
Arn29050™ Microprocessor
User's Manual

Advanced
Micro

Devices

Advanced Micro Devices

Am29050™ Microprocessor
User's Manual

© 1991 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in ~s products w~hout notice in
order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited

to implied warranties of merchantability orinness for a particular application. AMD® assumes
no responsibility for the use of any circuitry other than the circuitry embodied in an AMD
product.

The information in this publication is believed to be accurate in all respects at the time of
publication, but is subject to change without notice. AMD assumes no responsibility for any
errors or omissions, and disclaims responsibil~y for any consequences resulting from the use
of the information included herein. Add~ionally, AMD assumes no responsibility for the func­
tioning of undescribed features or parameters.

14nSAlO

AMD is a registered trademark of Advanced Micro Devices, Incorporated.
Am29000, Am29050, 29K, and Branch Target Cache are,trademarks of Advanced Micro Devices, Inc.

TABLE OF CONTENTS

Preface

Chapter 1

Chapter 2

Introduction and Overview •••.••••. • . • . . • • . • . • • • P-1

Design Philosophy .. P-1

Optimum Performance .. P-1

Performance Leverage .. P-2

Conclusion .. P-2

Am29050 Microprocessor User Manual Overview P-3

Features and Perfonnance ..••.••••.••••••.••..••.••.•....... 1-1

1.1 Distinctive Characteristics 1-1

1 .2 Introduction ... 1-1

1.3 Performance Overview 1-2
1.3.1 Cycle Time ... 1-2
1.3.2 Four-Stage Pipeline 1-2
1.3.3 System Interface. .. 1-3
1.3.4 Register File 1-4
1.3.5 Instruction Execution 1-5
1.3.6 Branch Target Cache™ Memory. .. 1-5
1.3.7 Branching. .. 1-5
1 .3.8 Loads and Stores 1-6
1 .3.9 Memory Management .. 1-7
1.3.10 Interrupts and Traps .. 1-8

1.4 Optimizing Compilers 1-8
1.4.1 Optimizing-Compiler Overview .. 1-8
1.4.2 Optimizing-Compiler Operation 1-9
1.4.3 The Am29050 Microprocessor and Optimizing Compilers 1-10

Architecture Highlights •••••••••••.•.................•.....•. 2-1

2.1 Programmer Reference Overview 2-1
2.1.1 Program Modes (see Section 3.1) 2-1'
2.1.2 Visible Registers (see Section 3.2) .. 2-1
2.1.3 Instruction Set Overview (see Section 3.3 and Chapter 8) 2-5
2.1.4 Data Formats And Handling (see Section 3.4) 2-6
2.1.5 Interrupts And Traps (see Section 3.5) 2-11
2.1.6 Memory Management (see Section 3.6) 2-12
2.1.7 Coprocessor Programming (see Section 6.1) 2-13
2.1.8 Timer Facility (see Section 7.3.6) " .. 2-13
2.1.9 Trace Facility (see Section 3.7) 2-13

2.2 Hardware Overview , 2-13
2.2.1 Four-Stage Pipeline (see Section 4.1) 2-13
2.2.2 Instruction Fetch Unit (see Section 4.2) 2-14
2.2.3 Execution Unit (see Section 4.3) 2-15
2.2.4 Memory Management Unit (see Section 4.4) 2-16
2.2.5 Processor Modes 2-16

TABLE OF CONTENTS

Chapter 3

ii TABLE OF CONTENTS

2.3 System Interface Overview 2-17
2.3.1 Channel (see Section 5.2) 2-17
2.3.2 TesVDevelopment Interface (see Section 5.3) -2-18
2.3.3 Clocks (see Section 5.7) .. 2-19
2.3.4 Master/Slave Operation (see Section 5.8) 2-19
2.3.5 Coprocessor Attachment (see Section 6.2) 2-19

Programmer Reference 3-1

3.1 Program Modes .. 3-1
3.1.1 Supervisor Mode 3-1
3.1.2 User Mode ... 3-1
3.1.3 Monitor Mode 3-2

3.2 Visible Registers ... 3-2
3.2.1 General-Purpose Registers 3-3
3.2.2 Floating-Point Accumulator Registers 3-7
3.2.3 Special-Purpose Registers .. 3-7
3.2.4 TLB Registers 3-32

3.3 InstructionSet .. 3-35
3.3.1 Integer Arithmetic - 3-35
3.3.2 Compare.. 3-35
3.3.3 Logical... 3-38
3.3.4 Shift ... 3-38
3.3.5 Data Movement 3-38
3.3.6 Constant.. 3-38
3.3.7 Floating-Point 3-40
3.3.8 Branch... 3-40
3.3.9 Miscellaneous...................................... 3-40
3.3.10 Reserved Instructions .. 3-40

3.4 Data Formats And Handling 3-40
3.4.1 Integer Data Types " 3-40
3.4.2 Floating-Point Data Types 3-44
3.4.3 Special Floating-Point Values. .. 3-45
3.4.4 External Data Accesses 3-46
3.4.5 Addressing and Alignment 3-51
3.4.6 Byte and Half-Word Accesses 3-54

3.5 Interrupts and Traps 3-58
3.5.1 Interrupts : .. 3-58
3.5.2 Traps .. 3-58
3.5.3 Wait Mode .. 3-59
3.5.4 Vector Area. .. 3-59
3.5.5 Interrupt and Trap Handling 3-60
3.5.6 WARN Trap " 3-64
3.5.7 MonitorTrap 3-65
3.5.8 Sequencing of Interrupts and Traps .. 3-66
3.5.9 Exception Reporting and Restarting .. 3-66
3.5.10 Arithmetic Exceptions 3-69
3.5.11 Exceptions During Interrupt and Trap Handling 3-70

3.6 Memory Management 3-70
3.6.1 Translation Look-Aside Buffer 3-70
3.6.2 Address Translation 3-72
3.6.3 TLB Reload .. 3-76
3.6.4 TLB Entry Invalidation " 3-76
3.6.5 Protection ... 3-77

3.7 Debugging ... 3-78
3.7.1 Trace Facility 3-78

Chapter 4

Chapter 5

3.7.2 Instruction Breakpoints 3-78
3.7.3 Debugging System-Level Routines 3-79

3.8 Serialization.. 3-80

3.9 Initialization .. 3-80

Hardware Features •.•.•.••..••..•................•......... 4-1

4.1 Four-Stage Pipeline. .. 4-2

4.2 Instruction Fetch Unit. .. 4-2
4.2.1 Instruction Prefetch Buffer ,........................ 4-3
4.2.2 Branch Target Cache Memory 4-5
4.2.3 Non-Sequential Instruction Fetches 4-10
4.2.4 Program Counter Unit 4-10

4.3 Execution Unit .. 4-12
4.3.1 Register File 4-12
4.3.2 Address Unit 4-14
4.3.3 Early Loads .. 4-16
4.3.4 ArithmeticJLogic Unit , 4-18
4.3.5 Field Shift Unit 4-19
4.3.6 Prioritizer' 4-19
4.3.7 Floating-Point Unit 4-19

4.4 Memory Management Unit 4-23

4.5 Pipeline Hold Mode 4-23

System Interfaces •••••.••••.•..•..•........................ 5-1

5.1 Signal Description 5-1

5.2 Channel Description .. 5-6
5.2.1 Channel Overview.. .. 5-6
5.2.2 User-Defined Signals 5-6
5.2.3 Instruction Accesses 5-7
5.2.4 DataAccesses 5-7
5.2.5 Reporting Errors .. 5-8
5.2.6 Access Protocols 5-8
5.2.7 Simple Accesses 5-8
5.2.8 PipelinedAccesses 5-10
5.2.9 Burst-Mode Accesses. .. 5-11
5.2.10 Arbitration ... 5-18
5.2.11 Use of BINV to Cancel an Access .. 5-18
5.2.12 Bus Sharing-Electrical Considerations 5-19
5.2.13 Channel Behavior for Interrupts and Traps. 5-20
5.2.14 Effect of the LOCK Output 5-20

5.3 Test/Development Interface 5-21
5.3.1 Processor Status Outputs. .. 5-21
5.3.2 CPU Control Inputs .. 5-22
5.3.3 Hardware Development 5-22
5.3.4 Hardware Testing 5-28

5.4 Extemallnterrupts And Traps 5-28

5.5 Processor Reset .. 5-29

5.6 WARN Input ... 5-30

5.7 Clocks .. 5-30
5.7.1 Processor-Generated Clock 5-31
5.7.2 System-Generated Clock 5-31
5.7.3 Clock Synchronization 5-31

TABLE OF CONTENTS ill

Chapter 6

Chapter 7

Iv TABLE OF CONTENTS

5.7.4 Electrical Specifications 5-31

5.8 Master/Slave Checking 5-32
5.8.1 Master/Slave Operation 5-32
5.8.2 Preventing Spurious Errors. .. 5-32
5.8.3 Switching Master and Slave Processors 5-33

Coprocessor Interface 6-1

6.1 Coprocessor Programming 6-1
6.1.1 Overview of Coprocessor Operations .. 6-1
6.1.2 Coprocessor Transfers .. 6-2
6.1.3 Coprocessor Exceptions .. 6-3
6.1.4 Coprocessor as a System Option .. 6-4
6.1.5 Interrupted Coprocessor Operations 6-4

6.2 Coprocessor Attachment .. 6-5
6.2.1 Signal Description.. .. • 6-5
6.2.2 Coprocessor Communication 6-7

Programming ... 7-1

7.1 Run-Time Storage Organization and Calling Convention 7-1
7 .1.1 Run-Time Stack Organization and Use 7-1
7.1.2 Procedure Linkage Conventions 7-7
7.1.3 Register Usage Convention 7-13
7.1.4 Example of a Complex Procedure Call 7-14
7.1.5 Trace-BackTags 7-15

7.2 Applications-Programming Considerations :...... 7-16
7.2.1 Addressing General-Purpose Registers Indirectly 7-16
7.2.2 Run-time Checking 7-17
7.2.3 Operating System Calls 7-17
7.2.4 Multi-Precision Integer Addition and Subtraction 7.-18
7.2.5 Integer Multiplication " 7-18
7.2.6 Integer Division. 7-19
7.2.7 Rounding..... • .. 7-21
7.2.8 Fast-Float Mode 7-21
7.2.9 Complementing a Boolean 7-22
7.2.10 Using the Floating-Point Accumulators. 7-22
7.2.11 Using the Condition Code Accumulator 7-24
7.2.12 Generating Large Constants .. 7-25
7.2.13 Large Jump and Call Ranges .. 7-25
7.2.14 NO-OPs .. 7-26
7.2.15 Character-String Operations 7-26
7.2.16 Movement of Large Data Blocks 7-27

7.3 Systems-Programming Considerations 7-27
7.3.1 System Protection 7-27
7.3.2 Interrupts and Traps. 7-28
7.3.3 Memory Management 7-30
7.3.4 Restarting Faulting External Accesses 7-34
7.3.5 Multiple Processor Systems 7-35
7.3.6 Timer Facility 7-36

7.4 Pipeline Features Exposed to Software 7-37
7.4.1 Delayed Branch 7-37
7.4.2 Overlapped Operations ,. 7-39
7.4.3 Delayed Effects of Registers 7-41

ChapterS Instruction Set .. S-l

S.l Instruction-Description Nomenclature 8-1
S.l .1 Operand Notation and Symbols
8.1.2 Operator Symbols

8-1 l

8-2 ~

8.1.3 Control-Flow Terminology 8-3
8.1.4 Assembler Syntax 8-4

8.2 Arithmetic/Logic Status Results of Instructions 8-4
8.2.1 Arithmetic/Logic Status Bits 8-4
8.2.2 Arithmetic Operation Status Results 8-4
8.2.3 Logical Operation Status Results 8-5
8.2.4 Floating-Point Status 8-6

8.3 Instruction Formats .. . 8-6

8.4 Instruction Description 8-9

8.5 Instruction Index by Operation Code 8-137

Appendix A Channel Operation Timing A-l

Appendix B Register Summary .. B-1

Appendix C Floating-Point Behavior C-l

C.l Timing ... C-l

C.2 Exceptions .. C-2
C.2.1 Addition (FADD, DADD) C-5
C.2.2 Subtraction (FSUB, DSUB) .. C-6
C.2.3 Multiplication (FMUL, DMUL, FDMUL) C-7
C.2.4 Division (FDIV, DDIV) C-8
C.2.5 Comparison (FEO, DEO, FGE, DGE, FGT, DGT) C-l0
C.2.6 Multiply-Accumulate (FMAC, DMAC),

Multiply-Sum (FMSM, DMSM) C-l0
C.2.7 Square Root (SORT) C-ll
C.2.S Floating-Point-to-Floating-Point Conversions (CONVERT) ... C-12
C.2.9 Integer-to-Floating-Point Conversions (CONVERT) C-13
C.2.10 Floating-Point-to-Integer Conversions (CONVERT) C-14
C.2.11 Move From Accumulator (MFACC) C-15
C.2.12 Move To Accumulator (MTACC) C-16
C.2.13 Classify (CLASS) C-16
C.2.14 Integer Multiply (MULTIPLY, MULTIPLU, MUL TM, MULTMU) C-16
C.2.15 Integer Divide (DIVIDE, DIVIDU) C-17

C.3 Traps ... C-17

TABLE OF CONTENTS v

LIST OF FIGURES

Figure 1-1
Figure 2-1
Figure 2-2
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17
Figure 3-18
Figure 3-19
Figure 3-20
Figure 3-21
Figure 3-22
Figure 3-23
Figure 3-24
Figure 3-25
Figure 3-26
Figure 3-27
Figure 3-28
Figure 3-29
Figure 3-30
Figure 3-31
Figure 3-32
Figure 3-33
Figure 3-34
Figure 3-35
Figure 3-36
Figure 3-37
Figure 3-38
Figure 3-39
Figure 3-40
Figure 3-41
Figure 3-42
Figure 3-43
Figure 3-44
Figure 3-45
Figure 3-46
Figure 3-47
Figure 3-48
Figure 3-49
Figure 3-50
Figure 3-51
Figure 3-52
Figure 3-53

vi TABLE OF CONTEN'TS

Simplified System Diagram 1-3
Data-Unit Numbering Conventions. .. 2-6
Am29050 Microprocessor Data Flow 2-14
General-Purpose Register Organization 3-3
Register Bank Organization " 3-6
Special-Purpose Registers. .. 3-8
Vector Area Base Address Register 3-9
Current Processor Status Register 3-10
Configura.tion Register 3-12
Channel Address Register 3-13
Channel Data Register 3-14
Channel Control Register .. 3-14
Register Bank Protect Register 3-15
Timer Counter Register 3-16
Timer Reload Register .. 3-16
Program Counter 0 Register 3-17
Program Counter 1 Register 3-17
Program Counter 2 Register 3-18
MMU Configuration Register 3-18
LRU Recommendation Register 3-19
Reason Vector Register 3-19
Region Mapping Address 0 Register .. 3-20
Region Mapping Control 0 Register .. 3-20
Shadow Program Counter 0 Register 3-22
Shadow Program Counter 1 Register 3-22
Shadow Program Counter 2 Register 3-22
Instruction Breakpoint Address 0 Register 3-23
Instruction Breakpoint Control 0 Register. .. 3-23
Indirect POinter C Register. .. 3-24
Indirect Pointer A Register .. 3-25
indirect Pointer B Register 3-25
Q Register " 3-26
ALU Status Register ' .. \j~~"

Byte Pointer Register .. 3-27
Funnel Shift Count Register .. 3-27
Load/Store Count Remaining Register 3-28
Floating-Point Environment Register .. 3-28
Integer Environment Register 3-29
Floating-Point Status .. 3-30
Exception Opcode Register .. 3-32
Translation Look-Aside Buffer Registers 3-32
TLB Entry Word 0 Register 3-33
TLB Entry Word 1 .. 3-34
Character Format .. 3-43
Half-Word Format. .. 3-44
Single-Precision Floating-Point Format 3-45
Double-Precision Floating-Point Format 3-45
Load/Store Instruction Format 3-47
Non-Coprocessor Load/Store Format 3-47
Byte and Half-Word AddreSSing with BO = 0 (Big Endian) 3-52
Byte and Half-Word Addressing with BO = 1 (Little Endian) 3-53
Vector Table Entry 3-59
Current Processor Status After an Interrupt or Trap 3-62
Current Processor Status Before Interrupt Return 3-62
Translation Look-Aside Buffer Organization. .. 3-71
Virtual Address for 1,2,4, and 8 kb Pages 3-73

Figure 3-54
Figure 3-55
Figure 3-56
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 6-1
Figure 6-2
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 8-1
Figure 8-2
Figure 8-3
Figure A-1
Figure A-2
Figure A-3
Figure A-4
Figure A-5
Figure A-6
Figure A-7
Figure A-8

Figure A-9
Figure A-10

Figure A-11
Figure A-12

Figure A-13
Figure A-14
Figure A-15
Figure A-16
Figure A-17
Figure A-18
Figl,lre A-19
Figure A-20
Figure A-21

TLB Address Translation Process 3-74
Current Processor Status Register In Reset Mode 3-81
Floating-Point Environment Register in Reset Mode 3-81
Am29050 Microprocessor Data Flow .. 4-1
IPB State Transitions ... 4-4
Branch Target Cache Memory Organization (CO= 0) 4-6
Branch Target Cache Memory Organization (CO= 1) 4-7
Branch Target Cache Memory Lookup Process (CO = 0) 4-9
Program Counter Unit 4-11
Register File and Register Address Generator 4-13
Address Unit ... 4-15
PAC Entry Word 0 .. 4-17
PAC Entry Word 1 .. 4-17
Floating-Point Unit 4-20
Channel Flowchart .. 5-9
Processor Burst-Mode Instruction Accesses: Control Flow 5-12
Slave Burst-Mode Instruction Accesses: Control Flow 5-13
Processor Burst-Mode Data Accesses: Control Flow 5-14
Slave Burst-Mode Data Accesses: Control Flow 5-15
Valid Transitions on CNTL(1-O) Inputs 5-23
Processor Status While in Load Test Instruction Mode 5-25
Coprocessor Load/Store Format 6-2
Coprocessor Attachment 6-6
Run-Time Stack Example 7-2
An Activation Record in the Register Stack 7-3
Relationship of Stack Cache and Register Stack. 7-5
Stack Overflow .. 7-6
Stack Underflow ... 7-6
Definition of size and rsize Values. .. 7-9
Trace-Back Tags ... 7-15
Instruction Format ... 8-7
Frequently Occurring Instruction Field Uses 8-8
Instruction-Description Format .. 8-9
Instruction Read-Simple Access A-3
Instruction Read--simple Access with IRDY Delayed A-4
Instruction Read-Pipelined Access A-5
Instruction Read-Establishing Burst-Mode Access A-6
Instruction Read-Burst-Mode Access Suspended by Slave A-7
Instruction Read-Burst-Mode Access Suspended by Master. A-8
Instruction Read-Burst-Mode Access Preempted by Slave A-9
Instruction Read-Burst-Mode Access Suspended by Master
and Later Preempted by Slave .. A-10
Instruction Read-Burst-Mode Access Canceled by Slave A-11
Instruction Read-Burst-Mode Access Ended by Master
(Preempted. Terminated or Canceled) A-12
Instruction Read-TLB Miss or Protection Violation A-13
Instruction Read-Pipelined Access with TLB Miss
or Protection Violation A-14
Instruction Read-Error Detected by Slave A-15
Data Read-Simple Access .. A-16
Data Write-Simple Access .. A-17
Data Read--simple Access with DRDY Delayed A-18
Data Write--simple Access with DRDY Delayed A-19
Data Read Followed by Data Write--simple Access A-20
Load and Set Instruction A-21
Data Read-Pipelined Access .. A-22
Data Write-Pipelined Access .. A-23

TABLE OF CONTENTS vII

I

I
I'

I:;
I+-
1"­
I

Figure A-22

Figure A-23
Figure A-24
Figure A-25
Figure A-26
Figure A-27
Figure A-28

Figure A-29

Figure A-30
Figure A-31
Figure A-32

Figure A-33

Figure A-34
Figure A-35
Figure A-36

Figure A-37

Figure A-38
Figure A-39
Figure A-40
Figure A-41
Figure A-42
Figure A-43
Figure A-44
Figure A-45
Figure B-1
Figure B-2
Figure B-3
Figure B-4
Figure 8-5

viii TABLE OF CONTENTS

Data Read Followed by Data Write-Pipe lined Access
(Not Used by Processor) A-24
Data Write Followed by Data Read-Pipelined Access A-25
Data Read-Establishing Burst-Mode Access .. A-26
Data Write-Establishing Burst-Mode Access .. A-27
Data Read-Burst-Mode Access Suspended by Slave A-28
Data Write-Burst-Mode Access Suspended by Slave A-29
Data Read-Burst-Mode Access Suspended by Master
(Not Used by Processor) A-3~
Data Write-Bursl-Mode Access Suspended by Master
(Not Used by Processor) A-31
Data Read-Burst-Mode Access Preempted by Slave A-32
Data Write-Burst-Mode Access Preempted by Slave A-33
Data Read-Burst-Mode Access Suspended by Master
and Later Preempted by Slave (Not Used by Processor) A-34
Data Write-Burst-Mode Access Suspended by Master
and Later Preempted by Slave (Not Used by Processor) A-35
Data Read-Burst-Mode Access Canceled by Slave. A-36
Data Write-Burst-Mode Access Canceled by Slave. A-37
Data Read-Burst-Mode Access Ended by Master
(Preempted, Terminated, or Canceled) A-38
Data Write-Burst-Mode Access Ended by Master
(Preempted, Terminated, or Canceled) A-39
Data Read-TLB Miss or Protection Violation .. A-40
Data Write-TLB Miss or Protection Violation A-41
Data Read-Pipelined Access with TLB Miss or Protection Violation ... A-42
Data Write-Pipelined Access with TLB Miss or Protection Violation ... A-43
Data Read-Error Detected by Slave A-44
Data Write-Error Detected by Slave .. A-45
Channel Transfer from Processor to External Master A-46
Channel Transfer from External Master to Processor A-47
General-Purpose Register Organization B-1
Register Bank Organization .. B-2
Special-Purpose Registers. .. B-3
Special-Purpose Registers. .. B-8
Translation Look-Aside Buffer Entries 8-8

LIST OF TABLES

Table 2-1
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 3-10
Table 3-11
Table 3-12
Table 4-1
Table A-1
Table B-1
Table C-1
Table C-2
Table C-3

Am29050 Microprocessor Instruction Set 2-7
Integer Arithmetic Instructions 3-36
Compare Instructions .. 3-37
Logicallnstructions ... 3-38
Shift Instructions .. 3-38
Data Movement Instructions. .. 3-39
Constant Instructions .. 3-39
Floating-Point Instructions 3-41
Branch Instructions ... 3-42
Miscellaneous Instructions .. 3-42
Vector Number Assignments 3-61
Interrupt and Trap Priority Table 3-67
Access Protection .. 3-77
Staging of Floating-Point Operations " 4-21
Signal Summary .. , A-1
Register Field Summary. .. B-9
Latency of Floating-Point and Integer Multiply Operations C-1
Issue Rate of Floating-Point Operations C-2
Effect on Latency of Denormalized Source Operands or Results C-3

TABLE OF CONTENTS ix

1,
it

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

I
I
I
I

I
I

I
I
I
I

• u;13#4,e _

INTRODUCTION AND OVERVIEW

DESIGN PHILOSOPHY

The Am29050™ Streamlined Instruction Processor is the result of a design philosophy
that recognizes that processor performance must be considered in light of the
processor's hardware and software environment. The key to maximizing performance
lies in the realization that the processor is part of an integrated system, and is itself a
collection of components that must be properly integrated.

Processor features must be considered not only on their own merits, but also in
relation to other components of the system. A particular feature that-considered
alone-increases one aspect of processor performance may actually decrease the
performance of the total system, because of the burden that it places elsewhere in the
system. As an illustration, consider the factors involved in the execution time of any
processor task:

TASK TIME = INSTRUCTIONS IT ASK • CYCLES IINSTRUCTION * TIME / CYCLE

To minimize the time taken, it is necessary to minimize the above product. This is not
equivalent to minimizing all of the terms that contribute to the product; this, in fact, is
generally not possible due to the interaction of the terms.

As an example of the interaction of the above terms, consider the number of
instructions required for a task. An attempt to minimize this number, a more or less
traditional approach to processor architecture design, increases the average number
of cycles required for the execution of an instruction, because of the increased
number of operations performed by each instruction. In addition, cycle time is
increased because of instruction-decode time.

A second example of the interaction in the above equation appears in an attempt to
reduce the cycle time through the pipelining of operations. In theory, the cycle time
can be made arbitrarily small by the definition of an arbitrarily large number of pipeline
stages. In practice-at least in the case of general-purpose processors-pipelining
rarely yields much of its potential benefit. This is due to situations where the pipeline
cannot be kept fully occupied, such as when storage references and branches occur.
In these situations, additional pipeline stages increase the number of cycles required
for an operation, and thus affect the CYCLES / INSTRUCTION term.

OPTIMUM PERFORMANCE

Each of the terms in the above equation has some minimum bound for a given
implementation technology and task. In general, this minimum bound cannot be
approached without an offsetting increase in the other terms, making the overall
product less-than-optimum. The question then arises, what combination of terms
does yield an optimum product? There are several things to note when answering
this question.

The first observation is that the number of operations underlying a given task is
more or less fixed. Any single processor ultimately limits the time required for a task
because it has a single execution unit and a single instruction stream. The operations

INTRODUCTION AND OVERVIEW P·i

that must be performed are reflected in the INSTRUCTIONS/TASK and CYCLES/
INSTRUCTION terms. These operations may be performed by relatively few
instructions, where each instruction takes multiple cycles to execute, or by a larger
number of instructions, where each takes a single cycle to execute. In the first case,
the instructions are complex; in the second, they are simple.

The point is that the trade-off between simple and complex instructions is not one-to­
one. For example, reducing the number of cycles per instruction by a factor of three
does not increase the number of instructions per task by the same factor. There are
two reasons for this. The first is that, even when an instruction set supports complex
operations, a large proportion of the instructions that are executed perform operations
that could be performed as well by simple instructions. The second is that simple
instructions expose more of the internal processor operation to an optimizing com­
piler. This allows the compiler to tailor the organization and sequence of operations to
the task at hand, thereby reducing the total number, of instructions executed.,

PERFORMANCE LEVERAGE
Another important observation is that there is a tremendous amount of leverage in the
TIME / CYCLE and CYCLES / INSTRUCTION terms. As they are made smaller, they
have a proportionately greater effect on performance.

For example, a reduction of 10 ns in the cycle time of a processor operating with a
200-ns cycle time yields an increase of 5% in the processor's performance. The same
improvement in a processor operating with a 50-ns cycle time yields a 20% increase
in performance.

Correspondingly, a reduction of 0.2 in the number of cycles per instruction in a proc­
essor that averages 5 cycles per instruction yields a 4% increase in performance.
However, the same reduction yields a 12.5% performance increase in a processor
that averages 1.6 cycles per instruction.

CONCLUSION

The conclusion is that it is possible-and desirable-to yield somewhat in the number
of instructions executed for a given task, and more than make upfor the performance
impact of this increase by reductions in the cycle time and in the number of cycles per
instruction. For example, if both the cycle time and the number of cycles per instruc­
tion are reduced by a factor of three, while the number of instructions for a given task
is allowed to grow by 50%, the resulting task time is reduced by a factor of 6.

The Am29050 microprocessor architecture was designed with the above effects in
mind. Maximum performance is obtained by the optimization of the product of the
number of instructions per task, the number of cycles per instruction, and the cycle
time, not by minimizing one factor at the expense of the others. This is accomplished
by careful definition of all processor components. In particular:

1. The INSTRUCTION /TASK term is optimized by the definition of simple instruc­
tions. The processor provides an efficient instruction set and a large number of
general-purpose registers to an optimizing, high-level language compiler. Most
reductions in this term are accomplished by the compiler. The number of instruc­
tions for a given task may be greater than the number of instructions for
processors with complex instruction sets. However, this increase is more than
offset by other improvements in processor performance.

2. The CYCLES / INSTRUCTION term is optimized by the data-flow structure and
'performance-enhancing features of the processor. A large amount of processor

P·2 INTRODUCTION AND OVERVIEW

hardware is dedicated to achieving an average instruction-execution rate that is
close to single-cycle execution.

3. The TIME/CYCLE term is optimized by the implementation technology, the
processor system interface, and judicious use of pipelining. The simplicity of the
instruction set and processor features helps minimize the cycle time.

Am29050 MICROPROCESSOR USER MANUAL OVERVIEW

This manual contains information on the Am29050 processor that is essential for
computer hardware and software architects and system design engineers. Additional
information is available in the form of data sheets, application notes, and other
documentation that is provided with software products and hardware-development
tools.

The information in this manual is organized into eight chapters, each viewing the
processor from a different perspective, and each with a specific objective.

Chapter 1 introduces the features and performance aspects of the Am29050
microprocessor.

Chapter 2 contains brief technical descriptions of the processor architecture and
implementation.

Chapter 3 describes the details of the Am29050 microprocessor architecture.

Chapter 4 details the operation of the processor's internal functional units.

Chapter 5 describes the operation of the external interfaces of the Am29050
microprocessor.

Chapter 6 describes the attachment and use of coprocessors for the Am29050
microprocessor.

Chapter 7 discusses the implementation of software systems for the processor,
focusing on programming features that deserve more coverage than is provided by
other chapters.

Chapter 8 specifies the instruction set of the Am29050 microprocessor. It describes
the instruction formats in detail, and provides a detailed description of every
instruction.

This manual is organized around readers' concerns and objectives. Each chapter
focuses on a particular aspect of the processor, and is organized so that it may be
read independently, insofar as possible.

For those readers desiring only a brief overview of the Am29050 microprocessor,
Chapters 1 and 2 identify the outstanding features of the processor, and give a brief
overview of the processor. These chapters address both software and hardware
concerns.

For software architects and system programmers interested mainly in software-related
issues, Chapters 3, 7, and 8 provide the necessary information.

For hardware architects and systems hardware designers interested mainly in
hardware-related issues, Chapters 4 and 5 provide most of the required information;
Chapter 8 also provides some related information.

For those readers interested in the,coprocessor interface, Chapter 6 describes the
interface both from a software and hardware point-of-view.

INTRODUCTION AND OVERVIEW p.a

1.1

1.2

FEATURES AND PERFORMANCE

This chapter provides an evaluation of the Am29050 microprocessor as an aid in
considering a particular application. A detailed technical description of the Am29050
microprocessor is contained in subsequent chapters. This chapter informally de­
scribes the features of the processor, concentrating on features which distinguish the
Am29050 microprocessor from other available processors.

DISTINCTIVE CHARACTERISTICS

• Full 32-bit architecture

• Double-precision, Floating-Point Arithmetic Unit on-Chip

• CMOS technologyrrTL-compatible

• 32 million instructions per second sustained at a 40-MHz operating frequency

• 1.25 clock cycles per instruction average

• 4-Gb virtual address space

• 192 general-purpose registers

• Three-address instruction architecture

• Non-multiplexed, pipelined address, instruction and data buses

• Concurrent instruction and data accesses

• Burst-mode access support

• 1024-byte Branch Target Cache™ memory

• 4-entry Physical Address Cache memory

• 64-entry Memory Management Unit on-chip

• Demand paging.

• Fully pipe lined

• On-Chip Timer Facility

• On-chip clock generation

• Enhanced debugging support

• Master/slave chip output checking

INTRODUCTION

The Am29050 Streamlined Instruction Processor is a high-performance,
general-purpose, 32-bit microprocessor implemented in complementary metal-oxide
semiconductor (CMOS) technology. It supports a variety of applications, using a
flexible architecture and rapid execution of simple instructions which are common to a
wide range oftasks.

FEATURES AND PERFORMANCE 1-1

1.3

1.3.1

1.3.2

The Am29050 microprocessor extends the 29KTM Family of processors with a
high-performance, pipelined, on-chip floating-point unit. The floating-point unit
performs IEEE-compatible, single-precision and double-precision arithmetic at a peak
rate of SO million floating-point operations per second (MFLOPS) at 40 MHz. The
Am29050 microprocessor also has features to improve the performance of loads and
branches, allowing sustained integer performance of 32 million instructions per
second (MIPS) at 40 MHz.

The Am29050 microprocessor is fully hardware- and software-compatible with the
Am29000™ microprocessor. It can be used in existing Am29000 microprocessor
applications without hardware or software modifications. It can bring a dramatic
increase in performance to floating-point-intensive applications, particularly graphics
and laser-printer applications.

The Am29050 microprocessor is packaged in a 169-pin, pin-grid-array (PGA) pack­
age, with 141 signal pins, 27 power and ground pins, and one alignment pin. A repre­
sentative system diagram is shown in Figure 1-1.

PERFORMANCE OVERVIEW

The Am29050 microprocessor provides a significant margin of performance over
other processors in its class, since the majority of processor features were defined
with the maximum achievable performance in mind. This section describes the fea­
tures of the Am29050 microprocessor from the point-of-view of system performance.

Cycle Time

The Am29050 microprocessor is implemented in CMOS technology, with a O.S micron
effective transistor-channel length. This technology allows the processor to operate at
a frequency of 40 MHz. The processor cycle time is a single, 25-ns clock period. The
processor interface drivers can drive SO-pF loads at this frequency.

Four·Stage Pipeline

The Am29050 microprocessor utilizes a four-stage pipeline for integer operations,
allowing it to execute one integer instruction every clock cycle. The processor can
complete an instruction on every cycle, even though four cycles are required from the
beginning of an instruction to its completion.

Floating-point operations are pipe lined to a depth determined by the operation
latency, and are overlapped with integer operations. A floating-point operation and an
integer operation can complete at the same time without stalling the pipeline.

At a 40-MHz operating frequency, the maximum instruction execution rate is 40
million instructions per second (MIPS). For most other processors, the maximum
MIPS rate has little meaning, because it can be achieved only under special
circumstances. However, the Am29050 microprocessor pipeline is designed so that
the Am29050 microprocessor can operate at the maximum instruction-execution rate
a significant portion of the time.

Pipeline interlocks are implemented by processor hardware, including those required
for floating-point operations. Except for a few special cases, it is not necessary to
re-arrange programs to avoid pipeline dependencies, although this is sometimes
desirable for performance.

1-2 FEATURES AND PERFORMANCE

Figure 1·1 Simplified System Diagram

,.

.IV

1.3.3

~ ~ ,.

Am29050
A Address

Streamlined
A Data ..

... Instruction
Processor

~

32 V~
32

.... ,-----l'..
Instruction

Instruction
'---v"

ROM
~

.IV 32

.... Instruction .. Memory

.... Data .A

.. Memory ..

lJ 1,.0

1477SA-OOl

System Interface

One of the most difficult tasks in the definition of a high-speed microprocessor is the
definition of an off-chip interface which supports the operating frequency of the
processor, and does not restrict the ability of the processor to fetch instructions and
data. If the external interface of a microprocessor cannot support an instruction fetch
rate of one instruction every cycle, there is little prospect that the processor will
execute at this rate, even though it supports such a rate internally.

FEATURES AND PERFORMANCE 1·3

1.3.3.1

1.3.3.2

1.3.3~3

1.3.3.4

1.3.4

The Am29050 microprocessor accesses external instructions and data using three
non-multiplexed buses. These buses are referred to collectively as the channel. The
channel protocol minimizes the logic chains involved in a transfer, and provides a .
maximum transfer rate of 320 Mb/s at 40 MHz.

SEPARATE ADDRESS, INSTRUCTION, AND DATA BUSES
The Am29050 microprocessor incorporates two 32-bit buses for instruction and data
transfers, and a third address bus which is shared between instruction and data ac­
cesses. This bus structure allows simultaneous instruction and data transfers, even
though the address bus is shared. The channel achieves the performance of four
separate 32-bit buses at a much reduced pin count.

PIPELINED ADDRESSES
The Am29050 microprocessor address bus is pipelined, so that it can be released
before an instruction or data transfer is completed. This allows a subsequent access
to begin before the first has completed, and allows the processor to have two ac­
cesses in progress simultaneously.

SUPPORT OF BURST DEVICES AND MEMORIES
Burst-mode accesses provide high transfer rates for instructions and data at
sequential addresses. For such accesses, the address of the first instruction or datum
is sent, and subsequent requests for instructions or data at sequential addresses do
not require additional address transfers. These instructions or data are transferred
until either party involved in the transfer terminates the access.

Burst-mode accesses can occur at the rate of one access per cycle after the first
address has been processed. At 40 MHz, the maximum achievable transfer
bandwidth for either instructions or data is 160 Mb/s.

Burst-mode accesses may occur to input/output devices, if the system design permits.

INTERFACE TO FAST DEVICES AND MEMORIES
The processor can be interfaced to devices and memories which complete accesses
within one cycle. The channel protocol takes maximum advantage of such devices
and memories by allowing data to be returnedto the processor during the cycle in
which the address is transmitted. This allows a full range of memory-speed trade-offs
to be made within a particular system.

Register File

An on-chip Register File containing 192 general-purpose registers allows most
instruction operands to be fetched without the delay of an extenial access. The
Register File incorporates several features which aid the retention of data required by
an executing .program. Because of the number of general-purpose registers, the
frequency of external references for the Am29050 microprocessor is significantly
lower than the frequency of references in processors having only 16 or 32 registers.

Four-port access to the Register File allows two 64-bit source-operands to be fetched,
in one cycle, while two previously computed results are written; one write port is for
integer operations, and the otj1er port is for floating-point operations. Four 64-bit
internal buses prevent contention in the routing of operands. All operand fetches and
result write-backs for instruction execution can be performed in a single cycle.

The registers allow efficient procedure linkage, by caching a portion of a compiler's
run-time stack. On the average, procedure calls and returns can be executed 5 to 10
times faster (on a cycle-by-cycle basis) than in processors which require the

·1-4 FEATURES AND PERFORMANCE

1.3.5

1.3.6

1.3.7

implementation of a run-time stack in external memory (with the attendant loading and
storing of registers on procedure call and return).

Instruction Execution

The Am29050 microprocessor uses an Arithmetic/Logic Unit, a Field Shift Unit, and a
Prioritizer to execute most instructions. Each of these is organized to operate on
32-bit operands, and provide a 32-bit result. All operations are performed in a single
cycle.

Floating-point operations are performed in an on-chip Floating-Point Unit. The
floating-point unit performs 32-bit, single-precision and 64-bit, double-precision
computations. Most of the time, floating-point operations are performed in parallel with
integer operations and other floating-point operations.

Instruction operations are overlapped with operand fetch and result write-back to the
Register File. Pipeline forwarding logic detects pipeline dependencies and routes data
as required, avoiding delays which might arise from these dependencies.

Branch Target Cache Memory

In general, the Am29050 microprocessor meets its instruction bandwidth
requirements via instruction prefetching. However, instruction prefetching is
ineffective when a branch occurs. The Am29050 microprocessor therefore
incorporates a 64- or 128-entry (configurable at run time) Branch Target Cache
memory to supply instructions for a branch-if this branch has been taken
previously-while a new prefetch stream is established.

If branch-target instructions are in the Branch Target Cache memory, branches
execute in a single cycle. This has a very positive effect on processor performance,
due to the amount of time the processor could otherwise be idle waiting for the new
instruction stream.

As an example, consider that successful branches are 20% of a dynamic instruction
mix, and that five cycles are required to restart the processor pipeline after a branch.
For 20% of the instructions, the processor would take one cycle to execute the branch
instruction and wait five cycles to refill the instruction pipeline. The overhead of
branch instructions would be six cycles. If the remaining 80% of the instructions
require a single cycle to execute, the latency involved in branching would reduce the
average execution rate from one cycle per instruction to two, thus halving the
performance.

The Branch Target Cache memory in the Am29050 microprocessor has an average
hit rate of 80%. In other words, it eliminates the branch latency for 80% of all success­
ful branches on the average.

Branching

Branch conditions in the Am29050 microprocessor can be based on Boolean data
contained in general-purpose registers, as well as on arithmetic condition codes.
Using a condition-code register for the purpose of branching can inhibit certain
compiler optimizations, because the condition-code register can typically be modified
by many different instructions. It can be difficult for an optimizing compiler to schedule
this shared use. Since it can treat branch conditions like any other instruction
operands, the Am29050 microprocessor avoids this problem.

FEATURES AND PERFORMANCE 1·5

1.3.8

1.3.8.1

The Am29050. microprocessor executes branches in a single cycle, for those cases
where the target of the branch is in the Branch Target Cache memory. The
single-cycle branch is unusual for a pipelined processor, and is due to processor
hardware which allows much of the branch instruction operation to be performed early
in the execution of the branch. Single-cycle branching has a dramatic effect on
performance, since successful branches typically represent 15% to 25% of a
processor's instruction mix.

The techniques used to achieve single-cycle branching also minimize the execution
time of branches in those cases where the target is not in the Branch Target Cache
memory. To keep the pipeline operating at the maximum rate, the instruction following
the branch, referred to as the delay instruction, is executed regardless of the outcome
of the branch. An optimizing compiler can define a useful instruction for the delay
instruction in approximately 90% of branch instructions, thereby increasing the per­
formance of branches.

Loads and Stores

The performance degradation of load and store operations is minimized in the
Am29050 microprocessor by overlapping them with instruction execution, by taking
advantage of pipelining, and by organizing the flow of external data onto the proces­
sor so that the impact of external accesses is minimized.

OVERLAPPED LOADS AND STORES

In the Am29050 microprocessor, a load or store is performed concurrently with
execution of instructions which do not have dependencies on the load or store
operation. An optimizing compiler can schedule loads and stores in the instruction
sequence so that, in most cases, data accesses are overlapped with instruction
execution.

Overlapped load and store operations can achieve up to a 30% improvement in
performance when data memory has a two-cycle access time. Processor hardware
detects dependencies while overlapped loads and stores are being performed, so
dependencies have no software implications.

A classical problem in the implementation of overlapped loads and stores is that of
dealing with address-translation exceptions. in a demand-paged environment. Overlap
is not possible if any load or store which encounters an address-translation exception
must be restarted by the re-execution of the initiating instruction. In this case, the
processor would have to hold instruction execution until the success of every load or
store were insured. The Am29050 microprocessor exception restart mechanism
automatically saves information required to restart any load or store, until the
operation successfully completes. Thus, it allows the overlapped execution of loads
and stores while properly handling address-translation excepti~ns.

A second problem in the implementation of overlapped loads concerns the handling of
data which is returned to the processor upon completion of the load. This data must
be written to the register file, but it contends for register-file write-cycles with other
instructions which are being overlapped with the load. This contention may be
eliminated by adding a special write port to the register file. However, due to the size
of the register file in the Am29050 microprocessor, a fifth port for writing incoming
load data is not economical.

The Am29050 microprocessor data-floW organization avoids the one-cycle penalty
which would result from the contention between load data and the results of over­
lapped instruction execution. Load data is buffered in a latch while awaiting an oppor­
tunity to be written into the register file. This opportunity is guaranteed to arise before

1-6 FEATURES AND PERFORMANCE

1.3.8.2

1.3.8.3

1.3.8.4

1.3.9

the next load is executed. While the data is buffered in this latch, it may be used as an
instruction operand in place of the destination register for the load.

EARLY LOADS

The early load feature, incorporating a 4-entry Physical Address Cache memory,
speeds up the execution of load operations by making the physical address of the
load available at the end of the decode cycle of the load instruction. At the beginning
of the next cycle, when the load enters the execute stage, the physical address ap­
pears on the channel. In effect, early loads reduce the effective access time of the
external memory by one cycle.

LOAD MULTIPLE AND STORE MULTIPLE

These instructions allow the transfer of the contents of multiple registers to or from
external memories or devices. This transfer can occur at a rate of one register-content
per cycle.

The advantage of Load Multiple and Store Multiple is best seen in task switching,
register-file saving and restoring, and in block data moves. In many systems, such
operations require a significant percentage of execution time.

The load-multiple and store-multiple sequences are interruptible, so that they do not
affect interrupt latency.

FORWARDING OF LOAD DATA

Data which is sent to the processor at the completion of a load is forwarded directly to
the appropriate execution unit if the data is required immediately by an instruction.
This avoids the common one-cycle delay from bus transfer to use of data, and re­
duces the access latency of external data by one cycle.

Memory Management

A 64-entry Translation Look-Aside Buffer (TLB) and two Region Mapping registers on
the Am290S0 microprocessor perform virtual-to-physical address translation, avoiding
the cycle which would be required to transfer the virtual address to an external TLB. A
number of enhancements improve the performance of address translation:

1. Pipelining-The operation of the TLB is pipelined with other processor operations.

2. Early Address Translation-Address translations for load, store, and branch
instructions occur during the cycle in which these instructions are executed. This
allows the physical address to be transferred externally in the next cycle.

3. Region Mapping-The Region Mapping registers permit efficient mapping of
large, contiguous regions of memory. This is useful for code libraries and large
data structures; these can appear in a virtual address space without paging
overhead.

4. Task Identifiers-Task Identifiers allow TLB entries to be matched to different
processes, so that TLB invalidation is not required during task switches.

S. Least-Recently Used Hardware-This hardware allows immediate selection of a
TLB set to be replaced.

6. Software Reload-Software reload allows the operating system to use a
page-mapping scheme which is best matched to its environment.
Paged-segmented, one-level-page mapping, two-level-page mapping, or any
other user-defined page-mapping scheme can be supported. Because Am290S0

FEATURES AND PERFORMANCE t·7

1.3.10

1.4

1.4.1

microprocessor instructions execute at an average rate of nearly one instruction
per cycle, software reload has a performance approaching that of hardware TLB
reload.

Interrupts and Traps

When the Am29050 microprocessor takes an interrupt or trap, it does not
automatically save its current state information in memory. This greatly improves
the performance of temporary interruptions such as TLB reload or other simple
operating-system calls which require no saving of state information.

In cases where the processor state must be saved, the saving and restoring of state
information is under the control of software. The methods and data structures used to
handle interrupts-and the amount of state saved-may be tailored to the needs of a
particular system.

Interrupts and traps are dispatched through a 256-entry Vector Area, which directs
the processor to a routine to handle a given interrupt or trap. The Vector Area may be
relocated in memory by the "modification of a processor register. There may be
multiple Vector Areas in the system, though only one is active at any given time.

The Vector Area is either a table of pointers to the interrupt and trap handlers, or a
segment of instruction memory (possibly read-only memory) containing the handlers
themselves. The choice between the two possible Vector Area definitions is deter­
mined by the cost/performance trade-offs made for a particular system.

If the Vector Area is a table of vectors in data memory, it requires only 1 kb of
memory. However, this structure requires that the processor perform a vector fetch
every time an interrupt or trap is taken. The vector fetch requires at least 3 cycles, in
addition to the number of cycles required for the basic memory access.

If the Vector Area is a segment of instruction memory, it requires a maximum of 64 kb
of memory. The advantage of this structure is that the processor begins the execution
of the interrupt or trap handler in the minimum amount of time.

OPTIMIZING COMPILERS

The number of instructions used to perform a given task is minimized by optimizing
compilers which are supplied for the Am29050 microprocessor. A full discussion of
optimizing-compiler technology is beyond the scope of this manual, but there are a
few concepts which should be mentioned here, because the Am29050 microproces­
sor was designed to be an excellent target for optimizing compilers.

Optimizing.Compiler Overview

In addition to performing the same tasks as any other compiler, an optimizing
compiler rearranges the generated code to minimize its size and execution time. This
optimization occurs after the initial phases of code generation have been completed.
The optimizer inspects large portions of the compiled program for frequently occurring
cases where the compiled results can be improved.

Many optimization opportunities arise precisely because the code is compiler gener­
ated. Code transla~ion is an automated process, so the initial phases of the compiler
often generate code that is much less than optimum. However, the optimizer can
produce results which are often better than those produced by human assembly­
language programmers, because it can deal with large portions of the program and an
immense amount of data concerning program behavior.

1·8 FEATURES AND PERFORMANCE

1.4.2 Optimizing.Compiler Operation

Conceptually, the optimizer arranges program flow and the creation, modification, and
use of program data to minimize the amount of time required to perform a given task.
The reduction in program space is a normal side-benefit of the reduction in execution
time. The optimizer is concerned not only with data explicit in the high-level program,
but also with data created by other phases of the compiler in order to properly trans­
late the program (for example, temporary values created during the evaluation of
expressions). Optimization involves the following sorts of operations:

1. Reusing results rather than repeating computations. The optimizer attempts to
eliminate redundant computations by performing a computation once, and saving
the result for later use. Often these redundant computations are not apparent in
the original program, but are created by the underlying definitions of high-level
operations.

2. Reducing the amount of code executed within loops. In many cases, only a few
computations change on different loop iterations. The optimizer attempts to
reduce the amount of work performed within loops to a minimum, by moving
loop-invariant computations outside of loops.

3. Replacing slow operations by faster ones. The optimizer can recognize special
cases of multiply and divide, for example, and replace them with faster shift and
add instructions. The slow operations, again, often are generated by earlier
phases of the compiler because these operations are most general, and the early
code-generation phases cannot recognize the special cases which allow the
operations to be replaced with faster ones.

4. Allocating processor registers so that they contain frequently used data. This
reduces the number of relatively slow memory references, and replaces them by
faster register references.

5. Scheduling the execution of instructions. The optimizer attempts to move
instructions to a point in the program flow where they create fewer problems for
the processor pipeline. For example, a register load or a floating-pOint operation
may be moved to a point in the instruction sequence where its execution can be
overlapped with other instructions.

Most optimizations performed rely heavily on two types of information collected by
the optimizer: the first type deals with program flow, and the second with data
dependencies which arise because of the program flow. The optimizer can tailor the
code to the high-level task being compiled, not because it understands the task being
performed by the high-level program, but because it understands the dependencies
which arise in the generated code. As a result, it can adjust the instruction sequence
to minimize the performance impact of these dependencies.

It is important to note that the optimizer does not directly optimize a given program,
but rather optimizes a special representation of the program which is suitable for
analysis and modification by the optimizer, which is, after all, just another program.
The key to optimization is that this representation be easy to analyze for program
and data-flow information, and that it be easy to rearrange when optimizations are
performed.

FEATURES AND PERFORMANCE 1·9

1.4.3

1.4.3.1

The Am29050 Microprocessor and Optimizing Compilers

GENERAL PRINCIPLES

The primary principle behind the Am29050 microprocessor instruction set is that it
matches the internal representation used by optimizing compilers to perform
optimization. As discussed above, this representation is not arbitrary, but is rather
strictly defined by the optimization algorithms. .

It is important to realize that optimizations performed for the Am29050 microprocessor
would have limited effectiveness if applied to so-called complex-instruction pro­
cessors. There are several fundamental problems that limit the effectiveness of
optimizations for these other processors.

The first problem with complex-instruction sets is that they normally provide a variety
of instruction sequences which perform the same function as a sequence of instruc­
tions in the compiler's internal representation, but do not match it exactly. The
trade-offs made by a compiler to decide among the available choices can be very
complex.

In the first place, it is difficult for the compiler to determine the difference in execution
time between multiple instruction sequences, because of the amount of information
involved. For example, just changing the addressing mode of an instruction can
change the execution time. This is further complicated in the cases where the
compiled program is to be run on different implementations of the same processor,
where execution times can depend on the implementation. If there is only one
instruction sequence to choose from, and if all instructions execute in a single cycle,
this problem is reduced greatly.

During the generation of code for a complex-instruction processor, it is nearly
impossible to guarantee that the choice of a given code sequence will not force a
less-than-optimum choice of code at some later point in the translation. Restrictions
arise late in translation because of decisions made earlier. Often, these restrictions
arise because of interactions between instructions; they are especially severe when
instructions operate only on a specific register or group of registers.

An additional problem with complex instruction sets is that optimizations applied to
them do not necessarily save execution time. An optimization may not be reflected in
the final compiled code, because the instruction set may inhibit the realization of the
optimization. However, in the case of the Am29050 microprocessor, an optimization is
guaranteed to eliminate one or more execution cycles, because all processor
operations are exposed to the compiler.

The greatest benefit of exposing all processor operations to the compiler appears
within loops, which is where processors spend a great deal of their execution time.
The problem with complex instruction sets here is that, when an instruction set forces
multiple operations with one instruction, the processor spends much time performing
redundant computations within loops. Many times, the redundant computations are
performed by microcode, which cannot detect that a computation is loop-invariant,
because it knows nothing of loops. The compiler is in no position to do much about
this, because it cannot remove the loop-invariant computations from the
micro-sequence; it is forced to accept the definitions of the instructions as they are.

If an instruction set is defined so that all hardware-level operations are available to the
compiler, the compiler is free to construct any sequence of these operations. This
allows the movement of loop-invariant computations out of loops, which can result in
tremendous performance improvements.

1·10 FEATURES AND PERFORMANCE

1.4.3.2 SPECIAL Am29050 MICROPROCESSOR FEATURES

In addition to the above considerations, there are several other central principles
behind the definition of the Am29050 microprocessor.

The Am29050 microprocessor instruction set reduces the number of instructions
required for most general-purpose tasks by providing a complete set of operations.
The instruction set is streamlined, but there is no attempt to minimize the number of
instructions. Rather, the goal is to minimize the number of instructions required to
execute most high-level language programs.

With a few minor exceptions, Am29050 microprocessor integer instructions execute in
a single cycle. As a result, the performance of an Am29050 microprocessor instruc­
tion sequence is very easy to predict, simplifying the task of compiler instruction­
selection. In addition, single-cycle instruction execution allows the Am29050
microprocessor to take the maximum advantage of a high-performance system
design. Instructions are executed at approximately the rate at which they are supplied
to the processor. The Am29050 microprocessor does not artificially constrain the
instruction-execution rate by forcing instructions to require multiple cycles for
execution, except in the unavoidable case of floating-point operations.

The Am29050 microprocessor contains a large number of registers which facilitate
compiler optimizations. These registers allow frequently used variables to be
accessed quickly, provide a large number of temporary locations for the reuse of
computational results, and simplify inter-procedural communication. The compiler is
free to allocate these registers as required to improve performance. Register
allocation is relatively simple, because there is such. a large number of registers.

For other processors which have fixed register-addressing, a compiler has difficulties
allocating the usage of registers, because registers must be allocated statically at
compile time. Procedure calls present the greatest difficulty. It is impossible for the
compiler to determine exactly which procedures will be called during execution, and in
what order they will be called. Thus, it is impossible to precisely allocate the usage of
registers across procedure-call boundaries.

Since the Am29050 microprocessor local registers are addressed relative to a Stack
POinter, compiler register-allocation is simplified. The local registers are allocated
dynamically during execution. Thus, the compiler need not be concerned about the
allocation of registers across procedure boundaries; this is handled automatically by
the local-register addressing.

Am29050 microprocessor pipe lining is exposed to the compiler in the form of delayed
branches, overlapped loads and stores, and overlapped floating-point operations. The
compiler is free to arrange instructions to reduce the performance impact of the
processor pipeline. However, the compiler arranges instructions only because of the
performance benefits. Pipeline interlocks in the Am29050 microprocessor guarantee
correct operation in any case.

FEATURES AND PERFORMANCE 1·11

2.1

2.1.1

2.1.2

2.1.2.1

ARCHITECTURE HIGHLIGHTS

This chapter gives a brief overview of the Am29050 microprocessor architecture,
grouped into programming-related features, hardware features, and system
interfaces. The technical information given in this chapter is also contained in
subsequent chapters. Much of the detail is omitted here, since the objective is to
provide a framework for understanding the information in later chapters.

Where appropriate, section titles in this chapter are followed by references to sections
appearing in subsequent chapters. The referenced sections contain related detailed
information.

PROGRAMMER REFERENCE OVERVIEW

This section gives a brief description of the Am29050 microprocessor from a program­
mer's pOint of view. It introduces the processor's progra:m modes, registers, and
instructions. An overview of the processor's data formats and handling is given. This
section also briefly describes interrupts and traps, memory management, and the
coprocessor interface. Finally, the Timer Facility and Trace Facility are introduced.

Program Modes (see Section 3.1)

There are three mutually exclusive modes of program execution: the Supervisor
mode, the User mode, and the Monitor mode. In the Supervisor mode, executing
programs have access to all processor resources. In the User mode, certain proces­
sor resources may not be accessed; any attempted access causes a trap. The Moni­
tor mode allows debugging of both User and Supervisor code.

Visible Registers (see Section 3.2)

The Am29050 microprocessor incorporates four classes of registers which are ac­
cessed and manipulated by instructions: general-purpose registers, floating-point
accumulator registers, special-purpose registers, and Translation Look-Aside Buffer
(TLB) registers.

GENERAL·PURPOSE REGISTERS (see Section 3.2.1)
The Am29050 microprocessor has 192 general-purpose registers. General-purpose
registers are not dedicated to any special use, and are available for any appropriate
program use.

Most processor instructions are three-address instructions. An instruction specifies
any three of the 192 registers for use in instruction execution. Normally, two of these
registers contain source-operands for the instruction, and a third stores the result of
the instruction.

The 192 registers are divided into 64 global and 128 local registers. Global registers
are addressed with absolute register numbers, while local registers are addressed
relative to an internal Stack Pointer.

ARCHITECTURE HIGHLIGHTS 2·1

i

\1

Ii

2.1.2.2

2.1.2.3

For fast procedure calling, a portion of a compiler's run-time stack can be mapped
into the local registers. Statically allocated variables, temporary values, and
operating-system parameters are kept in the global registers.

The Stack Pointer for local registers is mapped to Global Register 1. The Stack
Pointer is a full 32-bit virtual address for the top of the run-time stack.

The Condition Code Accumulator Register is mapped to both Global Register 2 and
Global Register 3. This register can be used to accumulate into a single condition
code the Boolean values produced by several operations. The condition code can
then be used as an operand in further operations, for example, as a control parameter
for conditional branches.

The general-purpose registers may be accessed indirectly, with the register number
specified by the content of a special-purpose register (see below) rather than by an
instruction field. Three independent indirect register numbers are contained in three
separate special-purpose registers. Indirect addressing is accomplished by specifying
Global Register 0 as an instruction operand or result register. An instruction can
specify an indirect register access for any or all of the source operands or result.

General-purpose registers may be partitioned into segments of 16 registers for the
. purpose of access protection. A register in a protected segment may be accessed
only by a program executing in the Supervisor or Monitor modes. An attempted ac­
cess (either read or write) by a User-mode program causes a trap to occur.

FLOATING·POINT ACCUMULATOR REGISTERS (see Section 3.2.2)·

The Am29050 microprocessor contains four double-precision floating-point accumula­
tor registers for use with the floating-point multiply-accumulate and multiply-sum
operations. Instructions are also provided for writing and reading the accumulator
registers directly.

SPECIAL·PURPOSE REGISTERS (see Section 3.2.3)

The Am29050 microprocessor contains 39 special-purpose registers. These registers
provide controls and data for certain processor functions.

Special-purpose registers are accessed by data movement only. Any special-purpose
register can be written with the contents of any general-purpose register or a 16-bit
immediate field, and any general-purpose register can be written with the contents of
any special-purpose register. Operations cannot be performed directly on the
contents of special-purpose registers.

Some special-purpose registers are protected. and can be accessed only in the
Supervisor or Monitor modes. This restriction applies to both read and write accesses.
An attempt by a User-mode program to access a protected register causes a trap to
occur.

The protected special"purpose registers are defined as follows:

O. VAB: Vector Area Base Address-Defines the beginning of the interrupt/trap
Vector Area.

1. OPS: Old Processor Status-Receives a copy of the Current Processor Status
(see below) when an interrupt or trap is taken. It is later used to restore the
Current Processor Status on an interrupt return.

2. CPS: Current Processor Status-Contains control information associated with
the currently executing process, such as interrupt disables and the Supervisor
Mode bit.

2-2 ARCHITECTURE HIGHLIGHTS

3. CFG: Configuration-Contains control information which normally varies only from
system to system, and usually is set only during system initialization.

4. CHA: Channel Address-Contains the address associated with an external
access, and retains the address if the access does not complete successfully. The
Channel Address Register, in conjunction with the Channel Data and Channel
Control registers described below, allow the restarting of unsuccessful external
accesses. This might be necessary for an access encountering a page fault in a
demand-paged environment, for example.

5. CHD: Channel Data-Contains data associated with a store operation, and retains
the data if the operation does not complete successfully.

6. CHC: Channel Control-Contains control information associated with a channel
operation, and retains this information if the operation does not complete
successfully.

7. RBP: Register Bank Protect-Restricts access of User-mode programs to
specified groups of 16 registers. This protects operating-system parameters kept
in the global registers from corruption by User-mode programs.

8. TMC: Timer Counter-Supports real-time control and other timing-related
functions.

9. TMR: Timer Reload-Maintains synchronization of the Timer Counter. It includes
control bits for the Timer Facility.

10. PCO: Program Counter O-Contains the address of the instruction being decoded
when an interrupt or trap is taken. The processor restarts this instruction upon
interrupt return.

11. PC1: Program Counter 1-Contains the address of the instruction being executed
when an interrupt or trap is taken. The processor restarts this instruction upon
interrupt return.

12. PC2: Program Counter 2-Contains the address of the instruction just completed
when an interrupt or trap is taken. This address is provided for information only,
and does not participate in an interrupt return.

13. MMU: MMU Configuration-Allows selection of various memory-management
options, such as page size.

14. LRU: LRU Recommendation-Simplifies the reload of entries in the Translation
Look-Aside Buffer (TLB) by providing information on the least-recently used entry
of the TLB when a TLB miss occurs (see Section 2.1.6).

15. RSN: Reason Vector-Contains the vector number of the synchronous trap which
caused entry into the Monitor mode.

16. RMAO: Region Mapping Address O-Specifies a mapping from a region of virtual
address space to physical address space; contains the Virtual Base Address
(VBA) and the corresponding Physical Base Address (PBA) (see Section 3.6.2).

17. RMCO: Region Mapping Control O-Contains control information associated with
the region mapping specified by the Region Mapping Address Register O.

18. RMA 1: Region Mapping Address 1-Specifies a mapping from a region of virtual
address space to physical address space; contains the Virtual Base Address
(VBA) and th.9 corresponding Physical Base Address (PBA).

19. RMC1: Region Mapping Control1-Contains control information associated with
the region mapping specified by the Region Mapping .Address Regi~ter 1.

ARCHITECTURE HIGHLIGHTS 2-3

20. SPCO: Shadow Program Counter O-Contains the address of the instruction being
decoded when the processor enters Monitor mode. The processor restarts this
instruction upon return from Monitor mode (see Section 3.7).

21. SPC1: Shadow Program Counter 1-Contains the address of the instruction being
executed when the processor enters Monitor mode. The processor restarts this
instruction upon return from Monitor mode.

22. SPC2: Shadow Program Counter 2-Contains the. address of the instruction just
completed when the processor enters Monitor mode. This address is provided for
information only, and does not participate in the return from Monitor mode.

23. IBAO: Instruction Breakpoint Address O-Contains the address of an instruction
breakpoint (see Section 3.7).

24. IBCO: Instruction Breakpoint Control O-Contains control and status information
for the breakpoint comparison specified by the Instruction Breakpoint Address
Register O.

25. IBA 1: Instruction BreakpOint Address 1-Contains the address of an instruction
breakpoint.

26. IBC1: Instruction Breakpoint Control1-Contains control and status information
for the breakpoint comparison specified by the Instruction Breakpoint Address
Register 1.

The unprotected special-purpose registers are defined as follows:

128. IPC: Indirect Pointer C-Allows the indirect access of a general-purpose register.

129. IPA: Indirect Pointer A-Allows the indirect access of a general-purpose register.

130. IPB: Indirect Pointer B-Allows the indirect access of a general-purpose register.

131. Q: Q-,-Provides additional operand bits for multiply step, divide step, and divide
operations.

132. ALU: ALU Status-Contains information about the outcome of integer arithmetic
and logical operations, and holds residual control for certain instruction
operations.

133. BP: Byte Pointer-Contains an index of a byte or half-word within a word. This
register is also accessible via the ALU Status Register.

134. FC: Funnel Shift Count-Provides a bit offset for the extraction of word-length
fields from double-word operands. This register is also accessible via the ALU
Status Register.

135. CR: Load/Store Count Remaining--,.Maintains a count of the number of loads and
stores remaining for load-multiple and store-multiple operations. The count is
initialized to the total number of loads or stores to be performed before the
operation is initiated. This register is also accessible via the Channel Control
Register.

160. FPE: Floating-Point Environment-Controls the operation of floating-point
arithmetic, such as rounding modes and exception reporting.

161. INTE: Integer Environment-Enables and disables the reporting of exceptions
which occur during integer multiply and divide operations.

162. FPS: Floating-Point Status-Contains information about the outcome of
floating-point operations.

2-4 ARCHITECTURE HIGHLIGHTS

2.1.2.4

2.1.3

164. EXOP: Exception Opcode-Reports the operation code of an instruction causing
a trap. This register is provided primarily for reCovery from floating-point
exceptions. but is also set for other instructions that cause traps.

TLB REGISTERS (see Section 3.2.4)
Translation Look-Aside Buffer (TLB) entries in the Am29050 Memory Management
Unit are accessed via 128 TLB registers. A single TLB entry appears as two TLB
registers; TLB registers are thus paired according to the corresponding TLB entry.

TLB registers are accessed by data movement only. Any TLB register can be written
with the contents of any general-purpose register. and any general-purpose register
can be written with the contents of any TLB register. Operations cannot be performed
directly on the contents of TLB registers.

TLB registers can be accessed only in the Supervisor mode. This restriction applies to
both read and write accesses. An attempt by a User-mode program to access a TLB
register causes a trap to occur.

Instruction Set Overview (see Section 3.3 and Chapter 8)

The three-address architecture of the Am29050 microprocessor instruction set allows
a compiler or assembly-language programmer to prevent the destruction of operands.
and aids register allocation and operand reuse. Instruction operands may be
contained in any two of the 192 general-purpose registers. and instruction results may
be stored in any of the 192 general-purpose registers.

The compiler or assembly-language programmer has complete freedom to allocate
register usage. There is no dedication of a particular register or register group to a
particular class of operations. The instruction set is designed to minimize the number
of side effects and implicit operations of instructions.

Most Am29050 microprocessor instructions can accept an 8-bit constant as one of the
source operands. Larger constants are constructed using one or two additional
instructions and a general-purpose register. Relative branch instructions specify a
16-bit. signed. word offset. Absolute branches specify a 16-bit word address.

The Am29050 microprocessor instruction set contains 125 instructions. These
instructions are divided into nine classes:

1. Integer Arithmetic-Perform integer add. subtract. multiply. and divide operations.

2. Compare-Perform arithmetic and logical comparisons. Some instructions in this
class allow the generation of a trap if the comparison condition is not met.

3. Logical-Perform a set of bit-wise Boolean operations.

4. Shift-Perform arithmetic and logical shifts. and allow the extraction of 32-bit
words from 64-bit double-words.

5. Data Movement-Perform movement of data fields between registers. and the
movement of data to and from external devices and memories.

6. Constant-Allow the generation of large constant values in registers.

7. Floating-Point-Perform floating-point arithmetic. comparisons. and format
conversions.

8. Branch-Perform program jumps and subroutine calls.

9. Miscellaneous-Perform miscellaneous control functions and operations not
provided by other classes.

ARCHITECTURE HIGHLIGHTS :z.s

Figure 2·1

2.1.4

2.1.4.1

The Am29050 microprocessor executes all instructions in a single cycle, except for
floating-point operations, interrupt returns, Load Multiple, and Store Multiple.

Table 2-1 lists all Am29050 microprocessor instructions alphabetically by instruction
mnemonic. Table 2-1 is provided only to give a general overview of the instruction set.
Section 3.3 defines the instructions grouped into classes, and Chapter 8 provides a
detailed specification of the instruction set.

Data·UnitNumbering Conventions

Bytes Within Words BO bit = 0 (big end ian)

31 23 15 7 0

II I I I I I I II , , , , , , I' " , I , , I" I " , I I
. Byte 0 . By1e1 . By1e2 . By1e3 .

OR BO bit = 1 (little endian)

31 23 15 7 0

I" " " I I' I " " , II I I I I I I II I I I I I I I
. Byte 3 . Byte 2 . Byte 1 . Byte 0 .

Half-Words Within Words BO bit = 0 (big endian)

31 23 15 7 0

I' , I I I I I I I I I I I I I II I I I I I I I I I I I I I I I
Half-Word 0 Half-Word 1

OR BO bit = 1 (little endian)

31 23 15 7 0

II
. Half-Word 0 . Half-Word 1

Data Formats And Handling (see Section 3.4)

This section introduces the data formats and data-manipulation mechanisms which
are supported by the Am29050 microprocessor.

DATA TYPES (see Sections 3.4.1, 3.4.2. and 3.4.3)
A word is defined as 32 bits of data. A half-word consists of 16 bits, and a
double-word consists of 64 bits. Bytes are 8 bits in length. The Am29050
microprocessor has direct support for single- and double-precision floating-point,
word-integer (signed and unsigned), word-logical, word-Boolean, half-word integer
(signed and unsigned), and character (signed and unsigned) data. Other data types,
such as character strings, are supported with sequences of basic instructions.

The format for Boolean data used by the processor is such that the Boolean values
TRUE and FALSE are represented by 1 and 0, respectively, in the most-Significant bit
of a word.

2-6 ARCHITECTURE HIGHLIGHTS

Table 2·1 Am29050 Microprocessor Instruction Set

Mnemonic

ADD
AD DC
ADDCS
ADDCU
ADDS
ADDU
AND
ANON
ASEQ
ASGE
ASGEU
ASGT
ASGTU
ASLE
ASLEU
ASLT
ASLTU
ASNEQ
CALL
CALLI
CLASS
CLZ
CONST
CONSTH
CONSTHZ
CONSTN
CONVERT
CPBYTE
CPEQ
CPGE
CPGEU
CPGT
CPGTU
CPLE
CPLEU
CPLT
CPLTU
CPNEQ
DADO
DDIV
DEQ
DGE
DGT
DIV
DIVO
DIVIDE
DIVIDU
DIVL
DIVREM
DMAC
DMUL
DMSM
DSUB
EMULATE
EXBYTE
EXHW

Instruction Name

Add
Add with Carry
Add with Carry, Signed
Add with Carry, Unsigned
Add, Signed
Add, Unsigned
AND Logical
AND-NOT Logical
Assert Equal To
Assert Greater Than or Equal To
Assert Greater Than or Equal To, Unsigned
Assert Greater Than
Assert Greater Than, Unsigned
Assert Less Than or Equal To
Assert Less Than or Equal To, Unsigned
Assert Less Than
Assert Less Than, Unsigned
Assert Not Equal To
Call Subroutine
Call Subroutine, Indirect
Classify Floating-Point Operand
Count Leading Zeros
Constant
Constant, High
Constant High, Zero Lower
Constant, Negative
Convert Data Format
Compare Bytes
Compare Equal To
Compare Greater Than or Equal To
Compare Greater Than or Equal To, Unsigned
Compare Greater Than
Compare Greater Than, Unsigned
Compare Less Than or Equal To
Compare Less Than or Equal To, Unsigned
Compare Less Than
Compare Less Than, Unsigned
Compare Not Equal To
Floating-Point Add, Double-Precision
Floating-Point Divide, Double-Precision
Floating-Point Equal To, Double-Precision
Floating-Point Greater Than or Equal To, Double-Precision
Floating-Point Greater Than, Double-Precision
Divide Step
Divide Initialize
Integer Divide, Signed
Integer Divide, Unsigned
Divide Last Step
Divide Remainder
Floating-Point Multiply-Accumulate, Double-Precision
Floating-Point Multiply, Double-Precision
Floating-Point Multiply-Sum, Double-Precision
Floating-Point Subtract, Double-Precision
Trap to Software Emulation Routine
Extract Byte
Extract HaH-Word

ARCHITEClURE HIGHLIGHTS. 2·7

Table 2·1 Am29050 Microprocessor Instruction Set (continued)

Mnemonic

EXHWS
EXTRACT
FADD
FDIV
FDMUL
FEO
FGE
FGT
FMAC
FMUL
FMSM
FSUB
HALT
INBYTE
INHW
INV
IRET
IRETINV
JMP
JMPF
JMPFDEC
JMPFI
JMPI
JMPT
JMPTI·
LOAD
LOADL
LOADM
LOADSET
MFACC
MFSR
MFTLB
MTACC
MTSR
MTSRIM
MTILB
MUL
MULL
MULTIPLU
MULTIPLY
MULTM
MULTMU
MULU
NAND
NOR
OR
ORN
SETIP
SLL
SORT
SRA
SRL
STORE
STOREL
STOREM

2-8 ARCHITECTURE HIGHLIGHTS

Instruction Name

Extract Half-Word, Sign-Extended
Extract Word, Bit-Aligned
Floating-Point Add, Single-Precision
Floating-Point Divide, Single-Precision
Floating-Point Multiply, Single-to-Double Precision
Floating-Point Equal To, Single-Precision
Floating-Point Greater Than or Equal To, Single-Precision
Floating-Point Greater Than, Single-Precision
Floating-Point Multiply-Accumulate, Single-Precision
Floating-Point Multiply, Single-Precision
Floating-Point Multiply-Sum, Single-Precision
Floating-Point Subtract, Single-Precision
Enter Halt Mode
Insert Byte
Insert Half-Word
Invalidate
Interrupt Return
Interrupt Return and Invalidate
Jump
Jump False
Jump False and Decrement
Jump False Indirect
Jump Indirect
Jump True
Jump True Indirect
Load
Load and Lock
Load Multiple
Load and Set
Move from Accumulator
Move from Special Register
Move from Translation Look-Aside Buffer Register
Move to Accumulator
Move to Special Register

. Move to Special Register Immediate
Move to Translation Look-Aside Buffer Register
Multiply Step
Multiply Last Step
Integer Multiply, Unsigned
Integer Multiply, Signed
Integer Multiply Most-Significant Bits, Signed
Integer Multiply Most-Significant Bits, Unsigned
Multiply Step, Unsigned
NAND Logical
NOR Logical
OR Logical
OR NOT Logical
Set Indirect Pointers
Shift Left Logical
Floating-Point Square Root
Shift Right Arithmetic
Shift Right Logical
Store
Store and Lock
Store Multiple

Table 2·1

2.1.4.2

Am29050 Microprocessor Instruction Set (continued)

Mnemonic

SUB
SUBC
SUBCS
SUBCU
SUBR
SUBRC
SUBRCS
SUBRCU
SUBRS
SUBRU
SUBS
SUBU
XNOR
XOR

Instruction Name

Subtract
Subtract with Carry
Subtract with Carry, Signed
Subtract with Carry, Unsigned
Subtract Reverse
Subtract Reverse with Carry
Subtract Reverse with Carry, Signed
Subtract Reverse with Carry, Unsigned
Subtract Reverse, Signed
Subtract Reverse, Unsigned
Subtract Signed
Subtract Unsigned
Exclusive-NOR Logical
Exclusive-OR Logical

Figure 2-1 illustrates the numbering conventions for data units contained in a word.
Within a word, bits are numbered in increasing order from right-to-Ieft, starting with
the number 0 for the least-significant bit. Bytes and half-words within a word are
numbered in increasing order starting with the number O. However, bytes and half­
words may be numbered right-to-Ieft (sometimes referred to as "little end ian") or
left-to-right (sometimes referred to as "big endian"), as controlled by the Configuration
Register.

Note that the numbering of bits within words is strictly for notational convenience. In
contrast, the numbering conventions for bytes and half-words within words affect
processor operations.

EXTERNAL DATA ACCESSES (see Section 3.4.4)
External accesses move data between the processor and external devices and
memories. These accesses occur only as a result of load and store instructions.

Load and store instructions move words of data to and from general-purpose
registers. Each load and store instruction moves a single word. There are load and
store instructions which support interlocking operations necessary for multi-processor
exclusion, synchronization, and communication.

For the movement of multiple words, Load Multiple and Store Multiple instructions
move the contents of sequentially addressed external locations to or from sequentially
numbered general-purpose registers. The Load Multiple and Store Multiple allow the
movement of up to 192 words at a maximum rate of one word per processor cycle.
The multiple load and store sequences can be interrupted, and restarted at the point
of interruption.

Load and store instructions provide no mechanism for computing the address
associated with the external data access. All addresses are contained in a
general-purpose register at the beginning of the access, or are given by an 8-bit
instruction constant. Any address computation must be performed explicitly before the
load or store instruction is executed. Since address computations are expressed
directly, they are exposed for compiler optimizations as any other computations are.
Processor hardware tracks the registers that are being used to contain addresses,
and tracks computations that are for external addresses. This information allows the
processor to reduce the apparent external access time by one cycle in many cases.

ARCHITECTURE HIGHLIGHTS 2.9

2.1.4.3

2.1.4.4

External data accesses are overlapped with instruction execution. Processor perform­
ance is improved if instructions that follow loads do not immediately use externally
referenced data. In this manner, the time required to perform the external access is
overlapped with subsequent instruction execution. Because of hardware interlocks,
this concurrency has no effect on the logical behavior of an executing program.

ADDRESSING AND ALIGNMENT (see Section 3.4.5)

External instructions and data are contained in one of five 32-bit address spaces:

1. Data Memory

2. Input/Output

3. Coprocessor

4. Instruction Read-Only Memory (Instruction ROM)

5. Instruction Random Access Memory (Instruction RAM)

An address is treated as virtual or physical, as determined by the Current Processor
Status Register. Address translation for data accesses is enabled separately from
address translation for instruction accesses. A program in the Supervisor mode can
temporarily disable address translation for individual loads and stores; this permits
load-real and store-real operations.

Bits contained within load and store instructions distinguish between the data
memory, input/output, and coprocessor address-spaces. Address translatio/1 also
may determine whether an access is performed in the data memory or the input/
output address space. The Current Processor Status register determines whether
instruction accesses are directed to the instruction/RAM memory address space or
to the instruction ROM address space.

The Am29050 microprocessor does not support data accesses directly to the
instruction RAM or instruction ROM address space. However, this capability is
possible as a system option.

All addresses are interpreted as byte addresses, although accesses are word­
oriented. The number of a byte within a word is given by the two least-significant
address bits. The number of a half-word within a word is given by the
next-to-Ieast-significant address bit.

Since only byte addressing is supported, it is possible that an address for the access
of a word or half-word is not aligned to the desired word or half-word. For a word
access, an unaligned address has a 1 in either or both of the two least-significant
address bits. For a half-word access, an unaligned address has a 1 in the
least-significant address bit. In many systems, address alignment can be ignored,
with addresses truncated to access the word or half-word of interest. However, as a
user option, the Am29050 microprocessor can create a trap when a non-aligned
access is attempted. The trap allows software emulation of non-aligned accesses.

In the Am29050 microprocessor, all instructions are 32 bits in length, and are aligned
on word-address boundaries.

BYTE AND HALF·WORD ACCESSES (see Section 3.4.6)

The Am29050 microprocessor supports the direct external access of bytes and
half-words as an option. If this option is enabled, the Am29050 microprocessor
selects a byte or half-word within a word on a load, and aligns it to the low-order byte
or half-word of a register. On a store, the low-order byte or half-word of a register is
replicated in all byte or half-word positions, so that the external memory can easily

2-10 ARCHITEC1URE HIGHLIGHTS

2.1.5

2.1.5.1

2.1.5.2

write the required byte or half-word in memory. This option requires that the external
memory system be able to write individual bytes and half-words within words.

To avoid the memory-system complexity required for writing individual bytes and
half-words, the Am29050 microprocessor can perform byte and half-word accesses
using software alone. The Am29050 microprocessor can set a byte-position indicator
in the ALU Status Register, as an option for load instructions, with the two least-sig­
nificant bits of the address for the load. To load a byte or half-word, a word load is first
performed. This load sets the byte-position indicator, and a subsequent instruction
extracts the byte or half-word of interest from the accessed word. To store a byte or
half-word, a load is also first performed; the byte or half-word of interest is inserted
into the accessed word, and the resulting word then is stored. Even if the Am29050
microprocessor is configured to perform byte and half-word accesses in hardware,
this software-only technique operates correctly; this allows software to be upward­
compatible from simpler systems to more complex systems.

Interrupts And Traps (see Section 3.5)

Normal program flow may be preempted by an interrupt or trap for which the
processor is enabled. The effect on the processor is identical for interrupts and traps;
the distinction is in the different mechanisms by which interrupts and traps are
enabled. It is intended that interrupts be used for suspending current program
execution and causing another program to execute, while traps are used to report
errors and exceptional conditions.

The interrupt and trap mechanism supports high-speed, temporary context switching
and user-defined interrupt-processing mechanisms.

TEMPORARY CONTEXT SWITCHING

The basic interruptltrap mechanism of the Am29050 microprocessor supports
temporary context switching. During the temporary context switch, the interrupted
context is held in processor registers. The interrupt or trap handler can return
immediately to this context.

Temporary context switching is useful for instruction emulation, TLB reload routines,
and so forth. Many of its features are similar to microprogram execution: processor
context does not have to be saved; interrupts are disabled for the duration of the
program; and all processor resources are accessible, even if the context that was
interrupted is in the User mode. The associated routine may execute from instruction
RAM memory or instruction ROM.

USER·DEFINED INTERRUPT PROCESSING

Since the basic interruptltrap mechanism for the Am29050 microprocessor keeps the
interrupted context in the processor, dynamically nested interrupts are not supported
directly. The context in the processor must be saved before another interrupt or trap
can be taken.

The interrupt or trap handler executing during a temporary context switch is not
required to return to the interrupted context. This routine optionally may save the
interrupted context, load a new one, and return to the new context.

The implementation of the saving and restoring of contexts is completely user-de­
fined. Thus, the context save/restore mechanism used (e.g., interrupt stack, program
status word area, etc.) and the amount of context saved can be tailored to the needs
of the system.

ARCHITECTURE HIGHLIGHTS Z,11

2.1.5.3

2.1.6

2.1.6.1

2.1.6.2

VECTOR AREA (see Section 3.5.4)

Interrupt and trap dispatching occurs through a relocatable Vector Area which
accommodates as many as 256 interrupt and trap handling routines. Entries into the
Vector Area are associated with various sources of interrupts and traps; some are
pre-defined, while others are user-defined.

The Vector Area is either a table of vectors in data memory, where each vector pOints
to the beginning of an interrupt or trap handler, or it is a segment of instruction/data
memory (or instruction ROM) containing the actual routines. The latter configuration
for the Vector Area yields better interrupt performance at the cost of addition~1
memory.

Memory Management (see Section 3.6)

The Am29050 microprocessor incorporates a Memory Management Unit (MMU) that
accepts a 32-bit virtual byte-address and translates it to a 32-bit physical byte-ad­
dress in a single cycle. Address translation in the MMU is performed either by a
64-entry Translation Look-Aside Buffer (TLB) or by one of two Region Mapping Units
(RMU). The MMU is not dedicated to any particular address-translation architecture.

TRANSLATION LOOK·ASIDE BUFFER

The TLB is an associative table which contains the most-recently used address
translations for the processor. If the translation for agiven address cannot be
performed by the TLB, a TLB miss occurs, and causes a trap which allows the
required translation to be placed into the TLB.

Processor hardware maintains information for each TLB line indicating which entry
was least recently used; when a TLB miss occurs, this information is used to indicate
the TLB entry to be replaced. Software is responsible for searching system page
tables and modifying the indicated TLB entry as appropriate. This allows the page
tables to be defined according to the system environment.

TLB entries are modified directly by processor instructions. A TLB entry consists of 64
bits and appears as two word-length TLB registers which may be inspected and
modified by instructions.

TLB entries are tagged with a Task Identifier field, which allows the operating system
to create a unique 32-bit virtual address space for each of 256 processes. In addition,
TLB entries provide support for memory protection and user-defined control
information.

REGION MAPPING UNITS

In addition to the page-by-page translation provided by the TLB, the Am29050
microprocessor supports translation for variable-sized regions, ranging from 64 kb to
2 Gb, by means of two Region Mapping Units.

Each RMU consists of two special-purpose registers. One of the registers in each
RMU contains the base address of the virtual region to be mapped and the base
address of the corresponding physical region. The other register specifies the region
size and contains information which is used to control access, including a Task
Identifier.

The RMUs have priority over the TLB translation; in addition, RMUO has priority over
RMU1.

2-12 ARCHITECTURE HIGHLIGHTS

2.1.7

2.1.8

2.1.9

2.2

2.2.1

Coprocessor Programming (see Section 6.1)

The coprocessor interface for the Am29050 microprocessor allows a program to
communicate with an off-chip coprocessor for performing operations not supported by
processor hardware directly.

The coprocessor interface allows the program to transfer operands and operation
codes to the coprocessor, and then perform other operations while the coprocessor
operation is in progress. The results of the operation are read from the coprocessor
by a separate transfer. The processor may transfer multiple operands to the
coprocessor without re-transferring operation codes or reading intermediate results.
As many as 64 bits of information can be transferred to the coprocessor in a single
cycle.

The Am29050 microprocessor includes features that support the definition of the
coprocessor as a system option. In this case, coprocessor operations are emulated
by software when the coprocessor is not present in a system.

Timer Facility (see Section 7.3.6)

The Timer Facility provides a counter for implementing a real-time clock or other
software timing functions. This facility is comprised of two special-purpose registers:
the Timer Counter Register, which decrements at a rate equal to the processor oper­
ating frequency, and the Timer Reload Register, which re-initializes the Timer Counter
Register when it decrements to zero. The Timer Facility optionally may create an
interrupt when the Timer Counter decrements to zero.

Trace Facility (see Section 3.7)

The Trace Facility allows a debug program to emulate single-instruction stepping in a
program under test. This facility allows a trap to be generated after the execution of
any instruction in the program being tested.

Using the Trace Facility, the debug program can inspect and modify the state of the
program at every instruction boundary. The Trace Facility is deSigned to work prop­
erly in the presence of normal system interrupts and traps.

HARDWARE OVERVIEW

This section briefly describes the operation of Am29050 microprocessor hardware. It
introduces the processor pipeline and the three major internal functional units: the
Instruction Fetch Unit, the Execution Unit, and the Memory Management Unit. Finally,
the processor's operational modes are described.

Figure 2-2 shows the Am29050 microprocessor internal data-flow organization. The
following sections refer to the various components on this data-flow diagram.

Four·Stage Pipeline (see Section 4.1)

The Am29050 microprocessor implements a four-stage pipeline for integer instruction
execution. The four stages are: fetch, decode, execute, and write-back. The pipeline
is organized so that the effective instruction-execution rate is as high as one
instruction per cycle. Data forwarding and pipeline interlocks are handled by
processor hardware.

ARCHITECTURE HIGHLIGHTS 2-13

Figure 2·2

2.2.2

2.2.2.1

2.2.2.2

Am29050 Microprocessor Data Flow

r--+
Instruction

Execution -Fetch
Unit Unit

I I
! !

Memory
Management

Unit

1
Instruction Address Data

14778A-002

. The execute stage of Am29050 microprocessor floating-point operations is further
pipelined to a depth. determined by the latency of the operation. The Am29050 micro­
processor can therefore issue most floating-point operations at a rate of one operation
per cycle, though most operations take more than one cycle to complete.

Instruction Fetch Unit (see Section 4.2)

The Instruction Fetch Unit fetches instructions, and supplies instructions to other
functional units. It incorporates the Instruction Prefetch Buffer, the Branch Target
Cache memory, and the Program Counter Unit. All components of the Instruction
Fetch Unit operate during the fetch stage of the processor pipeline.

INSTRUCTION PREFETCH BUFFER (see Section 4.2.1)

Most instructions executed by the Am29050 microprocessor are fetched from external
instruction memory. The processor prefetches instructions so that they are requested
at least four cycles before they are required for execution.

Prefetched instructions are stored in a four-word Instruction Prefetch Buffer while
awaiting execution. An instruction-prefetch request occurs whenever there is a free
location in this buffer (if the processor is otherwise enabled to fetch instructions).
When a non-sequential instruction fetch occurs, prefetching is terminated, and then
restarted for the new instruction stream.

Instruction prefetching de-couples the instruction-fetch rate from the instruction-ac­
cess latency. For example, an instruction may be transferred to the processor two
cycles after it is requested. However, as long as instructions are supplied to the proc­
essor at an average rate of one instruction per cycle, this latency has no effect on the
instruction-execution rate.

Branch Target Cache Memory (see Section 4.2.2)

The Am29050 microprocessor incorporates a Branch Target Cache memory which
contains as many as 256 instructions. The Branch Target Cache memory is a
two-way, set-associative cache containing the first target instructions of a number of
recently taken branches. The Branch Target Cache memory can be configured, under

2-14 ARCHITECTURE HIGHLIGHTS

2.2.2.3

2.2.3

2.2.3.1

2.2.3.2

2.2.3.3

2.2.3.4

software control, to cache either two instructions for each branch or four instructions.
Each of the two sets in the Branch Target Cache memory contains 128 instructions,
and the 128 instructions are further divided either into 32 blocks of four instructions
each or into 64 blocks of two instructions each.

The purpose of the Branch Target Cache memory is to provide instructions for the
beginning of a non-sequential instruction-fetch sequence. This keeps the instruction
pipeline full until the processor can establish a new instruction-prefetch stream from
the external instruction memory.

The processor is organized so that branch instructions can execute in a single cycle if
the target instruction sequence is present in the Branch Target Cache memory.

PROGRAM COUNTER UNIT (see Section 4.2.4)

The Program Counter Unit creates and sequences addresses of instructions as they
are executed by the processor.

Execution Unit (see Section 4.3)

The Execution Unit executes instructions. It incorporates the Register File, the Ad­
dress Unit, the Arithmetic/Logic Unit, the Field Shift Unit, the Floating-Point Unit, and
the Prioritizer. The Register File and Address Unit operate during the decode stage of
the pipeline. The Arithmetic/Logic Unit, Field Shift Unit, Floating-Point Unit, and
Prioritizer operate during the execute stage of the pipeline. The Register File also
operates during the write-back stage.

REGISTER FILE (see Section 4.3.1)

The general-purpose registers are implemented by a 192-location Register File. The
Register File can perform two 64-bit read accesses and two write accesses in a single
cycle. Normally, two read accesses are performed during the decode-pipeline stage
to fetch operands required by the instruction being decoded. One write access during
the same cycle completes the write-back stage of a previously executed integer
instruction, and a second write access completes the write-back stage of a previously
executed floating-point operation. The write port for integer results is 32 bits wide, and
the write port for floating-point results is 64 bits wide.

Addressing logic associated with the Register File distinguishes between the global
and local general-purpose registers, and it performs the Stack-Pointer addressing for
the local registers. Register File addressing functions are performed during the de­
code stage.

ADDRESS UNIT (see Section 4.3.2)

The Address Unit evaluates addresses for branches, loads, and stores. It also assem­
bles instruction-immediate data and computes addresses for load-multiple and store­
multiple sequences.

ARITHMETIC/LOGIC UNIT (see Section 4.3.4)

The ALU performs all logical, compare, and integer arithmetic operations (including
multiply step and divide step).

FIELD SHIFT UNIT (see Section 4.3.5)
The Field Shift Unit performs N-bit shifts. The Field Shift Unit also performs byte and
half;~ord extract and insert operations, and it extracts words from double-words.

ARCHITECTURE HIGHLIGHTS 2-15

I
ii

i Ir

2.2.3.5

2.2.3.6

2.2.4

2.2.5

2.2.5.1

2.2.5.2

2.2.5.3

FLOATING·POINT UNIT (see Section 4.3.7)

The Floating-Point Unit performs single- and double-precision floating-point opera­
tions in accordance with the IEEE Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Std 754-1985).

PRIORITIZER (see Section 4.3.6)

The Prioritizer provides a count of the number of leading zero bits in a 32-bit word;
this is useful for performing prioritization in a multi-level interrupt handler, for example.

Memory Management Unit (see Section 4.4)

The Memory Management Unit (MMU) performs address translation and memory­
protection functions for all branches, loads, and stores. The MMU operates during the
execute stage of the pipeline, so the physical address that it generates is available at
the beginning of the write-back stage.

All addresses for external accesses are physical addresses. MMU operation is
pipelined with external accesses, so that an address translation can occur while a
previous access completes.

Address translation is not performed for the addresses associated with instruction
prefetching. Instead, these addresses are generated by an instruction pre fetch pOinter
which is incremented by the processor. Address translation is performed only at the
beginning of the prefetch sequence (as the result of a branch instruction), and when
the prefetch pOinter crosses a potential virtual-page boundary.

Processor Modes

The Am29050 microprocessor operates in several different modes to accomplish
various processor and system functions. All modes except for Pipeline Hold (see
below) are under direct control of instructions and/or processor control inputs. The
Pipeline Hold mode normally is determined by the relative timing between the proces­
sor and its external system for certain types of operations. The processor provides an
external indication of its operational mode.

EXECUTING

When the processor is in the Executing mode, it fetches and executes instructions as
described in this manual. External accesses occur as required.

WAIT (see Section 3.5.3)

When the processor is in the Wait mode, it does not execute instructions, and per­
forms no external accesses. The Wait mode is controlled by the Current Processor
Status Register. The processor leaves this mode when an interrupt or trap for which it
is enabled occurs, or when a reset occurs.

PIPELINE HOLD (see Section 4.5)

Under certain conditions, processor pipelining might cause non-sequential instruction
execution or timing-dependent results of execution. For example, the processor might
attempt to execute an instruction that has not been fetched from instruction/data
memory.

For such cases, pipeline-interlock hardware detects the anomalous condition and
suspends processor execution until execution can proceed properly. While execution
is suspended by the interlock hardware, the processor is in the Pipeline Hold mode.

2-16 ARCHITECTURE HIGHLIGHTS

2.2.5.4

2.2.5.5

2.2.5.6

2.2.5.7

2.2.5.8

2.3

2.3.1

The processor resumes execution when the pipeline-interlock hardware determines
that it is correct to do so.

HALT (see Section 5.3.3)

The Halt mode is provided so that the processor may be placed under the control of a
hardware-development system {see Section 2.3.2) for the purposes of hardware and
software debug. The processor enters the Halt mode as the result of instruction exe­
cution, or as the result of external controls. In the Halt mode, the processor neither
fetches nor executes instructions.

STEP (see Section 5.3.3)

The Step mode allows a hardware-development system to step through processor
pipeline operation on a stage-by-stage basis. The Step mode nearly is identical to the
Halt mode, except that it enables the processor to enter the Executing mode while the
pipeline advances by one stage.

LOAD TEST INSTRUCTION (see Section 5.3.3)

The Load Test Instruction mode permits a hardware-development system to access
data contained in the processor or system. This is accomplished by allowing a hard­
ware-development system to supply the processor with instructions, instead of having
the processor fetch instructions from instruction memory. The Load Test Instruction
mode is defined so that, once the processor has completed the execution of instruc­
tions provided by the hardware-development system, it may resume the execution of
its normal instruction sequence.

TEST (see Section 5.3.4)

The Test mode facilitates testing of hardware associated with the processor by dis­
abling processor outputs so that they may be driven directly by test hardware. The
Test mode also allows the addition of a second processor to a system, to monitor the
outputs of the first and signal detected errors.

RESET (see Section 3.9 and Section 5.5)

The Reset mode provides initialization of certain processor registers and control state.
This is used for power-on reset, for eliminating unrecoverable error conditions, and for
supporting certain hardware-debug functions.

SYSTEM INTERFACE OVERVIEW

This section briefly describes the features of the Am29050 microprocessor that allow
it to be connected to other system components.

The two major interfaces of the Am29050 microprocessor, introduced in this section,
are the channel and the Test/Development interface. The other topics briefly
described here are clock generation, master/slave checking, and coprocessor
attachment.

Section 5.1 contains a complete pin description of the Am29050 microprocessor.
Appendix A contains timing diagrams and related information.

Channel (see Section 5.2)

The Am29050 microprocessor channel consists of the following 32-bit buses and
related controls:

1. An Instruction Bus, which transfers instructions into the processor.

ARCHITECTURE HIGHLIGHTS 2-17

2.3.2

2. A Data Bus, which transfers data to and from the processor.

3. An Address Bus, which provides addresses for both instruction and data
accesses. The Address Bus also is used to transfer data to a coprocessor.

The channel performs accesses and data transfers to all external devices and
memories, including instruction and data memories, instruction caches, data caches,
input/output devices, bus converters, and coprocessors.

The channel defines three different access protocols: simple, pipelined, and
burst-mode. For simple accesses, the Am29050 microprocessor holds the address
valid throughout the entire access. This is appropriate for high-speed devices that can
complete an access in one cycle, and for low-cost devices that are accessed
infrequently (such as read-only memories containing initialization routines). Pipelined
and burst-mode accesses provide high performance with other types of devices and
memories.

For pipelined accesses, the address transfer is decoupled from the corresponding
data or instruction transfer. After transmitting an address for a request, the processor
may transmit one more address before receiving the reply to the first request. This
allows address transfer and decoding to be overlapped with another access.

On the other hand, burst-mode accesses eliminate the address-transfer cycle
completely. Burst-mode accesses are defined so that once an address is transferred
for a given access, subsequent accesses to sequentially increasing addresses may
occur without re-transfer of the address. The burst may be terminated at any time by
either the processor or responding device.

The Am29050 microprocessor determines whether an access is simple, pipe lined or
burst-mode on a transfer-by-transfer (Le., generally device-by-device) basis.
However, an access that begins as a simple access may be converted to a pipelined
or burst-mode access at any time during the transfer. This relaxes the timing
constraints on the channel-protocol implementation, since addressed devices do not
have to respond immediately to a pipe lined or burst-mode request.

Except for the shared Address Bus, the channel maintains a strict division between
instruction and data accesses. In the most common situation, the system supplies the
processor with instructions using burst-mode accesses, with instruction addresses
transmitted to the system only when a branch occurs. Data accesses can occur
simultaneously without interfering with instruction transfer.

The Am29050 microprocessor contains arbitration logic to support other masters on
the channel. A single external master can arbitrate directly for the channel, while
multiple masters may arbitrate using a daisy chain or other method that requires no
additional arbitration logic. However, to increase arbitration performance in a multiple­
master configuration, an external channel arbiter should be used. This arbiter works in
conjunction with the processor's arbitration logic.

Test!Development Interface (see Section 5.3)
The Am29050 microprocessor supports the attachment of a hardware-development
system such as an in-circuit emulator. This attachment is made directly to the
processor in the system under development, without the removal of the processor
from the system. The Test/Development Interface makes it possible for the
hardware-development system to gain control over the Am29050 microprocessor, and
inspect and modify its internal state (e.g., general-purpose register contents, TLB
entries, etc.). In addition, the Am29050 microprocessor can be used to access other
system devices and memories on behalf of the hardware-development system.

2-18 ARCHITECTURE HIGHLIGHTS

2.3.3

2.3.4

2.3.5

The Test/Development Interface is comprised of controls and status signals provided
on the Am29050 microprocessor, as well as the Instruction and Data buses. The Halt,
Step, Reset. and Load Test Instruction modes allow the hardware-development sys­
tem to control the operation of the Am29050 microprocessor. The hardware-develop­
ment system may supply the processor with instructions on the Instruction Bus using
the Load Test Instruction mode. Internal processor state can be inspected and modi­
fied via the Data Bus.

Clocks (see Section 5.7)

The Am29050 microprocessor generates and distributes a system clock at its
operating frequency. This clock is specially designed to reduce skews between the
system clock and the processor's internal clocks. The internal clock-generation
circuitry requires a single-phase oscillator signal at twice the processor operating
frequency.

For systems in which processor-generated clocks are not appropriate, the Am29050
microprocessor also can accept a clock from an external clock generator.

The processor decides between these two clocking arrangements based on whether
the power supply to the clock-output driver (PWRCLK) is tied to +5 volts or to
GROUND.

Master/Slave Operation (see Section 5.8)

Each Am29050 microprocessor output has associated logic that compares the signal
on the output with the signal that the processor is providing internally to the output
driver. The processor signals situations where the output of any enabled driver does
not agree with its input.

For a single processor, the output comparison detects short circuits in output signals,
but does not detect open circuits. It is possible to connect a second processor in
parallel with the first, where the second processor has its outputs disabled due to the
Test mode. The second processor detects open-circuit signals, as well as provides a
check of the outputs of the first processor.

Coprocessor Attachment (see Section 6.2)

A coprocessor for the Am29050 microprocessor attaches directly to the processor
channel. However, this attachment has features that are different than those of other
channel devices. The coprocessor interface is designed to support a high
operand-transfer rate and to support the overlap of coprocessor operations with other
processor operations, including. other external accesses.

The coprocessor is assigned a special address space on the channel. This permits
the transfer of operands and other information on the Address Bus without interfering
with normal addressing functions. Since both the Address Bus and Data Bus are used
for data transfer, the Am29050 microprocessor can transfer 64 bits of information to
the coprocessor in one cycle.

ARCHITECTURE HIGHLIGHTS 2-19

3.1

3.1.1

3.1.2

PROGRAMMER REFERENCE

This chapter contains a formal description of the Am29050 microprocessor architec­
ture. It concentrates on the features of the Am29050 microprocessor and their logical
behavior. Chapter 7 discusses the use of some of these features.

PROGRAM MODES

At any given time, the Am29050 microprocessor operates in one of three mutually
exclusive program modes: the Supervisor mode, the User mode, or the Monitor
mode. The Supervisor and User modes are for normal program execution; all system­
protection features of the Am29050 microprocessor are based on the difference
between these two modes. The Monitor mode is used for debugging.

Supervisor Mode

Unless it has been forced into the Monitor mode (see Section 3.7), the processor
operates in the Supervisor mode whenever the Supervisor Mode (SM) bit of the Cur­
rent Processor Status Register is 1 (see Section 3.2.3). In the Supervisor mode,
executing programs have access to all processor resources. Virtual regions or pages
mapped by the Memory Management Unit, however, are protected from Supervisor
access (read, write, or execute) when the appropriate bit (SR, SW, or SE, respec­
tively) in the corresponding TLB Entry or Region Mapping Control register is 0 (see
Section 3.6.2).

During the address cycle of a channel request, the Supervisor mode is indicated by
the SUP/US output being High.

User Mode

Unless it has been forced into the Monitor mode (see Section 3.7), the processor
operates in the User mode whenever the SM bit in the Current Processor Status
Register is O. In the User mode, any of the following actions by an executing program
causes a Protection Violation trap to occur:

1. An attempted access of any TLB entry (see Section 3.2.4).

2. An attempted access of any general-purpose register for which a bit in the
Register Bank Protect Register is 1 (see Section 3.2.1).

3. An attempted execution of a load or store instruction for which the PA bit. is 1, or
for which the UA bit is 1 (see Section 3.4.4). (The attempted execution of a
translated load or store for which the AS bit is 1 also causes a Protection Violation
trap. However, this trap occurs regardless of whether or not the processor is in the
User mode.)

4. An attempted execution of one of the following instructions: Interrupt Return,
Interrupt Return and Invalidate, Invalidate, or Halt. However, a hardware­
development system can disable protection checking for the Halt instruction, so

PROGRAMMER REFERENCE 3.1

3.1.3

3.2

that this instruction may be used to implement instruction breakpoints in
User-mode programs (see Section 5.3.3).

5. An attempted access of one of the following registers: SR0-127, SR165-255 (see
Section 3.2.3).

6. An attempted execution of an assert or Emulate instruction which specifies a
vector number between 0 and 63, inclusive (see Section 3.5.4).

7. An attempted access (read, write, or execute) in a virtual region or page mapped
by the Memory Management Unit, when the appropriate permission bit (UR, UW,
or UE, respectively) in the corresponding TLB Entry or Region Mapping Control
register is 0 (see Section 3.6.2).

Devices and memories on the channel also can implement protection and generate
traps based on the value of the SM bit. During the address cycle of a channel request,
the User mode is indicated by the SUP/US output being Low.

Monitor Mode

The Monitor mode allows debugging of both Supervisor and User code (see Section
3.7). The processor enters the Monitor mode whenever the DA bit in the Current
Processor Status register is 1, and either a valid breakpoint comparison or a trap
occurs (except for a trap caused by TRAP(1-Q)).

Upon entry into the Monitor mode, the read-only MM bit in the CPS register is set to 1,
and, if entry was caused by a trap, the Reason Vector register is set to the trap vector
number. Otherwise, the processor state is not modified. The values in the Shadow
Program Counter registers are frozen.

Executing an IRET instruction causes the processor to leave the Monitor mode. The
processor resumes operation at the instruction addresses contained in the Shadow
Program Counter registers.

The Monitor mode can also be used by an external hardware debugger (see
Section 5.3).

VISIBLE REGISTERS

The Am29050 microprocessor has four classes of registers that are accessible by
instructions. These are general-purpose registers, floating-point accumulator regis­
ters, special-purpose registers, and Translation Look-Aside Buffer (TLB) registers.
Any operation available in the Am29050 microprocessor can be performed on the
general-purpose registers, while only the floating-pOint multiply-accumulate and multi­
ply-sum operations use the floating-point accumulator registers. Special-purpose
registers and TLB registers are accessed only by explicit data movement to or from
general-purpose registers. Various protection mechanisms prevent the access of
some of these registers by User-mode programs.

A summary of the information in this section appears in Appendix B.

3-2 PROGRAMMER REFERENCE

3.2.1

Figure 3·1

Global
Registers

Local
Registers

General·Purpose Registers

The Am29050 microprocessor incorporates 192 general-purpose registers. The or­
ganization of the general-purpose registers is diagrammed in Figure 3-1.

General·Purpose Register Organization

Absolute
General-Purpose REGI

0 Indirect Pointer Access

1 Stack Pointer

2 Condition Code Accumulator

3 Condition Code Accumulator, Shifted

4-63 Not Implemented

64 Global Register 64

65 Global Register 65

66 Global Register 66

• •
• •
• •

126 Global Register 126

127 Global Register 127

128 Local Register 125

129 Local Register 126

130 Local Register 127

131 Local Register 0

132 Local Register 1

• •
• •
• •

254 Local Register 123

255 Local Register 124

I
Sla

=131
ck Pointer

(Example)

14778A-003

PROGRAMMER REFERENCE 303

3.2.1.1

3.2.1.2

General-purpose registers hold the following types I:)f operands for program use.

1. 32-bit data addresses

2. 32-bit signed or unsigned integers

3. 32-bit branch-target addresses

4. 32-bit logical bit strings

5. 8-bit signed or unsigned characters

6. 16-bit signed or unsigned integers

7. Word-length Booleans

8. Single-precision floating-point numbers

9. Double-precision floating-point numbers (in two register locations)

Because a large number of general-purpose registers are provided, a large amount of
frequently used data can be kept on-chip, where access time is fastest.

Am29050 microprocessor instructions can specify two general-purpose registers for
source operands, and one general-purpose register for storing the instruction result.
These registers are specified by three 8-bit instruction fields containing register num­
bers. A register may be specified directly by the instruction, or indirectly by one of
three special-purpose registers.

REGISTER ADDRESSING

The general-purpose registers are partitioned into 64 global registers and 128 local
registers, differentiated by the most-significant bit of the register number. The
distinction between global and local registers is the result of register-addressing
considerations.

The following terminology is used to describe the addressing of general-purpose
registers:

1. Register number-this is a software-level number for a general-purpose register.
For example, this is the number contained in an instruction field. Register
numbers range from 0 to 255.

2. Global-register number-this is a software-level number for a global register.
Global-register numbers range from 0 to 127.

3. Local-register number-this is a software-level number for a local register.
Local-register numbers range from 0 to 127.

4. Absolute-register number-this is a hardware-level number used to select a
general-purpose register in the Register File. Absolute-register numbers range
from 0 to 255.

GLOBAL REGISTERS

When the most-significant bit of a register number is 0, a global register is selected.
The seven least-significant bits of the register number give the global-register num­
ber. For global registers, the absolute-register number is equivalent to the register
number.

Global registers 4 through 63 are not implemented. An attempt to access these regis­
ters yields unpredictable results; however, they may be protected from User-mode
access by the Register Bank Protect Register (see below).

The register numbers associated with Global Registers 0, 1, 2, and 3 have special
meaning. The number for Global Register 0 specifies that an indirect pointer is to be

3·4 PROGRAMMER REFERENCE

3.2.1.3

3.2.1.4

3.2.1.5

3.2.1.6

used as the source of the register number; there is an indirect pointer for each of the
instruction operand/result registers. Global Register 1 contains the Stack Pointer,
which is used in the addressing of local registers. The Condition Code Accumulator,
which is used to concatenate Boolean results from one or more operations into a
single condition code, is accessed through Global Registers 2 and 3.

LOCAL·REGISTER STACK POINTER

The Stack Pointer is a 32-bit register that may be an operand of an instruction as any
other general-purpose register. However, a shadow copy of Global Register 1 is
maintained by processor hardware to be used in local-register addressing. This
shadow copy is set only with the results of Arithmetic and Logical instructions. If the
Stack Pointer is set with the result of any other instruction class, local registers cannot
be accessed predictably until the Stack Pointer is set once again with an Arithmetic or
Logical instruction.

A modification of the Stack Pointer has a delayed effect on the addreSSing of local
registers, as discussed in Section 7.4.3.

CONDITION CODE ACCUMULATOR REGISTER

The Condition Code Accumulator Register is accessed through Global Registers 2
and 3. If Global Register 2 (CCA) is specified as the destination of an operation, then
the 32-bit operation result is written to the Condition Code Accumulator Register. If
Global Register 3 (CCA-shift) is the destination, then the Condition Code Accumulator
Register is shifted left one bit and the most-significant bit of the operation result is
placed in the least-significant bit of the register. The Condition Code Accumulator
Register contents can be read by specifying Global Register 2 as a source operand of
an operation. In this way, the Condition Code Accumulator Register can concatenate
the Boolean results of several operations into a single condition code, which can then
be used in subsequent operations.

LOCAL REGISTERS

When the most-significant bit of a register number is 1, a local register is selected.
The seven least-significant bits of the register number give the local-register number.
For local registers, the absolute-register number is obtained by adding the local-regis­
ter number to bits 8-2 of the Stack Pointer and truncating the result to seven bits; the
most-significant bit of the original register number is unchanged (Le., it remains a 1).

The Stack Pointer addition applied to local-register numbers provides a limited form of
base-plus-offset addressing within the local registers. The Stack Pointer contains the
32-bit base address. This assists run-time storage management of variables for dy­
namically nested procedures (see Section 7.1).

REGISTER BANKING

For the purpose of access restriction, the general-purpose registers are divided into
register banks. Register banks consist of 16 registers (except for Bank 0, which con­
tains registers 4 through 15), and are'partitioned according to absolute-register num­
bers, as shown in Figure 3-2.

The Register Bank Protect Register contains 16 protection bits, where each bit con­
trols User-mode accesses (read or write) to a bank of registers. Bits 0-15 of the Reg­
ister Bank Protect Register protect register banks 0 through 15, respectively.

When a bit in the Register Bank Protect Register is 1, and a register in the corre­
sponding bank is specified as an operand register or result register by aUser-mode
instruction, a Protection Violation trap occurs. Note that protection is based on '

PROGRAMMER REFERENCE 3-5

'!

Figure 3·2

3.2.1.7

Register Bank Organization

Register Bank Absolute·Reglster General-Purpose
Protect Register Bit Numbers Registers

0 4 through 15 Bank 0 (not implemented)

1 16 through 31 Bank 1 (not implemented)

2 32 through 47 Bank 2 (not implemented)

3 48 through 63 Bank 3 (not implemented)

4 64 through 79 Bank 4

5 80 through 95 Bank 5

6 96 through 111 Bank 6

7 112 through 127 Bank 7

8 128 through 143 Bank 8

9 144 through 159 Bank 9

10 160 through 175 Bank 10

11 176 through 191 Bank 11

12 192 through 207 Bank 12

13 208 through 223 Bank 13

14 224 through 239 Bank 14

15 240 through 255 Bank 15

absolute-register numbers; in the case of local registers, Stack-Pointer addition is
performed before protection checking.

When the processor is in Supervisor or Monitor mode, the Register Bank Protect
Register has no effect on general-purpose register accesses.

INDIRECT ACCESSES

Specification of Global Register 0 as an instruction-operand register or result register
causes an indirect access to the general-purpose registers. In this case, the absolute­
register number is provided by an indirect pointer contained in a special-purpose
register.

Each of the three possible registers for instruction execution has an associated 8-bit
indirect pOinter. Indirect register numbers can be selected independently for each of
the three operands. Since the indirect pointers contain absolute-register numbers, the
number in an indirect pointer is not added to the Stack POinter when local registers
are selected.

The indirect painters are set by the Move To Special Register, DIVIDE, DIVIDU,
SETIP, and EMULATE instructions. The indirect pointers are also set by Floating­
Point, MULTIPLY, MUl TM, MUl TIPlU, and MUl TMU instructions when these cause
exceptions. This aiiows the exception handier to access tile instruction operands.

For a Move-To-Special-Register instruction, an indirect pointer is set with bits 9-2 of
the 32-bit source operand. This provides consistency between the addressing of
words in general-purpose registers and the addressing of words in external devices or
memories. A modification of an indirect pointer using a Move To Special Register has
a delayed effect on the addressing of general-purpose registers, as discussed in
Section 7.4.3. .

3-6 PROGRAMMER REFERENCE

3.2.2

3.2.3

For the remaining instructions, all three indirect pointers are set simultaneously with
the absolute-register numbers derived from the register numbers specified by the
instruction. For any local registers selected by the instruction, the Stack-Pointer addi­
tion is applied to the register numbers before the indirect pointers are set.

Register numbers stored into the indirect pOinters are checked for bank-protection
violations-except when an indirect pointer is set by a Move-To-Special-Register
instruction-at the time that the indirect pointers are set.

Floating.Point Accumulator Registers

Four 64-bit Accumulator Registers ACC(3-O) are provided for use with the floating­
point multiply-accumulate (FMAC, DMAC) and multiply-sum (FMSM, DMSM) opera­
tions. These registers can contain either single- or double-precision floating-point
numbers.

The Accumulator Registers are written with the Move To Accumulator (MTACC)
instruction and read with the Move From Accumulator (MFACC) instruction. Any of the
four Accumulator Registers can be used as a source or destination for the multiply-ac­
cumulate operations. ACCO can also be used as a source for the multiply-sum opera­
tions (see Section 3.3.7).

Special.Purpose Registers

The Am29050 microprocessor contains 39 special-purpose registers. The organiza­
tion of the special-purpose registers is shown in Figure 3-3.

Special-purpose registers provide controls and data for certain processor operations.
Some special-purpose registers are updated dynamically by the processor, independ­
ent of software controls. Because of this, a read of a special-purpose register follow­
ing a write does not necessarily get the data that was written.

, Some special-purpose registers have fields that are reserved for future processor
implementations. When a special-purpose register is read, a bit in a reserved field is
read as a O. An attempt to write a reserved bit with a 1 has no effect; however, this
should be avoided because of upward-compatibility considerations.

The special-purpose registers are accessed by explicit data movement only. Instruc­
tions that move data to or from a special-purpose register speCify the special-purpose
register by an 8-bit field containing a special-purpose register number. Register num­
bers are specified directly by instructions.

The special-purpose registers are partitioned into protected and unprotected regis­
ters. Special-purpose registers numbered 0-127 and 165-255 are protected (note
that not all of these are implemented). Special-purpose registers numbered 128-164
are unprotected (again, not all are implemented).

An attempted read of an unimplemented special-purpose register yields an unpredict­
able value. An attempted write of an unimplemented, protected special-purpose regis­
ter has an unpredictable effect on processor operation. An attempted write of an
unimplemented, unprotected special-purpose register has no effect; however, this
should be avoided because of upward-compatibility considerations.

Unprotected special-purpose registers are accessible by programs executing in the
User, Supervisor, and Monitor modes.

PROGRAMMER REFERENCE 3-7

'" ,:1
,~

i','

Figure 3·3 Special· Purpose Registers

Register Number

o

3-8 PROGRAMMER REFERENCE

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21
22
23

24
25

26

128
129
130

131

132
133

134
135

160

161

162

164

Protected Registers

Vector Area Base Address

Old Processor Status

Current Processor Status

Configuration

Channel Address

Channel Data

Channel Control

Register Bank Protect

Timer Counter

Timer Reload

Program Counter 0

Program Counter 1

Program Counter 2

MMU Configuration

LRU Recommendation

Reason Vector

Region Mapping Address 0

Region Mapping Control 0

Region Mapping Address 1

Region Mapping Control 1

Shadow Program Counter 0

Shadow Program Counter 1

Shadow Program Counter 2

Instruction Breakpoint Address 0

Instruction Breakpoint Control 0

Instruction Breakpoint Address 1

Instruction Breakpoint Control 1

Unprotected Registers

Indirect Pointer C

Indirect Pointer A

Indirect Pointer B
Q

ALU Status

Byte Pointer

Funnel Shift Count

Load/Store Count Remaining

Floating-Point Environment

Integer Environment

Floating-Point Status

ExcePtion Opcode

Mnemonic

VAB

OPS

CPS

CFG

CHA

CHD

CHC

RBP

TMC

TMR

PCO

PC1

PC2

MMU

LRU

RSN

RMAO

RMCO

RMA1

RMC1

SPCO

SPC1

SPC2

IBAO

IBCO

IBM

IBC1

IPC

IPA

IPB
Q

ALU

BP

FC

CR

FPE

INTE

FPS

EXOP

14778A-004

3.2.3.1

Figure 3·4

3.2.3.2

3.2.3.3

VECTOR AREA BASE ADDRESS (VAB, REGISTER 0)

This protected special-purpose register (see Figure 3-4) specifies the beginning ad­
dress of the interrupt/trap Vector Area. The Vector Area is either a table of 256 vec­
tors which points to interrupt and trap handling routines, or a segment of 256, 64-in­
struction blocks which directly contain the interrupt and trap handling routines.

Vector. Area Base Address Register

31 23 15 7 0

1 : : : : : : : : : H : : : : : : : : : : 1+1+1+1+1+1
The organization of the Vector Area is determined by the Vector Fetch (VF) bit of the
Configuration Register. If the VF bit is 1 when an interrupt or trap is taken, the vector
number for the interrupt or trap (see Section 3.5.4) replaces bits 9-2 of the value in
the Vector Area Base Address Register to generate the physical address for a vector
contained in instruction/data memory.

If the VF bit is 0, the vector number replaces bits 15-8 of the value in the Vector Area
Base Address Register to generate the physical address of the first instruction of the
interrupt or trap handler. The instruction fetch for this instruction is directed either to
instruction memory or instruction read-only memory as determined by the ROM Vec­
tor Area (RV) bit of the Configuration Register.

Bits 31-10: Vector Area Base (VAB)-The VAB field gives the beginning physical
address of the Vector Area. This address is constrained to begin on a 1-kb address­
boundary in instruction/data memory or instruction read-only memory. If the Vector
Area is an instruction segment, bits 10-15 are ignored, and the alignment is forced to
a 64-kb boundary.

Bits 9-0: zeros-These bits force the alignment of the Vector Area to a 1-kb
boundary.

OLD PROCESSOR STATUS (OPS, REGISTER 1)

This protected special-purpose register has the same format as the Current Proces­
sor Status described below. The Old Processor Status stores a copy of the Current
Processor Status when an interrupt or trap is taken. This is required since the Current
Processor Status will be modified to reflect the status of the interruptltrap handler.

During an interrupt return, the Old Processor Status is copied into the Current Proces­
sor Status. This allows the Current Processor Status to be set as required for the
routine that is the target of the interrupt return.

CURRENT PROCESSOR STATUS (CPS, REGISTER 2)

This protected special-purpose register (see Figure 3-5) controls the behavior of the
processor and its ability to recognize exceptional events.

Bits 31-17: Reserved.

Bit 16: Monitor Mode (MM)-This read-only bit is set by the processor upon entry
into the monitor mode, and reset on exit. The MM bit has no counterpart in the Old
Processor Status Register.

Bit 15: Coprocessor Active (CA)-The CA bit is set and reset under the control of
load and store instructions that transfer information to and from a coprocessor. This

PROGRAMMER REFERENCE 3·11

Figure 3·5

bit indicates that the coprocessor is performing an operation at the time that an inter­
rupt or trap is taken. This notifies the interrupt or trap handler that the coprocessor
contains state information to be preserved. Note that this notification occurs because
the CA bit of the Old Processor Status is 1 in this case, not because of the value of
the CA bit of the Current Processor Status.

Bit 14: Interrupt Pending (IP)-This bit allows software to detect the presence of
external interrupts while they are disabled. The IP bit is set if one or more of the exter­
nal signals INTR(3-0) is active, but the processor is disabled from taking the resulting
interrupt due to the value of the OA, 01, or 1M bits. If all external interrupt signals
subsequently are de-asserted while still disabled, the IP bit is reset.

Bits 13-12: Trace Enable, Trace Pending (TE, TP)-The TE and TP bits implement
a software-controlled, instruction single-step facility. Single stepping is not imple­
mented directly, but rather emulated by trap sequences controlled by these bits. The
value of the TE bit is copied to the TP bit whenever an instruction completes execu­
tion. When the TP bit is 1, a Trace trap occurs. Section 3.7.1 describes the use of
these bits in more detail.

Bit 11: Trap Unaligned Access (TU)-The TU bit enables checking of address
alignment for external data-memory accesses. When this bit is 1, an Unaligned Ac­
cess trap occurs if the processor either generates an address for an external word
that is not aligned on a word address-boundary (Le., either of the least-Significant two
bits is 1), or generates an address for an external half-word that is not aligned on a
half-word address boundary (Le., the least-significant address bit is 1). When the TU
bit is 0, data-memory address alignment is ignored.

Alignment is ignored for input/output accesses and coprocessor transfers. The align­
ment of instruction addresses is also ignored (unaligned instruction addresses can be
generated only by indirect jumps). Interrupt/trap vector addresses always are aligned
properly.

Bit 10: Freeze (FZ)-The FZ bit prevents certain registers from being updated during
interrupt and trap processing, except by explicit data movement. The affected regis­
ters are: Channel Address, Channel Data, Channel Control, Program Counter 0,
Program Counter 1, Program Counter 2, and the ALU Status Register.

When the FZ bit is 1, these registers hold their values. An affected register can be
changed only by a Move-To-Special-Register instruction. When the FZ bit is 0, there
is no effect on these registers, and they are updated by processor instruction execu­
tion as described in this manual.

The FZ bit is set whenever an interrupt or trap is taken, holding critical state in the
processor so that it is not modified unintentionally by the interrupt or trap handler.

Current Processor Status Register

Reserved I n 1111111711111~ 111
i ••• , • i •• Ii. ii'
, • I I I • I • I I • 'I .,

•• I I I I I • I I I I I I'

, CA I TE I TU, LK' WM' PI ' 01 '
MM IP TP FZ RE PO SM OA

3-10 PROGRAMMER REFERENCE

Bit 9: Lock (LK)-The LK bit controls the value of the LOCK external signal. If the LK
bit is 1, the LOCK signal is active. If the LK bit is 0, the LOCK signal is controlled by
the execution of the instructions Load and Set, Load and Lock, and Store and Lock.
This bit is provided for the implementation of multi-processor synchronization
protocols.

Bit 8: ROM Enable (RE)-The RE bit enables instruction fetching from external
instruction read-only memory (ROM). When this bit is 1, the IREQT signal directs all
instruction requests to ROM. Instructions that are fetched from ROM are subject to
capture and re-use by the Branch Target Cache memory when it is enabled; the
Branch Target Cache memory distinguishes between instructions from ROM and
those from non-ROM storage. When this bit is 0, off-chip requests for instructions are
directed to instruction/data memory.

Bit 7: WAIT Mode (WM)-The WM bit places the processor in the Wait mode. When
this bit is 1, the processor performs no operations. The Wait mode is reset by an
interrupt or trap for which the processor is enabled, or by the Reset mode.

Bit 6: Physical Addressing/Data (PD)-The PO bit determines whether address
translation is performed for load or store operations. Address translation is performed
for an access only when this bit is 0, and the Physical Address (PA) bit in the load or
store instruction causing the access is also O.

Bit 5: Physical Addresslngllnstructlons (PI)-The PI bit determines whether ad­
dress translation is performed for external instruction accesses. Address translation is
performed only when this bit is O.

Bit 4: Supervisor Mode (SM)-The SM bit protects certain processor context, such
as protected special-purpose registers. When this bit is 1, the processor is in the
Supervisor mode, and access to -all processor context is allowed. When this bit is 0,
the processor is in the User mode, and access to protected processor context is not
allowed; an attempt to access (either read or write) protected processor context
causes a Protection Violation trap.

Section 3.1 describes the processor state protected from User-mode access.

For an external access, the User Access (UA) bit in the load or store instruction also
controls access to protected processor context. When the UA bit is 1, the Memory
Management Unit and channel perform the access as if the program causing the
access were in User mode.

Bits 3-2: Interrupt Mask (IM)-The 1M field is an encoding of the processor priority
with respect to external interrupts. The interpretation of the interrupt mask is specified
by the following table:

1M Value

00
01
1 0
1 1

Result

INTRO enabled
INTR(1-Q) enabled
INTR(2-Q) enabled
INTR(3-Q) enabled

Bit 1: Disable Interrupts (01)-The 01 bit prevents the processor from being inter­
rupted by external interrupt requests INTR(3-Q). When this bit is 1, the processor
ignores all external interrupts. However, note that traps (both internal and external),
Timer interrupts, and Trace traps will be taken. When this bit is 0, the processor will
take any interrupt enabled by the 1M field, unless the OA bit is 1.

PROGRAMMER REFERENCE 3-11

3.2.3.4

Figure 3·6

Bit 0: Disable All Interrupts and Traps (DA)-The DA bit prevents the processor
from taking any interrupts and most traps. When this bit is 1, the processor ignores
interrupts and traps, except for the WARN, Instruction Access Exception, Data Access
Exception, and Coprocessor Exception traps. The processor enters the Monitor mode
when the DA bit is 1, and either a valid breakpoint comparison or a trap (except for a
trap caused by TRAP(1-0)) occurs. When the DA bit is 0, all traps will be taken, and
interrupts will be taken if otherwise enabled.

CONFIGURATION (CFG, REGISTER 3)

This protected special-purpose register (see Figure 3-6) controls certain processor
and system options. Most fields normally are modified only during system initializa­
tion. The Configuration Register is defined as follows:

Configuration Register

31 23 15 7 a

I ' I I I I I I
. PRL

I I I I , I I I I I I I I I I I
. Reserved 111111111

I I I I I I i i
I I I I I I I I

I I I I I I I I

EE : OW : RV : CP :
• • I I

CO VF BO CD

Bits 31-24: Processor Release Level (PRL)-The PRL field is an 8-bit, read-only
identification number which specifies the processor version.

Bits 23--8: Reserved.

Bit 7: Early Load Enable (EE)-The EE bit determines whether the Early Load facil­
ity is enabled. When this bit is 1, early loads are permitted to take place; when this bit
is 0, the generation of early load addresses by either the Physical Address Cache or
the Early Address Generator is disabled.

Bit 6: Branch Target Cache Memory Organization (CO)-The CO bit determines
the organization of the Branch Target Cache memory (BTC memory). When this bit is
0, the BTC memory is organized into 64 entries of 4 instructions each. When this bit is
1, the BTC memory is organized into 128 entries of 2 instructions each. The CO bit is
initialized to 0 on reset.

Bit 5: Data Width (DW)-The DW bit enables and disables byte and half-word exter­
nal accesses. If the DW bit is 0, byte and half-word accesses are not performed in
hardware, and these accesses must be emulated by software. If the DW bit is 1, byte
and half-word accesses are performed by hardware: this requires that external de­
vices and memories be able to write individual bytes and half-words within a word.
The DW bit is initialized to ° on reset.

Bit 4: Vector Fetch (VF)-The VF bit determines the structure of the interrupt/trap
Vector Area. If this bit is 1, the Vector Area is defined as a block of 256 vectors which
specify the beginning addresses of the interrupt and trap handling routines. If the VF
bit is 0, the Vector Area is a segment of 256 64-instruction blocks that contain the
actual routines.

Bit 3: ROM Vector Area (RV)-If the VF bit is 0, the RV bit specifies whether the
Vector Area is contained in instruction memory (RV =0) or instruction read-only mem­
ory (RV = 1). The value of the RV bit is irrelevant if the VF bit is 1.

3·12 PROGRAMMER REFERENCE

3.2.3.5

Figure 3·7

3.2.3.6

Bit 2: Byte Order (BO)-The BO bit determines the ordering of bytes and half-words
within words. If the BO bit is 0, bytes and half-words are numbered left-to-right within
a word. If the BO bit is 1, bytes and half-words are numbered right-to-Ieft. Section
3.4.5 describes the interpretation of the BO bit in more detail.

Bit 1 : Coprocessor Present (CP)-The CP bit indicates the presence of a coproces­
sor that may be used by the processor. If this bit is 1, it enables the execution of load
and store instructions that have a Coprocessor Enable (CE) bit of 1. If the CP bit is 0
and the processor attempts to execute a load or store instruction with a CE bit of 1, a
Coprocessor Not Present trap occurs. This feature. may be used to emulate coproces­
sor operations as well as to protect the state of a coprocessor shared between multi­
ple processes.

Bit 0: Branch Target Cache Memory Disable (CD)-The CD bit determines whether
or not the Branch Target Cache memory is used for non-sequential instruction refer­
ences. When this bit is 1, all instruction references are directed to external instruction
memory or instruction ROM, and the Branch Target Cache memory is not used. When
this bit is 0, the targets of non-sequential instruction fetches are stored in the Branch
Target Cache memory and re-used as described in Section 4.2.2. The value of the
CD bit does not take effect until the execution of the next branch instruction. The CO
bit is initialized to 1 on reset.

CHANNEL ADDRESS (CHA, REGISTER 4)

This protected special-purpose register (Figure 3-7) is used to report exceptions
during external accesses or coprocessor transfers. It also is used to restart inter­
rupted load-multiple and store-multiple operations, and to restart other external ac­
cesses when possible (e.g., after TLB misses are serviced). The restarting of external
accesses is described in Section 7.3.4.

Channel Address Register
31 23 15 7 0

IIIIIIIIIIIIIIII~; 111111111111111

The Channel Address Register is updated on the execution of every load or store
instruction, and on every load or store in a load-multiple or store-multiple sequence,
except when the Freeze (FZ) bit in the Current Processor Status Register is 1.

Bits 31-0: Channel Address (CHA}-This field contains the address of the current
channel transaction (if the FZ bit of the Current Processor Status Register is 0). For
external data accesses, the address is virtual if address translation was enabled for
the access, or physical if translation was disabled. For transfers to the coprocessor,
the CHA field contains data transferred to the coprocessor.

CHANNEL DATA (CHD, REGISTER 5)

This protected special-purpose register (Figure 3-8) is used to report exceptions
during external.accesses or coprocessor transfers. It is also used to restart the first
store of an interrupted store-multiple operation and to restart other external accesses
when possible (e.g., after TLB misses are serviced). The restarting of external ac­
cesses is described in Section 7.3.4.

PROGRAMMER REFERENCE 3-13

Figure 3·8

3.2.3.7

Figure 3·9

Channel Data Register

31 23 15 7 0

II I I I I I I I I I I I I I I ~~ I I I I I I I I I 1 I I I I I

The Channel Data Register is updated on the execution of every load or store
instruction, and on every load or store in a load-multiple or store-multiple sequence,
except when the Freeze (FZ) bit in the Current Processor Status Register is 1. When
the Channel Data Register is updated for a load operation, the resulting value is
unpredictable.

Bits 31-0: Channel Data (CHD)-This field contains the data (if any) associated with
the current channel transaction (if the FZ bit of the Current Processor Status Register
is 0). If the current channel transaction is not a store or a transfer to the coprocessor,
the value of this field is irrelevant.

CHANNEL CONTROL (CHC, REGISTER 6)
This protected special-purpose register (Figure 3-9) is used to report exceptions
during external accesses or coprocessor transfers. It also is used to restart inter­
rupted load-multiple and store-multiple operations, and to restart other external ac­
cesses when possible (e.g., after TLB misses are serviced). The restarting of external
accesses is described in Section 7.3.4.

Channel Control Register
31 23 15 7 o

II
I I I I I I

CNTL
II I ~RI I I I IIIIIII

I I I I I I I
TR III i i , , . , , ,

I I I , I I

I • I I ••
• I

I I

CE LS: ST: res : NN : .
I I

I

ML LA TF CV

The Channel Control Register is updated on the execution of every load or store
instruction,"and on every load or store in a load-multiple or store-multiple sequence,
except when the Freeze (FZ) bit in the Current Processor Status Register is 1.

Bits 31-24:-These bits are a direct copy of bits 23-16 from the load or store
instruction which started the current channel transaction (see Section 3.4.4 and
Section 6.1.2).

Bits 23-16: Load/Store Count Remaining (CR)-The CR field indicates the remain­
ing numberof transfers for a load-multiple or store-multiple operation that encoun­
tered an exception 'or \AJas interrupted before completion. This number is zero-
based; for example, a value of 28 in this field indicates that 29 transfers remain to be
completed.

Bit 15: Load/Store (LS)-The LS bit is 0 if the channel transaction is a store opera­
tion, and 1 if it is a load operation.

Bit 14: Multiple Operation (ML)-The ML bit is 1 if the current channel transaction is
a partially-complete load-multiple or store-multiple operation; otherwise it is O.

3-14 PROGRAMMER REFERENCE

3.2.3.8

Bit 13: Set (ST)-The ST bit is 1 if the current channel transaction is for a load and
Set instruction; otherwise it is O.

Bit 12: Lock Active (LA)-The LA bit is 1 if the current channel transaction is for a
load and lock or Store and lock instruction; otherwise it is O. Note that this bit is not
set as the result of the lock (lK) bit in the Current Processor Status Register.

Bit 11: Reserved.

Bit 10: Transaction Faulted (TF)-The TF bit indicates that the current channel
transaction did not complete due to some exceptional circumstance. This bit is set
only for exceptions reported via the DERR input, and it causes a Data Access Excep­
tion or Coprocessor Exception trap to occur (depending on the value of the CE bit)
when it is 1.

The TF bit allows the proper sequencing of externally reported errors that get
preempted by higher-priority traps (see Section 3.5.8). It is reset by software that
handles the resulting trap.

Bits 9-2: Target Register (TR)-The TR field indicates the absolute-register number
of data operand for the current transaction (either a load target or store data source).
Since the register-number in this field is absolute, it reflects the Stack-Pointer addition
when the indicated register is a local register.

Bit 1: Not Needed (NN)-The NN bit indicates that, even though the Channel Ad­
dress, Channel Data, and Channel Control registers contain a valid representation of
an incomplete load operation, the data requested is not needed. This situation arises
when a load instruction is overlapped with an instruction which writes the load target
register.

Bit 0: Contents Valid (CV)-The CV bit indicates that the contents of the Channel
Address, Channel Data, and Channel Control registers are valid.

REGISTER BANK PROTECT (RBP, REGISTER 7)

This protected special-purpose register (Figure 3-10) protects banks of general­
purpose registers from User-mode program accesses.

Figure 3·10 Register Bank Protect Register
31 23 15 7 0

II I I I I I R~~~~ I I I I I I I.!, 1111111111111 ~ I

The general-purpose registers are partitioned into 16 banks of 16 registers each
(except that Bank 0 contains 12 registers). The banks are organized as shown in
Figure 3-2 of Section 3.2.1.

Bits 31-16: Reserved.

Bits 15-0: Bank 15 through Bank 0 Protection Bits (B15-BO)-ln the Register
Bank Protect Register, each bit is associated with a particular bank of registers, and
the bit number gives the associated bank number (e.g., B11 determines the protection
for Bank 11).

When a protection bit is 1, the corresponding bank is protected from access by pro­
grams executing in the User mode. A Protection Violation trap occurs when a User­
mode program attempts to access (either read or write) a register in a protected bank.

PROGRAMMER REFERENCE 3·15

3.2.3.9

When a bit in this register is 0, the corresponding bank is available to programs exe­
cuting in the User mode.

Supervisor-mode and Monitor-mode programs are not affected by the Register Bank
Protect Register.

Register protection is based on absolute-register numbers. For local registers, the
protection checking is performed after the Stack-Pointer addition is performed.

TIMER COUNTER (TMC. REGISTER 8)

This protected special-purpose register (Figure 3-11) contains the counter for the
Timer FaCility.

Figure 3·11 Timer Counter Register

3.2.3.10

Figure 3·12

31 23 15 7 0

I I I I I I I I II
. Reserved . TCV .

Bits 31-24: Reserved.

Bits 23-0: Timer Count Value (TCV)-The 24-bit TCV field decrements by one on
each processor clock. When the TCV field decrements to zero, it is reloaded with the
content of the Timer Reload Value field in the Timar Reload Register. At this time, the
Interrupt bit in the Timer Reload Register is set.

TIMER RELOAD (TMR. REGISTER 9)

This protected special-purpose register (Figure 3-12) maintains synchronization of the
Timer Counter Register, enables Timer interrupts, and maintains Timer Facility status
information.

Timer Reload Register

31 23 15 7 0 I ~,~~ IIIIIIIIIIIIII~R~ 11111111111
i

: i
• i

OV: IE

IN

Bits 31-27: Reserved.

Bit 26: Overilow (OV)-The OV bit indicates that a Timer interrupt occurred before a
previous Timer interrupt was serviced. It is set if the Interrupt (IN) bit is 1 (see below)
when the Timer Count Value (TCV) field of the Timer Counter Register decrements to
zero. In this case, a Timer interrupt caused by the IN bit has not been serviced when
another interrupt is created.

Bit 25: Interrupt (IN)-The IN bit is set whenever the TCV field decrements to zero. If
this bit is 1 and the IE bit is also 1, a Timer interrupt occurs. Note that the IN bit is set
when the TCV field decrements to zero. regardless of the value of the IE bit. The IN
bit is reset by software that handles the Timer interrupt.

3-16 PROGRAMMER REFERENCE

3.2.3.11

The TCV field is zero-based with respect to the Timer interrupt interval; for example, a
value of 28 in the TCV field causes the IN bit to be set in the 29th subsequent proces­
sor cycle. The reason for this is that the TCV field is zero for a complete cycle before
the IN bit is set.

Bit 24: Interrupt Enable (IE)-When the IE bit is 1, the Timer interrupt is enabled,
and the Timer interrupt occurs whenever the IN bit is 1. When this bit is a, the Timer
interrupt is disabled. Note that Timer interrupts may be disabled by the DA bit of the
Current Processor Status Register regardless of the value of the IE bit.

Bits 23-0: Timer Reload Value (TRV)-The value of this field is written into the
Timer Count Value (TCV) field of the Timer Counter Register when the TCV field
decrements to zero.

PROGRAM COUNTER 0 (PCO, REGISTER 10)

This protected special-purpose register (Figure 3-13) is used, on an interrupt return,
to restart the instruction which was in the decode stage when the original interrupt or
trap was taken.

Figure 3·13 Program Counter 0 Register

3.2.3.12

31 23 15 7 0

II I I I I I I I I I I I I !c! I I I I I I I I I I I I I I 10 10 1

Bits 31-2: Program Counter 0 (PCO)-This field captures the word-address of an
instruction as it enters the decode stage of the processor pipeline, unless the Freeze
(FZ) bit of the Current Processor Status Register is 1. If the FZ bit is 1, pca holds its
value.

When an interrupt or trap is taken, the pca field contains the word-address of the
instruction in the decode stage; the interrupt or trap has prevented this instruction
from executing. The processor uses the pca field to restart this instruction on an
interrupt return.

Bits 1-0: Zeros-These bits are zero, since instruction addresses are always word
aligned.

PROGRAM COUNTER 1 (PC1, REGISTER 11)

This protected special-purpose register (Figure 3-14) is used, on an interrupt return,
to restart the instruction that was in the execute stage when the original interrupt or
trap was taken.

Figure 3·14 Program Counter 1 Register

31 23 15 7 0

II I I I I I I I I I I I I 'l,' I I I I I I I I I I I I I I 010 I
Bits 31-2: Program Counter 1 (PC1)-This field captures the word-address of an
instruction as it enters the execute stage of the processor pipeline, unless the Freeze
(FZ) bit of the Current Processor Status Register is 1. If the FZ bit is 1, PC1 holds its
value.

PROGRAMMER REFERENCE 3-17

3.2.3.13

Figure 3·15

3.2.3.14

Figure 3·16

When an interrupt or trap is taken, the PC1 field contains.the word-address of the
instruction in the execute stage; the interrupt or trap has prevented this instruction
from completing execution. The processor uses the PC1 field to restart this instruction
on an interrupt return.

Bits 1-0: Zeros-These bits are zero, since instruction addresses are always word
aligned.

PROGRAM COUNTER 2 (PC2, REGISTER 12)

This protected special-purpose register (Figure 3-15) reports the address of qertain
instructions causing traps. .

Program Counter 2 Register

31 23 15 7 0

II I I I I I II I I I III I ~IIII I II III 11110101

Bits 31-2: Program Counter 2 (PC2)-This field captures the word address of an
instruction as it enters the write-back stage of the processor pipeline, unless the
Freeze (FZ) bit of the Current Processor Status Register is 1. If the FZ bit is 1, PC2
holds its value.

When an interrupt or trap is taken, the PC2 field contains the word address of the
instruction in the write-back stage. In certain cases, as described in Section 3.5.9,
PC2 contains the address of the instruction causing a trap. The PC2 field is used to
report the address of this instruction, and has no other use in the processor.

Bits 1-0: Zeros-These bits are zero, since instruction addresses are always word
aligned.

MMU CONFIGURATION (MMU, REGISTER 13)

This protected special-purpose register (Figure 3-16) specifies parameters associated
with the Memory Management Unit (MMU).

MMU Configuration Register

31 23 15 7 0

I II II I I I I I I I
. Reserved. PS . PID .

Bits 31-10: Reserved.

Bits 9-8: Page Size (PS)-The PS m~ld specifies the page size for address transla­
tion. The page size affects translation as discussed in Section 3.6.2. The PS field has
a delayed effect on address translation (see Section 3.6.2). At least one cycle of delay
must separate an instruction which sets the PS field and an instruction that performs
address translation. The PS field is encoded as follows:

PS Page Size

00 1 kb
01 2kb
10 4kb
11 8 kb

3-18 PROGRAMMER REFERENCE

3.2.3.15

Figure 3·17

3.2.3.16

Bits 7-0: Process Identifier (PID)-For translated User-mode loads and stores, this
8-bit field is compared to Task Identifier (TID) fields in Translation Look-Aside Buffer
entries when address translation is performed. For the address translation to be valid,
the PID field must match the TID field in an entry. This allows a separate 32-bit virtual­
address space to be allocated to each active User-mode process (within the limit of
255 such processes). Translated Supervisor-mode and Monitor-mode loads and
stores use a fixed process identifier of zero, and require that the TID field be zero for
successful translation.

LRU RECOMMENDATION (LRU, REGISTER 14)

This protected special-purpose register (Figure 3-17) assists Translation Look-Aside
Buffer (TLB) re-Ioading by indicating the least-recently used TLB entry in the required
replacement line.

LRU Recommendation Register

31 23 15 7 0

II II I I I I II
Reserved LRU 0

Bits 31-7: Reserved.

Bits 6-1: Least-Recently Used Entry (LRU)-The LRU field is updated whenever a
TLB miss occurs during an address translation. It gives the TLBregister number of
the TLB entry selected for replacement. The LRU field also is updated whenever a
memory-protection violation occurs; however, it has no interpretation in this case.

Bit 0 : Zero-The appended 0 serves to identify Word 0 of the TLB entry.

REASON VECTOR (RSN,REG.ISTER 15)

This protected special-purpose register (Figure 3-18) reports the cause of a trap into
the Monitor Mode.

Figure 3·18 Reason Vector Register

3.2.3.17

31 23 15 7 0

I : : : : : : : : : : H'H : : : : : : : : : I : : : I~N: : : I
Bits 31-8: Reserved.

Bits 7-0: Reason Vector (RSN)-The RSN field is set whenever a Monitor trap
occurs (see Section 3.5.7). The RSN field is set to the vector number of the trap which
would have been taken had the Monitor trap not been taken.

REGION MAPPING ADDRESS 0 (RMAO, REGISTER 16)

This protected special-purpose register (Figure 3-19) specifies a mapping from a
region of virtual address space to physical address space. Together with the Region
Mapping Control 0 Register, it controls the Region Mapping Unit O.

Bits 31-16: Virtual Base Address (VBA)-The VBA field defines the base address
of the virtual region to be mapped. The most-significant bits of this field are compared

PROGRAMMER REFERENCE 3-19

Figure 3-19 Region Mapping Address 0 Register

3.2.3.18

Figure 3·20

31 23 15 7 0

I: : : : : : :~~ : : : : : : I : : : : : : :~~ : : : : :: I
to the corresponding bits of the virtual address during address translation. Thenum­
ber of bits compared is determined by the size of the virtual region, as defined by the
Region Size field of the Region Mapping Control 0 Register. All unused bits of the
VBA field must be O.

Bits 15-0: Physical Base Address (PBA)-The PBA field defines the base address
of the physical region. When an address translation is performed, the most-significant
bits of this field replace the corresponding bits of the virtual address. The number of
bits replaced is determined by the size of the virtual region, as defined by the Region
Size field of the Region Mapping Control 0 Register. All unused bits of the PBA field
must be O.

REGION MAPPING CONTROL 0 (RMCO, REGISTER 17)

This protected special-purpose register (Figure 3-20) contains control information
associated with the mapping specified by the Region Mapping Address 0 Register.
Together with Region Mapping Address 0 Register, it controls the Region Mapping
UnitO.

Region Mapping Control 0 Register

1": :~~+: : I~"II :+: In 1111111': : H: : : 1 • , , , • , • » • »

Bits 31-24: Reserved.

• I • I • I ••••
I • I • , ••• I
I •• I I I I I I

10 : VE : SW : UR: UE
I • I •

Res Res SR SE UW

Bits 23-22: User-Programmable (PGM)-These bits are placed on the
MPGM(1-O) outputs when a translated address is transmitted for an access.
They have no predefined effect on the access; any effect is defined by logic
external to the processor.

Bit 21: Reserved.

Bits 20-17: Region Size (RGS)-The RGS field defines ,the size of the virtual region.
The value in the RGS field is the number of low-order address bits which are ignored
in virtual address comparisons and physical address substitutions. Thus, if the RGS
value is 0000, th.e size of the virtual region is 64 kb; if the RGS value is 0001, the size
of the virtual region is 128 kb; and so on, up to an RGS value of 1111 and a maximum
virtual region size of 2 Gb.

Bit 16: Input/Output Address Space (IO)-Whel'J the 10 bit is 1, a valid translation
results in an access to the input/output address space. When the 10 bit is 0, the ac­
cess is performed in the instruction/data memory address space.

3-20 PROGRAMMER REFERENCE

3.2.3.19

3.2.3.20

3.2.3.21

Bit 15: Reserved.

Bit 14: Valid Entry (V E)-If the VE bit is 1, Region Mapping Address ° Register
specifies a valid translation. If the VE bit is 0, the translation is invalid.

Bit 13: Supervisor Read (SR)-When the SR bit is 1, Supervisor-mode load opera­
tions to the virtual re~ion are permitted. When the SR bit is 0, such loads are not
permitted, and any attempt is trapped with a Data MMU Protection Violation.

Bit 12: Supervisor Write (SW)-When the SW bit is 1, Supervisor-mode store opera­
tions to the virtual region are permitted. When the SW bit is 0, such stores are not
permitted, and any attempt is trapped with a Data MMU Protection Violation.

Bit 11: Supervisor Execute (SE)-When the SE bit is 1, Supervisor-mode instruction
accesses to the virtual region are permitted. When the SE bit is 0, such accesses are
not permitted, and any attempt is trapped with an Instruction MMU Protection Vio­
lation.

Bit 10: User Read (UR)-When the UR bit is 1, User-mode load operations to the
virtual region are permitted. When the UR bit is 0, such loads are not permitted, and
any attempt is trapped with a Data MMU Protection Violation.

Bit 9: User Write (UW)-When the UW bit is 1, User-mode store operations to the
virtual region are permitted. When the UW bit is 0, such stores are not permitted, and
any attempt is trapped with a Data MMU Protection Violation.

Bit 8: User Execute (UE)-When the UE bit is 1, User-mode instruction accesses to
the virtual region are permitted. When the UE bit is 0, such accesses are not permit­
ted, and any attempt is trapped with an Instruction MMU Protection Violation.

Bits 7-0: Task Identifier (TID)-The Task Identifier field allows Region Mapping
Address Unit ° to be associated with a particular process. For a translation to be valid,
the TID field must match the Process Identifier (PID) in the MMU Configuration Regis­
ter. If the Task Identifieris zero, however, any otherwise-valid Supervisor-mode or
Monitor-mode access is allowed, even if the Process Identifier is not zero.

REGION MAPPING ADDRESS 1 (RMA1, REGISTER 18)

This protected special-purpose register specifies a mapping from a region of virtual
address space to physical address space. Together with the Region Mapping Control
1 Register, it controls the Region Mapping Unit 1.

The structure of the Region Mapping Address 1 Register is identical to that of the
Region Mapping Address ° Register (Figure 3-19).

REGION MAPPING CONTROL 1 (RMC1, REGISTER 19)

This protected special-purpose register contains control information associated with
the mapping specified by the Region Mapping Address 1 Register. Together with the
Region Mapping Address 1 Register, it controls the Region Mapping Unit 1.

The structure of the Region Mapping Control 1 Register is identical to that of the
Region Mapping Control ° Register (Figure 3-20).

SHADOW PROGRAM COUNTER 0 (SPCO, REGISTER 20)

This protected special-purpose register (Figure 3-21) is analogous to the Program
Counter ° Register, except that it operates even when the FZ bit of the Current Proc­
essor Status Register is 1; it freezes only upon entry into the Monitor Mode. The
Shadow Program Counter ° Register is used upon exit from the Monitor Mode to
restart the instruction which was in the decode stage at the time of entry.

PROGRAMMER REFERENCE 3·21

Figure 3·21

3.2.3.22

Figure 3·22

3.2.3.23

Figure 3·23

Shadow Program Counter 0 Register

31 23 15 7 0

I::::::::::::: :sH::::::::::::: 1+1
Bits 31-2: Shadow Program Counter 0 (SPCO)-This field captures the word­
address of an instruction as it enters the decode stage of the processor pipeline,
unless the processor is in the Monitor Mode. While the processor is in the Monitor
Mode, the value of SPCO is not modified.

Bits 1-0: Zeros-These bits are always zero, since instruction addresses are word­
aligned.

SHADOW PROGRAM COUNTER 1 (SPC1, REGISTER 21)

This protected special-purpose register (Figure 3-22) is analogous to the Program
Counter 1 Register, except that it operates even when the FZ bit of the Current Proc­
essor Status Register is 1; it freezes only upon entry into the Monitor Mode. The
Shadow Program Counter 1 Register is used. upon exit from the Monitor Mode to
restart the instruction which was in the execute stage at the time of entry.

Shadow Program Counter 1 Register
31 23 15 7 0

I: : : : : : : : : : : : : :+;: : : : : : : : : : : : : Hoi
Bits 31-2: Shadow Program Counter 1 (SPC1)-This field captures the word-ad­
dress of an instruction as it enters the execute stage of the processor pipeline, unless
the processor is in the Monitor Mode. While the processor is in the Monitor Mode, the
value of SPC1 is not modified.

Bits 1-0: Zeros-These bits are always zero, since instruction addresses are word­
aligned.

SHADOW PROGRAM COUNTER 2 (SPC2, REGISTER 22)

This protected special-purpose register (Figure 3-23) is analogous to the Program
Counter 2 Register, except that it operates even when the FZ bit of the Current Proc­
essor Status Register is 1; it freezes only upon entry into the Monitor Mode. The
Shadow Program Counter 2 Register provides information only; it is not used by
processor in a return from Monitor Mode.

Shadow Program Counter 2 Register

3·22 PROGRAMMER REFERENCE

3.2.3.24

Bits 31-2: Shadow Program Counter 2 (SPC2)-This field captures the word-ad­
dress of an instruction as it enters the write-back stage of the processor pipeline,
unless the processor is in the Monitor Mode. While the processor is in the Monitor
Mode, the value of SPC2 is not modified.

Bits 1-0: zeros-These bits are always zero, since instruction addresses are word­
aligned.

INSTRUCTION BREAKPOINT ADDRESS 0 (IBAO, REGISTER 23)

This protected special-purpose register (Figure 3-24) contains the address of an
instruction breakpoint.

Figure 3·24 Instruction Breakpoint Address 0 Register

3.2.3.25

Figure, 3·25

31 23 15 7 0

I::::::::::::::H:::::::::::::I+I
Bits 31-2: Instruction Breakpoint Address (IBA)-The value in the IBA field is
compared to the value of the Program Counter to determine whether an instruction
breakpoint has been encountered.

Bits 1-0: Zeros-These bits are always zero, since instruction addresses are word­
aligned.

INSTRUCTION BREAKPOINT CONTROL 0 (lBCO, REGISTER 24)

This protected special-purpose register (Figure 3-25) contains control and status
information for the instruction breakpoint specified by the Instruction Breakpoint Ad­
dress 0 Register.

Instruction Breakpoint Control 0 Register

31 23 15 7 0

I::::::: rrH::::::: 111111:: :+::: I ii' i ,

Bits 31-13: Reserved.

I I •• I
I I I ••
• I r I •

BHO: BSV: BTE
I I

BEN BRM

Bit 12: Breakpoint Has Occurred (BHO)-The BHO bit indicates whether a trap for
valid breakpoint comparison has occurred. When such a trap occurs, the BHO bit is
set to 1. At the next valid breakpoint comparison, the BHO bit is reset to 0, and the
breakpoint trap is not taken. The BHO bit acts as a temporary breakpoint disable,
ensuring that only one breakpoint comparison trap is taken each time the breakpoint
is encountered and allowing the processor to progress past the breakpoint address.

Bit 11: Breakpoint Enable (BEN)-When the BEN bit is 1, the breakpoint compari­
son is enabled. When the BEN bit is 0, the breakpoint comparison is disabled and
neither a breakpoint nor a synchronization pulse is generated when the breakpoint
condition is met. The BEN bit is initialized to 0 upon reset.

PROGRAMMER REFERENCE 3023

I~
II,
~ I",

3.2.3.26

3.2.3.27

3.2.3.28

3.2.3.29

Figure 3·26

Bit 10: Break or Synchronize (BSY)-The BSY bit determines the action taken
when the breakpoint condition is met. If the BSY bit is 1, a breakpoint occurs; if the
BSY bit is 0, a synchronization pulse is generated (see Section 5.3).

Bit 9: Break ROM (BRM)-If the BRM bit is 0, the breakpoint comparison is per­
formed only for addresses in the instruction memory address space. If the BRM bit is
1, the breakpoint comparison is performed only for addresses in the instruction ROM
address space.

Bit 8: Break on Translation Enabled (BTE)-If the BTE bit is 1, the breakpoint
comparison is performed only when instruction translation is enabled (that is, when
the PI bit of the Current Processor Status Register is 0). If the BTE bit is 0, the break­
point comparison is performed when instruction translation is disabled (the PI bit is 1).
Comparisons for translated addresses are further conditioned by the BPID field and
the Process Identifier field of the MMU Configuration Register; these fields are ig­
nored if the BTE bit is O.

Bits 7-0: Breakpoint Process Identifier (BPID)-The BPID field allows the break­
point comparison of virtual instruction addresses to be associated with a particular
process. The BPID field is ignored for untranslated instruction addresses. For a User­
mode virtual instruction address, the value of the BPID field must match the value of
the PID field of the MMU Configuration Register for the breakpoint comparison to be
valid. For a Supervisor-mode virtual address, the breakpoint condition is met only if
the value of the BPID field is O.

INSTRUCTION BREAKPOINT ADDRESS 1 (lBA1, REGISTER 25)

This protected special-purpose register contains the address of an instruction break­
point.

The structure of the Instruction Breakpoint Address 1 Register is identical to that of
the Instruction Breakpoint Address 0 Register (Figure 3-24).

INSTRUCTION BREAKPOINT CONTROL 1 (lBC1, REGISTER 26)

This protected special-purpose register contains control and status information for the
instruction breakpoint specified by the Instruction Breakpoint Address 1 Register.

The structure of the Instruction Breakpoint Control 1 Register is identical to that of the
Instruction Breakpoint Control 0 Register (Figure 3-25).

REGISTERS 112-127-RESERVED FOR TESTING

Special-purpose registers 112 to 127 are reserved for hardware testing. In the User
Mode, an attempt to read or write these registers causes a Protection Violation trap.
In the Supervisor and Monitor Modes, attempted writes have unpredictable effects on
processor operation.

INDIRECT POINTER C (IPC, REGISTER 128)

This unprotected special-purpose register (Figure 3-26) provides the RC-operand
register number (see Section 8.3) when an instruction RC field has the value zero
(I.e., when Global Register 0 is specified).

Indirect Pointer C Register

23 15 7

I
Reserved IPC

3·24 PROGRAMMER REFERENCE

3.2.3.30

Figure 3·27

3.2.3.31

Bits 31-10: Reserved.

Bits 9-2: Indirect Pointer C (IPC)-The 8-bit IPC field contains an absolute-register
number for a general-purpose register. This number directly selects a register (Stack­
Pointer addition is not performed in the case of local registers).

Bits 1-0: Zeros-The IPC field is aligned for compatibility with word addresses.

INDIRECT POINTER A (IPA, REGISTER 129)

This unprotected special-purpose register (Figure 3-27) provides the RA-operand
register number (see Section 8.3) when an instruction RA field has the value zero
(Le., when Global Register 0 is specified).

Indirect Pointer A Register

31 23 15 7 °
I II I I I I I I III
. Reserved.. IPA. 0. ° .

Bits 31-10: Reserved.

Bits 9-2: Indirect Pointer A (IPA)-The 8-bit IPA field contains an absolute-register
number for either a general-purpose register or a local register. This number directly
selects a register (Stack-Pointer addition is not performed in the case of local regis­
ters).

Bits 1-0: Zeros-The IPA field is aligned for compatibility with word addresses.

INDIRECT POINTER B (IPB, REGISTER 130)

This unprotected special-purpose register (Figure 3-28) provides the RS-operand
register number (see Section 8.3) when an instruction RS field has the value zero
(Le., when Global Register 0 is specified).

Figure 3·28 Indirect Pointer B Register

3.2.3.32

31 23 15 7 °
I II I I I I I I III
. Reserved. IPS. 0. ° .

Bits 31-10: Reserved.

Bits 9-2: Indirect POinter B (IPB)-The 8-bit IPS field contains an absolute-register
number for a general-purpose register. This number directly selects a register (Stack­
Pointer addition is not performed in the case of local registers).

Bits 1-0: Zeros-The IPS field is aligned for compatibility with word addresses.

Q (Q, REGISTER 131)

The Q Register is an unprotected special-purpose register (Figure 3-29).

PROGRAMMER REFERENCE 3-25

Figure 3-29

3.2.3.33

Figure 3-30

Q Register

31 23 15 7 0

I I I I I I I I I II
Q

Bits 31-0: Quotient/Multiplier (Q)-During a sequence of divide steps, this field
holds the low-order bits of the dividend; it contains the quotient at the end of the
divide. During a sequence of multiply steps, this field holds the multiplier; it contains
the low-order bits of the result at the end of the multiply.

For an integer divide instruction, the Q field contains the high-order bits of the divi­
dend at the beginning of the instruction, and contains the remainder upon completion
of the instruction.

ALU STATUS (ALU. REGISTER 132)

This unprotected special-purpose register (Figure 3-30) holds information about the
outcome of Arithmetic/Logic Unit (ALU) operations as well as control for certain opera­
tions performed by the Execution Unit.

ALU Status Register
31 23 15 7 o

I
. Reserved

I ~III

OF

Bits 31-12: Reserved.

Bit 11: Divide Flag (DF)-The DF bit is used by the instructions that implement
division. This bit is set at the end of the division instructions either to 1 or to the com­
plement of the 33rd bit of the ALU. When a Divide Step instruction is executed, then
the DF bit determines whether an addition or subtraction operation is performed by
the ALU.

Bit 10: Overflow (V)-The V bit indicates that the result of a signed, two's-comple­
ment ALU operation required more than 32 bits to represent the result correctly. The
value of this bit is determined by exclusive-DRing the ALU carry-out with the carry-in
to the most-significant bit for signed, two's-complement operations. This bit is not
used for any special purpose in the processor, and is provided forinformation only.

Bit 9: Negative (N)-The N bit is set with the value of the most-significant bit of the
result of an arithmetic or logical operation. If two's-complement overflow occurs, the N
bit does not reflect the true sign of the result. This bit is used in divide operations.

Bit 8: zero (Z)-The Z bit indicates that the result of an arithmetic or logical operation
is zero. This bit is not used for any special purpose in the processor, and is provided
for information only.

Bit 7: Carry (C)-The C bit stores the carry-out of the ALU for arithmetic operations.
It is used by the add-with-carry and subtract7with-carry instructions to generate the
carry into the Arithmetic/Logic Unit.

3-28 PROGRAMMER REFERENCE

3.2.3.34

Figure 3·31

3.2.3.35

Figure 3·32

Bits 6-5: Byte Pointer (BP)-The BP field holds a 2-bit pointer to a byte within a
word. It is used by Insert Byte and Extract Byte instructions. The mapping of the
pOinter value to the byte position depends on the value of the Byte Order (BO) bit in
the Configuration Register.

The most-significant bit of the BP field is used to determine the position of a half-word
within a word for the Insert Half-Word, Extract Half-Word, and Extract Half-Word,
Sign-Extended instructions. The mapping of the most-significant bit to the half-word
position depends on the value of the BO bit in the Configuration Register.

The BP field is set by a Move To Special Register instruction with either the ALU
Status Register or the Byte Pointer Register as the destination. It is also set by a load
or store instruction if the Set Byte Pointer (SB) bit in the instruction is 1. A load or
store sets the BP field either with the two least-significant bits of the address (if the
DW bit of the Configuration Register is 0) or with the complement of the Byte Order bit
of the Configuration Register (if DW is 1).

Bits 4-0: Funnel Shift Count (FC)-The FC field contains a 5-bit shift count for the
Funnel Shifter. The Funnel Shifter concatenates two source-operands into a single
64-bit operand and extracts a 32-bit result from this 64-bit operand; the FC field speci­
fies the number of bit positions from the most-significant bit of the 64-bit operand to
the most-significant bit of the 32-bit result. The FC field is used by the EXTRACT
instruction.

The FC field is set by a Move To Special Register instruction with either the ALU
Status Register or the Funnel Shift Count Register as the destination.

BYTE POINTER (BP, REGISTER 133)

This unprotected special-purpose register (Figure 3-31) provides an alternate access
to the BP field in the ALU Status Register.

Byte Pointer Register

31 23 15 7 0

1.1·1·1·1 lp I

Bits 31-2: Zeros.

Bits 1-0: Byte POinter (BP)...,.-This field allows a program to change the BP field
without affecting other fields in the ALU Status Register.

FUNNEL SHIFT COUNT (FC, REGISTER 134)

This unprotected special-purpose register (Figure 3-32) provides an alternate access
to the FC field in the ALU Status Register.

Funnel Shift Count Register

31 23 15 7 o

1.1.1.1.1.1.1.1.1.1.1.1.1.1·1·1·1·1·1·1·1·1·1·1·1·1·1·I
Bits 31-5: Zeros.

Bits 4-0: Funnel Shift Count (FC)-This field allows a program to change the FC
field without affecting other fields in the ALU Status Register.

PROGRAMMER REFERENCE 3·27

",'i
: ,~

~

3.2.3.36

Figure 3·33

3.2.3.37

Figure 3·34

LOAD/STORE COUNT REMAINING (CR, REGISTER 135)

This unprotected special-purpose register (Figure 3-33) provides alternate access to
the CR field in the Channel Control Register.

L.oacllStore Count Remaining Register

31 23 15 7 0

Bits 31-8: zeros.

Bits 7-0: Load/Store Count Remaining (CR)-This field allows a program to
change the CR field without affecting other fields in the Channel Control Register, and
is used to initialize the value before a Load Multiple or Store Multiple instruction is
executed.

FLOATING·POINT ENVIRONMENT (FPE, REGISTER 160)

This unprotected special-purpose register (Figure 3-34) contains control bits that
affect the execution of floating-point operations. Writing the Floating-Point Environ­
ment Register is a serializing operation; that is, all currently executing floating-point
operations are completed before the write is performed.

Floating·Point Environment Register
31 23 15 7 0

I I I I I I I I I I I I I I I II I I I I
. Reserved Illl,!·1111111

I I I I , i

: : : : : :'
FF OM : UM :, RM : , ,

XM VM NM

Bits 31-11: Reserved.

Bits 10-9: Accumulator Format (ACF)-The ACF field specifies the format of the
Floating-point Accumulator Registers, as follows:

ACF1-O Accumulator Format

00 Reserved
01 Single-Precision
10 Double-Precision
11 Reserved

Bit 8: Fast Float Select (FF)-The FF bit being 1 enables fast floating-point opera­
tions, in which certain requirements of the IEEE floating-point specification are not
met. This improves the performance of certain operations by sacrificing conformance
to the IEEE specification. The fast floating-point operations are discussed in
Section 7.2.8.

3·28 PROGRAMMER REFERENCE

3.2.3.38

Figure 3-35

i

Bits 7-6: Floating-Point Round Mode (FRM)-This field specifies the default mode It
used to round the results of floating-point operations, as follows: I,

FRM1-0 Round Mode

00 Round to nearest
01 Round to-oo
10 Round to +00

11 Round to zero

Rounding is discussed in Section 7.2.7.

Bit 5: Floating-Point Divlde-By-Zero Mask (DM)-If the OM bit is 0, a Floating-Point
Exception trap occurs when the divisor of a floating-point division operation is zero
and the dividend is a non-zero, finite number. If the OM bit is 1, a Floating-Point
Exception trap does not occur for divide-by-zero.

Bit 4: Floating-Point Inexact Result Mask (XM)-If the XM bit is 0, a Floating-Point
Exception trap occurs when the result of a floating-point operation is not equal to the
infinitely precise result. If the XM bit is 1, a Floating-Point Exception trap does not
occur for an inexact result.

Bit 3: Floating-Point Underflow Mask (UM)-If the UM bit is 0, a Floating-Point
Exception trap occurs when the result of a floating-point operation is too small to be
expressed in the destination format. If the UM bit is 1, a Floating-Point Exception trap
does not occur for underflow.

Bit 2: Floating-Point Overflow Mask (VM)-If the VM bit is 0, a Floating-Point
Exception trap occurs when the result of a floating-point operation is too large to be
expressed in the destination format. If the VM bit is 1, a Floating-Point Exception trap
does not occur for overflow.

Bit 1: Floating-Point Reserved Operand Mask (RM)-If the RM bit is 0, a Floating­
Point Exception trap occurs when one or more input operands to a floating-point
operation is a reserved value, or when the result of a floating-point operation is a
reserved value. If the RM bit is 1, a Floating-Point Exception trap does not occur for
reserved operands.

Bit 0: Floating-Point Invalid Operation Mask (NM)-If the NM bit is 0, a Floating­
Point Exception trap occurs when the input operands to a floating-point operation
produce an indeterminate result (e.g., 00 times 0). If the NM bit is 1, a Floating-Point
Exception trap does not occur for invalid operations.

INTEGER ENVIRONMENT (lNTE, REGISTER 161)

This unprotected special-purpose register (Figure 3-35) contains control bits which
affect the execution of integer multiplication and division operations. Writing the Inte­
ger Environment Register is a serializing operation. All currently executing operations
are completed before the write is performed.

Integer Environment Register
31 23 15 7

I ' , I , I , /I
. Reserved

MO

PROGRAMMER REFERENCE 3·29

~
"

3.2.3.39

Figure 3·36

Bits 31-2: Reserved.

Bit 1: Integer Division Overflow Mask (DO)-If the DO bit is 0, an Out of Range trap
occurs when overflow of a signed or unsigned 32-bit result occurs during a DIVIDE or
DIVIDU instruction, respectively. If the DO bit is 1, an Out of Range trap does not
occur for overflow during integer divide operations.

The DIVIDE and DIVIDU instructions always cause an Out of Range Trap upon divi­
sion by zero, regardless of the value of the DO bit.

Bit 0: Integer Multiplication Overflow Exception Mask (MO)-If the MO bit is 0, an
Out of Range trap occurs when overflow of a signed or unsigned 32-bit result occurs
during a MULTIPLY or MULTIPLU instruction, respectively. If the DO bit is 1, an Out
of Range trap does not occur for overflow during integer multiply operations.

FLOATING·POINT STATUS (FPS, REGISTER 162)

This unprotected special-purpose register (Figure 3-36) contains status bits indicating
the outcome of floating-point operations.

The floating-point status bits are divided into two groups. The first group consists of
the sticky status bits (DS, XS, US, VS, RS, and NS), which, once set, remain set until
explicitly cleared by a Move-to-Special-Register (MTSR) or Move-to-Special-Register­
Immediate (MTSRIM) instruction. Sticky status bits are updated in either of two ways:

1. For floating-point operations that do not cause a Floating-Point Exception trap
(FMAC, DMAC, FMSM, DMSM, and MTACC), all sticky status bits are updated at
the end of instruction execution.

2. For all other floating-point operations, including CONVERT, only those sticky
status bits corresponding to masked exceptions are updated. The update occurs
at the end of instruction execution.

The second group consists of the trap status bits (DT, XT, UT, VT, RT, and NT),
which report the status of an operation for which a Floating-Point Exception trap is
taken. These bits are updated only by an operation which takes a trap as a result of
an unmasked Floating-Point Exception; all other operations leave these bits un­
changed. A trap status bit is updated regardless of the state of the corresponding
exception mask in the Floating-Point Environment Register.

Reading or writing the Floating-Point Status Register is a serializing operation. All
currently executing floating-point operations are completed before the read or write is
performed.

Floating.Point Status

31 23 15 7 0

I I I I I I I I I I I I I I I I I I
. Reserved 11III IILII III II

I I ••• ii, I I i i
f I 1 • : I •• , I : I

I I • I I I I I I I I •

DT : UT : RT : DS : US : RS :
XT VT NT XS VS NS

Bits 31-14: Reserved.

Bit 13: Floating-Point Divide By Zero Trap (DT)-The DT bit is set when a Floating­
Point Exception trap occurs, and the associated floating-point operation is a divide
with a zero divisor and a non-zero, finite dividend. Otherwise, this bit is reset when a
Floating-Point Exception trap occurs.

3·30 PROGRAMMER REFERENCE

3.2.3.40

Bit 12: Floating-Point Inexact Result Trap (XT)-The XT bit is set when a Floating­
Point Exception trap occurs, and the result of the associated floating-point operation
is not equal to the infinitely-precise result. Otherwise, this bit is reset when a Floating­
Point Exception trap occurs.

Bit 11 : Floating-Point Underflow Trap (UT)-The UT bit is set when a Floating­
Point Exception trap occurs, and the result of the associated floating-point operation
is too small to be expressed in the destination format. Otherwise, this bit is reset when
a Floating-Point Exception trap occurs.

Bit 10: Floating-Point Overflow Trap (VT)-The VT bit is set when a Floating-Point
Exception trap occurs, and the result of the associated floating-point operation is too
large to be expressed in the destination format. Otherwise, this bit is reset when a
Floating-Point Exception trap occurs.

Bit 9: Floating-Point Reserved Operand Trap (RT)-The RT bit is set when a Float­
ing-Point Exception trap occurs, and the result of the associated floating-point opera­
tion is a reserved value. Otherwise, this bit is reset when a Floating-Point Exception
trap occurs.

Bit 8: Floating-Point Invalid Operation Trap (NT)-The NT bit is set when a Float­
ing-Point Exception trap occurs, and the input operands to the associated floating­
point operation produce an indeterminate result. Otherwise, this bit is reset when a
Floating-Point Exception trap occurs.

Bits 7-6: Reserved.

Bit 5: Floating-Point Divide By Zero Sticky (DS)-The DS bit is set when the DM
bit of the Floating-Point Environment Register is 1, the divisor of a floating-point divi­
sion operation is a zero, and the dividend is a non-zero, finite number.

Bit 4: Floating-Point Inexact Result Sticky (XS)-The XS bit is set when the XM bit
of the Floating-Point Environment Register is 1, and the result of a floating-point
operation is not equal to the infinitely precise result.

Bit 3: Floating-Point Underflow Sticky (US)-The US bit is set when the UM bit of
the Floating-Point Environment Register is 1, and the result of a floating-point opera­
tionis too small to be expressed in the destination format.

Bit 2: Floating-Point Overflow Sticky (VS)-The VS bit is set when the VM bit of the
Floating-Point Environment Register is 1, and the result of a floating-point operation is
too large to be expressed in the destination format.

Bit 1: Floating-Point Reserved Operand Sticky (RS)-The RS bit is set when the
RM bit of the Floating-Point Environment Register is 1, and either one or more input
operands to a floating-point operation is a reserved value or the result of a floating­
point operation is a reserved value.

Bit 0: Floating-Point Invalid Operation Sticky (NS)-The NS bit is set when the NM
bit of the Floating-Point Environment Register is 1, and the input operands to a float­
ing-point operation produce an indeterminate result.

EXCEPTION OPCODE (EXOP, REGISTER 164)

This unprotected special-purpose register (Figure 3-37) reports the opcode of an
instruction causing an I/Iegal Opcode, Floating-Point Exception, or Out-of-Range trap.
Writing the Exception Opcode Register is a serializing operation. All currently execut­
ing floating-point operations are completed before the write is performed.

PROGRAMMER REFERENCE 3-31

Figure 3·37

3.2.4

Figure 3·38

Exception Opcode Register
~ 23 15 7 0

I I I I I I I I I I I I I I I II I I I I I I
Reserved I r I I I I I I

. lOP

Bits 31-8: Reserved.

Bits 7-0: Instruction Opcode (IOP)-This field captures the opcode of an instruction
causing a trap as a result of instruction execution; the opcode is captured as the
instruction enters the write-back stage of the processor pipeline. Instructions that do
not trap as a consequence of execution do not modify the lOP field.

The Exception Opcode Register can be written explicitly by using it as the destination
of a Move-to-Special-Register (MTSR) instruction.

TLB Registers

The Am29050 microprocessor contains 128 Translation Look-Aside Buffer (TLB)
registers. The organization of the TLB registers is shown in Figure 3-38.

Translation Look·Aside Buffer Registers

TLB Reg#

o

2

3

•

•
o

62

63

64

65

•
•

126

127

TLB Set 0

TLB Entry Line 0 Word 0

TLB Entry Line 0 Word 1

TLB Entry Line 1 Word 0

TLB Entry Line 1 Word 1

· · ·
TLB Entry Line 31 Word 0

TLB Entry Line 31 Word 1

TLB Set 1

TLB Entry Line 0 Word 0

TLB Entry Line 0 Word 1

· · ·
TLB Entry Line 31 Word 0

TLB Entry Line 31 Word 1
14778A-005

3-32 PROGRAMMER REFERENCE

3.2.4.1

Figure 3·39

The TLB registers comprise the TLB entries, and are provided so that programs may
inspect and alter TLB entries. This allows the loading, invalidation, saving, and restor­
ing of TLB entries.

TLB registers have fields that are reserved for future processor implementations.
When a TLB register is read, a bit in a reserved field is read as a O. An attempt to
write a reserved bit with a 1 has no effect; however, this should be avoided because
of upward-compatibility considerations. '

The Translation Look-aside Buffer (TLB) registers are accessed only by explicit data
movement by Supervisor-mode programs. Instructions that move data to or from a
TLB register specify a general-purpose register containing a TLB register number.
The TLB register number is given by the contents of bits 6-0 of the general-purpose
register. TLB register numbers may only be specified indirectly by general-purpose
registers.

TLB entries are accessed as registers numbered 0-127. Since two words are re­
quired to completely specify a TLB entry, two registers are required for each TLB
entry. The words corresponding to an entry are paired as two sequentially numbered
registers starting on an even-numbered register. The word with the even register
number is called Word 0, and the word with the odd register number is called Word 1.
The entries for TLB Set 0 are in registers numbered 0-63, and the entries for TLB
Set 1 are in registers numbered 64-127.

TLB ENTRY WORD 0
The TLB Entry Word 0 register is shown in Figure 3-39.

TLB Entry Word 0 Register

31 23 15 7 0

IIIIIIIIJ~ 111111111111111111 !,olll I
: : : I I I I
I •• I I • I
I I • I I • I

, SR, SE' UW'
I , I I

I • • I

VE SW UR UE

Bits 31-15: Virtual Tag (VTAG)-When the TLB is searched for an address transla­
tion, the VTAG field of the TLB entry must match the most-significant 17, 16, 15, or 14
bits of the address being translated-for page sizes of 1, 2, 4, and 8 kb, respec­
tively-for the search to be successful.

When software loads a TLB entry with an address translation, the most-significant 14
bits of the Virtual Tag are set with the most-significant 14 bits of the virtual address
whose translation is being loaded into the TLB. The remaining three bits of the Virtual
Tag must be set either to the corresponding bits of the address, or to zeros, depend­
ing on the page size, as follows (A refers to corresponding address bits):

Page Size

1 kb
2kb
4kb
8kb

VTAG 2-0 (TLB Word 0 Bits 17-15)

AAA
AAO
AOO
000

PROGRAMMER REFERENCE 3-33

" ",

I:

3.2.4.2

Figure 3·40

Bit 14: Valid Entry (VE)-If this bit is 1, the associated. TLB entry is valid; if it is 0, the
entry is invalid.

Bit 13: Supervisor Read (SR)-If the SR bit is 1, Supervisor-mode load operations
from the virtual page are allowed; if it is 0, Supervisor-mode loads are not allowed.

Bit 12: Supervisor Write (SW}-If the SW bit is 1, Supervisor-mode store operations
to the virtual page are allowed; if it is 0, Supervisor-mode stores are not allowed.

Bit 11: Supervisor Execute (SE}-If the SE bit is 1, Supervisor-mode instruction
accesses to the virtual page are allowed; if it is 0, Supervisor-mode instruction ac­
cesses are not allowed.

Bit 10: User Read (UR}-If the UR bit is 1, User-mode load operations from the
. virtual page are allowed; if it is 0, User-mode loads are not allowed.

Bit 9: User Write (UW)-If the UW bit is 1, User-mode store operations to the virtual
page are allowed; if it is 0, User-mode stores are not allowed.

Bit 8: User Execute (UE)-If the UE bit is 1, User-mode instruction accesses to the
virtual page are allowed; if it is 0, User-mode instruction accesses are not allowed.

Bits 7-0: Task Identifier (TID)-When the TLB is searched for an address transla­
tion, the TID must match the Process Identifier (PID) in the MMU Configuration Regis­
ter for the translation to be successful. This field allows the TLB entry to be associated
with a particular process.

TLB ENTRY WORD 1

The TLB Entry Word 1 register is shown in Figure 3-40.

TLB Entry Word 1
31 23 15 7 o
I

RPN Res

I

10

Bits 31-10: Real Page Number (RPN}-The RPN field gives the most-significant 22,
21, 20, or 19 bits of the physical address of the page for page sizes of 1, 2, 4, and
8 kb, respectively. It is concatenated to bits 9-0, 10-0, 11-0, or 12-0 of the address
being translated-for 1, 2, 4, and 8 kb page sizes, respectively-to form the physical
address for the access.

When software loads a TLB entry with an address translation, the most-significant 19
bits of the Real Page Number are set with the most-significant 19 bits of the physical
address associated with the translation. The remaining three bits of the Real Page
Number must be set either to the corresponding bits of the physical address, or to
zeros, depending on the page size, as follows (A refers to corresponding address
bits):

Page Size

1 kb
2kb
4kb
8 kb

RPN 2-0 (TLB Word 1 Bits 12-10)

AAA
AAO
AOO
000

3·34 PROGRAMMER REFERENCE

3.3

3.3.1

3.3.2

Bits 7-6: User Programmable (PGM)-These bits are placed on the MPGM(1--Q}
outputs when the address is transmitted for an access. They have no predefined
effect on the access; any effect is defined by logic external to the processor.

Bit 1: Usage (U)-This bit indicates which entry in a given TLB line was least recently
used to perform an address translation. If this bit is a 0, then the entry in Set 0 in the
line is least-recently-used; if it is 1, then the entry in Set 1 is least-recently-used. This
bit has an equal value for both entries in a line. Whenever a TLB entry is used to
translate an address, the Usage bit of both entries in the line used for translation are
set according to the TLB set containing the. translation. This bit is set whenever the
translation is valid, regardless of the outcome of memory-protection checking. '

Bit 0: Input/Output (10)-The 10 bit determines whether the access is directed to the
instruction/data memory (10 = O) or the input/output (10 = 1) address space.

INSTRUCTION SET

The Am29050 microprocessor implements 125 instructions. All instructions execute in
a single cycle, except for IRET, IRETINV, LOADM, STOREM, and certain arithmetic
instructions such as floating-point instructions.

Most instructions deal with general-purpose registers for operands and results; how­
ever, in most instructions, an 8-bit constant can be used in place of a register-based
operand. Some instructions deal with special-purpose registers, TLB registers, exter­
nal devices and memories, and coprocessors.

This section describes the nine instruction classes in the Am29050 microprocessor,
and provides a brief summary of instruction operations. A detailed instruction specifi­
cation is contained in Chapter 8. Section 8.1 describes the nomenclature used here.

If the processor attempts to execute an instruction which is not implemented, an
Illegal Opcode trap occurs, unless the instruction is reserved for emulation (see Sec­
tion 3.3.1 O). Reserved instructions are assigned separate traps.

Integer Arithmetic

The Integer Arithmetic instructions perform add, subtract, multiply, and divide opera­
tions on word-length integers. Certain instructions in this class cause traps if signed or
unsigned overflow occurs during the execution of the instruction. There is support for
multi-precision arithmetic on operands whose lengths are multiples of words. All
instructions in this class set the ALU Status Register. The integer arithmetic instruc­
tions are shown in Table 3-1.

Compare

The Compare instructions test for various relationships between two values. For all
Compare instructions except the CPBYTE instruction, the comparisons are performed
on word-length signed or unsigned integers. There are two types of Compare instruc­
tions. The first type places a Boolean value reflecting the outcome of the compare into
a general-purpose register. For the second type (assert instructions), instruction
execution continues only if the comparison is true; otherwise a trap occurs. The assert
instructions specify a vector for the trap (see Section 3.5.4).

The assert instructions support run-time operand checking and operating-system
calls. If the trap occurs in the User mode, and a trap number between 0 and 63 is
specified by the instruction, a Protection Violation trap occurs. The Compare instruc­
tions are shown in Table 3-2.

PROGRAMMER REFERENCE 3035

I:'
I~ 'j
I'
I

I

Table 3-1 Integer Arithmetic Instructions

Mnemonic Operation Description

ADD DEST +- SRCA + SRCB

ADDS DEST +- SRCA + SRCB
IF signed overflow THEN Trap (Out of Range)

ADDU DEST +- SRCA + SRCB
IF unsigned overflow THEN Trap (Out of Range)

ADDC DEST +- SRCA + SRCB + C
ADDCS DEST +- SRCA + SRCB + C

IF signed overflow THEN Trap (Out of Range)

ADDCU DEST +- SRCA + SRCB + C
IF unsigned overflow THEN Trap (OUt of Range)

SUB DEST +- SRCA- SRCB

SUBS DEST +- SRCA- SRCB
IF signed overflow THEN Trap (OUt of Range)

SUBU DEST +- SRCA-SRCB
IF unsigned underflow THEN Trap (Out of Range)

SUBC DEST +-SRCA-SRCB-1 +C

SUBCS DEST +-SRCA-SRCB-1 +C
IF signed overflow THEN Trap (Out of Range)

SUBCU DEST+-SRCA-SRCB-1 +C
IF unsigned underflow THEN Trap (Out of Range)

SUBR DEST +- SRCB -SRCA

SUBRS DEST +- SRCB-SRCA
IF signed overflow THEN Trap (Out of Range)

SUBRU DEST +- SRCB -SRCA
IF unsigned underflow THEN Trap (OUt of Range)

SUBRC DEST +-SRCB-SRCA-1 +C

SUBRCS DEST+-SRCB-SRCA-1 +C
IF signed overflow THEN Trap (Out of Range)

SUBRCU DEST+-SRCB-SRCA-1 +C
IF unsigned underflow THEN Trap (OUt of Range)

MULTIPLU DEST +- SRCA· SRCB (unsigned)

MULTIPLY DEST +- SRCA· SRCB (Signed)

MUL Perform one-bit step of a multiply operation (signed)

MULL Complete a sequence of multiply steps

MULTM DEST +- SRCA· SRCB (signed), most-significant bits

MULTMU DEST +- SRCA, SRCB (unsigned), most-significant bits

MULU Perform one-bit step of a multiply operation (unsigned)

D!V!DE DEST +- (OIlSRCA)/SRCB (signed)
O+- Remainder

DIVIDU DEST +- (OIISRCA)/SRCB (unsigned)
O+- Remainder

DiVa Initialize for a sequence of divide steps (unsigned)

DIV Perform one-bit step of a divide operation (unsigned)

DIVL Complete a sequence of divide steps (unsigned)

DIVREM Generate remainder for divide operation (unsigned)

346 PROGRAMMER REFERENCE

Table 3·2 Compare Instructions

Mnemonic

CPEQ

CPNEQ

CPLT

CPLTU

CPLE

CPLEU

CPGT

CPGTU

CPGE

CPGEU

CPBYTE

ASEQ

ASNEQ

ASLT

ASLTU

ASLE

ASLEU

ASGT

ASGTU

ASGE

ASGEU

Operation Description

IF SRCA = SRCB THEN DEST ~ TRUE
ELSE DEST ~ FALSE

IF SRCA<>SRCB THEN DEST ~ TRUE
ELSE DEST ~ FALSE

IF SRCA<SRCB THEN DEST ~ TRUE
ELSE DEST ~ FALSE

IF SRCA<SRCB (unsigned) THEN DEST ~ TRUE
ELSE DEST ~ FALSE

IF SRCA ~ SRCB THEN DEST ~ TRUE
ELSE DEST ~ FALSE

IF SRCA~SRCB (unsigned) THEN DEST ~ TRUE
ELSE DEST ~ FALSE

IF SRCA > SRCB THEN DEST ~ TRUE
ELSE DEST ~ FALSE

IF SRCA > SRCB (unsigned) THEN DEST ~ TRUE
ELSE DEST ~ FALSE

If SRCA:<:SRCB THEN DEST ~ TRUE
ELSE DEST ~ FALSE

IF SRCA:<:SRCB (unsigned) THEN DEST ~ TRUE
ELSE DEST ~ FALSE

IF (SRCABYTEO = SRCB.BYTEO) OR
(SRCABYTE1 = SRCB.BYTE1) OR
(SRCABYTE2 = SRCB.BYTE2) OR
(SRCABYTE3 = SRCB.BYTE3) THEN DEST ~ TRUE

ELSE DEST ~ FALSE

IF SRCA=SRCB THEN Continue
ELSE Trap (VN)

IF SRCA<>SRCB THEN Continue
ELSE Trap (VN)

IF SRCA<SRCB THEN Continue
ELSE Trap (VN)

IF SRCA<SRCB (unsigned) THEN Continue
ELSE Trap (VN)

IF SRCA ~ SRCB THEN Continue
ELSE Trap (VN)

IF SRCA~ SRCB (unsigned) THEN Continue
ELSE Trap (VN)

IF SRCA>SRCB THEN Continue
ELSE Trap (VN)

IF SRCA>SRCB (unsigned) THEN Continue
ELSE Trap (VN)

IF SRCA:<:SRCB THEN Continue
ELSE Trap (VN)

IF SRCA:<:SRCB (unsigned) THEN Continue
ELSE Trap (VN)

PROGRAMMER REFERENCE 3-37

3.3.3

Table 3·3

3.3.4

Table 3·4

3.3.5

3.3.6

Logical

The Logical instructions perform aset of bit-by-bit Boolean functions on word-length
bit strings. All instructions in this class set the ALU Status Register. These instructions
are shown in Table 3-3.

Logical Instructions

Mnemonic Operation Description

AND DEST ~SRCA&SRCB

ANDN DEST ~ SRCA & - SRCB

NAND DEST ~- (SRCA & SRCB)

OR DEST ~ SRCA 1 SRCB

ORN DEST ~ SRCA 1- SRCB

NOR DEST ~ - (SRCA 1 SRCB)

XOR DEST ~ SRCA A SRCB

XNOR DEST ~ - (SRCA A SRCB)

Shift

The Shift instructions (Table 3-4) perform arithmetic and logical shifts. All but the
EXTRACT instruction operate on word-length data and produce a word-length result.
The EXTRACT instruction operates on double-word data and produces a word-length
result. If both parts of the double-word for the EXTRACT instruction are from the
same source, the EXTRACT operation is equivalent to a rotate operation. For each
operation, the shift count is a 5-bit integer, specifying a shift amount in the range of 0
to 31 bits.

Shift Instructions

Mnemonic

SLL

SRL

SRA

EXTRACT

Operation Description

DEST ~ SRCA« SRCB (zero fill)

DEST ~ SRCA» SRCB (zero fill)

DEST ~ SRCA» SRCB (sign fill)

DEST ~ high-order word of (SRCAJ/SRCB« FC)

Data Movement

The Data Movement instructions (Table 3-5) move bytes, half-words, and words
between processor registers. In addition, they move data between generai-purpose
registers and external devices, memories, and the coprocessor.

Constant

The Constant instructions (Table 3-6) provide the ability to place half-word and word
constants into registers. Most instructions in the instruction set allow an 8-bit constant
as an operand. The Constant instructions allow the construction of larger constants.

3·38 PROGRAMMER REFERENCE

Table 3·5

Table 3·6

Data Movement Instructions

Mnemonic

LOAD

LOADL

LOADSET

LOADM

STORE

STOREL

STOREM

EXBYTE

EXHW

EXHWS

INBYTE

INHW

MFSR

MFTLB

MTSR

MTSRIM

MTTLB

Operation Description

DEST +-- EXTERNAL WORD [SRCB]

DEST +-- EXTERNAL WORD [SRCB]
assert LOCK output during access

DEST +-- EXTERNAL WORD [SRCB]
EXTERNAL WORD [SRCB] +-- h'FFFFFFFF'
assert LOCK output during access

DEST .. DEST +COUNT +--
EXTERNAL WORD [SRCB] ..
EXTERNAL WORD [SRCB + COUNT· 4]

EXTERNAL WORD [SRCB] +-- SRCA

EXTERNAL WORD [SRCB] +-- SRCA
assert LOCK output during access

EXTERNAL WORD [SRCB] ..
EXTERNAL WORD [SRCB + COUNT· 4] +-­
SRCA .. SRCA + COUNT

DEST ~ SRCB, with low-order byte replaced by byte in SRCA
selected by BP

DEST +-- SRCB, with low-order half-word replaced by half-word in SRCA
selected by BP

DEST +-- half-word in SRCA selected by BP, sign-extended to 32 bits

DEST +-- SRCA. with byte selected by BP replaced by low-order byte
of SRCB

DEST +-- SRCA, with half-word selected by BP replaced by low-order
half-word of SRCB

DEST +--SPECIAL

DEST +-- TLB [SRCA]

SPDEST +-- SRCB

SPDEST +-- 0116

TLB [SRCA] +-- SRCB

Constant Instructions

Mnemonic

CONST

CONSTH

CONSTHZ

CONSTN

Operation Description

DEST+--0116

Replace high-order half-word of SRCA by 116

Replace high-order half-word of SRCA with 116, and replace
low-order half-word of SRCA with zeros.

DEST +--1116

PROGRAMMER REFERENCE 3-39

I.

~
" I ,.
I:

3.3.7

3.3.8

3.3.9

3.3.10

3.4

3.4.1

Floating.Point

The Floating-Point instructions (Table 3-7) provide operations on single-precision
(32-bit) or double-precision (64-bit) floating-point data. They also provide conversions
between single-precision, double-precision, and integer number representations.

Branch

The Branch instructions (Table 3-8) control the execution flow of instructions. Branch
target addresses may be absolute, relative to the Program Counter (with the offset
given by a signed instruction constant), or contained in a general-purpose register.
For conditional jumps, the outcome of the jump is based on a Boolean value in a
general-purpose register. Procedure calls are unconditional, and save the return
address in a general-purpose register. All branches have a delayed effect; the instruc­
tion sequence following the branch is executed regardless of the outcome of the
branch.

Miscellaneous

The Miscellaneous instructions (Table 3-9) perform various operations that cannot be
grouped into other instruction classes. In certain cases, these are control functions
available only to Supervisor-mode programs.

Reserved Instructions

Several Am29050 microprocessor operation codes are reserved for instruction emula­
tion. Each of these instructions causes a trap and sets the indirect pointers IPC, IPA,
and IPB. Some of these operation codes cause a trap to a unique trap vector, and
others cause traps to shared trap vector 28. The relevant operation codes, and the
corresponding trap vectors, are:

Operation Codes (Hexadecimal) Trap Vector Numbers (DeCimal)

SF, CF-D6, DC
DD
E7
F8
FA-FF

28
29
39
56
58-63

The reserved instructions are intended for future processor enhancements, and
users desiring compatibility with future processor versions should not use them for
any purpose.

DATA FORMATS AND HANDLING

This section describes the various data types supported by the Am29050 micropro­
cessor, and the mechanisms for accessing data in external devices and memories.
The Am29050 microprocessor includes provisions for the external access of bytes,
half-words, unaligned words, and unaligned half-words, as described in this section.

Integer Data Types

Most Am29050 microprocessor instructions deal directly with word-length integer
data; integers may be either signed or unsigned, depending on the instruction. Some
instructions (e.g., AND) treat word-length operands as strings of bits. In addition, there
is support for character, half-word, and Boolean data types.

3·40 PROGRAMMER REFERENCE

Table 3·7 Floating.Point Instructions

Mnemonic

FADD

DADD

FSUB

DSUB

FMUL

FDMUL

DMUL

FDIV

DDIV

FMAC

DMAC

FMSM

DMSM

MFACC

MTACC

FEQ

DEQ

FGE

DGE

FGT

Operation Description ~

DEST (single-precision) ~ SRCA (single-precision)
+ SRCB (single-precision)

DEST (double-precision) ~ SRCA (double-precision)
+ SRCB (double-precision)

DEST (single-precision) ~ SRCA (double-precision)
-SRCB (single-precision)

DEST (double-precision) ~ SRCA (double-precision)
-SRCB (double-precision)

DEST (single-precision) ~ SRCA (single-precision)
· SRCB (single-precision)

DEST (double-precision) ~ SRCA (single-precision)
· SRCB (single-precision)

DEST (double-precision) ~ SRCA (double-precision)
· SRCB (double-precision)

DEST (single-precision) ~ SRCA (single-precision)
I SRCB (single-precision)

DEST (double-precision) ~ SRCA (double-precision)
I SRCB (double-precision)

ACC(ACN) (variable-precision) ~ SRCA (single-precision)
· SRCB (single-precision)
+ ACC(ACN) (variable precision)

ACC(ACN) (double-precision) ~SRCA (double-precision)
· SRCB (double-precision)
+ACC(ACN) (double-precision)

DEST (single-precision) ~ SRCA (single-precision)
· ACC(O) (single-precision)
+ SRCB (single-precision)

DEST (double-precision) ~ SRCA (double-precision)
· ACC(O) (double-precision)
+ SRCB (double-precision)

DEST ~ ACC(ACN)

ACC(ACN) ~ SRCA

IF SRCA (single-precision) = SRCB (single-precision)
THEN DEST ~ TRUE

ELSE DEST ~ FALSE

IF SRCA (double-precision) = SRCB (double-precision)
THEN DEST ~ TAUE

ELSE DEST ~ FALSE

IF SACA (single-precision) >= SACB (single-precision)
THEN DEST ~ TAUE

ELSE DEST ~ FALSE

IF SACA (double-precision) >= SACB (double-precision)
THEN DEST ~ TAUE

ELSE DEST ~ FALSE

IF SACA (single-precision) > SACB (single-precision)
THEN DEST ~ TAUE

ELSE DEST ~ FALSE

PROGRAMMER REFERENCE 3·41

Table 3·7

Table 3·8

Table 3·9

Floating·Point Instructions (continued)

Mnemonic

DGT

SORT

CONVERT

CLASS

Operation Description

IF SRCA (double-precision) > SRCB (double-precision)
THEN DEST ~ TRUE

ELSE DEST ~ FALSE

DEST (single-precision, double-precision)
~ SORT (SRCA (single-precision, double-precision))

DEST (integer, single-precision, double-precision)
~ SRCA (integer, single-precision, double-precision)

DEST ~ CLASS (SRCA (single-precision, double-precision))

Branch Instructions

Mnemonic

CALL

CALLI

JMP

JMPI

JMPT

JMPTI

JMPF

JMPFI

JMPFDEC

Operation Description

DEST ~ PCI/OO + 8
PC~TARGET
Execute delay instruction

DEST ~ PCI/OO + 8
PC~SRCB
Execute delay instruction

PC~TARGET
Execute delay instruction

PC~SRCB
Execute delay instruction

IF SRCA= TRUE THEN PC~ TARGET
Execute delay instruction

IF SRCA = TRUE THEN PC ~ SRCB
Execute delay instruction

IF SRCA= FALSE THEN PC~ TARGET
Execute delay instruction

IF SRCA = FALSE THEN PC ~ SRCB
Execute delay instruction

IF SRCA = FALSE THEN
SRCA~SRCA-1
PC~TARGET

ELSE
SRCA~SRCA-1

Execute delay instruction

Miscellaneous Instructions

Mnemonic

/"',"7
VL.L.

SETIP

EMULATE

INV

IRET

IRETINV

HALT

Operation Description

Determine number of leading zeros in a 'Nord

Set IPA, IPB, and IPC with operand register numbers

Load IPA and IPB with operand register numbers, and Trap (VN)

Reset all Valid bits in Branch Target Cache memory to zeros

Perform an interrupt return sequence

Perform an interrupt return sequence, and reset all Valid bits in
Branch Target Cache memory to zeros

Enter Halt mode
3-42 PROGRAMMER REFERENCE

3.4.1.1

Figure 3·41

3.4.1.2

BYTE OPERATIONS

The processor supports character data through load, store, extraction and insertion
operations on word-length operands, and by a compare operation on byte-length
fields within words. The format for unsigned and signed characters is shown in
Figure 3-41; for signed characters, the sign bit is the most-significant bit of the charac­
ter. For sequences of packed characters within words, bytes are ordered either lett­
to-right or right-to-Ieft, depending on the BO bit of the Configuration Register (see
Section 3.4.5.2).

Character Format

Unsigned:
31 23 15 7 0

jlllllllllllllllllllllllllllllill
o 0 D.a

Signed:

31 23 15 7 0

jlllllllllllllllllllllllll"llill
5 D.a

If the Data Width Enable (DW) bit of the Configuration Register is 1, the Am29050
microprocessor is enabled to load and store byte data. On a load, an external packed
byte is converted to one of the character formats shown in Figure 3-41. On a store,
the low-order byte of a word is packed into every byte of an external word. Section
3.4.6 describes external byte accesses in more detail.

The Extract Byte (EX BYTE) instruction replaces the low-order character of a destina­
tion word with an arbitrary byte-aligned character from a source word. For the EX­
BYTE instruction, the destination word can be a zero word, which effectively zero­
extends the character from the source operand.

The Insert Byte (INBYTE) instruction replaces an arbitrary byte-aligned character in a
destination word with the low-order character of a source word. For the INBYTE in­
struction, the source operand can be a character constant specified by the instruction.

The Compare Bytes (CPBYTE) instruction compares two word-length operands and
gives a result of TRUE if any corresponding bytes within the operands have equiva­
lent values. This allows programs to detect characters within words without first hav­
ing to extract individual characters, one at a time, from the word of interest.

HALF·WORD OPERATIONS

The processor supports half-word data through load, store, insertion and extraction
operations on word-length operands. The format for unsigned and signed half-words
is shown in Figure 3-42; for signed half-words, the sign bit is the most-significant bit of
the half-word. For sequences of packed half-words within words, half-words are or­
dered either lett-to-right or right-to-Ieft, depending on the Byte Order (BO) bit of the
Configuration Register (see Section 3.4.5.2).

If the Data Width Enable (DW) bit of the Configuration Register is 1, the Am29050
microprocessor is enabled to load and store half-word data. On a load, an external
packed half-word is converted to one of the formats shown in Figure 3-42. On a store,
the low-order half-word of a word is packed into every half-word of an external word.
Section 3.4.5 describes external half-word accesses in more detail.

PROGRAMMER REFERENCE 3-43

Figure 3·42

3.4.1.3

3.4.2

Half·Word Format

Unsigned:
31 23 15 7 0

I I I I I I I I I I I I I I I I III I I II I I I I I I I I I I
.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O. O.a .

Signed:
31 23 15 7 0

II I I I I I II I I I I I I I III I I I I I I I II I I II I
s s s s s s s s s s s s s s s s s O.a

The Extract Half-Word (EXHW) instruction replaces the low-order half-word of a desti­
nation word with either the low-order or high-order half-word of a source word. For the
EXHW instruction, the destination word can be a zero word, which effectively zero­
extends the half-word from the source operand.

The Extract Half-Word, Sign-Extended (EXHWS) instruction is similar to the EXHW
instruction, except that it sign-extends the half-word in the destination word (Le., it
replaces the most-significant 16 bits of the destination word with the most-significant
bit of the source half-word).

The Insert Half-Word (INHW) instruction replaces either the low-order or high-order
half-word in a destination word with the low-order half-word of a source word.

BOOLEAN DATA
Some instructions in the Compare class generate word-length Boolean results. Also,
conditional branches are conditional upon Boolean operands. The Boolean format
used by the processor is such that the Boolean values TRUE and FALSE are repre­
sented by a 1 or 0, respectively, in the most-significant bit of a word. The remaining
bits are unimportant: for the compare instructions, they are reset. Note that two's­
complement negative integers are indicated by the Boolean value TRUE in this en­
coding scheme.

Floating.Point Data Types

The Am29050 microprocessor supports single- and double-precision floating-point
formats that comply with the IEEE Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Std. 754-1985).

In this section, the following nomenclature is used to denote fields in a floating-point
value:

• s: sign bit

• bexp: biased exponent

e frac: fraction

• sig: significand

3·44 PROGRAMMER REFERENCE

3.4.2.1

Figure 3·43

3.4.2.2

Figure 3·44

3.4.3

3.4.3.1

SINGLE·PRECISION FLOATING·POINT

The format for a single-precision floating-point value is shown in Figure 3-43.

Single· Precision Floating·Point Format

31 23 15 7 0

I, II I I ~.,I I I II I I I I I I I I I I ~~ I I I I I I I I I

Typically, the value of a single-precision operand is expressed by:

(-1)**5 *1.frac * 2**(bexp-127).

The encoding of special floating-point values is given in Section 3.4.3.

DOUBLE·PRECISION FLOATING·POINT

The format for a double-precision floating-point value is shown in Figure 3-44.

Double·Precision Floating.Point Format
31 23 15

.. .frac

7

Typically, the value of a double-precision operand is expressed by:

(-1)**5 * 1.frac * 2**(bexp-1023).

The encoding of special floating-point values is given in Section 3.4.3.

o

o

In order to be properly referenced by a floating-point instruction, a double-precision
floating-point value must be double-word aligned. The absolute-register number of the
register containing the first word (labeled 0 in Figure 3-44) must be even. The abso­
lute-register number of the register containing the second word (labeled 1 in
Figure 3-44) must be odd. If these conditions are not met, the results of the instruction
are unpredictable. Note that the appropriate registers for a double-precision value in
the local registers depends on the value of the Stack Pointer.

Special Floating.Point Values

The Am29050·microprocessor defines floating-point values which are encoded for
special interpretation. The values are described in this section.

NOT·A·NUMBER

A Not-a-Number (NaN) is a symbolic value used to report certain floating-point excep­
tions. It also can be used to implement user-defined extensions to floating-point op­
erations. A NaN comprises a floating-point number with maximum biased exponent
and non-zero fraction. The sign bit can be either 0 or 1, and has no significance.
There are two types of NaN: Signaling NaNs and quiet NaNs. A signaling NaN causes
an Invalid Operation exception if used as an input operand to a floating-point

PROGRAMMER REFERENCE 3-45

3.4.3.2

3.4.3.3

3.4.3.4

3.4.4

operation; a quiet NaN does not cause an exception. The Am29050 microprocessor
distinguishes signaling and quiet NaNs by the most-significant bit of the fraction: a 1
indicates a quiet NaN, and a 0 indicates a signaling NaN.

An operation never generates a signaling NaN as a result. A quiet NaN result can be
generated in one of two ways:

• As the result of an invalid operation that cannot generate a reasonable result, or

• As the result of an operation for which one or more input operands are either
signaling or quiet NaNs.

In either case, the Am29050 microprocessor produces a quiet NaN having a fraction
of 11000 ... 0; that is, the two most-significant bits of the fraction are 11, and the
remaining bits are O. If desired, the Reserved Operand exception can be enabled to
cause a Floating-Point Exception trap. The trap handler in this case can implement a
scheme whereby user-defined NaN values appear to pass through operations as
results, providing overall status for a series of operations.

INFINITY

Infinity is an encoded value used to represent a value that is too large to be repre­
sented as a finite number in a given floating-point format. Infinity comprises a floating­
point number with maximum biased exponent and zero fraction. The sign bit of an
infinity distinguishes +00 from -<>0. •

DENORMALIZED NUMBERS

The IEEE Standard specifies that, wherever possible, a result that is too small to be
represented as a normalized number be represented as a denormalized number. A
denormalized number may be used as an input operand to any operation. For single­
and double-precision formats, a denormalized number is a floating-point number with
a biased exponent of zero and a non-zero fraction field; the sign bit can be either 1 or
O. The value of a denormalized number is expressed by:

(-1)**s * O.frac * 2**(-bias+ 1),

where bias is the exponent bias for the format in question (127 for single precision,
1023 for double precision). The handling of denormalized numbers is discussed in
Appendix C.

ZERO

A zero is a lloating-point number with a biased exponent of zero and a zero fraction
field. The sign bit of a zero can be either 0 or 1; however, positive and negative zero
are both exactly zero, and are considered equal by comparison operations.

External Data Accesses

All processor external accesses occur between general-purpose registers and exter­
nal devices and memories. Accesses occur as the result of the execution of load and
store instruotions. The load and store instructions specify which general-purpose
register receives the data (for a load) or supplies the data (for a store). The format of
the load and store instructions is shown in Figure 3-45.

3-46 PROGRAMMER REFERENCE

Figure 3-45

Figure 3·46

LoaellStore Instruction Format

31 23 15 7 o

I I I I I I I I III I I I I I
XXXXXXXM, CNTL

I I I I I I I
RBor I _

CE

Addresses for accesses are given either by the content of a general-purpose register
or by a constant value specified by the load or store instruction. The load and store
instructions do not perform address computation directly. Any required address com­
putations are performed explicitly by other instructions.

In the load or store instruction, the Coprocessor Enable (CE) bit (bit 23) determines
whether or not the access is directed to the coprocessor. If the CE bit is 0, the access
is directed to an external device or memory. If the CE bit is 1, data is transferred to or
from the coprocessor. The CE bit affects the interpretation of the Control (CNTL) field
as well as the channel protocol. Coprocessor accesses are discussed in Chapter 6.
This section deals with all other external accesses.

The format of the instructions that do not perform coprocessor data transfers (Le., in
which the CE bit is 0) is shown in Figure 3-46.

Non·Coprocessor LoaellStore Format
31 23 15 7 o

II I I I I I I IIIIII1 I I
XXXXXXXMOOP~ .. , , ,

I I I I I I I I I I I I I I
RA RBor I

• I • I I : : : : :
CE I PA : UA

I •

AS SB

In load and store instructions, the RB or I field specifies the address for access. The
address is either the content of a general-purpose register, with register number RB,
or a constant with a value I (zero-extended to 32 bits). The M bit determines whether
the register or the constant is used.

The data for the access is written into the general-purpose register RA for a load, and
is supplied by register RA for a store.

The definitions for other fields in the load or store instruction are given below:

Bit 23: Coprocessor Enable (CE)-The CE bit is 0 for a non-coprocessor load or
store.

Bit 22: Address Space (AS)-If the AS bit is 0 for an untranslated load or store, the
access is directed to instruction/data memory. If the AS bit is 1 for an untranslated
load or store, the access is directed to input/output. The AS bit must be 0 for a trans­
lated load or store; if the AS bit is 1 for a translated load or store, a Protection Viola­
tion trap occurs. The address space for a translated load or store is determined by the
Input/Output (10) bit of the associated TLB entry.

Bit 21: Physical Address (PA)-The PA bit may be used by a Supervisor-mode
program to disable address translation for an access. If the PA bit is 1, then address

PROGRAMMER REFERENCE 3-47

translation is not performed for the access, regardless of the value of the Physical
Addressing/Data (PD) bit in the Current Processor Status Register. If thePA bit is 0,
address translation depends on the PD bit.

The PA bit may be 1 only for Supervisor-mode instructions. If it is 1 for a User-mode
instruction, a Protection Violation trap occurs.

Bit 20: Set Byte Pointer/Sign Bit (SB)-If the Data Width Enable (DW) bit of the
Configuration Register is 0 and the SB bit is 1, the Byte Pointer Register is written
with the two least-significant bits of the address for the access. These address bits
can control subsequent character and half-word operations. If the BP bit is 0, the Byte
Pointer Register is not affected.

If the Data Width Enable (DW) bit of the Configuration Register is 1 and the SB bit is 1
for a load, the loaded byte or half-word is sign-extended in the destination register; if
the SB bit is 0, the byte or half-word is zero-extended. If the DW bit is 1 and the SB bit
is 1 for either a load or store, then each bit of the Byte Pointer Register is written with
the complement of the Byte Order bit of the Configuration Register. The Byte Pointer
Register is set in this case to provide software compatibility across different types of
memory systems. If the SB bit is 0, the Byte Pointer Register is not affected.

Bit 19: User Access (UA)-The UA bit allows programs executing in the Supervisor
mode to emulate User-mode accesses. This allows checking of the authorization of
an access requested by a User-mode program. It also causes address translation (if
applicable) to be performed using the PID field of the MMU Configuration Register,
rather than the fixed Supervisor-mode process identifier zero.

If the UA bit is 1 for a Supervisor-mode load or store, the access associated with the
instruction is performed in the User mode. In this case, the User mode affects only
TLB protection-checking, the SUP/US output, and the use of the PID field in transla­
tion; it has no effect on the registers that can be accessed by the instruction. If the UA
bit is 0, the program mode for the access is controlled by the SM bit.

If the UA bit is 1 for a User-mode load or store, a Protection Violation trap occurs.

Bits 18-16: Option (OPT}-This field is placed on the OPT(2-0) outputs during the
address cycle of the access. There is a one-to-one correspondence between the OPT
field and the OPT(2-0) outputs; that is, the most-significant OPT bit is placed on
OPT2, and so on.

The OPT field controls system functions as described below.

Bits 15-8: (RA)-The data for the access is written into the general-purpose register
RA for a load, and is supplied by register RA for a store.

Bits 7-0: (RB or I)-In load and store instructions, the RB or I field specifies the
address for the access. The address is either the content of a general-purpose regis­
ter,with register number RB, or a constant value I (zero-extended to 32 bits). The
M bit of the operation code (bit 24) determines whether the register or the constant
is used.

Load and store operations are overlapped with the execution of instructions that
follow the load or store instruction. Only one load or store may be in progress on any
given cycle. If a load or store instruction is encountered while another load or store
operation is in progress, the processor enters the Pipeline Hold mode until the first
operation completes. However, the address for the second operation may appear on
the Address Bus if the first operation is to a device or memory that supports pipelined
operations (see Section 5.2.8).

3·48 PROGRAMMER REFERENCE

3.4.4.1

3.4.4.2

3.4.4.3

LOAD OPERATIONS

The processor provides the following instructions for performing load operations: Load
(LOAD), Load and Lock (LOADL), Load and Set (LOADSET), and Load Multiple
(LOADM). All of these instructions transfer data from an external device or memory
into one or more general-purpose registers.

The LOADL instruction supports the implementation of device and memory interlocks
in a multi-processor configuration. It activates the LOCK output during the address
cycle of the access.

The LOADSET instruction implements a binary semaphore. It loads a general­
purpose register and atomically writes the accessed location with a word which has 1
in every bit position (that is, the write is indivisible from the read). The LOCK output is
asserted during both the read and write access. Note that, if address translation is
enabled for the LOADSET instruction, the TLB memory-protection bits must allow
both the read and write access. If either the read or write access is not allowed, nei­
ther access is performed.

The LOADM loads a specified number of registers from sequential addresses, as
explained below.

Load operations are overlapped with the execution of instructions that follow the load
instruction. The processor detects any dependencies on the loaded data that subse­
quent instructions may have, and, if such a dependency is detected, enters the Pipe­
line Hold mode until the data is returned by the external device or memory. If a regis­
ter that is the target of an incomplete load is written with the result of a subsequent
instruction, the processor does not write the returning data into the register when the
load completes; the Not Needed (NN) bit in the Channel Control Register is set in
this case.

Whenever possible, the Am29050 microprocessor performs an early load, making the
physical address available at the end of the decode cycle of the load instruction. At
the beginning of the next cycle, when the load enters the execute stage, the physical
address appears on the channel. Early loads reduce the effective external access
time by one cycle. The hardware that supports early loads is discussed in Section 4.3.

STORE OPERATIONS

The processor provides the following instructions for performing store operations:
Store (STORE), Store and Lock (STOREL), and Store Multiple (STOREM). All of
these instructions transfer data from one or more general-purpose registers to an
external device or memory.

The STOREL instruction supports the implementation of device and memory inter­
locks in a multi-processor configuration. It activates the LOCK output during the ad­
dress cycle of the access.

The STOREM instruction stores a specified number of registers to sequential ad­
dresses, as explained below.

Store operations are overlapped with the execution of instructions that follow the store
instruction. However, no data dependencies can exist, since the store prevents any
subsequent accesses until it completes.

MULTIPLE ACCESSES

Load Multiple (LOADM) and Store Multiple (STOREM) instructions move contiguous
words of data between general-purpose registers and external devices and memo­
ries. The number of transfers is determined by the Load/Store Count Remaining
Register.

PROGRAMMER REFERENCE 3-49

I

i ,;~
~
I'

The Load/Store Count Remaining (CR) field in the Load/Store Count Remaining
Register specifies the number of transfers to be performed by the next LOADM or
STOREM executed in the instruction sequence. The CR field is in the range of 0 to
255, and is zero-base9: a count value of 0 represents one transfer, and a count value
of 255 represents 256 transfers. The CR field also appears in the Channel Control
Register.

Before a LOADM or STOREM is executed, the CR field is set by a Move To Special
Register. A LOADM or STOREM uses the most-recently written value of the CR field.
If an attempt is made to alter the CR field, and the Channel Control Register contains
information for an external access that has not yet completed, the processor enters
the Pipeline Hold mode until the access completes. Note that since the CR is set
independently of the LOADM and STOREM, the CR field may represent valid state of
an interrupted program even if the Contents Valid (CV) bit of the Channel Control
Register is O.

Because of the pipelined implementation of LOADM and STOREM, at least one in­
struction (e.g., the instruction that sets the CR field) must separate two successive
LOADM and/or STOREM instructions.

After the CR field is set, the execution of a LOADM or STOREM begins the data
transfer. As with any other load or store operation, the LOADM or STOREM waits until
any pending load or store operation is complete before starting. The LOADM instruc­
tion specifies the starting address and starting destination general-purpose register.
The STOREM instruction specifies the starting address and the starting source
general-purpose register.

During the execution of the LOADM or STOREM instruction, the processor updates
the address and register number after every access, incrementing the address by four
and the register number by 1. This continues until either all accesses are completed
or an interrupt or trap is taken.

For a load-multiple or store-multiple address sequence, addresses wrap from the
largest possible value (hexadecimal FFFFFFFC) to the smallest possible value (hexa­
decimal 00000000).

The processor increments absolute register numbers during the load-multiple or
store-multiple sequence. Absolute-register numbers wrap from 127 to 128, and from
255 to 128. Thus, a sequence that begins in the global registers may transition to the
local registers, but a sequence that begins in the local registers remains in the local
registers. Also, note that the local registers are addressed circularly.

The normal restrictions on register accesses apply for the load-multiple and store­
multiple sequences. For example, if a protected general-purpose register is encoun­
tered in the sequence for a User-mode program, a Protection Violation trap occurs.

Intermediate addresses are stored in the Channel Address Register, and register
numbers are stored in the Target Register (TR) field of the Channel Control Register.
For the STOREM instruction, the data for every access is stored in the Channel Data
Register (this register also is set during the execution of the LOADM instruction, but
has no interpretation in this case). The CR field is updated on the completion of every
access, so that it indicates the number of accesses remaining in the sequence.

Load-multiple and store-multiple operations are indicated by the Multiple Operation
(ML) bit in the Channel Control Register. The ML bit is used to restart a multiple op­
eration on an interrupt return; if it is set independently by a Move To Special Register
before a load or store instruction is executed, the results are unpredictable.

While a multiple load or store is executing, the processor is in the Pipeline Hold mode,
suspending any subsequent instruction execution until the multiple access completes.

3-50 PROGRAMMER REFERENCE

3.4.4.4

3.4.5

3.4.5.1

If an interrupt or trap is taken, the Channel Address, Channel Data, and Channel
Control registers contain the state of the multiple access at the point of interruption.
The multiple access may be resumed at this point, at a later time, by an interrupt
return.

The processor attempts to complete multiple accesses using the burst-mode capabil­
ity of the channel (see Section 5.2.9). For this reason, multiple accesses of individual
bytes and half-words is not supported. If the burst-mode access is preempted, the
processor retransmits the address at the point of preemption. If the external device or
memory cannot support burst-mode accesses, the processor transmits an address for
every access. If the address sequence causes a virtual page-boundary crossing, the
processor preempts the burst-mode access, translates the address for the new page,
and re-establishes the burst-mode access using the new physical address.

OPTION BITS

The Option field in the load and store instructions supports system functions, such as
byte and half-word accesses. The definition of this field for a load or store, depending
on the AS bit of the instruction, is as follows:

AS OPT2 OPT1 OPTO Meaning

x 0 0 0 Word-length access
x 0 0 1 Byte access
x 0 1 0 Half-word access
0 1 0 0 Instruction ROM access (as data)
0 1 0 1 Cache control
0 1 1 0 Hardware-development system accesses

-All Others- Reserved

Note that some of these encodings do not affect processor operation, and could have
other interpretations in a particular system. For example, the OPT values 000, 001,
and 010 affect processor operation only if the DW bit of the Configuration Register is
1. However, non-standard uses of the OPT field have an implication on the portability
of software between different systems.

Addressing and Alignment

ADDRESS SPACES

External instructions and data are contained in one of five 32-bit address-spaces:

1. Data Memory

2. Input/Output

3. Coprocessor

4. Instruction Read-Only Memory (Instruction ROM)

5. Instruction Random-Access Memory (Instruction RAM)

An address in the instruction/data memory address space may be treated as virtual or
physical, as determined by the Current Processor Status Register. Address transla­
tion for data accesses is enabled separately from address translation for instruction
accesses. A program in the Supervisor mode may temporarily disable address trans­
lation for individual loads and stores; this permits load-real and store-real .operations.

It is possible to partition physical instruction and data addresses into two separate
physical address spaces. However, virtual instruction and data addresses appear in
the same virtual address space (Le., instruction/data memory).

PROGRAMMER REFERENCE 3·51

3.4.5.2

Figure 3·47

The coprocessor address space is not an address space in the strictest sense. The
coprocessor address space is defined so that transfers of operands and operation
codes to the coprocessor do not interfere with other external devices and memories.

The processor does not directly support the access of the instruction ROM or instruc­
tion RAM address spaces using loads and stores; this capability is defined as a sys­
tem option requiring external hardware.

For untranslated data accesses, bits contained in load and store instructions distin­
guish between the instruction/data memory, input/output, and coprocessor address
spaces. For translated data accesses, the Input/Output bit of the associated TLB entry
distinguishes between the instruction/data memory and input/output address spaces.

For instruction fetches, the ROM Enable (RE) bit of the Current Processor Status
Register distinguishes between the instruction/data and instruction ROM address
spaces.

BYTE AND HALF·WORD ADDRESSING

The Am29050 microprocessor generates word-oriented byte addresses for accesses
to external devices and memories. Addresses are word-oriented because loads,
stores, and instruction fetches access words. However, addresses are byte addresses
because they are sufficient to select bytes packed within accessed words. For load
and store operations, the processor provides means for using the least-significant
address bits to access bytes and half-words within external words.

The selection of a byte within a word is determined by the two least-significant bits of
an address and the Byte Order (BO) bit of the Configuration Register. The selection of
a half-word within a word is determined by the next-to-Ieast significant bit of an ad­
dress and the BO bit. Figure"3-47 illustrates the addressing of bytes and half-words
when the BO bit is 0 (big endian), and Figure 3-48 illustrates the addressing of bytes
and half-words when the BO bit is 1 (little endian). In Figure 3-47 and Figure 3-48,
addresses are represented in hexadecimal notation.

Byte and Half·Word Addressing with BO = 0 (Big Endian)
31 23 15 7 o

Word 000000004
HaH-Word 00000004 Half-Word 00000006

Byte 00000004 Byte 00000005 Byte 00000006 Byte 00000007

I I I I I I I I I I I I I I ~A/L lFJFJFF~ I I I I I I I I I I I I I
HaH-Word FFFFFFF8 Half-Word FFFFFFFA

Byte FFFFFFF8 Byte FFFFFFF9 Byte FFFFFFFA Byte FFFFFFFB

Word FFFFFFFC
Half-Word FFFFFFFC HaH-Word FFFFFFFE

Byte FFFFFFFC Byte FFFFFFFD Byte FFFFFFFE Byte FFFFFFFF

3-52 PROGRAMMER REFERENCE

Figure 3·48

3.4.5.3

Byte and Half·Word Addressing with BO = 1 (Little Endian)

Half-Word 00000006 Half-Word 00000004

Byte 00000007 Byte 00000006 Byte 00000005 Byte 00000004

Word FFFFFFFC
Half-Word FFFFFFFE Half-Word FFFFFFFC

Byte FFFFFFFF Byte FFFFFFFE Byte FFFFFFFD Byte FFFFFFFC

In the processor, the two least-significant bits of an external address can be reflected
in the Byte Pointer (BP) field of the ALU Status Register when the DW bit of the Con­
figuration Register is O. Alternatively, the two least-significant bits of the address can
be used to control byte and half-word accesses when the DW bit is 1. The BO bit
affects only the interpretation of the BP field and the two least-significant address bits.

If the BO bit is 0, bytes are ordered within words such that a 00 in the BP field or in
the two least-significant address bits selects the high-order byte of a word, and a 11
selects the low-order byte. If the BO bit is 1, a 00 in the BP field or in the two least­
significant address bits selects the low-order byte of a word, and a 11 selects the
high-order byte.

If the BO bit is 0, half-words are ordered within words such that a 0 in the most­
significant bit of the BP field or the next-to-Ieast-significant address bit selects the
high-order half-word, and a 1 selects the low-order half-word. If the BO bit is 1, a 0 in
the most-significant bit of the BP field or the nexMo-least-significant address bit se­
lects the low-order half-word of a word, and a 1 selects the high-order half-word. Note
that since the least-significant bit of the BP field or an address does not participate in
the selection of half-words, the alignment of half-words is forced to half-word bounda­
ries in this case.

ALIGNMENT OF WORDS AND HALF·WORDS

Since only byte addressing is supported, it is possible that an address for the access
of a word or half-word is not aligned to the desired word or half-word. The Am29050
microprocessor either ignores or forces alignment in most cases. However, some
systems may require that unaligned accesses be supported, for compatibility reasons.
Because of this, the Am29050 microprocessor provides an option that creates a trap
when a non-aligned access is attempted. This trap allows software emulation of the
non-aligned accesses, in a manner which is appropriate for the particular system.

The detection of unaligned accesses is activated by a 1 in the Trap Unaligned Access
(TU) bit of the Current Processor Status Register. Unaligned-access detection is

PROGRAMMER REFERENCE 3-53

3.4.5.4

3.4.5.5

3.4.6

based on the data length as indicated by the OPT field of a load or store instruction,
and on the two least-significant bits of the specified address. Only addresses for
instruction!data memory accesses are checked; alignment is ignored for input/output
accesses and coprocessor transfers.

An Unaligned Access trap occurs only if the TU bit is 1 and any of the following com­
binations of OPT field and address bits is detected for a load or store to instruction!
data memory:

OPT2 OPT1 OPTO A1 AO Meaning

0 0 0 1 0 [Unaligned]
0 0 0 0 1 Word
0 0 0 1 1 Access

0 0 0 [unaligned Half-]
0 0 1 Word Access

The trap handler for the Unaligned Access trap is responsible for generating the
correct sequence of aligned accesses and performing any necessary shifting, mask­
ing and!or merging. Note that a virtual page-boundary crossing also may have to be
considered.

ALIGNMENT OF INSTRUCTIONS

In the Am29050 microprocessor, all instructions are 32 bits in length, and are aligned
on word-address boundaries. The processor's Program Counter is 30 bits in length,
and the least-significant two bits of processor-generated instruction addresses are
always 00. An unaligned address can be generated by indirect jumps and calls. How­
ever, alignment is ignored by the processor in this case, and it expects the system to
force alignment (I.e., by interpreting the two least-significant address bits as 00, re­
gardless of their values).

ACCESSING INSTRUCTIONS AS DATA

To aid the external access of instructions and data on separate buses, the processor
distinguishes between instruction and data accesses. However, it does not support a
logical distinction between instruction and data address spaces (except in the case of
instruction read-only memory). In particular, address translation in the Memory Man­
agement Unit is in no way affected by this distinction (although memory protection is).

In systems where it is necessary to access instructions as data, this function should
be performed via the shared address space. The OPT field provides a means for
loads to access instructions in the instruction read-only memory (ROM) address
space. The Am29050 microprocessor does not take any action to prevent a store to
the instruction ROM address space.

Byte and Half-Word Accesses

The Am29050 microprocessor can perform byte and half-word accesses in either
software or hardware, under control of the Oata Width Enable (OW) bit of the Configu­
ration Register. Software byte and half-word accesses are selected by a OW bit of 0,
and hardware byte and half-word accesses are selected by a OW bit of 1. Software
byte and half-word accesses are less efficient than hardware byte and half-word
accesses, but hardware accesses require that the system be able to selectively write
individual byte and half-word positions within external devices and memories. The
software-only technique is compatible with systems designed to provide hardware
support for byte and half-word accesses.

3·54 PROGRAMMER REFERENCE

3.4.6.1

3.4.6.2

This section describes the operation of both software and hardware byte and half-
word accesses. Byte and half-word accesses operate as described here for memory i~
and inpuVoutput accesses, but not for coprocessor transfers. Coprocessor transfers .
are unaffected by the OW bit. *
The OW bit is cleared by a processor reset. It must explicitly be set to 1 by software
before hardware byte and half-word accesses can be performed.

SOFTWARE BYTE AND HALF·WORD ACCESSES

If the OW bit is 0, the Am29050 microprocessor allows the Byte Pointer Register to be
set with the least-significant bits of an address specified by any load or store instruc­
tion, except those that transfer information to and from the coprocessor. Insert and
extract instructions can then be used to access the byte or half-word of interest, after
the external word has been accessed. This provides a general-purpose mechanism
for manipulating external byte and half-word data, without the need for external hard­
ware support.

To load a byte or half-word, a word load first is performed. This load sets the BP field
with the two least-significant bits of the address. A subsequent EXBYTE, EXHW or
EXHWS instruction extracts the byte or half-word of interest from the accessed word.

To store a byte or half-word, a load is first performed, setting the BP field with the two
least-significant bits of the address. A subsequent INBYTE or INHW instruction inserts
the byte or half-word of interest into the accessed word, and the resulting word then is
stored.

Software which relies on loads and stores setting the BP field cannot operate cor­
rectly when the Freeze (FZ) bit of the Current Processor Status Register is 1, because
the ALU Status Register is frozen.

HARDWARE BYTE AND HALF·WORD ACCESSES

If the OW bit is 1 on a load, the Am29050 microprocessor selects a byte or half-word
from the loaded word depending on: the Option (OPT) bits of the load instruction, the
Byte Order (BO) bit of the Configuration Register, and the two least-significant bits of
the address (for bytes) or the next-to-Ieast-significant bit of the address (for half­
words). The selected byte or half-word is right-justified within the destination register.
If the SB bit of the load instruction is 0, the remainder of the destination register is
zero-extended. If the SB bit is 1, the remainder of the destination register is sign-ex­
tended with the sign bit of the selected byte or half-word.

If the OW bit is 1 on a store, the Am29050 microprocessor replicates the low-order
byte or half-word in the source register into every byte and half-word position of the
stored word. The system is responsible for generating the appropriate byte and/or
half-word strobes, based on the OPT(2-Q) signals and the two least-significant bits of
the address, to write the appropriate byte or half-word in the selected device or mem­
ory (the system byte order must also be considered). The SB bit does not affect the
operation of a store, except for setting the BP field as described below.

If the SB bit is 1 for either a load or store, and the OW bit is also 1, both bits of the BP
field are set to the complement of the BO bit when the load or store is executed. This
does not directly affect the load or store access, but supports compatibility for soft­
ware developed for word-write-only systems. Hardware byte and half-word accesses
(in contrast to software byte and half-word accesses) can be performed when the FZ
bit is 1, because these accesses do not rely on the BP field.

PROGRAMMER REFERENCE 3-55

3.4.6.3 SYSTEM ALTERNATIVES AND COMPATIBILITY

The two mechanisms for performing byte and half-word accesses create the possibil­
ity of two types of systems. These are named for convenience:

• Type 1: simple, word-only accesses in external devices and memories; software
byte and half-word accesses .

• Type 2: byte/half-word strobes in external devices and memories; hardware byte
and half-word accesses by the Am29050 microprocessor.

The provision for hardware byte and half-word accesses encourages Type 2 systems.
Software for Type 1 systems can execute on Type 2 systems, but the reverse is not
true. Software compatibility is possible primarily because of the DW bit and because
the Am29050 microprocessor sets the BP field with an appropriate byte pointer even
when it performs byte and half-word accesses with internal hardware. Also, the sys­
tem must return a full word in either type of system, regardless of the access data­
width. The DW bit must be 0 in Type 1 systems and must be 1 in Type 2 systems. To
illustrate compatibility between systems, consider the following steps of an unsigned
byte load compiled for a Type 1 system, but executing on a Type 2 system:

Perform a load with OPT = 001 and SB = 1.

• Type 1 system: The addressed word is accessed and placed into the destination
register. The BP field is set with the two least-significant bits of the address.

o Type 2 system: The addressed byte is accessed, aligned, padded, and placed into
the destination register. The BP field is set to point to the low-order byte, reflecting
the alignment that has been performed (the pointer depends on the value of the
BO bit).

Perform a byte extract on the loaded word .

.. Type 1 system: The byte selected by the BP field is aligned to the low-order byte
of the destination register and the remainder of the word is zero-extended. The
selected byte may be in any byte position.

• Type 2 system: The byte selected by the BP field (set to point to the low-order byte)
is aligned to the low-order byte of the destination register and the remainder of the
word is zero-extended. (Note that the selected byte was already in the low-order
byte position. This operation does not change program state but merely allows
software compatibility.)

The recommended instruction sequences for all types of byte and half-word accesses
and for both types of systems are enumerated below. Compatibility between these
systems follows the above example, but for brevity, compatibility is not described in
detail here.

Byte Read, Unsigned:

Type 1

load O,17,temp,addr;
exbyte temp,temp,O

Type 2

load O,1,temp,addr;

Comments

; OPT =001, 88=1
; get byte

Comments

; OPT=001, S8=0

3-5& PROGRAMMER REFERENCE

Byte Read, Signed:

Type 1

load O,17,temp,addr
exbyte temp,temp,O
sll temp,temp,24
sra temp,temp,24

Type 2

load O,17,temp,addr

Byte Write:

Type 1

load 0,17 ,temp,addr
inbyte temp,temp,data
store O,1,temp,addr

Type 2

store O,1,data,addr

Half-Word Read, Unsigned:

Type 1

load O,18,temp,addr
exhw temp,temp,O

Type 2

load O,2,temp,addr

Half-Word Read, Signed:

Type 1

load O,18,temp,addr
exhws temp,temp

Type 2

load O,18,temp,addr

Half-Word WrHe:

. Type1

load O,18,temp,addr
inhw temp,temp,data
store O,2,temp,addr

Type 2

store O,2,data,addr

Comments

; OPT =001, 88=1
; get byte
; sign extend

Comments

; OPT =001, 88=1 (sign extended)

Comments

; OPT =001, 88=1
; insert byte
; store

Comments

; OPT =001, 88=0

Comments

; OPT=010, 88=1
; get half-word unsigned

Comments

; OPT=010, 88=0

Comments

; OPT =010, 88=1
; get half-word sign-extend

Comments

; OPT =010, 88=1, (sign-extend)

Comments

; OPT=010, 88=1
; insert half-word
; store

Comments

; OPT =010, 88=0

PROGRAMMER REFERENCE 3-117

,.
:r
lv,
II
~
I

3.5

3.5.1

3.5.2

INTERRUPTS AND TRAPS

Interrupts and traps cause the Am29050 microprocessor to suspend the execution of
an instruction sequence and to begin the execution of a new sequence. The proces­
sor mayor may not later resume the execution of the original instruction sequence.

The distinction between interrupts and traps is largely one of causation and enabling.
Interrupts allow external devices and the Timer Facility to control processor execution,
and are always asynchronous to program execution. Traps are intended to be used
for certain exceptional events that occur during instruction execution, and are gener­
ally synchronous to program execution.

Throughout this manual, a distinction is made between the point at which an interrupt
or trap occurs and the point at which it is taken. An interrupt or trap is said to occur
when all conditions that define the interrupt or trap are met. However, an interrupt or
trap that occurs is not necessarily recognized by the processor, either because of
various enables, or because of the processor's operational mode (e.g., Halt mode).
An interrupt or trap is taken when the processor recognizes the interrupt or trap and
alters its behavior accordingly.

Interrupts

Interrupts are caused by signals applied to any of the external inputs INTR(3-Q), or by
the Timer Facility (see Section 7.3.6). The processor may be disabled from taking
certain interrupts by the masking capability provided by the Disable All Interrupts and
Traps (OA) bit, Oisable Interrupts (01) bit, and Interrupt Mask (1M) field in the Current
Processor Status Register.

The OA bit disables all interrupts. The 01 bit disables external interrupts without affect­
ing the recognition of traps and Timer interrupts. The 2-bit 1M field selectively enables
external interrupts as follows:

1M Value

00
01
10
11

Result

INTRO enabled
INTR(1-0) enabled
INTR(2-o) enabled
INTR(3-o) enabled

Note that the INTRO interrupt cannot be disabled by the 1M field. Also, note that no
external interrupt is taken if either the OA or 01 bit is 1. The Interrupt Pending bit in the
Current Processor Status indicates that one or more of the signals INTR(3-Q) is ac­
tive, but that the corresponding interrupt is disabled due to the value of either OA, 01,
or 1M.

Traps

Traps are caused by signals applied to one of the inputs TRAP(1-Q), or by exceptional
conditions such as protection violations. Except for the Instruction Access Exception,
Oata Access Exception, and Coprocessor Exception traps, traps are disabled by the
OA bit in the Current Processor Status; a 1in the OA bit disables traps, and a 0 en­
ables traps. It is not possible to selectively disable individual traps. If a trap occurs
(except a trap caused by TRAP(1-Q)) and the OA bit is 1, the processor enters the
Monitor mode via a Monitor trap (see Section 3.5.7).

3·58 PROGRAMMER REFERENCE

3.5.3

3.5.4

Figure 3·49

3.5.4.1

Wait Mode

A wait-for-interrupt capability is provided by the Wait mode. The processor is in the
Wait mode whenever the Wait Mode (WM) bit of the Current Processor Status is 1.
While in Wait mode, the processor neither fetches nor executes instructions, and
performs no external accesses. The Wait mode is exited when an interrupt or trap is
taken.

Note that the processor can take only those interrupts or traps for which it is enabled,
even in the Wait mode. For example, if the processor is in the Wait mode with a DA
bit of 1, it can leave the Wait mode only via the Reset mode (see Section 3.9) or a
WARN trap (see Section 3.5.6).

Vector Area

Interrupt and trap processing relies on the existence of a user-managed Vector Area
in external instruction/data memory or instruction read-only memory (instruction
ROM). The Vector Area begins at an address specified by the Vector Area Base
Address Register, and provides for as many as 256 different interrupt and trap
handling routines. The processor reserves 64 routines for system operation and
instruction emulation. The number and definition of the remaining 192 possible rou­
tines are system-dependent.

The Vector Area has one of two possible structures as determined by the Vector
Fetch (VF) bit in the Configuration Register. The first structure, as described below,
requires less external memory than the second, but imposes the performance penalty
of the vector-table lookup.

If the VF bit is 1, the structure of the Vector Area is a table of vectors in instruction/
data memory. The layout of a single vector is shown in Figure 3-49. Each vector gives
the beginning word-address of the associated interrupt or trap handling routine, and
specifies, by the R bit, whether the routine is contained in instruction/data memory
(R = 0) or instruction ROM (R = 1).

Vector Table Entry

31 23 15 7 0

II III
Handler Starting Address R 0

If the VF bit is 0, the structure of the Vector Area is a segment of contiguous blocks of
instructions in instruction/data memory or instruction ROM. The ROM Vector Area
(RV) bit of the Configuration Register determines whether the Vector Area is in in­
struction/data memory (RV = 0) or instruction ROM (RV = 1). A 64-instruction block
contains exactly one interrupt or trap handling routine, and blocks are aligned on
64-instruction address boundaries.

VECTOR NUMBERS

When an interrupt or trap is taken, the processor determines an 8-bit vector number
associated with the interrupt or trap. The vector number gives either the number of a
vector table entry or the number of an instruction block, depending on the value of the
VF bit. If the VF bit is 1, the physical address of the vector table entry is generated by
replacing bits 9-2 of the value in the Vector Area Base Address Register with the
vector number. If the VF bit is 0, the physical address of the first instruction of the

PROGRAMMER REFERENCE 3·59

3.5.5

3.5.5.1

handling routine is generated by replacing bits 15-8 of the value in the Vector Table
Base Address Register with the vector number.

Vector numbers are either pre-definE!d, or specified by an instruction causing the trap.
The assignment of vector numbers is shown in Table 3-10 (vector numbers are in
decimal notation). Vector numbers 64 to 255 are for use by trapping instructions; the
definition of the routines associated with these numbers is system-dependent.

Interrupt and Trap Handling

Interrupt and trap handling consists of two distinct operations: taking the interrupt or
trap, and returning from the interrupt or trap handler. If the interrupt or trap handler
returns directly to the interrupted routine, the interrupt or trap handler need not save
and restore processor state.

TAKING AN INTERRUPT OR TRAP
The following operations are performed in sequence by the processor when an inter­
rupt or trap is taken.

1. Instruction execution is suspended.

2. Instruction fetching is suspended.

3. Any in-progress load or store operation is completed. Any additional operations
are canceled in the case of load multiple and store multiple.

4. The contents of the Current Processor Status Register are copied into the Old
Processor Status Register.

5. The Current Processor Status register is modified as shown in Figure 3-50 (the
value u means unaffected, and the MM bit is set only if the trap causes the
processor to enter the Monitor mode). Note that setting the Freeze (FZ) bit freezes
the Channel Address, Channel Data, Channel Control, Program Counter 0,
Program Counter 1, Program Counter 2, and ALU Status Registers.

6. The address of the first instruction of the interrupt or trap handler is determined. If
the VF bit of the Configuration Register is 1, the address is obtained by accessing
a vector from instruction/data memory, using the physical address obtained from
the Vector Area Base Address Register and the vector number. This access
appears on the channel as a data access, and the OPT(2-O) signals indicate a
word-length access. If the VF bit is 0, the instruction address is given directly by
the Vector Area Base Address Register and the vector number.

7. If the VF bit is 1, the R bit in the vector fetched in step 6 is copied into the RE bit of
the Current Processor Status Register. If the VF bit is 0, the RV bit of the
Configuration Register is copied into the RE bit. This step determines whether or
not the first instruction of the interrupt handler is in instruction ROM.

8. An instruction fetch is initiated using the instruction address determined in step 6.
At this point, normal instruction execution resumes.

Note that the processor does not explicitly save the contents of any registers when an
interrupt is taken. If register saving is required, it is the responsibility of the interrupt­
or trap-handling routine. For proper operation, registers must be saved before any
further interrupts or traps may be taken. The FZ bit must be reset at least two instruc­
tions before interrupts or traps are re-enabled, to allow program state to be reflected
properly in processor registers if an interrupt or trap is taken.

3·60 PROGRAMMER REFERENCE

Table 3·10 Vector Number Assignments

Number Type of Trap or Interrupt Cause

0 Illegal Opcode Executing undefined instruction"
1 Unaligned Access Access on unnatural boundary, TU = 1
2 Out of Range Overflow or underflow
3 Coprocessor Not Present Coprocessor ~s, CP = 0
4 Coprocessor Exception Coprocessor DERR response
5 Protection Violation Invalid User-mode operation
6 Instruction Access Exception IERR response
7 Data Access Exception DERR response, not coprocessor
8 User-Mode Instruction TLB Miss No TLB entry for translation
9 User-Mode Data TLB Miss· No TLB entry for translation

10 Supervisor-Mode Instruction TLB Miss No TLB entry for translation
11 Super:visor-Mode Data TLB Miss No TLB entry for translation
12 Instruction MMU Protection Violation TLB or RMU UEISE = 0
13 Data MMU Protection Violation TLB or RMU URISR = 0, UW/SW = 0 on

write
14 Timer Timer Facility
15 Trace Trace Facility, breakpoint

---2Q.mparisons
16 INTRO INTRO input
17 INTR1 INTR1 input
18 INTR2 INTR2 input
19 INTR3 INTR3 input
20 TRAPO TRAPO input
21 TRAP1 TRAP1 input
22 Floating-Point Exception Unmasked floating-point exception
23 Reserved
24 FMAC exception ACF in FPE Register = 00 or 11
25 DMAC exception ACF in FPE Register = 00 or 11

26-27 Reserved

28 Reserved for instruction emulation
(opcodes BF, CF-D6, DC)

29 Reserved for instruction emulation
(opcode DD)

30-32 Reserved
33 DIVIDE DIVIDE instruction

34 Reserved

35 DIVIDU DIVIDU instruction
36 CONVERT exception FS = 00 or 11 or FD = 00 or 11
37 SQRT exception FS=OO or 11

38 CLASS exception FS=OO or 11
39 Reserved for instruction emulation

(opcode E7)
40 MTACC exception FMT = 11 or FMT =00 and ACF=OO or 11
41 MFACC exception FMT = 11 or FMT = 00 and ACF = 00 or 11

42-55 Reserved

56 Reserved for instruction emulation
(opcode F8)

57 Reserved

58-63 Reserved for instruction emulation
(opcode FA-FF)

64-255 ASSERT and EMULATE instruction traps
(vector number specified by instruction)

'This vector number also resu~s ff an external device removes INTR(3-0) or TRAP(1-0) before the corresponding interrupt
or trap is taken by the processor.

PROGRAMMER REFERENCE 3-61

~

Figure 3·50

3.5.5.2

Figure 3-51

Current Processor Status After an Interrupt or Trap

31 23 15 7 0

1010101 J!!;;; 1010101010lml,I,Ioiolol,Iol,Iol,I,IV,I,I,I
, ' v 'I': : : : : : : : : : : : I : : I

• I I I I I I • I •• I: It:
Reserved 11111'11111'1' II

MM: IP : TP : FZ: RE : PD I 8M 1M I DA
I I • I

CA IE TU lK WM PI DI

RETURNING FROM AN INTERRUPT OR TRAP

Two instructions are used to resume the execution of an interrupted program: Inter­
rupt Return (IRET), and Interrupt Return and Invalidate (IRETINV). These instructions
are identical except in one respect: the IRETINV instruction resets all Valid bits in the
Branch Target Cache memory, whereas the IRET instruction does not affect the Valid
bits.

In some situations, the processor state must be set properly by software before the
interrupt return is executed. The following is a list of operations normally performed in
such cases:

1. The Current Processor Status is configured as shown in Figure 3-51 (the value x
is a don't care and the value u means unaffected). Note that setting the FZ bit
freezes the registers listed below so that they may be set for the interrupt return.

2. The Old Processor Status is set to the value of the Current Processor Status for
the target routine.

3. The Channel Address, Channel Data, and Channel Control registers are set to
restart or resume uncompleted channel operations of the target routine.

4. The Program Counter 1 and Program Counter 0 registers are set to the addresses
of the first and second instructions, respectively, to be executed in the target
routine.

5. Other registers are set as required. These may include registers such as the ALU
Status, 0, and so forth, depending on the particular situation. Some of these
registers are unaffected by the FZ bit, so they must be set in such a manner that
they are not modified unintentionally before the interrupt return.

Current Processor Status Before Interrupt Retum

31 23
i i i i i i i i

I I I I I I I I I
0 0 0 0 0 0 0 0 0

v
Reserved

CA

, ,
, , ,

;P : TP ~ FZ: RE : PD : 8M
IE TU LK WM ~I

I
I I

MM:
I

, ,
I I I

1M 'DA
I

3·62 PROGRAMMER REFERENCE

3.5.5.3

Once the processor registers are configured properly, as described above, an inter­
rupt return instruction (IRET or IRETINV) performs the remaining steps necessary to
return to the target routine. The following operations are performed by the interrupt i"
return instruction:

1. Any in-progress load or store operation is completed. If a load-multiple or
store-multiple sequence is in progress, the interrupt return is not executed until the
sequence completes.

2. Interrupts and traps are disabled, regardless of the settings of the DA, 01, and 1M
fields of the Current Processor Status, for steps 3 through 10.

3. If the interrupt return instruction is an IRETINV, all Valid bits in the Branch Target
Cache memory are reset.

4. The contents of the Old Processor Status Register are copied into the Current
Processor Status Register. This normally resets the FZ bit allowing the Program
Counter 0, 1, 2, Channel Address, Data, Control, and ALU Status registers to
update normally. Since certain bits of the Current Processor Status Register
always are updated by the processor, this copy operation may be irrelevant for
certain bits (e.g., the Interrupt Pending bit).

5. If the Contents Valid (CV) bit of the Channel Control Register is 1, and the Not
Needed (NN) and Multiple Operation (ML) bits are both 0, an external access is.
started. This operation is based on the contents of the Channel Address, Channel
Data, and Channel Control registers. The Current Processor Status Register
conditions the access-as is normally the case. Note that load-multiple and
store-multiple operations are not restarted at this point.

6. The address in Program Counter 1 is used to fetch an instruction. The Current
Processor Status Register conditions the fetch. This step is treated as a branch in
the sense that the processor searches the Branch Target Cache memory for the
target of the fetch.

7. The instruction fetched in step 6 enters the decode stage of the pipeline.

8. The address in Program Counter 0 is used to fetch an instruction. The Current
Processor Status Register conditions the fetch. This step is treated as a branch in
the sense that the processor searches the Branch Target Cache memory for the
target of the fetch.

9. The instruction fetched in step 6 enters the execute stage of the pipeline, and the
instruction fetched in step 8 enters the decode stage.

10. If the CV bit in the Channel Control Register is a 1, the NN bit is 0, and the ML bit
is 1, a load-multiple or store-multiple sequence is started, based on the contents
of the Channel Address, Channel Data, and Channel Control registers.

11. Interrupts and traps are enabled per the appropriate bits in the Current Processor
Status Register.

12. The processor resumes normal operation.

FAST INTERRUPT PROCESSING

The registers affected by the FZ bit of the Current Processor Status Register are
those which are modified by almost any usual sequence of instructions. Since the FZ
bit is set by an interrupt or trap, the interrupt or trap handler is able to execute while
not disturbing the state of the interrupted routine, though its execution is somewhat
restricted. Thus, it is not necessary in many cases for the interrupt or trap handler to
save the registers that are affected by the FZ bit.

PROGRAMMER REFERENCE 3-63

3.5.6

The processor provides an additional benefit if the Program Counter 0 and Program
Counter 1 Registers are not modified by the interrupt or trap handler. If Program
Counters 0 and 1 contain the addresses of sequential instructions when an interrupt
or trap is taken, and if they are not modified before an interrupt return is executed,
step 8 of the interrupt return sequellce above occurs as a sequential fetch-instead of
a branch-for the interrupt return. The performance impact of a sequential fetch is
normally less than that of a non-sequential fetch.

Because the registers affected by the FZ bit are sometimes required for instruction
execution, it is not possible for the interrupt or trap handler to execute all instructions,
unless the required registers are first saved elsewhere (e.g., in one or more global
registers). Most of the restrictions due to register dependencies are obvious (e.g., the
Byte Pointer for byte extracts), and will not be discussed here. Other less obvious
restrictions are listed below:

1. Load Multiple and Store Multiple. The Channel Address, Channel Data, and
Channel Control registers are used to sequence load-multiple and store-multiple
operations, so these instructions cannot be executed while the registers are
frozen. However, note that other external accesses may occur; the Channel
Address, Channel Data, and Channel Control registers are required only to restart
an access after an exception, and the interrupt or trap handler is not expected to
encounter any exceptions.

2. Loads and stores which set the Byte Pointer. If the Set Byte Pointer (SB) of a load
or store instruction is 1, and the FZ bit is also 1, there is no effect on the Byte
Pointer. Thus, the execution of external byte and half-word accesses using this
mechanism is not possible.

3. Extended arithmetic. The Carry bit of the ALU Status Register is not updated while
the FZ bit is 1.

4. Divide step instructions. The Divide Flag of the ALU Status Register is not
updated when the FZ bit is 1.

If the interrupt or trap handler does not save the state of the interrupted routine, it
cannot allow additional interrupts and traps. Also, the operation of the interrupt or trap
handler cannot depend on any trapping instructions (e.g., DIVIDE and DIVIDU instruc­
tions, illegal operation codes, arithmetic overflow, etc.), since these cause a Monitor
trap (see Section 3.5.7). There are certain cases, however, where traps are unavoid­
able; these are discussed in Section 3.5.10.

WARN Trap

The processor recognizes a special trap, caused by the activation of the WARN input,
which cannot be masked. The WARN trap is intended to be used for severe system­
error or deadlock conditions. It allows the processor to be placed in a known, oper­
able state, while preserving much of its original state for error reporting and possible
recovery. Therefore, it shares some features in common with the Reset mode as well
as features common to other traps described in this section.

The major differences between the WARN trap and other traps are:

1. The processor does not wait for an in-progress external access to complete
before taking the trap, since this access might not complete. However, the
information related to any outstanding access is retained by the Channel Address,
Channel Data, and Channel Control registers when the trap is taken.

3-64 PROGRAMMER REFERENCE

3.5.7

2. The vector-fetch operation is not performed, regardless of the VF bit of the
Configuration Register, when the WARN trap is taken. Instead, the ROM Enable
(RE) bit in the Current Processor Status is set, and instruction fetching begins
immediately at address 16 in the instruction ROM. The trap handler executes
directly from the instruction ROM without the need to access external (and
possibly non-functional or invalid) instruction/data memory.

Note that WARN trap may disrupt the state of the routine that is executing when it is
taken, prohibiting this routine from being restarted.

Monitor Trap

The processor takes a special trap, called the Monitor trap, to enter the Monitor mode.
A Monitor trap is taken when the DA bit of the Current Processor Status is 1 and a
trap occurs, except for a trap caused by the TRAP(1-O) inputs. Interrupts caused by
the INTR(3-O) inputs and the Timer facility cannot cause a Monitor trap.

The major difference between a Monitor trap and other traps is that the processor
does not perform the vector-fetch operation. Instead, the processor immediately
begins fetching instructions at location 16 in the instruction ROM, as for a WARN trap.
The Monitor trap can be distinguished from a WARN trap because the Monitor Mode
(MM) bit in the Current Processor Status is 1. The processor also behaves as if the
Freeze (FZ), ROM Enable, Physical Addressing/Data, Physical Addressing/Instruc­
tion, and Supervisor Mode bits of the Current Processor Status Register were 1.
However, the Current Processor Status Register is not affected.

When the Monitor trap is taken, the Shadow Program Counters 0, 1, and 2 contain
instruction addresses for the suspended program. The values in the shadow program
counters are held while the processor is in the Monitor mode, unless they are explic­
itly modified by a move-to-special-register instruction. This allows the suspended
program to be restarted even if the FZ bit was 1 when the trap was taken; if the FZ bit
was 1, the Program Counter 0, 1, and 2 registers do not contain the appropriate ad­
dresses.

Also, when the Monitor trap is taken, the Reason Vector Register is set to indicate the
cause of the trap. The Reason Vector Register is set with the vector number of the
trap condition that caused the Monitor trap. If the Monitor trap is caused by a WARN
trap, the value 16 (decimal) is placed into the Reason Vector Register. This is the
vector number for the INTRO interrupt; since interrupts cannot cause a Monitor trap,
there is no conflict.

In the Monitor mode, the processor ignores interrupts and traps, except for the follow­
ing traps: Data Access Exception, Coprocessor Exception, Instruction Access Excep­
tion, Instruction TLB Miss, Instruction MMU Protection Violation. An occurrence of one
of these traps will cause another Monitor trap; however, the shadow program counters
and Reason Vector Registers will not be set.

An IRET or IRETINV instruction, executed in the Monitor mode, causes a return from
Monitor mode. The process performs all actions that normally apply for an interrupt
return, except that it simply clears the MM bit in the Current Processor Status Register
rather than loading this register from the Old Processor Status Register, and it
resumes execution using the addresses in the shadow program counters rather than
the program counters.

PROGRAMMER REFERENCE 3·65

I'

I'
I

+.
I

3.5.8

3.5.9

Sequencing of Interrupts and Traps

On every cycle, the processor decides either to execute instructions or to take an
interrupt or trap. Since there are multiple sources of Interrupts and traps, more than
one interrupt or trap may be pending on a given cycle.

To resolve conflicts, interrupts and traps are taken according to the priority shown in
Table 3-11. In this table, interrupts and traps are listed in order of decreasing priority.
This section discusses the first three columns of Table 3-11. The last two columns are
discussed in Section 3.5.9.

In Table 3-11, interrupts and traps fall into one of two categories depending on the
timing of their occurrence relative to instruction execution. These categories are
indicated in the third column of Table 3-11 by the labels Inst and Async. These labels
have the following meaning:

1. Inst-Generated by the execution or attempted execution of an instruction.

2. Async-Generated asynchronous to and independent of the instruction being
executed, although it may be a result of an instruction executed previously.

The principle for interrupt and trap sequencing is that the highest priority interrupt or
trap is taken first. Other interrupts and traps remain active until they can be taken, or
are regenerated when they can be taken. This is accomplished, depending on the
type of interrupt or trap, as follows:

1. All traps in Table 3-11 with priority 13 through 15 are regenerated by the
re-execution of the causing instruction.

2. Most of the interrupts and traps of priority 4 through 12 must be held by external
hardware until they are taken. The exceptions to this are listed in 3) below.

3. The exceptions to 2 above are the Data Access Exception trap, the Coprocessor
Exception trap, the Timer interrupt, and the Trace trap. These are caused by bits
in various registers in the processor and are held by these registers until taken or
cleared. The relevant bits are: the Transaction Faulted (TF) bit of the Channel
Control Register for Data Access Exception and Coprocessor Exception traps, the
Interrupt (IN) bit of the Timer Reload Register for Timer interrupts, and the Trace
Pending (TP) bit of the Current Processor Status Register for Trace traps.

4. All traps of priority 2 and 3 in Table 3-11, except for the Unaligned Access trap,
are not regenerated. These traps are mutually exclusive, and are given high
priority because they cannot be regenerated; they must be taken if they occur. If
one of these traps occurs at the same time as a reset or WARN trap, it is not
taken, and its occurrence is lost.

5. The Unaligned Access trap is regenerated internally when an external access is
restarted by the Channel Address, Channel Data, and Channel Control registers.
Note that this trap is not necessarily exclusive to the traps discussed in 4) above.

Note that the Channel Address, Channel Data, and Channel Control registers are set
for a WARN trap only if an external access is in progress when the trap is taken.

Exception Reporting and Restarting

When an instruction encounters an exceptional condition, the Program Counter 0,
Program Counter 1, and Program Counter 2 registers report the relevant instruction
address(es), and allow the instruction sequence to be restarted once the exceptional
condition has been remedied (if possible). Similarly, when an external access or
coprocessor transfer encounters an exceptional condition, the Channel Address,

we PROGRAMMER REFERENCE

Table 3-11 Interrupt and Trap Priority Table
~

',1',

I
Priority Type of Interrupt or Trap Inst/Async PC1 Channel Regs ~

i
1 WARN Async Next See Note 1

(Highest)

User-Mode Data TLB Miss Inst Next All
2 Supervisor-Mode Data TLB Miss Inst Next All

Data MMU Protection Violation Inst Next All

Unaligned Access Inst Next All
Inst Next All Coprocessor Not Present
Inst Next N/A Outo! Range
Inst Next N/A

3
Floating-Point Exceptions

Inst Next N/A Assert Instructions
Inst Next N/A Instruction Emulation

DIVIDE Inst Next N/A
DIVIDU Inst Next N/A

4
Data Access Exception Async Next All
Coprocessor Exception Async Next All

5 TRAPO Async Next Multiple

6 TRAP1 Async Next Multiple

7 INTRO Async Next Multiple

8 INTR1 Async Next Multiple

9 INTR2 Async Next Multiple

10 INTR3 Async Next Multiple

11 Timer Async Next Multiple

12 Trace (caused by TE, TP bits) Async Next Multiple

User-Mode Instruction TLB Miss Inst Curr N/A
Supervisor-Mode Instr. TLB Miss Inst Curr N/A

13 Instruction MMU Protection Violation Inst Curr N/A
Instruction Access Exception Inst Curr N/A

14 Trace (caused by breakpoint
comparison)

Inst Curr N/A

15 Illegal Opcode Inst Curr N/A
(Lowest) Protection Violation Inst Curr N/A

"

I ~

Note 1: The Channel Address, Channel Data, and Channel Control registers are set for a WARN
I~
!"j

trap only if an external access is in progress when the trap is taken.

PROGRAMMER REFERENCE 3-67

3.5.9.1

3.5.9.2

Channel Data, and Channel Control registers report information on the access or
transfer, and allow it to be restarted. This section describes the interpretation and use
of these registers.

The PC1 column in Table 3-11 describes the value held in the Program Counter 1
Register (PC1) when the interrupt or trap is taken. For traps in the Inst category, PC1
contains either the address of the instruction causing the trap, indicated by CUff, or
the address of the instruction following the instruction causing the trap, indicated
by Next.

For interrupts and traps in the Async category, PC1 contains the address of the first
instruction which was not executed due to the taking of the interrupt or trap. This is
the next instruction to be executed upon interrupt return, as indicated by Next in the
PC1 column.

INSTRUCTION EXCEPTIONS
For traps caused by the execution of an instruction (e.g., the Out of Range trap), the
Program Counter 2 Register contains the address of the instruction causing the trap.
In all of these cases, PC1 is in the Next category. The Exception Opcode Register
contains the operation code of the instruction causing the trap.

The traps associated with instruction fetches (i.e., those of priority 13) occur only if the
processor attempts the execution of the associated instruction. An exception may be
detected during an instruction prefetch, but the associated trap does not occur if a
non-sequential fetch occurs before the processor attempts the execution of the invalid
instruction. This prevents the spurious indication of instruction exceptions.

In the case of a Monitor trap, the relevant instruction addresses are contained in the
Shadow Program Counter 0, 1, and 2 registers rather than the Program Counter 0, 1,
and 2 registers.

DATA EXCEPTIONS

The Channel Regs column of Table 3-11 indicates the cases for which the Channel
Address, Channel Data, and Channel Control registers contain information related to
an external access or coprocessor transfer (these registers collectively are termed
"channel registers" in the following discussion). For the cases indicated, the access or
transfer did not complete because of some exceptional condition. Note that the Chan­
nel Data Register contains relevant information only in the case of a store.

For the WARN trap, the channel registers are valid only if a load or store were in
progress when the trap was taken. Recall that the WARN trap does not wait for any
in-progress access to complete.

For the traps with an All in the Channel Regs column of Table 3-11, the channel
registers contain information relevant to the trap in all cases. These traps are associ­
ated with exceptional events during external accesses or coprocessor transfers.

For the traps with a Multiple in the Channel Regs column, the channel registers might
contain information for restarting an interrupted load-multiple or store-multiple opera­
tion. in these cases, the operation did not encounter an exception, but was simply
canceled for latency considerations.

The information contained in the channel registers allows the processor to restart the
related operation during an interrupt return sequence, without any special assistance '
by software. Software· must only insure that the relevant information is retained in, or
restored to, the channel registers before an interrupt return is executed.

3-68 PROGRAMMER REFERENCE

3.5.10

3.5.10.1

3.5.10.2

Arithmetic Exceptions

Integer and floating-point instructions can cause Out of Range or Floating-Point Ex­
ception traps, respectively, if an exception is detected during the arithmetic operation.
This section describes the conditions under which these traps occur and the addi­
tional operations performed beyond those described in Section 3.5.5.

INTEGER EXCEPTIONS

Some integer add and subtract instructions-ADDS, ADDU, ADDCS, ADDCU, SUBS,
SUBU, SUBCS, SUBCU, SUBRS, SUBRU, SUBRCS, and SUBRCU-cause an Out
of Range trap upon overflow or underflow of a 32-bit signed or unsigned result, de­
pending on the instruction.

Two integer multiply instructions-MULTIPLY and MUL TIPLU-cause an Out of
Range trap upon overflow of a 32-bit signed or unsigned result, respectively, if the
MO bit of the Integer Environment Register is O. If the MO bit is 1, these multiply
instructions cannot cause an Out of Range trap.

Two integer divide instructions-DIVIDE and DIVIDU-take the Out of Range trap
upon overflow of a 32-bit signed or unsigned result, respectively, if the DO bit of the
Integer Environment Register is O. If the DO bit is 1, the divide instructions cannot
cause an Out of Range trap unless the divisor is zero. If the divisor is zero, an Out of
Range trap always occurs, regardless of the DO bit.

In addition to the operations described Section 3.5.5, the following operations are
performed when an Out of Range trap is taken:

1. The operation code of the instruction causing the exception is placed in the lOP
field of the Exception Opcode Register.

2. For the MULTIPLY, MUL TIPLU, DIVIDE, and DIVIDU instructions, the absolute
register numbers of the excepting instruction's source and destination registers
are placed into the Indirect Pointer A, Indirect Pointer B, and Indirect Pointer C
registers.

3. For the MULTIPLY, MUL TIPLU, DIVIDE, and DIVIDU instructions, the destination
register or registers are unchanged.

FLOATING·POINT EXCEPTIONS

A Floating-Point Exception trap occurs when an exception is detected during a float­
ing-point operation, and the exception is not masked by the corresponding bit of the
Floating-Point .Mask Register. In this context, a floating-point operation is defined
as any operation that accepts a floating-point number as a source operand, that
produces a floating-point result, or both. Thus, for example, the CONVERT instruc­
tion may create an exception while attempting to convert a floating-point value to an
integer value or vice versa. The occurrence of floating-point exceptions is discussed
in detail in Appendix C.

In addition to the operations described in Section 3.5.5, the following operations are
performed when a Floating-Point Exception trap is taken:

1. The operation code of the instruction causing the exception is placed in the lOP
field of the Exception Opcode Register.

2. The status of the trapping operation is written into the trap status bits of the
Floating-Point Status Register. The written status bits do not depend on the
values of the corresponding mask bits in the Floating-Point Environment Register.

3. The absolute-register numbers of the excepting instruction's source and dest­
ination registers are placed into the Indirect Pointer A, Indirect Pointer B, and

PROGRAMMER REFERENCE 3·69

1.\

I';
I~
I(
Ji.

I
II
I,
.~

r
!

i
I·

3.5.11

3.6

3.6.1

Indirect Point C registers. If the RB or RC field specifies a function code, that code
is transferred to the corresponding indirect pointer. Note that if the most-significant
bit of this function code is one, the value of the Stack Pointer has been added to
the RB field, and must be subtracted to recover the original field.

4. The destination register or registers are left unchanged.

Exceptions During Interrupt and Trap Handling

In most cases, interrupt and trap handling routines are executed with the DA bit in the
Current Processor Status having a value of 1. It is normally assumed that these rou­
tines do not create many of the exceptions possible in most other processor routines,
or that whatever exceptions do occur can be handled in the Monitor mode.

If these assumptions are not valid for a particular interrupt or trap handler, it is impor­
tant that the handler save the state of the processor and reset the FZ bit of the Cur­
rent Processor Status, so that the handler itself may be restarted properly. This must
be accomplished before any interrupts or traps can be taken. In this case, the state
(or the state of some other process) must be restored before an interrupt return is
executed.

If the processor does take a trap while handling another interrupt or trap, it enters the
Monitor mode, and the state of the interrupt or trap handler is reflected in the Shadow
Program Counter 0, 1, and 2 registers and the Reason Vector Register. Other proces­
sor state is preserved, including the Current Processor Status Register. This allows
the Monitor trap routine to handle the trap.

MEMORY MANAGEMENT

The Am29050 microprocessor incorporates a Memory Management Unit (MMU) for
performing virtual-to-physical address translation and memory access protection. This
section describes the logical operation of the Memory Management Unit. Related
issues are discussed in Sections 7.3.3 and 7.3.4.

Address translation is performed either by one of the two Region Mapping Units
(RMUs), or by the Translation Look-Aside Buffer (TLB). The RMUs map virtual re­
gions of variable size, ranging from 64 kb to 2 Gb, into regions of physical memory.
Each RMU consists of two protected special-purpose registers, which are described in
Section 3.2.3. Any virtual address not mapped by the RMUs is translated by the TLB.
The TLB maps virtual regions of fixed size, called pages, into physical regions of the
same size, called page frames. The structure of the TLB is described below.

Address translation can be performed only for instruction/data memory accesses. No
address translation is performed for instruction ROM, input/output, coprocessor or
interrupt/trap vector accesses. However, an instruction/data memory access can be
re-directed to input/output by the address-translation process.

Translation Look·Aside Buffer

The MMU stores the most-recently performed address translations in a special cache,
the Translation Look-Aside Buffer (TLB). The TLB reflects information in t~e proces­
sor system page tables, except that it specifies the translation for many fewer pages;
this restriction allows the TLB to be incorporated on the processor chip where the
performance of address translation is maximized.

A diagram of the TLB is shown in Figure 3-52. The TLB isa table of 64 entries,
divided into two equal sets, called Set 0 and Set 1. Within each set, entries are

3·70 PROGRAMMER REFERENCE

Figure 3·52

numbered 0 to 31. Entries in different sets which have equivalent entry-numbers are
grouped into a unit called a line; there are thus 32 lines in the TLB, numbered 0 to 31.

Translation Look·Aside Buffer Organization

Entry

Line 0 0

TLBSETO Entry

o

TLB SET1

-------------- r---------------------~----------+_------------------------,

Line 1

----------- ___ ~--------------------_4-·-------·i-------------------------,
Line 2 2 2

-------------- r---------------------~----------~-------------------------,

Line 3 3 3

- - - - - - - - - - - - - - r---------------------~ - - - - - -- -- -i-------------------------,
Line 4 4 4

~------------------------+----------i-------------------------~

---------------~--------------------_4----------+_------------------------,

Line 31 31 31

---------------~------------------------~----------~--------------------~ +-- 64 bits -.
14778A-005

Each TLB entry is 64 bits long, and contains mapping and protection information for a
single virtual page. TLB entries may be inspected and modified by processor instruc­
tions executed in the Supervisor mode. The layout of TLB entries is described in
Section 3.2.4.

The TLB stores information about the ownership of the TLB entries in an 8-bit Task
Identifier (TID) field in each entry. This makes it possible for the TLB to be shared by
several independent processes without the need for invalidation of the entire TLB as
processes are activated. It also increases system performance by permitting proc­
esses to warm-start (Le., to start execution on the processor with a certain number of
TLB entries remaining in the TLB from a previous execution).

Each TLB entry contains a Usage bit to assist management of the TLB entries. The
Usage bit indicates which set of the entry within a given line was least recently used
to perform an address translation. Usage bits for two entries in the same line are
equivalent. '

The TLB contains other fields which are described in the following sections.

PROGRAMMER REFERENCE 3·71

i~
"

3.6.2

3.6.2.1

3.6.2.2

Address Translation

For the purpose of address translation, the virtual instruction/data address-space of a
process is typically partitioned into regions of fixed size, called pages. Pages are
mapped into equivalent-sized regions of physical memory, called page frames. All
accesses to instructions or data contained within a given page use the same virtual­
to-physical address translation.

In addition to the page-by-page translation provided by the TLB, the Am29050 micro­
processor supports translation for variable-sized regions, ranging from 64 kb to 2 Gb,
by means of two Region Mapping Units. Each RMU consists of two special-purpose
registers. In each RMU, a Region Mapping Address Register contains the base ad­
dress of the virtual region to be mapped and the base address of the corresponding
physical region. A Region Mapping Control Register specifies the region size and
contains information which is used to control access, including a Task Identifier. The
RMUs have priority over the TLB translation; in addition, RMUO has priority over
RMU1.

ADDRESS TRANSLATION CONTROLS

The processor attempts to perform address translation for the following external
accesses:

1. Instruction accesses, if the PhYSical Addressing/Instructions (PI) and ROM Enable
(RE) bits of the Current Processor Status are both O.

2. User-mode accesses to instruction/data memory if the Physical Addressing/Data
(PD) bit of the Current Processor Status is O.

3. Supervisor-mode accesses to instruction/data memory if the Physical Address
(PA) bit of the load or store instruction performing the access is 0, and the PD bit
of the Current Processor Status is O.

Address translation is controlled by the MMU Configuration Register. This register
specifies the virtual page size, and contains an 8~bit Process Identifier (PID) field. The
PID field specifies the process number associated with the currently running program,
if this is a User-mode program. Supervisor-mode programs are assigned a fixed
process number of zero. The process number is compared with Task Identifier (TID)
field of the Region Mapping Control Register or the TLB entry, as appropriate, during
address translation. The TID field must match the process number for the translation
to be valid.

RMU ADDRESS TRANSLATION PROCESS

In a successful RMU address translation, the most-significant bits of the virtual ad­
dress match the corresponding bits of the Virtual Base Address (VBA) field of the
Region Mapping Address Register, and are replaced with the contents of the PhYSical
Base Address (PBA) field. The number of bits compared and subject to replacement
is determined by the Region Size (RGS) field of the Region Mapping Control Register.
For example, if the region size is 64 kb, 16 bits are compared; if the region size is
128 kb, 15 bits are compared, and so on.

For an address translation to be valid, the following conditions must be met:

1. The most-significant bits of the virtual address, determined by the RGS field,
match the corresponding bits of the VBA field of the Region Mapping Address
Register.

2. For a User-mode access, the TID field in the Region Mapping Control Register
matches the PID field in the MMU Configuration Register. For a Supervisor-mode
access, the TID field is zero.

3·72 PROGRAMMER REFERENCE

3.6.2.3

Figure 3·53

3. The VE bit of the Region Mapping Control Register is 1.

The address space of the physical address is determined by the InpuUOutput (10) bit
of the Region Mapping Control Register. If the 10 bit is 0, the address is in the instruc­
tion/data memory address space. If the 10 bit is 1, the address is in the inpuUoutput
address space.

If the address translation is valid, then certain bits of the Region Mapping Control
register are used to perform protection checking (see Section 3.6.5). If there is no
protection violation, the translation is performed and the resulting physical address is
placed on the processor's Address Bus. If there is a protection violation, a Data or
Instruction MMU Protection Violation trap occurs, depending on the access.

If address translation is valid, and there is no protection violation, the PGM bits from
the Region Mapping Control register are placed on the MPGM(1-{)) outputs during
the address cycle for the access.

If the address translation is not valid in RMUO, it is attempted by RMU1. If the transla­
tion is not valid in RMU 1, it is attempted by the TLB.

TLB ADDRESS TRANSLATION PROCESS

Virtual addresses are partitioned into three fields for TLB address translation, as
shown in Figure 3-53. The partitioning of the virtual address is based on the page
size. Pages may be of size 1, 2, 4, or 8 kb, as specified by the MMU Configuration
Register.

Virtual Address for 1, 2, 4, and 8 kb Pages

2-kb Page Size:
31

4-kb Page Size:
31

8-kb Page Size:

31

23 15

23 15

o

7 o

7 o

The TLB address-translation process is diagrammed in Figure 3-54. Address transla­
tion is performed by the following fields in the TLB entry: the Virtual Tag (VTAG), the
Task Identifier (TID), the Valid Entry (VE) bit, the Real Page Number (RPN) field, and
the InpuUOutput (10) bit. To perform an address translation, the processor accesses

PROGRAMMER REFERENCE 3-73

Figure 3-54

the TLBline whose number is given by certain bits in the virtual address. The bits
used depend on the page size as follows:

Page Size

1 kb
2kb
4kb
8 kb

Vlnual Address Bits (for Line Access)

14-10
15-11
16-12
17-13

The accessed line contains two TLB entries, which in turn contain two VTAG fields.
The VT AG fields are both compared to bits in the virtual address. This comparison
depends on the page size as follows (note that VTAG bit-numbers are relative to the
VTAG field, not the TLB entry):

Page Size

1 kb
2 kb
4kb
8 kb

Vlnual Address Bits

31-15
31-16
31-17
31-18

VTAGBlts

16-0
16-1
16-2
16-3

Certain bits of the VTAG field do not participate in the comparison for page sizes
larger than 1 kb. These bits of the VTAG field are required to be zero.

TLB Address Translation Process

Virtual Address

I C;; I
~ ~ ~--~--r--T------'-~

TLBSETO TLB SET 1

Virtual: V, 'Task: Real Page: PGM, Virtual: V, : Task: Real Page : PGM,
Tag ,PRO~ 10, Number ,U, 10 Tag ,PROT, ID, Number ,U, 10

MMU
Configuration

select

Physical Address

MPGM0-1

14778A-006

3-74 PROGRAMMER REFERENCE

For an address translation to be valid, the following conditions must be met:

1. The virtual address bits match corresponding bits of the VT AG field as specified
above.

2. For a User-mode access, the TID field in the TLB entry matches the PID field in
the MMU Configuration Register. For a Supervisor-mode access, the TID field is
zero.

3. The VE bit in the TLB entry is 1.

4. Only one entry in the line meets conditions 1, 2, and 3 above. If this condition is
not met, the results of the translation may be treated as valid by the processor, but
the results are unpredictable.

If the address translation is valid for one TLB entry in the selected line, the RPN field
in this entry is used to form the physical address of the access. The RPN field gives
the portion of the physical address that depends on the translation; the remaining
portion of the virtual address-called the Page Offset-is invariant with address
translation.

The Page Offset comprises the low-order bits of the virtual address, and gives the
location of a byte (because of byte addressing) within the virtual page. This byte is
located at the same position in the physical page frame, so the Page Offset also
comprises the low-order bits of the physical address.

The 32-bit physical address is the concatenation of certain bits of the RPN field and
Page Offset, where the bits from each depend on the page size as follows (note that
RPN bit numbers are relative to the RPN field, not the TLB entry):

Page Size

1 kb
2 kb
4kb
8 kb

RPN Bits

21-0
,!1-1
21-2
21-3

Virtual Address Bits for Page Offset

9-0
10-0
11-0
12-0

Note: Certain bits of the RPN field are not used in forming the phYSical address for
page sizes greater than 1 kb. These bits of the RPN are required to be zero. In
addition, for certain instruction accesses, the Page Offset is incremented by 8
or 16 as described in Section 4.2.3.1.

The address space of the physical address is determined by the Input/Output (10) bit
of the TLB entry. If the 10 bit is 0, the address is in the instruction/data memory ad­
dress space. If the 10 bit is 1, the address is in the input/output address space.

If an address translation is successful, the TLB entry is further used to perform protec­
tion checking for the access. Bits in the TLB make it possible to restrict accesses-in­
dependently for Supervisor-mode and User-mode accesses-to any combination of
load, store, and instruction accesses, or to no access. Section 3.6.5 describes protec­
tion in more detail.

If the address translation is valid, and no protection violation is detected, the phYSical
address from the translation is placed on the processor's Address Bus, and the ac­
cess is initiated. If the translation is not valid, or a protection violation is detected, a
trap occurs. Depending on the state of the channel interface, the access request may
be placed on the Address Bus with the signal BINV asserted, even though the trap
occurs.

PROGRAMMER REFERENCE 3·75

3.6.3

3.6.4

Also, if the address translation is successful, and there is no protection violation, the
PGM bits from the TLB entry used for translation are placed on the MPGM(1-O) out­
puts during the address cycle for the access. If address translation is not performed,
these pins are both Low for the address cycle.

If the TLB cannot translate an address, a TLB miss occurs. The MMU causes a trap if
either a TLB miss occurs, or the translation is successful and a protection violation is
detected. The processor distinguishes between traps caused by instruction and data
accesses, and between traps caused by User-and Supervisor-mode accesses, as
follows:

Trap Vector Number

8
9

10
11
12
13

Type of Trap

User-Mode Instruction TLB Miss
User-Mode Data TLB Miss
Supervisor-Mode Instruction TLB Miss
Supervisor-Mode Data TLB Miss
Instruction TLB Protection Violation
Data TLB Protection Violation

The distinction between the above traps is made to assist trap handling, particularly
the routines that load TLB entries.

TLB Reload

So that the MMU may support a large variety of memory-management architectures, it
does not directly load TLB entries that are required for address translation. It simply .
causes a TLB miss trap when address translation is unsuccessful. The trap causes a
program-called the TLB reload routine-to execute. The TLB reload routine is de­
fined according to the structure and access method of the page table contained in an
external device or memory.

When a TLB miss trap occurs, the LRU Recommendation Register is written with the
TLB register number for Word 0 of the TLB entry to be used by the TLB reload rou­
tine. For instruction accesses, the Program Counter 1 Register contains the instruc­
tion address that was not successfully translated. For data accesses, the Channel
Address Register contains the data address that was not successfully translated.

The TLB reload routine determines the translation for the address given by the Pro­
gram Counter 1 Register or Channel Address Register, as appropriate. The TLB
reload routine uses an external page table to determine the required translation, and
loads the TLB entry indicated by the LRU Recommendation Register so that the entry
may perform this translation. In a demand-paged environment, the TLB reload routine
may additionally invoke a page-fault handler when the translation cannot be per­
formed.

TLB entries are written by the Move To TLB (MTTLB) instruction, which copies the
contents of a general-purpose register into a TLB register. The TLB register number is
specified by bits 6-0 of a general purpose register. TLB entries are read by the Move
From TLB (MFTLB) instruction, which copies the contents of a TLB register into a
general-purpose register. Again, the TLB register number is specified by a general
purpose register.

TLB Entry Invalidation

There are two methods for invalidating TLB entries that are no longer required at a
given point in program execution. The first involves resetting the Valid Entry bit of a

3-76 PROGRAMMER REFERENCE

3.6.5

Table 3·12

single entry (this is done by a Move To TLB instruction). The second involves chang­
ing the value of the Process Identifier (PID) field of the MMU Configuration Register;
this invalidates all entries whose Task Identifier (TID) fields do not match the new
value.

If an entry is invalidated by changing the PID field, the TLB entry still remains valid in
some sense. If the PID field is changed again to match the TID field, the entry may
once again participate in address translation. This ability can be used to reduce the
number of TLB misses in a system during process switching. However, it is important
to manage TLB entries so that an invalid match cannot occur between the PID field
and the TID field of an old TLB entry.

Protection

If an address translation is performed successfully as described in Section 3.6.2, the
Region Mapping Control Register or TLB entry used in address translation is used to
perform protection checking for the access. Six bits are used for this purpose; their
names and functions are the same in the Region Mapping Control Registers and the
TLBentries: Supervisor Read (SR), Supervisor Write (SW), Supervisor Execute (SE),
User Read (UR), User Write (UW), and User Execute (UE). These bits restrict ac­
cesses, depending on the program mode of the access, as shown in Table 3-12 (the
value x is a don't care).

Access Protection

SR SW SE UR UW UE Type of Access Allowed

x x x 0 0 0 No User access
x x x 0 0 1 User instruction
x x x 0 1 0 User store
x x x 0 1 1 User store or instruction
x x x 0 0 User load
x x x 1 0 1 User load or instruction
x x x 1 0 User load or store
x x x 1 Any User access
0 0 0 x x x No Supervisor access
0 0 1 x x x Supervisor instruction
0 1 0 x x x Supervisor store
0 1 1 x x x Supervisor store or instruction
1 0 0 x x x Supervisor load
1 0 1 x x x Supervisor load or instruction
1 0 x x x Supervisor load or store
1 x x x Any Supervisor access

Note that for the Load and Set (LOADSET) instruction, the protection bits must be set
to allow both the load and store access. If this condition does not hold, neither access
is performed.

If protection checking indicates that a given access is not allowed, a Data MMU Pro­
tection Violation or Instruction MMU Protection Violation trap occurs. The cause of the
trap can be determined by inspecting the Program Counter 1 Register for an Instruc­
tion MMU Protection Violation, or by inspecting the contents of the Channel Address
and Channel Control registers for a Data MMU Protection Violation.

PROGRAMMER REFERENCE 3·77

3.7

3.7.1

3.7.2

DEBUGGING

Software debugging is supported by the Trace Facility, hardware breakpoints, and the
Monitor mode. The Trace Facility guarantees exactly one trap after the execution of
any instruction in a program being tested. The Trace trap allows a debug routine to
follow the execution of instructions, and to determine the state of the processor and
system at the end of each instruction. Hardware breakpoints return control to a
debugger at specified program addresses. The Monitor mode allows the debugging of
operating-system routines and interrupt and trap handlers.

Trace Facility

Tracing is controlled by the Trace Enable (TE) and Trace Pending (TP) bits of the
Current Processor Status Register. The value of the TE bit always is copied into the
TP bit when an instruction enters the write-back stage. A Trace trap occurs whenever
the TP bit is 1. As with most traps, the Trace trap can be disabled only by the DA bit
of the Current Processor Status Register.

In order to trace the execution of a program, the debug routine performs an interrupt
return to cause the program to begin or resume execution. However, before the inter­
rupt return is executed, the TE and TP bits of the Old Processor Status are set with
the values 1 and 0, respectively. The interrupt return causes these bits to be copied
into the TE and TP bits of the Current Processor Status.

When the target of the interrupt return (whose address is contained in the Program
Counter 1 Register when the interrupt return is executed) enters the write-back stage,
the processor copies the value of the TE bit into the TP bit. Since the TP bit is a 1, a
Trace trap occurs. This trap prevents any further instruction execution in the target
routine until the interrupt is taken and the routine is resumed with an interrupt return.
When the Trace trap is taken, the TE and TP bits are both reset automatically, pre­
venting any further Trace traps.

Since the Trace Facility is managed by the Old and Current Processor Status regis­
ters, it operates properly in the event that the processor takes an interrupt or trap­
that is unrelated to the Trace Facility-before the above trace sequence completes.
When the unrelated interrupt or trap is taken, the state of the Trace Facility (Le., the
values of the TE and TP bits) is copied into the Old Processor Status from the Current
Processor Status. The Trace Facility then resumes operation when the interrupted
routine is restarted by an interrupt return.

Note that it is possible to cause a Trace trap by directly setting the TP and/or TE bits
in the Current Processor Status Register. This may be accomplished only by a Super­
visor-mode program.

Instruction Breakpoints

The Am29050 microprocessor provides two hardware breakpoints for causing Trace
traps at specified instruction addresses. These hardware breakpoints are specified by
the following registers: Instruction 8ieakpoint Address 0, Instruction BreakpOint Con­
trol 0, Instruction Breakpoint Address 1, and Instruction Breakpoint Control 1. The two
hardware breakpoints are identical in definition and capability.

Breakpoint comparisons are performed by both hardware breakpoints on instructions
as the instructions enter the execute stage of the processor pipeline. If one (or both)
of the breakpoint comparisons is valid, a Trace trap occurs and the instruction is not
completed. The Trace trap caused by a hardware breakpoint has lower priority than a

3-78 PROGRAMMER REFERENCE

3.7.3

Trace trap caused by the Trace facility. Also, if the DA bit in the Current Processor
Status Register is 1 when the Trace trap occurs, a Monitor trap is taken.

A breakpoint comparison is valid when the instruction address matches the address in
the Instruction Breakpoint Address 0 Register or Instruction Breakpoint Address 1
Register, and the following conditions are met by the corresponding Instruction Break­
point Control register.

1. The Breakpoint Has Occurred (BHO) bit is O. The BHO bit allows the processor to
progress beyond the breakpoint once it has been encountered.

2. The Breakpoint Enable (BEN) bit is 1.

3. The Break or Synchronize (BSY) bit is 1. If the BSY bit is 0 and all other
conditions are valid, a synchronization pulse is generated externally by placing the
value 010 on the STAT(2-O) outputs for one cycle (see Section 5.3). This permits
the hardware breakpoint to generate a trigger for external logic, without causing a
Trace trap that disturbs system timing.

4. The value of the Break ROM (BRM) bit is equal to the value of the ROM Enable bit
in the Current Processor Status Register. This differentiates between a breakpoint
in the instruction/data memory and one in the Instruction ROM.

5. The value of the Break on Translation Enabled (BTE) bit is equal to the
complement of the Physical Addressingllnstructions (PI) bit in the Current
Processor Status Register. This differentiates between a physical breakpoint
address and a virtual breakpoint address.

6. If address translation is enabled for instructions, the Breakpoint Process Identifier
(BPI D) field matches the PID field of the MMU Configuration Register, for a
User-mode program. For a Supervisor-mode program, the BPID field must be
zero. The BPID field allows the breakpoint to be associated with a particular
process in a multi-tasking system.

When a hardware breakpoint trap is taken, the processor sets the BHO bit. If the
Trace trap handler returns to the routine with the breakpoint enabled, the BHO bit
being 1 prevents the breakpoint comparison from causing another Trace trap. The
processor resets the BHO bit when it encounters the breakpoint upon return, so that
the Trace trap is once again enabled.

A hardware-development system (see Section 5.4) can use the hardware breakpoints
to cause the processor to enter the Halt mode rather than take a Trace trap.

Debugging System.Level Routines

The Monitor Mode provides a mechanism for debugging interrupt handlers and other
system-level routines using a software debugger. The processor can enter the Moni­
tor rriode without affecting the state of any running program, much as it can take an
interrupt without disturbing the state of an application program.

When a Trace trap occurs, and the DA bit in the Current Processor Status Register is
1, the processor takes a Monitor trap. The instruction addresses of the trapped pro­
gram are contained in the Shadow Program Counters, the cause of the trap is en­
coded in the Reason Vector Register, and the Current Processor Status Register is
unmodified (except that the Monitor Mode bit is set). This provides the information
required to debug the trapped routine, regardless of whether the trapped routine was
enabled to take interrupts. The Monitor trap handler can resume the execution of the
trapped routine (e.g. for tracing) by executing an IRET or IRETINV instruction.

PROGRAMMER REFERENCE 3-79

,!

3.8

3.9

SERIALIZATION

The Am29050 microprocessor overlaps external data references with other opera­
tions, and typically performs floating-point operations in parallel with each other and
with integer operations. When an external data reference must be restarted, however,
or a floating-point operation causes a Floating-Point Exception trap to be taken, the
processor context must be the same as when the operation was first attempted. To
ensure this, certain operations are serialized.

The processor serializes by entering the Pipeline Hold mode in any of the following
circumstances:

1. An external access is not yet completed, and one of the following instructions is
encountered:

Move to Special Register
Move to Special Register Immediate
Move to TLB
Interrupt Return
Interrupt Return and Invalidate
Halt

2. An external access is not yet completed, and an interrupt or trap, other than a
WARN trap, is taken.

3. The processor detects that a floating-point instruction may cause an unmasked
floating-point exception. In this case, the instruction is issued for execution, but
the pipeline holds until execution of the instruction is completed.

Writes to certain registers-the Floating-Point Environment Register, the Integer
Environment Register, the Floating-Point Status Register, and the Exception Opcode
Register-could, if overlapped with arithmetic operations. change the context required
or expected by the arithmetic operations. or could conflict with register updates
caused by the operations. Writes to these registers are therefore serialized; thatis,
they are not performed until the completion of all operationscperformed by the floating­
point unit.

Similarly, reading the Floating-Point Status Register concurrently with the execution
of a floating-point instruction might not obtain the status of previously issued instruc­
tions. Therefore, reads of the Floating-Point Status Register are also serialized with
floating-point operations.

If the processor is in the Pipeline Hold mode due to serialization, it enters the Execut­
ing mode once the external access or floating-point operation is completed. Note that
the processor may immediately take a Data Access Exception, Coprocessor Excep­
tion, or Floating-Pointexception trap.

INITIALIZATION

When power is first applied to the processor, it is in an unknown state, and must be
placed in a known state. Also, under certain circumstances, it may be necessary to
place the processor in a defined state. This is accomplished by the Reset mode,
which is invoked by activating the RESET pin for at least four cycles. The Reset mode
configures the processor state as follows:

1. Instruction execution is suspended.

2. Instruction fetching is suspended.

3. Any interrupt or trap conditions are ignored.

4. The Current Processor Status Register is set as shown in Figure 3-55.

3-80 PROGRAMMER REFERENCE

Figure 3·55

Figure 3·56

Current Processor Status Register In Reset Mode

31 23 15 7 0

1.1, 1·1, 1,1,1,1,1,1,1,1, I
, I I •• I '. I • • .j • i I I i I

V •••• '. I • ': I : I I I I

Reserved -""",.,', •• "
MM: IP: TP: FZ: RE: PO: 8M: 01 :

CA TE TU LK WM PI 1M OA

Floating.Point Environment Register in Reset Mode

31 23 15 7 o

I':':': .:.: .:.:.:.:.:.:.:.:.:.:.: .:.:.:.:. I,:, I· I· :,1,1,1,1,1,1,1
I i ' ; L.

Reserved ACF : FRM: : : : : •
I • I • I •

: XM: VM: 1M

FF DM UM RM

5. The Cache Disable bit of the Configuration Register is set.

6. The Data Width Enable bit of the Configuration Register is reset.

7. The. Early Load Enable bit of the Configuration Register i~ reset.

8. The Floating-Point Environment Register is set as shown in Figure 3-56.

9. The Integer Division Overflow Exception Mask and the Integer Multiplication
Overflow Exception Mask bits of the Integer Environment Register are both set.

10. The Contents Valid bit of the Channel Control Register is reset. .

Except as previously noted, the contents of all general-purpose registers, special-pur­
pose registers, floating-point accumulator registers, and TLB registers are undefined.
The contents of the Branch Target Cache memory are also undefined.

The Reset mode also configures the processor to initiate an instruction fetch using an
address of ;zero. Since the ROM enable (RE) bit of the Current Processor Status is 1,
this fetch is directed to external instruction read-only memory. This fetch occurs when
the Reset mode is exited (Le., when the RESET input is de-asserted). Section 5.5
contains more information on this instruction fetch.

PROGRAMMER REFERENCE 3-81

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

·13:';';;'4;&'
HARDWARE FEATURES

This chapter describes the operation of the Am29050 microprocessor pipeline, and
the processor's three major functional units. The functional units are the Instruction
Fetch Unit, the Execution Unit, and the Memory Management Unit. These units, which
were shown in abstract form in Figure 2-2, are shown in detail in Figure 4-1.

Figure 4·1 Am29050 Microprocessor Data Flow

'.-------.
: Branch Target I .. ------..---+-.....:;;;c---;-.-J f-t C

Cache I· Register
C D DI+

Register Memory Address Address f-t A
2x128x32 Unit Generatorf-t B File

~---~IR~---~------r~~+-~-~

Instruction 1
Prefetch 7,
Buffer -

Memory
Management Unit

'TrnRrn

, A-Bus ,
, B-Bus
, ,
: 1 Read!

- - -1 Write
Control

• Floating­
Point
Unit

192x32
(64-bit parts)

A B

Arithmetic logic
Unit Field Shift
Unit Prioritizer

Translation look-Aside
Buffer and

Protection logic
2x32x64

PHYSAD

1
M-Bus I

Interface I
Special- l D-Bus
Purpose Interface
Registers '---a-~L..-..,~-l '----,-----'

D-Bus ~
M ~~
~-r--,~~-~~~~---~

I M-Bus

1

--- -- - ---- -~ --~-8--~---·----------- --------------------------

1
Physical 124 8 Fetch-Ahead I Instruction Fetch I~. ~ ~ Address -'" iI Adder Pointer I---

Memory I MUX ~30 30 DO 01 Cache' .cr
32~

(• '32'2 00 0
Instruction I AD <I

Bus

o
Address

Bus

Data
Bus

HARDWARE FEATURES 4-1

Ii
W;

4.1

4.2

The operation of the functional units is coordinated by the Pipeline Hold mode, which
insures that operations are performed in the proper order. This chapter also describes
the Pipeline Hold mode.

Since this chapter describes the internal operation of the Am29050 microprocessor, it
provides information that may not be required by some users. However, it aids in
understanding the behavior of the. Arn290S0 microprocessor under certain conditions,
especially the behavior of the system interfaces described in Chapter S.

FOUR·STAGE PIPELINE

The Am290S0 microprocessor implements a four-stage pipeline for integer instruction
execution. The four stages are fetch, decode, execute, and write-back. The execute
stage of floating-point operations is pipelined to a depth determined by the latency of
the operation. For either integer or floating-point operations, the pipeline is organized
so that the effective instruction-execution rate may be as high as one instruction per
cycle.

During the fetch stage, the Instruction Fetch Unit (Section 4.2) determines the location
of the next processor instruction, and issues the instruction to the decode stage. The
instruction is fetched either from the Instruction Prefetch Buffer, the Branch Target
Cache memory or an external instruction memory:

During the decode stage, the Execution Unit (Section 4.3) decodes the instruction
selected during the fetch stage, and fetches and/or assembles the required operands.
It also evaluates addresses for branches, loads, and stores.

During the execute stage, the Execution Unit performs the operation specified by the
instruction. In the case of branches, loads, and stores, the Memory Management Unit
(Section 4.4) performs address translation if required. In the case of an early load, the
physical address is transmitted to an external device or memory. The execution unit
pipelines floating-point operations to a depth greater than one cycle, as described in
Section 4.3.7.

During the write-back stage, the results of the operation performed during the execute
stage are stored. In the case of branches, loads, and stores, the physical address
resulting from translation during the execute stage is transmitted to an external device
or memory, unless an early load occurs.

Most pipeline dependencies thatare internal to the processor are handled by forward­
ing logic in the processor. For those dependenCies that result from the external sys­
tem, the Pipeline Hold mode insures proper operation.

In a few special cases, the processor pipeline is exposed to software executing on the
Am290S0 microprocessor (see Section 7.4).

INSTRUCTION FETCH UNIT

The Instruction Fetch Unit performs the functions required to keep the processor
pipeline supplied with instructions. Since the processor can execute one instruction
per cycle, instructions must be supplied at this rate if the execution stage is to perform
at the maximum rate. To accomplish this, the Instruction Fetch Unit contains mecha­
nisms for requesting instructions from instruction memory before they are required for
execution, and for caching the most-recently executed branch target instructions.

The Instruction Fetch Unit also incorporates the logic necessary to calculate and
sequence instruction addresses. The processor is word-oriented, but generates byte
addresses for all external accesses. Since all processor instructions are word-length,

4-2 HARDWARE FEATURES

4.2.1

4.2.1.1

and are aligned on word-address boundaries, the Instruction Fetch Unit deals only
with 30-bit addresses. For external instruction accesses, these addresses are ap­
pended with 00 in the two least-significant bits to form the required 32-bit address
(note that the two least-significant bits of an external instruction address may not be
00 for indirect jumps).

Instruction Prefetch Buffer

All instructions executed by the processor are fetched either from the Branch Target
Cache memory or from external instruction memory (Le., instruction/data memory or
instruction read-only memory). When instructions are fetched from the external mem­
ory, they are requested in advance to assist the timing of instruction accesses. The
processor attempts to initiate the fetch for any given instruction at least four cycles
before it is required for execution.

Since instructions are requested in advance, based on a predicted need, it is pos­
sible that a prefetched instruction is not required immediately for execution when the
prefetch completes. To accommodate this possibility, the Instruction Fetch Unit con­
tains a four-word Instruction Prefetch Buffer(IPB), as shown in Figure 4-1. The IPB
is a circularly addressed buffer which acts as a first-in/first-out (FIFO) queue for
instructions.

If instruction fetching is enabled, the processor requests an external instruction fetch
on any cycle for which the IPB contains an available location. Instructions are stored
in the IPB as they are returned from the external instruction memory. An instruction is
stored into the IPB location whose number is given by bits 3-2 of the instruction
address.

The instruction is held in the IPB until it is required for execution. When required,
the instruction is sent to the decode stage, and the IPB location is freed to receive a
subsequent instruction.

INSTRUCTION PREFETCH STREAM

An instruction prefetch stream is established whenever the processor performs a non­
sequential instruction reference. Non-sequential references normally occur as the
result of successful branches, but may also result either from the taking of an interrupt
or trap (including the WARN trap) or from an interrupt return.

A non-sequential instruction fetch is initiated by placing an instruction-fetch request on
the Address Bus. Once the external instruction fetch has been initiated, the processor
generates prefetches for subsequent instructions based on the availability of IPB
locations, either by transmitting subsequent addresses, or by issuing burst-mode
instruction requests.

The addresses for prefetched instructions are computed by a word-length register
called the Instruction Fetch Pointer (IFP), which is maintained by the Instruction Fetch
Unit. The IFP latches the physical instruction-address obtained from the Memory
Management Unit whenever a non-sequential instruction reference occurs. Then, for
instruction prefetches, an a-bit incrementer associated with the IFP updates bits 9-2
of the IFP to point to sequential instructions in the prefetch stream. The incrementer is
limited to eight bits because it increments physical addresses, and thus cannot incre­
ment beyond any possible virtual-page boundaries (recall that the minimum virtual
page size is 1 kb). If the incrementer overflows, as indicated by a carry-out, prefetch­
ing is preempted. The prefetch stream is later re-established as described below.

The physical address in the IFP is always the address of the most-recently prefetched
instruction, even though this address may not appear on the Address Bus for

HARDWARE FEATURES 4·3

4.2.1.2

Figure 4·2

burst-mode fetches. If the burst is externally preempted, the IFP is used to re­
establish the burst at the point of preemption.

INSTRUCTION PREFETCH BUFFER STATES
Four states are associated with each Instruction Prefetch Suffer location. The state­
transition diagram for these states is shown in Figure 4-2.

IPB State Transitions

Available-The IPS location is free for a new fetch. It contains no valid instruction,
and is not due to receive any requested instruction.

Allocated-The IPS location has been scheduled to receive a requested instruction,
which has not yet been returned from the external instruction memory.

Valid-The IPS location contains a valid instruction.

Error-The IPS location contains an instruction which was returned from the external
memory w!th an IERR indication.

\
If all internal conditions are such that an instruction fetch can occur, the IPS location
given by bits 3-2 of the instruction address is set to the Allocated state, and the in­
structionis requested externally. Once this instruction is returned to the processor, it
is stored in the IPS location. The location is set to the Valid or Error state (based on
the IERR input), unless the instruction is sent immediately to the decode stage, in
which case the buffer is set to the Available state.

The instruction remains in the buffer until it is required for execution. When the in­
struction is required, it is issued to the decode stage, and the IPS location is set to the

44 HARDWARE FEATURES

4.2.2

4.2.2.1

Available state. If the buffer were in the Error state, it is still set to the Available state,
but an Instruction Access Exception trap occurs.

It is possible for alllPB locations to be in the Available or Valid states, but only one is
allowed to be in the Allocated state at any given time. This restricts the number of
unsatisfied instruction pre fetches to one, reducing the amount of logic required to
keep track of external fetches. It additionally restricts the number of apparent pipeline
stages in the external prefetch mechanism to one stage (the other stages involved in
the four-stage prefetch pipeline are the request stage and the processor's fetch and
decode stages). Larger external prefetch pipelines may be implemented, but they are
required to appear as single-stage pipelines; at most, one instruction can be returned
to the processor from the old instruction prefetch stream after a non-sequential fetch
occurs.

When a non-sequential fetch occurs, all buffer locations are set to the Available state
during the execute stage of the non-sequential fetch. All instruction requesting for the
previous pre fetch stream is terminated at this time. There is at most one instruction
that will be returned to the processor after instruction fetches are terminated; this
instruction is returned before any instruction associated with the new instruction
stream is requested externally.

The Error state is provided only to handle errors reported via the IERR input. How­
ever, there are many other situations in which the IPB does not contain a valid in­
struction. These situations arise because of errors, such as memory-management
protection violations, and because instruction fetching is sometimes preempted, such
as is the case when the IFP adder overflows. All of these cases are indicated by the
fact that the IPB location is in the Available state when the instruction is required for
execution (note that the location should, normally, at least be in the Allocated state
when the instruction is required).

If the processor requires an instruction from an IPB location that is in the Available
state, it initiates the fetch for the instruction using the current value of the Program
Counter. This fetch resolves the exceptional condition. It either performs an address
translation with the proper address, eliminating page-boundary-crossing problems,
or re-creates an error condition, in which case a trap occurs.

Branch Target Cache Memory

The Branch Target Cache memory on the Am29050 microprocessor allows fast ac­
cess to instructions fetched non-sequentially. A branch instruction may execute in a
single cycle, if the branch target is in the Branch Target Cache memory.

The target of a non-sequential fetch is in the Branch Target Cache memory if a similar
fetch to the same target has occurred recently enough that it has neither been re­
placed by the target of another non-sequential fetch, nor invalidated by an INV or
IRETINV instruction.

BRANCH TARGET CACHE MEMORY ORGANIZATION

The Branch Target Cache memory (BTC) is a 1-kb storage array which contains
blocks of instructions from recently taken branches. To improve the proportion of
successful searches in the BTC memory, it is organized as a two-way set-associative
memory. Each set contains 128, 32-bit words (each instruction occupies one word).
The sets are divided into blocks of either four instructions each or two instructions
each, depending on the value of the Branch Target Cache memory organization (CO)
bit of the Configuration Register. Blocks which lie in different sets but have the same
block number constitute a unit called a line. Figure 4-3 shows the organization of the

HARDWARE FEATURES 4-5

Figure 4·3

BTC memory when the CO bit is O. Figure 4-4 shows the organization of the BTC
memory when the CO bit is 1.

Branch Target Cache Memory Organization (CO = 0)

Set 0 Set 1
Block 0 BiockO

1 Valid 1 Space 101 Address Tag Target Instruction 1 Valid 1 Space 10 I Address Tag Target Instruction

Target + 1
Line 0

Target + 1

Target +2 Target+2

Target+3 Target +3 ---------_.--------
Block 1 Block 1

I

U

- 1 1

~L.. -=:_ -=:_ -=:_-=:_-=~~=-'1. --U - ~i~~ ~ - - - U - U - - - - - - +:~_-=~~=--~=--:=..,;. -:=--::'

Block 2 Block 2

I~ ... =--:=--:=--:=--:=--~=-,.;I :::~ . ~~ ~ --- --- -- til.. :_-== __ == __ ==_ -==--:=--I.:!

Block 3 Block 3

I

U

- I 1

~ ... _=:_ -=:_-=:_-=:_-=~~=--I1- __ U ~i~~ ~ U U U ___ U U _ ~ ... :_-=:_-=:_-~:~~:~~::-....I~
•
•
•

Block 31 Block 31

•
•
•

1-1-----11 ::: >:~: ____________ .11------I
A 29-bitcache tag is associated with each block. Of the 29 bits, 26 are derived from
the address (possibly virtual) of the instructions in the block and are called the
Address Tag. ..

Note that the Address Tag is 26 bits in length, rather than 24 bits as might be implied
by the organization of the Branch Target Cache memory. The reason for this is that
branch target instruction sequences are aligned on cache-block boundaries, and
cache blocks are not aligned with respect to memory addresses. Thus, more bits are
required in the Address Tag than would be required if cache locations were mapped
one-to-one to memory locations. .

Three additional bits in the cache tag, called the Space Identification field (Space ID),
indicate the instruction memory from which the instructions were fetched (instructionl

,data or read-only memory), whether the instructions were fetched from a virtual or

4-6 HARDWARE FEATURES

Figure 4·4 Branch Target Cache Memory Organization (CO = 1)

4.2.2.2

Set 0 Set 1

Block 0

Target Instruction Target Instruction

Target + 1 Target + 1

Block 1 Block 1

L....-------II-----Ill;i'le.1.'u u . u u u u • u __ • .L-I ___ --'

~ck2 ~ck2

L..-______ +I------II LJl'!.e.2.' 1 ___ ---'

Block 3 Block 3

L..-______ +I-----II LJn.e.s! •••••••••••••• _ 1 ___ ---'

• •
Block 63 Block 63

'--------+1 ~-----II·.·.·. ·.1 ...•...•........... .L..I __ -oJ

Line 63

physical address space, and the program mode under which the instructions were
fetched (Supervisor or User). When instructions are placed into the Branch Target
Cache memory, the Space ID bits are written with the values of the following bits of
the Current Processor Status Register: ROM Enable (RE), Physical Addressing/ln·
structions (PI), and Supervisor Mode (SM).

There are four valid bits per block, corresponding to the four words available per block
when the CO bit of the Configuration Register is O. Cache invalidation instructions
make it possible to reset all Valid Bits in a single processor cycle. However, for the
Invalidate instruction, the Valid bits are not reset until the next branch is executed.

BRANCH TARGET CACHE MEMORY OPERATION

It is possible to disable the operation of the Branch Target Cache memory via the
Branch Target Cache Memory Disable (CD) bit of the Configuration Register. If the
CD bit is 1, all Branch Target Cache entries are made to appear invalid. If the CD bit
is 0, there is no effect on Branch Target Cache memory entries. However, note that a
change in the CD bit does not take effect until after the next non-sequential instruction
fetch occurs.

When the Branch Target Cache memory is disabled, it continues to operate as de­
scribed in this section. However, entries are made to appear invalid, even though they
may be valid. If the Branch Target Cache memory is enabled after a period of being
disabled, its contents reflect the most recent instruction execution, and it operates
accordingly.

HARDWARE FEATURES 4-7

4.2.2.3

4.2.2.4

The Branch Target Cache memory lookup process is diagrammed in Figure 4-5. A
given branch target sequence may be contained in one of two cache blocks, where
these blocks are in the same line. The sequence is contained in the line whose num­
ber is given by bits 5-2 of the address of the first instruction of the sequence. A given
branch target sequence is in a given cache block only if the following conditions are
met:

1. Bits 31-6 of the address for the first instruction in the sequence match the
corresponding bits in the Address Tag associated with the block.

2. The address of the first instruction in the block has a valid translation in the
Memory Management Unit, if it is a virtual address.

3. The instruction address space indicated by the Current Processor Status Register
(RE, PI, and SM bits) matches the address space indicated by the Space ID field.

4. The CD bit of the Configuration Register was 0 for the previous non-sequential
instruction fetch. Note that it is not required that all instructions in the sequence be
present in the cache for the block to be considered valid.

In addition to the above requirements, the Valid bit must be 1 for any instruction re­
trieved from the cache.

Whenever a non-sequential fetch occurs (either for a branch instruction, an interrupt
or a trap), the address for the fetch is presented to the Branch Target Cache memory
at the same time that the address is translated by the Memory Management Unit. If
the target instruction for the non-sequential fetch is in the cache, it is presented for
decoding in the next cycle. This instruction is always the first instruction of the cache
block, and its address matches the cache tag. Subsequent instructions in the cache
are presented for decoding as required in subsequent cycles. However, their ad­
dresses do not necessarily match the Address Tag.

BRANCH TARGET CACHE MEMORY REPLACEMENT

On a non-sequential fetch, if the target instruction is not found in the Branch Target
Cache memory, the address of the fetch selects a line to be used to store the instruc­
tion sequence of the new branch target. The replacement block within the line is
selected at random, based on the processor clock. Random replacement has
slightly better performance than least-recently used replacement, and has a simpler
implementation.

To replace the selected entry, all Valid bits associated with the entry are reset, the
Address Tag is set with the appropriate address bits of the first instruction in the new
sequence, and the Space ID bits are set according to the Current Processor Status
Register. Instructions from the new fetch stream are stored into the selected cache
block as they are issued to the decode stage. The first instruction is stored into the
first word of the block, the second instruction is stored into the second word, and so
on up to a maximum of four instructions. The Valid bit for each word is set as the
instruction is stored.

SPECIAL CASES OF BRANCH TARGET CACHE MEMORY ENTRIES

If a branch instruction appears as one of the first two instructions in a branch target
sequence, the branch is executed before the Branch Target Cache memory block is
filled. In this case, the cache block contains less than four valid instructions. The final
valid instruction is the delay instruction of the branch.

When a block is only partially filled due to a branch within the block, the behavior of
the cache during subsequent executions of the instructions !n the block depends on
the outcome of this branch.

4-8 HARDWARE FEATURES

Figure 4·5

If the branch is subsequently successful, then the instructions following the delay
instruction of the branch are not needed, and the fact that they are not contained in
the cache is irrelevant.

If the branch is subsequently unsuccessful, then the instructions following the delay
instruction are required, and must be fetched externally. In this case, a required entry
has a Valid bit of O. When the invalid entry is encountered, the Program Counter is
used to create an external instruction fetch for the missing instruction; this fetch is
called a demand fetch. When the fetch completes, the instruction is stored in the
cache location that was previously invalid, and the Valid bit for this entry is set.

Since an instruction sequence in a four-word (or two-word) cache block is not neces­
sarily aligned on a four-word (respectively, two-word) address boundary, a virtual­
page address boundary may be crossed for the sequence in the cache. The proces­
sor does not prefetch instructions beyond this boundary, so the cache block is only
partially filled in this case. If the processor requires instructions beyond the boundary,
it creates a fetch for them as described above for the case of a branch instruction in
the cache block.

When a fetch is created for a page-boundary crossing, this fetch is treated as a non­
sequential fetch; a new cache block is allocated, and the first instructions at the

Branch Target Cache Memory Lookup Process (CO = 0)

Program Counter

I Instruction Address I 001

26 4

4

HitlMiss

Target
Instruction

Out

HARDWARE FEATURES 4·9

4.2.3

4.2.3.1

4.2.4

boundary are placed into the new cache block as they are returned by the instruction
memory. Subsequent references to the original cache block also encounter an invalid
instruction at the page boundary, and also create a special fetch for this instruction.
However, since the instructions beyond this boundary are in the Branch Target Cache
memory, subsequent boundary crOssings do not incur the instruction-fetch latency.

Non·Sequential Instruction Fetches
When a non-sequential instruction fetch occurs, the Memory Management Unit per­
forms an address translation for target instruction, if address translation is enabled. If
the address translation is valid, and the target of the fetch is not in the Branch Target
Cache memory, an external instruction fetch is initiated. If there is a Translation Look­
Aside Buffer (TLB) miss or memory-protection violation on this address, fetching is
not initiated.

INSTRUCTION FETCH·AHEAD

When a non-sequential fetch occurs, if the target of the fetch is found in the Branch
Target Cache memory, the processor normally begins fetching instructions beyond
the valid instructions in the target block. This behavior is termed fetch-ahead. The
valid bits of the target block and the CO bit of the Configuration Register determine
the address of the request (A is the address of the target instruction):

CO Bit Valid Bits Address

0 OXXX A+O (Miss)
0 10XX None (demand fetch)
0 110X A+8
0 1110 None (demand fetch)
0 1111 A+16
1 OXXX A+O (Miss)
1 10XX None (demand fetch)
1 11 XX A+8

The computation required to obtain the address for the fetch-ahead is performed in
parallel with address translation, by a 6-bit adder called the Fetch-Ahead Adder (see
Figure 4-1).

The FetCh-Ahead. Adder can overflow during the address computation for the fetch­
ahead, as indicated by a carry out of the Fetch-Ahead Adder. Here, a page boundary
may have been crossed, making the address translation-which is performed concur­
rently-invalid. In this case, fetch-ahead is not initiated.

If fetch-ahead is not initiated for an instruction that the processor eventually requires,
this fetch is restarted on the cycle in which the missing instruction is required, using a
demand fetch. The Program Counter is used, guaranteeing that the proper instruction
address is used.

Program Counter Unit

The Program Counter Unit, shown in Figure 4-6, forms and sequences instruction
addresses for the Instruction Fetch Unit. It contains the Program Counter (PC), the
Program-Counter Multiplexer (PC MUX), the Return Address Latch, and the Program­
Counter Buffer (PC Buffer).

The PC forms addresses for sequential instructions executed by the processor. The
master of the PC Register, PC L 1, contains the address of the instruction being

4-10 HARDWAREFEAlURES

Figure 4·6

Branch
Target
Cache

Memory

Branch

Program Counter Unit

30

B-Bus

R-Bus

PC-Bus Address
Unit

fetched in the Instruction Fetch Unit. The slave of the PC Register, PC L2, contains
the next sequential address, which may be fetched by the Instruction Fetch Unit in the
next cycle.

The Return Address Latch passes the address of the instruction following the delayed
instruction of a call to the register file. This address is the return address of the call.

The PC Buffer stores the addresses of instructions in various stages of execution
when an interrupt or trap is taken. The registers in this buffer-Program Counters 0,
1, and 2 (PCO, PC1, and PC2) and Shadow Program Counters 0, 1, and 2 (SPCO,
SPC1, and SPC2)-are normally updated from the PC as instructions flow through
the processor pipeline.

When an interrupt or trap is taken, the Freeze (FZ) bit in the Current Processor Status
is set, holding the quantities in the PC Buffer. When the FZ bit is set, PCO, PC1, and
PC2 contain the addresses of the instructions in the decode, execute, and write-back
stages of the pipeline, respectively. The Shadow Program Counters continue to oper­
ate and continue to update from the PC unless a Monitor trap occurs.

HARDWARE FEATURES 4-11

I ,.

:i

*

4.3

4.3.1

4.3.1.1

Upon the execution of an interrupt return, the target instruction stream is restarted
using the instruction addresses in PCO and PC1 (or SPCO and SPC1 , upon return
from a Monitor trap). Two registers are required here because the processor imple­
ments delayed branches. An interrupt or trap may be taken when the processor is
executing the delay instruction of a branch and decoding the target of the branch.
This discontinuous instruction sequence must be restarted properly upon an interrupt
return. Restarting the instruction pipeline using two separate registers correctly han­
dles this special case; in this case PC1 (or SPC1) points to the delay instruction of the

. branch, and PCO (or SPCO) points to its target. PC2 (SPC2) does not participate in
the interrupt return, but is included to report the addresses of instructions causing
certain exceptions.

The PC is not defined as a special-purpose register. It cannot be modified or in­
spected by instructions. Instead, the interrupting and restarting of the pipeline is done
by the PC Buffer registers PCO and PC1 or SPCO and SPC1.

EXECUTION UNIT

The Execution Unit performs most of the operations required for instruction execution.
It incorporates the Register File, the Address Unit, the Arithmetic/Logic Unit, the Field
Shift Unit, the Prioritizer and the Floating-Point Unit.

Register File

The general-purpose registers are implemented by a: four-port, 192-location Register
File. The Register File performs two read accesses and two write accesses in a single
cycle. If a location is written and read in the same cycle, the data read is that written
during the cycle.

The Register Address Generator, shown in Figure 4-7, computes register numbers for
operands, detects pipeline data dependencies, and calculates register-number se­
quences for load-multiple and store-multiple operations.

REGISTER ADDRESSING

Register numbers for instruction operands are computed during the decode stage.
This computation is performed during the first half of a cycle, and the operands are
read in the second half of a cycle. Three multiplexers select two source-operand
register numbers and a single destination register number for any given instruction.

If the most-significant bit of a register number is 0, the global registers are selected,
and the register number is used directly as a register address. If the most-significant
bit of the register number is 1, the local registers are selected, and the lower seven
bits of the register number are added to the Stack Pointer to form the desired local
register address.

The Stack Pointer is a hardware shadow-copy of bits 8-2 of Global Register 1 , and is
updated whenever Global Register 1 is written with the result of an Arithmetic or
Logical instruction. Global Register 1 is implemented as a full 32-bit register in the
Register File; this register is distinct from the 192 locations that implement general­
purpose registers.

If a register number is zero (i.e., if Global Register 0 is specified as an operand), the
Register Address Generator selects the content of an indirect pointer as the register
number. There are three indirect pointers, and each appears as a special-purpose
register.

4-12 HARDWARE FEATURES

Figure 4·7 Register File and Register Address Generator

..................................... -- -- ---_ --- -_ -_ -_ -_
to Channel Control Register

from Floating-Point Unit

I-Bus

8

From Data Path

4.3.1.2

1'5-1.
I, PortC
I

Port D

..... -*--+-*---1----.--+1 Addr A Addr D

Pipeline Pipeline
'------------------------IDependency Dependency

1,-10
B

3-Port
Register File

192x32

M~--~---I---~----+_---T-H AddrB
U
X

C

M
U
X

PIPELINE DATA DEPENDENCIES

Pipeline
Dependency

AddrC

Port A Port B

A-Bus B-Bus R-Bus

For the Register File, the pipeline delay in result write-back, compared to operand
access, creates situations where a result from a previous operation may be required
as an operand before it has been written into the register file. When one of these
situations arises, a pipeline data dependency is said to exist.

The register numbers for the write-back of instruction results require two buffering
registers, so that they are presented to the Register File during the write-back stage.
In addition, the register numbers for uncompleted load operations are held until the
load completes (these register numbers are held in the ETR Register shown in
Figure 4-6).

Register read-address comparators detect pipeline data dependencies, and activate
multiplexers to forward data directly to the required functional unit, without waiting for

HARDWARE FEATURES 4-13

4.3.1.3

4.3.2

4.3.2.1

the data to be written to the register file. The comparators activate the forwarding
multiplexers if they detect one of the following situations:

1. One of the source register numbers matches the destination register number of
the immediately previous instruction.

2. One of the source register numbers matches the target register number (in the
ETR) of an outstanding load.

In the first case listed above, the result of the execute stage is selected as an oper­
and, instead of the output of the Register File port for which the forwarding condition
is detected. In the second case, data from the channel is selected. The comparison
may cause the processor to enter the Pipeline Hold mode if the load has not com­
pleted. However, data forwarding allows data from the Data Bus to be used immedi­
ately, in the cycle after it is returned on the Data Bus.

The content of ~he ETR is further compared to the register numbers supplied to the
write-back stage. If the target register for a load is written with the result of an over­
lapped instruction, the Not Needed (NN) bit in the Channel Control Register is set. If
the comparators determine that the NN bit should be set, they also inhibit the write­
back of load data on the completion of the load. The NN bit inhibits the restarting of
the load operation if an exception occurs.

The Am29050 microprocessor Floating-Point Unit contains hardware comparable to
that described above for detecting dependencies on floating-point operations to for­
ward data, cause a pipeline hold, or prevent the write-back of a floating-point opera­
tion, as required. The Floating-Point Unit also manages write-back register numbers,
and presents the register number of a result to the register file at the appropriate time.

LOAD·MUL TIPLE AND STORE·MUL TIPLE· SEQUENCES
During load-multiple and store-multiple operations, sequential register numbers are
computed by an incrementer associated with the ETR/DTR pair shown in Figure 4-7.
In the case of store multiple, the register numbers are supplied as read addresses to
the Register File by the incrementer. The r.ead addresses are latched by the DTR so
that they may be incremented further. In the case of load multiple, target register
numbers are held by the ETR as for any other load. However, the ETR is set with a
sequence of incremented addresses in this case.

Address Unit

The Address Unit, shown in Figure 4-8, computes addresses for branch target instruc-
, tions, and load-multiple and store-multiple sequences. It also assembles instruction­

immediate data and creates addresses for restarting terminated instruction prefetch
streams.

The Address Unit consists of a 30-bit adder{ the Decode PC Register, the ADRF
Latch, and logic for formatting instruction-immediate data and generating the con­
stants zero and one. The Decode PC Register holds the address of the instruction in
the decode stage of the pipeline.

BRANCH TARGET ADDRESSES

Branch target addresses are either fetched from the Register File or calculated by the
Address Unit. The Address Unit calculates target addresses during the decode stage
of branch instructions. These addresses are of two possible types:

1. PC Relative: the current PC value is added to a sign-extended, 16-bit offset field
from the branch instruction.

4-14 HARDWARE FEATURES

Figure 4·8

4.3.2.2

Address Unit

I-Bus
I T T
I .. 1 .. -1,. 1,-10

0 .. 01 .. 1 0 .. 0 0 .. 00 .. 1

B-Bus

2. Absolute: a zero-extended, 16-bit field of the branch instruction is used directly as
an instruction address.

For each of the above types of addresses, the 16-bit instruction field is aligned on a
word address-boundary (Le., it is shifted left by two bits).

To calculate the branch target address, the Address Unit formats the 16-bit instruction
field as required and presents it to the 30-bit adder. This adder adds the formatted
field either to the contents of the Decode PC Register or to zero, as required for PC­
relative or absolute addresses, respectively.

LOAD·MUL TIPLE AND STORE·MUL TIPLE ADDRESSES
During the execution of Load Multiple and Store Multiple instructions, addresses for
the access sequence are held in the ADRF Latch. An address in the ADRF Latch is
updated, as required for an access in the sequence; by the 30-bit adder in the
Address Unit. The formatting logic creates a constant offset of one for the update.
The updated address is presented to the Memory Management Unit for translation
and protection checking, and is placed into the ADRF Latch for further address
computations.

HARDWAREFEAlURES 4-15

4.3.2.3

4.3.3

4.3.3.1

For load-multiple and store-multiple operations performed using burst-mode ac­
cesses, the physical address for each access does not appear on the Address Bus,
but the addresses are maintained in the processor so that they may be used to restart
the burst-mode access upon preemption.

SPECIAL INSTRUCTION FETCHES

As discussed in Section 4.2, the processor must create demand fetches when it en­
counters an invalid instruction in the middle of a Branch Target Cache memory block,
or when it attempts to fetch an instruction from an Instruction Prefetch Butter location
which is in the Available state. The Address Unit routes the address for this fetch in a
manner similar to the routing of a branch target address. It passes the contents of the
Decode PC (containing the required instruction address) through the 30-bit adder,
adding it to zero. This address is presented to the Memory Management Unit for
translation, and is used in the Instruction Fetch Unit to complete the fetch.

Early Loads

The early load feature speeds up the execution of load operations by making the
physical address of the load available at the end of the decode cycle of the load
instruction. At the beginning of the next cycle, when the load enters the execute
stage, the physical address appears on the channel. In effect, early loadsreduce the
memory access time by one cycle.

Early loads can occur in two different ways. Either the physical address of the load is
available in the Physical Address Cache memory (PAC), or, when an address compu­
tation immediately precedes the load instruction, the computed physical address can
be forwarded directly to the channel. The latter method is performed by an Early
Address Generator (EAG).

For either type of early load to occur, all of the following conditions must be met:

1. The operation must be a LOAD, with a general-purpose register, rather than a
constant, specified as an address source operand.

2. The operation must load the external word addressed by the source register,
rather than transfer a word from a coprocessor.

3. The source register can be neither the IPB specifier nor the Stack Pointer.

4. The load instruction must not disable address translation for the access (PA = 0).
In other words, address translation must remain under the control of the PD bit of
the Current Processor Status Register.

5. The load instruction must not force the access to be made in the User mode
(UA=O). The program mode must remain under the control of the SM bit of the
Current Processor Status Register.

PHYSICAL ADDRESS CACHE MEMORY

The PAC is a four-entry, direct-mapped cache. Each PAC entry consists of two words.
PAC entries cannot be accessed by software. The first word (Word 0) is the Trans­
lated Physical Address, while the second word (Word 1) contains a Register Tag
and various control bits. The PAC entry registers are illustrated in Figure 4-9 and
Figure 4-10.

PAC Entry Word 0 contains the 32-bit phYSical address of the load. The valid (V) bit of
PAC Entry Word 1 is 1 if the physical address is a valid translation. The 10 bit is set
equal to the 10 bit of the TLB or RMU translation of the address, if address translation
is in effect. Otherwise, the 10 bit in the PAC entry is ignored. The Register Tag field

4-16 HARDWARE FEATURES

Figure 4-9

Figure 4-10

PAC Entry Word 0

23
I I

PAC Entry Word 1

31 23

15 7
I I I I I I I I I I I I I I
Translated Physical Address

15 I I II I II I I I I I I
. Reserved

I I

, , , ,
V :

10

contains the number of the register that holds the memory address of the load; its
value is taken directly from the RS field of the load instruction.

The value of the PGM field is taken from the PGM field of the TLS or RMU translation
of the address, if address translation is in effect. Otherwise, the PGM field in the PAC
entry contains zeros.

The PAC supports the following operations:

• Searching for a valid translation for the load in the decode stage.

• Invalidating by clearing all Valid bits.

• Invalidating a single entry by clearing its Valid bit.

• Updating an existing entry by modifying its Translated Physical Address field and
setting its Valid bit.

• Replacing an existing entry with a new entry and setting its Valid bit.

When a load is in decode, the PAC is searched for a valid entry corresponding to the
memory address register of the load (specified by the RS field). The PAC entry is
selected by the two least significant bits of the RS field of the load instruction. If a
valid translation for the load is found in the PAC, a PAC hit results and the physical
address from the PAC is used for the access. This address is available one cycle
earlier than if the address translation were to wait until the execute stage, and an
early load occurs.

In the case of a PAC miss, the newly translated physical address is written to the
PAC, replacing an existing PAC entry. Only load instructions can replace PAC entries.
This address is then available for subsequent instructions that use the same address
register.

An individual PAC entry is invalidated if any instruction modifies the register whose
translated address is cached in the PAC entry.

The entire PAC is invalidated if any of the following occurs:

• The RESET or WARN input is asserted.

• The Stack Pointer (GR1) is modified.

HARDWARE FEATURES 4-17

.~
"~

!

k

11
:1

4.3.3.2

4.3.3.3

4.3.4

• The processor executes an MTSR instruction whose destination is the MMU
Configuration Register, the Current Processor Status Register, or a Region
Mapping Unit register.

• The processor takes a trap.

• The processor executes an IRET, IRETINV, MTTLB, or LOADM instruction.

• The processor executes an instruction which updates the Register File using an
indirect pointer.

EARLY ADDRESS GENERATOR

When a load is being decoded, its address can be translated early if the instruction in
the execute stage is computing the associated address. An Early Address Generator
(EAG) is constantly translating the results of certain instructions during execution. If a
load happens to refer to an address being computed and translated by the EAG, the
translated address is available for use at the beginning of the exe.cute stage of the
load. In this case, an early load occurs.

Because the EAG must compute and translate an address in a single cycle, it only
operates on a simple subset of instructions: CONST, CONSTH, ADD, ADDS, and
ADDU. These instructions, though simple, are frequently used to compute load ad­
dresses. For the add instructions, the EAG cannot translate the address if the add
causes the input values to cross a page boundary-for example, if there is a carry-out
of bit 11 for 4-kb pages. The page boundary depends on the page size, and, for ad­
dresses translated by a Region Mapping Unit, the page size is treated as 64 kb (the
minimum region size).

If the EAG computes and translates an address for an instruction whose destination
register is mapped by the PAC, the PAC entry is updated with the new translation
whether or not there is a load in decode and whether or not the Valid bit is set for the
PAC entry. This allows the PAC to be updated for common addressing patterns, such
as incremented addresses, and increases the effectiveness of the PAC. However, this
update can occur only if there is not a load using another PAC entry. If there is such a
load, the entry associated with the EAG destination is invalidated.

INHIBITION OF EARLY LOADS

Early loads cause contention for the Address Bus between instruction and data ad­
dresses when a jump or call appears immediately before a load instruction. In this
case, the jump instruction uses the Address Bus during the execute stage of the load
instruction, and the early load is inhibited.

Early loads are also inhibited if a trap or interrupt is taken during the decode stage of
the load.

Arithmetic/Logic Unit

The Arithmetic/Logic Unit (ALU) performs 32-bit arithmetic and logical operations. The
arithmetic operations consist of addition, subtraction, addition with carry-in, subtrac­
tion with carry-in, and primitives for multiplication and division. Instructions specify
whether or not a trap is generated on signed or unsigned arithmetic overflow.

The A and B operands may be complemented independently in the ALU; comp!emen­
tors for data into the ALU are controlled by instructions. This allows subtraction and
reverse subtraction to be formed from addition, and allows certain logical operations
(e.g., XNOR) to be formed from other basic operations (e.g., XOR). The carry-in to
the ALU can be 0, 1, or the value of the Carry bit in the ALU Status Register. The
carry-out of the ALU is used in overflow detection, unsigned comparisons, multiplica­
tion, and division. The ALU carry-out is stored in the ALU Status Register for multi­
precision arithmetic.

4·1 B HARDWARE FEATURES

4.3.5

4.3.6

4.3.7

The AlU also evaluates the relational expressions equal to, not equal to, less-than,
less-than-or-equal-to, greater-than, and greater-than-or-equal-to. Each comparison
computes a Boolean corresponding to the relation between two integer operands or
creates a trap (possibly) based on this relation. The Boolean constants FALSE and
TRUE are represented by a 0 and 1, respectively, in the most-significant bit of a word.

The relational operators may be applied to either signed or unsigned operands. For
unsigned operands, these operators are implemented by recognizing that the AlU
carry-out is the Boolean result of an unsigned comparison if the two numbers are
subtracted and the carry-in is appropriately controlled. For comparison of signed
numbers, the true sign of the result (Le., the resulting sign exclusive-ORed with the
overflow indication) gives the result of the compare. The relational operators equal-to
and not-equal-to are independent of the data type. These operators are implemented
by a 32-bit equal-to-zero comparator.

The AlU also supports the 32-bit logical operations AND, OR, NAND, NOR, AND­
NOT, OR-NOT, XOR, and XNOR.

Field Shift Unit

The Field Shift Unit contains a Funnel Shifter, logic for performing word extracts, and
logic for performing byte and half-word extracts and inserts.

The Funnel Shifter performs N-bit shifts, where N is an integer between 0 and 31,
inclusive, given by a 5-bit shift count. The source of the shift count is specified by the
shift instruction; the shift count is given either by a constant field in the shift instruc­
tion, bits 4-0 of a general-purpose register specified by the shift instruction, or by the
5-bit Funnel Shift Count field in the AlU Status Register.

Both arithmetic and logical shifts are supported, with the difference being the values
stored into vacated bits: arithmetic shifts fill these bits with the sign bit of the operand,
while logical shifts fill them with zero-bits. Arithmetic shifts are possible only for right
shifts.

The Field Shift Unit operates on 32-bit words, 16-bit half-words, and 8-bit bytes. For
byte operations, the position of a byte operand within a word is supplied by the 2-bit
Byte Pointer (BP) field of the AlU Status Register. For half-word operations, the
position of a half-word operand is given by the most-significant bit of the BP field; the
least-significant bit is ignored. The processor supports either left-to-right or right-to-Ieft
byte and half-word ordering within a word.

Prioritizer

The prioritizer counts the number of leading zero-bits in an operand. The count of the
number of zero-bits up to the leading 1 is stored in the specified destination register. If
the operand does not contain a 1, the value stored is 32.

Floating.Point Unit

The Am29050 microprocessor Floating-Point Unit (FPU) has separate addition/
subtraction, multiplication, and division/square root pipelines, all of which share a
common rounding circuit. A block diagram of the Floating-Point Unit is shown in
Figure 4-11.

The FPU contains eight functional units:

Classifier (Cl)-Determines operand type for the CLASS instruction.

HARDWARE FEATuRES 4-19

Figure 4·11 Floating·Point Unit

Round Unit
(RU)

To register file
and

forwarding logic

Note: All data paths are 64 bits wide unless otherwise noted.

Denormalizer (DN)-Equalizes the exponent values of two floating-point operands by
right-shifting the significand of the smaller operand.

Adder (AD)-Adds and subtracts the significands of floating-point operands.

Renormalizer (RN)-Normalizes the result of a floating-point operation by left-shifting
the result's significand until the most significant bit is 1, or until the exponent is O.

Multiplier (MT)-Performs a 32-bit by 32-bit multiplication, producing a 64-bit result in
redundant (sum/carry) form. The multiplier performs both floating-point and integer
multiplications.

Partial Product Summer (PS)-Converts the redundant multiplier output to binary
form. Also sums four successive multiplier outputs to form the intermediate result of a
double-precision multiplication.

Divida/Squai6 Root Unit (DS)-Interactive!y computes floating-point divisions and
square roots.

Round Unit (RU)-Rounds an intermediate result to fit the destination format. The
round unit is also responsible for processing exceptions that occur at the end of an
operation.

4-20 HARDWARE FEATURES

Table 4·1

Table 4-1 shows the functional units used by each operation, and the order in which
they are used. As indicated in the table, some operations may require an additional
cycle for certain types of data inputs:

Staging of Floating·Point Operations

Functional Unit

Operation CL OS MT PS ON AO RN RU

CLASS (s.p., d.p.) 2 3 4

CONVERT (int --) s.p.) 1 2 3 4
CONVERT (int --) d.p.) 1 2 3 4
CONVERT (f.p. --) int) 1 2 3
CONVERT (f.p. --)f.p.) 1 2 (3) 3(4)

DADD 1 2 (3) 3(4)
DDIV 1-17 18 •
DEQ 1 2 3
DGE 1 2 3
DGT 1 2 3
DMAC 1-4 5 6 7 8 9
DMSM 1-4 5 6 7 8 9
DMUL 1-4 5 6
DSUB 2 (3) 3(4)

FADD 2 (3) 3(4)
FDIV 1-10 11 •
FDMUL 2 3 •
FEQ 1 2 3
FGE 1 2 3
FGT 1 2 3
FMAC 2 3 4 5 6
FMSM 2 3 4 5 6
FMUL 2 3 •
FSUB 2 (3) 3(4)

MFACC 2 3
MTACC 2 (3) 3(4)

MULTIPLU 2 3
MULTIPLY 2 3
MULTM 2 3
MULTMU 2 3

SQRT(s.p.) 1-27 28
(d.p.) 1-56 57

Notes: • = Denormalized source operands or results that need to be denormalized will require additional cycles for
operand wrapping or unwrapping (see Table C-3).

() = Optional sequencing (see text).

• When the CONVERT or MTACC instruction is used to convert a denormalized
single-precision floating-point number to double-precision, an additional cycle is
used to normalize the operand.

• When a DADD or FADD instruction receives operands having the potential for
massive cancellation-Le., whose exponent values differ by 0 or 1, and whose
signs are different-an additional cycle is used to re-normalize the intermediate
operand.

• When a DSUB or FSUB instruction receives operands having the potential for
massive cancellation-Le., whose exponent values differ by 0 or 1, and whose
signs are the same-an additional cycle is used to renormalize the intermediate
operand.

HARDWARE FEAWRES 4-21

i:
I}
Ii
I'!
I ~

1':1

li1

1"

II
I" [·l

!i
I;
"I
",I

I"J

Ii
II

The sequencing shown in the table does not apply to the DDIV, DMUL, FDIV,
FDMUL, FMUL, and SORT operations if one or more of the input operands is denor­
malized, or if the result is denormalized; additional cycles are required for wrapping
and/or unwrapping operands (see Table C-3).

The Floating-Point Unit can support multiple operations concurrently, the principal
limitation being resource contention. The resources capable of causing contention are
the 32-by-32 Multiplier (MT), the Divide/Square Root Units (DS), and the Round Unit
(RU).

The 32-by-32 Multiplier and the Divide/Square Root unit can give rise to contention
because they may be allocated to a single operation for multiple cycles. If one of
these resources is busy when required by a subsequent instruction, a pipeline hold
results until the needed resource is free.

While contention for the Round Unit is not common, there are situations in which two
or more functional units have data for the Round Unit at the same time. In general,
data from the earliest-issued contending operation has the highest priority for access
to RU. Priorities, listed from highest to lowest, are:

1. The Renormalizer (RN) result, if the RU contains a result that needs to be
unwrapped (e.g., a denormalized number in normalized form), and the
Denormalizer (DN) and Adder (AD) Units are also busy. Allowing the RN result to
go to RU allows the wrapped result in RU to be forwarded to DN.

2. The Divide/Square Root Unit (DS).

3. The Partial Product Summer (PS), if it has a result that has been waiting for at
least one cycle.

4. The Renormalizer (RN), if it has a result that has been waiting for at least one
cycle.

5. The Partial Product Summer (PS).

6. The Renormalizer (RN).

7. The Adder (AD).

As with loads, floating-point operations are fully interlocked; an operation requiring
the result of a previous operation is prevented from proceeding until that result is
available.

In a single cycle, the Register File can transfer to the Floating-Point Unit:

• One or two double-precision floating-point operands, each of which originates in a
double-word-aligned register pair.

• One or two integer or single-precision floating-point operands.

In a single cycle, the Floating-Point Unit can write one of the following to the Register
File:

• A double-precision floating-point result, written to a double-word-aligned register
pair.

• One or two integer or sing ie-precision floating-point results.

There is a 64-bit Register File port dedicated to the writing of floating-point results.
These results can be written without interfering with integer operations.

4-22 HARDWARE FEAWRES

4.4

4.5

MEMORY MANAGEMENT UNIT

The Memory Management Unit (MMU) performs all memory-management functions il

described in Section 3.6. Address translation is performed during the execute stage of I.\-
any load, store or branch instruction that requires address translation. Address trans- Ii
lation also is performed whenever the processor requires an instruction that has not
been prefetched; as discussed in Section 4.2, address translation is performed in this
case to resolve certain exceptional events that occur during instruction prefetching.

Though the MMU is shared for instruction and data accesses, the processor pipeline
is arranged so that there is no contention for the MMU. In general, this is the result of
the instruction-set definition and the fact that instruction prefetch addresses are gen-
erated by the Instruction Fetch Pointer (see Section 4.2.1).

An instruction address is normally translated only When a branch is executed. Since
neither a load nor a store is executed at the same time, there is no contention for
the MMU. If the Instruction Fetch Pointer overflows, the address translation is de­
ferred until the Instruction Fetch Unit determines that the processor requires the asso­
ciated instruction. Since instruction execution cannot occur at this time, the MMU
cannot be required for the translation of a load or store address, and again there is no
contention.

When the processor performs load-multiple and store-multiple operations, the MMU
translates the address associated with every access. Load-multiple and store-multiple
address sequencing is performed in the virtual address space, rather than both the
virtual and physical address spaces, so that only a single address incrementer is
required. Since the execution of Load Multiple and Store Multiple instructions is not
overlapped with the execution of other instructions, there is no penalty associated
with using the MMU for every access.

The MMU performs address translation in a single cycle. If an address translation is
valid, the results of the translation are placed on the Address Bus along with the
instruction-access or data-access request. In many cases, the address appears on
the Address Bus during the cycle immediately following address translation (it does
not appear if the Address Bus is occupied with another access). This address ap­
pears regardless of the outcome of memory protection checking; this relaxes the
timing constraints on protection checking, which can be performed only after address
translation is complete. If a protection violation is detected, the processor activates
the BINV signal late in the first address cycle for the request.

PIPELINE HOLD MODE

The Pipeline Hold mode is activated whenever sequential processor operation cannot
be guaranteed. When this modEl is active, the pipeline stages do not advance, and
most internal processor state is not modified. The processor places itself in the Pipe­
line Hold mode in the following situations:

1. The processor requires an instruction that has either not been fetched or not been
returned by the external instruction memory.

2. The processor requires data from an in-progress load or floating-point operation,
and the operation has not completed.

3. The processor attempts to execute a load or store instruction while another load
or store is in progress.

4. The proCessor attempts to execute a floating-point operation and the required
functional unit is busy.

HAROWAREFEATURES 4-23

'\1,',1,';,:

If.

ii,

Ii
\

I
f.

5. The processor must perform a serialization operation as described in Section 3.8.

6. The processor is performing a sequence of load-multiple or store-multiple
accesses. The Pipeline Hold mode in this case prevents further instruction
execution until the completion of the load-multiple or store-multiple sequence.

7. The processor has taken an interrupt or trap, and the first instruction of the
interrupt or trap handler has not entered the execute stage. The Pipeline Hold
mode in this case prevents the processor pipeline from advancing until the
interrupt or trap handler can begin execution.

8. The processor has executed an interrupt return, and the target instruction of the
interrupt return has not entered the execute stage. The Pipeline Hold mode in this
case prevents the processor pipeline from advancing until the interrupt return
sequence is complete.

The Pipeline Hold mode is exited whenever the causing conditions no longer exist, or
when the WARN or RESET input is asserted.

4-24 HARDWARE FEATURES

5.1

SYSTEM INTERFACES

The Am29050 microprocessor is pin-compatible with the Am29000 processor. This
chapter describes the attachment of the Am29050 microprocessor to its hardware
environment. It describes the channel, which allows the processor to communicate
with external devices and memories. The Test/Development interface, provided for
hardware development and testing, is also described. In addition, this chapter in­
cludes sections on external interrupts, traps, processor reset, clock generation, and
master/slave checking .

. In the signal descriptions of Section 5.1, certain outputs are described as being
3-state or bi-directional outputs. However, all outputs (except MSERR) may be placed
in a high-impedance state by the Test mode. The 3-state and bi-directional terminol­
ogy in this section is for those outputs (except SYSCLK) that are disabled when the
processor grants the channel to another master.

SIGNAL DESCRIPTION

A(31-O)

RIW

SUP/US

Address Bus (3-State Outputs, Synchronous)
The Address Bus transfers the byte address for all accesses except
burst-mode accesses. For burst-mode accesses, it transfers the
address for the first access in the sequence.

Bus Request (Input, Synchronous)
This input allows other masters to arbitrate for control of the
processor channel.

Bus Grant (Output, Synchronous)
This output signals to an external master that the processor is
relinquishing control of the channel in response to BREQ.

Bus Invalid (Output, Synchronous)
This output indicates that the Address Bus and related controls are
invalid. It defines an idle cycle for the channel.

ReadlWrlte (3-state Output, Synchronous)
This signal indicates whether data is being transferred from the
processor to the system, or from the system to the processor.

Supervisor/User Mode (3-State Output, Synchronous)
This output indicates the program mode for an access.

Lock (3-8tate Output, Synchronous)
This output allows the implementation of various channel and device
interlocks. It may be active only for the duration of an access, or
active for an extended period of time under control of the Lock bit in
the Current Processor Status.

The processor does not relinquish the channel (in response to BREQ)
when LOCK is active.

SYSTEM INTERFACES 5-1

I;
!j
l~
!i
il
II
I

MPGM(1-0) MMU Programmable (3-State Outputs, Synchronous)
These outputs reflect the value of two PGM bits in the Translation
Look-Aside Buffer entry associated with the access. If no address
translation is performed, these signals are both Low.

PEN Pipeline Enable (Input, Synchronous)
This signal allows devices that can support pipelined accesses (I.e.,
that have input latches for the address and required controls) to
signal that a second access may begin while the first completes.

1(31-0) Instruction Bus (Inputs, Synchronous)
The Instruction Bus transfers instructions to the processor.

IREQ Instruction Request (3-State Output, Synchronous)
This Signal requests an instruction access. When it is active, the
address for the access appears on the Address Bus.

IREQT Instruction Request Type (3-State Output, Synchronous)
This Signal specifies the address space of an instruction request
when IREO is active.

5-2 SYSTEM INTERFACES

IREQT

o
1

Meaning

Instruction/random access memory access
Instruction read-only memory access

Instruction Ready (Input, Synchronous)
This input indicates that a valid instruction is on the Instruction Bus.
The processor ignores this signal if there is no pending instruction
access.

Instruction Error (Input, Synchronous)
This input indicates that an error occurred during the current in­
struction access. The processor ignores the content of the Instruction
Bus, and an Instruction Access Exception trap occurs if the processor
attempts to execute the invalid instruction. The processor ignores this
signal if there is no pending instruction access.

Instruction Burst Request (3-State Output, Synchronous)
This signal is used to establish a burst-mode instruction access and
to request instruction transfers during a burst-mode instruction
access. IBREO may be active even though the Address Bus is being
used for a data access. This signal becomes valid late in the cycle,
with respect to IREO.

Instruction Burst Acknowledge (Input, Synchronous)
This input is active whenever a burst-mode instruction access has
been established. It may be active even though no instructions
currently are being accessed.

Pipelined Instruction Access (3-State Output, Synchronous)
If IREO is not active, this output indicates that an instruction access is
pipe lined with another in-progress instruction access. The indicated
access cannot complete until the first access is complete. The
completion of the first access is signaled by the assertion of IREO.

0(31-0) Data Bus (BI-dlrectlonal, Synchronous)
The Data Bus transfers data to and from the processor, for load and
store operations.

DREQ Data Request (3-State Output, Synchronous)
This signal requests a data access. When it is active, the address for
the access appears on the Address Bus.

DREQT(1-0) Data Request Type (3-State Outputs, Synchronous)

DBREQ

DBACK

OPT(2-O)

These signals specify the address space of a data access as follows
(the value x is a don't care).

DREQT1

o
o
1

DREQTO

o
1
x

Meaning

Instruction/data memory access
Input/output access
Coprocessor transfer

An interrupVtrap vector request is indicated as a data-memory read. If
required, the system can identify the vector fetch by the STAT(2-Q)
outputs.

Data Ready (Input, Synchronous)
For loads, this input indicates that valid data is on the Data Bus. For
stores, it indicates that the access is complete, and that data need no
longer be driven on the Data Bus. The processor ignores this Signal if
there is no pending data access.

Data Error (Input, Synchronous)
This input indicates that an error occurred during the current data
access. For a load, the processor ignores the content of the Data
Bus. For a store, the access is terminated. In either case, a Data
Access Exception trap occurs. The processor ignores this signal if
there is no pending data access.

Data Burst Request (3-State Output, Synchronous)
This Signal is used to establish a burst-mode data access and to
request data transfers during a burst-mode data access. DBREQ
may be active even though the Address Bus is being used for an
instruction access. This signal becomes valid late in the cycle, with
respect to DREQ.

Data Burst Acknowledge (Input, Synchronous)
This input is active whenever a burst-mode data access has been
established. It may be active even though no data are currently being
accessed.

Plpellned Data Access (3-State Output, Synchronous)
If DREQ is not active, this output indicates that a data access is
pipelined with another in-progress data access. The indicated access
cannot complete until the first access is complete. The completion of
the first access is signaled by the assertion of DREQ.

Option Control (3-State Outputs, Synchronous)
These outputs reflect the value of bits 18-16 of the load or store
instruction which begins an access. Bit 18 of the instruction is
reflected on OPT2, bit 17 on OPT1, and bit 16 on OPTO.

SYSTEM INTERFACES . 1-3

I,.
1-','
"

I
I;
i!

I""
,

I,
1 ..

1
.

I,

i

I',

INTR{3-0)

5-4 SYSTEM INTERFACES

The standard definitions of these signals (based on DREaT) are as
follows (the value x is a don't care).

DREQT1 DREQTO OPT2 OPT1 CPTO Meaning

0 x 0 0 0 Word-length access
0 x 0 0 1 Byte access
0 x 0 1 0 Half-word access
0 0 1 0 0 Instruction ROM

access (as data)
0 0 0 1 Cache control
0 0 1 0 Hardware-develop-

m~nt system
accesses

-All Others- Reserved

During an interruptltrap vector fetch, the OPT(2-O) Signals indicate a
word-length access (000). Also, the system should return an entire, .
aligned word for a read, regardless of the indicated data length.

The Am29050 microprocessor does not explicitly prevent a store to
the instruction ROM.

Coprocessor Data Accept (Input, Synchronous)
This signal allows the coprocessor to indicate the acceptance of
operands or operation codes. For transfers to the coprocessor, the
processor does not expect a DRDY response; an active level on CDA
performs the function normally performed by DRDY. CDA may be
active whenever the coprocessor is able to accept transfers.

Warn (Input, Asynchronous, Edge-Sensitive)
A high-to-Iow transition on this input causes a non-maskable WARN
trap to occur. This trap bypasses the normal trap vector fetch
sequence, and is useful in situations where the vector fetch may not
work (e.g., when data memory is faulty).

Interrupt Request (Inputs, Asynchronous)
These inputs generate prioritized interrupt requests. The interrupt
caused by INTRO has the highest priority, and the interrupt caused by
INTR3 has the lowest priority. The interrupt requests are masked in
prioritized order by the Interrupt Mask field in the Current Processor
Status Register.

Trap Request (Inputs, Asynchronous)
These inputs generate prioritized trap requests. The trap caused by
TRAPO has the highest priority. These trap requests are disabled by
the DA bit of the Current Processor Status Register.

STAT(2-0)

CNTL(1-O)

MSERR

SYSCLK

INCLK

CPU Status (Outputs, Synchronous)
These outputs indicate the state of the processor's execution stage
on the previous cycle. They are encoded as follows:

STAT2 STAn

o 0
o 0
o 1
o 1
1 0
1 0
1 1
1 1

STATO

o
1
o
1
o
1
o
1

Condition

Halt or Step Modes
Pipeline Hold Mode
Load Test Instruction Mode, Synchronize
Wait Mode
Interrupt Return
Taking Interrupt or Trap
Non-Sequential Instruction Fetch
Executing Mode

CPU Control (Inputs, Asynchronous)
These inputs control the processor mode:

CNTL1

o
o
1
1

CNTLO

o
1
o
1

Reset (Input, Asynchronous)

Mode

Load Test Instruction
Step
Halt
Normal

This input places the processor in the Reset mode.

Test Mode (Input, Asynchronous)
When this input is active, the processor is in Test mode. All outputs
and bi-directional lines, except MSERR, are forced to the
high-impedance state.

Master/Slave Error (Output, Synchronous)
This output shows the result of the comparison of processor outputs
with the signals provided internally to the off-chip drivers. If there is a
difference for any enabled driver, this line is asserted.

System Clock (BI-dlrectlonal)
This is either a clock output with a frequency that is half that of
INCLK, or an input from an external clock generator at the
processor's operating frequency.

Input Clock (Input)
When the processor generates the clock for the system. this is an
oscillator input to the processor, at twice the processor's operating
frequency. In systems where the clock is not generated by the
processor. this Signal must be tied High or Low, except in certain
master/slave configurations as discussed in Section 5.8.

The following pins are not signal pins. but are named in Am29050 microprocessor
documentation because of their special role in the processor and system.

PWRCLK Power Supply for SYSCLK Driver
This pin is a power supply for the SYSCLK output driver. It isolates
the SYSCLK driver. and is used to determine whether or not the
Am29050 microprocessor generates the clock for the system. If
power (+5 volts) is applied to this pin. the Am29050 microprocessor

SYSTEM INTERFACES 5·5

5.2

5.2.1

5.2.2

PIN169

generates a clock on the SYSCLK output. If this pin is grounded, the
Am29050 microprocessor accepts a clock generated by the system
on the SYSCLK input.

Alignment pin
This pin is used to indicate proper pin-alignment of tlie Am29050
microprocessor. Hardware-development systems can use this pin to
communicate its presence to the system.

CHANNEL DESCRIPTION

The processor channel provides the bandwidth required for. performance, while per~
mitting the connection of many different types of devices. This section describes the
channel, and methods of connecting devices and memories to the processor.

The channel also is used for transfers to and from the coprocessor. Coprocessor
transfers are described in Section 6.2.

Timing diagrams for operations described in this chapter appear in Appendix A.

Channel Overview

The channel consists of three 32-bit synchronous buses with associated control and
status signals: the Address Bus, Data Bus, and Instruction Bus. The Address Bus
transfers addresses and control information to devices and memories. The Data Bus
transfers data to and from devices and memories. The Instruction Bus transfers in­
structions to the processor from instruCtion memories. In addition, a set of Signals
allow control of the channel to be relinquished to an external master.

There are five logical groups of'signals performing five distinct functions, as follows
(since some signals perform more than one function, a signal may appear in more
than one group):

1. Instruction Address Transfer and Instruction Access Requests: A(31-Q), SUP/US,
MPGM(1-'O), PEN, IREO, IREOT, PIA, BINV.

2. Instruction Transfer: 1(31-0), IBREO, IRDY, IERR, IBACK.

3. Data Address Transfer and Data Access Requests: A(31-O), RIW, SUP/US,
LOCK, MPGM(1-O), PEN, DREO, DREOT(1-O), OPT(2-Q), PDA, BINV.

4. Data Transfer: D(31-O), DBREO, DRDY, DERR, DBACK, CDA.

5. Arbitration: BREO, BGRT, BINV.

User-Defined Signals

There are two types of user-defined outputs on the processor to control devices and
memories directly in a system-dependent manner. Each of these outputs is valid
simultaneously with-and for the same duration as-the address for an access.

The first set of user-defined signals, MPGM(1-Q), is determined by the PGM bits in
the Translation Look-Aside Buffer entry used in address translation. If address trans­
lation is not performed, these outputs are both Low.

The second set of signals, OPT(2-O), are determined by bits 18-16 of the load or
store instruction that initiates an access. These signals are valid only for data ac­
cesses, and have a pre-defined interpretation for coprocessor data transfers.

5-6 SYSTEM INTERFACES

5.2.3

5.2.4

Standard interpretations of OPT(2-Q) are given in Section 5.1. Since the OPT(2-Q)
signals are determined by instructions. they have an impact on application-software
compatibility. and system hardware should use the given definitions of OPT(2-Q). The
OPT(2-Q) signals are used to encode byte and half-word accesses. However. for a
load. the system should return an entire. aligned word. regardless of the indicated
data width.

Note that the standard interpretations of OPT(2-Q) apply only to accesses to instruc­
tion/data memory and input/output. Other interpretations may be used for coprocessor
transfers.

For interrupt and trap vector fetches. the MPGM(1-Q) and OPT(2-Q) outputs are
all Low.

Instruction Accesses

Instruction accesses occur to one of two address spaces: instruction/data memory
and instruction read-only memory (instruction ROM). The distinction between these
address spaces is made by the IREQT signal. which is in turn derived from the ROM
Enable (RE) bit of the Current Processor Status Register. These are truly distinct
address spaces; each may be populated independently based on the needs of a
particular system.

Instruction/data memory contains both instructions and data. Although the channel
supports separate instruction and data memories. the Memory Management Unit
does not. In certain systems. it may be required to access instructions via loads and
stores. even though instructions may be contained in physically separate memories.
For example. this requirement might be imposed because of the need to load instruc­
tions into memory. Note also that the OPT(2-Q) signals may be used to allow the
access of instructions in instruction ROM. using loads; the Am29050 microprocessor
does not prevent a store to the instruction ROM. and protection against stores to the I '
instruction ROM must be provided externally. if required.

All processor instruction fetches are read accesses. and the R/W signal is High for all
instruction fetches.

Data Accesses

Data accesses occur to one of three address spaces: instruction/data memory. input/
output (I/O). and the coprocessor. The distinction between these spaces is made by
the DREQT(1-Q) signals. which are in turn determined by the load or store instruction
which initiates a data access. Each of these address spaces is distinct from the
others.

The protocol for data transfers to and from the coprocessor is slightly different than
the protocol for instruction/data memory and I/O accesses. These transfers are de­
scribed in Section 6.2.

Data accesses may occur either from a slave device or memory to the processor (for
a load). or from the processor to a slave device or memory (for a store). The direction
of transfer is determined by the R/W signal. In the case of a load. the processor re­
quires that data on the Data Bus be held valid only for a short time before the end of a
cycle. In the case of a store. the processor drives the Data Bus as soon as the bus is
available and holds the data valid until the slave device or memory signals that the
access is complete.

SYSTEM INTERFACES 5·7

5.2.5

5.2.6

5.2.7

Reporting Errors

The successful completion of an instruction access is indicated by an active level on
the IRDY input, and the successful completion of a data access is indicated by an
active level on the DRDY input. If there are exceptional conditions for which an in­
struction or data access cannot complete successfully, the unsuccessful completion is
indicated by an active level on the IERR or DERR input, as appropriate.

If the processor receives an IERR or DERR in response to an instruction or data ac­
cess, it ignores the content of the Instruction or Data Bus and the value of IRDYor
DRDY. An IERR response causes an Instruction Access Exception trap or a Monitor
trap, unless it is associated with an instruction that the processor does not ultimately
execute (because of a non-sequential instruction fetch). A DERR response always
causes either a Data Access Exception trap, a Coprocessor Exception trap, or a
Monitor trap.

The processor supports the restarting of unsuccessful accesses upon an interrupt
return. In the case of an unsuccessful instruction access, the restart is performed by
the Program Counter 0 and Program Counter 1 registers. In the case of an unsuc­
cessful data access, the restart is performed by the Channel Address, Channel Data,
and Channel Control registers. In any event, the control program must determine
whether or not an access can and/or should be restarted.

The Instruction Access Exception and Data Access Exception traps cannot be
mask~d. If one of these traps occurs within an interrupt or trap handler, a Monitor trap
occurs.

Access Protocols

Figure 5-1 shows a control flowchart for accesses performed by the Am29050 micro­
processor. This control flow applies independently to both instruction and data ac­
cesses. Since the processor performs concurrent instruction and data accesses,
these accesses may be at different points in the control flow at any given point in time.

Note that the items on the flowchart of Figure 5-1 do not represent actual states, and
have no particular relationship to processor cycles. The flowchart provides only a
high-level understanding of the control flow. Also, exceptions and error conditions are
not shown.

The channel supports three protocols for accesses: simple, pipelined, and burst­
mode. These are described in the following sections. The various protocols are de­
fined to accommodate minimum-latency accesses as well as maximum-transfer-rate
accesses. The protocols allow an access to complete ina single cycle, although they
support accesses requiring arbitrary numbers of cycles. Address transfers for ac­
cesses may be independent of instruction or data transfers.

Simple Accesses

For a simple access, the processor holds the address valid throughout the entire
access. This protocol is used for single-cycle accesses, and for accesses to simple
devices and memories.

On any cycle before the completion of the access, a simple access may be converted
to a pipelined access (by the assertion of PEN) or to a burst-mode access (by the
assertion of IBACK or DBACK, if the processor is asserting IBREQ or DBREQ). Thus,
the protocol for simple accesses also may be used during the initial cycles of pipe­
lined and/or burst-mode accesses. This is advantageous, for example, in cases where

5·8 SYSTEM INTERFACES

Figure 5·1 Channel Flowchart

Processor Slave Device
....................... ... -.-

No Access

,
•••••••••••• J •••••••••••••••••• __ ' __ ••• _ ••••• _ •••••••••••

Assert IREO, DREQ

Latch Result

,
Primary Access

Simple

Drive result and
IRDYor DRDY

Ir P-ip-e-iin-ed'i

Drive result and
IRDYor DRDY

Primary
Access

: Complete ,

NO

----~---------~------------------------, , ,
............................ ; :- "'''' ...

Pipelined Access

Assert PIA, PDA

De-assert PIA, PDA

SYSTEM INTERFACES 5·9

5.2.8

5.2.8.1

5.2.8.2

the slave device or memory either requires the address to be held for multiple cycles
at the beginning of the pipe lined or burst-mode access, or cannot respond to the
pipelined or burst-mode request within one cycle.

Pipelined Accesses

A pipelined access is one that starts before an earlier in-progress access completes.
The in-progress access is called a primary access, and the second access is called a
pipelined access. A pipelined access is of the same type as the primary access. For
example, an instruction access that begins before the completion of a data access is
not considered to be a pipe lined access, whereas a second data access is.

The Am29050 microprocessor allows only one pipelined access at any given time,
and does not perform pipelined accesses for the Load Multiple and Store Multiple
instructions.

TRADEOFFS

For accesses that require more than one cycle to complete, pipe lined accesses per­
form better than simple accesses, because they allow the overlap of portions of two
accesses. In addition, the ability to latch addresses in support of pipelined accesses
reduces utilization of the Address Bus, thereby reducing contention between instruc­
tion and data accesses. However, devices and memories that support pipelined ac­
cesses are somewhat more complex than devices and memories that support only
simple accesses.

Support for pipelined operations is required for both the primary access and the
pipe lined access. The slave performing the primary access must contain some means
for storing the address and other information about the access. The slave performing
the pipelined access must be able to restrict its use of the Instruction Bus or Data
Bus, and must be prepared to cancel the access (as explained below).

PIPELINED OPERATION

Pipelined accesses are controlled by the signals PEN, PIA, and PDA. Because of
internal data-flow constraints, the Am29050 microprocessor does not perform a
pipelined store operation while a load is in progress. However, the protocol does not
restrict pipe lined operations. Other channel masters may perform a pipelined store
during a load.

Except as noted above, the processor attempts to perform pipelining for every ac­
cess; the input PEN indicates whether or not pipelining is supported for a given ac­
cess. The PEN input can be driven by individual devices, or can be tied active or
inactive to enable or disable system-wide pipe lined accesses. The processor ignores
the value of PEN unless it is performing an access.

The processor samples PEN on every cycle during a primary access. If PEN is active
on any cycle, the processor may cease to drive the address and associated controls
for the primary access in the next cycle. Following this, PEN must remain active. If the
processor requires another access before the primary access completes, it drives the
address and controls for the second access, asserting PIA or PDA to indicate that the
second access is a pipe lined access.

The output IREO or DREO, as appropriate, is not asserted for a pipelined access.
Devices and memories that cannot support pipelined accesses should therefore
ignore PIA and/or PDA, and base their operation upon IREO and/or DREO.

A device or memory that receives a request for a pipelined access may treat it as any
other acce·ss, with one exception: the pipe lined access cannot use the Instruction and

5·10 SYSTEM INTERFACES

5.2.8.3

5.2.9

Data buses nor the associated controls (e.g., IRDYor DRDY). In the case of a data
read or instruction access, the results of the pipelined access cannot be driven on the
appropriate bus. In the case of a data write, the data does not appear on the Data
Bus. Any other operations for the access, such as address decoding, can occur.

When the primary access completes (as indicated by IRDY or DRDy), the pipelined
access becomes a primary access. The processor indicates this by asserting IREO or
DREO, depending on the type of access. The device or memory performing the
pipelined access may complete the access as soon as IREO or DREO is asserted
(possibly in the same cycle). When the access becomes a primary access, it controls
the channel as any other primary access. For example, it may determine whether or
not another pipelined access can be performed.

When the pipelined access becomes a primary access, the output PIA or PDA re­
mains asserted for one cycle, to insure continuity of control within the slave device or
memory. In the cycle after IREO or DREO is asserted, PIA or PDA is de-asserted,
unless the processor initiates another pipelined access, in which case PIA or PDA
remains asserted for the new access.

CANCELLATION OF PIPELINED ACCESSES

If the processor takes an interrupt or trap before a pipe lined access becomes a pri­
mary access, the request for the pipelined access is removed from the channel. This
may occur, for example, when IERR or DERR is signaled for the primary access.

If the pipelined access is removed from the channel, the slave device or memory does
not receive an IREO or DREO for the pipe lined access. Hence, the pipelined access
does not become a primary access, and cannot complete. A pipe lined access may be
canceled in this manner at any time before it becomes a primary access. Because of
this, a pipe lined access should not change the state of a slave device or memory until
the pipe lined access becomes a primary access.

Burst·Mode Accesses

A burst-mode access allows multiple instructions or data words at sequential ad­
dresses to be accessed with a single address transfer. The number of accesses
performed, and the timing of each access within the sequence, is controlled dynami­
cally by the burst-mode protocol. Burst-mode accesses take advantage of sequen­
tial addreSSing patterns, and provide several benefits over simple and pipelined
accesses:

1. Simultaneous instruction and data accesses. Burst-mode accesses reduce the
utilization of the Address Bus. This is especially important for instruction
accesses, which are normally sequential. Burst-mode instruction accesses
eliminate most of the address transfers for instructions, allowing the Address Bus
to be used for simultaneous data accesses.

2. Faster access times. By eliminating the address-transfer cycle, burst-mode
accesses allow addresses to be generated in a manner which improves access
times.

3. Faster memory access modes. Many memories have special high-bandwidth
access modes (e.g., static-column page mode and nibble mode). These modes
generally require a sequential addressing pattern, even though addresses may
not be presented explicitly to the memory for all accesses. Burst-mode accesses
allow the use of these access modes, without hardware to detect sequential
addressing patterns.

SYSTEM INTERFACES 5·11

5.2.9.1

Figure 5-2

Active

BURST·MODE OVERVIEW
The control-flow diagrams in Figure 5-2 and Figure 5-3 illustrate the operation of the
processor and an instruction memory during a burst-mode instruction access. The
control-flow diagrams in Figure 5-4 and Figure 5-5 illustrate the operation of the pro­
cessor and a data memory or device during a burst-mode data access. These dia­
grams are for illustration only; nodes on these diagrams do not necessarily corre­
spond to processor or slave states, and transitions on these diagrams do not neces­
sarily correspond to processor cycles.

A burst-mode access is in one of the following operational conditions at any given
time.

Established-The processor and slave device have successfully initiated the
burst-mode access. A burst-mode access that has been established is either

Processor Burst-Mode Instruction Accesses: Control Flow

(iBREQ, Ti3ACR" Active)

IPB (1) location
available and
IBACK Active

Suspended

If no exception
retransmn address

(1) IPB = Instruction Prefetch Buffer

5·12 SVSfEM INlERFACES

TLB miss or
protection violation

Figure 5·3 Slave Burst·Mode Instruction Accesses: Control Flow

(IBREO, IBACK Active)

Active

___ 5l~~p_e!l~e_d ___ _

IREO
Active

Terminated,
Preempted, or
Canceled by

Processor

Cannot continue burst

Preempted

Note: A similar state transition may be used to support suspended burst-mode data accesses
or a channel master other than the processor.

Unsuccessful
Fetch

Canceled

active or suspended. An established burst-mode access may become preempted,
terminated, or canceled.

Active-Instruction or data accesses and transfers are being performed as the result
of the burst-mode access. An active burst-mode access may become suspended.

Suspended-No accesses or transfers are being performed as the result of the
burst-mode access, but the burst-mode access remains established. Additional ac­
cesses and transfers may occur at some later time (Le., the burst-mode access may
become active) without the re-transmission of the address for the access.

Preempted-The burst-mode access can no longer continue because of some condi­
tion, but the burst-mode access can be re-established within a short amount of time.

Terminated-Ali required accesses have been performed.

SYSTEM INTERFACES 5-13

Figure 5-4 Processor Burst-Mode Data Accesses: Control Flow

If no exception
retransmit address

(DBREQ, DBACK Active)

Final
Access

TLB miss or
protection violation

DERR Active,
or InterruptfTrap Taken

Note: The Am29050 microprocessor does not suspend burst-mode data accesses.

Canceled-The burst-mode access can no longer continue because of some excep­
tional condition. The access may be re-established only after the exceptional condi­
tion has been corrected, if possible.

Each of the preceding conditions, except for the terminated condition, is under the
control of both the processor and slave device or memory. The terminated condition is
determined by the processor, since only the processor can determine that ali required
accesses have been performed. The following sections discuss each of the above
conditions with respect to the burst-mode protocol.

5-14 SYSTEM INTERFACES

Figure 5·5 Slave Burst·Mode Data Accesses: Control Flow

(DBREQ, DBACK Active)

Active

DBREQ
Active

Successful
Access

, Cannot continue burst ,

,
• ______ ... ___________________ 4

5.2.9.2

DBREQ
Inactive

Terminated,
Preempted, or
Canceled by

Processor

Preempted

ESTABLISHING BURST·MODE ACCESSES

Canceled

The Am29050 microprocessor attempts to perform all instruction prefetches using
burst-mode accesses, except for instruction fetches at the last word before a 1-kb
address boundary. For data accesses, the processor attempts to perform load­
multiple and store-multiple operations using burst-mode accesses. The processor
indicates that it desires a burst-mode access by asserting IBREQ or DBREQ during
the cycle in which the initial address is placed on the Address Bus (however, note that
these signals become valid later in the cycle than the address).

The inputs IBACK and DBACK indicate that a requested burst-mode access is sup­
ported. The processor ignores the value of IBACK unless IBREQ is asserted, and it
ignores the value of DBACK unless DBREQ is asserted.

When it desires a burst-mode access, the processor continues to drive IBREQ or
DBREQ on every cycle for which the address is valid on the Address Bus. During this
time, the device or memory involved in the access may assert IBACK or DBACK to
indicate that it can perform the burst-mode access. If IBACK or DBACK (as appropri­
ate) is asserted while the initial address appears on the Address Bus, the burst-mode
access is established. In the following cycle, the processor removes the request

SYSTEM INTERFACES 5-15

i

11

ii ,.,
<I

5.2.9.3

5.2.9.4

address and de-asserts IREQ or DREQ. However, it continues to assert IBREQ or
DBREQ.

If the burst-mode access is not established on the first access, the processor attempts
to establish a burst-mode access on each subsequent address transfer, as long as
there are more accesses yet to be performed. During any subsequent access, the
addressed device or memory mayestablish a burst-mode access by asserting IBACK
or DBACK. If the burst-mode access is never established, the default behavior is to
have the processor transmit an address for every access.

ACTIVE AND SUSPENDED BURST·MODE ACCESSES
After the burst-mode access is established, IBREQ and DBREQ are used during
subsequent accesses to indicate that the processor requires at least one more ac­
cess. If IBREQ or DBREQ is active at the end of the cycle in which an access suc­
cessfully completes (Le., when IRDYor DRDY is active), the processor requires an­
other access. If the slave device or memory previously has not preempted the burst­
mode access, and does not preempt (by de-asserting IBACK or DBACK) or cancel
(by asserting IERR or DERR) the burst-mode access in the cycle that the access
completes, the additional access must be performed.

The execution rate of instructions is known only dynamically, so that in certain situ­
ations, a burst-mode instruction access must be suspended. If IBREQ is inactive
during the cycle in which an inst~uctionaccess completes, the burst-mode access is
suspended (if it is neither preempted nor canceled at the same time). The burst-mode
access remains suspended unless the processor requests a new instruction access
(in which case IREQ is asserted), or unless the instruction memory preempts the
burst-mode access.

A suspended burst-mode instruction access becomes active whenever the processor
can accept more instructions. The processor activates the burst-mode access by
asserting IBREQ. If the instruction memory does not preempt the burst-mode access
during this cycle, an instruction access must be performed.

When a suspended burst-mode instruction access is activated, the resulting instruc­
tion access is not permitted to complete in the cycle in which IBREQ is asserted, but
may complete in the next cycle. The reason for this restriction is that the burst-mode
protocol is defined such that the combination of an active level on IBREQ and IRDY
causes an instruction access (as previously discussed). If the instruction access
completes immediately in the cycle that a suspended burst-mode access is activated,
there is an ambiguity in the protocol: it is possible to interpret a single-cycle assertion
of IBREQ as a request for two instructions.

The above ambiguity is resolved by delaying the instruction access resulting from a
re-activated burst-mode access for a cycle. Since this restriction applies only when
the Instruction Prefetch Buffer is full and the instruction memory is capable of a very
fast access, the delayed instruction response has no performance impact.

The Am29050 microprocessor does not suspend burst-mode data accesses, because
the data transfers occur to and from general-purpose registers, which are always
available. However, other channel masters may suspend burst-mode data accesses
(during direct memory accesses, for example). The principles for suspending burst­
mode accesses are the same as those for instruction accesses discussed above.

PROCESSOR PREEMPTION, TERMINATION, AND CANCELLATION
The processo~eempt, terminate or cancel a burst-mode access by de-assert­
ing IBREQ or DBREQ, and asserting IREQ or DREQ at some later point. During the

5·16 SYSTEM INTERFACES

5.2.9.5

period after IBREO or DBREO is de-asserted and before IREO or DREO is asserted,
the burst-mode access is in a suspended condition. Normally, the processor receives
one more instruction or data word after IBREO or DBREO is de-asserted. However,
this access may complete in the same cycle that IBREO or DBREO is de-asserted.
Please note that the processor may de-assert IBREO or DBREO without receiving an
IBACK or DBACK to acknowledge the burst-mode access.

The slave device or memory cannot distinguish between preempted, terminated, and
canceled burst-mode accesses, when these are caused by the processor, until the
processor asserts IREO or DREO. If the slave continues to assert IBACK or DBACK
after IBREO or DBREO is de-asserted, the slave should be prepared to accept any
new request during the cycle that IREO or DREO is asserted to begin the new access.
The reason for this is that the processor may attempt to establish a burst-mode ac­
cess for the new access: if the slave is asserting IBACK or DBACK because of a
previously preempted, terminated or canceled burst-mode access, the processor
interprets the active IBACK or DBACK as establishing the new burst-mode access
and removes the request in the following cycle.

The processor preempts a burst-mode access when an external channel master
arbitrates for the channel, or when a burst-mode fetch crosses a potential virtual-page
boundary. Since the minimum page size is 1 kb, burst-mode instruction and data
accesses are preempted whenever the address sequence crosses a 1-kb address
boundary. The burst is re-established as soon as a new address translation is per­
formed (if required). A new physical address is transmitted when the burst-mode
access is re-established.

Note that the preemption resulting from page boundaries is advantageous for devices
or memories that require counters to follow the burst-mode address sequence. Since
all burst-mode accesses are word accesses, and the processor re-transmits an ad­
dress at every 1-kb address boundary, an 8-bit counter in the slave device or memory
is sufficient to follow the burst-mode address sequence. Additional address bits are
simply latched.

The processor terminates a burst-mode access whenever all required instructions or
data have been accessed. In the case of instruction accesses, the burst-mode access
is terminated when a non-sequential fetch occurs. In the case of data accesses, the
burst-mode access is terminated when the count indicates a single load or store
remains. The last load or store is executed as a simple access.

The processor cancels a burst-mode access when an interrupt or trap is taken. Note
that a trap may be caused by the burst-mode access, for example when a Translation
Look-Aside Buffer miss occurs on an address in the burst-mode sequence. If the
processor cancels a burst-mode access when an access in the sequence remains to
be complete, this access must be completed in spite of the cancellation.

Canceled burst-mode data accesses may be restarted at some (possibly much later)
point in execution via the Channel Address, Channel Data, and Channel Control

;,

registers. In this case, the burst-mode access is restarted at the point at which it was Ii
canceled, rather than at the beginning of the original address sequence. I:i

SLAVE PREEMPTION AND CANCELLATION

The slave device or memory involved in a burst-mode access may preempt the ac­
cess by de-asserting IBACK or DBACK. The processor samples IBACK and DBACK
when IRDYand DRDYare active, so that IBACK and DBACK may be de-asserted as
the last supported access is completed. However, IBACK and DBACK also may be
de-asserted in any cycle before the access completes; to preempt the access, IBACK

SYSTEM INTERFACES 5·17

5.2.10

5.2.11

or DBACK must remain inactive until IRDY or DRDY is asserted. If IBACK or DBACK
is de-asserted when the processor is in a state where it expects an access, the ac­
cess must be completed.

In general, the slave device or memory preempts the burst-mode access whenever it
cannot support any further accesses in the burst-mode sequence. This normally
occurs whenever an implementation-dependent address boundary is encountered
(e.g., a cache-block boundary), but may occur for any reason. By preempting the
burst-mode access, the slave receives a new request, with the address of the next
instruction or data word required by the processor.

The slave device or memory may cancel a burst-mode access by asserting IERR or
DERR in response to a requested access. The signals IBACK or DBACK need not be
de-asserted at this time, but should be de-asserted in the next cycle.

Note that the IERR and DERR signals cause non-maskable traps, except in the case
where IERR is asserted for an instruction which the processor does not execute.

Arbitration

External masters can gain access to the Address, Data, and Instruction buses by
asserting the BREa input. The processor completes any pending access, preempts
any burst-mode access, and asserts the BGRT output. At this time, the processor
places all channel outputs associated with the Address, Data, and Instruction buses in
the high-impedance state.

For the first cycle that BGRT is asserted, the output BINV is also asserted. If the exter­
nal master cannot control the Address Bus and associated controls in the cycle that
BGRT is asserted, the active level on BINV may be used to define an idle cycle for the
channel (Le. any spurious access requests are ignored). The BINV signal is asserted
only for a single cycle, so the external master must take control of the channel in the
cycle after BGRT is asserted.

While the BREa input remains asserted, the processor continues to assert BGRT. The
external master has control over the channel during this time.

To release the channel to the processor, the external master de-asserts BREa, but
must continue to control the channel for the first cycle in which BREa is de-asserted.
In the cycle after BREa is de-asserted, the processor asserts BINV and de-asserts
BGRT; the external master should release control of the channel at this time. On the
following cycle, the processor de-asserts BINV, and is able to use the channel. The
processor re-establishes any burst-mode access preempted by arbitration.

The processor does not relinquish the channel when the LOCK signal is active. This
prevents external masters from interfering with exclusive accesses.

Use of BINV to Cancel an Access

Besides using the B!NV signa! to transfer control of the channel from one master to
anothei, the Am29050 micioprocessoi uses the BINV signal to cancel accesseS aftai
they have been initiated. To cancel an access, BINV is asserted during a cycle in
which IREa or DREa also is asserted. If an access is canceled, the accompanying
response (using IRDY, IERR, DRDY or DERR) is ignored during the cycle that BINV is
asserted; thereafter, the system should not respond to the canceled access.

5-18 SYSTEM INTERFACES

5.2.12

The BINV signal is used to cancel an instruction access in the following situations:

• When an interrupt or trap is taken;

• When an instruction fetch-ahead is canceled because a target block is only partially
present in the Branch Target Cache memory;

• When an instruction TLB miss or protection violation occurs on an instruction
access;

• When a branch instruction is the delay instruction of another branch, and the targets
of both branches are in the Branch Target Cache memory (in this case, the external
fetch for the target of the first branch is not required); and

• When the processor enters the Load Test Instruction Mode, and there is an active
instruction request on the channel.

The BINV signal is used to cancel a data access in the following situations:

• When a data TLB miss or protection violation occurs on the data access; and

• When an interrupt or trap is taken in the cycle that a data access appears on the
channel.

When a LOADSET instruction encounters a protection violation because store access
is not permitted, the processor cancels the load access with BINV.

Bus Sharing-Electrical Considerations

When buses are shared among multiple masters and slaves, it is important to avoid
situations where these devices are driving a bus at the same time. This may occur
when more than one master or slave is allowed to drive a bus in the same cycle, if
bus arbitration is incompletely or incorrectly performed. However, it also occurs when
a master or slave releases a bus in the same cycle that another master or slave gains
control, and the first master or slave is slow in disabling its bus drivers, compared to
the point at which the second master or slave begins to drive the bus. The latter situ­
ation is called a bus COllision in the following discussion.

In addition to the logical errors that can occur when multiple devices drive a bus
simultaneously, such situations may cause bus drivers to carry large amounts of
electrical current. This can have a significant impact on driver reliability and power
dissipation. Since bus collisions usually occur for a small amount of time, they are
of less concern, but may contribute to high-frequency electromagnetic emissions.

The Am29050 microprocessor channel is defined to prevent all situations where
multiple drivers are driving a bus simultaneously. However, bus collisions may be
allowed to occur, depending on the system design.

In the case of the Am29050 microprocessor channel, arbitration for the channel pre­
vents the processor from driving the Address and Data buses at the same time as
another channel master. If there is more than one external master, the system design
must include some means for insuring that only one external master gains control of
the channel, and that no external master gains control of the channel at the same
time as the processor.

When the processor relinquishes control of the channel to an external master, bus
collisions may be prevented by not allowing the external master to drive any bus
while BINV is active. This insures that ali processor outputs are disabled by the time
the external master takes control of the channel. However, there is nothing in the
channel protocol to prevent the external master from taking control as soon as BGRT
is asserted.

SYSTEM INTERFACES 5·19

'" t,

5.2.13

5.2.14

Slave devices and memories are prevented from simultaneously driving the Instruc­
tion Bus or Data Bus by allowing only the device or memory performing a primary
access to drive the appropriate bus. When a pipelined access becomes a primary
access, it may drive the Instruction or Data Bus immediately, so that there is a poten­
tial bus collision if the pipelined access is performed by a slave other than the slave
performing the original primary access. This bus collision may be prevented by re­
stricting all slaves to driving the Instruction and Data buses in the second half-cycle
(using SYSCLK, for example). Since the processor samples data only at the end of a
cycle, this restriction does not affect performance.

When the processor performs a store immediately following a load, it drives the Data
Bus and asserts DREQ for the store in the second cycle following the cycle in which
the data for the load appears on the Data Bus. This provides a complete cycle for the
slave involved in the load to disable its data drivers. The processor continues to drive
the Data Bus until it receives a DRDY or DERR in response to the store; it ceases to
drive the Data Bus in the cycle following the response.

Channel Behavior for Interrupts and Traps

If an interrupt or trap is taken, any burst-mode accesses are canceled. If a request
for a pipelined access is on the Address Bus, this request is removed. Any other
accesses are completed, and no new accesses are started, other than those
required for the interrupt or trap. Note that any accesses that the processor expects
to complete must be completed, even though burst-mode and pipelined accesses
are canceled.

When interrupt or trap processing is complete, any canceled burst-mode accesses
transactions are re-establish ed, using the address of the access that was to be per­
formed next when the interrupt or trap was taken. Uncompleted pipelined accesses
are restarted, either by the interrupt return sequence in the case of an instruction
access, or by restarting the initiating instruction in the case of a data access.

Note that the restarting of a pipe lined access is not performed by the Channel Ad­
dress, Channel Data, and Channel Control registers, since these registers maybe
required to restart the primary access. The instruction initiating the pipe lined access
is not allowed to complete until the primary access completes, so that the Program
Counter 1 (PC1) Register contains the address of the initiating instruction when a
pipelined access is canceled. The address in PCl can restart this instruction on inter­
rupt return.

Effect of the LOCK Output

The LOCK output provides synchronization and exclusion of accesses in a multi-proc­
essor environment. LOCK has no pre-defined effect for a system, other than the fact
that the Am29050 microprocessor does not grant the channel to an external master
while LOCK is active.

The LOCK output is asserted for the address cycle of the Load-and-Lock and Store­
and-Lock instructions, and is asserted for both the read and write accesses of a Load
and Set instruction. LOCK may also be active for an extended period of time, under
control of the Lock bit in the Current Processor Status Register (this capability is
available only to Supervisor-mode programs).

LOCK may be defined to provide any level of resource locking for a particular system.
For example, it may lock the channel, an individual device or memory or a location
within a device or memory.

5·20 SYSTEM INTERFACES

5.3

5.3.1

When a resource is locked, it is available for access only by the processor with the
appropriate access privilege. The mechanisms for restricting accesses, and the meth­
ods for reporting attempted violations of the restrictions, are system-dependent.

TES~DEVELOPMENTINTERFACE

The Test/Development Interface consists of the inputs CNTL(1-O) and TEST, and the
outputs STAT(2-O). The CNTL(1-O) inputs provide control of processor operation,
and the STAT(2-O) outputs provide information about processor operation for external
monitoring.

A hardware-development system uses CNTL(1-0) and STAT(2-O) to control the
processor for the purposes of processor and system debug.

A hardware tester uses the TEST input to place all processor outputs in the high-im­
pedance state. This allows the tester to check other system logic by driving processor
outputs directly, without requiring that the processor be removed from the system.

Processor Status Outputs

The ST AT(2-O) outputs indicate certain information about processor modes, along
with other information about processor operation. STAT(2-O) may be used to provide
feedback of processor behavior during normal processor operation and when the
processor is under the control of a hardware-development system.

The encoding of STAT(2-O) is as follows:

STAT2 STAn STATO Mode or Condition

0 0 0 Halt or Step Modes
0 0 1 Pipeline Hold Mode
0 1 0 Load Test Instruction Mode, Synchronize
0 1 1 Wait Mode
1 0 0 Interrupt Return
1 0 1 Taking Interrupt or Trap
1 1 0 Non-Sequentiallnstruclion Fetch
1 1 1 Executing Mode

On any given cycle, the STAT(2-O) signals reflect the state of the processor's execute
stage on the previous cycle. Where the conditions listed above are not mutually exclu­
sive, the condition listed first is the one reflected on STAT(2-O).

The first cycle of a multi-cycle instruction (Load Multiple, Store Multiple, Interrupt
Return, or Interrupt Return and Invalidate) is indicated as an "Executing Mode" cycle.
When an interrupt or trap is taken, the first cycle is indicated as a "Taking Interrupt or
Trap" cycle. Additional cycles of these multi-cycle operations are indicated as "Pipe­
line Hold" cycles.

A Low level on STAT2 indicates that the processor is idle, and may be used as an
indication of processor performance. Since most processor instructions execute in a
single cycle, and since extra cycles spent executing multiple-cycle operations are
counted as Pipeline !-lold cycles, a count of the number of cycles within a given time
interval that the processor is not idle (Le., a count of the number of cycles for which
STAT2 is High) is a close approximation to the number of instructions executed within
that interval, and thus approximates the instruction-execution rate. The only source of
error in this approximation are the cycles in which the processor takes an interrupt or

SYSTEM INTERFACES 5·21

5.3.2

5.3.3

5.3.3.1

trap. If desired, this source of error can be eliminated by fully decoding the STAT(2-0)
outputs.

The STAT2 output also may be used to implement processor timeouts for reliability.
For example, a Low level on ST AT2 may be used to start a hardware timeout counter,
with a High level resetting and stopping the counter. If the counter exceeds a maxi­
mum expected count of idle cycles for a system, it is likely that an error has occurred.
This error can be reported by the WARN trap (see Section 3,5.6 and Section 5.6).,

The value 010 on the STAT(2-0) outputs is used by the hardware breakpOints for
synchronization of external hardware. If this value appears during normal processor
operation for one cycle, a valid breakpoint comparison has been detected with the
BSY bit being O. The processor takes no other actions related to the breakpoint. The
synchronization pulse can be used to trigger or synchronize external logic.

CPU Control Inputs

Certain processor operational modes are under the control of the CNTL(l-0) inputs.
These inputs have an effect on the processor mode as follows:

CNTl1

o
o
1
1

CNTlO

o
1
o
1

Mode

Load Test Instruction
Step
Halt
Normal

These inputs are asynchronous to the processor clock. In addition, changes on the
CNTL(1-0) inputs are restricted so that only CNTL 1 or CNTLO, but not both, may
change in any given processor cycle. The allowed transitions are shown in Figure 5-6.
The restriction on CNTL(l-0) transitions allows these inputs to be driven directly by
an external hardware-development system or tester, without any intervening logic.
Proper operation is insured by making only single-input changes on CNTL(1-0), and
by restricting the interval between all changes to be greater than a processor cycle. If
these restrictions are violated, processor operation is unpredictable, and a processor
reset is required to resume predictable operation.

Note that, because of the restriction described above, it is not possible to transition
directly between all possible modes that are controlled by these inputs. For example,
the processor cannot go from the Load Test Instruction mode to Normal operation
without first entering the Halt or Step modes.

Hardware Development

The Halt, Step, and Load Test Instruction modes of operation are defined to support
the debug of the processor system (both hardware and software) by a hardware­
development system. This section describes the use of these modes during debug,
and describes the corresponding activity on the CNTL(l-0) and STAT(2-0) lines.

HALT MODE

The Halt mode allows the hardware-development system to stop processor operation
while preserving its internal state. The Halt mode is defined so that normal operation
may resume from the point at which the processor enters the Halt mode. All external
accesses are completed before the Halt mode is entered, so a minimum amount of
system logic is required to support the Halt mode.

5-22 SYSTEM INTERFACES

Figure 5·6 Valid Transitions on CNTL(1-O) Inputs

The Halt mode can be invoked by applying a value of 10 to the CNTL(1-D) inputs.
The processor enters the Halt mode within two or three cycles after the CNTL(1-D)
inputs are changed (depending on synchronization time), except that it first completes
any external data access in progress.

The Halt mode can also be entered as the result of executing a HALT instruction or
encountering a hardware breakpoint with a hardware-development system attached
(see below). When a HALT instruction is executed or a breakpoint is encountered, the
processor enters the Halt mode on the next cycle, except that it completes any exter­
nal data accesses in progress. In this case, the processor remains in the Halt mode
even though the CNTL(1-D) inputs are 11. However, the processor cannot exit the
Halt mode except as the result of the CNTL(1-D) or RESET inputs. If the instruction
following a Halt instruction has an exception (e.g., instruction TLB Miss), the trap
associated with the exception is taken before the processor enters the Halt mode.

The Halt instruction is designed to be used as an instruction breakpoint by the hard­
ware-development system, augmenting the hardware breakpoints provided by the
Am29050 microprocessor. However, the Halt instruction normally is a privileged
instruction, causing a Protection Violation trap upon attempted execution by a User­
mode program. The hardware-development system can disable this Protection Viola­
tion by holding the CNTL(1-D) inputs at 10 during a reset; this signals the presence of
an external debugger and disables protection checking for Halt instructions until the
next processor reset.

If an external hardware debugger has signaled its presence, any condition that would
otherwise cause the processor to takea Monitor trap instead causes the processor to
enter the Halt Mode at location 16 in Instruction ROM address space (the WARN Trap
handler). This permits the hardware-development system to debug system-level
routines. If the processor enters the Halt Mode due to a synchronous trap, the Reason

SYSTEM INTERFACES 5-23

:J
i,,~

5.3.3.2

Vector Register is updated, and the MM bit of the Current Processor Status Register
is set.

If an external debugger has signaled its presence and a valid breakpoint comparison
is encountered, the processor enters the Halt Mode at the beginning of the Trace
Trap handler. The Shadow Program Counter registers point to the location where the
breakpoint was encountered.

If a burst-mode instruction access is established before the processor enters the
Halt mode, it remains established when the processor enters the Halt mode, but is
suspended.

While in the Halt mode, the processor does not execute instructions, and performs no
external accesses. The Timer Facility does not operate (Le., the Timer Counter Regis­
ter does not change).

The Halt mode is exited whenever the Reset mode is entered, or the CNTL(1-O) lines
place the processor into another mode. The only valid transitions on the CNTL(1-O)
lines from the value of 10 are to the value 00, which places the processor into the
Load Test Instruction mode, and to the value 11, which causes the processor to re­
sume normal execution.

STEP MODE

The Step mode causes the Am29050 microprocessor to execute at a rate determined
by the hardware-development system, allowing the hardware-development system to
easily control and monitor processor operation. The Step mode is defined so that
normal operation may resume after stepping is complete. Since all external accesses
are completed during any step, a minimum amount of system logic is required to
support the slower rate of execution.

The Step mode is invoked by the application of a value of 01 to the CNTL(1-O) inputs.
The processor enters the Step mode within two or three cycles after the CNTL(1-O)
inputs are changed (depending on synchronization time), except that it first completes
any external data access in progress.

If a burst-mode instruction access is established before the processor enters the
Step mode, it remains established when the processor enters the Step mode, but is
suspended.

While in the Step mode, the processor does not execute instructions, and performs no
external accesses. The Timer Facility does not operate (Le., the Timer Counter Regis­
ter does not change) while the processor is in the Step mode.

The Step mode is identical to the Halt mode in every respect except one. This differ­
ence is apparent on the transition of the CNTL(1-O) lines from the value 01 (Step
mode) to the value 11 (Normal). On this transition, the processor steps. That is, the
processor state advances by one pipeline stage, and it completes any external ac­
cess which is initiated by this state change.

If the processor immediately enters the Pipeline Hold mode on a step, the step may
require multiple cycles to execute, since the processor pipeline cannot advance while
the processor is in the Pipeline Hold mode. The STAT(2-O) lines reflect the state of
the processor for every cycle of the step; STAT2 is High for one cycle, and only one
cycle, before the step completes.

The Timer Counter decrements by one for every cycle of the step; if the Timer
Counter decrements to zero, the usual Timer-Facility actions are performed, and a
Timer interrupt may occur.

5.24 SYSTEM INTERFACES

5.3.3.3

5.3.3.4

Figure 5-7

After the step is performed, the processor re-enters the Step mode, and remains in
the Step mode even though the CNTL(1-Q) inputs have the value 11 (this prevents
the need for a time-critical transition on the CNTL(1-Q) inputs). The processor re­
mains in this condition until the CNTL(1-Q) inputs transition to 10 or 01 (or RESET is
asserted). The transition to 10 causes the processor to enter the Halt mode, and is
used to clear the Step mode. The transition to 01 causes the processor to remain in
the Step mode, so that it may perform additional steps.

HAL T/STEP MODE AND LOADMISTOREM
If the Am29050 microprocessor is placed in the Halt or Step mode while either a
LOADM or STOREM instruction is being executed, the STAT(2-Q) outputs indicate
the Halt or Step mode for one cycle (STAT(2-Q) =000), and then indicate the Pipeline
Hold mode (STAT(2-Q) = 001) until the final access of the LOADM or STOREM is
complete, at which time they return to indicating the Halt or Step mode. A hardware­
development system must therefore ignore any single-cycle Halt/Step mode indication
on the STAT(2-Q) outputs as an indication that the processor is halted.

LOAD TEST INSTRUCTION MODE
The processor incorporates an Instruction Register (IR) that holds instructions while
they are decoded. In the Load Test Instruction mode, the IR is enabled to receive the
content of the Instruction Bus, regardless of the state of the processor's Instruction
Fetch Unit. This allows the hardware-development system to provide instructions for
execution directly, thereby providing means for the hardware-development system to
examine and mOdify the internal state of the processor without altering the proces­
sor's instruction stream.

The hardware-development system can place an instruction in the IR by first placing i

00 on CNTL(1-Q). The processor enters the Load Test Instruction mode within two or
three cycles after the CNTL(1-Q) inputs are changed (depending on synchronization
time), except that it first preempts any established burst-mode instruction access. The
Load Test Instruction mode can be entered only from the Halt or Step modes. Note
that the burst-mode instruction access that is preempted here was previously sus-
pended for the Halt or Step modes.

When the processor enters the Load Test Instruction Mode, the processor behaves
as though the Current Processor Status Register were forced to the value shown in
Figure 5-7, even though the register is not changed.

Processor Status While in Load Test Instruction Mode

31 23 15 7 0

I .' .' } .' " 0 1
.' } 0

1
0
1

0
1

0
1

0
1

0
1
01, I, I ,I ,I ,I ' I, I ,I, I ' I ' I ,1,1 } ,I ,I, I

.. If ' • : : : I : : : : : : : : 1M: t
I • I • I I I I I • I • I I I

Reserved MM ' IP' TP' FZ' RE' PO ' SM 'OA
CA TE TU LK WM PI 01

The visible processor state, including the Shadow Program Counter Registers, re­
mains unchanged while the processor is in the Load Test Instruction Mode. The
processor status shown in Figure 5-7 remains in effect until the next transition to the
Normal Mode via the Halt Mode.

While the processor is in the Load Test Instruction mode, it ignores all interrupts and
traps. except for the Data Access Exception and Coprocessor Exception. These latter
exceptions are also ignored if the load or store which causes the exception has the

SYSTEM INTERFACES 5-25

value 110 for the OPT bits (indicating a load or store to the hardware-development
system).

The STAT(2-0) lines have a value of 010 while the processor is in the Load Test
Instruction mode; this may be used as a verification that the processor is loading
the IR.

While the processor is in the Load Test Instruction mode, the IR continually is storing
the value on the Instruction Bus; any change in the value on this bus is reflected in
the IR on the next cycle. The hardware-development system can place a desired
instruction into the IR by driving this instruction on the Instruction Bus. The value of
IRDYand IERR are irrelevant.

The processor exits the Load Test Instruction mode in the second cycle following a
change on the CNTL(1-{) inputs. The only valid change here is either to the Halt
mode (CNTL(1-{) = 1 0) or the Step mode (CNTL(1-{) = 01).

When the Load Test Instruction mode is exited, the most recent value stored into the
IR is held. If the processor is placed in the Step mode, the IR is marked as having
valid content, enabling the processor to decode and execute the instruction. If the
processor is placed in the Halt mode, it ignores any instruction placed in the IR by the
Load Test Instruction mode, and reverts to its normal instruction-fetch mechanism.

Once the IR has been set by the Load Test Instruction mode, the instruction in the IR
may be executed via the Step mode as discussed in the previous subsection. A single
step is sufficient to cause the execution of this instruction. However, because of
pipelining, multiple steps may be required before the instruction completes execution.
If more than one step is performed, the processor executes the instruction in the IR on
every step. If it is desired to step an instruction to completion without repeated execu­
tion, a NO-OP may be set into the IR (using the Load Test Instruction mode) after the
first step.

The Load Test Instruction mode may be used to cause the execution of most proces­
sor instructions (restrictions are discussed below). This allows inspection and modifi­
cation of processor state.

The hardware-development system uses load and store instructions, executed via the
Load Test Instruction mode, to alter and inspect the contents of general-purpose
registers. The OPT field for these loads and stores have the value 110; this causes
the system to ignore the resulting access. Furthermore, it causes the Am29050 micro­
processor to ignore the DRDYand DERR responses for the access; the Am29050
microprocessor completes the accedss at the end of the next stepped instruction,
rather than upon the assertion of DRDY. This eliminates the need for the hardware­
development system to generate a synchronous DRDY in response to the load or
store.

Because of sequencing constraints, the Load Test Instruction mode cannot be used
to cause the execution of the following instructions: conditional jumps, Load Multiple,
Store Multiple, Interrupt Return, and Interrupt Return and Invalidate. Unconditional
jumps and calls are permitted, but affect only the Program Counter (instruction se­
quencing is not affected).

It is not possible to execute a load directly following a store-nor a store directly
following a load-using the Load Test Instruction mode. At least one NO-OP (or other
operation) must be executed between adjacent loads and stores, because of control
conflicts that arise when these instructions are stepped in a system that performs the
resulting accesses at normal speed. However, a sequence of only loads or only
stores is permitted without restriction.

5-26 SYSTEM INTERFACES

5.3.3.5

The contents of the Program Counter 0, Program Counter 1, Program Counter 2,
Channel Address, Channel Data, Channel Control, and ALU Status registers are not
updated while instructions are executed via the Load Test Instruction mode, except
explicitly by Move To Special Register instructions. Instructions executed using the
Load Test Instruction mode may access protected processor state even though the
processor is in the User mode.

Instructions executed via the Load Test Instruction mode may be used to access an
external device or memory. Recall that the processor completes any normal data
access before completing a step. This allows the processor to access devices and
memories on behalf of the hardware-development system, and simplifies the timing
constraints on the hardware-development system.

During processor execution via the Load Test Instruction mode, the processor retains
the information required to resume normal operation. If any processor state is modi­
fied by the hardware-development system, this state must be restored properly for
normal operation to resume properly.

In order to leave the Load Test Instruction mode and resume normal execution, an
IRET instruction is placed into the IR and stepped through the processor pipeline.
When the IRET instruction is executed, the processor re-fetches the instructions at
the addresses in the Shadow Program Counter 0 and Shadow Program Counter 1
registers. Following this, a transition on CNTL(1-O) to the Halt mode (CNTL(1-0) = 1 0)
and then to the Normal mode (CNTL(1-O) = 11) causes the processor to leave the
Load Test Instruction mode and resume normal operation. Alternatively, the hard­
ware-development system can continue to use the Step mode to maintain control of
the processor and step through its normal execution sequence.

SUMMARY OF DEVELOPMENT SYSTEM OPERATION

When the capabilities provided by the Halt, Step, and Load Test Instruction Register
modes are combined, an extremely flexible test and development interface results.
The following is an example sequence performed by the hardware-development
system during debug:

1. Halt the processor either by a HALT instruction, by the hardware breakpoints, ,or·
by a 10 on the CNTL(1-O) inputs. The HALT instruction may be used as a
primitive operation in the implementation of a general Jnstruction-breakpoint
capability.

2. Load the IR with an instruction to inspect or alter the processor state. The
hardware-development system should wait for the value 010 on STAT(2-O) (Load
Test Instruction mode) before driving the Instruction Bus. After the IR is loaded,
the hardware-development system sets CNTL(1-O) to 01 (Step mode).

3. Step the processor by a transition of CNTL(1-O) from 01 to 11 and back to 01.
Data may be supplied on the Data Bus during one of the steps to satisfy a load
operation; the data must be held valid until the stepped instruction completes.

4. Repeat steps 2 and 3 as desired. Finally, perform steps 2 and 3 using an IRET
instruction.

5. After the final step, enter the Halt mode by placing 10, instead of 01, on
CNTL(1-0).

6. Resume normal execution by placing 11 on CNTL(1-O) ..

SYSTEM INTERFACES 5·27

5.3.4

5.4

Hardware Testing

The Test mode in the Am29050 microprocessor allows processor outputs to be driven
directly for testing or diagnostic purposes. The Test mode places all processor out­
puts (except MSERR) into the high-impedance state, so that they do not interfere
electrically with externally supplied signals. In all other respects, processor operation
is unchanged.

The Test mode is invoked by an active level on the TEST input, regardless of the
processor's operational mode (for example, the Test mode is not affected by the Halt
mode). The disabling of processor outputs is performed combinatorially, and is asyn­
chronous to SYSCLK.

For some outputs, the transition to the high-impedance state that results from the Test
mode may occur at a much slower rate than applies during normal system operation
(for example, when the processor relinquishes the channel to another master). For
this reason, the Test mode may not be appropriate for special user-defined purposes.

Note that SYSCLK is also placed in the high-impedance state by the Test mode. This
allows the testing of external clock-distribution circuits, but care must be taken to
insure that a high-impedance SYSCLK output does not have an adverse effect on the
system. Furthermore, if SYSCLK is disabled, and a Signal is not externally supplied,
processor state may be lost.

EXTERNAL INTERRUPTS AND TRAPS

An external device causes an interrupt by asserting one of the INTR(3-O} inputs, and
causes a trap by asserting one of the TRAP(1-O} inputs. Transitions on each of these
inputs may be asynchronous to the processor clock; they are protected against
metastable states. For this reason, an assertion of one of these inputs that meets the
proper set-up-time criteria does not cause the corresponding interrupt or trap until the
second following cycle.

The INTR(3-O} inputs are prioritized with respect to each other and with respect to the
processor. To resolve conflicts between these inputs, the inputs are prioritized in
order, so that the interrupt caused by INTRO has the highest priority, and the interrupt
caused by INTR3 has the lowest priority.

The interrupts caused by INTR(3-O} may be masked by the Disable Interrupts (DI) or
Disable All Interrupts and Traps (DA) bits of the Current Processor Status Register. In
addition, the Interrupt Mask (1M) field of the Current Processor Status Register sets
the priority of the processor with respect to these inputs. The 1M field enables the
INTR(3-O} inputs as follows:

1M Value

00
01
10
11

Result

INTRO enabled
INTR(1-0) enabled
INTR(2-O) enabled
INTR(3-O) enabled

Note that the interrupt caused by the INTRO input cannot be disabled by the 1M field.

If one of the INTR(3-0} inputs is active, and the resulting interrupt is disabled by the
DA bit, DI bit or 1M field, the Interrupt Pending (IP) bit of the Current Processor Status
Register is set. The IP bit is reset if the interrupt is enabled, or if all disabled external
interrupts are de-asserted.

5·28 SYSTEM INTERFACES

5.5

The TRAP(1-O) inputs are prioritized with respect to each other, so that the trap
caused by TRAPO has priority over the trap caused by TRAP1 when a conflict occurs.
Both TRAPO and TRAP1 have priority over the INTR(3-O) inputs. The TRAP(1-0)
inputs cannot be disabled selectively. Both traps, however, can be disabled by the DA
bit in the Current Processor Status Register.

The INTR(3-0) and TRAP(1-O) inputs are level-sensitive. Once asserted, they must
be held active until the corresponding interrupt or trap is acknowledged by the inter­
rupt or trap handler (this acknowledgment is system-dependent, since there is no
interrupt-acknowledge mechanism defined for the processor).

If any of these inputs is asserted, then de-asserted before it is acknowledged, it is
not possible to predict (unless the interrupt or trap is masked) whether or not the
processor has taken the corresponding interrupt or trap. During interrupt and trap
processing, the vector number is determined in part by which of the INTR(3-O) and
TRAP(1-O) inputs is active. If the input causing an interrupt or trap is de-asserted
before the vector number is determined, the vector number is unpredictable, with the
result that processor operation is also unpredictable.

There is a three-cycle latency from the de-assertion of an INTR(3-O) or TRAP(1-O)
input to the time that the corresponding interrupt or trap is actually not recognized by
the processor. The de-assertion must be timed so that, when the corresponding mask
is reset, the processor does not recognize the interrupt or trap. Otherwise, a spurious
interrupt or trap may occur.

PROCESSOR RESET

When power is first applied to the processor, it is in an indeterminate state, and must
be placed in a known state. Also, under certain circumstances, it may be necessary to
place the processor in a defined state. This is accomplished by the Reset mode,
which places the processor into a pre-defined state (see Section 3.9).

The Reset mode is invoked by asserting the RESET input, and can be entered only if
the SYSCLK pin is operating normally, whether or not the SYSCLK pin is being driven
by the processor (see Section 5.7). The Reset mode is entered within four processor
cycles after RESET is asserted. The RESET input must be asserted for at least four
processor cycles to accomplish a processor reset.

The Reset mode can be entered from any other processor mode (e.g., the Reset
mode can be entered from the Halt mode). If the RESET input is asserted at the time
that power is first applied to the processor, the processor enters the Reset mode only
after four cycles have occurred on the SYSCLK pin.

The Reset mode is exited when the RESET input is de-asserted. Either three or four
cycles after RESET is de-asserted (depending on internal synchronization time). the
processor performs an initial instruction access on the channel. The initial instruction
access is directed to address 0 in the instruction read-only memory (instruction ROM).
If instruction ROM is not implemented in a particular system, another device or mem­
ory must respond to this instruction fetch.

If the CNTL(1-O) inputs are 10 or 01 when RESET is de-asserted, the processor
enters the Halt or Step mode, respectively. If the processor enters the Halt mode
immediately after reset, the protection checking that normally applies to the Halt
instruction is disabled, so that the Halt instruction can be used as an instruction
breakpoint in a User-mode program. The Load Test Instruction mode cannot be
directly entered from the Reset mode. If the CNTL(1-0) inputs are 00 immediately

SYSTEM INTERFACES 5·29

5.6

5.7

after RESET is de-asserted, the effect on processor operation is unpredictable. If the
CNTL(1-O) inputs are 11, the processor enters the Executing mode.

The processor samples the ST ATO output internally when RESET is asserted. A High
level on STATO in this case is used to enable a special test configuration, and causes
the processor to be inoperable. When RESET is asserted, the processor drives STATO
Low in order to disable this test configuration. However, if processor outputs are
disabled by the Test mode, the processor is not able to drive STATO. Thus, if RESET
is asserted when the processor is in the Test mode, the STATO pin must be driven
Low externally. (In a master/slave configuration, as described in Section 5.8, STATO
is driven Low by the master processor when RESET is asserted.)

WARN INPUT

An inactive-to-active transition on the WARN input causes a WARN trap to be taken
by the processor. The WARN trap cannot be disabled; the processor responds to the
WARN input regardless of its internal condition, unless the RESET input also is as­
serted. This input is provided so that the system can gain control of the processor in
extreme situations, such as when system power is about to be removed or when a
severe non-recoverable error occurs.

The WARN input is edge-sensitive, so that an active level on the WARN input for
long intervals does not cause the processor to take multiple WARN traps. However,
WARN must be held active for at least 4 cycles in order to be properly recognized by
the processor. The processor still takes the WARN trap if WARN is de-asserted after
four cycles. Another WARN trap occurs if WARN makes another inactive-to-active
transition.

The processor enters the Executing mode when the WARN input is asserted, regard­
less of its previous operational mode. Either seven or eight cycles after WARN is
asserted (depending on internal synchronization time), the processor performs a
trap-handler instruction access on the channel. This instruction access is directed to
address 16 in the instruction read-only memory (instruction ROM). If instruction ROM
is not implemented in a particular system, another device or memory must respond to
this instruction fetch.

If the CNTL(1-O) inputs are 10 or 01 when the trap-handler instruction fetch com­
pletes, the processor enters the Halt or Step mode, respectively. Before the comple­
tion of this instruction fetch, the CNTL(1-O) inputs are irrelevant, except that the Load
Test Instruction mode cannot be entered directly after a WARN trap is taken. If the
CNTL(1-O) inputs are 00 immediately after WARN is de-asserted, the effect on proc­
essor operation is unpredictable. If the CNTL(1-O) inputs are 11, the processor re­
mains in the Executing mode.

CLOCKS

The Am29050 microprocessor supports two methods of system-clock generation and
distribution. In one arrangement, the processor generates a clock for the system at its
operating frequency; this clock appears on the SYSCLK pin, and may be distributed
externally to other system components. In the second arrangement, the system pro­
vides its own clock generation and distribution; in this case, the processor receives
the externally generated clock on the SYSCLK pin.

5-30 SYSTEM INTERFACES

5.7.1

5.7.2

5.7.3

5.7.4

In both arrangements, the circuits that generate and buffer SYSCLK are designed to
minimize the apparent skew between internal processor clocks and external system
clocks.

The processor provides a power-supply pin named PWRCLK for the SYSCLK driver
that is independent of all other chip power distribution. The separate PWRCLK supply
electrically isolates other processor circuits from noise which might be induced on the
power supply by the SYSCLK driver. The PWRCLK pin also is used to decide be­
tween the two possible clocking arrangements.

Processor-Generated Clock

If power (Le., +5 volts) is applied to the PWRCLK pin, the processor is configured to
generate clocks for the system. In this case, the SYSCLK pin is an output, and the
signal on INCLK is used to generate the system clock. The processor divides the
INCLK signal by two in the generation of SYSCLK, so INCLK should be driven at
twice the processor's operating frequency.

System-Generated Clock

If the PWRCLK pin is grounded, the processor is configured to receive an externally
generated clock. In this case, the SYSCLK pin is an input used directly as the proces­
sor clock. SYSCLK should be driven at the processor's operating frequency. In this
configuration, the INCLK input should be tied High or Low, except in certain master/
slave configurations as discussed in Section 5.B.

Clock Synchronization

The SYSCLK pin is at a High level during the first half of the processor cycle, and at a
Low level during the second half of the processor cycle. Thus, a processor cycle
begins on a Low-to-High transition of SYSCLK. The definition of the beginning of the
processor cycle is independent of the clocking arrangement chosen for a particular
system.

In some systems, it might be desirable to have two or more processors operate in
lock-step synchronization, with each processor driven by a common INCLK signal. In
this case, synchronization of the processors is achieved by the RESET input. If the
de-assertion of RESET meets a specified set-up time with respect to the High-to-Low
transition of INCLK, the SYSCLK output is guaranteed to be Low after the second
following rising edge of INCLK. Thus, all processors may be synchronized as re-
quired. .

Electrical Specifications

The electrical specifications for SYSCLK are different than the specifications for most
other processor inputs and outputs. In order to reduce clock-skew effects, the
SYSCLK pin is electrically compatible with the processor's CMOS circuits, rather than
being compatible with transistor-transistor-Iogic (TTL) circuits.

Note that the SYSCLK pin is placed in the high-impedance state by the Test mode. If
an externally generated clock is not supplied in this case, processor state may be lost.

SYSTEM INTERFACES 5·31

I;
" '. 'I rr;

5.8

5.8.1

5.8.2

MASTER/SLAVE CHECKING

Each Am29050 microprocessor output has associated logic which compares the
signal on the output with the signal that the processor is providing internally to the
output driver. The comparison between the two signals is made any time a given
driver is enabled, and any time the driver is disabled only because of the Test mode.
If, when the comparison is made, the output of a driver does not agree with its input,
the processor asserts the MSERR output on the second following cycle.

When the processor asserts MSERR, it takes no other actions with respect to the
detected miscomparison. In particular, no traps occur. However, MSERR may be
used externally to perform any system function, including the generation of a trap.

Master/Slave Operation

If there is a single processor in the system, the MSERR output indicates that a proc­
essor driver is faulty, or that there is a short-circuit in a processor output. However, a
much higher level of fault detection is possible if a second processor (called a slave)
is connected in parallel with the first (called a master), where the slave processor has
outputs disabled by the Test mode.

The slave processor, by comparing its outputs to the outputs of the master processor,
performs a comprehensive check of the operation of the master processor. In addi­
tion, if the slave processor is connected at the proper pOSition on the channel, it may
detect open circuits and other faults in the electrical path between the master proces­
sor and its local devices and memories. Note that the master processor stil.I performs
the comparison on its outputs in this configuration.

Preventing Spurious Errors

When two processors are connected in a master/slave configuration, it is necessary
to prevent spurious assertions of MSERR. These result from situations where the
outputs of the slave processor do not agree with the outputs of the master processor,
but both processors are operating correctly.

There are several potential sources of spurious errors in a master/slave configuration
that are avoided by the Am29050 microprocessor design:

1. Unimplemented bits in processor registers that are reflected on processor outputs.
This is avoided in the Am29050 microprocessor design by having all
unimplemented bits be read as O.

2. Unpredictable values for channel signals. If a DERR or IERR response is asserted
in response to an access, the Data Bus or Instruction Bus may be at an indeter­
minate level (e.g., high-impedance), causing the master and slave processors to
detect different values. If these values are later reflected on processor outputs, a
spurious MSERR assertion may occur. The Am29050 microprocessor avoids this
problem by ignoring the instruction or data word returned with DERR or IERR.

3. Unpredictable power-up state that is reflected on processor outputs. The
Am29050 microprocessor avoids this problem upon reset by forcing to a known
value any state that might be reflected on outputs before the completion of
initialization.

Another source of spurious errors is a lack of synchronization between the master
and slave processors. To maintain synchronization between the master and slave
processors, it is first necessary that they operate with identical clocks. This is

5-32 SYSTEM INTERFACES

5.8.3

accomplished by having the master processor drive SYSCLK, with the slave proces­
sor receiving SYSCLK as an input, or by driving both processors' SYSCLK inputs with
the same externally generated clock.

However, the fact that both processors operate with the same clock is not sufficient to
guarantee synchronization. Asynchronous processor inputs, if they are truly asynchro­
nous to the operation of the master and slave processors, may affect the master
processor a cycle sooner or later than they affect the slave processor. For this reason,
the relevant asynchronous inputs (Le., WARN, INTR(3-Q), TRAP(1-Q), CNTL(1-Q) and
RESET) must be externally synchronized to both the master and slave processors.
Note that in the case of RESET, only the active-to-inactive transition must be
synchronized.

Switching Master and Slave Processors

In some master/slave configurations, it might be desirable to give the slave processor
control over the system when an error is isolated to the master processor. It is possi­
ble to grant control of the system to the slave processor by taking it out of the Test
mode, and placing the master processor into the Test Mode. Note that synchroniza­
tion must be maintained when this is accomplished (e.g., using the Halt mode).

If the original master processor is configured to generate SYSCLK in this case, the
slave processor also must generate SYSCLK when it becomes a master. Because of
this, the INCLK signal must be supplied to both the master and slave processors, with
both processors being configured to generate clocks.

In this master/slave configuration, the slave processor still receives SYSCLK from the
master processor as described previously. The slave processor does not drive
SYSCLK because of the Test mode. However, when the slave processor is taken out
of the Test mode, it is able to drive SYSCLK as required.

Note that this processor-switching scheme may be generalized to more than two
processors.

SYSTEM INTERFACES 5-33

6.1

6.1.1

COPROCESSOR INTERFACE

A coprocessor for the Am29050 microprocessor is an off-chip extension of the proc­
essor's execution unit. The Am29050 microprocessor communicates with the co­
processor using a mechanism that is very similar to the mechanism used to com­
municate with other external devices and memories. However, because the copro­
cessor extends the instruction-execution capabilities of the processor, transfers to and
from the coprocessor are in terms of operands, operation codes, results, and status
information. This is in contrast to address and data transfers that occur for other types
of external accesses. This chapter describes the coprocessor interface, both from a
software and a hardware point of view.

COPROCESSOR PROGRAMMING

Overview of Coprocessor Operations

A program executes the following steps to perform a coprocessor operation. This
sequence is intended only as a guide, since there are many possible variations:

1. Send operands to the coprocessor. The number of transfers to the coprocessor
depends on the number of operands, and the length of each operand. As many as
64 bits of information can be transferred in a single cycle.

2. Send an operation code and other operation information to the coprocessor. The
operation can be specified by as many as 64 bits of information.

3. Start the coprocessor operation. This can occur simultaneously with the
operation-code transfer of step 2.

4. Read the coprocessor results. The number of transfers from the coprocessor
depends on the number of results, and the length of each result.

The above sequence is defined so that coprocessor operations may be concurrent
with other processor operations, including external accesses. This is possible be­
cause coprocessor operations are decoupled from the transfer of information to and
from the coprocessor. Once the operation is started, in step 3, the processor may
continue further execution, overlapped with coprocessor execution, until the
coprocessor results are read.

Because the Am29050 microprocessor implements overlapped loads, it can continue
execution after attempting to read a coprocessor result. However, if the processor
attempts to use the result before the operation is complete, the processor enters the
Pipeline Hold mode until the operation is complete.

In certain circumstances, it may be desired to perform multiple coprocessor opera­
tions before any results are read. For example, certain array computations form a
single result from more than one operation. In this case, steps 1 through 3 above may
be repeated-in any combination desired and as many times as desired-before
results are read. The coprocessor interface allows the coprocessor to prevent the
transfer of operands and/or operation codes if it is not prepared to receive them.

COPROCESSOR INTERFACE 6·1

6.1.2

Figure 6·1

Coprocessor Transfers

All coprocessor transfers occur between general-purpose registers and the
coprocessor. The transfers occur as the result of the execution of load and store
instructions for which the Coprocessor Enable (CE) bit has a value 1. For a store, the
information transferred to the coprocessor is given either by the contents of two
general-purpose registers, or by the contents of a general-purpose register and an
a-bit constant. For a load, information is transferred into a single general-purpose
register in the Am29050 microprocessor.

The coprocessor model includes no provision for addressing. Although it is possible to
extend the coprocessor interface to include addressing, addressing is more appropri­
ately handled by normal external accesses defined for the processor (such as input!
output).

The format of the instructions that transfer information to and from a coprocessor is
shown in Figure 6-1.

Coprocessor Load/Store Format

31 23

I •• I •

I I I • I
I ••• I

, TC ' res' , , , , ,
CE SA UA

I I
OPT

15

II
7 o

I I I II I I I
I I RA RBor I

For coprocessor stores, the RA and RB or I fields specify the source of data to be
transferred to the coprocessor. The RA field specifies a general-purpose register
whose contents are transferred to the coprocessor. The RB or I field specifies either a
general-purpose register whose contents are transferred to the coprocessor, or a
zero-extended constant that is transferred to the coprocessor. For the latter, the M bit
of the operation code (bit 24) determines whether the register or the constant is used,
as with most instructions. Note that as many as 64 bits of information may be trans­
ferred to the coprocessor by a single store instruction.

For coprocessor loads, the data transferred from the coprocessor is written to the
general-purpose register given by RA; the RB or I field is unused in this case (hOW­
ever, the contents of the specified register, or the zero-extended constant, appears on
the Address Bus). In contrast to the coprocessor store, a load transfers only 32 bits of
information from the coprocessor.

Other bits in the coprocessor load and store instructions are defined as follows:

Bit 22: Transfer Control (TC)-This bit affects the behavior of the coprocessor for
the transfer, depending on whether the transfer is for a load or store. The definition of
this bit is by convention only, and is not enforced by the processor.

For transfers to the coprocessor (I.e., stores), a value of 1 for the TC bit causes a
coprocessor operation to start. For transfers from the coprocessor (I.e., loads) a value
of 1 for the TC bit causes the coprocessor to suppress exception reporting. In either
case, a value of 0 for the TC bit has no special effect on the coprocessor.

6-2 COPROCESSOR INTERFACE

6.1.3

Bit 21: Set Coprocessor Active (SA)-This bit is provided to signal the beginning
and end of a coprocessor operation, so that the proper action may be taken by soft­
ware if the operation is interrupted.

An SA bit of 1 affects the Coprocessor Active (CA) bit in the Current Processor
Status. If the SA bit is 1 for a store, the CA bit is set. If the SA bit is 1 for a load, the
CA bit is reset. If the SA bit is 0, there is no effect on the CA bit.

Bit 20: reserved

Bit 19: User Access (UA)-The UA bit allows programs executing in the Supervisor
mode to emulate User-mode coprocessor transfers. This allows checking of the
authorization of a transfer requested by a User-mode program. Note that this check­
ing is performed externally, since the processor imposes no restriction on User-mode
coprocessor transfers.

If the UA bit is 1, the coprocessor transfer is performed in the User mode, regardless
of the value of the Supervisor Mode (SM) bit in the Current Processor Status. In this
case, the User mode affects only the SUP/US output; it has no effect on the registers
that can be accessed by the instruction. If the UA bit is 0, the program mode for the
transfer is controlled by the SM bit.

Bits 18-16: Option (Opn-The OPT field is placed on the OPT(2-Q) outputs during
the coprocessor transfer. There is a one-to-one correspondence between the OPT
field and the OPT(2-0) outputs; that is, the most-significant OPT bit is placed on
OPT2, and so on.

The OPT bits define the quantities being transferred to or from the coprocessor. For
example, they can specify whether operands or operation codes are being trans­
ferred. The interpretation of the OPT field depends on the definition of a given
coprocessor.

The transfer of data to or from the coprocessor may be caused by any load or store
instruction defined for the processor; the operation of coprocessor transfers is very
similar to the operation of external accesses.

Coprocessor transfers are overlapped with the execution of instructions that sequen­
tially follow the coprocessor load or store instruction. However, only one load or store
may be in progress in any given cycle, whether or not the load or store is directed to a
coprocessor. The pipeline interlocks that apply to external accesses also apply to
coprocessor transfers, except that coprocessor-transfer interlocks are determined by
the time taken by the coprocessor to perform an operation, rather than the time taken
to perform an access.

Note that coprocessor transfers may be performed by Load Multiple and Store
Multiple instructions. However, register RB has no defined interpretation for a Store
Multiple to the coprocessor. For this reason, Store Multiple is defined to transfer
multiple, 32-bit quantities to the coprocessor. Similarly, a Load Multiple transfers
multiple, 32-bit quantities from the coprocessor. Note, however, that the incrementing
address sequence defined for Load Multiple and Store Multiple still appears on the
Address Bus for coprocessor transfers.

Coprocessor Exceptions

A Coprocessor Exception trap occurs if the coprocessor reports an exception (using
the DERR signal) during a coprocessor transfer. The Coprocessor Exception may
occur either for a coprocessor load or store.

COPROCESSOR INTERFACE 6·3

6.1.4

6.1.5

In the case of a load that reads a coprocessor result, the Coprocessor Exception can
be used to indicate that the result is incorrect because of some exceptional condition.
In some cases, the Am29050 microprocessor might be able to correct the results of
the operation.

In the case of a store to the coprocessor, the Coprocessor Exception can be used to
indicate that the coprocessor cannot accept the transfer because of some exceptional
condition. For example, it may indicate an error in a stream of calculations, where
intermediate results are not being read. As with a load, the Am29050 microprocessor
may be able to correct the exceptional condition.

As noted above, the trap handler that executes as the result of the Coprocessor Ex­
ception trap may attempt to correct the exceptional condition. In many cases, the trap
handler must be able to read the intermediate results of the operation from the
coprocessor, along with other information about the operation. When this information
is read, it may be necessary to suppress further exception reporting, so that the trap
handler does not create additional Coprocessor Exception traps. For this reason, the
TC bit in the coprocessor load or store instruction allows the processor to read
coprocessor results while suppressing exception reporting.

Additionally, the TC bit allows a program to read the result of a coprocessor operation
regardless of any errors that may have occurred. This provides an optional trapping
capability analogous to that provided for certain Am29050 microprocessor arithmetic
operations (e.g., Am29050 microprocessor instructions allow an optional trap on
arithmetic overflow).

Coprocessor as a System Option

When the coprocessor is a system option, coprocessor operations are performed by
the processor when the coprocessor is not present.

The coprocessor may be designed as a system option by use of the Coprocessor
Present (CP) bit of the Configuration Register. The CP bit is set during system initiali­
zation, based on the presence (CP = 1) or absence (CP = 0) of the coprocessor. If the
CP bit is 0 when the processor attempts to execute a coprocessor load or store in­
struction, a Coprocessor Not Present trap occurs.

When a Coprocessor Not Present trap is taken, the Channel Address, Channel Data,
and Channel Control registers contain information related to the coprocessor transfer.
This information may be used by the trap handler to emulate the operation of the
coprocessor.

Interrupted Coprocessor Operations

The Coprocessor Active (CA) bit of the Current Processor Status Register may be
used to indicate the duration of a coprocessor operation. The value 1 in the CA bit
indicates that the coprocessor has begun an operation that has not completed (Le.,
the final results have not been read).

The CA bit is affected by the Set Coprocessor Active (SA) bit in the coprocessor load
and store instructions. If the SA bit is 1 for a store, the CA bit is set; if the SA bit is 1
for a load, the CA bit is reset. The routine that accesses the coprocessor is responsi­
ble for setting and resetting the CA bit appropriately.

If an interrupt or trap is taken during a coprocessor operation, and the CA bit has
been properly managed, the CA bit of the Old Processor Status signals to an interrupt
or trap handler that the interrupted routine had begun a coprocessor operation, but
had not completed the operation before the interrupt or trap was taken. In this case,

&-4 COPROCESSOR INTERFACE

6.2

6.2.1

the coprocessor contains state information that must be preserved. This information
may be saved and restored across the interrupt or trap, or, alternatively, kept in the
coprocessor.

Upon an interrupt or trap, the state information contained in the coprocessor depends
on both the operation being performed and the definition of the coprocessor. The
methods used to determine what state information must be saved, and the methods
used to transfer this information, are also dependent on the definition of the
coprocessor.

Due to interrupt-latency considerations, it may be desirable to leave state information
in the coprocessor upon interrupt, rather than require that it always be saved. A prob­
lem arises, however, when a routine other than the one that was originally interrupted
attempts to use the coprocessor. The coprocessor may be protected from such use
by resetting the CP bit in the Configuration Register. If another routine attempts to use
the coprocessor in this case, a Coprocessor Not Present trap occurs. The trap han­
dier for this trap may either save the coprocessor state and make the coprocessor
available to the trapping routine, or return control to the routine that was originally
using the coprocessor.

Certain coprocessor operations may not be interruptible. For these operations, inter­
rupts may be disabled by the Disable Interrupts (01) and/or Disable A" Interrupts and
Traps (DA) bits in the Current Processor Status Register. However, this disabling can
be performed only by a program in the Supervisor mode. Any User-mode programs
that perform non-interruptible coprocessor operations incur the overhead of a call to a
Supervisor-mode program.

COPROCESSOR ATTACHMENT

Communication with the coprocessor occurs via the Am29050 microprocessor chan­
nel. Figure 6-2 illustrates a typical coprocessor connection. For transfers to the
coprocessor, 64 bits of data are transferred in a single cycle, using the Address Bus
and Data Bus simultaneously. For transfers from the coprocessor, 32 bits of data are
transferred in a cycle, using the Data Bus.

The width of transfers to the coprocessor is greater than the width of transfers from
the coprocessor because the Am29050 microprocessor is optimized for computations
performed on two word-length operands, with a single word-length result. The oper­
and/result data flow of the processor is reflected in the interface to the coprocessor.

The protocol for coprocessor transfers is nearly identical to the protocol for other
external accesses on the channel. Minor differences result from the fact that there are
no addresses for coprocessor transfers, and from the fact that the coprocessor is
operation-oriented, rather than access-oriented.

Signal Description

Coprocessor transfers are indicated on the channel by the DREQT1 output being
Hi9tJ during a request. The DREQTO output also affects the transfer, based on the
R/W signal, as follows:

o
o
1
1

DREQT1 DREQTO

o
1
o
1

Meaning

Transfer to coprocessor
Transfer to coprocessor, start operation
Transfer from coprocessor
Transfer from coprocessor, suppress errors

COPROCESSOR INTERFACE 6.5

'tl I,:
i

Figure 6·2 Coprocessor Attachment

,r(.... .A
t>.fr-~

) Coprocessor ,/
" '<

Address
Am29050

Data A Streamlined A
Instruction

" Processor " ..
.i. ~

,/'
V " ,/ 32 /32 32

.... ~
.-

Instruction Instruction .. ROM r--v

... Instruction .. Memory

.... Data .A
./ Memory K .. " ..

.... lJ i,.I

Note that the interpretation of DREQTO during a coprocessor transfer is by convention
only.

The only signal unique to coprocessor transfers is the CDA input. The coprocessor
de-asserts this signal whenever it can accept no transfers from the processor (nor­
mally, this is because it is performing an operation).

6-6 COPROCESSOR INTERFACE

6.2.2

6.2.2.1

6.2.2.2

The completion of a transfer to the coprocessor is indicated when the coprocessor
asserts COA. The input OROY is not used in this case. The performance of transfers
to the coprocessor is enhanced by the use of COA, since it eliminates the need for the
coprocessor to decode a transfer request and respond with OROYand thereby elimi­
nates the logic delay involved. Note that the coprocessor normally de-asserts COA
when it starts an operation, so that COA can be independent of transfer requests.

Coprocessor Communication
The Address Bus is used to transfer information to the coprocessor. Therefore, the
addressing function of other devices and memories on the channel must be disabled
during coprocessor transfers. Since OREQT1 is High for all coprocessor transfers, it
should be used to inhibit the address-decoding function of channel devices and
memories, as well as to indicate to the coprocessor that a transfer is occurring.

The OPT(2-o) outputs are used during coprocessor transfers to indicate the type of
transfer, or to provide other controls for the coprocessor. The interpretation of the
OPT(2-o) signals depends on the implementation of the coprocessor, and may also
depend on the RIW signal.

COPROCESSOR TRANSFER PROTOCOLS

The protocols available for coprocessor transfers are based on the protocols for
simple, pipelined, and burst-mode data accesses discussed in Section 5.2.6. The
protocols for write accesses are used for transfers to the coprocessor, and the proto­
cols for read accesses are used for transfers from the coprocessor.

The protocol for coprocessor transfers differs in several respects from the protocol for
external data accesses:

1. The COA signal consistently replaces the OROY for transfers to the coprocessor.
An active level on COA, for transfers to the coprocessor, has an effect that is
equivalent to the effect of an active level on OROY for normal store-operations.
Note that OROY is still used for transfers from the coprocessor.

2. The Address Bus does not contain an address during a coprocessor transfer, but
may contain data in the case of a transfer to the coprocessor. However, for
transfers from the coprocessor, the Address Bus is still sequenced as described in
Section 5.2, and the sequencing is determined by the same controls-except that
COA replaces OROY for transfers to the coprocessor. The contents of the Address
Bus are determined by the coprocessor load instruction, as for other load
instructions.

3. For any coprocessor transfer, an active level on OERR causes a Coprocessor
Exception trap, rather than a Oata Access Exception trap.

4. For burst-mode coprocessor transfers, the interpretation of sequential addressing
is undefined. For this reason, burst-mode transfers are normally restricted to 32
bits of information for every transfer, regardless of whether the transfer is to or
from the coprocessor. Note, however, that the incrementing address sequence is
still present in the definition of a burst-mode coprocessor transfer, and may be
useful in some cases.

SEQUENCING OF CDA
The coprocessor de-asserts COA whenever it cannot accept a transfer from the
Am29050 microprocessor. An inactive level on COA prevents the Am29050

COPROCESSOR INTERFACE 8-7

6.2.2.3

microprocessor from transferring operands or operation codes to the coprocessor
when these transfers might interfere with coprocessor operation.

Normally, the coprocessor de-asserts COA when it begins an operation. COA remains
inactive until the coprocessor has completed the operation and can accept further
transfers from the processor. For some operations, a result may have to be read
before the coprocessor can assert COA.

Independent of the presence of the coprocessor, a pull-down resistor in the range of
33K to 68K ohms on COA is necessary for standard coprocessor detector to function
properly.

The coprocessor can acknowledge a transfer by asserting COA. However, it is gener­
ally more efficient for the coprocessor to hold COA active as long as it can accept
transfers; In the latter case, multiple data transfers can occur at a high rate, without
involving long logic delays. COA is related to the operation of the coprocessor in this
case, rather than to the transfer of data.

EXCEPTION REPORTING

The coprocessor reports exceptions by the activation of OERR during any
coprocessor transfer. This causes a Coprocessor Exception trap to occur. However, if
the OREQT(1-Q) signals have the value 11 for a transfer from the coprocessor, ex­
ception reporting should be suppressed, and OERR should not be asserted. Note,
however, that the Am29050 microprocessor does not enforce the suppression of
exception reporting.

6-8 COPROCESSOR INTERFACE

.a;t;lQ114iU

7.1

7.1.1

PROGRAMMING

This chapter discusses programming topics as they relate to the Am29050 micropro­
cessor. It focuses on the use of processor resources that were more formally de­
scribed in Chapter 3. The presentation in this chapter is intended to be used as a
guide in the implementation of software systems for the processor, not necessarily as
a strict definition of how these systems should be implemented.

This chapter is organized into four sections. The first section describes the run-time
storage organization recommended for the Am29050 microprocessor and the use of
the local registers to improve the performance of procedure calls. The two subse­
quent sections discuss applications and systems programming for the processor. The
final section discusses certain features of the Am29050 microprocessor pipeline that
are exposed to-and must be properly handled by-software which executes on the
processor.

RUN·TIME STORAGE ORGANIZATION AND
CALLING CONVENTION

Programming languages that use recursive procedures, such as C and Pascal, gener­
ally use a stack to store data objects that are dynamically allocated at run-time. The
organization of the run-time storage, including the run-time stack, determines how
data objects are stored and how procedures are called at the machine level. The
Am29050 microprocessor is designed to minimize the overhead of calling a proce-
dure, and allows efficient passing of parameters to a procedure and returning of
results from a procedure. This section describes the Am29050 microprocessor run-
time storage organization and procedure-calling conventions.

Run·Time Stack Organization and Use

A run-time stack consists of consecutive overlapping structures called activation
records. An activation record contains dynamically allocated information specific to a
particular activation (or call) of a procedure (such as local data objects). Because of
recursion, multiple copies of a procedure may be active at any given time. Each active i
procedure has its own unique activation record, allocated somewhere on the run-time \'.:
stack. The local variables required by a particular procedure activation are contained 1
in the activation record associated with that activation. Thus, the local variables for 1\

different activations do not interfere with one another. A compiler generates the in- I:;

structions to create and manage the run-time stack, and compiler-generated instruc-
tions are based on its existence. II
As an example, Figure 7-1 shows three activation records on a run-time stack. This 1\

stack configuration was generated by procedure A calling procedure B, which in turn !
called procedure C. The fact that procedure C is the currently active procedure is
reflected by its activation record being on the top of the run-time stack. The Stack
Pointer points to the top of procedure C's activation record.

PROGRAMMING 7-1

Figure 7·1

7.1.1.1

Run· Time Stack Example

I.
atlon Activ

Record 1 lor A

I.
atlon Activ

Reco
rorc

Out args X
In args A

Locals A

Out args A
In args B

Locals B

Out args B
In args C

Locals C

Out args C

Higher Me mory
es Address

AJ ation
d lor B

"'001
Lower Me mory

es Address

Stack Po
(Topol S

inter
tack)

In Figure 7-1, the storage areas labeled Out args and In args are the outgoing argu­
ments area (for the caller) or the incoming arguments area (for the callee). These are
shared between the caller procedure and the callee for the communication of parame­
ters and results. The areas labeled locals contain storage for local variables, tempo­
rary variables (for example, for expression evaluation) and any other items required
for the proper execution of the procedure.

MANAGEMENT OF THE RUN·TIME STACK
A run-time stack starts at a high address in memory and grows toward lower memory
addresses as procedures are called. The bottom of the stack is the location, with a
high address, at which the stack starts; the top of the stack is the location, with a
lower address, at which the most recent activation record has been allocated.

When a procedure is called, a new activation record may need to be allocated on the
run-time stack. An activation record is allocated by subtracting from the stack pointer
the number of locations needed by the new activation record. The stack pointer is
decremented so that variables referenced during procedure execution are referenced
in terms of positive offsets from the stack pointer.

When storage for an activation record is allocated, the number of storage locations
allocated is the sum of. the number of locations needed for:

1. Local variables;

2. Restarting the caller, such as locations for return addresses; and

3. Arguments of procedures that may be called in turn by the called procedure (the
outgoing argumentsarea).

Note that, in some cases, no storage is required for one or more of the above items.
Also, the incoming arguments area, though it is part of the activation record of the
callee, is not allocated storage at this time, because this storage was allocated as the
outgoing arguments area of the calling procedure.

An activation record is de-allocated, just prior to returning to the caller, by adding to
the stack pointer the value that was subtracted during allocation.

7·2 PROGRAMMING

7.1.1.2

Figure 7·2

The Am29050 microprocessor run-time storage actually is implemented as two
stacks: the Register Stack and the Memory Stack. Storage is allocated and de-allo­
cated on these stacks at the same time. The Register Stack stores activation records
associated with all active procedures (except leaf routines; as described later). The
Memory Stack stores activation-record information that does not fit into the Register
Stack or that must be kept in memory for other reasons (e.g., because of pointer
de-references). Both the Register Stack and the Memory Stack are stored in the
external data memory. However, a portion of the Register Stack is kept in the
Am29050 microprocessor local registers for performance. The term stack cache in
this section refers to the use of the local registers to contain a portion of the Register
Stack.

THE REGISTER STACK
The Register Stack contains activation records for active procedures (Figure 7-2). An
activation record in the Register Stack stores the following information.

• Input arguments to the called procedure. This portion of the activation record is
shared between a caller and the callee. It is allocated by the caller as part of the
caller's activation record.

• The caller's frame pointer. This is the address of the lowest-addressed byte above
the highest-address word of the caller's activation record, and is used to manage
the Register Stack. This portion of the activation record is shared between a caller
and the callee. It is allocated by the caller as part of the caller's activation record.

• The caller's return address. This is used to resume the execution of the caller after
the called procedure terminates. This is also part of the caller's activation record.

• The memory frame pointer. This is the address of the top of the caller's Memory
Stack (see below). This address is stored by the callee (if required), and used to
restore the memory stack upon return.

An Activation Record in the Register Stack

lIee's Ca
Activ

Re
ation

cord

I-

I-

I-

r-
I-

Incoming Arguments

Frame Pointer

Return Address

Memory Frame Pointer

Local Variables
ofCallee

Outgoing Arguments

Frame Pointer

Return Address

-
-
-
-
-

LR1 (Caller) L Before and

LRO (callerJf After Call
04--

Caller's Stack Pointer

LR1 (Caller) }

LRO (Caller)
04--

During
Call

Callee's Stack P()inter

PROGRAMMING 74

.,

I ',~,I.:,'
~I

I",' i,
\'
"

7.1.1.3

• The local variables of the called procedure, if any.

~ Outgoing parameters of the called procedure, if any.

• The frame pointer of the called procedure, if the procedure calls another procedure.

• The return address for the called procedure, if the procedure calls another
procedure. This location is allocated in the Register Stack, and used when the
called procedure calls another procedure.

Am29050 MEMORY LOCAL REGISTERS AS A STACK CACHE
. The Am29050 microprocessor was designed for efficient implementation of the Regis­
ter Stack. Specifically, the Am29050 microprocessor can use the large number of
relatively addressed local registers to cache portions of the Register Stack, yielding a
significant gain in performance. Allocation and de-allocation of activation records
occurs largely within the confines of the high-speed local registers, arU:I most proce­
dure calls occur without external references. Furthermore, during procedure execution
most data accesses occur without external references, because activation-record
data are referenced most frequently. The principle of locality of reference--which
allows any cache to be effective-also applies to the stack cache. The entries in the
stack cache are likely to remain there for re-use, because the size of the Register
Stack does not change very much over long intervals of program execution. Activation
records are typically small, so the 128 locations in the local register file can hold many
activation records.

Allocating Register-Stack activation records in the local registers is facilitated by the
Stack Pointer in Global Register 1. During the execution of a procedure, the Stack
Pointer points simultaneously to the top of the Register Stack in memory and to the
local register at the top of the stack cache. In other words, Global Register 1, a word­
length register, contains the 32-bit address of the top of the Register Stack, while bits
8---2 of Global Register 1 (with a 1 appended to the most-significant bit) indicate the
absolute register number of Local Register o. Allocation and de-allocation of the
Register Stack is accomplished by subtracting from or adding to, respectively, the
value of the Stack Pointer.

Using this register-addressing scheme, locations from the Register Stack are auto­
matically mapped into the local register file. Figure 7-3 shows the relationship .be­
tween the Register Stack and the stack cache in the local registers. As shown, point­
ers are required to define the boundaries between the Register Stack and the stack
cache.

• The register free bound (rfb, gr127) pointer defines the boundary between the
portion of the Register Stack that is cached in the local registers and the portion that
is stored in the external data memory. The rfb pointer contains the address of the
first word in the Register Stack that is not contained in the local registers, but which
is in memory.

• The frame pOinter (fp, Ir1) contains the memory address of the lowest-addressed
word not in the current activation record. The current activation record is not
necessarily in the data memory: the fp is used to determine whether or not an
activation record is contained in the local registers when a procedure returns from a
.call, as described later.

• The register stack pointer (rsp, gr1) points to the top of the Register Stack either in
the local regis\ers or the data memory; the rsp is contained in the lOcal-register .
Stack Pointer (Global Register 1). The top of the Register Stack mayor may not be
contained in the data memory-the rsp simply defines the location of the top of the
Register Stack.

7-4 PROGRAMMING

Figure 7·3 Relationship of Stack Cache and Register Stack

Local
Register

File Register Free Bpund (gr127)

!1--------I1----~r~~~ ~~i:t:r-(I~:) - - - - - -

1r6
IrS
Ir4
Ir3
1r2
Ir1
IrQ

Register Stack Pointer (gr1) :
+-- ~

Ir127

Register
Stack

Spilled
Activation
Records

Current
Activation

Record
(in local
registers)

• The register allocate bound (rab, gr126) pOinter defines the lowest-addressed stack
location that can be cached within the local registers. This defines the limit to which
local registers can be allocated in the Register Stack.

Several activation records may exist in the Register Stack at any given time, but only
one stack location may be mapped to a local register at a given time. When the Reg­
ister Stack grows beyond the 128-word capacity of the local registers, some move­
ment of data between the stack cache and the Register Stack in data memory must
occur.

Stack overflow occurs when a procedure is called, but the activation record of the
callee requires more registers than can be allocated in the stack cache (this is de­
tected by comparing rsp with rab); Figure 7-4 illustrates stack overflow. In this case,
the contents of a number of registers must be moved to data memory. The number of
registers involved must be sufficient to allow the entire activation record of the callee
to reside in the local registers. A block of the registers is copied, or spilled into an
area of external data memory, freeing space in the local register file for the most
recent procedure call.

Stack underflow occurs when a procedure returns to the caller, but the entire activa­
tion record of the caller is not resident in the stack cache (this is detected by compar­
ing fp with rib); Figure 7-5 illustrates stack underflow. In this case, the non-resident
portion of the caller's stack must be moved from data memory to the local registers.
Underflow occurs because overflow occurred at some previous point during program
execution, causing part of the Register Stack to be moved to data memory.

PROGRAMMING 7·5

Figure 7-4

Figure 7·5

Stack Overflow

Local
Register

File
Register Free Bound (gr127)

~ ! .. --------i!----~:a~~ ~~i~t~: (~r~: -----

, ,
11. _____ ------.

Stack Underflow

Local
Register

File

Frame Pointer(lr1) ~

Register Free Bound (gr127L...

!r------~!----------.---------.

Ir1
IrO

Register Stack Pointer (gr1)
+-- ---:+

Ir127
Ir126
Ir125
Ir124 ,

Ir123
Ir122

7.. PROGRAMMING

Register
Stack

Spilled
Activation
Records

Current
Activation
Record
(in local

, registers)

Register
Stack

Spilled
Activation
Records

Current
Activation
Record

7.1.1.4

7.1.2

The processor performs no hardware management of the stack cache, and cannot
detect a reference to a quantity that is not in the stack cache. Consequently, software
must keep the size of an activation record less than or equal to the size of the local
register file (128 words). Any additional storage requirements are satisfied by the
Memory Stack.

THE MEMORY STACK
In general, the Memory Stack is used to augment the Register Stack, holding addi­
tional information associated with activation records. For example, the Memory Stack
holds large data structures than cannot fit into the Register Stack. Similar to the Reg­
ister Stack, the Memory Stack contains a series of (possibly overlapping) activation
records, each corresponding to a procedure activation. However, a Memory Stack
activation record need not exist for a procedure that does not need a Memory Stack
Area. The Memory Stack contains the following information:

• Overflow incoming arguments. These are incoming arguments that do not fit in the
allowed incoming arguments area of the Register Stack activation record.

• Spilled incoming arguments. These are incoming arguments that cannot be kept in
the Register Stack. For example, if the address of an argument is used in a called
procedure, the associated value must be in the Memory Stack.

• Any procedure-local variable not allocated to a register.

• Local block space. This storage is allocated dynamically on the Memory Stack. It is
used to implement functions such as the alloca() function in the C programming
language.

• Overflow outgoing arguments. These are outgoing arguments that do not fit in the
allowed outgoing arguments area of the Register Stack activation record.

In contrast to the Register Stack, the Memory Stack is not cached and has no fixed
size limit. The top of the Memory Stack is defined by the memory stack pointer (msp),
which is stored in Global Register 125 by convention.

Procedure Linkage Conventions
The procedure linkage conventions define the standard sequences of instructions
used to call and return from procedures. These instruction sequences perform the
following operations (other, more-general operations may also be required, as de­
scribed later):

• Put procedure arguments to the outgoing arguments area in the activation record.
This mayor may not involve copying the arguments; copying is not necessary if the
arguments are placed into the appropriate registers as the result of computation.

• Branch to the procedure using a call instruction, which also places the return
address in a register.

• Allocate a frame on the Register Stack. A frame is the storage that contains the
procedure's activation record.

• If overflow occurs during frame allocation, spill the least-recently used locations of
the Register Stack. The number of spilled locations must be sufficient to allow the
new frame to reside entirely within the local registers.

• Determine the frame-pointer value of the called procedure, if this procedure may
call another procedure.

• Execute the procedure.

PROGRAMMING 7·7

1\

7.1.2.1

7.1.2.2

7.. PROGRAMMING

• Place return values into the appropriate registers.

• De-allocate the' activation-record frame.

• Fill locations of the local registers from the Register Stack in external memory, if
underflow occurs.

• Branch to the procedure's return address.

This section describes the routines that implement the Am29050 mictoprocessor
procedure linkage conventions. The operations described here are not required on
every procedure call. In some cases, operations can be omitted or simpler routines
used; these cases and the accompanying simplifications are also described here.

ARGUMENT PASSING

The linkage convention allows up to 16 words of arguments to be passed from the
caller to the callee in local registers. These arguments are passed in Local Register 2
through Local Register 17 of the caller (note that the local-register numbers are differ­
ent for the caller and the callee, because of Stack-Pointer addressing).

When more than 16 words are required to pass arguments, the additional words are
passed on the Memory Stack. In this case, the memory stack pointer (in Global Regis­
ter 125) points to the 17th word of the arguments, and the remaining argument words
have higher memory addresses. Multi-word atguments may be split across the Regis­
ter Stack and the, Memory Stack. For example,if a multi-word argument starts on the
16th word of the outgoing arguments, the first word of the argument is passed in the
Register Stack, and the remainder of the argument is passed in the Memory Stack.

All arguments occupy at least one word; arguments which are a byte or half-word in
length (for example, a character) are padded to 32 bits and passed as a full word.
However, an array or structure composed of multiple byte or half-word components is
passed as a single, packed array or structure of bytes or half-words rather than an
array or structure of padded bytes or half-words.

No argument is aligned to other than a word address boundary, including multi-word
arguments. Some multi-word arguments are referenced as a single object (for exam­
ple, double-precision floating-point values). Note that it !pay be necessary to copy
such arguments to an aligned memory or register area before use.

PROCEDURE PROLOGUE

When a procedure is called, and the procedure may call another procedure, the callee
must allocate a frame for itself on the Register Stack (this is not required for leaf '
procedures that do not call other procedures, as described later). A frame is allocated
by decrementing the register stack pointer to accommodate the size of the required
activation record. The procedure prologue is the instruction sequence that allocates
the callee's Register Stack frame. '

To allocate the stack frame, the prologue routine decrements the register stack
pOinter by the amount rsize (see Figure 7-6). The value of rslze must be an even
number given by the following formula:

rslze~ (size of local variable area) + (size of outgoing arguments area) + 2

The value 2 in this formula accounts for the space required by the return address (in
Local Register 0) and the frame pointer (in Local Register 1). The size of the local
variable area includes the space for the memory frame pOinter, if required. If the
formula total is an odd value, the total must be adjusted (by adding 1) so that the
resulting rsize value is even. This aligns the top of the Register Stack on a double­
word boundary. The reason for this alignment is that double-precision floating-point
values must be aligned to registers with even absolute-register numbers. Alignment of

Figure 7·6 Definition of size and rslze Values

llee's Ca
Acti

Reco
vat ion

rd

•

SIZe
, , , , , , ,
...

...
f-

f-

I-

r-
r,size f-.. , , , , , , ,
•

Incoming Arguments"

Frame Pointer

Return Address

Memory Frame Pointer"

Local Variables
of Callee"

Outgoing Arguments"

Frame Pointer"

Return Address"

"May not be required

-
-
-
-
-

~
Cal

~

LR1 (caller)

LRO (caller)

ler's Stack Pointer

Call

LR1 (caller)

LRO (caller)

ee's Stack Pointer

double-precision values is accomplished by placing these values into even-numbered
local registers and making rsize even (it is also assumed that the register stack
pointer is initialized on an even-word boundary).

Note that rsize is not the size of the entire activation record of the callee, because the
callee's activation record includes storage that was allocated as part of the caller's
activation record frame (e.g., the caller's outgoing arguments area, which is the
cal lee's incoming arguments area). The size of the callee's entire activation record is
denoted size, and is given by the following formula:

size = rsize+ (size of the incoming arguments area) + 2

In the prologue routine, the following instruction is used to allocate the stack frame
(rsp=gr1):

prologue:
sub rsp,rsp,rsize*4 ; *4 converts words to bytes

However, this instruction does not account for the fact that there may not be enough
room in the local registers to contain the. activation record. There must be additional
instructions to detect stack overflow and to cause spilling if overflow occurs. This is
accomplished by comparing the new value of the register stack pOinter with the value
of the register allocate bound and invoking a trap handler (with vector number
V_SPILL) if overflow is detected.

Furthermore, if the procedure .calls another procedure, the prologue must compute a
frame pOinter. The frame pOinter will be used by procedures called in tum by the
callee to insure that the callee's activation record is in the local registers upon return
(Le., that it has not been.spilled onto the Register Stack in data memory). The frame
pointer is computed in the prologue because it need only be computed once, regard­
less of how many procedures are called by given procedure.

PROGRAMMING 701

7.1.2.3

7.1.2.4

7.1.2.5

7·10 PROGRAMMING

The complete procedure prologue is then (fp = Ir1):

prologue:
sub rsp, rsp, rsize*4
asgeu V_SPILL, rsp, rab
add fp, rsp, size*4

SPILL HANDLER

; allocate frame
; call spill handler if needed
; compute frame pointer

If overflow occurs, the assert instruction in the prologue fails, causing a trap. The
trap handler invokes a User-mode routine in the trapping process to spill Register
Stack locations from the local registers to external memory. Having most of tne spill
handling in a User-mode routine minimizes the amount of time that interrupts are
disabled, and insures that spilling is performed using the correct virtual-memory
configuration.

The spill handler uses two registers. The first register, Global Register 121, normally
contains a trap-handler argument (tav), but is used by the spill handler as a temporary
register. The second register, Global Register 122, stores a trap handler return ad­
dress (fpc). This register is used by the User-mode spill handler to return to the trap­
ping procedure. It is assumed that the address of the User-mode spill handler is
contained in a global register, denoted user_spill_reg in the following instruction
sequence.

The complete spill handler is:

Spill:

user_spill:

mfsr
mtsr
add
mtsr
iret

sub
sri
sub
mtsr
sub
sub
add
storem
jmpi
add

tpc, PC1
PC1, user_spill_reg
tav, user_spill_reg, 4
PCO, tav

tav, rab, rsp
tav, taY, 2
tay, taY, 1
CR, taY
tav, rab, rsp
taY, rfb, taY
rab, rsp, °
0,0, IrO, tav
tpc
rfb, tay, °

RETURN VALUES

; operating-system routine
; save return address
; branch to User spill via interrupt retum

; User-mode spill handler
; compute spill: allocate bound - rsp
; shift to get number of words
; count is one less
; set Count Remaining Register

; compute new free bound
; adjust allocate bound
; spill
; return to trapping procedure
; adjust free bound

If the called procedure returns one or more results, the first 16 words of the result(s)
are returned in Global Register 96 through Global Register 111, starting with Global
Register 96.

If more than 16 words are required for the results, the additional words are returned in
memory locations allocated by the caller. In this case, a large return pointer (/rp)
provided by the caller in Global Register 123 at the time of the call points to the 17th
word of the results, and subsequent words are stored at higher memory addresses.

PROCEDURE EPILOGUE
The procedure epilogue de-allocates the stack frame that was allocated by the proce­
dure prologue, and returns to the calling procedure. Stack de-allocation is accom­
plished by adding the rsize value back to the register stack pointer, after which the
de-allocated. registers are no longer used and are considered invalid. The epilogue

7.1.2.6

7.1.2.7

7.1.2.8

also detects stack underflow and causes register filling if underflow occurs. This is
accomplished by comparing the value of the caller's frame pointer with the register
free bound and invoking a trap handler (with vector number V]ILL) if underflow is
detected. Finally, the epilogue returns to the caller using the caller's return address.

The complete procedure epilogue is:

epilogue:
add rsp, rsp, rsize*4
nop
as leu V_FILL, fp, rfb
jmpi IrO

FILL HANDLERS

; add back rsize count
; cannot reference a local register here
; call fill handler if needed
; jump to retum address

i ~

If underflow occurs, the assert instruction in the epilogue fails, causing a trap. Thei
trap handler invokes a User-mode routine in the trapping process to fill Register Stack
locations from the external memory to local registers. The fill handler is similar in
organization to the spill handler discussed above.

The complete fill handler is:

Fill:

useUiII:

mfsr tpc, PC1
mtsr PC1, useUilUeg
add tav,useUilUeg,4
mtsr PCO, tav
iret

const tav, Ox80 «2
or tav, tav, rfb

mtsr IPA, tav

; operating-system routine
; save return address
; branch to User fill via interrupt return

; User-mode fill handler

; put starting register number into Indirect
; POinter A

sub tav, Ir1, rfb ; compute number of bytes to fill
add rab, rab, tav ; adjust the allocate bound .
sri tav, tav, 2 ; change byte count to word count
sub tav, tav, 1 ; make count zero-based
mtsr CR, tav ; set Count Remaining register
Ioadm 0,0, grO, rfb ; fill
jmpi tpc ; return to trapping procedure
add rfb, 1r1 , 0 ; adjust the free bound

THE REGISTER STACK LEAF FRAME

A leaf procedure is one that does not call any other procedure. The incoming argu- I
ments of a leaf procedure are already allocated in the calling procedure's activation- ·1·;

record frame, and the leaf routine is not required to allocate locations for any outgoing •
arguments, frame pointer or return address (since it performs no call). Hence, a leaf •.
procedure need not allocate a stack frame in the local registers, and can avoid the .
overhead of the procedure prologue and epilogue routines. Instead, a leaf routine can !:
use a set of global registers for local variables; Global Register 96 through Global
Register 124 are reserved for this purpose (among other purposes). If there is an
insufficient number of global registers, the leaf procedure may allocate a frame on the
Register Stack.

LOCAL VARIABLES AND MEMORYoSTACK FRAMES

A called procedure can store its local variables and temporaries in space allocated in
the Register Stack frame by the procedure prologue. The values are referenced as an
offset from the rsp base address, using the Stack-Pointer addressing of the Am29050

PROGRAMMING 7-11

7.1.2.9

microprocessor local registers. No object in a register is aligned on anything smaller
than a register boundary, and all objects take at least one register.

Because there are 128 local registers, the total Register Stack activation-record size
may not be greater than 128 words. If the callee needs more space for local variables
and temporaries, it must allocate a frame on the Memory Stack to hold these objects.
To allocate a Memory-Stack frame, the procedure prologue decrements the memory
stack pointer (msp, in gr125). The procedure epilogue de-allocates the Memory-Stack
frame by incrementing the msp.

A procedure that extends the Memory Stack dynamically (e.g., using al/oca()) must
make a copy of the msp at procedure entry, before allocating the Memory-Stack
frame. The msp is stored in the memory frame pointer (mfp) entry of the activation
record in the Register Stack. The procedure then can change the msp during execu­
tion, according to the needs of dynamic allocation. On procedure return, the Memory­
Stack frame is de-allocated using the mfp to restore the msp. A procedure that does
not extend the Memory Stack dynamically need not have an mfp entry in its activation
record.

The following prologue and epilogue routines are used if there is no dynamic alloca­
tion of the Memory Stack during procedure execution, but a Memory Stack frame is
otherwise required:

prologue:

epilogue:

sub
asgeu
add
sub

rsp, rsp, <rsize>*4
V_SPILL. rsp. rab
fp. rsp. <size>*4
msp. msp. <msize>

; allocate register frame
; call spill handler if needed
; compute register frame pointer
; allocate memory frame
; msize = size of memory frame in words

add rsp. rsp. <rsize>' 4 ; de-allocate register frame
add msp. msp. <msize> ; de-allocate memory frame
jmpi IrO ; return
asleu V_FILL. fp. rfb ; call fill handler if needed

The following prologue and epilogue routines are used if there is dynamic allocation of
the Memory Stack during procedure execution:

prologue:

epilogue:

sub
asgeu
add
add

sub

rsp. rsp. <rsize> * 4
V_SPILL. rsp. rab
fp. rsp. <size>*4
Ir«rsize>-1}. msp. 0

msp, msp, <msize>

add msp,lr«rsize>-1}.O

add rsp, rsp, <fsize>*4
nop
jmpi IrO
asleu V_FILL, fp. rfb

STATIC LINK POINTER

; allocate register frame
; call spill handler if needed
; compute register frame pointer
; save memory frame pointer
; Ir(rsize-1} is last reg in new frame
; allocate memory frame.
; msize = size of memory frame in words

; restore memory stack pointer
; de-allocate memory frame
; de-allocate register frame
; cannot reference a local register here
; return
; call fill handler if needed

Some programming languages (notably Pascal) permit nested procedure declara­
tions, introducing the possibility that a procedure may reference variables and
arguments which are defined and managed by another procedure. This other .
procedure is a static parent of the callee. A static parent is determined by the

7·12 PROGRAMMING

7.1.2.10

7.1.2.11

7.1.3

declarations of procedures in the program source, and is not necessarily the calling
procedure; the calling procedure is the dynamic parent. Since procedures can be
nested at a number of levels, a given procedure may have a number of hierarchically
organized static parents.

A called procedure can locate its dynamic parent and the variables of the dynamic
parent because of the return address and frame pointer in the Register Stack. How­
ever, these are not adequate to locate variables of the static parent which may be
referenced in the procedure. If such references appear in a procedure, the procedure
must be provided with a static link pOinter (sIp). In the Am29050 microprocessor
run-time organization, the sIp is stored in Global Register 124. Since there can be a
hierarchy of static parents, the sIp pOints to the sIp of the immediate parent, which in
turn points to the sIp of its immediate parent, and so on. Note that the contents of
Global Register 124 may be destroyed by a procedure call, so a procedure needing to
reference the variables of a static parent may need to preserve the sIp until these
references are no longer necessary.

FLOATING-POINT ACCUMULATORS

A called procedure, if it needs to save and restore the floating-point accumulators,
may save and restore the accumulators by treating them as double-precision even
though they may contain single-precision values. Treating the floating-point accumu­
lators as double-precision values is accomplished by saving the Floating-Point Envi­
ronment Register, then forcing the Accumulator Format Field to 10 (double-precision).
The accumulators and the Floating-Point Environment Register must be restored
before returning to the calling procedure. Floating-point accumulators are not pre­
served across procedure calls.

TRANSPARENT PROCEDURES
A transparent procedure is one that requires very little overhead for managing run­
time storage. Transparent procedures are used in the Am29050 microprocessor
run-time organization primarily to implement compiler-specific support functions, such
as integer divide.

A transparent routine does not allocate any activation-record frames. Parameters are
passed to a transparent procedure using tavand the Indirect Pointer A, B, and C
registers. The return address is stored in tpc. This convention allows a leaf procedure
to call a transparent procedure without changing its status as a leaf procedure. There
is a tight relationship between a compiler and the transparent procedures it calls.
Some transparent procedures may need more temporary registers and the compiler
must account for this.

Register Usage Convention

The Am29050 microprocessor run-time organization standardizes the uses of the
local and global registers. This section summarizes register use and the nomencla­
ture for register values:

• GR1: Register stack pointer (rsp).

• GR2-GR3: Condition Code Accumulator.

• GR4-GR63: Unimplemented.

• GR64-GR95: Reserved for operating-system use.

• GR96-GR111: Procedure return values. Lower-numbered registers are used
before higher-numbered registers. If more than 16 words are needed, the additional

PROGRAMMING 7·13

7.1.4

7·14 PROGRAMMING

words are stored in memory (see GR123, large return pointer). These registers are
also used for temporary values that are destroyed upon a procedure call.

• GR112-GR115: Reserved for programmer. These registers are not used by the
compiler, except as directed by the programmer.

• GR116-GR120: Compiler temporaries.

• GR121: Trap handler argument/temporary (tav)-This register is used to
communicate arguments to a software-invoked trap routine. It can be destroyed by
the trap, but not by other traps and interrupts not explicitly generated by the
program (for example, a Timer trap).

• GR122 Trap handler return address/temporary (tpc). This register is also used by
software-invoked traps. It can be destroyed by the trap, but not by other traps and
interrupts not explicitly generated by the program (for example, a Timer trap).

• GR123: Large return pointer/temporary (Irp).

• GR124: Static link pointer/temporary (sip).

• GR125: Memory stack pointer (msp).

• GR126: Register allocate bound (roo).

• GR127: Register free bound (rib).

• LRO: Return address.

• LR1: Frame pOinter.

In this convention, registers must be handled by softWare according to system re­
quirements. The following practices are recommended:

• GR64-GR95 should be protected from User-mode access by the Register Bank
Protect Register.

• The contents of GR96-GR124 should be assumed destroyed by a procedure call,
unless the procedure is a transparent procedure.

• The contents of GR121 and GR122 should be assumed destroyed by any
procedure call or any program-generated trap.

• The contents of GR125 are always preserved by a procedure call.

• The contents of GR126 and GR127 are managed by the spill and fill handlers and
should not be modified except by these handlers.

Example of a Complex Procedure Can

The following code sequence demonstrates a complex procedure call, !!!ustrating how
registers are used in the run-time organization:

caller:

(other code)
add
add
call
const

(other code)

Irp, msp, 32
sip, msp, 120
IrO, callee
1r2,1

; pass Irp
; pass a static link

; 1 as first argument

7.1.5

Figure 7·7

callee:

const
sub
asgeu
const
add
add
const
consth
sub
add
add

(other code)
add
const
add
const
jmpi
asleu

tav, (126-2)*4
rsp, rsp, tav
V_SPILL, rsp, rab
tav, (126-2)*4+(3*4)
fp, rsp, tav
Ir123, msp, 0
tav, memory-frame_size
tav, memory-frame_size
msp, msp, tav
Ir18, Irp, 0
Ir19, sip, 0

msp, Ir123, 0
tav, (126-2)*4
rsp, rsp, tav
gr96,1
IrQ
V_FILL, fp, rfb

Trace·Back Tags

; giant register allocation
; allocate register frame

; incoming arguments and overhead
; create frame pointer
; for dynamic Memory-Stack allocation
; big msize
; high half of msize
; allocate memory frame
; save Irp for later
; save sip for later

; de-allocate memory frame
; giant allocation size
; de-allocate register frame
; return value
; return to caller
; ensure caller's registers in frame

A trace-back tag is either one or two words of information included at the beginning of
every procedure. This information permits a debug routine to determine the sequence
of procedure calls and the values of program variables at a given point in execution.
The trace-back tag describes the memory frame size and the number of local regis­
ters used by the associated procedure. A one-word tag is used if the memory frame
size is less than 2K words; otherwise, the two-word tag is used. Regardless of tag
length, the tag directly precedes the first instruction of the procedure. Figure 7-7
shows the format of the trace-back tags.

The first word of a trace-back tag starts with the invalid operation code 00 (hexadeci­
mal). This unique, invalid instruction operation code allows the debugger to locate the
beginning of the procedure in the absence of other information related to the begin­
ning of the procedure, such as from a symbol table. This is particularly useful after a
program crash, in which case the debug routine may have only an arbitrary instruction

Trace·Back Tags

o 0 0 0 0 0 0 0 0 M T argcount Reserved msize res

Two-word tag:

o 0 0 0 0 0 0 0 1 M T argcount Reserved Reserved

PROGRAMMING 7·15

7.2

7.2.1

7·16 PROGRAMMING

address within a procedure. The call sequence up to the current point in execution
can be determined from the (size and msize values in the trace-back tag. However,
for procedures that perform dynamic stack allocation (e.g., using alloca()), the mem­
ory frame pOinter must be used.

The tag word immediately preceding a procedure contains the following fields. Re­
served fields must be zero.

Bits Item Description

31-24 opcode Hexadecimal 00 (an invalid opcode)
23 tag type O/one-word tag; 1/two-word tag
22 m O/no mfp; 1/mfp used
21 t O/normal; 1/transparent procedure
20-16 argcount Number of arguments in registers (includes IrO and Ir1)
15-11 Reserved Reserved, must be zero
10-3 msize Memory frame size in doublewords (if bit 23 is 0)

or reserved (if bit 23 is 1)
2-0 Reserved Reserved, must be zero

If the procedure uses a Memory-Stack frame size 2K words or more, the msize field is
contained in the second tag word immediately preceding the first tag word.

APPLICATIONS·PROGRAMMING CONSIDERATIONS

This section discusses topics of general concern in the implementation of applications
programs.

Addressing General.Purpose Registers Indirectly

Registers in the processor usually are addressed directly by fields within instructions.
However, indirect addressing of registers may be required in some situations, such as
when a program pointer is known to point to a variable that is resident in the register
file.

Three special registers-Indirect Pointers A, B, and C-are provided so that separate
indirect register numbers can be set for each of the source and destination operands
within an instruction. Indirect Pointer C corresponds to the destination register RC,
Indirect POinter A corresponds to the RA operand register, and Indirect Pointer B
corresponds to the RB operand register.

A given indirect pointer (the value in the corresponding register) is used to address
the register file whenever Global Register 0 is specified as a source or destination
register. For exampie, a vaiue of 0 in the RA fieid of an instruction causes the content
of the Indirect Pointer A Register to be used to access the RA operand.

The indirect pointers can be set by the four multiply instructions, the floating-point
instructions, Move To Special Register instructions, and by the instructions EMU­
LATE, DIVIDE, DIVIDU, and Set Indirect Pointers (SETIP). The Move To Special
Register instructions set the indirect pointers individually as special-purpose registers.
Of the remaining instructions, all but the EMULATE instruction set all three indirect
pointers simultaneously, deriving the values that are written into the pointers from the
instruction fields RC, RA, and RB. The EMULATE instruction sets all three indirect
pointers, but only the Indirect Pointer A and Indirect Pointer B registers are written
with meaningful values. They may be destroyed by DIVIDE, DIVIDU, MULTIPLY,
MUL TIPLU, MUL TM, MULTMU, and the floating-point instructions.

7.2.2

7.2.3

When an indirect pointer is set by a Move To Special Register, bits 9-2 of the source
operand are copied to corresponding bits in the indirect pOinter. This allows the ad­
dressing of general-purpose registers, via the indirect pointers, to be consistent with
the addressing of words in external memories and devices.

When the indirect pointers are set from instruction fields, the resulting values reflect
the Stack-Pointer addition that is performed on local registers. In addition, register
bank-protection checking is performed on the values that are loaded. A Protection
Violation trap occurs if the values represent registers that cannot be accessed. The
indirect pOinters may thus be used to access exactly those operands that would be
accessed by the instruction fields setting the indirect pointers. Consequently, a routine
that emulates an instruction operation can access, with no overhead, the source and
destination registers for the instruction being emulated. No copying of arguments and
results needs to be done.

The indirect pOinters are also set by the floating-point, MULTIPLY, MUL TM, MUL TI­
PLU, and MUL TMU instruction when these cause exceptions, to allow the exception
handler to access the instruction operands.

When using indirect register addressing, at least one cycle of delay must separate
any instruction that sets an indirect pOinter and any instruction which de-references
that pOinter. This restriction is the result of processor pipelining (see Section 7.4.3).

Run-Time Checking

The assert instructions provide programs with an efficient means of comparing two
values and causing a trap when a specified relation between the two values is not
satisfied. The instructions assert that some specified relation is true, and trap if the
relation is not true. This allows run-time checking-such as checking that a computed
array index is within the boundaries of the storage for an array-to be performed with
a minimum performance penalty.

Assert instructions are available for comparing two signed or unsigned operands. The
following relations are supported: equal-to, not-equal-to, less-than, less-than or equal­
to, greater-than, and greater-than-or-equal-to.

The assert instructions specify a vector number for the trap. However, only vector
numbers 64 through 255 (inclusive) may be specified by User-mode programs. If a
User-mode assert instruction causes a trap, and the vector number is between 0 and
63 inclusive, a Protection Violation trap occurs, instead of the specified trap.

Since the assert instructions allow the specification of the vector number, several
traps may be defined in the system, for different situations detected by the assert
instructions.

Operating System Calls

An applications program can request a service ,from the operating system by using
the following instruction:

asneq System_Routine, gr1, gr1

This instruction always creates a trap, since it attempts to assert that the content of a
register is not equal to itself (the register number used here is irrelevant, as long as
the register is otherwise accessible).

The System_Routine vector number specified by the instruction invokes the execution
of the operating system routine that provides the requested service. This vector num­
ber may have any value between 64 and 255, inclusive (vector numbers 0 through 63

PROGRAMMING 7-17

7.2.4

7.2.5

are pre-defined or reserved). Thus, as many as 192 different operating-system rou­
tines may be invoked from the applications program.

In cases where the indirect pointers may be used, the EMULATE instruction allows
two operand/result registers to be specified to the operating-system routine. The
instruction is:

emulate System_Routine, 1r3, Ir6

In this case, the System_Routine vector number performs the same function as in the
previous example. Here, however, LR3 and LR6 are specified as operand registers
and/or result registers (these particular registers are used only for illustration). The
operating-system routine has access to these registers via the indirect pointers, which
allows flexible communication.

Multi·Precision Integer Addition And Subtraction

The processor allows the Carry (C) bit of the ALU Status Register to be used as an
operand for add and subtract instructions. This provides for the addition and subtrac­
tion of operands which are greater than 32 bits in length. For example, the following
code implements a 96-bit addition with signed overflow detection.

add Ir7, gr96, 1r2
addc Ir8, gr97, 1r3
addcs 1r9, gr98, Ir4

Global registers GR96-GR98 contain the first operand, local registers LR2-LR4
contain the second operand, and local registers LR7-LR9 contain the result. The first
two .add instructions set the C bit, which is used by the second two instructions. If the
addition causes a signed overflow, then an Out of Range trap occurs; overflow is
detected by the final instruction.

Integer Multiplication

The Am29050 microprocessor directly executes the integer-multiplication instructions
MULTIPLY, MUL TIPLU, MUL TM, and MUL TMU (these are implemented using traps
in the Am29000 microprocessor). The Am29050 microprocessor implements the
multiply-step instructions MUL, MULU, and MULL for compatibility, but new code
generated for the Am29050 microprocessor should take advantage of the faster·
integer multiply instructions.

The MULTIPLY and MUL TIPLU instructions multiply two 32-bit integers, giving a
32-bit result. MULTIPLY is used for signed integers, and MUL TIPLU is used for un­
signed integers. Overflow of the 32-bit result is detected when Integer Multiplication
Overflow Exception MasK bit (MO) of the integer Environment Register is O. When the
MO bit is 0, the MULTIPLY and MULTIPLU operations cause an Out of Range trap
upon overflow of a 32-bit signed or unsigned result, respectively.

In general, multiplying 32-bit integers produces a 64-bit result. The most-significant 32
bits of a signed or unsigned result are generated by the MULTM and MUL TMU in­
structions, respectively. To obtain a full 64-bit result, a MULTIPLY or MULTIPLU
instruction is followed by a MULTM or MULTMU instruction:

; 32 bit' 32 bit ~ 64 bit signed multiply
; Input: multiplicand in 112, multiplier in 1r3
; Output: result most-significant word
; in gr96, result
; least·significant word in gr97

7·18 PROGRAMMING

7.2.6

multiply gr97, 1r2, 1r3
multm gr96, 1r2, 1r3

; get Isb's
; get msb's

; 32 bit' 32 bit ~ 64 bit unsigned multiply
; Input: multiplicand in 1r2, multiplier in 1r3
; Output: result most -significant word in
; gr96, result
; least-significant word in gr97

multiplu gr97, 1r2, 1r3 ; get Isb's
multmu gr96, 1r2, 1r3 ; get msb's

The operation producing the most-significant bits of the 64-bit result is fully pipelined
with the operation producing the least-significant bits, so generating a full, 64-bit result
takes one more cycle than generating a 32-bit result. Note that the MO bit should be 1
to disable the detection of overflow when obtaining a 64-bit result; 64-bit results can­
not overflow.

Integer Division

The processor performs integer division by a series of divide step instructions, rather
than by a single instruction. Floating-point division is performed by hardware. When
the divisor is a power of 2, and the dividend is unsigned, the divide should be accom­
plished by a right shift.

If a program requires the division of two integers, the required sequence of divide
steps may be executed in-line, or executed in a divide routine called as a procedure.
It may be beneficial to precede a full divide procedure with a routine to discover
whether or not the number of divide steps may be reduced. This reduction is possible
when the operands do not use all of the available 32 bits of preciSion.

The following routine divides a 64-bit, unsigned dividend by a 32-bit unsigned divisor:

; 64 bit I 32 bit ~ 32 bit unsigned divide
; Input: most-significant dividend word in 1r2, least-significant dividend word in 1r3,

divisor in Ir4
; Output: quotient in gr96, remainder in gr97

UDiv64:
mtsr Q,Ir3

the Q
divO gr97, Ir2

. rep 31

div gr97, gr97, Ir4
.endr

; put least-significant word of the dividend in
; register
; perform initial divide step

; expand out 31 copies of the next
; instruction in-line
; total of 30 more divide steps

divl gr97, gr97, Ir4 ; perform last step
divrem gr97, gr97, Ir4 ; compute remainder
mfsr gr96, Q ; get the quotient

The following routine divides a 32-bit unsigned dividend by a 32-bit unsigned divisor:

; 32 bit I 32 bit ~ 32 bit unsigned divide
; Input: dividend word in 1r2, divisor in 1r3
; Output: quotient in gr96, remainder in gr97

PROGRAMMING 7.19

7-20 PROGRAMMING

UDiv32:
mtsr
divO

.rep

div
.endr

Q,Ir2
gr97,0

31

gr97, gr97, Ir4

; put the dividend in the Q register
; perform initial divide step, zeroing out
; the upper bits of the dividend

; expand out 31 copies of the next
; instruction in-line
; total of 30 more divide steps

divl gr97, gr97, Ir4 ; perform last step
divrem gr97, gr97, Ir4 ; compute remainder
mfsr gr96, Q ; get the quotient

The following routine divides a 32-bit signed dividend by a 32-bit signed divisor. It also
traps division by zero. Because the divide-step instructions only operate on unsigned
operands, extra code is required to perform sign checking and conversion:

; 32 bit / 32 bit signed divide, called by:

call
setip

tpc, SDiv32 ; call the divide routine
dsCreg, src1_reg, src2_reg

; passing pointers to the operand
; registers in the delay slot

; Input: dividend and divisor in the registers pointed to by the indirect-pointer
registers IPA and IPB

; Output: result quotient in the register pOinted to by IPC, remainder left in TempO
; Used: return address in tpc, special register Q
; Destroyed: previous contents of registers tav, TempO-Temp2
; Symbolic register names:

SDiv32:

pdividend:

pdivisor:

.reg TempO,gr116

.reg Tempi, gr119

. reg Temp2, gr120

. reg tpc, gr122

.word Ox00200000 ; Debugger tag word

Temp1,O const
asneq V _DIVBYZERO, Tempi, grO

add
jmpf
add
const
subr

jmpf
mtsr

xor
subr

TempO, grO, 0
TempO, pdividend
Temp2, Tempi, grO
Temp1,3
TempO, TempO, 0

Temp2, pdivisor
Q, TempO

Tempi, Tempi, 1
Temp2, Temp2, 0

divO TempO, 0

.rep 31

div TempO, TempO, Temp2
.endr

divl TempO, TempO, Temp2
divrem TempO, TempO, Temp2

; check for divide by zero with an assert
; get dividend from indirect pointer
; is it negative (impf is also "jmppos")
; get divisor from indirect pointer
; set negative result and remainder flags
; make dividend positive

; is divisor negative?
; copy dividend to Q register in delay slot
; of the jump
; turn off negative result flag
; make divisor positive

; initialize

; expand out 31 copies of the next
; instruction in-line
; total of 30 more divide steps

; perform last divide step
; get positive remainder

7.2.7

7.2.8

mfsr
sll
jmpf
sll
subr

premainder:
jmpfi
add

jmpi
subr

Rounding

Temp2,a
Temp1, Temp1, 30
Temp1, premainder
Temp1, Temp1,1
TempO, TempO, 0

Temp1, tpc
grO, Temp2, 0

tpc
grO, Temp2, 0

; get positive quotient
; copy negative remainder flag to test bit
; if it is not set, remainder is ok
; copy negative result flag to test bit
; negate remainder

; return to caller if result is positive
; copying quotient to the result register
; in the delay slot
; else return to caller,
; negating the quotient in the delay slot

Floating-point operations can be performed in one of four rounding modes defined in
the IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std. 754-1985).
These modes are:

Round to Nearest The result produced is the representable value nearest to the
infinitely precise result. It can happen that the infinitely preCise result falls exactly
halfway between two representable values; in this case, the result produced will be
whichever of those two representable values has a fractional part whose least-signifi­
cant bit is O.

Round Toward +00: The result produced is the representable value closest to but no
less than the infinitely precise result.

Round Toward -00: The result produced is the representable value closest to but no
greater than the infinitely precise result.

Round Toward 0: The result produced is the representable value closest to but no
greater in magnitude than the infinitely precise result.

The floating-point rounding mode is determined by the FRM field of the Floating-Point
Environment Register. The following operations are affected by the value in the FRM
field:

• FADD, DADD, FSUB, DSUB, FMUL, DMUL, FDIV, DDIV,
FMAC, DMAC, FMSM, DMSM, and SORT

• MFACC and MTACC

• CONVERT, when the instruction field RND is 100.

The value in the' FRM field has no effect on the floating-point comparison operations,
the CLASS operation, or the FDMUL operation.

Fast·Float Mode

The 29K Family fully supports the IEEE Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Std. 754-1985). For some floating-point implementations, however, a
significant speed advantage can be realized by disabling certain supported features.

For the Am29050 microprocessor, a fast-float mode has been provided to disable the
processing of denormalized numbers. Although the handling of denormalized num­
bers in the Am29050 microprocessor is always transparent to the user, the processor
will sometimes require extra cycles to process denormalized operands. This adds
both to processing time and to the statistical variability of the processing time required
for a given number of computations.

PROGRAMMING 7·21

7.2.9

7.2.10

7.2.10.1

7·22 PROGRAMMING

The Fast-Float mode is enabled by setting the Fast-Float Select (FF) bit of the Float­
ing-Point Environment Register. In the fast-float mode, denormalized numbers are
handled as follows:

1. A denormalized source operand is converted to a zero of the same sign before the
operation is performed; this conversion does not affect the value of the operand in
the source register. This conversion does not signal an inexact result exception,
because the Fast-Float mode considers a denormalized number to be nothing
more than a representation of zero. This occurs without adding extra cycles.

2. An operation producing an infinitely precise result smaller than the smallest
normal number in the destination format will produce a zero result of the same
sign as the infinitely precise result; the underflow and inexact exceptions will be
reported.

The instructions MTACC, FMAC, DMAC, FMSM, and DMSM use the Fast-Float
mode, regardless of the FF bit.

Complementing a Boolean

To complement a Boolean in the processor's format, only the most-significant bit of
the Boolean word should be considered, since the least-significant 31 bits mayor may
not be zeros. This is accomplished by the following instruction:

cpge gr96, gr96, 0

The Boolean is in GR96 in this example. This instruction is based on the observation
that a Boolean TRUE is a negative integer, since the Boolean bit coincides with the
integer sign bit. If the operand of this instruction is a negative integer (Le., TRUE), the
result is the Boolean FALSE. If the operand is non-negative (Le., the Boolean
FALSE), the result is TRUE.

Using the Floating-Point Accumulators

The Floating-Point Accumulators (ACCO to ACC3) provide an extra source or destina­
tion register for the multiply-accumulate (FMAC, DMAC) and multiply-sum (FMSM,
DMSM) instructions. The FMAC and DMAC instructions can be used to evaluate
sum-of-products calculations, such as those found in vector or matrix multiplication.
The FMSM and DMSM instructions are used when the multiplier is a fixed value, such
as in polynomial evaluation using Horner's Rule, or the SAXPY or DAXPY (Single/
Double precision A times X Plus Y) vector routines used in Gaussian Elimination.

MATRIX MULTIPLICATION USING THE FMAC INSTRUCTION

One of the operations performed frequently in 3-dimensional (3-D) graphics systems
is the rotation and transiatioil oi a 3-D vectoi. This is accomplished by multiplying a
4-by-1 vector and a 4-by-4 matrix. In this case, the four accumulators are used to
interleave four independent sum-of-products calculations. This eliminates pipeline
stalls caused by dependencies on the accumulator values.

For the FMAC and DMAC instructions, accumulated values can overflow, especially
when accumulating many terms. The FMAC and DMAC instructions can specify the
accumulator format independent of the other operands, allowing the accumulated
values to be maintained in the double-precision format even though the operations
are performed in the single-precision format. This is accomplished with no perform­
ance penalty.

7.2.10.2

; Multiply a 4 x 1 vector times a 4 x 4 matrix. Four accumulators are
; used to interleave four independent sum-of-product evaluations.
; This code takes 22 cycles to complete 28 floating-point
; operations.
; Input: 4x4 matrix (a) in registers 1r2-lr17; 4x 1 vector

(b) in registers Ir18-1r21
; Output: 4x 1 result vector (c) in 1r22-1r25.

; The first four instructions initialize the accumulators with
; the first four independent products. The FMAC function field
; is set to 4, specifying that the operation to be performed is
; a*b+O.O

fmac
fmac
fmac
fmac

4,0, 1r2, Ir18
4, 1, Irs, Ir18
4,2, Ir10, Ir18
4, 3,Ir14, Ir18

; aceO +- a11 * b1
; acc1 +- a21 * b1
; acc2 +- a31 * b1
; acc3 +- a41 * b1

; the remaining FMAC operations continue the four independent evaluations:
fmac 0,0, 1r3, Ir19 ; accO +- a12 * b2 + aceO
fmac 0, 1, Ir7, Ir19 ; ace1 +- a22 * b2 + ace1
fmac 0,2, Ir11, Ir19 ; acc2 +- a32 * b2 + ace2
fmac 0, 3,Ir15, Ir19 ; acc3 +- a42 * b2 + acc3

fmac 0, 0, Ir4, 1r20 ; accO +- a13· b3 + aceO
fmac 0, 1, Ira, 1r20 ; ace1 +- a23 * b3 + ace1
fmac 0,2, Ir12, 1r20 ; acc2 +- a33 * b3 + ace2
fmac 0,3, Ir16, 1r20 ; acc3 +- a43 * b3 + ace3

fmac 0,0, Ir5, 1r21 ; aceO +- a14· b4 + aceO
fmac 0, 1, 1r9, 1r21 ; acc1 +- a24 • b4 + ace1
fmac 0, 2, Ir13, 1r21 ; acc2 +- a34 * b4 + acc2
fmac 0, 3, Ir17, 1r21 ; acc3 +- a44 • b4 + acc3

; the final four instructions move the accumulated sums into
; the destination registers:

mfacc 1r22, 1, 0
mface 1r23, 1, 1
mfacc 1r24, 1, 2
mfacc 1r25, 1,3

; cO +- aceO
; c1 +- ace1
; c2+- ace2
; c3 +- acc3

SAXPY USING THE MSM INSTRUCTION
The SAXPY (Single Precision A Times X Plus Y) routine is used heavily to solve
systems of linear equations via Gaussian Elimination. The following example SAXPY
routine operates on vectors of 16 elements:

; SAXPYof size 16, using the FMSM instruction.
; inputs: constant multiplier A in 1r2

address of X vector in 1r3
address of Y vector in Ir4
address of result vector in 1r5
assumes ACF is 01

; first, load in the X vector using the LOADM instruction. This
; operation works with burst-access memory at 1 word per cycle:

mtsrim cr, 15 ; load 16 words
Ioadm 0, 0, gr96, 1r2 ; read in the X vector

; load in the Y vector the same way ...
mtsrim cr, 15
Ioadm 0,0, Ir6, 1r3 ; read in the Y vector
rntacc Ir4, 0, 0 ; initialize with multiplier A

PROGRAMMING 7-23

I ,~

[,

I
I'

7.2.11

7·24 PROGRAMMING

; perform 16 FMSM instructions on the two vectors
fmsm g196, g196, Ir6 ; g196 = g196 * ACCO + Ir6
fmsm g197, g197, Ir7 ; g197 = g196 * ACCO + Ir7
fmsm g19S, g19S, IrS ; g19S = g19S * ACCO+lrS

fmsm gr111, gr111, Ir21

; store out the result vector
mtsrim cr, 15
storem 0, 0, g196, Ir5

; gr111 = gr111 * ACCO + Ir21

Using the Condition Code Accumulator

The Condition Code Accumulator can be used to concatenate the Boolean results of
several operations into a single condition code. The condition code can then be used
as an operand in further operations, for example, as a control parameter for condi­
tional branches.

The Condition Code Accumulator Register is accessed via Global Registers 2 and 3.
If Global Register 2 (CCA) is specified as the destination of an operation, then the
32-bit operation result is written to the Condition Code Accumulator Register. If Global
Register 3 (CCA-shift) is the destination, then the Condition Code Accumulator Regis­
ter is shifted left one bit and the most-significant bit of the operation result is placed in
the least-significant bit of the register. The contents of the Condition Code Accumula­
tor Register are read by specifying Global Register 2 as a source operand of an
instruction.

The following restrictions apply to the use of the Condition Code Accumulator:

CCA as Source: The CCA register can be specified as a source for any instruction
except those performed in the Floating-Point Unit. (The instructions performed in the
FPU are: all floating-point instructions, CLASS, CONVERT, MULTIPLY, MULTIPLU,
MUL TM, and MUL TMU.)

CCA as Destination: The CCA register can be specified as the destination of the
following instructions only: ADD, SUB, and the constant instructions (CONST,
CONSTH, CONSTHZ, and CONSTN).

CCA-shift as Source: The CCA-shift register can not be specified as a source.
Specifying CCA-shift as a source will produce an unpredictable result.

CCA-shift as Destination: The CCA-shift register can be specified as the destina­
tion of any instruction except LOAD, LOADL, LOADM, and LOADSET.

There are two additional restrictions on the use of the Condition Code Accumulator:

1. The Condition Code Accumulator cannot be used as both source and destination
in the same instruction. For example, the instructions:

add gr3,gr2,lrO
or

add gr2,gr3,lrO

are not permitted.

7.2.12

7.2.13

2. Write-write dependency checking is disabled for any instructions having CCA or
CCA-shift as the destination. For example, if the instructions:

fdiv gr3,lrO,lr2
and

frool gr3,lr4.lr6

are issued in sequence, hardware interlocks do not guarantee that the instructions
will complete in sequence. Therefore only code sequences which guarantee a
fixed order of completion will give predictable results. Problematic sequences are

I,

Ii
I
r,::
I'

It
~

those which contain:r:¢
1£

• Instructions with unequal latencies (as in the example above). ;,'

• Instructions whose latency may change in the presence of denormalized input
operands or results. These instructions-which include FMUL, DMUL, DDIV, and
SQRT -can be used if the Fast-Float mode is enabled.

Generating Large Constants

Eight-bit constants are directly available to most instructions. Larger constants must
be generated explicitly by instructions and placed into registers before they ean ,be
used as operands. The processor has four instructions for the generation of large
data constants: Constant (CONST); Constant, High (CONSTH); Constant, Negative
(CONSTN); and Constant High, Zero (CONSTHZ).

The CONST instruction sets the least-significant 16 bits of a register with a field in the
instruction; the most-signifieant 16 bits are set to zero. This instruction allows a 32-bit
positive constant to be generated with one instruction, when the constant lies in the
range of 0 to 65535.

Any 32-bit constant may be generated with a combination of the CONST and
CONSTH instructions. The CONSTH instruction sets the most-significant 16 bits of a
register with a field in the instruction; the least-significant bits are not modified. Thus,
to create a 32-bit constant in a register, the CONST instruction sets the least-signifi­
eant 16 bits, and the CONSTH instruction sets the most-significant 16 bits.

The CONSTN instruction sets the least-significant 16 bits of a register with a field in
the instruction; the most-signifieant 16 bits are set to one. This instruction allows a
32-bit, negative constant to be generated with one instruction, when the constant lies
in the range of ~5536 to -1.

The CONSTHZ instruction sets the most-significant 16 bits of a register with a field in
the instruction; the least-significant 16 bits are set to zero. This facilitates the genera­
tion of floating-point constants.

Large .Jump and Can Ranges

The 16-bit relative branch displacement provided by processor instructions is suffi­
cient in the majority of cases. However, addresses with a greater range occasionally
are needed. In these cases, the CONST and CONSTH instructions generate the large
branch-target address in a register. An indirect jump or call then uses this address to
branch to the appropriate location.

When program modules are compiled separately, the compiler cannot determine
whether or not the 16-bit displacement of a CALL instruction is sufficient to reach
an external procedure, even though it is sufficient in most cases. Instead of generat­
ing instructions for the worst ease (i.e., the CONST, CONSTH, and CALLI described
above), it is more efficient to generate a CALL as if it were appropriate, with the

PROGRAMMING 7·25

7.2.14

7.2.15

7.2.15.1

7·26 PROGRAMMING

worst-case sequence (in this case, CONST, CONSTH, and JMPI) also appearing in
the generated code somewhere (e.g., at the end of a compiled procedure).

When the above scheme is used, the linker is able to determine whether or not the
CALL is sufficient. If it is not, the CALL can be re-targeted to the worst-case sequence
in the code. In other words, when the CALL is not sufficient, the linker causes the
execution sequence to be:

[
call

const
consth
jmpi

In this manner, the longer execution time for the call occurs only when necessary.

NO·OPs

When a NO-OP is required for proper.operation (e.g., as described in Section 7.4.3), it
is important that the selected instruction not perform any operation, regardless of
program operating conditions. For example, the NO-OP cannot access general­
purpose registers, because a register may be protected from access in some situ­
ations. The suggested NO-OP is:

aseq Ox40, gr1 , gr1

This instruction asserts that the Stack Pointer (GR1) is equal to itself. Since the asser­
tion is always true, there is no trap. Note also that the Stack Pointer cannot be pro­
tected, and that the assert instruction cannot affect any processor state.

Character.String Operations

The need to perform operations on character strings arises frequently in many sys­
tems. The"processor provides operations for manipulating character data, but these
are frequently inefficient for dealing with character strings, since the processor is
optimized for 32-bit data quantities.

It is much more efficient, in general, to perform character-string operations byoperat­
ing on units of four bytes each. These four-byte units are more suited to the proces­
sor's data-flow organization. However, there are several things to be considered when
dealing with four-byte units, as outlined in this section.

ALIGNMENT OF BYTES WITHIN WORDS

Character strings normally are not aligned with respect to 32-bit words. Thus, when
word operations are used to perform character-string operations, alignment of the
character strings must be taken into account.

For example, consider a character string aligned on the third byte of a word that is
moved to a destination string aligned on the first byte of a word. If the movement is
performed word-at-a-time, rather than byte-at-a-time, the move must involve shift and
merge operations, since words in the destination character-string are split across
word boundaries in the source character string.

The processor's Funnel Shifter can be used to perform the alignment operations
required when character operations are performed in four-byte units. Though the

7.2.15.2

7.2.16

7.3

7.3.1

7.3.1.1

Funnel Shifter supports general bit-aligned shift and merge operations, it easily is
adapted to byte-aligned operations.

For byte-aligned shift and merge operations, it is only necessary to insure that the two
most-significant bits of the Funnel Shift Count (FC) field of the ALU Status Register
point to a byte within a word, and that the three least-significant bits of the FC field
are 000.

DETECTION OF C",ARACTERS WITHIN WORDS

Most character-string operations require the detection of a particular character within
the string. For example, the end of a character string is identified by a special charac­
ter in some character-string representations. In addition, character strings often are
searched for a specific pattern. During such searches, the most-frequently executed
operation is the search within the character string for the first character of the pattern.

The processor provides a Compare Bytes (CPBYTE) instruction, which directly sup­
ports the search for a character within a word. This instruction can provide a factor-of­
four performance increase in character-search operations, since it allows a character
string to be searched in four-byte units.

During the search, the words containing the character string are compared, a word at
a time, to a search key. The search key has the character of interest in every byte
position. The CPBYTE instruction then gives a result of TRUE if any character within
the character-string word matches the corresponding byte in the search key.

Movement of Large Data Blocks

The movement of large blocks of data-for example, to perform a memory-to-memory
move-can be performed by an alternating series of loads and stores. However, it is
normally much more efficient to move large blocks of data by using an alternating
series of Load Multiple and Store Multiple instructions. These instructions take better
advantage of the data-movement capabilities of the processor, though they require
the use of a large number of registers.

During data movement, it is possible to perform alignment operations by a series of
EXTRACT instructions between the Load Multiple and Store Multiple. Also, since the
Load Multiple and Store Multiple are interruptible, these instructions may be used to
move large amounts of data without affecting interrupt latency.

SYSTEMS·PROGRAMMING CONSIDERATIONS

This section discusses topics of general concern in the implementation of control
programs and operating systems.

System Protection

The Am29050 microprocessor provides protection of several different system re­
sources. In general, this protection is based on the value of the Supervisor Mode
(SM) bit in the Current Processor Status Register.

MEMORY PROTECTION

Memory and input/output access protection is provided by the Memory Management
Unit. Each Translation Look-Aside Buffer entry in the MMU contains protection bits
which determine whether or not an access to the page associated with the entry will
be permitted. Each Region Mapping Control Register also contains protection bits to
control access to the virtual region it maps.

PROGRAMMING 7·27

7.3.1.2

7.3.1.3

7.3.2

There is a set of protection bits for Supervisor-mode programs, and a separate set for
User-mode programs. Thus, for the same virtual page or region, the access authority
of programs executing in the Supervisor mode can be different than the authority of
programs executing in User mode.

A Data MMU Protection Violation or Instruction MMU Protection Violation trap occurs
if a data or instruction access, respectively, is attempted, but is not allowed because
of the value of the protection bits.

REGISTER PROTECTION
General-purpose registers are protected by the Register Bank Protection Register.
The Register Bank Protection Register allows parameters for the operating system
to be kept in general-purpose registers, protected from corruption by User-mode
programs.

If a User-mode program attempts to access a protected general-purpose register, a
Protection Violation trap occurs. Supervisor-mode programs may access any general­
purpose register, regardless of protection.

The special-purpose registers 0 to 127 and all Translation Look-Aside Buffer registers
are protected from User-mode access. Any attempted access of these registers by a
User-mode program causes a Protection Violation trap. The special-purpose registers
163 and 165 to 255 (though not implemented) are protected from any access. Any
attempted access of special-purpose registers 163 and 165 to 255, even in the Super­
visor mode, causes a Protection Violation trap. This permits virtualization of these
special registers.

EXTERNAL ACCESS PROTECTION
Other than the protection offered by the Memory Management Unit, the processor
provides no specific protection for external devices and memories .. However, the
SUP/US output reflects the value of the SM bit during the address cycle of an external
access. This can signal external devices and memories to provide protection. Any
protection violations can be reported via the DERR input.

Interrupts and Traps

The Am29050 microprocessor automatically saves only the Current Processor Status
Register in the Old Processor Status Register when an interrupt or trap is taken. The
processor does not automatically save any other state when an interrupt or trap is
taken, but rather freezes the contents of the following registers:

1. Program Counters 0, 1, and 2.

2. Channel Address, Channel Data, and Channel Control.

3. ALU Status.

When these registers are frozen, they are allowed to be updated only by Move To
Special Register instructions. The frozen condition is controlled directly by the Freeze
(FZ) bit in the Current Processor Status Register.

Since the Channel Address, Channel Data, and Channel Control registers are frozen
when an interrupt or trap is taken, the interrupt handler may perform single-access
loads and stores without interfering with the restart state of a channel operation in the
interrupted routine. However, load-multiple and store-multiple operations have unpre­
dictable results if performed while the FZ bit is 1, since these operations are se­
quenced by the Channel Control Register.

7·28 PROGRAMMING

7.3.2.1

7.3.2.2

VECTOR AREA

As discussed in Section 3.5.4, interrupts and traps are dispatched through a
256-entry Vector Area, which directs the processor to a routine to handle a given
interrupt or trap. Only 64 entries of this area are required for basic processor opera­
tion (or 22, if instruction emulation is not used).

The required number of Vector Area entries is system-dependent, as determined by
the vector numbers that are specified in the assert and EMULATE instructions. The
number of entries can be restricted to reduce the memory requirements for the Vector
Area, which is especially important when the Vector Area is organized as a sequence
of 64-instruction blocks. However, there is nothing to prevent an instruction from
specifying a vector number in the range 64 to 255. For this reason, it may not be
possible to reduce the size of the Vector Area, since erroneous instruction vector
numbers might cause unpredictable results.

The Vector Area may be relocated by the Vector Area Base Address Register, and
there may be multiple Vector Areas in the system, with the Vector Area Base Address
Register pointing to the one that is currently active.

INTERRUPT HANDLING

For temporary program interruptions, such as for Translation Look-Aside Buffer
reload, the basic processor interrupt mechanism is sufficient to eliminate the need for
the interrupt or trap handler to save any state for the interrupted routine. This state
may be left in the appropriate registers while the handler executes. An interrupt return
returns immediately to the interrupted program.

Besides the direct performance advantage that results from not saving state for tem­
porary program interruptions, there is an additional advantage provided by the proc­
essor. When the state of the interrupted routine remains in the appropriate registers,
the processor can detect that the Program Counter 0 and Program Counter 1 regis­
ters contain sequential addresses. Instead of performing two non-sequential instruc­
tion fetches for the interrupt return in this case, the processor initiates only a single
non-sequential fetch (the second fetch is performed as a sequential fetch). This re­
duces the overhead of the interrupt return for these routines.

Note that when the state of an interrupted program remains in the processor, the
processor cannot be enabled to take any further interrupts until an interrupt return is
executed. Therefore, this capability should be restricted to time-critical routines,
where the execution time of the routine does not interfere with interrupt-latency con­
siderations. (Note that the Interrupt Pending bit of the Current Processor Status Reg­
ister may be used to detect the presence of external interrupts while these interrupts
are disabled).

To support dynamically nested interrupts and traps, the interrupt or trap handler must
save state as necessary for the application, using an appropriate data structure (such
as an interrupt stack or program status area). Once the state has been saved (or,
alternately, while it is being saved), the handler can load the state for a new program
to be executed. An interrupt return then initiates the execution of the new program.

When the interrupt or trap handler saves the floating-point accumulators, the Accumu­
lator Format (ACF) field of the Floating-Point Environment Register may not indicate
the actual format of the accumulators, because of modifications to the ACF field be­
fore the interrupt or trap was taken. The interrupt or trap handler should treat the
accumulators as containing double-precision values. This requires forcing the ACF
field to 10 (double-precision) after saving the Floating-Point Environment Register and
before executing an MFACC instruction to save the accumulators.

PROGRAMMING 7·29

I
I
I

7.3.2.3

7.3.2.4

7.3.2.5

7.3.3

7.3.3.1

7-30 PROGRAMMING

INTERRUPT RETURN
An interrupt return resumes the execution of a program whose processor state is
contained in the following registers:

1. Old Processor Status.

2. Program Counters 0 and 1.

3. Channel Address, Channel Data, and Channel Control.

This state is most likely different from the state of the program executing the interrupt
retum. These registers must be set appropriately before an interrupt return is
executed.

Note that the instruction sequence that sets these registers must have a Current
Processor Status that is equivalent to that of an interrupt or trap handler; the FZ bit
must be 1, and interrupts and traps must be disabled. '

SIMULATION OF INTERRUPTS AND TRAPS

Assert instructions may be used by a Supervisor-mode program to simulate the oc- -
currence of various interrupts and traps defined for the processor. Only an assert
instruction executed in Supervisor mode can specify a vector number between 0 and
63. If this instruction causes a trap, the effect is to create an interrupt or trap which is
similar to that associated with the specified vector number.

Thus, the interrupt and trap routines defined for basic processor operation can be
invoked without creating any particular hardware condition. For example, an INTR1
interrupt may be simulated by an assert instruction that specifies a vector number
of 17, without the activation of the INTR1 signal.

TRAPS IN SYSTEM·LEVEL ROUTINES

The Monitor trap and Monitor mode provide a mechanism for handling traps in
system-level routines in a manner that allows these routines to be restarted. This
permits error recovery and debugging of system-level routines.

Memory Management

This section discusses various issues involved in memory management as they relate
to an operating system. The focus is on virtual-addressing issues.

VIRTUAL PAGE SIZE

The MMU Configuration Register determines the size of a virtual page mapped by the
Memory Management Unit. The choices for page size are 1, 2, 4, and 8 kb. The se­
lection of page size is based on several considerations:

1. For a given page size, any allocation of pages tQ a process will, on average,
waste half of one page. With smaller page sizes, the waste is smaller. In systems
with a large number of processes, each with a small amount of memory, small
page sizes can reduce waste significantly.

2. Smaller page sizes allow finer memory-protection granularity.

3. The maximum amount of memory that can be referenced by Translation
Look-Aside Buffer (TLB) entries is set by the number of TLB entries and the page
size. Larger page .sizes allow the fixed number of TLB entries to address more
memory, and generally reduce the number of TLB misses. For example, with 1-kb
pages, a process requiring 8 kb of contiguous memory would create eight TLB
misses; with 8-kb pages, the process would create only one TLB miss.

7.3.3.2

7.3.3.3

7.3.3.4

4. The page is usually the unit of memory moved between memory and backing
storage. The design of the backing storage sub-system also may influence the
choice of page size, because of transfer-efficiency considerations. For example, if
the backing storage is a disk, the disk seek time is large compared to transfer
time. Thus, it is more efficient to transfer large amounts of data with a single seek.
Efficiency may also depend on disk organization (Le., the number of seeks
possibly required to transfer a page).

PAGE REFERENCE AND CHANGE INFORMATION

In a demand-paged environment, it is important to be .!ible to collect information on
the use and modification of pages. The processor does not collect this information
directly, but the information may be collected by the operating system, without requir­
ing hardware support.

Each TLB entry contains six bits which specify the type of accesses that are permitted
for the corresponding page. When a TLB entry is loaded, the TLB reload routine can
set the protection bits so that an access to the corresponding page is not allowed. If
an access is attempted, a TLB protection violation traps occurs. This trap may be
used to signal that the page is being referenced. After noting this fact, the trap handler
may set the protection bits to allow the access, and return to the trapping routine.

A technique similar to the one just described can be used to collect information on the
modification of a page. However, in this case, the TLB protection bits initially are set
so that a store is not allowed.

It is also possible to create reference information by noting references during TLB
reload. For example, reference bits normally are reset periodically, so that they reflect
current references. When reference bits are reset, the entire TLB may be invalidated.
Reference bits then are set as TLB entries are loaded. Note that this scheme relies on
the fact that a TLB miss implies a reference to the corresponding page. Also, this
scheme does not account for page change information.

The disadvantage of both of the above schemes is one of possible performance loss.
This is the result of the additional traps required to monitor page references and
changes. If the performance impact is unacceptable, references and changes can be
monitored easily by hardware that detects reads and writes to page frames in instruc­
tion or data memory.

MONITORING CRITICAL AREAS OF MEMORY

In certain fault-tolerant systems, it is necessary to detect changes to critical areas of
memory, so that these changes may be reflected immediately on a non-volatile stor­
age device. To monitor critical memory areas, the TLB protection bits can be set so
that any change to the area causes a Data TLB Protection Violation trap. This trap
signals that the area is being modified.

In this use of the protection bits, the trap handler does not set the bits to allow the
access. Rather, the trap handler must emulate the access, using the Channel Ad­
dress, Channel Data, and Channel Control registers. The Contents Valid (CV) bit of
the Channel Control Register is reset before the trapping routine is restarted, so that
the trap does not recur.

TLB MISS HANDLING

The address translation performed by the MMU is ultimately determined by routines
that place entries into the Translation Look-Aside Buffer (TLB). TLB entries normally
are based on system page tables, which give the translation for a large number of
pages. The TLB simply caches the currently-needed translations, so that system page
tables do not have to be accessed for every translation.

PROGRAMMING 7.31

il·· I

i
I
i \ ,

7.3.3.5

7'.3.3.6

If a required address translation cannot be performed by any entry in the TLB, a TLB
miss trap occurs. The trap handling routine-called the TLB reload routine-accesses
the system page tables to determine the required translation, and sets the appropriate
TLB entry. Note that the access requiring this translation can be restarted by the
interrupt return at the end of the TLB reload routine (see Section 7.3.4).

A large number of different page-table organizations are possible. Since the TLB
reload routine is a sequence of processor instructions, the page tables may have a
structure and access method that satisfies trade-offs of page table size, translation
lookup time, and memory-allocation strategies.

Another possibility supported by the TLB reload mechanism is that of a second-level
TLB. The TLB reload routine is not required to access the system page tables imme­
diately upon a TLB miss, but may access an external TLB, which can be much larger
than the processor's TLB. The amount of time required to access the external TLB
normally is much smaller than the amount of time required to access the page tables,
leading to an overall improvement in performance. Of course, if a translation is not in
the external TLB, a page table lookup still must be performed.

Because the TLB reload routine may depend on the type of access causing the TLB
miss, the processor differentiates between misses on instruction and data accesses
by Supervisor-mode and User-mode programs. This eliminates any time which might
be spent by the TLB reload routine in making the same determination. Performance is
also enhanced by the LRU Recommendation Register, which gives the TLB register­
number for Word 0 of the TLB entry to be replaced by the TLB reload routine (the
least-recently-used entry).

WARM START

When a process switch occurs, there is a high probability that most of the TLB entries
of the old process will not be used by the new process. Thus, the new process most
likely creates many TLB miss traps early in its execution. This is unavoidable on the
first initiation of a process, but may be prevented on subsequent initiations.

When a given process is suspended, the operating system can save a copy of its TLB
contents. When the task is restarted, the copy can be loaded back into the TLB. This
warm start prevents many of the process' initial TLB misses, at the expense of the
time required to save and restore the copy of the TLB entries. However, this time may
be much shorter than the time required to perform all TLB re-Ioads individually.

Note that if this warm-start strategy is adopted, any change in address translation
must be reflected in all copies of TLB entries for all affected processes. If address
translation is changed often so that it affects more than one process, warm start may
not be advantageous.

MiNiMUM t4UMBER OF RES!DENT PAGES
In any processor that supports demand-paging, there is a minimum number of pages
that must be resident for any active process. This minimum is determined by the
maximum number of pages that might be referenced by an atomic operation in the
processor's architecture (e.g., an instruction, normally). If this maximum number is not
guaranteed to be resident in memory, some operations might never complete, since
they may never have all of the required pages resident in memory at one time.

For the Am29050 microprocessor, two pages are required for a process to make
progress through the system. The reason for this requirement is that the Am29050
microprocessor, on interrupt return, restarts an interrupted Load Multiple or Store
Multiple only after fetching two instructions (see Section 3.5.5). The first of these
instructions must be resident in memory-and mapped by the TLB-and the page

7-32 PROGRAMMING

7.3.3.7

7.3.3.8

required to complete the Load Multiple or Store Multiple must also be resident-and
mapped by the TLB-for the interrupt return to complete successfully.

REGION MAPPING UNIT OPERATION

The Region Mapping Units (RMUs) also perform translation from a virtual address to
a physical address. Each of the two RMUs can map a region of contiguous virtual
addresses to an equivalent-sized region of contiguous physical addresses. The region
size can range from 64 kb to 2 Gb in power-of-two increments. The RMUs allow large
blocks of contiguous physical memory to be mapped in the virtual address space
without the overhead of TLB miss handling or the possibility of replacing required TLB
entries. For example, operating-system kernels exhibit much less locality-of-reference
than applications programs; an operating-system reference causing a TLB miss does
not later use the same TLB entry as often as an application program. Using the TLB
to map operating-system references can degrade performance and replace valid TLB
entries of the calling application. By mapping the operating-system references with
the RMUs, this overhead is eliminated.

Like the TLB entries, each RMU entry has six bits which can be used to implement
protection as well as collect reference and change information. When both RMUs
map a given virtual address, RMUO has priority over RMU1, and both have priority
over the TLB entries. Upon an MMU Protection Violation trap, the trap handler (either
data or instruction) should first check RMUO to see if that unit caused the exception.
Following this, it should check RMU1 and finally the TLBs.

If a valid translation does not exist in either RMUO or RMU1, then the processor uses
the TLB for translation. If no valid TLB translation exists, then a TLB miss trap occurs.
The TLB miSS handler may decide whether or not to use RMU instead of a TLB entry
to handle the miss.

BRANCH TARGET CACHE MEMORY CONSIDERATIONS

The Branch Target Cache memory is accessed with virtual as well as physical ad­
dresses, depending on whether address translation is enabled for instruction ac­
cesses. Because of this, the Branch Target Cache memory may contain entries that
might be considered valid, even though they are not.

For example, address translation may be changed by modifying the Process Identifier
of the MMU Configuration Register. This change is not reflected in the Branch Target
Cache memory tags, so the tags do not necessarily perform valid comparisons.

If a TLB miss occurs during the address translation for a branch target instruction, the
processor considers the contents of the Branch Target Cache memory to be invalid.
This is required to properly sequence the LRU Recommendation Register, and does
not solve the problem just described. If the TLB is changed at some pOint, so that the
TLB miss does not occur, the Branch Target Cache memory still may perform an
invalid comparison.

To avoid the above problem, the contents of the Branch Target Cache memory must
be invalidated explicitly whenever address translation is changed. This can be accom­
plished by executing an Invalidate (INV) instruction whenever an address translation
is changed. The INV instruction causes all entries of the Branch Target Cache mem­
ory to become invalid (after the next successful branch). However, since the change
in address translation rarely affects the program performing the change, the INV may
unnecessarily affect the performance of this program.

PROGRAMMING 7·33

7.3.4

7·34 PROGRAMMING

The IRETINV instruction has the same effect on the Branch Target Cache memory as
the INV instruction, but can reduce the performance impact. The IRETINV delays
invalidation until an interrupt return is executed, eliminating the need to disrupt an
operating-system routine when it changes address translation. At the point of interrupt
return, the contents of the Branch Target Cache memory are most likely not of much
use anyway.

Note that the Branch Target Cache memory is not invalidated when the Cache Dis­
able (CD) bit of the Configuration Register is set. When the CD bit is 1, the Branch
Target Cache memory continues to operate, but the processor considers its contents
to be fnvalid. Thus, the CD bit cannot be used to invalidate the cache, and, further­
more, the Branch Target Cache memory may have to be invalidated whenever the CD
bit is to be reset (Le., when the cache is to be enabled).

The Branch Target Cache memory distinguishes between virtual and physical ad­
dresses, between the instruction RAM and instruction read-only memory (ROM)
address spaces, and between User-mode and Supervisor-mode addresses. Thus, the
Branch Target Cache memory does not have to be invalidated on transitions between
these address spaces. This improves the performance of applications that make
heavy use of ROM-based and/or operating-system routines in either physical or vir­
tual address space.

Restarting Faulting External Accesses

In a demand-paged system environment, virtual pages and their associated virtual-to­
physical mappings are made available to programs on demand. In other words, the
memory-management routines generally execute only when a given page or mapping
is needed by a program. This need is signaled by a page fault trap caused by a pro­
gram access (normally, the page fault occurs during a TLB reload).

Since the page fault trap is part of normal system operation, and does not represent
an error, the access that causes the trap must be restarted-once the trapping condi­
tion is remedied-in a manner that is not detectable to the program causing the trap.

Additionally, in the Am29050 microprocessor, the TLB reload mechanism relies on the
ability to restart an access that causes a TLB miss trap. This restart also must be
accomplished in a manner that cannot be detected by the trapping program.

The Am29050 microprocessor overlaps external accesses with the execution of in­
structions. Thus, traps caused by accesses are imprecise: the address of the instruc­
tion that initiated the access cannot be determined by the trap handler. Since the
address of the initiating instruction is unknown, the access cannot be restarted by
re-executing this instruction. Even if the address could be determined, the instruction
might not be restartable, since an instruction executed before the trap occurred, but
after the access began, may have altered the conditions of the access, such as by
altering the address source register.

In order to. provide for the restarting of loads and stores that cause exceptions, the
processor saves all information required to restart these accesses in the Channel
Address, Channel Data, and Channel Control registers. The Contents Valid (CV) and
Not Needed (NN) bits in the Channel Control Register indicate that the information
contained in these registers represents an access that must be restarted. The CV bit
indicates that the access did not complete, and the NN bit indicates whether or not the
data from the access is required by the processor.

Note that since instruction execution is overlapped with external accesses, an instruc­
tion that executes after a load may alter the destination register for the load. If a trap
occurs in this situation, the access information in the Channel Address, Data, and

7.3.5

Control registers is correct, but the load cannot be restarted. The NN bit provides
correct operation in this case.

When an interrupt or trap is taken, the handling routine has access to the Channel
Address, Data, and Control registers; the contents of these registers may contain
information relevant to an incomplete access, and can be preserved for restarting this
access. Since these registers are frozen (due to the FZ bit of the Current Processor
Status), they are not available to monitor any external accesses in the interrupt or trap
handler until their contents are saved, and the FZ bit is reset.

Please note that the exception handler for the Data Access Exception trap must clear
the Transaction Faulted (TF) bit in the Channel Control Register. Failure to clear the
TF bit will result in the Am29050 microprocessor taking the trap again, once the ex­
ception handler returns, causing an infinite series of traps.

The processor restarts an access, using the Channel Address, Channel Data, and
Channel Control registers, upon an interrupt return (IRET or IRETINV). The access is
initiated if the CV bit of the Channel Control Register is 1 and the NN bit is O. The
restart cannot be detected in the logical operation of the restarted routine, although
the timing of its execution is altered.

The mechanism used to restart faulting accesses has the additional benefit of allow­
ing a fast interrupt-response time when the processor is performing a load-multiple or
store-multiple operation. Interrupted load-multiple and store-multiple operations are
restarted as if they had faulted. In this case, the operation resumes from the point of
interruption, not the beginning of the sequence.

Multiple·Processor Systems

The Am29050 microprocessor provides several facilities for the implementation of
multi-programming and multi-processing systems. These facilities help provide mutual
exclusion, synchronization, and communication between multiple processes, whether
these processes execute on a single processor or multiple processors.

Binary semaphores are supported by the Load and Set (LOADSET) instruction. This
instruction loads the contents of an external location into a'register and automatically
sets the contents of the location to the integer -1. This instruction requires no special
hardware support in the system, since all sequencing is performed by the processor.
Also, the LOADSET is available to User-mode programs. This eliminates the over­
head of an operating-system call in the use of binary semaphores.

The instructions Load and Lock (LOADL) and Store and Lock (STOREL) support the
locking of external devices and memories, or the locking of particular locations within
an external device or memory. This prevents access by any process or processor
other than the one that performed the lock, and provides the flexibility of locking in a
manner appropriate to the system and application. The LOADL and STOREL instruc­
tions are available to User-mode programs.

To indicate that a LOADL orSTOREL is being executed, the processor asserts the
LOCK output during the external access. Since the processor cannot control the
behavior of external devices and memories directly, system hardware must support
locking, if required.

Note that the protocol for the locking and unlocking of devices and memories must be
defined by the system. For example, the protocol may be defined such that a LOADL
locks the device or memory, and a STOREL unlocks the device or memory. Between
the execution of the LOADL and the STOREL, the device can be accessed by the
locking process with any combination of normal loads and stores.

PROGRAMMING 7-35

7.3.6

7.3.6.1

7.3.6.2

7.3.6.3

For the implementation of a general-purpose exclusion, synchronization, and/or com­
munication scheme, the processor allows Supervisor-mode programs to set the Lock
(LK) bit in the Current Processor Status. This bit activates the LOCK pin, and prevents
the processQr from relinquishing the channel to another channel master. (If another
master already has control of the channel when the LK bit is set, the LK bit does not
take affect until control of the channel is returned to the processor.)

The LK bit allows a Supervisor-mode program to execute with mutual exclusion for
any sequence of instructions. However, because interrupts also must be disabled for
true exclusion, this may have a negative impact on system performance if used im­
properly.

Timer Facility

The processor has a built-in Timer Facility that can be configured to cause periodic
interrupts. The Timer Facility consists of two special-purpose registers-the Timer
Counter and the Timer Reload registers-that are accessible only to Supervisor-mode
programs. These registers implement timing functions independent of program
execution.

TIMER. FACILITY OPERATION

The Timer Counter Register has a 24-bit Timer Count Value (TCV) field that decre­
ments by one on every processor cycle. If the TCV field decrements to zero, it is
written with the Timer Reload Value (TRV) field of the Timer Reload Register on the
next cycle; the Interrupt (IN) bit of the Timer Reload register is set at the same time.
The re-Ioading of the TCV field by the TRV field maintains the accuracy of the Timer
FaCility.

The Timer Reload Register contains the 24-bit TRV field and the control bits OverflOW
(OV), Interrupt (IN), and Interrupt Enable (IE). The TCV field and IN bit were de­
scribed above. If the IN bit is 1 and the IE bit also 1, a Timer interrupt occurs. If the IN
bit is 1 when the TCV field decrements to zero, the OV bit also is set. The OV bit
indicates that a Timer interrupt may have occurred before a previous interrupt was
serviced.

TIMER FACILITY INITIALIZATION

To initialize the Timer Facility, the following steps should be taken in the specified
order (it is assumed that Timer interrupts are disabled by the DA bit of the Current
Processor Status Register during the following steps):

1. Set the TCV field with the desired interval count for the first timing interval. Note
that this interval must be sufficiently large to allow the execution of the next step
before the TCV field decrements to zero (this is normally the case).

2. Set the TRV field with the desired interval count for the second timing interval. The
OV and IN bits are reset, and the IE bit is set as desired. Note that the second
timing interval may be equivalent to the first timing interval.

HANDLING TIMER INTERRUPTS

The following is a suggested list of actions to be taken to handle a Timer interrupt:

1. Read the Timer Reload register into a general-purpose register.

2. Reset the IN bit in the general-purpose register.

7·36 PROGRAMMING

7.3.6.4

7.4

7.4.1

3. Set the TRV field in the general-purpose register to the desired value for the next
timing interval. Note that, at this time, the Timer Counter is timing the current
interval. Also, this step may be omitted, if all intervals are equivalent.

4. Write the contents of the general-purpose register back into the Timer Reload
register.

5. Test the general-purpose-register copy of the OV bit, and if it is set, report the
error as appropriate.

6. Perform any system operations required for the Timer interrupt.

7. Execute an interrupt return.

TIMER FACILITY USES
Since the Timer Facility has a resolution of a single processor cycle, it may be used to
perform precise timing of system events. For example, it may be used to determine an
exact measurement of the number of cycles between two events in the system, or to
perform precise time-critical control functions. Note that the Timer interrupt is enabled
and disabled separately from other processor interrupts, so that its priority can be
separately specified.

The Timer Facility can be used to generate time intervals for collecting virtual page
usage information (see Section 7.3.3). For example, if memory management relies on
a working-set page-replacement algorithm, the Timer Facility can establish the
working-set window.

The Timer Facility can be shared among multiple processes. This sharing is accom­
plished by the implementation of a queue for timer events, which are sorted in order
of increasing event time. On each occurrence of a Timer interrupt, the TRV field is set
for the interval between the next two events in the queue, while the Timer Counter
Register is counting the current interval (because of a previous setting of the TRV
field). The event at the beginning of the queue identifies other system actions to be
taken for the Timer interrupt. This event is removed from the queue after the appropri­
ate actions are taken.

PIPELINE FEATURES EXPOSED TO SOFTWARE

In certain cases, the Am29050 microprocessor pipeline is exposed during instruction
execution, in that the execution of certain instructions are dependent on the execution
of previous instructions. This section discusses the cases where the pipeline is ex­
posed to software, and the resulting effect on instruction execution.

Delayed Branch

The effect of jump and call instructions is delayed by one cycle to allow the processor
pipeline to achieve maximum throughput. When one of these branches is successful,
the instruction immediately following the jump or call is executed before the target
instruction of the jump or call is executed. Jump and call instructions collectively are
referred to as delayed branches, and the immediately following instruction is called
the delay instruction.

__ '"" '4' I~
I

7·38 PROGRAMMING

For example, in the following code fragment:

cpeq gr96, Ir6, Ir7 (1)
jmpf gr96, label (2)
sub Ir6, Ir6, 1 (3)
const Ir6,0 (4)

label: call IrO, sort (5)
add Ir2, Ir5, 0 (6)
cpneq 1r3, gr96, 0 (7)

The SUB instruction (3) is executed regardless of the outcome of the JMPF instruction
(2). Of course, if the JMPF is not successful, the CONST instruction (4) is also exe­
cuted. If the JMPF is successful, then the instruction sequence is: (3), (5), (6), and
then the first instruction of the SORT procedure. Note that the CALL instruction (5) is
also a delayed branch, so the instruction immediately following it, (6), is always exe­
cuted. After the SORT procedure executes the return sequence, the CPNEQ instruc­
tion (7) is the next instruction executed.

The benefit of delayed branches is improved performance and a Simplified processor
implementation. Performance is improved because the processor pipeline executes
useful instructions in a larger number of cycles, compared to an implementation with­
out delayed branches.

For example, ignoring all other effects on performance, and assuming that 15% of all
instructions are branches, then a processor without delayed branches would take at
least two cycles for 15% of its instructions, leading to 0.85(1) + 0.15(2) = 1.15 cycles
per instruction, on average. This represents a 15% performance degradation com­
pared to a processor with delayed branches (assuming, for this simple example, that
the delay instruction is always useful).

The cost of having delayed branches is either the extra effort required when the com­
piler takes advantage of delayed branches (by re-organizing code), or the extra
NO-OP instruction which the compiler inserts after every branch to guarantee correct
program operation. Since the compiler expends only a small amount of effort to avoid
wasting time and space with NO-OPs, and since the performance improvement result­
ing from this effort is Significant, delayed branches are beneficial overall.

When two immediately adjacent branches are taken, the target of the first branch
preempts execution of the delay cycle of the second branch, and the target of the
second branch then follows the target of the first branch. For example, in the following
code fragment:

jmp 11
jmpl2
add Ir4, Ir4, Ir5

(1)
(2)
(3)

7.4.2

7.4.2.1

L1: sub gr96, gr96, 1 (4)
subc gr97, gr97, 0 (5)

l2: const gr100, OxffOf (6)
subr gr101, gr101, 1 (7)
or gr100, gr100, gr101 (8)

An unconditional JMP instruction (1) is followed immediately by another unconditional
JMP instruction (2). (In this example, unconditional JMPs are used; however, any two
immediately adjacent taken branches exhibit the same behavior.) The sequence of
executed instructions in this case is: JMP instruction (1), JMP instruction (2), SUB
instruction (4), CONST instruction (6), SUBR instruction (7), OR instruction (8), and so
on. Note that the ADD instruction (3) is not executed. Also, the target of the first JMP
instruction (1) was merely visited; control did not continue sequentially from L 1 but
rather continued from l2.

Overlapped Operations

The Am29050 microprocessor overlaps external data references with other opera­
tions, and typically performs floating-point operations in parallel with integer opera­
tions and with other floating-point operations. Certain programming practices are
necessary to exploit this parallelism to improve program performance.

EXTERNAL ACCESS

In order to make full use of overlapped storage accesses, some instruction reorgani­
zation may be necessary. For example, in the following sequence:

loop:

sll
add
load
add
sub
add
cplt
jmpt
nop

gr121,gr119,2 (1)
gr121, gr120, gr121 (2)
0, 0, gr121, gr121 (3)
gr96, gr96, gr121 (4)
gr96, gr96, 3 (5)
gr119, gr119, 1 (6)
gr122, gr119, 1r2 (7)
gr122, loop (8)

(9)

the ADD instruction (4) uses the result of the LOAD instruction (3). However, the
following four instructions do not depend on the result of the LOAD. Therefore, the
ADD instruction (4) can be moved past the JMPT (8)-since it always will be executed
even if the JMPT is taken-and replace the NO-OP instruction (9).The resulting
sequence is:

PROGRAMMING 7039

:·'·1··'·.,·1

I

!

I

I)

7.4.2.2

loop:

sll
add
load
sub
add
cplt
jmpt
add

gr121, gr119, 2 (1)
gr121, gr120, gr121 (2)
0, 0, gr121, gr121 (3)
gr96, gr96, 3 (4)
gr119, gr119, 1 (5)
gr122, gr119, 1r2 (6)
gr122, loop (7)
gr96, gr96, gr121 (8)

The instructions (4) through (7) are likely to be executed while external memory satis­
fies the load request, resulting in improved throughput. The processor thus allows
parallelism to be exploited by instruction reordering.

The overlapped load feature may be used to improve processor performance, but
imposes no constraints on instruction sequences, as delayed branches do. The proc­
essor implements the proper pipeline interlocks to make this parallelism transparent
to a running program.

FLOATING·POINT UNIT OPERATION

Programs that use floating-point instructions can also benefit from instruction schedul­
ing. Each of the individual floating-point pipelines (Adder, Multiplier, DividerlSquare­
Root Unit) can operate in parallel with integer instructions and external accesses, and
with each other. Parallel execution is possible as long as subsequent instructions do
not need the results of parallel floating-point operations. For example, consider the
following code sequence:

; a=b+c*d-e/f
; g=*p+i«2;

INST OPERANDS START ON CYCLE

fmul t1, C, d 1
fadd t1, b, t1 4
fdiv t2, e, f 5
fsub a, t1, t2 16
load 0,0, t1, P 17
sll t2, i, 2 18
add g, t1, t2 19

The two program statements are independent, so they can be rearranged -to take
better advantage of the parallelism in the Floating-Point Unit:

INST OPERANDS START ON CYCLE

fdiv t1, e, f 1
fmul t2, c. d 2
load 0, 0, t3, P 3
sll t4, i, 2 4
fadd t2, b, t2 5
add g, t3, t4 6
fsub a, t2, t1 11

7·40 PROGRAMMING

7.4.3

Note that the scheduled version of the code fragment uses more temporary registers
(tn) to hold the results of parallel computations. The large register file of the Am29050
microprocessor facilitates this kind of code scheduling.

Delayed Effects of Registers

The modification of some registers has a delayed effect on processor behavior, be­
cause of the processor pipeline. The affected registers are the Stack Pointer (Global
Register 1), Indirect Pointers A, S, and C, the MMU Configuration Register, and the
Current Processor Status Register.

An instruction that writes to the Stack Pointer can be followed immediately by an
instruction that reads the Stack Pointer. However, any instruction that references a
local register also uses the value of the Stack Pointer to calculate an absolute-register
number. At least one cycle of delay must separate an instruction that updates the
Stack Pointer and an instruction that references a local register. In most systems, this
affects procedure call and return only (see Section 7.1.2). In general, though, an
instruction that immediately follows a change to the Stack Pointer should not refer­
ence a local register (however, note that this restriction does not apply to a reference
of a local register via an indirect pOinter).

The indirect pointers have an implementation similar to the Stack Pointer, and exhibit
similar behavior. At least one cycle of delay must separate an instruction that modifies
an indirect pointer and an instruction that uses that indirect pointer to access a
register.

Note that it normally is not possible to guarantee that the delayed effect of the Stack
Pointer and indirect pointers is visible to a program. If an interrupt or trap is taken
immediately after one of these registers is set, then the interrupted routine sees the
effect of the setting in the following instruction, because many cycles elapse between
the two instructions. For this reason, a program should not be written in a manner that
relies on the delayed effect; the results of this practice may be unpredictable.

At least one cycle of delay must separate a Move To Special Register that modifies
the Page Size (PS) field of the MMU Configuration Register and an instruction that
performs address translation. The latter instruction includes successful branches,
loads, and stores.

If the Freeze (FZ) bit of the Current Processor Status Register is reset from 1 to 0, two
cycles are required before all program state is reflected properly in the registers
affected by the FZ bit. This implies that interrupts and traps cannot be enabled until
two cycles after the FZ bit is reset, for proper sequencing of program state.

PROGRAMMING 7-41

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I

I

I
I
I
I

8.1

8.1.1

INSTRUCTION SET

This chapter provides a specification of the Am29050 microprocessor instruction set.
Sections 8.1 through 8.3 describe the terminology used, the setting of the ALU Status
Register by instructions, and the instruction formats. Section 8.4 describes each
instruction in detail; instructions are presented alphabetically by assembler mne­
monic. Finally, Section 8.5 gives an index of instructions by operation code.

INSTRUCTION·DESCRIPTION NOMENCLATURE

To simplify the speCification of the instruction set, special terminology is used through­
out this chapter. This section defines the terminology and symbols used to describe
instruction operands, operations, and the assembly-language syntax.

This section does not describe all terminology used. It excludes certain descriptive
terms that have an obvious meaning.

Operand Notation and Symbols

Throughout this chapter, instruction operands are signed, two's-complement, word
integers, unless otherwise noted. The term register is used consistently to denote a
general-purpose register; other types of registers are described explicitly.

The following notation is used in the description of instruction operands:

0116 16-bit immediate data, zero-extended to 32 bits.

1116

BP

C

COUNT

DEST

EXTERNAL
WORD[n]

FALSE

FC

h'n'

16-bit immediate data, one-extended to 32 bits.

The Byte Pointer (BP) field of the ALU Status Register. The BP
field selects a byte or half-word within a word, and is interpreted
according to the Byte Order bit of the configuration Register.

The Carry (C) bit of the ALU Status Register. The C bit is logi­
cally zero-extended to 32 bits when it is involved in a word
operation.

The value of the Count Remaining field of the Channel Control
Register. Note that COUNT does not refer to this field directly,
but rather to the value of the field at the beginning of a LOADM
or STOREM instruction.

The general-purpose register that is the destination of an instruc­
tion (Le., the register used to store the result).

The word in an external device or memory with address n. This
terminology also is used for coprocessor words, except that the
address n either has no pre-defined interpretation or is a data
item transferred to the coprocessor.

The Boolean constant FALSE.

The Funnel Shift Count (FC) field of the ALU Status Register.

The hexadecimal constant n.

INsmUCTION SET 8·1

8.1.2

116

IPA

IPB

IPC

PC

a
Register RA
Register RB
Register RC

SPDEST

SPECIAL

Special-purpose
Register SA

SRCA
SRCB

SRCA.BYTEn
SRCB.BYTEn

TARGET

TLB[n]

TRUE

TWIN

16-bit immediate data.

Indirect Pointer A Register.

Indirect Pointer B Register.

Indirect Pointer C Register.

The Program Counter Register. This register is not explicitly ac­
cessible by instruction, but does appear as an operand for cer­
tain instructions. The Program Counter always contains the word
address of the instruction being executed, and is 30 bits in
length.

The a Register.

These designate the general-purpose registers specified by the
instruction fields RA, RB, and RC (see Section 8.3).

The special-purpose register that is the destination of an
instruction.

The content of a special-purpose register, used as an instruction
operand.

Designates the special-purpose register specified by the instruc­
tion field SA (see Section 8.3).

The contents of general-purpose registers, used as instruction
operands.

Designate the byte numbered n within the SRCA or SRCB
operand.

The target-instruction address specified by a jump or call instruc­
tion. This address is either absolute, or Program-Counter
relative. .

The Translation Look-Aside Buffer Register with register num­
ber n.
The Boolean constant TRUE.

General-purpose registers are paired by absolute-register num­
ber, such that even-numbered registers are paired with odd-num­
bered registers having the next-highest register number. The twin
of a given register is the other register in the pair to which the
given register belongs. For example, Local Register 5 is the twin
of Local Register 4, and vice versa.

Operator Symbols

The following symbols are used to describe instruction operations:

A« B Left shift of the A operand by the shift amount given by the B
operand.

A» B Right shift of the A operand by the shift amount given by the B
operand.

A II B Concatenation. The B operand is appended to the A operand. In
the resulting quantity, the A operand makes up the high-order
part, and the B operand makes up the low-order part.

8-2 INSTRUCTION SET

8.1.3

A&B

AlB
AIIB

-A
Af-exp

A=B

A<>B

A>B

A~B

A<B

A,$.B

A+B
A-B

A'B
AlB
A .. B

AORB

Bitwise AND.

Bitwise OR.

Bitwise exclusive-OR.

One's-complement.

Assignment of the A location by the result of the expression on
the right side.

Equal to.

Not equal to.

Greater than.

Greater than or equal to.

Less than.

Less than or equal to.

Addition.

Subtraction.

Multiplication.

Division.

A subrange which includes the A operand and the B operand.
This symbol is used for subranges of bits as well as subranges of
words.

Logical OR of two Boolean conditions.

Control·Flow Terminology

The following terminology is used to describe the control functions performed during
the execution of various instructions:

Continue

IF condition
THEN operations
ELSE operations

Signed overflow

Trap(n)

Unsigned
overflow

Unsigned
underflow

VN

Continue execution of the current instruction sequence.

The condition following the IF is tested. If the condition holds, the
operations following the THEN are performed. If the condition
does not hold, the operations following the ELSE are performed.
If the ELSE is not present and the condition does not hold, no
operation is performed.

This condition is present when the result of an add or subtract of
two's-complement operands cannot be represented by a signed
word integer.

Specifies a trap with vector number n. The vector number n may
be specified indirectly (e.g., Trap (VN)) or explicitly by symbolic
name (e.g., Trap (Out of Range)).

This condition is present when the result of an add of unsigned
operands cannot be represented by an unsigned word integer.

This condition is present when the result of a subtract of un­
signed operands cannot be represented by an unsigned integer
(Le., when the result is less than zero).

Designates the trap vector number specified by the instruction
field VN (see Section 8.3).

INSTRUCTION SET B·3

8.1.4

8.2

8.2.1

8.2.2

Assembler Syntax

This chapter does not contain a full description of the instruction assembler, but pro­
vides a rudimentary description of the assembler syntax. The following notation is
used to describe assembler tokens:

ce

cntl

const8

const16

ra
rb
rc

spid

target

vn

Determines the Coprocessor Enable (CE) bit of a load or store
instruction.

Determines the 7-bit control field in a load or store instruction.

Specifies a constant that can be expressed by 8 bits.

Specifies a constant that can be expressed by 16 bits.

These tokens name general-purpose registers. In a formal
sense, these represent the same token, since the name of a
register does not depend on its instruction use. However, three
distinct toKens are used to ciarify the reiatiofiship between the
assembler syntax, instruction operands; and instruction fields.

A symbolic identifier for a special-purpose register.

A symbolic label for the target of a jump or call instruction.

Specifies a trap vector number.

ARITHMETIC/LOGIC STATUS RESULTS OF INSTRUCTIONS

Arithmetic/Logic Status Bits

The arithmeticl10gic status bits of the ALU Status Register are:

V Overflow
N Negative
Z Zero
C Carry

The C bit is used in extended arithmetic operations (I.e., on operands greater than 32
bits in length), and the N bit is used in divide step operations. Other than these uses,
the status bits are not involved in instruction operations. In particular, they are not
used to determine the outcome of conditional jump instructions; Boolean values in
registers are used instead for this purpose. The status bits are primarily informational.

Except for instructions that explicitly modify the ALU Status Register, the status bits
are modified only by the execution of instructions in the Arithmetic and Logical
classes. The Arithmetic and Logical instructions affect the status bits differently. The
following two sections describe the setting of the status bits by Arithmetic and Logical
instructions.

When the Freeze (FZ) bit of the Current Processor Status Register is 1, the ALU
Status Register is not modified except by the Move To Special Register instruction.

Arithmetic Operation Status Results

The Arithmetic instructions modify the V, N, Z, and C bits. These bits are set accord­
ing to the result of the operation performed by the instruction.

All instructions in the Arithmetic class-except for MULTIPLY, MUL TM, DIVIDE,
MUL TIPLU, MULTMU, and DIVIDU-perform an add. In the case of subtraction, the
subtract is performed by adding the two's-complement or one's-complement of an
operand to the other operand. The multiply step and divide step operations also

8-4 INSTRUCTION SET

8.2.2.1

8.2.3

perform adds, again possibly complementing one of the operands before the opera­
tion is performed. In general, the status bits are based on the results of the add.

If two's-complement overflow occurs during the add, the V bit of the ALU Status Reg­
ister is set; otherwise it is reset. Two's-complement overflow occurs when the carry-in
to the most-significant bit of the intermediate result differs from the carry-out. When
this occurs, the result cannot be represented by a signed word integer. Note that the
V bit always is set in this manner, even when the result is unsigned.

The N bit of the ALU Status Register is set to the value of the most-significant bit of
the result of the add. Note that the divide step and multiply step operations may shift
the result after the operation is performed. In the cases where shifting occurs, the N
bit may not agree with the result that is written into a general-purpose register, since
the N bit is based only on the result of the add, not on the shift.

If the result of the add causes a zero word to be written to a general-purpose register,
the Z bit of the ALU Status Register is set; otherwise, it is reset. The Z bit always
reflects the result written into a general-purpose register; if shifting is performed by a
multiply or divide step, the Z bit reflects the shifted value.

If there is a carry out of tile add operation, the C bit is set; otherwise it is reset.

CORRECTING OUT·OF·RANGE RESULTS

Some Arithmetic instructions cause an Out of Range trap if the arithmetic operation
causes an overflow or underflow. When an Out of Range trap occurs, the result of the
operation-though incorrect-is written into the destination register. Furthermore, the
Program Counter 2 Register contains the address of the trapping instruction, and the
ALU Status Register contains an indication of the cause of the trap. It is possible, if
required, for the trap handler to use this information to form the correct result.

The ALU Status indicates the cause of the Out of Range trap, based on the operation
performed, as follows:

1. Signed overflow. If the Out of Range trap is caused by signed, two's-complement
overflow (this can occur for both Signed adds and subtracts), the V bit is 1.

2. Unsigned overflow. If the Out of Range trap is caused by unsigned overflow (this
can occur only for unsigned adds), the C bit is 1.

3. UnSigned underflow. If the Out of Range trap is caused by unsigned underflow
(this can occur only for unsigned subtracts), the C bit is O.

The multiply instructions MUL TIPL Y and MUL TIPLU can cause an Out of Range trap
if the MO bit of the Integer Environment Register is 0 and the operation overflows.
However, these instructions do not set the ALU Status Register. This exception is
detected using the Exception Opcode Register.

Logical Operation Status Results

The Logical instructions modify the Nand Z bits. These bits are set according the
result of the instruction. The V and C bits are meaningless in regard to the logical
instructions, so they are not modified.

The N bit of the ALU Status Register is set to the value of the most-significant bit of
the result of the logical operation.

If the result of the logical operation is a zero word, the Z bit of the ALU Status Register
is set; otherwise, it is reset.

INSTRUCTION SET 8·5

,
"1',

;.!
!,~

i1., I~~

8.2.4

8.3

Floating·Point Status

The floating-point instructions check for a number of exceptional conditions, and
report these exceptions by setting bits of the Floating-Point Status Register (see
Section 3.2.3). The exceptional conditions also may cause traps, depending on the
state of mask bits in the Floating-Point Environment Register. There are two groups of
status bits in the Floating-Point Status Register: trap status bits and sticky status bits.
When an exception is detected, the Am29050 microprocessor sets the trap status bit
and/or the sticky status bit associated with the exception, depending on the corre­
sponding exception mask bit and on whether or not a trap occurs. The sticky status bit
is set whenever the corresponding exception is masked, regardless of whether or not
a trap occurs. A trap status bit is set whenever a trap occurs, regardless of the state
of the corresponding mask bit.

A trap status bit is reset when a trap occurs and the indicated status does not apply to
the trapping operation. A sticky status bit is reset only by software.

Since a floating-point exception may affect either a trap status bit, a sticky status bit,
or both, the description of status results for floating-point instructions in this section
indicates the exceptions that may be detected, rather than which status bits are set.
The following terminology is used:

fpD Divide By Zero. The processor determines whether a divide operation has a
zero divisor and a non-zero, finite dividend. If so, the DT and/or DS bits of the
Floating-Point Status Register are set.

fpX Inexact Result. If the result of the associated floating-point operation is not
equal to the infinitely-precise result, the XT and/or XS bits of the Floating-Point
Status Register are set.

fpU Underflow. If the result of the associated floating-point operation is too small to
be expressed in the destination format, the UT and/or US bits of the Floating­
Point Status Register are set.

fpV Overflow. If the result of the associated floating-point operation is too large to be
expressed in the destination format, the VT and/or VS bits of the Floating-Point
Status Register are set.

fpR Reserved Operand. If one or more input operands to the associated
floating-point operation is a reserved value, or if the result of this floating-point
operation is a reserved value, the RT and/or RS bits of the Floating-Point Status
Register are set.

fpN Invalid Operation. If the input operands to the associated floating-point
operation produce an indeterminate result, the NT and/or NS bits of the
Floating-Point Status Register are set.

INSTRUCTION FORMATS

All instructions for the Am29050 microprocessor are 32 bits in length, and are divided
into four fields, as shown in Figure 8-1. These fields have several alternative defini­
tions, as discussed below. In certain instructions, one or more fields are not used,
and are reserved for future use. Even though they have no effect on processor opera­
tion, bits in reserved fields should be 0, to insure compatibility with future processor
versions.

11-6 INSTRUCTION SET

Figure 8·1 Instruction Format

31

I I I I I I
OP

23 15 7 0

I II I I I I I I II I I I I I I II I I I I I I I

A
M

RC
117 ... 110
115 ... 18

VN
CEIICNTL

RA
SA

RB
RBor I
19 ... 12
17 ... 10

UIIIRNDIIFDIIFS
Reserved /I FS

The instruction fields are defined as follows:

Bits 31-24

OP

A

M

Bits 23-16

RC

117 ... 110

115 ... 18

VN
CEIICNTL

Bits 15-a

RA

SA

Bits 7-{J

RB

RB or I

This field contains an operation code, defining the operation to
be performed. In some instructions, the least-significant bit of the
operation code selects between two possible operands. For this
reason, the least-significant bit is sometimes labeled A or M with
the following interpretations:

(Absolute): The A bit is used to differentiate between Program­
Counter relative (A = 0) and absolute (A = 1) instruction ad­
dresses, when these addresses appear within instructions.

(Immediate): The M bit selects between a register operand
(M = 0) and an immediate operand (M = 1), when the alternative
is allowed by an instruction.

The RC field contains a global or local register number.

This field contains the most-significant eight bits of a 16-bit in­
struction address. This is a word address, and may be program­
counter relative or absolute, depending on the A bit of the opera­
tion code.

This field contains the most-significant eight bits of a 16-bit in­
struction constant.

This field contains an 8-bit trap vector number.

This field controls a load or store access, as described in
Sections 3.4.4 and 6.1.2.

The RA field contains a global or local register number.

The SA field contains a special-purpose register number.

The RB field contains a global or local register number.

This field contains either a global or local register number, or an
8-bit instruction constant, depending on the value of the M bit of
the operation code.

INSTRUCTION SET 8·7

i:;

8-8

19 •.. 12 This field contains the least-significant eight bits of a 16-bit in­
struction address. This is a word address, and may be program­
counter relative or absolute, depending on the A bit of the opera­
tion code.

17 ... 10 This field contains the least-significant eight bits of a 16-bit in­
struction constant.

UIII RND /I FD /I FS This field controls the operation of the CONVERT instruction.

reserved /I FS This field is the FS portion of the above field and specifies the
operand format for the CLASS and SQRT instructions.

The fields described above may appear in many combinations. However, certain
combinations that appear frequently are shown in Figure 8-2.

Fre,!uently Occurring Instruction Field Uses

Three operands, with possible B-blt constant:

31 23 15

II I I I I I I II I I I I I I II
. X X X X X X X M. RC .

Three operands, without constant:

31 23 15

I 1
RA

7

II

7

I I I I
RBorl

o II I , I I I I II I , I I
X X X X X X X 0 RC II

i ,
RA II

, I
RB I I

One register operand, with 16-bit constant:

31 23 15 7 0 I' I I , I , I I , I I I I , ,
I

I I I

I
I I I I I

I
115 .. 18 RA 17 .. 10 XXXXXXX1

Jumps and calls with 16-bit Instruction address:

31 23 15 7 0

II I I , I I I I I , I i I I

I
I , I

I
I I I I I

I 117 ... 110 RA 19 .. 12 XXXXXXXA

Two operands with trap vector number:

31 23 15 7 0 I' I , , I I I I I I I I I

I
I I I

I

, I I I I I

I XXXXXXX~ VN RA RBorl

Loads and stores:

31 23 15 7 0 I' I I I I I I I I I I I

I
I , I

I

I i i , I I

I CNTL RA RBorl XXXXXXX~
,

CE

INSTRUCTION SET

8.4

Figure 8-3

INSTRUCTION DESCRIPTION

This section describes each Am29050 microprocessor instruction in detail. Figure 8-3
illustrates the layout of the information given for each description.

Instruction. Description Format

Instruction
Mnemonic

Instruction
Name

Brief Operat ion
Description

Assembler
Syntax

Arithmeticll ogic
Status Resu It

Operand Specification­
Describes the
instruction fields'
relations to operands,
and implicit operands
in some cases

..

..
-{ ..

/

Instruction Format- \
Specifies field ----...
options used

Operation Code-
HEX format

Detailed Description
of instruction
operation

ADD ADD

Add

Operation: DEST f- SRCA = SRCB

Assembler
Syntax: ADD re, ra, rb

or
ADD rc, ra, const8

Status: V,N,Z,C

Operands: SRCA Content of register RA

SRCB M ~ 0: Content of register RB
M -1: I (Zero-extended to 32 bits)

DEST RegisterRC

31 23 15 7

Iddol /ol
1 ~I~

I II I I i III I iii I I I
i i iii

RC RA RBorl

OP= 14,15 ADD

Description: The SRCA operand is added to the SRCB
operand, and the result is placed into the
DEST location.

i I
0

I

INSTRUCTION SET ••

I
I

\

i~
iI" I
I:!
i~

I

ADD

Operation: DEST ~ SRCA= SRCB

Assembler
Syntax: ADD rc, ra, rb

or
ADD rc, ra, const8

Status: V, N, Z, C

Add

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST

31 23

I I I I I I I I I I
0001010M

OP=14.15

Register RC

I I
RC

15 I I
ADD

I I

RA

7
I I I

RBorl

ADD

o

Description: The SRCA operand is added to the SRCB operand, and the result is
placed into the DEST location.

B-1 0 INSTRUCTION SET

ADDC

Add with Carry

Operation: DEST +- SACA + SRCB + C

Assembler
Syntax: ADDC rc, ra, rb

or
ADDC rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST

31 ~

I I I I I I I I I
0001110M

OPz1C.1D

Register RC

I I
RC

15 II
ADDC

I I

RA

7
I I I
RBorl

ADDC

o

Description: The SRCA operand is added to the SRCB operand and the value of
the ALU Status Carry bit, and the result is placed into the DEST
location.

INSTRUCTION SET 8-11

I

ADDCS

Add with Carry, Signed

Operation: DEST ~ SRCA + SRCB + C,
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: ADDCS rc, ra, rb

or
ADDCS rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
ivi = i: ; (Zaic-extended to 32 b!ts)

DEST Register RC

31 23

I I I I I I I I I
0001100M

I I
RC

15 II
OP=18,19 ADDCS

I I
RA

7
I I I
RBorl

ADDCS

o

Description: The SRCA operand is added to the SRCB operand and the value of
the ALU Status Carry bit, and the result is placed into the DEST
location. If the add operation causes a two's-complement signed
overflow, an Out of Range trap occurs.

8-12 INSTRUCTION SET

Note that the DEST location is altered whether or not an overflow
occurs.

ADDCU

Add with Carry, Unsigned

Operation: DEST~ SRCA + SRCB + C,
IF unsigned overflow THEN Trap (Out of Range)

Assembler
Syntax:

Status:

Operands:

ADDCU rc, ra, rb
or

ADDCU rc, ra, constB

V,N,Z,C

SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST

31 23

II I I I I I I II
000l101M

OP=lA,lS

Register RC

15
I I I

I

I
RC

ADDCU

7
I I

I

I
RA

ADDCU

0
I I I I

I RS or I

Description: The SRCA operand is added to the SRCB operand and the value of
the ALU Status Carry bit, and the result is placed into the DEST
location. If the add operation causes an unsigned overflow, an Out of
Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

INSTRUCTION SET 11-13

ADDS

Add, Signed

Operation: DEST ~SRCA+SRCS
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: ADDS rc, ra, rb

or
ADDS rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCS M=O: Content of register RS
ivi = 1: I (Zaio-extended'to 32 bits)

DEST Register RC

31 23 15 7
I I

I
I I I

RC RA
II I I I I I I II
0001000M II

OP=10,11 ADDS

ADDS

o
I I I I
RBor I I I

Description: The SRCA operand is added to the SRCS operand, and the result is
placed into the DEST location. If the add operation causes a
two's-complement signed overflow, an Out of Range trap occurs.

8-14 INSTRUCTION SET

Note that the DEST location is altered whether or not an overflow
occurs.

ADDU

Add, Unsigned

Operation: DEST f- SRCA + SRCB
IF unsigned overflow THEN Trap (Out of Range)

Assembler
Syntax: ADDU rc, ra, rb

or
ADDU rc, ra, constS

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23 " , , , , , , I'
0001001M

, ,
RC

15

I'
OP=12,13 ADDU

, ,
RA

7

I'

ADDU

o , , , ,
RBarl

Description: The SRCA operand is added to the SRCB operand, and the result is
placed into the DEST location. If the add operation causes an
unsigned overflow, an Out of Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

INSTRUCTION SET 8-15

i
1"

~ ,
.~

II

I

AND

AND Logical

Operation: DEST ~ SRCA & SRCB

Assembler
Syntax: AND rc, ra, rb

or
AND rc, ra, const8

Status: N, Z

Operands: SRCA Content of register RA

SRCS M = 0: Content of register RS
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

AND

31 23 15 7 0

II , , , , , , I'
1001000M.

OP=90, 91

, ,
RC I

, ,
RA

AND

,
I
, , , , , ,

RBarl

Description: The SRCA operand is logically ANDed, bit-by-bit, with the SRCB
operand, and the result is placed into the DEST location.

11-16 INSTRUCTION SET

I

ANON

AND-NOT Logical

Operation: OEST ~ SRCA & ~SRCB

Assembler
Syntax: ANON rc, ra, rb

or
ANON rc, ra, const8

Status: N, Z

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M= 1: I (Zero-extended t() 32 bits)

OEST Register RC

31 23

I I I I I I I I I
1001110M

I I
RC

15

I II

ANON

I I
RA

7
I I I I

RBarl

ANON

o

Description: The SRCA operand is logically ANOed, bit-by-bit, with the !.
one's-complement of the SRCB operand, and the result is placed into
the OEST location.

I'
I

INSTRUCTION SET .. 17

ASEQ

Assert Equal To

Operation: IF SRCA=SRCB THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASEQ vn, ra, rb

or
ASEQ vn, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = , : I (Zero-extended to 32 bits)

VN Trap vector number

31 23 15 7
I I
VN II RA II

op= 70, 71 ASEQ

I I I I
RBorl

Description: If the SRCA operand is equal to the SRCB operand, instruction
execution continues; otherwise, a trap with the specified vector
number occurs.

ASEQ

o

I I

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

8-18 INSTRUCTION SET

ASGE

Assert Greater Than or Equal To

Operation: IF SACA <:! SACS THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASGE vn, ra, rb

or
ASGE vn, ra, const8

Status: Not affected

Operands: SACA Content of register AA

SACS M = 0: Content of register AS
M = 1: I (Zero-extended to 32 bits)

VN Trap vector number

31 23

I I I I I I I I I
~ 1 0 1 1 10M

OP=5C,5D

I I

VN

15

I II I

ASGE

7

RA
I I I I

RBorl

ASGE

o

Description: If the value of the SACA operand is greater than or equal to the value
of the SACS operand, instruction execution continues; otherwise, a
trap with the specified vector number occurs.

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

INSTRUCTION SET 8-19

ASGEU

Assert Greater Than or Equal To, Unsigned

Operation: IF SRCA;a SRCS (unsigned) THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASGEU vn, ra, rb

or
ASGEU vn, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCS M = 0: Content of register RS
M = i : i (Zero-extended to 32 bits)

VN Trap vector number

31 23 15 7

II I I I I I I I I I

I
I I I

I
I

VN RA ,0 1 0 1 111M,

OP=5E,5F ASGEU

ASGEU

0
I I I I I

I RBerl

Description: If the value of the SRCA operand is greater than or equal to the value
of the SRCS operand, instruction execution continues; otherwise, a
trap with the specified vector number occurs. For the comparison,
both operands are treated as unsigned integers.

8-20 INSTRUCTION SET

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number bel.ween 0
and 63 is specified.

ASGT

Assert Greater Than

Operation: IF SRCA > SRCS THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASGT vn, ra, rb

or
ASGT vn, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCS M = 0: Content of register RS
M =1: I (Zero-extended to 32 bits)

VN Trap vector number

31 23 15 7

I I II I I

I VN RA

OP=58,59 ASGT

ASGT

0

I I I I I I
RS or I

Description: If the value of the SRCA operand is greater than the value of the
SRCS operand, instruction execution continues; otherwise, a trap
with the specified vector number occurs.

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

INSTRUCTION SET 8-21

ASGTU

Assert Greater Than, Unsigned

Operation: IF SRCA> SRCB (unsigned) THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASGTU vn, ra, rb

or
ASGTU vn, ra, const8

Status: Not affected

Operands: SRCA

SRCB

VN

31 23

I I I I I I I I I
0101101M

OP=5A,5B

Content of register RA

M = 0: Content of register RB
tv1 = 1: I (Zaio-extended to 32 bits)

Trap vector number

I I
VN

15

ASGTU

I I
RA

ASGTU

I I I I
RBorl

Description: If the value of the SRCA operand is greater than the value of the
SRCB operand, instruction execution continues; otherwise, a trap
with the specified vector number occurs. For the comparison, both
operands are treated as unsigned integers.

11-22 INSTRUCTION SET

For programs in the User mode, a Protection Violation trap
.occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

ASLE

Assert Less Than or Equal To

Operation: IF SACA.:::;SACS THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASLE vn, ra, rb

or
ASLE vn, ra, constB

Status: Not affected

Operands: SACA Content of register AA

SACS M=O: Content of register AS
M = 1 : I (Zero-extended to 32 bits)

VN

31 23

I 0' , , , , , , I'
.101010M.

OP=54,55

Trap vector number

, ,
VN

15

I'
ASLE

, ,
RA

7

I'

ASLE

o , , , ,
RB or I

, I

Description: If the value of the SACA operand is less than or equal to the value of
the SACS operand, instruction execution continues; otherwise, a trap
with the specified vector number occurs.

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

INSTRUCTION SET 8-23

:\'

Il!

'·.··.·.1·

I

I,,'~

~ ~

~.
I~

1.1'· ..

I",P,

"

1···'.1··,'.

"',

I
!
I

i"1

ASLEU

Assert Less Than or Equal To, Unsigned

Operation: IF SRCA~SRCB (unsigned) THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASLEU vn, ra, rb

or
ASLEU vn, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
tv1 = 1 : I (Zero-extended to 32 bits)

VN Trap vector number

31 23

I
I I I I I I I II

o 1 0 1 0 11M.

OP=56,57

I I I
VN

15
I

I
I I

ASLEU

7

RA I
I

ASLEU

0
I I I I I

I RBorl

Description: If the value of the SRCA operand is less than or equal to the value of
the SRCB operand, instruction execution continues; otherwise, a trap
with the specified vector number occurs. For the comparison, both
operands are treated as unsigned integers.

8-24 INSTRUCTION SET

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

ASLT

Assert Less Than

Operation: IF SACA < SACB THEN Continue
ELSE Trap(VN)

Assembler
Syntax: ASL T vn, ra, rb

or
ASL T vn, ra, const8

Status: Not affected

Operands: SACA Content of register RA

SACB M = 0: Content of register AB
M = 1: I (Zero-extended to 32 bits)

VN Trap vector number

31 23 15 7 , ,
I

, , ,

I VN RA I , , , , , , , I 0101000M

OP=50, 51 ASLT

ASLT

0 , , , , , ,
I RBor I

Description: If the value of the SACA operand is less than the value of the SACB
operand, instruction execution continues; otherwise, a trap with the
specified vector number occurs.

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

ASLTU

Assert Less Than, Unsigned

Operation: IF SRCA<SRCB (unsigned) THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASL TU vn, ra, rb

or
ASL TU vn, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
.. .I 01. I 17,...,,.. ",,,"',,ru·<I,,,.,! "+n 'It') hit~'
IVI = I. I \L..'O'I V-OALOIIUvU L\,I "",,oLoo u ... ""

VN Trap vector number

31 23 15 7

I I I I II I I II VN RA I
I I I I I I I II

.0101001M.

OP=52,53 ASLTU

ASLTU

0

I II I I

I RBorl

Description: If the value of the SRCA operand is less than the value of the SRCB
operand, instruction execution continues; otherwise, a trap with the
specified vector number occurs. For the comparison, both operands
are treated as unsigned integers.

8-26 INSTRUCTION SET

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

ASNEQ,

Assert Not Equal To

Operation: IF SRCA <> SRCS THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASNEQ vn, ra, rb

or
ASNEQ vn, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCS M=O: Content of register RS
M = 1 : I (Zero-extended to 32 bits)

VN Trap vector number

31 23 15 7

I 01 1 1 1 1 1 1 II
.111001M.

1 1 II RA II VN

OP = 72, 73 ASNEQ

ASNEQ

o
1 1 1

I I RBor I

Description: If the SRCA operand is not equal to the SRCS operand, instruction
execution continues; otherwise, a trap with the specified vector
number occurs.

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

INSTRUCTION SET 8-27

CALL CALL

Call Subroutine

Operation: DEST ~ PCIIOO=8
PC~TARGET
Execute delay instruction

Assembler
Syntax: CALL ra. target

Status: Not affected

Operands: TARGET A=O: 117 ... 1101119 ... 12 (sign-extended to 30 bits) + PC
A= 1: 117 ... 1101119 ... 12 (zero-extended to 30 bits)

DEST Register RA

31 23 I ' , I , , , , I '
1010100A

, , ,
117...110

15 ,
I

7 , , ,
I

, , ,
RA 19 .. 12

0

OP =A8. A9 CALL

Description:

8-28 INSTRUCTION SET

The address of the second following instruction is placed into the
DEST location. and a non-sequential instruction fetch occurs to the
instruction address given by the TARGET operand. The instruction
following the CALL is executed before the non-sequential fetch
occurs.

I

CALLI

Call Subroutine, Indirect

Operation: DEST f-- PC//OO+8
PCf--SRCB
Execute delay instruction

Assembler
Syntax: CALLI ra, rb

Status: Not affected

Operands: SRCB Content of register RB

DEST Register RA

31 23 15

1/
I I I I I I I I I I I I I

1
I I

Reserved RA 1001000

OP=C8 CALLI

I
7

I I
RS

CALLI

a

Description: The address of the second following instruction is placed into the
DEST location, and a non-sequential instruction fetch occurs to the
instruction address given by the SRCB operand. The instruction
following the CALLI is executed before the non-sequential fetch
occurs.

INSTRUCTION SET 8-29

I,,:

CLASS CLASS
Classify Floating-Point Operand

Operation: DEST f-CLASS(SRCA)

Assembler
Syntax: CLASS rc, ra, FS

Status: None

Operands: SRCA Content of register RA (single-precision f.p.)
or

31

Content of register RA and the twin of register RA
(Double-precision f.p.)

DEST Register RC

Control: FS
00
01
10
11

Format of source operand SRCA
Reserved for future use
Single-precision floating-point
Double-precision floating-point
Reserved for future use

23 15 7 0

II I I I I I I I I I I I I I

I
I I I

I
I I I I I

I ~s I RC RA Reserved .11100110.

OP=E6 CLASS

Description: A 32-bit classification code for operand SRCA is placed into the
DEST location. Operand SRCA is a single- or double-precision
operand, as specified by FS. The classification code has the following
format:

31

II

11-30 INSTRUCTION SET

7
I I
o

Bits 31-6: Reserved (forced to 0).

I I
EFC

o

I I

Bit 5: Operand Sign (OS). The OS bit is 1 for a negative operand
(including negative zero) and 0 for a non-negative operand.

Bits 4-0: Exponent-FraCtiOn Class (I:FC). This fieid ciassifies ihe
biased exponent and fraction fields of the source operand as follows
(Max is the largest biased exponent that can be used to represent a
finite number. This exponent is 254 for the single-precision format
and 2,046 for the double-precision format).

EFC

00000
00001
00010
00011

00100
00101
00110
00111

01000
01001
01010
01011

01100
01101
01110
01111

10000
10001
10010
10011

Biased Exp (bexp) Fraction (frac) Comments

0 0 zero
unused

0 o drae < .111 ... 1 denormalized
0 .111 ... 1 denormalized

0
unused
o drae < .111 ... 1

.111 ... 1

1 <bexp<Max 0
unused

1 <bexp<Max o drae < .111 ... 1
1 <bexp< Max .111 ... 1

Max 0
unused

Max o < frae < .111 ... 1
Max .111 ... 1

Max+1 0 infinity
unused

Max+ 1, trae MSB= 0 <>0 SNaN
Max + 1 , trae MSB = 1 <>0 QNaN

Note: Max is the largest biased exponent that can be used to
represent a finite number in a given format. Max is 254 for
single-precision and 2,046 for double-precision.

Executing the CLASS instruction causes a pipeline hold of one cycle,
until the intermediate result enters the denormalizer of the
Floating-Point Unit.

INSTRUCTION SET 8-31

I
I,

il

·I~' I.

i

I
Ii
i'

ClZ

Count leading Zeros

Operation: Determine number of leading zeros in a word

Assembler
Syntax: CLZ rc, rb

or

Status:

Operands:

CLZ rc, const8

Not affected

SRCS M=O: Content of register RS
M= 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

II I I I I I I II
0000100M

OP = 08,09

I I
RC

15
I I

I

I

eLZ

7
I I I I

I Reserved

I I I I I
RBor I

CU

o

I I

Description: A count of the number of zero-bits to the first one-bit in the SRCS
operand is placed into the DEST location. if the most-significant bit of
the SRCS operand is 1, the resulting count is zero. If the SRCS
operand is zero, the resulting count is 32.

8-32 INSTRUCTION SET

CONST

Operation: OESTt-0116

Assembler

Constant

Syntax: CONST ra, const16

Status: Not affected

Operands: 0116

OEST

31 23 , ,

115 ... 8// 17 ... 10 (Zero-extended to 32 bits)

Register RA

15 7 , , , , , , , , , , I' , , , , , , I
,00000011, 115 ... 18 I RA I 17 ... 10

OP=03 CONST

Description: The 0116 operand is placed into the OEST location.

CONST

0 ,
I

INSlRUCTION SET 8-33

I'
i!

CONSTH

Constant, High

Operation: Replace high-order half-word of SRCA by 116

Assembler
Syntax: CON$TH ra, const16

Status:

Operands:

Not affected

SRCA

116

Content of register RA

115 ... 18// 17 ... 10

DEST Register RA

". 23 15 ., ,

111111111 I I I I

I
I I

115 ... 18 RA 00000010

OP=02 CONSTH

I

CONSTH

7 o
I I I I

17 •.• 10

Description: The low-order half-word of the SRCA operand is appended to the 116
operand, and the result is placed into the DEST operand. Note that
the destination register for this instruction is the same as the source
register.

8-34 INSTRUCTION SET

CONSTHZ CONSTHZ

Constant High, Zero Lower

Operation: DEST +-116« 16

Assembler
Syntax: CONSTHZ ra. const16

Status: Not affected

Operands: 116

DEST

115 ... 18// 17 ... 10

Register RA

31 23 15
I I I I

I
I

115 ... 18
II I I I I I I II
00000101

OP.05 CONSTHZ

I I
RA

7

I
I I I I I

17 .. 10

Description: The 116 operand is placed into the upper 16 bits of the DEST
location; the lower 16 bits of the DEST location are replaced with
zeros.

0

I

INSTRUCTION SET 1-35

i

:i

11
i'i

I
"

CONSTN

Operation: DEST ~ 1116

Assembler

Constant, Negative

Syntax: CONSTN ra, const16

Status: Not affected

CONSTN

Operands: 1116 115 ... 18// 17 ... 10 (ones-extended to 32 bits)

DEST Register RA

31 23 15 7 0

I I I I I I I I I I I I I I I I
115 ... 18 I RA I 17 ... 10 I

I I I I I I I I I I
I 0 0 0 0 0 0 0 11

OP=Ol CONSTN

Description: The 1116 operand is placed into the DEST location.

8-36 INSTRUCTION SET

CONVERT CONVERT
Convert Data Format

Operation: DEST +- SRCA, with format modified per UI, RND, FD, FS

Assembler
Syntax:

Status:

CONVERT rc, ra, UI, RND, FD, FS

fpX, fpU, fpV, fpR, fpN

Operands: SRCA Content of register RA (single-precision f.p.)
or

Content of register RA and the twin of register RA
(Double-precision f.p.)

DEST Content of register RC (single-precision f.p.)

Control: UI

RND
000
001
010
011
100
101-111

FS,FD

00
01
10
11

31 23

II I I I I I I I
1110010~

or
Content of register RC and the twin of register RA
(Double-precision f.p.)

0= signed integer
1 = unsigned integer

Round mode
·Round to nearest
Round to minus infinity
Round to plus infinity
Round to zero
Round using f.p. round mode (FRM)
Reserved

Format of source operand, format of destination
operand
Integer
Single-precision floating-point
Double-precision floating-point
Reserved

I I
RC

15

II
I I
RA

7

OP=E4 CONVERT

o

Description: The SRCA operand with format FS is converted to format FD and
rounded according to RND, then placed into the DEST location. If the
source or destination operand is an integer, it is a signed or unsigned
value according to the value of UI.

Note: Converting from format to like format is not supported, and will
produce unpredictable results.

INSTRUCTION SET 8-37

I.:

CPBYTE
Compare Bytes

Operation: IF (SRCA.BYTEO = SRCB.BYTEO) OR
(SRCA.BYTE1 =SRCB.BYTE1) OR
(SRCA.BYTE2 = SRCB.BYTE2) OR
(SRCA.BYTE3 = SRCB.BYTE3) THEN
DEST ~ TRUE ELSE DEST ~ FALSE

Assembler
Syntax: CPBYTE rc, ra, rb

or
CPBYTE rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7
I I

I
I I I

RC RA
III I I I I I II
0010111M II

OP= 2E.2F CPBYTE

CPBYTE

o
I I I I

RBor I

Description: Each byte of the SRCA operand is compared to the corresponding
byte of the SRCB operand. If any corresponding bytes are equal, a
Boolean TRUE is placed into the DEST location; otherwise. a
Boolean FALSE is placed into the DEST location.

8-38 INSTRUCTION SET

CPEQ CPEQ

Compare Equal To

Operation: IF SRCA = SRCB THEN DEST ~ TRUE
ELSE DEST ~ FALSE

Assembler
Syntax: CPEQ re, ra, rb

or
CPEQ re, ra, constB

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7 ° 1""1"1 I I I

I
I I I

I
I I I I I

I RC RA RBorl .0 1 1 0 0 0 0 M.

OP.60,61 CPEQ

Description: If the SRCA operand is equal to the SRCB operand, a Boolean TRUE
is placed into the DEST location; otherwise, a Boolean FALSE is
placed into the DEST location,

INSTRUCTION SET we

I
I,

;,\

i!
~ '~
I ',~

CPGE

Compare Greater Than or Equal To

Operation: IF SRCA ~ SRCB THEN DEST ~ TRUE
ELSE DEST ~ FALSE

Assembler
Syntax: CPGE rc, ra, rb

or
CPGE rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23

II I I I I I I I
0100110M

OP=4C.40

I I
RC

15 II
CPGE

I I
RA

7
I I I I

RBor I

CPGE

o

Description: If the value of the SRCA operand is greater than or equal to the value
of the SRCB operand, a Boolean TRUE is placed into the DEST
location; otherwise, a Boolean FALSE is placed into the DEST
location.

8-40 INSTRUCTION SET

CPGEU

Compare Greater Than or Equal To, Unsigned

Operation: IF SRCA ~ SRCB (unsigned) THEN DEST f- TRUE
ELSE DEST f- FALSE

Assembler
Syntax: CPGEU rc, ra, rb

or
CPGEU rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23

I
I I I I I I I II

.0100111M.

OP=4E.4F

I I
RC

15

I II

CPGEU

I I
RA

7

CPGEU

I I I I
RS or I

°

Description: If the value of the SRCA operand is greater than or equal to the value
of the SRCB operand, a Boolean TRUE is placed into the DEST
location; otherwise, a Boolean FALSE is placed into the DEST
location. For the comparison, both operands are treated as unsigned
integers.

INSTRUCTION SET 8-41

t ,I
':1

CPGT CPGT

Compare Greater Than

Operation: IF SRCA > SRCB THEN DEST f- TRUE
ELSE DEST f- FALSE

Assembler
Syntax: CPGT rc, ra, rb

or
CPGT rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7 0

I I I I I I I I I
0100100M

OP=48,49

I I
RC

I

I
I

CPGT

I I

I
I I I I I

RA RBor I

Description: If the value of the SRCA operand is greater than the value of the
SRCB operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location.

8-42 INSTRUCTION SET

I

CPGTU

Compare Greater Than, Unsigned

Operation: IF SRCA>SRCB (unsigned) THEN DEST f- TRUE
ELSE DEST f- FALSE

Assembler
Syntax: CPGTU rc, ra, rb

or
CPGTU rc, ra, constB

Status: Not affected

Operands: SRCA Content of register RA
SRCB M=O: Content of register RB

M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7
I I I

I
I I I

RC RA
1111111111
0100101M II

OP=4A,4B CPGTU

CPGTU

o
I I I I
RB or I

Description: If the value of the SRCA operand is greater than the value of the
SRCB operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location. For
the comparison, both operands are treated as unsigned integers.

INSTRUCTION SET 8-43

CPLE

Operation:

Assembler
Syntax:

Status:

Operands:

Compare Less Than or Equal To

IF SRCA~SRCB THEN DEST +- TRUE
ELSE DEST +- FALSE

CPLE rc, ra, rb
or

CPLE rc, ra, const8

Not affected

SRCA

SRCB

Content of register RA

M = 0: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7

I I T I I II RC RA I
I I I I I I I II
0100010M.

OP=44,45 CPLE

CPLE

0

I I I I

I . RBor I

Description: If the value of the SRCA operand is less than or equal to the value of
the SRCB operand, a Boolean TRUE is placed into the DEST
location; otherwise, a Boolean FALSE is placed into the DEST
location.

8-44 INSTRUCTION SET

CPLEU CPLEU

Compare Less Than or Equal To, Unsigned

Operation: IF SRCAs.SRCB (unsigned) THEN DEST f- TRUE
ELSE DEST f- FALSE

Assembler
Syntax: CPLEU rc, ra, rb

or
CPLEU rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7
I I I I

I
I I I

RC RA
I. II II II I II
0100011M II

OP=46,47 CPLEU

o
I I I I
RB or I

Description: If the value of the SRCA operand is less than or equal to the value of
the SRCB operand, a Boolean TRUE is placed into the DEST
location; otherwise, a Boolean FALSE is placed into the DEST
location. For the comparison, both operands are treated as unsigned
integers.

INSTRUCTION SET _5

CPLT

Compare Less Than

Operation: IF SRCA< SRCB THEN DEST f- TRUE
ELSE DEST f- FALSE

Assembler
Syntax: CPL T rc, ra, rb

or
CPL T rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23

I I I I I I I I I
o 1 0 0 0 0 0 M

OP=40, 41

I
RC

15
I II I

CPlT

7
I I I RA

CPLT

0
I I I I I RBor I

Description: If the value of the SRCA operand is less than the value of the SRCB
operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location.

8-46 INSTRUCTION SET

CPLTU

Compare Less Than, Unsigned

Operation: IF SRCA<SRCa (unsigned) THEN DEST f- TRUE
ELSE DEST f- FALSE

Assembler
Syntax: CPL TU rc, ra, rb

or
CPL TU rc, ra, constB

Status: Not affected

Operands: SRCA Content of register RA

SRCa M = 0: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23

I
I I I I I I MI II
0100001.

I I
RC

15 I II
OP = 42, 43 CPL TU

I I
RA

7 II

CPLTU

I I I I
RBor I

o

Description: If the value of the SRCA operand is less than the value of the SRCB
operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location. For
the comparison, both operands are treated as unsigned integers.

'J

iI'
I ..

II'.W I:

I
INSTRUCTION SET 8-47 II

1":1

CPNEQ

Compare Not Equal To

Operation: IF SRCA<> SRCS THEN DEST f- TRUE
ELSE DEST f- FALSE

Assembler
Syntax: CPNEQ rc, ra, rb

or
CPNEQ rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCS M = 0: Content of register RS
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 II I. I I I I I II
0110001M

OP=62,63

I I
RC

15

II

CPNEQ

I I
RA

7

II
I I I
RBor I

CPNEQ

o

Description: If the SRCA operand is not equal to the SRCB operand, a Boolean
TRUE is placed into the DEST location; otherwise, a Boolean FALSE
is placed into the DEST location.

8-48 INSTRUCTION SET

DADD DADD

Floating-Point Add, Double-Precision

Operation: DEST (double-precision) +- SACA (double-precision) +
SACS (double-precision)

Assembler
Syntax:

Status:

DADD rc, ra, rb

fpX, fpU, fpV, fpA, fpN

Operands: SACA

SACS

DEST

Content of register AA and the twin of register AA

Content of register AS and the twin of register AS

Aegister AC and the twin of register AC

31 23 15 7
I I I I

I
I I I I I I I

I
I I I I

RC RA RS
II I I I I I I II
11110001

OP-F1 DADO

o

Description: The SACA operand is added to the SACS operand; the result is
rounded according to FAM field of the Floating-Point Environment
Aegister and placed into the DEST location. The operands and result
of the addition are double-precision floating-point numbers.

INSTRUCTION SET 8049

.1

!i
Ii

1
1
~
I' I

DDIV

Operation:

Assembler
Syntax:

Status:

Floating-Point Divide, Double-Precision

DEST (double-precision) f- SRCA (double-precision) /
SRCB (double-precision)

DDIV rc, ra, rb

fpD, fpX, fpU, fpV, fpR, .fpN

DDIV

Operands: SRCA Content of register RA and the twin of register RA

SRCB

DEST

31 23 I' , , , , , , I'
11110111

Content of register RB and the twin of register RB

Register RC and the twin of register RC

, ,
RC

, ,
RA

, ,
RB

OP=F7 DDiV

Description: The SRCA operand is divided by the SRCB operand; the result is
rounded according to FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and result
of the division are double-precision floating-point numbers.

8-50 INSTRUCTION SET

DEQ

Floating-Point Equal To, Double-Precision

Operation: IF SRCA (double-precision) = SRCB (double-precision)
THEN DEST +- TRUE

Assembler
Syntax:

Status:

ELSE DEST +- FALSE

DEQ rc, ra, rb

fpl

Operands: SRCA Content of register RA and the twin of register RA

SRCB Content of register RB and the twin of register RB

DEST Register RC

31 23

I I I I I I I I I
11101011

OP=EB

I
RC

15
I

I
DEQ

I I I
RA

7

II
I I I

RB

DEQ

o

I I

Description: If the SRCA operand is equal to the SRCB operand, a Boolean TRUE
is placed into the DEST location; otherwise, a Boolean FALSE is
placed into the DEST location. SRCA and SRCB are double-precision
floating-point numbers.

Note: The rounding mode specified by the FRM field of the
Floating-Point Environment Register has no effect on this operation.

INSTRUCTION SET a.s1

DGE

Floating-Point\Greater Than Or Equal To, Double-Precision

Operation: IF SRCA (double-precision)~SRCB (double-precision)
THEN DEST +- TRUE
ELSE DEST +- FALSE

Assembler
Syntax: DGE rc, ra, rb

Status: fpl

Operands: SRCA

SRCB

Content of register RA and the twin of register RA

Content of register RB and the twin of register RB

DEST Register RC

31 23 15 7

II I I I I I I I I I I I

I
I I I

I
I I I I

RC RA RS ,11101111,

OP=EF CGE

DGE

0

I

Description: If the SRCA operand is greater than or equal to the SRCB operand, a
Boolean TRUE is placed into the DEST location; otherwise, a
Boolean FALSE is placed into the DEST location. SRCA and SRCB
are double-precision floating-point numbers,

8-52 INSTRUCTION SET

Note: The rounding mode specified by the FRM field of the
Floating-Point Environment Register has no effect on this operation.

DGT

Floating-Point Greater Than, Double-Precision

Operation: IF SRCA (double-precision) > SRCB (double-precision)
THEN DEST +- TRUE

Assembler
Syntax:

Status:

ELSE DEST +- FALSE

DGT rc. ra. rb

fpl

Operands: SRCA Content of register RA and the twin of register RA

SRCB Content of register RB and the twin of register RB

DEST Register RC

31 23

I I I I I I I I I
11101101

OP=ED

I I
RC

15
I I

I
DGT

I I
RA

7
I I I I

RB

DGT

o

Description: If the SRCA operand is greater than the SRCB operand. a Boolean
TRUE is placed into the DEST location; otherwise. a Boolean FALSE
is placed into the DEST location. SRCA and SRCB are
double-precision floating-point numbers.

Note: The rounding mode specified by the FRM field of the
Floating-Point Environment Register has no effect on this operation.

INSTRUCTION SET 8-113

':\'
i~
"

,I

i

DIV

Operation:

Assembler
Syntax:

Status:

Operands:

Divide Step

Perform one-bit step of a divide operation (unsigned)

DIV rc, ra, rb
or

DIV rc, ra, const 8

V,N,Z,C

SRCA

SRCB

Content of register RA

M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

DIV

31 23 15 7 o

I I I I I I I I I
o 1 101 0 1 M

I
RC

I I I

I
I I I

RA II I I I I
RBor I I I

OP=6A.6B DIV

Description: If the Divide Flag (DF) bit of the ALU Status Register is 1, the SRCB
operand is subtracted from the SRCA operand. If the DF bit is 0, the
SRCB operand is added to the SRCA operand.

11-54 INSTRUCTION SET

The carry-out of the add or .subtract operation is exclusive-ORed with
the value of the DF bit and the value of the Negative (N) bit of the
ALU Status Register; the resulting value is complemented and placed
into the DF bit. The sign of the result of the add or subtract is placed
into the N bit.

The content of the Q Register is appended to the result of the add or
subtract, and the resulting 64-bit value is shifted left by one bit
position; the value computed for the DF bit above fills the vacated bit
position. The high-order 32 bits of the 64-bit shifted value are placed
into the DEST location. The low-order 32 bits of the shifted value are
placed into the Q Register.

Examples of integer divide operations appear in Section 7.2.6.

Diva
Divide Initialize

Operation: Initialize for a sequence of divide steps (unsigned)

Assembler
Syntax: DIVO rc, rb

or
DIVO rc, const8

Status: V,N,Z,C

Operands: SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7
I I I I

I
I I I I I

I RC Reserved

OP=68.69 DIVO

I

Diva

0
I I I I

I RBorl

Description: The Divide Flag (OF) bit of the ALU Status Register is set. The sign of
the SRCB operand is placed into the Negative bit of the ALU Status
Register.

;
,'t

The content of the a register is appended to the SRCB operand, and
the resulting 64-bit value is shifted left by one bit position; a 0 fills the
vacated bit position. The high-order 32 bits of the 64-bit shifted value
are placed into the DEST location. The low-order 32 bits of the shifted
value are placed into the a Register. I·
Examples of integer divide operations appear in Section 7.2.6.

INSTRUCTION SET 8055

DIVIDE DIVIDE

Operation: DEST f­

a f-

Assembler

Integer Divide, Signed

(a II SRCA) I SRCB (signed)
Remainder

Syntax: DIVIDE rc, ra, rb

Status: Not affected

Operands: a
SRCA

SRCB

DEST

Content of the a Register

Content of register RA

Content of register RB

Register RC

31 23 15 o
II I I I I II II
11100001

I I I I
RC

I

I

I I
RA

I I I
RB

OP=E1 DIVIDE

Description: The SRCA operand is appended to the content of the a register. The.
resulting 64-bit value is divided by the SRCB operand, and the result
is placed into the DEST location. This operation treats the operands
as signed two's-complement integers and produces a signed
two's-complement result.

11-56 INSTRUCTION SET

The remainder is placed into the a register. A non-zero remainder
always has the same sign as the dividend.

This instruction does not check for a divide overflow condition.
Checking for divide overflow must occur before the instruction is
executed.

Note: This instruction is not supported directly in processor hardware.
In the Am29050 microprocessor, this instruction causes a DIVIDE
trap. When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

DIVIDU

Integer Divide, Unsigned

Operation: DEST +- (01/ SRCA) I SRCB (unsigned)
o +- Remainder

Assembler
Syntax: DIVIDU rc, ra, rb

Status: Not affected

Operands: 0 Content of the 0 Register

SRCA Content of register RA

SRCB Content of register RB

DEST Register RC

31 23 15
I I I I

I

I I I
RC RA

II I I I I I I II
11100011

DIVIDU

7

II
I I
RB

DIVIDU

o

Description: The SRCA operand is appended to the content of the 0 Register. The
resulting 64-bit value is divided by the SRCB operand, and the result
is placed into the DEST location. This operation treats the operands
as unsigned integers, and produces an unsigned result.

The remainder is placed into the 0 Register. The remainder is also
unsigned.

Note: This instruction is not supported directly in processor hardware.
In the Am29050 microprocessor, this instruction causes a DIVIDU
trap. When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

INSTRUCTION SET 8-57

,I
"

\Ii' I
I
I.
11
! '~

I

DIVL DIVl

Divide Last Step

Operation: Complete a sequence of divide steps (unsigned)

Assembler
Syntax:

Status:

DIVL rc, ra, rb

V,N,Z,C

Operands: SRCA

SRCS

DEST

Content of register RA

M = 0: Content of register RS
M = 1: I (Zero-extended to 32 bits)

Register RC

31 23 15 7 o
II I I I I I I II
0110110M

I
RC

I I I

I

I I
RA

I
II

I I I I
RB or I

OP=6C,60 DIVL

Description: If the Divide Flag (DF) bit of the ALU Status Register is 1, the SRCS
operand is subtracted from the SRCAoperand. If the DF bit is 0, the
SRCS operand is added to the SRCA operand. The result is placed
into the DEST location.

11-58 INSTRUCTION SET

The carry-out of the add or subtract operation is exclusive-ORed with
the value of the DF bit and the value of the Negative (N) bit of the
ALU Status Register; the resulting value is complemented and placed
into the DF bit The sign of the result of the add or subtract is placed
into the N bit.

The content of the Q register is shifted left by one bit position; the
value computed for the DF bit above fills the vacated bit position. The
shifted value is placed into the Q Register.

Examples of integer divide operations appear in Section 7.2.6.

DIVREM

Divide Remainder

Operation: Generate remainder for divide operation (unsigned)

Assembler
Syntax: DIVREM rc, ra, rb

or
DIVREM rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCS M = 0: Content of register RS
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

DIVREM

31 23 7 0
rl~I~I-rI~I"I-'I-'I~I~I-r~~~~~-r~~~~~-'I~1"-'-'I~I~I-r'1
. 0 1 1 0 1 1 1 M. . RS or I .

Description: If the Divide Flag (DF) bit of the ALU Status Register is 1, the SRCA
operand is placed into the DEST location.

If the DF bit is 0, the SRCS operand is added to the SRCA operand,
and the result is placed into the DEST location.

Examples of integer divide operations appear in Section 7.2.6.

INSTRUCTION SET 11059

DMAC DMAC

Floating-Point Multiply-Accumulate, Double-Precision

Operation: ACC{ACN} (double-precision) f- SRCA (double-precision) * SRCB
(double-precision) = ACC(ACN) (double-precision)

Assembler
Syntax:

Status:

DMAC FUNC,ACN,ra,rb

fpU, fpV, fpR, fpN

Operands: SRCA

SRCB

ACC{ACN)

Control: FUNC

ACN

Content of register RA and the twin of register RA

Content of register RB and the twin of register RB

(Content of) Accumulator register ACN

Modifies operation as shown in the table below

Accumulator register number (0, 1, 2, 3)

31 23 15 7 a I' , I I I I I I' I , , I I~' I
, , , , I , , I I

, , ,
I FUNC RA RB .11011001,Res.

OP=D9 DMAC

Description: A compound operation of the form (OP1 * OP2) = OP3 is performed,
where OP1, OP2, and OP3 are double-precision operands. Operand
sources and optional sign changes are specified by FUNC, as
described in the table below. The result is rounded and stored in
ACC{ACN), in double"precision format. The Accumulator Format
(ACF) field of the Floating-Point Environment Register must specify
double-precision.

8-60 INSTRUCTION SET

Note that the DMAC instruction uses the fast float mode of operation,
regardless of the state of the Fast Float Select bit in the
Floating-Point Environment Register. The DMAC instruction never
causes a Floating-Point Exception trap-it updates the sticky status
bits instead. Furthermore, the DMAC instruction never sets the
Inexact Sticky bit, regardless of the result.

FUNC Operation Performed

0000 (SRCA * SRCB) + ACC (ACN)
0001 (SRCA * -SRCB) + ACC(ACN)
0010 (SRCA * SRCB) ACC(ACN)
0011 (SRCA * -SRCB) ACC(ACN)

0100 (SRCA * SRCB) + 0.0
0101 (SRCA * -SRCB) + 0.0
0110 (SRCA * SRCB) 0.0
0111 (SRCA * -SRCB) 0.0

!~
1000 (SRCA*1.0) + ACC(ACN) 11 if

1001 (SRCA *-1.0) + ACC(ACN)
1010 (SRCA*1.0) ACC(ACN)
1011 (SRCA *-1.0) ACC(ACN)

1100 (SRCA*1.0) + 0.0
1101 (SRCA *-1.0) + 0.0
1110 (SRCA*1.0) 0.0
1111 (SRCA *-1.0) 0.0

INSTRUCTION SET 8-61

DMSM DMSM

Operation:

Assembler
Syntax:

Status:

Floating-Point Multiply-Sum, Double-Precision

DEST (double-precision) ~ SRCA (double-precision) • ACC(O)
(double-precision) =SCRB (double-precision)

DMSM rC,ra,rb

fpU, fpV, fpR, fpN

Operands: SRCA Content of register RA and the twin of register RA

Content of register RS and the twin of register RS

(Content of) Accumulator register 0

SRCS

ACC(O)

DEST Register RC and the twin of register RC

31 23 15 7

II I I I I I I I I
I

I I I

I
I

RC RA .11011011.

OP=DB DMSM

I I
RB

Description: The SRCA operand is multiplied by the ACC(O) operand, and the
product added to the SRCS operand; the result is rounded to
double-precision format according to Floating-Point Environment
Register field FRM, and placed into the DEST location. Operands
SRCA, SRCS, and ACC(O) are double-precision floating-point
numbers. The Accumulator Format field of the Floating-Point
Environment Register must specify double-precision.

0

I

Note that the DMSM instruction uses the fast float mode of operation,
regardless of the state of the Fast Float Select bit in the Floating­
Point Environment Register. The DMSM instruction never causes

8-62 INSTRUCTION SET

a Floating-Point Exception trap-it updates the sticky status bits
instead. Furthermore, the DMSM instruction never sets the Inexact
Sticky bit, regardless of the result.

DMUL DMUL

Operation:

Assembler
Syntax:

Status:

Operands:

Floating-Point Multiply, Double-Precision

DEST (double-precision) f- SRCA (double-precision)'
SRCS (double-precision)

DMUL rc, ra, rb

fpX, fpU, fpV, fpR, fpN

SRCA

SRCS

DEST

Content of register RA and the twin of register RA

Content of register RS and the twin of register RS

Register RC

31 ~ 15 7

I ' , , , , , , I 11110101

OP=F5

, ,
RC

,
I

,

DMUL

, ,
RA I'

, , I
RS

o

Description: The SRCS operand is multiplied by the SRCA operand; the result is
rounded according to FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and result
of the multiplication are double-precision floating-point numbers.

INSTRUCTION SET 8-63

DSUB

Operation:

AsSembler
Syntax:

Status:

Operands:

Floating-Point Subtract, Double-Precision

DEST (double-precision) f- SRCA (double-precision)
SRCS (double-precision)

DSUS rc, ra, rb

fpX, fpU, fpV, fpR, fpN

DSUB

SRCA Content of register RA and the twin of register RA

SRCS

DEST

Content of register RS and the twin of register RS

Register RC

31 ~ 15 7 o
I I I

RC

OP=F3

I

I
I

DSUB

I
RA

I I I I
RB

Description: The SRCS operand is subtracted from the SRCA operand; the result
is rounded according to FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and result
of the subtraction are double-precision floating-point numbers.

8-64 INSTRUCTION SET

EMULATE EMULATE

Trap to Software Emulation Rqutine

Operation: Load IPA and IPS registers with operand register-numbers
and Trap (VN)

Assembler
Syntax: EMULATE vn, ra, rb

Status: Not affected

Operands: Absolute-register numbers for registers RA and RS

VN Trap vector number

31 23

II I I I I I I II
11010111

I I
VN

15

II
OP=D7 EMULATE

I I
RA

7

II I I
RB

o

I I

Description: The IPA and IPS registers are set to the register numbers of registers
RA and RS, respectively. A trap with the specified vector number
occurs.

Note that the IPC register also is affected by this instruction, but that
its value has no interpretation.

For programs in the User mode, a Protection Violation trap occurs­
instead of the EMULATE trap-if a vector number between 0 and 63
is specified.

INSTRUCTION SET 8-65

EXBYTE
Extract Byte

Operation: DEST +-SRCB, with low-order byte replaced by byte in
SRCA selected by BP

Assembler
Syntax: EX BYTE rc, ra ,rb

or
EXBYTE rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15
I I

I
I I I

RC RA
II I I I I I I II
0000101M

OP=OA,OB EXBYTE

EX BYTE

o
I I I

RBorl I I

Description: A byte in the SRCA operand is selected by the Byte Position field of
the ALU Status Register and the Byte Order bit of the Configuration
Register. The selected byte replaces the low-order byte of the SRCB
operand and the resulting word is placed into the DEST location.

Note: The selection of bytes within words is specified in Section 3.4.5.

8-66 INSTRUCTION SET

EXHW EXHW

Extract Half-Word

Operation: DEST ~ SRCB, with low-order half-word replaced by half-word in
SRCA selected by BP

Assembler
Syntax: EXHW rc, ra, rb

or
EXHW rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 II I I I I I I I
o 1 1 1 1 10M

I I
RC

15

II
OP = 7C, 70 EXHW

I I
RA

7

II I I I
RBar I

o

Description: A half-word in the SRCA operand is selected by the Byte Position
field of the ALU Status Register and the Byte Order bit of the
Configuration Register. The selected half-word replaces the
low-order half-word of the SRCB operand, and the resulting word is
placed into the DEST location.

Note: The selection of half-words within words is specified in
Section 3.4.5.

INSTRUCTION SET 11067

EXHWS

Extract Half-Word, Sign-Extended

Operation: DEST ~ half-word in SRGA selected by BP,
sign-extended to 32 bits

Assembler
Syntax: EXHWS rc, ra

Status:

Operands:

31

Not affected

SRGA

DEST

23

II I I I I I I I I
01111110

OP=7E

Content of register RA

Register RC

15
I I I

I
I I

RC RA

EXHWS

I

EXHWS

7 o II I I I I
Reserved

Description: A half-word in the SRGA operand is selected by the Byte Position
field of the ALU Status Register and the Byte Order bit of the
Configuration Register. The selected half-word is sign-extended to 32
bits, and the resulting word is placed into the DEST location.

Note: The selection of half-words within words is specified in
Section 3.4.5.

8-68 INSTRUCTION SET

EXTRACT

Extract Word, Bit-Aligned

Operation: DEST f- high-order word of (SRCAII SRCB« FC)

Assembler
Syntax: EXTRACT rc, ra ,rb

or
EXTRACT rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST

31 23

I , , , , , , , I o 1 1 1 1 0 1 M

OP=7A,7B

Register RC

, ,
RC

15

, I'
EXTRACT

, ,
RA

7

I'

EXTRACT

o , , , ,
RBor I

Description: The SRCB operand is appended to the SRCA operand, and the
resulting 64-bit value is shifted left by the number of bit-positions
specified by the Funnel Shift Count (FC) field of the ALU Status
register. The high-order 32 bits of the 64-bit shifted value are placed
in the DEST location.

If the SRCB operand is the same as the SRCA operand, the
EXTRACT instruction performs a rotate operation.

INSTRUCTION SET 8-69

FADD
Floating-Point Add, Single-Precision

Operation: DEST (single-precision) +- SRCA (single-precision) +
SRCB (single-precision)

Assembler
Syntax: FADD rc, ra, rb

Status: fpX, fpU, fpV, fpR, fpN

Operands: SRCA

31

SRCB

DEST

23

II I I I I I I I
.11110000.

OP=FO

I

Content of register RA

Content of register RB

Register RC

15
I I I

I
I I

RC RA

FADD

7
I

I
I

FADD

0
I I I

I RB

Description: The SRCA operand is added to the SRCB operand; the result is
rounded according to FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and result
of the addition are single-precision floating-point numbers.

8-70 INSTRUCTION SET

FDIV FDIV

Floating-Point Divide, Single-Precision

Operation: DEST (single-precision) ~ SRCA (single-precision) /

Assembler
Syntax:

Status:

Operands:

31

SRCB (single-precision)

FDIV rc, ra, rb

fpD, fpX, fpU, fpV, fpR, fpN

SRCA Content of register RA

SRCB Content of register RB

DEST Register RC

23 15 7 0

II I I I I I I I I I I

I
I I I

I
I I I I

I RC RA RB ,11110110,

OP=F6

Description:

FDiV

The SRCA operand is divided by the SRCB operand; the result is
rounded according to FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and result
of the division are single-precision floating-point numbers.

INSTRUCTION SET 8-71

FDMUL
Floating-Point Multiply, Single-to-Double Precision

Operation: DEST (double-precision) ~ SRCA (single-precision) •
SRCS (single-precision)

Assembler
Syntax:

Status:

FDMUL rc, ra, rb

fpR, fpN

Operands: SRCA

SRCS

DEST

31 23

II I I I I I I II
11111001

Content of register RA

. Content of register RS

Register RC

I I
RC

15

II
I I
RA

OP=F9 FDMUL

7

II
I I I

RB

FDMUL

o

.1

Description: The SRCS operand is multiplied by the SRCA operand; the result is
placed into the DEST location. SRCA and SRCS are Single-precision
floating-point numbers; the result is produced in double-precision
format. Secause the product of two Single-precision operands can
always be represented exactly as a double-precision number, the
FDMUL result does not depend on the FRM field of the Floating-Point
Environment Register.

8-72 INSTRUCTION SET

FEQ FEQ

Floating-Point Equal To, Single-Precision

Operation: IF SRCA (single-precision) = SRCB (single-precision)
THEN DEST f- TRUE
ELSE DEST f- FALSE

Assembler
Syntax:

Status:

FEQ rc, ra, rb

fpN

Operands: SRCA Content of register RA

SRCB Content of register RB

DEST Register RC

31 23 15

II I I I I I I I I I

I
I I

RC RA .11101010.

OP=EA FEQ

7
I

I
I

0
I I I I

I RB

Description: If the SRCA operand is equal to the SRCB operand, a Boolean TRUE
is placed into the DEST location; otherwise, a Boolean FALSE is
placed into the DEST location. SRCA and SRCB are single-precision
floating-point numbers.

Note: The rounding mode specified by the FRM field of the
Floating-Point Environment Register has no effect on this operation.

INSTRUCTION SET 8073

FGE

Floating-Point Greater Than Or Equal To, Single-Precision

Operation: IF SRCA (single-precision) ~SRCB (single-precision)
THEN DEST +- TRUE
ELSE DEST +- FALSE

Assembler
Syntax:

Status:

FGE rc, ra, rb

fpN

Operands: SRCA Content of register RA

SRCB Content of register RB

DEST Register RC

31 23 15

II I I I I I I I I I I I I

I
I I

RC RA .11101010,

OP=EE FGE

7
I

I
I I I I

RB

FGE

0

I

Description: If the SRCA operand is greater than or equal to the SRCB operand, a
Boolean TRUE is placed into the DEST location; otherwise, a
Boolean FALSE is placed into the DEST location. SRCA and SRCB
are single-precision floating-point numbers.

8-74 INSTRUCTION SET

Note: The rounding mode specified by the FRM field of the Floating­
Point Environment Register has no effect on this operation.

FGT

Floating-Point Greater Than, Single-Precision

Operation: IF SRCA (single-precision) > SRCS (single-precision)
THEN DEST f- TRUE
ELSE DEST f- FALSE

Assembler
Syntax:

Status:

FGT rc, ra, rb

fpN

Operands: SRCA Content of register RA

SRCB Content of register RB

DEST Register RC

31 23 15

II I I I I I I I I I I I I

I
I I

RC RA . 1 1 1 0 1 1 0 O.

OP=EC FGT

7
I

I
I

FGT

° I I I

I RB

Description: If the SRCA operand is greater than the SRCB operand, a Boolean
TRUE is placed into the DEST location; otherwise, a Boolean FALSE
is placed into the DEST location. SRCA and SRCB are
single-precision floating-point numbers.

Note: The rounding mode specified by the FRM field of the Floating­
Point Environment Register has no effect on this operation.

INSTRUCTION SET 8-75

8-76

FMAC

Floating-Point Multiply-Accumulate, Single-Precision

Operation:

Assembler
Syntax:

Status:

ACC(ACN) (variable-precision) +- SRCA (single-precision) *
SRCS (single-precision) + ACC(ACN) (variable-precision)

FMAC FUNC,ACN,ra,rb

fpU,fpV,fpR,fpN

Content of register RA

Content of register RS

Operands: SRCA

SRCS

ACC(ACN)

Control: FUNC

(Content of) Accumulator register ACN

Modifies operation as shown in the table below

ACN Accumulator register number (0, 1, 2, 3)

31 23 15 7 II I I I I I I II I I I I I~I I
I I I I I I I

I
I I I I

FUNC RA RB .11011000.Res.

OP=D8 FMAC

FMAC

0 I
I

Description: A compound operation of the form (OP1* OP2) +OP3 is performed,
where OP1 and OP2 are single-precision operands, and OP3 is an
operand having the format specified by the Accumulator Format field
of the Floating-Point Environment Register. Operand sources and
optional sign changes are specified by FUNC, as described in the
table below. The result is rounded and stored in ACC(ACN), in the
format specified by ACF.

FUNC

0000
0001
0010
0011

0100
0101
0110
0111

1000
1001
1010
1011

1100
1101
1110

INSTRUCTION SET

Note that the FMAC instruction uses the fast float mode of operation,
regardless of the state of the Fast Float Select bit in the Floating­
Point Environment Register. The FMAC instruction never causes a
Floating-Point Exception trap-it updates the sticky status bits
instead. Furthermore, the FMAC instruction never sets the Inexact
Sticky bit, regardless of the result.

Operation performed

(SRCA * SRCS) + ACC(ACN)
(SRCA * -SRCS) + ACC(ACN)
(SRCA * SRCS) ACC(ACN)

(SRCA * -SRCS) ACC(ACN)

(SRCA * SRCS) + 0.0
(SRCA * -SRCS) + 0.0
(SRCA* SRCS) 0.0

(SRCA * -SRCS) 0.0

(SRCA *1.0) + ACC(ACN)
(SRCA * -1.0) + ACC(ACN)
(SRCA *1.0) ACC(ACN)

(SRCA * -1.0) ACC(ACN)

(SRCA*1.0) + 0.0
(SRCA * -1.0) + 0.0
(SRCA *1.0) 0.0

FMSM FMSM

Operation:

Assembler
Syntax:

Status:

Floating-Point Multiply-Sum, Single-Precision

DEST (single-precision) ~ SRCA (single-precision) •
ACC(O) (single-precision) + SRCS (single-precision)

FMSM rc, ra, rb

fpU, fpV, fpR, fpN

Operands: SRCA Content of register RA

Content of register RS

31

SRCS

ACC(O)

DEST

23

II I I I I I I I
,11011010,

OP=DA

I

Content of accumulator register 0

Register RC

15 7

I
I I I

I RC RA

FMSM

I I I I
RB

Description: The SRCA operand is multiplied by the ACC(O) operand, and the
product added to the SRCS operand; the result is rounded to
single-precision format according to Floating-Point Environment
Register field FRM, and placed into the DEST location. Operands
SRCA, SRCS, and ACC(O) are single-precision floating-point
numbers. The Accumulator Format field of the Floating-Point
Environment Register must specify single-precision,

0

I

Note that the FMSM instruction uses the fast-float mode of operation,
regardless of the state of the Fast-Float Select bit in the Floating­
Point Environment Register. The FMSM instruction never causes a
Floating-Point Exception trap-it updates the sticky status bits
instead. Furthermore, the FMSM instruction never sets the Inexact
Sticky bit, regardless of the result.

INSTRucnON SET 8-77

" I
I'
::1

i1

FMUL

Floating-Point Multiply, Single-Precision

Operation: DEST (single-precision) ~ SRCA (single-precision) •
SRCS (single-precision)

Assembler
Syntax: FMUL rc, ra, rb

Status: fpX, fpU, fpV, fpR, fpN

Operands: SRCA

SRCS

DEST

31 23 I' , , , , , , I'
11110100

Content of register RA

Content of register RS

Register RC

, ,
RC

15

I'
, ,
RA

OP=F4 FMUL

7

I'
, , ,

RB

FMUL

o

Description: The SRCA operand is multiplied by the SRCS operand; the result is
rounded according to FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and result
of the multiplication are single-precision floating-point numbers.

8-78 INSTRUCTION SET

FSUB

Floating-Point Subtract, Single-Precision

Operation: OEST (single-precision) ~ SRCA (single-precision)*
SRCB (single-precision)

Assembler
Syntax:

Status:

FSUB rc, ra, rb

fpX, fpU, fpV, fpR, fpN

Operands: SRCA Content of register RA

SRCB Content of register RB

OEST Register RC

31 23

II I I I I I I II
11110010

OP_F2

I
RC

15
I

I
I

FSUB

I
RA

7
I

II
I I I

RB

FSUB

o

Description: The SRCB operand is subtracted from the SRCA operand; the result
is rounded according to FRM field of the Floating-Point Environment
Register and placed into the OEST location. The operands and result
of the subtraction are single-precision floating-point numbers.

INSTRUCTION SET .. 79

HALT HALT

Enter Halt Mode

Operation: Enter Halt mode on next cycle

Assembler
Syntax: HALT

Status: Not affected

Operands: Not applicable

31 23 15 7 o
II I I I I I I I I I I I I I

I
I I I I I

Reserved Reserved 1000100~ II
I I I I
Reserved I I

OP=89 HALT

Description: The processor is placed into the Halt mode on the next cycle, except
that any external data accesses are completed.

11-80 INSTRUCTION SET

This instruction may be executed only by Supervisor-mode programs.
An attempted execution by a User-mode program causes a
Protection Violation trap to occur.

If the instruction following a Halt instruction has an exception (e.g.,
TLB Miss), the trap associated with this exception is taken before the
processor enters the Halt mode.

INBYTE

Insert Byte

Operation: DEST ~SRCA, with byte selected by BP
replaced by low-order byte of SRCB

Assembler
Syntax: INBYTE rc, ra, rb

or
INBYTE rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 ~ I' , , , , , , I 0000110M

OP.OC,OD

, , ,
RC

15 , ,
I
,

IN BYTE

7 , ,
RA I'

IN BYTE

o , , , ,
RBorl

Description: A byte in the SRCA operand is selected by the Byte Position field of
the ALU Status Register and the Byte Order bit of the Configuration
Register. The selected byte is replaced by the low-order byte of the
SRCB operand, and the resulting word is placed into the DEST
location.

Note: The selection of bytes within words is specified in Section 3.4.5.

INSTRUCTION SET ... t

I,

"

INHW INHW

Insert Half-Word

Operation: DEST f-SRCA, with half-word selected by BP replaced by
low-order half-word of SRCB

Assembler
Syntax: INHW rc, ra, rb

or
INHW rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23'

I' , , I I II I' 0111100M

I I
RC

15

I'
OP = 78, 79 INHW

, I
RA

7

I'
, , I
RBorl

Description: A half-word in the SRCA operand is selected by the Byte Position
field of the ALU Status Register and the Byte Order bit of the
Configuration Register. The selected half-word is replaced by the
low-order half-word of the SRCB operand, and the resulting word is
placed into the DEST location.

11-112 INSTRUCTION SET

Note: The selection of half-words within words is specified in
Section 3.4.5.

o

INV

Invalidate

Operation: Reset all valid bits in Branch Target Cache memory

Assembler
Syntax: INV

Status: Not affected

Operands: Not applicable

31 23
I I I I II I I I I I I I

10011111 Reserved

OP=9F

I
15 7

I
I I I I I I

I
I

Reserved

INV

INV

o
I I I I
Reserved I I

Description: This instruction causes all Branch Target Cache memory valid bits to
be reset. on the execution of the next successful branch. This causes
all Branch Target Cache memory locations to become invalid.

This instruction may be executed only by Supervisor-mode programs.
An attempted execution by a User-mode program causes a
Protection Violation trap to occur.

INSTRUCTION SET 11-83

I'

ii'
I~
:1
1

"

i

IRET

Interrupt Return

Operation: Perform an interrupt return sequence

Assembler
Syntax: IRET

Status: Not affected

Operands: Not applicable

31 23 15
I I I I I I I I I II I I I I I I I

1000100 0 Reserved I Reserved

OP=88 IRET

IRET

7 o
I II I I I I

Reserved I I

Description: This instruction performs the interrupt return sequence described in
Section 3.5.5.

8-84 INSTRUCTION SET

This instruction may be executed only by Supervisor-mode programs.
An attempted execution by a User-mode program causes a
Protection Violation trap to occur.

IRETINV IRETINV

Interrupt Return and Invalidate

Operation: Perform an interrupt return sequence, and reset all valid bits in
Branch Target Cache memory

Assembler
Syntax: IRETINV

Status: Not affected

Operands: Not applicable

31 23 15 7 o

I I I I I I I I II I I I I I
. 1 0 0 0 1 1 0 o. Reserved II I I I I

Reserved II I I I I
Reserved I I

OP=8C IRETINV

Description: This instruction performs the interrupt return sequence described in
Section 3.5.5. When the sequence begins, all Branch Target Cache
memory valid bits are reset to zeros. This causes all Branch Target
Cache memory locations to become invalid.

This instruction may be executed only by Supervisor-mode programs.
An attempted execution by a User-mode program causes a
Protection Violation trap to occur.

INSTRUCTION SET 8-85

I
,

:,~,

JMP JMP

Jump

Operation: PC+- TARGET
Execute delay instruction

Assembler
Syntax: JMP target

Status: Not affected

Operands: TARGET A=O: 117 ... 1101119 ... 12 (sign-extended to 30 bits) + PC
A= 1: 117 ... 110/119 ... 12 (zero-extended to 30 bits)

31 23 15 7 0

II I I I I I I I I I I I I I

I
I I I I I I

I
I I I I I I I

117 ... 110 Reserved 19 ... 12 ,1 0 1 0 0 0 0 A,

OP.AO. A1 JMP

Description: A non-sequential instruction fetch occurs to the instruction address
given by the TARGET operand. The instruction following the JMP is
executed before the non-sequential fetch occurs.

.... INSTRUCTION SET

I

JMPF JMPF

Jump False

Operation: IF SRCA= FALSE THEN PC~ TARGET
Execute delay instruction

Assembler
Syntax: JMPF ra. target

Status: Not affected

Operands: SRCA Content of register RA

TARGET A=O: 117 ... 1101119 ... 12 (sign-extended to 30 bits) + PC
A = 1: 117 ... 1101119 ... 12 (zero-extended to 30 bits)

31 23 15 7

II I I I I I I I I I I I I I

I
I I I I I I I

I
I I I I I I

117 ... 110 RA 19 ... 12 .1010010A.

OP .. A4.A5 JMPF

Description: If SRCA is a Boolean FALSE. a non-sequential instruction fetch
occurs to the instruction address given by the TARGET operand.

If SRCA is a Boolean TRUE. this instruction has no effect.

The instruction following the JMPF is executed regardless of the
value of SRCA.

0
I

I

INSTRucnON SET ... 7

"

"

I~

I~ Ii
t

JMPFDEC JMPFDEC

Jump False and Decrement

Operation: IF SRCA = FALSE THEN

Assembler

SRCA ~ SRCA-1
PC~TARGET

ELSE
SRCA ~ SRCA-1

Execute delay instruction

Syntax: JMPFDEC ra, target

Status: Not affected

Operands: SRCA Content of register RA

TARGET A= 0: 117 ... 1101/ 19 ... 12 (sign-extended to 30 bits) + PC
A = 1: 117 ... 11 a //19 ... 12 (zero-extended to 30 bits)

31 23 15 7 0

II I I I I I I II
1011010A

I I I
117 ... 110

I I

I

I I I I
RA

I I

I

I I I I I I

I
19 ... 12

OP=B4, B5 JMPFDEC

Description: If SRCA is a Boolean FALSE, a non-sequential instruction fetch
occurs to the instruction address given by the TARGET operand.

8-88 INSTRUCTION SET

If SRCA is a Boolean TRUE, this instruction has no effect on the
, instruction-execution sequence.

The SRCA operand is decremented by one, regardless of whether or
not the non-sequential instruction fetch occurs. Note that a negative
number for the SRCA operand is a Boolean TRUE.

The instruction following the JMPFDEC is executed regardless of the
value of SRCA.

JMPFI JMPFI

Jump False Indirect

Operation: IF SRCA = FALSE THEN PC ~ SRCB
Execute delay instruction

Assembler
Syntax: JMPFI ra, rb

Status: Not affected

Operands: SRCA

SRCB

31 23

II I I I I I I I I
1100010~

OP=C4

I

Content of register RA

Content of register RB

15
I I I I

Reserved I RA

JMPFI

I I
RB

Description: The SRCA is a Boolean FALSE, a non-sequential instruction fetch
occurs to the instruction address given by the SRCB operand.

If SRCA is a Boolean TRUE, this instruction has no effect.

The instruction following the JMPFI is executed regardless of the
value of SRCA.

o

INSTRUCTION SET B-S9

! ,~

i;

JMPI JMPI

Jump Indirect

Operation: PC f- SRCB
Execute delay instruction

Assembler
Syntax: JMPI rb

Status: Not affected

Operands: SRCB Content of register RB

31 23 15

II I I I I I I I I I I I I

I
I I I I I

Reserved Reserved ~1000000

OP=CO JMPI

7

II
I I
RB

Description: A non-sequential instruction fetch occurs to the instruction address
given by the SRCB operand. The instruction following the JMPI is
executed before the non-sequential fetch occurs.

8-90 INSTRUCTION SET

o

JMPT JMPT

Jump True

Operation: IF SRCA= TRUE THEN PC +- TARGET
Execute delay instruction

Assembler
Syntax:

Status:

Operands:

JMPT ra, target

Not affected

Content of register RA SRCA

TARGET A=O: 117 ... 1101119 ... 12 (sign-extended to 30 bits) + PC

31 23 I' , , , , , , I'
1010110A

OP=AC,AD

A = 1: 117 ... 110 II 19 ... 12 (zero-extended to 30 bits)

15 7 0 , , , , ,
I
, , , , , , ,

I
, , , , , (

I 117 ... 110 RA 19 ... 12

JMPT

Description: If SRCA is a Boolean TRUE, a non-sequential instruction fetch occurs ii
to the instruction address given by the TARGET operand. I

If SRCA is a Boolean FALSE, this instruction has no effect.

The instruction following the JMPT is executed regardless of the
value of SRCA.

INSTRUCTION SET 11-91

JMPTI JMPTI

Jump True Indirect

Operation: IF SRCA=TRUE THEN PC~SRCB
Execute delay instruction

Assembler
Syntax: JMPTI ra, rb

Status:

Operands:

Not affected

SRCA

SRCB

Content of register RA

Content of register RB

31 23 15

I
I I I I I I I II I I I I I I I .1 1 I

. 1 1 0 0 1 1 0 o. Reserved. RA

op=cc JMPTI

I I
RS

Description: If the SRCA is a Boolean TRUE, a non-sequential instruction fetch
occurs to the instruction address given by the SRCB operand.

8·92 INSTRUCTION SET

If SRCA is a Boolean FALSE, this instruction has no effect.

The instruction following the JMPTI is executed regardless of the
value of SRCA.

o

LOAD

Load

Operation: DEST ~ EXTERNAL WORD [SRCS]

Assembler
Syntax: LOAD ce, cntl, ra, rb

or
LOAD ce, cntl, ra, const8

Status: Not affected

Operands: SRCS M = 0: Content of register RS
M = 1 : I (Zero-extended to 32 bits)

DEST Register RA

31 23 15
I I I I I I I I
CNTL RA I I I I I I I I I I

000 1 0 11M ,

OP=16,17 : LOAD
CE

I I I I
RBor I

LOAD

o

Description: If the CE bit is 0, the external word addressed by the SRCS operand
is placed into the DEST location.

If the CE bit is 1, a word is transferred from the coprocessor into the
DEST location. The SRCS operand has no pre-defined interpretation
in this case, though it appears on the address bus.

The CNTL field of the LOAD instruction affects the access or transfer
as described in Sections 3.4.4 and 6.1.2.

INSTRUCTION SET 8-93

LOADL LOADL

Operation:

Assembler
Syntax:

Load and Lock

DEST ~ EXTERNAL WORD [SRCB],
assert LOCK output during access

LOADL ce, cntl, ra, rb
or

LOADL ce, cntl, ra, const8

Status: Not affected

Operands: SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RA

31 23 7 0
FI;I-'I-rlllrll~I-rIII~I-r-r'-'-~rI~-r'-'-'-rl-'I~-r'1~1-rlllrl~1
o 0 0 0 0 11M l . RB or I .

OP=06,07
CE

Description: If the CE bit is 0, the external word addressed by the SRCB operand
is placed into the DEST location.

8-94 INSTRUCTION SET

If the CE bit is 1 , a word is transferred from the coprocessor into the
DEST location. The SRCB operand has no pre-defined interpretation
in this case, though it appears on the address bus.

The CNTL field of the LOADLinstruction affects the access or
transfer as described in Sections 3.4.4 and 6.1.2.

The LOCK output is asserted during the access or transfer.

LOADM LOADM
Load Multiple

Operation: DEST ... DEST +COUNT +- EXTERNAL WORD [SRCB] ...
EXTERNAL WORD [SRCB + (COUNT *4)]

Assembler
Syntax: LOADM ce, cntl, ra, rb

or

Status:

Operands:

LOADM ce, cntl, ra, constB

Not affected

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RA

31 23 15 7 o

I I I I I I I I II
0011011M

OP=36,37
CE

I I I I II
CNTL

LOADM

I I
RA II

I I I I
RBarl

Description: If the CE bit is 0, external words at consecutive word addresses,
beginning with the word addressed by the SRCB operand, are placed
into consecutive registers, beginning with the DEST location.

If the CE bit is 1, multiple words are transferred from the coprocessor
into consecutive registers, beginning with the DEST location. The
SRCB operand has no pre-defined interpretation in this case.

The total number of words accessed or transferred in the sequence is
specified by the Count Remaining (CR) field of the Channel Control
Register (which also appears in the Load/Store Count Remaining
Register) at the beginning of the access. The total number of words is
the value of the CR field plus one. The CNTL field of the LOADM
instruction affects the access or transfer as described in Sections
3.4.4 and 6.1.2.

Note: The address and register-number sequences for the LOADM
instruction are specified in Section 3.4.4.

INSTRuCTION SET 8-95

I
;
!

11
I' I
ii
Ii
III

.'
I,':

'I

Ii

11

II

LOADSET LOADSET

Load and Set

Operation: DEST f- EXTERNAL WORD [SRCB]
EXTERNAL WORD [SRCB] f- h'FFFFFFFF',
assert LOCK output during access

Assembler
Syntax: LOADSET ce, cntl, ra, rb

or
LOADSET ce, cntl, ra, const8

Status: Not affected

Operands: SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RA

31 23 15 7 o I I I I I I I I I :
0010011M

I I I I II
CNTL

I I
RA II

I I I
RBor I

OP =26, 27 LOADSET
CE

Description: If the CE bit is 0, the external word addressed by the SRCB operand
is placed into the DEST location. After the DEST location is altered,
the external word addressed by the SRCB operand is written,
atomically, with a word consisting of a 1 in every bit position.

8-96 INSTRUCTION SET

If the CE bit is 1, a word is transferred from the coprocessor into the
DEST location. The SRCB operand has no pre-defined interpretation
in this case, though it appears on the Address Bus. After the DEST
location is altered, a word consisting of a 1 in every bit position is
transferred, atomically, to the coprocessor.

The CNTL field of the LOADSET instruction affects the access or
transfer as described in Sections 3.4.4 and 6.1.2.

The LOCK output is asserted throughout the LOADSET operation.

MFACC MFACC

Move From Accumulator

Operation: DEST +- ACC(ACN)

Assembler
Syntax: MFACC rc, FMT, ACN'

Status: fpX,fpU,fpV,fpR

Operands: DEST Register RC (single-precision f.p.)
or

Register RC and twin of Register RC
(Double-precision f.p.)

ACC(ACN) Content of ACC(ACN)

Control: FMT Format of destination operand
00 Format specified by ACF
01 Single-precision floating-point
10 Double-precision floating-point
11 Reserved

ACN Accumulator number (0,1,2, or 3)

31 23 15 7 0 II I I I I I I I I I I I I II I I I I I I I I I I~I I~I RC Res ,11101001, ,00000 0 01,

OP=E9 MFACC

Description: The operand in accumulator register ACN is converted to format FMT
and rounded according to Floating-Point Environment Register field
FRM, then placed into the DEST location. The format of the operand
read from accumulator register ACN is specified by Floating-Point
Environment Register field ACF. .

INSlRUCTION SET 8-97

'" ! ~
J

i~

~

,
1
'1
I;,i

II!,' I
!

\1

'j

I
1

MTACC MTACC

Operation:

Assembler
Syntax:

Status:

Move To Accumulator

ACC(ACN) ~ SRCA

MTACC ra, FMT, ACN

fpX,fpU,fpV,fpR,fpN

Operands: SRCA Content of register RA (single-precision f.p.)

ACC(ACN)

Control: FMT
00
01
10
11

or
Content of register RA and the twin of
Register RA (double-precision f.p.)

Content of ACC(ACN)

Format of source operand
Format specified by ACF
Sing ie-precision floating-point
Double-precision floating-point
Reserved

ACN Accumulator number (0,1, 2, or 3)

31 23 15 7

I
I I I I I I I II. I I I I I I II I I
11101000.00000001,

I I I I
RA I

I I I

, Res I~I

Description: The SRCA operand is converted from format FMT and rounded
according to Floating-Point Environment Register field FRM; then
transferred to accumulator register ACC(ACN); the format of the
destination operand is specified by Floating-Point Environment
Register field ACF.

8-98 INSTRUCTION SET

Note that the MT ACC instruction uses the fast float mode of
operation, regardless of the Fast Float Select bit in the Floating-Point
Environment Register. A denormalized number is flushed to zero
before being written into the accumulator.

MFSR

Move from Special Register

Operation: DEST ~ SPECIAL

Assembler
Syntax: MFSR rc, spid

Status:

Operands:

31

Not affected

EPECIAL

DEST

23

II I I I I I I I I
.11000110.

OP=C6

Content of special-purpose register SA

Register RC

15 7
I I I

I
I I I

I
I

RC SA

MFSR

I I I
Reserved

Description: The SPECIAL operand is placed into the DEST location.

MFSR

0
I

I

For programs in the User mode, a Protection Violation trap occurs if
SA specifies a protected special-purpose register. If a trap occurs, the
DEST location is not altered.

INSTRUCTION SET 8-99

.~
ii,

i ,

MFTLB MFTLB

Move from Translation Look-Aside Buffer Register

Operation: DEST ~ TLB [SRCA]

Assembler
Syntax: MFTLB rc, ra

Status: Not affected

Operands: SRCA Content of register RA, bits 6 .. 0

DEST Register RC

31 23 15 I' , , , , , I I , , ,
I
, , ,

I RC RA • 1 0 1 1 0 1 1 O.

OP=B6 MFTLB

7 , , , ,
Reserved

,

Description: The Translation Look-Aside Buffer (TLB) register whose register
number is specified by the SCRA operand is placed into the DEST
location.

0

I

This instruction may be executed only by Supervisor-mode programs.
An attempted execution by a User-mode program causes a
Protection Violation trap to occur. If a trap occurs, the DEST location
is not altered.

B-100 INSTRUCTION SET

MTSR

Move to Special Register

Operation: SPDEST t- SRCS

Assembler
Syntax: MTSR spid, rb

Status: Not affected, unless the destination is the ALU Status Register

Operands: SRCS Content of register RS

SPDEST

31 23

II I I I I I I II
11001110

Special-purpose register SA

15
I I I I I I I

Reserved SA

MTSR

Description: The SRCS operand is placed into the SPECIAL location.

I I
RS

MTSR

1

For programs in the User mode, a Protection Violation trap occurs if
SA specifies a protected special-purpose register. If a trap occurs, the
SPDEST location is not altered.

INSTRUCTION SET 8-101

MTSRIM MTSRIM

Move to Special Register Immediate

Operation: SPDESTf-0116

Assembler
Syntax: MTSRIM spid, const16

Status: Not affected, unless the destination is the ALU Status Register

Operands: 0116 115 ... 18//17 ... 10 (zero-extended to 32 bits)

SPDEST Special-purpose register SA

31 23 15 7

II I I I I I I I I I I I I I

I
I I I I

I
I I I I

115 ... 18 SA 17 ... 10 • 0 0 0 0 0 1 0 0,

OP=04 MTSRIM

Description: The 0116 operand is placed into the SPECIAL location.

0

I

For programs in the User mode, a Protection Violation trap occurs if
SA specifies a protected special-purpose register. If a trap occurs, the
SPDEST location is not altered.

8-102 INSTRUCTION SET

MTTLB MTTLB

Move to Translation Look-Aside Buffer Register

Operation: TLB [SRCA] f- SRCB

Assembler
Syntax: MTILB ra, rb

Status: Not affected

Operands: SRCA Content of register RA, bits 6 ... 0

SRCB Content of register RB

31 23 15 7 0 II I I I I I I I I I I I I

I
I I I

I
I I I

Reserved RA RB .10111110.

OP=BE MTTLB

Description: The SRCB operand is placed into the Translation Look-Aside Buffer
(TLB) register whose register-number is specified by the SRCA
operand.

I

This instruction may be executed only by Supervisor-mode programs.
An attempted execution by a User-mode program causes a
Protection Violation trap to occur. If a trap occurs, the TLB register is
not altered.

INSTRUCTION SET 8·103

MUL MUL

Multiply Step

Operation: Perform one-bit step of a multiply operation

Assembler
Syntax: MUL rc, ra, rb

or
MUL rc, ra, const 8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23

II I I I I I I II
0110010M

I I
RC

I I
RA

I I I I
RBorl 1

OP = 64, 65 MUL

Description: If the least-significant bit of the Q Register is 1, the SRCA operand is
added to the SRCB operand. If the least-significant bit of the Q
register is 0, a zero word is added to the SRCB operand.

8-104 INSTRUCTION SET

The content of the Q Register is appended to the result of the add,
and the resulting 64-bit value is shifted right by one bit position; the
true sign of the result of the add fills the vacated bit position (i.e., the
sign of the result is complemented if an overflow occurred during the
add operation). The high-order 32 bits of the 64-bit shifted value are
placed into the DEST location. The low-order 32 bits of the shifted
value are placed into the Q Register.

This instruction is provided for compatibility with the Am29000
microprocessor.

MULL MULL

Multiply Last Step

Operation: Complete a sequence of multiply steps (for signed multiply)

Assembler
Syntax: MULL rc, ra, rb

or
MU LL rc, ra, const 8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCS M = 0: Content of register RS
M = 1: I (Zero-extended to 32 bits)

DEST

31 23

I I I I I I I I I
0110011M

OP-66,67

Register RC

I I
RC

15

II

MULL

I I
RA

7

II
I I I I

RBorl

o

Description: If the least-significant bit of the Q Register is 1, the SRCA operand is
subtracted from the SRCS operand. If the least-significant bit of the Q
register is 0, a zero word is subtracted from the SRCS operand.

The content of the Q Register is appended to the result of the
subtract, and the resulting 64-bit value is shifted right by one bit
position; the true sign of the result of the subtract fills the vacated bit
pOSition (Le., the sign of the result is complemented if an overflow
occurred during the subtract operation). The high-order 32 bits of the
64-bit shifted value are placed into the DEST location. The low-order
32 bits of the shifted value are placed into the Q Register.

This instruction is provided for compatibility with the Am29000
microprocessor.

i
I

1
;1

:1
11

\

I
1
I,

INSTRUCTION SET 11-105 I'

MULTIPLU MULTIPLU

Integer Multiply, Unsigned

Operation: DEST ~ SRCA * SRCS

Assembler
Syntax: MUL TIPLU rc, ra, rb

Status: None

Operands: SRCA Content of register RA

SRCS Content of register RS

DEST Register RC

31 23

I I I I I I I I I
11100010

OP=E2

I I I
RC

15
I I

I
I

MULTIPLU

I
RA

I
7

II
I I I

RB

Description: The SRCA operand is multiplied by the SRCS operand. The
low-order 32 bits of the 64-bit result are placed into the DEST
location. This operation treats the SRCA and SRCS operands as
unsigned integers and produces an unsigned result.

11-106 INSTRUCTION SET

The contents of the Q register are undefined after a MUL TIPLU
operation.

o

MULTIPLY

Integer Multiply, Signed

Operation: DEST +- SRCA • SRCS

Assembler
Syntax: MULTIPLY rc, ra, rb

Status: None

Operands: SRCA

SRCS

Content of register RA

Content of register RS

DEST Register RC

31 23

II I I I I I I II
11100000

OP-EO

I I I
RC

15
I I

I

I

MULTIPLY

I
RA

I

MULTIPLY

I I I
RB

o

Description: The SRCA operand is multiplied by the SRCS operand. The
low-order 32 bits of the 64-bit result are placed into the DEST
location. This operation treats the SRCA and SRCS operands as
two's-complement integers and produces a two's-complement result.

The contents of the Q register are undefined after a MULTIPLY
operation.

INSTRUCTION SET 8-107

MULTM

Integer Multiply Most-Significant Bits, Signed

Operation: DEST +- SRCA • SRCB

Assembler
Syntax: MUL TM rc, ra, rb

Status: None

Operands: SRCA

SRCB

Content of register RA

Content of register RB

DEST Register RC

31 23

I I I I I I I I I
11011110

I I
RC

15
I

I
I I

RA

MULTM

7
I

II
I I I

RB

MULTM

o

Description: The SRCA operand is multiplied by the SRCB operand. The
high-order 32 bits of the 64-bit result are placed into the DEST
location. This operation treats the SRCA and SRCB operands as
two's-complement integers and produces a two's-complement result.

B-108 INSTRUCTION SET

The contents of the Q register are undefined after a MUL TM
operation.

MUL TMU MUL TMU

Integer Multiply Most-Significant Bits, Unsigned

Operation: DEST f- SRCA * SRCS

Assembler
Syntax: MUL TMU rc, ra, rb

Status: None

Operands: SRCA

SRCS

DEST

31 23

II I I I I I I II
11011111

Content of register RA

Content of register RS

Register RC

I I
RC

15

II
I I
RA

OP=DF MULTMU

7

II
I I I

RB

Description: The SRCA operand is multiplied by the SRCS operand. The
high-order 32 bits of the 64-bit result are placed into the DEST
location. This operation treats the SRCA and SRCS operands as
unsigned integers and produces an unsigned result.

The contents of the Q register are undefined after a MUL TMU
operation.

o

INSTRUCTION SET 8·109

MULU MULU

Multiply Step, Unsigned

Operation: Perform one-bit step of a multiply operation (unsigned)

Assembler
Syntax: MULU rc, ra, rb

or
MULU rc, ra, const 8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7 o

I I I I I I I I I
0111010M

I I
RC

I I I I I I
RA II I I I I

RBorl

OP =74, 75 MULU

Description: If the least-significant bit of the Q Register is 1, the SRCA operand is
added to the SRCB operand. If the least-significant bit of the Q
register is 0, a zero word is added to the SRCB operand.

8-110 INSTRUCTION SET

The content of the Q register is appended to the result of the add, and
the resulting 64-bit value is shifted right by one bit position; the
carry-out of the add fills the vacated bit position. The high-order 32
bits of the 64-bit shifted value are placed into the DEST location. The
low-order 32 bits of the shifted value are placed into the Q Register.

This instruction is provided for compatibility with the Am29000
microprocessor.

NAND

NAND Logical

Operation: DEST f- -(SRCA & SRCB)

Assembler
Syntax: NAND rc, ra, rb

or
NAND rc, ra, const8

Status: N, Z

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23 I' , , , , , , I'
1001101M

OP=9A,9B

, ,
RC

15 ,
I
,

NAND

7 , I
RA

NAND

o
" ,

RB or I

Description: The SRCA operand is logically ANDed, bit-by-bit, with the SRCB
operand. The one's-complement of the result is placed into the DEST
location.

INSTRUCTION SET 8·11 f

NOR

NOR Logical

Operation: OEST +- ~(SRCA I SRCS)

Assembler
Syntax: NOR rc, ra, rb

or
NOR rc, ra, const8

Status: N, Z

Operands: SRCA Content of register RA

SRCS M=O: Content of register RS
M = 1: I (Zero-extended to 32 bits)

OEST Register RC

31 23

II I I I I I I II
1001100M

OP=98,99

I I
RC

15
I

I

I

NOR

I I
RA

I I I I
RBorl

NOR

Description: The SRCA operand is logically ORed, bit-by-bit, with the SRCS
operand. The one's-complement of the result is placed into the OEST
location.

11-112 INSTRUCTION SET

...

OR

OR Logical

Operation: DEST ~ SRCA I SRCB

Assembler
Syntax:

Status:

Operands:

OR rc, ra, rb
or

OR rc, ra, const8

N,Z

SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST

31 23

I I I I I I I I I
.1001001~

OP=92,93

Register RC

15
I I

I RC

OR

7
I I I

I RA

I I I I I
RBor I

Description: The SRCA operand is logically ORed, bit-by-bit, with the SRCB
operand, and the result is placed into the DEST location.

OR

0

I

INSTRUCTION SET 8-113

I\:

Ii
i~

~:$, ,

l'
I'!.

ORN

Operation:

Assembler
Syntax:

Status:

Operands:

OR-NOT Logical

DEST ~ SRCA I ~ SRCB

ORN rc, ra, rb
or

ORN rc, ra, const8

N,Z

SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23

I I I I I I I I I
1010101M

OP=AA,AB

15

~Cl I I II
I I
RA

7

II
I I I I

RBorl

ORN

o

Description: The SRCA operand is logically ORed, bit-by-bit, with the
one's-complement of the SRCB operand, and the result is placed into
the DEST location.

8-114 INSTRUCTION SET

SETIP SETIP

Set Indirect Pointers

Operation: Load IPA, IPB, and IPC registers with operand-register numbers

Assembler
Syntax: SETIP rc, ra, rb

Status: Not affected

Operands: Absolute-register numbers for registers RA, RB, and RC

31 23 15 7

II I I I I
11 0 I I I I I I I

I
I I I I I I I

I
I I I

RC RA RB 1 0 0 1 1

OP=9E SETIP

I

Description: The IPA, IPB, and IPC registers are set to the register numbers of
registers RA, RB, and RC, respectively.

0

For programs in the User mode, a Protection Violation trap occurs if
RA, RB, or RC specifies a register that is protected by the Register
Bank Protect Register.

I

INSTRUCTION SET 8-115

SLL SLL

Operation:

Assembler
Syntax:

Status:

Operands:

Shift Left Logical

DEST +-SRCA«SRCB (zero fill)

SLL rc, ra, rb .
or

SLL rc, ra, const8

Not affected

SRCA

SRCB

DEST

Content of register RA

M =0: Content of register RB, bits 4 ... 0
M= 1: I, bits 4 .•. 0

Register RC

31 23 15 7 0 I' , , " , , I'
1000000M

OP=80, 81

I ,
RC

,
I
,

SLL

, ,
I
, , , , ,

RA RBorl

Description: The SRCA operand is shifted left by the number of bit positions
specified by the SRCB operand; zeros fill vacated bit positions. The
result is placed into the DEST location.

8-118 INSTRUCTION SET

I

SORT SORT

Floating-Point Square Root

Operation: DEST +- SORT(SRCA)

Assembler
Syntax:

Status:

Operands:

SORT rc, ra, FS

fpX, fpR, fpN

SRCA Content of register RA (single-precision f.p.)
or

Content of register RA and the twin of register RA
(double-precision f.p.)

DEST Register RC (single-precision f.p.)
or

Register RC and twin of Register RC (double-precision f.p.)

Control: FS Format of source operand SRCA
Reserved for future use
Single-precision floating-point
Double-precision floating-point
Reserved for future use

31

00
01
10
11

23 15 7 0 I' , , , , , , I , ,
I
, , ,

I
I , , , I

I ~s I RC RA Reserved • 1 1 1 0 0 1 0 1.

OP=E5 SQRT

Description: This operation computes the square root of floating-point operand
SRCA; the result is rounded according to FRM field of the
Floating-Point Environment Register and placed into the DEST
location. The operand and result are single- or double-precision
floating-point numbers, as specified by FS.

INSTRUCTION SET 8·117

ii' ,

i:i

:Il I
I
I!
Ii
" 1

SRA SRA

Operation:

Assembler
Syntax:

Status:

Operands:

Shift Right Arithmetic

DEST ~ SRCA» SRCB (sign fill)

SRA rc, ra, rb
or

SRA rc, ra, const8

Not affected

SRCA Content of register RA

SRCB M = 0: Content of register RB, bits 4 ... 0
M = 1 : I, bits 4 ... 0

DEST Register RC

31 23 15 7
I I

I

I I I

I

I
RC RA

II I I I I I I II
1000011M

OP=86.87 SRA

I I I
RBorl

Description: The SRCA operand is shifted right by the number of bit positions
specified by the SRCB operand; the sign of the SRCA operand fills
vacated bit positions. The result is placed into the DEST location.

80118 INSTRUCTION SET

0

I

SRL

Shift Right Logical

Operation: DEST f- SRCA» SRCB (zero fill)

Assembler
Syntax: SRL rc, ra, rb

or
SRL rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB, bits 4 ... 0
M = 1: I, bits 4 ... 0

DEST Register RC

31 23

I I I I I I I I I
~000001M

OP=82,83

I I
RC

15

II
SRL

I I
RA

7

II

SRL

o
I I I I

RBor I

Description: The SRCA operand is shifted right by the number of bit positions
specified by the SRCB operand; zeros fill vacated bit positions. The
result is placed into the DEST location.

INSTRUCTION SET 8·119

STORE STORE

Store

Operation: EXTERNAL WORD [SRCB] ~ SRCA

Assembler
Syntax: STORE ce, cntl, ra, rb

or

Status:

Operands:

STORE ce, cntl, ra, const8

Not affected

SRCA

SRCB

Content of register RA

M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

31 23 15 7 II I I I I I I I I
I I I I

I
I I I I I I

I CNTL RA o 0 0 1 1 11M
, ,

OP=1E,1F . STORE
CE

0
I I I I I

I RBor I

Description: If the CE bit is 0, the SRCA operand is placed into the external word
addressed by the SRCB operand.

8-120 INSTRUCTION SET

If the CE bit is 1, the SRCA and SRCB operands are transferred to
the coprocessor.

The CNTL field of the STORE instruction affects the access or
transfer as described in Sections 3.4.4 and 6.1.2.

STOREL

Store and Lock

Operation: EXTERNAL WORD [SRCB) ~ SRCA,
assert LOCK output during access

Assembler
Syntax: STOREL ce, cntl, ra, rb

or
STOREL ce, cntl, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB

31 23

I I I I I I I I II
0000111M

OP=OE. OF
CE

M=O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

15
I I I I II I
CNTL

STOREL

STOREL

I I I
RBorl

Description: If the CE bit is 0, the SRCA operand is placed into the external word
addressed by the SRCB operand.

If the CE bit is 1, the SRCA and SRCB operands are transferred to
the coprocessor.

The CNTL field of the STOREL instruction affects the access or
transfer as described in Sections 3.4.4 and 6.1.2.

The LOCK output is asserted during the access or transfer.

INSTRUCTION SET 11-121

STOREM STOREM

Operation:

Assembler
Syntax:

Status:

Operands:

Store Multiple

EXTERNAL WORD [SRCB] ... EXTERNAL WORD
[SRCB + (COUNT* 4)]
~ SRCA ... SRCA+COUNT

STOREM ce, cntl, ra, rb
or

STOREM ce, cntl, ra, const8

Not affected

SRCA

SRCB

Content of register RA

M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

31 23 15

r I I I I I I I I I I
0011111M,

I I I I II I
CNTL

I I I I
RBorl

OP =3E. 3F STOREM
CE

Description: If the CE bit is 0, the contents of consecutive registers, beginning with
the SRCA operand, are placed into external words at consecutive
word addresses, beginning with the word addressed by the SRCB
operand.

8-122 INSTRUCTION SET

If the CE bit is 1, the contents of consecutive registers, beginning with
the SRCA operand, are transferred to the coprocessor. The SRCB
operand has no pre-defined interpretation in this case.

The total number of words accessed or transferred in the sequence is
specified by the Count Remaining (CR) field of the Channel Control
Register (which also appears in the Load/Store Count Remaining
Register) at the beginning of the access. The total number of words is
the value of the CR field plus one. The CNTL field of the STOREM
instruction affects the access or transfer as described in Sections
3.4.4 and 6.1.2.

Note: The address and register-number sequences for the STOREM
instruction are specified in Section 3.4.4.

SUB

Subtract

Operation: DEST ~ SRCA - SRCB

Assembler
Syntax: SUB rc, ra, rb

or
SUB rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

II I I I I I I II
0010010M

op= 24, 25

I I
RC

15

II

SUB

I I
RA

7
I I I I

RBor I

SUB

o

Description: The SRCA operand is added to the two's-complement of the SRCB
operand, and the result is placed into the DEST location.

INSTRUCTION SET 8.123

II

SUBC SUBC

Subtract with Carry

Operation: DEST ~SRCA-SRCB-1 +C

Assembler
Syntax: SUBC rc, ra, rb

or
SUSC rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCS M = 0: Content of register RS
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7 0

I I I I I I I I I
0010110~

op= 2C, 2D

I I
RC I

I I
RA

SUBC

I

I
I I I I I I

RBorl

Description: The SRCAoperand is added to the one's-complement of the SRCS
operand and the value of the ALU Status Carry bit, and the result is
placed into the DEST location.

11-124 INSTRUCTION SET

I

SUBCS

Subtract with Carry, Signed

Operation: DEST f-SRCA-SRCB-1 +C
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: SUBCS rc, ra, rb

or
SUBCS rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23

II I I I I I I II
0010100M

I I
RC ("

OP=28,29 SUBCS

I I
RA

SUBCS

I I I I
RBorl 1

Description: The SRCA operand is added to the one's-complement of the SRCB
operand and the value of the ALU Status Carry bit, and the result is
placed into the DEST location. If the add operation causes a
two's-complement signed overflow, an Out of Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

INSTRUCTION SET 8·125

SUBCU

Subtract with Carry, Unsigned

Operation: DEST+-SRCA-SRCB-1 +C
IF unsigned underflow THEN Trap (Out of Range)

Assembler
Syntax: SUBCU rc, ra, rb

or
SUBCU rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

II I I I I I I I
0010101~

I I
RC

15

II

OP = 2A, 2B SUBCU

I I
RA

7

II

SUBCU

o
I I I I

RBarl I I

Description: The SRCA operand is added to the one's-complement of the SRCB
operand and the value of the ALU Status Carry bit, and the result is
placed into the DEST location. If the add operation causes an
unsigned underflow, an Out of Range trap occurs.

11-126 INSTRUCTION SET

Note that the DEST location is altered whether or not an underflow
occurs.

SUBR

Subtract Reverse

Operation: DEST+-SRCB-SRCA

Assembler
Syntax: SUBR rc, ra, rb

or
SUBR rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7 I' , , , , , , I , , , ,
I
, , ,

I RC RA ,0 0 1 1 0 10M,

OP.34,35 SUBR

SUBR

0 , , , , ,
I RBorl

Description: The SRCB operand is added to the two's-complement of the SRCA
operand and the result is placed into the DEST location.

INSTRUCTION SET 8-127

SUBRC

Subtract Reverse with Carry

Operation: DEST ~SRCB-SRCA-1 +C

Assembler
Syntax: SUBRC rc, ra, rb

or
SUBRC rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7
I I I I

I

I I I

RC RA
II I I I I I I II
00lll10M II

OP =3C, 3D SUBRC

SUBRC

I I I I
RBor I

Description: The SRCB operand is added to the one's-complement of the SRCA
operand and the value of the ALU Status Carry bit, and the result is
placed into the DEST location.

8-128 INSTRUCTION SET

SUBRCS SUBRCS

Subtract Reverse with Carry, Signed

Operation: DEST+-SRCB-SRCA-1 +C
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: SUBRCS rc, ra, rb

or
SUBRCS rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7 0
I I I I

I
I I I

I
I I I I I

RC RA RBar I I I I I I I I I I
00ll100~

OP.38,39 SUBRCS

Description: The SRCB operand is added to the one's-complement of the SRCA
operand and the value of the ALU Status Carry bit, and the result is
placed into the DEST location. If the add operation causes a
two's-complement signed overflow, an Out of Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

I

INSTRUCTION SET 8-129

I ,I,

I

'1
Ij
11

II

I ,
I,

SUBRCU

Subtract Reverse with Carry, Unsigned

Operation: DEST+-SRCB-SRCA-1 +C
IF unsigned underflow THEN Trap (Out of Range)

Assembler
Syntax: SUBRCU rc, ra, rb

or
SUBRCU rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB

DEST

31 23 I' I I I I I I II
0011101M

OP=3A,3B

M =0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

Register RC

I I
RC

SUBRCU

I I
RA

SUBRCU

I I I
RBor I

Description: The SRCB operand is added to the one's-complement of the SRCA
operand and the value of the ALU Status Carry bit, and the result is
placed into the DEST location. If the add operation causes an
unsigned underflow, an Out of Range trap occurs.

8-130 INSTRUCTION SET

Note that the DEST location is altered whether or not an underflow
occurs.

SUBRS

Subtract Reverse, Signed

Operation: OEST ~ SRCB-SRCA
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: SUBRS rc, ra, rb

or
SUBRS rc, ra, constS

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

OEST Register RC

31 23

I
' I I , I I I II

. 0 0 1 1 0 0 0 M.

OP=30, 31

15

!c l I I II

SUBRS

I I
RA

7

SUBRS

I I I I
RBorl

o

Description: The SRCB operand is added to the two's-complement of the SRCA

,! l
!

,1
'I

operand, and the result is placed into the OEST location. If the add I':
operation causes a two's-cOmplement signed overflow, an Out of i I

Range trap occurs.

Note that the OEST location is altered whether or not an overflow
occurs.

INSTRUCTION SET 8-t3t

SUBRU SUBRU

Subtract Reverse, Unsigned

Operation: DEST +-SRCB-SRCA
IF unsigned underflow THEN Trap (Out of Range)

Assembler
Syntax: SUBRU rc, ra, rb

or
SUBRU rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M=O: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 II I I I I I I II
0011001M

OP=32,33

I I
RC

15 II
SUBRU

I I
RA

7 II I I I
RBorl

o

Description: The SRCB operand is added to the two's-complement of the SRCA
operand, and the result is placed into the DEST location. If the add
operation causes an unsigned underflow, an Out of Range trap
occurs.

8-132 INSTRUCTION SET

Note that the DEST location is altered whether or not an underflow
occurs.

SUBS

Subtract, Signed

Operation: DEST +- SRCA - SRCB
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: SUBS rc, ra, rb

or
SUBS rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1 : I (Zero-extended to 32 bits)

DEST Register RC

31 23 15
I I I

I

I I I
RC RA

II I I I I I I II
0010000M

OP.20, 21 SUBS

SUBS

o
I I I I

RBorl I I

Description: The SRCA operand is added to the two's-complement of the SRCB
operand, and the result is placed into the DEST location. If the add
operation causes a two's-complement signed overflow, an Out of
Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

INSTRUCTION SET 11-133

SUBU

Subtract, Unsigned

Operation: DEST +- SRCA-SRCB
IF unsigned underflow THEN Trap (Out of Range)

Assembler
Syntax: SUBU rc, ra, rb

or
SUBU rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

I I I I I I I I I
001 000 1 M

OP=22,23

I
RC

15
I

I
I

SUBU

I I
RA

SUBU

o
I I I

RBorl I I

Description: The SRCA operand is added to the two's-complement of the SRCB
operand, and the result is placed into the DEST location. If the add
operation causes an unsigned underflow, an Out of Range trap
occurs.

11-134 INSTRUCTION SET

Note that the DEST location is altered whether or not an underflow
occurs.

XNOR

Exclusive-NOR Logical

Operation: DEST t- - (SRCA" SRCB)

Assembler
Syntax: XNOR rc, ra, rb

or
XNOR rc, ra, constS

Status: N, Z

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

I , , , , , , , I 1001011M

OP=96.97

, ,
RC

15

I'
XNOR

, ,
RA

7

I'

XNOR

o , , , ,
RBar I

, I

Description: The SRCA operand is 10gically,exclusive-ORed, bit-by-bit, with the
SRCB operand. The one's-complement of the result is placed into the
DEST location.

INSTRUCTION SET 11-1311

XOR XOR

Exclusive-OR Logical

Operation: DEST ~ SRCA" SRCB

Assembler
Syntax: XOR rc, ra, rb

or
XOR rc, ra, const8

Status: N, Z

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

\
1 I I I I I I \
1001010M

OP =94, 95

I I
RC

XOR

I I
RA

I I I I
RBorl

Description: The SRCA operand is logically exclusive-ORed, bit-by-bit, with the
SRCB operand, and the result is placed into the DEST location.

8-136 INSTRUCTION SET

1

58,59 ASGT Assert Greater Than
5A,5B ASGTU Assert Greater Than, Unsigned
5C,5D ASGE Assert Greater Than or Equal To
5E,5F ASGEU Assert Greater Than or Equal To, Unsigned
60,61 CPEQ . Compare Equal To
62,63 CPNEQ Compare Not Equal To
64,65 MUL Multiply Step
66,67 MULL Multiply Last Step
68,69 DIVO Divide Initialize
6A,6B DIV Divide Step
6C,6D DIVL Divide Last Step
6E,6F DIVREM Divide Remainder
70,71 ASEQ Assert Equal To
72,73 ASNEQ Assert Not Equal To
74,75 MULU Multiply Step, Unsigned
78,79 INHW Insert Ha.1f-Word
7A,7B EXTRACT Extract Word, Bit-Aligned
7C,7D EXHW Extract Half-Word
7E EXHWS Extract Half-Word, Sign-Extended
80,81 SLL Shift Left Logical
82,83 SRL Shift Right Logical
86,87 SRA Shift Right Arithmetic
88 IRET Interrupt Return
89 HALT Enter HALT Mode
8C IRETINV Interrupt Return and Invalidate
90,91 AND AND Logical
92,93 OR OR Logical
94,95 XOR Exclusive-OR Logical
96,97 XNOR Exclusive-NOR Logical
98,99 NOR NOR Logical
9A,9B NAND NAND Logical
9C,9D ANDN AND-NOT Logical
9E SETIP Set Indirect Pointers
9F INV Invalidate
AO,A1 JMP Jump
A4,A5 JMPF Jump False
A8,A9 CALL Call Subroutine
AA,AB ORN OR-NOT Logical
AC,AD JMPT Jump True
B4,B5 JMPFDEC Jump False and Decrement
B6 MFTLB Move from Translation Look-Aside Buffer Register
BE MTTLB Move to Translation Look-Aside Buffer Register
BF Reserved for emulation (trap vector number 28)
CO JMPI Jump Indirect
C4 JMPFI Jump False Indirect

C6 MFSR Move from Special Register

C8 CALLI Call Subroutine, Indirect

11-138 INSTRUCTION SET

CC
CE
CF-D6
D7
DS

D9

DA
DB
DC-DD
DE
DF
EO
E1
E2
E3
E4
E5
E6
E7
ES
E9
EA
EB
EC
ED
EE

EF

FO
F1
F2
F3
F4
F5
F6
F7
FS
F9
FA-FF

JMPTI Jump True Indirect
MTSR Move to Special Register
Reserved for emulation (trap vector number 2S)
EMULATE Trap to Software Emulation Routine
FMAC Floating-Point Multiply-Accumulate,

Single-Precision
DMAC Floating-Point Multiply-Accumulate,

Double-Precision
FMSM Floating-Point Multiply-Sum, Single-Precision
DMSM Floating-Point Multiply-Sum, Double-Precision
Reserved for emulation (trap vector numbers 2S-29)
MULTM Integer Multiply Most-Significant Bits, Signed
MULTMU Integer Multiply Most-Significant Bits, Unsigned
MULTIPLY Integer Multiply, Signed
DIVIDE Integer Divide, Signed
MULTIPLU Integer Multiply, Unsigned
DIVIDU Integer Divide, Unsigned
CONVERT Convert Data Format
SORT Square Root
CLASS Classify Floating-Point Operand
Reserved for emulation (trap vector number 39)
MTACC Move to Accumulator
MFACC Move from Accumulator
FEO Floating-Point Equal To, Single-Precision
DEO Floating-Point Equal To, Double-Precision
FGT Floating-Point Greater Than, Single-Precision
DGT Floating-Point Greater Than, Double-Precision
FGE Floating-Point Greater Than or Equal To,

Single-Precision
DGE Floating-Point Greater Than or Equal To,

Double-Precision
FADD Floating-Point Add, Single-Precision
DADD Floating-Point Add, Double-Precision
FSUB Floating-Point Subtract, Single-Precision
DSUB Floating-Point Subtract, Double-Precision
FMUL Floating-Point Multiply, Single-Precision
DMUL Floating-Point Multiply, Double-Precision
FDIV Floating-Point Divide, Single-Precision
DDIV Floating-Point Divide, Double-Precision
Reserved for emulation (trap vector number 56)
FDMUL Floating-Point Multiply, Single-to-Double-Precision
Reserved for emulation (trap vector numbers 58-63) ,::;

1'1

'I~
II
II
II
I]

INSTRUCTION SET 8·139 !i
I,

Table A-1

CHANNEL OPERATION TIMING

Signal Summary

Synch
Signal Name Signal Function Type (1) Async

A(31-0) Address Bus 3-State Output Synch

BGRT Bus Grant Output Synch

BINV Bus Invalid Output Synch

BREO Bus Request Input Synch

COA Coprocessor Data Accept Input Synch

CNTL(1-0) CPU Control Input Async

0(31-0) Data Bus Bi-directional Synch

DBACK Data Burst Acknowledge Input Synch

DBREO Data Burst Request 3-State Output Synch

DERR Data Error Input Synch

DRDY Data Ready Input Synch

DREO Data Request 3-State Output Synch

DREOT(1-0) Data Request Type 3-State Output Synch

1(31-0) Instruction Bus Input Synch

IBACK Instruction Burst Acknowledge Input Synch

IBREO Instruction Burst Request 3-State Output Synch

IERR Instruction Error Input Synch

INCLK Input Clock Input N/A

INTR(3-0) Interrupt Request Input Async

IRDY Instruction Ready Input Synch

IREO Instruction Request 3-State Output Synch

IREOT Instruction Request Type 3-State Output Synch

(1) The signals labeled "3-state output" and "bi-directional" (except SYSCLK) are disabled when the
channel is granted to an external master. All outputs (except MSERR) may be disabled by
asserting the TEST input.

CHANNEL OPERATION TIMING A-1

Ij
.:1

i ~~

il
1:1.' !
:~
I~
I ~

:1

II
I';

Table A-1 Signal Summary (continued)

Synch
Signal Name Signal Function Type (1) Async

LOCK Lock 3-State Output Synch

MPGM(1-0) MMU Programmable 3-State Output Synch

MSERR Master/Slave Error Output Synch

OPT(2-0) Option Control 3-State Output Synch

PDA Pipelined Data Access 3-State Output Synch

PEN Pipeline Enable Input Synch

PIN169 Hardware-Development System Alignment N/A

PIA Pipelined Instruction Access 3-State Output Synch

PWRCLK N/A SYSCLK Power N/A

RiW Read/Write 3-State Output Synch

RESET Reset Input Async

STAT(2-O) CPU Status Output Synch

SUP/US Supervisor/User Mode 3-State Output Synch

SYSCLK System Clock Bi-directional N/A

TEST Test Mode Input Async

TRAP(1-0) Trap Request Input Async

WARN Warn Edge-Sensitive Input Async

(1) The signals labeled "3-state output" and "bi-directional" (except SYSCLK) are disabled when the
channel is granted to an external master. All outputs (except MSERR) may be disabled by
asserting the TEST input.

A-2 CHANNEL OPERATION TIMING

Figure A·1 Instruction Read-Simple Access

SYSCLK J
A(31-o)

suP/US
MPGM(1-o)

IREQT

1(31-0)

lADY

lEAR

PEN

IBACK

Address N

Address N

\ ____ r

H
ii
,1
1'1
\;;

I,

1\
"1
11

I:
I

I,

I~

CHANNEL OPERATION TIMING A·3

Figure A·2 Instruction Read-5imple Access with IRDY Delayed

SYSCLK

A{31-O)

SUPIUS
MPGM{1-0)

IREQT

1{31-0)

A-4 CHANNEL OPERATION TIMING

Figure A·3 Instruction Read-Pipelined Access

SYSCLK

A(31-0)

suP/US
MPGM(1-D)

IREOl

1(31-0)

,Address N

Address N

Address M

Address M

:1

CHANNEL OPERATION TIMING A.5

I'
I';
i

I,

Ii
11

Ii
II
I
!
I

Figure A·4 Instruction Read-Establishing Burst·Mode Access

SYSCLK

A(3H») Address N

SUP/US
MPGM(H») Address N

IREQr

IREa

PIA

laREa

BINV

1(31-0)

IRDY

IERR

PEN

IBACK

A-6 CHANNEL OPERATION TIMING

Figure A-5 Instruction Read-Burst-Mode Access Suspended by Slave

SYSCLK J
A(31--O)

SUP/US
MPGM(1-0)

IREQT

IBREQ

BINV

1(31-0)

IROY

IERR

PEN

IBACK

'b l "\1/ 1 or More CYCles""::t1-+-....I

."

.. n

" ..

CHANNEL OPERATION TIMING A-7

::,
I,

Figure A·6 Instruction Read-Durst·Mode Access Preempted by Slave

SYSCLK

A(31-O)

SUP/US
MPGM(1-0)

IREQl

PIA

1(31-0)

A-8 CHANNEL OPERATION TIMING

----,
Address N+2

Address N+2

'\-----
----------------------------~:.~.---------------------

----------------------------~:~:---------------------

Figure A·7 Instruction Read-Burst·Mode Access Suspended by Master

SYSCLK ..J
A(31-0)

SUP/US

MPGM(1-0)
IREQT

1(31-0)

/

''----.II

.'/

.. ..

11 •• ,

CHANNEL OPERATION TIMING A-9

~
1"1

I,

Figure A·8 Instruction Read-Burst·Mode Access Suspended by Master and Later
Preempted by Slave

SYSCLK

A(31-0)

SUP/US

MPGM(1-0)
IREQT

1(31-0)

___ --.If

A·10 CHANNEL OPERATION TIMING

(I

..
h

.. ..

Address N+2

Address N+2

.. n

at u

Figure A·9 Instruction Read-Burst·Mode Access Canceled by Slave*

SYSCLK

A(31-0)

SUP/US

MPGM(1-0)

IREQT

',------,f

II

..
"

__ JJ' II

1(31-0)

"Note: This may result in a trap.

CHANNEL OPERATION TIMING A.11

Figure A·10 Instruction Read-Burst-Mode Access Ended by Master (Preempted,
Terminated, or Canceled)

SYSCLK

A(31-0)

SUP/uS
MPGM(1-{))

IREQT

i'i3REQ

BINV

1(31-<»)

lADY

IERR

PEN

IBACK

I

"""-----II
Address M or N+2

Address M or N + 2

"'"' . \
'--------.. ••

, . . ,
\

A·12 CHANNEL OPERATION TIMING

Figure A·11 Instruction Read-TLB Miss or Protection Violation

SYSCLKJ

A(31-Q)

SUP/US
MPGM(1-Q)

IREQT

1(31-0)

\'--_.....Jf
Address N

Address N

\'--_.....JI

CHANNEL OPERATION TIMING A-13

Figure A·12 Instruction Read-Pipelined Access with TLB Miss or Protection Violation

SYSCLK

A(31-O) Address N Address M

SUP/US

MPGM(1-O) Address N Address M

IREOl

IREO

PIA

IBREO

BINV

1(31-0)

IRDY

IERR

PEN

IBACK

A·14 CHANNEL OPERATION TIMING

Figure A·13 Instruction Read-Error Detected by Slave'*

SYSCLK --.I
A(31-0)

SUP/US
MPGM(1-0)

IREQT

1(31-0)

"Note: This may result in a trap.

,_----.J/
Address N

Address N

CHANNEL OPERATION TIMING A.15

Figure A·14 Data Rea~imple Access

SYSCLKJ

A(31-O)

SUP/US
LOCK

MPGM(1-0)
OPT(2-O)

DREQT(1-O)

RiW

D(31-0)

A·16 CHANNEL OPERATION TIMING

\-----/
Address N

Address N

\'----,

Figure A·i5 Data Write-Simple Access

SYSCLK J ' ___ I ' ___ I
A(31-Q) Address N

SUP/US
LOCK

MPGM(1-Q) Address N
OPT(2-<l)

DREQT(1-Q)

RIW

DREQ

PDA

DBREQ

BiNV

D(31-<l) Data N

DRDY

DERR

PEN

DBACK

CHANNEL OPERATION TIMING A·17

Figure A·i6 Data Read-5imple Access with DRDY Delayed

SYSCLK

A(31-0)

SUP/US
LOCK

MPGM(1-0) Address N
OPT(2-0)

DREQT(1-0)

RfjJ

DREQ

PDA

,
DBREQ

BINV

D(31-0)

DRDY

DERR

PEN

DBACK

A-iS CHANNEL OPERATION TIMING

Figure A·17 Data Write-Simple Access with DRDY Delayed

SYSCLK

A(31-0)

SUP/US
LOCK

MPGM(1-0) Address N
OPT(2-Q)

DREQT(1-Q)

RiW

DREQ

PDA

,
DBREQ

BINV

D(31-Q) Data N

DRDY

DERR

PEN

CHANNEL OPERATION TIMING A·it

Figure A·iS Data Read Followed by Data Write-Simple Access

SYSCLK

A(31-0) Address N Address M

SUP/US
LOCK

MPGM(1-0) Address N Address M
OPT(2-0)

DREQT(1-0)

RiW

DREQ

PDA

DBREQ

BINV

D(31-O)

DRDY

DERR

PEN

DBACK

A·20 CHANNEL OPERATION TIMING

Figure A·i9 Load and Set Instruction

SYSCLK

A(31-0) Address N Address N

SUP/US
MPGM(1-0)

OPT(2-0) Address N Address N
DREQT(1-0)

LOCK

Rm

DREQ

PDA

DBREQ

BINV

D(31-0)

DRDY

DERR

PEN

DBACK

CHANNEL OPERATION TIMING A·21

Figure A·20 Data Read-Pipelined Access

SYSCLK

A(31-0)

SUP/US
LOCK

MPGM(Hl)
OPT(2-0)

DREQT(1-O)

RtW

D(31-0)

A·22 CHANNEL OPERATION TIMING

Address N

Address N

Address M

Address M

Figure A·21 Data Write-Pipelined Access

SYSCLK

A(31--O) Address N

SUP/uS
LOCK

MPGM(1--O) Address N
OPT(2-0)

DREQT(1-0)

RiW

DREQ

PDA

DBREQ

BINV

D(31--O) Data N

DRDY

DERR

PEN

DBACK

Address M

Address M

CHANNEL OPERATION TIMING A·23

I
I'
1

Figure A·22 Data Read Followed by Data Write-Pipelined Access (Not Used by
Processor)

SYSCLK

A(3Hl)

SUP/US

Address M

M~~~~~~~I~I~I~I~IKn--A-dd-r-eS-S--N-nX~-----------A-dd-r-es-s--M----------'I~t~I~I~I~I~I~I~11
DREQT(1-0)

R/W

D(31-O)

A-24 CHANNEL OPERATION TIMING

Figure A·23 Data Write Followed by Data Read-Pipelined Access

SYSCLK

A(3Hl)

SUP/US
LOCK

MPGM(1-0)
OPT(2-0)

DREQT(l-Q)

Rm

D(31-Q)

Address N Address M

Address N Address M

Data N

CHANNEL OPERATION TIMING A.25

I,
I

i

" I'
I

I I,

I

Figure A·24 Data Read-Establishing Burst·Mode Access

SYSCLK

A(31-O) Address N

SUPIUS
LOCK

MPGM(1-O) Address N
OPT(2-O)

DREOT(1-0)

RiW

DREO

PDA

DBREQ

BINV

D(31-O)

DRDY

DERR

PEN

DBACK

A·26 CHANNEL OPERATION TIMING

Figure A·25 Data Write-Establishing Burst·Mode Access

SYSCLK

A(31-Q) Address N

SUP/US
LOCK

MPGM(1-Q) Address N
OPT(2-Q)

DREOT(1-Q)

RfjJ

DREO

PDA

DBREO

BINV

D(31-0)

DRDY

DERR

PEN

DBACK

CHANNEL OPERATION TIMING A·27

Figure A·26 Data Read-Burst·Mode Access Suspended by Slave

SYSCLK

A(31-Q)

supiO~
LOCK

MPGM(1-Q)
OPT(2-Q)

OREQT(1-Q)

RfjJ

OBREQ

BINV

0(31-Q)

OROY

OERR

PEN

OBACK

A·28 CHANNEL OPERATION TIMING

H

.. ...

''------IT

Figure A·27 Data Write-Burst·Mode Access Suspended by Slave

SYSCLK J
A(31--O)

SUP/US
LOCK

MPGM(1-0)
OPT(2-0)

DREQT(1-0)

R/W

DSREQ

SINV

D(31-0)

DRDY

DERR

PEN

DSACK

Data N

, b 1 /I '-1--1
1 or More Cycles

I:

.. n

.. ••

X N~1

' ____ I

X N+2

CHANNEL OPERATION TIMING A-29

Figure A·28 Data Read-Burst·Mode Access Suspended by Master (Not Used by
Processor)

SYSCLK

A(31-o)

SUPiiJ'S
meR

MPGM(l-o)
OPT(2-0)

OREQT(l-o)

RfJii

0(31-0)

____ I

A-30 CHANNEL OPERATION TIMING

' ____ r

CI ,------

Figure A·29 Data Write-Burst·Mode Access Suspended by Master (Not Used by
Processor)

\ t-, IJ SYSCLK J I \ r
1o,"~Cyde,

A(31-0)

SUP/US
LOCK

OPT(2-0)

R1ii

DREQ

1.1 • POA

I:
DBREQ / \

BINV

D(31-0) Data N N+1 N+2

DRDY

DERR

PEN

DBACK

CHANNEL OPERATION TIMING A.31

i"

Ij
I~

I
I

j
I

Figure A·3D Data Read-Burst·Mode Access Preempted by Slave

SYSCLK J
A(31-Q)

SUP/US
LOCK

MPGM(1--{))
OPT(2--{))

OREQT(1-0)

RiW

0(31-0)

A·32 CHANNEL OPERATION TIMING

''--_......If ''--__ r
Address N+2

Address N+2

,'------

Figure A·31 Data Write-Burst·Mode Access Preempted by Slave

SYSCLK J \ / \ ___ 1
A(31-Q) Address N+2

SUP/US
~

MPGM(1-0) Address N+2
OPT(2-Q)

DREQT(1-0)

RiW

DREQ _----
PDA

DSREQ

SINV

D(31-Q) Data N X N+ 1 x
DRDY

DERR
,
i",

PEN II
DSACK

CHANNEL OPERATION TIMING A·33

Figure A·32 Data Read-Burst·Mode Access Suspended by Master and Later Preempted
by Slave (Not Used by Processor)

SYSCLK

A(31-0)

SUP/US
LOCK

MPGM(1-0)
OPT(2-0)

OREQT(1-0)

0(31-0)

'_---II

"
___ --If II

\ (,j
1 or More Cycles

Address N+2

Address N+2

f,'

'~

A·34 CHANNEL OPERATION TIMING

Figure A-33 Data Write-Burst-Mode Access Suspended by Master and Later Preempted
by Slave (Not Used by Processor)

SYSCLK J
A(31-0)

SUP/US
LOCK

MPGM(1-0)
OPT(2-0)

DREOT(1-0)

RiiN

DREO

PDA

DBREO

BINV

D(31-0)

DRDY

DERR

PEN

DBACK

''-------AI
Address N+2

Address N+2

II '\
It - I;

/
IQ • ~

N+ 1

CHANNEL OPERATION TIMING A-35

I

I
I ~
'I

I~
',I;

Figure A·34 Data Read-Burst·Mode Access Canceled by Slave*

SYSCLK

A(31-Q)

suP/ITS
LOCK

MPGM(1-0)
OPT(2-Q)

OREOT(1-Q)

''--_...J/ ''--____ ...Jr

------------------~/

0(31-Q)

"Note: This results in a trap.

A-36 CHANNEL OPERATION TIMING

Figure A·35 Data Write-Burst·Mode Access Canceled by Slave*

SYSCLK

A(31-O)

SUP/US
LOCK

MPGM(1-0)
OPT(2-0)

DREQT(1-0)

RiW

' __ -----II ,-------II

--------------------~I

0(31-0) Data N

"Note: This resutts in a trap.

CHANNEL OPERATION TIMING A·37

',;'
:',1

Figure A·36 Data Read-Burst·Mode Access Ended by Master (Preempted, Terminated,
or Canceled)

SYSCLK

A(31-0)

SUP/US
LOCK

MPGM(1-0)
OPT(2-0)

OREQT(1-0)

R/W

0(31-0)

____ --.If

Address M or N + 2

Address M or N+2

Of
Vi

..
" \'----

A-38 CHANNEL OPERATION TIMING

Figure A·37 Data Write-Burst·Mode Access Ended by Master (Preempted, Terminated,
or Canceled)

SYSCLK

A(31-0) Address M or N + 2

SUP/US
LOCK

MPGM(1-0) Address M or N + 2
OPT(2-o)

DREQT(1-0)

RiW

DREQ

.t ••
PDA

DBROO -----_/ ,'----i'

BINV

0(31-0) Data N X x:: x Data M

DRDY

DERR

PEN

DBACK

CHANNEL OPERATION TIMING A·39

j."

I
';
,

,;

I
1

Figure A·38 Data Read-TLB Miss or Protection Violation

SYSCLKJ

A(31-Q)

SUP/US
loCK

MPGM(1-0)
OPT(2-0)

DREQT(1-Q)

RiW

D(31-Q)

A-40 CHANNEL OPERATION TIMING

''--__ I
Address N

Address N

''--__ r

Figure A·39 Data Write-TLB Miss or Protection Violation

SYSCLK J
A(31-Q)

SUPIUS
LOCK

MPGM(1-<l)
OPT(2-Q)

DREQT(1-Q)

RiW

D(31-Q)

,'--_-J/
Address N

Address N

Data N

''--_-JI

CHANNEL OPERATION TIMING A-41

t''''

I:!
i~

II
,llj

1,1·'

If.',' !
Ii,',.,',"
I

• ,1"',

Figure A·40 Data Read-Pipelined Access with TLB Miss or Protection Violation

SYSCLK

A(31-O)

SUP/US
LOCK

MPGM(1-O)
OPT(2-O)

DREQT(1-O)

RIifJ

D(31-0)

A-42 CHANNEL OPERATION TIMING

Address N Address M

Address N Address M

Figure A·41 Data Write-Pipelined Access with TLB Miss or Protection Violation

SYSCLK

A(31--{)

SUP/US
LOCK

MPGM(1--{)
OPT(2--{)

DREQT(1-O)

Rfii

DBREQ

BiNV

D(31-O)

DRDY

DERR

PEN

DBACK

Address N Address M

Address N Address M

Data N

CHANNEL OPERATION TIMING A-43

I
, '

,.i.I'II.·

I
1
···.1;

"

'I
Ii
I·

I

Figure A·42 Data Read-Error Detected by Slave

SYSCLK J ' _____ I ' _____ r
A(31-0) Addr.ess N

SUP/US
LOCK

MPGM(1-0) Address N
OPT(2-0)

OREQT(l-Q)

RfjJ

OREQ

Pi5A

OBREQ

BINV

0(31-Q)

ORDY

OERR

PEN

OBACK

A-44 CHANNEL OPERATION TIMING

Figure A·43 Data Write-Error Detected by Slave

SYSCLK J , /
A(31-O) Address N

SUPIUS
LOCK

MPGM(1-O) Address N
OPT(2-O)

DREOT(1-O)

RIW

DREO

PDA

DBREO

BINV

D(31-O) Data N

DRDY

DERR

PEN

DBACK

'\-._.-1

CHANNEL OPERATION TIMING A.45

I ,.
I
I

Ii ... ··•
:1
,

I~

Figure A·44 Channel Transfer from Processor to External Master

SYSCLK

BREQ \
BGRT

1 ~~~I
14 Processor Channel Master

BINV \ r
A(31-O) Address M

0(31-0)

A-46 CHANNEL OPERATION TIMING

Figure A·45 Channel Transfer from External Master to Processor

SYSCLK

BREQ
______ --J!

BGRT 14 External Channel Master k ~
Processor

BINV

A(31-0)
Address M

D(3Hl)

CHANNEL OPERATION TIMING A.47

", u u 4~1111:1 :)

REGISTER SUMMARY

Figure B·1 General·Purpose Register Organization

Absolute
General-Purpose Register REG #

0 Indirect Pointer Access

1 Stack Pointer

2 Condition Code Accumulator

3 Condition Code Accumulator, Shifted

Global
Registers

Local
Registers

4 THRU63

64

65

66

·
•
•

126

127

128

129

130

131

132

•
•
•

254

255

Not Implemented

Global Register

Global Register

Global Register

•
•

·
Global Register

Global Register

Local Register

Local Register

Local Register

Local Register

I
Local Register

•

·
•

Local Register

Local Register

64

65

66

126

127

125

126

127

0

1

123

124

+---j
S tack

Point er = 131
ample) (ex

REGISTER SUMMARY B.1

1.1:."

I~
!~
i~
i~
II
I)

I

I"

i,i,
b

Figure B·2 Register Bank Organization

Register Absolute-
General-Purpose Bank Protect Register

Register Bit Numbers Registers

4 through 15
Bank 0

0 (unimplemented)

16 through 31
Bank 1

1 (unimplemented)

32 through 47
Bank 2

2 (unimplemented)

3 48 through 63
Bank 3
(unimplemented)

4 64 through 79 Bank 4

5 80 through 95 Bank 5

6 96 through 111 Bank 6

7 112 through 127 Bank 7

8 128 through 143 Bank 8

9 144 through 159 Bank 9

10 160 through 175 Bank 10

11 176 through 191 Bank 11

12 192 through 207 Bank 12

13 208 through 223 Bank 13

14 224 through 239 Bank 14

15 240 through 255 Bank 15

B·2 REGISTER SUMMARY

Figure 8·3 Special Purpose Registers

REG #

o

2

3

4

5

6

31 II 23
I I
VAB

Vector Area Base Address (VAB)

31 23

1
1((((111111(11

. Reserved

Old Processor Status (OPS)

31 23

I(
((((

Reserved

Current Processor Status (CPS)

31 23

I
((((

I
(

PRL

Configuration (CFG)

31 23

I
I I (

Channel Address (CHA)

31 23

I
(I (

Channel Data (CHO)

31 23

I I
(((I (I I I
CNTL CR ,

: Channel Control (CHC)
CE

15

I'~

~

~
I~
!::i

I I

15 7 0

11,11.11,11.11.11,1: 1.1.1
: • : I : I : I : I : I I 1

• I I I I I I I

CA, TE, TU , LK ,WM, PI, 1M ,OA
I I I I I' I

IP TP FZ RE PO SM 01

15 7 0

11111111111111 : III
: : : : : ! : : : : : : : ::
I I I I • I I I • I

,CA,TE,TU,LK,WM, PI, 1M ,OA
I I I I I , I

MM IP TP FZ RE PO SM 01

15 7 0
(((((((((

I I I I II I I, I Reserved , · ' · , i i ji , · , · , : ' I , · , · , , I

'CO, VF, BO, CD , , , ,
EE OW RV CP

15 7 0
(((((((((((I CHA

15 7 0
((((((I CHO

15 7 0
I,

I I I I I I I I I I I
I I I

I
TR !i i , i , i , i ,

I
,

I
,

I
,

I
, Ii , , , ,

~ 1 LS, ST, Res' NN, I' , , , I II ML LA TF CV

ij

REGISTER SUMMARY B-3

Figure 8-3 Special Purpose Registers (continued)

REG #

31 23 15 7 0

7 � ... _� _______ � __ �_� __ � ________ ~I_B_11~1 __ 1_1_1 __ I_I __ I_I __ I_I __ I_I __ IB~I~I . Reserv"d .••••••••••••••.

Register Sank Protect (RSP)

31 23 15 7 0

81,--1 ___ ~_~_e_~_e~ __ I~I,--I __________ I __ I ___ IT_~_V_I ____ I_I __________ ~I
Timer Counter (TMC)

31 23 15 7 o
9 I" II IIIII Reserved

I I I I I
TRV

I I
I I

Timer
Reload
(TMR)

31

I ' I
I ' I

OV: IE ,
IN

23 15 7 o
10 II I I I I I I I I I I

PCO

I I

Program Counter 0 (PCO)

~ 23 15 7 0

11 ... 1_1 __________ I __ I __________ I_p_IC_! __________ I_I ______ ~lo~l~ol
Program Counter 1 (PC1)

31 23 15 7 0

12 1 ... _I ___________ I_I __________ p_IC_~ ___________ I_I ______ _LI~ol~ol
Program Counter 2 (PC2)

31 23 15 7 0

I I I I I I I I I I I pis II I I I I
13 ... ______________ R_e_se_rv_e_d __________ ~~.--~.-----P-I-D--~.

MMU Conflgurstlon (MMU)

31 23 15
14 I

I I I I I I I I I I I I I I I I I
. Reserved

LRU Recommendation (LRU)

7

I I I I I
LRU

o

B-4 REGISTER SUMMARY

Figure B·3 Special Purpose Registers (continued)

REG #

31 23 15 7 0

I
I I I I I I I I I I

I
I I I I

I 15
Reserved RSN

Reason Vector (RSN)

31 23 15 7 0

I I I I I I I I I I I II I I I

I 16
VBA PBA

Region Mapping Address 0 (RMAO)

31 23 15 7 0

I
I I I I I I I Ip~MI I

I I I

I II I I I I I I I I I I I

I 17 Reserved RGS TID
• , • i • • , i • .

Region Mapping • I • I • I • • •
Control 0 (RMCO)

I 10. VE' SW· UR' UE
• • • • •

Res Res SR SE UW

31 23 15 7 0

I I I I I

I
I I I I

I 18
VBA PBA

Region Mapping Address 1 (RMA1)

31 23 15 7 0

I
I I I I I I I Ip!MII I I I

I II I I I I I II
I I I

I 19
Reserved RGS TID

• i , , • • , . I •
Region Mapping ••• • • • • • •
Control 1 (RMC1) • 10. VE' SW· UR' UE

• • • • •
Res Res SR SE UW

31 23 15 7 0

I I I I I I I I I I I I I I I I I I
10101 20 SPCO

Shadow Program Counter 0 (SPCO)

31 23 15 7 0

I
I I I I I I I I I I I I I I I I I I I

10101 21 SPC1

Shadow Program Counter 1 (SPC1)

31 23 15 7 0
22 I

I I I I I I I I I I I I I I I I I I I
10101 SPC2

Shadow Program Counter 2 (SPC2)

31 23 15 7 0

I lei 01 23 IBA

Instruction Breakpoint Address 0 (IBAO)

REGISTER SUMMARY 8-5

I,

I!
1,1
11
11

Figure B·3 Special Purpose Registers (continued)

REG #

31 23 15 7 0

24 ~I_' ___________ '_~_e_~e_~_e_~_' _____ '_' __ ~1~1~1~1~1~1_' ____ 'B_~_lo_' __ ~1
I I I • I

Instruction Breakpoint Control 0 (\BCO) • I I I I

BHO: BSV: BTE
BEN BRM

31 23 15 7 0

25 I~' ___________ ' __ ' _________ I~_A_'_'_' __ ' __ '_' __ '_� __ �_� ______ ~I_o~l~ol
Instruction Breakpoint Address 1 (IBA1)

31 23 15

1 '"""""""1 26 . Reserved

Instruction Breakpoint Control 1 (IBC1)

7

IIIIII1
I I I I I
I • I I I

BHO: BSV: BTE
BEN BRM

1 1 1
BPIO

o

31 23 15 7 0

128 1 ~ _1 ___________ I __ IR_!_se_IN_!_d_I _____ I_'~ ____ ~ ___ '_' __ ~_pc_' _' __ ~I_o~l~ol
Indirect Pointer C (IPC)

31 23 1111111111111
129 ReseNed

Indirect Pointer A (IPA)

31 23

""""""1 130 Reserved

Indirect Pointer B (IPB)

131
31 23

I'
I I

Q(Q)

15
I I

15
I ,

15
1 1

Q

7

"'" IPA

7
, I II I

IPB

7
1 1

o

o
1 I

31 23 15 7 0

132 ~I_' ___________ '_b_e_~_e~_e_~_' _____ '_' ____ ~1~1~1~1~1~1~~ ___ '_Fh __ '~1
- I I I I •

ALU Status (ALU)

31 23 15

Byte Pointer (BP)

I • I I I . .
OF' N • C

V Z BP

7 o

BoG REGISTER SUMMARY

Figure B·3 Special Purpose Registers (continued)

REG#

160

161

162

164

31 23 15 7 o

Funnel Shift Count (FC)

I I
FC

31 23 15 7 o

Load/Store Count Remaining (CR)

31 23 15

I' 1111111
Reserved

I I

Floating-Point Environment (FPE)

31 23 15

I'
, , I I I I

Reserved

Integer Environment (INTE)

I I I
CR

7 0

I I, I I I I

• I I I I I I

FF OM,UM,RM,

7
I I

XM VM NM

o

II I
• i , , , ,

DO,
MO

31 23 15 7 0

I'
, , , ,

Reserved Ii 11111 II R~slllill I
Floating-Point Status (FPS)

31

I'
23 15

" '" I I I I
Reserved

Exception Opcode (EXOP)

iii iii 'iii. I
••• I I • I, It' I
• I •• I • I I I I I I

OT, UT, RT, OS, US, RS, . . ,
XS VS NS

7 o II I I I I
lOP _

REGISTER SUMMARY

I"

B-7

Figure B·4

Figure B·5

Special Purpose Registers

REG# TLB Set 0

0 TLB Entry Line 0 Word 0

1 TLB Entry Line 0 Word 1

2 TLB Entry Line 1 Word 0

3 TLB Entry Line 1 Word 1
:::- :::-

60 TLB Entry Line 30 Word 0

61 TLB Entry Line 30 Word 1

62 TLB Entry Line 31 Word 0

63 TLB Entry Line 31 Word 1

TLBSet 1

64 TLB Entry Line 0 Word 0

65 TLB Entry 'Line 0 Word 1

66 TLB Entry Line 1 Word 0

67 TLB Entry Line 1 Word 1

--- ------ ---
124 TLB EntryLine 30 Word 0

125 TLB Entry Line 30 Word 1

126 TLB Entry Line 31 Word 0

127 TLB Entry Line 31 Word 1

Translation Look·Aside Buffer Entries

31

I'
Word 0

31

I'
Word 1

23 , ,
VTAG

23 , ,

15

15
I i. I ,
RPN

B.a REG ISlER SUMMARY

:-

";:

7 0

I I I I I I I I
, ,

I TID , , , , , , , , . I I I I I

VE: SW: UR: UE
SR SE UW

7 0
I I , I , I R~S I : I

, , ,
I I I Res , ,

I I

PGM U
10

... ~

"

Table 8·1 Register Field Summary
~

Label Field Name Register Bit .. ~

ACF Accumulator Format Floating-Point Environment 10-9 ~
BO Bank 0 Protection Bit Register Bank Protect 0

Ii

B1 Bank 1 Protection Bit Register Bank Protect

B2 Bank 2 Protection Bit Register Bank Protect 2 ,
1;\'

B3 Bank 3 Protection Bit Register Bank Protect 3 ii
.~

B4 Bank 4 Protection Bit Register Bank Protect 4 ~I '.'

B5 Bank 5 Protection Bit Register Bank Protect 5 !~
\I~

B6 Bank 6 Protection Bit Register Bank Protect 6
I
j:

B7 Bank 7 Protection Bit Register Bank Protect 7 I ~

B8 Bank 8 Protection Bit Register Bank Protect 8

B9 Bank 9 Protection Bit Register Bank Protect 9

B10 Bank 10 Protection Bit Register Bank Protect 10

B11 Bank 11 Protection Bit Register Bank Protect 11

B12 Bank 12 Protection Bit Register Bank Protect 12

B13 Bank 13 Protection Bit Register Bank Protect 13

B14 Bank 14 Protection Bit Register Bank Protect 14

B15 Bank 15 Protection Bit Register Bank Protect 15

BEN Breakpoint Enable Instruction Breakpoint Control 0, 1 11

BHO Breakpoint Has Occurred Instruction Breakpoint Control 0, 1 12

BO Byte Order Configuration 2

BP Byte Pointer
ALU Status 6--5
Byte Pointer 1-0

BPID Breakpoint Process Identifier Instruction Breakpoint Control 0, 1 7-0

BRM Break ROM Instruction Breakpoint Control 0, 1 9

BSY Break or Synchronize Instruction Breakpoint Control 0, 1 10

BTE Break on Translate Enabled Instruction Breakpoint Control 0, 1 8

C Carry ALU Status 7

CA Coprocessor Active
Current Processor Status 15
Old Processor Status 15

CD Branch Target Cache Memory Disable Configuration 0
I,~

CE Coprocessor Enable Channel Control 31

!~ CHA Channel Address Channel Address 31-0

CHD Channel Data Channel Data 31-0 I~
1

CNTL Control Channel Control 30-24
i,J
il

CO Branch Target Cache Memory Organization Configuration 6 I CP Coprocessor Present Configuration

Channel Control 23-16
iJ CR Load/Store Count Remaining

Load/Store Count Remaining 7-0 I CV Contents Valid Channel Control 0

Disable All Interrupts and Traps
Current Processor Status 0

DA
Old Processor Status 0 I DF Divide Flag ALU Status 11

REGISTER SUMMARY B-9

!i

Table B·1 Register Field Summary (continued)

Label Field Name Register Bit

01 Disable Interrupts .
Current Processor Status
Old Processor Status

OM Floating-Point Divide By Zero Mask Floating-Point Environment 5

DO Integer Division Overflow Mask Integer Environment

OS Floating-Point Divide By Zero Sticky Floating-Point Status 5

DT Floating-Point Divide By Zero Trap ALU Status 13

OW Data Width Enable Configuration 5
EE Early Load Enable Configuration 7

FF Fast Floating-Point Select Floating-Point Environment 8

FRM Floating-Point Round Mode Floating-Point Environment 7-6

FC Funnel Shift Count ALU Status 4-0
Funnel Shift Count 4-0

FZ Freeze Current Processor Status 10
Old Processor Status 10

IBA Instruction Breakpoint Address Instruction Breakpoint Address 0, 1 31-2

IE Interrupt Enable Timer Reload 24

1M Interrupt Mask Old· Processor Status 3-2
Current Processor Status 3-2

IN Interrupt Timer Reload 25

10 InputlOutput Region Mapping Control 0, 1 16
TLB Entry Word 1 0

lOP Instruction Opcode Exception Opcode 7-0
IP Interrupt Pending Current Processor Status 14

Old Processor Status 14
IPA Indirect Pointer A Indirect Pointer A 9-2

IPB Indirect Pointer B Indirect Pointer B 9-2

IPC Indirect Pointer C Indirect Pointer C 9-2

LA Lock Active Channel Control 12

LK Lock
Current Processor Status 9
Old Processor Status 9

LRU Least-Recently Used Entry LRU Recommendation 6-1

LS Load/Store Channel Control 15

ML Multiple Operation Channel Control 14

MM Monitor Mode Current Processor Status 16

MO Integer Multiplication Overflow Mask Integer Environment 0

N Negative ALU Status 9

NM Floating-Point Invalid Operation Mask Floating-Point Environment 0

NN Not Needed Channel Control

NS Floating-Point Invalid Sticky Floating-Point Status 0

NT Floating-Point Invalid Operation Trap Floating-Point Status 8

OV Overflow Timer Reload 26

8·10 REG ISTER SUMMARY

1,

I ~i~'

W I'd
I,

Table B·1 Register Field Summary (continued) I':?

il
Label Field Name Register Bit ,~,

PBA Physical Base Address Region Mapping Address 0, 1 15-0 I
i~
;~

PCO Program Counter 0 Program Counter 0 31-2 !""

PC1 Program Counter 1 Program Counter 1 31-2 I'!' , ,~,

PC2 Program Counter 2 Program Counter 2 31-2

,I PD Physical Addressing Data Current Processor Status 6
Old Processor Status 6

Region Mapping Control 0, 1 23-22
PGM User Programmable

TLB Entry Word 1 7-6 II

PI Physical Addressing Instructions
Current Processor Status 5 !'f':,

Old Processor Status 5

PID Process Identifier MMU Configuration 7-0

PRL Processor Release Level Configuration 31-24

PS Page Size MMU Configuration 9-8

Q Quotient/Multiplier Q Register 31--{)

RE ROM Enable Current Processor Status 8
Old Processor Status 8

RGS Region Size Region Mapping Control 0, 1 20-17

RM Floating-Point Reserved Operand Mask Floating-Point Environment

RPN Real Page Number TLB Entry Word 1 31-10

RS Floating-Point Reserved Operand Sticky Floating-Point Status

RSN Reason Vector Reason Vector 7--{)

RT Floating-Point Reserved Operand Trap Floating-Point Status 9

RV ROM Vector Area Configuration 3

SE Supervisor Execute
Region Mapping Control 0, 1 11
TLB Entry Word 0 11 I,

I'

SM Supervisor Mode Current Processor Status 4 I
Old Processor Status 4

SPCD Shadow Program Counter 0 Shadow Program Counter 0 31-2

SPC1 Shadow Program Counter 1 Shadow Program Counter 1 31-2

SPC2 Shadow Program Counter 2 Shadow Program Counter 2 31-2 I';
I

Region Mapping Control 0, 1 13 " SR Supervisor Read I,,':"

TLB Entry Word 0 13 Ii
ST Set Channel Control 13 I SW Supervisor Write

Region Mapping Control 0, 1 12
TLB Entry Word 0 12

TCV Timer Count Value Timer Counter 23-0 I;"

TE Trace Enable Current Processor Status 13 i Old Processor Status 13

TF Transaction Faulted Channel Control 10

Region Mapping Control 0, 1 7-0 I'
TID Task Identifier TLB Entry Word 0 7-0

TP Trace Pending Current Processor Status 12
Old Processor Status 12

TR Target Register Channel Control 9-2

TRV Timer Reload Value Timer Reload 23-0

REGISTER SUMMARY B-11

Table B·1 Register Field Summary (continued)

Label Field Name Register Bit

TU Trap Unaligned Access Current Processor Status 11
Old Processor Status 11

U Usage TLB Entry Word 1

UE User Execute Region Mapping Control 0, 1 8
TLB Entry Word 0 8

UM Floating-Point Underflow Mask Floating-Point Environment 3

UR User Read
Region Mapping Control 0, 1 10
TLB Entry Word 0 10

US Floating-Point Underflow Sticky Floating-Point Status 3

UT Floating-Point Underflow Trap Floating-Point Status 11

UW User Write Region Mapping Control 0, 1 9
TLB Entry Word 0 9

V Overflow ALUStatus 10

VAB Vector Area Base Vector Area Base Address 31-10

VBA Virtual Base Addr,ils$ Region Mapping Address 0, 1 31-16

VE Valid Entry Region Mapping Control 0, 1 14
TLB Entry Word 0 14

VF Vector Fetch Configuration 4

VM Floating-Point Overflow Mask Floating-Point Environment 2

VS Floating-Point Overflow Sticky Floating-Point Status 2

VT Floating-Point Overflow Trap Floating-Point Status 10

VTAG Virtual Tag TLB Entry Word 0 31-15

WM Wait Mode Current Processor Status 7
Old Processor Status 7

XM Floating-Point Inexact Result Mask Floating-Point Environment 4

XS Floating-Point Inexact Result Sticky Floating-Point Status 4

XT Floating-Point Inexact Result Trap Floating-Point Status 12

Z Zero ALU Status 8

B-12 REGISTER SUMMARY

C.1

Table C·1

FLOATING·POINT BEHAVIOR

TIMING

Table C-1 lists the latency of each single- and double-precision floating-point opera­
tion and each integer multiplication operation. Latency is the minimum time that must

Latency of Floating.Point and Integer Multiply Operations

FLOATING·POINTBEHAVIOR eM

C.2

Table C·2

elapse after an instruction is issued before its result can be used as an input operand
of a subsequent operation.

Table C-2 lists the repeat time of floating-point operations and integer multiplication
operations. An instruction with a repeat time of N can be issued every N cycles.

Table C-3 shows the effect of denormalized source operands and results on instruc­
tion latency and issue rate.

If no dependencies or functional unit conflicts exist, then an instruction can be issued.

EXCEPTIONS

In most cases, operations produce non-exceptional results, i.e., results that are
equal to the infinitely precise result, rounded to the destination format. This section

Repeat Time of Floating·Point Operations

Operation (see note)

CLASS

CONVERT
CONVERT
CONVERT
CONVERT

DADD
DDIV
DEO
DGE
DGT
DMAC
DMSM
DMUL
DSUB

FADD
FDIV
FDMUL
FEO
FGE
FGT
FMAC
FMSM
FMUL
FSUB

MFACC
MTACC

SORT

MULTIPLU
MULTIPLY
MULTM
MULTMU

(s.p., d.p.)

(int~s.p.)
(int~d.p.)
(f.p. ~int)
(f.p. ~f.p.)

s.p.
d.p.

Notes: int = integer

Repeat Time-Start New
Operation Every N Cycles

N

2

1
1
1
1

1
17

1
1
1
4
4
4
1

1
10

1
1
1
1
1
1
1
1

27
56

s.p. = single-precision floating-point
d.p. = double-precision floating-point

C·2 FLOATING·POINT BEHAVIOR

Table C-3 Effect on Latency of Denormalized Source Operands or Results

Latency Increase (1)
Denormallzed Operand Status Cycles (ns@40MHz)

One denormalized source operand

Two denormalized source operands

Denormalized result

+4

+5

+4

+160

+200

+160 (2)

Two denormalized source operands following
an operation with a denormalized result

+6 +240

Notes: 1. Only the instruction CLASS, FMUL, DMUL, FDMUL, FDIV, DDIV, and SQRT require extra
cycles to process denormalized numbers. Denormalized number processing uses the ad­
der, increasing by one cycle per denorm the latency of any instruction being issued to the
adder at the same time.

2. Unwrapping of denormalized results is pipelined with other operations.

describes results produced in exceptional cases, as well as other details pertaining to
the floating-point implementation.

The following terms are used in the classification of exceptions:

o

AQNaN

Denorm

FNum

10

IMaxNeg

Infinity, a floating-point number comprising a maximum biased
exponent, a zero fraction, and a sign bit of 1 or O. +00 indicates a
positive infinity, -00 a negative infinity.

Zero, a floating-point number comprising a biased exponent, a zero
fraction, and a sign bit of 1 or O. +0 indicates a zero with a sign bit
of 0; -0 indicates a zero with a sign bit of 1.

An AMD Quiet Not-a-Number comprising a maximum biased expo­
nent, a fraction of 11000 ... 0, and a sign bit of O. AQNaN is the only
NaN reported as an operation result.

A denormalized floating-point number; a non-zero number that is
too small to be represented as a normalized floating-point number.

A finite, non-zero floating-point number. +FNum indicates a positive
FNum; -FNum indicates a negative FNum.

Integer zero, an integer word consisting entirely of zeros.

The largest negative number representable in 32-bit, 2's­
complement integer format. IMaxNeg has a value of 80000000,
hexadecimal.

IMaxPos The largest positive number representable in 32-bit, 2's-comple­
ment integer format. IMaxPos has a value of 7fffffff, hexadecimal.

Inexact Result An exception indicating one of the following:

• A rounded result of an operation not equal to the infi­
nitely-precise result;

• An overflowed operation with the overflow exception
trap disabled (VM = 1); or

• In fast-float mode, a non-zero intermediate result
converted to a final result of zero.

FLOATING·POINT BEHAVIOR C·3

Infinitely Precise Result The result of an operation, computed as if the exponent
range and precision were unbounded.

Intermediate Result

Invalid Operation

Max

NonZ

Overflow

Reserved Operand

RResult

Sign (x)

UIMax

Underflow

The result of an operation before rounding. For the purpose
of describing exception handling, the intermediate result
can be thought of as being equal to the infinitely-precise
result.

An exception indicating that the source operand or oper­
ands are invalid for the operation to be performed, e.g., the
operation co times O.

The largest representable finite floating-point number.
+Max indicates the largest positive finite number, -Max the
largest negative finite number.

A non-zero floating-point number. A NonZ can be either an
FNum or an infinity. +NonZ indicates a positive NonZ,
-NonZ a negative NonZ.

An exception indicating that the rounded result of an opera­
tion is too large to be expressed in the destination format.

An exception indicating that an operation producing a
numeric result has a reserved operand (NaN) as either a
source operand or result.

A result produced by rounding the infinitely-precise result.

The sign of operand x.

The largest representable, 32-bit, unsigned integer quan­
tity. UIMax has a value of ffffffff, hexadecimal.

An exception indicating that the rounded result of an opera­
tion is too small to be represented in the destination format.
There are two different sets of underflow criteria, depend­
ing on whether or not the underflow trap or fast-float mode
is enabled:

Underflow trap masked and fast-float mode disabled
(UM = 1 and FF = 0): An operation result underflows if a
non-zero intermediate result is too small to be represented
as a normalized number and the rounded result is inexact.

Underflow trap unmasked or fast-float mode enabled
(UM = 0 or FF = 1): An operation result underflows if a
non-zero intermediate result is too small to be represented
as a normalized number.

The tables in Sections C.2.1 through C.2.12 list the exception classes relevant to
each floating-point operation, and the results and exception status reported for a
variety of conditions. The following shorthand is used to describe the status bits set in
the floating-point status register:

C-4 FLOATING-POINT BEHAVIOR

Notation

N
R
V
U
X
D

Status bits
NS,NT
RS,RT
VS,VT
US,UT
XS,XT
DS,DT

C.2.1

Note that a sticky status bit (NS, RS, VS, US, XS, or OS) is set only if the correspond­
ing exception mask bit in the Floating-Point Environment Register is set, except when
a sticky status bit is set by a DMAC, DMSM, FMAC, FMSM, or MTACC instruction,
and that the state of the trap status bits (NT, RT, VT, UT, XT, or DT) is valid only if a
Floating-Point Exception trap is taken by the operation in question.

In most cases, exceptional conditions have been divided into two groups: input excep­
tions, for which the exception is due to inappropriate operands, and output excep­
tions, for which the exception can be detected only at the conclusion of an operation.

In the tables that follow, exceptions are prioritized in the following order, from the
highest to lowest priority:

1. Invalid operation, reserved operand +- highest priority

2. Divide by Zero

3. Overflow, Underflow

4. Inexact Result +- lowest priority

The result and status for a given exceptional operation are determined by the highest­
priority exception. If, for example, an operation produces both overflow and inexact
result exceptions, the overflow exception, having higher priority, determines the be­
havior of the operation. The behavior of this operation is therefore described by the
Overflow entry of the Output Exception table for the operation in question.

The tables that follow list some cases that do not result in a status bit being set.
These cases are not considered exceptional by the IEEE Binary Floating-Point Stan­
dard, and are listed here merely for the sake of completeness.

Addition (FADD, DADD)

Input Exceptions: FADD, DADD

SRCA SRCB
SNan I QNaN I +00 I -00 I FNum, 0

SNan AONaN I AONaN I AONaN I AONaN I AONaN
N,R I N,R I N,R I N,R I N,R

~QN~------AQNaN--r-AQ~N--r-AQ~N--i-AQNaN--i-AQN~--
N,R R R R R

r---------------L-------L-------L------~L-------
+00 AONaN I AONaN I +00 I AONaN I +00

N R I R I none I R I none
~-----------~---L-------L-------L-------L-------

--00 AONaN I AONaN I AONaN I -00 I --00

N R I R I N R I none I none
~-----------:....---L-------L--....:----L-------L-------FNum,O AONaN I AONaN I +00 I -00 I

N,R I R I none I none I
iii i

FlOATING·POINT BEHAVIOR C·S

I

Output Exceptions: FADD, DADO

Exception Conditions
FAM =, +00

sign +
FAMO, -00

VM=1
Overflow sign- FAM =,-00

FAMO, -00

Exact AesuH
VM=O

Inexact AesuH

FF=1
UM=1

FF=O
Underflow

FF=1
UM=O

Exact Aesult
FF=O

Inexact Aesult

XM=1
Inexact Result

XM=O

Notes: N/A = Not applicable; addition cannot underflow for these conditions.
(NW) = Result not written; contents of destination register unchanged.
(1) = Zero has sign of intermediate result.

C.2.2 Subtraction (FSUB, DSUB)

Input Exceptions: FSUB, DSUB

SACA

AesuH Status
+00 V,X

+Max V,X

-00 V,X

-Max V,X

(NW) V

(NW) V,X

±O(1) U,X

N/A N/A

(/ilW) U,X

(NW) U

N/A. N/A

AAesult X

(NW) X

I I SRCB I I
SNan 1 QNaN j +00 I -00 I FNum, 0

SNan AQNaN I AQNaN I AQNaN I AQNaN I AQNaN
___________ ~~ ___ L __ ~~ ___ L_-~~---L--~~---L--~~---

QNaN AQNaN I AQNaN I AQNaN I AQNaN I AQNaN
NR I A I R I R I R

------------~---r-------r-------~-------~-------
+00 AQNaN I AQNaN I AQNaN I +00 I +00

N,R I A I R I none I none
----------------~-------~-------~-------~-------

-00 AQNaN I AQNaN I --00 I AQNaN I --00

N,R I A I none I N,R I none
----------------~-------~-------~-------~-------

FNum,O AQNaN I AQNaN I --00 I +00 I
N,R I A I none I none I

CoG FLOATING-POINT BEHAVIOR

Output Exceptions: FSUB, DSUB

Exception Conditions

FRM =, +00
sign +

FRMO,-OO
VM=1

Overflow sign- FRM =,-00

FRMO, +00

Exact Result
VM=O

Inexact Result

FF=1
UM=1

FF=O

FF=1
UM=O

Exact Result
FF=O

Inexact Result

XM=1
Inexact Result

XM=O

Notes: N/A = Not applicable; addition cannot underflow for these conditions.
(NW) = Result not written; contents of destination register unchanged.
(1) = Zero has sign of intermediate result.

C.2.3 Multiplication (FMUL, DMUL, FDMUL)

Input j:xceptions: FMUL, DMUL FDMUL

SRCA SRCB

Result Status

+00 V,X

+Max V,X

-00 V,X

-Max V,X

(NW) V

(NW) V,X

±O(1) U,X

N/A N/A

(NW) U,X

(NW) U

N/A N/A

RResult X

(NW) X

SNaN I QNaN I +00 I -00 I 0 I FNum

SNan AONaN I AONaN I AONaN I AONaN I AONaN I AONaN

______ r-_~.!..R ___ + __ !:!,~ __ ~---N.!..R--~--~~--~--!:!,~--~-!:!,~---
ONaN AONaN I AONaN I AONaN I AONaN I AONaN I AONaN

N,R I R I R I R I R I R
-------r-------T------r------r------r------r------

+00 AONaN I AONaN I +00 I -00 I AONaN I +00
N,R I R I none I none I N.R I none

-------~------T------r------r------r------r------
--00 AONaN I AONaN I --00 I +00 I AONaN I --00

N,R I R I none I none I I,R I none
-------r-------+------r------r------r------r------

o AONaN I AONaN I AONaN I AONaN I ±O (1) I ±O (1)
N,R I R I N,R I N,R I none I none

-------r-------T------r------r------r------r-----
FNum,O AONaN I AQNaN I too (1) I too (1) I ±O (1) I

N,R I R I none I none I I

flOATING-POINT BEHAVIOR C-7

Output Exceptions: FMUL, DMUL

Exception Conditions

FRM =, +00
sign +

FRM 0,-00
VM=1

Overflow sign- FRM =,-00

FRM 0,-00

Exact Result
VM=O

Inexact Result

FF=1
UM=1

FF=O
Underflow

FF=1
UM=O

Exact Result
FF=O

Inexact Result

XM=1
Inexact Result

XM=O

Notes: (NW) = Result not written; contents of destination register unchanged.
(1) = Zero has sign of intermediate result.

The operation FDMUL produces no output exceptions.

C.2.4 Division (FDIV, DDIV)

Input Exceptions: FDIV, DDIV

Result Status

+00 V,X

+Max V,X

-00 V,X

-Max V,X

(NW) V

(NW) V,X

±O (1) U,X

RResult U,X

(NW) U,X

(NW) U

(NW) U,X

RResult X

(NW) X

SRCA SRCB (divisor)
(dividend) SNaN I QNaN I 00 l 0 l FNum

SNan AQNaN I AQNaN I AQNaN I AQNaN I AQNaN

r------------~~---~--!:J~---~--~!!---~--~~---~--!Jl1---
QNaN AQNaN I AQNaN I AQNaN I AQNaN I AQNaN

N,R I R I R I R I R r-----------------r-------r-------r-------r-------
00 AQNaN I AQNaN I AQNaN I ±CO (1) I ±CO (1)

N,R I R I R I none I none ----------------r-------r-------r-------r-------o AQNaN I AQNaN I ±O (1) I AQNaN I ±O (1)
N,R I R I none I N,R I none ----------------r-------r-------r-------r-------

FNum AQNaN I AQNaN I ±O (1) I ±oo (1) I
N,R I R I none I 0 l

Note: (1) Result sign is XOR of sign(SRCA) and sign(SRCB)

C-8 FLOATING·POINT BEHAVIOR

Output Exceptions: FDIV. DDIV

Exception Conditions

FRM =, +00
sign +

FRM 0,-00
VM=1

Overflow sign- FRM =,-00

FRM 0, +00

Exact Result
VM=O

Inexact Result

FF=1
UM=1

FF=O

UnderFlow FF=1
UM=O

Exact Result
FF=O

Inexact Result

XM=1
Inexact Result

XM=O

Notes: (NW) = Result not written; contents of destination register unchanged.
(1) = Zero has sign of intermediate result.

Result Status

+00 V,X

+Max V,X

-00 V,X

-Max V,X

(NW) V

(NW) V,X

±O (1) U,X

RResult U,X

(NW) U,X

(NW) U

(NW) U,X

RResult X

(NW) X

flOATING-POINT BEHAVIOR e-9

il I
I
ijl.·.i !,

I~

C.2.S Comparison (FEQ, DEQ, FOE, DOE, FGT, DOT)

Input Exceptions: FEQ, DEQ

SRCA SRCB
SNaN I QNaN I 00, FNum, 0

SNan FALSE I FALSE I FALSE

'-------- N I N I N -------11------.--------ON aN FALSE I FALSE I FALSE
N I none I none 1-------- --------.------.--------00, FNum, 0 FALSE I FALSE I
N I none I

Input Exceptions: FGE, DGE, FGT, DGT

SRCA SRCB
SNaN I QNaN I 00, FNum, 0

SNan FALSE I FALSE I FALSE
N I N I N 1----------------1--------1--------

ON aN FALSE I FALSE I FALSE
N I N I N

r--------------~-------~--------
00, FNum, 0 FALSE I FALSE I

N ! N !

Floating-point comparison operations produce no output exceptions.

C.2.6 Multiply-Accumulate (FMAC, DMAC), Multiply-Sum
(FMSM, DMSM)

Input Exceptions: FMAC, DMAC, FMSM, DMSM

OP1 OP2 OP3 Result Status

one or more operands is an SNan AONaN N,R

no SNaNs, one or more operands is a ONaN AQNaN R r-----------------------------------r-----------
(oo • 0) X AONaN N,R r----------------------Ir-----------------------

(+NonZ' +00) or (-NonZ • -00) I -00 AONaN N,R

(-NonZ' +00) or (+NonZ' -00) I +00 AONaN N,R I------------------------r-----------r-----------(+NonZ' +00) or (-NonZ' -00) I +00 +00 none

(-NonZ' +00) or (+NonZ' -00) I -00 -00 none

(+NonZ' +00) or (-NonZ' -00) I FNum +00 none
I

(-NonZ' +00) or (+NonZ' -00) I FNum -00 none
r-----------r----------~-----------------------FNum, 0 I FNum, 0 I +00 +00 none

I I
FNum, 0 I FNum, 0 I +00 +00 none

I j

Notes: X = don't care.
OP1 and OP2 are commutative, i.e., (A' B) will produce results identical to (B • A).

C-fO FLOATING-POINT BEHAVIOR

Output Exceptions: FMAC, DMAC, FMSM, DMSM

Exception Conditions Result Status

FRM =, -roo -roo V,X
sign +

FRM 0,-00 +Max V,X

Overflow sign- FRM =,-00 -00 V,X

FRM 0,-00 -Max V,X

Underflow (2) ±O (1) U,X

Notes: 1. Zero has sign of intermediate result.
2. The underflow criterion for these operations is the same as that for fast float mode; an operation result

underflows if a non-zero intermediate result is too small to be represented as a normalized number.

C.2.7

Multiply-accumulate based operations-FMAC/DMAC and FMSM/DMS~o not
support gradual underflow. Denormalized input operands are converted to a zero of
the same sign, and underflowed results are converted to a zero having the sign of the
intermediate result.

For multiply-accumulate-based operations, the contents of special registers IPA, IPB,
IPC, and the Exception Opcode Register may not reflect the operands and opcode of
the faulting instruction after a Floating-Point Exception trap is taken.

Square Root (SQRT)

Input Exceptions: SQRTF

SRCA:

SNan AONaN
N,R r------- --------

ONaN AONaN

:...------- R --------
-roo -roo

none -------- --------
-FNum,-oo AONaN

N,R -------- --------+0 +0
none

-::0------ ----=n----
none

R.OA nNG-POlNT BEHAVIOR 0-11

,~

Output Exceptions: SQRT

Exception Conditions Result Status

XM=1 RResult X
Inexact
Result XM=O (NW) X

Note: (NW) = Result not written; contents of designation register unchanged.

C.2.8 Floating.Point.to.Floating.Point Conversions (CONVERT)

Input Exceptions:
CONVERT, f.p. ~ f.p.

SRCA:

SNan AONaN
N,R -------- --------

ON aN AONaN
R -------- --------

00 ±oo(1)
none

-0------ --------±O (1)
none

Note: (1) = Result has sign of operand.

C-12 FLOATING·POINTBEHAVIOR

Output Exceptions: CONVERT, f.p. --+ f.p.

Exception Conditions

FRM =, +00
sign +

FRM Q,--
VM=1

Overflow sign- FRM =,--

FRM Q, +00

Exact Result
VM=Q

Inexact Result

FF=1
UM=1

FF=Q

UnderFlow FF=1
UM=O

Exact Result
FF=Q

Inexact Result

XM=1
Inexact Result

XM=Q

Notes: (NW) = Result not written; contents of destination register unchanged.
(1) = Zero has sign of intermediate result.

Result

+00

+Max

--
-Max

(NW)

(NW)

±O (1)

RResult

(NW)

(NW)

(NW)

RResult

(NW)

C.2.9 Integer·to·Floating·Point Conversions (CONVERT)

Status

V,X

V,X

V,X

V,X

V

V,X

U,X

U,X

U,X

U

U,X

X

X

Input Exceptions: Integer-to-floating-point conversions produce no input exceptions.

Output Exceptions: CONVERT, Integer --+ f.p.

Exception Conditions Result Status

XM=1 RResult X
Inexact Result

XM=Q (NW) X

Note: (NW) - Result not written; contents of designation register unchanged.

FLOATING·POINT BEHAVIOR C-13

C.2.10 Floating.Point.to.lnteger Conversions (CONVERT)

Input exceptions: Input exceptions:
CONVERT, f.p. ~ signed Integer CONVERT, f.p. ~ unsigned Integer

SRCA: SRCA:

SNan 10 SNan 10

--------- N,R i---------
QNaN 10 1--------- N,R r---------

QNaN 10
N,R --------- i---------+00 IMaxPos

1--------- N,R -----,----
+00 UIMax

N -------"'-- i---------
-00 IMaxNeg

N 1--:------- ---------
-00 10

N N --------- i--------- 1--------- ---------+0 10 +0 10
none --------- i--------- 1--------- i-__ !!.o.!!E!.. ____

-0 10 -0 10
none 1--------- none ---------

-FNum 10
N

Output Exceptions: CONVERT, f.p. ~ signed Integer

Exception Conditions Result Status

sign + IMaxPos N
VM=1

sign- IMaxNeg N
Overflow

Exact Result (NW) N
VM=O

Inexact Result (NW) N

XM=1 RResult X
Inexact Result

XM=O (NW) X

Note: (NW) ~ Result not written; contents of designation register unchanged.

Output Exceptions: CONVERT, f.p. ~ unsigned Integer

Exception Conditions Result Status

VM=1 UIMax N
Overflow

Exact Result (NW) N
VM=O

Inexact Result (NW) N

XM=1 RResult X
Inexact Result

XM=O (NW) X

Note: (NW) = ResuH not written; contents of designation register unchanged.

C·14 FLOATING·POINTBEHAVIOR

C.2.11 Move From Accumulator (MFACC)

Input Exceptions: MFACC

SRCA:

QNaN AQNaN

-------- ___ 3 ____
00 too (1)

none -------- --------
0 ±O (1)

none

Note: (1) = Result has sign of operand.

Output Exceptions: MFACC

Exception Conditions

FRM =, +00
sign +

FRM 0,-00
VM=1

Overflow sign- FRM =,-00

FRM 0, +00

Exact Result
VM=O

Inexact Result

FF=1
UM=1

FF=O
Underflow

Exact Result
UM=O

Inexact Result

XM=1
Inexact Result

XM=O

Notes: (NW) = Result not written; contents of destination register unchanged.
(1) = Zero has sign of intermediate result.

:I
'.,I'

Result Status

+00 V,X

+Max V,X

-00 V,X

-Max V,X

(NW) V

(NW) V,X

±O (1) U,X

RResult U,X

(NW) U

(NW) U,X

RResult X

(NW) X

FLOATING·POINT BEHAVIOR C-15

C.2.12 Move To Accumulator (MTACC)

Input Exceptions: MTACC

SRCA:

SNaN AQNaN

1-------- N,R --------
QNaN AQNaN

R 1-------- --------00 too (1)

1-------- ___ n.£~ ___

0 ±O (1)
none

Note: 1. Result has sign of operand.

Output Exceptions: MTACC

Exception Conditions Result Status

FRM =, +00 +00 V,X
sign +

FRM 0,-00 +Max V,X

Overt low sign- FRM =,-00 -00 V,X

FRM 0,-00 -Max V,X

Underflow (1) ±O (2) U,X

Inexact Result RResult X

Notes: 1. Underflow is detected only at the output of the operation; denormalized inputs are not flushed to zero. The
output underflow detection criterion is the same as for fast float mode; an operation result underflows if a
non-zero intermediate result is too small to be represented as a normalized number.

2. Zero has sign of intermediate result.

C.2.13

C.2.14

Classify (CLASS)

The CLASS operation does not produce exceptions.

Integer Multiply (MULTIPLY, MULTIPLU, MULTM, MULTMU)

Integer multiplication operations MULTIPLY, MUL TIPLU, MUL TM, and MUL TMU do
not affect the ALU Status Register or the Floating-Point Status Register.

For the MULTIPLY and MULTIPLU instructions, overflow of the 32-bit result can be
detected by trapping on overflow. When the Integer Multiply Overflow Mask bit is 0,
the MULTIPLY instruction causes an Out of Range trap when it produces a signed
result that exceeds 32 bits (a positive number larger than 7fffffff, hexadecimal, or a
negative number smaller than 80000000, hexadecimal). Similarly, the MULTIPLU
instruction causes an Out of Range trap when it produces an unsigned result that

C-16 FLOATING-POINT BEHAVIOR

C.2.iS

C.3

exceeds 32 bits (a positive number greater than ffffffff, hexadecimal). The MUL TM
and MULTMU instructions cannot overflow, and are unaffected by the MO bit.

Integer Divide (DIVIDE, DIVIDU)

Integer division operations DIVIDE and DIVIDU do not affect the ALU Status Register
or the Floating-Point Status Register. Each produces a quotient QUOT and remainder
REM such that Euclid's Equation is always satisfied for non-exceptional cases, that is:

Dividend = (Divisor· QUOT) + REM

If QUOT is non-zero, its sign is the exclusive-OR of the signs of the dividend and
divisor. If the infinitely-precise quotient cannot be expressed as an integer, it is trun­
cated toward zero. That is, QUOT is the integer closest to and no greater in magni-
tude than the infinitely-precise result.

If REM is non-zero, it has the sign of the dividend.

DIVIDE and DIVIDU always take the Out of Range trap when the divisor is 0; QUOT
and REM are undefined.

Overflow of the 32-bit quotient can be detected by trapping on overflow. When the
Integer Divide Overflow Mask bit is 0, the DIVIDE instruction causes an Out of Range
trap when it produces a Signed quotient that exceeds 32 bits (a positive number larger
than 7fffffff, hexadecimal; or a negative number smaller than 80000000, hexadeci­
mal). Similarly, the DIVIDU instruction causes an Out of Range trap when it produces
an unsigned result that exceeds 32 bits (a positive number greater than ffffffff, hexa­
decimal). QUOT and REM are undefined for an overflowing integer divide, regardless
of whether overflow trapping is enabled.

Note that this behavior is generated by the DIVIDE and DIVIDU instruction emulation h
software.

TRAPS

The following floating-point instructions take the Floating-Point Exception trap (vector
number Ox16) upon producing an unmasked exception:

CONVERT DMUL FGE

DADD

DDIV

DEQ

DGE

DGT

DSUB

FADD

FDIV

FDMUL

FEQ

FGT

FMUL

FSUB

MFACC

SQRT

The instructions FMAC, DMAC, FMSM, DMSM, and MTACC do not take the Floating­
Point Exception trap upon producing an unmasked exception.

The time at which a floating-point exception trap is taken depends on the type of the
exception causing the trap. The Invalid Operation, Reserved Operand, and Divide by
Zero exceptions cause a trap to be taken after the first cycle of the execute stage,
since they can be determined at the beginning of an operation. The Overflow, Under­
flow, and Inexact Result exceptions cause a trap to be taken after the last cycle of the
execute stage. This timing is characteristic of the Am29050 microprocessor hardware
implementation; other 29K Family processors may exhibit different trap timing.

FLOATING-POINT BEHAVIOR C-17

I,

I:
II
'j
I;:

'I

I,;
i;i

I
! It li,1

I
I

,

r·,

A Floating-Point Exception trap cannot be caused by writing to the Floating-Point
Environment Register or the Floating-Point Status Register. For example, it is not
possible to cause a floating-point exception trap by unmasking a currently set
exception.

When the DA bit of the Current Processor Status Register is 1, any arithmetic excep­
tion that would otherwise produce a Floating-Point Exception trap or Out of Range
trap will instead cause a Monitor trap. In all other respects, however, the processor
behaves as described in Section 3.5.10.

C-18 FLOATING-POINT BEHAVIOR

INDEX

INDEX

A (Absolute), 8-7
A(31-0) (Address Bus), 1-4,5-1
Access privilege, 5-20
Access protocol, 2-17, 5-8
Access, burst-mode, 1-4
Access, simple, 2-18
Access, simultaneous, 5-19
Activation record, 7-1
Activation record mapping, 7-3, 7-7
ADD,7-39
Addition, integer, 7-18
Address Bus (A(31-0)), 1-4,5-1
Address Bus, coprocessor operations, 6-8
Address Bus, shared, 2-18
Address Space, Coprocessor, 2-10
Address Space, Input/Output, 2-10
Address Space, Instruction ROM, 2-10
Address Space, InstructionlData, 2-10
Address Tag, 4-8, 4-9
Address transfer, 2-18
Address translation, 2-12, 4-22-4-23, 7-32
Address translation exceptions, 1-6
Address Unit, 2-15, 4-11, 4-14
Address, physical, 2-10
Address, virtual, 2-10
Addresses, pipe lined, 1-4
Addressing, 2-10, 4-12
Addressing, indirect, 7-16
Addressing, register, 4-12
ADRF Latch, 4-14, 4-15
Alignment, 2-10
Alignment, Branch Target Cache

memory, 4-9
Alignment, bytes, 7-27
ALU (Arithmetic/Logic Unit), 2-15, 4-12,

4-18,8-4
ALU Status Register, 2-4, 8-4
Am29050 microprocessor, 1-2
Am29050 microprocessor features, 1-1
Am29050 microprocessor special

features, 1-11
Applications, 7-16
Arbitration, 2-18, 5-6, 5-18
Arguments, incoming, 7-3, 7-9
Arguments, outgoing, 7-3, 7-9
Arithmetic operation, 8-4

Arithmetic/Logic Unit (ALU), 2-15,
4-18,8-4

ASEO, 7-26
ASNE,7-17
Assembler syntax, 8-4
Assert compare, 7-17

B-Bus, 4-11
BGRT (Bus Grant), 5-1, 5-18

BINV (Bus Invalid), 4-23, 5-1, 5-18
Boolean, 7-22
Boolean FALSE, 7-22
Boolean TRUE, 7-22
Boundary crossings, 4-9
Branch displacement, relative, 7-26
Branch Target, 4-14
Branch Target Cache memory, 1-5,2-14,

4-3,4-5,4-16,7-33,7-34
Branch Target Cache memory disable

(CD), Configuration Reg., 4-7, 7-34
Branch Target Cache memory lookup

process, 4-7-4-8
Branch, relative, 1-5,2-5,4-9,7-38,7-39
Branches, immediately adjacent, 7-39
BREO (Bus Request), 5-1, 5-18
Burst, 5-11
Burst mode, 4-14, 5-11, 5-13, 5-14, 5-24
Burst mode access, 1-4, 5-8, 5-11, 5-14
Burst mode access protocol, 2-17
Burst mode cancellation, 5-16
Burst mode preemption, 5-16
Burst mode termination, 5-16
Bus Grant (BGRT), 5-1, 5-18

Bus Invalid (BINV), 5-1, 5-18

Bus Request (BREO), 5-1, 5-18

Bus sharing, 5-19
Byte alignment, 7-27

C (Carry) ALU Status Reg., 8-1, 8-4
CA (Coprocessor Active), 6-4
Cache Block, 4-9
Cache Disable (CD), 4-7, 7-34
Cache replacement, random, 4-8
Cache tag, 4-6
Cache-block boundary, 4-6

INDEX 1·1

1-2 INDEX

CALL,7-38
Call, large range, 7-25
Calls, operating system, 7-17
Carry (C), ALU Status Reg., 7-18,8-4
CD (Cache Disable), 4-7, 7-34
CDA (Coprocessor Data Accept), 5-4, 6-6
CDA sequencing, 6-7
CE (CoprocessorEnable) Channel Control

Reg., 6-2
CElCNTL,8-7
Channel, 2-17, 5-6
Channel Address (CHA), Channel Addr.

Reg., 3-13, 7-34
Channel Control, 3-14, 7-34
Channel Data (CHD), Channel Data Reg.,

3-13,7-34
Character detection, 7-27
Character-string, 7-26, 7-27
Clock synchronization, 5-31
Clock, processor-generated, 5-31
Clock, system-generated, 5-32
Clocks, 2-19
CNTL(1-0) (CPU Control), 5-5, 5-22, 5-23,

5-24-5-25, 5-26, 5-30,
Compare Bytes (CPBYTE), 7-27
Compiler, optimizing, 1-8
Compiler's run-time stack, 1-4-1-5
Compilers, 1-8
Complementing a Boolean, 7-22
Configuration Register, 2-3, 4-7, 7-34
CONST, 7-25, 7-38, 7-39
Constant, 32-bit, 7-25
Constant, 8-bit, 2-5
CONSTH, 7-25
CONSTN,7-25
Contents Valid (CV), Channel Control

Reg., 7-35
Context switching, 2-11
Context switching, temporary, 2-11
Contexts, saving and restoring, 2-11
Coprocessor, 6-1
Coprocessor Active (CA), 6-4
Coprocessor attachment, 2-19
Coprocessor communication, 6-7
Coprocessor Data Accept (CDA), 5-4, 6-6
Coprocessor Enable (CE), Channel

Control Reg., 6-2
Coprocessor exception, 6-3, 6-8
Coprocessor exception trap, 6-8
Coprocessor interupts, 6-4
Coprocessor Load/Store, 6-2
Coprocessor operations, 6-1
Coprocessor Present (CP), Configuration

Reg., 6-4

Coprocessortransfer, 5-3, 6-1, 6-2, 6-3,
6-5,6-7

COUNT,8-1
CP (Coprocessor Present) Configuration

Reg., 6-4
CPBYTE (Compare Bytes), 7-27
CPNEQ,7-38
CPU Control (CNTL(1-0)), 5-5, 5-22, 5-24,

5-26,5-30,
CPU Status (STAT(2-0)), 5-4, 5-21,5-22,

5-24,5-25,5-30
Current Processor Status, 2-2
Current Processor Status Register, 3-78
CV (Contents Valid) Channel Control

Reg., 7-35
Cycle time, 1-2
0(31-0) (Data Bus), 1-4,5-3
DA (Disable All Interrupts), 5-29
Daisy chain, 2-18
Data access, 5-7
Data access exception trap, 5.-7-5-8
Data Access request, 5-6
Data accesses, external, 2-9
Data Address Transfer, 5-6
Data blocks, movement of large, 7-27
Data Burst Acknowledge (DBACK), 5-3,

5-8,5-14,5-15,5-16
Data Burst Request (DBREQ), 5-3, 5-8,

5-14,5-15
Data Bus (0(31-0)), 1-4,5-2
Data dependencies, pipeline, 4-12
Data Error (DERR), 5-3, 5-7, 5-14
Data formats, 2-8
Data forwarding, 4-13
Data Ready (DRDy), 5-3, 5-10-5-11,5-14

Data Request (DREQ), 5-3, 5-10,
5-16-5-17

Data Request Type (DREQT(1-0)), 5-3,
5-7,6-5

Data transfer, 5-6
Data types, 2-9
Data-flow organization, 1-6-1-7
Data-unit numbering conventions, 2-9
DBACK (Data Burst Acknowledge), 5-3,

5-8,5-15,5-16
DBREQ (Data Burst Request), 5-3, 5-8,

5-14,5-15
Decode PC Register, 4-14, 4-15
Decode stage, 4-2
Delay cycle, indirect addressing, 7-41
Delayed branch, 7-38-7-39
Delayed effects, registers, 7-41

Demand paging, 7-31-7-32
DERR (Data Error), 5-3, 5-7-5-8, 5-14
DEST,8-1
01 (Disable Interrupts), 5-29, 6-5
DIVIDE,7-16
Divide instructions, 7-19
DIVIDU, 7-16
Double-precision floating-point, 3-45
DRDY (Data Ready), 5-3, 5-10-5-11,5-14
DREQ (Data Request), 5-10, 5-16-5-17
DREOT(1-0) (Data Request Type), 5-3,

5-7,6-5
DTR,4-13

EMULATE,7-16
ETR, 4-13, 4-14
Exceptions, address translation, 1-6
Execute stage, 4-2
Executing mode, 2-16
Execution Unit, 2-15, 4-1, 4-12
External access, 7-34
External access protection, 7-28
External interrupts, 5-29
External traps, 5-29
EXTERNAL WORD[nj, 8-1

FALSE,8-1
FC (Funnel Shift Count) Funnel Shift

Count Reg., 7-27, 8-1
Fetch-Ahead Adder, 4-10
Fetch-Ahead Adder overflow, 4-10
Fetch special instruction, 4-16
Fetch stage, 4-2
Field Shift Unit, 2-15, 4-19
FIFO, 4-3
Freeze (FZ), 4-11,7-29,8-4
Funnel-Shift Unit, 4-19
FZ (Freeze bit), 4-11,7-30,8-4

General-purpose registers, 1-4, 2-1, 2-2
Generator, register address, 4-13
Global registers, 4-12

Halt, 5-4
Halt mode, 2-17, 5-21, 5-22,5-25
Hardware development system, 2-18,5-22
Hardware testing, 5-28

0116 (16-bit immediate data zero-extended
to 32 bits), 8-1

1116 (16-bit immediate data,
ones-extended to 32 bits), 8-1

1(31-0) (Instruction Bus), 5-2, 8-7

116 (16-bit immediate data), 8-2
IBACK (Instruction Burst Acknowledge),

5-2,5-8,5-12,5-13,5-15
IBREO (Instruction Burst Request), 5-2,

5-8,5-12,5-13,5-15
I-Bus, 4-15
IE (Interrupt Enable) Timer Reload Reg.,

7-36
IERR (Instruction Error), 4-4, 5-2, 5-7,

5-12,5-26
IFP (Instruction Fetch Pointer), 4-3
IFU, 4-16
IN (Interrupt) Timer Reload Reg., 7-36
In args, 7-2
INCLK (Input Clock), 5-5, 5-31- 5-33
Indirect addressing, 7-16
Indirect addressing delay cycle, 7-17
Indirect pointers, 7-16, 7-17, 7-41
Initialization, timer facility, 7-37
Input Clock (INCLK), 5-5
Input/Output access, 5-3
Instruction access, 5-7
Instruction Access

Exception, 4-4
Instruction Address Transfer, 5-6
Instruction boundary, 2-13
Instruction Burst Acknowledge (IBACK),

5-2,5-8,5-12,5-13,5-15
Instruction Burst Request (IBREO), 5-2,

5-8,5-12,5-13,5-15
Instruction Bus (1(31-0)), 1-4,5-2
Instruction/Data memory, 5-7
Instruction/Data memory access, 5-7
Instruction description format, 8-9
Instruction Error (IERR), 4-4, 5-2, 5-7-5-8,

5-12,5-26
Instruction Fetch Pointer (IFP), 4-3
Instruction Fetch Unit, 2-13, 4-2-4-3
Instruction fetch, external, 4-10
Instruction fetch-ahead, 4-1 °
Instruction-field uses, 8-8
Instruction formats, 8-6
Instruction overview, 2-5
Instruction Prefetch Buffer (IPB), 4-3, 4-16
I nstructionprefetch

stream, 4-3
Instruction Ready (IRDy), 4-4, 5-2, 5-7,

5-10,5-12,5-13,5-16,5-26
Instruction Register (IR). 5-25
Instruction Request (IREO), 5-2, 5-10,

5-13,5-16-5-17
Instruction Request Type (IREOT), 5-2
Instruction ROM, 5-7
Instruction set, 2-6

INDEX 1-3

1.4 INDEX

Instruction Transfer, 5-6
Instruction, listing by operation

code, 8-137
Instruction, special, 4-16
Instructions, three address, 2-1
Integer addition, 7-18
Integer division, 7-19
Integer multiplication, 7-18
Integer subtraction, 7-18
Interrupt (IN), Timer Reload Reg., 7-36
Interrupt handling, 7-29
Interrupt or Trap, 3-62
Interrupt processing, user-defined, 2-11
Interrupt Request (INTR(3-0)), 5-4,

5-29-5-30
Interrupt return, 7-30, 8-84, 8-85
Interrupt simulation, 7-30
Interrupts, 1-8,2-11,2-13,5-20,7-35
Interrupts, coprocessor, 6-4
Interrupts, dynamically nested, 2-11,7-30
Interrupts, external, 5-29
INTR(3-0) (Interrupt Request), 5-4, 5-29
INV, 4-5, 7-34
IPA (Indirect Pointer A) Indirect Pointer A

Reg., 4-13, 8-2
IPB, 4-13, 5-12
IPB (Indirect Pointer B) Indirect Pointer B

Reg., 8-2
IPB (Instruction Prefetch Buffer), 4-3
IPB allocated state, 4-4
IPB available state, 4-4
IPB error state, 4-4
IPB state transitions, 4-4
IPB valid state, 4-4
IPC (Indirect Pointer C) Indirect Pointer C

Reg., 4-13, 8-2
IR (Instruction Register), 5-25, 5-26
I ROY (Instr. Ready), 4-4, 5-2, 5-7, 5-11,

5-12,5-13,5-16,5-26
IREO (Instruction Request), 5-2,

5-10-5-11,5-16-5-17
IREOT (Instruction Request Type), 5-2
IRET,7-35
IRETINV, 7-34, 7-35

JMP, 7-39
Jump, large range, 7-25

Large call range, 7-25
Large constants, 7-25
Large data blocks, movement, 7-27
Large jump range, 7-25
Least Recently Used Entry (LRU), LRU

Rec. Reg., 7-32
LK (Lock), 7-35

LOAD (Load), 7-40
Load and Lock (LOADL), 5-20, 7-36
Load and Set (LOADSET), 7-35-7-36
Load data, forwarding, 1-7
Load Multiple (LOADM), 1-7,4-14,4-15,

5-21,7-27
Load Test Instruction, 5-4, 5-21,5-25
Load Test Instruction mode, 2-17
LOADL (Load and Lock), 5-20,7-36
LOADM, 1-7,4-14,4-15,5-21,7-27
Loads and Stores, 1-6
Loads and Stores, overlapped, 7-39
LOADSET (Load and Set), 7-35-7-36
Load/Store Instruction Format, 3-47
Local registers, 4-12, 7-4
Local registers, stack pOinter, 2-1
Lock (LK), 7-36
Lock (LOCK), 5-1,5-20
Lock output, 5-20
Logical operation, 8-5
LRU (Least Recently Used Entry) LRU

Rec. Reg., 7-32

MULTIPLU, 7-17
MULTIPLY, 7-17
MULTM,7-17
MULTMU, 7-17
M ('Mmediate), 8-7
Mapping activation record, 7-3, 7-7
Master and slave switching, 5-33
Master/slave operation, 2-19, 5-32
Master/slave checking, 5-32
Master/Slave Error (MSERR), 5-5, 5-32
Memory management, 1-7,2-12,7-30
Memory Management Unit, 2-12, 2-15
Memory protection, 7-28, 7-31
Memory, critical areas, 7-31
Merge, byte-aligned, 7-27
MIPs, 1-2
MMU, 4-8-4-9, 4-15, 4-16, 4-22-4-23,

7-28,7-31
MMU Configuration Register, 7-41
MMU Programmable (MPGM(1-0)),

5-2,5-6
Mode, Executing, 2-16
Mode, Halt, 2-17, 5-22
Mode, Pipeline Hold, 2-16, 4-23
Mode, Step, 2-17, 5-24
Mode, Wait, 2-16, 3-59
Monitoring critical areas, 7-32
Move To Special Register (MTSR), 5-26,

7-16,8-4
MPGM(1-0) (MMU Programmable),

5-2,5-6
MSERR (Master/Slave Error), 5-5, 5-32

MTSR (Move To Special Register), 5-26,
7-16,8-4

Multi-precision, 7-18
Multi-processing, 7-35
Multiple masters, 2-18, 5-19
Multiple slaves, 5-19
Multiplication integer, 7-18

N (Negative) ALU Status Reg., 8-4
NN (Not Needed) Channel Control Reg.,

4-14,7-35
NO-OP, 7-26, 7-38-7-39
Nomenclature, 8-1
Non-Coprocessor Load/Store

Format, 3-47
Non-sequential fetch, 4-10
Non-sequential instruction fetch, 4-10,5-4
Normal,5-5
Not Needed (NN), Channel Control Reg.,

4-14,7-35
Notation, 8-1
Numbering conventions, data-unit, 2-9

Old Processor Status Register, 2-2, 3-78
OP (operation code), 8-7
Operating system calls, 7-17
Operation code (OP), 8-7
Operator symbols, 8-2
OPT(2-0) (Option ContrOl), 5-3, 5-6
OPT (Option), 6-3
Option (OPT), 6-3
Option Control (OPT(2-0)), 5-3, 5-6
OR,7-39
Organization, Branch Target Cache

memory , 4-5
Organization, data flow, 1-5
Out args, 7-2
Out of range, 8-5
Out of Range trap, 8-5
OV (Over1low), 7-36
Over1low (OV), 7-36
Over1low (V), ALU Status Reg., 8-5
Over1low, signed, 8-5
Over1low, unsigned, 8-5
Overlapped loads, 1-6
Overlapped store, 1-6

Page change information, 7-31
Page fault, 7-34
Page reference, 7-31
Page size, virtual, 7-31
Paging, 7-31,7-33
PC (Program Counter), 4-10, 8-2
PC Buffer, 4-10

PC Bus, 4-11
PC MUX, 4-11
PC2-PCO, 4-11, 4-12, 7-29
PC1 (Program Counter 1) Program

Counter 1 Reg., 5-20
PDA (Pipelined Data Access), 5-3, 5-9
PEN (Pipeline Enable), 5-2, 5-9, 5-10
PIA (Pipelined Instruction Acknowledge),

5-2,5-9,5-10
PID (Process Identifier) MMU

Configuration Reg., 3-18, 3-72, 3-77
Pipeline, 1-7, 2-13, 4-2
Pipeline data dependencies, 4-13
Pipeline dependency, 4-13
Pipeline Enable (PEN), 5-2
Pipeline features exposed, 7-1,7-37
Pipeline Hold, 4-2, 4-14
Pipeline Hold mode, 2-16, 4-23, 5-4
Pipeline interlocks, 1-11
Pipelined access, 5-8, 5-9, 5-11
Pipe lined access protocol, 2-18
Pipelined addresses, 1-4
Pipelined Data Access (PDA), 5-3, 5-9,

5-10
Pipe lined Instruction Access (PIA), 5-2,

5-9,5-10
Port A, 4-13
Port B, 4-13
Port C, 4-13
Prefetching, 1-5
Primary access, 5-9, 5-10
Prioritizer, 2-16, 4-19
Priority, 5-29
Process Identifier (PID), MMU

Configuration Reg., 3-18, 3-72, 3-77
Processor, 5-9
Processor cancellation, 5-16
Processor-generated clock, 5-31
Processor modes, 2-16
Processor preemption, 5-16
Processor reset, 5-30
Processor termination, 5-16
Program Counter (PC), 4-10
Program Counter Unit, 2-15, 4-10
Programming, Coprocessor, 2-13
Protected segment, 2-2
Protection bits, supervisor mode, 7-28
Protection bits, TLB, 7-31
Protection bits, user mode, 7-28
Protection checking, 4-15
Protection Violation Trap, 7-17
Protection violation, TLB, 7-28
Protection, external access, 7-28
Protection, memory, 7-28

INDEX 1·5

II
Iii ,I
I"~

j";

ii'II"
I

,,
:III,i', I:

I

~
I

I
.~
j,

1-6 INDEX

Protection, register, 7-28
Protection, system, 7-28

Q (QuotienVMultiplier) Q Register, 2-4, 8-2

RlW,5-1
RA Register, 8-2, 8-7
RB or I, 8-7
RB register, 8-2, 8-7
RC register, 8-2, 8-7
Read/Write (R/W), 5-1
Recursion, 7-1
Region Mapping, 7-33
Register address generator, 4-13
Register addressing, 4-12
Register bank protect, 3-5, 3-15, 7-28
Register file, 1-4,2-15,4-12,4-13
Register file port, 4-12
Register protection, 7-28
Register RA, 8-2
Register RB, 8-2
Register RC, 8-2
Register read-address comparators, 4-13
Register, ALU Status, 2-4,5-26, 7-29
Register, Byte Pointer, 2-4
Register, Channel Address, 2-3
Register, Channel Control, 2-3
Register, Channel Data, 2-3
Register, Configuration, 2-3
Register, Funnel Shift Count, 2-4
Register, Indirect Pointer A, 2-4
Register, Indirect Pointer B, 2-4
Register, Indirect Pointer C, 2-4
Register, Load/Store Count

Remaining, 2-4
Register, LRU Recommendation, 2-3
Register, MMU Configuration, 2-3
Register, Program Counter 0, 2-3
Register, Program Counter 1, 2-3
Register, Program Counter 2, 2-3
Register, Q, 2-4, 8-2
Register, Register Bank Protect, 2-3
Register, Timer Counter, 2-3
Register, TLB, 2-4
Register, Vector Area Base Address 2-2
Registers, delayed effects, 7-41 '
Registers, global, 2-1
Registers, local, 2-1
Registers, local, stack pointer, 2-2
Registers, special-purpose, protected, 2-2
Relational operators, 4-19
Relative branch, 2-5
Reset (RESET), 4-24, 5-5, 5-24, 5-33
Reset mode, 2-17, 5-30, 5-33

Resident pages, 7-32
Restart, 7-34
Restarting after faulty external

access, 7-34
Run-time checking, 7-17
Run-time Stack, 7-2

Stack Pointer (SP), 3-5,7-2,7-41
SA (Set Coprocessor Active), 6-3
SA (Special-Purpose Register

number),8-2
Segment, protected, 2-2
Set Coprocessor Active (SA), 6-3
Set Indirect Pointers (SETIP), 7-16
SETIP (Set Indirect Pointers), 7-16
Shift, byte-aligned, 7-27
Simple access, 5-8
Simulation, interrupts, 7-30
Slave cancellation, 5-17
Slave device, 5-9
Slave Mode, 5-10
Siavepreemption, 5-17
SORT,7-38
Space Identification Field, 4-6-4-7
SPDEST,8-2
SPECIAL, 8-2
Spurious errors, 5-33
SRCA,8-2
SRCA.BYTEn, 8-2
SRCB,8-2
SRCB.BYTEn, 8-2
Stack Cache, 7-4
Stack Pointer (SP), 1-11,2-2,3-5,4-12,

4-13
Stack, compiler's run-time, 1-4-1-5
Stack, run-time, 7-2
STAT(2-0) (CPU Status), 5-5, 5-21,5-24,

5-27,5-30
Status results, arithmetic, 8-4
Status results, logic, 8-4
Step, 5-5, 5-22, 5-24, 5-25
Step mode, 2-16, 5-25
Store and lock, 5-20, 7-36
Store Multiple, 1-7,4-14,4-15,5-21,7-27
STOREL, 5-20, 7-36
STOREM, 1-7,4-14,4-15
SUB,7-39
SUBR,7-39
Subtraction, integer, 7-18
SUP/US (Supervisor/User), 5-1
Supervisor mode (SM), 2-1, 3-1,5-1, 7-27
Supervisor/User (SUP/US), 5-1
Symbols, 8-1
Synchronization, clock, 5-32

Syntax, assembler, 8-4
SYSCLK (System CloCk), 5-5, 5-28,

5-30-5-33
System diagram, 1-3
System interface, 2-17
System programming, 7-28
System protection, 7-28
System-generated clock, 5-31

Taking Interrupt or Trap, 5-4
TARGET,8-2
Target, 4-8
Target instruction, 4-6, 4-7
Task Identifier (TID), TLB Entry

Word 0, 2-12
Task identifiers, 1-7
TC (Transfer Control), 6-2
TCV (Timer Count Value) Timer Counter

Reg., 7-36
TE (Trace Enable), 3-78
Terminology, 8-3
TEST (Test mode), 2-17, 5-5, 5-28
Test/Development interface, 2-18, 5-21
Timer Count Register, 7-36
Timer Count Value (TCV) Timer Counter

Reg., 7-36
Timer Counter Register, 5-24
Timer Facility, 2-13, 5-24, 7-36
Timer interrupts, 7-36
Timer Reload Register, 7-36
Timer Reload Value (TRV), 7-36
TLB (Translation Look-Aside Buffer), 1-7
TLB miss, 5-12
TLB Miss handling, 7-31
TLB[nJ,8-2
TLB registers, 2-5, 3-32
TLB reload, 7-29, 7-31
TLB, second-level, 7-32
TP (Trace Pending), 3-78
Trace Enable (TE), 3-78
Trace FaCility, 2-13
Trace Pending (TP) , 3-78
Trace Trap, 3-78
Transfer Control (TC), 6-2
Transfer, coprocessor, 6-2, 6-5

Translation Look-Aside Buffer (TLB), 1-7
Translation, early address, 1-7
Translation, instruction address,

4-~2-4-23

Translation, Load Multiple address, 4-23
Translation, Store Multiple address, 4-23
Translation, virtual to physical, 1-7
Trap Request (TRAP(1-O)), 5-4, 5-29
TRAP(1-O) (Trap Request), 5-4, 5-29
Traps, 1-8, 2-11, 2-13, 5-20, 7-28, 7-35
Traps, external, 5-29
TRUE,8-2
TRV (Timer Reload Value) Timer Reload

Reg., 7-36
TWIN,8-2

UA (User Access), 6-3
Underflow, signed, 8-3
Underflow, unsigned, 8-3
User Access (UA), 6-3
User-defined,5-6

V (Overflow) ALU Status Reg., 8-4
Valid bits, Branch Target Cache memory,

4-5,4-8
Valid instructions in Cache, 4-9
Valid transitions, 5-23
VE (Valid Entry) TLB Entry Word 0, 4-5
Vector Area, 1-8, 2-11, 7-29
Vector Area Base address, 2-2
Vector number, 7-17
Vectors, table of, 2-12, 3-59
Virtual-page boundary, 5-17
Virtual-page size, 7-30
Virtual to physical address translation,

1-7,3-72
VN, 8-3, 8-7

Wait mode, 2-16
Warm start, 7-32
Warn (WARN), 4-24, 5-4, 5-30, 5-31

Z (Zero) ALU Status Reg., 8-4
Zero (Z), 8-4

INDEX 1·7

I

i.~ !1

North American __ .,.--______ _
ALABAMA ... (205) 882-9122
ARIZONA :: ... (602) 242-4400
CALIFORNIA,

Culver City ... (213) 645-1524
Newport Beach ... (714) 752-6262
Sacramento(Roseville) (916) 786-6700
San Diego .. (619) 560-7030
San Jose ; .. (408) 452-0500
Woodland Hills .. (818) 992-4155

CANADA, Ontario,

~'iI7;~adaie·:::i:l~l m:~~~g
COLORADO ... (303) 741-2900
CONNECTICUT ... (203) 264-7800
FLORIDA,

Clearwater ... (813) 530-9971
FI. Lauderdale ... (3051776-2001
Orlando (Longwood) ... (407 862-9292

GEORGIA ... (404) 449-7920
ILLINOIS,

Chicago (Itasca) ... (708) 773-4422
Naperville ... (708) 505-9517

~~~~1~N·D·::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::i~6~)1 ~~l:~~~~ 
MASSACHUSETTS ............................................... (617 273-3970 
MINNESOTA ........... : .............................................. (612) 938-0001 
NEW JERSEY, 

Cherry Hill .......................................................... (609) 662-2900 
Parsippany ......................................................... (201) 299-0002 

NEW YORK, 
Liverpool ............................................................ (315) 457-5400 
Brewster ................................... , ......................... (914 )279-8323 
Rochester .......................................................... (716) 272-9020 

NORTH CAROLINA 
Harrisburg .......................................................... (704) 455-1010 
Raleigh ............................................................... (919) 878-8111 

OHIO, 
Columbus (Westerville) .................................... (614) 891-6455 
Dayton ................................................................ (513) 439-0268 

OREGON ................................................................ (503) 245-0080 
PENNSYLVANIA .................................................... (215) 398-8006 
SOUTH CAROLINA ............................................... (803) 772-6760 
TEXAS, 

Austin ................................................................. (512) 346-7830 
Dallas ................................................................. (214) 934-9099 

UT~~~~t~.~.::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::1~6~1 ~~t~gg6 
International __________ _ 
BELGIUM, Bruxelles ........ TEL .............................. (02) 771-91-42 

FAX .............................. (02) 762-37-12 
TLX ...................................... 846-61 028 

FRANCE, Paris ................ TEL ............................. (1) 49-75-10-10 
FAX ............................. (l) 49-75-10-13 
TLX ......................................... 263282F 

WEST GERMANY, 
Hannover area ............ TEL ............................... (05111736085 

FAX .............................. (0511 721254 
TLX ........................................... 922850 

Miinchen ...................... TEL .................................. (089) 4114-0 
FAX ................................. (089) 406490 
TLX ........................................... 523883 

Stuttgart ....................... TEL ........................... (0711) 62 3377 
FAX .............................. (0711) 625187 
TLX ........................................... 721882 

HONG KONG, .................. TEL ................................. 852-8654525 
Wanchai FAX ................................. 852-8654335 

TLX ........................... 67955AMDAPHX 
ITALY, Milan ..................... TEL ................................. (02) 3390541 

................................. (02) 3533241 
FAX ................................. (02) 3498000 
TLX ................................... 843-315286 

JAPAN, 
Atsugi ........................... TEL .................................. 462-29-8460 

FAX .................................. 462-29-8458 

Kanagawa .................... ~~~ ::::::::::::::::::::::::::::::::::m:!~:~m 
Tokyo' ............................ TEL ................................ (03) 346-7550 

International (Continued) 
FAX ............................... (03) 342-5196 
TLX ......................... J24064AMDTKOJ 

Osaka ........................... TEL .................................. 06-243-3250 
FAX ................................ ;. 06-243-3253 

KOREA, Seoul .................. TEL ................................ 822-784-0030 
FAX ................................ 822-784-80 14 

LATIN AMERICA, 
FI. Lauderdale ............. TEL ............................. (3051484-8600 

FAX ............................. (305 485-9736 
TLX .................. 5109554261 AMDFTL 

NORWAY, Hovik .............. TEL ................................... (031 010156 

~t~ ..... ::.::: .. : ......... :: .... :.::: ..... ::.::: ........ ~~.~ ... ~~~~~~ 
SINGAPORE ..................... TEL ................................... 65-3481188 

FAX ................................... 65-3480161 
TLX ........................... 55650 AMDMMI 

SWEDEN, 
Stockholm .................... TEL. .............................. (08) 733 03 50 
(Sundby berg) FAX .............................. (08) 733 22 85 

TLX ............................................. 11602 
TAIWAN ............................ TEL .............................. 886-2-7213393 

FAX ............................. 886-2-7723422 
TLX .............................. 886-2-7122066 

UNITED KINGDOM, 
Manchester area """"',TEL ............................... (0925~ 828008 
(Warrington) FAX .............................. (0925 827693 

TLX ................................... 85 -628524 
London area ................ TEL ............................... (0483~ 740440 
(Woking) FAX .............................. (0483 756196 

TLX ................................... 85 -859103 

North American Representatives __ _ 
CANADA 
Burnaby, B.C. - DAVETEK MARKETING ........... (604) 430-3680 
Calgary, Alberta - DAVETEK MARKETING ....... (403) 291-4984 
Kanata, Ontario - VITEL ELECTRONICS ........... (613) 592-0060 
Mississauga, Ontario - VITEL ELECTRONICS .. (4161676-9720 
Lachine, Quebec - VITEL ELECTRONICS ......... (514 636-5951 
IDAHO 

INTERMOUNTAIN TECH MKTG, INC ........... (208) 888-6071 
ILLINOIS 

HEARTLAND TECH MKTG, INC ................... (312) 577-9222 
INDIANA 

~~m~Bt>fA-N~~~9J~~~.I.? .. ~.~.~.K.~~I.~.~ ...... (317) 921-3450 
Indianapolis - ELECTRONIC MARKETING 
CONSULTANTS, INC ....................................... (317) 921-3450 

IOWA 
KA~~~§NZ SALES ............................................... (319) 377-4666 

Merriam - LORENZ SALES ............................ (913) 469-1312 
KE~'+1MRY LORENZ SALES .............................. (316) 721-0500 

ELECTRONIC MARKETING 
MI8~~~~LTANTS, INC ....................................... (317) 921-3452 

Birmingham - MIKE RAICK ASSOCIATES .... (313) 644-5040 
Holland - COM-TEK SALES, INC .................. (616) 392-7100 

MI~~~SO~~M-TEK SALES, INC ........................ (313) 344-1409 

MI~~bu~~ter Tech. Sales, Inc ........... , ................ (612) 941-9790 

NEb~~§~i SALES ............................................... (314) 997-4558 

NEW~~~rcbALES ............................................... (402) 475-4660 

NE~H~3~~N DESERT STATES ........................ (505) 293-8555 

W~scid1rJ~~s60MNp~N~~NC ....................... (315) 437-8343 

oHy8NSUL ANTS, INC ....................................... (516) 364-8020 

Centerville -DOLFUSS ROOT & CO ............ (513) 433-6776 
Columbus - DOLFUSS ROOT & CO ............. (614) 885-4844 
Strongsville - DOLFUSS ROOT & CO .......... (216) 899-9370 

OREGON 
ELECTRA TECHNICAL SALES, INC ............. (503) 643-5074 

PENNSYLVANIA 
RUSSELL F. CLARK CO. ,INC ........................ (412) 242-9500 

PUERTO RICO 
COMP REP ASSOC, INC ................................ (809) 746-6550 

UTAH, R2 MARKETING ........................................ (801) 595-0631 
WASHINGTON 

ELECTRA TECHNICAL SALES ...................... (206) 821-7442 
WISCONSIN 

HEARTLAND TECH MKTG, INC .................... (414) 792-0920 
Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance 
characteristics listed in this document are guaranteed by specific tests, guard banding. design and other practices common to the industry. For specific testing details, 
contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein. 

~ Advanced Micro Dsvices, Inc. 901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088, USA 
.til Tel: (408) 732-2400 • TWX: 910-339-9280 • TELEX: 34-6306 • TOLL FREE: (800) 538-8450 
... APPLICATIONS HOTLINE & LITERATURE ORDERING • TOLL FREE: (800) 222-9323· (408) 749-5703 

© 1990 Advanced Micro Devices, Inc, 
10122100 

Prinled in USA 




