(18);"High to Low:";TAB(45);"Low to High:" 
11050 PRINT TAB(18);"------------";TAB(45);"-----.;. ______ ,, 
11060 PRINT "TD";TAB(6);"Time";TAB(18);"Vs";TAB(30);"Vl";TAB(45);"Vs"; 
TAB(57);"Vl" 
11070 PRINT 
11072 Fl$ ="#### ###.### ###.### ###.###" 
11073 F2$ ="#### ###.### ###.### ###.###" 
11074 UHL 0 
11075 ULH = 0 
11076 I=O 
11080 FOR TD = (0 + I) TO (15 + I) 
11085 UHL= PL"(INT(TD/2 +.5)) * PSHL"(INT(TD/2)) +UHL 
11087 ULH = PL"(INT(TD/2 +.5)) * PSLH"(INT(TD/2)) + ULH 
11090 VTHL = (VAHL * UHL)+ VDCHL 
11100 VTLH = (VALH * ULH)+ VDCLH 
11110 IF ( (TD/2 - INT(TD/2)) > 0 ) THEN GOTO 11150 
11120 PRINT USING Fl$;TD;TD*TPD1*(L/12);VTHL;VTLH 
11130 GOTO 11190 
11150 ' else 
11160 PRINT USING F2$;TD;TD*TPD1*(L/12);VTHL;VTLH 
11190 NEXT TD 
11195 I= I +16 
11200 PRINT 
11210 PRINT "more (y/n) "; 
11220 INPUT YESNO$ 
11230 IF YESNO$ <> ~n" THEN GOTO 11080 
11240 PRINT "do you want to run the program again 
11250 INPUT YESNO$ 
11260 IF YESNO$ <> "n" THEN RETURN 
12000 END 
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10 REM ****************** Over & Undershoot Analyzer ***************** 
20 REM ****************** for RLC networks ***************** 
30 REM *************************************************************** 
40 REM ******************** input initial values ********************* 
50 VOH = 4 
60 VOL= 0.2 
70 RL 5 
80 RH = 25 
90 RD = 22 
100 LP 2E-08 
110 LT 1.08E-07 
120 CL 2.5E-10 
130 CT 2E-11 
900 REM ********************* display parameters 
1000 CLS 
1001 PRINT "Over & Undershoot Analyzer" 
1010 PRINT 

********************* 

1020 PRINT "Type the number of the value you wish to change:" 
1030 PRINT 
1040 PRINT 
1050 PRINT " 0) no changes" 
1060 PRINT " l)Voh",VOH;"V" 
1070 PRINT " 2)Vol",VOL;"V" 
1080 PRINT" 3)Rh",RH;"ohms",,"totem pole resistance to VCC" 
1090 PRINT" 4)Rl",RL;"ohms",,"totem pole resistance to GND" 
1100 PRINT" 5)Rd",RD;"ohms",,"series damping resistance" 
1110 PRINT" 6)Lp",LP;"H",,"inductance of driver package" 
1120 PRINT" 7)Lt",LT;"H'~,,"inductance of PC trace" 
1130 PRINT" 8)Cl",CL;"F",,"capacitance of load" 
1140 PRINT" 9)Ct",CT;"F",,"capacitance of PC trace" 
1150 PRINT 
1160 PRINT 
1170 PRINT "change number "; 
1180 INPUT VARIABLE 
1190 IF VARIABLE >=0 AND VARIABLE <= 9 THEN GOTO 1220 
1200 PRINT " invalid parameter number please reenter choice" 
1210 GOTO 1000 
1215 REM ****************** parameter modification ******************* 
1220 ON VARIABLE GOSUB 2100,2200,2300,2400,2500,2600,2700,2800,2900 
1230 IF VARIABLE = 0 THEN GOSUB 10000 
2000 GOTO 1000 
2100 PRINT" Voh = (volts) "; 
2110 INPUT VOH 
2120 RETURN 
2200 PRINT "Vol (volts) "; 
2210 INPUT VOL 
2220 RETURN 
2300 PRINT "Rh (ohms) "; 
2310 INPUT RH 
2320 RETURN 
2400 PRINT "Rl 
2410 INPUT RL 
2420 RETURN 
2500 PRINT "Rd 
2510 INPUT RD 

(ohms) "; 

(ohms) "; 
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2520 
2600 
2610 
2620 
2700 
2710 
2720 
2800 
2810 
2820 
2900 
2910 
2920 
9000 
10000 
10100 
10200 
10300 
10400 
10500 
10600 
10700 
10710 
10800 
10810 
10900 
10910 
11900 
12000 
12100 
12200 
12300 
12400 
12500 
12600 
12700 
13000 
13100 
13105 
13110 
13115 
13118 
13119 
13120 
13125 
13150 
13201 
13202 
13203 
13300 
13600 
13610 
13620 
13630 
13640 

RETURN 
PRINT "Lp (henrys) ,, ; 
INPUT LP 
RETURN 
PRINT "Lt (henrys) II; 

INPUT LT 
RETURN 
PRINT "Cl (Farads) II; 

INPUT CL 
RETURN 
PRINT "Ct (Farads) ,, ; 
INPUT CT 
RETURN 
REM ****************** calculate RLC characteristics ************ 

VHL -(VOH-VOL) 
VLH VOH-VOL 
RHL RL + RD 
RLH RH.+ RD 
L = LP + LT 
C = CL + CT 
LCINV = 1/ (L*C) 
R24L2HL (RHL"2)/(4*(L"2)) 
R24L2LH (RLH"2)/(4*(L"2)) 
ALPHAHL RHL/(2*L) 
ALPHALH RLH/ (2*L)' 
BETAHL = SQR(ABS(LCINV - R24L2HL)) 
BETALH = SQR(ABS(LCINV - R24L2LH)) 
REM ***************** display RLC characteristics ************** 
CLS 
PRINT "high to low trarisition";TAB(40);"low to high transition" 
PRINT 
PRINT "Vhl = ";VHL;TAB(40);"Vlh = ";VLH 
PRINT "Rhl = ";RHL;TAB(40);"Rlh = ";RLH 
PRINT "R"2/4L"2 = ";R24L2HL;TAB~40);"R"2/4L"2 = ";R24L2LH 
PRINT "R/2L = ";ALPHAHL;TAB(40);"R/2L = ";ALPHALH 
PRINT·"Beta =";BETAHL;TAB(40);"Beta = ";BETALH 
PRINT 
PRINT 
IF LCINV > R24L2HL THEN GOTO 13119 
PRINT "Opps its hype~bolic" . 
PRINT" R > ";SQR(LCINV * (4*(L"2))) 
PRINT "falling edge waveform is invalid" 
IF LCINV > R24L2LH THEN GOTO 13201 
PRINT TAB(40);"0pps its hyperbolic"; 
PRINT TAB(40);" R > ";SQR(LCfNV * (4*(L"2))). 
PRINT TAB (40); "rising edge waveform is invalid1

' · · 

PRINT "L = ";L 
PRINT "C = ";C 
PRINT "1/LC = ";LCINV 
PRINT 
PRINT "display the 
INPUT RFN$ 

output waveform; ri'sirig/falling/none (r/f/n) "; 

IF RFN$ 
IF RFN$ 
IF RFN$ 

"r" 
"f" 
"n" 

THEN GOSUB 30000 
THEN GOSUB 20000 
THEN GOTO 13800 
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13650 GOTO 13600 
13800 PRINT "do you want to run the progr~m again (y/n) "; 
13900 INPUT YESNO$ 
14000 IF YESNO$ <>\'n" ~HEN RETURN 
15000 END 
20000 REM**************** high to low waveform ************** 
20010 I = 0 
20100 CLS 
20200 PRINT "Tns I ---- Vout (volts) ++++ " 
20300 PRINT " 3 .... + .... 2 .... + .... 1 .... + .... 0 .... + .... 1 .... + .... 

2 .... + .... 3' ••.. + .... 4" ' 
20400 FOR T = (1+ 

0

I) TO (20 + I) 
20500 VOUT = VHL* (1- (EXP (- (ALPHAHL~T*lE-09)) * ( ( (ALPHAHL/BETAHL) * 
SIN(BETAHL*T*1E-09))+COS(BETAHL:X-T*:)..E-09))))+VOH 
20600 VSCALE = INT((ABS(3+VOUT)*l0)+.5) 
20700 IF VSCALE > 70 THEN VSCALE.= 70 
20800 PRINT T;TAB (6) ;"I" ;TAB (VSCALE+7) ~'*" 
20900 NEXT T 
20905 I=I+20 
20910 PRINT "more (y/n) "; 
20920 INPUT YESNO$ 
20930 IF YESNO$ <> "n" THEN GOTO 20100 
20990 RETURN 
30000 REM***.************* low to high waveform ************** 
30010 I = 0 
30100 CLS 
30200 PRINT ~Tns I ~~-- Vout (volts) ++++ " 
30300 PRINT ". 3 .... + .... 2 .... + .... 1 .... + .. ·· .. 0 .... + .... 1 .... + .... 

2 .... + .... 3 .... + .... 4" 
30400 FORT.= (1+ I) TO (20 ~I) 
30500 VOUT = VLH* ( 1- (EXP(:- (ALPHALH*T*lE-09)) *.( ( (ALPHALH/BETALH) * 
SIN(BETALH*T*lE-09))+COS(BETALH*T*lE-09))))+VOL 
30.600 VSCALE = INT ((ABS (3+VOUT) *10) .f.. 5) . 
30700 IF VSCALE > 70 THEN VSCALE = 70 
30800 PRINT T;TAB(6);"1";TAB(VSCALE+7)"*" 
30900 NEXT T 
30905 I=I+20 
30910 PRINT "more (y/n) "; 
30920 INPUT YESNO$ 
30930 IF YESNO$ <> "n" THEN GOTO 30100 
30990 RETURN 
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REM This is a transcription of the Transmission Line Analyzer 
REM from the 29K Memory Handbook 
REM Copyright Advanced Micro Devices )nc 1988 
REM Transcription by Tom Crawford Jun 88 
REM Assign Initial Values 
decf$="#### .#MM" 
dec3$="###.###" 
voh=4 
vol=.2 
rl=S 'totem pole resistance to ground 
rh=25 'totem pole resistance to vcc 
rd=22 'series damping resister 
er=S 'dielectric constant 
cl= 7 'memory input cap in pF 
t=.003 'trace thickness in inches 
h=.03 'height of trace above' ground in inches 
W=.01 'width' of trace 
sp=.75 'spacing between memory chips in inches 
rld=1000000! 'end of line load resistance 
1=6 'total length of trace 
obscure=1 'we need to redraw windows one and two 

CALL TEXTFONT(4) 'computer looking output 

REM open the windows 
currentfield=1 
junk=DIALOG(O) 

'the field we moved out of 
'take any left over dialog away 

loop: 
IF obscure=1 THEN GOSUB openone 'make the normal windows 
dO=DIALOG(O) 'get any dialog 
IF d0=0 THEN GOTO loop 'wait for something to happen 
ON dO GOSUB butt,cfield,cwindow,goaway,refresh,retkey,tabkey 
GOTO loop 

tab key: 
currentwindow=WINDOW(O) 

WINDOW OUTPUT 2 
CLS 
PRINT "Tab Key in Active Window" 
WINDOW OUTPUT currentwindow 
RETURN 

retkey: 
GOTO gotok 

'save current output window 
'choose utility window 
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refresh: 
RETURN 

goaway: 
STOP 

cwindow: 
currentwindow=WINDOW(O) 

WINDOW OUTPUT 2 
CLS 

'save current output window 
'choose utility window 

PRINT "User Clicked in inActive Window ";DIALOG(3) 
WINDOW OUTPUT currentwindow 
RETURN 

cfield: 
currentwindow=WINDOW(O) 
editstring$=E D IT$( currentfield) 

WINDOW OUTPUT 2 

'save current output window 
'see what he changed it to 

'choose utility window 
CLS 
PRINT "Clicked out of field ";currentfield 
PRINT "The string is ";editstring$ 
ON currentfield GOSUB vohx,volx,rlx,rhx,rdx,erx,clx,tx,hx,wx,spx,rldx,lx 
d2=DIALOG(2) 'field we clicked into 
PRINT "Clicked into new field ";d2 
IF d2<> O THEN currentfield=d2 
WINDOW OUTPUT currentwindow 
RETURN 

vohx: 
voh=VAL(editstring$): PRINT voh: RETURN 

volx: 
vol=VAL(editstring$): PRINT vol:. RETURN 

rlx: 
rl-VAL(editstring$): PRINT rl: RETURN 

rhx: 
rh=VAL(editstring$): PRINT rh: RETURN 

rdx: 
rd=VAL(editstring$): PRINT rd: RETURN 

erx: 
er=VAL(editstring$): PRINT er: RETURN 

clx: 
cl=VAL(editstring$): PRINT cl: RETURN 

tx: 
t=VAL(editstring$): PRINT t: RETURN 
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hx: 
h=VAL(editstring$}: PRINT h: RETURN 

wx: 
W=VAL(editstring$}: PRINT w: RETURN 

spx: 
sp=VAL(editstring$}: PRINT sp: RETURN 

rldx: 
·rld=VAL(editstring$}: PRINT rid: RETURN 

Ix: 
l=VAL(editstring$}: PRINT I: RETURN 

butt: 
currentwindow=WINDOW(O} 

d1 =DIALOG(1} 
'save current output window 

IF d1=14 THEN GOTO gotok 
WINDOW OUTPUT 2 
CLS 

'do this before swapping windows 
'choose utility window 

ON d1 GOSUB vohh,volh,rlh,rhh,rdh,erh,clh,th,hh,wh,sph,rldh,lh 
WINDOW OUTPUT currentwindow 
RETURN 

vohh: 
PRINT "vOH is the· HIGH level output" 
PRINT "voltage. For CMOS it is typically" 
PRINT "between Vee and Vee -1.0 Volts." 
PRINT "For TTL it is typically between" 
PRINT "2.5 and 3.5 Volts. The units are"·· 
PRINT "volts."; 
RETURN 

volh: 
PRINT "vOL. is the LOW level output" 
PRINT "voltage. For CMOS it is typically" 
PRINT "between 0.2V and ground. For TTL" 
PRINT"it is typically between 0.4V and" 
PRINT "ground. The units are volts." 
RETURN 

rlh: 
PRINT "RL is the totem pole resistance" 
PRINT "to gro·und. It is typically on the" 
PRINT "order of 5 - 10 ohms. The units are" 
PRINT "ohms." 
RETURN 

rhh: 
PRINT "RH is the totem pole resistance" 
PRINT "to VCC. It is typically on the order" 
PRINT "of a few tens of ohms. The units are" 
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PRINT "ohms." 
RETURN 

rdh: 
PRINT "RD is the series output resistance." 
PRINT "It is typically on the order of a few" 
PRINT "tens of ohms. The units are ohms." 
RETURN 

erh: 
PRINT "ER is the dielectric constant of the" 
PRINT "printed circuit board. Typical " 
PRINT"numbers are between 4.7 and 5. " 
PRINT"This is a dimensionless number." 
RETURN 

clh: 
PRINT"CL is the input capacitance of each " 
PRINT"memory device.. Typical numbers" 
PRINT"are 5-7 picoFarads. The units are " 
PRINT"picoFarads." 
RETURN 

th: 
PRINT"T is the thickness of the pcb " 
PRINT"trace. 1 oz copper is .0015 inch " 
PRINT"and 2 oz copper is .003 inch. " 
PRINT"The units are inches." 
RETURN 

hh: 
PRINT"H is the height of the pcb trace" 
PRINT"above the (AC) ground plane. Four" 
PRINT"layer boards are typically .03 inch" 
PRINT" and six layer boards are typically" 
PRINT".02 inch. The units are inches." 
RETURN 

wh:. 
PRINT"W is the width of the pcb trace. " 
PRINT"The units are inches." 
RETURN 

sph: 
PRINT "SP is the spacing between memory " 
PRINT"chips along the transmission line. · " 
PRINT "The units are inches." 
RETURN 

rldh: 
PRINT"RLD is the termination resistor " 
PRINT"at the end of the transmission" 
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lh: 

PRI NT"line furthest from the driver. " 
PRINT"The units are ohms." 
RETURN 

PRINT"L ·is 'the length of the ·transmission " 
PRINT"line. The units are inches." 
RETURN 

gotok: 
GOSUB cfield 'take care of last field we, clicked out of 
REM ok now do ·the arithmetic 
zo=(87/SQ R(er+1.41 ))*LOG ((5.98*h)/(.8*w+t)) 
tpdo=1.017*SQR(.475*er+.67) 
co=1 OOO*(tpdo/zo)··· 

cd=(cl/sp)*12 • 'cl already in picofarads· 
z1-zo/SQR(1 +(cd/co)) 
tpd1 =tpdo*SQR(1 +(cd/co)) 
eS=VOh-vol 

pl=(rld-z1 )/(rld+z1) 
rsourcehl=rd+rl 

pshl=(rsourcehl-z1 )/(rsourcehl+z1) 
rsourcelh=rd+rti 

pslh=(rsourcelh-z1 )/(rsourcelh+z1) 
vdchl=voh 
vdclh=VOI 

vahl=-1 *es*(z1 /(z1 +rsourcehl)) 
valh=es*(z1/(z1 +rsourcelh)) 

currentwindow ... WINDOW(O) 
WINDOW OUTPUT 2 
CLS 

' 'save current window 
'utility wind~w 

PRINT "Driver step (Volts):";TAB(20);:PRINT USING dec3$;es 
PRINT "Line impedance (ohms):";TAB(20);:PRINT USING dec3$;z1 
PRINT "Line capacitance (pF):";TA8(20);:PRINT USING dec3$;cd*(l/12)+co*(l/12) 
PRINT "Line inductance (nH):";TAB(20);:PRINT USING dec3$;(zo"2*co*.001 )*(1/12) 
PRINT "Line prop rate(nS/ft):";TAB(20);:PRINT USING dec3$;tpd1 
PRINT "Line prop delay (nS):";TAB(20);:PRINT USING dec3$;(1/12)*tpd1 
PRINT "Click Mouse to continue ... " 
WHILE MOUSE(O)=O ·AND DIALOG(O)=O 

WEND 
REM now do a lattice diagram 

WINDOW 3,"Lattice Diagram",(1,16)-(500,320),1 
obscure=1 

WINDOW OUTPUT. 3 
CLS 
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PRINT TAB(18);"High to Low:";TAB(45);"Low to High:" 
PRINT TAB(4);"TD";TAB(1 O);"time";TAB(18);"Vs";TAB(30) ;"Vl";TAB(45) ;"Vs";T AB (5 

4);"VI" 
f1 $="#### ###.### . ###.### ###.###" 
f2$="#### ###.### ###.### ###.###" 
uhl=O 
ulh=O 

FOR td=O TO 13 
uhl=pl"(INT(td/2+.5))*pshl"(INT(td/2))+uhl 
ulh=pl"(I NT(td/2+. 5) )*pslh"(INT(td/2) )+u lh 
vthl=(vahl*uhl)+vdchl 
vtlh=(valh*ulh)+vdclh 

IF ((td/2 - INT (td/2))>0) THEN GOTO pf2 · 
PRINT USING f1$;td;td*tpd1*(1/12);vthl;vtlh 
GOTO pf3 

pf2: 
PRINT USING f2$;td;td*tpdt*(l/12);vthl;vtlh 

pf3: 
NEXT td 
PRINT "Click Mouse to continue ... " 

wait2: 
IF MOUSE(O)=O THEN GOTO .wait2 
RETURN 

openone: 
REM open and update window number 1 
WINDOW 2, "Utility Window",(251,40)-(500,180),1 

REM now make them strings suitable for MacEditFields 
voh$=LEFT$(STR$(voh),6) 
vol$=LEFT$(STR$(vol),6) 
rl$=LEFT$(STR$(rl),6) 

. rh$=LEFT$(STR$(rh),6) 
rd$=LEFT$(STR$(rd),6) 
er$=LEFT$(STR$(er),6) 
cl$=LEFT$(STR$(cl),6) 
t$=LEFT$(STR$(t),6) 
h$=LEFT$(STR$(h),6) 
w$=LEFT$(STR$(w) ,6) 
sp$=LEFT$(STR$(sp),6) 
IF rld<1000 THEN 

rld$=LEFT$(STR$(rld),6) 'ohms case 
ELSE 
rld$=LEFT$(STR$(rld/1000000!),6) 'megohms case 
rld$=rld$+ "ES" 'fake it for edit field 
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END IF ,.~ 

1$=LEFT$(STR$(1),6) · 
WINDOW 1,"Parameter Values",(1,40)-(250, 180), 1 
fbx=60:fby=5 'upper left corner 'of first edit field 
fex=1 OO:fey ... 18 'lower right corner of first edit field 
bbx=5:bby=5 'upper left corner of first button 
bex=60:bey=18 'lower right corner of first button 
incx=120:incy=19 'button and field spacing 
BUTTON 1, 1,"vOH",(bbx+O*incx,bby+O*incyHbex+O*incx,bey+O*incy),3 
EDIT FIELD 1,v6h$,(fbx+O*incx,fby+O*incyHfex+O*incx,fey+O*incy), 1 
BUTTON 2, 1,"vOL" ,(bbx+O*incx,bby+1 *incy)-(bex+O*incx,bey+1 *incy),3 
EDIT FIELD 2,vol$,(fbx+O*.incx,fby+1*incy)-(fex·+o•incx;fey+1*incy),1 
BUTT ON 3, 1,"RL" ,(bbx+O*incx,bby+2*incy)-(bex+O*incx,bey+2*incy),3 
EDIT Fl ELD 3,rl$,(fbx+o'*incx,fby+2*incy)-(fex+O*incx,fey+2*incy), 1 
BUTTON 4, 1, "RH" ,(bbx+O*incx,bby+3*incy)-(bex+O'*incx,bey+3*incy),3 
EDIT FIELD 4,rh$,(fbx+O*incx,fby+3*incy)-(fex+O*incx,fey+3*incy), 1 
BUTTON 5, 1,"RD",(bbx+O*incx;bby+4*iricy)-(bex+O*incx,bey+4*incy),3 
EDIT Fl ELD 5,rd$,(fbx+O*incx,fby+4*incy)-(fex+O*incx,fey+4*incy),1 
BUTTON 6, 1, "er",(bbx+O*incx,bby+S*incy)-(bex+O*ihcx,be'y+S*incy),3 
EDIT FIELD 6,er$,(fbx+O*incx,fby+S*incyHfex+O*incx;fey+S*incy), 1 
BUTT ON 7, 1, "CL" ,(bbx+O*incx,bby+6*incy)-(bex+O*incx,bey+6*incy),3 
EDIT Fl ELD 7,cl$,(fbx+·o·incx,fby+6*iricy)-(fex+o•inc'>c,fey+6*incy),1 
BUTTON 8, 1, "T" ,(bbx+1 *incx,bby+O*incy)-(bex+1 *incx,bey+O*incy),3 
EDIT Fl ELD 8,t$,(fbx+1*incx,fby+O*incy)-(fex+1*incx,fey+O*incy),1 
BUTT ON 9, 1, "H" ,(bbx+1 *incx,bby+1*incy)-(bex+1 *incx,bey+1 ~incy),3 
EDIT FIELD 9,h$,(fbx+1 *incx;fby+.1 *incy)-(fex+1*incx,fey+1*incy),1 
BUTTON 10, 1,"W",(bbx+1 *incx,bby+2*incy)-(bex+1 *iricx,'bey+2*incy),3 
EDIT FIELD 1 O,w$,(fbx+1 *incx,fby+2*incy)-(fex+1*incx,fey+2*incy),1 
BUTT ON i 1, 1,"SP" ,(bbx+ 1 *incx,bby+3*incy)-(bex+1 *incx,bey+3*incy),3 
EDIT FIELD 11,sp$,(fbx+1 *incx,fby+3*incy)-(fex+1*incx,fey+3*incy),1 
BUTTON 12, 1,"RLD",(bbx+1 *incx,bby+4*incy)-(bex+1 *incx,bey+4*incy),3 
EDIT Fl ELD 12,rld$,(fbx+1 *incx,fby+4*incyHfex+1*incx,foy+4*incy),1 
BUTT ON 13, 1,"L ",(bbx+ 1 *incx,bby+S*incy)-(b'ex+1 *incx,bey+5*incy),3 
EDIT Fl ELD 13,1$,(fbx+1*incx,fby+S*incy)-(fex+1*inc·x,fey+S*incy),1 
BUTTON 14, 1,"0K",(bbx+1 *incx,bby+6'incyHbex+1*in·cx,bey+6*incy),1 
obscure=O 'we can now see wfndow one · · 
RETURN 

:':1'·' 
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· REM This is a transcription of the Over and Undershoot Analyzer 
REM from the· 29K Memory Handbook 
REM Copyright Advanced Micro Devices Inc 1988 
REM Transcription by Tom Crawford Jun 88 

· REM Assign Initial Values 

decf$="####.#f\fl/\ll" 
voh=4 
VOl=.2 

, rl=5 'totem pole resistance to ground 
rh=25 'totem pole resistance to vcc · · 

'series damping resister · ·rd=22 
lp=20 
lt=108 
Cl=250 
Ct=20 

'package inductance in nanohenries 
: 'trace inductance in nanohenries 

'load capacitance in picofarads 
'trace capacitance in picofarads 

REM now make them strings suitable for MacEditFields 
voh$=LEFT$(STR$(voh),6) . . . 
vol$=LEFT$(STR$(vol),6) 
rl$=LEFT$(STR$(rl),6) 
rh$=LEFT$(STR$(rh),6) 
rd$=LEFT$(STR$(rd),6) 
lp$=LEFT$(STR$(1p),6) 
lt$=LEFT$(STR$(1t),6) 
cl$=LEFT$(STR$(cl),6)· 
ct$=LEFT$(STR$(ct),6) 
CALL TEXTFONT(4) 'computer looking output 

REM open the three windows 
WIN DOW 3, "Waveforms",(1, 160)-(500,350), 1 
WINDOW 2, "Utility Window",(251,40)-(500,140),1 
WINDOW 1, "Parameter Values",(1,40)-(250, 140), 1 
fbx=60:fby=5 'upper left corner of first edit field 
fex=1 OO:fey=18 'lower right corner of first edit field 
bbx=5:bby=5 'upper left corner of first button 
bex=60:bey=18 'lower right corner of first button 
incx=120:incy=19 'button and field spacing 
BUTTON 1, 1,"vOH" ,(bbx+O*incx,bby+O*incy)-(bex+O*incx,bey+O*incy),3 
EDIT FIELD 1,voh$,(fbx+O*incx;fby.+O*incy)-(fex+O*incx,fey+O*incy), 1 
BUTTON 2, 1, "vOL", (bbx+O*incx,bby+ 1 *incy)-(bex+O*incx ,bey+ 1 *incy) ,3 
EDIT FIELD 2,vo1$,(fbx+O*incx,fby+ 1*incy)-(fex+O*incx,fey+1*incy),1 
BUTTON 3, 1,"RL" ,(bbx+O*incx,bby+2*incy)-(bex+O*incx,bey+2*incy),3 
EDIT Fl ELD 3,r1$,(fbx+O*incx,fby.f.2*incy)-(fex+O*incx,fey+2*incy), 1 
BUTTON 4, 1,"RH" ,(bbx+O*incx,bby+3*incy)-(bex+o•incx,bey+3*incy),3 
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EDIT· Fl ELD 4,rh$,(fbx+O*incx, fby+3*incy)-(fex+O*incx, fey+3*incy), 1 
BUTTON 5, 1,"RD",(bbx+O*incx,bby+4*incy)-(bex+O*incx,bey+4*incy),3 
EDIT FIELD 5,rd$,(fbx+O*incx,fby+4*incy)-(fex+O*incx,fey+4*incy), 1 
BUTTON 6, 1, "LP",(bbx+1 *incx,bby+O*incy)-(bex+1 *incx,bey+O*incy),3 
EDIT FIELD 6,lp$,(fbx+1 *inc·x,fby+O*incy)-(fex+1*incx,fey+O*incy),1 
BUTTON 7, 1, "L T",(bbx+1 *incx,bby+1*incy)-(bex+1 *incx,bey+1 *incy},3 
EDIT FIELD 7,lt$,(fbx+1 *incx ,fby+1 *incy)-(fex+1*incx,fey+1*incy),1 
BUTT ON 8, 1, "CL" ,(bbx+ 1*incx,bby+2*incy)-(bex+1 *incx,bey+2*incy) ,3 
EDIT FIELD 8,cl$,(fbx+1 *incx,fby+2*incy)-(fex+1*incx,fey+2*incy),1 
BUTT ON 9, 1, "CT" ,(bbx+ 1*incx,bby+3*incy)-(bex+1 *incx,bey+3*incy) ,3 
EDIT FIELD 9,ct$,(fbx+1 *incx,fby+3*incy)-(fex+1*incx,fey+3*incy),1 
BUTTON 10, 1,"0K",(bbx+1*incx,bby+4*incy)-(bex+1*incx,bey+4*incy),1 
currentfield=9 'the field we moved out of 
junk=DIALOG(O) 'take any left over dialog away 

loop: 
dO=DIALOG(O) 'get any dialog 
IF d0=0 THEN GOTO loop 'wait for something to happen 
ON dO GOSUB butt,cfield,cwindow,goaway,refresh,retkey,tabkey 
GOTO loop 

tabkey: 
currentwindow=WI ND OW (0) 

WINDOW OUTPUT 2 
CLS 
PRINT "Tab Key in Active Window" 
WINDOW OUTPUT currentwindow 
RETURN 

retkey: 
GOTO gotok 

refresh: 
RETURN 

go away: 
STOP 

cwindow: 
currentwindow=WINDOW(O) 

WINDOW OUTPUT 2 . 
CLS 

'save current output window 
'choose utility window 

'save current output window 
'choose utility window 

PRINT "User Clicked in inActive Window ";DIALOG(3) 
WINDOW OUTPUT currentwindow 
RETURN 
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cfield: 
currentwindow=WI ND OW (0) 
editstring$=EDIT$(currentfield) . 

WINDOW OUTPUT 2 
CLS 

· 'save current output window 
'see what he changed it to 

'choose utility window 

PRINT "Clicked out of field ";currentfield 
PRINT "The string is ";editstring$ 
ON currentfield GOSUB vohx,volx,rlx,rhx,rdx,lpx,ltx,clx,ctx 
d2=DIALOG(2) 'field we clicked into 
PRINT "Clicked into new field ";d2 
IF d2<> O THEN currentfield-d2 
WINDOW OUTPUT currentwindow . 
RETURN 

vohx: 
voh=VAL(editstring$): PRINT voh: RETURN 

volx: · ·· · · 

vol=VAL(editstring$): PRINT vol: RETURN 
rlx: 

rl=VAL(editstring$): PRINT rl: RETURN 
rhx: 

rh=VAL(editstring$): PRINT rh: RETURN 
rdx: 

rd=VAL(editstring$): PRINT rd: RETURN 
lpx: 

lp=VAL(editstring$): PRINT Ip: RETURN 
ltx: 

lt=VAL(editstring$): PRINT It: RETURN 
clx: 

cl=VAL(editstring$): PRINT cl: RETURN 
ctx: 

Ct=VAL(editstring$): PRINT ct: RETURN 

butt: 
currentwindow=WINDOW(O) 

d1=DIALOG(1) 
'save current output window 

IF d1=10 THEN GOTO gotok 
WINDOW OUTPUT 2 
CLS 

'do this before swapping windows 
. 'choose utility window 

ON d1 GOSUB vohh,volh,rlh,rhh,rdh,lph,lth,clh,cth 
WINDOW OUTPUT currentwindow 
RETURN 

vohh: 
PRINT "vOH is the HIGH. level output" 
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PRINT "voltage. For CMOS it is typically" 
PRINT "between Vee and Vee -1.0 Volts." 

' PRINT "For TTL it is typically between" 
PRIN"T: "2.5 and 3.5 Volts. The units are" -
PRINT "volts."; 
RETURN 

volh: 
.PRINT "vOL is the LOW iev.el output" 
.PRINT "voltage. For CMOS it is typically." 
PRINT "between 0~2V and ground~ For TTL" 
PRINT"it is typically between 0.4V, and" 
PRINT "ground. The units are· volts." 
RETURN 

rlh: . . ·· - . 
PRINT "RL is the totem ·pole resistance"· 
PRINT "to ground. !t is typically on the" . 
PRINT "order of 5 -·10 ohms. The units are" 
PRINT "ohms.". 
RETURN 

rhh: 
PRINT "RH is. the totem. pole. resistance" . 
PR I NT "to VCC. It is typicaily on the order"· - · 
PRINT "of a few tens of ohms. The units are" 
PRINT "ohms." .. . ' . . . 

RETURN 
rdh: 

PRINT "RD is the series output resistance." 
PRINT "It is typically on the order' of a few" 
PRINT "tens of ohms. The, units are ohms." 
RETURN . ' . . 

lph: . ' . . 
- PRINT "LP is the package inductance. It is" 

PRINT: "typically around 10~20. nanoHenries .. ~. 
· PRINT "The units are nanoHenries." : · · 
RETURN 

Ith: , . . : . 
PRINT "LT is the total trace inductance." 
PRINT "The units are nanoHenries." 
RETURN 
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clh: 
PRINT"CL is the total load capacitance. It" 
PRINT"is typically 5-10 picoFarads per " 
PRINT"memory device; The units are" 
PRINT"picoFarads." 
RETURN 

cth: 
PRINT "CT is the total trace capacitance." 
PRINT "The unit are picoFarads." 
RETURN 

gotok: 
GO SUB cfield 

vhl=-(voh-vol) 
~lh=voh-vol 

rhl=rt+rd 
rlh=rh+rd 
1=1 E-09*(1p+lt) 
C= 1 E-12* ( cl+ct) 

lcinv=1 /(l*c) 
r2412hl=(rhl"2)/(4*(1"2))° 
r24121h=(rlh"2)/(4*(1"2)) 
alphahl=rhl/(2*1) · · 
alphalh=rlh/(2*1) 

'take care. of last field we clicked out of 

'make this in.to henries 
'and this into farads 

betahl=SOR(ABS(lcinv-r2412hl)) · 
· betalh=SOR(ABS(lcinv-r24121h)) 

currentWindow;..w1NDOW(O) 
WINDOW OUTPUT 2 
CLS 
PRINT TAB(8);"HILO";TAB(1 S);"LOHI" 

'choose .the utility window 

PRINT "Volts";TAB(8);vhl;TAB(18);vlh 
PRINT "Resis";TAB(8);rhl;TAB(18);rlh 
PRINT"R"2/4L"2";TAB(8);:PRINT USING decf$;r2412hl;:PRINT TAB(18); 
PRINT USING decf$;r24121h . . ' .. 
PRINT "R/2L";TAB(8);:PRINT u·slNG decf$;alphahl;:PRINT TAB(18); 
PRINT USING decf$;alphalh . . .. · 
PRINT"Beta";TAB(8);:PRINT USING decf$;betahl;:PRINT TAB(18); 
PRINT USING decf$;betalh; 

REM now draw the scales on the plotter 
WINDOW OUTPUT 3 'choose the plotter window 
CLS 
vscale= -16 'pixels per volt vertically (plus is up on screen) 
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vzero=-7*vscale+20 
hzero=20 

'+7 volts to -3 volts 

hscale=7 'pixel per nsec 
htotal=60 'we will always plot the same number of ns 

LINE (hzero,vzero)-((hscale*htotal)+hzero,vzero),33. 'zero volts 
FOR nsec = 0 TO htotal 

LINE ((nsec*hscale)+hzero,vzero+2)-((nsec*hscale)+hzero,vzero-2) 
NEXT nsec 

FOR nsec = 0 TO htotal STEP 5 
LINE ((nsec• hscale)+hzero, vzero+S}-((nsec*hscale )+hzero, vzero-5) 
NEXT nsec 

FOR nsec = 0 TO htotal STEP 10 
LINE ((nsec*hscale)+hzero,vzero+10)-((nsec*hscale)+hzero,vzero-10) 
NEXT nsec · 

LINE (hzero, vzero-(vscale*3) )-(hzero, vzero+(vscale*7)) 
FOR volts=-3 TO 7 

LINE (hzero-2, vzero+(vscale*volts) )-(hzero+2 ,vzero+(vscale*volts)) 
NEXT volts 

REM now plot the high to low transition . 
FOR nsec=1 TO htotal 

t=nsec*1 E-09 'seconds units 
cospart=COS (betahl*t) 
sinpart=SIN (betah l*t) 
volts=vhl*(1-(EX P(-alphahl*t) )* ((alphahl/betahl) *sinpart+cospart) )+voh 

Cl RC LE (hzero+(nsec• hscale), vzero+(volts*vscale)) ,2 
NEXT nsec . 

REM now plot the low to high transition 
FOR nsec=1 TO htotal 

t=nsec*1 E-09 'seconds units 
cospart=COS(betalh*t), 
sinpart=SIN(betalh*t) . 
volts=vlh*(1-(E X P (-alp hal h•t)) • ( (alphal h/betal h) *sin part+cospart)) +vol 

Cl RC LE (hzero+(nsec• hscale), vzero+(volts*vscale)), 1 
NEXTnsec · 

WINDOW OUTPUT currentwindow 
RETURN 
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BUILDING A SINGLE-CYCLE 
MEMORY· SYSTEM ·· 

OVERVIEW 
The desigrters of the Am29000 spent a great deal of time and silicon to build a proces-

. ·sor th~t can provide the best in state-of-the:art performance~ without the requirement for 
single-cycle memory access speed. 

•. '',',1 

The branch target cache is able to hide three cycles of access time, typically, in 60% of 
all branch instruction executions. The instruction prefetch buffer can in many cases 
hide additional instruction acc~ss time. · 

The large register ·me reduces the need to load or store data since the variables for 
multiple procedures may be held in the register file across procedure calls and returns. 
Overlapping of loads and stores with continued instruction execution further hides data 
memory access time. Therefore, in most cases; slower and less expensive memory 
systems can. serve nearly as well as if single-cycle memory were used. 

But'eve·n so, there will always pe someone who wants to squeeze out every last ounce 
of performance regardle~s of the difficulty or cost. To that end, this Appendix describes 
the constraints imposed on a single-cycle memory system·and Figure 8-1 shows how to 
build one. The fundamental constraint on single-cycle memory is that its access time 
must be equal to, or better than the time leftover from one clock cycle after processor 
address and control delay and data and instruction setup time are subtracted. 

UP AGAINST THE WALL 
The processor address and control lines are not valid until 14 ns into a clock cycle. The 
processor-instruction and data-setup times are 6 ns. That leaves 20 ns from a 40 ns 
cycle~ Even this available time must be reduced by buffer delays or capacitance-load 
delay where the memory load on the processor address lines exceeds the standard 
capacifance-loaq limit. ' 

Finally, there is the problem presented by the need to control the Chip Enable (CE) 
signal to the memory so that the memory will not contend for the bus during the early 
part of a write operation. · · .· · · 

' • I • ,'• 

The problem is 'that until 14 ns into the cycle, the write control signal from the processor 
is not valid and may indicate a read or write operation incorrectly. If the memory were 
enabled throughout each cycle, it would be possible for the memory to present read 
data at the same time that write data from the processor begins to be driven for a write 
operation. This contention results from the memory seeing a read operation before the 
memory's Write Enable (WE) line becomes active and valid. Bus contention can then 
continue until the WE line has time to disable the memory read-data output. In addition, 
there is no guarantee that the WE line will not have spurious noise-induced WE pulses 
before the processor's valid output delay time is satisfied. 
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It is therefore clear that a single-cycle access time memory should not be chip enabled 
prior to the end of the output valid delay for the processor's Read/Write {R/W) line. 
System Clock {SYSCLK) is a very convenient signal to use as the CE control. It is high 
during the first half of the cycle and disables the memory; and it is low during the latter 
half of the clock cycle when the address and R/W lines are stable. 

Using the SYSCLK as CE provides both a solution and a !imitation. The limitation is that 
the system clock can go active no sooner than 19 ns and may be as late as 21 ns. This 
says thatthe limi~ on available access time for the memory is set by the time remaining 
after th·e SYSCLK delay and processor instruction or data setup time are subtracted 
from a 40 ns clock cycle. That is, 40 ns - 21 ns - 6 ns = 13 ns. 

'THE SIDE EFFECTS, NOTHING TO.SPARE 
With only 13 ns available for memory access time, there is simply no time available for 
dynamic address decoding or data-path buffering. Address lines may be buffered since 
there is 5 ns to 7 ns available between the time that address from the processor is valid 
and the time that the memory CE provided by SYSCLK is active. CE must be provided 
directly from SYSCLK, or from a signal with the same timing specification as SYSCLK, 
since CE is in the critical timing path. · · 

Within these restrictions.there are at least two possible implementation approaches. 
The two approaches differ in the way thatSYSCLK is delivered to the system. The first 
scheme is the simple direct use of SYSCLK as provided by the Am29000 processor. 
The second approach relies on clock generation and gating logic external to the the 

· Am29000 processor. 

SYSTEM CLOCK PROVIDED BY PROCESSOR 
The single-cycle memory with processor provided SYSCLK signal is shown in 
Figure 8-1. 

Potential Clock Overload 
The system clock, if derived from the processor, is very heavily loaded with capacitance 
because it must drive all the memories in the instruction and data blocks. The system 
clock may not be buffered, because to do so would add delay into the CE-signal path of 
the memories. These added delays would reduce the available read access time. 

Limited Memory Size ' . 
Unless the memory devices used have multiple CE inputs, there .can only be a single 
block of memory in the instruction space and one block in the data space. Additional 
blocks require either address decoding to.select the blocks or data path buffers that can 
isolate the blocks from the bus; neither of which is possible when .the processor pro-
vides .the clock. · · · · · 

),'' 
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Figure B·1 

Special Method-To-Access Instruction Memory Is Needed 
The data-and-instruction memory blocks are .both being selected for read or write in the 
latter half of every cycle. 'It is therefore riot possible to give the instruction memory 
access to the data bus so that the instruction memory can. be loaded and read via the 
data. bus. If this were attempted, the data mem.ory would always contend with the 
instruction-memory-to-data-bus. buffer. · 

Therefore to· gain access to the instruction memory, ·it is necessary to provide a OMA 
device that can request the bus from.the processor. This .OMA device must have the 
buffers necessary to gain access to either the data or instruction bus. The OMA device 
is responsible for moving instructions into the instruction memory via the instruction bus. 
The instructions, most likely, come from a remote bus which the OMA device could 
access. 

WE 
Again, because the data and instruction memory blocks are both being selected for read 
or write in the latter half of every cycle, it is necessary to qualify the WE line to the 
memories with the appropriate Memory Request signal. That way a data bus write 
affects only the data memory and an instruction bus write, via the OMA device, affects 
only the instruction memory. 
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Figure B·2 

. ·svSTEM CLOCK PROVIDED BY EXTERNAL OSCILLATOR 
. The single-cycle memory With'bank selectibn is. shown in;Figure 1B~2. 
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, Lower Clock Loading· Possible 
If SYCLK is provided to:both the processor and the memory blocks from an external os­
cillator, multiple clock buffers ca'n be used to split the memory capacitance load. The 
delay o_f the merr.ioryclock buffers would be in parallel with the delay of the clock buffer 

· driving the processor. This would maintain the timing relationship between the proces-
sor and memory without inducing additional delay. . '.· I ') • '" ' 
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Address Decoding, Multiple Memory Banks, Now Possible. 
By splitting clock distribution, it is possible to selectively qualify each SYSCLK signal 
used as a memory CE signal. This is done by passing SYSCLK from the external 
oscillator through a PAL which selectively qualifies each output clock. The qualified 
clocks then go through buffers that drive the memory arrays. By passing all the clocks 
through the same gating and buffering levels the phase relationship of all the clocks can 
be maintained, i.e. minimize system clock skew. The ability to qualify the CE line now 
allows multiple memory banks within the instruction or data blocks to be addressed. 

Due to the skew between the input oscillator signal and SYSCLK, the bank selection 
cannot be changed on a cycle-by-cycle basis. It is only possible to register a value that 
selects a given memory bank. The switching process from one bank to another takes at 
least one cycle. This switching of banks can be done by an explicit access to some 
spec.ific address. The PAL control logic recognizes the address 8:nd loads the registers 
that gate the CE. The next memory access is then directed to the' newly selected 
memory bank. 

Simpler Access to Instruction Memory : 1 

Since it is possible to deselect all data memory banks and enable a buffer to connect an 
instruction memory bank to the data bus, the processor can directly access one bank of 
instruction memory·as data while executing code from another bank·of instruction RAM 
or ROM. The added delay of the instruction bus-to-data bus buffer requires that these 
data bus accesses of instruction memory be slowed to two cycles per access via control 
over the DROY. · · · · · 

TIMING IS EVERYTHING 
The timing for a single-cycle memory access is shown in Figure B-3. 

As noted earlier, when SYSCLK is used as CE, it becomes part of the critical path. This 
critical path, is made up of the worst-case system-clock output delay, plus memory 
access time, plus processor set-up time, it's total delay is 40 ns 

The control-to-CE signal path is the next most critical. This critical path is the processor 
control output valid delay of 14 ns. Of the total 19 to 21 ns delay possible, this leaves 
5 ns until the earliest point at which SYSCLK (CE signal) could go active. Since it is 
important that the WE line and addresses settle before the chip is enabled (CE goes 
active), the maximum delay for the address buffers and control gates is 5 ns. To 
achieve this, it may be necessary to duplicate buffers and gates so as to split up the 
memory array into groups whose capacitive load does not exceed the load specifica­
tions of the signal drivers. 

The processor control-to-response signal path is made up of the "processor control 
output valid delay" of 14 ns, the PALs used to control the memory delay of 10 ns, and 
the processor control signal setup time delay of 12 ns for a total of 36 ns. 
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Figure B·3 
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•¥1·"'H'• North American _________ _ 
ALABAMA ...........•.................................................. (205) 882-9122 
ARIZONA ........................•...................................... (602) 242-4400 
CALIFORNIA, 

Culver City ........................................................ (213) 645-1524 
Newport Beach ................................................ f 714! 752-6262 
San Diego ..........•.............................................. 619 560-7030 
San Jose·····:····················································· 408 452-0500 
Woodland Hills ................................................. (818 992-4155 

CANADA, Ontario, 
Kl:!nata ............................................................... (613) 592-0060 
Willowdale ........................................................ (416) 224-5193 

COLORADO .......................................................... (303) 741-2900 
CONNECTICUT .................................................... (203) 264-7800 
FLORIDA, 

Clearwater ........................................................ (813) 530-9971 
Ft. Lauderdale .................................................. (305) 776-2001 
Orlando ............................................................. (407) 830-8100 

GEORGIA .........•..........•......................................... (404) 449-7920 
ILLINOIS, 

Chicag~ ............................................................. (312) 773-4422 
Naperville ......................................................... (312) 505-9517 

INDIANA ................................................................ !317! 244-7207 
KANSAS ................................................................. 913 451-3115 
MARYLAND ........................................................... 301 796-9310 
MASSACHUSETTS .............................................. 617 273-3970 
MINNESOTA ......................................................... (612) 938-0001 
MISSOURI ............................................................. (913) 451-3115 
NEW JERSEY, 

Cher!Y Hill ......................................................... (609) 662-2900 
Pars1ppany ....................................................... (201) 299-0002 

NEW YORK, 
Liverpool ............................................................ (315) 457-5400 
Poughkeepsie .................................................. (914) 471-8180 
Woodbury ......................................................... (516) 364-8020 

NORTH CAROLINA .............................................. (919) 878-8111 
OHIO, 

Columbus .......................................................... (614) 891-6455 
Dayton ............................................................... (513) 439-0470 

OREGON .................•............................................. f503} 245-0080 
PENNSYLVANIA .................................................. 215 398-8006 
SOUTH CAROLINA .............................................. 803 772-6760 
TEXAS, 

Austin ................................................................ (512) 346-7830 
Dallas ................................................................ (214) 934-9099 
Houston ............................................................. (713) 785-9001 

WASHINGTON ...................................................... (206) 455-3600 
WISCONSIN .......................................................... (414) 792-0590 

International __________ _ 
BELGIUM, Bruxelles ....... TEL ............................. (02) 771-91-42 

FAX ............................. (02) 762-37-12 
TLX ............................................. 61028 

FRANCE, Paris ................ TEL ............................ (1) 49-75-10-10 
FAX ............................ (1) 49-75-10-13 
TLX ........................................... 263282 

WEST GERMANY, 
Hannover area ............ TEL .............................. (0511) 736085 

FAX .............................. (0511) 721254 
TLX ........................................... 922850 

MOnchen ...................... TEL ................................. (089) 4114-0 
FAX ................................ (089) 406490 
TLX ........................................... 523883 

Stuttgart ....................... TEL ........................... (0711) 62 33 77 
FAX .............................. (0711) 625187 
TLX ........................................... 721882 

HONG KONG ................... TEL ............................. 852-5-8654525 
FAX ............................. 852-5-8654335 
TLX .......................... 67955AMDAPHX 

ITALY, Milan .................... TEL ................................ f02} 3390541 
................................ 02 3533241 

FAX ................................ 02 3498000 
TLX ........................................... 315286 

JAPAN, 
Kanagawa .................... TEL ................................. 462-47-2911 

FAX ................................. 462-47-1729 

International (ContinuedJ--------
Tokyo ........................... TEL ............................... (03) 345-8241 

FAX ............................... (03) 342-5196 
TLX ........................ J24064AMDTKOJ 

Osaka ........................... TEL ................................. 06-243-3250 
FAX ......... ; ....................... 06-243-3253 

KOREA, Seoul ................. TEL .............................. 82-2-784-7598 
FAX ............................. 82-2-784-8014 

LATIN AMERICA, 
Ft. Lauderdale ............. TEL ............................. l305) 484-8600 

FAX ............................ 305) 485-9736 
TEL ................. 51095 4261 AMDFTL 

NORWAY, Hovik .............. TEL .................................. (02) 537810 
FAX .................................. (02) 591959 
TLX ............................................. 79079 

SINGAPORE .................... TEL ................................... 65-2257544 
FAX .................................. 65-2246113 
TLX ....................... RS55650 MMI RS 

SWEDEN, 
Stockholm .................... TEL .............................. (08) 733 03 50 

FAX .............................. (08) 733 22 85 
TLX ............................................. 11602 

TAIWAN ............................ TLX ............................. 886-2-7122066 
FAX ............................. 886-2-7122017 

UNITED KINGDOM, 
Manchester area ......... TEL .............................. (0925) 828008 

FAX .............................. (0925) 827693 
TLX ........................................... 628524 

London area ................ TEL .............................. (04862) 22121 
FAX .............................. (0483) 756196 
TLX ........................................... 859103 

North American Representatives __ _ 
CANADA 
Burnaby, B.C. 

DAVETEK MARKETING ................................. (604) 430-3680 
Calgary, Alberta 

VITEL ELECTRONICS .................................... (403) 278-5833 
Kanata, Ontario 

VITEL ELECTRONICS .................................... (613) 592-0090 
Mississauga, Ontario 

VITEL ELECTRONICS .................................... (416) 676-9720 
Quebec 

VITEL ELECTRONICS .................................... (514) 636-5951 
IDAHO 

INTERMOUNTAIN TECH MKTG ................... (208) 888-6071 
ILLINOIS 

HEARTLAND TECHNICAL MARKETING ..... (312) 577-9222 
IN DIANA 

ELECTRONIC MARKETING 
CONSULTANTS, INC ..................................... (317) 921-3452 

IOWA 
LORENZ SALES .............................................. (319) 377-4666 

KANSAS 
Merriam - LORENZ SALES ........................... (913) 384-6556 
Wichita - LORENZ SALES ............................. (316) 721-0500 

KENTUCKY 
ELECTRONIC MARKETING 
CONSULTANTS, INC ..................................... (317) 921-3452 

MICHIGAN 
Birmingham - MIKE RAICK ASSOCIATES .. (313) 644-5040 
Holland - COM-TEK SALES, INC ................. (616) 399-7273 
Novi - COM-TEK SALES, INC ....................... (313) 344-1409 

MISSOURI 
LORENZ SALES .............................................. (314) 997-4558 

NEBRASKA 
LORENZ SALES .............................................. (402) 475-4660 

NEW MEXICO 
THORSON DESERT STATES ....................... (505) 293-8555 

NEW YORK 
NYCOM, INC .................................................... (315) 437-8343 

OHIO 
Centerville- DOLFUSS ROOT & CO •.......... (513) 433-6776 
Columbus - DOLFUSS ROOT & CO ............ (614) 885-4844 
Strongsville - DOLFUSS ROOT & CO ......... (216) 238-0300 

PENNSYLVANIA 
DOLFUSS ROOT & CO .................................. (412) 221-4420 

UTA~ 
R MARKE Tl NG ............................................... (801) 595-0631 

WISCONSIN 
HEARTLAND TECHNICAL MARKETING ..... (414) 796-1128 
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