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PREFACE “'l

The Am29000 changes the meaning of “high performance” for 32-bit CMOS Reduced Instruction
Set Computers (RISCs)!

First generation RISCs provided performance in the 4 to 5§ million instructions per second (MIPS)
range. But, the first member of the Am29000 family of RISC microprocessors can sustain per-
formance in the 10 to 25 MIPS range!

The Am29000 brings high performance to a wide range of cost-sensitive applications ranging
from personal computers and embedded controllers using DRAM or VDRAM (10 to 17 MIPS), to
extremely high-performance engineering workstations and multi-user systems, using cache or
SRAM (17 to over 25 MIPS).

The Am29000 family of microprocessors gives the computer-system designer an entire spectrum
of cost-effective system-performance solutions using a single hardware-software platform.

The 29000 provides many features for easing the performance burden placed on system
memory so that slower and lower-cost memory systems can be used at any given level of
system performance.

This handbook provides Am29000-memory-system design information and specific examples that
willbe helpful in determining how to design a memory system to give you the best cost/perform-
ance ratio available to fit your Am29000 application.

Chapters 1, 2 and 3 review:
« performance of the Am29000 32-bit CMOS microprocessor;
« memory-system architectures, key factors and trade-offs;
implementation details;
« important memory-design assumptions and introduction to common
notations and conventions.

Chapters 4, 5, 6, and 7 provide detailed memory-design examples:
« high-speed static RAM;
. » medium-speed SRAM;
« static-column DRAM;
« video DRAM.

Chapter 8 provides a comparison of features and performance for each example using
consistent ground rules.

Chapter 9 provides simulated performance information for different memory speeds and
interfaces using the Dhrystone 1.1 benchmark.

Appendix A covers memory-array loading-delay calculatlons usmg transmission-line and
RLC-circuit analysis.

Appendix B discusses the constramts on a single-cycle memory system with tips on how
to build one.
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OVERVIEW .. o &

The Am23000 Streamlined Instruction Processor is the firstin a new generation of
CMOS 32-bit ‘high-performance microprocessors built by Advanced Micro Devices.
Based.on Reduced Instruction Set Computer (RISC) archltecture pnncrples it provides
the following features::

the ability to execute one instruction vrrtually every clock cycle

a streamhned set of instructions, generally less complex than those of prior-genera-

tion processors so that each instruction can complete execution in one clock cycle,

" . while still providing support for all the basic and most frequently needed algorithm

. steps. These simpler instructions serve to break complex algorithms down into a

series of simple steps that are then exposed to powerful optimization techniques
embodied in the latest generation' of language compilers;

-large on-chip instruction.cache and register set,.so that:accesses to external sys-
- .tem memory can be reduced such that the system can take advantage of the fast

access speed available with on-chip registers-and cache. :

" load-store method of ‘access to ekternal resources that separates internal (register-

to-register) .instructions and memory-I/O (regrster-to external) instructions into
activities that can often be executed in parallel;

independent instruction and data buses that provide support for concurrent and
continuous ‘accesses of external instruction and data memory, so that instruction
memory can feed the processor’s voracious appetite for'a new instruction execution
in each cycle while the data-memory bus still provides access to data operands.

" Through the use of the above RISC techniques and the Iatest in advanced high-speed
CMOS technology, the Am29000 is able to sustain performance of 20 to 25 Million
Instructions Per Second (MIPS), with a peak of 30 MIPS, when clocked at 30 MHz. This
‘is roughly equrvalent to between 19 and 24 times the performance of a VAX 11/780".

To sustain the above level of performance the memory system must be able to supply
the microprocessor at a rate of almost one instruction every clock cycle. This instruc-
tion- per-cycle rate combined with the fast cycle time of the Am29000 makes the mem-
ory-system architecture a critical element in supporting the overall system performance.
_ Indeed, to maintain performance above 20 MIPS with the Am29000 requires very high-

.speed memories or caches.

t

‘However, it is equally important "to'underst'an'd ‘that the Am29000 can also achieve very
good performance in the 10 to 17 MIPS range when used in conjunction with inexpen-
sive static-column DRAM or video DRAM, at clock rates from 16 MHz to 25 MHz. DRAM
systems have a far lower cost per word than static RAM or caches and, when lower
speed versions of the Am239000 are also used, the system cost can be further de-
creased. Yet in this kind of lower-cost design, the system performance still far exceeds
that of comparably priced prior-generation microprocessors, and even that of many
current-generation RISC microprocessors.
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The Am29000 offers a single hardware platform and an extensive set of software tools
for use in a wide spectrum of cost-effective, high-performance systems. It, thus, pro-
vides a high performance-to-cost ratio and a clear upgrade path to the best possible
performance without requiring a change in processor architecture or software.

Because the Am29000 is designed to minimize internal execution-pipeline latency while
allowing the memory system as much latency as possible, slower and lower-cost mem-
ory systems can be used-without a crippling loss of system performance. In exchange
for access latency, the Am29000 demands high information throughput via burst-mode
memory access. The memory system is expected to sustain a burst-access rate of one
access per cycle, but the memory is permitted to have some initial access latency to
begin the burst access. As a result, low-speed memory systems can use techniques like
pipelining and bank-lnterleavmg to sustain the burst-access rate required by the
Am29000. In addition, burst-mode access is intrinsically supported by modern dynamic-
memory devices that have the property of high-speed sequential access after a slower
initial random-access time. Examples of these memory devices are: DRAM with page
mode, nibble mode, static-column mode, or video (senal output) capability.

The allowance for initial latency is provided via a number,of Am29000 features:

« - For instruction accesses, the Am29000 contains an on-chip Branch Target Cache
(BTC) that provides up to three cycles for: the memory to begin supplying a se-
quential burst of instructions without incurring a performance penalty.

» For data accesses, the Am29000.can overlap memory loads and stores with
instruction execution. So, memory latency occurs in parallel with continued in-
struction execution.” The programmer or .compiler can schedule a memory access
in advance of when the data is required.

» Once data is read from the memory, it is foMarded dlrectly to the execution stage
- for use in the next cycle. This, again, minimizes the mternal plpellne latency to
allow additional-access time in the memory.

* The large register file (192 registers) of the Am29000 acts as an on-chip stack
cache to help reduce the number of off-chip data accesses.

* The on-chip Memory Management Unit (MMU) minimizes plpelme latency by
making translated addresses available to the memory early.in.the cycle following
execute. Additionally, the MMU s1mplmes the memory deS|gn by performing the
address-translation task on-chip.

+ Finally, the Am29000 uses separate non- multlplexed data and_instruction buses to
simplify the memory interface and maxnmxze the qurmatuon transfer rate.

This handbook shows how to use the Am29000 in a non-cache memory environment
with standard currently available memory devices. Examples of four specific memory
systems are shown, each of which is capable of sustammg single- cycle burst access for
~an Am29000 operating at 25 MHz. . L
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The memory implementations are:
» High-speed static RAM;
+ Medium-speed static RAM with interleaved banks;
« Static-column DRAM with interleaved banks;
» Video DRAM with interleaved banks.

Each implementation explains the trade-offs in system memory size, cost, and the
latency associated with initial access. Additionally, the performance of each implemen-
tation is simulated and described. Block diagrams, timing diagrams, state-machine
diagrams, PAL equations, and component lists are included.

NOTES:

1. The 20 MIPS of sustained performance is based on a system using two Am29062
Integrated Cache Units, one each on the instruction and data buses. These cache
units have an initial access time of two cycles (1 wait state) and single-cycle burst-
access time (zero wait-state burst mode). Benchmark programs run on this model
include: Dhrystone V2.0, grep, diff, and nroff, all of which meet or exceed the
sustained-performance quote of 20 MIPS. The 25 MIPS sustained-performance
quote is based on using separate static RAMs for instructions and data, able to
support single-cycle (zero wait state) access in both initial and burst modes. Most
competitive RISC microprocessors claim sustained performance assuming single-
cycle (zero wait state) memory or cache units, although some only state peak
performance, which for the Am29000 is equal to the 30 MHz clock rate, available
since June '88.

2. Warning: These are paper designs; they have not been implemented in hardware.
The designs are, therefore, subject to the usual number of oversights, mistakes,
and outright blunders that lie hidden in the depths of any complex and untried plan.
However, the static-column-DRAM and video-DRAM designs have been function-
ally simulated on an Apollo workstation with Mentor CAD software. Behavioral
models for memories, PALs, SSI and MSI logic, and the Am29000 were provided
by Logic Automation. Therefore, to the best of our test vectors, we believe the
static-column-DRAM and video-DRAM designs work correctly.
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BASIC ISSUES FOR ALL | a
Am29000 MEMORY DESIGNS

ARCHITECTURE , o ,
‘How you organize a memory system for the Am29000 is.driven by a number of factors,

and getting the most out of one feature requires trade-offs in other factors. The follow-
ing discussion will give you guidelines for what you need to be concerned about in a
memory system. Additionally, this chapter will show you where you can make some

" reasonable compromises in the design to get the best of most worlds.

 Key Memory System Factors Defined

Access Speed — The whole point of using the Am29000 is to get a three to five times
improvement in performance over the “other guy’'s solution”. Memory access speed is
the key element in determining the performance of an Am29000 system. But, there are
two separate measures of access speed. The balance between them allows the
Am29000.a wide range of performance-to-cost trade-offs.

~ One speed issue is how fast can you get to any random word of memory; this is initial

access time. The other main issue is how fast can subsequent sequential words of
memory be accessed; this is burst access time.

Initial access time is different from burst access time because:

* When a new address is supplied by the processor, all bus devices must decode
the address to determine whether or not to respond. So, an initial access re-
quires some time to decode the address and begin the access of a memory word.
But, a burst access is always to the next word in sequence after either an initial
.access or-a previous burst access. Therefore, the burst access does not require
any address decode time; the memory block already knows it is selected and only
needs to increment the address from the last access. Further, the memory block

. does not need any special logic, i.e., added delay, to deal with the possibility of a
burst access crossing memory chip or block boundaries because the Am29000
processor will always supply a new address at every 256-word address
boundary.

* In the case of a memory block that recognizes its address, the selected word of
. memory must be accessed. Some memory devices, like DRAMs, require more
time to access a random word of memory than to access a sequential word.
- This is generally due to the upper (row) and lower (column) half of the memory
- address being time multiplexed to the DRAM. Therefore, a random-word access
requires both a row address and a column address to be provided. A burst
access needs only a new column address, or in some memories, only a signal to
- shift out the next sequential word. Thus, access to a random location (new row
and column address) takes longer than access to a sequential word.
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¢ Also, when a new row is accessed DRAM memones reqmre ‘delay time between
the end of a previous access and the beginning of the new row access. This time
is in addition to the delay time associated with transferring the new row address.
This added delay is called precharge time. Therefore, when a random access
immediately follows a previous access to the same memory, the new initial
access incurs the precharge time delay.

* In a bank-interleaved memory system, the first access in a series gains no benefit
from the overlapping of access time between memory banks since all the banks
must go through a full bank access time before the first (initial) word is available.
Therefore, the initial access is always Ionger than subsequent burst accesses in
an mterleaved memory archltecture Thisis covered in more detail later.

Generally, an initial access is slower than a burst access due to the address decode,
row-address entry, initial bank access and precharge delays which may be required for
an initial access but do not apply to a burst access.

‘Memory Size — In a dedicated controller application, a few kilobytes of code and data
space may be all you need. If so, the speed and simplicity of memory can be maxi-
mized by using Static RAMs (SRAM). But, if you need a few megabytes to handle an
engineering workstation task, board space, power, and cost considerations will usually
drive out SRAMs in favor of DRAMs. Wnth DRAMs, system speed usually drops a little
and compleX|ty goes up alittle. "~

Board Space — For a given memory size, the required board area for the memory
varies widely depending on memory density, which is technology related. SRAMs
provide speed and design simplicity but, they are far less dense than DRAMs and
consume a good deal of board space. DRAMs pack the needed memory size into the
: smallest board space at the cost of initial access speed and design complexity.

‘ Power — Memory speed usually |mpI|es hngh power consumption! SRAMs are gener-
-ally used for speed and to get large memory size you use a lot of SRAMs. The resultis
that for a given memory size, SRAMs consume much more power than DRAMs.

Cost — Money always mattersl Bulldlng your entlre 8- Mbyte system memory out of
- 20-ns SRAM is generally out of the question unless you've just won the lottery. So, cost
will generally |mpact the slze speed and structure of memory

Memory Structure — Cost power, and board -space consnderatlons favor DRAM
memory. Speed, and simplicity considerations favor SRAM. Besides the two extremes
..of using only SRAM or only DRAM, there is also the option of a multi-bank interleave
acceéss structure. ‘Bank-interleave schemes allow:slower memories to achieve the same
performance as a single bank of higher speed memory during the critical burst access

- mode. In the case of SRAM, it means less costly memories can still provide maximum
~.burst performance.: For DRAMs, it means that these slower memories can still give

_~'maximum burst performance. Where maximum speed is required along with large size,

a compromise structure can be used with a little SRAM and a:lot of DRAM. That option
" . is called cache memory and, due to its complexnty, is best handled as a topic of its own
. -in a separate discussion. : oo
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Complexity — The simplest memory system probably consists of one bank of ROM for
instructions and one bank of SRAM for data, with each bank capable only of simple
accesses. That way there is virtually no control logic, no address decode logic, no
buffers, and no refresh problems to deal with. Of course that structure may not provide
enough speed, flexibility, or memory size. The other end of the complexity spectrum
would involve something like dual- or quad-interleave DRAM banks with burst access
ability. There you get to deal with refresh issues, bank sequencing, address counters,
and dual porting of the instruction bank for both instruction and data accesses. The
complexity buys memory size, lower power, and burst access speed at the cost of
additional control Ioglc and buffering.

Throughput — The Am29000 is a synchronous machine. The timing of all its actions is
in relationship to its clock. Information flow to or from the microprocessor must occur in
units of time that are integer multiples of the system:clock cycle. That means that if the
access time of the memory does not fit into a single clock cycle then two cycles will be
taken. Even if the access time only misses by a few nanoseconds, a whole cycle of
time is lost. Depending on how often that situation comes up, it can be a better deal to
slow.the system clock down by a few nanoseconds so that most of the memory ac-
cesses can occur in a single cycle. Thus the overall throughput of the system can be
significantly improved in some cases by slowing the system. down. Sometimes the the
option of slowing down the memory to match a sllghtly slower system clock can result in
significant savings in cost and complexity. The only way to know for sure is to simulate
different speed memory configurations with the Am29000 archrtectural simulator soft-
ware known as the SIM29K r

Bus Structure — The Am29000 has three separate buses: -

* Address Bus, which is shared between instruction, data, 1/O, and co-processor
accesses;

. Instructlon Bus, which is used to move instructions from the system memory to
the processor;

« Data Bus, which is used to move data between the processor, system memory,
1/O devices, and co-| processors via load and store operatlons

Together, these buses and their related control Imes are referred to as the channel.

This channel allows for concurrent access of instructions and data when the instruction

- and/or data memories are accessed via pipeline or burst requests. As shown in

~ Figure 2-1, this structure strongly favors memory systems that have separate memory
-blocks for holding instruction and data so as to allow simultaneous access.

With regard to the Am29000, the data bus is bidirectional, the address bus is “output
only”, and the instruction bus is “input only”. So, by definition: the processor cannot write
information to the instruction bus. Therefore when separate data and instruction mem-
ory blocks are used with the Am29000, the system design must provide a way to load
the instruction memory since the processor cannot directly write information into the
instruction memory via the instruction bus. This issue is covered in more detail later.
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Figure 2-1
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Three-Bus Architecture

Trade-offs
What's the best memory archltecture’? Well, it all depends on your goals for the system
as a whole.

‘e If you are building an embedded controller like a network node processor, digital

signal processor, or a mainframe-computer 1/0O processor, the main requirement
is system speed. If the memory requirement is small up to a megabyte or so,
then high-speed SRAM works very well.

For small memory systems the cost, power c’onsuniption, and board space of
SRAM is reasonable and the speed will be the best possible. Initial access time
will be one-to-three cycles and burst access speed will be single cycle in a

25 MHz clock-rate system. Average sustained performance will be in the 16 to
18 MIPS range. Peak performance can reach 25 MIPS with any memory system,

but its the sustainable performance that counts.

Note: performance estimates throughout this document are based on the use of a
25-MHz system clock frequency.

If you are building a mainframe computer or high-performance engineering

workstation, then system speed and large memory capacity are important. Here,
a cache memory architecture, such as the one shown in Figure 2-2, provides the
best possible performance with access to a large main memory.

The cache could be built from SRAMs or with the Am29062 Integrated Cache
Unit, a single-chip cache controller with an 8K-byte internal cache memory. The
main memory can be built from relatively slow and inexpensive DRAMSs that
provide a main' memory as large as needed. The cache memory supports a two-
cycle initial-access and single-cycle burst access. Performance would again be in
the 16-to-18 MIPS range. ‘
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Figure 2-2
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* If system performance and merhory size are important, but less important than
'system cost and complexity, there is another architecture with cache-like perform-

ance but at far less cost and complexity. That is a design using Static Column

- DRAM (SCDRAM).

A SCDRAM memory design using interleaved membry banks has an initial row
access time of four to six cycles with single-cycle burst accesses. But SCDRAMs
also provide a very important caching function. The static column capability of

"the SCDRAM means that once a given row is addressed for the first time, all

subsequent accesses within that row can be made by simply changing the col-
umn address. Those accesses within the row may be to any random address
and do not incur the timing overhead of multiplexed row and column addresses.
Random access within the row can occur in three cycles. Subsequent burst
accesses are single cycle .

In effect, the SCDRAM has a built in “cache” with one row of words in it. The time
to do a complete “cache” reload is the initial row access time of four to six cycles.

This “cache” is put to best use when memory accesses tend to be sequential and
localized. When the accesses are sequential the burst mode of access gives
excellent performance. Even when the accesses are not sequential, as long as
the accesses remain local to one row of the memory the initial access time is held
down to three cycles, which is nearly what would be achieved with fast SRAM.
Certainly the above access characteristics are typical for instruction memory.
Also, many programs have data access patterns that would also benefit from the

. improved access speed within rows.

In a dual-bank interleaved SCDRAM memory using sixty-four 1Mbit by 1-bit
SCDRAMs, the “cache” size is 2K words (8K bytes) resulting from the two
banks of memory each with a 1K-bit row “cache” in each memory. The total
memory size is 2M words (8M bytes) resulting from the two 1Mbit by 32-bit
memory banks. .
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The performance of this system would be in the 74 to 16 MIPS range, which is
amazing system performance while using a relatively simple architecture and low-
cost memories.

The Am29000’s internal Branch Target Cache (BTC), burst-access bus protocols,
large register file, independent instruction and data buses, and overlapped load
and store operations are all key features that ailow the Am29000 to give premium
performance with low-cost DRAM memories.

For a simpler, lower-cost, medium-speed application, a Video DRAM (VDRAM)
memory architecture may be appropriate. VDRAM does not have quite the same
“caching” ability of the SCDRAM but it does provide dual porting of a large com-
mon memory array.

One port of the VDRAM is a serial shift register that holds one row of bits from the
internal DRAM array. A by-4 organization memory has four shifters. This row is
shifted out providing consecutive memory words. Just what the instruction bus of
the Am29000 needs! The other VDRAM port is a bidirectional random-access
bus that allows read or write operations on any word of the internal DRAM array.

That is just what the data bus of the Am29000 needs!

. The two ports are controlled by a common address input of the VDRAM. As

shown in Figure 2-3, that matches nicely with the common address of the
Am29000. Once the shifter port is loaded with a row of data, the shifter operation
is independent of the internal DRAM array and the random I/O port. This allows
simultaneous access to both instructions and data by the Am29000.

So, the VDRAM allows a single bank of fairly dense memory to serve both the
instruction and data buses of the Am29000 in a very simple and efficient manner.
The trade-off here is in speed. The initial access time for a VDRAM is four to

. seven cycles. lts burst access speed for instructions can still be single cycle with

a 25 MHz shift rate on the serial port. Its burst access speed on the random /O
port is limited by the speed of page-mode access which requires cycling of a
column address strobe; thus data-burst accesses are three to four cycles each.
This could be improved by bank interleaving the design.

Figure 2-3 -
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Even with this slower access time the system performance is still in the
10-to-12 MIPS range. Considering the simplicity and low cost of the design, that
is a very respectable performance.

So, whatever the systeh‘i requirement, the Aﬁ129000 has the flexibility to support a wide
range of cost-performance trade-offs. And, at whatever cost level, the Am29000 will be
at the top of the performance scale against any other monolithic CMOS 32-bit pro-
cessor. ‘

Just as a point of reference, both the Motorola 68020 and Intel 80386 are at their maxi-
mum performance (and cost) of about-5 MIPS when using SRAM cache-memory sys-
tems. The Am23000 runs three-to-five times faster in a similar system and, even with
the simple VDRAM system described above, the Am29000 is double the performance.

If you think MIPS is not an “apples-to-apples” measure of performance, you're right, so
go look at Chapters 8 and 9 on benchmark performance. The Am29000 still beats the
competition by three-to-five times on equivalent benchmark programs!

MEMORY IMPLEMENTATION ISSUES

Once you get past the big decision of what the overall architecture will be, you come
upon the details. This section discusses several implementation details that are com-
mon to nearly all the memory architectures discussed. Thus, each memory design will
have to cope with the issues discussed in the following paragraphs.

Address-Space and Address-Block Decoding

The Am29000 distinguishes between multiple address spaces for any given address
‘value. So, in most designs, an instruction/data memory should not respond to instruc-
tion ROM address space and vice versa. Similarly, data memories should not respond
to 1/0 or coprocessor address space.

Also, there may be‘ mdltiple blocks‘of physical memory in any one address space.
Therefore, most memory interfaces will include some degree of block address decoeding.

System Access to Instruction RAM Memories

As noted earlier, the Am29000 makes best use of memory systems that contain sepa-

" rate instruction and data memories for simultaneous access to instructions and data. In
a memory system with separate instruction and data-memory blocks, the data-memory
block is straightforward. The memory-data I/O pins are simply connected to the
Am29000 data bus. All reading and writing of the data memory is done via the data
bus. Access to the data memory can thus be by either the processor or any other bus
master. '

'In the case of the instruction memory block there is an added twist. With respect to the
Am29000, the instruction bus is used only for instruction input (fetching) by the proces-
sor. The processor thus cannot drive the instruction bus. Therefore the instruction
memory cannot be directly loaded (written) with information by the processor via the
instruction bus in a manner analogous to the way data memory is loaded via the data
bus.
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.. Why is the instruction bus only used for input by the processor?

* In virtually all systems the instruction memory spends the vast majority of its time
being read each cycle to fetch instructions for the processor. Very little of the

" instruction memory bandwidth is needed to load the instruction-memory with new
instruction information. In fact; many.types of systems only need to load the
instruction memory during the power-up sequence. And, some store instructions
in PROM so the processor never writes instruction words. -

« - Not putting output drivers on the instruction bus saves silicon area for more
valuable functions and snmplmes certain electncal de3|gn lssues for the pro-
cessor.

* There are other ways for the system design to provide more efficient means to
" load and perform diagnostics on the instruction memory.

Here are some of the ways to provide system access 'to the instruction memory:

» The instruction memory may have some additional buffering and control logic so
-+ that the memory can read information onto either the instruction or data bus.
_ Also, the data input of the instruction memory would be connected to the
* Am29000 data bus. This configuration would allow the instruction memory to be
both read and written via the data bus by either the Am29000 or another bus
master.

~» A DMA controller with access to both the instruction and data buses could be

" used to request the channel from the processor and then access the instruction
memory via the instruction bus, in which case, the instruction memory block
would be exactly like the data-memory block. The system restriction would be
that the Direct Memory Access (DMA) controller would be the only means of
wrmng information into the mstructlon memory

* Dual-port memory such as a VDRAM could be used to build the instruction
memory. One port, the video shifter port, of the memory would provide read
“access for the instruction bus and the other port would provnde read and write
' access vua the data bus.

~ This scheme has an additional benefit: the VDRAMs sumphfy the whole memory
structure. Since the two ports share access to the same internal memory array,
there need be no internal distinction between instruction and data information.
The VDRAMSs can thus be used to serve as both instruction and data memory
_within a single device. As shown in Figure 2-3, VDRAMs thereby support both
' 'the S|multaneous access of instruction- and data from a common memory array,
and a data-bus access path to instruction memory

: Slmple Dual-Bus-Port Instruction Memory

* The first method above would implement a simple dual-port access scheme for the
instruction memory via buffers and arbitration logic. The arbitration logic is needed
because this multi-port structure for an instruction memory creates a problem for the
memory interface logic. That is, whenever instruction and data accesses are addressed
to the same block of instruction RAM, the data accesses will contend with instruction
accesses. The memory interface logic must, therefore, arbitrate access to the memory.
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This situation can occur when either the 29000 processor or a DMA device in the sys-
tem accesses the instruction RAM via the data bus. In each case, the interface logic is
faced with a slightly different set of conditions as outlined below.

«. If the 29000 processor is performing the data access, there can be a conflict with
the processor’s own instruction fetching activity. In this case, the data access is
the result of instruction execution and in order for program execution to continue
the data access must eventually complete. The data access request can occur
during a burst-instruction fetch or an instruction fetch can occur during the data

- access if the data access is a burst request. If at the time the data access starts,
the processor is in the middle of an instruction burst access, itis necessary to
preempt the instruction access in order to complete the data access. If an in-
struction fetch begins during a data burst request, the instruction fetch must be
held off until the data access is completed. .

« In the case of a DMA device access, the processor will release the bus to the
control of the DMA device so it is not possible for the processor to start an in-
struction fetch during burst-data accesses.. But, it is still possible that the DMA
access will begin during an already established (but suspended) instruction-burst
request. Here again, the memory must be able to preempt the instruction-burst
request and proceed with the data access.

Instruction Bus DMA

The second method outlined above requires hardware outside of the memory system.
All access to the instruction memory is done for the processor by a Direct Memory
Access (DMA) controller, specifically one that can access both the instruction and data
buses. A DMA controller with this capability can request the processor to give up all the
~ buses (address, data, and instruction) so that the controller has complete access to all
memory and I/O devices. '

Once the controller owns the buses, there is no rule that prevents it from both reading
-and writing information in the instruction memory via the instruction bus. The processor
- lacks this capability because it was never designed to drive the instruction bus. But, as
~ long as the instruction memory can handle it, there-is no problem with a DMA controller
doing it. By having access to both the instruction and data buses, the DMA controller
can transfer information between /O devices, instruction memory, data memory, and

~ ROM memory.

- In fact, if it can be assumed that the DMA controller will move all the information to and
from the instruction memory (including the performance of memory diagnostics), there is
no reason for the instruction memory to have a second port for access to the data bus.
In this case, the control logic and buffering of the instruction memory can be very
simple, in fact, identical to that of the data memory. ' o

True Dual- Port Instruction Memory

True dual-port memory used by the third approach noted above, prov:des not only dual-
bus access but also includes built-in structures that allow simultaneous access to the

- memory array from both the instruction and data buses. VDRAM is one very elegant

~ and economical means to provide this type of memory. There are of course other true
dual-port memories or dual-access memory controllers.
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‘Memory Control Sigh'als and Protocol -

The Pipeline Enable Signal o :

. A casual review of the Am29000 bus control lines will show that there are separate but
equivalent Request and Response control line sets for instruction and data accesses.
The exception to this rule is the Pipeline Enable (PEN) signal. This response signal

' ‘must be shared between all instruction and data accesses. Therefore it is important to

" note that the only device that should drive the PEN signal, in a'given cycle, is a device

" being selected by a valid address on the address bus (selected during a primary ac-

' cess). The PEN signal should be tied high (or Iow) only when allbus devices will (or will

not) handle plpellned accesses »

" Request and Burst Acknowledge Signals

When a sequence of consecutive instruction or data words needs to be accessed by the
-Am29000, a burst access is requested via the Instruction Burst Request (IBREQ) or
Data Burst Request (DBREQ) srgnals The initial address of this burst access is an-
nounced by the respective Instruction Request (TREQ) or Data Request (DREQ) signal
~'going active. While erther IREQ or DREQ is active, the address bus has a valid address
- forthe access

The burst request is accepted and a burst transfer is established when the addressed
memory responds with the Instruction Burst Acknowledge (IBACK) or Data Burst Ac-
knowledge (DBACK). In the cycle following the assertion of the Burst Acknowledge

s jSlgnaI the Am29000 will de-assert the (IREQ or DREQ) signals and remove the initial
‘ address of the burst access This frees the address bus for use in other bus accesses.

| The point bemg emphasrzed here is that a Burst Acknowledge signal is the cause for a
" Request signal and its associated address to go lnvalld rmmedlately after a burst trans-
fer is established.

This distinction is importanit to'understand when implementing a burst memory. ltis a
common error for'a memory desrgner to assume that the initial access IREQ or DREQ
: srgnal and the lmtlal burst address will remain actlve and valid until the first Instruction
Ready (IRDY) or Data Ready (DRDY) response is given by the memory

A key example that points out the importance of having the correct understanding is the
following situation: a burst access is suspended or ended by the processor. Note the
memory has no way to tell the difference between suspension or completion of a burst
‘access. A new burst access of the same type (mstructlon or data) as the previous one
is started by the processor.

- In'this situation, the memory is waiting for a’ for a resumptlon of the first burst access. While

waiting, the memory holds either the IBACK or DBACK signal active. Therefore, when

the new burst access begins, the memory Burst Acknowledge signal (IBACK or DBACK)
~ will be active during the initial address cycle of the new burst access. This establishes
“the new burst access and the processor will rémove its Request signal (IREQ or DREQ)
" and initial address from the bus in the followmg cycle. That means that the Request
‘signal and address are valid for only one cycle. The memory thus must be able to
‘capture the new address and initiate a new burst access ‘sequence at the end of the first
(and only) cycle in which the new burst access appears on the processor bus.

2-10 BASICISSUES FOR ALL Am25000 MEMORY DESIGNS



In this situation, the memory control logic does not have any way of making the proces-
sor hold the new address and control information valid for more than the first cycle of
the new burst access. The memory control logic must be designed to “switch gears” in
less than a cycle. The logic must go from “waiting for a burst access to resume” to
“starting a new burst access” in one cycle.

As noted above it is a common error for a memory designer to think the memory could
use the lack of a Ready response to hold off the beginning of the new burst access for a
cycle or two so that the memory control logic would have time to get its state machine
-turned around. Wrong! ‘

Of course, one wayto avoid the above problem is to make the IBACK or DBACK signals
combinatorial and dependent on the inactive state of the Memory Request signals
during the burst phase of a memory access. This causes the IBACK or DBACK signal
to go inactive during the first cycle of a new access when the related Memory Request
(IREQ or DREQ) goes active. This, in turn, holds the address on the bus longer and
may eliminate the need for address registers.

Although, in general, for better overall syétem perfor'manc'e each memory system
should be designed to capture a new address in the minimum time possxble so that the
address bus can be released for use in a another access.

Burst Preemption — The Last Word

A burst access is preempted.by de- assertlng the TBACK or DBACK signal. If the related
burst request signal (IBREQ or DBREQ) was active in the cycle before Burst Acknowl-
edge (IBACK or DBACK) was de-asserted, one last word of information must be trans-
ferred before the burst access is ended. That word can be transferred in the same
cycle that burst acknowledge is de-asserted or in some later cycle but, until it is trans-
ferred the burst access is not complete and no new access of the memory may begin.

Burst Access Reactlvatlon
When a burst access is suspended (IBREQ or DBREQ made mactnve by the processor)
.. and the access later resumed, it is a requirement of the bus protocol that Memory
Ready signal (IRDY (IRDY or DRDY) may-not be active in the same cycle that Burst Request
- (IBREQ or DBREQ) is first reasserted. Therefore memory interfaces must de-assert the
Ready signal when a burst access is suspended.

Memory Response Control Signals
The TRDY and DRDY, the Instruction Error (IERR) and Data Error (DERR), the PEN,
and the IBACK and DBACK signals from the memory interface to the processor are
critical indicators that must be in a valid state at the end of each clock cycle. In systems

. ‘with multiple memory control interfaces, each interface must be able to drive these

response. control signals. Only one memory interface can actively drive these signals in
- each clock cycle. As.different memory interfaces are addressed by the processor, the
control over these signals must pass from interface to interface. This transfer of control
must be accomplished within a single cycle to ensure that the lines are valid on each
cycle

~:Ata 25 MHz cycle rate itis nearly 1mpossnble to lmplement the transfer of control by

selectively driving the control lines via 3-state buffers as is commonly done in slower
memory systems. Wire ORing with open-collector drivers is also impractical.
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The solution is to logically OR the respective control lines from each memory interface
via an SSl logic gate such as a NOR or AND gate. Where there-are several memory
interfaces to be logically ORed, a PAL such as the AmPAL16L8 may be used in the
place of SSl logic gates.

Write Enable of Memories

For memories that are able to perform data-write operations in a single clock cycle, e.g.,
CMOS static RAMs, the Write Enable (WE) signal to these memories must be a pulse
that occurs during the latter half of the write cycle. The Am29000 has a data hold time
of 4 to 20 ns after the rising edge of System Clock (SYSCLK). If the memory being
used has a non-zero data-input hold time relative to the active edge of WE, then that
edge must occur early enough for the Am29000 to satisfy the memory-data-input hold
time.

For most single-cycle memories, this situation implies that SYSCLK is a convenient
signal to use as'a WE qualifying signal to ensure that WE ends at the rising edge of
SYSCLK. The delay of the final write-enable logic gate can then be masked by the
propagation delay of a buffer on the data lines so that the WE signal, at the memory,
“ends at or before the time data goes invalid.

Byte and Half-Word Accesses '

The Am29000 implements full-word read and write operations on word-address bounda-
ries directly in hardware. Access to a specific byte within a word is provided by instruc-
tions for byte extract or insert operations on internal registers. Similarly, access to a
half-word located on a half-word address boundary is‘done via half-word extract or
insert instructions. These instructions can be used to manipulate a byte or half-word of
interest, with actual memory access occurring via full-word loads and stores.

Word and half-word accesses that are not aligned on respective word or half-word
address boundaries can be accomplished via software trap routines executed when a
non-aligned access is attempted.

This software approach to byte, half-word, and unaligned accesses provides a general-
purpose mechanism for manipulating external byte and half-word quantities, without the
requirement for special support hardware. In most cases, this approach produces an
overall performance gain by allowing a shorter system cycle time. The shorter cycle
time results from the elimination of any requirement for masking, alignment and control
hardware in the critial memory-access path.

In cases where it is desired to improve the performance of byte and half-word access
via external alignment and control logic, the Am29000 provides a means of controlling
the external hardware. Three of the code values on the Option (OPT)0-2 lines are set
aside by convention to indicate word, half-word, and byte accesses. These codes can
control the alignment and masking of data on load operations and the selection of byte
WE signals during store operations (the encodmg of OPT bits is shown in the Am 29000
Users Manual, Chapter 3). !

The decision to add external hardware should be carefully considered to insure that the
performance advantage for the byte and half-word accesses justlfles the hardware and
performance costs P
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Compared to the basic processor mechanism for byte and half-word accesses de-
scribed above, external hardware can reduce the time for byte and half-word loads by
zero to 12 or more cycles. In the case of a simple (address boundary aligned) byte or
half-word load, there could be zero cycles saved if the added delay of the external
hardware increases the memory access path delay to the point that a memory wait state
must be added. In the case of an unaligned access, the software approach using a trap
routine could incur 12 or more cycles of overhead in the trap execution.

. The improvement for byte and half-word stores is more significant, since external hard-

ware can eliminate the extra load (for a load-modify-store sequence) required by the
basic processor mechanism. .

So to determrne performance and cost effects of external byte and half-word support
hardware, the system designer must weigh the cost against the following performance

factors for software-vs-hardware approaches:

* Percentage of srmple byte and half-word accesses
. -APercentage of unalrgned accesses
-« Performance penalty of hardware in.added wait-states multiplied by the number

- of affected accesses; or performance penalty of hardware in added system cycle
time multiplied by the number of cycles executed

« Performance penalty of software overhead from byte and half-word insert and
extract instructions or overhead in trap routine executron muitiplied by the num-
ber of accesses ,

If external hardware is used in combination with the OPTO-2 lines, it is very important

- that the already defined code conventions be followed. Failure to do so will. make the
-non-standard system implementation incompatible with every compiler known to be

under development for use with the Am29000. All Am29000 compilers can generate
the already defined OPTO0-2 codes for use in byte'and half-word accesses.

The Late-Late Show Signals

Three memory control signals from the Am23000 arrive rather late in each clock cycle
and require some specra| handlrng The signals are IBREQ DBREQ and BuslInvalid
(BINV).

The first two will, in the worst case, be valid 14 ns after the falling edge of SYSCLK.
The falling edge of SYSCLK is defined as occuring at 1/2T ns x 1 ns into the clock
cycle, where T is the total clock-cycle length. That means, in a 40 ns clock cycle, the
falling edge of SYSCLK, at worst, occurs 21 ns into the cycle. Therefore IBREQ and

" DBREQ are valid by 35 ns into the cycle. That leaves a thin 5 ns worth of set-up time

for any logic that needs to use those signals.” Any good design engineer can subtract
another nanosecond or so to account for some clock skew in the system wiring. So that

“leaves a mere 4 ns of set-up time.- So, the most you can hope to do with these signals

is to capture their state in a very fast regrster
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The timing for BINV signal is a bit more leisurely. The BINV signal is valid 7 ns after the
falling edge of SYSCLK, which puts it at 28 ns into the clock cycle. Thatleaves 12 to 11
ns for set-up time. ‘This is a little better but still, in most cases, this signal is also simply
. registered and used in the following cycle.

Bus lnvalld!? Now What?
First, a little discussion on just what the BINV signal is all about.

* BINV is involved in the transfer of channel ownership. It goes active during the
cycle when'the Am23000 releases control of all buses and control lines to another
channel master that has requested the channel. It also goes active during the
cycle that the Am29000 retakes control over the channel being returned to the
processor by another channel master.

During the cycles that BINV is active in this situation, all the channel lines are in a
state of transition. One channel master is putting its drivers into a high-imped-
ance state and the other has yet to begin actively driving the channel. Therefore
there is no guarantee as to what the logic levels on the channel might be and all
control lines and bus lines should simply be ignored while BINV is active.

* BINV is also used in several situations where the processor has made a Request
signal and an address active on the channel but, late in the cycle, the processor
recognizes that the Request is incorrect or not necessary.

In these situations the meaning of BINV is only defined as applying to the access
being started. : Any burstor pipelined access, already in progress, in the unaf-
fected portion of the channel i is considered able to continue during the BINV
cycle

- One such situation is when a Memory Management Unit (MMU)-translated ad-
dress is placed on the address bus to begin a new access and the processor
recognizes that the address is actually invalid due to a protection violation in the
Translation' Look-Aside Buffer. The new address is effectively cancelled by BINV
going active late in the cycle.

- Another situation involves the cancelling of an-access because the processor
‘identifies it as no longer needed. This can occur when a jump instruction is im-
mediately followed by another jump. The second jump instruction eliminates the
need for any instruction that would have followed the first jump. This recognition
causes the processor to cancel the memory access for instructions following the
first jump via BINV going actlve

Aga;n, in these suuatxons BINV is ohly defined to disrupt the access being started
in the cycle that it is active. An access on the alternate bus continues even
though BINV'is active.

Although there are these situations in which an active BINV applies to only part of the
channel activity, it is recommended that BINV always be used to ignore any bus control
or data signal during the cycle BINV is active.
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. From the viewpoint of a memory system it is difficult to separate the channel ownership
transfer situation from the other situations in which the BINV signal goes active. Thus it
requires significant extra logic to properly ignore only some signal activity on the chan-
nel when BINV is active.

The logic to properly do this must monitor the BREQ, Bus Grant (BGRT), IREQ, DREQ,
and BINV signals. The logic would follow a sequence like that below.

When BGRT first goes active, it indicates a transfer of channel ownership from the
processor to another channel master. The first contiguous set of BINV active cycles to
follow BGRT going active identifies a period when all channel signals should be ignored.
When BINV goes inactive at the end of the channel-transfer sequence, there begins a
period during which any further assertions of the BINV signal indicates that only the
access request being initiated with BINV asserted needs to be ignored. The above

. period ends when BREQ first goes inactive, which indicates the return of control over
the channel back to the processor. The first contiguous set of BINV active cycles to
follow, BREQ going inactive identifies another period during which all channel signals
should be ignored. Following this period, any future assertions of BINV apply only to
the request being started in conjuction with BINV going active, until BGRT again goes
active to start the above cycIe over again. .

: AII the above just gets more complicated if there is more than one other channel master
in the system which could pass control of the channel on to yet another channel master
without first returning control to the processor. In this case BINV recognition logic would
have to keep track of all channel master BREQ and BGRT lines.

Now, for all that effort, the savings would be one extra cycle of information transfer on
an unaffected bus for each cycle BINV is asserted, if the unaffected bus is in fact ready
to transfer mformatlon during the cycle. This savings would oceur less than 0.01% of
the tlme

Therefore it is best to simply define BINV as a signal that defines an idle cycle for the
entire channel. Design the memory system so that no action (change of state) occurs
as a result of any signal on the channel when BINV is active..

Memory Error Signals

The Am29000 has error inputs (IERR, DERR) for both instruction and data bus ac-
cesses. These signals are only monitored by the Am29000 when an instruction or data
access is pending. Therefore, it is required that if an error condition such as a parity
~error is to be reported, the appropriate error signal must be driven active at or before the
time when the memory Ready (IRDY, DRDY) signals would normally go active. In some
cases this may require that the access time of the memory be mcreased to allow time
for error-detectlon logic to check the validity of data.

An alternative to requiring memory error signals to be valid with or before memory ready
signals would be to use the WARN, TRAPO, TRAP1, or INTRO-INTR3 signals in a
subsequent cycle to abort the affected process. Another alternative to extending the
memory cycle time, to allow time for Error Detection or Correction (EDC), is to add a
pipeline stage to the memory access path. This would provide an entire cycle time to
perform an EDC function, while increasing only the initial access time by one cycle.
Subsequent burst accesses could continue to be single cycle.
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~ Invalid Address Situation ,

“If no valid bus device is addressed by a bus-access attempt ‘no ready response will

" ever be provided. This would cause a bus master to hang-up forever waiting for some
response. Itis therefore advisable to have some kind of timeout mechanism for bus
accesses. If an invalid address is accessed by mistake the tlmeout mechanism can end
the access with an error response.

Address and Control Driver Issues

* In the high speed memory designs for the Am29000 the emphasns is on using the

" slowest memory possible while still achieving the necessary speed. This means that
control logic and signal drivers must be the fastest available. That means that D-speed
(10 ns) PALs are recommened for control logic devices and that these devices directly
drlve address lines and control lines of the memones

Directly driving the memories eliminates the added delay of separate buffers often used
to drive memory-array signals. But, PAL devices generally have worst-case delay times
specified when driving only 50 pF load capacitance. Often a memory array will have

32 or more memory devices, each with an input capacitance of 5 pF to 10 pF. In addi-
tion, typical strip-line PC board traces will add an additional 20 pF of capacitance and
100 to 200 nH of inductance per foot of trace length. Such a memory array can easily
represent an inductive and capacitive load with 180 pF to > 340 pF of capacitance and
=100 nH of inductance. It is therefore required that the worst-case delay times for the
affected PAL outputs be increased to account for the added load.

Appendix A provides an analysis of how to determine the appropriate added delay
value

Speed Limit : :
"1t can be useful to determme and analyze the limiting factors for memory speed. For
any memory architecture, there are three signal paths with critical timing:
. The address-te-data valid path during aread access.‘

« The address to end of write path during a write access.

+ The channel master control signal active to response S|gnal active path during
any access.

There are also two éecess cycles of interest: the initial access-and the burst access.
.For this analysis the channel master of interest is the Am29000.

Address-to-Data Valid Path .
For the address-to-data valid path in an mmal access cycle the memory system is
subject to the following key parameters .

. Clock-to -Processor Address Data and Control Slgnals Vahd

. Address Control Logic Delay,‘

. 'Memory Access Time, | .
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« Data Bu‘s Buffer Delay,
¢ And Data Set—Up Time.

In a burst-access cycle, the same parameters are used except that the clock-to-address
and control signals valid delay and the address and control logic delay are replaced by
the clock-to-output delay of the memory address counter.

Clock-to-Processor Address and Control Signals Valid — during the first access to
a non-sequential location in memory, the processor must provide a new address and
instruction or data-request control signals to indicate a new memory request is being
made. ThIS parameter is currently 14 ns for the Am29000

Address/Control Logic Delay — some memory designs will need to select between
the initial address and the output of an address counter used for burst access cycles.
The logic to select the address will add some delay. If D-speed PALs are used for this
logic, the delay will be 10 ns (assuming only a 50 pF load on the PAL output).

Memory Access Time — this is one factor the memory designer has some control
over. The speed limit of the memory system is reached when this delay goes to zero.

Data Bus Buffer Delay — generally a buffer is-used to isolate the memory-array out-
puts from the processor data bus. The propagation delay through the buffer must be
considered. One of the fastest buffers avaﬂable isa 74FCT244A with 4.3 ns pro-
pagation delay

Data Set-Up Time — the Am29000 data input set-up time is 6 ns.

Thus the address-to-data path for an initial access is at best 34.3 ns when the memory
access time is zero. This-then implies that most memory implementations will have an
initial access time of at least two cycles. ' .

In a burst-access cycle the speed limit is set by the clock-to-output time of the address
counter (8 ns for a D-speed PAL), data-buffer delay, and the processor set-up time.
They total 18.3 ns leaving 21.7 ns for memory access time in a 40 ns cycle time system.
Therefore burst accesses can be single cycle with the use of fast SRAMs. Bank inter-
leaved memory can achieve single-cycle burst access even with much slower memory.

Address-to-End of Write Path

For the address-to-end of write path in an initial access cycle the following are key
parameters that the memory system is subject to:

« Clock-to-Processor Address,’Data and Control Signals Valid;

¢ Address/Control Log|c Delay, in parallel with Data Bus Buffer Delay;

+ Memory Address and Data Set-Up Time to Wnte Enable Active.
In a burst-access cycle, the same parameters are used except that the clock-to-address
and control-signals-valid delay and the address and control logic delay are replaced by

" the clock-to-output delay of the memory address counter. That means the clock-to-
data-valid delay may predominate.

BASIC ISSUES FOR ALL Am29000 MEMORY DESIGNS 2-17



Clock-to-Processor Address, Data and Control Signals Valid — during the first
access to a non-sequential location in memory, the processor must provide a new
address and data request control signals to indicate a new memory request is being
made. This parameter is currently 14 ns for the Am29000.

Address/Control Logic Delay — some memory designs will need to select between
the initial address and the output of an address counter used for burst access cycles.
The logic to select the address will add some delay. If D speed PALs are used for this
logic, the delay will be 10 ns (assumlng only a 50 pF load on the PAL output).

oo Data Bus Buffer Delay — generally a buffer is used to tsolate the memory-array out-

puts from the processor data bus. The propagation delay through the buffer must be

considered. The fastest buffer available is a 74FCT244A with 4.3 ns propagation delay.

During an initial access this delay is masked by the address/contol logic delay. During
.the burst access this delay adds to the data valid delay.

* Memory Address and Data Set Up Tlme to Write Enable Active — this is one factor
the memory designer has some control over. The speed limit of the memory system is
reached when this delay goes to zero.

Thus the address-to-end of write path for an initial access is at best 24 ns when the
memory set-up time is zero. This then implies that a write access may be completed
within one cycle if the real memory set- up time can be held below 16 ns.
In a burst-access cycle the speed limit is set by the clock- to-data valid delay plus the
data bus buffer delay. They total 18.3 ns leaving 21.7 ns for memory set-up time in a
40 ns cycle time system. Therefore, burst accesses can also be single cycle.
Control to Response Path : .
For the control signal to response sxgnal path the time restnctlons are the same in all
access cycles. The key parameters are:
Ty, Clock—to-output time of a register;

e Propagatlon delay of a PAL;

' Propagation delay of a logical OR gate on the response’ SIgnals from each mem-
ory block;

+ And control signal set-up time of the processor.
The clock-to-output delays internal to a D-speed PAL are worst-case 8 ns.
‘The propagation delay ofa D-speed PAL is 10 ns.

The propagation delay of the memory response sngnal OFt gate can range from 6 to
10ns. ~

The set-up time for control signals to the Am29000 is 12 ns.

All those times total to 40 ns. This makes smgle cycle operatlon possble ina40ns
cycle-time system. :
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Exceeding the Limit -
It is possible to build specially restricted memories that do not need the address/control

~ logic delay or the data bus buffer delay. This is done by having only a single bank of
- memory for instructions or data. There is, then, no need for address decode or bus
" isolation. Such a memory could have single-cycle initial access by using a 13 ns ac-
' cess-time memory. In this type of memory, the worst-case path delay involves the Chip

Enable (CE) signal on-memory, which is controlled by the system clock. Using the clock

to control the CE signal eliminates bus contention between the processor and memory

and possible false WE signals. The worst-case delay of the clock is 21 ns and the
processor set-up time adds an additional 6 ns of delay. That leaves 13 ns for the

- memory in a 40 ns cycle-time system.

Refer to the description and diagrams in appendix B for more details regarding specially
restncted smgle cycle access memory deS|gns '

Bank Interleavmg

Memories with 20 ns or faster access times are neither easy to find nor inexpensive to
buy. Based on-the above timing discussions it is easy to see that it would be very.
desirable to find a way to use slower memories.

A simple way to reduce the memory-access speed requirement by half or more is to
make use of a bank-interleave memory architecture. In bank interleaving, one set of
memories contains.the even words in memory and another set contains the odd words
of memory. The two banks are accessed on alternate clock cycles so that each bank is
allowed two cycles of access time.  The banks alternately supply data words so that

- there is one new data word available in each bus cycle. This scheme of course relies
- on sequential word accesses which is exactly the nature of a burst access by the

Am29000. This scheme can be further extended to three, four, five, etc. bank-memory
systems in order to further lengthen the allowable memory access time. The penalty is

‘extended initial access time and the complexity of the control’ Ioglc Only the initial
- access requires the full delay of a:two-cycle access.

Speed Emphasus

In the discussion of memories, a careful separation of the initial access and burst ac-
cess times has been made. This is important to help. make the trade-off of memory-
access speed and initial access time clear. Single-cycle burst-access speed can be
maintained. even with rather slow memories given that the initial access speed can
suffer: Where burst accesses are the predominant mode of memory access and where
the bursts are relatively long, the initial access time can be amortized across many
accesses. In this case, slow interleaved memory is ideal. But, the more often a non-
sequential access is done, the more the initial access tlme Iowers the overall memory

© system performance

Instruction accesses are always attempted in burst mode. Statistically “average” in-
struction streams branch every six to ten instructions. Therefore the initial access time
of instruction fetches can be amortized across six to ten cycles of access. Burst access
speed is thus important to instruction accesses.

Further; thé branch target caché can hide up toythreé éycles of an instruction memory’s
initial access time when the target of the branch is in the cache. The hit rate of the

‘branch target cache is application dependent of course but typical hit ratios of 50 to

60% are common in benchmarks that have been run. Thus the importance of burst
access time, over initial access time, is further emphasized.
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Data accesses are different because most are individual load or store operations. They
are more often done as individual non-sequential reads or writes of single words. Burst

~ ‘accesses are done usually only at context switch time and during some procedure

- entries and exits. This means that over 95% of data accesses are to non-sequential
- locations. Therefore, the initial access time is @ much more important factor for data
‘memories than for instruction memories. Consequently, it is best to emphasize burst
access speed in instruction memories and initial access speed in data memories.

- Test Hardware Interface ‘

Memory designs must account for the special needs of diagnostics hardware. The key
issue here is that development systems will, at times, want to take control of buses and
control lines in a system under test. In particular, to perform reads and writes of

- Am29000 internal registers, a development system may want to masquerade as a
system memory device during a diagnostic load or store operation. Doing this allows a
development system to directly observe and control register values.

When this is done, the memories in a prototype system need to recognize when the
development system takes control of system buses so that the memories will not con-
tend with the development system for control of the buses.

One method for doing this is described. It is the method used by Advanced Micro
Devices in its own Am29000 hardware and software development support system, the
Advanced Development And Prototypmg Tool (ADAPT29K).

The ADAPT29K operates as a system monitor and controller that allows logic-analyzer-
like tracking of the Am29000 system activity. It also is able to insert diagnostic instruc-
tions into the normal Am29000 instruction stream, read and write processor registers,
and read and write system memory

: The ADAPT29K is mserted |nto a system via the Am29000 socket An adapter fits into
the Am29000 socket and an Am29000 is then plugged into the top of the adapter. This
allows the ADAPT29K access to all the S|gnal pins of the Am29000

At various times the ADAPT29K will drive the following lines: DATA031 INSTRUC-
TION031 RESET DRDY, DERR STATH, CNTLO and CNTLA1.

The ADAPT29K system must. somehow |nd|cate when it will take control of the above
~ lines from the the system under test. Two means of indicating this are provided: use of
pin 169 on the Am29000 socket and the use of a special code on the OPT bits 0-2.

Pin 169 is the device-locator pin that allows chip insertion in only the correct orientation
and is the only pin not used by the Am29000. This pin can, therefore, be driven by the
ADAPT29K as an indication to the system being debugged that the ADAPT29K is taking

3 control of some of the Am29000 signal lines.

"The prototype system under development can simply use the S|gnal onpin 169 as a
disable of the selection logic for all system memories. This will ensure that when pin
169 is driven, the ADAPT29K system will be free to take control of the prototype system
buses

* This plan i s1mple but not without problems P|n 169 may not always be available in
- future package types for the Am29000. Also, it is an “extra” signal not normally planned
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for in the system. lts advantage is that it is a simple, direct, and “pre-decoded” in-
dication that the ADAPT29K is taking control. Its disadvantage is that it is not a con-
sistent and intrinsic part of an Am29000 system. It requires that the system under test
be modified to expect this special signal that will only come from specific development
hardware.

Recognizing the limitations of pin 169, the ADAPT29K system provides another way to
signal its use of system buses.

The ADAPT29K defines one of the reserved codes for the OPTO-OPT2 bits as the
equivalent of the pin 169 signal. During a load or store operation, the OPT0-OPT2 bits
displaying “110” is defined to mean that the ADAPT29K will control the Instruction bus,
Data bus, Ready, and Error lines; even though the address presented would appear to
be directed at some other system device (note, OPTO is the Least Significant Bit (LSB)
corresponding to the zero in the “110” code). The ADAPT29K system uses this defini-
tion when reading or writing an AM29000 internal register. To do this, a load or store
instruction is used with the OPT0-OPT2 bits set to “110”. When the load or store is
executed, the OPT0-OPT2 code appears on the bus and is used to cause the system
memory to not respond while the development system directly moves data to or from
the Am29000.

This scheme has the advantage of not requiring any “special” signal connections be-
tween the prototype and development systems. All communication is via the standard
Am29000 socket. Also, it may be possible to make use of decoding circuits already
present for the OPT0-OPT2 bits to decode the needed signal equivalent to the pin 169
indication, thus saving on special-purpose hardware.

The ADAPT29K uses both the pin 169 and OPT0-OPT2 signals, so that allowing the de-
signer of the prototype system can choose which way to support intervention by the
development system.

In the case of a read or write of Am29000 registers, the ADAPT29K jams a load or store
test instruction with OPT 0-2 bits set to “110” and pin 169 low. At the appropriate
moment, the DRDY and DERR pins are driven by the ADAPT29K. It is necessary that
memory not respond or drive the instruction or data lines during this operation. lt is also
required that the DRDY and DERR lines be either open collector or 3-stated by the
prototype system when pin 169 is low or the OPT0-OPT2 bits = "110".

In the case of a read or write of memory, the ADAPT29K jams a load or store test
instruction with the OPT 0-2 bits set to 000. Pin 169 is driven high when the Am29000
is single stepped. In this case the memory should respond normally when pin 169 is
high. Note: This implies that the ADAPT29K requires the ability to read and write the in-
struction memory via the data bus!
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ASSUMPTIONS - ba |

MEMORY DESIGN ASSUMPTIONS
In each of the memory design examples presented in Chapters 4 through 7, the follow-

ing assumptions were made:

" All designs aré intended to operate in a 40 ns clock-cycle system (25 Mhz clock
frequency).

¢ The Am29000 Synchronous Input Setup Time (data sheet parameter 9A) is 6 ns
as shown in May 88 data sheet, rather than 8 ns as reflected in February '87
data sheet. Similarly, the Am29000 Synchronous Input Setup Time (data sheet
" parameter 9) is 12 ns.

~+ Any other system bus master observes the same bus protocol as the Am29000
processor. Examples: new addresses are provided for each 1K byte boundary
crossing; read and write operations may not be mixed within a burst transaction.

« ‘Edch memory monitors pin 169 of the Am29000 socket for interface with the
Am239000 Advanced Development And Prototyping Tool (ADAPT29K).

* Memories do not drive memory respo‘nse lines or data lines when not also driving
memory Ready or Error signals. This ensures that the memories do not contend
with test hardware during diagnostic operations.

* Memories implement only word-write operations.Implementing byte-write control
logic is a simple extension to the designs presented here. Byte-write logic will (in
those ever famous words) be left as an exercise for the reader.

PROGRAMMABLE ARRAY LOGIC (PAL) NOTATIONS
Depending on the nature of the output signal being described, there are two basic types
of PAL-related equations used in this handbook: registered and combinatorial.

The registered equation is for a PAL circuit whose output signal is a function of the
inputs that must pass through a register. Thus, the output signal is dependent on a
clock (transfer) signal. A registered equation is identified by the special operator “:=".
For example:

X=A*B+C

The combinatorial equation , on the other hand, is for a PAL circuit with an output signal
based on only its input signals. That is, the output signal is a propagation-time-delayed
function of the inputs without any intervening state elements . A combinatorial equation
is identified by operator “=". For example:

Z=Q-X+Y

ASSUMPTIONS 3-1



ABBREVIATIONS AND ACRONYMS .
Abbreviation and acronym definitions are provided on a first-occurrence basis in
the text.

NOTATIONAL CONVENTIONS
Chapters 4 through 7 use the notational conventions included in the the following
paragraphs. ‘

" Boolean Notations o E
The Boolean equations use the conventlonal Boolean symbols for Jidentifying logic
connectives such as AND and OR. By way of rewew the logic connectlves for Boolean
symbols are: - L .
*=AND
. +=‘,OF’§A Lo

The complement of a variable used in a Boolean eque_tidn,is represented by an overbar
above the vanable For example

» The complement of X is* X The complement ofa vanable is also referred to as
the “negation”; or "not” operation. -

« Double overbar is used over a variable when-a complemented variable is nested
in brackets and the bracketed expression is also complemented. For example:

XX=A+B+(C+D)
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Chapter 4

HIGH SPEED STATIC RAM - =

OVERVIEW
Let’s start off our memory design examples with the snmple “brute force” approach to the
architecture shown in Figure 4-1.

We will use one block of Static RAM (SRAM) for instruction memory and one block of
SRAM for data memory. The block will contain high speed SRAM that'is fast enough to
support accessing one word per clock cycle during burst transfers. Each block is 16K
words deep and each word is 32 bits wide. The instruction memory block will have a
read only port for sending instructions to the Am29000 and a read/write port tied to the
Am29000 data bus. The read/write port allows access to the instruction memory via the
data bus for instruction loading and memory diagnostics. The data memory will have a
single read/write port connection to the Am29000 data bus.

The “brute force” description applied to this architecture refers mainly to the very high
speed required of the memories and interface control logic. The memories will need to
access data in 20 ns or less and the control logic- must be made from Programmable
Array Logic (PAL) devices with propagation delays of only 10 ns. At this time, those
components are rather expensive and power hungry. But, making use of this raw speed
allows the interface logic and overall structure of the memory to be very simple while
providing very close to the best achievable memory system access time.

Figure 4-1
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The initial access time will be two clock cycles: one cycle for decode and one for ac-
cess. For burst accesses, each access beyond the initial access will occur in a single
clock cycle.:

INSTRUCTION MEMORY

Interface Logic Block Diagram
Refer to the block diagram in Figure 4-2.

Figure 4-2
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Memory

The center of the memory block is of course the memory itself. The memories are 16K
x 4-bit SRAMs with separate data in and out lines. The access time is 20 ns and eight
devices are required to form the 32-bit wide instruction word for the Am29000.

Bus Buffers

The memory data outputs are connected to the data-bus lines via high speed buffers
(U20-U23). These buffers are required to isolate the memory outputs irom the data bus
whenever the memory is accessing instruction words. This isolation allows another
data memory block to use the data lines at the same time that instructions are being
fetched from this memory block. ’

The memory data inputs are also connected to the data bus lines via buffers
(U16-U19). These buffers provide delay time to the data lines during write cycles which
helps to ensure that data is still valid at the time Write Enable (WE) goes inactive at the
end of each write cycle. As will be shown later the WE signal goes inactive one gate
delay later than the end of each cycle. Also, note that if this block of memory were
made up of multiple banks of memory devices instead of the single bank used in this
design, then these buffers might be needed to isolate the heavier capacitive load of

multiple memory banks from the data bus lines.

It is worth noting that the memory data I/O connection to the data bus could also be
achieved through the use of bidirectional buffers, but doing so would require very care-
ful management of the buffer and memory output enable signals to prevent driver
contention. Using separate unidirectional buffers keeps the design simple and robust.

The memory data outputs are also connected to the instruction bus lines via buffers
(U24-U27). These buffers serve to isolate the data outputs of this memory blocks from
those outputs of other memory blocks which may also drive the instruction bus. Also
the buffers would serve to isolate the capacitive load of this memory block from the in-
struction bus if the block contained a larger number of memory banks.

Address Registers and Counters

To support burst accesses the lower eight address bits to the memory come from a
loadable counter. The 8-bit counter is built from two AmMPAL16R6 D-speed PALs
(U5, UB). The D-speed PALs are used because their clock-to-output delay is signifi-
cantly less than standard MSI 8-bit counters. Also, the use of PALs allows additional
functions to be integrated into the same packages used for the counter function.

The upper eight bits of memory address need not come from a counter since the
Am29000 will always output a new address when a 256-word boundary is crossed. The
upper eight bits of address are simply registered. The register is built from remaining
functions in one of the AmMPAL16R6D PALs that form the lower 8-bit counters (U5) and
from part of an additional AmPAL16R6D PAL (U4).

Registered Control Signals

As noted earlier, the timing of the IBREQ, DBERQ, and BINV control signals require that
they be registered by a low setup-time register. A 74F175 register is used for this. Also
two other signals, IBACK and DBACK, are also registered. Remaining registers in the
third AmMPAL16R6D PAL (U4) are used for this purpose.
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Interface Control Logic
This logic must generate the memory response signals, manage the loading and count-
ing of memory addresses, and control the WE signal to the memory. The logic functions

_needed for this require two D-speed PALs, an AmPAL16R4 and an AmPAL16L8 (U1,

U3). Also, the final level of gating on memory WE and the memory response lines is
shown in Figures 4-2 and 4-3.

In Figure 4-2, the WE line of the memory is driven from a 74F32 OR gate which com-
bines the WE 5|gnal from the Interface Control logic with the SYSCLK signal. The
simple OR gate is used to ensure minimum propagation delay so that the memory WE
signal will go inactive as ‘soon as possible after the rising edge of SYSCLK.

In Figure 4-3, the memory response lines from multiple memory blocks are logically

~ ORed together before being presented to the Am29000. The lines are ORed in

AmPAL16L8 D-speed PALs. Each PAL can implement two of the seven input negative

. logic OR gates: that are shown. These final gates are required by the high speed nature
. of these signals as was exglalned in Chapter 2, Basic Memory Design Issues. Also
_note that if the IERR, DERR or PEN signals were implemented by thls design, those

signals would require similar gating to that shown i in Figure 4-3.

Again referring to Figure 4-3, note that Pin 169 of the Am29000 is used as an output
enable on the DRDY OR gate to provide test hardware the ability to take control of this
line. This was described in Chapter 2, Test Hardware Interface section.

Figure 4.3
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Memory Interface Logic Equations

Design Cholces .
In this memory interface it is assumed that other blocks of instruction or data memory

_ may be added later and that there may be valid addresses in address spaces other than
instruction/data space. This means that this memory will only respond with IBACK or
DBACK active when this block has been selected by valid addresses in the instruction/

. data space. This requires that at least some of the more significant address lines above
the address range of this memory block be monitored to determine when this memory
block is addressed. Also, it means the IREQT, DREQT0, DREQT1, and Pin 169 lines
must be monitored to determine that an address is valid and lies in the instruction/data
space.

The support of burst accesses implies the need for a state machine with three states,
which will control the transitions between no activity on the burst acknowledge lines and
activity on either the IBACK or DBACK line. This state machine also can ease the man-
agement of transitions between instruction and data accesses when preemption is ‘
required. The state diagram for this state machine is shown in Figure 4-4.

Another design choice is that when an instruction burst access is in progress and a data
access to the same block of instruction memory is attempted, the instruction access will
be preempted immediately. The data access will then complete before any further
‘instruction access will be allowed. This approach prevents the processor pipeline from
- stalling while the instruction prefetch queue fills before instruction access is suspended,
as would occur if instruction accesses were given priority.

Logic Details — Signal-by-Signal

All signals are described in active-high terms so that the design is a little easier to
follow. The signals as implemented in the final PAL outputs will often be active low as
required by the actual circuit design. The actual PAL definition files are included in
Figures 4-5 through 4-9.

NOTE: All PAL equations in this handbook use the following convention:

« Where a PAL equation uses a colon followed by an equals sign (:=), the equation
result is REGISTERED, i.e., registered PAL outputs are used.

- Where a PAL equation uses only an equals sign (=), the equation signals are
COMBINATORIAL PAL outputs.’

Flgure 4.4 “VE-{-D—ME)

10117A4.4A

Interface Logic State Diagram
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IDLE — This is the default state of the interface state machine. It is characterized by
Instruction Burst ACKnowledge (IBACK) and the Data Burst ACKnowledge (DBACK )
signals both being inactive. This state serves as a way of identifying when the memory
is not being accessed and could be placed into a low power mode. It should be noted
that the IDLE state is not the sole determiner of when a low power mode can be used.
Referring to the explanation of the Chip Enable (CE) signal provides a more complete
understanding of low power mode requirements. The more important use of the IDLE
state is as a delay cycle in the transition between an active instruction burst access
being preempted and the start of the preempting data access. The delay is needed to
allow the completion of the final instruction access in the cycle that the IBACK signal is
de-asserted and the instruction burst access is pre-empted.

IME — IME is the indication that the address of this memory block is present on the
upper address lines, an instruction request is active, Pin 169 is inactive (test hardware
has not taken control), and instruction/data address space is indicated. In other words
this memory block is receiving a valid instruction access request. This example of a
memory system design will assume that the address of this memory block is equal to
A31 . W AZ29. The equation for this signalis: =~

IME = IREQ - IREQT - A31 * A_so + A29 - Pin169

- DME — DME is the indication that the address of this memory block is present on the
upper address lines, a data request is active, Pin 169 is inactive, and instruction/data
address space is indicated. In other words, this memory block is receiving a valid data
access request. This example design will assume that the address of this memory
block is equal to A31 « A30 - A29. Note that for instruction accesses, the memory
address for this block is A31 = zero and that for the data accesses, the memory address
for this block is A31 = one. This allows instruction memory for instruction accesses to
be located at address zero while having the window for data bus access to the instruc-
tion memory located at a different base address. This allows the separate data memory
block used in this design to have its base address also at zero. Thus both the instruc-
tion and data memories are located at address zero in their respective address spaces.

The equation for this signal is:

DME = DREQ - DREQTO + DREQT? - A31 « A30 + A29-- P|n169

IEXIT — Instructlon EXIT (IEXIT) is an intermediate equation term not actually imple-
mented as an output of the SRAM State Generator PAL. The logic of the term is used
in the generation of IBACK but the name IEXIT is simply a documentation convenience.

The IEXIT equation is:

IEXIT = DME
+ IREQ + IME -

A data request to this memory block for instruction data space will take priority over an
instruction fetch in progress. Also, if a new instruction fetch stream is started for either
another block of memory or to instruction ROM, this memory interface can return to the
IDLE state.
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- DEXIT — Like IEXIT, Data EXIT (DEXIT) is a term used only for documentation

convenience..
The DEXIT equation is:

DEXIT = IME « DBREQ.D
+ DREQ + DME

An instruction i'equest to this memory block for instruction/data space when data burst

- request was inactive in the last cycle will end any suspended data access. Requiring

data burst request to be inactive will hold off instruction fetches until the current data
access is complete or suspended. Also, if a new data access stream is started to
another block of memory, to /O space, or to coprocessor space, this memory interface
can return to the IDLE state.

IBACK — Instruction Burst ACKnowledge (IBACK) is the indication that the interface

. state machine is in an active or suspended instruction burst access. The signal is syn-

onymous with the Instruction. ACCESS (IACCESS) state in Figure 4-4. The equation is:

IBACK := IME - DBACK

+ IEXIT « IBACK

" The IACCES:S state is entered when an instruction vrequest to instruction data space

with the address of this memory block is active and a data access is not currently active.
The DBACK term will give an active data access priority by holding off instruction ac-
cesses until the data access completes.

‘Once in the IACCESS state the interface will stay there until one of the IEXIT conditions

is satisfied.

DBACK — The Data Burst ACK"nowle'dge (DBACK) is the lndlcatloh that the interface
state machine is in an active or suspended data burst access. The signal is synony-
mous with the DACCESS state in Flgure 4-4, The equatlon is:

DBACK := DME - IBACK
+ DEXIT « DBACK.

The Data ACCESS (DACCESS) state is entered when a data request to instruction/data
space with the address of this memory block is active and an instruction access is not
currently active. The TBACK term will hold off the beginning of a data access until any
active instruction access is preempted.

Once in the DACCESS state the interface will stay there until one of the data exit condi-

tions is satisfied.
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LD — LoaD (LD) is the signal which enables the lower address bit counter/registers and
the upper address bit registers to load a new address on the next rising edge of
SYSCLK. The equation is:

LD = DBACK - IREQ - ILOAD
+ IBACK « DREQ + DLOAD

When an instruction request is active, load is prevented from being active while a data
access is active or suspended. In other words, when-the state machine is in the DAC-
CESS state a load that would result from an instruction request is suppressed.

Also load is prevented if there was a load in the last cycle. In the case of a burst re-

- quest this prevents load from being active during the second cycle of a burst request at
which time the count signal to the address counters must be active and cause the
counters to increment.

+ Similarly for the case that Data REQuest (DREQ) is active, load is prevented when the
state machineis in the IACCESS state or when load was active in the last cycle. The

LD signal is combinatorial so that it will be active during the first cycle of a new instruc-
tion or data request.

. ILOAD — The Instruction LOAD (ILOAD) is a delayed version of the load signal with the
" qualification that it is active only when a load occurred for an instruction fetch which was
* addressed to this memory block and the instruction/data space.

ILOAD := DBACK + IME « [OAD |

ILOAD is used in the géneratioh of the Instruction kReaDY (IRDY) signal.

DLOAD — The Data LOAD (DLOAD) is a delayed version of the load signal with the

qualification that it is active only when a load occurred for a data access which was

addressed to this memory block and the instruction/data space.

DLOAD := IBACK « DME « DLOAD

DLOAD is used in the generation of the Data ReaDy (DRDY) signal.

CNT — The CouNT (CNT) signal causes the addr‘ess' counters to increment on the next
rising edge of SYSCLK. .

CNT = IBREQ.D - BINV.D - IBACK
+ DBREQ.D + DBACK + BINV.D

CNT is active in the second cycle and beyond of each instruction or data access when
the respective burst request was active in the previous cycle. During BINV active cycles
no counting is allowed since the Burst Request signals are presumed to be invalid.

IBACK.D — The IBACK Delayed ( IBACK.D) is simply a one cycle delayed version of
IBACK.

IBACK.D := IBACK

It is used in the generation of IRDY.
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DBACK.D — The DBACK Delayed (DBACK. D) is simply a one cycle delayed version of
DBACK.

DBACK.D := DBACK
It is used in the generation of DRDY.

IRDY — Instruction ReaDY (IRDY) indicates that there is valid read data on the instruc-
tion bus. .

IRDY = ILOAD + BINV.D
+ IBREQ.D + BINV.D « IBACK.D

This static memory design will always be ready with data in the cycle after a new in-
struction request which is implied by ILOAD. But IRDY should never be active if the bus

“was invalid on the previous cycle when the load of address information occurred. The

Bus INValid Delayed (BINV.D) signal must be used to prevent IRDY from going active.

A case that shows the need for this is when control of the bus is transferred between
bus masters. When this occurs, the bus is guaranteed to be invalid for at least one
cycle. if during the invalid cycle the memory control and address lines were seen as a
valid instruction request, then load would go active and ILOAD would be active in the
next cycle. This would cause IRDY to be active during the first cycle of the new bus
masters first instruction fetch. That would be incorrect since the memory would not
have read valid information in time for the first cycle of the instruction fetch. Thus
qualification with BINV.D is required.

The memory will also be ready when IBREQ was active with IBACK in the previous
cycle. IBACK is required as a qualifier so that when an access is preempted the contin-
ued presence of IBREQ will not cause a false ready indication.

Note that BINV.D is again used as a qualifier for the same reasons noted earlier.

The reason that IRDY must be a combinatorial signal is that IBREQ comes very late in
the previous cycle and must be registered. There is no time to perform logic on IBREQ
in the previous cycle before SYSCLK rises. This means that the information that iBREQ
was active in the last cycle is not available until the cycle in which IRDY should go
active. .

DRDY — Data ReaDY (DRDY) is the equivalent of IRDY for data accesses and there-
fore uses the same equation with data terms substituted for instruction terms.

DRDY = DLOAD - BINV.D ,
+ DBREQ.D + BINV.D « DBACK.D

. DOE — Data Output Enable (DOE) is the same equation as DRDY except that the

Read/Write line is added as a qualifier. This prevents the data bus read buffer output

‘enable from going active on a write cycle. Note: the Am29000 Read/Write (R/W) signal

has been designated simply as RW in the equation.

DOE = DLOAD - BINV.D « RW _
+ DBREQ.D « BINV.D + DBACK.D «+ RW
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WE — Write Enable (WE) has nearly the same equation as for DOE except that it is
qualified by the inverse of the read/write line.

WE = DLOAD « BINV.D « RW
+ DBREQ.D « BINV.D « DB

BACK.D + RW

In the block diagram of Figure 4-2 you can see that WE is further qualified by SYSCLK.
This added qualification will create a pulse that is the result of the overlapped low time
of WE and SYSCLK. This means that the pulse is coincident with SYSCLK low time
when WE is active.

WE is the result of an 8 ns clock to output delay of PAL registers combined with the
propagation delay of a PAL which is 10 ns. The worst-case time is then 18 ns for WE to
become valid. The earliest possible occurrence of SYSCLK going low is one half the
cycle time plus or minus 1 ns. In this case thatis 20 ns — 1 ns = 19 ns. The importance
of the timing is that the WE signal must be valid at or before the falling edge of SYSCLK
in order to prevent unwanted glitches on the WE line to the memories.

CE — Chip Enable (CE) in this design would only be used to lower the dynamic power
of the system by switching off the memories when they are not being accessed. An
equation for this would be: .

CE := IBACK + DBACK « IME
+ IBACK « DBACK + DME
+ IBACK
+ DBACK

This equation will not allow the memory to go into a deselected or low power mode until
the cycle following a transition to the IDLE state. This ensures that the memory is still
active on the last access of a preempted instruction burst request.

In this design however there weren’t enough outputs on the PALs to add this feature
conveniently. So, the CE signal was left out of the design.

- Pal Def:mtlon Files
The PAL definition equations are provnded in F|gures 4-5 through 4-9.

NOTE: All PAL equations in this handbook use the following conventions:

» Where a PAL equation uses a colon followed by an equals sign (:=), the equation
result is REGISTERED i.e. registered PAL outputs are used.

« Where a PAL equation uses only an equals sign (=), the equation signals are
COMBINATORIAL PAL outputs.

» The Device Pin list is shown near the top‘of each figure as two lines of signal
names. The names occur in pin-order, numbered from the left to right 1 through
20. The polarity of each name indicates the actual input or output signal polarity.
Signals within the equations are shown'as actlve high, e.g., where signal names
in the pin list are ABC,the equationis C = A - B; the mputs are A = low, B = low,
then the C output will be low. -

4-10 HIGH SPEED STATIC RAM



Figure 4-5

AmPAL16R6D SRAM Address Counter—Non-interleaved, Section 0
Device U6

CLK CNT LD:A02 A03 A04 A0

OE NC12 Q02 Q03 Q04 Q05 Q06 Q07 COUT VCC

a
>
=
®»
>
o
~
[
Z
O

Qo2 =ID + AD2.
+ TD - CNT » Q02
+ LD « CNT « Q02
Q03 = LD « A03
+D-CNT.Q03 _
+ LD « CNT - Q02 - Q03
+ LD « CNT « Q02 - Q03
Qo4 :=Q'AO_4
+ LD + ONT » Qo4 o
+ LD+ CNT » Q02 + Q03 - Q04
+ LD + CNT - Q02 + Q04
+ LD « CNT - Q03 - Q04
Q05 = LD » A05
+ LD - CNT - Q05 o
+ LD + CNT « Q02 + Q03 * Q04 - Q05
+ LD « CNT - Q02 - Q05
+ LD - CNT - Q03 - Q05
+ LD « CNT « Q04 Q05
Q06 = LD - A06
+ LD - CNT - Q06 _
+ [D - CNT + Q02 + Q03 » Q04 » Q05 » Q06
+ LD + CNT - Q02 - Q06
+ LD » CNT » Q03 » Q06
+ LD + CNT - Q04 » Q06
+ LD « CNT « Q05 - Q06
Q07 = LD + AO7 _ _
+ LD+ ONT » Q07 -
+ LD+ CNT - Q02 » Q03 + Q04 + Q05 - Q06 » QO7
+ LD + CNT - Q02 » Q07 ,
+ LD - CNT - Q03 « Q07
+ LD » ONT - Q04 + Q07
+ LD + CNT » Q05 » Q07
+ LD « CNT - Q06 - Q07
COUT = Q02 « Q03 - Q04 + Q05 « Q06 « QO7
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Figure 4-6

AmPAL16R6D SRAM Address Counter—Non-interleaved, Section 1
Device U5 )

CLK CNT LD A08 A09 A10 A11 A12 A13 GND

Qo8 A08
CNT - Qo8
CNT- CIN - Q08

CNT + CIN - Q08

+ + +

Qos A0S
CNT » Q09

+ CNT » CIN « Q08 « Q09

o o Lo o o

SIO UIE SIUIUIOIU U]UlUlU

CNT « CIN - Q09
CNT - Q08 + Q09

+ + + +

Q10 « A10

Q10

+
- [

Q11 = « A1

« Q11
Q12 = « A12
Q12

Q13 = A13

Q13

[ o e
UlU UIU

Figure 4-7

AmPAL16R6D SRAM Address c°unter—Non-inferleaved, Section 2
Device U4 L

CLK NC02 LD A14 A15 A16 A17 IBACK DBACK GND
OE NC12 Q14 Q15 Q16 Q17 IBACK.D DBACK.D NC19 VCC

Q14 = LD

LD - A14
+ LD+ Q14
Q15 = LD « A15
+ LD« Q15
Q16 = LD « A16
+ LD - Q16
Q117 = LD + A17
+ LD« Q17
BACK.D := IBACK
DBACK.D := DBACK

4-12 HIGH SPEED STATIC RAM



Figure 4-8

AmPAL16L8D SRAM Control Sugnal Generator—Non interleaved

..., Device U3
IBACK DBACK ILOAD DLOAD BACl_(_D_ ACﬁ_ IBREQ.D DBREQ.D BINV.D GND
DREQ IRDY .DRDY TREQ RW DOE WE CNT LD VCC -

IRDY = BINV.D - ILOAD
~+ BINV.D « IBREQ.D « IBACK.D
DRDY = BINV.D « DLOAD '
+ BINV.D -

DBREQ.D « DBACK.D

DOE = BINVD » RW « DLOAD

+ BINV.D + RW - DBREQ.D « DBACK.D

LD = IREQ  DBACK « ILOAD

CNT = IBREQ.D - IBACK + BINV.D
+ DBREQ.D + DBACK - BINV.D

BINV.D - RW - DLOAD
+ BINV.D « RW « DBACK.D - DBREQ.D

WE

Figure 4-9

AmPAL16R4D SRAM State Generator—Non-mterleaved
Device U1

CLK IREQ IREQT A31 A30 A29 Pin169 DREQTO DREQT1 GND
OE DREQ DBREQ.D IBACK DBACK ILOAD DLOAD IME DME VCC

IBACK - = DBACK -« IME -
+ |EXIT « IBACK

DBACK := BACK « DME
+ DEXIT « DBACK

ILOAD := DBACK + IME - TLOAD

DLOAD := IBACK » DME « DLOAD
IME = IREQ « IREQT - A31 - A30 - A29 - Pin169
DME = DREQ « DREQTO - DREQT1 * A31 « A30 « A29 » Pin169

NOTE: The terms IEXIT and DEXIT used in the IBACK and DBACK equations are for clarity.
Their true representations are as follows: -

IEXT = DME
+ IREQ « IME
DEXIT = IME - DBREQ.D
"~ + DREQ + DME
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Intra-Cycle Tlmmg ‘ Co

This memory architecture has two basic cycle timings. The firstis a cycle used to
decode the memory address and control signals from the processor. At the end of this
decode cycle, the address is loaded into the address counter and the selected block of
memory begins a burst access in the next clock cycle "The second cycle timing is that
of a burst access. . .

The combination of a decode cycle followed by‘the first bufst access cycle defines the
two cycle initial access time. Each subsequent burst access requires one cycle.

Within the decode cycle the address tlmlng path is made up of the following.

+ The Am29000 clock to address and control sighals valid delay of 14 ns,

¢ Address decode logic PAL delay of 10 ns (device ut),

« And the set-up time of the address counter PALs of 10 ns (devices, U4, U5, U6).
Assuming D-speed PALs those times total 34 ns. See Figdre 4-10

Also, within the decode cycle time is the control signal to response signal path. This
delay path is made up of the following:

« Clock to output time of registers within the control logic’ state machine PAL of
8ns (devnces U1, U4),

. Propagatlon delay of the control loglc PAL 10 ns (devuce uU3s),

» Propagation delay of a logic OR gate on the response signals-from each memory
block, 10 ns, .

» And control signal set-up time of the processori- 12 ns.

Again assuming D-speed PALs, these times total 40 ns.

Figure 4-10

Address Timing l’ath
tco, AM29000 SyncOut - | .14 o
tpd, Control PAL 10 34 ns
t sy, Address PAL | P [+ I
Control to Response Path . : ’
t co. Control PAL 1 8
tpd, Control PAL 10 :
tpd, Response PAL 10
t sy, Am29000 Sync In . —12
40ns —

40ns

10117A-4.10

Non-Interleaved SRAM Decode Cycle
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Within the burst access cycle the address to data path timing is determined by:

« the clock-to-output tlme of the address counter (8 ns for a D-speed, PAL) plus
added delay due to capacitive and inductive loading by the memory array of the
PAL outputs. Since this load exceeds the standard data sheet test loads, the
analysis in Appendix A is used to estimate the added delay. The resulting esti-
mated delay is 1.5 ns. The total delay is then an 8 ns clock-to-output time plus
1.5 ns added delay for a grand total of 9.5 ns.

» Memory access time of 20 ns;

- Data buffer delay of 43 ns;

, 'v;' And the processbr set:up time of 6 ns;

As shown in Figure 4-11 , those delays total 39.8 ns worst case.

For the control signai»td re'sponse Signal path the time restrictions are the same in either
the initial access or burst access cycles. The total delay is again 40 ns.

Inter-Cycle Timing
. This section gives three. examples of the cycle-by-cycle interaction between an
Am29000 processor and the high-speed static memory system just defined in this
Chapter. Each timing diagram includes the Am29000 control and response signals as
well as all the internal signals of the memory control logic.

Figure 4-11

Address Timing Path

tco, Address PAL .
tig, Est. Memory Ld Delay

. taa, Memory

tpd, Bus Buffer

" tgy, Am29000 Sync In Data |-

Control to Response Path

tOO,

tpd,
tpd,

tsuy,

10117A-4.11

Control PAL

Control PAL o

Response PAL

Am29000 Sync In

15
20
’ 43
10
10
12
40 ns ‘

39.8ns

40ns

Non:-Interleaved SRAM Burst Access
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" Instruction Burst Read’

The waveform diagram provided in Figure 4-12, shows a burst read of instruction mem-
ory. In the first clock cycle the Am29000 initiates a read operation by making IREQ and
address active. The access is a burst operation since the IBREQ signal also goes
active late in the cycle. As a result, the address is decoded to signal IME indicating that
this instruction memory is selected. Also, the LD signal goes active causing the mem-
ory address counters and latches to capture the address on the bus at the next rising
edge of SYSCLK.

In cycle two, the address counters present the first address to the memory. The mem-
ory will access the selected data and have it on the bus in time for the Am29000 to
receive it at the end of this clock cycle. Since the data is valid, the IRDY signal from the
memory goes active. The registered value of IBREQ from cycle one is now available as
the signal IBREQ.D. This in combination with IBACK causes the CNT signal to go
active. This will increment the address counter at the next rising edge of SYSCLK.

In cycles three and four, the second and third instruction words are read from memory.
In cycle four the IBREQ signal goes inactive signaling a suspensnon of the burst
access.

In cycle five, the memory control circuits see the absence of IBREQ.D and immediately
make IRDY inactive. CNT also goes inactive to hold the addréss value until the burst is

“ resumed. ‘The suspension of the burst was only one cycle Iong because IBREQ again

goes active in this cycle.

In cycle six, IBREQ.D is detected and IRDY immediately made active. CNT goes active
again to continue the incrementing of address.

Cycles seven and beyond simply continue the burst access.

Instruction Burst Write

Figure 4-13 shows an example very simildr to that of Figure 4-12. The difference is that
this access is a burst write operation to the instruction memory.

The flow of control signals is the same as for the instruction access just described. The
only differences are that data words are now taken from the bus at those times when
they would have been supplied during a read; data bus control and response signals are
substituted for the equivalent instruction signals, e.g. DREQ goes active instead of
IREQ; and the write enable signal is active. °

Note that there maybe a glitch on the write enable signal at the beginning of cycle three
that is the result of switching on the DBACK.D.and DLOAD lines. This glitch does not
reach the memory write enable input since that is gated by SYSCLK via the OR

gate (U7) in Figure 4-2.

Instruction Burst Preempt by Data Access

Figure 4-14 shows the interaction of a burst instruction access and a data read access
addressed to the same block of memory.
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Figure 4-12
SYSCLK
IREQ

CNT
Memory Address

10117A-4.12 3/14/88 3/29/88 4/7/88 . . N
High-Speed Static RAM Burst Reagi of Instruction

Figure 4-13

SYSCLK
LD
CNT

Memory Address
DREQ
DREQTO
DREQT1
DRDY
DBREQ
DBREQ.D
DME
DBACK
DBACK.D
DLOAD
RW

WE

DOE

10117A-4.13 3/14/88 3/29/88 4/7/88

High-Speed Static RAM Burst Write of Data
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The first two cycles occur as previously described for the instruction burst read. In the
third cycle, a data access is started by DREQ going active. The address is recognized
as selecting this block of memory which is signaled by DME going active. Since data
accesses are given priority over instruction accesses, the instruction access must now
be preempted. The memory control state machine exits the IACCESS state and returns
to the IDLE state in cycle four. This causes IBACK to go inactive, in cycle three, thus
preempting the instruction access.

In cycle four, the last word of the instruction burst is supplied by the memory. Also, the
LD signal goes active to enable the address counters to capture the data access initial
address.

In cycle five, the instruction burst request is removed from the bus and the first word of
the data access is presented to the bus. Since the DBREQ signal has not been active,
the data access in this case is a single word rather than a burst.

In cycle six, the DREQ signal goes inactive as a result of the DRDY in cycle five, which
in turn allows IREQ to go active to re-establish the preempted burst instruction access.
The appearance of IREQ and IME causes the control state machine to return to the
IDLE state in the next cycle.

In cycle seven, the load signal goes active to capture the instruction address.

In cycle eight the control state machine re-enters the IACCESS state with IBACK going
active. The first word of instruction is placed on the bus with IRDY. Also, CNT goes
active to increment the address for the instruction fetch. The instruction burst is thus re-
established.

Parts List
The parts list for the Am29000 High-Speed SRAM Interface is provided in Table 4-1.

Table 4-1

Am29000 High-Speed SRAM Interface Parts List

Item No. Quantity Device Description

U1 1 AmPAL16R4D
u2 1 74F175
U3 1 AmPAL16L8D
U4-Ué 3 AmPAL16R6D
u7 1 74F32
us-u1s 8 PC41982-20
uti6-u19 4 IDT74FCT244
u20-u27 8 IDT74FCT244A
27 pkgs
DATA MEMORY

As shown in Figure 4-1 the instruction and data memories for the Am29000 are sepa-
rate structures. The data memory can be an exact subset of the instruction memory
design. In fact the exact same design can be used by tying the instruction related
control signals to the inactive state. But, since the data memory is a subset, it is also
possible to save a few chips by eliminating the instruction related control signals and
rearranging the distribution of logic terms between PALs.
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Figure 4.15

A31-A20 — 3 o
DBAC .
: K— SYSCLK
DREQTO—» , WE
DREQT{—f WE  Fa2
PIN 169—+
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As shown in Figure 4-15 versus Figure 4-2. it is possible to eliminate devices U1,
AmPAL16R4D; U2, 74F175; and U24-U27, 74FT244A: a total of 6 chips. The output
buffers for the instruction bus are not needed, the 74F175 register in the instruction
memory can be shared with the data memory, and by rearranging logic terms as shown
in Figures 4-16 and 4-17 the AmPAL16R4D PAL (U1) can be eliminated.

All other aspects of the design are the same as for the instruction memory described in
the previous section.

Figure 4-16 AmPAL16L8D SRAM Control Signal Generator—

Non-Interleaved Data Memory Only Version.
Device U3

A31 A30 A29 Pin169 DBACK DBACK.D DREQTO DREQT1 DBREQ.D GND
BINV.D DREQ DRDY DME RW DOE WE CNT LD VCC

DRDY = BINV.D « DLOAD
+ BINV.D » DBREQ.D - DBACK.D

DOE = BINV.D - RW « DLOAD
+ BINV.D - RW « DBREQ.D + DBACK.D

LD = DREQ - DLOAD
CNT = DBREQ.D » DBACK « BINV.D

WE = BINV.D - RW « DLOAD
+ BINV.D - RW - DBACK.D « DBREQ.D

DME = DREQ - DREQTO - DREQT1 * A31 = A30 - A29 - Pin169

Figure 4-17 AmPAL16R8D SRAM Address Counter—

Non-Interleaved, Section 2 Data Memory Only Version
Device U4

CLK DREQ LD A14 A15 A16 A17 DME NC07 GND OE NC12 Q14 Q15
Q16 Q17 DBACK DBACK.D DLOAD VCC

Q14 = LD « A14
+ D - Q14
Qis = LD « A15
+ ID - Qi5
Q16 = LD - A16
+ ID - Q16
Qi7 = LD » A17
+ D - Q17

DBACK.D := DBACK

DLOAD :=LD « DLOAD
+ DREQ » DBACK
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MEDIUM SPEED STATIC RAM ﬂ
WITH INTERLEAVED BANKS - e

OVERVIEW _ ;

As can be seen from the last chapter, the simple “brute force” approach to memory
design has its problems. Even with some of the fastest and most expensive static
RAMs available, it is barely possible to meet the timing constraints of a single-cycle-
burst-access memory in a 25 MHz clock rate system.

Fortunately there is a fairly simple way io ease the timing constraints on the memory

while still providing single cycle burst access at 25 MHz. This is called bank interleaving.

What is Interleaved Memory?.

In a bank interleaved memory system, two or more separate memory banks are used to
split up and overlap the memory-access workload. Each bank is assigned alternate
words from the total memory space. In a 2-bank interleaved memory, one bank would
contain all the odd words in the memory space and the second bank would contain all
the even words. In a 4-bank memory, each bank would contain one out of every four
words; the first bank would have words 0, 4, 8,..., the second bank would have words 1,
5, 9,..., the third bank would have words 2,6, 10 ., the fourth bank would have words
3,7, 11 ., efc.

For a burst access, the memory block is always used in a fixed sequential order. -
While one bank is transferring data on the system memory bus, the other bank(s) can

. be accessing data needed for a subsequent cycle. By staggering and overlapping the

access time for each bank, the individual banks are allowed access times equal to one
cycle for each bank of interleaved memory. A 2-bank memory allows two cycles of
access time for each bank; a 4-bank memory allows four cycles. While each bank is
allowed multiple access cycles, the system memory bus sees a new dala transfer on
each cycle, thus maintaining single-cycle burst access while using slower memories.

The trade-off involved is that the access time to the first word of a non-sequential ad-
dress is determined by the access time of the individual bank selected. In a 2-bank
memory this generally means the minimum initial access time is two.cycles. It may be
more than two cycles depending on how much time is used for address decoding. A
4-bank memory may need at least four cycles, etc. In addition, the control logic is more
complex.

A Basic Two-Bank Design ‘
The memory design described in this chapter is a simple extension of the memory
design from the last chapter. .

There are still separate blocks of memory for instruction and data, as was shown in
Figure 4-1. Within each memory block, there are two banks of memory interleaved as
odd and even words. Each bank is 64K words deep with each word being 32-bits wide.
The total for the mstructlon memory block is then 128K words. The same is true for the
data memory.
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It is possible to use “55 ns access time” SRAM memories for all memory banks. The
first cycle of a non-sequential access will require one cycle for address decode and two
cycles for the first word accessed. Essentially, the inter-cycle timing is the same as for
the high-speed SRAM memory of the last chapter except that each burst access is two
cycles long. Overlapping the memory bank access time allows this longer access time
to be hidden from the system viewpoint except on the first word of a non-sequential
access. The end result is a memory that provides 3-cycle access time for the first word
of a non-sequential access and single cycle access for subsequent words in a burst
transfer

The instruction memory block will have a read only port for sending instructions to the
Am29000 and a read/write port tied to the Am29000 data bus. The read/write port
provides access to the instruction memory via the data bus to allow instruction loading
and memory diagnostics. The data memory W|Il have a single read/write port connection
to the Am29000 data bus.

INSTRUCTION MEMORY

Interface LOgi,c Block Diagram
Refer to the block diagrams in Figures 5-1 through 5-4.

The Memory

The memories are 64K x 1-bit SRAMs with separate data in and out lines. The access
speed is 55 ns. Thirty-two devices are required in each bank to form the 32-bit wide
instruction word for the Am29000. The two banks require a total of 64 RAM chips.

Figure 5-1
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Figure 5-2
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Bus Buffers .

The memory data outputs are connected to the data bus lines via high-speed buffers.
These buffers are required to isolate the memory outputs from the data bus whenever
the memory is accessing instruction words. This isolation allows another data memory
block to use the data lines while the instruction-memory block is fetching instructions.

The memory data inputs are connected to the data bus lines via Am29825A registers.
These registers provide two advantages. They have a clock-to-output delay significantly
shorter than the clock-to-data output valid time for the Am29000 (10 ns vs 18 ns);

this makes it possible to meet the “data setup to end of write time” for 55 ns memories
(=30 ns) within the 40 ns clock cycle time. Also, they allow data to be removed from the
bus one cycle earlier than would be the case if simple buffers were used; this makes a
write operation one cycle faster than an equivalent read operation.

As will be shown later, the memory Write Enable (WE) signal goes inactive one
D-speed PAL clock-to-output delay later than the end of each cycle. It is therefore nec-
essary to ensure that data at the output of the data registers is held at least until the
worst-case clock-to-output time of the PAL to satisty the memory’s zero hold time on
data with respect to WE signal going inactive. To guarantee this, two separate register
banks are used, one for each bank of memory. Each register-bank clock is enabled
only on the cycle that data is taken from the bus for the related memory bank. This
ensures that the registered data is stable throughout the cycle and that data is being
written during the following cycle to satisfy the hold time on data.

The memory data outputs are also connected to the instruction bus lines via buffers.
These buffers serve to isolate the data outputs of this memory block from those outputs
of other memory blocks which may also drive the instruction bus. Also, the buffers
serve to isolate the even and odd banks of this memory block from each other so that
simultaneous data access can go on in each bank independently.

Figure 5-4
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Address Registers and Counters ‘

To support burst accesses the lower seven address bits to each memory bank come
from a loadable counter. An 8-bit counter is used to provide the address so that the
least significant bit of the counter can be used to track which memory bank is connected
to the data or instruction bus on each cycle. The 8-bit counter is built from one
AmPAL16R4 and one AmPAL16R6 D-speed PALs. The D-speed PALs are used be-
cause their clock-to-output delay is significantly faster than standard MSI 8-bit counters.
Also, the use of PALs allows additional functions to be integrated into the same pack-
ages used for the counter function.

The upper nine bits of merhory address need not come from a counter since the
AmM29000 will-always output a new address when a 256 word boundary is crossed. The
upper nine bits of address are simply registered by an Am29823A 9-bit register.

A separate set of address counter and register logic is used to address each memory
bank. This is done for two reasons. One is that when one bank is connected to the
data or instruction bus, the other bank will be accessing the next word in sequence.
This requires that the two banks have independently incremented addresses. The
address for each bank will increment on different cycles. The second reason is that
each bank of memory presents a heavy capacitive load to the address counter and reg-
ister outputs. Giving each bank its own counter and register keeps the capacitive load
reasonable and thus maintains system speed.

For these same reasons the memory Chip Enable (CE) signal, and Data Register
Enable (DREGEN) control logic for each bank is integrated into the same PALs as are
used for the address counters.

Registered Control Signals
As noted earlier, the timing of the IBREQ, DBREQ and BINV control signals require that
they be registered by a low setup time register such as a 74F175 register.

Interface Control Logic

This logic must generate the memory response signals, manage the loading and count-
ing of memory addresses, and contro! the data buffer output enables. The logic func-
tions needed for this require four PALs, two AmMPAL16R4D and two AmPAL16L8B.

In Figure 5-2, device U1 an AmPAL16L8B performs address decode for instruction and
data accesses. Its outputs indicate when this memory block has been addressed.

Device U2, also an AmPAL16L8B produces the Load (LD) and Count enable (CNT)
signals for the address counters.

- Device U3 is the instruction portion of the memory interface state machine which man-
ages the Instruction Ready ( IRDY) response signal and the Instruction bus buffer
Output Enable (IOE) signals.

Device U4 performs the same state machine function as in U3 with reference to the
Data Ready ( DRDY) and Data bus buffer Output Enable (DOE) signals.

Response Signal Gating
As noted in the last chapter, the memory response signals from all system bus devices
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are logically ORed together before being returned to the Am29000 processor. An
example of this circuitry was shown in Figure 4-3. These gates are not counted as part
of the components within the memory design since they are shared by all the bus
devices in the system and as such are part of the overhead needed in any Am29000

. system. o

‘Memory Interface Logic Equations

State Machine ‘

The control logic for this memory (devices, U3 and U4, Figure 5-2) can be thought of as
a Mealy-type state machine in which the outputs are a function of the inputs and the
present state 'of the machine. This structure is required since some of the output signals

* must be based on inputs which are not valid until the same cycle in which the outputs

are required to effect control of the memory.

As shown in Figure 5-5, this state machine can be described as having five states.
These states control the enabling of activity on the Burst Acknowledge, output buffer

Figure 5-5

10117A-5.5A

IME-ILOAD.D

Interleaved SRAM Control State Machine
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enable, and Ready lines. IDLE is the default state of the interface state machine. ltis
characterized by Instruction Burst Acknowledge (IBACK) and Data Burst Acknowledge
(DBACK) both being inactive. This state serves as a way of identifying when the mem-
ory is not being accessed and could be placed into a low-power mode. Note: A more
detailed explanation of power-mode usage is provided in the discussion of the CE
signal. . The more important use of this state is as a delay cycle in the transition between
an active instruction burst access being preempted and the start of the preempting data
access. The delay is needed to allow the completion of the final instruction access in
the cycle that IBACK is deasserted and the instruction burst access is preempted. A
transition to either the Instruction Start (ISTART) or Data Start (DSTART) state occurs
when an address selecting this memory block is placed on'the address bus.

The ISTART state occurs during the first cycle of memory access following a new
instruction address being presented on the address bus. During this state the TOE and
IRDY lines are held inactive and the IBACK line is active. This state is used as a delay
to account for the initial access time of both the even and odd memory banks when a
new address is presented on the bus. The transition to the Instruction Access
(IACCESS) state is unconditional.

The IACCESS state is used during the second cycle of a new address access and
during all subsequent burst access cycles, whether active or suspended. In this state
the 10E and IRDY lines are allowed to be active as required by the active or suspended
status of an instruction burst request. When a new instruction address selecting this
memory block appears on the bus a transition to the ISTART state will occur. If a new
instruction address appears which does not select this memory block then a transition to
the IDLE state occurs. Also, if a data address selecting this memory block appears

- "there will be a transition to the IDLE state to force a preemption of the current instruction
access. The state machine remains in the IACCESS state as the default if no other
state transition condition appears.

The DSTART state is equivalent to the ISTART state but results from a data address
which selects this memory block. One other difference is that the DRDY line will be
active in this cycle during a write operation. The transition to the Data Access
(DACCESS) state is unconditional.

The DACCESS state is equivalent to the IACCESS state. Transition from this state is
different only in that the transition to the IDLE state will occur only when a data access
completed and a new data or instruction access starts. A data access will not be
preempted by an instruction access to this memory.

Logic Detalls—Signal-by-Signal _

All signals are described in active high terms so that the design is a little easier to
follow. The signals as implemented in the final PAL outputs will often be active low as
required by the actual circuit design. The actual PAL Definition files,are included in
Figures 5-6 through 5-11.

Note that in the equations, an equal sign indicates a combinatorial signal and a colon
followed by an equal sign indicates a registered PAL output.

IME — In this memory interface, it is assumed that other blocks of instruction or data
.memory may be added later, and that there may be valid addresses in address spaces
other than instruction/data space.
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This means that this memory will only respond with IBACK or DBACK active when this
block has been selected by valid addresses in the instruction/data space. This requires
that at least some of the more significant address lines above the address range of this
memory block be monitored to determine when this memory block is addressed. Also,
it means the IREQT, DREQTO, DREQT1, and Pin 169 lines must be monitored to
determine that an address is valid and lies in the instruction/data space.

IME (Instruction for ME) is the indication that the address of this memory block is pres-

ent on the upper address lines, an instruction request is active, Pin 169 is inactive

(test hardware has not taken control), and instruction/data address space is indicated.
- In other words this memory block is receiving a valid instruction access request.

This example design will assume that the address of this memory block is equal to

A31 « A30 - A29 - A28 + AZ7. The equation for this signal is:

IME = IREQ « IREQT + A3T « A30 « A29 « A28 « A27 » Pin169

DME — DME (Data for ME) is the indication that the address of this memory block is
present on the upper address lines, a data request is active, Pin 169 is inactive, and
instruction/data address space is indicated. In other words this memory block is receiv-
ing a valid data access request. This example design will assume that the address of
this memory block is equal to A31 « A30 + A29 - A28 - A27. Note that for instruction

- accesses the memory address for this block had A31 = zero where the data accesses
to this block are valid for A31 = one. ‘This allows instruction memory for instruction
accesses to be located at address zero while having the window for data bus access to
the instruction memory located at a different base address. This allows the separate
data memory block used in this design to have its base address also at zero. Thus
both the instruction and data memories are located at address zero in their respective
address spaces.-

The equation for this signal is:

DME = DREQ - DREQTO « DREQTT » A31.-A30 » A29 « A28 » A27 - Pin169

ME — The ME (instrucfion or data for ME)-is in effect an OR of the IME and DME
signals and is usedto indicate when this memory block is addressed for either instruc-
tion or data accesses. The ME signal is used to determine when the CE signal for the
memory banks will be active. The equation is:

ME = IREQ - TREQT - A31 - A30 - A2 - A28 - A27 - Pini6d
+ DREQ - DREQTO + DREQTT + A31 + A30 » A29 « A28 » A27 - Pini69

IEXIT — Instruction EXIT (IEXIT) is an intérmediate equation term not actually imple-
mented as an output of the SRAM State Generator, Device U3. The logic of the term is
used in the generation of IBACK but the name IEXIT is simply.a documentation conven-
ience. t . ‘

The |IEXIT equation is:

IEXIT = DME
+ IREQ - TME

" Adata request to this memory block for instruction data Space will take priority over an
instruction fetch in progress. Also, if a new instruction fetch stream is started for either
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another block of memory or to instruction ROM this memory interface can return to the
idle state.

DEXIT — Like IEXIT, Data EXIT (DEXIT) is a term used only for documentation conven-
ience.

The DEXIT (DEXIT) equation is:

DEXIT = IME » DBREQ.D
+ DREQ - DME

An mstructlon request to thls memory block for mstructnon/data space when the DBREQ
signal was inactive in the last cycle will end any suspended data access. Requiring
DBREQ to be inactive will hold off instruction fetches until the current data access is
complete or suspended. Also, if a new data access stream is started for, another block
of memory, to I/O space, or to coprocessor space, this memory interface can return to
the idle state. .

IBACK — The Instruction Burst Acknowledge (IBACK) signal is sent to the Am23000 as
an indication that the interface state machine is in-an active or suspended instruction
access. The equation is: A

IBACK := IME « DBACK + BINV -
+ IEXIT « IBACK

The IBACK active state is entered when an instruction request to instruction data space
with the address of this memory block is active and a data access is not currently active.
The DBACK term will give an active data access priority by holding off instruction ac-
cesses until the data access is completed. The BINV input will prevent an access from
beginning in the event bus signals are invalid.

Once IBACK is active it will stay active until one of the IEXIT conditions is satisfied.

IBACK.D — The ‘Inst‘ruction Burst Acknowledgé Delayed (IBACK.D) signal is simply a
one cycle delayed version of IBACK.

IBACK.D := IBACK
- It is used in the generation of IRDY, IOEQ, and IOE1. .

DBACK — The Data Burst Acknowledge (DBACK) sxgnal is sent to the Am29000 as an
. indication that the interface state machnne is in an active or suspended data access.
The equation is: '

DBACK := DME « IBACK * BINV
+ DEXIT « DBACK

The DBACK active state is entered when a data request-to-instruction/data space with
.the address of this memory block is active and an instruction access is not currently
active. The IBACK term will hold off the he beginning of a data access until any active
instruction access is preempted. The BINV input is used to ignore bus signals during
invalid cycles.
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Once DBACK is active it will stay active until one of the data exit (DEXIT) conditions is
satisfied.

DBACK.D — This is simply a one cycle delayed version of DBACK.

DBACK.D := DBACK

It is used in the generation of DRDY.

LOAD — Load (LD) is the signal which enables the lower address bit counters and the

upper address bit registers to load a new address on the next ns:ng edge of SYSCLK.
The equatlon is:

LD = IREQ + DBACK « ILOAD « ILOAD.D
+ DREQ - IBACK « DLOAD « DLOAD.D

When an instruction request (IREQ) is active, LD is prevented from being active while a
data access is active or suspended. In other words, when the state machine is in the
‘DSTART or DACCESS state, a load which would otherwise result from an IREQ is sup-
pressed. This prevents the changing of the address counter values until the instruction
access can be preempted and terminated.

The LD signal is also limited to being one cycle long by suppressing LD when either
Instruction LOAD (ILOAD) or Instruction LOAD Delayed (ILOAD.D) is active. These
signals are delayed versions of the LD signal and they suppress LD during the two
cycles following the initial appearance of IREQ. The LD signal must be suppressed
during this time so that the count (CNT) signal to the address counters may be active

' and cause the counters to increment. Further suppression beyond the cycle that
ILOAD.D is active is not needed since IRDY will go active during the ILOAD.D cycle.
IRDY going active will cause IREQ to go inactive in the following cycle if no new instruc-
tion address is needed. If IREQ is active following the ILOAD.D cycle then a new
‘instruction address is present and a new LD signal pulse will be allowed. Also note that
if the instruction access is done in burst mode, the appearance of IBACK during the
ILOAD active cycle will cause IREQ to go inactive for the duration of the burst access.

Similarly, for the case that DREQ is active, load is prevented when the IBACK is active
or when load was active in the last two cycles.

The LD signal is combinatorial so that it can be active during the first cycle of a new
instruction or data request.

ILOAD — The Instruction LOAD (ILOAD) is a delayed version of the LD signal with a
qualification. The qualification is that the ILOAD is active when: -

« Load occurs for an instruction fetch.
« The bus is valid during the cycle that, IREQ is active.
* The instruction fetch is addressed to this memory block.

This qualification prevents false starts in memory access due to an invalid bus situation.

ILOAD := DBACK - IME « TLOAD - ILOAD.D - BINV -
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ILOAD is used in the generation of the IRDY, IOEQ, IOE1, CNT, and LD signals. Like
LD, ILOAD is limited to be a smgle cycle in duration.

ILOAD.D — The |nstruct|on LOAD.Delayed (ILOAD.D) signal is simply a delayed ver-
sion of the ILOAD signal. The equation is:

ILOAD.D := ILOAD

DLOAD — Data LOAD (DLOAD) is a delayed version of the LD signal with the qualifica-
tion that it is active only when a load occurred for a data access which was addressed
to this memory block and the instruction/data space.

DLOAD := IBACK - DME « DLOAD - DLOAD.D - BINV.D

DLOAD is used in the generation of the'DRDY, DOEQ, DOE1, CNT, and LD signals.
Like LD, DLOAD is limited to be a single cycle in duration.

DLOAD.D — The Data LOAD.Delayed (DLOAD.D) signal is simply a delayed version of

the DLOAD signal in the same way that ILOAD.D is a delayed version of ILOAD. The
equatlon is::

DLOAD.D := DLOAD

CNT — The Count (CNT) signal causes the address counters to increment on the next
rising edge of SYSCLK.

CNT

BINV.D » IBREQ.D * IBACK
BINV.D - DBREQ.D « DBACK

o4

The CNT signal will be active when the respective IBREQ or DBREQ and IBACK or
DBACK signals are active in.the previous cycle, given also that the bus was not invalid.

A CNT signal is forced during the ILOAD or DLOAD cycle to ensure that the LSB of the
even counter is pointing to the correct memory bank in the event that no burst request is
active. In other words when a single access is requested.

Note that for both the even and odd bank counters, only the upper seven bits are used
as the lower address bits to memory. The LSB of the counters serve to cause the
memory bank address to increment on every other cycle that the CNT signal is active.

The CNT equation provides a count enable to the even counter during both even and
odd word initial address accesses. This would appear to be an extra cycle of counting
for the even bank. This is done for the following reason: when a burst access begins on
an odd word boundary, it is necessary to have the even bank access the even word that
follows the initial odd word. This means that the address going to the even bank will
always to be one greater than the address going to the odd bank. This requires that the
initial address from the address bus be incremented to point to the next higher even
bank memory word. This could be accomplished by placing a combinatorial incremen-
ter in the address path to the even bank address counter, but incrementer logic is
already defined as a part of the address counter. When the initial access address is
odd, the even bank need not begin its access cycle until the third clock cycle of the
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access. This means that the even bank address counter can be:loaded with the initial
address at the end of the first cycle of the access and incremented in the counter at the
end of the second cycle. In effect this makes use of the incrementer logic already in the
counter to increment the even address to point to the next even word in sequence.

IRDY —The Instruction Ready (IRDY) indicates that there is valid read data on the in-
struction bus.

"IRDY = ILOAD.D . :
+ BINV.D « IBREQ.D » IBACK.D « ILOAD

This static memory design will always be ready with data in the second cycle after a
new instruction request as implied by ILOAD.D. The memory will also be ready when
IBREQ was active with IBACK in the previous cycle. IBACK is required as a qualifier so
that when an access is preempted the continued presence of IBREQ will not cause a
false ready indication. The BINV.D signal is used to prevent false ready indications if
the bus was invalid in the previous cycle. Note that situation can occur during a sus-
pended access when the processor grants the bus-to another bus master. The ILOAD
signal prevents IRDY from going active during the ILOAD cycle of a new instruction
access when that access immediately follows a previous suspended burst access. In
that situation the IBACK signal would already be active during the initial IREQ cycle of
the new access. And if the new access is a burst access the IBREQ signal would also
go active during the initial IREQ cycle. Without the ILOAD signal, that combination of
events would cause IRDY to go active one cycle too early for the new access.

The reason that IRDY must be a combinatorial signal is that IBREQ comes very late in
the previous cycle and must be registered. There is no time to perform logic on IBREQ
in the previous cycle before SYSCLK rises. This means that the information that IBREQ
was active in the last cycle is not available until the cycle in which IRDY should go
active for a resumption of a suspended burst access.

10E0 and IOE1 — The Instruction Qutput Enable (IOE) signal controls for the even and
odd memory banks are used to control which bank is allowed to drive the instruction bus
during each cycle. The signals use essentially the same logic as IRDY except that each

- signal is further qualified by the output of the LSB of the even bank counter (Q02E). This
bit keeps track of which memory bank is ready to provide data to the instruction bus.
The even bank.is enabled when IRDY is active and the QO02E bit is one. The odd bank
is enabled when IRDY is active and QO02E is zero.

“IOE0 = QO2E - ILOAD.D '
’ + BINV.D » QO2E +« IBREQ.D « IBACK.D « ILOAD

QO2E - ILOAD.D. .
+ BINV.D « QO2E + IBREQ.D « IBACK.D * ILOAD

IOE1

]

DRDY — The Data ReaDY (DRDY) is the equivalent of IRDY for data accesses and
therefore uses the same equation with data-respective terms substituted for instruction
terms. The one additional change is that a term is added to cause DRDY to occur
one cycle early during write operations. This is done because the data to be written is
taken from the data bus into a register before actually being stored in the memory.
This maintains the same memory timing used during read operations but write data is
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removed from the bus one cycle earher than when DRDY would normally go active
during a data read operation. ‘

DRDY RW « DLOAD

RW « DLOAD.D

BINV.D - DBREQ.D « DBACK.D « DLOAD

+ + 0

DOEO and DOE1 — The Data Buffer Output Enable (DOE1/DOE?2) signals serve the
same function for DRDY as does the IOEQ & IOE1 signals do forIRDY. The description
for them is the same as for the IOE signals. The only difference benng that the DOE
signals will be active only durlng read operations.

DOEO QO2E « RW - DLOAD.D

+ BINV.D « Q02E « RW « DBREQ.D - DBACK.D « DLOAD

DOE1 = QO2E » RW « DLOAD.D
+ BINV.D+ QO2E - RW « DBREQ.D « DBACK.D - DLOAD

WE — The Write Enable (WE) signal is a registered ‘s'ignal that goes active during the
second cycle of each two cycle access period for each word access of a memory
bank. The WE signal will go active only during write operations.

Slnce it is reglstered it will stay active throughout the second cycle of each access
period in order to satisfy the required WE signal pulse width of 35 ns. The WE signal
will go active only if a DRDY signal for the data was active in the previous cycle which
/indicates that-the memory has registered valid data from the data bus ready to be
written into the memory bank. The WE signal is also qualified by which bank the signal
is being generated for and by the indication of which bank should be written in the
second cycle of the access period during a given clock. This last qualifier is effectively
the LSB of the even bank counter. In the case of the odd bank counter the value of the
LSB output of the even bank counter is brought into the equation via the AO2 input of
the odd counter (note that since the even bank counter Q02 output is low true, the
inverted AO2 input is used in the equation). The equation shown here has an input
called ODD. That input is strapped high or low depending on which bank counter is
being implemented. The reason for this is that the same set of PAL equatlons that
implement the lower even and odd bank counters can be the same given that this ODD
input is tied to the appropriate voltage. This allows one equation set to be used for the
lower half of both bank counters. Note that the bank WE signal is implemented in the
lower of the two bank counter PALs. The equation is as follows:

ODD DRDY - A02° RW
+ ODD - DRDY -« Q02 « RW

. DREGEN — Data REGister ENable (DREGEN) is the signal that enables the write data
" register on the D input of each memory bank to load new data. The equation used is
similar to that used for WE except that a combinatorial output is used so that the regis-
ter will load at the end of the DRDY active cycle. Also the equation is simpler since the
register loading only needs to be restricted by the active bank md:catlon served by the

'LSB bit of the even counter. ‘ :

I

oDD
D

DREGEN

>
N

0
0

o]
O
[®)
o

+
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CE — The Chip Enable (CE) signal for this memory block is used to lower the dynamic
power of the system by switching off the memories when they are not being accessed.
The equation for this is:

CE := LD + ME
+ D+ CE

.- This block enable is based on the OR of the IME and DME signals. When this block is
addressed with either an instruction or data access, the memories receive CE signal on
the next cycle.- This selection is held untnl the next trme the load s:gnal is active in this
memory block. , S

It is worth noting that this equation will not allow the memory to go into a deselected or
low power mode until the cycle following:a transition to the IDLE state. This ensures
that the memory is still active on the Iast access of a preempted mstructron burst re-
quest.

ADDRESS COUNTERS — There is one address counter for each bank of memory.

- Each is implemented with one AmMPAL16R4D and one AmMPAL16R6D device (Figures 5-
3: U8, U9; Figure 5-4: U10,U11). The counter function is split across two PALs due to
the number of product terms required to implement the upper bits of the counter. The
lower half of the counter produces a carryout signal to the upper counter half. The
equations for the counters are the same except for a difference 'in treatment of the LSB
between banks. This allows the same logic to be used for both bank counters with a
single input used to select logic specific to the even or odd bank usage. The selectrng
input is called ODD. When the counter PAL is used in the even bank this input is tied
"high and tled low for use in the odd bank.

" The LSB bit of each counter is used as the means to control the timing of when the
upper seven bits of each counter will increment. The upper bits of each counter will in-
crement on every cycle that the count srgnal is actrve and the L§B is also active.

The value of the LSB in each counter will be differentin any given cycle, which will

* cause the upper bits of the counters to increment on different cycles with regard to each
other.” Inother words, the the upper seven bits of the counters will be out of phase in
terms of when they mcrement This allows one bank of memory to start the access of
the next word in sequence while the other bank completes the access of the current
word.

A little added explanation may be in order here. Beyond the first completed access of a
burst transfer the counter activity is consistent and mechanical. For every cycle that
IBREQ or DBREQ and the appropriate burst acknowledge signal is active, both count-
ers will receive a count enable signal. The LSB of the counters will be of opposite
polarity so that the upper seven bits of each counter increment on alternate cycles. The
LSB of the counters then act as accurate indicators of when each bank of memory is
actively writing data from the bus or provrdtng data to the bus. The difficulty in manag-
ing the counters comes during the first access in a burst transfer At that time, the
memory address is the single source for the initial counter value for both counters.
Depending on whether the initial address is odd or even, the odd or even bank of mem-
ory is accessed; consequently that bank’s counter must be incremented first so the
address counters can begin the alternating countmg scheme needed in all the following
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burst transfers. In addition, if the initial address is odd, the even bank memory address
must be incrementedto point to the next even word in sequence before the even bank
can begin a valid access of data.

There are various ways to manipulate the counter values so that the counters have the
needed output values and increment in the right sequence. They involve decisions
about whether one or two separate count enable signals will be used; whether incre-
menter logic will be placed in front of the even bank counter or instead the even bank
counter will be incremented one extra time before its first use; and whether the LSB of
one or both counters will initially be forced to values different from the initial address in
order to make the counting sequence begin correctly. The following describes the
counter implementation for this particular design, this scheme was chosen because it
appeared to minimize the number of required PALs.

The LSB of the even counter is simply treated as the LSB of an 8-bit counter. It is
loaded from the memory address at the end of the first cycle in each new memory
access. ltis incremented (toggled) at the end of each cycle in which the count signal is .
active. The output of the even bank LSB (QO02E) is used in several other equations
where bank selection information is needed. When QO2E is high it indicates that the
even memory bank is in the second half of an access sequence (the access sequence
is two cycles long). During this second half of the sequence, data will be provided to the
bus on a read or data will be written from the data bus registers-during a write operation.
When QO2E is low it indicates that the odd bank is in the second half of its sequence.

The LSB of the odd counter is handled a little differently. By examining the required
counting sequence for the odd counter during both even and odd initial accesses it can
be seen that the LSB of the odd counter is almost always a one cycle delayed version of
the even bank counter LSB. The only cycle where this might differ would be during the
first cycle after the load of a new memory address where the odd counter LSB could be
loaded with.the LSB of the initial address. If this were done it would be necessary to
provide a separate count enable on the odd bank counter to prevent incrementing the

. odd bank before the first address was used. That count-enable scheme would differ
from the one required by the even bank counter which must always increment in the first
cycle after the initial address load. By always forcing the odd counter LSB to zero when
an initial address is loaded it is possible to have only one count-enable signal. The LSB
being zero always prevents the increment of the upper seven bits of the odd counter
during the first cycle following an address load. The LSB of the odd counter can then
be used to produce the delayed version of the even bank counter LSB by simply loading
the odd bank counter LSB from QO2E on each cycle that the count enable is active.

The upper seven bits of the odd counter still increment only at the end of cycles in which
the odd counter LSB is one and the count enable s active.

This scheme simplifies the counter control logic somewhat and pfovides that a single
control signal (Q02E) is used to manage all bank selectlon issues throughout the de-
sign. A

The equation for the LSB of the counter is shown below. The remainder of the counter
equations are shown in Figures 5-10 and 5-11:

Q02 := LD - ODD - A02
+ LD - ODD « AO2 ‘
+ LD - ODD - CNT » Q02
+ LD - ODD » CNT « Q02
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PAL Definition Files"
The PAL equations are given in Figures 5-6 to 5-11.

Note: All PAL equations in this handbook use the follwing convention:

* Where a PAL equation uses a colon followed by an equals sign (:=), the equation
result is REGISTERED (i.e. registered PAL outputs are used).

* Where a PAL equation uses only an equals 3|gn (=), the equation signals are
COMBINATORIAL PAL outputs.

* "The Device pin list is shown near the top of each figure as two lines of signal

' names. The names occur in pin order, numbered from left to right 1 through 20.
The polarity of each name indicates the actual input or output signal polarity.
Signals within the equations are shown as actlve high, e.g., where signal names in
the pin list are: A B C, the equation is C = A B;the inputs are: A = low, B = low;
thenthe C output will be low.

Figure 5-6

DME

- AmPAL1 GLBB SRAM' State Decoder—Interleaved

Device U1 .

TREQ DREQ IREQT A31 A30 A29 A28 A27 PINT63 GND
DREQTO IME DREQT1 ME NC15 NC16 NC17 NC18 DME VCC

IME = IREQ + IREQT » A31 « A30 + A29 » A28+ A27 » PIN169

DREQ - DREQTO0 + DREQTT « A31 +A30 + A29 - A28+ A27 « PIN169

IREQ - TREQT - A31 - A30 - A29 - A28+ A27 - PIN169
+ DREQ + DREQTO + DREQTT - A31 - A30 - A29 - A28+ A27 + PINT69

ME -

Figure 5-7

AmPAL16R4D SRAM State Generator—-lnterleaved Instruction Section
Device us :

CLK IME ‘DME IREQ DBACK IBREQ.D NC07 BINV.D Q02E GND

‘OE IOEO IOE1 IBACK IBACKD ILOAD D ILOAD IRDY BINV VCC

IBACK - := DBACK » IME « BINV
.+ TEXIT - IBACK

IBACKD := IBACK . o
'ILOAD = DBACK - JLOAD + [LOADD * IME + BINV
ILOAD.D := ILOAD
IOE0 = QO2E - ILOAD.D -

+ BINV.D - QO2E - IBREQ - IBACK.D - TCOAD
IOE1 = QOZE : ILOADD

+ BINVD » QO2E - IBREQ.D + IBACK.D « ILOAD .
IRDY = ILOAD.D

+ BINV.D - IBREQ.D « IBACK.D « ILOAD
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NOTE: The term IEXIT used in the IBACK equation is for clanty
Its true representation is as follows

IEXIT = DME
+ IREQ « IME

Figure 5-8 AmPAL16R4D SRAM State Generator—lnterleaved Data Section
Device U4

CLK IME DME DREQ IBACK DBREQ.D RW BINV.D Q02E GND
OE DOEO DOET DBACK DBACK.D DLOAD.D DLOAD DRDY BINV VCC

DBACK := IBACK « DME ¢ BINV
+ DEXIT « DBACK

DBACK.D := DBACK

DLOAD :=

IBACK « DLOAD « DLOAD.D - DME - BINV

DLOAD.D := DLOAD

DOEO = QO2E - RW - DLOAD.D
+ BINV.D + QO2E *« RW - DBREQ D » DBACKD - DLOAD
DOE1 = QO2E « RW « DLOAD.D
+ BINV.D « QO2E « RW « DBREQ.D « DBACK.D « DLOAD
- DRDY RW « DLOAD

RW « DLOAD.D
BINV.D « DBREQ.D - DBACKD DLOAD

+ + 10

NOTE: The term DEXIT used in the DBACK equation is for clarity.
Its true representation is as follows:

DEXIT = ME « DBREQ.D
+ DREQ « DME

Figure 5-9 AmPAL16L8B SRAM Counter Control—Interleaved
Device U2

IREQ DREQ DBACK IBACK DLOAD ILOAD DLOAD.D ILOAD.D NC0S GND
BINV.D LD IBREQ.D DBREQ.D NC15 NC16 NC17 NC18 CNT VCC

LD

]

IREQ » DBACK « ILOAD - ILOAD
DREQ + IBACK « DLOAD + DLOAD.D

+

BINV.D * IBREQ.D ¢ IBACK
BINV.D « DBREQ.D « DBACK

CNT

+ o+
'=
(0]
>
o
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Figure 5-10

AmPAL16R4D SRAM Address Counter—
Interleaved LSB ODD or Even Bank
Devices U9, U11

CLK CNT LD A02 A03 A04 ODD DRDY RW GND

Qo2 = ODD - LD - A02
+ ODD - LD - A02
+ .0ODD - D « CNT » Q02
+ ODD - LD » CNT - Q02
Qo3 = LD - A03
+ LD « CNT » Q03
+ LD + CNT » Q02 - Q03
+ LD » CNT » Q02 - Q03
Qo4 = LD » A04 -
+ LD « CNT - Qo4 L
+ [D + CNT - Q02 » Q03 - Q04
+ LD + CNT - Q02 - Q04
+ LD « CNT - Q03 - Q04
COUT = Q02 - Q03 - Q04
WE := ODD « RW + DRDY » A02 |
+ ODD « RW - DRDY - Q02
DREGEN = ODD +« AD2
+ ODD - Q02
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Figure 5-11

AmPAL16R6D SRAM Address Counter—
Interleaved MSB Even or Odd Bank ;
Devices U8, U10

CLK CNT LD A05 AOG A07 A08 A09 ME GND

Qo5 = LD
D
[}
)

A0S

CNT - Q05
CNT - CIN - Q05
CNT - TIN - Q05

++ 4+ oy

A06
CNT -+ Qo6 o
CNT - CIN - Q05 « Q06
CNT - CIN - Q06

- Q05 - Q06

Qo6

o ot o
cl5l6lGlE
e s e e

++ 4y

Qo7

+ Q05 -« Q06 - Q07
- Q07
05 « Q07

6 « Q07

|t o o e o
dddddo

+ + + + + g
« o o s o »
O
=z
-

* o s o o
Qo
Z

Qos

CNT - CIN » Q05 - Q06 - Q07 - Q08
» Qo8
CNT « Q05 - Q08
» Q08
- Qo8

+++ 4+ + oy
| o I O o
GIGIEIEIE 6l
e e e s e e e

Q

z
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.

o

z

Qoe

CNT +» CIN « Q05 » Q06 - Q07 + Q08 « Q09
CNT - CIN - Q09
CNT - Q05 - Q09
CNT » Q06 » Q09
CNT » Q07 » Q09
CNT - Q08 - Q09

ol o o [ [ o
eleleleleiclels

I

CE

.
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Intra-Cycle Timing - :

This memory architecture has two baS|c cycle timings. The first is a cycle used to
decode the memory address and control signals from the-processor. At the end of this
decode cycle the address will be loaded into the address counter and the selected block
of memory will begin a burst access in the next clock cycle. The second cycle timing is
that of a burst access. -

The first burst access time is the time required to access one of the memory banks.
This time is designed to fit within two clock cycles. Thus, the initial burst access time
will be two cycles. v
The combination of a decode cycle followed by the first burst access time defines the
three cycle initial access time. Each subsequent burst access requires one cycle due to
the interleaving of two memory banks.
Within the decode cycle the address timing path is made up of:

» The Am29000 clock to address and control valid delay of 14 ns,

» Address decode logic PAL delay of 10 ns,

« And the set-up time of the address counter PAL, 10 ns .
Assuming D-speed PALs those times total 34 ns. See Figure 5-12. Also, within the
decode cycle time lS the control signal to response signal path. This delay path is made
up of: ‘

» Clock-to-output time of registers Within the control logic state machine PAL, 8 ns;

« Propagation delay of the control logic PAL, 10 ns;

. Propagatlon delay of a logical OR gate on the response signals from each mem-
ory block, 10 ns;

« And control signal set-up time of‘the processor, 12 ns.

Figure 5-12

Address Decode Path.

t oo, Am29000 Sync Out 14
tpd. Control PAL 10 . 34 ns
tsy, Address PAL : _10

Control Path

teo, Control PAL | 8

tpd, Control PAL _10

tpd. Response PAL 10
tsu, Am29000 Sync In 12

10117A-5.12A

40 ns

Interleaved Bank SRAM Memory Decode Cycle
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Again assuming D-speed PALs, these times total 40 ns as shown in Figure 5-13.
Within the burst access cycle the address to data path timing is determined by:

» The clock-to-output time of the address counter, 8 ns for a D-speed PAL, plus
added delay for heavy capacitive and inductive load. The added delay is deter-
mined by the method shown in Appendix A.

The estimated delay is 5 ns. The total delay is then 8 ns, clock to output, plus
5 ns added delay for a total of 13 ns;

« Memory access time (55 ns)

- Data buffer delay (FCT244A = 4.3 ns)

. And the processor set-up time (6 ns).
Those delays total 78.3 ns worst case.

For the control signal-to-response signal path the time restrictions are the same in either
the initial access or burst access cycles. The total delay is again 40 ns.

Inter-Cycle Timing

This section gives five examples of the cycle-by-cycle interaction between an Am29000
processor and the Medium Speed Interleaved Bank Static Memory system just defined
in this chapter. Each timing diagram includes the Am29000 control and response
signals as well as all- the internal signals of the memory control logic.

Instruction Burst Read—Even Initial Address
The first example is shown in Figure 5-14. It is a burst read of instruction memory with
the initial address beglnnlng at an even address:

In the first clock, cycle the Am29000 initiates a read operation by making IREQ and ad-
dress active. The access will be a burst operation since the IBREQ signal also goes
active late in the cycle. As aresult the address is decoded to signal IME indicating that

Figure 5-13

Address to Data Path

t co, Address PAL 8
t|d , Memory Load Delay

taa, Memory = 78.3ns
tpd, Bus Buffer ) —_

t su, Am29000 Sync In Data 6
10117A-5.13A

o

- Interleaved Bank SRAM Burst Cycle
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Memory Address-Even

‘1D
CNT
Memory Address-Odd

10117A.5.14A

These signals are inactive throughout sequence

DLOAD, DLOAD.D, DREQ, DME, DBREQ, DBREQ.D, DBACK, DBACKD DRDY,
DOEDS, DOEA, RIW, WE-EVEN, WE-ODD, DREGEN-EVEN, DREGEN-ODD

Instruction Burst Read—Even Initial Address

v1-G ainbiy




this instruction memory is selected. Also, the LD signal goes active causing the mem-
ory address counters and latches to capture the address on the bus at the next rising
edge of SYSCLK.

In cycle two the address counters present the first address to the memory. The memory
accesses the selected data so that it is on the bus in time for the Am29000 to receive it
at the end of the third clock cycle. The registered value of IBREQ from cycle one is now
available as the signal IBREQ.D. This, in combination with IBACK, causes the CNT
signal to go active. When CNT goes active, it increments the address counter at the
next rising edge of SYSCLK.

In cycles three, four and five, the first, second and third instruction words are read from
memory. In each cycle the data is valid and the IRDY signal from the memory goes
active. The TOEO and IOET alternate being active as data from each bank is ready to be
placed on the instruction bus. Since the initial address was even, the even bank output
enable (IOEOQ) goes active first. Note that the memory addresses shown are the output
of the 8-bit address counters and only the upper seven bits serve as the lower address
bits to the memory. The LSB serves only to control the counters so that the memory
addresses increment on every other cycle that CNT is active. In cycle five, the IBREQ
signal goes inactive signaling a suspension of the burst access.

In cycle six, the memory control circuits see the absence of IBREQ.D and immediately
make TRDY inactive. CNT also goes inactive to hold the address value until the burst is
resumed. The suspension of the burst is only one cycle long because IBREQ again
goes active in this cycle.

In cycle seven, IBREQ.D is detected and IRDY imvmediately made active. CNT goes
active again to continue the incrementing of address. .

This sequence of IBREQ going actiyé every other cycle is repeated through cycles
seven, eight, and nine to show how the address counting and instruction output enables
behave during repeated suspensions and resumptions.

Instruction Burst Read—0dd Initial Address

This example is the same as the last except that the initial address is odd. This is
reflected in TOEO and IOET going active in the reverse order from the last example.
Also, the memory address for the even memory bank is incremented during cycle two
so that the next even word following the initial odd address is accessed as shown in
Figure 5-15. - ‘
Instruction Burst Write

Figures 5-16 and 5-17 show examples very similar to that of the instruction access
figures. The difference is that these accesses are burst-write operations to the instruc-
tion memory. ; E '
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SYSCLK
iREQ
IME
IBREQ
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IBREQ.D

IBACK

IBACK.D

IRDY

[

iOE1

ILOAD

ILOAD.D

Memory Address-Even

I6)

CNT

Memory Address-Odd
10117A-5.15A

Instruction Burst Read—Odd Initial Address
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SYSCLK

Memory Address-Even
' '
CNT

Memory Address-Odd

" RW
WEEVEN
WEODD
DREGEN-EVEN
DREGEN-ODD

10117A-5.16A

‘These signals are inactive throughout sequence:

TREQ, TME, TBREQ, TBREQ.D, TBACK, TBACK D, TRDY, TOE0; TOE 1, TLOAD, ILOAD.D

Burst Write of Data—Even Initial Address
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SYSCLK
Memory Address-Even

L_D'
CNT

Memory Address-Odd
DLOAD

. RW
WE-EVEN

WE-ODD

DREGEN-EVEN

DREGEN-ODD
10117A-5.17A )

IREQ, IME, IBREQ, IBREQ.D, IBACK, IBACK.D, IRDY, IOEO, IOE1, ILOAD, ILOAD.D

Burst Write of Data—Odd Initial Address
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The flow of control signals is the same as for the instruction accesses just described.
The only differences are:

= That data words are now taken from the bus one cycle earlier than those times
when‘ they would have been supplied during a read;

« Data bus control and response signals are substituted for the equnvalent instruc- ‘
tlon signals, e.g. DREQ goes active instead of IREQ '

. DBREQ goes inactive in cycle 4 rather than cycle 5 as IBREQ did;

» The DREGEN signals enable the write data registers that take data to be written
from the bus

« And the WE S|gnals are actlve

' Instructlon Burst Preempt by Data Access
Figure 5-18 shows the interaction of a burst instruction access and a data read access
addressed to the same block of memory.

The f|rst two cycles occur as prewously described for the instruction burst read.

In the third cycle, a data access is started by DREQ going active. The address is recog-
' nized as selectlng this block of memory which is SIgnaIed by DME gomg active.

© Since data accesses are’ ‘given priority over instruction accesses, the instruction access

must now be preempted. The memory control state machine exits the IACCESS state

and returns to the IDLE state in cycle four. This will cause IBACK to go inactive thus

- preempting the instruction.access. In.cycle four the last word of the instruction burst is
supplied by the memory. Also, the LD signal goes active to enable the address count-

ers to capture the data access initial address. :

In cycle five, IBREQ is removed from the bus.
In cycle: SIX the DREQ signal goes inactive as a result of the DBACK in cycle five, WhICh
- in turn allows IREQ to go active to re-establish the preempted burst instruction access.
The word resulting from the data access is presented to the bus’ along with DRDY.
Since the DBREQ signal has not been active, the data access in this case is a single
word rather than a burst. The appearance of IREQ, IME and the absence of DBREQ,
- causes the control state machine to return to the IDLE state in the next cycle.

In"cycle seven, the load signal goes active to capture the instruction address.

In cycle eight, the control state machine re-enters the IACCESS state with IBACK going
active. Also, CNT goes active to increment the LSB of address for the instruction fetch.
. In cycle nine, the first word of mstructlon is placed on the bus with IRDY The instruc--

~ tion burst is thus re-established. ‘
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Parts List
The part list for the Am29000 Medium-speed Bank Interleaved Static RAM Interface is
provided in Table 5-1.

Table 5-1 Am29000 Medium-speed Bank Interleaved

Static RAM Interface Parts List

Item No. Quantity Device Description
ut-u2 2 AmPAL16L8D
U3-U4,U9,U11 4 AmPAL16R4D
us 1 74F175
ue,uz7 2 Am29823A
us,uto 2 AmPAL16R6D
u12-U75 64 IDT7187S-55 or CY7C187-55
U76-U79,U84-U87 8 Am29825A
uU80-u95,U88-U99 16 74FTC244A

99 pkgs

DATA MEMORY

As shown in Chapter 4, Figure 4-1, the instruction and data memories for the Am29000
are separate structures. The data memory can be an exact subset of the instruction-
memory design. In fact the exact same design can be used by tying the instruction-
related control signals to the inactive state. But, since the data memory is a subset, it is
also possible to save a few chips by eliminating the instruction related control signals
and rearranging the distribution of logic terms between PALs.

With reference to the instruction-memory design defined in this chapter, the following
changes may be made to convert it to a data memory:

« Allinstruction-related inputs can be removed and all the affected equations
simplified;

» U3, the instruction-state machine PAL, can therefore be removed entirely;

« The CNT signal can be moved to U4 and the LD signal can be moved to U1.
Therefore U2 can be eliminated;

». The 74F175 from the instruction memory can also be used to supply the delayed
control signals to the data memory, thus eliminating the need for US5;

» And finally, the instruction bus output buffers can be eliminated.
In total the design can be reduced by 11 chips. The details of the logic equation simpli-

fications will be left as an exercise for the reader. All other aspects of the design are the
same as for the instruction memory described in the previous section.
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Chapter 6, -

STATIC COLUMN DRAM o i
WITH INTERLEAVED BANKS =

OVERVIEW

'DRAM Advantages and Am29000 DRAM Support

The SRAMs used:in the last two designs provide the fastest initial access times. But,
SRAMs are not very dense and therefore.consume a large amount of board space for a
given size memory system. Also, they tend to be expenswe and consume a good deal
of power for a given size memory.

Dynamic RAMSs can provide far more memory at lower cost and power in the available
board space than is possible with SRAM. The main penalty in using DRAMs is a loss of
speed in the initial memory access time. Burst-access performance can be maintained
by the use of bank interleaving and Static Column DRAMs (SCDRAM). Fortunately the
Am29000 provides features that help compensate for a slower initial access time of

system memory.

The Am29000 branch target cache stores the first four instructions from the 32 most

recently accessed branch target addresses. So, when a branch instruction is executed,
if the branch target address resides in the branch target cache, the first four instructions
after the branch will come from the internal cache. At the same time, the address of the
first instruction following those in the cache will be placed on the address bus. In effect,

the first three cycles of the memory's initial access time will be hidden by the continued

execution of instructions from the branch target cache. "Note: three cycles are saved
rather than four due to a cycle in which returning iristructions must wait in the instruction
prefetch buffer. . ;

" The Am29000 accesses vnrtually allits mstructlons in burst mode ThlS means that the

initial access time of the system memory can be ammormzed over multiple cycles of a
burst access. This again lowers the penalty ofa slower initial” access time.

The Iarge register file of the Am29000 in effect provides a]data cache for the most
frequently used operands. This significantly reduces the number of times that memory
needs to be accessed for data as compared with what is required by most competitive
microprocessors. Also, the Am23000 load and store operations may be overlapped
with the execution of other instructions, which again reduces the impact of a slower

-initial access-time memory system.,

~ As a result, DRAMs can sxgmflcantly lncrease the size of system memory, while also
improving system performance-to-price ratio. The cost per bit of memory in the system

drops dramatically while performance is reduced only slightly.

Memory Structure

The memory deS|gn described in this chapter is an extensmn of the memory designs
from the previous chapters. There are also separate blocks of memory for instruction
and data as was shown in Figure 4-1. Within each memory block, there are two banks
of memory interleaved as odd and even words. For a description of interleaved memory
architecture, see the overview section of the last chapter.
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Each bank is 1M words deeb with each word being 32-bits Wide. "The total for the
instruction memory block is then 2M words (8M bytes). The same is true for the data
memory.

SCDRAM memories with 85 ns access times are used for all memory banks. A non-
sequential access requires one cycle for address decode and three cycles for the first
word accessed. The low RAS access time allows a 4-cycle intial access time for the
memory system; 100 ns RAS access time memories may be used if the intial access
time is extended to five cycles. Essentially the burst access timing is the same as for
the medium speed SRAM of the last chapter, each burst access is two cycles long.

" Overlapping the memory bank access time allows this longer access time to be hidden
from the system viewpoint, except on the first word of a non-sequential access. The

" result is a’'memory that provides four cycle access time for the first word of a non-
sequential access and single cycle access for subsequent words in a burst transfer.

-~ The instruction memory bank has a read-only port for sending instructions to the

Am29000 and a read/write port tied to the Am29000 data bus.: This port provides

access via the data bus for instruction loading and memory diagnostics. The data
memory has a smgle read/write port connectron to the Am29000 data bus.

INSTRUCTION MEMORY

" Interface Logic Block Diagram
.:_Befer to thevblock diagram in Figure 6-1.

© The Memory o

" The memories are 1M x 1-bit SCDRAMSs with separate data in and out lines. The ac-
cess time is 85 ns. Thlrty-two devices are requrred in each bank to form the 32-bit wide
mstructlon word for the Am29000 These are shown as devrces uU21 through U8S5.

SCDRAMs are used to provide for access to sequentral words within two clock cycles at
25 MHz and to simplify the required logic design. SCDRAMSs have an advantage over
standard DRAMs in that once a row is accessed, additional accesses within the same
row can be done simply by changing the column address and waiting the access time
delay of 45 ns. Standard DRAMs with page mode access ability require that the Col-
umn Address Strobe (CAS) be cycled for each new word accessed. Eliminating the
need to cycle CAS simplifies the logic design and most SCDRAMSs have faster access
cycle times in static column mode than doequivale’nt DRAMs in page mode.

~ One addmonal “potential” advantage for either Page Mode or SCDRAMs is that the

“access time to words within an already selécted row is much less than that required if
the needed word lies in a different row. Itis possible to reduce the initial access time of
the memory whenever a non-sequential access begins in a row that is already being
accessed. This is done by comparing all addresses from the processor with any
currently active row address. . If a match is identified the memory control logic can
simply access the needed word rather than precharging the memory and giving a new
row address. This can reduce the initial access time from five to three cycles (pre-
charge time between row addresses adds one clock cycle to the basrc 4-cycle initial
access time). :
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This advantage is described-above-as “potential” because in the interest of keeping the
design simple, this memory design does not implement the comparators or control logic
needed to utilize the possible improvements from Page or Static Column modes (an-
other exercise for the reader).

Data Bus Output Buffers :

The memory data outputs are connected to the data bus lines via high-speed buffers.
These buffers are required to isolate the memory outputs from the data bus whenever
the memory is accessing instruction words. This isolation allows another data memory
block to use the data lines at the same time that instructions are being fetched from this
memory block. These are shown as devices U95 through u102.

Data Bus Input Latches

The memory data inputs are connected to the data bus lines via Am29C843A latches.
These are shown as devices U86 through U94..

Figure 6-1
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: Latches are. used for the followrng reasons:
1. CHIP SELECT is used as the wrlte enable quallfler

2. The CHIP SELECT signal is a registered output of the menﬁory control logic and
therefore its edge transitions occur one clock-to-output delay of a D-speed PAL
after the system clock time (3 to 8 ns plus memory loading delay).

3. Write data to the memones must be valld at or before the falhng edge of the CHIP
SELECT sxgnal

4. Write data must be held vahd for at least 20 ns after the fallmg edge of the CHIP
SELECT signal . .

5. The CHIP SELECT.-signal_‘minimum‘pul'se width is 25 ns.
6. The data output valid delay from the Am29000 processor is 18 ns.

Due to the above, it is not possible to write data directly from the processor data bus

since the data may not be valid until after the falling edge of the CHIP SELECT signal

during burst write cycles where new data i |s placed on the bus in each cycle (as a result
“ofitems 2, 3and 6 above)

A register clocked by the rising edge of system clock would not have a clock-to-output
. delay fast enough to ensure meeting the data setup time to the CHIP SELECT signal .
(tem2) -

A register clocked by the falting edge of system clock may not satisfy the required hold
time relative to the CHIP SELECT signal, assuming a single register set is used and is
simply clocked on each falling edge of system clock. (ltems 2 and 4)

Dual register sets, one for each bank, clocked on every other falling edge of system
clock could work. However, the worst-case timing margin for data setup time to the

. CHIP SELECT signal is very small, due to clock-gatmg logic plus clock-to- output time of
a register.

Dual latch sets, one for -each bank, latch enabled every other cycle by the active bank
indicator (Q02E) and a delayed system clock, will also work. Latches allow data to flow
through to the memory inputs prior to the falling edge of the CHIP SELECT signal. The
latches also hold the data valid for the required time after the CHIP SELECT signal.
Both functions are accompllshed with reasonable timing margins. ~

So with all the above in mind, data latches were chosegn for use in the input data path to
~ the memories. Using this data latching approach means that data is removed from the
bus one cycle earlier than would be the case if simple buffers could be used; this makes
a write operation one cycle faster than ‘an equivalent read operation.
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Instruction Bus Buffers ‘

The memory data outputs are also connected to the instruction bus lines via buffers.
These buffers serve to isolate the data outputs of this memory block from those outputs
of other memory blocks which may also drive the instruction bus. Also the buffers serve
to isolate the even and odd banks of this memory block from each other so that simulta-
neous data access can go on in each bank independently. These buffers are shown as
devices U103 through U110.

Address Registers and Counters

' To support burst accesses the lower seven address bits to each memory bank come

from a loadable counter. An 8-bit counter is used to provide the address so that the
least significant bit of the counter can be used to track which memory bank is connected
to the data or instruction bus on each cycle. The upper seven bits of the counter are
used as the least significant address bits to each memory bank.

Each 8-bit counter is built from one AmPAL16R4 and one AmMPAL16R6 D-speed PALs.
The counters for both banks are shown as devices U6, U7, U9, and U10. The D-speed
PALs are used because their clock-to-output delay is significantly faster than standard

'MSI 8-bit counters. Also, the use of PALs allow additional functions to be integrated
_ into the same packages used for the counter function.

The upper 14 bits of memory address need not come from a counter since the
Am29000 will always output a new address when a 256 word boundary is crossed.

" The upper 14 bits of address are simply latched. A latch is used so that the address

can flow through to the memories during the decode cycle and be setup before the
falling edge of Row Address Strobe (RAS).

Address bits 10 through 12 are latched within the PALs which are used to implement
the Iower half of each bank address counter.

- The upper 10 address bits (address bits 13 through 22) are latched in a pair of

AmMPAL16L8D PALs which also generate the needed latch-enable term. These are
shown as devices U8 and U11.

A separate set of address counter logic is used to address each memory bank. This is
done because when one bank is connected to the data or instruction bus, the other
bank will be accessing the next word in sequence. This requires that the two banks
have independently lncremented addresses. The address for each bank will increment
on different cycles. v

Memory Address Multiplexers

The upper and lower- 10 bits of memory address must be mulitiplexed into the address
inputs of the memories. Discrete multiplexers are used rather than simply controlling
the output enables of the address counters and latches to form a three-state muilti-
plexer. This was done to provide tighter control over the timing of the multiplexer
switching between sources. The input switching delay of the multiplexer is no worse
than what the three-state enable delays would be if the three-state multiplexer approach
was used, although they do add undesired delay in the burst access address to data
timing in'read  operations. Multrplexrng is done via 74F158 multiplexers shown as
devrces u12-u14 and U1 14—U116
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Registered Control Signals

As noted earlier, the timing of the Instruction Burst REQuest (IBREQ), Data Burst
REQuest (DBERQ) , and Bus INValid (BINV) control signals require that they be
registered by a low setup time register. A 74F175 register, U3 shown in Figure 6-1, is
used as a low setup time register.

Interface Control Logic

This logic must generate the memory response signals, manage the loading and count-
ing of memory addresses, generate RAS and the CHIP SELECT signals, control the
data buffer output enables, and perform memory refresh. The logic functions needed
for this require 10 PALs: two AmPAL20L8B, two AmPAL16R4D, four AmPAL16R6D,
one AmPAL16L8B, and one AmMPAL22V10A. ' ’

In Figure 6-1, device U1 an AmPAL16L8B produces the_ load and count enable signals
for the address counters.

Device U2, an AmMPAL22V10A proVides a refresh interval éountér and refresh request
logic. '

Devices U4 and U5 AmPAL20L8B PALs perform address decode fb,r instruction and
data accesses. Their outputs indicate when this memory block has been addressed,
when an access is to begin, and when an access is terminated.

‘De.vicés ui5 through u20, four AmPAL16RGb and two AmPAL16R4D PALs, form a
.- complex state machine that controls the RAS, CHIP SELECT, output buffer enables,
write enables, and memory response signals. ‘

Response Signal Gating

As noted in the last chapter, the memory response signals from all system bus devices
are logically ORed together before being returned to the Am29000 processor. An
example of this circuitry was shown in Figure 4-3. These gates are not counted as part
of the components within the memory design since they are shared by all the bus
devices in the system and as such are part of the overhead needed in any Am23000
system

Memory lnterface Loglc Equahons .

- State Machine

The control logic for this memory can be thought of as a Mealy type state machine in
which the outputs are a function of the inputs and the present state of the machine.
This structure is required since some of the output signals must be based on inputs
which are not valid until the same cycle in which the outputs are required to effect
control of the memory. - : . .

As shdwn in Figure 6-2, this state machine can be described as héving 15 states.
These states control the enabling of activity on the memory RAS, CHIP SELECT ,
"burst acknowledge output buffer enable .and ready lines..

. lDLE is the default state of the mterface state machine. It is-characterized by Instruction
Burst ACKnowledge (IBACK) and Data Burst ACKnowledge (DBACK) both being inac-
tive and no refresh activity in progress. This state serves as a way of identifying when
the memory is not being accessed and could be placed into a low power mode. This
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state also serves as a precharge cycle for the memory when a transition is made be-
tween instruction, data, and refresh sequences. A transition to either the Instruction
RAS (IRAS) or Data RAS (DRAS) states occurs when an address selecting this memory

- block is placed on the address bus. A transition to the Refresh Request 1 (RQ1) state
occurs when a refresh request is active. Refresh will take priority over any pending
instruction or data access request.

The IRAS state occurs during the first cycle of memory access following a new instruc-
tion address being presented on the address'bus. During this state the instruction
output buffer enables and Ready response lines are held inactive and the IBACK and
RAS lines go active. The address latches are closed to hold the memory address.
RAS is used as the input to a delay line whose output will switch the address mux to the
_ column address after the row address hold time is satisfied. The transition to the
~ Instruction'Column Address Strobe (ICAS) state is unconditional.

- During the ICAS state the memory CHIP SELECT signal goes active to start the first
" - access cycle. Since the CHIP SELECT access time for the memaries used is 45 ns, it
will take two cycles to access the memory, propagate data through the data buffers, and
meet the setup time of the processor. Therefore the transition to the Instruction AC-
CESS (IACCESS) state is unconditional.

Figure 6-2
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SCDRAM Memory State Diagram
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The IACCESS state is used during the third cycle of a new address access and during
all subsequent burst access cycles, whether active or suspended. In this state the
instruction output buffer enable and ready lines are allowed to be active as required by
the active or suspended status of an instruction burst request. When a new instruction
address appears on the bus, a transition to the PreCharge (PC) state will occur. Also, if
a data address selecting this memory block appears there will be a transition to the PC
state to force a preemption of the current instruction access. The same is true when a

- refresh request is pending. The state machine remains in the IACCESS state as the
default if no other state transition condition appears

During the PC state, both burst acknowledge signals will go inat inactive along with RAS.
The PC state will preempt any burst access and begin the RAS precharge required
before any new row address is applied to the memory. The precharge period for the
memory used is 80 ns so a second cycle of precharge will be done during the IDLE
cycle which unconditionally follows the PC cycle. Another important use of the PC state
is as a delay cycle in the transition between an active instruction burst access being
preempted and the start of the preempting data access. The delay is needed to allow
the completion of the final instruction access in the cycle that IBACK is deasserted and
the instruction burst access is preempted

There are two data access sequences one for read, and another for write accesses.

During a read access the sequence is the same as for an instruction access except that
during the Data ACCESS (DACCESS) cycles the DRDY and Data Output Enable (DOE)
signals are allowed to be active instead of the instruction related control signals. The
read DACCESS state is exited when a refresh is pending, or when a data access is
suspended. The exit transition is to the PC state.

A data write access is a little different in that during a write, the CHIP SELECT signal is
cycled to act as the write enable gate to the memories. This means that data to be
written is latched from the bus in the cycle prior to CHIP SELECT being made active.
Therefore the DRDY signal will go active one cycle before the CHIP SELECT goes
active. This creates a problem that is solved by the Write Burst Preempt (WBP1 and
WBP?2) states.

It is important to note that when the RFRQ1 signal is active, it will preempt a DACCESS
and that a write operation is, in effect, pipelined. Data to be written is removed from the
bus in the cycle before the write operation is enabled. So in the cycle that DBACK is
made inactive to preempt the access, there may be one last data word being accepted
from the bus. This word must be written in the following cycle. Also, at the point that a
refresh request goes active, DBACK will still be active and will not be made inactive until
the beginning of the next cycle. So, from the time that refresh request goes active until
~ the last write cycle in memory is done, two cycles will occur. These cycles are labeled
WBP1 and WBP2. During WBP1 the DBACK signal is made inactive to preempt the
_access, and data from the previous bus cycle is written. During WBP2 the last data
word accepted from the bus is written, at which point the exit to the PC state is made.

Finally there is the refresh sequence. Once the IDLE state is reached and a refresh is
pending, the refresh sequence will start as the highest priority task of the memory. In
fact, during the IDLE cycle, CHIP SELECT will go active to setup for a CAS-before-RAS
refresh cycle. This type of refresh cycle makes use of the SCDRAM internal refresh
counters to supply the refresh address. During RQ1, RAS is made active as during
IRAS and DRAS cycles. The RQ2 and RQ3 cycles are used to supply two additional
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wait states to make up the three cycles needed to satisfy the minimum RAS active time
. of 85 ns. oo . ;

Logic Details—Signal by Slgnal '

All signals are described in active high terms so that the desugn is a little easier to
follow. The signals as implemented in the final Programmable Array Logic (PAL) out-
puts will often be active low as required by the actual circuit design. The actual PAL
Definition files are included in Figures 6-3 through 6-18 at the end of this chapter.

NOTE: All PAL equations in this handbook use the following convention'

1. Where a PAL equation uses a colon followed by an equals srgn (:=), the equation
signals are REGISTERED PAL outputs. C

2. Where a PAL equation uses only an equals sign (=), the equation signals are
COMBINATORIAL PAL outputs :

RFREQ (Refresh Request) — Funny thing about dynamic memories, they're very for-
getful. They need to be completely refreshed every 4 ms, which translates into at least
one row refreshed every 15.6 ps on average. To keep track of this time a counter is
used. Once a refresh interval has passed, a latch is used to remember that a refresh is
requested while the counter continues to count the next interval. Once the refresh has
been performed, the latch IS cleared

The counter and refresh request latCh»lS implemented in an AmMPAL22V10A. Nine of
the outputs form the counter, which is incremented by the system clock at 25 MHz. This

- gives up to 512 x 40 ns = 20.48 ps refresh periods. The synchronous preset term for all
the registers is programmed to go active on a count value of 389 which will produce a
refresh interval of 390 cycles x 40 ns = 15.6 ps. The one remaining.output is used to
implement the refresh request latch. - That latch functlon (registered output) is also set
by the synchronous preset term

The equatlons for the counter are shown in Flgure 6-3 Below are the preset and
refresh latch equation: 4

SYNCHRONOUS PRESET =RFQ2 - RFQ3 » RFQ4 + RFQ5 » RFQ6 + RFQ7
. + RFQ8 « RFQS « RFQ10

RFRQO : RFRQO . (RFACK RQ1)

Refresh Sequence Equations — A refresh of the memory requires multiple clocks so
that the minimum RAS active time of 100 ns can be satisfied. To manage this the
following equations are used.-

RFACK — The Refresh Acknowledge (RFACK) is used to begin a refresh sequence
and to clear the pending refresh request. A refresh may begin when the state machine
has returned to the IDLE state indicated by IBACK and DBACKI being inactive. The
DBACKI signal is an internal version of DBACK which is active until all data write cycles
are completed. RFACK is held active until the end of the sequence, indicated by
RFRQ1 « RQ3. .

- RFACK := DBACKI - IBACK » RFRQ1
_+ RFACK - (RFRQ1 » RQ3),
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" RQ1, RQ2, RQ3 — The three cycles needed for a refresh are tracked by RQ1, RQ2,
and RQ3. RQ1 will not go active until the cycle following the IDLE state. This is con-
trolled by RQ1 « PCT - RFACK which is only true during IDLE. The RQ1 signal is held
active for all three refresh cycles to provide a single signal to identify when a refresh is
in progress. The RQ2 and RQA3 signals S|mply follow RQ1 with RQ3 signaling the last
cycle of the refresh sequence.

RQ1 := RQ1 *» PCT « RFACK
+ RQ1 + RQ3

RQ2 := RQ1 « RQ3

RQ3 := RQ2 « RQ3

REXIT — The Refresh EXIT (REXIT) signal is used to switch off the RAS signal at the
end of a refresh sequence. RQ3 causes an exit and the RFACK term causes REXIT to

be active outside of a refresh sequence to disable other equatlon terms using REXIT as
~ aholding input dunng arefresh sequence .

REXIT = RFACK
+ RQ3

IME — The use of the Instruction for ME (IME) sighal is based on the assumption that
other blocks of instruction or data memory may be added later and that there may be
valid addresses in address spaces other than instruction/data space.

This means that this memory will only respond with IBACK or DBACK active when this
block has been selected by valid addresses in the instruction/data space. This requires
that at least some of the more significant address lines above the address range of this

" memory block be monitored to determine when this memory block is addressed. Also, it
means the Instruction Request Type (IREQT) and Pin 169 lines must be monitored to
determine that an address is valid and lies in the instruction/data space. Further, when
a refresh request is pending the memory will not recognize its address. This will ensure
refresh has the highest priority during the IDLE state. :

IME is the indication that the address of this memory block is present on the upper
address lines, an instruction request is active, Pin 169 is inactive (test hardware has not
taken control), no refresh is pending, and instruction/data address space is indicated. In
other words this memory block is receiving a valid instruction access request. This

~ example design will assume that the address of this memory block is equal to A31 « A30
-« A29 - A28 + A27. The equation for this signal is: -

IME = IREQ - IREQT » A3T « A30 » A29 - A28 - A27 « Pini69 + RFRQ1

Note that IME is not directly implemenited as a PAL output in this desugn The terms are
~usedin the generatlon of the ISTART and IEXIT terms.

DME — The Data ME (DME) signal is the indication that the address of this memory
block is present on the upper address lines, a data request is active, Pin 169 is inactive,
refresh is not active, and instruction/data address space is indicated. In other words this
memory block is receiving a valid data access request. This example design will as-
sume that the address of this memory block is equal to A31" - A30 - A29 - A28 - A27.
Note that for instruction accesses the memory address for this block had A31 = zero
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where the data accesses to this block are valid for A31 = one.. This allows instruction

" memory for instruction accesses to be located at address zero while having the window

for data bus access to the instruction memory located at a different base address. This
allows the separate data memory block used in this design to have its base address
also at zero. Thus both the instruction and data memories are located at address zero
in their respective address spaces :

The equatlon for this S|gna| is:

DME = DREQ « DREQTO - DREQT1 . A31 . A30 . A29 A28 A27 Pin169
« REFRQT

As with IME this term is not directly implemented.

ISTART — The Instruction START (ISTART) signal causes the transition from IDLE to
IRAS states. Itis valid only in the IDLE or IACESS state with no refresh sequence start-

-ing, identified by not being in any other state via DBACKI « RFACK « PC1. Sowhenin
the IDLE or IACESS state and IME is active, ISTART is active.

ISTART = DBACKI « RFACK « PC1 « IME

DSTART — The Data START (DSTART) 3|gnal is similar to ISTART except with DME
as the qualifier.

DSTART = IBACK ¢« RFACK « PC1 « DME

START — The START signal is used to restart RAS following precharge when there is
still an active access in progress.  This condition occurs when an instruction or data
access is suspended and a new instruction or data access is started. In that situation
the memory must be precharged before the new address is presented along with RAS.
During this PC time the appropnate burst acknowledge sngnal is held active so as not to
preempt the new access.
START = T « PC2 « IBACK

+ « PC2 « DBACKI

+ C1 * PC2 RFACK

_l

IEXIT — The Instruction EXIT (IEXIT) equatlon identifies when it is time to leave the
IACCESS state. IEXIT is true if no instruction access is in progress. The IBACK input
causes this so that other equations that use IEXIT to hold a term active will have that
holding term made invalid when the IEXIT equation has no valid meaning i.e. when no
instruction access is active.

IEXIT is also active when a data access, a refresh, or an instruction access not ad-
dressing this memory is pending. But, each of these conditions for IEXIT is restricted in
one special situation.

When an instruction access is suspended and a new instruction access begins, IBACK
is already active in the first cycle of the new instruction.” The IBACK signal being active
tells the processor that the address has been captured by the memory and a new ad-
dress may be placed on the bus, perhaps one for a data access.
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- So, the memory is committed to accessing at least one instruction word for the new
* instruction access even though the address for the new access may change to begin yet
: another access. : . .

Therefore any subsequent data access, refresh, or instruction access must be held off
until at least one word of the new instruction-access can be read. Note that this can
take several cycles since, when a new instruction access starts after a previously sus-
pended one, the memory must be precharged followed by the normal sequence of RAS
and CHIP SELECT signals before the new instruction access is complete.

This restriction is applied by not allowing an exit until after the PC states and instruction
access sequence are complete These are represented by PC1 PCE and 1Q1 in the
final equation. .

‘As noted before, the DME term is a documentation convenience. In the IEXIT equation
this term is directly expanded so that all inputs of DME are inputs to IEXIT. This elimi-
nates a level of logic delay that would be needed if DME were |mplemented as the
output of another PAL. ,

The IEXIT equation is:

IEXIT = DME « 1Q1 * P_Ci- PC2.
+ IREQ « 1QT - PCT - PC2
+ RFRQ1 « 1QT - c . PC2

+ IBACK

A data request to this memory block for instruction data space takes priority over an
instruction fetch in progress. Also, if a new instruction fetch stream is started, this
memory interface can return to the idle state.

DEXIT — The description of IEXIT applies directly to the Data EXIT (DEXIT) signal; the
logic is the same with data respective signals substituted for instruction terms. The only
difference is that the first exit term is a little different. A data access terminates when
there is no further data burst requested. This approach is an optimization for use with
the Am29000. It makes use of the fact that the Am29000 will never suspend a data
transfer and burst data transfers will always go to completion in a single contiguous
burst access. When a burst simple or piplelined access ends, the memory immediately-
‘goes into precharge so the memory will be ready for subsequent accessess with a
minium |n|t|al access delay ‘ :

DBREQ.D

* DEXIT = Daf - c I
+ DAl - PC2 + RFRQT
+ DBACKI

IBACK — The Instruction Burst ACKnowledge (IBACK) signal is applied to the
Am29000 and is in effect the indication that the interface state machine is in an active or
suspended instruction access. The equation is:

IBACK := BINV « ISTART
+ TEXIT

The IBACK active state is entered when ISTART is active and the bus state is valid on
the same cycle. Note here that the BINV input is used directly rather than the registered
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form of BINV.D: The timing of BINV is such that it will just meet the setup time of a D-
speed PAL input. The BINV signal is required as the qualifier since ISTART is a combi-
natorial signal. IBACK will remain active untll one of the IEXIT conditions is active or
the bus goes invalid.

IBACK.D — The IBACK Delayed (IBACK.D) S|gnal is snmply a one cycle delayed ver-
sion of IBACK.

IBACK.D := IBACK

It is used in the generation of IRDY, Instruction Output Enable (IOE)0, and IOE1.
DBACK — The Data Burst Acknowledge (DBACK) S|gnal is applled to the Am29000
and is in effect the indication to the processor a burst access is allowed DBACK is es-

sentially the same as IBACK but with data respective terms substltuted

DBACK := BINV « DSTART
+ DEXIT

DBACK.D — The DBACK Delayed (DBACK.D) signal is simply a one cycle delayed
version of DBACK.

DBACK.D := DBACK
Itis used in thebgeneratioyn of DRDY.

DBACKI — The DBACK Internal (DBACKI) signal is a memory. interface internal version
of DBACK to the Am29000 and is in effect the indication that the interface state ma-
chine is in an active or suspended data access.. This signal will stay active during the
DWBP states after DBACK has gone inactive to preempt a data burst write operation.
The equation is:

DBACKI := BINV ¢ DSTART
+ DEXIT
+ DWBP

Instruction Initial Access States — Signals IQ1, 1Q2, and IQ3 are used to control the
state transitions from IRAS to. IACCESS during the first instruction access. 1Q1 goes
active during IRAS and remains-active for two additional cycles.  IQ1 will go active when
there is a valid ISTART or when there was a previously suspended instruction access
and a new instruction access was accepted; indicated by PC1 « PC2 « IBACK. Q2 and
IQ3 follow 1Q1 with 1Q3 indicating the |ast cycle of the lnmal access.

Ia: = BINV - TQT - ISTART - IBACK
: + 107 + FCT + PC2 » IBACK |
+ 1Q1 «1Q3 .
102: = 1Q1 - TO3

103 = 102 - 103
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Data Initial Access States — These equatrons are the same as for 1Q1-1Q3 with data
respectrve mputs . : :

V . QT - DSTART - DEACK
FCT « PC2 + DBACK
bO3

DQ2 := DQ1 - DO3

DQ3 : DQ3

]
o
Q
n

Data Write Burst Preempt States — When a data write operation is forced to preempt
by a refresh request there are two additional write cycles that must be completed before
PC is started. These states are tracked by the Data Write Burst Preempt (DWBP),

'DWBP1, and DWBP2 signals. DWBP starts the sequence ‘'when a data write is in
progress, with burst request active, after the initial data write is completed, and a refresh
is pending. DWBP1 and DWBP2 simply follow DWBP to indicate those states.

DWBP = DBACK! « RW « DBREQ.D « RFRQ1 « Dd1 . DWBp2
' DWBP1 := DWBPT + DWBP ‘
DWBP2 := DWBP2 + DWBP1

Precharge States — At the end of any access, the BAS lines must be made inactive to
precharge internal memory buses before another access with a different row address
may begin. Two cycles are needed and are indicated by the signals PC1 and PC2.

* PC1 is active during the PC state and PC2 is ‘active during the first cycle of the IDLE

- state. PC1 goes active as the result of an IEXIT condition during instruction access, a
-+ “DEXIT condition during data access following any Data Write Burst Preempt (DWBP)

" cycles, and at the end of a refresh sequence.~PC2 simply follows PC1.

PC1 := PCt1 « IBACK « IEXIT
+ PC1 « DBACKI « DWBP « DEXIT' +-
+ PC1 - RQ3

PC2 PC1 - PC2

LD — The Load (LD) srgnal enables the lower address blt counters and the upper ad-
dress bit latches to load a new address on the next nsmg edge of’ System ClLock
(SYSCLK) The equatron is: 3

LD.= IQf - “E:T . DBACKI . IREQ
DQ1 « PC1 « IBACK - DREQ

+

When an Instruction Request (IREQ) s:gnal is actrve, Ioad is prevented from being
active while a data access is active or suspended. In other words, when the state
machine is in a data access state a load that would result from an instruction request is
suppressed. This prevents the changing of the address counter values until the data
access ends. Similarly, for the case that Data Request (DREQ) srgnal is active, load is
prevented when IBACK is active.

The LD signal is limited in length to one cycle by 1QT or DQT during an initial access.
It is limited to one cycle by PC1 when a new access begins during a previously
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suspended access. Limiting the LD signal to one cycle ensures that the correct address
is captured-and that LD does not interfere with the incrementing of the counters. The
LD signal is combinatorial so that it can be active during the first cycle of a new instruc-
tion or data request. :

Address Counters — There is one address counter for each bank of memory. Each is
implemented with one AmPAL16R4D and one AmPAL16R6D device. The counter
function is split across two PALs due to the number of product terms required to imple-
ment the upper bits of the counter. The lower half of the counter produces a carry out to
the upper counter half. The equations for both bank counters are the same. These
equations are shown in Figures 6-13 through 6-16.

The LSB bit of each counter is used as the means to control the timing of when the
upper seven bits of each counter will increment. Note that only the upper seven bits of
the counter are used as the low seven bits of address to the memory in a bank. This is
because, with two interleaved banks, the maximum length burst access is split between
the banks so each bank counter will never increment more than 128 times.

The upper bits of each counter increment on every cycle that the count signal is active
and the LSB is also active. The only exception to the latter condition is during a bus

_invalid cycle where BINV signal is used to prevent countmg when burst request may be
invalid. ;

The value of the LSB bit in each counter is different in any given cycle, which causes
the upper bits of the counters to increment on different cycles with regard to each other.
In other words, the upper seven bits of the counters will be out of phase in terms of
when they increment. This allows one bank of memory to start the access of the next
word in sequence while the other bank completes the access of the current word..

Count Signals — There are two Count (CNT) signals defined in this design, CNTO and
CNTH1, one for the even bank and one for the odd bank. This is because the even bank
always increments one cycle earlier than the odd bank during the initial access of mem-
ory. Once the counting is started out of phase between banks, the bank counters are
always incremented together to maintain the phase relationship. The CNT signals
cause the address counters to increment on the next rising edge of SYSCLK.

The CNTO controls the even bank counter. During either a data or instruction read
operation, the first active cycle of CNTO is during the DCAS or ICAS states indicated by
the first cycle in which DQ2 or 1Q2 is active. When the initial address selects an even
word of memory, this first count cycle increments only the LSB of the even bank
counter. This does not affect the memory address, but it makes the LSB high; this is
used as an indication in other equations that data from the even bank is to be placed on
‘the system bus. If the initial address selects 'an odd word, this first count cycle incre-
ments the whole even bank counter to point to the next even word in sequence after the
initial odd word that will come from the odd memory bank. In this case, the LSB bit is
low and indicates that the word, that is ready to be placed on the system bus, comes
from the odd bank.

_In the following cycle, 1Q2 or DOZ is still active, which ensures one more cycle of count.
Any further count cycles come from burst-request signals being.active during IACCESS
or DACCESS states.

. STATIC COLUMN DRAM WITH INTERLEAVED BANKS 6-15



Note that in case a burst access is suspended and a new access of the same type
begins, the address of the new access is loaded into the counter and the memory
precharges in preparation for a new RAS cycle. During the precharge cycles, the incre-
menting of the counter must be inhibited by PCT and PC2 so as not to change the
address stored in the counter before the RAS and the CHIP SELECT signal cycles for
the néw access.

The CNTO sngnal is handled differently during a data write in that any increment during
1Q3 or DQ3 must be qualified by a burst request in the previous cycle. This is needed
because in a write operation, the first Data Ready (DRDY) signal active cycle comes
one cycle earlier than in a read operation. ‘

CNTO = IBACK « IQ2
+ 'IBACK « 1Q7 - PC1 « PC2 » IBREQ.D
+ DBACK! « RW - DQ2 -
+ DBACKI « RW « DQ1 « PC1 » PC2 « DBREQ.D
+ DBACKI » RW « DQ2 » DQ3
+ DBACKI « RW « DQ3 « DBREQ.D
. + DBACKI « RW » DQ1 « PCT - PC2 - DBREQ.D

The CNT1 signal controls the odd bank counter. This equation is essentially the same
as CNTO except that the first cycle in which CNT1 is active is always one later than it
would have been in CNTO.

IBACK-1Q3

IBACK « 1Q1 « PC1 » PC2 « IBREQ.D

DBACKI « RW+DQ3

DBACKI » RW - DQi « PC1 - PC2 - DBREQ.D
DBACKI « RW « DQ3 + DBREQ.D ‘
DBACKI « RW - DQ1 « PC1 « PC2 « DBREQ.D

CNT1

o

IRDY — The Instruction Ready (IRDY) S|gnal indicates that there is valid read data on
the instruction bus.

IRDY = 1Q3-
+ BINVD - Q7 « PCT + PC2 « IBREQ.D + IBACK.D

This memory design is always ready with data in the IQ3 cycle.

The memory is also ready when IBREQ is active with IBACK in the previous cycle. But,

again the special situation of a suspended burst operation followed by a new access of

the same type, is handled by adding 1Q1 < PC1 « PC2 to the equation. This prevents

IRDY from going active until the new access has had time to precharge and readdress

the memory. The BINV.D input is used to prevent false ready indications due to signals
on the bus being invalid. :

IBACK.D is required as a qualifier so that when an access is preempted the continued
presence of IBREQ will not cause a false ready indication. The BINV.D signal is used to
prevent false ready indications if the bus was invalid in the previous cycle. Note that

- situation can occur during a suspended access when the processor grants the bus to
another bus master.
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‘The reason that IRDY must be a combinatorial signal is that IBREQ comes very late in
the previous cycle and must be registered. There is no time to perform logic on IBREQ
in the previous cycle before SYSCLK rises. ' This means that the information that IBREQ .
was active in the last cycle is not available until the cycle in which IRDY should go
active for a resumption of a suspended burst access.

IOEOD and IOE1 — The Instruction Output Enable (IOE) signals are used to control
which bank is allowed to drive the instruction bus during each cycle. The signals use

- essentially the same logic as IRDY except that each signal is further qualified by the
output of the LSB bit of the even bank counter (Q02E). This bit keeps track of which
memory bank is ready to provide data to the instruction bus. The even bank is enabled
when IRDY is active and the QO2E bit is active. The odd bank is enabled when IRDY is
active and QO2E is inactive.

IOE0 = QO2E - 1Q3 L .
- .+ BINV.D » QO2E « 1Q1 » PCT + PC2 « IBREQ.D » IBACK.D
 IOE1 = QO2E - IQ3

+ BINVD - QO2E - 1QT « PCT - PC2 - IBREQ.D - IB‘ACY_K.D_ :

DRDY — The Data Ready (DRDY) is the equivalent of IRDY for data accesses and

. therefore uses the same equation with data respective terms substituted for instruction

“terms. The one additional change is that a term is added to cause DRDY to occur one
cycle early during write operations. This is done because the data to be written is taken
from the data bus into a latch before actually being stored in the memory. This main-
tains the same memory timing used during read operations but write data is removed
from the bus one cycle earlier than when DRDY would normally go active during a data
read operation.

DRDY .= RW - DQ3 .
+ BINVD - RW + DQT « PCT « PC DBREQD DBACK.D
+ RW - DQ2 - DaQs
+ BINV.D - RW + DQ3 « DBREQ.D « DBACK.D

+ BINV.D - RW - DQT -"PC1 » PC2 « DBREQ.D « DBACK.D

DOEO and DOE1 — The Data Output Enable (DOE) signals serve the same function for
DRDY as the IOE0 and IOE1 signals serve for' IRDY. Their signal descriptions are the
same as for the IOE signals. The only difference is that the DOE signals are active only
during read operations.

DOEO = RW - QO02E - DQ3
+ BINV.D « RW « QO2E - DQf - PC1 « PC2 - DBREQ.D » DBACK.D
DOE1 = RW + Q02E - DQ3

+ BINVD RW . QO2E DQ1 « PC1 - PC2 - DBREQ.D - DBACKD

WE — Wirite Enable (WE) is a registered signal that goes active during the first DQ2
active cycle. It stays active throughout the data write operation. The CHIP SELECT
signal is used in this design as the actual write gating signal. This was done to reduce
the number of write signal outputs. Address, RAS and the CHIP SELECT lines have
been duplicated in this design so that only half of each memory bank is driven by a
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given output. This reduces the capacitive and inductive loading on each output so as to
improve signal speed. Since the CHIP SELECT signal lines have already been doubled
they are used as the write gate. The write enable line can thus be made active early in
the cycle to have additional time to drive a heavier load.

DBACKI « RW
DBACKI » RW

WEO0
WE1

W

Data Latch Enables — Data Latch Enable 0-and 1 (DLEO and DLE1) are the signals
that enable the write data latches on the D input of each memory bank to load new data.

The latches are enabled on every other cycle so that data is held valid long enough to
satisfy the hold time after the CHIP SELECT signal goes active. The Q02E counter
output is used to control which latch is enabled on a given cycle. A delayed version of
the system clock is used to further place a window on the latch enable. This is an 8 ns
delay generated in U111. Only during the high time of the delayed clock signal will the
data be allowed through the latch. This is done to ensure that data is latched before the
end of the system clock cycle when the processor begins changing the data value for
the next write cycle. That could not be guaranteed by QO2E alone since it is a regis-
tered output with a clock-to-output delay. This is also the reason that the clock used is a
" delayed version of the system clock. This clock is delayed long enough to ensure that
the worst-case clock-to-output time on Q02E has passed before enabling the latch.
This ensures that no data is lost by having the latch enabled during the switching transi-
tion of QO2E as might happen if simply the system clock were used instead of the
delayed clock.

QO02E » CLKD

DLEO
DLE1 = QO2E + CLKD

Row Address Strobes — There are five duplicated Row Address Strobe (RAS) lines.
Four are used to drive the memories and one drives the delay line used to switch the
address mux at the appropriate time. Multiple lines are used to split the capacitive and
inductive load of the memory array to improve signal speed.

RAS is made active by a valid ISTART, DSTART or START condition. RAS is held
active until an exit condition exists for the type of access in progress.

RASOH := BINV - RASOH - START
BINV - RASOH » DSTART

++ 4+ ++

RASOH

: Chip Select Lines — As with the RAS lines, the CHIP SELECT lines are duplicated to
split the memory load.

The CHIP SELECT sugnal goes active in the cycle after RAS during instruction or data
accesses. During a data write access the CHIP SELECT signal is enabled only when
the appropriate bank is written with data. This is controlled with the QO2E line from the
even bank address counter. CHIP SELECT signal during write is further gated by
DRDY being active on the previous cycle which ensures that a write only occurs when
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valid data was taken from the bus. Only in the case of a refresh sequence will CHIP
SELECT signal be made active prior to RAS. This will initiate.a CAS before RAS re-
fresh cycle in the memories. In this case the CHIP SELECT signal is made active
. during the IDLE state.

CASOH RAS -« IBACK
RAS « DBACKI « RW
RAS « DBACKI + RW « Q02E « DRDY
RAS .« IBACK - DBACKI + RFRQ1

+ o4+

CAS1H RAS
RAS
RAS

RAS

IBACK

DBACKI « RW

DBACKI « RW - QO02E « DRDY
IBACK « DBACKI » RFRQ1

+ + +

Upper Address Bits Latch — The address bits, 13 through 22, are latched by two
D-speed PALs. All the bit equations are the same. Data is flow through when the
Address Latch Enable (ALE) term is active and latched when ALE is inactive. An addi-
tional term ANDs the data input and output to prevent any possible loss of data during
the ALE transition that might be caused by timing skew on ALE within the PAL (note the
ALE “term” is a documentation convenience only; where ALE is shown, the actual logic
definition of ALE is substituted). The ALE term is made active each cycle by a delayed
version of the system clock. The delayed clock is used for the same reasons described
for the DLE signals. During the initial access of an instruction or data word ALE is
prevented from going active by the IQ1 and DQ1 terms. ALE is also held inactive
during PC1 and PC2. This is done to preserve the address when a suspended access
is followed by another access of the same type. In this case the address must be held
while the memory is precharged and during the RAS cycle of the new access.

LA22 = ALE « A22
+ ALE - LA22
-+ A22 « LA22 .

ALE =101 - DQ1 » PC1 - PC2 « CLKD

PAL Definition Files
The PAL definition files are provided in Figures 6-3 through 6-18.

NOTE: All PAL equations in this Application Note use the following convention:

1. Where a PAL equatlon uses a colon followed by an equals sign (:=), the equation
signals are REGISTERED PAL outputs.

2. Where a PAL equation uses only an equals sign (=), the equation signals are
COMBINATORIAL PAL outputs. '

3. The device pin list is shown near the top of each figure as two lines of signal
names. The names occur in pin order, numbered from left to right 1 through 20.
The polarity of each name indicates the actual input or output signal polarity.
Signals within the equations are shown as active hlgh e.g., where signal names
in the pin list are: A B C; the equation is C = A + B; the inputs are A = low,

B = low; then the C output will be low.
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Figure 6-3

AmPAL22V10A SCDRAM Refresh 00unterlRequest Generator
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Figure 6-3 (Continued)

. Device U2 (Continued)

RFQ10 =
T+ RFQ2 * RFQ10
+- RFQ3 « RFQ10
+ RFQ4 - RFQ10
+ RFQ5 « RFQ10
+ RFQ6 « RFQ10
+ RFQ7 - RFQ10
+ RFQ8 « RFQ10
+ RFQY « RFQ10

RFQ2 - RFQ3 « RFQ4 « RFQ5 + RFQ6 - RFQ7 « RFQ8 « RFQ9 « RFQi0

SYNCHRONOUS PRESET =RFQ2 + RFQ3 « RFQ4 « RFQ5 - RFQ6 « RFQ7 « RFQ8

* RFQ9 - RFQ10

RFRQ1 = RFRQ1 ¢ (RFACK - RQ1)

Figure 6-4

AmPAL16R6D DRAM Refresh State Generator—lnterleaved

Device U15

CLK IBACK DBACK! RFRQ1 DBREQ.D DQ1 PC1 RW NC9 GND A
OE DWBP DWBP1 DWBP2 RFACK RQ1 RQ2 RQ3 REXIT VCC

RFACK := DBACKI + IBACK « RFRQ1
+ RFACK + (RFRQ1 - RQ3)

RQ1 = RQT - PCT + RFACK

+ RQ1 « RQ3
RQ2 :=RQ1 « RQ3
RQ3 := RQ2 « RQ3

REXIT = RFACK
+ RQ3

DWBP = DBACKI - RW - DBREQ.D - RFRQ1 » DQ1 - DWBP2

DWBP1 := DWBP1 - DWBP

DWBP2 := DWBP2 « DWBP1
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Figure 6-5

AmPAL16R6D DRAM Precharge State Generator—lnterleaved
Device U16 -

CLK ISTART DSTART 1EXIT NC5 D C7‘ RQ3 BINV‘: GND

OE DWBP IBACK DBACK DBACKI P C ‘NC18 NC19. VCC

IBACK = BINV « ISTART
+ IEXIT

DBACK BINV « DSTART e :

DEXIT

+

“ DBACKI := BINV . DSTART CoL e e B
DEXIT L -

DWBP

+ + '"'

PCT « IBACK - IEXIT

PC1 + DBACKI »: DWBP « DEXIT
PC1 - RQ3

PC1

v+"'"n'

PC2. . . = PC1 » PC2

Figure 6-6 AmPAL20L8B DRAM State Decoder—Interleaved
Device U4

RFRQ1 IREQ DREQT0 DREQT1 ‘IREQT PIN169 A31 A30:A29 A28 A27 GND

ISTART = DBACKI « RFACK « PCT - IME

2
Q
P

START= PC1  PC2
+ PC1
+ PC1 »

U0
Q0
[\SI M
23
> >
(e Xe]
xR

IEXIT

2
]
|
g/
N
]
=
m

-
b
N

.

)
=
I
[®)
oy

'i‘,++ It
2|9
-

«
| |
-

.

° el
N

.

3

m

0

NOTE: In the above equations, IME and DME ‘areiused only for clarity. The actual input terms
should be substituted when compiling this device.

DREQ - DREQTO « DREQT1 - A31 + A30 « A29 - A28 » A27 « PIN169

DME =
« RFRQ1
IME = IREQ « IREQT » A37 « A30 « A29 + A28 « A27 « PIN169 « RFRQ1
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Figure 6-7

AmPAL20L8B DRAM State Decoder——lnterleaved
Device U5

RFRQ1 IREQ DREQT0 DREQT1 PIN169 IREQT A31 A30 A29 A28 A27 GND
RFACK.DREQ DSTART DEXIT, DBREQ.D IBACK DBACKI PC1 PC2 NC18 DQ1 VCC

DSTART = IBACK - RFACK . Fﬂ « DME

i.PC2. IME DBREQD

1 « PC2 - RFRQ1

DEXIT DQ1
DQ1

+
+ DBACKI

NOTE: In the above equations, IME and DME are used only for clarity. The actual input terms
should be substituted when compiling this device.

IME = IREQ - IREQT A3T - A30 « A29 + A28 - A27 « PIN163 « RFRQT

DME DREQ « DREQTO - DREQT‘l . A31 « A30 - . A29 - A28 - A27 - PIN169 - RFRQT

Figure 6-8

.AmPAL1 GR;‘lD DRAM Instruction State Generator—Interleaved

Device U17

CLK TBACK ISTART IPC1 IPC2 IQ02E _IBREQ.D IBINV.D 'IBINV IGND

IBACK.D := IBACK

1Q1 := BINV - 1Q1 + ISTART » IBACK
+ 1Q1 - PCT « PC2 - IBACK
+ 1Q1 - 1Q3
Q2 =1Q1 « 1Q3
Q3 =1Q2 « 103
IRDY = 1Q3 -
+ BINV.D - 1Q1 « PC1 « PC2 « IBREQ.D * IBACK.D
I0E0 = QO2E - 1Q3 S —
+ BINV.D » QO2E - 1QT - P PC2 - IBREQ.D + IBACK.D
IOE1 = QO2E - 103

)
I

+ BINV.D » QOZE - IQ1 » PC1 « PC2 « IBREQ.D * IBACK.D
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Figure 6-9

AmPAL16R4D DRAM Data State Generator—lnterleaved
Device U18

OE DOEO DOE1 DQ1 DQ2 DQ3 DBACK.D DRDY BINV.D VCC

DBACK.D := DBACK

DQ1 = BINV « DQ1 » DSTART « DBACK

+ DQT - PCT « PC2 » DBACK
+ Da1 - DO3
DQ2 = DQ1 - DG3
DQ3 = DQ2-+ D03
DRDY = RW - DQ3 o :
+ BINVD - RW - DQ1 - PCT - PC2 + DBREQ.D + DBACK.D
+ RW - DQ2 - DO3 - :‘
+ BINV.D « RW - DQ3 +» DBREQ.D + DBACK.D '
+ BINV.D - RW - DQi - PCT - PC2 + DBREQ.D + DBACK.D
DOE0 = RW - QO2E - DQ3 .
-+ BINVD + RW - Q02E - DQT + PCT + PC2 + DBREQ.D + DBACK.D
DOE1 = RW - QOZE - DQ3

+ BINV.D « RW « QO2E « DQ1 « PC1 - PC2 - DBREQ.D * DBACK.D
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Figure 6-10

AmPAL16R6D DRAM RAS Generator—Interleaved
Device U19

CLK_ISTART DSTART IEXIT NC5 DEXIT NC7 REXIT BINV GND -
OE START RASOH RASOL RAS1H RAS1L RAS NC18 DWBP VCC

RASOH

e
z
<
)
>

SOH « ISTART
ASOH « DSTART
ASQH « START

EXI
E
EXIT
WBP
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STATIC COLUMN DRAM WITH INTERLEAVED BANKS 6-25



Figure 6-11

AmPAL16R6D DRAM CAS Generator—lnterleaved
Device U20

CLK QO2E IBACK. DBACKI RFACK RAS RFRQ1 RW DRDY GND
OE NC12 CASOH CASOL CAST1H CASiL WEO WET NC19 VCC .

CASOH := RAS -+ IBACK

+ RAS « DBACKI » RW ‘

+ RAS + DBACKI - RW - QOZE » DRDY

+ RAS « IBACK + DBACKI + RFRQ1
CASOL := RAS + IBACK

+ RAS » DBACKI » RW

+ RAS + DBACKI - RW » GOZE + DRDY

+ RAS - TBACK » DBACKI + RFRQ1’
CAS1H := RAS + IBACK

+ RAS » DBACKI » RW

+ RAS « DBACKI « RW » QO2E + DRDY

+ RAS - IBACK - DBACKI « RFRQ1
CASIL := RAS + IBACK

+ RAS « DBACKI « RW -

+ RAS « DBACKI «+ RW - Q02E + DRDY

+ RAS - TBACK - DBACKI « RFRQ1
WEO0 := DBACKI « RW
WE1  := DBACKI « RW

Figure 6-12 AmPAL16L8B DRAM Counter Load—Interleaved

Device U1

RwW CNTO LD DQ1 DQ2 DQ3 PCT PC2 CNT1 VCC

LD =1Qf - PCT - DBACKI - IREQ
+ DQ1 - PC1 - IBACK « DREQ
CNTO = IBACK « 1Q2
+ IBACK » TQ1 » PCT « PC2 + IBREQ.D
+ DBACK| « RW « DQ2 _
+ DBACKI « RW + DQ1 + PC1 - PC2 « DBREQ.D
+ DBACKI « RW « DQ2 - DQ3
+ DBACKI « RW « DQ3 - DBREQ.
+ DBACK! - RW - DQ1 « PC1 « PC2 « DBREQ.D
CNT1 = IBACK - 1Q3
+ IBACK - 1Q1 « PC1 » PC2 » IBREQ.D
+ DBACK! « RW « DQ3
+ DBACKI « RW « DQ1 « PC1 » PC2 « DBREQ.D
+ DBACKI « RW « DQ3 « DBREQ.D
+ DBACK! « RW « BQ1 « PC1 - PC2 « DBREQ.D
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Figure 6-13

AmPAL16R4D DRAM Address Counter—
Interleaved Section 0—Even Bank :
Device U6

CLK CNTO LD A02 A03 A04 A05 NC8- CLKD' GND
OE DLEO DLE1 QO02E QO3E QO04E QO5E BINV COUTO VCC

Q02E :=LD « A02 - BINV

+ LD + CNTO » QO2E » BINV
+ LD « CNTO » QO2E » BINV
+ BINV « QO2E

QO3E :=LD + A03  BINV L
+ LD « CNTO * QO3E + BIN
+ LD « CNTO - QO2E - QO3E - BINV
+ LD » CNTO » QO2E » QO3E » BINV
+ BINV « QO3E

QO4E :=LD + A04 « BINV
+ LD + CNTO * QO4E » BINV
+ LD + CNTO * QO2E « QO3E + QO4E - BINV
+ LD * CNTO « QO2E « QO4E « BINV
+ LD » CNTO - QO3E « QO4E » BINV
+ BINV « QO4E

QO5E :=LD » A05 « BINV
+ LD « CNTO » QO5E + BINV
+ LD * CNTO * Q02E + QO3E  QO4E - QO5E + BINV
+ [D + CNTO « QO2E + QO5E « BINV
+ LD + CNTO - QO3E + QO5E « BINV
+ LD « CNTO « QO04E - QO5E » BINV
+ BINV « QO5E

COUTO = QO2E » QO3E + QO4E - QO5SE

DLEG = QO2E + CLKD

DLE1 = QO2E + CLKD
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Figure 6-14

AmPAL16R6D DRAM Address cQuhter—
Interleaved Section 1—Even Bank
Device U7

CLK CNTO LD A06 A07 AO8 A09 A10 A11 GND
OE CTING QU6E QO7E QUBE QO9E Q10 Qi1 BINV VCC

QOBE := LD - A06 = BINV
+ LD + CNTO + QO6E * BINV
+ LD + CNTO + CINO - QO6E « BINV
+ LD « CNTO « CINO - QO6E - BINV
+ BINV » QO6E
QO7E = LD - A08 - BINV
+ LD « CNTO + QO7E - BINV
+ LD + CNTO » CINO « QO6E + QO7E « BINV
+ LD + CNTO « CIND » QO7E + BINV
+ LD + CNTO » QO6E - QO7E + BINV
+ BINV + QO7E ‘
QO8E := LD » A09 » BINV
+ LD « CNTO » QO8E » BINV ’ i
+ LD » CNTO « CINO - QOBE » QO7E + QOBE - BINV
+ LD « CNTO - CINO - QO8E - BINV
+ LD + CNTO + QO6E - QO8E - BINV
+ LD * CNTO « QO7E - QO8E + BINV
+ BINV - QO8E" - :
QOSE := LD - A09 » BINV
+ LD + CNTO + QO9E - BINV
+ LD » CNTO + CINO » QO6E + QO7E + QOSE « QOSE + BINV
+ LD » CNTO - CINO * QO9E - BINV
+ LD + CNTO - QO6E - QO9E - BINV
+ LD » CNTO - QO7E » QO9E - BINV
+ LD * CNTO - QO8E - QO9E « BINV
+ BINV + QOSE

NOTE: Even bank counter holds Q10 and Q11, odd bank counter holds Q12 and Q13.

Q10 :=LD - A10 + LD - Q10
Qi1 :=1LD - A11 + [D » Q11
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Figure 6-15

AmPAL16R4D DRAM Address Counter—

Interleaved Section 0—0dd Bank

Device U9

CLK CNT1 ED AD2 A03 A04 A0O5 NC8 NC9 GND
OE NC12 NC13 Q020 Q030 Q040 Q050 BINV COUT1 VCC

Q020 =
+

+ +

Q030

+ 4+ 4y

Qo040

oy

Qo050

+F oy

LD « AO2 - BINV
LD - CNT1 - Q020
LD « CNT1 - Q020
BINV « Q020

LD - A03 - BINV
LD - CNT1 - Q030
LD » CNT1 - Q020
[D - CNT1 - Q020
BINV - Q030

. A4 - BINV
D - CNTT « Q040
LD - CNT1 - Q020
LD - CNT1 - Q020

- CNT1 - Q030
BINV + Q040

LD « A05 + BINV
CNT1 - Q050

BINV
Q030
Qo040
Qo040

BINV

« CNT1 - Q020 - Q030
LD « CNT1 - Q020 « Q050
« CNT1 « Q030 - Q050

LD + CNT1 - Q040 - Q050

BINV - Q050

COUT1 = Q020 + Q030 » Q040 « Q050
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Figure 6-16

AmPAL16R6D DRAM Address COunter—
Interleaved Section 1—0dd Bank
Device U116

CLK CNT1 LD A06 A07 A08 AQ9 13 GND

A12 A :
OE CINT Q060 Q070 Q080 Q090 Qi2 Q13 BINV VCC'

Q060 := LD « A06 « BINV
+ LD « CNTT « Q060 + BINV .
+ LD + CNT1 « CIN1 - Q060 - BINV
+ LD » CNT1 « CINT » Q060 + BINV
+ BINV « Q060
Q070 := LD + A08 + BINV
+ LD « CNTT « Q070 « BINV
+ LD « CNT1 + CINT « Q060 * o o BINV
+ LD « CNT1 « CINT » Q070 -
+ LD « CNT1 + Q060 + Q070
+ BINV + Q070
Q080 := LD « A09 * BINV
+ LD - CNT1 » Q080 « BINV -
+ LD « CNT1 - CINT - Q060 - Q070 - Q08O - BINV
+ LD » CNT1 « CINT » Q080 « BINV -
+ LD + CNT1 » Q060 » Q080 - BINV
+ LD «.CNT1 - Q070 - Q080 * BINV
+ BINV + Q080 :
Q090 := LD + A09 - BINV
+ LD + CNTT » Q090 + BINV ‘ o
+ LD » CNT1 « CIN1 - Q060 » Q070 - Q08O - Q090 - BINV
+ LD « CNT1 « CINT - Q090 « BINV_ =~
+ LD « CNT1 » Q060 * Q090 - BINV
+ LD » CNT1 - Q070 - Q0SO - BINV
+ LD « CNT1 » Q080 » Q090 * BINV
+ BINV < Q090

NOTE: Even bank counter holds Q10, Q11 and odd bank counter holds Q12 , Q13

Q12 = LD - A12
+ LD« Q12
Q13 = LD+« A13
+ LD« Q13
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Figure 6-17

 LA15

AmPAL16L8D DRAM Row Address Latch—Interleaved
Device U8 o . : .

CLKD TQ1 A13 A14 A15 A16 A17 PC1 PC2 GND
DQ1 NC12 LA13 LA14 LA15 LA16 LA17 NC18 NC19 VCC

LA13 = ALE - A13
"+ ALE - LA13
A13 - LA13

ALE « A14
ALE - LA14
Al4 - LA14

ALE « A15
ALE + LA15
A15 « LA15

ALE - A16
ALE - LA16
A16 « LA16

ALE - A17
ALE -« LA17
A17 « LA17

NOTE: The term ALE is used for clarity only. The true form of ALE is:
ALE =1Q1 - DQ1, - PC1 » PC2'+ CLKD

+ + 1

LA14

+ 4+

+ + 1

LA16

+. .+ I

LA17

+ 4+ 0

Figure 6-18

AmPAL16L8D DRAM Row Address Latch—Interleaved
Device U111 -

CLKD TQi A18 A19 A20 A21 A22 PC1 PC2 GND

DQ1 NC12 LA18 LA19 LA20 LA21 LA22 NC18 NC19 VCC

LA18 = ALE - A18
ALE - LA18
A18 + LA18

ALE - A19
ALE « LA19
A19 « LA19

ALE « A20
ALE « LA20
A20 - LA20

ALE + A21
ALE - LA21
A21 - LA21

ALE - A22
ALE - LA22
+ A22 « LA22

R

LA19

+ 4+ 0

LA20

+ +

LA21

+ + 1

-
>
N
N

+ 1

NOTE: The term ALE is used for clarity only. The true form of the ALE signal is:

ALE =1Q1 - DQ1 « PCT « PC2 + CLKD
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Intra-Cycle Timing

This memory architecture has three basnc cycle tlmlngs The first is a cycle used to
decode the memory address and control signals from the processor. At the end of this
decode cycle, the address is loaded into the address counter and the selected block of
memory begins its initial access in the next clock cycle. Following the decode cycle is
the row-address cycle in which the row address is made active at the beginning of the
cycle, and in which the address multiplexer is later switched between the row address
and the column address.

The third cycle timing is that of a burst access. The first burst access time is the time
required to access one of the memory banks. This time is designed to fit within two
clock cycles, so the initial burst-access time will be two cycles.

The combination of a decode cycle, followed by the row-address cycle, followed by the
first burst-access time defines a 4-cycle initial access time.

After the initial access, all burst accesses use the 2-clock-cycle timing of the initial burst
access. Because two memory banks are interleaved, the apparent access time from
the viewpoint of the system bus is only one cycle per burst access following the initial
access. ,

Decode Timing
Within the decode cycle the address timing path is made up of:

« The Am29000 clock to address and control valid delay of 14 ns,
"« Address decode logic PAL delay of 10 ns, (devices, U4 and U5).

« And the setup time of the address counter PAL, 10 ns (devices, U6-U11).
Assuming D-speed PALs, those times total 34 ns, as shown in Figure 6-19.
Also, within the decode cycle time is the control signal to response signal path. In fact
this timing path is present in every cycle in the sense that the memory response signals
must be valid in every clock cycle. This delay path is made up of:

« Clock-to-output time of registers within the control logic state machine PAL, 8 ns;

» Propagation delay of the control logic PAL, 10 ns;

« Propagation delay of a logical OR gate on the response signals from each mem-
ory block, 10 ns;

» And control signal setup time of the processor, 12 ns.

Again assuming D-speed PALs, these times total 40 ns, as shown in Figure 6-19.
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Row Address Timing

Within the row address cycle the RAS line goes low which initiates a time delay signal
which later causes the address multiplexer to change from the row to the column ad-
dress as shown in Figure 6-20.

The RAS delay path is made up of:

» Clock-to-output time of RAS signal registers within the control logic state machine
PAL (8 ns) plus an added delay due to capacitive and inductive loading by the
memory array of the PAL outputs. Since this load is in excess of standard data
sheet test loads, the equations in appendix A are used to estimate the added
delay. That delay estimate is 6.5 ns. ‘This is added to the 8 ns (standard 50 pf
load) delay of the RAS line for a total of 14.5 ns worst case.

The Address path is made up of:

+ Clock to Output time of RAS output not loaded by memory array, 8 ns.

 Delay line time, 16 ns.

+ Minimum and maximum switch time of the multiplexer, 4 ns to 9.5 ns.

* Memory load delay of 6.5 ns. -

This works out to satisfy the 15 ns of required hold time of address after RAS goes
- active. Also the column address is settled by 40 ns into the cycle.

Figure 6-19 Address Path
teo, Am29000 L
tpd, Control PAL _10 34ns
tsy, Counter PAL S | I
Control Path
tco, Control PAL |8
tpd, Control PAL _10_ 40ns
tpd, Response PAL _10
tsy, Am29000 Setup _12 |

10117A-6.19

SCDRAM Interleaved Bank Memory Decode Cycle

Figure 6-20
tco, PAL RAS Output 8

tidg, Memory Load Delay 6.5

tpd Delay Line 16 40 ns
tsw, Addr MUX Switch Time 9.5

tig, Memory Load Delay 6.5

10117A-6.20A

SCDRAM Interleaved Bank Memory RAS Cycle

STATIC COLUMN DRAM WITH INTERLEAVED BANKS 6-33



Burst Timing
- Within the burst access cycle the address to data path t|m|ng is determined by:

. The clock to output time of the address counter (8 ns for a: D -speed, PAL)

- Propagation delay of multiplexer (7 ns) plus added delay for heavy capacitive
and inductive load as determined in Appendlx A. The added delay is estimated
to be 6 ns.

. Mem‘ory access ltin;e in‘ static column mode, 45 ns),‘

« Data buffer delay (FCT244A =43 ns),

. And the processor set-up time (6 ns).
Those delays total 76.3 ns worst case as shown in Figure 6-21.
Inter-Cycle Tlmlng

Inter-cycle timing for instruction, data read and data write cycles are provided in Figures
6-22 through 6-24.

Figure 6-21

t co, Address Counter PAL |8

t pd, MUX 7

t |d, - Memory Load Delay 6

t aa, SCDRAM - _l45 76.3ns
t pd, FCT244A Buffer _ 43

t sy, Am29000 Setup 8

10197A-621A ) le— 40 NS —» -

SCDRAM Interleaved Bank Memory‘ Burst Access
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Figure 6-22

Te(m)]

10117A-6.22A

DRAM Instruction Timing
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Figure 6-23

DATA I : ; T X X [Dom[De (n:ilDo(neilDo(n+1DE ()
10117A-6.23A v

DRAM Data Read Timing
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Figure 6-24

SYSCLK
DREQ
DBACK
DBREQ
DBREQ.D
BRDY
bai

10117A-6.24A

DRAM Data Write Timing
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Parts List ’ '
The part list for the Am29000 Interleaved Dynamic RAM Interface is provided in

Table 6-1.
Table 6-1 Am29000 Interleaved Dynamic RAM Interface Parts List
ltem No. v . Quantity - Device Description
" Ut "1 AmPAL16L8B
u2 - 1 AmPAL22V10A
u4,uUs = . 2 AmPAL20LS8B .
ue,u9,u17,u18 4 AmPAL16R4D
uz,uio,uis,U1s, U19 U20 6 AmPAL16R6D
us, Uit - -2 - AmPAL16L8D
uU21-U8s5 - 64 TC511002-85
us 1 74F175
ui2-U14, U114-U116 6 - 74F158
- U86-U94 '8 . "Am29C843A
_uUes-U110 16 - IDT74FCT244A
Uttt . - 1. MTTLDL-8
112 pkgs '
‘ DATA MEMORY

As shown in Figure 4-1 the instruction and data memories for the Am29000 are sepa-’
rate structures. - The data memory can.be an exact subset of the instruction memory
. design. In fact the exact same design can be used by tying the instruction-related
" control signals to the inactivé state. But, since the data memory is a subset, it is also
possible to save a few chips by eliminating the instruction-related control signals and re-
arranging the distribution of logic terms between PALs.

Wlth reference to the rnstructron memory design defined in this chapter the followrng
- changes'may be made to convert it to a data-memory:

» All instruction related mputs can be removed and all the affected equations
simplified; '

» U17, the instruction-state machine PAL, can therefore be removed entirely;
» The START signal can be moved to U16; therefore U4 can be eliminated;

» The 74F175 from the instruction-memory can also be used to supply the delayed
control signals to the data memory, thus eliminating the need for U3;

« The ALE function from U8 and U11 can be moved to U1. Therefore U8 and U11
could be replaced by a single 10-bit latch such as the 29841A;

« And finally, the instruction-bus output buffers can be eliminated.
In total, the design can be reduced by 12 chips. The details of the logic equation simpli-

fications will be left as an exercize for the reader. All other aspects of the design are the
same as for the instruction memory described in the previous section.
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OVERVIEW

Video DRAM Advantages

Video DRAM (VDRAM) offers an excellent way to reduce the complexnty and compo-
nent count of the memory system. A VDRAM has a dual-ported internal memory array.
The first port allows read and write random access to the memory array just as a stan-
dard DRAM does. The second port is a serial shift register which is loaded from (and in
some cases may be written to) one row of the memory array in a single access cycle.
Once the serial shift register is loaded, it may be shifted independently of the random-
access port. In effect, a VDRAM provides independent and concurrent access to a com-
mon memory array via these two ports. A single address bus provides access to either
port. :

This memory architecture greatly s:mplmes the /nterface to the Am29000. The shifter
port can be connected to the instruction bus to prowde sequential instruction streams.
The random-access port can be connected to the data bus to provide read and write
random access to data structures. And, both ports are addressed via the Am29000
address bus.

This nicely places both the instruction and data space in a common memory, thus
significantly reducing the complexity of control logic and eliminating the need for many
data buffers. Shared instruction and data space in a common memory also results in
more efficient use of total memory space. This often results in a significant reduction in
required memory size, therefore reduced component count. Due to the ability to concur-
rently access instructions and data, the VDRAM memory is still able to provide perform-
ance near that of the SCDRAM design from the last chapter.

The drawbacks.to VDRAM are: a slower initial access time, lower density of currently
available memories, and higher per memory cost, although much of the higher cost is
offset by the lower cost of control and buffer logic in the system. Soon-to-be-available
1Mbit VDRAMs will remove the density limitation as compared with currently available
1Mbit DRAMSs, although thelr initial cost will be high compared to the same density
DRAMs.

Currently available VDRAMs also are unable to provide serial shifter ports fast enough
to support a 40 ns instruction access time. To provide single-cycle burst instruction
access speed, the current VDRAMs must be dual-bank interleaved. Again, future
VDRAM may have the speed needed to eliminate dual-banking requirements. Where
lower cost and simplicity is more important than a 20% clock-rate reduction, the system
clock can be slowed to 20 MHz so that a single bank of VDRAM can keep up with the
demands of the instruction bus.

As was described in the last chapter, the Am29000 provides unique features that allow
the use of slower memories such as the VDRAM without the severe performance
reductions that plague other high-performance microprocessors when using similar
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memory systems As a result, VDRAM memories can significantly reduce system com-
plexity and provide-a fairly dense system memory, while also improving system perform-
ance-to-price ratio. The cost of the memory system drops while performance is reduced
only slightly.

Memory Features

The memory design described in this chapter is an extensuon of the memory designs
from the previous chapters. The first major difference, however, is that there is a single
block of memory for instruction and data as shown in Figure 7-1. Within the memory
block, there are two banks of memory interleaved as odd and even words. For a de-
scription of interleaved memory architecture see the overview section of Chapter 5,
which discusses the bank-interleaved-SRAM concept.

Each bank is 64K words deep with each word being 32 bits wide. The total for the whole
memory block is then 128K words (512K bytes). It is possible to use 120 ns access-
time VDRAMs for both memory banks. : '

A non-sequentialv instruction access requires one cycle for address decode plus five ad-

ditional cycles for the first word accessed. The burst access timing is similar to that used
in previous chapters; each burst access is two cycles long. Overlapping the memory
bank access time allows this longer access time to be hidden from the system viewpoint
except on the first word of a non-sequential instruction access. The end result is a

- memory that provides 6-cycle access time for the first word of a non-sequential instruc-

tion access and single-cycle access for subsequent words in a burst transfer. A data
read access requires one cycle for address decode plus four additional cycles to com-
plete the access.

Figure 7-1
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AM29000 with VDRAM Memory
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A data write access requires one cycle for address decode plus two cycles or three

“cycles (depending on the memory used) to take data from the bus. The write operation
continues internal to the memory for one or two additional cycles but the data bus is
released after data is taken from the bus.

No burst accesses are supported for data. So, all data read accesses are five cycles
long and all write accesses are three or four cycles long. That is assuming the memory
has internally completed a write operation and/or RAS precharge before the next ac-
cess begins. If write completion time or RAS precharge time has not been satisfied, a
subsequent data access can require up to eight cycles to complete. This is based on
the worst-case data read immediately following a data-write operation.

The VDRAM random access read/write port is connected to the Am29000 data bus. The
serial-access shifter port is connected to the Am29000 instruction bus.

INTERFACE LOGIC BLOCK DIAGRAM (Figure 7-1)

The Memory -

The memories are 64K x 4 bit VDRAMs supplled by either Fujitsu (MB81461-12) or
NEC (PD41264-12). These memories have common data in and out lines. Their access
speed is 120 ns. Eight devices are required in each bank to form the 32-bit wide instruc-
tion word for the Am29000. These are shown as devices U15 through U30.

VDRAM is used in this design to illustrate the savings in complexity, component count,
and cost that the VDRAM architecture can provide when used with the Am29000.
Largely those savings come from the fact that the instruction and data words can reside
in a common memory array that still allows concurrent dual port access. Using one
memory array, instead of split instruction and data memories, eliminates one entire set
of memory control logic and data buffers. Also, the number of remaining control-logic
and data-buffer circuits is reduced, since external buffers are no longer needed to
support both data and instruction ports into the instruction memory.

Further, the VDRAM structure allows the boundary between instruction and data space
to be flexible and dynamic, thereby providing for more efficient use of memory than a
system that splits memory. This, in turn, may lead to reduced memory requirements in
general.

Data Bus Transceivers

The memory random access data I/O port is connected to the Am29000 data bus lines
via high-speed Am29C863 transceivers, U31 through U38 in Figure 7-2. These provide
sufficient drive current to handle any reasonable capacitive load on the data bus.

In a system known to have minimal capacitive load on the data bus, it is possible to
eliminate these transceivers. Note: if this is done, the Row Address Strobe (RAS),
Transfer/Output Enable (TR/OE) and Serial Output Enable (SOE) signals of the VDRAM
may need to be qualified by address line 2 (AX2) during data accesses so only one
memory bank can be output enabled for each access. A side benefit of doing this may
be lower power consumption by the memory system.
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Instruction Bus Buffers .

The memory serial-data outputs are connected to the mstructron bus.lines via buffers.

. These buffers serve to isolate the data outputs of this memory block from those outputs
of other memory blocks which may also drive the instruction bus. Also, the buffers serve
to isolate the even and odd banks of this memory block from each other so that simulta-
neous data access can go on in each bank independently. These buffers are shown as

devices U39 through U46 in Flgure 7-2.

Address Multlplexers

The upper and lower eight bits of memory address must be multlplexed into the address
inputs of the memories. Discrete multiplexers are used to perform this function. These
devices are shown as U5 through U8.

Note that in this design, unlike all previous chapters, the address is taken directly from
the bus and through the multiplexers to the memories. No latching or registering of the
address is done. This approach was taken to reduce the component count and com-
plexity of the design as part of the overall goal of illustrating a lower cost memory de-
sign. Doing this requires that the memory control logic force the Am29000 to hold the
address stable on the bus until after the RAS and Column Address Strobes (CAS) have
gone active. This is done by delaying the assertion of IBACK, or PEN during instruction
or data accesses respectively. .

This reduces system performance somewhat at least as compared with a split instruc-

~ tion and data memory system, or, a system in which there are multiple blocks of
VDRAM in which one block could be addressed for an instruction fetch while another
block is addressed for a data access. This is because the procéssor must, at times, hold
an address on the bus when it might otherwise have been able to begin another access
on an alternate memory block, assuming a memory that latches the address.

But, in a system having a single block of VDRAM, there is no benefit to latching the
address from the bus. This is because the memory can not be ready. to begin another
access until the access in progress is completed and the memory has completed the
precharge cycles that must occur between all non-sequential accesses.

NOTE: A word of warning, don't Use inverting buffers or multiplexers on VDRAM ad-
dress lines. Inverted random access 1/0 (DQ) port addressing would conflict with the
sequentually incremented addressing required by the design of the serial port.

-Bank Selector ‘ ,

Since a VDRAM uses a shift mechanism to provide the serial output of instructions,
- there is no need for an address counter. The initial address for an instruction burst
request determines the starting location in the memory row to be shifted out. All subse-
quent instruction words are read by providing a shift clock to the VDRAM. Also, because
the VDRAM shifter row is 256 words, the Am29000 always provides a new address at
the right time when a row boundary is crossed. In addition no address counter is re-
quired for data accesses since no burst data accesses are supported in this memory
design. S

This desigh does, however, use bank interleaving to overcome the access delay of the
VDRAM serial shifter port, so there must be a way provided to keep track of which bank
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should be output enabled on to the instruction bus during any given cycle. Also, a way is
needed to control the shift clock to each bank so that the instruction accesses are
overlapped properly.

This tracking function is provided by registering address line A02 at the beginning of an
access and then toggling the registered bit for each completed instruction access. This
registered output is called QO02E as in the past chapters.

Registered Control Signals
As noted earlier, the timing of the IBREQ, DBERQ, and BINV control signals require that

they be registered by a low-setup-time register; a F
7-2 is used.

Interface Control Logic ‘
This logic must generate the memory response signals, manage the loading of memory
addresses, generate RAS and CAS signals, control the data buffer output enables, and

175 register, U4, shown in Figure

“perform memory refresh. The logic functions needed for this require 9 PALs: one

Figure 7-2
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AmPAL20L8B, three AMPAL16R4D, two AmPAL16R6D, one AmPAL16L8D, one
AmPAL22V10A, and one AmPAL18P8B.

Referring to Figure 7-2, device U1, an AmPAL18P8B, serves to increment the memory
address for the even bank when the initial address of an instruction access is odd. This
causes the even bank to access the next even-bank word following the initial odd word.

Device U2, an AmPAL20L8B PAL, performé address decode for instruction and data
accesses. Its outputs indicate when this memory block has been addressed and an
access is to begm ‘

Device U3, an AmPAL22V10A, acts as a réfresh-intefval counter and refresh-request
logic.

Devices U9 through U14, two AmPAL16RGD three AmPAL16R4D PALs, and an
AmPAL16L8D form a state machine that controls the RAS, CAS, shift clock, transfer
cycle enable, bank selector, ‘output buffer enables write enables, and memory-response
signals.

Response Signal Gating

As noted in the last chapter, the memory-response signals from all system bus devices
are logically ORed together before being returned to the Am29000 processor. An ex-
ample of this circuitry was shown in Figure 4-3. These gates are not included in the
component count of this memory design since they are shared by all the bus devices in
the system, and as such, are part of the overhead needed in any Am29000 system.

MEMORY INTERFACE LOGIC EQUATIONS

State Machine o

The control logic for this memory can be thought of as a Mealy-type state machine in
which the outputs are a function of the inputs and the present state of the machine. This
structure is required since some of the output-sighals must be based on inputs which
are not valid until the same cycle in which the outputs are required to effect control of
the memory. As shown in Figure 7-3, thls state machine can be described as having 18
states.

IDLE Is the default state of the interface state machine. It is.characterized by there being
no instruction access in progress, or no data access in progress, and no refresh activity
in progress. This state serves as a way of identifying when the memory is not being
accessed and could be placed into a'low power mode. This state also serves as a
precharge cycle for the memory when a transition is made between instruction, data,
and refresh sequences. A transition to either the IRAS or DRAS states occurs when an
address selecting this memory block is placed on the address bus. A transition to the
RQ1 state occurs when a refresh request is active. Refresh takes priority over any
pending instruction or data-access request. There are five “Virtual States” shown in
Figure 7-3; they are IQ1 through 1Q4 and IACC. These states are needed due to the fact
that the serial data (SD) port of the VDRAM operates independently of the random
access /O (DQ) port after a row transfer cycle is completed. The states help illustrate
‘what might be called the “split personality” of the state machine. Once a transfer cycle
begins, there are in effect two active states in this state machine. One state tracks the
activity of the serial port control signals, and the other tracks the activity of signals
associated with the random access 1/O port.
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Figure 7-3
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The active states might be thought of as two tokens labeled SD and DQ being moved
around a game board. The DQ token is never allowed to follow the dotted line to the
virtual states. The SD token is always in one of the virtual states or the IDLE state, it
never enters any of the other states. When the SD token enters the IDLE state, it cannot
leave until the DQ token is also in IDLE and the ISTART condition is true.

When this situation occurs, the SD token moves to the 1Q1 state and the DQ token
moves to the IRAS state. This would represent the beginning of a row transfer to the
serial-shift port. The DQ token then tracks the progress of RAS, CAS, and address
signals applied to the VDRAM. When the transfer sequence is finished, the DQ token
goes through the precharge states and returns to IDLE. The SD token proceeds through
the 1Q states counting off the delay needed until the first instruction is ready at the
output of the SD port. In the IQ2 state, IBACK is made active to release the address
bus. In IQ3 and IQ4, the shift clock and bank select signals begin operation, to effect the
access of the first instruction word. In IACCESS, IRDY is allowed to go active. During
subsequent cycles of an instruction burst access, the active state remains IACCESS.
While the active state for instruction accessing is IACCESS, the DQ token is free to
move through data-access states or refresh states completely independently of the
instruction access in progress. When an instruction burst ends, the SD token returns to
IDLE and must wait until the DQ token completes an access or refresh sequence fol-
lowed by precharge before a new transfer cycle may begin.

The IRAS state occurs during the first cycle of a row transfer to the SD port following a

new instruction address being presented on the address bus. During this state, the

instruction output buffer enables and Ready response lines are held inactive and the

RAS lines go active. RAS is used as the input to a delay line whose output will switch

the address mux to the column address after the row address hold time is satisfied. The
transition to the ICAS state is unconditional. '

During the ICAS state CAS goes active to start the transfer cycle. Since the RAS mini-
mum pulse width is 120 ns, and minimum CAS pulse width is 60 ns, a WAIT state
-follows the ICAS state before the unconditional transition to the first precharge state.

During the precharge states, RAS goes inactive. The precharge period for the memory
used is 100 ns so a second and third precharge cycle is done during the PC2 and IDLE
states, which unconditionally follow the PC1 cycle.

During a DQ port read sequence, the DRAS state generates RAS and the address-mux
“select signals. The DCAS state makes CAS active. Since the access time from CAS is
60 ns, the total of CAS-clock-to-output delay, plus access time, plus data-buffer delays,
plus processor set-up time is in excess of 95 ns, which will require a WAIT cycle, finally
followed by the DACCESS cycle. During DACCESS, the DRDY signal is made active.

The DQ port write access is different only in that the DRDY signal may be made active
during DCAS since the data from the bus is written into the memory by the falling edge
of the CAS signal. Doing this allows the processor to begin a new address cycle on the
address bus during the WAIT cycle. This may help improve system performance if the
new address is directed at a different memory block that can immediately bégin a new
access. The WAIT cycle is used to fulfill the minimum CAS active time requirement. The
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DACCESS simplifies the design by allowing the logic that controls the state transitions
to be the same for both read and write operations.

Finally there is the refresh sequence. Once the IDLE state is reached and a refresh is
pending, the refresh sequence starts as the highest priority task of the memory. In fact,
during the IDLE cycle, CAS will go active to setup for a CAS -before-RAS refresh cycle.
This type of refresh cycle makes use of the VDRAM lnternal refresh counters to supply
the refresh address. During RQ1, RAS is made active as during IRAS and DRAS
cycles. The RQ2 and RQ3 cycles are used to supply two additional wait states to make
up the three cycles needed to satisfy the minimum RAS active time of 120 ns.

Logic Details—Signal By Signal

-All signals are described in active high terms so that the design is a little easier to
follow. The signals as implemented in the final PAL outputs are often active low as
required by the actual circuit design.. The actual PAL Definition files are included in
Figures 7-4 through 7-12 at the end of this section.

NOﬁ'E: All PAL équations use the following conventio'n:

- Where a PAL equation uses a colon followed by an equals sign (:=), the equation
signals are REGISTERED PAL outputs.

« Where a PAL equation uses only an equals sign (=), the equation signals are
COMBINATORIAL PAL outputs.

RFQ (Refresh Request) )

Funny thing about dynamic memories, they’ re very forgetful. They need to be com-

pletely refreshed every 4 ms. Which translates into at least one row refreshed every

15.6 ps on average. To keep track of this time, a counter is used. Once a refresh inter-

~ val has passed, a latch is used to remember that a refresh is requested while the

" counter contmues to count the next interval. Once the refresh has been performed the
latch is cleared. '

The counter and refresh request latch is implemented in an AmPAL22V10A. Nine of the
outputs form the counter which is incremented by the system clock at 25MHz. This
gives up to 512 x 40 ns = 20.48 ps refresh periods. The synchronous preset term for all
the registers is programmed to go active on a count value of 389 which will produce a
refresh interval of 390 cycles x 40 ns'= 15.6 ps. The one remaining output is used to
implement the refresh request latch. That Iatch function (reglstered output) is also set by
, the synchronous preset term.

The equations for the counter are shown in anure 7-4. Below are the preset and refresh
latch equation:

SYNCHRONOUS PRESET =RFQ2 + RFQ3 « RFQ4 - RFQS RFQ6 - RFQ7 « RFQ8
» RFQ9 « RFQ10

RFRQO := RFRQO + (RFACK - RQ1) °
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Refresh Sequence Equations
A refresh of the memory requires multiple clocks so that the minimum RAS active time
of 120 ns can be satisfied. To manage this, the following equations are used.

RFACK — The Refresh Acknowledge (RFACK) signal is used to begin a refresh se-
quence and to clear the pending refresh request. The RFACK signal goes active when
the state machine (DQ token) re-enters the IDLE state as controlled by IQ1 and DQ1.
RFACK:is held active until the refresh request is cleared, indicated by RFRQO « RQ3.

RFACK = DQf1 - 1Q1_- RFRQO
+ RFACK - (RFREQO « RQ3)

RQ1, RQ2, RQ3 — The three cycles needed for a refresh are tracked by RQ1, RQ2,
and RQ3. RQ1 will not go active until the cycle following the IDLE state. This is con-
trolled by RQ1 « PC1 « RFACK which is only true during IDLE. RQ1 is held active for all
three refresh cycles to provide a single signal to identify when a refresh is in progress.
RQ2 and RQ3 simply follow RQ1 with RQ3 signaling the last cycle of the refresh se-
quence.

RQ1 := RQ1+ PC1 » RFACK
+ RQ1 - RQ3

RQ2 := RQ1 * RQ3

RQ3 = RQ2 - RQ3

IME

The use of the Instruction for ME (IME) signal is based on the assumption that other
blocks of instruction or data memory may be added later and that there may be valid
addresses in address spaces other than instruction/data space.

This means that this memory will only respond with IBACK or DRDY active when this
block has been selected by valid addresses in the instruction/data space. This requires
that at least some of the more significant address lines above the address range of this
memory block be monitored to determine when this memory block is addressed. Also, it
means the Instruction Request Type (IREQT), Data Request Type (DREQT 0,
DREQTT1), and Pin 169 lines must be monitored to determine that an address is valid
and lies in the instruction/data space.

IME is the indication that the address of this memory block is present on the upper
address lines, an instruction request is active, Pin 169 is inactive (test hardware has not
taken control), and instruction/data address space is indicated. In other words this
memory block is receiving a valid instruction access request. This example design will
assume that the address of this memory block is equal to A31 « A30 - A29 + A28 » A27
« A26 - A25 « A24 « A23. The equation for this signal is:

IME = IREQ + IREQT « A31 . A30 « A2 « A28 « A7 « A26 « A25 » A24 « AZ3
« Pin169 '

Note that IME is not directly implemented as a PAL output in this design. The terms are
used in the generation of the ISTART term.
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. DME : o

The Data for ME (DME) signal is the indication that the address of this memory block is
present on the upper address lines, a data request is active, Pin 169 is inactive, and
instruction/data address space is indicated. In other words this memory block is receiv-
ing a valid data access request. This example design will assume that the address of
this memory block is equal to: A3T « A30 - A29 - A28 « A27 « A26 » A25 - A24 - A23.
Note that for this design both the instruction and data blocks reside in the same address
space. This is possible because of the common memory array of the VDRAM that is
accessible to either the instruction serial port or the data 1/O port.

The equation for this signal is:

DME = DREQ « DREQTO « DREQTT « A31 « A30 » A29 » A28 » A7 « A26 * A25 »
A24 - A23 - Pin169

As with IME, this term is not directly implemented.

ISTART

The Instruction Start (ISTART) signal causes the transition from IDLE to IRAS and 1Q1
states. It is valid only in the IDLE state with no refresh sequence starting, identified by
not being in any other state via1Q1 » DQT « RFACK - PC1. - PC2 » RFRQ0. So when
in the IDLE state and IME is active, ISTART is active.

ISTART =1Q7 - DQi - RFACK » PCT - PC2 - BAFRQO » IME

DSTART , L |
The Data Start (DSTART) signal is the same as ISTART except that DME is the quali-
fier. ' ‘ ‘

DSTART = IQ1 » DQ1 » RFACK + PC1 - PC2 « RFRQ0 * DME

IBACK

The Instruction Burst Acknowledge (IBACK) signal is applied to the Am29000 and is in
effect the indication that the interface state machine is in an active or suspended in-
struction access. The equation is: '

IBACK = 1Q2
+ IREQ « IBACK

The IBACK active state is entered during the 1Q2 state. IBACK is delayed until 1Q2 in
order to hold the instruction address active on the bus until the CAS signal has gone
active, thus eliminating the need for address latches or registers.

IBACK remains active until a new instruction access begins. The IBACK signal is combi-
natorial so that it will go inactive in the same cycle that IREQ goes active. This is re-
quired to hold the address on the bus until a new row transfer sequence can begin. The
address must be held since there are no address latches or registers in this design to
take the address from the bus. Address latches or registers would be required if IBACK
were left active throughout the IREQ cycle.

This places a timing constraint on the IBACK response signal path that is different from
all the earlier memory designs. IREQ is a signal that will not be stable untit 14 ns into a
cycle. The D-speed PAL logic that implements the IBACK logic has a propagation delay
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of 10 ns. The Am29000 has a response signal setup time of 12 ns. These total 36 ns,
which means that the logic OR gate used to combine all IBACK response signals in the
system (Figure 4-3) must have a worst-case propagation delay of 4 ns. That is not easy
to achieve when several IBACK response lines in the system must be logically ORed.

A solution to this is to move a copy of the VDRAM-block IBACK logic down into the PAL
used to implement the IBACK response signal logical OR gate. That will eliminate one
level of PAL delay. The equation for the response OR-gate function would then become:
IBACK = IBACKO
IBACK1
IBACK2
IBACK3
IBACK4
IBACK5

Q2

+ IREQ + IBACK

N

where the numbered IBACK inputs are the IBACK signals from other bus devices
and the 1Q2 + IREQ + IBACK inputs are from the VDRAM control logic.

The IBACK logic defined earlier remains to provide a version of IBACK local to the
VDRAM control logic. That version of the IBACK is not as time critical since it will simply
be registered. Only IBACK.D is needed by other parts of the VDRAM control logic.

IBACK.D

The IBACK Delayed (IBACK.D) signal is simply a 1-cycle delayed version of IBACK.
The logic for IBACK is implemented directly in the IBACK.D equation.

IBACK.D = IQ2
+ IREQ « BACK

It is used in the generation of IRDY, IOEQ, IOE1, and CNT.

Instruction Initial Access States '

Signals 1Q1, 1Q2, 1Q3, and Q4 are used to control the state transitions from I1Q1 to
IACCESS and IRAS through WAIT, during the first instruction access. The 1Q1 signal
goes active during the IQ1 and IRAS states and remains active for four additional
cycles. IQ1 will go active only when there is a valid ISTART.

The 1Q2, 1Q3, and 1Q4 signals are used to count the five cycles during which 1Q1 is
active. 1Q3 is inactive during the fifth cycle'after IQ1 goes active. This is used as a way
of identifying the fifth cycle as the condition of IQ3 « IQ4. This eliminates the need for an
additional signal to directly indicate the fifth cycle.

IQ1 := BINV « IQ1 « ISTART
+ 1Q1 - (@3- Q4) .

102 = 1Q1 « (103 Q4)
103 =102 - 1Q4
104 = 103
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Data Initial Access States

These equations are similar in function to the IO1—IO4 signals. They control state
transitions during data accesses. DQ1 goes active during the DQ1 state as a result of a
valid DSTART signal during the IDLE state. DQ2 through DQ4 simply count off the four
DQ states.

DQ1 = BINV « DQ1 ¢« DSTART
+ DQ1 - DQ4

DQ2 = DQ1 « DQ4

DQ3 := DQ2 - DQ4

DQ4 = DQ3 - DQ4

Precharge States

At the end of any DQ port access, the RAS lines must be made inactive to precharge
internal memory buses before another access with a different row address may begin.
Three cycles are needed and are indicated by the signals PC1 and PC2. The PC1
signal is active during the PC1 state and the PC2 state. The PC2 signal is active during
the PC2 state and the first IDLE state that follows the PC2 state. PC1 goes active
following the third cycle of any instruction, data, or refresh sequence. In other words,
once the minimum RAS puise width requirement is satisfied, RAS is made inactive to
begin precharging for the next access. In the case of a data read where the output data
must be held valid after RAS goes inactive, the CAS signal is kept active to hold the
data.

PC1 = PC1 + 1Q3.
+ PC1 - DQ3
+ PC1 - RQ3
+ PCt - PC2 -

PC2 := PC1

LD

The Load (LD) signal enables address bit AO2 to be loaded into the bank selection
register (QO2E) on the next rising edge of SYSCLK. The equation is:

LD = IREQ « 1QT

In this design bank selection is only meaningful for an‘instruction access since no burst
data accesses are supported. LD is thus active as a result of IREQ except during the
access time of the first instruction word. This limitation in effect turns off LD after an
instruction access begins so that LD will not interfere with the bank selection bit toggling
activity that must goon during the initial access.

The LD signal is combinatorial so that it can be active dunng the first cycle of a new
instruction request
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Bank Select Signal ‘
The QO2E register bit is used to indicate whxch memory bank should provide valid

‘instruction data to the instruction bus in-any given cycle. Each:time another instruction

word is accessed this bit is toggled. The'bit is originally loaded from the address-bus bit
AQ2. .

QO2E = LD « AX2
+ ID«CNT+-Q3+«Q4 - 002E
+ LD « IQ3 « QO2E
+ LD - 1Q4 - QO2E
+ LD » CNT « QO2E« BINV
+ LD « CNT « QO2E « BINV

The use of BINV input will prevent Q02E from changing state during a cycle in which the
bus is invalid. This prevents a state change in the memory resulting from bus control
SIQnaIs which may be invalid.

"QO2E is used directly in the generation of the senal shift clock forthe VDRAM. Before

the first word in the serial shifter is available at the SD output of the VDRAM, one serial

- shift clock rising edge must occur. The IQ3 and 1Q4 signals are used to force the first

rising edges on the serial shift clock for each memory bank. After the IQ1 signal goes
invalid any further toggling of the bank select signal and the serial port shift clock will
come as a result of valnd IBREQ cycles

Even Bank Address Incrementer and LSB Latch ‘

In this design, the lack of address counters requires a new way of satisfying the need to
increment the even bank address before the first word access, when the initial address
is odd. To deal with this need, an AmPAL18P8B is used to build a flow-through incre-
menter. The increment function is selective in that when address bit A02 is low, indicat-
ing an even word initial address, no increment is done and the address passes through
unchanged. When A02 is high, the memory address is incremented. The A0O2 bit is used
to select which bank is read or written during a data access. Thus, the A02 bit is re-
quired to be stable throughout the entire access. So that it may be held stable after the
address bus is released, the A02 bit is latched within the incrementer by the DQ1 signal.
The equations for the-increment and latch functions are shown in Figure 7-12.

Count Slgnal

The Count (CNT) signal in this design is reduced to being an enable on the toggling
action of the QO2E bit. Following the initial instruction word access, determined by IQT,
the CNT signal is active for each valid instruction burst request determined by IBREQ.D
and IBACK.D.

GNT = 1O~ IBREQ.D » IBACK.D.

Transfer Cycle Enable and DQ Port Output Enable

On a VDRAM, there is a dual function signal, called Transfer (TR), which controls when
a row transfer cycle is performed and also when the random I/O data port is output
enabled. When TR is active during the active edge of RAS, a transfer cycle is per-
formed.
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The timing of TR is critical when performing this function. It must stay active for a mini-
mum of 90 or 100 ns after RAS goes active when the Fujitsu VDRAM

(MB81461-12) or NEC VDRAM (PD41264-12) respectively is used. The signal must
also be inactive 25 ns or 10 ns respectively before the serial shift clock may go from low
to high, to clock out the first instruction word. :

To make the above timing constraint fit within the 6-cycle initial access time of this
memory design, a delay line must be used to precisely set the duration of the TR signal.
A separate RAS signal, which is not loaded by the capacitance of either memory bank,
is the input to the delay line. The output for a 90 ns delay is TEXIT1 and for a 100 ns

- delay is TEXIT2. More details of this tlmmg are provnded in the intra-cycle timing section
of this chapter.’ .

TR goes active with IREQ, so that TR is set up before RAS goes active. TR latches
" itself active until the appropriate TEXIT signal goes active. The NEC input is strapped to
low when the NEC memory is'used, or to high when the Fujitsu VDRAM is used.

Finally, when DQ2 is active during a non-transfer'cycle of aread oberation. the active
TR signal enables the DQ port output.

DQ1 « IREQ .
DQ1 « TRO » NEC « TEXIT1
DQ1 » TRO * NEC « TEXIT2

bQ2 - WE1

TRO

+ 4+ + 0

Shift Clock

The signal that clocks each new mstructlon out of the senal port is referred to as SAS.
This signal must be low at the time TR goes inactive and it must remain low for the

25 ns or 10 ns period noted earlier. Once that timing constraint is satisfied, the next
rising edge of SAS clocks the serial port output. SAS is held low while IQ1 is active and
1Q4 is inactive. After that time, SAS is controlled by the Q02E bank selection signal so
that a new instruction is clocked out every other system clock cycle when the CNT
signal is active.

There is a special requirement on SAS immediately following system power-on time.
The SAS signal must be cycled at least eight times before proper device operation is
achieved following a power-on sequence. To ensure this.is done, the system reset
signal is'used to connect the system clock to SAS. This ensures SAS is cycled during
the system power-on reset time.

SASO RESET « SYSCLK
RESET « 1Q1 « 1Q4
RESET - IQ4 « Q02
RESET - IQ1 « QO2E

+ o+

RESET - SYSCLK
RESET - Q1 - 1Q4

- 1Q4 + QO2E
RESET - IQ1 + QO2E

SAST1 -

+ + 41
o)
m
w
m
—
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IRDY

The Instruction Ready (IRDY) signal lndlcates that there is valid read data on the in-
struction bus ' ,

IRDY + 1Q4 )

BlNVD . IQ1 » IBREQ.D « IBACK.D

+ 1

This memory desngn is always ready with data in the IACCESS state indicated by
Q3 - 1Q4. .

The memory is also ready when IBREQ is active with IBACK in the previous cycle with
no invalid bus condition, following the initial instruction word access.

The reason that IRDY must be a combinatorial signal is.that IBREQ comes very late in

" the previous cycle and must be registered. There is no IBREQ qualifying time available
in the previous cycle before SYSCLK rises. This means that the information that IBREQ
was active in the last cycle is not available until the cycle in which IRDY should go
active for a resumption of a suspended burst access.

IOEO0 and IOE1

The Instruction Output Enable (IOE) signals control the even and odd memory banks
are used to control which bank is allowed to drive the instruction bus during each cycle.
The signals use essentially the same logic as IRDY except that each signal is further
qualified by the bank select signal (Q02E). This bit keeps track of which memory bank is
ready to provide data to the instruction bus. The even bank is enabled when IRDY is
active and the QO2E bit is one. The odd bank is enabled when IRDY is active and Q02E
is'zero.

IOE0 = QO2E - 1Q3 » 1Q4
__+ BINV.D - QO2E + Q7 - IBREQ.D - IBACK.D
IOE1 = QO2E Q3 - 104 .
"+ BIN - Q02E « TQ1 « IBREQ.D - IBACK.D
DRDY

The Data Ready (DRDY) signal is the equivalent of IRDY, but for data accesses. The
difference is that since no burst accesses are supported, DRDY will go active only once
in each simple access during the DACCESS state in a read, or during DCAS or WAIT in
a write operation. Due to different data hold times for the Fujitsu and NEC VDRAM the
DRDY must be held until the WAIT state when using the NEC VDRAM.

DRDY = WEO « DQ4
+ WEO « DQ2 -« DQ3 + NEC
+ WEO - DQ3 - DQ4 + NEC

DOEO and DOE1

The Data buffer Output Enable (DOE) signals serve the same function for DRDY as
does the IOEO & IOE1 signals do for IRDY. They are active only during read operations
and the selected bank is determined by the latched version of address bit 2 (AX2).

WEO - A
EO « A

DOEO
DOE1

X2 « DQ3
X2 » DQ3
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Pipeline Enable

During a read operation the data address is no longer needed on the address bus
following the DCAS state. So, to help improve system performance, the Pipeline ENable
(PEN) signal response is made active during the DCAS state. This active PEN signal
tells the processor that the address is no longer needed and it allows the processor to
place a new address on the bus. In cases where the next address to be issued is for an
instruction or data access from a different block of memory, the next access can begin
while the current data access finishes.

'PEN = DQ2 - DQ3

WE

Write Enable (WE) signal is not allowed to be active during the row transfer sequence
that begins each non-sequential instruction access. This is because no write operations
‘are supported for the serial port. During a data access, the read/write line is latched by
the DQ2 signal at the end of the DCAS state. :

Two WE signals are defined simply to reduce the capacitive load on the signals. There
is one WE for each bank.

WEO = Qf - DQ1 - DQ2 - RW
+ 1Q1 - DQ1 - DQ2 + WEO
WE1 = 1Qf - DQ1 - DQ2 « RW
+ 1Q1+ DQ1 + DQ2 « WE1

Row Address Strobes .

There are three duplicate Row Address Strobe (RAS) lines. Two are used to drive the
memories and one drives the delay line used to switch the address mux at the appropri-
ate time and to control the duration of the transfer signal. Multiple lines are used to split
the capacitive and inductive load of the memory array to improve signal speed.

RAS is made active by a valid ISTART, DSTART or refresh condition. RAS is held
active for 3 cycles to satisfy the minimum pulse-width requirement on RAS.

RAS := BINV * RAS - ISTART
BINV » RAS « DSTART
BINV « RAS » PC1 « RFACK
a1 - 103
RAS - DQ1. - D3
RAS : RFACK « RQ3

+ 4+ + o+
D
>
(7]

Column Address Strobes

As with the RAS lines, the CAS lines are duplicated to split the memory load. CAS goes
active in the cycle after RAS during instruction or data accesses. During a data write
access CAS is enabled only when the appropriate bank is written with data. This is
controlled by the latched value of the address bit 2 (AX2). Only in the case of a refresh
sequence will CAS be made active prior to RAS. This will initiate a CAS before RAS
refresh cycle in the memories. In this case CAS is made active during the IDLE state.

CASO := RAS -« lQ1

+ RAS - DQ1 « AX2

+ RAS - Q1 » DQ1 * RFRQO
CAS1 := RAS + 1Q1 + RAS « DQ1 « AX2
+ RAS « Q1 « DQT « RFRQO
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PAL DEFINITION FILES
The PAL definition files are provided in Figures 7-4 through 7-12.

NOTE: All PAL equations in this handbook use the following convention:

+ ‘Where a PAL equation uses a colon followed by an equals sign (:=), the equation
signals are REGISTERED PAL outputs.

« Where a PAL equation uses only an equals sign (=), the equation signals are
COMBINATORIAL PAL outputs.

» The Device Pin list is shown near the top of each figure as two lines of signal
names. The names occur.in pin order, numbered from left to right 1 through 20.
The polarity of each name indicates the actual input or output signal polarity.
Signals within the equations are shown as active hlgh e.g., where signal names
in the pin list are: A B C; the equation is C = A « B; the inputs are A = low, B =
low; then the C output will be low.

Figure 7-4

‘RFQ7

AmPAL22V10A VRAM Refresh COunterIRequest Generator
Device U3

CLK RFACK RQ1 RQ2 RQ3 NC6 NC7 NC8 NC9 NC10. NC11 GND
NC13 RFRQ0 RFQ2 RFQ3 RFQ4 RFQ5 RFQS RFQ7 RFQ8 RFQ10 RFQY9 VCC

RFQ2 = RFQ2

RFQ3 = RFQ2 « RFQ3
+ RFQ2 - RFQ3

RFQ2 « RFQ3 - RFQ4
,RFQ2- RFQ4
RFQ3 « RFQ4

RFQ4

++"

RFQ3 + RFQ4 « RFQ5
RFQ5
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Figure 7-4 (Continued)

Device U3 (Continued)

FQ2 - RFQ3 « RFQ4 - RFQ5 « RFQ6 - RFQ7 - RFQ8
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RFQ9

SYNCHRONOUS PRESET = RFQ2 - RFQ3 +« RFQ4 « RFQ5 - RFQ6 + RFQ7 « RFQ8
* RFQ9 « RFQ10

RFRQO := RFRQO * (RFACK +RQ1)

Figure 7-5

AmPAL20L8B VRAM State Decoder—Interleaved

Device U2
IREQ DREQTO IREQT A31 _A30 A29 A28 A27 A26 A25 A24 GND
DREQ DREQOT1 ISTART RFRQO RFACK PIN169 1Q1 DQ1 PC1 DSTART A23 VCC

ISTART = 1Q1 « DQ1 « RFACK « PC1 « PC2 » RFRQO * IME

DSTART = 1Qf « DQ1 « RFACK « PC1 « PC2 « RFRQ0 « DME

NOTE: In the above equations, IME and DME are used only for clarity. The actual input terms
should be substituted when compiling this device.

IME = IREQ » TREQT « A31 « A30 » A29 » A28 » A27 » A26 +A25 « A24 » A23
« PIN169
DME = DREQ - DREQTO « DREQT1 - A31 - A30 « A29 « A28 « A27 - AZ6 - A25

« A24 « A23 « PIN169
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Figure 7-6

AmPAL16R4D VRAM Instruction State Generator—Interleaved
Device US

CLK TREQ ISTART NC4 NC5 QO2E IBREQ.D BINV BINV.D GND

OE TOEQ TOET 1Q1 1Q2 1Q3 1Q4 TRDY IBACK.D VCC

Q1 :=BINV - IQT « ISTART
+1Q1 « (IQ3 + 1Q4)

Q2 :=1Q1 - (IQ3 - 1Q4)
Q3 :=1Q2 - Q4

Q4  :=1Q3
IRDY =]Q3 - 1Q4
+ BINV.D - 1QT - IBREQ.D « IBACK.D
IOE0 = QO2E - 1Q3 - 04__
+BINV.D QO2E - 1Q7 + IBREQ.D » IBACK.D
IOE1 = QO2E - 1Q3 - IQ4

+ BINV.D + QO2E - 1QT - IBREQ.D - IBACKD

Figure 7-7

AmPAL16R4D VRAM Data State Generator—lnterleaved
Device U10

CLK DSTART AX2 WEO NEC NC6 NC7 BINV NC9 GND

OE DOEO DOE1 DQ1 DQ2 DQ3 DQ4 DRDY PEN VCC

DQ1 = BINV « DQ1 * DSTART
+ DQ1 - DQ4

DQ2 = DQ1 - DQ4

DQ3 :=DQ2 - DQ4

DQ4 :=DQ3 -+ DQ4

DRDY = WEO « DQ4
+ WEO « DQ2 « DQ3 * NEC
+ WEO « DQ3 « DQ4 « NEC

DOEO = WEDO » AX2 - DQ3

DOE1 = ‘WED - AX2 - DQ3

‘PEN-= DQ2 - DQ3
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Figure 7-8

AmPAL16L8D VRAM Transfer . Generator—Interleaved
Device U14

SYSCLK SASO TRO RESET 1Q1 104 NC17 TR1 SAS1 VCC

RESET « SYSCLK
RESET - 1Q1 - Q4
RESET - 1Q4 - QO2E
RESET « IQT « Q02E

SASO

+ o+ 4

RESET « SYSCLK
RESET - 1Q1 » 104
RESET - 1Q4 + QO2E
RESET - 1Q1 « QO02E

SAS1

+ 4+ 40

TRO

DQ1 « IREQ
DQT « TRO » NEC « TEXIT1
TRO « NEC « TEXIT2
WET

DQ1
DQ2

+ 4+ + 1

pat
[plej]
bat
DQ2

TR1 IREQ
TR1 « NEC « TEXIT1
TR1 « NEC « TEXIT2

WEA

o+ o+l

Figure 7-9 AmPAL16R6D VRAM RAS Generator—Interleaved
Device U12

OE RFACK RAS0 RAST RAS PC1 PC2 NC18 NC19 VCC

RASO := BINV « RASO « ISTART
+ BINV « RASO « DSTART
+ BINV « RASO - PC1 « RFACK
+ RASO - 1Q1 « 1Q3
+ RASO - DQ1 - DQ3
+ RASO » RFACK - RQ3
RAS1 := BINV « RAST + ISTART
+ BINV « RAST « DSTART
+ BINV « RAST « PC1 « RFACK
+ RAS1 « 101 « I3
+ RASt1 - DQ1 - DQ3
+ RAS1 « RFACK « RQ3
RAS := BINV » RAS - ISTART
+ BINV « RAS « DSTART
+ BINV « RAS + PCT « RFACK
+ RAS « Q1 - 103
+ RAS - DQ1 « DQ3
+ RAS « RFACK  RQ3
PC1 :=PC1-1Q3
+ PC1 - DQ3
+ PCT - RQ3
+ PC1 + PC2
PC2 := PC1
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Figure 7-10

AmPAL16R6D VRAM CAS Generator—lnterleaved '

Device U13

CLK PCT 101 DQ1 DQ2 RAS RFRQ0 RW AX2 GND
OE WEO CAS0 CAS1 RFACK RQ1 RQ2 RQ3 WET vCC
CAS0 := RAS - IQ1

+ RAS » DQ1 « AX2

+ RAS - 1Qf - DQT » RFRQO
CAS1 = RAS + IQ1

+ RAS - DQ1 « AX2

+ RAS - 101 - DQ1 « RFRQO
WE0 = 1Qf - DQ1 - DQ2 + RW

+ 1Q7 - DQ1 + DQ2 «+ WED
WE1 = IQf - DQ1 » DQ2 + RW

+ Q1 - DQ1 » DQ2 + WE1

RFACK := 1Q1 » 1QT « RFRQO
+ RFACK « (RFRQ0 - RQ3)

RQ1 = RQ1 » PC1 « RFACK
+ RQ1 - RQ3

RQ2 := RQ1 '+ RQ3

RQ3 := RQ2 « RQ3

Figure 711 AmPAL16R4D VRAM Counter Load—Interleaved

Device U111

CLK Nc2 TBREQ.D IREQ 101 102 1Q3 104 BINV GND
OE CNT IBACK QOZE IBACK.D NC16 NC17 LD AX2 VCC

LD = IREQ - 1QT
CNT = 1Q1 « IBREQ.D « IBACK.D
Qe mlDeAX2 "

+ LD « CNT + 1Q3 - 104 * QO2E

+ LD - 103 » QO0ZE

+ LD - 1Q4 - QO2E

+ LD » CNT « QO2E - BINV

+ LD « CNT » QO2E - BINV.
IBACK.D = 1Q2

+ IREQ -« IBACK
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Figure 7-12

AmPAL18P8B VRAM Address Incrementer
Device U1 . ‘ - .

" DQi. A02 A03 AO4 AO5 A0 A07 A0S A0S GND
NC11 AX9 AX8 AX7 AX6 AX5 AX4 AX3 AX2 VCC
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INTRA-CYCLE TIMING ‘

This memory architecture has five timing sequences of mterest The first is a cycle used
to decode the memory address and control signals from the processor. At the end of
this decode cycle, the RAS registers are loaded to begin the mltlal access of memory, if
the address selects the memory block.

Following the decode cycle, is the Row Address cycle, in which the row address strobe
is made active at the beginning of the cycle, and in which'the address muitiplexer is
later switched between the row address and the column address.

The third timing is a data access, where the CAS signal goes active to begin a read
operation or perform a write operation. ,

The fourth is the critical timing sequence between RAS going active and the first shift
clock (SAS) active edge which occurs in the row transfer of the |n|t|al access of an
instruction burst.

The fifth timing is that of a burst access. This is the tirhing between SAS going high and
a valid instruction being transferred to the processor. This time is designed to fit within
two clock cycles.

The combination of a decode cycle followed by the row-address cycle and by a data-
read access time defines a five cycle read of data. Subsequent data-read operations
may be six cycles long if the next data address appears during the PC2 precharge state.

For a data write, the access time is made up of a decode cycle followed by a data write,
in which DRDY is active in the second or third cycle after decode. The write operation
thus takes three to four cycles. Subsequent data-write cycles may take up to six cycles
to complete if the next address appears during the data WAIT state, i.e., during the
memory-precharge time. A read following a write could take up to eight cycles to com-
plete if it started during the precharge time of the previous access.

The initial access time of an instruction access is made up-of a decode cycle, plus a row
transfer sequence, plus the first burst access. This totals 6 cycles. Again this could be
extended up to nine cycles if the instruction address were to appear during the pre-
charge time following a data write operation or up to seven cycles if it followed a data

" read.

After the initial access, all burst instruction accesses use a 2-clock-cycle timing. Be-
cause two memory banks are interleaved, the apparent access time from the viewpoint
of the system bus'is only one cycle per burst access following the initial access.

Decode Timing
Within the decode cycle the address timing path is. made up of:

« The Am29000 clock to address & control valld delay of 14 ns,

Address decode logic PAL delay of 10 ns,

And the set-up time of the RAS PAL, 10 ns.
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Assuming D-speed PALs, those times total 34 ns as shown in Figure 7-13.

" Also, within the decode cycle time is the control signal to response signal path. In fact

this timing path is present in every cycle in the sense that the memory response signals
must be valid in: every clock cycle This delay path is ' made up of:

. Clock—to output tlme of registers within the control Iogrc state machine PAL, 8 ns;

. Propagatlon delay of the control logrc PAL 10 ns;

* Propagation delay of a loglcal OR gate on the response signals from each mem-
ory block, 10 ns;

. And control srgnal set-up time of the processor 12 ns.

Agarn assumlng D-speed PALs, these delay path tlmes total 40 ns

Row Address Timing -

" Referring to Figure 7-14, wrthrn the row-address cycle, the RAS line goes low which

initiates a time-delay signal which later causes the address multrplexer to change from
the row to the column address

Figure 7-13
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This delay path is made up of:

» - Clock-to-output time of RAS signal registers within the control-logic state machine
PAL (8 ns) plus an added delay due to capacitive and.inductive loading by the
- memory array of the PAL outputs. Since this load is-in excess of standard data
sheet test loads, the equations in Appendix A are used to estimate the added
delay. The estimated delay is 6.5 ns. This is added to the 8 ns (standard 50 pF
load) delay of the RAS line for a total of 14.5 ns worst case.

« Mux switch control signal delay path, which runs in parallel with the memory RAS
delay just described. This mux signal delay is made up of the clock-to-output
delay of a lightly loaded RAS signal (8 ns) plus the delay line time (20 ns);

* Minimum and maximum switching time of the address multiplexer, 4 ns to 9.5 ns,
plus added delay for heavy loading (same as calculated above), 6.5 ns.

Thus the memory RAS signals are stable no later than 14.5 ns into the cycle and the
address mux output can change no sooner than 32 ns (assuming RAS outputs from the
. same PAL will always have similar delays). So the address hold time after RAS is 17.5

" ns. This works out to satisfy the 15 ns of required hold time of address after RAS goes
active. Also the column address is settled ed by no later. than 44 ns in to the cycle. So, the
column address will be set up prior the CAS going active in the next cycle

CAS-to-Data Ready
In a data read operation the Column Address Strobe (CAS) signal-to-end of DRDY cycle
is made up of:

« CAS signal clock-to-output time (8 ne) plus added delay for heavier-than-normal
output loading, as determined above, (6.5 ns).

"« Memory access delay from CAS (60 ns).
- Data bus transceiver propagation delay (10 ns).
« Processor set-up time (6 ns). ‘

This totals 90.5 ns, which translates into just a litle more than two cycles. Therefore =
DRDY is not made active until the second cycle following the DCAS state.

In a data-write operation, the data is written by the falling edge of CAS. But the data
hold time relative to RAS going active may also have to be satisfied before DRDY is
made active to free the address and data buses

For the he Fujitsu memory, only the data hold tlme relatnve to-CAS is required, this is 30 ns
after CAS active. The Am29000 will provide a minimum of 4 ns data hold time. The data
transceiver will provide an additional minimum of 4 ns hold time beyond the end of the
DCAS cycle. As shown in Figure 7-15, these will ensure meeting the hold time if DRDY
is active in the DCAS cycle

For the NEC memory the hold time relative to RAS is the longer delay path, this is 95 ns
from RAS going active. This implies that the data must be held 29.5 ns into the WAIT
state after DCAS. So, in this case DRDY must not go active until the WAIT state after
DCAS as shown in*Figure 7-16.
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RAS-to-Shift Clock Timing

Referring to Figure 7-16, in order to maintain a 6 cycle initial instruction access time
only 3 cycles can be used for the-timing of signals between RAS and SAS. In that time
the TR signal must be active for 90 ns to 100 ns after RAS and it must be inactive 25 ns
to 10 ns before SAS goes active, depending on the memory used. That is to say the

least, a tight fit. The timing is as follews:

"« Clock-to-memory RAS delay (8 ns) plus the added delay for heavy output loading

of 6.5 ns for a total of 14.5 ns.

Figure 7-15
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In parallel with the memory RAS, a separate copy of RAS which is not loaded by
:the memory array is used to drive the delay line which determines the end of the
TR S|gna| Its. clock-to -output delay time is 8 ns. -

Delay Ilne tnme of 90 or 100-ns.

« Propagation delay of the PAL which generates TR from the output of the delay
line is-a minimum of 3 ns and a maximum of 10 ns plus an output loading delay of
6.5 ns.

« The SAS output is combinatorial and is dependent on input signals that are regis-
tered. So its minimum delay is the minimum clock-to-output delay plus thé mini-
mum propagation delay of a D-speed PAL plus the added delay for memory
loading (3 ns + 3 ns + 6.5 ns = 12.5 ns). Its maximum delay consists of 8 ns of
clock-to-output delay, 10 ns of propagatnon delay and a loading delay of 6.5 ns for
a total delay of 24.5:ns.

Assuming minimum delays in the TR and SAS signals and maximum delays in the RAS
signals, the hold time for TR will just be met for either the NEC or Fujitsu memories. For
the Fujitsu memory the TR setup time before SAS will also just be met as shown in
Figure 7-17; For the NEC memory there is 5 ns of margin as shown in Figure 7-18.

The above relies on the fact that all RAS outputs are implemented in the same PAL and
that TR and SAS outputs reside in the same PAL. The PAL outputs for related signals
will thus always track each other as to minimum or maximum delay times.

Figure 7-17
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Burst Timing ‘
Within the burst access cycle the address to data path timing is determined by:

The clock-to-output time of QO2E (8 ns for a D-speed, PAL)

Propagation delay of SAS PAL (10 ns) plus added delay for heavy capacitive and
line. The same derating delay of 6.5 ns

inductive load as was done for the RAS

will apply.

Memory access ;ime for serial port, 40 ns,

Data buffer delay (F244 = 6.2 ns),

And the processor set-ub time (6 ns).

Those delays produce a worst{case total 76.7 ns as shown in Figure 7-19

Figure 718  NEC Memory
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Figure 7-19
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INTER-CYCLE TIMING

..Inter-cycle timing for instruction, data read and data wnte cycles are provided in
Figures 7-20 through 7-22.

PARTS LIST
“The part list for:the Am29000 Interleaved Video RAM'Interface is provided in Table 7-1.

Table 7-1 Am29000 Interleaved Video RAM Interface Parts List
Item No. ‘ Quantity . ~ ."Device Description
u1 1, ~AmPAL18P8B
u2 1 AmPAL20L8B
us3 1 AmPAL22V10A
U4 1 '74F175
Us-us 4 74F157
Ug-ut1 3 " AmPAL16R4D
U12,U13 2 AmPAL16R6D
u14 1 AmPAL16L8D .
U15-U30 16 MB81461-12 or PD41264°
U31-U38 8 Am29C863
U39-U46 8 74F244. -

©U47 1 XTTLDM-100
s 47 pkas
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MEMORY EXAMPLE COMPARISONS bu |

This chapter compéres each of the bexample designs presented in this handbook. The
areas of comparison are given below.

» Memory block address range.

* Memory board space conéump’tion.’
« Memory power consumption.

« Memory cost. -

. Meméry access speed.

 System benchmark performance.

The ground rules for each comparison are discussed and the chapter summary
_provides a table that shows all the results. Consistent ground rules are used in the
calculations. Different ground rules will give dlfferent results, however the ratios will
remain roughly the same.

MEMORY BLOCK ADDRESS RANGE

The non-interleaved SRAM example of Chapter 4 provides a single bank of 16K words

for the instruction block and a similar bank for the data memory block. The bank’

interleaved SRAM example of Chapter 5 provides dual 64K-word banks in the

instruction and data memory blocks. .So, the instruction and data blocks each contain
128K words of memory. :

The SCDRAM example of Chapter 6 proVides duai 1M-word banks in each memory
block. So, the instruction and data blocks each contain 2M words of memory.

The VDRAM example of Chapter 7 provides dual 64K-word banks for a common-
instruction and data-block address space. So, the combined instruction and data block
contains 128K words of memory.

MEMORY BOARD SPACE CONSUMPTION '

The consumption of board space is estimated by the qunck and crude method of dividing
the total pin count by a pins-per-square inch density factor. Accuracy of this method is
open to question but the intent is to provide a quick and consistent way of indicating the
relative board space required by each design.
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Tables 8-1 through 8-4 show the parts list and pin count for each design. Those tables

are used as the basis of comparison. Each table lists only the parts needed to

implement the instruction memory block (except the VDRAM design). For ease of
calculation, the data-memory-block is assumed to be identical to the instruction block;
therefore the total pin count is double that shown in each of the Tables 8-1 through 8-3.
The value in Table 8-4 is not to be doubled since the VDRAM design supports both

instruction and data memories in a single memory block.

The density factor is 40 pins per square inch. Thus, the total square inches estimated
for each design is shown in Table 8-5.

Table 8-1 Am29000 High-speed Static RAM Interface Parts List
Qty Device Pins/ Pins Power/ Power Cost/ Cost
Description Device Total Device Total Device Total
mwW mwW $ $

1  AmPAL16R4D 20 20 945 945 5.00 5.00

1 74F175 16 16 187 187 .60 .60

1 AmPAL16L8D 20 .20 945 945 5.00 5.00

3 AmPAL16R6D 20 60 945 2835 5.00 15.00

1. 74F32 . 14 14 51 51 .50 .50

8 P4C1982-20 28 224 550 4400 15.00 120.00

4 IDT74FCT244 20 80 345 1380 1.50 6.00

8 IDT74FCT244A 20 160 345 5520 2.00 16.00

27 594 16263 168.10

Table 8-2 , Am29000 Medium-speed Bank Interleaved
Static RAM Interface Parts List -
Qty Device Pins/ Pins Power/ Power Cost/ Cost
Description Device Total Device Total Device Total
: - T mW mw $ $

2 AmPAL16L8D 20 40 945 . ‘ 1890 5.00 10.00

4 'AmPAL16R4D 20 - 80 945 3780 5.00 20.00

1 74F175 16 16 187 7 187 .60 60

2 Am29823A 24 48 550 1100 © 2.00 4.00

2 AmPAL16R6D 20 40 945 . 1890 5.00 10.00

64 IDT7187S-55 22 1408 660 42240 5.00 320.00
~ orCY7C187-55 .

8 Am29825A - 24 192 517 4136 2.00 16.00

16 74AS244 20 320 495 7920 1.50 24.00

99 2144 63143 404.60
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Table 8-3
Am29000 Interleaved Dynamic RAM Interface Parts List

Qty Device Pins/ Pins Power/ Power Cost/ Cost
Description Device Total Device Total Device Total
. mwW mw $ $
1 AmPAL16L8B 20 20 945 945 5.00 5.00
1 AmPAL22V10A 24 . 24 990 @ 990 6.00 6.00
2 . AmPAL20L8B .20 40 945 - 1890 3.00 6.00
4 AmPAL16R4D - 20 80 . 945 3780 . 5.00 20.00
6 AmPAL16R6D 20 160 945 . 5670 - 5.00 30.00
2 AmPAL16L8D 20 40 945. 1890 5.00 10.00
64 TC511002-100 18 1152 330 21120 25.00 1600.00
1 74F175 16 16 187 187 .60 .60
.6 74F158 16 . 120 . .83 498 .60 3.60
8 . Am29C843 24 192 488 3904 2.00 16.00
16 [IDT74FCT244A 20 80 345 .. 1380 2.00 32.00
1 MTTLDL-8 16 = 16 330 ,330 5.00 5.00
112 1940 42584 1734.20
Table 8-4 Am29000 Interleaved Video RAM Interface Parts List
Qty Device Pins/ Pins Power/ Power Cost/ Cost
Description Device Total Devuce Total Device Total
' : g - mW mw $ $
1 AmPAL18P8B 20 20 945 945 3.00 3.00
1 ~ AmPAL20L8B - 20 20 - 945 945 3.00 3.00
1  AmPAL22V10A 24 24 .- 990  '-.990 .- 6.00 6.00
1 74F175 16 16 - 187 187 .60 .60
4 74F158 16 64 83 332 .60 240
3 AmPAL16R4D 20 60 945 2835 5.00 15.00
2 AmPAL16R6D 20 40 945 1890 ' 5.00 10.00
1. - AmPAL16L8D - 20 20 . 945 945 5.00 5.00
16 MB81461-12 24 384 523 - . 8368 6.00 96.00
or PD41264 ‘ S L
8 Am29C863 24 192 643 5144 2.00 16.00
8 74F244 20 160 495 3960 1.00 8.00
1 XTTLDM-100 16 - 16 . 550 - 550 5.00 5.00
47 1016 - 27091 170.00

MEMORY POWER CONSUMPTION

The power consumption for each design is estimated by totaling the worst-case power
consumption (maximum supply current times maximum operating V , at 25 MHz signal
toggle rate) for all dewces
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These power-consumption parameters are not to be considered representative of the
power consumption normally expected in these designs. They represent the absolute
maximum possible consumption in the extremely unusual event that all devices simul-
taneously operated at maximum power consumption. These power estimates are used
only as a means to conS|stentIy determine relative power consumption between the
designs.

As was done before in the last section, the values from Tables 8-1 through 8-3 are
doubled to estimate the power use for both instruction and data memory blocks. The
value of Table 8-4 is not doubled since the VDRAM design supports both instruction and
data memories in a single memory block. The estimated total power consumption
results are shown in Table 8-5.

MEMORY COST

The cost of a memory system is difficult to estimate because the prices of individual
devices change with the market place over time and prices can vary widely depending
on the required volume of devices. The prices used for this comparison are rough
“pallpark” numbers that were obtained in March 1988 for quantities of 1K per logic
device and 10K per memory device.

Tables 8-1 through 8-4 show the estimated cost for each memory block. Table 8-5
summarizes the costs, again doubling the cost of the first three designs to account for
both the instruction and data-memory blocks.

MEMORY ACCESS SPEED .
The access speed of each design is summarized in Table 8-5.

Non-Interleaved SRAM '

The high-speed non-interleaved SRAM design has an.initial access time of two cycles
(one wait state) and a single-cycle (zero wait state) burst access time for all subsequent
sequential accesses. This performance is the same for either the instruction-memory or
data memory block.

' Bank-lnterleaved SRAM ’
The medium-speed bank-interleaved SRAM design has an initial access time of three
cycles (two wait states) and single cycle (zero wait state) burst access. Again this is
true for both instruction and data-memory blocks.

SCDRAM

- The SCDRAM design provides a basic initial access t|me of four cycles (three wait
states) and single-cycle (zero wait state) burst access. However, with dynamic
memories, the initial access time is not always consistent. Dynamic memories introduce
some overhead cycles into the normal access sequence. This overhead comes in the
form of refresh sequences and precharge time.

The SCRAM requires an average refresh sequence of 5 cycles every 15.6 us. Ifa
refresh sequence preempts a burst access, that access incurs additional overhead
because it is forced to resend an address to re-establish the burst access. This will
require a 4-cycle initial access time in addition to the 5-cycle refresh sequence.
Depending on how often a burst access is in progress at the time a refresh is required;
the refresh sequence could require up to nine cycles out of every 390 cycles (refresh
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period in cycles = 15.6 us/40 ns = 390). Thus, refresh can cost up to 2.3% of the overall

. memory performance when the memory is constantly being accessed. Refresh
sequences that occur when the memory is otherwise not in use cost nothing, since the
refresh does not contend with system use of the memory.

Prechargé overhead is required each time anew mémory request and address are
presented to the memory. The new address is presumed to access any random

- location and thus requires a full row and column address sequence to initiate the new

access. Whenever one row address is changed to a new row address there is a
. required 2-cycle precharge delay between the end of the first access and the beginning
-of the second. :

In cases where a previous access has ended one ‘or more cycles before a new access
begins there is no precharge penalty since the precharge time between accesses has
already been satisfied. If a previous access has not ended at the time a new address is
presented, the new access must be delayed during the required precharge time. This
situation is very common. From the view point of the memory, this is almost always the
situation if burst accesses are assumed to be the normal mode of access. The
Am29000 bus protocol provides notice of a burst-access cancellation (end) by the
appearance of the next memory-request address. Until the new request appears, a
memory system must assume that any burst access is either active or suspended (but
~not ended). Therefore, for the instruction-memory block, where burst accesses are
-almost always used by the Am29000, the memory control logic is designed to always
. assume burst accesses. Virtually every new memory request (initial access) incurs the
2-cycle precharge delay in addition to the normal initial access delay. Note that since
the Idle state serves both as a precharge cycle and an address decode cycle, the
precharge time is overlapped with the first cycle of the new initial access. The total
initial access time is thus five cycles in the above case.

The only exceptions to this occur when a different instruction merriory block is
addressed and the instruction memory block of interest recognizes the address of a
different block as the end of any suspended burst access. This recognition of the end of
a burst allows the memory of interest to go through the precharge delay prior to the
beginning of any subsequent access. Thus, any following access to the memory block
of interest will only incur the basic 4-cycle initial access delay

. The data- -memory block can take advantage of the fact that the Am29000 processor
never converts a simple or plpelmed access into a burst access. Any burst access is
indicated from the very beginning of the memory request. Also, a data burst access is
never.suspe‘nded.. Together these facts indicate that a data memory can always

. recognize the end of an access as signaled by Data Burst Request (DBREQ) being
inactive. This allows the data-memory logic to end an access and satisfy the precharge
delay, in many cases, before a new access request appears. Therefore the data-

.. memory block can most often incur only the normal 4-cycle initial access delay without

- any precharge overhead. -

The bottom line of this whole dissertation is that the instruction-memory block almost
always incurs precharge delay in addition to the.initial access delay; therefore the
typical access time is five cycles. The data-memory block can however avoid the
precharge overhead in most cases the typical initial access time is four cycles. Finally,
for either memory block, burst access cycles are always single cycle.
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A valuable enhancement for the above design would be the addition of a row-address
comparator and a modification to the control state machine to allow the memory
interface logic to recognize when a new memory request address lies in the row
currently being accessed. - Remember that with SCDRAM, access to any random
location within the currently addressed row requires only that the column address be
changed. There is no precharge or row address transfer time required. When the
memory interface logic compares the current row address with the new request address
and determines a match, the control state machine can pass the new column address
on to the memories and completely avoid any need to precharge or go through the
normal initidl access sequence. This means that for any access within the current row,
the initial access time can be reduced to three cycles: One cycle to recognize the
situation and two cycles to access the first word. Again all burst accesses would still be
single cycle. The preemption for Refresh would guarantee that the maximum RAS
pulse wudth would not be violated.

Although this design option was not implemented in the SCDRAM design shown in
Chapter 6, the design changes required have been estimated as the addition of two
74AS866 comparators and one AmPAL16R4. The performance of a design with row
comparators was simulated and is included in the final summary, Table 8-5.

VDRAM

The VDRAM design has a basic initial access time of six cycles (fnve wait states) for
instructions and five cycles (four wait states) for data read. Data-write initial access time
is three or four cycles depending on the particular memory used to implement the
design. The burst access time for instructions is single cycle and no burst accesses are
supported for data.

Like the SCDRAM described in the last section the VDRAM design requires similar
overhead cycles for refresh and precharge functions. The overhead for refresh affects
data accesses much more often than instruction accesses. This is because the shifter
port used for instructions on a VDRAM operates independently of the data I/O port.
Once an instruction access is initiated, subsequent burst accesses require no
interaction with the data /O port. This means that refresh sequences that involve the
data 1/O port can go on in parallel with instruction accesses. It is only when a new
instruction request appears during a refresh sequence that the instruction request is
delayed by the refresh activity. The refresh interval is 390 clock cycles for the VDRAM
and a refresh sequence requires six cycles; so, the maximum pércentage of cycles that
may be lost to refresh overhead is 1.5%. '

The VDRAM requires a precharge time of three cycles between the end of one access
and the begmnmg of another. In cases where a previous access has ended two or
more cycles before a new access begins, there is no precharge penalty since the
precharge time between accesses has already been satisfied. As noted for the
SCDRAM design, the Idle state serves both as a precharge cycle and an address
decode cycle. The precharge time is overlapped with the first cycle of the new initial
access; thus only a two cycle space between accesses is required.

In the situation that a previous access has not ended at the time a new address is
- presented, the new access must be delayed during the required precharge time.

There is one additional overhead delay in the event that a new memory request follows
a data write operation before the write and precharge sequence is complete. When this
happens the new access will be delayed by up to three cycles.
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- SYSTEM BENCHMARK PERFORMANCE
Advanced Micro Devices provides an architectural simulator program for evaluating the
Am29000. The simulator executes compiled or assembled code and provides a
detailed analysis of the Am29000 performance for that code. It provides the ability to

- define the access time expected from instruction memory, ROM, and data memory.
This allows performance on standard benchmark programs to be evaluated across a
wide range of performance variations in the Am29000-system memory. The simulator
is limited with regard to DRAM or VDRAM memory designs , since it is unable to

“'simulate refresh or precharge delays. Therefore, the actual performance of dynamic-
memory-based systems will be slightly less than that indicated by the results of
simulation. In the case of the SCDRAM example, some of this error in reported
performance is compensated for by listing the initial access time as five cycles for
instruction accesses. That access time includes the normal precharge delay that the
SCDRAM memory experiences.

The benchmark chosen for comparison of the example memory designs is called
Dhrystone version 1.1. This program is designed as a statistically correct mix of
instructions that is representative of a wide range of frequently executed programs.
This benchmark program has been executed on virtually all microprocessor systems
sold, so comparison with competing microprocessor solutions should be relatively easy.

The Dhrystone 1.1 benchmark program was compiled with the High C’ compiler for the
Am29000. The results of benchmark execution are shown in Table 8-5.

SUMMARY

Table 8-5 brings together a summary of all the features and performance factors for
" each of the example designs. In addition to the four designs shown in Chapters 4
through 7, two other variations are estimated and shown.

As a comparison to the SCDRAM design, a column is added to show a SCDRAM
design including row-address comparators.

For VDRAM, a column is added to show how newer 1M bit density:VDRAMs would
compare with the design based on the older technology 256K-bit VDRAMs. The 1M-bit
VDRAMs are assumed to require an 18-pin package, have power consumption equal to
the 256K-bit VDRAMs, and to cost $50 each (double the assumed price of SCDRAM).

* Trademark of Metaware Inc.
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Table 8-5

Memory Design Example Feature and Performance Summary Showing
System Totals for Instruction and Data Memory

Design Example

Comparison ‘High - Medium . SCDRAM SCDRAM VDRAM VDRAM

Item Speed .. Speed - With 256K iM
SRAM SRAM - Row Add Bit Bit
: . T Compare = Type Type
TotaIVWords B ‘ .
of Memory 32K . 256K - 4M . 4M - 128K 512K
Board Space o ‘ . . !
Consumption 29.7 107.2 97 100.8 25.4 26.2
sq in. : : . ‘
- Board Space ‘ ‘ o
Consumption 1103 2445 43240 - - 41610 5160 20010
words/sqin. - o R
Power : S . : .
Consumption 32526 . 126286 85168 .- 88753 27091 27091
mw
Power . ) :
Consumption 1.007 2.08 49,25 4726 484 19.35
words/mW o
Cost - _ . -
$ 336 809.2 3468.4 3488.4 - 170 874
Cost o -
words/$ 975 - 323.9 | 12093 1202.4 771 600
Access Speed
in Cycles
Instructions
Initial 2 3 5 3t04 6 6
Burst 1 1 1 1 1 1
Data
Initial 2 3 4 3to4 5 5
Burst 1 1 1 1 NA NA
Benchmark
Performance
dhrystones/s 37203 32271 28108 31183 21946 21946
MIPS 19.4 16.87 14.71 16.31 11.53 11.53
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As expected, the SRAM designs provide the best performance while consuming the
most power and board space per word of memory.

SCDRAM provides the highest density, lowest power, and lowest cost-per-word memory
system with only a 25% performance reduction as compared with the high speed SRAM
design. When row-address comparators are included, the performance jumps to within
16% of the high-speed SRAM design and within 3.3% of the medium speed SRAM
design.

The VDRAM design shows a lower density than SCDRAM even when comparing
designs with equal bit-density memory devices. This is mainly due to the much higher
ratio of control logic to memory devices involved in the specific VDRAM example
design. Since VDRAMS have a “by 4” organization, far fewer memory devices are
needed per bank of memory but the number of memory control devices remains nearly
the same for one to several banks of memory devices. For a design of equal system-
memory size (same number of memory devices), the control logic would become a
much lower percentage of the overall device count in a VDRAM design. For equal-bit-
density memory devices, i.e. 1M-bit SCDRAM vs 1M-bit VDRAM, and equal memory-
system size, the board-space density of the SCDRAM and VDRAM designs should be
more closely matched with VDRAM having an advantage due to simpler and smaller
control logic.

The primary advantage of VDRAM is in the simpler control and interface logic vs any
equivalent size SCDRAM design. This is especially true when the system performance
requirements can be relaxed to slow the clock rate enough that the VDRAM shifter port
can keep up with the Am29000 cycle rate without the use of dual bank memory-system
design.

A further advantage is the ability to make more efficient use of a common instruction
and data memory address space, thus, potentially reducing overall memory-system size
requirements. At 11.5 MIPS and 21946 dhrystones the VDRAM still provides very
respectable performance.

Bottom line: the Am239000 sustains the best performance in town with high-speed
memories and maintains high performance when connected directly to low-cost, high-
density, dynamic memories.

Expensive and complex cache memory support can be avoided entirely while sustaining
performance well beyond that available from other microprocessor solutions.

That’s the pricé/performance advantage unique to the Am29000.

MEMORY EXAMPLE COMPARISONS 8-9






AR
CHAPTER 9 | a

Am29000 Dhrystone 1.1 Memory Benchmarks.......cccoveveiecinniininiinicsiinnincnns 9-1

Am29000 32-BIT STREAMLINED INSTRUCTION PROCESSOR MEMORY DESIGN HANDBOOK






Am29000 DHRYSTONE 1.1 | =
MEMORY BENCHMARKS &

by Drew Dutton, Southwest Area Technical Manager

The Am29000 processor has-been specifically designed to reduce the cost of memory
necessary to sustain the bandwidth requirements of near single-cycle performance.
Such techniques as pipelining accesses and banking or interleaving memory have been
used throughout the years to improve system performance and both these techniques

" are available with the Am29000. This chapter is intended to demonstrate the wide

range of memory speeds that still provide the necessary performance level for a system
as well as pointing out the |mportance of memory issues other than access speed
alone.

- Table 9-1 contains the simulated performance of different memory speeds and inter-

faces using the Dhrystone 1.1 benchmark compiled on the High C* compiler for the
Am29000. With 4-cycle first access memory, 33,471 Dhrystones and 17.49 MIPS
performance can still be achieved. The range in performance runs from 41,920
Dhrystones and 21.82 MIPS to 10,550 Dhrystones and 5.56 MIPS. The lowest perform-
ance was not with the slowest memory but-with only simple memory accesses allowed.
In general, the most significant changes in performance were due to memory interface

changes and not memory speed changes.

AI| of the benchmark information was gathered using the Advanced Micro Devices
Am23000 Architectural Simulator Version 4 running on an IBM-PC/AT with 640K bytes

- of memory. This simulator models the complete behavior of the Am29000 processor

and has been verified against actual hardware. Am29000 memory is mapped into the
IBM-PC memory and its speed is modeled with user-specified parameters. The results
in Table 9-1 reflect data gathered by changing these memory parameters and re-

- running the Dhrystone 1.1 benchmark for each unique memory configuration. Read and

write timing were assumed to be the same. None of the memory models use a cache,
but Static Column DRAM(SCDRAM) with address comparators is simulated. The
simulator does not simulate any refresh or pre-charge of DRAMs. Therefore, the actual
performance of a DRAM-based system would be-slightly lower than that simulated.

" To read the benchmark table, first note the number of Dhrystones per second. This is

the measure of performance provided by a particular memory architecture. After listing
the number of clock cycles necessary to execute 50 passes through the Dhrystone loop,
the actual speed is given for the three different memories in the simulated system. -
These memories are Instruction memory, ROM memory and Data memory. Memory
speed is listed in system clock cycles. The Dhrystone number assumes that each of
these clock cycles is 40 ns and that the system clock is 25 MHz. Although faster ver-
sions of the Am29000 are now available, this was the basis for performance measure-
ments.

For each memory, there are several parameters listed. First, are the number of clock
cycles necessary to complete a simple, non-burst, non-pipeline access. For example, if
the instruction memory was able to respond in 120 ns (after taking into consideration
29000 timing parameters) the memory would be listed as three cycles for a simple

* High Cis a trademark of MetaWare Inc.
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access (two wait states). If it were 180 ns, the memory would have been listed as four
cycles for a simple access (three wait states). If the memory system can provide data in
bursts, then the speed of burst access is listed by first stating the number of clocks
necessary to initiate a burst and then the number of clocks for each 32-bit word during
the burst. The time to do the first burst access is the same as the time necessary to do
a simple access in all the examples shown and is thus listed in the same column as a
simple access. Subsequent burst accesses are always one cycle for the examples
shown. , , ;

If the memory is a SCDRAM, then it is pbssible to have faster access when within a
column. Therefore, the speed of a first access within a static column and the size of the
statuc column (in 32-bit words) are listed for this type of memory in the table.

The access speed of Instructlon memory is listed first; ROM, whlch cannot burst in this
version of the simulator, then Data memory follow. After the speed of the memories is
. listed, the number of system clock cycles, the number of Am29000 instructions exe-
cuted and the resultlng MIP rate are shown.

: ,Notes And COncIusmn

“Although the highest performance was gained through the use of zero-wait-state mem-
ory designs, the huge cost differential between these designs and designs utilizing one

. wait state with pipelined and burst accesses makes it clear that a more optimal cost/
performance trade-off exists using slower memory with a more sophisticated interface.
For the Dhrystone 1.1 benchmark compiled on the pre-release version of the MetaWare
High C compiler, perhaps the best cost/performance trade-off exists with a SCDRAM
‘design.’ The three-wait-state DRAM design, using one-wait-state access when within a
static column, provides 33,471 Dhrystones/second and 17.49 MIPS. This same DRAM
design without pipelined access on the data bus provides 29,630 Dhrystones/second.

Support for single-cycle burst is important to sustain single-cycle execution whenever
possible. Pipelining on the data bus is an important performance aid due to a high num-
ber of loads followed by branches produced by the compiler. A different benchmark or
. different compiler may not have such a strong need for data pipelining. It should also be
- noted that this benchmark does not use the Load -Multiple or Store-Multiple instructions
and therefore never does a data burst.

.- The Am29000 sustains a very high MIP/Dhrystone rate when provided with single-cycle
- - burst on the instruction bus and pipelined accesses on the data bus. Even with
-B-cycle first-access memory, the Am29000 can provide over 30, 000 Dhrystones and

15 MIPs!-
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Table 9.1 Statistics of Dhrystone 1.1 Simulation

Dhrystone Instruction Memory ROM Data Memory
Performance Simple/ Simple/ Simulation Performance
Dhrystones | Time for | 1st Burst | Access | Simple | 1st Burst | Access Supervisor
per 50 Passes| Access Mode | Access | Access Mode User Mode Mode Total
Second Cycles Cycles |see note | Cycles Cycles |seenote | - Cycles Cycles Cycles L Seconds TMIPS | Cycles/Inst
41920 29818 1 burst 1 1 burst 30749 187 30936 0.00123744 21.82 1.15
1 1 simple

39698 31487 1 simple 32406 32595

33471 37345 4 burst SC 4 4 burst SC 35368 0.00154376

pipeline 39800 0.00160084
00170516
0.001171280
0.00172648

burst

30104 41522 6 burst SC
burst 4 4 pipeline 42915

0.00197752
0.00201076 .

burst simple

pipeline pipeline

ple b !
20062 62305 6 burst 6 6 si;ﬁbie 63671 291 0.00255848
pipeline 3 pipeline 0.00270160
» 000355020
’ 0.00394612
10943 0.00438172

13011 96068 4 pipeline 4 4 simple 97923
11708 106764 5 pipeline 5 5 pipeline 108848

0550 118476 ipeline 1120652 121347 000485388
Note: Access Mode Definitions —
Simple — Simple Accesses only, no Burst or Pipeline Access Support Simple SC, — Burst, Pipeline, or Simple Access with Static Column DRAM Address
Pipeline — Simple and Pipeline Accesses only; no Burst Access Support Pipeline SC,  Comparators assumes one cycle to decode a hit within a previously
Burst— Simple, Pipeline, and Burst Access Supported. Pipeline Enable or  Burst SC accessed Static Column, plus one cycle for the first access.
Burst Acknowledge Signals are active during the first Access cycle. Subsequent burst accesses are single cycle. A Static Column size

All Burst Accesses beyond the first are completed in a single cycle. of 1024 words is assumed.
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Appendix A

MEMORY ARRAY LOADING | n

' DELAY CALCULATIONS

' OVERVIEW

An array of memory dev:ces may present an inductive and capacitive load much larger
and more complex than normally anticipated by most signal driver specifications. Most
devices are specified with propagation delays or clock-to-output delays that assume

'onIy alocal capacmve and resistive load. As shown in Figure A-1, a typical test load

" “circuit would be the driving device output connected to a voltage divider with integrating

capacitor (R,=200 Q, R,=390 Q and C,=50 pF).

A mémory array can éasﬂy present a capacitive load of 180 pF to over 400 pF with
.inductive loading, of greater ! than 170 nH /foot of printed circuit board trace. In addition,

depending on the memory Iayout the memory array may appear to the driving device
like a lumped RLC circuit or like a transmission line. ‘

The heavy load presented by a memory array can significantly slow the apparent
output-driver switching speeds and may also cause unwanted overshoot or undershoot
of the affected signal. Therefore it is.important to take into account how a memory array
affects the output-delay.specifications of any device driving memory-array signals.

MEMORY ARRAY MODELS

Depending on the physical layout of the memory array and on the switching speed of a
memory signal driver, a memory array may be modeled by either a lumped RLC circuit
or as a distributed RLC network (also called a transmission line) similar to the models
shown in Figure A-2.

A transmission line model is appropriate when twice the propagation delay time, from
the signal driver to the end of the memory signal trace, significantly exceeds the rise or
fall time of the driving signal. In this situation, the distributed nature of the capacitive
and inductive loads presented by memories and printed circuit board traces, in effect,
prevents the driver from “seeing” the entire load during the signal switching rise or fall
time. Changes in.voltage and current levels must propagate to the end of the trans-
mission line and any reflections returned back to the source before the driver “sees” the
effect of the entire load.. In this case the propagation delay of the transmission line

Figure A-1

Output o— —(® Test Point
1

£R2 TCL

10117A-A4 =

Typical Signal Driver Test Load
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determines the worst-case delay to be added to the propagation delay or clock-to-output
delay specified for a memory signal driver. '

When twice the propagation delay to end of the memory signal trace is significantly
shorter than the switching rise or fall time of the signal driver, the memory array is better
modeled by a lumped RLC circuit (sometimes called a resonant or tank circuit). This is
because the effect of the entire load is seen by the driver as the output is switched and

the entire load determines the switching speed of the output.

DETERMINING MEMORY LOAD FACTORS

" As shown in Figure A-3, the printed circuit board (pcb) trace cépacitance, inductance

and impedance is a function of the pcb material and trace dimensions. The primary
characteristics are defined as: .

Er =Relative dielectric constant of board material. Typical materials are G-10 (Er =
4.7 to 5) and FR-4 (Er = 4.5 to 5.2) with the Er values determined by exact
details of board construction and specification of test condition when determining
the value of Er. An average value of 5 is used as the value of Er in all
calculations shown.

Figure A-2

Rpriver LDriver LTrace

CTrace l l CDRAM

RLC Model

Rpriver LTrace  LTrace LTrace

+ Crace :

‘ CprAM| | CDRAM c
Voriver 1 Teoram[ T coram [ I DRAM
. S S—— S—

DRAM #1 DRAM #2 DRAM #N
Distributed RLC Model
10117442 (Transmission Line)

RLC and Transmission Line Models
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w = Width of the trace in inches. 0.01 rnches is used as a typical value for memory
trace width. .

h = Height of the trace above a ground~plane ininches. 0.03 inches is used as a
typical value.

t= Thickness of trace in inches. 0.003 isused as a typlcal value for 2-ounce copper
traces.

CaIcuIatlons for trace loads shown in thrs appendrx are for mrcrostnp lines.

Strip line values are significantly drfferent and the references listed at the end of the
appendix should be consulted for appropriate calculations.

Characteristic Impedance
Trace impedance (Zo) is defined as:

87 - . 5.98h
0 = In _—
: (Er + 1.41) 08w+t
87 5.98 (0.03)
= — . [n —
/(5 + 1.41) - 10.8(0.01) +0.003 ] -
= 95.93 Q ‘
Figure A-3
PC Trace v W » i
f T
h : : o Class Epoxy

Ground Plane

| PO T IO IIT IS TSI §
Microstrip Cross-Section

— w je—

5 LI AL L L LN L L L A—  Ground Plane

b h S A Strip Line

+ 4 '
////////////////// le— Ground Plane

10117403 Stripline Cross Section

PCB Trace Dimensions
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Characteristic Propagation Delay - -
The trace propagation (tpd) velocity is defined as: -+

tpd = 1.017 /(0.475Er + 0.67) nsfft.. - - -
= 1 774 ns/ft
Capacltance

The capacitive load comes from the pcb trace capacnance and the input capacitance of
each memory device. The input capacitance is typically specified in the memory
datasheet. The appropriate value is simply multiplied by the number of memories

- attached to the signal trace in question. The printed circuit board trace capacitance is
determined by the physical characteristics of the board and trace dimensions.

Large area capacitance is determined as:.. .

0.224 Er A Where: C is in picofarads

C = —_— Eris the board material dielectric constant.

h = A .is the electrode surface area in square inches.

‘ h is the height (separation) of the electrode

above the ground plane.

But at the typical dimensions of traces used on a -pcb, fringe capacitance becomes a
very significant componentof .the trace capacitance. . Calculating this directly is very
complex. The trace capacitance (Co) is more easnly determined as a function of the
trace impedance and propagation delay:

Co

1000(tpd/Zo) pF/it

1000(1.774 / 95.93)

18.5 pF/ft

For transmission line calculations the distributed capacitance (Cd) of the memories is
the parameter of interest. This is-a value for capacitance per distance along the trace.
This is layout dependent and is defined by the spacing between memory packages. For
a standard 0.3-inch-wide DIP, it is assumed that memories may be placed along a
signal trace at a spacing of two per inch or 24 per foot of trace. Assuming an average
input capacitance of 7 pF, the value of Cd is determined as:

input dépééiténce'pF/mémory - 7pF
Cd = —— = 168 pF/ft
spacing in feet/memory 0.0416 ft
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~Inductance SRR
Trace inductance (Lo), like trace capacntance is rather complex to determine directly.
The value of Lo is easier to determlne asa functlon of the trace impedance and
capacitance:

Lo (Zo)? Co pH/ft

95.932 (18.5)

170.18 nH/ft ..

Significant inductance is also found in the output and ground pins and bond wires of the
signal driver package. These inductances total 15 nH to 25 nH. The driver inductance
_is worth noting because all the current flowing to-or-from the trace passes through the
driver. The memory devices have similar inductance on their inputs but most memories
have very low input current loads so that their input inductance will not have a
significant effect on the driving signal.

Loaded Trace Impedance

When the capacitance of the memories is added to the characteristic capacitance of the
signal trace, the characteristic line impedance (Zo') changes significantly. The new
value of Zo is determined as:

Zo

\/ (1 + Cd/Co)

95.93

/(1 +168/18.5)

3021 Q

Zo' =

Loaded Propagation Delay
Similarly the propagation delay is affected when the capacitive load of the memories is
taken.into account. The new value of tpd is determined as:

tpd = tpd \/(1+ Cd/Co)
1.774 \/ (1+ 168/18.5)

5,633 ns/ft

LAYOUT EFFECTS
Depending on how the array of memory chips is laid out, it is possible to force the
memory system to look like either a transmission line or a lumped RLC circuit.

If all the memories are attached along a single set of serially routed signal traces then
each trace will act as a transmission line. Assuming a typical memory array of 32
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devices the traces would need to be 1.33 feet long. Using the calculations shown in the
last section, two times the line propagation delay would be 14.6 ns. This value
surpasses the 2 to 5 ns rise or fall time of a typical high-speed buffer. So this layout
should be treated as a transmission line.

If all the memories are very closely grouped to the driver by splitting the signal traces
into a tree-like structure with very few memories on each branch. The root-to-branch-
end length can be made very short. Assuming the same memory array of 32 devices
split into 8 branches of 4 devices each, the branch length could be limited to about 4
inches. This assumes 2 inches of each branch contains memory devices and there is
about 2-inches of routing required between the driver output and the first memory on
any one-branch. In this configuration the propagation delay to the end of a branch is
1.87 ns. . Two times the the delay is 3.75 ns-which is within the range of normal rise and

fall times for a signal driver. . This means that the memory array will behave more like a

lumped RLC circuit than like a transmission line. -

Figure A-4

Non-Interleaved SRAM Layout

| [——‘vavv—mlj‘ é t] |j :> SRAMS

f— 2 —— 2 —

Bank-Interleaved SRAM Layout
N OCICICICICIcIC,
e I e [ e s N

- @@mmmmma/
2" —te 4 N

' 'SCDRAM Layout

“'r_’:]E]ooooo
"t T:l_"”joot‘oo

| 1Oty

" _ |’i_||i_] [ T T B }
[’:][:Yj PR T S S
— 2" ——e - & |
VDRAM Layout I
—{y T Ta R
' f— 6" —

U
10117484 .

Memory Layout Models
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LAYOUT MODELS

Chapters 4 through 7 of this handbook show four different memory systems. The
medium-speed bank interleaved SRAM design and the SCDRAM design each use 32
memory devices per bank of memory. The VDRAM design and high-speed non-
interleaved SRAM design use only eight memories per bank. Memory layout models of
the SRAM, SCDRAM and VDRAM designs are shown in Figure A-4.

The non-interleaved SRAM design uses as few memory devices as possible and places
the memory devices as close to the processor as possible. The eight memories are
placed into two rows of four devices each. This gives a two-branch tree structure to the
pcb trace layout. Each branch is assumed to be 4 inches in length with memories
placed two per inch along 2 inches of the trace and the remalnlng 2 inches of trace used
for routing to the processor.

For the bank-interleaved-SRAM design, the layout places the 32 memories into 4 rows
of 8 devices each. This creates a tree structure with each branch being 4 inches long,
assuming that memories are placed two per inch along the trace. To allow for trace
routing from the driver to each branch, 2 inches will be added to each branch.
Therefore, the “driver to end of branch length” will be 6 inches.

The SCDRAM design is a subset of the above in that dual RAS and CAS drivers are
provided so that the set of 32 memories may be broken into two separate tree
structures, each with two branches. This maintains the driver-to-end-of-branch length at
6 inches; however, it lowers the total capacitive and inductive load on each driver.

The VDRAM model is a subset of the above. The eight memories will be placed on a
single trace 6 inches long. .

TRANSMISSION LINES OR RLC CIRCUITS?

From the discussion of memory loading factors, it can be seen, that a representative
value of propagation delay for a memory trace is about 5 ns per foot. With trace lengths
of 6 inches, the two propagation delays time of a trace will remain at 5 ns. That value
very closely approximates the rise and fall times of common signal drivers, which for D-
speed PALs can range from 2 to 5 ns.

So, opinion is divided on whether the RLC circuit or the transmission line model is more
accurate in the above situation. Therefore the memory designs are analyzed with both
models and the most conservative delay values that result are used in the design timing
estimates. S

TRANSMISSION LINE MODEL—THE BASICS

In the ideal transmission-line model, the line is infinitely long with a constant charac-
teristic impedance. A signal sent down such a line, will travel along the line without
distortion. The propagation rate is determined by the dielectric constant surrounding the
signal line, and by the capacitive loading of the line. A less than infinitely long line can
be made to appear so, if the end of the line is termlnated by a resistance equal to the
characteristic impedance. :

MEMORY ARRAY LOADING DELAY CALCULATIONS A-7



When this ideal is not met, due to variations in impedance or a mismatch in the term-
inating (load) impedance of the line, there are resulting voltage and current reflections
that travel back along the line. The magnitude of the reflection is directly related to the
difference between the load impedance and characteristic line impedance. This re-
lationship is given by: .

HL-ZO

R +Z,

Similarly, when those reflections reach the sdurce end of the‘line they will in turn be
reflected back toward the load end of the line if the source impedance does not match
the line impedance. The reflection coefficient at the source is:

Rs'zo

To determme the voltage at a glven pomt on the transmlssnon line, at a given time, the
model of Figure A-5 is used.

Figure A-5

V(X)=Va®[U(t—tpg X)+PLU = tpd (22- X)
+ PL Ps U (t—tpd 24+ X)) + PZPsU(t-tpg (41—X))
o+ PEPE (t—tpd (424 X)+.. }+vdc

Where: V, (1) = Es(t) ( E—Eﬁ_)
VA =voltage at point A,
X =the distance to an arbitrary point on the line
§ =totalline length, :
tpd = propaganon delay of the line in ns/unit distance,
. TD = Qt pd , . .
U(t) = a unit step function occurring att =0, and
Est) =internal voltage swing in the circuit (VoH - VoL )

pr RL-Zo
L= RL+ Zo

Rqo-Z
PS [o] (o]

" Ro+ Zg

10117A-A5

Transmission Line Models
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Memory Specific Example

Determining Transmission Line Impedance and Propagation Delay.

In each of the layout models described for the memory system, the branch length
remains nearly the same. There are small variations in capacitive loading depending on
the specific memories used, but in general, each model looks very similar.

Each transmission line has a two-inch section with no capacitive memory load followed
by 2 to 4 inches of trace with two memories per inch. This structure complicates the
model a little since it looks like a 95 Q transmission line connected to a 30 Q impedance
line. This results in different propagatlon tlmes along the trace and signal reflections at

- the pomts of impedance change.

To simplify the model for the remaining discussion the memory capacitance is viewed
as distributed across the entire length of the line, e.g., Cd = 24 devices/ft x 7 pF/device

X (4 in. memory loaded length/6 in. total length) = 112 pF/it. This more closely approx-
imates the overall delay of the line and simplifies the analysis to deal only with reflec-
tions at the source and load ends of the transmlssmn hne

So, for 7 pF per memory mput loadlng, the transmission line |mpedance and propa-
gation delay would be:

Zo

\/ (1 +CdiCo)

95.93

(1 +112/18.5)

= 36.12Q

Zq' =

te = \ /(1 + Cd/Co)

= 1 774 W (1+ 112/18.5)

4.71 ns/ft

" Atable for various input capacitance levels is shown in Table A-1, that reflects the effect

on respective impedances and delays using the calculations methods just outlined:

Table A-1

input Capacitance Levels

pF/input cd Zo' ty
pF/it Q ns/ﬂ

5 80 415 4,09
) 96 . 385 4.41
7 112 36.12 471

8 128 o 34.08 4.99

9 144 3236 5.25
10 160 30.88 5.51
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Load Impedance
For this analysis the load impedance will be assumed to be infinite, resulting from no
termination resistance being placed at the end of the line.

Source Impedance

The source impedance is that of a D -speed PAL output. The output impedance for this
type of device (and for most TTL outputs) is different for the output-low condition verses
the output-high condition. .

For the output-low condition a worst-case impedance estimate can be made by dividing
V,, by l,. Fora D-speed AMPAL16L8, that would be 0.5 V/.024 A = 20.8 Q. This is
truly the worst possible case with statlc output conditions. The output driver is able to
hold that voltage level forever as long as the output current does not exceed the 24 mA

- limit. That, however, is not representative of the actual output impedance apparent
during the few nanoseconds that it takes.to switch the output from high to low. Based
on the experience of PAL circuit designers, a more realistic estimate is about 5 Q.

For the output- hngh condition, a worst-case impedance is more difficult to define. Its
output impedance varies as the output voltage rises. When the driver begins to pull the
output up, the output current provided by the driver is much more than is available when
the output is held at V. Determined empirically, the typical value for the high-level
output impedance during low-to-high switching is about 25 Q.

Source Voltage Swing

The data-sheet-guaranteed worst-case output high and low voltages for a TTL driver
are:V,, =24 VandV, =0.5V. But, these are rarely seen in actual circuits. More
realistic output levels typical of a D-speed PAL are: V,=4VandV, =0.2V. This
gives a voltage swing of 3.8 V.

Output rise time is measured from V, = 0.2 V to the TTL standard V| =2 V. The fall
time is measured from the V,, =4 V to the TTL standard V| = 0.8 V.

High-to-Low Transltion Analysis
In general the high-to-low transition of the signal driver is the more interesting event to
analyze. This is because the undershoot that results from the unterminated
transmission line is a critical parameter for many memories. Too much undershoot and
the memories can be damaged.
Also, reflections (of the undershoot) at the source end of the line can result in positive
transitions above V (input-low voltage threshold).. Any transitions above V, delay the
settling time to a valld input-low level.
The analysis begins by filling in the variables of Figure A-5.
1. Es(t) is set equal to the voltage swing of the source, -3.8 V.
2. Zois the load impedance"o'f the line assuming 7 pF/input memories, 36.12 Q.
3. Ro is the source impedance for the output-low condition, 5 Q.

4. VA(t) is the voltage swing resulting at point A (source end) on the transmission
line, calculated to be —3.338 V.
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5. U(t) is the unit impulse function which is equal to zero for values of t less than
zero, and equal to one for t greater than or equal to zero. This function is used
because, according to theory, the rise or fall time of the driving voltage source is
not affected by the capacitance of the transmission line. Therefore, the U(t)

- function serves to switch on VA(t) or the’ reflected values of VA(t) at the
appropriate times.

6. P_is the coefficient of reflection at. the load and is calculated to be nearly equal
to one. .

7. Pgis the coefficient of reﬂectien at the source end is ealculated to be —0.7568.
8. 1 |s the total line length of 0 5 ft. |

9. ' ns the propagation delay of 4 71 ns.

10. T, is the propagation delay time down one length of the Ime tpd times {.

-11. The points of interest on the transmission line for thls analy5|s will be at the
source and load ends of the line at tlmes that are integer multiples of t
Therefore X will be equal to 0, t .. which would be (X times 4. p71 ns
times 0.5 ) 0, 2.355 ns, 4.71 n& 7 055 ns...ete.

12. Vdc is the steady state voltage of the transmussnon line before the signal voltage
transition att=0, 4 V.

" The values shown in Table A-2 were c:_aleulated using the equations of Figure A-5.

Table A-2 . ‘ ’ ' v '
Values Calculated From Equations Provided in Figure A-5.
t VA VB
T Volts Volts
0 . 0.662 4.0
1 0.662 ~2.676
2 -0.150 -2.676
3 -0.150 2.376
4 0.465 2.376
5 0.465 —1.447
6 0.00 —1.447
7 0.00 1.447
8 0.352 1.447
9 0.352 -0.743
10 0.085 ~0.743
1 0.085 0.914
0.287 0.914

-
RN
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Even after 12 transitions of the line (28 ns), the signal level has not settled to below the
valid input-low level as a result of the reflections at the source and load impedance
mismatches. -

‘Note, a Iisting 'of the BASIC language program used to calculate the above table

(sometimes referred to as a lattice diagram) is shown in Figure A-10.

" Overshoot and Undershoot

Also, from the above table, it can be seen that undershoot in excess of —2.5 V is present
on the line. That degree of undershoot can be damaging to DRAMs. Some SRAMs are
designed to handle up to —3 V undershoot, but even if the memory can handle the
voltage stress, the settling time delay to a valid low level is still excessive.

Overshoot values can also be calculated for the low-to-high transition situation. The
overshoot will reach values near 4.7 V which is not a threat to any standard memory
device.

Termination

From the above discussion, it is clear that something must be done to reduce the
degree of reflections at load or source end of the transmission line. This can be done
by adding a resistance load to either end of the line. The load can be a resistor-to-
ground or a voltage divider between power and ground in which case the load value is
the Thevenin equivalent. This method, shown in Flgure A-6, is called parallel
termination. . .

When done at the load end of the line, this is the best Way' to terminate the line in terms
of signal settling time. Proper parallel termination gets rid of reflection entirely at the
load end of the line. Therefore only one propagation delay time down the line is re-

Figure A-6

quired before the entire line settles to the desired voltage level.

Driver R1
Ro
Zo
_ Ra
< L
F*1|le' RL
Driver
Ro
Z,
RL
—'L- =
10117A-A.8 ~ Where Zg=RL

Parallel Termination
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But there is a problem with this method. Parallel termination to power or ground at the
near 30 Q characteristic impedance of the loaded transmission line would overwhelm
the de-drive capability of a D-speed PAL output used to drive the line. This is especially
true when considering the dc load of parallel termination on muitiple transmission lines
tled to one drlver

’ So, unless a high-current driver is used with the memory array, parallel termination is

not appropriate. If parallel termination is used, the added propagation time of the
high-current driver must be traded off with.the shorter settling time of the signal.

Another more common termination method is called serlal damping. With this method
a resistor is placed in series with the driver and transmission line. The value of the
resistance is chosen to be equal to the line impedance when added to the driver |
impedance. In this way, when looking at the source end of the transmission line, ‘the

. combination of the driver impedance and series resistance matches the line impe;dance.
|

With a matched impedance at the source end of the line, there can only be reflections at
the load end of the line. Thus, when reflections from the load end of the transmission
line return to the source end of the line, the entire line will have settled to the desired
voltage level.

So, with series damping the settling time is equal to two times the propagation delay of
the line. Also, there is no dc load imposed by the termlnatlon resistance so a standard
signal driver can be used.

As shown in Figure A-7, where multiple transmission lines are tied to a single driver,
each transmission line should have its own serial-damping resistor to match the
impedance to each line. Very often, memory system designers will use a single resistor

Figure A-7

N ‘A A“v" Rs
—T

10117AA7 . Where R ot Rs= ZQ

- Series Damping
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Figure A-8

Driver [+ LT LT
. : - . =N, Y.
11 011
| crl Iem - orl Tom
Ron =250 LT LT
‘ AN Crl lCM.‘ ) ‘CT:_L: lCM
1. RoL=5Q KT "}-YI‘

Driver [+

RoH =25Q

Ro|=5Q

10117A-A.8

ROH + RS
Lp+LT
Faas W
L,
RoL+Rsg 1:
Stepc.
Ct = Crotal
CT = CTrace
CM= CMemory
LT =L Trace
Lp = L package
Rs = Rgeries

RLC Model Simplication Steps
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between the driver and all the transmission lines as a compromise that reduces
component count at the cost of a higher, but acceptable, degree of signal reflections.

Therefore, in all of the memory designs presented in this handbook, serial damping-
resistors are used in all memory address and control lines. The resistor value used is in
the range of 20 to 30 Q. The exact value should be determined empirically to minimize
reflections.

RLC MODEL

The RLC model lumps all the capacitive and inductive loads into single elements
arranged as shown in Figure A-8. The distributed capacitive loads of the memories on
each branch of the memory layout can be totaled, then the capacitance on each branch
is considered to be in parallel and is thus totaled into the value for a single equivalent
component.

Similarly, the inductive loads in each branch are totaled since those elements lie in
series. Then the inductance for each branch is viewed as being in parallel with the
inductors of the other branches and thus their value is divided by the number of
branches to determine the value for a single equivalent component. To that component
is added the inductance of the driver package pins and internal bond wires. The output
switching voltage generators, output impedances, and any damping resistance is then
added. Since the output voltage swing is the same for either a high-to-low or a low-to-
high transition, the model can be simplified one additional step to that shown in Figure
A-9. In this model, the equations for either switching transition are the same; only the
polarity of the voltage and the value of the output resistance is changed.

Figure A-9

Riotal L total

® -1

10117A-A9 =

Final RLC Model

MEMORY ARRAY LOADING DELAY CALCULATIONS A-15



This model is then analyzed with LaPIace transforms to yleld an equatson for current
flow overtime: . ; o R

A . \ |
I, = e sinBt 5
o LB ,
Where
1 R?
B = —_ - — ’
R LC . 42
. R: T i
a = | — Lt ATt L U s
2L SR TIPRTULIRS

A = voltage switching step function magnitude; ... - o

Lc . 412

The output voltage is'then: * "+

L4,

]

1
Vout = —
C 0

a
A(1-(e-a’(? sinBt+cosBt)))

It should be noted that this model will predict overshoot, undershoot, and delay values
somewhat in excess of that expected for a real implementation. This is mainly due to
the use of a step function to model the initial voltage transition rather than the use of a
ramp function which would better model the rise or fall time to be found in a real system
example. This model also does not deal with the amount of delay related to a standard
test load which is already accounted for by worst-case delay values of the driver as
shown in its data sheet. To obtain a more accurate estimate of the RLC circuit's added
delay, the difference between the driver's data sheet worst-case delay and the driver's
intrinsic ( no output load ) delay should be subtracted from the RLC circuit delay
estimate. The driver's intrinsic delay can be determined by experimentation or through
consultation with the device manufacturer.

Memory Specific Example

Determining Element Values

The initial transition voltage is set by V-V, , which as noted before is about 3.8 V for a
D-speed PAL output. The voltage step |s positive on low-to-high transitions and
negative for high-to-low transitions. The source impedances are the same as used
earlier. High-to-low transition is 5 Q and low-to-high transition is 25 Q. Damping will
initially be set to zero to see what sort of overshoot and undershoot occurs in an

undamped circuit.
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- Driver output inductance is assumed to be 20 nH. The trace-inductance is derived from

the pcb characteristics defined-earlier. The value found was 170 nH per foot of trace

. length. Since each branch of the memory layout is 6 inches long, the value per branch

is 85 nH. With four branches viewed in parallel, the effective inductance is 21.25 nH.

' Assuming each memoryinput has 7 pF or capacitance, the 32 memories in the layout

total 224 pF

The trace capacrtance is derrved from the pcb charactenstrcs deflned earlier. The value

found was 18.5 pF per foot of trace Iength The total branch length in this design is two
feet, therefore total trace. capacltance is 37 pF. . ‘

'The Results

A simple program written in the BASIC Ianguage was used to calculate the RLC model

_ behavior based on the above equations and input parameters. A listing of this program

is shown in table A-11 (located at the end of the chapter). The result was to predict
that, with no damping resistance, the undershoot would reach a maximum of —2.1 V

.. with g subsequent rebound to +1.5 V.. In fact, a high-to-low transition would not settle

below 0.8 V until after 22 ns. The low-to-high transition settled above 2.4 V within 6 ns.

This result obviously is unacceptable both in the level of undershoot, which could
damage memories and in the excessive settling time. The circuit was modified to
include a 5 Q damping resistor. The high-to-low transition undershoot was then limited
to —0.8 V and the settling time to a level below 0.8 V was reduced to 6 ns. The low-to-
high transition time remained at nearly 6 ns.

.. DESIGN EXAMPLE DELAY VALUES _
, The memory. system Ioadmg delay values used in each of the memory design example

chapters are derived below.

- ... Non-Interleaved SRAM Example
As notedin Chapter 4, the total of all the other delay elements in this SRAM design

‘example already equal 38.3 ns , leaving little room for an overly conservative estimate

V .. of the added delay associated wrth dnvmg the memory array So, lets look at refining

the above estimates. -

The transmission line delay of 2.4 ns is essentially equal to the typical rise or fali time of

.. a PAL output driver. Thus, the driver “sees” most of the.load during the output transition
: 'time. That load of 52 pF and 48 nH (including driver package inductance) is nearly
- equal to the test load used to determine the -worst case output delay time quoted for the

‘driver. Therefore; a transmrssron line model does’ not appear to be valid for this design
situation. ‘ . . ‘

The RLC model predicts the delay for driving the entire load and thus that delay should
be added to the propagation delay measured for a driver with-zero load ( intrinsic driver
propagation delay). But, the data-sheet values for driver delay only indicate the delay
when driving a 50 pF capacitive load combined with driver package inductance and
some small inductance from the test load circuit layout. This is essentially equal to the

. load presented by this. SRAM design. Therefore, it is fairly reasonable to assume that

the worst case delays quoted for the driver already include the time required to drive the

v
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load presented by this memory design. But, for the sake of being a little conservative,
"the difference between D-speed PAL driver intrinsic delay and delay with test load was

determined experimentally. The intrinsic delay is about 1.3 ns less than the delay with

the test load. Adjusting the estimated RLC delay to account for delay already included

in the quoted worst-case delay (2.8 ns—1.3 ns) leaves 1.5 ns of excess delay predicted
" by the RLC model. This value will be used as the estimated RLC delay.

The remaining designs, to be honest, allow more room to be conservative and thus will
use the raw delay values from the transmission line and RLC models.

Bank-Interleaved SRAM Example
This memory design uses four branches, each 6 inches long. The SRAM memory
device used has an input capacitance of 5 pF for all inputs.

The transmission-line model predicts a delay of 4 ns that must be added to the output
delay of the memory dnver A20to30Q dampmg resistor IS used on each branch.

The RLC model predlcts adelay of 5ns. The undershoot in thls case is —1.2 V which is
allowable for the SRAM memories that are able to handle -3 V. The assumptions for
this model are:

» an inductive load of 42 nH,
+ a capacitive load of 200 pF,
« a 5 Q damping resistor. -

SCDRAM Example
The SCDRAM devices used have 5 pF capacitive input on address lines but 7 pF on

each control line such as RAS, CAS, WE. So address lines are modeled separately
from the control lines.

The address lines are assumed to be laid out like the SRAM examples with four

. branches containing 32 memories. The transmission line model predicts the same 4 ns
delay as-seen in the SRAM example. However, the RLC model for the SCDRAM is
different. In order to limit the undershoot to less than —1 V as required by the SCDRAM,
the RLC model damping resistor value is set at 8 to 10 Q. This produces an undershoot
of-0.8Vanda delay of 6 ns.

For the control lines a different layout model is used.” Two separate dual-branch traces
are used to drive the memories so that only 16 devices will load each memory driver.
This was done early in the design in the hopes that it would improve the signal speed

" with the very small cost of four additional PAL outputs being required. As it turns out,
neither delay mode! predicts a very significant improvement. The transmission line
model predicts a 4.7 ns delay. The RLC model predicts a 6.5 ns delay. Assuming an
inductive load of 62 nH a capacitive load of 150 pF a 15 Q damping resistor, and
-08V undershoot :

VDHAM Example

The VDRAM design needs only eight memory devices per bank since the memories are
each four bits wide. These are placed on a single 6-inch trace. The input capacitance
ranges from 5 pF to 10 pF depending on input and manufacturer. The worst case value
of 10 pF is assumed. The transmission line model predicts 5.5 ns delay. The RLC
model predicts 6.5 ns delay, assuming an inductive load of 105 nH, a capacitive load of
120 pF, a 22 Q damping resistor, and —-0.7 V undershoot.
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Damping Resistors

Note that for each of the damping resistor values shown in the RLC models, the value of
the common damping resistor is essentially the Thevenin equivalent of having one
resistor for each branch between the driver and the branch, where the value the resistor
is in the 20 to 30 Q range. This fits nicely with the transmission line model that requires
a serial damping resistor on each branch. So, for the sake of having a common layout
plan, it assumed that all the memory designs implement the needed damping resistance
by placing resistors on each signal branch.

Summary

Table A-3 summarizes the results of the delay model anaIyS|s on each design example.
For the sake of being conservative, the longest delay value is used in each case. In
each case this turns out to be the value predicted by the RLC mode!.

Table A-3

Summary of Delay Model Analysis Results

Example Capacitance Transmission RLC Model
: of Input Line Delay - Delay
pF ns o ‘ ns
Non Interleaved . :
SRAM 5 N/A . 15
Bank Interleaved " o
SRAM 5 o 4 ' I
SCDRAM 5 4 - 6
7 47 65

" VDRAM , 10 o 55 ‘ "~ -85
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Figure A-10

"140.H

10 REM***xkk*xkkxkkk*x**x* Transmission Line Analyzer *¥**xx¥xk&kkk*xk&*
20 REM **kkhkhkkkhhkh Ak kk kA kA XKk kkk kA Ak kkhkkkkk kA Ak kkkk Ak kkkkkkkkkkk ke kkkkk

30 REM .

40 REM ***kkkkkkkkkkkkkkkx*x* input initial values ***xrxkkkkkkkkkkkkkkx
50.VOH = 4 ’

60 VOL = 0.2

70 RL = 5.
80 RH = 25
90 RD = 22
100 ER = 5

120 CL = 7E-12

130 T = 0.003

0.03

150 W = 0.01

160 Sp = 0.75

170 RLOAD = 1E+09

180 L = 6 :

900 REM *****f************ parameter_display Feokkodok kokok kok ook Kk kkokok ok Kk k ko ok
1000 CLs

1001 PRINT “Memory System Transmission. Line Analyzer”

1010 PRINT
1020 PRINT “Type the number of the value you wish to change:”
1030 PRINT
1040 PRINT
1050 PRINT

2

* 0) no changes”

1060 PRINT “ 1)V°h”,VOH,‘“V"

1070 PRINT “ 2)Vol”,VOL;“V”

1080 PRINT “ 3)Rh”,RH;“ohms”,,“totem pole resistance to VCC”

1090 PRINT “ 4)R1”,RL;“ohms”,,“totem pole resistance to GND”

1100 PRINT “ 5)Rd”,RD;“ohms”,,“series damping resistance”

1120 PRINT “ 6)Er”,ER,,“relative dielectric of pcb”

1130 PRINT “ 7)w”,W;“inches”,,“width of pcb trace”

1140 PRINT ™ 8)h”,H;“inches”,,“height of pcb trace above ground”

1150 PRINT 9)t”,T;“inches”,,“thickness'of pcb’ trace”

1160 PRINT “ 10)1“,L;“inches”,,“length of pcb trace”

1170 PRINT ™ 11)Cl”,CL;“F”,,“capacitance of memory input”

1175 PRINT “ 12)Sp”,SP;“inches”,,“spacing between memories”

1176 PRINT “ 13)R1”,RLOAD;“ohms”,,“end of line load resistance”

1180 .PRINT ) .

1183 PRINT“change number “;

1185 INPUT VARIABLE

1190 IF VARIABLE >=0 AND VARIABLE <= 13 THEN GOTO 1220

1200 PRINT “ invalid parameter number please reenter choice”

1210 GOTO 1000

1215 REM *kkkkkkkrkkkhkkkhkkxx parameter modification*********************
1220 ON VARIABLE GOSUB
2100,2200,2300,2400,2500,2600,2700,2800,2900,3000,3100,3200,3300

1230 IF VARIABLE = 0 THEN GOSUB 10000

2000 GOTO 1000
2100 PRINT“ Voh
2110 INPUT VOH
2120 RETURN
2200 PRINT “Vol = (volts) “;
2210 INPUT VOL

2220 RETURN

(volts) ”;

Transmission Line Program Listing for MS-DOS
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Figure A-10

2300
2310
2320
2400
2410
2420
2500
2510
2520
2600
2610
2620
2700
2710
2720
2800
2810
2820
2900
2910
2920
3000
3010
3020
3100
3110
3120
3200
3210
3220
3300
3310
3320
10000
10100
10110
10120
10130
10140
10150
10160
10190
10200
10210
10220
10230
10240
10250
10270
10280
10290
10300

‘10310

10320
10330

PRINT “Roh =
INPUT RH
RETURN
PRINT “Rol =
INPUT RL
RETURN }
PRINT “Rd = (ohms) “;
INPUT RD

RETURN

PRINT “Er ;

INPUT ER

RETURN

PRINT “w = (inches) ”
INPUT W

RETURN

PRINT “h = (inches) ”
INPUT H

RETURN

PRINT “t = (inches) “;
INPUT T

RETURN

PRINT “1 = (inches) ”;
INPUT L :
RETURN
PRINT “Cl =
INPUT CL
RETURN
PRINT “Sp =
INPUT SP
RETURN
PRINT “R1l =
INPUT RLOAD
RETURN .
REM ****xx***** calculate transmission line-characteristics****x**
Z0 = (87/SQR(ER + 1.41))*LOG((5.98*H)/ (.8*W+T))

TPDO = 1.017*SQR(.475*ER + 0.67)

CO = 1000*(TPD0/Z0)

CD = (CL/SP)*12*1E+12

21= Z0/SQR(1+(CD/CO0))

TPD1 = TPDO * SQR({1+(CD/CO))

ES = VOH-VOL

PL = (RLOAD-Z1)/(RLOAD+Z1)

RSOURCEHL = RD + RL

PSHL = (RSOURCEHL - Z1l)/(RSOURCEHL + Z1).

RSOURCELH = RD + RH

PSLH = (RSOURCELH - Z1)/(RSOURCELH + Z1)

VDCHL = VOH :

VDCLH = VOL o

VAHL = -1*ES*(Z1/ (2Z1+RSOURCEHL))

VALH = ES*(Z1/(Z1+RSOURCELH))

REM********************* display line characteristics K d ok k ok ok ok ok ok ok ok ok
CLS

PRINT “Transmission Line Analysis”

PRINT

PRINT

(ohms) ”;

(ohms) “;

~

~

~

(Farads) ”;
(inches) ”;

(ohms) ”;

Transmission Line Program Listing for MS-DOS (Cont'd.)
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Figure A-10

10340
10350
10360
10370
10380
10390
10400
10410
10415
10420
10430
10440
10450
10460
10470
11000
11010
11020

11030
11040
11050
11060

PRINT“Driver voltage step =",,ES,“Volts”

PRINT“Driver source impedance, high to. . low”,RL,“ohms”
PRINT“Driver source impedance, low to high”,RH, “ohms”
PRINT“Damping resistance”,,RD,“ohms”

PRINT“Line impedance”,,21l,“ohms”

PRINT“Line capacitance”,,CD*(L/12)+C0*(L/12),“picoFarads”
PRINT“Line inductance”,, (20°2*C0*. 001)*(L/12),“nanoHenrys”
PRINT“Line length”,,,L,“inches”

PRINT“Line propagation rate”,,TPD1,“ns/ft”

PRINT“Line propagation delay”,,(L/lZ)*TPDl,“ns”

PRINT“Load impedance”,,RLOAD,“ohms”

PRINT

PRINT

PRINT

PRINT“*hit return when ready to proceed.... “;

REM % % Kk kK Kk ok ok ok k ok ok ok lattice diagram calculations Lk h ok ok ok k ok kok ok ok ok kkokkk
CLS

PRINT “Lattice Diagrams for High to Low and Low to High

Transitions”
PRINT
PRINT TAB(18);“High to Low:”;TAB(45);“Low to High:”
PRINT TAB(18) ;% =e—memeeee—m #:TAB(45) ;Y mmm et e “

PRINT “TD”;TAB(6);"“Time”;TAB(18) “Vs”'TAB(30);“Vl”‘TAB(45) “vs”;

TAB(57) ;“V1”

11070
11072
11073
11074
11075
11076
11080
11085
11087
11090
11100
11110
11120
11130
11150
11160
11190
11195
11200
11210
11220
11230
11240
11250
11260
12000

PRINT

F1$ =“###4 ##4. ### (22 38 334 o LEEES 33 3¢

F2$ =“#### ##4.#44 FHE L HEE #i . HaE
UHL = 0 g

ULH = 0

I=0

FOR TD = (0 + I) TO (15 + I)

.UHL = PL~(INT(TD/2 +.5)) * PSHL~(INT(TD/2)) + UHL

ULH = PL~(INT(TD/2 +.5)) * PSLH~(INT(TD/2)) + ULH
VTHL = (VAHL * UHL)+ VDCHL

VTLH = (VALH * ULH)+ VDCLH

IF ( (TD/2 - INT(TD/2)) > 0 ) THEN GOTO 11150
PRINT USING F1$;TD;TD*TPD1*(L/12); VTHL VTLH
GOTO 11190

! else

PRINT USING F2$;TD; TD*TPDl*(L/lZ) ; VTHL; VTLH
NEXT TD

I= I +16

PRINT

PRINT “more (y/n) ”;

INPUT YESNOS$

IF YESNOS$ <> “n” THEN GOTO 11080

PRINT “do you want to run the program again
INPUT YESNO$ :

IF YESNOS <> “n” THEN RETURN

END
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REM **xk**xxkkxk*k*xkx*k*x* Over & Undershoot Analyzer **Xkxkk*xxkk*xxkkxk*
REM **xkkkkxkkkkkkk*x*x*x* for RLC networks **xkxkkkkkkkkkk k%

REM **Akhk Xk kA khk kAR A KA RKKA KKK KA KRR R KR KKK KA KK KRR KKK KKK K kA KKk Kk kK Kk k kK
REM **kkkkkkkkkkkkkkdk** jnput initial values *k*xkkkkxkkkkkkkkkkkk*

VOH = 4

VOL = 0.2
RL =5
RH = 25
RD = 22

100 Lp = 2E-08

110 LT = 1.08E-07

120 CL = 2.5E-10

130 CT = 2E-11

900 REM kkhkkkkkkhkhkkhkkkkkkhkkkk display parameters dhkkhkhkkhkkhkhkkkkhkkhkkkkkx
1000 CLS

1001 PRINT “Over & Undershoot Analyzer”

1010 PRINT

1020 PRINT “Type the number of the value you wish to change:”
1030 PRINT : '

1040 PRINT

1050 PRINT “ 0) no changes”

1060 PRINT “ 1)Voh”,VOH;“V”

1070 PRINT “ 2)Vol”,VOL;“V” .

1080 PRINT ™ 3)Rh”,RH;“ohms”,,“totem pole resistance to VCC”

1090 PRINT “ 4)R1”,RL;“ohms”,,“totem pole resistance to GND”

1100 PRINT “ 5)Rd”,RD;“ohms”,,“series damping resistance”

1110 PRINT “ 6)Lp”,LP;“H”,,“inductance of driver package”

1120 PRINT ™ 7)Lt”,LT;“H”,,“inductance of PC trace”

1130 PRINT “ 8)Cl”,CL;“F”,,“capacitance of load”

1140 PRINT “ 9)Ct”,CT;“F”,,“capacitance of PC trace”

1150 PRINT

1160 PRINT

1170 PRINT “change number ”;

1180 INPUT VARIABLE

1190 IF VARIABLE. >=0 AND VARIABLE <= 9 THEN GOTO 1220

1200 PRINT ™ invalid parameter number. ... please reenter choice”
1210 GOTO 1000

1215 REM J ok k Kk ok kokokkokokkkkkkkk parameter modification * %k Kk k ok ok ok ok ok ok ok ok kokkkokokk
1220 ON VARIABLE GOSUB 2100,2200,2300,2400,2500,2600,2700,2800,2900
1230 IF VARIABLE = (0 THEN GOSUB 10000

2000 GOTO 1000

2100 PRINT™ Voh
2110 INPUT VOH

1

(volts) ”;

2120 RETURN

2200 PRINT “Vol

(volts) ”;

2210 INPUT VOL

2220 RETURN

2300 PRINT “Rh = (ohms) ”;
2310 INPUT RH

2320 RETURN

2400 PRINT “R1l = (ohms) ”;
2410 INPUT RL

2420 RETURN

2500 PRINT “Rd = (ohms) ”;
2510 INPUT RD i
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2520 RETURN

2600 PRINT “Lp = (henrys) “;
2610 INPUT LP

2620 RETURN !
2700 PRINT “Lt = (henrys) “;
2710 INPUT LT

2720 RETURN

2800 PRINT “Cl = (Farads) ”;
2810 INPUT CL
2820 RETURN
2900 PRINT “Ct
2910 INPUT CT
2920 RETURN
9000 REM ***xkxkkkkkkk*x*x**x* calculate RLC characteristics **¥kkkkxkkkx
10000 VHL = - (VOH-VOL) ‘

10100 VLH = VOH-VOL

10200 RHL = RL + RD

10300 RLH.= RH.+ RD: .

10400 L = LP + LT

10500 € = CL + CT

10600 LCINV = 1/(L*C)

10700 R24L2HL = (RHL"2)/(4*%(L"2))

10710 R24L2LH (RLH"2) / (4% (L"2)) -

10800 ALPHAHL RHL/ (2*L) : e N

10810 ALPHALH = RLH/ (2*L)" . -

10900 BETAHL = SQR(ABS(LCINV - R24L2HL))

10910 BETALH = SQR(ABS(LCINV -~ R24L2LH))

11900 REM *¥*%kkkxkkk*kxkx*x*%* display RLC characteristics **kkkkskikkkkkxx
12000 CLS TR L i '

12100 PRINT “high to low transition”;TAB(40);“low to high transition”
12200 PRINT ' '

12300 PRINT “Vhl = “;VHL;TAB(40);“Vlh = ”;VLH

12400 PRINT “Rhl = ”;RHL;TAB(40);“Rlh = ”;RLH :

12500 PRINT “R"~2/4L"2 = ”;R24L2HL;TAB(40);“R*2/4L"2 = “;R24L2LH

12600 PRINT “R/2L = ”;ALPHAHL;TAB(40);“R/2L = “;ALPHALH

12700 PRINT “Beta =”;BETAHL;TAB(40);“Beta = ”;BETALH

13000 PRINT e

13100 PRINT oo : e

13105 IF LCINV > R24L2HL THEN GOTO 13119

13110 PRINT “Opps its hyperbolic”

13115 PRINT ™ R > ”;SQR(LCINV * (4*(L"2)))

13118 PRINT “falling edge waveform is invalid” =

13119 IF LCINV > R24L2LH THEN GOTO 13201

13120 PRINT TAB(40);“Opps its hyperbolic”;

13125 PRINT TAB(40);“ R > ”;SQR(LCiNV'* (4*(L"2)))

13150 PRINT TAB(40);“rising edge waveform is invalid” -’

13201 PRINT “L = ;L - '

13202 PRINT “C = ”;C

13203 PRINT “1/LC = ”;LCINV

13300 PRINT -

13600 PRINT “display the output waveform; rising/falling/none (x/f/n) ”;
13610 INPUT RFNS$ :

13620 IF RFN$ = “r” THEN GOSUB 30000

13630 IF RFN$ “f” THEN GOSUB 20000

13640 IF RFN$ = “n” THEN GOTO 13800

1

(Farads) “;

1

I
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13650 GOTO 13600 .

13800 PRINT “do you ‘want to run the. program again (y/n) ”;

13900 INPUT YESNOS$

14000 IF YESNO$ <> “n” THEN RETURN

15000 END .

20000 REM*kkkkkkkkkkkkkkxk high to low wa_vefor_m dkkkkkkkokkokkkk

20010 I = 0 ' '

20100 CLS

20200 PRINT “Tns | ---- Vout (volts) ++++ ” )

20300 PRINT * 3....+....2....+...h1....+....o....+....1....+....
2....4....300. .47 o

20400 FOR T = (1+ I) TO (20 + 1)

20500 VOUT = VHL* (1- (EXP(—(ALPHAHL*T*lE 09))*(((ALPHAHL/BETAHL)*

SIN (BETAHL*T*1E-09) ) +COS (BETAHL*T*1E-09)))) +VOH

20600 VSCALE = INT((ABS(3+VOUT)*10)+ 5)

20700 IF VSCALE > 70 THEN VSCALE = 70 .

20800 PRINT T;TAB(G)}“I”;TAB(VSCALE+7)W‘,‘*"

20900 NEXT T '

20905 I=I+20 )

20910 PRINT “more (y/n) ";

20920 INPUT YESNOS .

20930 IF YESNO$ <> “n” THEN GOTO 20100

20990 RETURN . .

30000 REM**************** low to high waveform Tk ok ok Kk Kk k ok ok Kok

30010 I = 0

30100 CLS o )

30200 PRINT PTns | -—-- Vout (volts) ++++-” - .,

30300 PRINT ™ TR U S S IR SR o DRI SUR R R
S . D S L)

30400 FOR T.= (1+ I) TO (20 + I).

30500 VOUT = VLH*(1l- (EXP(—(ALPHALH*T*IE 09))*(((ALPHALH/BETALH)*
SIN(BETALH*T*IE 09))+COS(BETALH*T*1E 09))))+VOL
30600 VSCALE : INT((ABS(3+VOUT)*10)+ 5)

30700 IF VSCALE > 70 THEN VSCALE = 70

30800 PRINT T;TAB(6);™|”;TAB(VSCALE+7) “*”

30900 NEXT T

30905 I=I+20

30910 PRINT “more (y/n) “;

30920 INPUT YESNO$S :

30930 IF YESNO$ <> “n” THEN GOTO 30100

30990 RETURN o
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REM This is a transcription of the Transmission Line Analyzer
REM from the 29K Memory Handbook

REM Copyright Advanced Micro Devices Inc 1988
REM Transcription by Tom Crawford Jun 88
REM Assign Initial Values

dectS="#### #AIA"

dec3$="###.###"

voh=4
vol=.2
rl=5 ‘totem pole resistance to ground
rh=25 'totem pole resistance to vce
rd=22 'series damping resister
er=5 'dielectric constant
cl=7 - 'memory input cap in pF
t=.003 ‘trace thickness in inches
h=.03 ‘height of trace above ground in inches
w=.01 'width of trace
sp=.75 'spacing between memory chips in inches
rld=1000000! ‘end of line load resistance
=6 'total length of trace
obscure=1 'we need to redraw windows one and two
CALL TEXTFONT(4) ‘computer looking output
REM open the windows
currentfield=1 ‘the field we moved out of
junk=DIALOG(0) 'take any left over dialog away
loop: _
IF obscure=1 THEN GOSUB openone ‘make the normal windows
d0=DIALOG(0) 'get any dialog

IF d0=0 THEN GOTO loop - ‘'wait for something to happen
ON d0 GOSUB butt,cfield cwundow.goaway refresh,retkey, tabkey

GOTO loop
tabkey: ‘ :
currentwindow=WINDOW (0) ‘save current output window
WINDOW OUTPUT 2 ‘choose utility window
CLS ‘

PRINT "Tab Key in Active Window"
WINDOW OUTPUT currentwindow
RETURN

retkey:
GOTO gotok
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A-26 MEMORY ARRAY LOADING DELAY CALCULATIONS



Figure A-12

refresh:
RETURN

goaway:
STOP

cwindow:
currentwindow=WINDOW (0) 'save current output window
WINDOW OUTPUT 2 ‘choose utility window
CLS : ) ‘
PRINT "User Clicked in inActive Window ";DIALOG(3)
WINDOW OUTPUT currentwindow

RETURN
cfield: :
currentwindow=WINDOW (0) 'save current output window
editstring$=EDIT$(currentfield) ‘see what he changed it to
WINDOW OUTPUT 2 - o ‘choose utility window
CLS :

PRINT "Clicked out of field ";currentfield

PRINT "The string is ";editstring$

ON currentfield GOSUB vohx,volx,rix,rhx,rdx,erx,clx,tx,hx,wx,spx,rldx,Ix
d2=DIALOG(2) . ‘field we clicked into

PRINT "Clicked into new field ";d2 :

IF d2<> 0 THEN currentfield=d2

WINDOW OUTPUT currentwindow

RETURN
vohx:

voh=V AL (editstring$): ‘PRINT voh: RETURN -
VOI:;|=VAL(editstriﬁg$): PRINT vol: RETURN
rIX;I-VAL(editstr;‘ngs)': PRINT ri: RETURN
rhxr.h=VAL(editstring$): PRINT rh: RETURN
rdXr:d=VAL(editstring$): PRINT' rd: RETURN
erx:

er=VAL (editstring$): PRINT er: RETURN

cix:

cl=VAL (editstring$): PRINT cl: RETURN

tx: -
t=VAL (editstring$): PRINT t: RETURN

. Transmission Line Program Listing for Macintosh (Cont'd.)
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hx:
h=VAL (editstring$): PRINT h: RETURN
WX:
w=VAL (editstring$): PRINT w: RETURN
spx:
sp=V AL (editstring$): PRINT sp: RETURN
ridx:
‘rld=V AL (editstring$): PRINT rid: RETURN
Ix: : ‘ ‘
1=VAL (editstring$): PRINT I: RETURN
butt:
currentwindow=WINDOW (0) 'save current output window
d1=DIALOG(1)
IF d1=14 THEN GOTO gotok 'do this before swapping windows
WINDOW OUTPUT 2 . : "’choose utility window
CLS )

ON d1 GOSUB vohh,volh,rih,rhh,rdh,erh,clh,th,hh,wh,sph,ridh,lh

WINDOW OUTPUT currentwindow

RETURN LA
vohh: :
PRINT "vOH is the HIGH level output”

PRINT "voltage. For CMOS it is typically”

PRINT "between Vcc and Vcc-1.0 Volts.™

PRINT "For TTL it is typically between"

PRINT "2.5 and 3.5 Volts. The units are"-

PRINT "volts.";

RETURN
volh:

PRINT "vOL is the LOW level output"

PRINT "voltage. For CMOS it is typically”

PRINT "between 0.2V and ground. For TTL"

PRINT"it is typically between 0.4V and"

PRINT "ground. The units are volts."

RETURN
rih:

PRINT "RL is the totem pole resistance”

PRINT "to ground. - It is typically on the"

PRINT "order of 5 - 10 ohms. The units are"

PRINT "ohms." - " :

RETURN
rhh: .
PRINT "RH is the totem pole resistance"
PRINT "to VCC. it is typically-on the order"
PRINT "of a few tens of ohms. The units are"
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PRINT "ohms."
RETURN

rdh:
PRINT "RD is the series output resistance.”
PRINT "It is typically on the order of a few"
PRINT "tens of ohms. The units are ohms."
RETURN

erh:
PRINT "ER is the dielectric constant of the"
PRINT "printed circuit board. Typical "
PRINT"numbers are between 4.7 and 5. "
PRINT"This is a dimensionless number.”
RETURN :

clh: :
PRINT"CL is the input capacitance of each "
PRINT"memory device. Typical numbers”
PRINT"are 5-7 picoFarads. The units are "
PRINT"picoFarads."
RETURN

th:
PRINT"T is the thickness of the pcb "
PRINT"trace. 1 oz copper is .0015 inch "
PRINT"and 2 oz copper is .003 inch. "
PRINT"The units are inches.”
RETURN

hh:
PRINT"H is the height of the pcb trace"
PRINT"above the (AC) ground plane. Four®

. PRINT"layer boards are typically .03 inch"
PRINT" and six layer boards are typically”
PRINT".02 inch. The units are inches."
RETURN

wh:. R .

PRINT"W is the width of the pcb trace. " -

PRINT"The units are inches.”

RETURN

sph:
PRINT "SP is the spacing between memory "
PRINT"chips along the transmission line. " "
PRINT "The units are inches.”
RETURN

ridh:
PRINT"RLD is the termination resistor. "
PRINT"at the end of the transmission”
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PRINT"line furthest from the driver. "

PRINT"The units are ohms.”

RETURN
PRINT"L ‘is ‘the length of the ‘transmission "
PRINT"line. ' The units are inches." o
RETURN

gotok: ‘ o '
GOSUB cfield  : -~ 'take care of Iast field we: clicked out of
REM ok now do the arithmetic -
20=(87/SQR(er+1.41))*"LOG((5.98*h)/(.8*w+t))
tpdo=1.017*SQR(.475"er+.67)
¢o=1000"*(tpdo/z0)" ! E
cd=(cl/sp)*12 -+ : 'cl already in picofarads-
z1=20/SQR(1+(cd/co)) :
tpd1=tpdo*SQR(1+(cd/co)) .
es=voh-vol
pl=(rid-z1)/(rld+z1)
rsourcehl=rd+rl
pshl=(rsourcehl- z1)/(rsourcehl+z1)
rsourcelh=rd+rh
pslh=(rsourcelh- z1)/(rsourcelh+z1)
vdchl=voh
vdclh=vol
vahl=-1*es*(z1/(z1+rsourcehl)) -
valh=es*(z1/(z1+rsourcelh)) -

currentwindow=WINDOW(0) - -+ - ' -'save current window
WINDOW OUTPUT 2 AT utuhty wmdow
CLS o

PRINT "Driver step (Volts) TAB(20) :PRINT USING dec3$;es
PRINT "Line impedance (ohms):";TAB(20);:PRINT USING dec3$;z1
PRINT ‘"Line capacitance (pF):";TAB(20);:PRINT USING dec3$;cd*(I/12)+co*(I/12)
PRINT "Line inductance (nH):";TAB(20);:PRINT USING dec3$;(z0*2*c0*.001)*(I/12)
PRINT "Line prop rate(nS/ft):";TAB(20);:PRINT USING dec3$;tpd1
PRINT "Line prop delay (nS):" TAB(20) :PRINT USING dec3$;(1/12)*tpd1
PRINT "Click Mouse to continue...
WHILE MOUSE(O)=O AND DlALOG(O)=0
WEND
REM now do a Iattlce dnagram
WINDOW 3,"Lattice Diagram",(1,16)- (500 320),1 '
obscure=1
WINDOW OUTPUT 3
CLS
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pf2:

pf3:

PRINT TAB(18);"High to Low:";TAB(45);"Low to High:"
PRINT TAB(4);"TD";TAB(10);"time";TAB(18);"Vs";TAB(30);"VI";TAB(45):"Vs";TAB(5

a);vI"
f1$="w### #it# ### - HEH #HR : #A# HHE"
foS="#### Ri# #iH4 H#ith H##H #i# #4444
uhl=0 ‘
ulh=0

FOR td=0 TO 13
uhl=plI*(INT(td/2+.5))*pshI*(INT(td/2))+uhl.
ulth=pIA(INT(td/2+.5))*psIhA(INT(td/2))+ulh

vthi=(vahl*uhl)+vdchl
vtlh=(valh*ulh)+vdclh

IF ((td/2 - INT (td/2))>0) THEN GOTO pf2 ‘
PRINT USING f1$;td;td*tpd1*(}/12);vthi;vtih

GOTO pf3 o

PRINT USING f2%;td;td*tpd1*(I/12);vthl;vtlh

NEXT td
PRINT "Click Mouse to continue...”

wait2:
- IF MOUSE(0)=0 THEN GOTO wa|t2

RETURN

openone:
REM open and update window number 1
WINDOW 2, "Utility - Window",(251,40)-(500,180),1

REM now make them strings suitable for MacEditFields
voh$=LEFT$(STR$(voh),6)
vol$=LEFT$(STR$(vol),6)
ri$=LEFT$(STR$(rl),6)
rh$=LEFT$(STR$(rh),6)
rd$=LEFT$(STR$(rd),6)
er$=LEFT$(STR$(er),6)
cl$=LEFT$(STR$(c!),6) .
t$=LEFT$(STR$(1),6)
h$=LEFT$(STR$(h),6)
w$=LEFT$(STR$(w),6)
sp$=LEFT$(STR$(sp).6)
IF rid<1000 THEN

rid$=LEFT$(STR$(rld),6) ‘ohms case
ELSE

rid$=-LEFT$(STR$(rld/1000000!),6)
rid$=rld$+"E6"

'megohms case
'fake it for edit field
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END IF
I$=LEFT$(STR$(l),6) i N
WINDOW 1,"Parameter Values (1 40) (250 180) 1

fbx=60:fby=5 : ‘upper left corner of first edlt field
fex=100:fey=18 ‘lower right corner of first edit field
bbx=5:bby=5 ‘'upper left corner of first button
bex=60:bey=18 'lower right corner of first button
incx=120:incy=19 'button and field spacing

BUTTON 1,1,"vOH",(bbx+0*incx,bby+0*incy)-(bex+0*incx,bey+0*incy),3
EDIT FIELD 1,voh$,(fbx+0*incx,fby+0*incy)-(fex+0*incx,fey+0*incy),1
BUTTON 2,1,"vOL",(bbx+0*incx,bby+1*incy)-(bex+0*incx,bey+1*incy),3
EDIT FIELD 2,vol$,(fbx+0*incx,fby+1*incy)-(fex+0*incx;fey+1*incy),1
BUTTON 3,1,"RL",(bbx+0*incx,bby+2*incy)-(bex+0*incx,bey+2*incy),3
EDIT FIELD 3,r$,(fox+0*incx,fby+2*incy)-(fex+0*incx,fey+2*incy),1
BUTTON 4,1,"RH",(bbx+0*incx,bby+3*incy)-(bex+0*incx,bey+3*incy),3
EDIT FIELD 4,rh$,(fbx+0*incx,fby+3*incy)-(fex+0*incx,fey+3*incy),1
BUTTON 5,1,"RD",(bbx+0*incx,bby+4*incy)-(bex+0"incx,bey+4*incy),3
EDIT FIELD 5,rd$,(fbx+0*incx,fby+4*incy)-(fex+0*incx,fey+4*incy),1
BUTTON 6,1,"er",(bbx+0*incx,bby+5*incy)-(bex+0*inck,bey+5*incy),3
EDIT FIELD 8,er$,(fbx+0*incx,fby+5*incy)-(fex+0*incx,fey+5*incy),1
BUTTON 7,1,"CL",(bbx+0*incx,bby+6*incy)-(bex+0*incx,bey+6*incy),3
EDIT FIELD 7,cl$,(fbx+0*incx,fby+6*incy)-(fex+0*incx,fey+6*incy),1
BUTTON 8,1,"T",(bbx+1*incx,bby+0*incy)-(bex+1*incx,bey+0*incy),3
EDIT FIELD 8,t$,(fbx+1*incx,fby+0*incy)-(fex+1*incx,fey+0*incy),1
BUTTON 9,1,"H",(bbx+1*incx,bby+1*incy)-(bex+1*incx,bey+1tincy),3
EDIT FIELD 9,h$,(fbx+1*incx,fby+1*incy)-(fex+1*incx,fey+1*incy),1
BUTTON 10,1,"W",(bbx+1*incx,bby+2*incy)-(bex+1*incx,bey+2*incy),3
EDIT FIELD 10,w$,(fbx+1*incx,fby+2*incy)-(fex+1*incx,fey+2*incy),1
BUTTON 11,1,"SP",(bbx+1*incx,bby+3*incy)-(bex+1*incx,bey+3*incy),3
EDIT FIELD 11,sp$,(fbx+1*incx,fby+3*incy)-(fex+1*incx,fey+3*incy), 1
BUTTON 12,1,"RLD",(bbx+1*incx,bby+4*incy)-(bex+1*incx,bey+4*incy),3
EDIT FIELD 12,rid$,(fbx+1*incx,fby+4*incy)-(fex+1*incx,fey+4*incy),1
BUTTON 13,1,"L",(bbx+1*incx,bby+5*incy)-(bex+1*incx,bey+5*incy),3
EDIT FIELD 13,1$,(fbx+1*incx,fby+5*incy)-(fex+1*incx,fey+5*incy),1
BUTTON 14,1,"OK",(bbx+1*incx,bby+6*incy)- (bex+1 mcx bey+8‘|ncy) 1
obscure=0 ‘we can now see wmdow one ! .

RETURN : Peetton e

et
FER R
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*REM This is a transcription of the Over and Undershoot ‘Analyzer
REM from the 29K Memory Handbook
REM Copyright Advanced Micro Devices Inc 1988

© REM Transcription by Tom Crawford Jun 88

’ REM Assign Initial Values ’

- decf$="###4#. #"""""
voh=4 .
- vol=.2 : -
" rl=5 - 'totem pole resistance to ground
. rth=25 'totem pole resistance to vee
“rd=22 - .+ ‘'series damping resister -
Ip=20 " '‘package-inductance in nanohenries
It=108 - :'trace inductance in nanohenries - °
cl=250 'load capacitance in picofarads
ct=20 ‘trace capacntance in plcofarads

REM now make them strings: suitable for MacEanlelds
- voh$=LEFT$(STR$(voh),6)

vol$=LEFT$(STR$(vol),6)

ri$=LEFT$(STR$(r),6)

rh$=LEFT$(STR$(rh),6)
" rd$=LEFT$(STR$(rd),6)

Ip$=LEFT$(STR$(Ip).6)

1t$=LEFT$(STR$(!t),6)

cl$=LEFT$(STR$(cl),6)

ct$=LEFT$(STR$(ct),6) . B K ‘

CALL TEXTFONT(4) ‘computer looking output

REM open the three windows

WINDOW 3,"Waveforms”,(1,160)-(500,350),1 = .
WINDOW 2, "Utility Window",(251,40)-(500,140),1
WINDOW 1,"Parameter Values",(1,40)-(250,140),1 -

fbx=60:fby=5 ‘'upper left corner of first edit field
fex=100:fey=18 'lower right corner of first edit field
bbx=5:bby=5 ‘upper left corner of first button
bex=60:bey=18 ‘lower right corner of first button
incx=120:incy=19 ‘button and field spacing

BUTTON 1,1,"vOH",(bbx+0*incx,bby+0*incy)-(bex+0*incx,bey+0*incy),3
EDIT FIELD 1,voh$,(fbx+0*incx,fby+0*incy)-(fex+0*incx,fey+0*incy),1
BUTTON - 2,1,"vOL",(bbx+0*incx,bby+1*incy)-(bex+0*incx,bey+1*incy),3
EDIT FIELD 2,vol$,(fbx+0*incx,fby+1*incy)-(fex+0"incx,fey+1*incy),1
BUTTON 3,1,"RL",(bbx+0*incx,bby+2*incy)-(bex+0*incx,bey+2*incy),3

EDIT FIELD 3,rl$,(fbx+0*incx,tby+2*incy)-(fex+0*incx,fey+2*incy), 1

BUTTON 4,1,"RH",(bbx+0*incx,bby+3*incy)-(bex+0*incx,bey+3*incy),3
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Figure A-13

EDIT-FIELD 4,rh$,(fbx+0*incx,fby+3*incy)-(fex+0*incx,fey+3*incy),1
BUTTON 5,1,"RD",(bbx+0*incx,bby+4*incy)-(bex+0*incx,bey+4*incy),3
EDIT FIELD 5,rd$,(fbx+0*incx,fby+4*incy)-(fex+0*incx,fey+4*incy),1
BUTTON 6,1,"LP",(bbx+1*incx,bby+0*incy)-(bex+1*incx,bey+0*incy),3
EDIT FIELD 6,Ip$,(fbx+1*incx,fby+0*incy)-(fex+1*incx,fey+0*incy),1
BUTTON 7,1,"LT",(bbx+1*incx,bby+1*incy)-(bex+1*incx,bey+1*incy),3
EDIT FIELD 7,it$,(fbx+1*incx,fby+1*incy)-(fex+1*incx,fey+1*incy),1
BUTTON 8,1,"CL",(bbx+1*incx,bby+2*incy)-(bex+1*incx,bey+2*incy),3
EDIT FIELD 8,cl$,(fbx+1*incx,fby+2*incy)-(fex+1*incx,fey+2*incy),1
BUTTON 6,1,"CT",(bbx+1*incx,bby+3*incy)-(bex+1*incx,bey+3*incy),3
EDIT FIELD 9,ct$,(fbx+1*incx,fby+3*incy)-(fex+1*incx,fey+3*incy),1
BUTTON 10,1,"OK",(bbx+1*incx,bby+4*incy)-(bex+1*incx,bey+4*incy),1

currentfield=9 ‘the field we moved out of
junk=DIALOG(0) 'take any left over dialog away
loop:

d0=DIALOG(0) ‘get any dialog

IF d0=0 THEN GOTO loop . 'wait for something to happen
ON d0 GOSUB butt,cfield,cwindow,goaway;refresh retkey tabkey
GOTO loop

tabkey:
currentwindow=WINDOW(0) 'save current output window
WINDOW OUTPUT 2 . 'choose utility window
CLS :

PRINT "Tab Key in Active Wlndow
WINDOW OUTPUT currentwindow
RETURN

retkey:
GOTO gotok

refresh:
RETURN

A goaway:

STOP

cwindow: ‘ . .
currentwindow=WINDOW/(0) ‘save current output window
WINDOW OUTPUT 2. - ‘choose utility window
CLS
PRINT "User Cllcked in inActive Wmdow DIALOG(S)
WINDOW OUTPUT currentwindow
.RETURN :
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Figure A-13

cfield:
currentwindow=WINDOW 0) " 'save current output window
editstring$=E_DIT$(curientfieId) . 'see what he changed it to
WINDOW OUTPUT 2 ‘ ‘choose utility window
CLS '

PRINT "Clicked out of field ";currentfield

PRINT "The string is ";editstring$

ON currentfield GOSUB vohx,volx,rix,rhx,rdx,|px, Itx,clx,ctx
d2=DIALOG(2) ‘ ) ’ 'field we clicked into
PRINT "Clicked into new field ";d2 ’

IF d2<> 0 THEN currentfield=d2

WINDOW OUTPUT currentwindow

RETURN ‘

VOh\j(cazh=VAL(editstring$): PRINT voh: RETURN
VOI:(:)I=VAL(editstring$): PRINT vol: RETURN
rlx;I=VAL(editstring$): PRINT rl: RETURN
I’hxr.h=VAL(editstring$): PRINT rh: RETURN
rdxl:d=VAL(editstring$): PRINT rd: RETURN
Ipxlb=VAL(editstring’$): PRINT ip: RETURN
“xlt'=VAL(editstring$): PRINT It RETURN
CIXo.::I=VAL(‘editstring$): PRINT cl: RETURN
Ct1i=VAL(editstrihg$): PRINT ct: RETURN

butt:
currentwindow=WINDOW(0) 'save current output window
d1=DIALOG(1) : ‘ _
IF d1=10 THEN GOTO gotok " 'do this before swapping windows
WINDOW OUTPUT 2 “'choose. utility window
CLS )

ON d1 GOSUB vohh,volh,rih,rhh,rdh,lph,lth,clh,cth
WINDOW OUTPUT currentwindow
RETURN ’
vohh:
PRINT "vOH is the HIGH level output”
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"Figure A-13°

PRINT "voltage. For CMOS it is typically"
PRINT "between Vcc and Vee -1.0 Volts.”
. 'PRINT "For TTL it is typically between"
" PRINT "2.5 and 3.5 Volts. The units are”
PRINT "volts.";
RETURN

voIh
" PRINT "vOL is the LOW level output .
PRINT "voltage. .For CMOS it is typlcally."
PRINT "between 0.2V and ground. For TTL"
PRINT"it is typically between 0.4V and"
PRINT "ground. The units are volts."’
RETURN

rlh: . . . i
PRINT "RL is the totem pole resistance”
PRINT "to ground. . It is typically on the" )
PRINT "order of 5 - 10 ohms. The units are”
PRINT "ohms." .

RETURN

rhh:
PRINT "RH is. the totem pole resistance”.
PRINT "o VCC. Itis typ|cally on the’ order"”
PRINT "of a few tens of ohms The units are”
PRINT "ohms." o
RETURN

rdh:
PRINT "RDis.the senes output resistance.”
PRINT "it is typlcally ‘on the order of a few"
PRINT "ens of ohms. The, units are ohms
RETURN

Iph: | o
" 'PRINT "LP is the package inductance. It is"
... PRINT "typically around 10-20 nanoHennes
PRINT "The units are nanoHenries." °
* RETURN

Ith: ) L e
PRINT “LT is the total trace inductarice.”
PRINT "The units are nanoHenries."
RETURN
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clh: : -
PRINT"CL is the total load capacitance. It"
PRINT"is typically 5-10 picoFarads per "
PRINT"memory device: The umts are”
PRINT"picoFarads.” ' g
RETURN ;

cth:
PRINT "CT is the total trace capacitance.”
PRINT "The umt are p:coFarads o
- RETURN e

gotok: i - : D
‘GOSUB:cfield =~ ‘'take care of last field we clicked out of
vhl=-(voh-vol)
vlh=voh-vol
rhi=rt+rd
rlh=rh+rd ) ) -
I=1E-09*(Ip+lt) *~ ~ ~ “make this into henries
c=1E-12*(cl+ct) 'and this into farads
lcinv=1/(I*c) _
r2412hl=(rhIA2)/(4* (1A2))
r24121h=(rihA2)/(4* (1A2))
alphahl=rhl/(2*l) *
alphath=rth/(2*1) -
betahl=SQR(ABS (Icinv- r24l2hl))
‘betalh=SQR(ABS(Icinv-r24i2ih)) -
currentwindow=WIND OW (0) " " 'chdose the utility window
WINDOW OUTPUT 2
cLs o
PRINT TAB(8);"HILO", TAB(18);"LOHI" -
PRINT "Volts"; TAB(8);vhi;TAB(18);vih
PRINT "Resis";TAB(8);rhl;TAB(18);rlh _
PRINT"RA2/4L*2";TAB(8);:PRINT USING decf$ r2412hl;:PRINT TAB(18);
PRINT USING decf$;r24121h
PRINT "R/2L"; ;TAB(8); :PRINT USING decf$ alphahl :PRINT TAB(18);
PRINT USING decf$;alphalh
PRINT"Beta";TAB(8);:PRINT USING decf$: betahl :PRINT TAB(18);
PRINT USING decf$;betalh;

REM now draw the scales on the ploner

WINDOW OUTPUT 3 ‘choose the plotter wnndow
CLS
vscale= -16 ‘pixels per volt vertically (plus is up on screen)
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vzero=-7*vscale+20 '+7 volts to -3 volts

hzero=20

hscale=7 plxel per nsec

htotal=60 - . 'we will always plot the same number of ns

LINE (hzero,vzero)-((hscale*htotal)+hzero,vzero),33. ‘zero volts

FOR nsec = 0 TO htotal
LINE ((nsec'hscale)+hzero, vzero+2) ((nsec* hscale)+hzero vzero-2) .

NEXT nsec

FOR nsec = 0 TO htotal STEP5 .
LINE ((nsec*hscale)+hzero,vzero+5)- ((nsec'hscale)+hzero vzero-5)

NEXT nsec

FOR nsec = 0 TO htotal STEP 10
LINE ((nsec*hscale)+hzero,vzero+10)-((nsec* hscale)+hzero vzero-10)

NEXT nsec

LINE (hzero,vzero-(vscale*3))-(hzero, vzero+(vscale'7))

FOR volts=-3 TO 7
LINE (hzero-2,vzero+(vscale*volts))- (hzero+2 vzero+(vscale*volts))

NEXT volts

REM now plot the high to low transition.

FOR nsec=1 TO htotal )
t=nsec*1E-09 seconds umts

cospart=COS(betahl*t)

sinpart=SIN(betahl*t)
volts=vhl*(1-(EXP(-alphahl*t))* ((alphahl/betahl)'smpart+cospart))+voh

CIRCLE(hzero+(nsec hscale), vzero+(volts ‘vscale)),2
NEXT nsec

REM now plot the low to high transition

FOR nsec=1 TO htotal )
t=nsec*1E-09 . ';econds units

cospart=COS (betalh*t).

sinpart=SIN(betalh*t)
volts=vih*(1-(EXP(- alphalh t)) ((alphalh/betalh) sinpart+cospart))+vol

CIRCLE(hzero+(nsec*hscale), vzero+(volts vscale)) 1
NEXT nsec ,

WINDOW OUTPUT currentwindow
RETURN .
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APPENDIX B ,
Building a Single-Cycle Memory System
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BUILDING A SINGLE-CYCLE n

- MEMORY SYSTEM

OVERVIEW
The desrgners of the Am29000 spent a great deal of time and silicon to build a proces-

- 'sor that can provide the best in state-of-the-art performance without the requirement for

single-cycle memory access speed

The branch target cache is able to hide three cycles of access time, typically, in 60% of
all branch instruction executions. The instruction prefetch buffer can in many cases
hide additional instruction access trme

- The large register file reduces the need to load or store data since the variables for

multiple procedures may be held in the register file across procedure calls and returns.
Overlapping of loads and stores with continued instruction execution further hides data
memory access time. Therefore, in most cases, slower and less expensive memory
systems can serve nearly as well as if single-cycle memory were used.

But even so, there will always be someone who wants to squeeze out every last ounce

o of performance regardless of the difficulty or cost. To that end, this Appendix describes

part of a write operatron

the constraints imposed on a single-cycle memory system and Figure B-1 shows how to
build one. The fundamental constraint on single-cycle memory is that its access time
must be equal to, or better than the time leftover from one clock cycle after processor
address and control delay and data and rnstructron setup time are subtracted.

UP AGAINST THE WALL
The processor address and control lines are not valid until 14 ns into a clock cycle. The
processor-instruction and data-setup times are 6 ns. That leaves 20 ns from a 40 ns

~ cycle. Even this available time must be reduced by buffer delays or capacitance-load

delay where the memory load on the processor address lines exceeds the standard

capacrtance -load limit.

Finally, there is the problem presented by the need to control the Chrp Enable (CE)
signal to the memory so that the memory wnII not contend for the bus during the early

ey,

-~ The problem is that until 14 ns into the cycle, the write control signal from the processor
* is not valid and may indicate a read or write operation incorrectly. If the memory were

enabled throughout each cycle, it would be possible for the memory to present read
data at the same time that write data from the processor begins to be driven for a write
operation. This contention results from the memory seeing a read operation before the
memory's Write Enable (WE) line becomes active and valid. Bus contention can then
continue until the WE line has time to disable the memory read-data output. In addition,
there is no guarantee that the WE line will not have spurious noise-induced WE pulses
before the processor’s valid output delay time is satisfied.
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It is therefore clear that a single-cycle access time memory should not be chip enabled
prior to the end of the output valid delay for the processor's Read/Write (R/W) line.
System Clock (SYSCLK) is a very convenient signal to use as the CE control. Itis high
during the first half of the cycle and disables the memory; and it is low during the latter
half of the clock cycle when the address and R/W lines are stable.

Using the SYSCLK as CE provides both a solution and a limitation. The limitation is that
the system clock can go active no sooner than 19 ns and may be as late as 21 ns. This
says that the limit on available access time for the memory is set by the time remaining
after the SYSCLK delay and processor instruction or data setup time are subtracted
from a 40 ns clock cycle. Thatis, 40 ns —21 ns—-6ns=13ns.

'THE SIDE EFFECTS, NOTHING TO SPARE

With only 13 ns available for memory access time, there is simply no time available for
dynamic address decoding or data-path buffering. Address lines may be buffered since
there is 5 ns to 7 ns available between the time that address from the processor is valid
and the time that the memory CE provided by SYSCLK is active. CE must be provided
directly from SYSCLK, or from a signal with the same tlmlng specrflcatlon as SYSCLK,
since CE is in the critical timing path.

Within these restrictions,there are at least two possible implementation approaches.
The two approaches differ in the way that SYSCLK is delivered to the system. The first
scheme is the simple direct use of SYSCLK as provided by the Am29000 processor.
The second approach relies on clock generation and gating logic external to the the
'Am29000 processor. ,

SYSTEM CLOCK PROVIDED BY PROCESSOR
The single-cycle memory with processor provrded SYSCLK signal is shown in
Figure B-1.

Potentlal Clock Overload

The system clock, if derived from the processor is very heavily loaded with capacitance
because it must drive all the memories in the instruction and data-blocks. The system
clock may not be buffered, because to do so would add delay into the CE-signal path of
the memories. These added delays would reduce the available read access time.

Limited Memory Size '

Unless the memory devices used have multrple CE mputs there can onIy be a single

block of memory in the instruction space and one block in the data space. Additional

. blocks require either address decoding to.select the blocks or data path buffers that can
isolate the blocks from the bus; neither of which i is possible when the processor pro-

vides the clock. : ‘ : 4
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Special Method-To-Access Instruction Memory Is Needed

The data-and-instruction memory blocks are both being selected for read or write in the
latter half of every cycle. It is therefore not possible to give the instruction memory
access to the data bus so that the instruction memory can be loaded and read via the
data bus. If this were attempted, the data memory would always contend with the
instruction-memory-to-data-bus buffer. ’

Therefore to gain access to the instruction memory, it is necessary to provide a DMA
device that can request the bus from the processor. This DMA device must have the
buffers necessary to gain access to either the data or instruction bus. The DMA device
is responsible for moving instructions into the instruction memory via the instruction bus.
The instructions, most likely, come from a remote bus which the DMA device could
access.

WE

Again, because the data and instruction memory blocks are both being selected for read
or write in the latter half of every cycle, it is necessary to qualify the WE line to the
memories with the appropriate Memory Request signal. That way a data bus write
affects only the data memory and an instruction bus write, via the DMA device, affects
only the instruction memory.

Figure B-1
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'__"SYSTEM CLOCK PROVIDED BY EXTERNAL OSOILLATOR
.The smgle cycle memory wuth bank selectlon |s shown |n Flgure B- 2

'Lower Clock Loadmg Possible e
" lf SYCLK is provided to'both the processor and the mémory blocks from an external os-
cillator, multiple clock buffers can be used to split the memory capacitance load. The
_delay of the memory clock buffers would be in parallel with the delay of the clock buffer
" driving the processor. This would maintain the timing relatlonshlp between the proces-
sor and memory wuthout mducmg addmonal delay

Figure B-2 .
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Address Decoding, Multiple Memory Banks, Now Possible. .

By splitting clock distribution, it is possible to selectively qualify each SYSCLK signal
used as a memory CE signal. This is done by passing SYSCLK from the external
oscillator through a PAL which selectively qualifies each output clock. The qualified
clocks then go through buffers that drive the memory arrays. By passing all the clocks
through the same gating and buffering levels the phase relationship of all the clocks can
be maintained, i.e. minimize system clock skew. The ability to qualify the CE line now
allows multiple memory banks within the instruction or data blocks to be addressed.

Due to the skew between the input oscillator signal and SYSCLK, the bank selection
cannot be changed on a cycle-by-cycle basis. - It is only possible to register a value that
selects a given memory bank. The switching process from one bank to another takes at
least one cycle. This switching of banks can be done by an explicit access to some
specific address. The PAL control logic recognizes the address and loads the registers
that gate the CE. The next memory access is then directed to the' newly selected
memory bank.

Simpler Access to Instruction Memory :

Since it is possible to deselect all data memory banks and enable a buffer to connect an
instruction memory bank to the data bus, the processor can directly access one bank of
instruction memory ‘as data while executing code from another bank-of instruction RAM
or ROM. The added delay of the instruction bus-to-data bus buffer requires that these
data bus accesses of instruction memory be slowed to two cycles per access via control
over the DRDY.

TIMING IS EVERYTHING
The timing for a single-cycle memory access is shown in Figure B-3.

As noted earlier, when SYSCLK is used as CE, it becomes part of the critical path. This
critical path, is made up of the worst-case system-clock output delay, plus memory
access time, plus processor set-up time, it’s total delay is 40 ns

The control-to-CE signal path is the next most critical. This critical path is the processor
control output valid delay of 14 ns. Of the total 19 to 21 ns delay possible, this leaves

5 ns until the earliest point at which SYSCLK (CE signal) could go active. Since it is
important that the WE line and addresses settle before the chip is enabled (CE goes
active) , the maximum delay for the address buffers and control gates is 5 ns. To
achieve this, it may be necessary to duplicate buffers and gates so as to split up the
memory array into groups whose capacitive load does not exceed the load specifica-
tions of the signal drivers. «

The processor control-to-response signal path is made up of the “processor control
output valid delay” of 14 ns, the PALs used to control the memory delay of 10 ns, and
the processor control signal setup time delay of 12 ns for a total of 36 ns.
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Figure B-3
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