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PREFACE 

The 29I(TM Family of microprocessors changes the meaning of "high performance" for 
32-bit CMOS Reduced Instruction Set Computers (RISC). First-generation RISC pro­
vided performance in the 4 to 5 million instructions per second (MIPS) range. But the 
29K Family of three-bus RISC microprocessors (the Am29000™, Am29005™, and 
Am29050™ processors) can sustain performance in the 1 0- to 32-MIPS range. 

The 29K Family brings high performance to a wide range of cost-sensitive applications 
ranging from laser printers to network bridges/routers and embedded controllers using 
DRAM or VDRAM (10 to 17 MIPS), to extremely high-performance graphic accelerators 
and multi-processor systems, using cache or SRAM (17 to over 32 MIPS). 

The 29K Family of microprocessors gives the computer-system designer an entire 
spectrum of cost-effective system performance solutions using a single hardware and 
software platform. These microprocessors provide many features for easing the per­
formance burden placed on system memory so slower, lower-cost memory systems can 
be used at any given level of system performance. 

This handbook provides 29K Family memory system design information and specific 
examples helpful in determining how to design a memory system to give you the best 
cost/performance capabilities in the Am29000, Am29005, and Am29050 microproces­
sors. The designs shown in this manual illustrate memory interface examples using the 
29K Family of three-bus processors. Since the Am29000, Am29050 and the Am29005 
processors are pin-, bus-, and software-compatible, references to the Am29000 proces­
sor are interchangeable with the Am29050 and Am29005 processors. This manual does 
not provide examples for the Am29030™ or Am29035™ processors since these two 
devices are implemented with a two-bus architecture. 

Chapter 1 summarizes the performance capabilities of the Am29000 32-bit CMOS 
microprocessor. 

Chapter 2 contains basic information on memory system architectures and how to 
choose between them. 

Chapters 3 through 11 explore memory system design options in detail, often providing 
detailed design examples. The types of designs and examples are: 

• Chapter 3: The Design Process-SRAM Example 

• Chapter 4: The Design Process-Simple EPROM Example 

• Chapter 5: Connecting the Instruction/Data Buses 

• Chapter 6: 16-Bit Memory Architecture 

• Chapter 7: Interleaved SCDRAM 

• Chapter 8: Single-Bank SCDRAM 

• Chapter 9: Interleaved VDRAM 

• Chapter 10: Single-Bank VDRAM 

• Chapter 11: Integrated Memory Interface Controllers 
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In many applications, the simplest and most cost-effective method of interfacing memory 
with the Am29000 processor is to use an integrated memory controller device, such as 
the ones described in Chapter 11. In other applications, a custom-designed interface 
may be appropriate, as described in Chapters 3 through 10. 

Application notes are available from your AMD~ representative for many of the design 
examples presented in this handbook. The handbook contains basic, high-level informa­
tion on the design examples, while the application notes provide both basic and detailed 
information (such as parts lists and performance benchmarks). 

Additional information on the 29K Family of products can be obtained by calling the 
AMD 29K hotline number: 800 2929-AMD (800292-9263) or 512462-5651. 
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OVERVIEW 

The Advanced Micro Devices 29K Family of three-bus, streamlined-instruction proces­
sors is a new generation of CMOS 32-bit, high-performance microprocessors. The 
Family is based on Reduced Instruction Set Computer (RISC) architecture principles, 
providing the ability to execute one instruction almost every clock cycle. The processors 
in the 29K Family provide the following features: 

• A streamlined set of instructions, each of which can be executed in a single clock 
cycle. The instruction set is generally less complex than those of prior-generation 
processors, while still providing support for all the basic and most frequently needed 
algorithm steps. These simpler instructions serve to break complex algorithms down 
into a series of simple steps that are then exposed to powerful optimization tech­
niques embodied in the latest generation of language compilers. 

• An on-chip instruction cache and extensive register set, allowing fast execution by 
reducing the number of accesses to external system memory. 

• A load-store method of access to external resources, often allowing parallel execution 
of internal (register-to-register) instructions and memory-I/O (register-to-external) 
instructions. 

• Independent instruction and data buses that provide support for concurrent and con­
tinuous accesses of external instruction and data memory. Instruction memory can 
feed the processor with a new instruction in each cycle while the 29K Family memory 
bus simultaneously provides access to data operands. 

Through the use of RISC techniques and the latest in advanced high-speed CMOS 
technology, the highest-speed 29K Family members are able to sustain performance of 
23 to 32 Million Instructions Per Second (MIPS), with a peak of 40 MIPS, when clocked 
at 40 MHz. This is roughly equivalent to between 22 and 30 times the performance of a 
VAX 11naO. 

PERFORMANCE/COST OPTIONS 

If the designer's target is to sustain the highest possible level of performance, the 
memory system must be able to supply the microprocessor at a rate of one instruction 
per clock cycle. In that case, the memory-system architecture becomes a critical 
element in supporting the overall system performance, and also contributes significantly 
to the overall cost. 

However, it is important to understand that the 29K Family members can also achieve 
very good performance in lower-cost designs. System costs are reduced by using 
DRAM, which has a far lower cost per bit than static RAM, and by using lower-speed, 
lower-cost 29K Family members such as the Am29005 processor. Performance in the 6-
to 17-MIPSrange can be achieved by using EPROM, static-column DRAM, or video 
DRAM, at clock rates in the 16- to 25-MHz range. Yet in this kind of lower-cost deSign, 
the system performance still far exceeds that of comparably priced prior-generation 
microprocessors, and even that of many current-generation RISC microprocessors. 
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The 29K Family members offer various levels of performance while sharing a common 
pin structure, bus structure, and instruction set, together with an extensive set of soft­
ware tools for use in a wide spectrum of cost-effective, high-performance systems. The 
29K Family thus provides a wide choice of performance at reasonable cost, without 
requiring a change in processor architecture or software. 

MEMORY LATENCY AND PERFORMANCE 

A processor capable of executing instructions at a rate of one per clock cycle must have 
a memory system that can sustain that rate of access. The key to high performance in a 
system is to provide burst mode access in the memory architecture. The memory sys­
tem design will maintain high performance if it can sustain a burst access rate of one 
access per cycle, even if there is some initial access latency at the beginning of each 
burst access. 

The 29K Family is designed to minimize internal execution-pipeline latency, while allow­
ing the memory system as much latency as possible without loss of performance. 
Therefore, lower-cost and slower memory systems can often meet the system 
requirements. 

Low-speed memory systems can use techniques such as pipe lining and bank­
interleaving to sustain the required burst access rate. In addition, burst mode access is 
intrinSically supported by modern dynamic-memory devices having the property of high­
speed sequential access after a slower initial random-access time. Examples of these 
memory devices are: DRAM with page mode, nibble mode, static-column mode, or 
video {serial output} capability. 

The allowance for initial latency is provided by a number of 29K Family features: 

• For instruction accesses, the Am29000 and Am29050 processors contain an on-chip 
Branch Target Cache™ memory, which provides up to four cycles for the memory to 
begin supplying a sequential burst of instructions without incurring a performance 
penalty. 

• For data accesses, the 29K Family members can overlap memory load and store 
operations with instruction execution, so memory latency occurs in parallel with con­
tinued instruction execution. The compiler or programmer can schedule a memory 
access in advance of when the data is required. 

• Once data is read from the memory, it is forwarded directly to the execution stage for 
use in the next cycle. Again, this minimizes the internal pipeline latency to allow 
additional access time in the memory. 

• The large register file {192 registers} of the Am29000 processor acts as an on-chip 
stack cache to help reduce the number of off-chip data accesses. 

• The on-chip Memory Management Unit (MMU) in the Am29000 and Am29050 
processors minimizes pipeline latency by making translated addresses available to 
the memory early in the cycle following execution. In addition, the MMU simplifies the 
memory design by performing the address-translation task on-chip. 

• The 29K Family of three-bus microprocessors uses separate, non-multiplexed data 
and instruction buses to simplify the memory interface and to maximize the informa­
tion transfer rate. 
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HOW TO USE THIS HANDBOOK 

This handbook shows how to use the Am29000, Am29005, and Am29050 processors 
in a non-cache memory environment with standard, currently available memory devices. 
Examples of several specific memory systems are shown, often providing block dia­
grams, state diagrams, and PAL® device equations. 

Chapter 2, Basic Issues for Am29000 Processor Memory Designs, provides basic 
information on memory system architectures and how to choose between them. Memory 
architecture options, key considerations, and trade-offs are introduced. Memory inter­
face signals and other implementation details are described. 

Chapter 3, The Design Process-SRAM Example, takes you through the process of 
deciding what type of architecture is best for your application. Although static RAM is 
used as an example, the basic principles explained in Chapter 3 apply to other types of 
memory as well. 

It is recommended you read Chapters 1, 2, and 3 before you read the other chapters. 
Chapters 4 through 11 explore additional memory system design options in detail, 
usually providing detailed examples. You can read these chapters in any order or 
consult them as needed. 

At the end of Chapter 3 is detailed information on two specific examples: a dual-bank 
interleaved SRAM memory, and a single-bank non-interleaved SRAM memory. SRAM 
memory is appropriate for systems where speed is important and memory size require­
ments are modest. 

Chapter 4, The Design Process-Simple EPROM, shows a simple, low-cost instruction 
memory made with a single bank of fast EPROM. 

Chapter 5, Connecting the Instruction/Data Buses, describes a form of memory architec­
ture in which the instruction bus and data bus are tied together into a single bus. This 
architecture offers one method of trading performance for cost savings. 

Chapter 6, 16-Bit Memory Architecture, describes a memory organized into 16-bit 
words, rather than the usual 32 bits. Using a special set of clocks, 16-bit words are put 
together to form the 32-bit words used by the Am29000 processor. This scheme is 
useful in systems with moderate speed and memory size requirements. 

Chapter 7, Interleaved SCDRAM, is a detailed design example using dual interleaved 
banks of Static Column DRAM (SCDRAM). In effect, a SCDRAM memory has a built-in 
cache consisting of one row of words. SCDRAM is appropriate for systems where per­
formance and memory size requirements are important, combined with a need for lower 
cost and complexity. 

Chapter 8, Single-Bank SCDRAM, is another SCDRAM design example. This low-cost 
design uses a single bank of non-interleaved SCDRAM. The intention of this design is to 
reduce the component count and power consumption to a minimum, while maintaining 
the high performance of single-cycle burst access to memory. 

Chapter 9, Interleaved VDRAM, is a detailed design example using dual interleaved 
banks of Video DRAM (VDRAM). VDRAM memory allows independent and concurrent 
access through two ports: a conventional read/write random-access port (for the data 
bus), and a serial shift register port (for the instruction bus). VDRAM is appropriate for 
systems where simplicity and cost savings are important, and performance require­
ments are moderate. 
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Chapter 10, Single-Bank VDRAM, is another detailed design example similar to that in 
Chapter 9, but using a single-bank, non-interleaved VDRAM memory. Its complexity, 
cost, and performance are lower than the design in Chapter 9. 

Chapter 11, Integrated Memory Interface Controllers, describes some integrated 
devices designed specifically for interfacing memory with 29K Family microprocessors. 
Although somewhat less flexible than a custom design, using an integrated controller is 
often the best solution because of the simplicity and reasonable cost of the interface. 

Design Notes 

Some of the design examples presented in this handbook are paper designs that have 
not been implemented in hardware by the authors. Although all designs have been 
thoroughly tested logically, they are not guaranteed to be error-free. They are presented 
in this handbook to show the methodology in designing memory systems for the 29K 
Family of microprocessors. 

The SCDRAM and VDRAM designs in Chapters 7 through 10 have been functionally 
simulated on an Apollo workstation with Mentor CAD software. Behavioral models for 
memories, PAL devices, SSI and MSllogic, and the Am29000 processor were provided 
by Logic Automation. To the best of our knowledge and test vectors, we believe the 
SCDRAM and VDRAM designs work correctly. 

Overview 



BASIC ISSUES FOR 
Am29000 PROCESSOR MEMORY DESIGNS 

The Reduced Instruction Set Computer (RISC) architecture of the 29K Family gives the 
user many more options in designing a memory system than a traditional Complex 
Instruction Set Computer (CISC) microprocessor. Built-in features in the 29K Family 
architecture, such as burst-mode addressing, allow faster execution out of relatively 
slow memory than most other processors. The use of these features are options, 
depending on performance needs. The memory system can be optimized for speed, 
low power, small board space, cost, or whatever is the key determining factor. In order 
to balance the trade-offs effectively, it is important to understand the processor interface 
to the memory system. 

This chapter describes the memory access signals used by the processor, when the 
signals are used, and how. In addition, this chapter suggests some reasonable compro­
mises that can be made in the memory design to meet specific application goals. In the 
actual design examples presented later, the design methodology is shown in detail. 

KEY MEMORY SYSTEM FACTORS 

There are several important factors to consider when designing a memory system. 
These factors include the memory access speed, memory size requirements, memory 
structure, design complexity, throughput requirements, and bus structure. 

Access Speed 

The main goal of using the 29K Family processors is to obtain a substantial perform­
ance improvement over other solutions, while maintaining or lowering the overall system 
cost. Unlike traditional microprocessors, the 29K Family offers a wide performance 
range depending on how the memory system is designed. Memory access speed is the 
key element in determining the performance limit of an Am29000 processor system. But 
there are two separate measures of access speed; the balance between them provides 
a wide range of performance-to-cost trade-offs. 

The first measure of speed is how fast a random word of memory can be accessed; this 
is the initial access time. The second measure is how fast subsequent sequential words 
of memory can be accessed; this is the burst access time. The distinction between the 
two is important to understand. 

The burst access time of the instruction memory system is normally tuned to the proces­
sor cycle time to allow single-cycle fetches during an instruction burst. Achieving a 
single-cycle burst instruction memory is the most important factor in achieving a high 
performance system. 

In contrast, the initial access time applies only during the first non-sequential instruction 
or data fetch and is therefore of less importance. In addition, an instruction cache called 
the Branch Target Cache memory inside the processor hides the first cycles of the initial 
access time, so the initial latency in many designs in effect becomes invisible to the 

Basic Issues for Am29000 Processor Memory Designs 2-1 



~AMD 

2-2 

processor. The combination of burst mode and the Branch Target Cache memory gives 
excellent performance characteristics, even when executing instructions in relatively 
slow DRAM. 

The number of data loads and stores is minimized by an internal stack cache that has 
an image of the memory stack stored in registers. The registers are inside the processor 
and are therefore immediately accessible to all instructions being executed. Further­
more, the latest compilers have early load generation capability, where the compiler 
schedules loads as early as possible ahead of the first reference to the data. As a result, 
the data memory in many cases can be designed using only simple (rather than burst) 
access. The exceptions would be where very large amounts of data must be transferred 
quickly, as in DMA and in some graphics applications. 

The initial access time is different from burst access time for the following reasons: 

• When a new address is supplied by the processor, all bus devices must decode the 
address to determine whether or not to respond. So an initial access requires some 
time to decode the address and begin the access of a memory word. 

A burst access is always to the next word in sequence after either an initial access or 
a previous burst access. Therefore, the burst access does not require any address 
decode time; the memory block already knows it is selected and only needs to incre­
ment the address from the last access. Note that the memory block does not need 
any special logic (Le., added delay, to deal with the possibility of a burst access 
crossing memory chip or block boundaries because the Am29000 processor always 
supplies a new address at every 256-word address boundary). 

• In the case of a memory block that recognizes its address, the selected word of 
memory must be accessed. Some memory devices like DRAMs require more time to 
access a random word of memory than to access a sequential word. This is generally 
due to time multiplexing the upper (row) and lower (column) halves of the memory 
address to the DRAM. Therefore, a random-word access requires both a row address 
and a column address. 

A burst access needs only a new column address, or in some types of memories, 
only a signal to shift out the next sequential word. Thus, access to a sequential word 
is faster than access to a random location (new row and column address). 

• When a new row is accessed, DRAM memories require delay time between the end 
of a previous access and the beginning of the new row access. This time is in addi­
tion to the delay time associated with transferring the new row address. This added 
delay is called the precharge time. When a random access immediately follows a 
previous access to the same memory, the new initial access incurs the precharge 
time delay. This delay is not incurred in a burst access because the same row is 
addressed. 

• In a bank-interleaved memory system, the first access to each bank in a series gains 
no benefit from the overlapping of access time between banks. This is because all the 
banks must go through a full bank access time before the first (initial) word is avail­
able. Therefore, the initial access is always longer than subsequent burst accesses in 
an interleaved memory architecture. This concept is covered in more detail later. 

Generally, an initial access is slower than a burst access due to the address decode, 
row-address entry, precharge delay, and initial bank access that may be required for an 
initial access, but do not apply to a burst access. 

Basic Issues for Am29000 Processor Memory Designs 
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Memory Size 

In a dedicated controller application, a few kilobytes of code and data space may be all 
that is needed. If so, the speed and simplicity of memory can be maximized by using 
Static RAM (SRAM). But if a few megabytes or more are required to handle a large 
embedded controller task, then the board space, power, and cost considerations usually 
favor DRAM over SRAM. 

Memory Structure 

Cost, power, and board-space considerations favor DRAM memory, while speed and 
simplicity considerations favor SRAM. Besides the two extremes of using only SRAM or 
only DRAM, there is also the option of mixing the two. Instruction memory may be built 
partly with SRAM, to provide fast access to some kernel routines, and the greater part 
with DRAM for economy. Or instruction memory may be built with SCDRAM, and the 
data memory built with a relatively slow type of SRAM, as described later in this chapter. 

In addition, if performance is important, a multi-bank interleave access structure may 
be used. When using bank-interleave schemes, slower memories can achieve the 
same performance as a single bank of higher-speed memory during the critical 
burst-access mode. In the case of SRAM, it means less costly memories can still pro­
vide maximum burst performance. For DRAMs, it means these slower memories can 
still give maximum burst performance. 

Where maximum speed is required along with large size, a compromise structure can 
be used with a little SRAM and a lot of DRAM. That option is called cache memory. A 
cache memory can be implemented, for example, as a soft cache, where the virtual 
tags are held in the TLB registers. As this is a software application, the details of such 
an application fall outside the scope of this book. 

Complexity 

The simplest memory system probably consists of one bank of EPROM for instructions 
and one bank of SRAM for data, with each bank capable only of simple (not burst) 
accesses. In a design such as this, there is virtually no control logic, no address decode 
logic, no buffers, and no refresh issues to deal with. Of course, this structure may not 
provide enough speed, flexibility, or memory size. 

The other end of the complexity spectrum involves something like dual-interleave DRAM 
banks with burst access ability. Here, other considerations must be dealt with: refresh 
issues, bank sequencing, address counters, and dual porting of the instruction bank for 
both instruction and data accesses. Although this might seem complex, commercially 
available memory interface gate arrays now reduce all these design issues to a 
relatively easy task. 

Throughput 

Each 29K Family member is a synchronous machine. The timing of all its actions is 
in relationship to its clock. Information flow to or from the microprocessor must 
occur in time units that are integer multiples of the system clock cycle. This means if 
the memory access time does not fit into a single clock cycle, two cycles will be taken. 
Even if the access time only misses by a few nanoseconds, a whole cycle of time is lost. 
Depending on how often that situation comes up, it might be advantageous to slow the 
system clock down by a few nanoseconds so most of the memory accesses can occur 
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in a single cycle. Thus, the overall throughput of the system can be significantly im­
proved in some cases by slowing the system down. 

The option of slowing down the memory to match a slightly slower system clock can 
sometimes result in significant savings in cost and complexity. The best tool for finding 
the optimum cost-performance point is the architectural simulator available for the 29K 
Family members. This software simulator allows the designer to get a performance 
measurement of the application program, running the program with a simulated model of 
the processor and the memory system. 

Bus Structure 

The Am29000, Am29005, and Am29050 processors have three separate buses: 

• Address Bus, shared between instruction, data, I/O, and coprocessor accesses; 

• Instruction Bus, used to move instructions from the system memory to the processor; 
and, 

• Data Bus, used to move data between the processor, system, memory, I/O devices, 
and coprocessors via load and store operations. 

Together, these buses and their related control lines are called the channel. The 
channel provides concurrent access of instructions and data when the instruction and/or 
data memories are accessed via pipeline or burst requests. As shown in Figure 2-1, this 
structure, from a performance standpoint, favors memory systems with separate mem­
ory blocks for holding instruction and data for simultaneous access. 

The instruction and data buses can be tied together to provide a system with a common 
instruction and data space. The benefit of doing this is a lower part count, as only one 
physical memory array is needed. The drawback is slightly less performance, because 

Figure 2-1 Three-Bus Architecture 
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the processor cannot overlap instruction fetches with data operations. This option is 
described in more detail later. (See Chapter 5.) 

The data bus is bidirectional, the address bus is output only, and the instruction bus 
is input only with respect to the Am29000 processor. When separate data and instruc­
tion memory blocks (in RAM) are used, the system design must provide a way to load 
the instruction memory, because the processor cannot directly write information into the 
instruction memory via the instruction bus. This is covered in more detail later in this 
chapter. 

TRADE·OFFS 

When attempting to determine the optimum memory system for a given application, 
there are a number of factors to consider. The real determining factor is usually one of 
cost, power, or board space. Some rough guidelines are given here. 

Note that there are several types of integrated controller devices specifically designed to 
handle interfacing of DRAM and other types of memory with the 29K Family of proces­
sors. These devices often provide a simple and cost-effective method of implementing 
the memory system. See Chapter 11 for some examples of these devices. 

SRAM 

When building an embedded controller such as a network node processor, digital signal 
processor, or a mainframe-computer 1/0 processor, the main requirement is system 
speed. If the memory requirement is small (up to a megabyte or so), then high-speed 
SRAM works very well. 

For small memory systems, the cost, power consumption, and board space of SRAM 
are reasonable, and the speed is the best possible. In a well-designed 40-MHz clock­
rate system using the Am29050 processor, the initial access time is one to three cycles, 
the burst access speed is a single cycle, and the average sustained performance is 
in the 29- to 32-MIPS range. (Because of the internal caching in the processor, peak 
performance can reach up to 40 MIPS with any memory system, but it is the sustainable 
performance that counts.) 

DRAM 

SRAM designs provide the fastest initial access times. But SRAMs are not very dense 
and therefore consume a large amount of board space for a given size memory system. 
Also, they tend to be expensive and consume a good deal of power for a given size 
memory. 

Dynamic RAMs can provide far more memory at lower cost and lower power in the 
available board space than is possible with SRAM. The main penalty for using DRAMs 
is a loss of speed in the initial memory access time. Burst-access performance can be 
maintained by using bank interleaving and Static Column DRAMs (SCDRAM). Fortu­
nately, the Am29000 and Am29050 processors provide features that help compensate 
for a slower initial access time of system memory. 

The Am29000 Branch Target Cache memory stores the first four instructions from the 
32 most recently accessed branch target addresses. (The Am29050 Branch Target 
Cache memory operates in the same manner but is twice as large; instructions are 
stored from the 64 most recently accessed branch target addresses.) When a branch 
instruction is executed and the branch target address resides in the Branch Target 
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Cache memory, the first four instructions after the branch come from the internal cache. 
At the same time, the address of the first instruction following those in the cache is 
placed on the address bus. In effect, the first three cycles of the memory's initial access 
time (four cycles in the Am29050 processor) are hidden by the continued execution of 
instructions from the Branch Target Cache memory. Note: three cycles are saved in the 
Am29000 and Am29005 processors, rather than four, due to a cycle in which returning 
instructions must wait in the instruction prefetch buffer; in the Am29050 processor, 
instructions can bypass the prefetch buffer. 

The Am29000 processor accesses virtually all its instructions in burst mode. This means 
the initial access time of the system memory can be amortized over multiple cycles of a 
burst access. This again lowers the penalty of a slower initial access time. 

The large register file of the Am29000 processor provides a data cache for the most 
frequently used operands. This significantly reduces the number of times memory needs 
to be accessed for data as compared with what is required by most competitive micro­
processors. Also, the Am29000 processor load and store operations may be overlapped 
with the execution of other instructions, which again reduces the impact of a slower 
initial access-time memory system. 

As a result, DRAMs can significantly increase the size of system memory, while also 
improving system performance-to-price ratio. The cost per bit of memory in the system 
drops dramatically while performance is reduced only slightly. 

SCDRAM 
When building a large embedded controller, memory size is important, and typically, so 
is system speed. For this type of system, an architecture using Static Column DRAM 
(SCDRAM) offers cache-like performance but at a far lower cost and complexity than a 
SRAM cache. 

An SCDRAM memory design using interleaved memory banks has an initial row 
access time of two to six cycles (depending on processor and memory speed), with 
single-cycle burst accesses. SCDRAM devices also provide a very important caching 
function. The static column capability means once a row is addressed for the first time, 
all subsequent accesses within that row can be made by simply changing the column 
address. Subsequent accesses to any address within the row will save the timing over­
head of multiplexed row and column addresses. Random access within the row can 
occur in three cycles; subsequent burst accesses are single cycle. 

In effect, the SCDRAM has a built-in cache with one row of words. The time required to 
do a complete cache re-Ioad is the initial row access time. 

This cache is put to best use when memory accesses tend to be sequential and local­
ized, as they usually are for instruction memory. Also, many programs have data access 
patterns that benefit from the improved access speed within rows. Even when the 
accesses are not sequential, as long as the accesses remain local to one row of the 
memory, the initial access time is held down to three cycles, which is nearly what would 
be achieved with fast SRAM. 
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In a dual-bank interleaved SCDRAM memory using sixteen 1-Mbit by 4-bit SCDRAMs, 
the total memory size is 2M words (8 Mbytes), resulting from the two 1-Mbit by 32-bit 
memory banks. The cache size is 2K words (8 Kbytes), resulting from the two banks 
of memory, with a 1-kbit row cache in each memory device. 

The Am29000 processor's large register file, independent instruction and data buses, 
overlapped load and store operations, and Branch Target Cache memory (in the 
Am29000 and Am29050 processors) are all key features that contribute to the 29K 
Family's high performance with low-cost DRAM memories. 

Page Mode DRAM 

In a fashion similar to SCDRAMs, page mode DRAMs can be used to allow cache-like 
performance by utilizing the faster access available within a page of memory. Page 
mode accesses are typically slower than static column accesses, so the performance of 
such a system is lower than a SCDRAM system. However, since all standard DRAMs 
support page mode accesses, this type of memory system is lower in cost than a 
SCDRAM system. The design can be made very simple by using special memory inter­
face ASICs, specifically designed to be used with page mode DRAMs. An example of 
such a device is the V3 Corporation's V29BMC Burst Mode Memory Controller, 
described in Chapter 11 . 

Video DRAM (VDRAM) 

For a simpler, medium-speed application, a Video DRAM (VDRAM) memory architec­
ture may be appropriate. VDRAM does not quite have the same caching ability of the 
SCDRAM, but it does provide dual porting of a large common memory array. 

One port of the VDRAM is a serial shift register that holds one row of bits from the inter­
nal DRAM array. A by-4 organization memory has four shifters. This row is shifted out, 
providing consecutive memory words, just what the instruction bus of the Am29000 
processor needs. The other VDRAM port is a bidirectional random-access bus permit­
ting read or write operations on any word of the internal DRAM array. This is just what 
the data bus needs. 

The two ports are controlled by a common address input of the VDRAM. As shown in 
Figure 2-2, that matches nicely with the common address of the 29K Family. Once the 
shifter port is loaded with a row of data, the shifter operation is independent of the 
internal DRAM array and the random I/O port. This permits simultaneous access to 
instructions and data by the processor. 

Using the VDRAM, a single bank of fairly dense memory can serve both the instruction 
and data buses of the Am29000 processor in a very simple and efficient manner. The 
trade-off here is in speed. The initial access time for a VDRAM in a 25-MHz system is 
three to seven cycles, depending on the memory speed. The burst access speed for 
instructions can still be single cycle with a 25-MHz shift rate on the serial port. The burst 
access speed on the random I/O port is limited by the speed of page-mode access, 
which requires cycling of a column address strobe; data-burst accesses are three to four 
cycles each. This could be improved by bank interleaving. 

Considering the simplicity and low cost of the VDRAM design, it still delivers respectable 
performance. 
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Figure 2·2 VDRAM Main Memory 
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MEMORY IMPLEMENTATION ISSUES 

Once the overall architecture has been decided, it is important to get a good conceptual 
understanding of the interface between the processor and memory. The most important 
signals and the protocols used by the processor will be examined first. 

Memory Control Signals and Protocol 

The 29K Family has been designed to fully utilize the bandwidth of the memory system 
and hence ensure the system cost remains at a minimum. State-based bus signaling is 
used, greatly reducing the memory interface complexity normally associated with RiSe 
processors. In order to achieve this level of simplicity, innovative and somewhat novel 
architectural features are incorporated. These features might appear complex at first 
and warrant some further explanation. 

The 29K Family memory interface is state based. For instance, in the case of a system 
supporting only simple instruction fetches, the processor will start the instruction fetch 
sequence by providing an address and an active IREO (Instruction Request) signal. The 
memory system responds, once it has obtained the required instruction, by returning an 
active IRDY (Instruction Ready) signal. The state based nature of the processor means 
then IREO will simply stay active. In very simple terms, the interface signal edges have 
no meaning; the active state during the rising edge of the clock provides the meaning. 

The processor therefore expects the memory system to track the state of the processor 
throughout the memory accesses. By far the simplest way of supporting this require­
ment is to implement the memory system control paths with a state machine. 
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Simple Access· 

The start of a simple (non-burst) access to instruction memory is notified by the IREa 
signal going active. This signal also tells the memory system that a valid instruction 
address is on the address bus. The memory system, on seeing IREa active, is expected 
to respond with an instruction word and assert IRDY. This sounds very simple and in fact 
is. However, a few more signals are required for correct operation. 

The Am29000 processor has several logical address spaces and distinguishes between 
the two possible instruction spaces by the signallREaT (Instruction Request Type). 
This signal must be included and decoded as if it were an address line. 

The final signal that must be monitored for a simple access is BINV (Bus Invalid). This 
signal, if active, is asserted in the second half of the first cycle of an initial access; it 
signals that the state of IREa and the address are invalid, and the access must be 
ignored. 

Instruction Burst Access 

The Am29000 processor burst mode access mechanism takes advantage of the fact 
that instruction code is sequential in nature, usually with blocks of four to ten instructions 
executed in succession. A sequential block ends when a program branch occurs. The 
burst mode protocol allows single-cycle access to be easily achieved from a memory 
system, thus providing a cost-effective, high-performance solution. 

The processor informs the memory system it would like to start a burst access by assert­
ing IBREa (Instruction Burst Request). Due to timing constraints, this signal is normally 
not usable until the second clock cycle of an access. However, this does not impose any 
problem, because most burst memory systems require a minimum of two clock cycles 
for the initial access. The signal is therefore normally captured in a register and the 
resultant signal used in the second cycle. 

In order to support burst mode accesses, the addition of an address latch and an a-bit 
counter is required. The latch and the counter provide the subsequent addresses to the 
memory system, rather than coming from the Am29000 processor. The exception to this 
are VDRAM systems where no counter is needed. 

To sustain the burst, the memory system responds to IBREa by asserting IBACK 
(Instruction Burst Acknowledge). Whenever the processor sees an active IBACK, it 
assumes the memory system has accepted the initial address and hence will remove 
IREa, whether or not an IRDY has been supplied. (This sequence of events is very 
important to understand in order to correctly handle the situation described in the next 
paragraph.) In the cycle following the assertion of IBACK, the processor releases IREa 
and the address bus, freeing it to be used for other types of accesses. 

As long as the processor outputs an active IBREa, it expects the burst to continue. If 
the processor's prefetch buffer becomes full due to a pipeline stall, the processor will 
request a temporary suspension of the instruction supply. This is signaled by the proc­
essor de-asserting IBREa. At this point, the IRDY signal must also be de-asserted 
following the completion of any outstanding access. 

If IBACK is asserted throughout the suspension, than when the stall condition i~ 
moved, the processor will re-assert IBREa and expect the burst to continue. If IBACK is 
de-asserted during the suspension, the burst is not restarted. Instead, the processor will 
inform the memory system of a new access by asserting IREa with a new address. 
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The memory system has no way of knowing the difference between a suspended burst 
(stall) and a completed burst (branch). Therefore, it is recommended the signal IBACK 
be based on combinatorial logic using IBREa, the instruction burst state, and IREa, 
such that IBACK is forced inactive in the first cycle of a new access, when IREa goes 
active. Forcing IBACK inactive causes the processor to keep IREa and the address 
stable long enough for the memory system to capture the new address. 

An instruction burst access m~reempted by de-asserting IBACK. However, if 
IBREa was active along with IBACK during the last cycle in which IRDYwas active, or 
when no access is pending (such as when a suspended burst access is resumed by the 
assertion of IBREa), one last word of information must be transferred before the burst 
access is ended. That word can be transferred in the same cycle that the burst 
acknowledge is de-asserted or in some later cycle. Until it is transferred, the burst ac­
cess is not complete and no new access of the memory may begin. 

Data Burst Access 

The sequence of events for data burst access is similar to that for instruction burst 
~,..,..o~~ Tho ,.."rro~ ... " ... rfinn morn" ... , in+o"~,..o ~inn~l~ ~ro n~morf nCJ;:1l 'R"C'nV 0+,.. 
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Theoretically, the Am29000 processor always executes a Load Multiple or Store Multiple 
operation as a single contiguous burst access with no suspended access cycles. All 
information transferred during the Load or Store Multiple operation goes to or from the 
registers in the internal register file. In the actual Am29000 processor implementation, 
the Load and Store Multiple operations are executed as a burst of n-2 Loads or Stores 
with the first and the final (nth) Load or Store issued as simple accesses rather than as 
part of the burst. The result is that all data burst accesses begin with a simple access 
and are suspended one cycle before the end, and are immediately followed by a single, 
simple access cycle to complete the Load or Store Multiple operation. Following this 
rule, a Load or Store Multiple two cycles long is executed as two simple accesses in 
sequence. Depending on the state of the instruction pipeline, it is possible for an 
instruction fetch to occur between the suspended data burst access and the final data 
simple access. If the data burst access performance is critical, extra steps can be taken 
in the design of the memory or bus-interface logic to anticipate this behavior. 

Pipeline Enable Signal 

The Am29000 processor has separate but equivalent request and response control­
line sets for instruction and data accesses. The exception to this rule is the Pipeline 
Enable (PEN) signal. This response signal must be shared between all instruction and 
data accesses. Therefore, it is important to note that the only device that should drive 
the PEN signal in a given cycle is a device being selected by a valid address on the 
address bus (selected during a primary access). The PEN signal can be tied Low 
(active) if all bus devices will handle pipelined access, or tied High if all bus devices will 
not handle pipe lined access. 

Memory Response Control Signals 

The following signals from the memory interface to the processor must be in a valid 
state at the end of each clock cycle: the ready signals IRDYand DRDY, the error signals 
IERR and DERR, the acknowledge signals IBACK and DBACK, and the PEN signal. In 
systems with multiple memory control interfaces, each interface must be able to drive 
these response control signals. Only one memory interface can actively drive these 
signals in each clock cycle. As different memory interfaces are addressed by the 
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processor, the control over these signals must pass from interface to interface. This 
transfer of control must be accomplished within a single cycle to ensure the lines are 
valid on each cycle. 

At a 25 MHz or faster cycle rate, it is very difficult to implement the transfer of control by 
selectively driving the control lines via three-state buffers as commonly done in slower 
memory systems. Wire DRing with open-collector drivers is also impractical. 

The solution is to logically OR the respective control lines from each memory interface 
via an 551 logic gate such as a NOR or AND gate. Where there are several memory 
interfaces to be logically ORed, a PAL device such as the PAL 16L8 may be used 
instead of 551 logic gates. 

The "Late Show" Signals 

Three memory control signals from the Am29000 processor arrive rather late in each 
clock cycle, requiring some special handling. The signals are IBREQ, DBREQ, and 
BINV. The bus request signals are valid relatively late after the falling edge of the proc­
essor clock cycle (5Y5CLK). The state of these signals is therefore best captured in a 
register, and used in the next clock cycle. As pointed out earlier, this does not impose 
any problems, because the signals are normally used only in the initial access when 
establishing a burst. 

While the burst request signals are used only in a burst access system, BINV must be 
included as a qualification signal in all memory designs. In every Am29000 processor 
design, there are situations where the processor outputs BINV to indicate to the memory 
system that the other Signals are not valid for that cycle. The easiest way to treat BINV is 
to design the memory interface logic to ignore either IREQ or DREQ when asserted, 
when BINV is also asserted. 

The meaning of BINV applies only to the instruction or data bus access being started. 
BINV is always asserted during the first (and only) cycle of an aborted (canceled) ac­
cess. Any burst or pipelined access already in progress in the unaffected portion of the 
channel is considered able to continue during the BINV cycle. In other words, if a data 
burst access is in progress (active or suspended) when an instruction access begins 
(IREQ is asserted), and BINV is also asserted late in the cycle, only the instruction ac­
cess is canceled; the data access could continue, even transferring a word (DRDY 
active) during the cycle BINV is active. 

Note that for all of these cases, the memory interface knows only that a burst access is 
preempted, terminated, or canceled when it sees a new access of the same type re­
quested (instruction or data). When the processor preempts, terminates, or cancels a 
burst access, it simply makes the Burst Request signal inactive. To the memory inter­
face, that action means only that the access is suspended, not necessarily ended. 50 
the memory interface must continue to monitor and react to all the channel control 
signals. 

BINV can become active in the following situations: 

• When a Memory Management Unit (MMU) translated address is placed on the 
address bus to begin a new access and the processor recognizes the address is 
actually invalid due to a protection violation in the Translation Look-Aside Buffer. 
The new address is effectively canceled by BINV going active. BINV will appear 
with DREQ or IREQ, depending on the type of access. 
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• When a jump instruction is immediately followed by another jump. The second jump 
instruction eliminates the need for any instruction following the first jump. This recog­
nition causes the processor to cancel the memory access for instructions following 
the first jump by BINV going active. 

• On a partial hit in the Branch Target Cache memory. This situation happens when 
the cache line contains a branch instruction in the first or second position in the 
cache. The processor will then cancel the planned access to instruction target + 4, an 
access which is no longer needed, by asserting BINV. 

• An internal or external trap is detected. 

• Any combination of a load and/or store instruction directly following one another. The 
pipeline does not advance on the first instruction. 

• When there is an unaligned data access and the TU bit is set in the Current Proces­
sor Status register. 

Again, in these situations BINV is only defined to disrupt the access being started in 
the cycle that the signal is active. An access on the alternate bus continues even 
though BINV is active. 

• BINV is also involved in the transfer of channel ownership. It goes active during the 
cycle when the processor releases control of all buses and control lines to another 
channel master requesting the channel. It also goes active during the cycle that the 
processor retakes control over the channel being returned to the processor by an­
other channel master. 

During the cycles that BINV is active in this situation, all the channel lines are in a 
state of transition. One channel master is putting its drivers into a high-impedance 
state and the other has yet to begin actively driving the channel. Therefore, there is 
no guarantee of what the logic levels on the channel might be, and all control lines 
and bus lines should simply be ignored while BINV is active. This condition is de­
scribed in detail in the section below. 

Using Another Bus Master 

When a transfer of channel ownership occurs~rocessor completes any simple 
access or suspends any burst access before BGRT (Bus Grant) is made active. 
This leaves any burst access in a state of suspension during the transfer of channel 
ownership. A suspended access in this situation is later preempted by the new channel 
owner beginning a new access of the same type as the suspended access. Or, if the 
new channel owner never requests an access of the same type as the suspended one, 
the suspended access is preempted by the original channel master after ownership is 
returned. This occurs when the suspended access is resumed by the original channel 
owner issuing the address of the point where the burst transfer was suspended. Again, 
note that until preemption occurs, a burst transfer is merely suspended from the memory 
view; this is a subtle but important point. 

During the channel transfer when BINV is active, the state of the channel-control lines is 
not guaranteed. Situations where spurious information is detected as valid can be pre­
vented simply by ignoring any channel-control signals during the time BINV is active 
during a transfer of channel ownership. 

It is fairly difficult for a memory interface to clearly separate the first situation, a channel 
transfer, from the second, a canceled access request on only one channel bus. In the 
first, BINV active means all control signals must be ignored during the transfer of chan­
nel ownership. In the second situation, BINV active only cancels the access on the bus 
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requesting a new access. Control signals for the other bus can still be treated as valid 
and may affect the state of any access in progress. If the separation between these two 
situations cannot be clearly made, the memory-interface logic must be designed so 
BINV is always used as a signal to ignore any bus control or data signal during the cycle 
when BINV is active. 

When BGRT first goes active, it indicates a transfer of channel ownership from the 
processor to another channel master. The first contiguous set of BINV active cycles to 
follow BGRT going active identifies a period when all channel signals should be ignored. 
When BINV goes inactive at the end of the channel-transfer sequence, a period begins 
during which any further assertions of the BINV signal indicate that only the access 
request being initiated with BINV asserted needs to be ignored. This period ends when 
BREa first goes inactive, which indicates the return of control over the channel back to 
the processor. The first contiguous set of BINV active cycles to follow BREa going inac­
tive identifies another period during which all channel signals should be ignored. Follow­
ing this period, any future assertions of BINV apply only to the request being started in 
conjunction with BINV going active, until BGRT again goes active to start the cycle 
over again. 

All the above just gets more complicated if there is more than one channel master in the 
system which could gain control of the channel without the processor gaining control. In 
this case, the BINV recognition logic would have to keep track of all channel master 
BREa and BGRT lines. 

For all that effort, the savings would be one extra cycle of information transfer on an 
unaffected bus for each cycle BINV is asserted, if the unaffected bus is, in fact, ready to 
transfer information during the cycle. This savings would occur very infrequently. There­
fore, it is best to simply define BINV as a signal defining an idle cycle for the entire 
channel. Design the memory system so no action (change of state) occurs as a result of 
any signal on the channel when BINV is active. 

Memory Write Enable 

For memories able to perform data-write operations in a single clock cycle, (e.g., CMOS 
static RAMs), the Write Enable (WE) signal to these memories must be a pulse occur­
ring during the latter half of the write cycle. In general, an Am29000 processor has a 
short positive data hold time after the riSing edge of System Clock (SYSCLK); refer to 
the processor data sheet for exact timing information. If the memory being used has a 
nonzero data-input hold time relative to the active edge of WE, then that edge must 
occur early enough for the processor to satisfy the memory-data-input hold time. 

For most single-cycle memories, this situation implies SYSCLK is a convenient signal to 
use as a WE qualifying signal to ensure WE ends at the rising edge of SYSCLK. The 
delay of the final write-enable logic gate can then be masked by the propagation delay 
of a buffer on the data lines so at the memory, the WE signal ends at or before the time 
data goes invalid. 

Byte and Half·Word Accesses 

The 29K Family supports two modes of access to byte (8 bit) or half-word (16 bit) data 
elements. The mode selection is made via the Data Width (DW) bit in the configuration 
register (bit 5 in special purpose Register 3). The bit defines the data width as follows: 

• When the DW bit is zero (the power up default mode), the data memory is assumed 
to have no data alignment hardware and will support only full word-wide (32 bit) write 
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accesses. Wh~n a write operation is performed, all four bytes of the word accessed 
are written. 

• When the OW bit is one, the data memory is assumed to support individual write­
enable control lines for each byte within a data word so partial word writes may be 
performed. 

When used with the default mode (OW = 0), the memory interface logic provides only a 
single write-enable control. In this mode, the processor implements only full-word read 
and write operations on word-address boundaries directly in hardware. Access to a 
specific byte or half word within a word is provided by software instructions operating on 
internal registers. 

This software approach to byte, half-word, and unaligned accesses provides a general­
purpose mechanism for manipulating external byte and half-word quantities, without 
the requirement for special support hardware in the memory system. However, each 
byte or half-word access requires at least an additional cycle for extraction on a read 
operation and two or more cycles for the load, insert byte or half word, and store (Le., 
read-modify-write sequence for a write operation). 

To achieve full compatibility with existing and future commercially available software 
products such as operating systems, resident monitors, and application software, it is 
required that the memory system be designed to support byte writes (Le., the processor 
mode where OW = 1). The memory system control logic must decode the Option (OPT) 
0-2 lines and the lowest two bits on the address bus, and generate the correct enable 
signals to memory. When OW = 1, these codes control the alignment and masking of 
data on load operations and the selection of byte WE Signals during store operations. 
The encoding of the OPT bits is shown in the Am29000 32-Bit Streamlined Instruction 
Processor User's Manual (#10620) or in Chapter 3 of the Am29050 Microprocessor 
User's Manual (#14778). 

In mode OW = 1, a load selects a byte/half word from each addressed word based on 
the OPT 0-2 bits, the Byte Order (BO) bit, and the least-significant two bits of the ad­
dress (for bytes) or the next-to-Ieast-significant bit of the address (for half words). The 
selected byte/half word is placed right-justified within the destination register of the load. 
If the Set Byte Pointer (SB) bit of the load instruction is 0, the rest of the word is zero­
extended. If the SB bit is 1, the rest of the word is sign-extended with the sign of the 
selected byte or half word. 

A store operation, when OW = 1, replicates the low-order byte/half word of each source 
A register (SRCA) into every byte/half word position of each word written. It is the re­
sponsibility of the external memory to form the proper byte/half word write enables 
based on the OPT 0-2 bits indicating word, half word, and byte accesses, the two least 
significant bits of the address, and the implied byte order of the memory system. Note 
also the memory must not drive any of the data lines, even though some byte locations 
are not enabled for writing. That is, not being write enabled should not be misunder­
stood as permission to perform a Read operation, which drives data onto the data bus; 
the processor drives all the data lines. 

If the OW bit is 1 and the SB bit of the load or store is 1, the Byte Pointer is set to the 
complement of the BO bit. This causes any subsequent extract or insert instruction to 
use the least-significant byte or half word of the specified register, thus ensuring com­
patibility with software written for the default mode of OW = o. 
Byte and half-word accesses with OW = 1 work as specified for a single load or store. 
An additional benefit is that byte and half word accesses may also be performed if the 
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Freeze (FZ) bit is set during execution of interrupt code, so these accesses may also be 
done during interrupt routines, as long as the interrupt-routine code does not rely on the 
value of the byte pointer. Extract and Insert instructions depend on the byte pointer, 
which is not updated during Freeze mode. 

Software written for the DW = 0 mode runs in a system designed for the DW = 1 mode, 
but the reverse is not true. Software written (compiled) for a DW = 1 mode system will 
not run correctly in a system without support for byte-write enables. This requires that 
systems without byte-write enables use only code compiled for the DW = 0 mode. 
Therefore, it is strongly recommended that data memory systems for the Am29000 
processor provide byte-write enables permitting the use of the DW = 1 mode of 
operation. 

In either DW mode, word and half-word accesses not aligned on respective word or half 
word address boundaries can be accomplished via software trap routines executed 
when a non-aligned access is attempted. 

Memory Error Signals 

The Am29000 processor has error inputs (I ERR, D ERR) for both instruction bus and 
data bus accesses. These signals are only monitored by the Am29000 processor when 
an instruction or data access is pending. Therefore, if an error condition such as a parity 
error is to be reported, the appropriate error signal must be driven active at or before the 
time when the memory-ready (IRDY, DRDY) signals would normally go active. In some 
cases this may require that the memory access time be increased to allow time for 
error-detection logic to check the validity of the data. 

An alternative to requiring memory-error signals to be valid with or before memory-ready 
signals is to use the WARN, TRAPO, TRAP1, or INTRO-INTR3 signals in a subsequent 
cycle to abort the affected process. Another alternative to extending the memory-cycle 
time, to allow time for Error Detection or Correction (EDC), is to add a pipeline stage to 
the memory access path. This would provide an entire cycle time to perform an EDC 
function, while increasing only the initial access time by one cycle. Subsequent burst 
accesses can continue to be single cycle. 

Invalid Address Situation 

If no valid bus device is addressed by a bus-access attempt, no ready response will 
ever be provided. This would cause a bus master to hang up forever, waiting for some 
response. It is therefore advisable to have some kind of time-out mechanism for bus 
accesses. If an invalid address is accessed by mistake, the time-out mechanism can 
end the access with an error response. 

Access to Instruction RAM 

As noted earlier, the 29K Family makes best use of memory systems containing 
separate instruction and data memories for simultaneous access to instructions and 
data. In a memory system with separate instruction and data memory blocks, design of 
the data memory block is straightforward. The memory data 1/0 pins are simply con­
nected to the Am29000 processor data bus. All reading and writing of the data memory 
is done via the data bus. Access to the data memory can be by either the processor or 
any other bus master. 
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The instruction bus is designed to be used only for instruction fetches by the processor, 
and hence cannot be driven by the processor. Therefore, the instruction memory cannot 
be directly loaded (written) with information by the processor via the instruction bus in a 
manner analogous to the data bus. 

Depending on the application, there might be a need to read from or write to the instruc­
tion memory as if it were data. Here are some of the ways to provide system access to 
the instruction memory: 

• Buffers and some control logic can be added to the instruction memory so the 
processor can read information onto either the instruction or data bus. Using this 
configuration, the instruction memory can be both read and written via the data bus 
by either the Am29000 processor or another bus master. AMD has defined that 
OPT2-OPTO = 100 is a data access of instruction ROM. 

• A Direct Memory Access (DMA) controller with access to both the instruction and data 
buses could be used to request the channel from the processor, and could then 
access the instruction memory via the instruction bus. In which case, the instruction 
memory block would be exactly like the data-memory block. The system restriction is 
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struction memory. 

• Dual-port memory such as a VDRAM could be used to build the instruction memory. 
One port of the memory, the video shifter port, provides read access for the instruc­
tion bus, and the other port provides read and write access via the data bus. This 
scheme has an additional benefit: the VDRAMs simplify the whole memory structure. 
Since the two ports share access to the same internal memory array, there is no need 
for an internal distinction between instruction and data information. The VDRAMs can 
thus be used to serve as both instruction and data memory within a single device. 
VDRAMs thereby support both the simultaneous access of instruction and data from 
a common memory array, and a data-bus access path to instruction memory. 

Simple Dual.Bus, Single·Port Instruction Memory 

The first method of accessing instruction RAM described above implements a simple 
dual-port access scheme for the instruction memory using buffers and arbitration logic. 
The arbitration logic resolves the contention between data and instruction accesses 
made to the same block of RAM. 

This situation can occur when either the Am29000 processor or a DMA device in the 
system accesses the instruction RAM via the data bus. In each case, the interface logic 
is faced with a slightly different set of conditions as outlined below. 

• If the processor is performing the data access, there can be a conflict with the proces­
sor's own instruction fetching activity. In this case, the data access is the result of 
instruction execution, and for program execution to continue, the data access must 
eventually complete. The data access request can occur during a burst-instruction 
fetch or an instruction fetch can occur during the data access if the data access is a 
burst request. If, at the time the data access starts, the processor is in the middle of 
an instruction access, the data access must be held off until the instruction access is 
completed or stalls. If an instruction fetch begins during a data burst request, the 
instruction fetch must be held off until the data access is completed. 

• In the case of a DMA device access, the processor releases the bus to the control of 
the DMA device, so it is not possible for the processor to start an instruction fetch 
during burst-data accesses. But it is still possible for the DMA access to begin during 
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an already established (but suspended) instruction-burst request. Here again, the 
memory must be able to preempt the instruction-burst request and proceed with the 
data access. 

Instruction Bus DMA 

The second method of accessing instruction RAM described above reqyires hardware 
outside of the memory system. All access to the instruction memory is done for the 
processor by a DMA controller, specifically one that can access both the instruction and 
data buses. A DMA controller with this capability can request the processor to give up 
all the buses (address, data, and instruction) so the controller has complete access to all 
memory and I/O devices. 

Once the controller owns the buses, there is no rule preventing it from both reading and 
writing information in the instruction memory via the instruction bus. As long as the 
instruction memory has been designed for read and write access via the instruction bus, 
there is no problem with a DMA controller performing these functions. By having access 
to both the instruction and data buses, the DMA controller can transfer information 
between I/O devices, instruction memory, data memory, and ROM. 

In fact, if it can be assumed the DMA controller can move all the information to and from 
the instruction memory (including the performance of memory diagnostics), there is no 
reason for the instruction memory to have a second port for access to the data bus. In 
this case, the control logic and buffering of the instruction memory can be very simple, 
in fact, identical to that of the data memory. 

True Dual-Port Instruction Memory 

True dual-port memory used by the third approach, noted above, provides not only 
dual-bus access but also includes built-in structures that permit simultaneous access to 
the memory array from both the instruction and data buses. VDRAM is one very elegant 
and economical means to provide this type of memory. There are of course other true 
dual-port memories and dual-access memory controllers. 

ADDRESS AND CONTROL DRIVER ISSUES 

In high-speed memory designs for the Am29000 processor, the emphasis is on using 
the slowest memory possible while still achieving the necessary performance for 
high-speed systems. This means control logic and signal drivers must be the fastest 
available (i.e., 5-10 ns tpd PAL devices are recommended for control logic devices 
above 25 MHz). It is also recommended that these devices directly drive the memory­
address and control lines. 

Directly driving the memories eliminates the added delay of separate buffers often used 
to drive memory-array signals. However, PAL devices generally have worst-case delay 
times specified for driving a 50-pF load capacitance. Often a memory array has 32 or 
more memory devices, each with an input capacitance of 5 pF to 10 pF. In addition, 
typical strip-line PC board traces add an additional 20 pF of capacitance and 100 to 
200 nH of inductance per foot of trace length. Such a memory array can represent a 
capacitive load of 180-380 pF or more, and an inductive load of 100 nH or more. There­
fore, the worst-case delay times for the affected PAL device outputs must be increased 
to account for the added load. 
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SPEED LIMIT 

It can be useful to determine and analyze the limiting factors for memory speed. For any 
memory architecture, there are three signal paths with critical timing: 

• The address to data-valid path during a read access 

• The address to end-of-write path during a write access 

• The channel master control signal active to response-signal-active path during any 
access 

There are also two access cycles of interest: the initial access and the burst access. For 
this analysis, the channel master of interest is the Am29000 processor. 

Address to Data-Valid Path 

For the address to data-valid path in an initial access cycle, the memory system is 
subject to the following key parameters: 

• Clock-to-processor address, data, and control signals valid 

• Address control logic delay 

• Memory access time 

• Data bus buffer delay 

• Data setup time 

In a burst-access cycle, the same parameters are used, except the clock-to-address 
and control signals valid delay and the address control logic delay are replaced by the 
clock-to-output delay of the memory address counter. 

Clock-to-processor address and control signals valid-During the first access to a 
non-sequential location in memory, the processor must provide a new address and 
instruction or data-request control signals to indicate a new memory request is being 
made. 

Address control logic delay-Some memory designs must select between the initial 
address and the output of an address counter used for burst access cycles. The logic to 
select the address adds some delay, equivalent to the delay in the PAL device if such a 
device is used. 

Memory access time-This is one factor the memory designer has some control over. 
The speed limit of the memory system is reached when this delay goes to zero. 

Data bus buffer delay-In some cases, a buffer is used to isolate the memory-array 
outputs from the processor data bus. The propagation delay through the buffer must be 
considered. 

Data setup time-The Am29000 processor requires some setup time for instructions 
and data. 

The combination of the Am29000 processor address to data path delay and the data 
input setup time implies the initial access time will be two cycles for a maximum speed 
system. 

In a burst-access cycle, the speed limit is set by the clock-to-output time of the address 
counter (tco for the PAL device used), data-buffer delay, and the processor setup time. In 
a maximum speed system, burst accesses can be single-cycle from a single bank of 
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memory with the use of fast SRAMs. Bank interleaved memory can achieve single-cycle 
burst access with much slower memory. 

Address to End-of-Write Path 

For the address to end-of-write path in an initial access cycle, the memory system is 
subject to the following key parameters: 

• Clock-to-processor address, data, and control signals valid 

• Address/control logic delay, in parallel with data bus buffer delay 

• Memory address and data setup time to write enable active 

In a burst-access cycle, the same parameters are used, except that the clock-to­
address and control signals valid delay and the address and control logic delay are 
replaced by the clock-to-output delay of the memory address counter. That means the 
clock-to-data-valid delay may predominate. 

Clock-to-processor address, data and control signals valid-During the first access to a 
non-sequential location in memory, the processor must provide a new address and 
data-request control signals to indicate a new memory request is being made. 

Data-bus buffer delay-In some designs, a buffer is used to isolate the memory-array 
outputs from the processor data bus. The propagation delay through the buffer must be 
considered. During an initial access this delay is masked by the address/control logic 
delay. During the burst access this delay adds to the data-valid delay. 

Memory address and data setup time to write enable active-This is one factor the 
memory designer has some control over. The speed limit of the memory system is 
reached when this delay goes to zero. 

Control to Response Path 

For the control signal to response signal path, the time restrictions are the same in all 
access cycles. The key parameters are: 

• Clock-to-output time of a register 

• Propagation delay of a PAL device 

• Propagation delay of a logic-OR gate on the response signals from each memory 
block 

• Control-signal setup time of the processor 

Exceeding the Limit 

It is possible to build specially restricted memories that do not need the address/control 
logic or the data-bus-buffer, avoiding their associated delays. This is done by having 
only a single bank of memory for instructions or data. Then there is no need for address 
decoding or bus isolation. In this type of memory, the worst-case path delay involves 
the Chip Enable (CE) signal to memory, which is controlled by the system clock. Using 
the clock to control the CE signal eliminates bus contention between the processor 
and memory and possible false WE signals. 
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BANK INTERLEAVING 
For high-speed designs, bank interleaving is a method of increasing the bandwidth of 
the memory system without the cost penalty of using fast memory devices. 

A simple way to reduce the memory-access speed requirements by half or more is to 
make use of a bank-interleave memory architecture. In bank interleaving, one set of 
memories contains the even words and another set contains the odd words. The two 
banks are accessed on alternate clock cycles so each bank is allowed two cycles of 
access time. The banks alternately supply data words so there is one new data word 
available in each bus cycle. Of course, this scheme relies on sequential word accesses, 
which is exactly the nature of a burst access by the Am29000 processor. This scheme 
can be further extended to three, four, or more banks in order to further lengthen the 
allowable memory access time. The penalty is extended initial access time and in­
creased complexity of the control logic. However, only the initial access requires the full 
delay of a two-cycle (or longer) access. 

INSTRUCTION VS. DATA ACCESS SPEEDS 

In the discussion of memories, a careful distinction has been made between the 
initial access and burst access times. This is important to help make the trade-off of 
memory-access speed and initial access time clear. Single-cycle burst access speed 
can be maintained even with rather slow memories, given the initial access speed can 
suffer. Where burst accesses are the predominant mode of memory access and where 
the bursts are relatively long, the initial access time can be amortized across many 
accesses. In this case, slow interleaved memory is ideal. But the more often a non­
sequential access is done, the more the initial access time lowers the overall memory 
system performance. 

Instruction accesses are always attempted in burst mode. Statistically average instruc­
tion streams branch every six to ten instructions. Therefore the initial access time of 
instruction fetches can be amortized over six to ten access cycles. 

Burst access speed is thus important to instruction accesses. Further, the Branch Target 
Cache memory can hide up to three cycles of an instruction memory's initial access time 
when the target of the branch is in the cache. The hit rate of the Branch Target Cache 
memory is application-dependent, but typical hit ratios are 50% or more for the 
Am29000 processor, or 80% or more for the Am29050 processor. Thus the importance 
of burst-access time over initial-access time is further emphasized. 

Data accesses are different because most are individual load or store operations. They 
are done more often as individual non-sequential reads or writes of single words. Burst 
accesses are usually done only at context switch time and during some procedure 
entries and exits. This means over 95% of data accesses are to non-sequential loca­
tions. Therefore, the initial access time is a much more important factor for data 
memories than for instruction memories. 

In general, it is best to emphasize burst access speed in instruction memories and initial 
access speed in data memories. 

TEST HARDWARE INTERFACE 

Memory designs must account for the special needs of diagnostics hardware. The key 
issue is development systems will, at times, want to take control of buses and control 
lines in a system under test. In particular, to perform Reads and Writes of internal 

Basic Issues for Am29000 Processor Memory Designs 



AMD ~ 

registers of the Am29000 processor, a development system may want to masquerade 
as a system memory device during a diagnostic load or store operation so it can directly 
observe and control register values. Several emulators available on the market perform 
this function for the Am29000 processors. 

The emulator operates as a system monitor and controller permitting logic-analyzer-like 
tracking of the Am29000 processor system activity. It is also able to insert diagnostic 
instructions into the normal processor instruction stream, read and write processor 
registers, and read and write system memory. The discussion below is general and 
applicable to all types of instruments the designer may want to use to debug the system. 
It mayor may not be applicable to a certain vendor's emulator, so it is recommended 
that you consult the emulator vendor for a description of the access method used, and 
what considerations have to be taken when designing the memory system. 

Taking Control 

The emulator system must somehow indicate when it will take control of the signal lines 
from the system under test. There are two ways to do this: use pin 169 on the Am29000 
processor's socket, or use a special code on the DREQTO-DREQT1 (Data Request 
Type) and the OPTO-OPT2Iines. 

Pin 169 is the device-Iocater pin on the PGA package and is not electrically used by the 
processor. The prototype system under development can simply use the signal on pin 
169 as a disable of the selection logic for all system memories. This ensures that when 
pin 169 is driven, the emulator system is free to take control of the prototype system 
buses. 

The advantage of using pin 169 is that it is a simple, direct, and pre-decoded indica­
tion the emulator is taking control. The disadvantage is that it is not a consistent and 
intrinsic part of an Am29000 processor system. It requires that the system under test be 
modified to expect this special signal that will only come from specific development 
hardware. Recognizing the limitations of pin 169, AMD has defined another way to 
Signal an emulator's use of processor system buses. 

The combination of DREQT1-DREQTO=OO and o PT2-O PTO = 110 is defined as 
the equivalent of the pin-169 signal. Under these conditions, the emulator controls 
the Instruction bus, Data bus, Ready, and Error lines, even though the address pre­
sented would appear to be directed at some other system device. The emulator uses 
this definition, referred to as an emulator access, when reading or writing the Am29000 
processor's internal register. To do this, an emulator access load or store instruction 
is placed in the processor instruction register via the load Test instruction mode 
(CNTL 1-CNTLO lines = 00). When the load or store is executed, the DREQT and OPT 
codes appear on the bus and keep the system memory from responding while the de­
velopment system directly moves data to or from the processor. 

Note: Qualification by the DREQT code = 00 (instruction/data-type access) is required, 
since the OPT bits have other defined meanings for I/O and coprocessor access types. 

The advantage of this scheme is that no special signal connections are required 
between the prototype and development systems. All communication is via the standard 
Am29000 processor's socket. Also, it may be possible to use decoding circuits already 
present for the DREQT/OPT bits to decode the needed signal equivalent to the pin 169 
indication, thus saving on special-purpose hardware. 
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MEMORY DESIGN DOCUMENTATION 

The remaining chapters of this handbook often include detailed system design exam­
ples, sometimes including block diagrams, schematics, logic equations, state diagrams, 
and parts lists. 

Assumptions 

In each of the memory design examples in this handbook, the following assumptions are 
made: 

• Any system bus master observes the same bus protocol as the Am29000 processor. 
Protocol examples: new addresses are provided for each 1 K byte boundary crossing; 
read and write operations may not be mixed within a burst transaction. 

• Each memory monitors pin 169 of the Am29000 processor socket for interface with 
emulators or other test equipment, if needed. 

• Memories drive memory response lines or data lines only when also driving memory 
Ready or Error signals. This ensures the memories do not contend with test hardware 
during diagnostic operations, sincA thA processor wi!! comp!ete any pending memO!"J 
access before entering the Halt or Single-step states preceding test instruction 
execution. 

Boolean Notation 

The Boolean equations in this handbook use the conventional Boolean symbols for 
identifying logic functions such as AND and OR. By way of review, the logic connectives 
for Boolean symbols are: 

.=AND 

+=OR 

The complement of a variable used in a Boolean equation is represented by an overbar 
above the variable. For example: 

• The complement of X is X. The complement of a variable is also referred to as the 
negation or not operation. 

• Double overbar is used over a variable when a complemented variable is nested in 
brackets and the bracketed expression is also complemented. For example: 

X = A • B • (C + D) 

Programmable Array Logic (PAL device) Notation 

Depending on the nature of the output signal being described, there are two basic types 
of PAL device-related equations used in this handbook: registered and combinatorial. 

A registered equation shows the calculation of a PAL device output signal that is a 
function of the inputs and must pass through a register. Thus, the output signal is de­
pendent on a clock (transfer) signal. A registered equation is usually identified by the 
special operator :=. For example: 

X :=A. B + C 
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The combinatorial equation, on the other hand, shows the calculation of a PAL device 
output signal based only on the PAL device input signals. That is, the output signal is a 
time-delayed function of the inputs without any intervening state elements. A combinato­
rial equation is identified by operator =. For example: 

Z=Q.X+Y 
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THE DESIGN PROCESS-SRAM EXAMPLE 

The 29K Family of microprocessors has been designed to make use of the full 
bandwidth available from the memory system, allowing simple, cost-effective, yet high­
performance systems to be built. The simplest design for any microprocessor system is 
based on static RAM (SRAM). This chapter describes the design process that may be 
followed to produce an SRAM-based memory design. The basic principles, however, 
are applicable to other types of memory as well. With the assistance of examples, this 
chapter demonstrates the enormous range of system price and performance that the 
29K Family provides. 

INTERFACE DECISIONS 

The Am29000 processor's state-based bus signaling ensures that the memory interface 
complexity normally associated with RiSe processors is greatly reduced. In order to 
achieve this, innovative and somewhat novel architectural features have been incorpo­
rated. These features, while ensuring maximum performance, can appear a little strange 
at first and warrant further explanation. 

The manner of this explanation will be to consider the various system options in turn, 
and choose a typical set for further investigation and detailed analysis. The subsequent 
design will then be developed to highlight the available implementation options and the 
reasons behind particular selections. 

System Speed 

The first, and somewhat obvious, decision is that of system clock speed. This is not 
such a simple question because the elements of cost and performance immediately 
become important issues. However, some simple guidelines are available that will allow 
a design to be started, and as the processor is cycle-based, this parameter can be 
changed. Assuming the speed is not fixed by other items, a gauge of performance can 
be formulated from the demonstrable fact that the performance of Am29000 processors 
is typically four to six times that of 32-bit else processors, even when using similar 
memory speeds. 

Included with the AMD tools is an architectural simulator that allows memory speeds to 
be varied along with system clock speed for a particular piece of executable code. 
Hence, as the system architecture decisions are made, the effect on performance can 
be determined. This is particularly useful if an area of the application software is known 
to be time-critical. The design discussion throughout this chapter will assume 2S-MHz 
operation is required, although discussion of critical timing areas will introduce ideas 
regarding slower clock speeds. 

On reading the Am29000 processor data sheet, it can be seen that the processor has 
been designed such that the instruction and data buses are physically separate, al­
though instruction and data space are logically the same. 
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Figure 3·1 Memory Interface Overview 
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The Am29000 processor is a RiSe microprocessor, and as such demands an instruc­
tion every cycle. This therefore places a requirement on the memory system to supply a 
new instruction on each clock cycle. In traditional elSe-based systems, this requirement 
has been implemented using cache technology; while providing performance, the cost of 
such cache memory is not practical for most embedded applications. The Am29000 
processor approach to provide a separate path for instruction flow allows a simpler, 
non-cache memory system to be implemented without complex multi-phase clocks, 
while minimizing system costs and maintaining high performance. 

Traditionally, a cache is used because main memory is slow or must be shared in such 
a manner that the access bandwidth to the main memory is not consumed by a single 
user. (In this case, the users are the instruction fetch and data fetch state machines of 
the system processor.) The cache provides a fast-access copy of a limited portion of the 
main memory dedicated to one user (either instruction or data fetch), thus improving 
access speed and eliminating main memory accesses for frequently used information 
maintained in the cache. This is a good solution, but it usually comes at a high price, 
with expensive fast memories and additional control logic. 

The Am29000 processor architecture allows the instruction memory to be completely 
separated from the main data memory. This is essentially what is done in most 
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computer systems anyway, since instructions are normally maintained in a separate 
area of memory, often in a different type of memory such as EPROM. The difference is 
that by physically separating instructions from data and giving each memory a private 
bus to the process, instructions can be fetched in parallel with data accesses, increasing 
system performance and eliminating the need to share bus bandwidth between instruc­
tion fetches and data accesses (via a common bus or from a common memory). This 
solves the information transfer bandwidth needs of a high-performance system without 
the expensive memories or complex control logic of a cache. 

The Am29000 processor architecture allows high-speed memory access via a burst 
mode protocol. Burst mode provides a way to take advantage of the generally sequen­
tial nature of instruction execution such that lower-cost, lower-performance memories 
may be used in a high-performance system. In burst mode, one address is presented by 
the processor at the beginning of a burst access. The memory system then loads that 
address into a counter and increments the address for each successive instruction 
fetched. Since accesses in a burst are sequential, a simple bank interleaving approach 
in the memory design allows relatively slow memories to deliver instructions at the rate 
of one per clock cycle to the process. 

The separate instruction supply path, combined with burst mode accesses to instruction 
memory, produces a high-performance, yet cost-effective system. 

Note, however, that while burst mode protocol is a powerful technique for providing high 
performance at lower cost, burst mode support is not required. Many embedded sys­
tems have quite acceptable performance when executing instructions directly from 
EPROMs requiring multiple cycles for each instruction access. Burst and non-burst 
memory designs can be mixed in the system to optimize trade-ofts between cost and 
performance. 

The decision whether or not burst mode support should be used in a given memory 
system depends on the system performance required. System performance can be 
estimated by running representative code through different simulated memory systems 
via the Am29000 processor architectural simulator, a utility provided as part of the 29K 
Family software tool set. 

In general, burst mode support becomes more important as the system clock frequency 
increases. Also recognize that the Am29000, Am29005, and Am29050 processor mem­
bers of the 29K architecture family use three buses: an instruction bus, a data bus, and 
a common address bus. The common address bus significantly lowers the cost of 29K 
Family processors relative to RiSe processors having dual address buses, but it does 
require that only a data or only an instruction address be provided in anyone cycle. If 
burst mode is not supported, then the address bus can only be used for one type of 
access at a time, thus reducing the potential performance of the system. However, if 
burst mode is supported, the address bus is used only during the cycle that a burst 
access is started, thus freeing the address bus to be used in a data access in parallel 
with the instruction burst access. 

It is therefore highly recommended that burst mode be supported for instruction 
memories to maximize system performance. 

Data Memory 

When burst mode instruction memory is supported, the Am29000 processor no longer 
requires the address bus to support instruction supply; this allows the data access 
mechanism to use the same address bus for both instruction and data accesses. The 
data addressing mechanism supports both simple accesses and burst mode accesses. 
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A data burst access loads to, or stores from, the registers within the processor. The 
Am29000 processor provides 192 registers for the complete software environment to 
use. Of these 192 registers, 128 are a cache of the run-time stack; it is the management 
of these registers that in most applications makes most use of the data burst facility. 

The Am29000 processor uses a stack frame similar to that of CISC processors. How­
ever, in the case of the Am29000 processor, a window of the stack is cached in the local 
registers. During code execution, as the number of stack frames held in the processor 
vary, the executing code places two trap handlers into action, called spill and fill. The 
code in these trap handling routines starts the data burst mechanism in order to provide 
additional register space or to restore previously saved stack frames. Hence, the more 
varied the nesting level is during execution of the application code, the greater the num­
ber of spills and fills that occur. The result is to spread the cost of saving the registers 
(something performed by all processors) across many procedural call interfaces, 
improving code execution performance. 

If a system includes a Real Time Operating System, and hence is likely to perform 
context switches, the internal state of the processor can be transferred to memory using 
a data burst. This burst transfer again ensures that, when needed, the full memory 
bandwidth is ut!!!zed. 

The decision to provide data burst support is not as clearly defined as that of 
instruction accesses. The Am29000 processor overlaps LOAD instruction execution 
with internal instruction execution (for example, a LOAD and an ADD can execute in 
parallel). This means for regular data accesses the access time is often hidden by the 
concurrent instruction execution. Also, burst data transfer instructions are generally not 
generated by Am29000 processor compilers, except in special assembly code routines 
such as the spill and fill traps. Thus, the value of burst data access is very much de­
pendent on the system code. In summary, burst access to data is a feature of limited 
value in typical applications. 

INSTRUCTION MEMORY DESIGN 

The Am29000 processor memory interface is typically designed as a state machine. For 
instance, in the case of a system that only supports simple instruction fetches, the proc­
essor starts the instruction fetch sequence by providing an address and an active IREO 
(Instruction Request) signal. The memory system responds, once it has obtained the 
required instruction, by returning an active IRDY (Instruction Ready). The state-based 
nature of the processor means that if the following access is another instruction fetch, 
then IREO will simply stay active. In very simple terms, the interface signal edges have 
no meaning; it is the active state at the clock edge that provides the meaning. 

The processor therefore expects the memory system to track the state of the processor 
throughout the accesses. By far the simplest way of to meet this requirement is to imple­
ment the memory system control paths with a state machine. 

The following design analysis and the subsequent detail assume the use of lower-cost 
memory devices. Thus, the design attempts not to break the Am29000 speed record, 
but to show how an Am29000 processor-based system can be produced quickly with 
very respectable performance at a reasonable cost. 

Instruction Memory: Simple Access 

The start of a simple access is signified by the Signal IREO going active. This signal also 
states that a valid instruction address is on the address bus. The memory system, on 
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seeing IREa active, is required to fetch the requested instruction and place it on the 
pins, signaling this with an active IRDY signal. 

The Am29000 processor has many logical address spaces, and in terms of instruction 
memory, supports two types: instruction/data and read-only. The distinction is provided 
by the signallREaT (Instruction Request Type), and hence this must be included as if it 
were an address line in the address decode circuit. The signal IREaT, like the address 
bus, is only valid while IREa is active. 

Also, for simple accesses, BINV (Bus Invalid) must be monitored. If this signal goes 
active, it will do so only in the second half of the initial access clock cycle, indicating the 
IREa and address are invalid for the cycle and the access must be ignored (Figure 3-2). 

With this information on the memory interface signals, the state machine design can be 
started, and the condition that will take the Instruction Access State Machine into an 
instruction access state is: 

Instruction Access (IA) = InsCAdd • IREaT • BINV 

Instruction Memory Access (IMA) = IA • IREa 

The Am29000 processor data sheet states that BINV is active 7 ns after the falling edge 
of SYSCLK; however, it also states that the setup time of IRDY is 12 ns. At 25 MHz, this 
leaves 1 ns to cancel the IRDY if single-cycle accesses are desired. The address and 
IREa signal are active 14 ns after the rising edge of SYSCLK, which with an I Bus setup 
of 6 ns, leaves 20 ns to decode and access the instruction memory. These timing 
constraints require the use of a delay line or multiple clocks and different phases to 

Figure 3·2 Simple Access with Bus Invalid 
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support single-cycle access. As will be discussed next, this level of complexity is not 
necessary for a high-performance design (17+ MIPS) using the Am29000 processor. 
So what about a design using two-cycle initial accesses? 

Instruction Memory: Burst Access 

Initially, it appears a two-cycle design will be slower and therefore less desirable. 
However, as already mentioned, the Am29000 processor provides support for burst 
mode instruction fetches. For example, it is often stated that typical code has non­
sequential operations (e.g.; jumps, calls, etc.) every six instructions or so on the 
average. If this is the case, then with single-cycle burst mode instruction fetches and a 
two-cycle initial access, the Am29000 processor will require seven cycles to execute six 
instructions. Hence, near-zero wait-state performance is achieved, which combined with 
the Branch Target Cache memory of the Am29000 processor, provides far greater 
cost/performance benefits. 

Accepting a two-cycle initial access, we can start constructing the state machine. The 
IMA (Instruction Memory Access) condition will cause a transition in the state machine 
from the lidle state to the Istart state. On the following clock, the transition will be back 
to ;jdie anci iRDY made active (see the state diagram, Hgure 3-3). This completes the 
simple access, and if another is required, then IREQ will stay active (see the timing 
diagram, Figure 3-4) and the state machine will repeat the sequence. 

Figure 3-3 Single-Bank Instruction Access State Machine 
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Figure 3·4 Instruction Access with Burst and Terminate 
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The Am29000 processor provides a hardware error reporting mechanism for instruction 
fetches. Although this is not included in the general discussion, this mechanism can be 
easily added to protect from instruction fetches outside the implemented address range. 
In fact, it is a simple case of adding to the instruction address decode logic such that the 
signal IERR is asserted when an illegal address is provided by the processor. This ac­
tion will cause the Am29000 processor to terminate the current request and take a trap 
to the installed error handler, which can be held in ROM or instruction/data address 
space. 

The Am29000 processor provides support for in-circuit debuggers by allowing control of 
the processor using external pins (cntl1 ,0). Also, because the PGA package uses pin 
169 only for alignment, some debuggers use this pin to inform the memory system it is 
accessing the processor and the signals should be ignored. Another mechanism is to 
assume the memory system is not driven when IREQ or IBREQ are inactive, hence 
allowing for surface mounted Am29000 devices to be controlled. In all cases where an 
in-circuit debugger is to be used, follow the debugger manufacturer's instructions to 
ensure the correct considerations are incorporated in the design. 

INSTRUCTION MEMORY: SINGLE-BANK BURST ACCESS 

The majority of application code executes sequentially between four and ten instructions 
before branching. The Am29000 burst mode access mechanism for instruction fetch 

The Design Process-SRAM Example 3-7 



~ AMD 

3-8 

allows single-cycle access to be easily achieved from a memory system, thus maintain­
ing a cost-effective, high-performance solution (see the block diagram, Figure 3-5). 

State Machine: Single-Bank Burst Access 

The processor informs the memory system it would like to start a burst by taking IBREQ 
active. This signal is one of the late signals, valid 14 ns after the falling edge of 
SYSCLK. This means the signal cannot be used much in the initial cycle unless 
multiple-phase clocks are used. However, as will be shown, this signal is not actually 
required in a two-cycle initial access system until the second cycle. Therefore, the signal 
only has to be captured by a register (see Figure 3-5), and the resulting registered 
signal IBREQD used throughout the design. 

The addition of instruction burst is therefore very simple. A state called Iburst is added 
to the Instruction Access State Machine and the condition ibreqd is used to force the 
transition. In order to support burst mode, the addition of an address latch and a-bit 
counter is required. The latch and counter combination provide the subsequent 
addresses to the memory system and provide a single-cycle supply of instructions. 

The state machinc, on :;ccli1g the IMA cOiiditioii, will iiOW transiiion irum iidie to istart 
and set ILD active to load the address latch and counter. On the next cycle, if IBREQD is 
not active, the simple access cycle will complete as before. However, if IBREQD is 
active, then the state machine will transition to the state Iburst and provide an active 
IRDY. In order to sustain the burst, the processor requires IBACK to be active (a form of 
handshake), and it is this transition that provides the IBACK Signal to the processor (see 
the timing diagram, Figure 3-6). 

It is a common mistake to assume IRDY is the IREQ acknowledgement. This is incorrect, 
for as soon as IBACK is active, whether IRDY has been supplied or not, the processor 
will remove IREQ and the address. In the design example being used, the signal IBACK 
is formed using combinatorial logic based on IBREQD, the Iburst state, and IREQ to 
ensure this condition is handled properly. 

The signal IBACK, combined with the signal IBREQD, can provide the signaiICOUNT, 
which is used to increment the instruction address counter throughout the burst access. 

Once the burst has started, the state machine will stay in the Iburst state until a new, 
non-sequential access is started. On each cycle, the ICOUNT signal increments the 
address counter and the state machine makes IBACK active and IRDY active, maintain­
ing the supply of an instruction every cycle. 

This continues as long as the processor requires sequential instructions. If the proces­
sor's prefetch buffer becomes full due to a pipeline stall, the processor will request a 
temporary suspension of the instruction supply. This event is signaled by the de­
assertion of IBREQ, which should signify the withholding of the IRDY signal. Once the 
stall condition has been removed and the prefetcher has space, the processor will signal 
for the instruction supply to be continued by re-asserting IBREQ, hence allowing the 
IRDY signal to continue. In terms of the state machine, this demands the addition of a 
holding state to allow instruction fetch suspension (see the timing diagram, Figure 3-7). 

If the suspension is not re-started but a new initial access is required, then the proces­
sor will inform the memory system by keeping IBREQ inactive and asserting IREQ with a 
new address. 

Examination of the Instruction Access State Machine diagram (Figure 3-3) shows two 
conditions holding it in the state of Iburst. The first is IBREQD active, which continues 
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Figure 3-5 Single-Bank SRAM Block Diagram 
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Figure 3-6 Instruction Access with Burst SuspensionlTermination 
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the instruction burst supply, outputting IRDY, IBACK, and ICOUNT active. The other is 
the instruction supply suspended condition. When this is true, the state machine still 
maintains IBACK active, but de-asserts IRDYand ICOUNT. The typical cause of instruc­
tion supply suspension is a data burst to data space. The burst takes many cycles and 
hence prevents the processor from continuing instruction execution. However, as soon 
as the burst is completed, instruction execution and supply can immediately continue at 
one per clock cycle. 

From this description it can be seen instruction burst suspension and termination cannot 
be distinguished at the point IBREQ is de-asserted. In fact, this can only be decided 
when either IBREQ is re-asserted (continue) or IREQ is asserted (new start). 

Now that we have managed to produce the necessary state machine, we can 
investigate the system timing to determine any implementation constraints. 

Instruction Timing: Single-Bank Burst Access 

The initial access in a two-cycle simple access system has to decode and capture the 
address for the memory system. The Am29000 processor generates the address and 
related signals 14 ns after the SYSCLK rising edge. From this time, the memory system 
must identify the access as an instruction fetch to Instruction/Data memory and provide 
the ILD signal to capture the address. 
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Figure 3-7 Instruction Access with Suspended Burst 
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Instruction Load (ILD) = (lidle • IMA) + (Iburst • IMA) 

The following cycle starts the memory access cycle and provides IRDYactive to signify 
a valid instruction is available. If a typicallatch/counter is assumed for the address, then 
the clock-to-output delay is around 8 ns. This, combined with an instruction bus setup 
time of 6 ns, leaves 26 ns to access the memory in a 25-MHz system. For this particular 
analysis, 20-ns SRAM is recommended, although in a 16-MHz system, this speed 
requirement would be greatly reduced to around 40 ns. 

Write Access to Instruction Memory 

The available in-circuit debugging systems and the simple target resident debug 
monitors use a specific instruction to set software breakpoints. If support for this form of 
breakpoint is required, then a mechanism for writing the specific instruction to instruction 
memory will need to be implemented. This mechanism also allows for code download­
ing, if required, by executing from ROM space while writing to instruction RAM space. 

In order to support software breakpoints, the instruction memory must be able to 
accommodate data accesses to it. Typically, this is provided by defining a data bus 
memory map that places data space from 0-2 Gigabyte(s) and instruction space starting 
from 2 Gigabyte(s) up to the maximum address range of 4 Gigabyte(s). This makes the 
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determination of the address area simple, as it only requires that address bit 31 be 
included in the decoder. In other words: 

Data Space = OxOOOOOOOO to Ox7FFFFFFF 

Instruction Space = Ox80000000 to OxFFFFFFFF 

Figures 3-8 and 3-9 show the mapping of the instruction spaces. 

Figure 3·8 Mapped Instruction Space 

10623C-010 

Figure 3·9 Using A31 to Specify Code Space 
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This requires a modification of the original IMA equation such that two new conditions 
can be determined. These conditions are: 

IMA = A[31]. IA. IREQ 

IDA = /A[31]. Inst_Address • DREQ • DREQTO • DREQT1 

IDMA = IDA. BINV 

This implies instruction memory does not exist at location zero, which may be of 
concern to some designers. However, the Am29000 processor starts execution from 
read-only instruction space (IREQT = 1) at location OxO. Once the processor has been 
initialized and the software execution environment installed, code execution is usually 
continued by passing control to Instruction/Data memory space (see Figure 3-10). 
Therefore, it is not necessary to start SRAM instruction memory space at OxO, and for 
debugging simplicity it is better not to map the various spaces (refer to Figures 3-8 and 
3-9), as setting a breakpoint at Ox200, for example, would need knowledge of the 
mapping by the debugger (i.e., Ox200 instruction = Ox80000200 data). 

The task of the instruction access logic is to provide for this type of data access mecha­
nism, because only it is aware of the instruction memory state. Simply put, the data 

Figure 3·10 ROM Space to Instruction Space 
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access cannot be allowed to be started while an instruction fetch is in progress, and 
therefore arbitration is necessary. 

To provide support for the data access to instruction space, the state machine requires 
an additional state, IDstart. The condition Instruction as Data Memory Access (IDMA) 
must have a higher priority than Instruction Memory Access (IMA), otherwise a dead­
lock may occur. If instruction accesses had higher priority and an instruction burst was 
running, a data request into the instruction space would be ignored; then sooner or later 
the instruction burst would suspend, waiting for the data access to complete. This would 
not happen and the processor would stall indefinitely. 

To simplify the explanation, it will be assumed data burst accesses will not be supported 
into instruction memory space. This means that only the IDstart state is required. (For 
cases where data burst into instruction space is required, refer to the timing diagram in 
Figure 3-11.) The support of byte write is also deferred until normal data access is 
discussed. 

The Am29000 processor will not produce the condition where IREQ and DREQ are 
active at the same time because there is only a single address bus. It is therefore safe 
to assume ii-Ie slalt::l IIlaGiJille accommodates the situation of simpie instruction tetches 
and simple data accesses to instruction space. However, some additional thought is 
needed for the case of instruction burst fetches. 

While the state machine is in the state Iburst, the burst should continue as long as 
IBREQD is active. However, in the case where IBREQD is inactive and the state ma­
chine is in the state Iburst, then the state must be held unless the burst is terminated by 
the condition IMA or IDMA becoming true. Another condition that must be accommo­
dated is when an instruction request is made to a different instruction space. In this 
situation, the current instruction burst, if suspended, must be terminated; this is signified 
by IREQ active when the condition IMA is false (Figure 3-3). 

In conclusion, assuming the processor is running an instruction burst, the data request 
will only be recognized when IBREQ is inactive. This mechanism ensures the prefetcher 
is full before the burst is terminated. Not allowing the data access to occur, and hence 
forcing the processor to stall, will cause IBREQ to be de-asserted. When this condition is 
recognized via IBREQD, the signal IBACK should be de-asserted. The IDMA condition 
causes a transition to IDstart and IBACK inactive will terminate the instruction burst. 
During this state transition, ILD is asserted to load the address into the latch/counter 
combination. This allows the actual data access to be started in the following cycle, and 
once completed, will cause the processor to assert IREQ and start a new initial access. 
The condition of BINV must also be accommodated with the active DREQ signal, and if 
asserted, must hold the state machine in the lidle state and prevent the access from 
occurring. The full prefetcher will buffer the instruction stream such that if the data ac­
cess was not an access to the instruction memory, then code execution can continue 
without delay, thereby minimizing the effect of the instruction stream restart. 

Figure 3-12 shows the timing for a burst data access to instruction space. 

INSTRUCTION MEMORY: DUAL-BANK BURST ACCESS 

The Am29000 processor burst addressing mechanism has an additional benefit. It 
has removed the addressing restrictions occurring with standard CISC processors 
and has handed the addressing decisions to the designer. 
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Figure 3·11 Data Access with Instruction Burst Termination 
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Once the burst accesses have been started, the mechanism of single instruction supply 
does not concern the processor. This flexibility allows the designer to take advantage of 
innovative memory architectures and provide high performance, yet maintain realistic 
system cost. In the case of SRAM, this benefit can easily be realized by implementing 
the instruction memory as two or more interleaved banks. 

The principle of interleaving is actually very simple. For example, the memory space can 
be divided into two blocks, one on even addresses the other on odd addresses. In the 
case of burst accesses, the memory is addressed in a sequential manner, so while one 
bank of memory is supplying the processor bus, the other is accessing the information 
required for the following access. Hence, by staggering the accesses, each bank in a 
two-bank system can take two cycles for each access, yet the overall effect is to supply 
information every cycle. 
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Figure 3·12 Burst Data Access to Instruction Space 
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Considering the two-bank system for this example, the cost is that the first access will, in 
most cases, take two cycles. In the case of the Am29000 processor, the latency of the 
first access is more than compensated by the ability to take advantage of single-cycle 
subsequent accesses. A typical two-bank memory SRAM system for the Am29000 
processor uses two to three cycles for the initial access and requires very little additional 
logic compared to the single-bank memory system (compare the single-bank block 
diagram, Figure 3-5, with the two-bank block diagram on the next page, Figure 3-13 .). 

Dividing the memory into two banks requires two counters so the odd and even banks 
can be addressed separately. The same high-order address bits still require only a 
single latch, as both banks are addressed within the same page area. 

The Design Process-SRAM Example 



AMD 

When using two counters, some additional logic is required to provide for instruction 
addresses requesting an initial access to the odd bank. Basically, if the first address is 
to an even word, then simply setting bit 2 will access the odd word. However, if the initial 
word is a word in the odd memory bank, then the even address must be incremented. 

Figure 3-13 Two-Bank Interleaved SRAM Block Diagram 
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First Access Even: 

Even Address 

00000 

01000 

10000 

First Access Odd: 

Even Address 

00100 

01100 

10100 

Odd Address 

00100 

01100 

10100 

Odd Address 

01000 

10000 

11000 

Description 

Set A[2] for Odd bank 

Counter is A[3 ... 9] 

Description 

Increment Even Count 

Counter is A[3 ... 91 

Because the address lines A[O] and A[1] do not change, these are not connected to the 
memory and are only used to inform the control logic of partial word accesses. Also, as 
address line A[2] does not actually change, it need not be connected to the respective 
memory banks. In fact, the simplest mechanism to implement the two-bank memory 
system is to wire the top 7 bits of each counter to their respective memory banks. Then 
use address line A[2] from the initial address to signify which memory bank OE signal to 
start with, and then toggle the OE signals alternately for each bank. 

This leaves the least significant bit of each counter to form the count-enable signal for 
each bank and hence cause each bank address to be incremented on every other cycle. 
Even though there are two banks, only one count-enable signal is actually required, that 
for the even bank address counter. The odd bank address counter only needs to copy 
the even counter's least significant bit each cycle, and if set to a 1, increment the count 
on the following cycle. 

The even address incrementer then needs to be considered. The easiest method (and 
the one chosen here) is to allow three cycles for the initial access. The first cycle is 
used to decode and capture the address, the second to increment the even counter 
if needed and start the access, and the third to complete the access and supply the 
initial instruction. 
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Cycle Odd Address Even Address Odd Counter Even Counter 

001-00 001-00 00-0 001 

2 001-00 010-00 00-1 010 

3 011-00 010-00 01-0 011 

4 011-00 100-00 01-1 100 

5 101-00 100-00 10-0 101 

6 101-00 110-00 10-1 110 

The address lines A[O] and A[1] have been separated for clarity, as has the least signifi­
cant bit of the Odd Counter. The Odd Counter is simply the least significant bit of the 
Even Counter delayed by a cycle. The Even Counter is a standard 8-bit counter that 
increments whenever the count-enable signal is active. The least significant bit of both 
the Odd Counter and Even Counter is used as output enables. 

This compromise might seem to force a large reduction in performance. However, in 
the worst case this will mean six instructions executed in eight cycles for a typical 
burst of six instructions. With the Branch Target Cache memory accelerating frequent 
non-sequential operations, this will typically be reduced to around 6.5 cycles for six 
instructions on the average. 

~ 

The performance has been maintained and the design is still very easy to implement. 
The choice of three-cycle first access also allows for cost reduction to be considered. As 
the decode can occur within the first cycle, and the first requested location address does 
not need to be incremented, there are two cycles available for the initial access. If we 
consider a 25-MHz design, this provides 80 ns to complete the memory access, which 
will allow 55-ns SRAM to be used, allowing for address generation and processor 
setup time. 

Referring to the state diagram in Figure 3-14, it can be seen that the modifications to the 
single-bank memory system state machine are minimal. If the case of an instruction 
burst is considered as an example, then IMA initiates the access as with a single-bank 
system. The LD signal is set active during the transition from lidle to Iwait (see the 
timing diagram, Figure 3-15). On the next cycle, the state machine will move on to 
Istart, and from there back to lidle if IBREaD is not active. 

However, assuming IBREaD is active, the state machine will progress to Iburst, IBACK 
Is asserted, and the burst access starts as the single-bank memory system. Prior to a 
new instruction request, IBREaD will go inactive, and on the new IMA condition, the 
state machine will transition to Iwait, capturing the address and starting a new access. 

DATA MEMORY DESIGN 

While the instruction and data space are the same as seen from the software, the 
Am29000 processor provides two independent hardware paths for instructions and data. 
This allows the accesses to operate concurrently and hence prevents code execution 
stalls caused by data accesses. 
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Figure 3·14 Interleaved Instruction Access State Machine 
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The data access mechanism is very similar to that of instructions. However, it is far 
simpler because the Am29000 processor does not require access suspension when 
performing a burst. In fact, as mentioned earlier, many designs do not require burst data 
access and only implement simple accesses. 

When a simple data access is started, the processor is still able to continue to execute 
and fetch instructions. The load or store is actually overlapped with the code execution 
and, unless a register dependency is detected, will not cause the processor to stall. 
Therefore, in many cases, the actual latency of the data memory will not affect the per­
formance of the processor. This is further enhanced by the processor implementing an 
internal 128-word stack cache, reducing the number of external data accesses. 

Like instruction access, the following analysis avoids the use of very fast memories and 
multiple phase clocks, and while zero wait-state access may be attractive for perform­
ance reasons, it is not needed when using an Am29000 processor. As with instruction 
access, the performance is maintained, yet the memory performance is still realistic. 

Data Memory: Simple Access 

The processor expects the data memory system to track its state as with instruction 
accesses. However, this only requires a simple two-state state machine for simple 
accesses (see Figure 3-16). 

The start of a simple access is signified by the assertion of DREQ (Data Request), which 
states a data request is being made and the address and related signals are valid. The 
memory system is expected to respond with IRDYactive. 
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Figure 3·15 Interleaved Instruction Access 
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Because the Am29000 processor has four address spaces, and three of these are 
related to data accesses, there are a few more signals that must be considered if correct 
operation is to be ensured. 

When DREQ is active, the processor supplies two signals to inform the memory system 
of the type of access required (DREQO, DREQT1). From the Am29000 processor data 
sheet, the following table can be found: 

DREQT1 

o 
o 
1 

DREQTO 

o 
1 
X 

Meaning 

Instruction/Data Space 
Input/Output Space 
Am29027 Coprocessor Space 

Many designs do not use the math coprocessor and do not place peripherals (Le., serial 
I/O) in I/O space. In these types of designs, the DREQTO and DREQT1 signals can be 
ignored by the external memory logic during any accesses. H.owever, if DERR (data 
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Figure 3-16 Data Access State Machine 
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error) processing is required, then the memory logic should recognize that DREQT1 and 
DREQTO should both be low and generate an active DEAR signal if this is not true. 

If the coprocessor is required, or at least considered as an option, the recommended 
method to determine whether it is present is to use the signal CDA combined with 
DREQT1 as follows: 

• Coprocessor optional: Connect CDA to OV via a 33K resistor. When DREQT1 = 1, 
ensure DRDYand DERR are inactive. 

• Coprocessor never present: Connect CDA to OV directly and ensure DADYand DERR 
are inactive for a coprocessor store. 

The Am29000 processor provides support for byte (8 bit) and half-word (16 bit) 
accesses, as well as word (32 bit) accesses. This support can be used in one of two 
ways. The simplest way, in terms of hardware, is to only support complete 32-bit 
word accesses and allow the software (via INBYTE, EXBYTE, etc.) to manipulate the 
partial word. This naturally produces additional instructions and will therefore affect 
performance. 

The other method is to provide byte-write hardware support, and on setting up the 
processor, set the Configuration Register bit 5 (DW) to a 1. The Data Width Enable 
(DW) bit, when set, informs the processor to perform the necessary operations internally 
to support partial word accesses. 

For example, in the case of a byte read, the processor will execute a load instruction 
with the option bits and address lines set accordingly. The memory system is 
expected to supply a complete 32-bit word and the processor will, on receiving the 
word, manipulate the specified byte into the correct position of the destination register. 
The case of a byte store is similar, except the processor will actually replicate the 
specified byte in all the byte positions of the provided 32-bit word and expect 
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the memory system to assert the relevant write enable (see Figure 3-17). Making the 
data memory byte writable is strongly recommended. 

In simple terms, to provide efficient support of byte and half-word accesses, the hard­
ware need only provide separate Write signals to the memory system. The processor 
supplies Option Control signals (OPTO-OPT2) and address lines 0 and 1 to allow the 
hardware to determine what is required. The address lines 0 and 1 state which byte or 
half-word is to be written to, and the OPT bits state which type of access is needed; 
these are only valid when DREQ is active. In other words: 

OPT2-0 

000 

001 

010 

Meaning 

Word (32-bit) Access 

Byte Access 

Half-Word Access 

The other OPT bits define whether a data access to ROM is required (e.g., checksum 
access), or a debugger is accessing. These are not necessary requirements for all 
implementations and, in the case of a debugger, may differ slightly on the action re­
quired. So for this analysis, they have been excluded. Generally the conditions of 
DREQT1, DREQTO = OxOO and OPT2-O = 110 signify that the DREQ active should be 
ignored by the memory system; the DRDY active signal will, in this case, be generated 
by the in-circuit debugger. 

The overlapping of loads and stores with instruction execution allows the consideration 
of BINV to be incorporated easily without affecting performance. The condition of BINV 
has most significance for store operations, as the memory must not be affected. This 
involves preventing the write-enable signal from asserting until it is certain BINV is not 
going active. As stated in the case of instruction accesses, the signal BINV is only as­
serted during the initial cycle. Therefore, if a two-cycle data memory system is used, 
then BINV can be accommodated with ease. 

In simple terms, the DMA condition will transition the Data Access State Machine from 
Oidle to Ostart. If BINV is asserted during this initial cycle, then the condition DMA will 
not be satisfied and the transition will not occur. Once the state machine is in state 
Ostart, the memory system is sure the access is valid and may continue. This causes a 

Figure 3·17 Data Byte Read/Write Access 
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transition from Dstart back to Didle, which provides the assertion of DRDY and the 
respective write-enable if needed (determined by the processor signal R/W). 

The block diagram for the simple data access memory interface appears in Figure 3-18. 

Data Memory: Single-Bank Burst Access 

As the processor will hide the latency of data accesses by overlapping the load or store 
with instruction execution, the addition of burst mode support is not always necessary. 
Simulation of typical code execution will highlight the data bus activity, and unless the 
nesting levels of functions are deep and variable or a real-time operating system is in 
use, then the additional complexity can be avoided. 

If the sequence load,load occurs frequently in simulation, an investigation into imple­
menting pipelined accesses may be fruitful. Pipelined addressing allows the processor 
to use the address bus earlier, and is implemented by the external memory system 
capturing the current address. Therefore, in order to incorporate this mechanism, a 

~igure 3-18 Simple Data Access Block Diagram 
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simple latch to capture the address and a small amount of control logic to provide PEN 
are all that is necessary. 

Assuming the decision is to include data burst access, then knowledge of the signal 
DBREQ is required by the memory system. As with instruction burst, the signal DBREQ 
will need to be held by a latch, and the latched signal DBREQD will be used throughout 
the system. 

The processor only attempts to start a burst if the instruction loadm (load multiple) or 
storem (store multiple) is executed. The length of the burst is determined by the setting 
of an internal register with length minus 1. The load and store multiple instructions only 
apply to the 192 user registers, and therefore the maximum transfer size is 192 words. 
However, the internal burst address counter field is a bits, so an actual burst address 
range of 255 words must be accommodated. Thus, as with the instruction memory, 
provision for burst data accesses is just a simple case of adding an a-bit counter and 
address latch. 

When the condition DMA is valid, the Data Access State Machine (Figure 3-16) will 
transition from Didle to Dstart and assert DLD to load the address counter and latch. If 
DBREQD is not active on the next cycle, then the access will complete as a simple 
access. However, if DBREQD is active, then the state machine will transition to the state 
Dburst and assert DRDY and DCOUNT, thereby starting the data burst. 

The data burst mechanism is much simpler than that of instruction burst. Additional data 
accesses do not have to be accommodated, and neither do burst suspensions. If, for 
example, an interrupt occurs while the processor is performing a data burst, the proces­
sor will de-assert DBREQ, which in turn will de-assert DBREQD. In the case of data 
burst, this signifies a termination. The processor, once it has returned from the interrupt, 
will restart the burst from where it left off with a new DREQ and address. 

The state machine is therefore greatly simplified as the condition DBREQD inactive 
while in the state Dburst can take the state machine straight to the state Didle. 

This is not the complete story; a further performance enhancement can be added to 
accommodate an access immediately following the last burst access. Referring to the 
timing diagram in Figure 3-19, it can be seen, as the state machine is using DBREQD, 
that the condition DREQ active and IBREQD inactive while in the state Dburst signifies a 
new data access. When this condition is recognized, instead of returning to the state 
Didle, the state machine can transition straight to Dstart. 

Data Timing: Single-Bank Burst Access 

Comparing the non-interleaved instruction memory block diagram, Figure 3-6, with the 
burst data access block diagram, Figure 3-20, it can be seen that the data memory 
system is an exact subset of the instruction memory system design. This simplifies the 
timing analysis greatly, as the work already done for the instruction memory system can 
be used directly for the data memory system. 

Data Memory: Dual-Bank Burst Access 

As with the Dual Bank memory system described earlier, the Am29000 burst addressing 
mechanism allows for system performance to be maintained while cost reductions are 
made. Again, the design for a dual bank data memory system is an exact subset of that 
for instruction memory. However, as burst suspension and additional accesses do not 
have to be accommodated, the logic can be simplified substantially. 
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Figure 3·19 Data Access with "I!i1JiIV and Burst 
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CONCLUSION 

A common belief is that RiSe microprocessors require expensive memory to provide 
high performance. This stems from the assumption that bandwidth is exp~nsive. In fact, 
bandwidth is inexpensive; it is low latency that is expensive. This chapter has attempted 
to address these concerns and show the Am29000 processor allows the latency and 
bandwidth to be separated, providing access to some major system cost reductions. A 
few particular examples were chosen to illustrate that while the dependency on low 
latency, high bandwidth memories has been eased, the logic required to support these 
features is not complex. 

After reading this chapter, the reader should be able to understand the decisions 
required before starting a system design. One of the more common configurations, a 
dual-bank interleaved SRAM memory, is described as an example below. 
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Figure 3·20 Burst Data Access Block Diagram 
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The equations for implementing SRAM designs in hardware are shown in this section for 
two designs described earlier in this chapter. Both designs have a two-cycle first access, 
single-cycle burst access instruction memory, and a two-cycle data access memory. 
The first design is a dual-bank interleaved SRAM implementation; the second design is 
a single-bank non-interleaved SRAM implementation. 

Dual-Bank Interleaved SRAM Design 

A dual-bank interleaved design was described previously in this chapter. A generalized 
block diagram of the design was shown in Figure 3-13. 

The control logic for this design can be implemented in one MACH 110 device, as 
depicted in Figure 3-21. 
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Figure 3-21 Interleaved SRAM Block Diagram 
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The interleaved memory system requires two counters to supply the burst address. This 
part of the memory interface, like the control logic, fits into a single MACH 110 device. 
The required logic equations are shown at the end of this chapter. 

The two independent paths for instruction memory and data memory used by the 
Am29000 processor allow performance to be maintained economically. The two 
separate paths allow concurrent accesses of data and instructions. 

The block diagram of the data access circuit is shown in Figure 3-22. The required logic 
equations are shown at the end of this chapter. 

Single-Bank Non-Interleaved SRAM Design 

A single-bank design was described previously in this chapter. A generalized block 
diagram of the design was shown in Figure 3-5. 
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Figure 3·22 Simple Data Access Block Diagram 
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The control logic for this design can be implemented in a few PAL devices, as depicted 
in Figure 3-23. The required logic equations are shown at the end of this chapter. 

The data memory design is the same as the dual-bank interleaved design (see 
Figure 3-22). 
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Figure 3-23 Single-Bank SRAM Block Diagram 
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Equations 

The equations for implementing the SRAM design examples are shown in Figure 3-24 
through Figure 3-29. 

Discussion of the methods required to implement a two-cycle first access, single-cycle 
burst instruction memory system and a two-cycle data memory system are covered 
previously in the text. 

The control logic can be contained in one MACH 110 device. 

Figure 3-24 Interleaved SRAM Control Equations 
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Figure 3-24 Interleaved SRAM Control Equations (continued) 
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Figure 3·24 Interleaved SHAM Control Equations (continued) 
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Figure 3·25 Interleaved SRAM Address Counter Equations 
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STRING AX6 '(A[6] :+: (A[5] • A [4] • A[3] • A[2]))' 

GROUP MACH_SEG_A QE[9 .. 2] 
GROUP MACH_SEG_B QO[9 .. 2] AX[9 .. 7] 

;PRE-INCREMENT OF EVEN COUNTER 

AX[7] = A[7] :+: (A[6] • A[5] • A[4] • A[3] • A[2]) 
AX[8] = A[8] :+: (A[7]. A[6]. A[5]. A[4]. A[3]. A[2]) 
AX[9] = A[9] :+: (A[8] • A[7] • A[6] • A[5] • A[4] • A[3] • A[2]) 

;EVEN COUNTER 

QE[2].T := LD • (A[2] :+: QE[2]) + LD • CNT 
QE[3].T := LD • (AX3 :+: QE[3]) + LD • CNT. QE[2] 

QE[4].T := LD • (AX4 :+: QE[4]) + LD • CNT. QE[2] • QE[3] 

QE[5].T .- LD • (AX5 :+: QE[5]) + LD • CNT. QE[2] • QE[3] 

QE[6].T := LD • (AX6 :+: QE[6]) + LD • CNT. QE[2] • QE[3] 
• QE[5] 
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Figure 3-25 Interleaved SHAM Address Counter Equations (continued) 
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QE[9].T 

'- LD • (AX[8] :+: QE[8]) + LD • CNT • QE[2] • QE[3] • QE[4] • QE[5] • QE[6] 
• QE[7] 
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• QE[6] • QE[7] • QE[8] 

QE[9 .. 2].CLKF = CLK 

;ODD COUNTER 

QO[2].T '- LD • (A[2] :+: QO[2]) + LD • CNT 

QO[3].T '-

QO[4].T '-

QO[5].T '-

QO[6].T '-

QO[7].T '-

QO[8].T '-

QO[9].T '-

LD • (A[3] :+: QO[3]) + LD • CNT • QO[2] 

LD. (A[4] :+: QO[4]) + LD. CNT. QO[2]. QO[3] 

LD • (A[5] :+: QO[5]) + LD • CNT • QO[2] • QO[3] • QO[4] 

LD • (A[6] :+: QO[6]) + LD • CNT • QO[2] • QO[3] • QO[4] • QO[5] 

LD • (A[7] :+: QO[7]) + LD • CNT • QO[2] • QO[3] • QO[4] • QO[5] • QO[6] 

LD. (A[8] :+: QO[8]) + LD. CNT. QO[2]. QO[3]. QO[4]. QO[5]. QO[6] .OOm . 
LD. (A[9] :+: QO[9]) + LD. CNT. QO[2]. QO[3]. QO[4]. QO[5]. QO[6] 
• QO[7] • QO[8] 

QO[9 .. 2].CLKF = CLK 

GLOBAL.RSTF = GND 

GLOBAL.SETF = GND 
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Figure 3·26 Simple Data Access Equations 

CHIP Simple_Data_Control AmPAL22V10 

PIN 1 SYSCLK COMBINATORIAL 
PIN 2 . .4 A[31 .. 29] COMBINATORIAL 
PIN 5 dreq COMBINATORIAL 

PIN 6,7 dregt[1 .. 0] COMBINATORIAL 
PIN 8 xdrdy COMBINATORIAL 
PIN 9 rw COMBINATORIAL 
PIN 10 binv COMBINATORIAL 
PIN 12 GND 
PIN 11,13,14 opt[2 .. 0] COMBINATORIAL 
PIN 15,16 A[1 .. 0] COMBINATORIAL 

PIN 17 a REGISTERED 
PIN 18 doe COMBINATORIAL 
PIN 19 drdy COMBINATORIAL 
PIN 23 .. 20 we[3 .. 0] COMBINATORIAL 
PIN 24 VCC 

STRING DATA_SPACE '(A[31])' 
STRING READ '(rW)' 
STRING WRITE '(rw)' 
STRING Didle '('0)' 
STRING Dstart 'a' 
STRING WEN '(opt[2] • opt[1]. opt[O])' 
STRING HENO '(opt[2]. opt[1]. opt[O]~)' 
STRING HEN1 '(opt[2]. opt[1]. opt[O] A[1])' 
STRING BENO '(opt[2]. opt[1]. opt[O] A[1] • A[O)' 
STRING BEN1 '(opt[2] • opt[1]. opt[O] ~ • A[O)' 
STRING BEN2 '(opt[2]. opt[1]. opt[O] A[1] • A[O]' 
STRING BEN3 '(opt[2]. opt[1]. opt[O] A[1] • A[O]' 
STRING Data_Address '(A[30] • A[29])' 
STRING DMA '(DATA_SPACE. Data_Address. dreq. dreqt[O] • dreqt[1]. binv)' 

opt[O].TRST = GND 
A[1 .. 0].TRST = GND 
a.TRST = vce 
doe.TRST = vce 
drdy.TRST VCC 
we[3 .. 0].TRST = vce 
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Figure 3-26 Simple Data Access Equations (continued) 

Dstart := DMA • Didle 

drdy = Dstart + xdrdy 

doe = DMA • Dstart • READ 

we [0] = WRITE • Dstart • (WEN + HENO + BENO) 
we[1] = WRITE. Dstart • (WEN + HENO + BEN1) 
we[2] = WRITE • Dstart • (WEN + HEN1 + BEN2) 
we[3] = WRITE • Dstart • (WEN + HEN1 + BEN3) 

A Non-Interleave SHAM Implementation 

Covered in detail in earlier text is a decision about the methods required to implement a 
two-cycle first access, single-cycle burst instruction memory system and a two-cycle 
data memory system using single memory banks. 

Instruction Memory Design 

The control logic can be contained in a few PAL devices. The required logic is: 

Figure 3-27 Single-Bank SHAM Decode Control Equations 
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PIN 
PIN 
PIN 
PIN 
PIN 
PIN 
PIN 
PIN 
PIN 
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STRING IDLE 
STRING 101 
STRING lOB 
STRING 001 
STRING DOB 

1 iREQ 
2 IBREOD 
3 i5REQ 
4 DBREOD 
5,6,7 A[31 .. 29] 
8 PIN169 
9 IREOT 
10,11 DREOT[1 .. 0] 
12 GND 
13 0[1) 
14 0[2) 
15 LD 
16 DTR 
17 DEN 
19 RW 
20 IME 
21 DME 
22 CNT 
23 0[3] 
24 VCC 

'(0[1] • 0[2) • 0[3))' 
'(0[1] • 0[2) • 0[3])' 
'(0[1] • 0[2] • 0[3))' 
'(0[1] .0[2] • 0[3])' 
'(0[1] • 0[2] • 0[3))' 
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Figure 3-27 Single-Bank SHAM Decode Control Equations (continued) 

IME = 
DME = 
DEN = 

DTR = 
LD = 
CNT = 

IREO. iREQT. PIN169. A[31]. A[30] • A[29] 

DREO. DREOT{1] • DREOT{O] • PIN169. A[31]. A[31] • A[29] 

E01 + DEN. DBREOD 

RW • DBREOD + DTR. DBREOD 

IREO. (IDLE + lOB) + DREO • (IDLE + DOB) 

lOB. IBREOD + DOB • DBREOD 
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CHIP Address_Counter AmPAL22V1 0 

PIN 
PIN 
PIN 
PIN 
PIN 
PIN 
PIN 
PIN 
PIN 
PIN 
PIN 
PIN 
PIN 
PIN 

1 SYSCLK 
2 CNT 
3 LD 
4 .. 11 A[2 .. 9] 
12 GND 
15 Q[2] 
16 Q[3] 
17 Q[4] 
18 Q[9] 
19 Q[8] 
20 Q[7] 
21 Q[6] 
22 Q[5] 
24 VCC 

Q[2]:= LD. A[2] + LD • CNT • Q[2] + LD • CNT • 0[2] 

Q[3]:= LD. A[3] + LD • CNT • Q[3] + LD • CNT • 0[2] • Q[3] + LD • CNT • Q[2] 
• Q[3] 

Q[4]:= LD. A[4] + LD • CNT • Q[4] + LD • CNT • 0[2] • Q[3] • Q[4] + LD • CNT 
.0[2] • 0[4] + LD • CNT • Q[3] • Q[4] 

0[5]:= LD. A[5] + LD • CNT • Q[5] + LD • CNT • Q[2] • Q[3] • 0[4] • Q[5] + LD 
• CNT. Q[2]. Q[5] + LD. CNT. Q[3]. 0[5] + LD. CNT. Q[4]. 0[5] 
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Figure 3-28 Single-Bank SRAM Address Counter Equations (continued) 

0[6]:= LD. A[6] 
+ LD. CNT • 0[6] 
+ LD. CNT • 0[2] • 0[3] • 0[4] .0[5] • 0[6] 
+ LD. CNT • 0[2] • 0[6] 
+ LD. CNT • 0[3] • 0[6] 
+ LD. CNT • 0[4] • 0[6] 
+ LD. CNT • 0[5] • 0[6] 

0[7]:= LD. A[7] 
+ LD. CNT • 0[7] 
+ LD. CNT • 0[2] • 0[3] • 0[4] • 0[5] • 0[6] • 0[7] 
+ LD. CNT • 0[2] • 0[7] 
+ LD. CNT • 0[3] • 0[7] 
+ LD. CNT • 0[4] • 0[7] 
+ LD. CNT • 0[5] • 0[7] 
+ LD. CNT • 0[6] • 0[7] 

0[8]:= LD. A[8] 
+ LD. (0[8] :+: (CNT .0[2] • 0[3] • 0[4] • 0[5] • 0[6] • 0[7]» 

0[9]:= LD. A[9] 
+ LD. (0[9] :+: (CNT • 0[2] • 0[3] • 0[4] • 0[5] • 0[6] • 0[7] .0[8])) 
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Figure 3-29 Single-Bank SRAM State Control Equations 

3-40 

Chip State_Control AmPAL22V10 

PIN 1 
PIN 2 
PIN 3 
PIN 4 
PIN 5 
PIN 6 
PIN 7,8 
PIN 9,10 
PIN 11 
PIN 12 
PIN 13 
PIN 14 
PIN 15,16 

SYSCLK 
IME 
DME 
IBREQD 
DBREQD 
RW 
OPT[1 .. 0] 
A[1 .. 0] 
BINV 
GND 
OE 
iRDY 

PIN 17 .. 19 
WE[1 .. 0] 
Q[3 .. 1] 
iCE PIN 20 

PIN 21,22 
PIN 23 
PIN 24 

STRING IDLE 
STRING IQ1 
STRING IQB 
STRING DQ1 
STRING DQB 
STRING IEXIT 
STRING WEN 
STRING HENO 
STRING HEN1 
STRING BENO 
STRING BEN1 
STRING BEN2 
STRING BEN3 

WE[3 .. 2] 
XDRDY ; ''To be Or'd with Data DRDYI" 
vce 

'(Q[1] • Q[2] • Q[3))' 
'(Q[1] • Q[2] • Q[3])' 
'(Q[1] • Q[2] • Q[3])' 
'(Q[1] • Q[2] • Q[3])' 
'(Q[1] • Q[2] • Q[3])' 
'( DME • IBREQD)' 
'(OPT[1] • OP![O))' 
'(OPT[1]. OPT[O] • A[1])' 
'(OPT[1] • OPT[O] • A[1 ))' 
'(OP![1] • OPT[O]. A[1]. A[O]), 
'(OPT[1] • OPT[O] • A[1]. A[O))' 
'(OPT[1] • OPT[O] • A[1] • A[O])' 
'(OPT[1] • OPT[O] • A[1] • A[O])' 

IRDY = IQ1 + IQB • IBREQD 

IOE = IQ1 + IQB + RW • (DQ1 + DQB) + IOE • DBREQD 

XDRDY:= DQ1 + DQB • DBREQD 
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Figure 3-29 Single-Bank SHAM State Control Equations (continued) 

0[1]:= BINV. IDLE. IME + 101 • IBREOD + lOB .IEXIT 

0[2]:= BINV. IDLE. DME + D01 • DBREOD + DOB • DBREOD + DOB • DME 

0[3]:= 101. IBREOD + lOB • IEXIT. IME + D01 • DBREOD + DOB • DBREOD 

WE[O] = RW. D01 • (WEN + HENO + BENO) + WE[O] • DREOD 

WE[1]= RW. D01 • (WEN + HENO + BEN1) + WE[1]. DBREOD 

WE[2] = RW. D01 • (WEN + HEN1 + BEN2) + WE[2] • DBREOD 

WE[3] = RW. D01 • (WEN + HEN 1 + BEN3) + WE[3] • DBREOD 
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THE DESIGN PROCESS­
SIMPLE EPROM EXAMPLE 

This chapter describes a simple low-cost interface between the AMD Am29000 
processor and a standard EPROM instruction memory. Two to three standard 
PALCE16V8H-D PAL devices are employed to deliver single-cycle burst access at 
16 MHz (62.5 ns clock period) using 45-ns EPROM. Using the same design architec­
ture, single-cycle burst access performance can also be achieved at 20 MHz (50-ns 
clock period) using 35-ns EPROM. 

BACKGROUND 

The low cost and high performance of the Am29000 processor contribute to its effective­
ness as an embedded control processor. A key element of its strength is its burst mode 
address capability. Since the Am29000 processor is capable of executing its instructions 
in a single clock, issuing instructions at that rate is a definite advantage. 

Because instruction execution tends to be sequential in nature, it is not necessary for 
the processor to issue a new address on every cycle. It is better to use an address 
counter and simply increment it on each access. This avoids the address output delay 
time of the microprocessor. Instead, there is only the delay of the counter output, tco. 

As an example, the address valid output delay of the 16-MHz Am29000 processor is 
16 ns, while tco of the PALCE16V8H-D, used as the address counter, is 8 ns. With the 
8-ns savings, a slower, less costly memory may be employed. The Am29000 processor 
is capable of burst lengths up to 256 instructions; the upper address lines are latched. 
Therefore, implementing an 8-bit counter in the PAL device is sufficient. 

Another advantage of burst mode addressing is that with the counter and latches 
providing instruction address, the processor address bus is free for data transfers. The 
performance of a four-bus Harvard architecture (with separate instruction and data 
buses) is then realized with the reduced pin count of three buses. 

EPROM MEMORY DESIGN ASSUMPTIONS 

Some general assumptions are made for this design that are valid for a variety of 
embedded control applications: 

1. EPROM is the only instruction memory in the system. This assumption simplifies 
the address decoding and chip select logic. 

2. There is no path from the data bus to the instruction bus. 

This assumption simplifies the memory architecture, but if an emulator is used for soft­
ware development, it must have overlay memory capability. Emulators of this type are 
readily available. 

DESIGN DESCRIPTION 

A complete instruction memory can be achieved using only two or three low-cost PAL 
devices and four EPROMs. The design can be partitioned into three blocks: state 

The Design Process-Simple EPROM Example 4-1 
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machine, address counter, and address latch. The counter is divided between two PAL 
devices, one also containing the state machine, the other containing address latches. A 
third PAL device serves as a latch for the upper address lines to support 128K words 
(512K bytes) of EPROM instruction memory. For memory systems requiring less than 
2K words (8K bytes), the third PAL device can be omitted. 

Signals used from the Am29000 processor are IREQ, IBREQ, IBACK, IRDY, and BINV. 
All are active-low signals. Refer to the 29K Family Data Book for a more detailed 
description of 29K Family signals. 

IREQ indicates an instruction request from the Am29000 processor. IBREQ is active for 
establishing burst mode, while IBACK acknowledges to the Am29000 processor that the 
burst is supported. IRDY indicates a valid instruction is on the bus. BINV will invalidate 
the current access when a trap occurs, when there is a TLB miss, or for other reasons 
explained in the 29K Family literature. 

The memory access state diagram is shown in Figure 4-1. Using only a single bit called 
ACC (access), the state machine output indicates either an idle condition or a pending 
instruction access. ACC is also used to drive the Chip Enable inputs of the EPROMs, as 
well as IRDY to the Am29000 processor. From the idle state, IREQ active with BINV 
inactive will move to the access pending state. While IBREQ is active (Le., the burst 
mode is requested), the access pending state is continued. The access state can also 
be entered from idle with IBREQ active and IREQ inactive. This would be the case for 
resuming a previously suspended burst transfer for which a new address is not issued. 

Revision D of the Am29000 processor does not allow IBACK to be active when IBREQ is 
inactive. For this reason, IBACK is a registered version of IBREQ. A side effect is if the 
Am29000 processor suspends a burst, IBACK is de-asserted, which in turn terminates 
the burst. The next instruction access will then assert IREQ and place a new address on 
the bus, asserting IBREQ if a burst is needed. 

Revision F of the Am29000 processor allows IBACK to be active when IBREQ is active; 
then IBACK can always be asserted. With IBACK active, a burst access can be re­
sumed, which does not require a new address. The state machine already supports 
burst mode resumption. (Revision E is an intermediate revision, not released outside of 
AMD.) 

Figure 4-1 Access State Diagram 

4-2 

Note: 

BINV+ 
IIREO./IBREO 

lit' indicates inactive state (not asserted) 
irrespective of signal polarity. 

IREO./BINV 
+ IBREO 

IIBREO 
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The address counter for the lower eight bits is loaded whenever a valid instruction ad­
dress is issued by the Am29000 processor. Since single-cycle burst is supported, it is 
incremented on every clock while ACC is active. 

The upper address bits are also latched when a new instruction is issued. The memory 
size determines the number of latched bits, and therefore the number of PAL devices 
used to implement the function. 

DETAILED DESCRIPTION 

The following paragraphs and figures describe the instruction memory design in detail. 
Complete PALASM® equations are included at the end of the chapter. 

The state machine and lower five bits of the address counter are in a single 16V8 (see 
Figure 4-2, Block Diagram). A second PAL device contains the upper three counter bits 
and three latched address bits. If additional address lines are required, a third 16V8 
houses them. 

There are only a handful of timing parameters critical to the design (see Figure 4-3, 
16-MHz Timing). Since IBREQ and BINV are asserted late in the bus cycle, the PAL 
device must have adequate setup time. For IBREQ at 16 MHz, the value is 13 ns, and 
BINV requires 20 ns. The 16V8H-10 with a 10-ns setup time fits the bill. 

To determine the required PROM access time, both the setup time of 8 ns on the 29K 
data inputs, as well as the tco of 8 ns on the PAL device, are taken in account. 

With a 16-MHz clock: 

lace = 62.5-8-8 =46.5 ns 

So a 45-ns PROM is required. 

CONCLUSIONS 

When combined with a two-cycle simple access data memory, this 16-MHz Am29000 
processor implementation can yield 22,900 Dhrystones, providing a very cost-effective 
high-performance solution for embedded control applications. 

For 20-MHz operation with this architecture, a tco of 7 ns is needed to allow use of 35-ns 
PROMS. To allow the use of slower memories, interleaving could be utilized, further 
lowering the memory cost. 

REFERENCES 

The following AMD documents are valuable references: 

• Am29000 User's Manual 

• PAL Device Data Book 

(Order #10620) 

(Order #10173) 
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Figure 4-2 EPROM System Block Diagram 

Note: 
In this diagr 
that a signa 
inverted. 

.... 
IBACK ... ... 

IROY .. ... 

Am29000 
Processor 

A31-A2 

am, the overbar indicates 
I is active Low, not that it is 

SYSCLK 

IREO 
F 

· T§"RE5 : 

BINV · F 

A6-A2 
F 

IBUS.1 

SYSCLK. 

IREO : 
BINV r 

ACC 
p 

· p 

A12-A7. 
· 

IBUS.2 

SYSCLK .. 
IREO : 
BINV • 
ACe : 

F 

A18-A13 
F 

IBUS.3 

16V8H-10 

131 10 -

ACC. 

I Acel 

CE 07-00 ~ -
IBACK 

p A16-AO 

RA6-RA2 

COUT 
I---

ACC. 
CE 015-06 ~ r 

. A16-AO p 

~ 

RA12-RA7 

ACC a CE 023-016 ~ 

- A16-AO 

RA18-RA13 
ACC 

CE 031-024 -. f--

p A16-AO 

45 ns PROM 
(2K x 8) or (128K x 8) 

10023C-033 
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Figure 4-3 

Figure 4-4 

i6-MHz Timing 

62.5 ns 

, ADDRESSM , 

'N+3 ' 

'N N+1 'N+2 ' 
Burst' 

PAL DEVICE EQUATIONS 

Burst Address Counter Equations 

CHIP IBUS_1 PAL 16V8 device 

M 
SIMPLE, 

sysclock lireq libreq /binv a2 a3 a4 a5 a6 gnd 

loe liback lacc ra2 ra3 ra4 ra5 ra6 cout vcc 

acc:= lacc. ireq ./binv 
+ lacc. ibreq ./binv 
+ acc. ibreq 

iback:= ibreq 

ra2 := ireq. /binv • lacc • a2 
+ lacc. lireq • ra2 
+ acc. Ira2 

; idle state, begin access 
; idle state, resume access 
; access 
; also drives IRDY, CE 

; load 
; hold 
; increment 

The Design Process-Simple EPROM Example 
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Figure 4-4 Burst Address Counter Equations (continued) 

ra3 := ireq. Ibinv • lacc • a3 ; load 
; hold + lacc ./ireq • ra3 

+ acc • (ra3 :+: ra2) 

ra4 := ireq. Ibinv • lacc • a4 
+ lacc ./ireq • ra4 
+ acc. {ra4 :+: (ra3 • ra2)) 

ra5 := ireq • Ibinv • lacc • a5 
+ lacc ./ireq • ra5 
+ acc • {ra5 :+: (ra4 • ra3 • ra2)) 

ra6 := ireq. Ibinv .Iacc • a6 
+ lacc ./ireq • ra6 

; increment 

; load 
; hold 
; increment 

; load 
; hold 
; increment 

; load 
; hold 

+ acc. {ra6 :+: (ra5 • ra4. ra3 • ra2)) ; increment 

cout = ra6. ra5 • ra4 • ra3 • ra2 

Figure 4-5 Address Counter/Latch Equations 

CHIP IBUS_2 PALCE16VS 

sysclk /ireq Ibinv lacc a7 as a9 a10 a11 gnd 

loe a12 ra12 ra11 ra10 ra9 raS ra7 cout vcc 

ra7 := ireq .lbinv '. lacc • a7 
+ lacc ./ireq. ra7 
+ acc • (ra7:+:cout) 

raS := ireq. Ibinv • lacc • as 
+ lacc • /ireq • raS 
+ acc • (raS:+:{ra7 • cout)) 

ra9 := ireq .lbinv • acc • a9 
+ lacc ./ireq • ra9 
+ acc. (ra9:+:{raS • ra7 • cout)) 

If (ireq .lbinv .Iacc) then 
begin 

end 

else 

ra10:= a10 
ra11:= a11 
ra12:= a12 

begin 

end 

ra10:= ra10 
ra11:= ra11 
ra12:= ra12 

; load 
; hold 
; increment 

; load 
; hold 
; increment 

; load 
; hold 
; increment 

; load upper address 

; hold upper address 
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Figure 4-6 Address Latch Equations 

CHIP IBUS_3 PALCE16V8 

syselk/ireq Ibinv lace a13 a14 a15 a16 a17 gnd 

loe ne ra13 ra14 ra15 ra16 ra17 ra18 a18 vee 

If (ireq • Ibinv • lace) then 
begin 

end 

else 

ra13:= a13 
ra14:= a14 
ra15:= a15 
ra16:= a16 
ra17:= a17 
ra18:= a18 

begin 

end 

ra13:= ra13 
ra14:= ra14 
ra15:= ra15 
ra16:= ra16 
ra17:= ra17 
ra18:= ra18 

; load upper address 

; hold upper address 
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CONNECTING THE 
INSTRUCTION/DATA BUSES 

The Am29000 processor bus architecture provides separate buses for instructions and 
data. This feature allows the high-performance system designer to separate the instruc­
tion and data fetches by providing a two-bank memory system. 

For minimal-cost systems, however, using two banks of 32-bit wide memory (one each 
for data and instructions) may be too expensive. One solution to this problem is to con­
nect the instruction and data buses together, via some suitable buffering, and to have a 
single bank of 32-bit wide memory. 

The following design description is an example of how to build such a system, for both 
very low-cost systems and for higher performance systems at slightly higher cost. 

INSTRUCTION RAM DESIGN 

Initially, only instruction accesses will be described. Typically, because instruction 
fetches occur much more frequently than data accesses, this is the area where the 
maximum performance can be gained. Later, data accesses will be described. 

Figure 5-1 shows the simplest memory system that can be connected to the Am29000 
processor and corresponding timing. The memory system consists of an asynchronous 
decoder. PAL device generating the CE and OE strobes for the EPROM (or RAM), and 
also the IRDY signal back to the Am29000 processor. This system can support single­
cycle accesses for all instruction accesses when used with fast enough memory 
devices. 

The required memory access time in Figure 5-1 is calculated as follows: 

lace = tcye -lad - tpd -ids 

where: 

lace Memory access speed 

bye Am29000 processor clock speed 

lad Address delay from Am29000 processor 

tpd PAL device propagation delay 

ids Am29000 processor data setup 

lace tcye-16-7.5-6 

lace tcye-29.5 
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Figure 5·1 Basic Memory System 

5-2 
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I 
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I 
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A 
EPROM 

_ (RAM) 
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-Am29000 - OE 
Processor PAL IRDY 

~ 

Control 
Device 

t 

�4 .. ---------~~1 tcyc 

SYSCLK 

Address/Control 

H tpd 

C'EandOE 

-.j tds 
Data ------------~<===>~----------

I ..... ----..~I tacc 
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Using memory devices with standard access times, the maximum frequency at which 
the Am29000 microprocessor can be clocked is: 

Memory Access Time 

35 ns 
55 ns 
70 ns 

Max Freq (MHz) 

15.5 
11.8 
10.0 

Although this memory system can achieve the maximum possible bandwidth from the 
memory, the frequency at which the system can be clocked is somewhat low, thus 
reducing the overall performance. 

Closer inspection of the memory access equation shows the only parameter that could 
possibly be reduced is the address propagation delay from the processor. If a fast exter­
nal counter can generate the address then this value could be reduced from 16 ns to 
just the counter update time. This is a practical approach because most instructions are 
stored in consecutive memory locations. 

Connecting the InstructionlData Buses 
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One disadvantage with this method is that the first access in any instruction sequence 
would take two clock cycles, as the counter must be loaded. However, the overall per­
formance is increased due to the higher clock frequency at which the processor can 
operate, as the majority of the instructions will still execute in a single clock cycle, but at 
a higher frequency. 

Figure 5-2 shows this improved memory design and the corresponding timing. 

The required memory access time in Figure 5-2 is calculated as follows: 

lace = tcyc-tv-tpd-tds 

where: 

bv clock inverter delay 

lace tcyc-5-7.5-6 

lace tcyc-18.5 

Figure 5-2 Burst Mode Memory System 
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~' 
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Using memory devices with standard access times, the maximum frequency at which 
the Am29000 processor can be clocked is: 

Memory Speed 

35 ns 
55 ns 
70 ns 

Max Freq (MHz) 

18.6 
13.6 
11.3 

Extra performance has been gained with the addition of the extra hardware generating 
the address, with an added side effect that the processor address bus is now only used 
during the first instruction access and not during the subsequent or "burst" accesses. 

This in itself does not gain much performance in data memory accesses in systems with 
a common instruction/data memory, as the memory devices that could be accessed with 
this bus are probably being accessed for instructions. However, it may significantly 
speed up I/O accesses that do not access the memory. 

Having now generated a memory system performing two-cycle initial access and single­
cycle burst access, it is also possible to build a similar system using lower-speed 
memories, but using two interleaved banks, as shown in Figure 5-3. This approach Is 
probably more useful when larger code sizes are needed (more than four 8-bit wide 
memory devices are being used). 

The required memory access time in Figure 5-3 is calculated as follows: 

tace = 1.5. tcyc-tpd-tpd-tds-tdd 

where: 

ldd buffer propagation delay 

tace 1.5 • kyc - 30 

Using memory devices with standard access times, the maximum frequency at which 
the Am29000 processor can be clocked is: 

Memory Speed Max Freq (MHz) 

35 ns 23.0 
55 ns 17.6 
70 ns 16.0 
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Figure 5·3 Dual·Bank Interleaved Memory System 
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INSTRUCTION EPROM SUMMARY 

Using 40-ns EPROMs on an Am29000 processor system employing the modified simple 
single-bank access design, 16-MHz operation is possible. The chip count of this system 
would consist of the following: 

Am29000 processor 

2 PAL devices for high-order addresses 

2 PAL devices for low-order addresses 

PAL device for decode, etc. 

4 EPROMs 

Connecting the InstructionlData Buses 5-5 
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ADDITION OF READ/WRITE MEMORY 
In a system with separate instruction and data memories, the data memory design can 
proceed relatively independent of the instruction memory design. In a combined system, 
certain considerations have to be made. 

In order to connect the Am29000 processor instruction and data buses together, buffers 
have to be used to ensure both the processor and the memory subsystem do not at­
tempt to drive the bus simultaneously. This could occur due to the fast switching of the 
Am29000 processor outputs, coupled with slow turn-off of the memory subsystem. 

Because the buffers have to be used, the read access time of the data memory must be 
reduced by the propagation delay of the buffer. This implies that data memory access 
times must be approximately 10 ns faster than the equivalent instruction-only memory. 
The major drawback is that in minimal systems, the same physical memory is used for 
both instruction and data storage. The only practical solution for data accesses is to take 
two clock cycles, because implementing them as single-cycle accesses imposes a high 
memory cost. This solution would need to be implemented on all the previously 
discussed memory models. See Figure 5-4. 

One potential drawback with this approach is the amount of time the address bus is 
utilized by the data memory. When performing multiple LOADs or STOREs, a minimum 
of one free clock cycle is required between the termination of one access and the 

Figure 5·4 Read/Write Memory with Combined InstructionJData Buses 
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commencement of the next. For example, to fill half the contents of the register file (i.e., 
perform 64 LOADs) 191 clocks would be required rather than 128 as first thought. This 
is a loss of 30% (worst case) of the available data bus bandwidth. This performance 
impact would only be seen on programs performing many multiple LOADs and 
STOREs. 

To compensate for this, the data accesses can be accomplished in burst mode. In the 
examples shown in Figures 5-2 and 5-3, the address counting logic is already provided 
and thus a data memory system allowing three clocks for the first access and two-cycle 
burst can easily be built. See Figure 5-5. 

This requirement is also necessary when looking at the data write timing, as the delay 
for the write data from the processor is 20 ns. 

READ/WRITE MEMORY SUMMARY 

Adding read/write capability to the Am29000 processor requires extra buffers be pro­
vided to ensure no data contention occurs between the processor and the memory. The 
minimum chip count capable of performing this task is two Am29C883A Multiple Bus 
Exchange devices. To maintain high performance, it is mandatory that the speed of 

Figure 5·5 Addition of Burst Mode Data Access 
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instruction execution not be impaired by the buffer delay. Therefore, all data type mem­
ory accesses, whether they be reads or writes, will take longer than one clock cycle to 
execute. 

DRAM SUPPORT 

For systems requiring more than 256K words of memory, a DRAM solution can provide 
a cost-effective solution when using 1 M x 1 static column DRAMs. 

The advantage of static column DRAM over standard DRAMs is twofold. First, they can 
sustain high bandwidth, because only the column (not row) information needs to be 
updated on every cycle. Second, the CS strobe only has to be generated at the begin­
ning of the cycle, as all subsequent accesses are fully combinatorial accesses from the 
column address. See Figure 5-6. 

Refresh also must be provided for the DRAM. This is in the form of a simple 10-bit 
counter whose output drives refresh addresses onto the bus every 8 ms. During this 
time, the Am29000 processor must be suspended from making any accesses, and thus 
the refresh logic behaves like a bus master and takes control of the bus. 

With simple timing, and using 100-ns DRAM devices, a system can offer three-cycle 
initial access, single-cycle burst access for instruction and data reads, and two-cycle 
burst access for data writes. 

The required memory access time in Figure 5-6 for instructions is calculated as follows: 

tace tcye - tpd - tsu - tiv 

tace bye-7.5 - 6-5 

tace tcye-18.5 

The required memory access time in Figure 5-6 for data, assuming a buffer delay of 
10 ns, is calculated as follows: 

tace = tcye-28.5 

Therefore, standard 100 ns static column DRAMs, with a tace = 40 ns, can support a 
maximum clock frequency of 14.6 MHz. 

The chip count of this system consists of the following: 

Am29000 processor 

2 29C983A MBE for data buffers 

10-bit latch for high-order address 

2 PAL devices for low-order address counter 

3 PAL devices for control logic 

10-bit counter for refresh address + refresh counter 

32 DRAMs 
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Figure 5·6 Static Column DRAM Memory System 
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FURTHER INCREASES IN PERFORMANCE 

To further increase the performance of our minimal system, there are several avenues 
which can be pursued. 

First, the clock speed of the processor can be increased along with corresponding up­
grades to the memory system. This provides a direct linear performance improvement 
over the slower system. The major disadvantage of this approach is the increase in cost 
and lack of availability of faster memory devices. 

A second alternative is to increase the processor clock speed, combined with increasing 
the initial access time of the memory, while still maintaining fast burst capability. This 
provides a slightly lower performance upgrade, while maintaining the cost of the mem­
ory. The integral Branch Target Cache memory of the Am29000 processor helps to 
maintain high performance. 
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A third solution, as mentioned earlier, is to separate the instruction and data buses, thus 
simplifying the separate memory interfaces while potentially doubling the number of 
memories needed to build the system. 

The final method is to use a dual-port memory array, providing separate instruction and 
data paths. This is easily achieved using Video DRAM devices, with the video shift port 
providing the instruction stream and the standard random access port providing the data 
memory. In this case it is not necessary to double the memory size. 

To decide which approach is most appropriate for any particular application, various 
factors other than cost must be considered. Performance of the system is also key to 
any design. The use of AMD's simulation tools can be of help in determining which 
design provides the best combination of cost savings, performance, and ease of 
upgrade. 

Connecting the InstructionlData Buses 
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i6·BIT MEMORY ARCHITECTURE 

In order to meet the ever-increasing appetite for throughput by today's processors, there 
has been a natural migration from 8-, to 16-, and then to 32-bit buses. However, as the 
bus size increases, so does system cost, and with DRAM now at the 4 Megabit level, 
the amount of memory just 32 devices provide is far more than the requirements of 
many embedded processor systems. 

The Am29000 processor has not only one, but two 32-bit buses, one for data and one 
for instructions. For applications where blazing speed is needed, this architecture is 
appropriate. However, the Am29000 processor is not limited to the highest-performance 
and highest-cost end of the embedded processor spectrum. The cost and performance 
of Am29000 processor-based systems can be varied across a wide range by changing 
the architecture of the memory system. This allows a single processor and software 
architecture to be applied to both high-performance and low-cost environments. 

This chapter illustrates one solution to providing a low-cost DRAM-only system offering 
performance greater than many current CISC processor systems requiring expensive 
cache memory. 

OVERVIEW OF THE i6-BIT DESIGN 

As DRAM devices have grown in size, speed has increased as a byproduct. Today's 
1 Megabit DRAMs achieve 60-ns RAS access time, while in the mid-1980s, 64K DRAM 
devices were only capable of 100 ns. The cost, on a per-bit basis, of DRAM memories of 
today is astoundingly low. Yet when 32 DRAM devices are placed on the board, their 
total cost can easily exceed that of the processor. The challenge is to make the design 
less expensive by reducing the number of memory components. 

As noted earlier, increased memory bit density has allowed traditional 32-bit wide 
memory systems to far exceed the needs of many processor systems. One bank of 
1-Megabit x 1 DRAM devices provides 4 Mb of memory. If separate instruction and data 
banks are used to increase performance, the memory system size would double to 
8 Mb. Even if 256 Kbit x 4 DRAM devices were used, two banks of memory would total 
2 Mb, far exceeding the needs for many lower-cost embedded processor systems. 

The approach used in the memory design presented here is to cut the memory width in 
half to 16 bits and access two successive 16-bit words to build each 32-bit instruction or 
data value needed by the processor. The fast access speed of currently available 
memories allows a memory cycle rate of 16 MHz, which places the overall system 
speed at a still-respectable 8 MHz. The size of the memory system is further reduced by 
sharing the single bank of memory between the instruction and data buses of the 
processor. 

The common instruction/data space eliminates the buffers and control logic usually 
needed to allow access to the instruction bus from the data bus (necessary for loading 
the instruction memory). This also simplifies some software issues related to the 
separation of instruction and data spaces. 

16-Bit Memory Architecture 6-1 
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The design presented in this chapter uses 256 Kbit x 1 DRAM devices, supplying 
512 Kbytes of memory; 1 Mbit x 1 DRAM devices could be substituted to provide 
2 Megabytes of memory; yet the design averages about 5 MIPS execution. This 
very respectable level of performance is maintained by the unique features of the 
Am29000 processor that help offset the effects of relatively slow DRAM memory." 
These features include the on-chip Instruction Branch Target Cache and the 
192-location, three-port register file (used as a stack cache). 

The system design in this chapter can be described as having an a-MHz clock rate; 
two-clock first access DRAM with single-cycle burst access of both instructions and 
data. The ROM (for boot up) has a fixed two-cycle access time. 

The design illustrates the use of both ROM and DRAM. I/O is not specifically addressed, 
although it is an easy extension to the design. This chapter is a general description; 
complete information on the design (schematics, equations, and timing diagrams) is 
available separately as an application note. 

THEORY OF OPERATION 

Figure 6-1 is a high-level block diagram of the 16-bit memory design. This chapter will 
examine the block diagram and outline the operation of the design. 

Figure 6·1 System Block Diagram 
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Memory Addressing Scheme 

The Am29000 processor provides three modes of addressing: simple, pipelined, and 
burst. In this design, only the simple mode of addressing is explicitly used, but the 
control signals associated with burst mode are monitored in order to allow information 
transfer at the burst mode rate. 

In the simple bus access mode, the Am29000 processor presents the address for each 
word of memory accessed and holds the address valid until a Ready response is pro­
vided by the memory. In the burst access mode, the Am29000 processor provides the 
initial address of a sequence of words to be accessed and then removes the initial 
address when a memory responds with a Burst Acknowledge signal, which establishes 
a burst access. Then the initial address is removed and the remainder of the burst trans­
fer is managed by a Burst Request signal from the Am29000 processor. The Burst 
Request signal controls the incrementing of an address counter in the memory interface. 

In a standard Am29000 processor system, the burst access mode allows an instruction 
burst access to be initiated, followed by a release of the address bus for subsequent use 
in accessing data words concurrent with instruction word access. 

Whenever there are sequential words to be accessed, the Am29000 processor will 
assert the Burst Request signals in an attempt to establish a burst access so the ad­
dress bus can be released. However, if a Burst Acknowledge is not received from the 
memory, the Am29000 processor will continue the access in simple mode, providing an 
address for each word accessed. The Burst Request signals will also remain active 
throughout a sequential access stream. 

In this system design, the instruction and data buses are tied together, thus preventing 
concurrent instruction and data access; there is no need to share the address bus 
between concurrent burst accesses. The memory interface will therefore never respond 
with a Burst Acknowledge, which forces the Am29000 processor to always provide 
addresses. This eliminates the need for address counters or latches in the memory 
interface. However, the Burst Request signals are still monitored to help manage page 
mode access of the DRAM so a single-cycle access rate can be supported for sequen­
tial streams of memory words. Therefore, the access speed advantages of burst mode 
are retained, while eliminating the need for address counters in the memory interface. 

Clock Generator 

Clock generation represents the heart of this design. The Am29000 processor runs at 
8 MHz, yet the oscillator for this design runs at 32 MHz. The 32-MHz signal is divided 
down to produce an asymmetrical clock with a 25% duty cycle. 

The reason for using an asymmetrical clock is related to the Bus Invalid (BINV) Signal. 
After the Am29000 processor starts an instruction or data access, late in the cycle it can 
assert BINV and cancel that access. For that reason it is difficult to start any access in 
the first clock cycle in a normal symmetrical clock design. 

By using a 25% duty-cycle clock, BINV is made valid early in the system cycle so an 
access can start halfway through the first clock. This allows a two-clock-cycle first 
access. The clock generator also creates a symmetrical System Clock (SYSCLOCK) 
and a 2-Times System Clock (2XSYSCLOCK) for the control state machines. The cost 
for this is that all state machines will run at 32 MHz and use 2XSYSCLOCK and 
SYSCLOCK for decode, timing, and state hold purposes. The clocks are related as 
shown in Figure 6-2. 
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Figure 6-2 

32 MHz 

Since the clock input of the Am29000 processor requires CMOS levels, the PAL device 
clock outputs are buffered through a CMOS buffer device (74HCT04). Two outputs are 
tied together to drive the 90-pf load of the SYSCLOCK input of the Am29000 processor. 
The other clocks are also buffered through the CMOS buffer device in order to minimize 
skew between system clocks. 

Clock Diagram 

~ ClK3 + ClK2 + ClK1 + ClKO --. 

I I I I I 

2xSYSClK 

SYSClK 

29K ClK 
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Bus Control PAL Device 

A master state machine PAL device arbitrates between the Am29000 processor bus 
cycle request pins (IREQ and DREQ) and the refresh request signal (REFREQ). The 
requests have the following priority: 

1. Refresh (highest priority) 

2. Data 

3. Instruction (lowest priority) 

The state machine flow diagram is shown in Figure 6-3. 

IACESS, DACESS and REFRESH represent the various paths of the state machine flow 
diagram. These control signals are used by the Decode PAL device to generate RAS 
and CAS for the DRAM and/or PROM control. 

The IRDYand DRDY signals are asserted in the second cycle of an access when that 
access is to RAM. They remain asserted for each additional cycle of a burst transfer 
(single cycle burst). If the Access is to PROM (IREQT = 1 or DREQT = 0 with OPT2 = 1), 

16-BIt Memory Architecture 
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Figure 6·3 State Machine Flow Diagram 

then it is a two-cycle access. DREQ with OPT2 = 1 is for the ADAPT29K to access 
PROM as data. PIN169 will be High for this type of load, but for other ADAPT29K loads 
and stores, PIN169 will be Low. Pin 169 is then used by the state machine to hold in the 
IDLE state. 

CLKEN is the controlling term for the registering of data in the first half of a bus cycle, 
and it is also used as address bit A 1 for all memory accesses. CLKEN is normally Low 
and then brought High during the CLK 1 and CLK 0 time period. 

Decode PAL Device 

The Decode PAL device is only used to generate the RAS, MUX, and CAS control 
signals for the DRAM array. Because this PAL device cycles CAS for page mode ac­
cesses on either instruction burst or data burst, this PAL device is in the critical path and 
needs to be fast; 10-ns propagation delay or less. The delay line on pin 1 and pin 2 form 
a time delay for the high time of CAS during page mode accesses. This delay line is 
used to squeeze a burst access cycle time within a single cycle of SYSCLK. Therefore, 
the CAS high time (precharge) must be as short as the specification will allow (20 ns) in 
order to provide enough time to access both halves of each memory word and then 
meet the Am29000 processor data set up requirement. 
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Refresh PAL Device 

The Refresh PAL device is simply a counter requesting a refresh cycle from the bus 
arbiter at 12-J1S intervals. The refresh request (REFREQ) is reset when the REFRESH 
signal becomes true. No attempt is made to see if refresh requests are skipped since 
the Am29000 processor will not issue an instruction stream for more than 256 instruc­
tions in a row, allowing a single refresh to be missed at most. Most programs will take a 
branch on the average of every eight instructions, so missing an occasional refresh 
should not be a problem. Just to be safe, this design over-refreshes memory at 
12 JIS rather than the usual 15.5 JIs requirement. This over-refreshing makes up for any 
misses. 

Address MUX 

Three 74F157 devices serve as the address multiplexer in this design. They multiplex 
the lower 18 address lines of the processor into the DRAMs. The MUX control is simply 
RAS delayed by one 32-MHz clock cycle. The Clock Enable (CLKEN) signal serves as 
the half-word address (A1) bit. During burst accesses, the lower address bits of the 
Am29000 processor serve as the DRAM column. 

Data/Instruction Bus Register 

Since the 16-bit memory is being double-cycled to construct 32-bit words, the first half of 
the data must be remembered while the second half is being retrieved. This is done with 
a pair of 29C823A devices for the instruction bus and another pair for the data bus. The 
reason that the second pair of 29C823A devices is chosen is because the Am29000 
processor can write data immediately after reading an instruction. This would violate the 
memory output hold time of the memory (instruction access) bus, so there must be a 
buffer between the Am29000 processor data bus and the instruction bus. 

The separate Data In (DI) pins of the DRAM are driven by a separate set of 74LS244s 
attached to the data bus. 

CRITICAL TIMING PATHS 

This design has two areas critical for worst-case analysis: 

1. BINV setup for the state machine 

2. Second CAS on a Data Read operation 

All other areas have good timing margins. The two critical areas are as follows. 

BINV 
BINV comes out late in the second half of the Am29000 processor clock, however, it is 
needed to start up the state machine by mid-cycle. The clock for the AmPAL22V1 0-15 
comes from the 32-MHZ clock as shown in the path in Figure 6-4. 

16-Bit Memory Architecture 
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Figure 6-4 1fIAV Critical Path Timing 

32·MHz 
CLOCK 

U2 

- PAL Device 

U1 
• BUFFER 

U1 
'----------........ BUFFER 

Assume the buffer will only have a 2-ns skew. 

CLK-Q (7-ns PAL device) 
Buffer Skew 
CLK-BINV 
Setup AmPAL22V10-15 

This total must be less than 31.25 ns. 

CAS 

U3 
-Am29000 
Processor 

6.5 ns 
2 ns 
9 ns 

12 ns 

29.5 ns 

1 
U5 
PAL 

Device 

f 

Here an early SYSCLOCK and a 2XSYSCLOCK are used to generate an early lead on 
CAS going false at the end of the first cycle. Also, a full clock is used to generate CAS; 
therefore, the CAS false time must be shortened by using a delay line function. CAS 
precharge time is 20 ns so a 20-ns delay line is chosen. 

Worst CAS path is when the top path is slow and the bottom path is fast. The bottom 
path subtracts from the top path for a time balance. 

The paths for operation are in Figure 6-5 below. 

Figure 6-5 CAS Critical Path Timing 
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Delay Function (20 + 3) 23.0 ns 
CAS (DECODE PAL) 7.5 ns 
RC = 20 ohms x16 parts x6pf. 1.0 ns 
CAS Access 25.0 ns 
244 Buffer 4.5 ns 
29K Data Setup 8.0 ns 

69.0 ns 

HCT04 Buffer -3.0 ns 

66.0 ns 

This total must be less than 62.5 ns. 

Although this is out by 3.5 ns, it is unlikely all parts would be in the wrong direction 
simultaneously. However, simply slowing the clock down to 7.9 MHz would solve this 
worst case path without great impact on the MIP rate. 

The data hold is guaranteed because all those signals are in a chain and hold time 
cannot go below the 4-ns minimum required on the data bus. 

BENCHMARK FIGURES 

This design was simulated using the Am29000 processor architectural simulator with 
two-clock-cycle first access with single-cycle burst on both data and instruction ac­
cesses. It was configured to simulate the sharing of address and data busses. The two 
programs run were Dhrystone 2.0 and Pi. (Pi is a very bus-access-intensive program 
that calculates the value of Pi to as many decimal places as desired.) 
The results are as follows: 

• Dhrystone 2.0 at 5.24 MIPS 

• Pi at 6.30 MIPS 

SUMMARY 

This design demonstrates the versatility of the Am29000 processor. Even though the 
processor has a very high-performance bus architecture, the system implementation 
can be scaled down very economically while retaining good performance. A system 
using a single 16-bit bus, together with clock signals derived from a 32-MHz oscillator, 
can provide very respectable performance. This design approach may be suitable for 
embedded processor applications requiring a relatively small amount of memory. 

16-Bit Memory Architecture 
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Figure 6-6 Low-Cost Am29000 Processor Design 
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Figure 6-6 
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Low-Cost Am29000 Processor Design (continued) 
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Figure 6-6 Low-Cost Am29000 Processor Design (continued) 
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Low-Cost Am29000 Processor Design (continued) 
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Figure 6·6 Low-Cost Am29000 Processor Design (continued) 
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Figure 6-6 Low-Cost Am29000 Processor Design (continued) 
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Figure 6-6 Low-Cost Am29000 Processor Design (continued) 
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Figure 6-6 Low-Cost Am29000 Processor Design (continued) 
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Figure 6-7 Clock Generator for Low-Cost Am29000 Processor Design Pattern 

CHIP UXX PAL16R4 

32CLK RESETIN NC NC NC NC NC NC NC GND 
OE NC NC NC 29KCLK SYSCLK 2XSYSCLK NRESET PRESET VCC 

PRESET = RESETIN 

NRESET.TRST = RESETIN 

NRESET = VCC 

2XSYSCLK:= 2XSYSCLK 

SYSCLK:= 2XSYSCLK.SYSCLK 
+ SYSCLK·2XSYSCLK 

29KCLK:= 2XSYSCLK.SYSCLK 

Figure 6-8 Bus Controller for Low-Cost Am29000 Processor Design 
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CHIP UXX AmPAL22V1 0 

32CLK 2XSYSCLK SYSCLK DREQ DREQTO IREQ REQT BINV DBREQ IBREQ 
PIN169 GND 

BGRT REFREQ OPT2 CLKEN DRDY IRDY 2NDCYCLE IDLE REFRESH DACESS 
IACESS VCC GLOBAL 

STRING CLK3 '(SYSCLK. 2XSYSCLK)' 

STRING CLK2 '(SYSCLK. 2XSYSCLK) , 

STRING CLK1 '(SYSCLK. 2XSYSCLK) , 

STRING CLKO '(SYSCLK. 2XSYSCLK) , 

IDLE: = IDLE. CLK2 + REFREQ. DREQ. IREQ. BGRT. PIN169. CLK2 
+ PIN169. IDLE + BINV • CLK2 • IDLE. DREG + BINV • CLK2 
• IDLE .IREQ 
+ BGRT. IACESS • DACESS • CLKO • IDLE 
+ IACESS. iB'REQ. CLK1 • 2NDCYCLE. IDLE 
+ DACESS. DBREQ • CLK1 • 2NDCYCLE • IDLE 
+ REFRESH. 2NDCYCLE • CLKO • IDLE 

IACESS : = IDLE. IREQ • '5REQ • REFREQ • BINV. CLK2 
+ IACESS. 2NDCYCLE 
+ IACESS. 2NDCYCLE • CLK1 
+ IACESS. 2NDCYCLE • CLK1 • IBREQ 

DACESS : = IDLE. DREQ • DREQTO • REFREQ. PIN169 • BINV. CLK2 
+ DACESS.2NDCYCLE 
+ DACESS.2NDCYCLE·CLK1 
+ DACESS.2NDCYCLE.CLK1.DBREQ 

16-Bit Memory Architecture 



Figure 6-8 Bus Controller for Low-Cost Am29000 Processor Design (continued) 

REFRESH: IDLE. REFREQ. ~. CLK2. BGRT 
+ REFRESH.2NDCYCLE 
+ REFRESH.2NDCYCLE.CIKQ 

IRDY: IRDY.IACESS.IREQT.2NDCYCLE.CLKO 
+ IRDY .IACESS .IREQT 
+ IRDY .IACESS .IREQT. CLKO 
+ IRDY. CLKO .IREQT 

DRDY: DRDY.DACESS.OPT2.2NDCYCLE.CLKO 
+ DRDY.DACESS.OPT2 
+ DRDY.DACESS.OPT2 
+ DRDY.CLKO.DACCESS.OPT2 

2N DCYCLE : (DACESS + IACESS + REFRESH) • 2NDCYCLE. CLKO 
+ 2N DCYCLE. (DACESS + IACESS + REFRESH) • CLKO 

CLKEN : (DACESS • OPT2 + IACESS .IREQT) • 2NDCYCLE • CLK2 

AMD~ 

+ (DACESS. OPT2 + IACESS .IREQT) • 2NDCYCLE • CLK1 • CLKEN 
+ IACESS. IREQT • CLKEN • CLKO 
+ IACESS. IREQT • CLKEN • CLKO 
+ DACESS. OPT2 • CLKEN • CLKO 
+ DACESS. OPT2 • CLKEN • CLKO 
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Figure 6-9 RAS and CAS Decoder for Low-Cost Am29000 Processor Design 
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CHIP UXX PAL 16L8 

D2X 2XSYSCLK SYSCLK IACESS DACESS REFRESH IREaT SIPW 2NDCYCLE 
GND OPT2 NC NC DATAE PROME WE CAS DRAMACESS RAS VCC 

STRING CLK3 I (2XSYSCLK • SYSCLK) I 

STRING CLK2 I (SYSCLK • 2XSYSCLK) I 

STRING CLK1 I (SYSCLK • 2XSYSCLK) I 

STRING CLKO I (SYSCLK. 2XSYSCLK) I 

PROME = IREaT. IACESS + DACESS • OPT2 + PROME • CLK3 

WE = SIPW. DACESS + WE • CLK3 

DATAE = DACESS. SIPW. OPT2 + DATAE. CLK3 

RAS = IACESS. iREQT + DACESS 
+ REFRESH. (2NDCYCLE. CLKO + 2NDCYCLE • (CLK3 + CLK2)) 

CAS = REFRESH. (2NDCYCLE + 2NDCYCLE • (CLK3 + CLK2)) 
+ DRAMACESS. 2NDCYCLE • (2XSYSCLK • D2X + D2X 
+ 2XSYSCLK) 

DRAMACESS = DACESS + IACESS • IREaT + DRAMACESS • CLK3 

16-Bit Memory Architecture 



Figure 6-10 Refresh Controller Pattern 

CHIP U23 PAL 16U8 

SYSCLK REFRESH NC NC NC NC NC NC NC GND 
NC 06 05 04 03 02 01 00 REFREO VCC 

STRING TIME '06. 05 • 04. 03 • 02 • 01 • 00 I 

00 : = 00 + TIME 

01 : = 00 :+: 01 + TIME 

02 : = 02 :+: (01 • 00) + TIME 

03 : = 03 :+: (02 • 01 • 00) + TIME 

04 : = 04 :+: (03 • 02 • 01 • 00) + TIME 

05 : = 05 :+: (04 • 03 • 02 • 01 • 00) + TIME 

06 : = 06 :+: (05 • 04 • 03 .02.01 .00) + TIME 

REFREO : = REFREO. REFRESH + TIME. REFREO 

16-Bit Memory Ar~hitecture 

AMD~ 

6-23 



~AMD 

TIMING DIAGRAMS 

Figure 6·11 Instruction or Data Access 

32 MHz 

2XSYSCLK 

SYSCLK 

29KCLK 

IACESS or DACESS 

2NDCYCLE 

IRDYor DRDY 

6-24 16-Bit Memory Architecture 

. I. 



AMD~ 
Figure 6·12 Refresh Cycle 
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PARTS LIST 

Table 6·1 16·Bit Architecture Parts List 

Item No. Quantity Device Description 

OSC1 32 MHz 

U1 74AC04 

01 1N4148 

R1 100K 

C1 4.7 J.lF 

R2,R4 2 1K 

R3,R5,R6,R7 4 10K 

U2 1 16R4-7 

U3 1 Am29000 

R8 33K 

R9,R10 2 47 

U4 1 16L8-7 

U5 1 22V10-15 

U6 18U8-35 

U7 20 ns 

U8,U9,U10 3 74F157 

U11 1 74F74 

R11-R19 9 20 

U12, U13, U14, 
U15,U21,U22 6 74LS244 

U16 74LS04 

U17-U20 4 29C823A 

U23,U24 2 27512 

SW1 PROMCONFIG 

U25-U40 16 21256 

71 packages 
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INTERLEAVED SCDRAM 

A Static Column DRAM (SCDRAM) memory design offers cache-like performance, but 
at a far lower cost and complexity than an SRAM memory. The static column capability 
means that once a row is addressed for the first time, all subsequent accesses within 
that row can be made by changing the column address without changing the row ad­
dress, thereby avoiding the timing overhead of multiplexed row/column addressing. In 
effect, the SCDRAM memory has a built-in cache consisting of one row of words. 

MEMORY STRUCTURE 

The memory design described in this chapter has separate blocks of memory for 
instruction and data. Within each memory block, there are two banks of memory inter­
leaved as odd and even words. 

Each bank is 1 M words deep with each word being 32-bits wide. The total for the in­
struction memory block is then 2M words (8M bytes). The same is true for the data 
memory. 

SCDRAM memories with 85-ns access times are used for all memory banks. A non­
sequential access requires one cycle for address decode and three cycles for the first 
word accessed. The low RAS access time allows a four-cycle initial access time for 
the memory system; 100-ns RAS access time memories may be used if the intial access 
time is extended to five cycles. Essentially the burst access timing is the same as for the 
medium-speed SRAM of Chapter 3; each burst access is two cycles long. Overlapping 
the memory bank access time allows this longer access time to be hidden from the 
system viewpoint, except on the first word of a non-sequential access. The result is a 
memory that provides four-cycle access time for the first word of a non-sequential ac­
cess and single-cycle access for subsequent words in a burst transfer. 

The instruction memory bank has a read-only port for sending instructions to the 
Am29000 processor and a read/write port tied to the Am29000 processor data bus. This 
port provides access via the data bus for instruction loading and memory diagnostics. 
The data memory has a single read/write port connection to the Am29000 processor 
data bus. 

INSTRUCTION MEMORY 

Refer to the block diagram in Figure 7-1. 

The Memory 

The memories are 1 M x 1-bit SCDRAMs with separate data in and out lines. The access 
time is 85 ns. Thirty-two devices are required in each bank to form the 32-bit wide in­
struction word for the Am29000 processor. These are shown as devices U21 through 
U85. SCDRAMs are used to provide for access to sequential words within two clock 
cycles at 25 MHz and to simplify the required logic design. SCDRAMs have an advan­
tage over standard DRAMs in that once a row is accessed, additional accesses within 
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the same row can be done simply by changing the column address and waiting the 
access time delay of 45 ns. Standard DRAMs with page mode access ability require that 
the Column Address Strobe (CAS) be cycled for each new word accessed. Eliminating 
the need to cycle CAS simplifies the logic design and most SCDRAMs have faster ac­
cess cycle times in static column mode than do equivalent DRAMs in page mode. 

One additional "potential" advantage for either page mode or SCDRAMs is that the 
access time to words within an already selected row is much less than that required if 
the needed word lies in a different row. It is possible to reduce the initial access time of 
the memory whenever a non-sequential access begins in a row already being accessed. 
This is done by comparing all addresses from the processor with any currently active 
row address. If a match is identified, the memory control logic can simply access the 
needed word rather than precharging the memory and giving a new row address. This 
can reduce the initial access time from five to three cycles (precharge time between row 
addresses adds one clock cycle to the basic four-cycle initial access time). 

This advantage is described above as "potential" because in the interest of keeping the 
design simple, this memory design does not implement the comparators or control logic 
needed to utilize the possible improvements from page or static column modes. 

Data Bus Output Buffers 

The memory data outputs are connected to the data bus lines via high-speed buffers. 
These buffers are required to isolate the memory outputs from the data bus whenever 
the memory is accessing instruction words. This isolation allows another data memory 
block to use the data lines at the same time instructions are being fetched from this 
memory block. These are shown as devices U95 through U102. 

Data Bus Input Latches 

The memory data inputs are connected to the data bus lines via Am29C843A latches. 
These are shown as devices U86 through U94. 

Latches are used for the following reasons: 

1. CAS (sometimes called Chip Select on SCDRAMs) is used as the write-enable 
qualifier. 

2. The CAS signal is a registered output of the memory control logic and therefore its 
edge transitions occur one clock-to-output delay of a PAL device after the system 
clock time (3 to 8 ns plus memory loading delay). 

3. Write data to the memories must be valid at or before the falling edge of the CAS 
signal. 

4. Write data must be held valid for at least 20 ns after the falling edge of the CAS 
signal. 

5. The CAS signal minimum pulse width is 25 ns. 

6. The data output valid delay from the Am29000 processor is 18 ns. 

Due to the reasons above, it is not possible to write data directly from the processor 
data bus since the data may not be valid until after the falling edge of the CAS signal 
during burst write cycles where new data is placed on the bus in each cycle (as a result 
of items 2, 3, and 6 above). 
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A register clocked by the rising edge of system clock would not have a clock-to-output 
delay fast enough to ensure meeting the data setup time to the CAS signal (Item 2). 

A register clocked by the falling edge of system clock may not satisfy the required hold 
time relative to the CAS signal, assuming a single register set is used and is simply 
clocked on each falling edge of system clock (Items 2 and 4). 

Dual register sets, one for each bank, clocked on every other falling edge of system 
clock could work. However, the worst-case timing margin for data setup time to the CAS 
signal is very small, due to clock-gating logic plus clock-to-output time of a register. 

Dual latch sets, one for each bank, latch enabled every other cycle by the active bank 
indicator (Q02E) and a delayed system clock, will also work. Latches allow data to flow 
through to the memory inputs prior to the falling edge of the CAS signal. The latches 
also hold the data valid for the required time after the CAS signal. Both functions are 
accomplished with reasonable timing margins. 

So with all the above in mind, data latches were chosen for use in the input data path to 
the memories. Using this data latching approach means data is removed from the bus 
one cycle earlier than would be the case if simple buffers could be used; this makes a 
write operation one cycle faster than an equivalent read operation. 

Instruction Bus Buffers 

The memory data outputs are also connected to the instruction bus lines via buffers. 
These buffers serve to isolate the data outputs of this memory block from those outputs 
of other memory blocks which may also drive the instruction bus. Also, the buffers 
serve to isolate the even and odd banks of this memory block from each other so 
simultaneous data access can occur in each bank independently. These buffers are 
shown as devices U103 through U110. 

Address Registers and Counters 

To support burst accesses, the lower seven address bits to each memory bank come 
from a loadable counter. An a-bit counter is used to provide the address so the least 
significant bit of the counter can be used to track which memory bank is connected to 
the data or instruction bus on each cycle. The upper seven bits of the counter are used 
as the least significant address bits to each memory bank. 

Each a-bit counter is built from one PAL 16R4 device and one PAL 16R6 D-speed PAL 
device. The counters for both banks are shown as devices U6, U7, U9, and U10. The 
D-speed PAL devices are used because their clock-to-output delay is significantly faster 
than standard MSI a-bit counters. Also, the use of PAL devices allow additional func­
tions to be integrated into the same packages used for the counter function. 

The upper 14 bits of memory address need not come from a counter since the Am29000 
processor will always output a new address when a 256 word boundary is crossed. The 
upper 14 bits of address are simply latched. A latch is used so the address can flow 
through to the memories during the decode cycle and be setup before the falling edge of 
Row Address Strobe (RAS). 

Address bits 10 through 12 are latched within the PAL devices which are used to imple­
ment the lower half of each bank address counter. 
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The upper 10 address bits (address bits 13 through 22) are latched in a pair of 
PAL 16L8D PAL devices which also generate the needed latch-enable term. These are 
shown as devices U8 and U11. 

A separate set of address counter logic is used to address each memory bank. This is 
done because when one bank is connected to the data or instruction bus, the other bank 
will be accessing the next word in sequence. This requires that the two banks have 
independently incremented addresses. The address for each bank will increment on 
different cycles. 

Memory Address Multiplexers 

The upper and lower ten bits of memory address must be multiplexed into the address 
inputs of the memories. Discrete multiplexers are used rather than simply contrOlling the 
output enables of the address counters and latches to form a three-state multiplexer. 
This was done to provide tighter control over the timing of the multiplexer switching 
between sources. The input switching delay of the multiplexer is no worse than what the 
three-state enable delays would be if the three-state multiplexer approach was used, 
although they do add undesired delay in the burst access address to data timing in read 
operations. Multiplexing is done via 74F158 multiplexers shown as devices U12-U14 
and U114-U116. 

Note: The outputs of the counter PAL devices are inverted as are the outputs of the 
74F158; thus, the memory address lines are active High and the counters, in effect, 
count up. 

Registered Control Signals 

As noted earlier, the timing of the Instruction Burst REQuest (IBREQ), Data Burst 
REQuest (DBREQ), and Bus Invalid (BINV) control signals require they be registered by 
a low setup time register. A 74F175 register, U3 shown in Figure 7-1, is used as a low 
setup time register. 

Interface Control Logic 

This logic must generate the memory response signals, manage the loading and count­
ing of memory addresses, generate RAS and the CAS signals, control the data buffer 
output enables, and perform memory refresh. The logic fUnctions needed for this require 
11 PAL devices: two PAL20L8-B, two PAL16R4-D, four PAL 16R6-D, one PAL 16L8-B, 
one PAL 16R8-D, and one AmPAL22V10-25. 

In Figure 7-1, device U 1, a PAL 16L8-B produces the load and count enable signals for 
the address counters. 

Device U2, an AmPAL22V1 0-25, provides a refresh interval counter and refresh request 
logic. 

Devices U4 and U5, PAL20L8-B PAL devices perform address decode for instruction 
and data accesses. Their outputs indicate when this memory block has been addressed, 
when an access is to begin, and when an access is terminated. 

Devices U15 through U20, four PAL 16R6-D and two PAL 16R4-D PAL devices, form a 
complex state machine controlling the RAS, CAS, output buffer enables, and memory 
response signals. 

Device U112 generates byte-specific write enables. 
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Figure 7·1 Interface Logic Block Diagram 
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Response Signal Gating 

The memory response signals from all system bus devices are logically ORed together 
before being returned to the Am29000 processor. The gates in this PAL device are not 
counted as part of the components within the memory design since they are shared by 
all the bus devices in the system and as such are part of the overhead needed in any 
Am29000 processor system. 

MEMORY INTERFACE LOGIC EQUATIONS 

State Machine 

The control logic for this memory can be thought of as a Mealy-type state machine in 
which the outputs are a function of the inputs and the present state of the machine. This 
structure is required since some of the output signals must be based on inputs which 
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are not valid until the same cycle in which the outputs are required to effect control of 
the memory. 

As shown in Figure 7-2, this state machine can be described as having 15 states. These 
states control the enabling of activity on the memory RAS, CAS, burst acknowledge, 
output buffer enable, and ready lines. 

IDLE is the default state of the interface state machine. It is characterized by Instruction 
Burst ACKnowledge (IBACK) and Data Burst ACKnowledge (DBACK) both being inac­
tive and no refresh activity in progress. This state serves as a way of identifying when 
the memory is not being accessed and could be placed into a low power mode. This 
state also serves as a precharge cycle for the memory when a transition is made be­
tween instruction, data, and refresh sequences. A transition to either the Instruction RAS 
(IRAS) or Data RAS (DRAS) states occurs when an address selecting this memory block 
is placed on the address bus. A transition to the Refresh Request 1 (RQ1) state occurs 
when a refresh request is active. Refresh will take priority over any pending instruction 
or data access request. 

The IRAS state occurs during the first cycle of memory access following a new instruc­
tion address being presented on the address bus. During this state the instruction output 
buffer enables and Ready response lines are held inactive and the IBACK and RAS 
lines go active. The address latches are closed to hold the memory address. RAS is 

Figure 7·2 SCDRAM Memory State Diagram 
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used as the input to a delay line whose output will switch the address mux to the column 
address after the row address hold time is satisfied. The transition to the Instruction 
Column Address Strobe (ICAS) state is unconditional. 

During the ICAS state the memory CAS signal goes active to start the first access cycle. 
Since the CAS access time for the memories used is 45 ns, it will take two cycles to 
access the memory, propagate data through the data buffers, and meet the setup time 
of the processor. Therefore, the transition to the Instruction ACCESS (IACCESS) state 
is unconditional. 

The IACCESS state is used during the third cycle of a new address access and during 
all ~ubsequent burst access cycles, whether active or suspended. In this state the in­
struction output buffer enable and ready lines are allowed to be active as required by the 
active or suspended status of an instruction burst request. When a new instruction 
address appears on the bus, a transition to the PreCharge (PC) state will occur. Also, if 
a data address selecting this memory block appears, there will be a transition to the PC 
state to force a preemption of the current instruction access. The same is true when a 
refresh request is pending. The state machine remains in the IACCESS state as the 
default if no other state transition condition appears. 

During the PC state, both burst acknowledge signals will go inactive along with RAS. 
The PC state will preempt any burst access and begin the RAS precharge required 
before any new row address is applied to the memory. The pre charge period for the 
memory used is 80 ns so a second cycle of precharge will be done during the IDLE 
cycle which unconditionally follows the PC cycle. Another important use of the PC state 
is as a delay cycle in the transition between an active instruction burst access being 
preempted and the start of the preempting data access. The delay is needed to allow 
the completion of the final instruction access in the cycle that IBACK is deasserted and 
the instruction burst access is preempted. 

There are two data access sequences, one for read, and another for write accesses. 

During a read access the sequence is the same as for an instruction access except that 
during the Data ACCESS (DACCESS) cycles the DRDYand Data Output Enable (DOE) 
signals are allowed to be active instead of the instruction related control signals. The 
read DACCESS state is exited when a refresh is pending, 9r when a data access is 
suspended. The exit transition is to the PC state. 

A data write access is a little different in that during a write, the CAS signal is cycled to 
act as the write enable gate to the memories. This means that data to be written is 
latched from the bus in the cycle prior to CAS being made active. Therefore, the DRDY 
signal will go active one cycle before the CAS goes active. This creates a problem that 
is solved by the Write Burst Preempt (WBP1 and WBP2) states. 

It is important to note that when the RFRQ1 signal is active, it will preempt a DACCESS 
and that a write operation is, in effect, pipelined. Data to be written is removed from the 
bus in the cycle before the write operation is enabled. So in the cycle that DBACK is 
made inactive to preempt the access, there may be one last data word being accepted 
from the bus. This word must be written in the following cycle. Also, at the point a 
refresh request goes active, DBACK will still be active and will not be made inactive until 
the beginning of the next cycle. So, from the time refresh request goes active until the 
last write cycle in memory is done, two cycles will occur. These cycles are labeled 
WBP1 and WBP2. During WBP1 the DBACK signal is made inactive to preempt the 
access, and data from the previous bus cycle is written. During WBP2 the last data word 
accepted from the bus is written, at which point the exit to the PC state is made. 
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Finally, there is the refresh sequence. Once the IDLE state is reached and a refresh is 
pending, the refresh sequence will start as the highest priority task of the memory. In 
fact, during the IDLE cycle, CAS will go active to setup for a CAS-before-RAS refresh 
cycle. This type of refresh cycle makes use of the SCDRAM internal refresh counters to 
supply the refresh address. During RQ1, RAS is made active as during IRAS and DRAS 
cycles. The RQ2 and RQ3 cycles are used to supply two additional wait states to make 
up the three cycles needed to satisfy the minimum RAS active time of 85 ns. 

LOGIC DETAILS-SIGNAL BY SIGNAL 

All signals are described in active High terms so the design is a little easier to follow. 
The signals, as implemented in the final Programmable Array Logic (PAL) outputs, will 
often be active Low as required by the actual circuit design. The actual PAL Definition 
files are included in Figures 7-3 through 7-19 at the end of this chapter. 

NOTE: All PAL equations in this handbook use the following convention: 

1. Where a PAL equation uses a colon followed by an equals sign (:=), the equation 
signals are registered PAL device outputs. 

2. Where a PAL equation uses only an equals sign (=), the equation signals are 
combinatorial PAL device outputs 

RFREQ (Refresh Request) 

Dynamic memories are very forgetful and need to be completely refreshed every 4 ms, 
which translates into at least one row refreshed every 15.6 J.lS on average. A counter is 
used to keep track of this time. Once a refresh interval has passed, a latch is used to 
remember that a refresh is requested while the counter continues to count the next 
interval. Once the refresh has been performed, the latch is cleared. 

The counter and refresh request latch is implemented in an AmPAL22V10-25 Nine of 
the outputs form the counter, which is incremented by the system clock at 25 MHz and 
which produces up to 512 x 40 ns = 20.48 J.lS refresh periods. The synchronous preset 
term for all the output registers is programmed to go active on a count value of 389, 
which sets all the outputs active on the 390th clock cycle. Afterwards, the counter will 
roll over to zero. This produces a refresh interval of 390 cycles x 40 ns = 15.6 Jls. The 
one remaining output is used to implement the refresh request function. That signal (the 
RFRQ1 registered output) is also set by the synchronous preset term. Thus, the refresh 
request is set on th~ last cycle of each refresh interval along with all the other outputs. 

The equations for the counter are shown in Figure 7-3. Below are the preset and refre~h 
request equations: 

SYNCHRONOUS PRESET= RFQ2.RFQ3.RFQ4.RFQ5.RFQ6.RFQ7 
• RFQ8.RFQ9.RFQ10 

RFRQ1 := RFRQ1 • (RFACK. RQ1) 

REFRESH SEQUENCE EQUATIONS 

A refresh of the memory requires multiple clocks so the minimum RAS active time of 
100 ns can be satisfied. To manage this the following equations are used. 

RFACK 

The Refresh Acknowledge (RFACK) is used to begin a refresh sequence and to clear 
the pending refresh request. A refresh may begin when the state machine has returned 
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to the IDLE state indicated by IBACK and DBACKI inactive. The DBACKI signal is an 
internal version of DBACK which is active until all data write cycles are completed. 
RFACK is held active until the end of the sequence, indicated by RFRQ1 • RQ3. 

RFACK := DBACKI.IBACK. RFRQ1 
+ RFACK. (RFRQ1 • RQ3) 

RQ1, RQ2, RQ3 

The three cycles needed for a refresh are tracked by RQ1, RQ2, and RQ3. RQ1 
will not go active until the cycle following the IDLE state. This is controlled by 
RQ1 • PC1 • RFACK which is only true during IDLE. The RQ1 signal is held active for 
all three refresh cycles to provide a single signal to identify when a refresh is in pro­
gress. the RQ2 and RQ3 signals simply follow RQ1 with RQ3 signaling the last cycle 
of the refresh sequence. 

RQ1 := RQ1 • PC1 • RFACK 
+ RQ1.RQ3 

RQ2 := RQ1 • RQ3 

RQ3 := RQ2. RQ3 

REXIT 

The Refresh EXIT (REXIT) signal is used to switch off the RAS signal at the end of a 
refresh sequence. RQ3 causes an exit and the RFACK term causes REXIT to be active 
outside of a refresh sequence to disable other equation terms using REXIT as a holding 
input during a refresh sequence. 

IME 

REXIT = RFACK 
+ RQ3 

The use of the Instruction for ME (IME) signal is based on the assumption that other 
blocks of instruction or data memory may be added later and that there may be valid 
addresses in address spaces other than instruction/data space. 

This means this memory will only respond with IBACK or DBACK active when this block 
has been selected by valid addresses in the instruction/data space. This requires that at 
least some of the more significant address lines above the address range of this mem­
ory block be monitored to determine when this memory block is addressed. Also, it 
means the Instruction Request Type (IREQT) and Pin 169 lines must be monitored to 
determine that an address is valid and lies in the instruction/data space. Further, when a 
refresh request is pending, the memory will not recognize its address. This will ensure 
refresh has the highest priority during the IDLE state. 

IME is the indication the address of this memory block is present on the upper· address 
lines, an instruction request is active, Pin 169 is inactive (test hardware has not taken 
control), no refresh is pending, and instruction/data address space is indicated. In other 
words, this memory block is receiving a valid instruction access request. This example 
design will assume the address of this memory block is equal to 
A31 • A30. A29. A28. A27. The equation for this signal is: 

IME = IREQ .IREQT. A31 • A30. A29. A28. A27. Pin169. RFRQ1 
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Note that IME is not directly implemented as a PAL device output in this design. The 
terms are used in the generation of the ISTART and IEXIT terms. 

DME 
The Data ME (DME) signal is the indication the address of this memory block is present 
on the upper address lines, a data request is active, Pin 169 is inactive, refresh is not 
active, and instruction/data address space is indicated. In other words, this memory 
block is receiving a valid data access request. This example design will assume the 
address of this memory block is equal to A31 • A30. A29. A28 • A27. Note that for in­
struction accesses the memory address for this block had A31 = zero where the data 
accesses to this block are valid for A31 = one. This allows instruction memory for in­
struction accesses to be located at address zero while having the window for data bus 
access to the instruction memory located at a different base address. This allows the 
separate data memory block used in this design to have its base address also at zero. 
Thus, both the instruction and data memories are located at address zero in their 
respective address spaces. 

The equation for this signal is: 

DME = DREQ. DREQTO • DREQT1 • A31 • A30. A29. A28. A27 • Pin169 
• REFRQ1 

As with IME, this term is not directly implemented. 

ISTART 

The Instruction START (1ST ART) signal causes the transition from IDLE to IRAS states. 
It is valid only in the IDLE or IACCESS state with no refresh sequence starting, identified 
by not being in any other state via DBACKI. RFACK. PC1. So when in the IDLE or 
IACCESS state and IME is active, ISTART is active. 

ISTART = DBACKI.RFACK.PC1.IME 

DSTART 

The Data START (DSTART) signal is similar to ISTART except with DME as the 
qualifier. 

DSTART = IBACK.RFACK.PC1.DME 

START 

The START signal is used to restart RAS following precharge when there is still an 
active access in progress. This condition occurs when an instruction or data access is 
suspended and a new instruction or data access is started. In that situation the memory 
must be precharged before the new address is presented along with RAS. During this 
PC time, the appropriate burst acknowledge signal is held active so as not to preempt 
the new access. 

START = PC1. PC2 .IBACK 
+ PC1. PC2. DBACKI 
+ PC1.RFACK 

IEXIT 

The Instruction EXIT (IEXIT) equation identifies when it is time to leave the IACCESS 
state. IEXIT is true if no instruction access is in progress. The IBACK input causes this 
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so other equations using IEXIT to hold a term active will have that holding term made 
invalid when the IEXIT equation has no valid meaning, (i.e., when no instruction access 
is active). 

IEXIT is also active when a data access, a refresh, or an instruction access not address­
ing this memory is pending. Any subsequent access is held off while IBACK remains 
active during the access of the first new instruction. As noted before, the DME term is a 
documentation convenience. In the IEXIT equation this term is directly expanded so all 
inputs of DME are inputs to IEXIT. This eliminates a level of logic delay that would be 
needed if DME were implemented as the output of another PAL device. 

The IEXIT equation is: 

IEXIT = DME .IQ1 • PC1 • PC2 
+ IREQ. IQ1 • PC1 • PC2 
+ RFRQ1.IQ1.PC1.PC2 
+ IBACK 

A data request to this memory block for instruction data space takes priority over an 
instruction fetch in progress. Also, if a new instruction fetch stream is started, this 
memory interface can return to the idle state. 

DEXIT 

The description of IEXIT applies directly to the Data EXIT (DEXIT) signal; the logic is the 
same with data respective signals substituted for instruction terms. The only difference 
is the first exit term is a little different. A data access terminates when there is no further 
data burst requested. This approach is an optimization for use with the Am29000 
processor. It makes use of the fact that the Am29000 processor will never suspend a 
data transfer and burst data transfers will always go to completion in a single contiguous 
burst access. When a burst, simple, or piplelined access ends, the memory immediately 
goes into precharge so the memory will be ready for subsequent accessess with a 
minimum initial access delay. 

DEXIT = DQ1. PC1 • PC2. IME 

IBACK 

+ DCff.PC1.PC2.RFRQ1 
+ DBACKI 

The instruction burst acknowledge (IBACK) signal is applied to the Am29000 
processor and is in effect the indication that the interface state machine is in an active 
or suspended instruction access. The equation is: 

IBACK:= BINV.ISTART 
+ IEXIT 

The IBACK active state is entered when ISTART is active and the bus state is valid on 
the same cycle. Note here that the BINV input is used directly rather than the registered 
form of BINV.D. The timing of BINV is such that it will just meet the setup time of a PAL 
device input. The BINV signal is required as the qualifier since ISTART is a combinato­
rial signal. IBACK will remain active until one of the IEXIT conditions is active. 

There is one special situation when IBACK remains active even after IEXIT goes active. 
When an instruction access is suspended and a new instruction access begins, IBACK 
is already active in the first cycle of the new instruction. The IBACK signal being active 
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tells the processor the address has been captured by the memory and a new address 
may be placed on the bus, perhaps one for a data access. 

So, the memory is committed to accessing at least one instruction word for the new 
instruction access even though the address for the new access may change to begin yet 
another access. 

Therefore, IBACK must remain active and any subsequent data access or refresh of this 
memory block must be held off until at least one word of the new instruction access can 
be read. Note that this can take several cycles since, when a new instruction access 
starts after a previously suspended one, the memory must be precharged followed by 
the normal sequence of RAS and CAS signals before the new instruction access is 
complete. 

This is accomplished by holding IBACK active during the one cycle that IEXIT is active. 
The ISTART input is active with IEXIT and is used to hold IBACK active. 

IBACK.ti 
The IBACK Delayed (IBACK.D) signal is simply a one-cycle delayed version of IBACK. 

IBACK.D := IBACK 

It is used in the generation of IRDY, Instruction Output Enable (IOE)O, and IOE1. 

DBACK 
The Data Burst Acknowledge (DBACK) signal is applied to the Am29000 processor and 
is in effect the indication to the processor that a burst access is allowed. DBACK is 
essentially the same as IBACK but with data respective terms substituted. 

DBACK := BINV.DSTART 
+ DEXIT 

DBAck.D 
The DBACK Delayed (DBACK.D) signal is simply a one-cycle delayed version of 
DBACK. 

DBACK.D := DBACK 

It is used in the generation of DRDY. 

DBACKI 

The DBACK Internal (DBACKI) signal is a memory interface internal version of DBACK 
to the Am29000 processor and is in effect the indication that the interface state machine 
is in an active or suspended data access. This signal will stay active during the DWBP 
states after DBACK has gone inactive to preempt a data burst write operation. The 
equation is: 

DBACKI := BINV.DSTART 
+ DEXIT 
+ DWBP 

Interleaved SCDRAM 



AMD ~ 
Instruction Initial Access States 

Signals 101, 102, and 103 are used to control the state transitions from IRAS to 
IACCESS during the first instruction access. 101 goes active during IRAS and remains 
active for two additional cycles. 101 will go active when there is a valid 1ST ART or when 
there was a previously suspended instruction access and a new instruction access was 
accepted; indicated by PC1 • PC2 .IBACK. 102 and 103 follow 101 with 103 indicating 
the last cycle of the initial access. 

101 := BINV .101 .ISTART .IBACK 
+ 101. PC1 • PC2 .IBACK 
+ 101.103 

102 := 101. 103 

103 = 102. 103 

Data Initial Access States 

These equations are the same as for 103-101 with data respective inputs. 

D01 := B INV. D01 • DSTART • DBACK 
+ D01.PC1.PC2.DBACK 
+ D01.D03 

D02 := D01 • D03 

D03 := D02. D03 

Data Write Burst Preempt States 

When a data write operation is forced to preempt by a refresh request there are two 
additional write cycles that must be completed before PC is started. These states are 
tracked by the Data Write Burst Preempt (DWBP), DWBP1, and DWBP2 signals. DWBP 
starts the sequence when a data write is in progress, with burst request active, after the 
initial data write is completed, and a refresh is pending. DWBP1 and DWBP2 simply 
follow DWBP to indicate those states. 

DWBP = DBACKI. RW. DBREO.D • RFR01 • D01 • DWBP2 

DWBP1 := DWBP1 • DWBP 

DWBP2 := DWBP2. DWBP1 

Precharge States 

At the end of any access, the RAS lines must be made inactive to precharge internal 
memory buses before another access with a different row address may begin. Two 
cycles are needed and are indicated by the signals PC1 and PC2. PC1 is active during 
the PC state and PC2 is active during the first cycle of the IDLE state. PC1 goes active 
as the result of an IEXIT condition during instruction access, a DEXIT condition during 
data access following any Data Write Burst Preempt (DWBP) cycles, and at the end of a 
refresh sequence. PC2 simply follows PC1. 

PC1 := PC1 .IBACK .IEXIT 
+ PC1. DBACKI. DWBP. DEXIT 
+ PC1.R03 
+ DWBP2 

PC2 := PC1. PC2 
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LD 

The Load (LD) signal enables the lower address bit counters and the upper address bit 
latches to load a new address on the next rising edge of System Clock (SYSCLK). The 
equation is: 

LD = IQ1. PC1 • DBACKI .IREQ 
+ DQ1.PC1.IBACK.DREQ 

When an Instruction request (IREQ) signal is active, load is prevented from being active 
while a data access is active or suspended. In other words, when the state machine is in 
a data access state a load that would result from an instruction request is suppressed. 
This prevents the changing of the address counter values until the data access ends. 
Similarly, for the case that Data Request (DREQ) signal is active, load is prevented 
when IBACK is active. 

The LD signal is limited in length to one cycle by IQ1 or DQ1 during an initial access. It 
is limited to one cycle by PC1 when a new access begins during a previously sus­
pended access. Limiting the LD signal to one cycle ensures the correct address is cap­
tured and that LD does not interfere with the incrementing of the counters. The LD sig­
nal is combinatorial so that it can be active during the first cycle of a new instruction or 
data request. 

Address Counters 

There is one address counter for each bank of memory. Each is implemented with one 
PAL 16R4-D and one PAL 16R6-D device. The counter function is split across two PAL 
devices due to the number of product terms required to implement the upper bits of the 
counter. The lower half of the counter produces a carry out to the upper counter half. 
The equations for both bank counters are the same. These equations are shown in 
Figures 7-13 through 7-16. 

The LSB bit of each counter is used as the means to control the timing of when the 
upper seven bits of each counter will increment. Note that only the upper seven bits of 
the counter are used as the low seven bits of address to the memory in a bank. This is 
because, with two interleaved banks, the maximum length burst access is split between 
the banks so each bank counter will never increment more than 128 times. 

The upper bits of each counter increment on every cycle that the count signal is active 
and the LSB is also active. The only exception to the latter condition is during a bus 
invalid cycle where BINV signal is used to prevent counting when burst request may be 
invalid. 

The value of the LSB bit in each counter is different in any given cycle, which causes the 
upper bits of the counters to increment on different cycles with regard to each other. In 
other words, the upper seven bits of the counters will be out of phase in terms of when 
they increment. This allows one bank of memory to start the access of the next word in 
sequence while the other bank completes the access of the current word. 

Count Signals 

There are two Count (CNT) signals defined in this design, CNTO and CNT1, one for the 
even bank and one for the odd bank. This is because the even bank always increments 
one cycle earlier than the odd bank during the initial access of memory. Once the count­
ing is started out of phase between banks, the bank counters are always incremented 
together to maintain the phase relationship. The CNT signals cause the address count­
ers to increment on the next rising edge of SYSCLK. 
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The CNTO controls the even bank counter. During either a data or instruction read op­
eration, the first active cycle of CNTO is during the DCAS or ICAS states indicated by the 
first cycle in which DQ2 or IQ2 is active. When the initial address selects an even word 
of memory, this first count cycle increments only the LSB of the even bank counter. This 
does not affect the memory address, but it makes the LSB high; this is used as an indi­
cation in other equations that data from the even bank is to be placed on the system 
bus. If the initial address selects an odd word, this first count cycle increments the whole 
even bank counter to point to the next even word in sequence after the initial odd word 
that will come from the odd memory bank. In this case, the LSB bit is Low and indicates 
that the word, ready to be placed on the system bus, comes from the odd bank. 

In the following cycle, IQ2 or DQ2 is still active, which ensures one more cycle of count. 
Any further count cycles come from burst-request signals being active during IACCESS 
or DACCESS states. 

Note, that in case a burst access is suspended and a new access of the same type 
begins, the address of the new access is loaded into the counter and the memory 
precharges in preparation for a new RAS cycle. During the precharge cycles, the incre­
menting of the counter must be inhibited by PC1 and PC2 so as not to change the ad­
dress stored in the counter before the RAS and the CAS signal cycles for the new 
access. 

The CNTO signal is handled differently during a data write in that any increment during 
IQ3 or DQ3 must be qualified by a burst request in the previous cycle. This is needed 
because in a write operation, the first Data Ready (DRDY) signal active cycle comes one 
cycle earlier than in a read operation. 

CNTO = IBACK.IQ2 
+ IBACK.IQ1. PC1 • PC2.IBREQ.D 
+ DBACKI. RW • DQ2 
+ DBACKI. RW. DQ1 • PC1 • PC2. DBREQ.D 
+ DBACKI. RW. DQ2. DQ3 
+ DBACKI. RW. DQ3. DBREQ.D 
+ DBACKI. RW. DQ1 • PC1 • PC2. DBREQ.D 

The CNT1 signal controls the odd bank counter. This equation is essentially the same 
as CNTO except the first cycle in which CNT1 is active is always one later than it would 
have been in CNTO. 

CNT1 = IBACK.IQ3 

1IUW 

+ IBACK .IQ1 • PC1 • PC2 .IBREQ.D 
+ DBACKI. RW • DQ3 
+ DBACKI. RW. DQ1 • PC1 • PC2. DBREQ.D 
+ DBACKI. RW. DQ3. DBREQ.D 
+ DBACKI. RW. DQ1 • PC1 • PC2. DBREQ.D 

The Instruction Ready (IRDY) signal indicates there is valid read data on the 
instruction bus. 

IRDY = IQ3 
+ BINV.D .IQ1 • PC1 • PC2 .IBREQ.D .IBACKD 

This memory design is always ready with data in the IQ3 cycle. 
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The memory is also ready when IBREQ is active with IBACK in the previous cycle. But 
again, the special situation of a suspended burst operation followed by a new access of 
the same type is handled by adding IQ1 • PC1 • PC2 to the equation. This prevents IRDY 
from going active until the new access has had time to pre charge and readdress the 
memory. The BINV.D input is used to prevent false ready indications due to signals on 
the bus being invalid. 

IBACK.D is reguired as a qualifier so when an access is preempted, the continued 
presence of IBREQ will not cause a false ready indication. The BINV.D signal is used to 
prevent false ready indications if the bus was invalid in the previous cycle. Note that 
situations can occur during a suspended access when the processor grants the bus to 
another bus master. 

The reason IRDY must be a combinatorial signal is that IBREQ comes very late in the 
previous cycle and must be registered. There is no time to perform logic on IBREQ in 
the previous cycle before SYSCLK rises. This means the information that IBREQ was 
active in the last cycle is not available until the cycle in which IRDY should go active for 
a resumption of a suspended burst access. 

IOEO and IOE1 

The instruction output enable (IOE) signals are used to control which bank is allowed to 
drive the instruction bus during each cycle. The signals use essentially the same logic 
as IRDY except each signal is further qualified by the output of the LSB bit of the even 
bank counter (Q02E). This bit keeps track of which memory bank is ready to provide 
data to the instruction bus. The even bank is enabled when IRDY is active and the Q02E 
bit is active. The odd bank is enabled when IRDY is active and Q02E is inactive. 

IOEO = Q02E. IQ3 
+ BINV.D. Q02E .IQ1 • PC1 • PC2. IBREQ.D .IBACKD 

IOE1 = Q02E .IQ3 
+ BINV.D. Q02E.IQ1 • PC1 • PC2 .IBREQ.D .IBACK.D 

'tiIHW 

The Data Ready (DRDY) is the equivalent of IRDY for data accesses and therefore uses 
the same equation with data respective terms substituted for instruction terms. The one 
additional change is that a term is added to cause DRDY to occur one cycle early during 
write operations. This is done because the data to be written is taken from the data bus 
into a latch before actually being stored in the memory. This maintains the same mem­
ory timing used during read operations but write data is removed from the bus one cycle 
earlier than when DRDY would normally go active during a data read operation. 

DRDY = RW. DQ3 
+ BINV.D. RW. DQ1 • PC1 • PC2. DBREQ.D. DBACK.D 
+ RW.DQ2.DQ3 
+ BINV.D. RW. DQ3. DBREQ.D • DBACK.D 
+ BINV.D. RW. DQ1 • PC1 • PC2. DBREQ.D. DBACKD 

DOEO and DOE1 

The data output enable (DOE) signals serve the same function for DRDY as the IOEO 
and IOE1 signals serve for IRDY. Their signal descriptions are the same as for the IOE 
signals. The only difference is the DOE signals are active only during read operations. 
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DOEO = RW. Q02E. DQ3 

+ BINV.D. RW. Q02E • DQ1 • PC1 • PC2. DBREQ.D • DBACK.D 

DOE1 = RW.Q02E.DQ3 
+ BINV.D. RW. Q02E. DQ1 • PC1 • PC2. DBREQ.D. DBACK.D 

WE 

The Write enables (WE) are registered signals that go active during the first DQ2 active 
cycle. They stay active throughout the data-write operation. The CAS signal is used in 
this design as the actual write-gating signal. This was done to reduce the number of 
write signal outputs. Address, RAS, and the CAS lines have been duplicated in this 
design so only half of each memory bank is driven by a given output. This reduces the 
capacitive and inductive loading on each output so as to improve signal speed. Since 
the CAS signal lines have already been doubled they are used as the write gate. The 
write enable line can thus be made active early in the cycle to have additional time to 
drive a heavier load. 

WEO := DBACKI. RW 

WE1 := DBACKI. RW 

Separate WE lines are provided for each byte position in the memory. These are con­
trolled by the two least significant address lines (A 1, AO), the Option bits 0-2, and a Byte 
Order (BO) input. The BO input determines the byte order assumed by the memory and 
should be tied High or Low, or driven from a loadable register, to match the value of the 
byte order maintained in the Am29000 processor internal configuration register. The 
Option bits express codes are defined to select full-word, half-word, and byte-wide 
memory accesses. Used in combination with the least significant address bits, the 
Option bits give the processor the ability to specify partial-word Write operations. 

When a full-word Write operation is specified, all WE lines go active. A half-word Write 
only selects either the upper or lower two WE lines to go active, thus preventing a Write 
operation in the two byte positions not selected. The two unselected byte positions 
perform a Read operation instead. The resulting Read Access of data is prevented from 
reaching the data bus by the data read buffers U95-102 since these buffers are not 
enabled during a Write operation. This prevents contention on the data bus with the 
processor since the processor actively drives all 32 data lines. There is also no conten­
tion at the SCDRAM outputs since the data inputs and outputs are separate. Byte-Write 
operations operate in a fashion similar to half-word Writes. A duplicate set of WE signals 
is provided for each bank of memory to help limit the loading on these lines. 

A sample of the WE equations is shown below; the full set of equations are shown in 
Figure 7-19. The DSTART input is used to indicate when the Address, R/W, and Option 
signals are valid. The DBACKI input is used to hold the appropriate state of the WE lines 
after the Address, R/W, and Option lines go invalid. 

WE031 =: OPT2. OPT1 • OPTO • RW. DSTART 
+ OPT2.0PT1.0PTO.BO.A1.AO.RW.DSTART 
+ OPT2.0PT1.0PTO.BO.A1.AO.RW.DSTART 
+ OPT2.0PT1.0PTO.BO.A1.RW.DSTART 
+ OPT2.0PT1.0PTO.BO.A1.RW.DSTART 
+ WE031. DBACKI 

Interleaved SCDRAM 
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Data Latch Enables 

Data Latch Enable 0 and 1 (DLEO and DLE1) are the signals enabling the write data 
latches on the D input of each memory bank to load new data. 

The latches are enabled on every other cycle so data is held valid long enough to satisfy 
the hold time after the CAS signal goes active. The Q02E counter output is used to 
control which latch is enabled on a given cycle. A delayed version of the system clock is 
used to further place a window on the latch enable. This is an 8-ns delay generated in 
U111. Only during the high time of the delayed clock signal will the data be allowed 
through the latch. This is done to ensure that data is latched before the end of the sys­
tem clock cycle when the processor begins changing the data value for the next write 
cycle. That could not be guaranteed by Q02E alone since it is a registered output with a 
clock-to-output delay. This is also the reason the clock used is a delayed version of the 
system clock. This clock is delayed long enough to ensure the worst-case clock-to-out­
put time on Q02E has passed before enabling the latch. This ensures that no data is lost 
by having the latch enabled during the switching transition of Q02E as might happen if 
simply the system clock were used instead of the delayed clock. 

DLEO = Q02E. CLKD 

DLE1 = Q02E. CLKD 

Row Address Strobes 

There are five duplicated Row Address Strobe (RAS) lines. Four are used to drive the 
memories and one drives the delay line used to switch the address mux at the appropri­
ate time. Multiple lines are used to split the capacitive and inductive load of the memory 
array to improve signal speed. 

RAS is made active by a valid ISTART, DSTART, or START condition. RAS is held 
active until an exit condition exists for the type of access in progress. 

RASOH := BINV. RASOH .ISTART 
+ BINV.RASOH.DSTART 
+ BINV.RASOH.START 
+ RASOH. IEXIT 
+ RASOH. DEXIT 
+ RASOH. REXIT 
+ RASOH. DWBP 

CAS 

As with the RAS lines, the CAS lines are duplicated to split the memory load. 

The CAS signal goes active in the cycle after RAS during instruction or data accesses. 
During a data write access the CAS signal is enabled only when the appropriate bank is 
written with data. This is controlled with the Q02E line from the even bank address 
counter. CAS signal during write is further gated by DRDY being active on the previous 
cycle which ensures that a write only occurs when valid data was taken from the bus. 
Only in the case of a refresh sequence will CAS signal be made active prior to RAS. This 
will initiate a CAS before RAS refresh cycle in the memories. In this case the CAS signal 
is made active during the IDLE state. 

CASOH := RAS .IBACK 
+ RAS. DBACKI. RW 
+ RAS. DBACKI. RW. Q02E. DRDY 
+ RAS.IBACK. DBACKI.RFRQ1 
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CAS1 H := RAS. IBACK 
+ RAS. DBACKI. RW 
+ RAS. DBACKI. RW. Q02E. DRDY 
+ RAS.IBACK. DBACKI.RFRQ1 

Upper Address Bits Latch 

The address bits 13 through 22 are latched by two D-speed PAL devices. All the bit 
equat,i~ps are the same. Data flows through when the Address Latch Enable (ALE) term 
is actit~~nd latched when ALE is inactive. An additional product term combines the 
data input and output to prevent any possible loss of data during the ALE transition that 
might be caused by timing skew on ALE within the PAL device (note the ALE term is a 
documentation convenience only; where ALE is shown, the actual logic definition of ALE 
is substituted). The ALE term is made active each cycle by a delayed version of the 
system clock. The delayed clock is used for the same reasons described for the DLE 
signals. During the initial access of an instruction or data word, ALE is prevented from 
going active by the IQ1 and DQ1 terms. ALE is also held inactive during PC1 and PC2. 
This is done to preserve the address when a suspended access is followed by another 
access of the same type. In this case, the address must be held while the memory is 
precharged and during the RAS cycle of the new access. 

LA22 = ALE. A22 
+ ALE. LA22 
+ A22. LA22 

ALE = TQf. DQ1 • PC1 • PC2. CLKD 

PAL Definition Files 

The PAL definition files are provided in Figures 7-3 through 7-19. 

NOTE: All PAL equations in this Application Note use the following convention: 

1. Where a PAL equation uses a colon followed by an equals sign (:=), the equation 
signals are registered PAL outputs. 

2. Where a PAL equation uses only an equals sign (=), the equation signals are 
combinatorial PAL outputs. 

3. The device pin list is shown near the top of each figure as two lines of signal 
names. The names occur in pin order, numbered from left to right, 1 through 20. 
The polarity of each name indicates the actual input or output signal polarity. 
Signals within the equations are shown as active High (e.g., where signal names in 
the pin list are ABC, the equation is C = A. B; when the inputs are A = Low, 
B = Low, then the C output will be Low~. 

Interleaved SCDRAM 7-19 



~AMD 

Figure 7·3 AmPAL22V10·25 SCDRAM Refresh Counter/Request Generator 
Device U2 

ClK RFACK RQ1 RQ2 RQ3 NCS NC7 NC8 NC9 NC10 NC11 GND 
NC13 RFRQ1 RFQ2 RFQ3 RFQ4 RFQS RFQS RFQ7 RFQ8 RFQ10 RFQ9 VCC 

7-20 

RFQ2 := RFQ2 

RFQ3 := RFQ2.RFQ3 
+ RFQ2.RFQ3 

RFQ4 := RFQ2. RFQ3 • RFQ4 
+ RFQ2.RFQ4 
+ RFQ3.RFQ4 

RFQS := RFQ2. RFQ3. RFQ4 • RFQS 
+ RFQ2.RFQS 
+ RFQ3·RFQS 
+ RFQ4.RFQS 

RFQS := RFQ2. RFQ3 • RFQ4. RFQS • RFQS 
+ RFQ2.RFQS 
+ RFQ3.RFQS 
+ RFQ4.RFQS 
+ RFQS·RFQS 

RFQ7 := RFQ2. RFQ3. RFQ4 • RFQS • RFQS • RFQ7 
+ RFQ2.RFQ7 
+ RFQ3.RFQ7 
+ RFQ4.RFQ7 
+ RFQS·RFQ7 
+ RFQS·RFQ7 

RFQ8:= RFQ2.RFQ3.RFQ4.RFQS.RFQS.RFQ7.RFQ8 
+ RFQ2.RFQ8 
+ RFQ3·RFQ8 
+ RFQ4.RFQ8 
+ RFQS·RFQ8 
+ RFQS.RFQ8 
+ RFQ7.RFQ8 

RFQ9:= RFQ2.RFQ3.RFQ4.RFQS.RFQS.RFQ7.RFQS.RFQ9 
+ RFQ2.RFQ9 
+ RFQ3.RFQ9 
+ RFQ4·RFQ9 
+ RFQS.RFQ9 
+ RFQS·RFQ9 
+ RFQ7.RFQ9 
+ RFQ8·RFQ9 

Interleaved SCDRAM 

10023C-045 



AMD ~ 

Figure 7·3 AmPAL22V10·25 SCDRAM Refresh Counter/Request Generator 
Device U2 (continued) 

RFQ10:=RFQ2-RFQ3-RFQ4-RFQS-RFQS-RFQ7-RFQS-RFQ9-RFQ10 
+ RFQ2-RFQ10 
+ RFQ3-RFQ10 
+ RFQ4-RFQ10 
+ RFQS-RFQ10 
+ RFQS-RFQ10 
+ RFQ7-RFQ10 
+ RFQS-RFQ10 
+ RFQ9-RFQ10 

SYNCHRONOUS PRESET = RFQ2-RFQ3-RFQ4-RFQS-RFQS-RFQ7-RFQS 
- RFQ9 - RFQ1 0 

RFRQ1 := RFRQ1 - (RFACK - RQ1) 

Figure 7·4 PAL 16R6·D DRAM Refresh State Generator-Interleaved 
Device U15 

ClK IBACK DBACKI RFRQT DBREQ.D DQ1 PC1 RW NC9 GND 
OE DWBP 5WBPf DWBP2 RFACK RQ1 RQ2 RQ3 REXIT VCC 

RFACK := DBACKI-IBACK - RFRQ1 
+ RFACK- (RFRQ1 - RQ3) 

RQ1 := RQ1 - PC1 - RFACK 
+ RQ1-RQ3 

RQ2 := RQ1 - RQ3 

RQ3 := RQ2 - RQ3 

REXIT = RFACK 
+ RQ3 

DWBP = DBACKI- RW - DBREQ.D - RFRQ1 - DQ1 - DWBP2 

DWBP1 := DWBP1 - DWBP 

DWBP2 := DWBP2-DWBP1 
10623C-046 

Interleaved SCDRAM 7-21 



~AMD 

Figure 7-5 PAL 16R6-D DRAM Precharge State Generator-Interleaved 
Device U16 

eLK ISTART DSTART IEXIT NC5 DEXIT NC7 RQ3 BINV GND 
OE DWBP IBACK DBACK DBACKI PC1 PC2 NC18 NC19 VCC 

IBACK := BINV-ISTART 
+ IEXIT 

DBACK := BINV-DSTART 
+ DEXIT 

DBACKI := BINV- DSTART 
+ DEXIT 
+ DWBP 

PC1 := PC1 - IBACK -IEXIT 
+ PC1-DBACKI-DWBP-DEXIT 
+ PC1-RQ3 

PC2 := PC1 - PC2 

Figure 7-6 PAL20L8-B DRAM State Decoder-Interleaved 
Device U4 

10623C-047 

RFRQ1 IREQ DREQTO DREQT1 IREQT PIN169 A31 A30 A29 A28 A27 GND 
RFACK DREQ iSTARf IEXIT IBACK DBACKI PC1 PC2 START NC18 IQ1 VCC 

7-22 

ISTART = DBACKI-RFACK-PC1-IME 

START = PC1 - PC2 -IBACK 
+ PC1 - PC2 - DBACKI 
+ PC1-RFACK 

IEXIT = IQ1-PC1-PC2-DME 
+ IQ1 - PC1 - PC2 -IREQ 
+ IQ1-PC1-PC2-RFRQ1 
+ IBACK 

NOTE: In the above equations, IME and DME are used only for clarity. The actual input 
terms should be substituted when compiling this device. 

DME = DREQ-DREQTO-DREQT1-A31-A30-A29-A28-A27-PIN169 
_ RFRQ1 

IME = IREQ-IREQT-A31-A30-A29-A28-A27-PIN169-RFRQ1 

Interleaved SCDRAM 
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Figure 7·7 PAL20L8-B DRAM State Decoder-Interleaved 

Device US 

Figure 7·8 

RFRQ1 IREQ DREQTO DREQT1 PiN'1"69 IREQT A31 A30 A29 A28 A27 GND 
RFACK DREQ DSTART DEXIT DBREQ.D IBACK DBACKI PC1 PC2 NC18 DQ1 VCC 

DSTART = IBACK. RFACK. PC1 • DME 

DEXIT = DQ1 • PC1 • PC2 .IME. DBREQ.D 
+ i5Q1. PC1 • PC2. RFRQ1 
+ DBACKI 

NOTE: In the above equations, IME and DME are used only for clarity. The actual input 
terms should be substituted when compiling this device. 

IME = IREQ. i'REQT. A31 • A30. A29. A28. A27. PIN169. RFRQ1 

DME = DREQ. DREQTO. DREQT1 • A31 • A30. A29 • A28 • A27 • PIN169 
• RFRQ1 

PAL 16R4·D DRAM Instruction State Generator-Interleaved 
Device U17 . 

GlK IBACK ISTART PC1 PC2 Q02E IBREQ.D BINV.D BINV GND 
OE IOEO IOE1 IQ1 IQ2 IQ3 IBACK.D IRDY NC19 VCC 

IBACK.D := IBACK 

IQ1 := BINV.IQ1.ISTART.IBACK 
+ iCff. PC1 • PC2 .IBACK 
+ IQ1.IQ3 

IQ2 := IQ1 .IQ3 

IQ3 := IQ2.IQ3 

IRDY = IQ3 
+ BINV.D. iCff. PC1 • PC2. IBREQ.D .IBACK.D 

IOEO = Q02E. IQ3 
+ BINV.D. Q02E .IQ1 • PC1 • PC2 .IBREQ.D .IBACK.D 

IOE1 = Q02E.IQ3 
+ BINV.D. Q02E .IQ1 • PC1 • PC2 .IBREQ.D .IBACK.D 

Interleaved SCDRAM 
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Figure 7-9 PAL 16R4-D DRAM Data State Generator-Interleaved 
Device U18 

·7-24 

ClK DSTART DBACK PC1 PC2 Q02E DBREQ.D BINV RW GND 
OE DOEO DOE1 DQ1 DQ2 DQ3 DBACK.D DRDY BINV.D VCC 

DBACKD := DBACK 

DQ1 := BINV-DQ1-DSTART-DBACK 
+ DQ1-PC1-PC2-DBACK 
+ DQ1-DQ3 

DQ2 := DQ1 - DQ3 

DQ3 := DQ2 - DQ3 
+ BINV.D - RW - DQ1 - PC1 - PC2 - DBREQ.D - DBACK.D 
+ RW-DQ2-DQ3 
+ BINV.D - RW - DQ3 - DBREQ.D - DBACK.D 
+ B INV.D - RW - DQ1 - PC1 - PC2 - DBREQ.D - DBACKD 

DOEO = RW - Q02E - DQ3 
+ BINV.D - RW - Q02E - DQ1 - PC1 - PC2 - DBREQ.D - DBACK.D 

DOE1 = RW-Q02E-DQ3 
+ BINV.D- RW-Q02E- DQ1- PC1- PC2- DBREQ.D- DBACKD 

Interleaved SCDRAM 

10623C·051 



Figure 7-10 PAL 16R6-D DRAM ns Generator-lnterleaved 
Device U19 

CLK ISTART DSTART IEXIT NC5 DEXIT NC7 REXIT BINV GND 
DE START RASOH RASOL RAS1H RAS1L RAS NC18 DWBP vee 

RASOH := BINV- RASOH -ISTART 
+ BINV-RASOH-DSTART 
+ BINV-RASOH-START 
+ RASOH -IEXIT 
+ RASOH - DEXIT 
+ RASOH - REXIT 
+ RASOH - DWBP 

RASOL := BINV- RASOL-ISTART 
+ BINV-RASOL-DSTART 
+ BINV-RASOL-START 
+ RASOL-IEXIT 
+ RASOL- DEXIT 
+ RASOL - REXIT 
+ RASOL - DWBP 

RAS1H:= BINV-RAS1H-ISTART 
+ BINV-RAS1H-DSTART 
+ BINV-RAS1H-START 
+ RAS1 H -IEXIT 
+ RAS1 H - DEXIT 
+ RAS1H-REXIT 
+ RAS1 H - DWBP 

RAS1 L := BINV- RAS1 L-ISTART 
+ BINV-RAS1L-DSTART 
+ BINV-RAS1L-START 
+ RAS1 L -IEXIT 
+ RAS1L-DEXIT 
+ RAS1L-REXIT 
+ RAS1 L - DWBP 

RAS := BINV- RAS-ISTART 
+ BINV-RAS-DSTART 
+ BINV-RAS-START 
+ RAS-IEXIT 
+ RAS-DEXIT 
+ RAS-REXIT 
+ RAS-DWBP 

Interleaved SCDRAM 

AMD ~ 
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Figure 7·11 PAL 16R6·D DRAM CAS Generator-Interleaved 
Device U20 

ClK Q02E IBACK DBACKI RFACK RAS RFRQ1 RW DRDY GND 
OE NC12 CASOH CASOl CAS1 H CAS1 l WEO WE1 NC19 VCC 

CASOH := RAS -IBACK 
+ RAS - DBACKI- RW 
+ RAS-DBACKI-RW-Q02E-DRDY 
+ RAS-IBACK-DBACKI-RFRQ1 

CASOl := RAS -IBACK 
+ RAS - DBACKI- RW 
+ RAS-DBACKI-RW-Q02E-DRDY 
+ RAS - IBACK - DBACKI- RFRQ1 

CAS1 H := RAS -IBACK 
+ RAS - DBACKI- RW 
+ RAS-DBACKI-RW-Q02E-DRDY 
+ RAS-IBACK-DBACKI-RFRQ1 

CAS1l := RAS-IBACK 
+ RAS - DBACKI- RW 
+ RAS - DBACKI- RW - Q02E - DRDY 
+ RAS - IBACK - DBACKI- RFRQ1 

WEO := DBACKI- RW 

WE1 := DBACKI- RW 

Figure 7·12 PAL 16L8-B DRAM Counter Load-Interleaved 
Device U1 

7-26 

IBREQ.D DBREQ.D IBACK DBACKI IQ1 IQ2 IQ3 IREQ DREQ GND 
RW CNTO lD DQ1 DQ2 [5Q'3 PC1 PC2 CNT1 VCC 

lD = IQ1 - PC1 - DBACKI-IREQ 
+ DQ1-PC1-IBACK-DREQ 

CNTO = IBACK - IQ2 
+ IBACK - IQ1 - PC1 - PC2 -IBREQ.D 
+ DBACKI- RW - DQ2 
+ DBACKI- RW - DQ1 - PC1 - PC2 - DBREQ.D 
+ DBACKI - RW - DQ2 - DQ3 
+ DBACKI- RW - DQ3 - DBREQ.D 
+ DBACKI- RW- DQ1 - PC1 - PC2 - DBREQ.D 

CNT1 = IBACK - IQ3 
+ IBACK - IQ1 - PC1 - PC2 -IBREQ.D 
+ DBACKI - RW - DQ3 
+ DBACKI- RW - DQ1 - PC1 - PC2 - DBREQ.D 
+ DBACKI- RW - DQ3 - DBREQ.D 
+ DBACKI- RW- DQ1 - PC1 - PC2 - DBREQ.D 

Interleaved SCDRAM 

10623C·053 
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Figure 7·13 PAL16R4-D DRAM Address Counter-Interleaved Section O-Even Bank 
Device U6 

CLK CNTO LO A02 A03 A04 AOS NC8 CLKO GNO 
OE OLEO OLE1 a02E a03E a04E aOSE BINV COUTO VCC 

a02E:= LO.A02.BINV 
+ LO.CNTO·a02E.BINV 
+ LO.CNTO·a02E.BINV 
+ BINV·a02E 

a03E := LO. A03. BINV 
+ LO.CNTO·a03E.BINV 
+ LO.CNTO·a02E·a03E.BINV 
+ LO.CNTO·a02E·a03E.BINV 
+ BINV·a03E 

a04E:= LO.A04.BINV 
+ LO.CNTO·a04E.BINV 
+ LO.CNTO·a02E·a03E·a04E.BINV 
+ LO.CNTO·a02E·a04E.BINV 
+ LO.CNTO·a03E·a04E.BINV 
+ BINV·a04E 

aOSE := LO.AOS.BINV 
+ LO.CNTO·aOSE.BINV 
+ LO. CNTO. a02E. a03E. a04E. aOSE. BINV 
+ LO.CNTO·a02E·aOSE.BINV 
+ LO.CNTO·a03E·aOSE.BINV 
+ LO.CNTO·a04E·aOSE.BINV 
+ BINV·aOSE 

COUTO = a02E. a03E • a04E • aOSE 

OLEO = a02E + CLKD 

OLE1 = a02E + CLKO 

Figure 7·14 PAL16R6·D DRAM Address Counter-Interleaved Section 1-Even Bank 
Device U7 

CLK CNTO LO A06 A07 A08 A09 A 10 A 11 GNO 
OE CINO a06E a07E a08E a09E a10 a11 BINV VCC 

a06E := LO. A06. BINV 
+ LO.CNTO·a06E.BINV 
+ LO.CNTO.CINO·a06E.BINV 
+ LO.CNTO.CINO·a06E.BINV 
+ BINV·a06E 

a07E := LO. A07. BINV 
+ LO.CNTO·a07E.BINV 
+ LO.CNTO.CINO·a06E·a07E.BINV 
+ LO.CNTO.CINO·a07E.BINV 
+ LO.CNTO·a06E·a07E.BINV 
+ BINV·a07E 

Interleaved SCDRAM 
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Figure 7-14 PAL16R6-D DRAM Address Counter-lnterleaved Section 1-Even Bank 
Device U7 (continued) 

Q08E := LO - A08 - BINV 
+ LO-CNTO-Q08E-BINV 
+ LO - CNTO - CINO - Q06E - Q07E - Q08E - BINV 
+ LO-CNTO-CINO-Q08E-BINV 
+ LO-CNTO-Q06E-Q08E-BINV 
+ LO-CNTO-Q07E-Q08E-BINV 
+ BINV-Q08E 

Q09E := LO - A09 - BINV 
+ LO-CNTO-Q09E-BINV 
+ LO - CNTO - CINO - Q06E - Q07E - Q08E - Q09E - BINV 
+ LO-CNTO-CINO-Q09E-BINV 
+ LO-CNTO-Q06E-Q09E-BINV 
+ LO-CNTO-Q07E-Q09E-BINV 
+ LO-CNTO-Q08E-Q09E-BINV 
+ BINV-Q09E 

NOTE: Even bank counter holds Q1 0 and Q11 ; odd bank counter holds Q12 and Q13. 

Q10:= LO-A10+LO-Q10 

Q11 := LO - A 11 + LO - Q11 

Figure 7-15 PAL 16R4-D DRAM Address Counter-lnterleaved Section O-Odd Bank 
Device U9 

7-28 

CLK CNT1 LO A02 A03 A04 A05 NC8 NC9 GNO 
OE NC12 NC13 Q020 Q030 Q040 Q050 BINV COUT1 VCC 

Q020 := LO - A02 - BINV 
+ LO - CNT1 - Q020 - BINV 
+ LO-CNT1-Q020-BINV 
+ BINV-Q020 

Q030 := LO - A03 - BINV 
+ LO - CNT1 - Q030 - BINV 
+ LO-CNT1-Q020-Q030-BINV 
+ LO-CNT1-Q020-Q030-BINV 
+ BINV-Q030 

Q040 := LO - A04 - BINV 
+ LO-CNT1-Q040-BINV 
+ LO-CNT1-Q020-Q030"-Q040-BINV 
+ LO-CNT1-Q020-Q040-BINV 
+ LO-CNT1-Q030-Q040-BINV 
+ BINV-Q040 

Interleaved SCDRAM 



a050 := LO. A05. BINV 
+ LO.CNT1·a050.BINV 
+ LO. CNT1 • a020. a030. a040. a050. BINV 
+ LO.CNT1·a020·a050.BINV 
+ LO.CNT1·a030·a050.BINV 
+ LO.CNT1·a030·a050.BINV 
+ LO.CNT1·a040·a050.BINV 
+ BINV·a050 

COUT1 = a020. a030. a040 • a050 

Figure 7·16 PAL16R6·D DRAM Address Counter-Interleaved Section 1-Odd Bank 
Device U16 

CLK CNT1 LO A06 A07 A08 A09 A 12 A 13 GNO 
OE CIN1 0060 0070 0080 0090 012 013 BINV VCC 

a060 := LO. A06 • BINV 
+ LO. CNT1 • a060. BINV 
+ LO.CNT1.CIN1·a060.BINV 
+ LO.CNT1.CIN1·a060.BINV 
+ BINV·a060 

a070 := LO. A07 • BINV 
+ LO.CNT1·a070.BINV 
+ LO.CNT1.CIN1·a060·a070.BINV 
+ LO.CNT1.CIN1.a070.BINV 
+ LO.CNT1·a060·a070.BINV 
+ BINV·a070 

a080 := LO. A08. BINV 
+ LO. CNT1 • a080 • BINV 
+ LO.CNT1.CIN1·a060·a070·0080.BINV 
+ LO.CNT1.CIN1·a080.BINV 
+ LO.CNT1·a060·a080.BINV 
+ LO.CNT1·a070·a080.BINV 
+ BINV·a080 

0090 := LO. A09. BINV 
+ LO.CNT1·a090.BINV 
+ LO.CNT1.CIN1·a060·a070·a080·0090.BINV 
+ LO.CNT1.CIN1·a090.BINV 
+ LO. CNT1 • a060. a090. BINV 
+ LO. CNT1 • a070. 0090. BINV 
+ LO. CNT1 • a080. a090. BINV 
+ BINV·a090 

NOTE: Even bank counter holds a10, a11. Odd bank counter holds a12, a13. 

a12 := LO .A12 
+ LO·a12 

a13 := LO.A13 
+ LO·a13 

Interleaved SCDRAM 
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Figure 7-17 PAL 16LB-D DRAM Row Address Latch-Interleaved Device U8 

CLKD 101 A13 A14 A15 A16 A17 PC1 PC2 GND 
D01 NC12 LA13 LA14 LA15 LA16 LA17 NC18 NC19 VCC 

LA13 = ALE-A13 
+ ALE-LA13 
+ A13-LA13 

LA14 = ALE-A14 
+ ALE-LA14 
+ A14-LA14 

LA15 = ALE-A15 
+ ALE- LA15 
+ A15.LA15 

LA16 = ALE-A16 
+ ALE- LA16 
+ A16.LA16 

LA17 = ALE-A17 
+ ALE- LA17 
+ A17-LA17 

NOTE: The term ALE is used for clarity only. The true form of ALE is: 

ALE = 101 - D01 - PC1 - PC2 - CLKD 

Figure 7-18 PAL16LB-D DRAM Row Address Latch-Interleaved Device U11 

CLKD 101 A18 A19 A20 A21 A22 PC1 PC2 GND 

7-30 

D01 NC12 LA18 LA19 LA20 LA21 LA22 NC18 NC19 VCC 

LA18 = ALE-A18 
+ ALE- LA18 
+ A18-LA18 

LA19 = ALE-A19 
+ ALE- LA19 
+ A19-LA19 

LA20 = ALE - A20 
+ ALE-LA20 
+ A20.LA20 

LA21 = ALE-A21 
+ ALE-LA21 
+ A21-LA21 

LA22 = ALE - A22 
+ ALE-LA22 
+ A22-LA22 

NOTE: The term ALE is used for clarity only. The true form of the ALE signal is: 

ALE = 101 - D01 - PC1 • PC2 - CLKD 10623C-060 

Interleaved SCDRAM 
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Figure 7·19 PAL 16R8·D DRAM Write Enable Controls Device U112 

. ClK OPT2 OPT1 OPTO A 1 AO OSTART BO OBACKI GNO 
RW WE007 WE015 WE023 WE031 WE107 WE115 WE123 WE131 vce 

WE031 := OPT2 - OPT1 - OPTO - RW - OSTART ;Word 
+ OPT2-0PT1.0PTO-BO-A1-AO-RW-OSTART ;Byte, Big 
+ OPT2-0PT1-0PTO-BO-A1-AO-RW-OSTART ;Byte, Little 
+ OPT2 -OPT1 -OPTO- BO-A1 - RW- OSTART ;HW, Big 
+ OPT2-0PT1-0PTO-BO-A1- RW-OSTART ;HW, Little 
+ WE031 - OBACKI 

WE023 := OPT2 - OPT1 - OPTO - RW - OSTART ;Word 
+ OPT2-0PT1-0PTO-BO-A1-AO-RW-OSTART ;Byte, Big 
+ OPT2-0PT1.0PTO- BO-A1 -AO-RW- OSTART ;Byte, Little 
+ OPT2-0PT1.0PTO-BO-A1-RW-OSTART ;HW, Big 
+ OPT2-0PT1.0PTO-BO-A1. RW-OSTART ;HW, Little 
+ WE023 - OBACKI 

WE015 := OPT2 - OPT1 - OPTO - RW - OSTART ;Word 
+ OPT2-0PT1-0PTO-BO-A1-AO-RW-OSTART ;Byte, Big 
+ OPT2-0PT1-0PTO-BO-A1-AO- RW-OSTART ;Byte, Little 
+ OPT2-0PT1.0PTO-BO-A1-RW-OSTART ;HW,Big 
+ OPT2-0PT1.0PTO-BO-A1-RW-OSTART ;HW, Little 
+ WE015 - OBACKI 

WEOO7 := OPT2 - OPT1 • OPTO - RW - OSTART ;Word 
+ OPT2-0PT1.0PTO-BO-A1-AO-RW-OSTART ;Byte, Big 
+ OPT2-0PT1.0PTO-BO-A1-AO-RW-OSTART ;Byte, Little 
+ OPT2-0PT1.0PTO-BO-A1- RW-OSTART ;HW, Big 
+ OPT2-0PT1- OPTO-BO-A1-RW-OSTART ;HW, Little 
+ WE007 - OBACKI 

WE131 := OPT2 - OPT1 - OPTO - RW - OSTART ;Word 
+ OPT2-0PT1-0PTO-BO-A1-AO-RW-OSTART ;Byte, Big 
+ OPT2-0PT1-0PTO-BO-A1-AO-RW-OSTART ;Byte, Little 
+ OPT2-0PT1.0PTO-BO-A1- RW-OSTART ;HW, Big 
+ OPT2-0PT1-0PTO- BO-A1- RW-OSTART ;HW, Little 
+ WE131.0BACKI 

WE123 := OPT2 - OPT1 - OPTO - RW - OSTART ;Word 
+ OPT2-0PT1-0PTO-BO-A1-AO- RW-OSTART ;Byte, Big 
+ OPT2-0PT1-0PTO-BO-A1-AO-RW-OSTART ;Byte, Little 
+ OPT2-0PT1.0PTO-BO-A1-RW-OSTART ;HW, Big 
+ OPT2-0PT1-0PTO-BO-A1-RW-OSTART ;HW, Little 
+ WE123 - OBACKI 

WE115 := OPT2 - OPT1 • OPTO - RW - OSTART ;Word 
+ OPT2 - OPT1 .OPTO - BO - A1 - AO - RW - OSTART ;Byte, Big 
+ OPT2 - OPT1 - OPTO - BO - A1 - AO - RW - OSTART ;Byte, Little 
+ OPT2 -OPT1 .OPTO - BO - A1 - RW - OSTART ;HW, Big 
+ OPT2-0PT1.0PTO - BO - A1 -RW- OSTART ;HW, Little 
+ WE115 - OBACKI 

10623C-061 
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Figure 7·19 
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PAL16R8·D DRAM Write Enable Controls Device U112 (continued) 

WE 107 := OPT2 • OPT1 • OPTO. RW. DST ART 
+ OPT2. OPT1 • OPTO • BO • A 1 • AO. RW • DSTART 
+ OPT2. OPT1 • OPTO • BO • A 1 • AO • RW • DSTART 
+ OPT2. OPT1 • OPTO. BO. A1 • RW. DSTART 
+ OPT2. OPT1 • OPTO. BO. A1 • RW. DSTART 
+ WE107. DBACKI 

Intra.Cycle Timing 

;Word 
;Byte, Big 
;Byte, Little 
;HW, Big 
;HW, Little 

This memory architecture has three basic cycle timings. The first is a cycle used to 
decode the memory address and control signals from the processor. At the end of this 
decode cycle, the address is loaded into the address counter and the selected block of 
memory begins its initial access in the next clock cycle. Following the decode cycle is 
the row-address cycle in which the row address is made active at the beginning of the 
cycle, and in which the address multiplexer is later switched between the row address 
and the column address. 

The third cycle timing is that of a burst access. The first burst access time is the time 
required to access one of the memory banks. This time is designed to fit within two clock 
cycles, so the initial burst-access time will be two cycles. 

The combination of a decode cycle, followed by the row-address cycle, followed by the 
first burst-access time defines a four-cycle initial access time. 

After the initial access, all burst accesses use the two-clock-cycle timing of the initial 
burst access. Because two memory banks are interleaved, the apparent access time 
from the viewpoint of the system bus is only one cycle per burst access following the 
initial access. 

Decode Timing 

Within the decode cycle the address timing path is made up of: 

• The Am29000 processor clock to address and control valid delay of 14 ns 

• Address decode logic PAL device delay of 10 ns (devices, U4 and U5) 

• The setup time of the address counter PAL device, 10 ns (devices, U6-U11) 

Assuming D-speed PAL devices, those times total 34 ns, as shown in Figure 7-20. 

Also, within the decode cycle time is the control signal to response signal path. In fact, 
this timing path is present in every cycle in the sense that the memory response signals 
must be valid in every clock cycle. This delay path is made up of: 

• Clock-to-output time of registers within the control logic state machine PAL device, 
8 ns 

• Propagation delay of the control logic PAL device, 10 ns 

• Propagation delay of a logical OR gate on the response signals from each memory 
block, 10 ns 

• Control signal setup time of the processor, 12 ns 

Again, assuming D-speed PAL devices, these times total 40 ns, as shown in Figure 7-19. 

Interleaved SCDRAM 
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SCDRAM Interleaved Bank Memory Decode Cycle 

Address Path 

teo, Am29000 Processor 14 

tpd, Control PAL Device 10 
34ns 

10 
tsu, Counter PAL Device 

Control Path 

8 
teo, Control PAL Device 

10 
tpd, Control PAL Device 10 40 ns 
tpd, Response PAL Device ·12 
tsu, Am29000 Processor Setup 10623C·062 

Row Address Timing 

Within the row address cycle, the RAS line goes Low which initiates a time delay signal 
which later causes the address multiplexer to change from the row to the column ad­
dress as shown in Figure 7-21 . 

The RAS delay path is made up of: 

• Clock-to-output time of RAS signal registers within the control logic state machine 
PAL device (8 ns) plus an added delay due to capacitive and inductive loading by the 
memory array of the PAL device outputs. 

The Address path is made up of: 

• Clock-to-output time of RAS output not loaded by memory array, 8 ns 

• Delay-line time, 16 ns 

• Minimum and maximum switch time of the multiplexer, 4 ns to 9.5 ns 

• Memory load delay of 6.5 ns 

Figure 7-21 SCDRAM Interleaved Bank Memory 1mS Cycle 

teo, PAL Device RAS Output 

tid, Memory Load Delay 

tpd, Delay Line 

tsw, Addr MUX Switch Time 

tid, Memory Load Delay 

8 

...ll. 
16 

9.5 

Interleaved SCDRAM 

40 ns 

6.5 

10623C·063 
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Figure 7·22 SCDRAM Interleaved Bank Memory Burst Access 

7-34 

tco, Address Counter PAL Device 

tpd, MUX 
tid, Memory Load Delay 

taa, SCDRAM 

tpd, FCT244A Buffer 
tsu, Am29000 Processor Setup 

8 

_7_ 

_6_ 

I .... t---- 40 ns ---.t 

76.3 ns 
45 

6 

10623C·064 

This works out to satisfy the 15 ns of required hold time of address after RAS goes 
active. Also, the column address is settled by 40 ns into the cycle. 

Burst Timing 

Within the burst access cycle, the address to data path timing is determined by: 

• The clock to output time of the address counter (8 ns for a D-speed PAL device) 

• Memory access time in static column mode, 45 ns 

• Data buffer delay (FCT244A = 4.3 ns) 

• The processor set-up time (S ns) 

Those delays total 7S.3-ns worst case as shown in Figure 7-22. 

Parts List 

The part list for the Am29000 Interleaved Dynamic RAM Interface is provided in 
Table 7-1. 

Interleaved SCDRAM 
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Am29000 Interleaved Dynamic RAM Interface Parts List 

Item No. Quantity Device Description 

U1 PAL 16L8-B 

U2 AmPAL22V10-25 

U4,U5 2 PAL20L8-B 

U6,U9,U17,U18 4 PAL16R4-D 

U7,U10,U15,U16, U19, U20 6 PAL16R6-D 

U8, U11 2 PAL16L8-B 

U21-U85 64 TC511002-85 

U3 74F175 

U12-U14, U114-U116 6 74F158 

U86-U94 8 Am29C843A 

U95-U110 16 I DT74FCT244A 

U111 MTTLDL-8 

U112 PAL 16R8-D 

113 packages 

DATA MEMORY 

The instruction and data memories for the Am29000 processor are separate structures. 
The data memory can be an exact subset of the instruction memory design. In fact the 
exact same design can be used by tying the instruction-related control signals to the 
inactive state. But, since the data memory is a subset, it is also possible to save a few 
chips by eliminating the instruction-related control signals and rearranging the distribu­
tion of logic terms between PAL devices. 

With reference to the instruction memory design defined in this chapter, the following 
changes may be made to convert it to a data memory: 

• All instruction related inputs can be removed and all the affected equations simplified. 

• U 17, the instruction-state machine PAL device, can therefore be removed entirely. 

• The START signal can be moved to U 16; therefore U4 can be eliminated. 

• The 74F175 from the instruction-memory can also be used to supply the delayed 
control signals to the data memory, thus eliminating the need for U3. 

• The ALE function from U8 and U11 can be moved to U1. Therefore, U8 and U11 
could be replaced by a Single 10-bit latch such as the 29841 A. 

• The instruction-bus output buffers can be eliminated. 

In total, the design can be reduced by 12 chips. The details of the logic equation simplifi­
cations will be left as an exercise for the reader. All other aspects of the design are the 
same as for the instruction memory described in the previous section. 
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SINGLE-BANK SCDRAM 

A very low-cost memory system can be built using the Am29000 processor with a single 
bank of non-interleaved static column dynamic RAM (SCDRAM). This low-cost design 
approach reduces the component count and power consumption to a minimum, while 
maintaining the high performance of single-cycle burst access to memory. 

The static column capability of SCDRAM means once a row is addressed for the first 
time, all subsequent accesses within that row can be made by simply changing the 
column address. In effect, the SCDRAM has a built-in cache with one row of words. The 
time required to do a complete cache re-Ioad is the initial row access time. 

The memory system described in this chapter meets the following design goals: 

• Minimum component count 

• Power consumption of no more than 6 W 

• Processor clock speed in the range of 10 MHz 

• Burst-mode access support for fast data movement (DMA function) 

SYSTEM BLOCK DIAGRAM 

A block diagram of the complete system is shown in Figure 8-1. The memory system 
uses buffers between the instruction and data buses of the Am29000 processor, 
provided by the Am29C983 Bus Interchange Buffers, with each device providing 
buffering for 16 data bits. Two address PAL devices are used: one is a counter for the 
column address when accessing the static column DRAM, and a second PAL device is 
a refresh counter. 

CHIP COUNT AND POWER CONSUMPTION 

The memory system requires 17 devices: eight DRAMs, two EPROMs, three PAL 
devices and three buffers. The power requirements of the devices are shown below. 

Device Max Icc, rnA (per device) Total, rnA 

1 Am29000 processor 250 @ 10 MHz 250 
2 Am29C983 20 40 
1 PALCE29M16 120 120 
2 AmPALCE22V1 0 90 180 
1 Arn29C823 30 30 
8 DRAM 50 400 
227C1024 50 100 

Total power consumption: 1120 rnA 
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Figure 8-1 System Block Diagram 

8-2 

_~~(2X29C9B3AJ I - ------r - W Control PAL DRAM 

Am29000 
(PAL29M16) 

8 x (256K x 4) 
Processor 

f-- l-
i--I EPROM 

2 x 27C1024 

Row Buffer 

-r--I=-

"- Column Counter 
AmPALCE22V10 

r-

-
Refresh Counter 

'"-- AmPALCE22V10 10623C-065 

The worst-case current consumption is 1.12 A, giving a worst-case power consumption 
of 5.0 V • 1.12 A = 5.6 W. 

TYPES OF MEMORY ACCESS 

In the system described above, there are seven specific types of memory access the 
processor can perform: 

1. Instruction fetch from EPROM 

2. Instruction fetch (simple) from DRAM 

3. Instruction fetch (burst) from DRAM 

4. Data load (simple) from DRAM 

5. Data load (burst) from DRAM 

6. Data store (simple) to DRAM 

7. Data store (burst) to DRAM 

Single-Bank SCDRAM 
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Because the aim of the design was to produce a simple solution at a minimum cost, a 
simple state machine approach was chosen to perform the above functions. The follow­
ing descriptions and timing diagrams explain the state sequences for each type of 
memory access. 

Instruction Fetch from EPROM 

In the first cycle, the processor puts out a valid address and Instruction Request (IREQ). 
As this accesses the ROM address space of the processor, the IREQT signal 
(Instruction Request Type) is also valid. This latter signal is used to provide the chip 
select and output enable strobe to the EPROM devices. Although the processor may 
attempt to perform a burst-type access to the EPROMs, this is not~rted by the 
EPROM subsystem, and thus the Instruction Burst Acknowledge (IBACK) signal is 
inactive throughout the duration of the access. To lengthen the access, the state ma­
chine asserts the Ready (IRDY) signal after two states, thus allowing EPROMs with 
access times of 250 ns to be used. See Figure 8-2. 

Instruction Fetch (Simple) from DRAM 

In the first cycle, the processor puts out a valid address and Instruction Request (IREQ). 
The high-order element of this address is buffered and then fed into the DRAM array to 
form the ROW address. On the falling edge of the clock (in the first cycle), the state 
machine asserts the RAS strobe into the DRAMs, thus latching the address. On the next 
rising edge of the clock, the output MUX1 changes state. This is connected to the 
enable of the buffer, thus removing the ROW address from the DRAMs. On the next 

Figure 8·2 EPROM Instruction Access 
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falling edge of the clock, the MUX2 signal becomes active, thus enabling the output of 
the column address counter. The half-clock delay between the MUX1 signal going 
inactive and the MUX2 signal going active removes any possibility of contention on the 
address bus. On the rising edge of the third clock cycle, CAS strobe goes active, thus 
latching the column address into the DRAM array. The IRDY signal is then de-asserted, 
allowing the access to complete in the next clock cycle. In the following clock cycle, 
accesses to the DRAMs are inhibited to allow to the RAS precharge time. See 
Figure 8-3. 

Instruction Fetch (Burst) from DRAM 

Instruction burst accesses are similar to the simple accesses except the processor 
asserts the Instruction Burst Request Signal (IBREQ). The initial access is identical to 
the simple access, but then subsequent accesses are performed at a rate of one per 
cycle, with the column address counter incremented on each clock edge. The burst can 
be terminated by one of two means: either the processor terminates the burst by remov~ 
ing IBREQ, or the memory system can terminate the burst by de-asserting IBACK and 
IRDY. This latter case could arise when the memory system is needed for data 
accesses. See Figure 8-4. 

Figure 8·3 Simple Instruction Access to DRAM 
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Figure 8·4 BURST Instruction Access to DRAM 
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Data Load Accesses from DRAM 

The basic difference between data load accesses and instruction accesses is a delay 
imposed by the buffers connecting the data pins of the processor to the memory system. 

Data Store Accesses to DRAM 

When performing a store operation to the DRAM memory, a data write strobe must be 
generated to latch the data into the DRAM. Diagrams for both simple and burst data 
store accesses are shown in Figures 8-5 and 8-6. 

Bus Preemption 

One other requirement that must be observed is the preemption of an instruction burst 
due to a data access, as simultaneous instruction and data accesses are invalid with 
this memory model. Figure 8-7 shows the instruction accesses being preempted due to 
a data access. When the data access is completed, the Am29000 processor will restart 
the preempted instruction accesses by re-asserting the access as either a new simple or 
burst type access. 
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Figure 8-5 
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Data Access Following Instruction Access 

For the sake of completeness, Figure 8-8 shows a data access following an instruction 
access. 

CONTROL PAL DEVICE DESCRIPTION 

The main controlling PAL device is a PAL29M16. This device was chosen because it 
allows all the I/O pins to be utilized, while still allowing internal buried state registers for 
state information. 

The state machine monitors the four request signals from the processor (IREQ , DREQ , 
IBREQ, DBREQ) to determine which type of access is being performed: ROM, 
instruction, data, or refresh. 

When a ROM access is started (ROM input active), the state machine inhibits burst 
accesse~ot asserting the Burst Acknowledge signal and counts a number of states 
until the IRDY signal goes active, thus terminating the access. 

Single-Bank SCDRAM 
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An instruction access is similar to a ROM access, as the processor initially performs a 
simple read access. It is enhanced, however, by the assertion of the RAS, CAS, and the 
MUX signal. However, at possible completion of the simple access, if the processor 
requested an instruction burst sequence, then the Burst Acknowledge is asserted and 
the processor continues to receive instructions from the memory at the rate of one per 
clock cycle. This access can be terminated by one of two mechanisms: either the proc­
essor IBREQ signal goes inactive, indicating that the processor no longer needs to 
perform the burst access, or the processor asserts the DREQ signal, indicating either a 
LOAD or a STORE is being executed. As the memory system can only support either 
instruction or data accesses, but not both simultaneously, the state machine must 
preempt the instruction burst access and allow the data access to complete. 

A data access is similar to an instruction access; however, the DRAM WR strobe must 
be toggled during write cycles. 

When the internal processor counter reaches a pre-determined refresh value, the inter­
rupt routine serving this condition must generate a read from a refresh address. This 
has the action of setting the state machine into the refresh mode, where a RAS-only 
refresh is performed, with the address generated by the refresh address counter. 
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Figure 8-7 Instruction Burst Pre-empted by a Data Access 
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CONCLUSION 

This single-bank, static column DRAM memory system demonstrates one method of 
building a low-cost system with reasonably high performance. Tying the instruction and 
data buses together allows the memory system to be implemented with just eight 
DRAMs, combined with a few PAL devices, buffers, and EPROMs. The final result is low 
power consumption, low board space, and very reasonable cost. 
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Figure 8-8 Simple Instruction Access Followed by Data Access 
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INTERLEAVED VDRAM 

VIDEO DRAM ADVANTAGES 

Video Dynamic RAM (VDRAM) offers an excellent way to reduce the complexity 
and component count of the memory system. A VDRAM has a dual-ported internal 
memory array. The first port allows read and write random access to the memory array 
just as a standard DRAM does. The second port is a serial shift register which is loaded 
from (and in some cases may be written to) one row of the memory array in a single 
access cycle. Once the serial shift register is loaded, it may be shifted independently of 
the random-access port. In effect, a VDRAM provides independent and concurrent 
access to a common memory array via these two ports. A single address bus provides 
access to either port. 

This memory architecture greatly simplifies the interface to the Am29000 processor. The 
shifter port can be connected to the instruction bus to provide sequential instruction 
streams. The random-access port can be connected to the data bus to provide read and 
write random access to data structures. Both ports are addressed via the Am29000 
processor address bus. 

This conveniently places both the instruction and data space in a common memory, thus 
significantly reducing the complexity of control logic and eliminating the need for many 
data buffers. Shared instruction and data space in a common memory also results in 
more efficient use of total memory space. This often results in a significant reduction 
in required memory size, and therefore a reduced component count. Due to its ability to 
concurrently access instructions and data, the VDRAM memory still provides 
performance near that of the SCDRAM design from Chapter 6. 

The drawbacks to VDRAM are: a slower initial access time, lower density of currently 
available memories, and higher per-memory cost, although much of the higher cost 
is offset by the lower cost of control and buffer logic in the system. Some second gen­
eration 1-Mbit VDRAMs remove the density limitation as compared with first generation 
1-Mbit DRAMs, although the initial cost is higher compared to the same density DRAMs. 

Currently available VDRAMs are also unable to provide serial shifter ports fast enough 
to support a 40-ns instruction access time. To provide single-cycle burst instruction 
access speed, the current VDRAMs must be dual-bank interleaved. Again, future 
VDRAM may have the speed needed to eliminate dual-banking requirements. Where 
lower cost and simplicity is more important than a 20% clock-rate reduction, the system 
clock can be slowed to 20 MHz so a single bank of VDRAM can keep up with the de­
mands of the instruction bus. 

The Am29000 processor provides unique features allowing the use of slower memories, 
such as the VDRAM, without the severe performance reductions plaguing other high­
performance microprocessors when using similar memory systems. As a result, VDRAM 
memories can significantly reduce system complexity and provide a fairly dense system 
memory, while also improving system performance-to-price ratio. The cost of the mem­
ory system drops while performance is reduced only slightly. 
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MEMORY FEATURES 

The memory design described in this chapter has a single block of memory for instruc­
tion and data as shown in Figure 9-1. Within the memory block, there are two banks of 
memory, interleaved as odd and even words. For a general description of interleaved 
memory architecture, see Chapters 2 and 3. 

Each bank is 64K words deep, with each word 32 bits wide. The total for the whole 
memory block is then 128K words (S12K bytes). It is possible to use 120 ns access-time 
VDRAMs for both memory banks. 

A non-sequential instruction access requires one cycle for address decode plus five 
additional cycles for the first word accessed. The burst access timing is similar to that 
used in previous chapters; each burst access is two cycles long. Overlapping the mem­
ory bank access time allows this longer access time to be hidden from the system 
viewpoint, except on the first word of a non-sequential instruction access. The end result 
is a memory providing six-cycle access time for the first word of a non-sequential in­
struction access and single-cycle access for subsequent words in a burst transfer. A 
data read access requires one cycle for address decode plus four additional cycles to 
complete the access. 

A data write access requires one cycle for address decode plus two or three cycles 
(depending on the memory used) to take data from the bus. The write operation 

Figure 9-1 Am29000 Processor with Interleaved VDRAM Memory 
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continues internal to the memory for one or two additional cycles, but the data bus is 
released after data is taken from the bus. 

No burst accesses are supported for data. So all data read accesses are five cycles 
long and all write accesses are three or four cycles long, that is assuming the memory 
has internally completed a write operation and/or RAS precharge before the next access 
begins. If write completion time or RAS precharge time has not been satisfied, a subse­
quent data access can require up to eight cycles to complete. This is based on the worst 
case, a data read immediately following a data write operation. 

The VDRAM random-access read/write port is connected to the Am29000 processor 
data bus. The serial-access shifter port is connected to the Am29000 processor instruc­
tion bus. 

INTERFACE LOGIC BLOCK DIAGRAM 

A block diagram of the interleaved VDRAM memory is shown in Figure 9-2. The various 
circuit blocks are described below. 

Interleaved VDRAM Memory Block Diagram 
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The Memory 

The memories are 64K x 4 bit VDRAMs supplied by either Fujitsu (MBS1461-12) or NEC 
(PD41264-12). These memories have common data-in and data-out lines. Their access 
speed is 120 ns. Eight devices are required in each bank to form the 32-bit wide instruc­
tion word for the Am29000 processor. These are shown as devices U14 through U29. 

VDRAM is used in this design to illustrate the savings in complexity, component count, 
and cost that the VDRAM architecture can provide. These savings come largely from 
the fact that the instruction and data words can reside in a common memory array still 
allowing concurrent dual-port access. Using one memory array instead of split instruc­
tion and data memories eliminates one entire set of memory control logic and data 
buffers. Also, the number of remaining control-logic and data-buffer circuits is reduced, 
since external buffers are no longer needed to support both data and instruction ports 
into the instruction memory. 

Further, the VDRAM structure allows the boundary between instruction and data space 
to be flexible and dynamic, thereby providing for more efficient use of memory than a 
system that splits memory. This, in turn, may lead to reduced memory requirements in 
general. 

Data Bus Connection 

The memory random access data lID ports of the two banks are direE!!Lconnected to 
the Am29000 processor data bus lines. The CAS signals CASO and CAS1 control the 
three-state outputs of the appropriate banks, so no bus contention can occur. 

If a system needs higher driving current, then buffers have to be added between the 
data outputs of the memory and the Am29000 processor data bus. This addition would 
result in another eight buffers for two banks. 

Instruction Bus Multiplexers 

In this design, the multiplexing and isolating of the DRAM outputs from the Instruction 
Bus is done with eight F157 multiplexers, but could also be done with eight buffers (like 
the F245). The only reason for choosing the multiplexer solution is that it solves an 
implementation problem for the PAL device U9. 

The memory serial-data outputs are connected to the instruction bus lines via the 
above-mentioned multiplexers. These multiplexers serve to isolate the data outputs of 
the memory block from outputs of other memory blocks that may also drive the instruc­
tion bus. Also, the multiplexers serve to isolate the even and odd banks from each other, 
so simultaneous data accesses can occur in each bank independently. These multi­
plexers are shown as devices U30 through U37 in Figure 9-2. 

Address Multiplexers 

The upper and lower eight bits of memory address must be multiplexed into the address 
inputs of the memories. Discrete multiplexers are used to perform this function. These 
devices are shown as US through US. 

Note that in this design, the address is taken directly from the bus and through the 
multiplexers to the memories. No latching or registering of the address is done. This 
approach reduces the component count and complexity of the design, illustrating a 
lower-cost memory design. Doing this requires that the memory control logic force the 
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Am29000 processor to hold the address stable on the bus until after the RAS and 
Column Address Strobes CAS have gone active. This is done by delaying the 
assertion of IBACK or PEN during instruction or data accesses, respectively. 

AMD 

This approach reduces system performance somewhat, at least when compared with a 
split instruction and data memory system, or a system with multiple blocks of VDRAM 
in which one block could be addressed for an instruction fetch while another block is 
addressed for a data access. This is because the processor must, at times, hold an 
address on the bus when it might otherwise have been able to begin another access on 
an alternate memory block, assuming a memory that latches the address. 

But in a system having a single block of VDRAM, there is no benefit to latching the 
address from the bus. This is because the memory cannot be ready to begin another 
access until the access in progress is completed, and the memory has completed the 
precharge cycles that must occur between all non-sequential accesses. 

A word of warning: Do not use inverting buffers or multiplexers on VDRAM address 
lines. Inverted random access I/O (DQ) port addressing would conflict with the sequen­
tially incremented addressing required by the design of the serial port. 

Bank Selector 

Since a VDRAM uses a shift mechanism to provide the serial output of instruction code, 
there is no need for an address counter. The initial address for an instruction burst 
request determines the starting location in the memory row to be shifted out. All subse­
quent instruction words are read by providing a shift clock to the VDRAM. Also, because 
the VDRAM shifter row is 256 words, the Am29000 processor always provides a new 
address at the right time when a row boundary is crossed. In addition, no address 
counter is required for data accesses, since no burst data accesses are supported in 
this memory design . 

. This design does, however, use bank interleaving to overcome the access delay of the 
VDRAM serial shifter port, so there must be a way to keep track of which bank should 
be output-enabled onto the instruction bus during any given cycle. Also, a way is 
needed to control the shift clock to each bank so the instruction accesses are over­
lapped properly. 

This tracking function is provided by registering address line A02 at the beginning of an 
access and then toggling the registered bit for each completed instruction access. This 
registered output is called Q02E. 

Registered Control Signals 

As noted earlier, the timing of the IBREQ control signal requires it be registered by a 
low-setup-time register; a F175 register is used (U4, shown in Figure 9-2). 

Interface Control Logic 

This logic must generate the memory response signals, manage the loading of memory 
addresses, generate RAS and CAS signals, control the data buffer output enables, 
and perform memory refresh. The logic functions needed for this require eight PAL 
devices: two PALCE16V8-D, one AmPAL22V10-25, one PAL20L8-B, one PAL 16R4-D, 
one PAL20L8-D, one PAL20R8-D, and one PAL20R4-D. 
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Referring to Figure 9-2, device U1, a PAL 16V8-B, serves to increment the memory 
address for the even bank when the initial address of an instruction access is odd. This 
causes the even bank to access the next even-bank word following the initial odd word. 

Device U2, a PAL20L8-B, performs address decode for instruction and data accesses. 
Its outputs indicate when this memory block has been addressed and an access is to 
begin. 

Device U3, an AmPAL22V1 0-25, acts as a refresh-interval counter and refresh-request 
logic. 

Devices U9 through U13, one PAL 16R4-D, one PAL20L8-D, one PAL20R8-D, one 
PAL20R4-D, and one PALCE16V8-D, form a state machine controlling the RAS, CAS, 
shift clock, transfer cycle enable, bank selector, write enables, and memory-response 
signals. 

Response Signal Gating 

The memory-response signals from all system bus devices are logically ORed together 
by a PAL device before being returned to the Am29000 processor. The gates in this 
PAL device are not included in the component count of this memory design since they 
are shared by all the bus devices in the system, and as such, are part of the overhead 
needed in any Am29000 processor system. 

Byte Write Capability 

The interface logic supports the byte-write capability of the Am29000 processor. It uses 
the signals OPT1, OPTO, A 1, and AO to generate the write enable signals WEO-WE3. 
This design supports only big-endian byte ordering. 

MEMORY INTERFACE LOGIC EQUATIONS 

State Machine 

The control logic for this memory can be thought of as a Mealy-type state machine in 
which the outputs are a function of the inputs and the present state of the machine. This 
structure is required because some of the output signals must be based on inputs which 
are not valid until the same cycle in which the outputs are required to take control of the 
memory. As shown in Figure 9-3, this state machine can be described as having 18 
states. (Note: A timing diagram is provided at the end of this chapter.) 

It is important to note that in this design, the instruction burst is never preempted by the 
slave. This is because VDRAMs are used; no contention between instruction bursts and 
data accesses can occur. Also, the length of the shifters is a minimum of 256 words. 
After 256 words, the Am29000 processor automatically preempts the burst by itself so it 
does not have to be preempted by the slave. 

Therefore, in this design, no logic is needed to preempt an instruction burst. 

IDLE is the default state of the interface state machine. It is characterized by the lack of 
any instruction access, data access, or refresh activity in progress. This state serves as 
a way of identifying when the memory is not being accessed and could be placed into a 
low-power mode. This state also serves as a precharge cycle for the memory when a 
transition is made between instruction, data, and refresh sequences. 
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A transition to either the IRAS or ORAS state occurs when an address selecting this 
memory block is placed on the address bus. These transitions are inhibited if the BINV 
signal is active. A transition to the R01 state occurs when a refresh request is active. 
Refresh takes priority over any pending instruction or data-access request. 

There are five "Virtual States" shown in Figure 9-3: 101 through 104 and IACCESS. 
These states are needed because the serial data (SO) port of the VORAM operates 
independently of the random access liD (00) port after a row transfer cycle is com­
pleted. The states help illustrate what might be called the "split personality" of the 
state machine. Once a transfer cycle begins, there are in effect two active states in 

Figure 9·3 VDRAM Memory State Diagram 
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this state machine. One state tracks the activity of the serial port control signals, and 
the other tracks the activity of signals associated with the random access I/O port. 

The active states can be thought of as two tokens, labeled SO and DO, being moved 
around a game board. The DO token is never allowed to follow the dotted line to the 
virtual states. The SO token is always in one of the virtual states or the IDLE state; it 
never enters any of the other states. When the SO token enters the IDLE state, it cannot 
leave until the DO token is also in IDLE and the ISTART condition is true. 

When both tokens are in IDLE and ISTART is true, the SO token moves to the 101 state 
and the DO token moves to the IRAS state. This would represent the beginnin~ row 
transfer to the serial-shift port. The DO token then tracks the progress of RAS, CAS, and 
address signals applied to the VDRAM. When the transfer sequence is finished, the DO 
token goes through the precharge states and returns to IDLE. The SO token proceeds 
through the 10 states, counting off the delay needed until the first instruction is ready at 
the output of the SO port. In the 102 state, IBACK is made active to release the address 
bus. In 103 and 104, the shift clock and bank select signals begin operation to allow the 
access of the first instruction word. In IACCESS, IRDY is allowed to go active. During 
subsequent cycles of an instruction burst access, the active state remains IACCESS. 

While the active state for instruction accessing is IACCESS, the DO token is free to 
move through data-access states or refresh states completely independent of the in­
struction access in progress. When an instruction burst ends, the SO token returns to 
IDLE and must wait until the DO token completes an access or refresh sequence 
followed by precharge before a new transfer cycle may begin. 

The IRAS state occurs during the first cycle of a row transfer to the SO port following a 
n~w instruction address being presented on the address bus. During this state, the 
instruction output multiplexer is enabled, Ready response lines are held inactive, and 
the RAS lines go active. RAS is used as the input to a delay line whose output will switch 
the address mux to the column address after the row address hold time is satisfied. The 
transition to the ICAS state is unconditional. 

During the ICAS state, CAS goes active to start the transfer cycle. Since the RAS mini­
mum pulse width is 120 ns, and the minimum CAS pulse width is 60 ns, a WAIT state 
follows the ICAS state before the unconditional transition to the first precharge state. 

During the precharge states, RAS goes inactive. The precharge period for the memory 
used is 100 ns, so a second and third precharge cycle is done during the PC2 and IDLE 
states, which unconditionally follow the PC1 cycle. 

During a DO port read sequence, the DRAS state generates RAS and the address-mux 
select signals. The DCAS state makes CAS active. Since the access time from CAS is 
60 ns, the total of CAS-clock-to-output delay, plus access time, plus data-buffer delays, 
plus processor set-up time, is in excess of 95 ns, which will reguire a WAIT cycle, fol­
lowed finally by the DACCESS cycle. During DACCESS, the DRDY signal is made 
active. 

The DO port write access is different only in that the DRDY signal may be made active 
during DCAS, since the data from the bus is written into the memory by the falling 
edge of the CAS signal. Doing this allows the processor to begin a new address cycle 
on the address bus during the WAIT cycle. This may help improve system performance 
if the new address is directed at a different memory block immediately beginning a new 
access. The WAIT cycle is used to fulfill the minimum CAS active time requirement. The 
DACCESS simplifies the design by allowing the logic controlling the state transitions to 
be the same for both read and write operations. 

Interleaved VDRAM 
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Finally, there is the refresh sequence. Once the IDLE state is reached and a refresh is 
pending, the refresh sequence starts as the highest priority task of the memory. 
In fact, during the IDLE cycle, CAS will go active to set up a CAS-before-RAS refresh 
cycle. This type of refresh cycle makes use of the VDRAM internal refresh counters to 
supply the refresh address. During RQ1, RAS is made active as in IRAS and DRAS 
cycles. The RQ2 and RQ3 cycles are used to supply two additional wait states to make 
up the three cycles needed to satisfy the minimum RAS active time of 120 ns. 

Logic Details-Signal By Signal 

The logic equations for the memory interface signals are described below. The signals 
as implemented in the final PAL device outputs are often active Low, as required by the 
actual circuit design. The signals are described in active High terms so the design is a 
little easier to follow. The PAL device definition files are shown in Figures 9-4 through 
9-11; following the figures are descriptions of how the equations were derived. 

NOTE: All PAL device equations use the following conventions: 

• Where a PAL device equation uses a colon followed by an equals sign (:=), the 
equation signals are registered PAL device outputs. 

• Where a PAL device equation uses only an equals sign (=), the equation signals are 
combinatorial PAL device outputs. 

• The Device Pin list is shown near the top of each figure as two lines of signal names. 
The names occur in pin order, numbered from left to right 1 through 20. The polarity 
of each name indicates the actual input or output signal polarity. Signals within the 
equations are shown as active High (e.g., where signal names in the pin list are 
ABC, the equation is C = A. 8; when the inputs are A = Low, B = High, then the C 
output will be Low). 

Figure 9·4 AmPAL22V10·25 VRAM Refresh Counter/Request Generator 
Device U3 

CLK RFACK RQ1 RQ2 RQ3 NC6 NC7 NC8 NC9 NC10 NC11 GND 
NC13 RFRQO RFQ2 RFQ3 RFQ4 RFQS RFQ6 RFQ7 RFQ8 RFQ10 RFQ9 vce 

RFQ2 := RFQ2 

RFQ3 := RFQ2. RFQ3 
+ RFQ2.RFQ3 

RFQ4 := RFQ2. RFQ3 • RFQ4 
+ RFQ2.RFQ4 
+ RFQ3.RFQ4 

RFQS := RFQ2. RFQ3. RFQ4. RFQS 
+ RFQ2.RFQS 
+ RFQ3·RFQS 
+ RFQ4.RFQS 

RFQ6 := RFQ2.RFQ3.RFQ4.RFQS.RFQ6 
+ RFQ2.RFQ6 
+ RFQ3.RFQ6 
+ RFQ4.RFQ6 
+ RFQS.RFQ6 

10623C-076 

Interleaved VDRAM 9-9 



~AMD 

Figure 9·4 AmPAL22V10·25 VRAM Refresh Counter/Request Generator 
Device U3 (continued) 

RFQ7:= RFQ2-RFQ3-RFQ4-RFQS-RFQS-RFQ7 
+ RFQ2-RFQ7 
+ RFQ3-RFQ7 
+ RFQ4-RFQ7 
+ RFQS-RFQ7 
+ RFQS-RFQ7 

RFQB:= RFQ2-RFQ3-RFQ4-RFQS-RFQS-RFQ7-RFQB 
+ RFQ2-RFQB 
+ RFQ3-RFQB 
+ RFQ4-RFQB 
+ RFQS-RFQB 
+ RFQS-RFQB 
+ RFQ7-RFQB 

RFQ9 := RFQ2-RFQ3-RFQ4-RFQS-RFQS-RFQ7-RFQB-RFQ9 
+ RFQ2-RFQ9 
+ RFQ3-RFQ9 
+ RFQ4-RFQ9 
+ RFQS-RFQ9 
+ RFQS-RFQ9 
+ RFQ7-RFQ9 
+ RFQB-RFQ9 

RFQ10:= RFQ2-RFQ3-RFQ4-RFQS-RFQS-RFQ7-RFQB-RFQ9-RFQ10 
+ RFQ2- RFQ10 
+ RFQ3 - RFQ1 0 
+ RFQ4 - RFQ1 0 
+ RFQS - RFQ1 0 
+ RFQS - RFQ1 0 
+ RFQ7 - RFQ1 0 
+ RFQ8 - RFQ1 0 
+ RFQ9 - RFQ1 0 

-- -- ----SYNCHRONOUS PRESET = RFQ2-RFQ3-RFQ4-RFQS-RFQS-RFQ7-RFQ8 
- RFQ9 - RFQ1 0 

RFRQO := RFRQO - (RFACK - RQ1) 

Figure 9·5 PAL20L8-B VRAM State Decoder-Interleaved 
Device U2 

9-10 

IREQ DREQTO IREQT A31 A30 A29 A2B A27 A2S A2S A24 GND 
DREQ DREQT1 ISTART RFRQO RFACK LD IQ1 DQ1 PC1 DSTART PIN1S9 VCC 

ISTART = IQ1-DQ1-RFACK-PC1-RFRQO-IME 

DSTART = IQ1-DQ1-RFACK-PC1-RFRQO-DME 

NOTE: In the above equations, IME and DME are used only for clarity. The actual input 
terms should be substituted when compiling this device. 

IME = IREQ -IREQT - A31 - A30 - A29 - A2B - A27 - A2S - A2S - A24 
- PIN1S9 

DME = DREQ - DREQTO - DREQT1 - A31 - A30 - A29 - A2B - A27 - A2S - A2S 
- A24 - PIN1S9 

LD = IREQ -IQ1 10623C-077 
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Figure 9-6 PALCE16V8-D VRAM Instruction State Generator-lnterleaved 
Device U9 

ClK IREQ ISTART AX2 lD NC6 IBREQ.D BINV NC9 GND 
DE IDE CNT IQ1 IQ2 IQ3 IQ4 IRDY Q02E VCC 

IQ1 := BINV- 'jQf -ISTART 
+ IQ1 - (IQ3 -IQ4) 

IQ2 := IQ1 - (IQ3 -IQ4) 

IQ3 := IQ2 -IQ4 

IQ4:= IQ3 
+ IQ4 - IBREQ.D 

Q02E := lD - AX2 
+ lD-CNT-IQ3-IQ4-Q02E 
+ lD-IQ3-Q02E 
+ lD-IQ4-Q02E 
+ lD-CNT-Q02E 

IRDY = IQ3 -IQ4 
+ IQ1 -IBREQ.D 

IOE = IQ3 -IQ4 
+ 'jQf -IBREQ.D 

Figure 9-7 PAL16R4-D VRAM Data State Generator-Interleaved 
Device U10 

ClK DSTART AX2 WEO NEC. NC6 NC7 BINV NC9 GND 
DE DDEO DOE1 DQ1 DQ2 DQ3 DQ4 DRDY PEN VCC 

DQ1 := BINV- DQ1 - DSTART 
+ DQ1-DQ4 

DQ2 := DQ1 - DQ4 

DQ3 := DQ2 - DQ4 

DQ4 := DQ3 - DQ4 

DRDY = WE-DQ4 
+ WE-DQ2-DQ3-NEC 
+ WE-DQ3-DQ4-NEC 

PEN = DQ2 - DQ3 

Interleaved VDRAM 
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Figure 9·8 PAL20LB-D VRAM Transfer Generator-Interleaved 
Device U13 

9-12 

002E TEXIT1 TEXIT2 001 002 IREO WE1 NEC RESET RW NC11 GNO 
SYSCLK NC14 SASO TAO WE 101 104 NC20 TR1 SAS1 NC23 vce 

SASO = RESET - SYSCLK 
+ RESET - 101 - 104 
+ RESET-104-002E 
+ RESET-m- 002E 

SAS1 = RESET - SYSCLK 
+ RESET -101 -104 
+ RESET-104-002E 
+ RESET - 101 - 002E 

TRO = 001 -IREO 
+ 001-TRO-NEC-TEXIT1 
+ 001-TRO-NEC-TEXIT2 
+ 002-WE 

TR1 = 001 -IREO 
+ 001-TR1-NEC-TEXIT1 
+ 001-TR1-NEC-TEXIT2 
+ 002-WE 

WE = 101-001-002-RW 
+ 101 -001- 002-WE 

Interleaved VDRAM 
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Figure 9·9 PAL20R8·D VRAM RAS-CAS Generator-Interleaved 
Device U11 

AMD ~ 

elK ISTART DSTART IQ1 DQ1 103 DQ3 RQ3 BINV AX2 RFRQO GND 
OE RFACK RASO RAS1 RAS PC1 PC2 CASO CAS1 NC22 NC23 VCC 

RASO := BINV-RASO-ISTART 
+ BINV-RASO-OSTART 
+ BINV-RASO-PC1-RFACK 
+ RASO -IQ1 - IQ3 
+ RASO-OQ1-0Q3 
+ RASO-RFACK-RQ3 

RAS1 := BINV- RAS1 -ISTART 
+ BINV-RAS1-0START 
+ BINV-RAS1~PC1-RFACK 
+ RAS1 -IQ1 - IQ3 
+ RAS1-0Q1-0Q3 
+ RAS1-RFACK-RQ3 

RAS := BINV- RAS-ISTART 
+ BINV-RAS-OSTART 
+ BINV-RAS-PC1-RFACK 
+ RAS-IQ1-IQ3 
+ RAS-OQ1-0Q3 
+ RAS-RFACK-RQ3 

PC1 := PC1 -IQ3 
+ PC1-0Q3 
+ PC1 -RQ3 
+ PC1-PC2 

·PC2 := PC1 

CASO = RAS -IQ1 
+ RAS- OQ1-AX2 
+ RAS-IQ1-0Q1-RFRQO 

CAS1 = RAS -IQ1 
+ RAS-OQ1-AX2 
+ RAS-IQ1-0Q1-RFRQO 

Interleaved VDRAM 
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Figure 9·10 PAL20R4·D Byte Write Enable Generator-Interleaved 
Device U12 

ClK PC1 iQ1 OQ1 OQ2 RAS RFRQO RW OPT1 OPTO A 1 GNO 
OE AO WEO WE1 RFACK RQ1 RQ2 RQ3 WE2 WE3 NC23 VCC 

WEO := IQ1 - OQ1 - OQ2 - RW - OPT1 - OPTO 
+ TQf -OQ1-0Q2-RW-OPT1-0PTO-A1 
+ TQf - OQ1- OQ2- RW-OPT1 -OPTO-A1 -AO 
+ IQ1-0Q1-0Q2-WEO 

WE1 := IQ1 - OQ1 - OQ2 - RW - OPT1 - OPTO 
+ IQ1-0Q1-0Q2-RW-OPT1-0PTO-A1 
+ TQf -OQ1-0Q2-RW-OPT1-0PTO-A1-AO 
+ TQf -OQ1-0Q2-WE1 

WE2 := IQ1 - OQ1 - OQ2 - RW - OPT1 - OPTO 
+ IQ1-0Q1-0Q2-RW-OPT1-0PTO-A1 
+ IQ1-0Q1-0Q2-RW-OPT1-0PTO-A1-AO 
+ IQ1-0Q1-0Q2-WE2 

WE3 := IQ1 - OQ1 - OQ2 - RW - OPT1 - OPTO 
+ IQ1-0Q1-0Q2-RW-OPT1-0PTO-A1 
+ IQ1-0Q1-0Q2-RW-OPT1-0PTO-A1-AO 
+ IQ1-0Q1-0Q2-WE3 

RFACK := TQf - OQ1 - RFRQO 

+ RFACK - (RFRQO - RQ3) 

RQ1 := RQ1 - PC1 - RFACK 
+ RQ1-RQ3 

RQ2 := RQ1 - RQ3 

RQ3 := RQ2 - RQ3 10623C·082 
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Figure 9·11 PALCE16V8·D VRAM Address Incrementer 
Device U1 

DQ1 A02 A03 A04 AOS A06 A07 AOa A09 GND 
NC11 AX9 AXa AX7 AX6 AXS AX4 AX2 AX3 VCC 

AX2 = DQ1 - A02 
+ DQ1-AX2 

AX3 = A02 - A03 
+ A02-A03 

AX4 = A02 - A04 
+ A02-A03-A04 
+ A02-A03-A04 

AXS = A02 - AOS 
+ A02-A03-A04-AOS 
+ A02-A03-AOS 
+ A02-A04-AOS 

AX6 = A02 - A06 
+ A02-A03-A04-AOS-A06 
+ A02-A03-A06 
+ A02-A04-A06 
+ A02-AOS-A06 

AX? = A02 - A07 
+ A02 - A03 - A04 - AOS - A06 - A07 
+ A02-A03-A07 
+ A02-A04-A07 
+ A02-AOS-A07 
+ A02-A06-A07 

AXa = A02 - AOa 
+ A02 - A03 - A04 - AOS - A06 - A07 - AOa 
+ A02-A03-AOa 
+ A02-A04-AOa 
+ A02-AOS-AOa 
+ A02-AOS-A08 
+ A02-A07 -AOa 

AX9 = A02 - A09 
+ A02 - A03 - A04 - AOS - A06 - A07 - AOa - A09 
+ A02-A03-A09 
+ A02.A04.A09 
+ A02-AOS-A09 
+ A02-A06-A09 
+ A02-A07 -A09 
+ A02-AOa-A09 

Interleaved VDRAM 
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RFQ (Refresh Request) 

Dynamic memories need to be completely refreshed every 4 fls, which translates into at 
least one row refreshed every 15.6 flS on average. To keep track of this time, a counter 
is used. Once a refresh interval has passed, a latch is used to remember that a refresh 
is requested while the counter continues to count the next interval. Once the refresh has 
been performed, the latch is cleared. 

The counter and refresh request latch is implemented in an AmPAL22V10-25. Nine of 
the outputs form the counter, which is incremented by the system clock at 25 MHz. This 
gives up to 512 x 40 ns = 20.48 fls refresh periods. The synchronous preset term for all 
the registers is programmed to go active on a count value of 389, which will produce a 
refresh interval of 390 cycles x 40 ns = 15.6 fls. The one remaining output is used to 
implement the refresh request latch. That latch function (registered output) is also set by 
the synchronous preset term. 

The equations for the counter are shown in Figure 9-4. Below are the preset and refresh 
latch equations: 

SYNCHRONOUS PRESET RFQ2.RFQ3.RFQ4.RFQ5.RFQ6.RFQ7.RFQ8 
• RFQ9. RFQ10 

RFRQO . - RFRQO • (RFACK • RQ1) 

Refresh Sequence Equations 

A refresh of the memory requires multiple clocks so the minimum RAS active time of 
120 ns can be satisfied. To manage this, the following equations are used. 

RFACK 

The Refresh Acknowledge (RFACK) signal is used to begin a refresh sequence and to 
clear the pending refresh request. The RFACK signal goes active when the state ma­
chine (DQ token) re-enters the IDLE state controlled by iQT and DQ1. RFACK is held 
active until the refresh request is cleared, indicated by RFRQO. RQ3. 

RFACK := DQ1 • iQT • RFRQO 

+ RFACK. (RFREQO. RQ3) 

RQ1, RQ2, RQ3 

The three cycles needed for a refresh are tracked by RQ1, RQ2, and RQ3. RQ1 
will not go active until the cycle following the IDLE state. This is controlled by 
RQ1 • PC1 • RFACK, which is only true during IDLE. RQ1 is held active for all three 
refresh cycles to provide a single signal to identify when a refresh is in progress. RQ2 
and RQ3 simply follow RQ1 with RQ3, signaling the last cycle of the refresh sequence. 

RQ1 := RQ1 • PC1 • RFACK 
+ RQ1.RQ3 

RQ2 := RQ1 • RQ3 

RQ3 := RQ2. RQ3 

Interleaved VDRAM 
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IME 

The use of the Instruction for ME (IME) signal is based on the assumption that other 
blocks of instruction or data memory may be added later and there may be valid ad­
dresses in address spaces other than instruction/data space. 

This means this memory will only respond with IBACK or DRDY active when this block 
has been selected by valid addresses in the instruction/data space. This requires at 
least some of the more significant address lines above the address range of this 
memory block be monitored to determine when this memory block is addressed. 
Also, it means the Instruction Request Type (IREOT), Data Request Type (DREOT 0, 
DREOT1), and Pin 169 lines must be monitored to determine that an address is valid 
and lies in the instruction/data space. 

IME is the indication that the address of this memory block is present on the upper 
address lines, an instruction request is active, Pin 169 is inactive (test hardware has not 
taken control), and instruction/data address space is indicated. In other words, this 
memory block is receiving a valid instruction access reguest. This example design will 
assume the address of this memory block is equal to A31 • A30 • A29. A28 • A27 • A26 
• A25 • A24. The equation for this signal is: 

IME = IREO.IREOT.A31.A30.A29.A28.A27.A26.A25.A24.Pin169 

Note that IME is not directly implemented as a PAL device output in this design. The 
terms are used in the generation of the 1ST ART term. 

DME 

The Data for ME (DME) signal is the indication that the address of this memory block is 
present on the upper address lines, a data request is active, Pin 169 is inactive, and 
instruction/data address space is indicated. In other words, this memory block is receiv­
ing a valid data access reguest. This exam~esign will assume the address of this 
memory block is equal to A31 • A30 • A29. A28 • A27 • A26 • A25. A24. Note that for this 
design, both the instruction and data blocks reside in the same address space. This is 
possible because of the common memory array of the VDRAM that is accessible to 
either the instruction serial port or the data I/O port. 

The equation for this signal is: 

DME = DREO. DREOTO. DREOT1 • A31 • A30. A29. A28. A27. A26. A25 
• A24. Pin169 

As with IME, this term is not directly implemented. 

ISTART 

The Instruction Start (ISTART) signal causes the transition from IDLE to IRAS and 101 
states. It is valid only in the IDLE state with no refresh sequence starting, identified by 
not being in any other state via 101 • 001 • RFACK. PC1 • RFROO. So when in the IDLE 
state and IME is active, ISTART is active. 

1ST ART = 101. 001 • RFACK. PC1 • RFROO. IME 

DSTART 

The Data Start (DSTART) signal is the same as ISTART except DME is the qualifier. 

Interleaved VDRAM 9-17 
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DSTART = IQ1-DQ1-RFACK-PC1-RFRQO-DME 

IBACK 

The Instruction Burst Acknowledge (IBACK) signal is applied to the Am29000 processor 
and is, in effect, the indication that the interface state machine is in an active or sus­
pended instruction access. The equation is: 

IBACK = IQ2 
+ IREQ -IBACK 

The IBACK active state is entered during the IQ2 state. IBACK is delayed untillQ2 in 
order to hold the instruction address active on the bus until the CAS signal has gone 
active, thus eliminating the need for address latches or registers. 

IBACK remains active until a new instruction access begins. The IBACK signal is combi­
natorial so it will go inactive in the same cycle IREQ goes active. This is required to hold 
the address on the bus until a new row transfer sequence can begin. The address must 
be held because there are no address latches or registers in this design to take the 
address from the bus. Address latches or registers would be required if IBACK were left 
active throughout the IREQ cycle. 

This places a timing constraint on the IBACK response signal path that is different from 
earlier memory designs. IREQ is a signal that will not be stable until 14 ns into a cycle. 
The D-speed PAL device logic implementing the IBACK logic has a propagation delay of 
10 ns. The Am29000 processor has a response signal setup time of 12 ns. These de­
lays total 36 ns, which means the logic OR gate used to combine all IBACK response 
signals in the system must have a worst-case propagation delay of 4 ns. That is not 
easy to achieve when several IBACK response lines in the system must be logically 
ORed. 

A solution to this is to move a coPy of the VDRAM-block IBACK logic down into the PAL 
device used to implement the IBACK response signal logical OR gate. That will elimi­
nate one level of PAL device delay. The equation for the response OR-gate function 
would then become: 

IBACK = IBACKO - IBREQ.D 
+ IBACK1 -IBREQ.D 
+ IBACK2 -IBREQ.D 
+ IBACK3 -IBREQ.D 
+ IBACK4 -IBREQ.D 
+ IBACKS-IBREQ.D 
+ IQ2 -IBREQ.D 
+ IREQ -IBACK 

where the numbered IBACK inputs are the IBACK signals from other bus devices and 
the IQ2 + IREQ - IBACK inputs are from the VDRAM control logic. 

The IBACK logic defined earlier remains to provide a version of IBACK local to the 
VDRAM control logic. That version of the IBACK is not as time critical because it will 
simply be registered. Only IBACK.D is needed by other parts of the VDRAM control 
logic. 

Interleaved VDRAM 
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IBACK.D 

The IBACK Delayed (IBACK.D) signal is simply a one-cycle delayed version of IBACK. 
The logic for IBACK is implemented directly in the IBACK.D equation. 

IBACK.D := IQ2 
+ IREQ.BACK 

It is used in the generation of IRDY, IOEO, IOE1, and CNT. 

Instruction Initial Access States 

Signals IQ1, IQ2, IQ3, and IQ4 are used to control the state transitions from IQ1 to 
IACCESS and IRAS through WAIT during the first instruction access. The IQ1 signal 
goes active during the IQ1 and IRAS states, and remains active for four additional 
cycles. IQ1 will go active only when there is a valid ISTART. 

BINV inhibits the transition to IQ1. BINV is used in this equation instead of in the ISTART 
equation because it only needs a 1 O-ns setup time for the PAL device. If it 
were used in the ISTART PAL device, an additional 10 ns combinatorial delay would 
be created, so the BINV signal could not be used correctly anymore. 

The IQ2, IQ3, and IQ4 signals are used to count the five cycles during which IQ1 is 
active. IQ3 is inactive during the fifth cycle after IQ1 goes active. This is used as a way 
to identify the fifth cycle as the condition of IQ3. IQ4. This eliminates the need for an 
additional signal to directly indicate the fifth cycle. 

IQ1 := BINV. TaT.ISTART 

+ IQ1. (IQ3 .IQ4) 

IQ2 := IQ1 • (IQ3 .IQ4) 

IQ3 := IQ2. IQ4 

IQ4:= IQ3 

Data Initial Access States 

These equations are similar in function to the IQ1-IQ4 signals. They control state transi­
tions during data accesses. DQ1 goes active during the DQ1 state as a result of a valid 
DSTART signal during the IDLE state. DQ2 through DQ4 simply count off the four DQ 
states. The reason for using BINV here is the same as for the instruction side. 

DQ1 := BINV.DQ1.DSTART 
+ DQ1.DQ4 

DQ2 := DQ1 • DQ4 

DQ3 := DQ2. DQ4 

DQ4 := DQ3. DQ4 

Precharge States 

At the end of any DQ port access, the RAS lines must be made inactive to precharge 
internal memory buses before another access with a different row address may begin. 
Three cycles are needed, indicated by the signals PC1 and PC2. The PC1 signal is 
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active during the PC1 state and the PC2 state. The PC2 signal is active during the PC2 
state and the first IDLE state following the PC2 state. PC1 goes active following the third 
cycle of any instruction, data, or refresh seguence. In other words, once the minimum 
RAS pulse width requirement is satisfied, RAS is made inactive to begin precharging for 
the next access. In the case of a data read where the output data must be held valid 
after RAS goes inactive, the CAS signal is kept active to hold the data. 

LD 

PC1 := PC1 .103 
+ PC1.D03 
+ PC1.R03 
+ PC1.PC2 

PC2 := PC1 

The Load (LD) signal enables address bit A02 to be loaded into the bank selection 
register (002E) on the next rising edge of SYSCLK. The equation is: 

LD = IREO. ill 
In this design, bank selection is only meaningful for an instruction access because no 
burst data accesses are supported. LD is thus active as a result of IREO except during 
the access time of the first instruction word. This limitation turns off LD after an instruc­
tion access begins so LD will not interfere with the bank selection bit toggling activity 
that must go on during the initial access. 

The LD signal is combinatorial so it can be active during the first cycle of a new instruc­
tion request. 

Bank Select Signal 

The 002E register bit is used to indicate which memory bank should provide valid in­
struction data to the instruction bus in any given cycle. Each time another instruction 
word is accessed, this bit is toggled. The bit is originally loaded from the address-bus 
bit A02. 

002E := LD. AX2 
+ LD.CNT.IQ3.IQ4·002E 
+ LD. 103 • 002E 
+ LD .104 • 002E 
+ LD.CNT·002E 

;Load counter 
;Hold counter 

;Counting 

002E is used directly in the generation of the serial shift clock for the VDRAM. Before 
the first word in the serial shifter is available at the SD output of the VDRAM, one serial 
shift clock rising edge must occur. The 103 and 104 signals are used to force the first 
rising edges on the serial shift clock for each memory bank. After the 101 signal goes 
invalid, any further toggling of the bank select signal and the serial port shift clock will 
come as a result of valid IBREO cycles. 

Even Bank Address Incrementer and LSB Latch 

In this design, the lack of address counters requires a new way of satisfying the need to 
increment the even bank address before the first word access, when the initial address 
is odd. To deal with this need, a PALCE16V8-D is used to build a flow-through 
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incrementer. The increment function is selective because when address bit A02 is Low, 
indicating an even-word initial address, no increment is done and the address passes 
through unchanged. When A02 is High, the memory address is incremented. The A02 
bit is used to select which bank is read or written during a data access. Thus, the A02 bit 
is required to be stable throughout the entire access. So it may be held stable after the 
address bus is released, the A02 bit is latched within the incrementer by the D01 signal. 
The equations for the increment and latch functions are shown in Figure 9-11. 

Count Signal 

The count (CNT) Signal in this design is reduced to being an enable on the toggling 
action of the 002E bit. Following the initial instruction word access determined by 101, 
the CNT signal is active for each valid instruction burst request determined by IBREO.D 
and IBACK.D. 

CNT = 104 
+ 104.IBREO.D 

Transfer Cycle Enable and DQ Port Output Enable 

On a VDRAM, there is a dual function signal, called Transfer (TR), which controls 
when a row transfer cycle is performed and also when the random I/O data port is 
output enabled. When TR is active during the active edge of RAS, a transfer cycle 
is performed. 

The timing of TR is critical when performing this function. It must stay active for a mini­
mum of 90 ns after RAS goes active when the Fujitsu VDRAM (MB81461-12) is used, or 
100 ns after RAS goes active when the NEC VDRAM (PD41264-12) is used. The signal 
must also be inactive before the serial shift clock may go from Low to High, to clock out 
the first instruction word: 25 ns before for the Fujitsu VDRAM, or 10 ns before for the 
NEC VDRAM. 

To make the above timing constraint fit within the six-cycle initial access time of this 
memory design, a delay line must be used to precisely set the duration of the TR signal. 
A separate RAS Signal, which is not loaded by the capacitance of either memory bank, 
is the input to the delay line. The output for a 90-ns delay is TEXIT1 and for a 100-ns 
delay is TEXIT2. More details of this timing are provided in the intra-cycle timing section 
of this chapter. 

TR goes active with IREO, so TR is set up before RAS goes active. TR latches itself 
active until the appropriate TEXIT signal goes active. The NEC input is strapped to Low 
when the NEC memory is used, or to High when the Fujitsu VDRAM is used. 

Finally, when D02 is active during a non-transfer cycle of a read operation, the active 
TR signal enables the DO port output. 

TRO = D01 .IREO 
+ D01.TRO.NEC.TEXIT1 
+ D01.TRO.NEC.TEXIT2 
+ D02.WE 

Shift Clock 

The signal clocking each new instruction out of the serial port is referred to as SAS. This 
signal must be Low at the time TR goes inactive and it must remain Low for the 25-ns or 
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10-ns period noted earlier. Once that timing constraint is satisfied, the next rising edge 
of SAS clocks the serial port output. SAS is held Low while IQ1 is active and IQ4 is 
inactive. After that time, SAS is controlled by the Q02E bank selection signal so a new 
instruction is clocked out every other system clock cycle when the CNT signal is active. 

There is a special requirement on SAS immediately following system power-on time. 
The SAS signal must be cycled at least eight times before proper device operation is 
achieved following a power-on sequence. To ensure this is done, the system reset 
signal is used to connect the system clock to SAS. This ensures SAS is cycled during 
the system power-on reset time. 

SASO = RESET. SYSCLK 
+ RESET .IQ1 • IQ4 
+ RESET.IQ4.Q02E 
+ RESET. RIT. Q02E 

SAS1 = RESET.SYSCLK 
+ RESET. IQ1 • IQ4 
+ RESET. IQ4. Q02E 
+ RESET. IQ1 • Q02E 

IRDY 

The Instruction Ready (IRDY) signal indicates there is valid read data on the instruction 
bus. 

IRDY = IQ3.IQ4 
+ IQ1 .IBREQ.D 

This memory design is always ready with data in the IACCESS state indicated by 
IQ3 -IQ4. The memory is also ready when IBREQ is active with IBACK in the previous 
cycle with no invalid bus condition, following the initial instruction word access. 

The reason that IRDY must be a combinatorial signal is that IBREQ comes very late in 
the previous cycle and must be registered. There is no IBREQ qualifying time available 
in the previous cycle before SYSCLK rises. This means the information that IBREQ was 
active in the last cycle is not available until the cycle in which IRDY should go active for 
a resumption of a suspended burst access. 

IOE 
The instruction output enable signal (IOE) controls the output enable of the multiplexers. 
It is only needed if more than one memory section can drive the instruction bus, other­
wise it can be omitted. The logic is the same as for IRDY generation. For an approach 
with buffers instead of multiplexers, the signals must be qualified with the bank select 
signal (Q02E). Therefore, this signal is implemented instead of using IRDY directly for 
control of the multiplexer output. 

IOE = IQ3.IQ4 
+ iQf .IBREQ.D 

DRDY 

The Data Ready (DRDY) signal is the equivalent of IRDY, but for data accesses. The 
difference is that since no burst accesses are supported, DRDY will go active only once 
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in each simple access during the DACCESS state in a read, or during DCAS or WAIT in 
a write operation. Due to different data hold times for the Fujitsu and NEe VDRAMs, 
DRDY must be held until the WAIT state when using the NEC VDRAM. 

DRDY= WE.DQ4 
+ WE.DQ2.DQ3.NEC 
+ WE.DQ3.DQ4.NEC 

Pipeline Enable 

During a read operation, the data address is no longer needed on the address bus 
following the DCAS state. So, to help improve system performance, the Pipeline ENable 
(PEN) signal response is made active during the DCAS state. This active PEN signal 
tells the processor the address is no longer needed and it allows the processor to place 
a new address on the bus. In cases where the next address to be issued is for an in­
struction or data access from a different block of memory, the next access can begin 
while the current data access finishes. 

PEN = DQ2. DQ3 

WE 

Write Enable (WE) signal is not allowed to be active during the row transfer sequence 
beginning each non-sequential instruction access. This is because no write operations 
are supported for the serial port. During a data access, the readlwrite line is latched by 
the DQ2 signal at the end of the DCAS state. 

WE shows that a write to the memory section is done regardless of the half-word or byte 
address. 

WE = IQ1.DQ1.DQ2.RW 
+ iCIT.DQ1.DQ2.WE 

To make use of the byte write capability of the Am29000 processor, the following signals 
are used. Please note this is true for big endian notation only. 

WEO = Enable byte write for Bits 31-24 

WE1 = Enable byte write for Bits 23-16 

WE2 = Enable byte write for Bits 15-8 

WE3 = Enable byte write for Bits 7-0 

The following signals are not real signals and are used only as macros for the 
WEO-WE3 equations shown below. 

WEN = OPT1.0PTO 

HENO = OPT1.0PTO.A1 

HEN1 = OPT1.0PTO.A1 

BENO = OPT1.0PTO.A1 .AO 

BEN1 = OPT1.0PTO.A1.AO 

BEN2 = OPT1.0PTO.A1.AO 

BEN3 = OPT1.0PTO.A1.AO 

Interleaved VDRAM 

;(32-bit Word Enable) 

;(Half-Word Enable, Bits 31-16) 

;(Half-Word Enable, Bits 15-0) 

;(Byte Enable, Bits 31-24) 

;(Byte Enable, Bits 23-16) 

;(Byte Enable, Bits 15-8) 

;(Byte Enable, Bits 7-0) 
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The equations for WEO-WE3 are as follows: 

WEO = IQ1. OQ1 • OQ2. RW. WEN 
+ jQ1. OQ1 • OQ2. RW. HENO 
+ IQ1.0Q1.0Q2.RW.BENO 
+ jQ1.0Q1.0Q2.WEO 

WE1 = IQ1. OQ1 • OQ2. RW. WEN 
+ jQ1.0Q1.0Q2.RW.HENO 
+ IQ1.0Q1.0Q2.RW.BEN1 
+ IQ1.0Q1.0Q2.WE1 

WE2 = IQ1.0Q1.0Q2.RW.WEN 
+ jQ1.0Q1.0Q2.RW.HEN1 
+ jQ1. OQ1 • OQ2. RW. BEN2 
+ jQ1.0Q1.0Q2.WE2 

WE3 = jQ1.0Q1.0Q2.RW.WEN 
+ jQ1.0Q1. OQ2. RW. HEN1 
+ jQ1. OQ1 • OQ2. RW. BEN3 
+ IQ1. OQ1 • OQ2 • WE3 

Row Address Strobes 

There are three identical Row Address Strobe (RAS) lines. Two are used to drive the 
memories and one drives the delay line used to switch the address mux at the appropri­
ate time and to control the duration of the transfer signal. Multiple lines are used to split 
the capacitive and inductive load of the memory array to improve signal speed. 

RAS is made active by a valid ISTART, OSTART or refresh condition. RAS is held active 
for three cycles to satisfy the minimum pulse-width requirement on RAS. 

RAS := BINV. RAS.ISTART 
+ BINV.RAS.OSTART 
+ RAS.PC1.RFACK 
+ RAS. IQ1 • IQ3 
+ RAS.OQ1.0Q3 
+ RAS.RFACK.RQ3 

Column Address Strobes 

As with the RAS lines, the CAS lines are duplicated to split the memory load. CAS 
becomes active in the cycle after RAS during instruction or data accesses. Ouring a data 
write access, CAS is enabled only when the appropriate bank is written with data. This is 
controlled by the latched value of address bit 2 (AX2). Only in the case of a refresh 
sequence will CAS be made active prior to RAS. This will initiate a CAS-before-RAS 
refresh cycle in the memories. In this case, CAS is made active during the 10LE state. 

CASO := RAS .IQ1 
+ RAS.OQ1.AX2 
+ RAS.jQ1.0Q1.RFRQO 

CAS1 := RAS. IQ1 + RAS • OQ1 • AX2 
+ RAS.jQ1.0Q1.RFRQO 
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INTRA-CYCLE TIMING 

This memory architecture has five timing sequences of interest. The first is a cycle used 
to decode the memory address and control signals from the processor. At the end of this 
decode cycle, the RAS registers are loaded to begin the initial access of memory if the 
address selects the memory block. 

Following the decode cycle is the Row Address cycle, in which the row address strobe is 
made active at the beginning of the cycle, and the address multiplexer is later switched 
between the row address and the column address. 

The third timing is a data access, where the CAS signal goes active to begin a read 
operation or perform a write operation. 

The fourth is the critical timing sequence between RAS going active and the first shift 
clock (SAS) active edge which occurs in the row transfer of the initial access of an 
instruction burst. 

The fifth timing is a burst access. This is the timing between SAS going High and a valid 
instruction being transferred to the processor. This time is designed to fit within two 
clock cycles. 

The combination of a decode cycle followed by the row-address cycle and by a data­
read access time defines a five-cycle read of data. Subsequent data-read operations 
may be six cycles long if the next data address appears during the PC2 precharge state. 

For a data write, the access time is made up of a decode cycle followed by a data write, 
in which DRDY is active in the second or third cycle after decode. The write operation 
thus takes three to four cycles. Subsequent data-write cycles may take up to six cycles 
to complete if the next address appears during the data WAIT state (Le., during the 
memory-precharge time). A read following a write could take up to eight cycles to com­
plete if it started during the precharge time of the previous access. 

The initial access time of an instruction access is made up of a decode cycle, plus a 
row transfer sequence, plus the first burst access. This totals six cycles. Again, this 
could be extended up to nine cycles if the instruction address were to appear during 
the precharge time following a data-write operation or up to seven cycles if following 
a data read. 

After the initial access, all burst instruction accesses use a two-clock-cycle timing. Be­
cause two memory banks are interleaved, the apparent access time from the viewpoint 
of the system bus is only one cycle per burst access following the initial access. 

Decode Timing 

Within the decode cycle, the address timing path is made up of: 

• The Am29000 processor clock to address and control valid delay of 14 ns 

• Address decode logic PAL device delay of 10 ns 

• The setup time of the RAS PAL device, 10 ns. 

Assuming D-speed PAL devices, those times total 34 ns, as shown in Figure 9-12. 

Also, within the decode cycle time is the control Signal to response signal path. In fact, 
this timing path is present in every cycle in the sense that the memory response signals 
must be valid in every clock cycle. This delay path is made up of: 
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• Clock-to-output time of registers within the control logic state machine PAL device, 
8 ns 

• Propagation delay of the control logic PAL device, 10 ns 

• Propagation delay of a logical OR gate on the response signals from each memory 
block, 10 ns 

• Control signal set-up time of the processor, 12 ns 

Again assuming D-speed PAL devices, these delay path times total 40 ns. 

Row Address Timing 

Referring to Figure 9-13, within the row-address cycle, the RAS line goes low, which 
initiates a time delay signal later causing the address multiplexer to change from the row 
to the column address. 

Figure 9·12 VDRAM Interleaved Bank Memory Decode Cycle 
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Figure 9·13 Row Address Timing 
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This delay path is made up of: 

• Clock-to-output time of RAS signal registers within the control-logic state machine 
PAL device (8 ns) plus an added delay due to capacitive and inductive loading by the 
memory array of the PAL device outputs. The estimated delay is 6.5 ns. This is 
added to the 8 ns delay of the RAS line (standard 50 pF load) for a total of 14.5 ns, 
worst case. 

• Mux switch control signal delay path, which runs in parallel with the memory RAS 
delay just described. This mux signal delay is made up of the clock-to-output delay of 
a lightly loaded RAS signal (8 ns) plus the delay line time (20 ns). 

• Minimum and maximum switching time of the address multiplexer, 4 ns to 9.5 ns, plus 
added delay for heavy loading (same as calculated above), 6.5 ns. 

Thus, the memory RAS signals are stable no later than 14.5 ns into the cycle, and the 
address mux output can change no sooner than 32 ns (assuming RAS outputs from 
the same PAL device will always have similar delays). So the address hold time pro­
vided after RAS goes active is 17.5 ns. This works out to satisfy the 15 ns of required 
address hold time after RAS goes active. Also, the column address is settled by no later 
than 44 ns in to the cycle. So the column address is set up prior the CAS going active in 
the next cycle. 

CAS·to·Data Ready 

In a data-read operation, the Column Address Strobe (CAS) signal-to-end of DRDY 
cycle is made up of: 

• CAS Signal clock-to-output time, 8 ns, plus added delay for heavier-than-normal 
output loading, as determined above, 6.5 ns 

• Memory access delay from CAS, 60 ns 

• Data bus transceiver propagation delay, 10 ns 

• Processor set-up time, 6 ns 

This totals 80.5 ns, which translates into just a little more than two cycles. Therefore, 
DRDY is not made active until the second cycle following the DCAS state. 

In a data-write operation, the data is written by the falling edge of CAS. But the data hold 
time relative to RAS going active may also have to be satisfied before DRDY is made 
active to free the address and data buses. 

For the Fujitsu memory, only the data hold time relative to CAS is required; this is 30 ns 
after CAS active. The Am29000 processor will provide a minimum of 4 ns data hold 
time. The data transceiver will provide an additional minimum of 4 ns hold time beyond 
the end of the DCAS cycle. As shown in Figure 9-14, these will ensure meeting the hold 
time if DRDY is active in the DCAS cycle. 

For the NEC memory, the hold time relative to RAS is the longer delay path; this is 95 ns 
from RAS going active. This implies the data must be held 29.5 ns into the WAIT state 
after DCAS. So in this case, DRDY must not go active until the WAIT state after DCAS 
as shown in Figure 9-15. 
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Figure 9-14 
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Referring to Figure 9-15, in order to maintain a six-cycle initial instruction access time, 
only three cycles can be used for the timing of signals between RAS and SAS. In that 
time, the TR signal must be active for 90 ns to 100 ns after RAS, and it must be inactive 
25 ns to 10 ns before SAS goes active, depending on the memory used. It is a tight fit. 
The timing is as follows: 

• Clock-to-memory RAS delay, 8 ns, plus the added delay for heavy output loading of 
6.5 ns, for a total of 14.5 ns 

• In parallel with the memory RAS, a separate copy of RAS not loaded by the memory 
array is used to drive the delay line determining the end of the TR signal. Its clock-to­
output delay time is 8 ns 

• Delay line time of 90 ns or 100 ns 

• Propagation delay of the PAL device, which generates TR from the output of the 
delay line, is a minimum of 3 ns and a maximum of 10 ns, plus an output loading 
delay of 6.5 ns 

• The SAS output is combinatorial and is dependent on registered input signals. Its 
minimum delay is the minimum clock-to-output delay plus the minimum propagation 
delay of a D-speed PAL device, plus the added delay for memory loading (3 ns + 3 ns 
+ 6.5 ns= 12.5 ns). Its maximum delay consists of 8 ns of clock-to-output delay, 10 ns 
of propagation delay, and a loading delay of 6.5 ns for a total delay of 24.5 ns. 

Interleaved VDRAM 



AMD ~ 
Figure 9·15 NEe Memory Write Data Hold Time 
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Assuming minimum delays in the TR and SAS signals and maximum delays in the RAS 
signals, the hold time for TR will just be met for either the NEC or Fujitsu memories. For 
the Fujitsu memory, the TR setup time before SAS will also just be met as shown in 
Figure 9-16. For the NEC memory there is 5 ns of margin as shown in Figure 9-17. 

The above relies on the fact that all RAS outputs are implemented in the same PAL 
device and TR and SAS outputs reside in the same PAL device. The PAL device out­
puts for related signals will thus always track each other with respect to minimum or 
maximum delay times. 

Burst Timing 

Within the burst access cycle, the address to data path timing is determined by: 

• The clock-to-output time of Q02E, 8 ns for a D-speed PAL device 

• Propagation delay of SAS PAL, 10 .!§.plus added delay for heavy capacitive and 
inductive load as was done for the RAS line. The same derating delay of 6.5 ns 
applies. 

• Memory access time for serial port, 40 ns 

• F157 Multiplexer delay, 6.5 ns 

• The processor set-up time, 6 ns. 

Those delays produce a worst-case total of 77 ns as shown in Figure 9-18. 

INTER-CYCLE TIMING 

Inter-cycle timing for instruction, data-read, and data-write cycles are provided in 
Figures 9-19 through 9-21. In these timing diagrams, the horizontal time scale is 20 ns 
per division. 
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Figure 9·16 Fujitsu Transfer Enable Timing 
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Figure 9-17 NEe Transfer Enable Timing 

NEe Memory 

teo, 

tid, 

tpd, 

tpd, 

tid, 

teo, 

tid, 

PAL Device RAS Output 

Memory Load Delay 

Delay Line 

Transfer Enable PAL device Min Delay 

Memory Load Delay 

PAL Device SAS Output Min Delay 

Memory Load Delay 

Transfer Enable Min 
Hold Time After RAS 
for NEC Memory 

Setup Time to SAS 
Transfer Enable Min 

Figure 9·18 Burst Access Timing 

teo, PAL Device Q02E Output 

tpd, PAL Device SAS Output 

Tid, Memory Load Delay 

8 

tsa, Buffer Delay Memory SAS to 
Data Access Time 

tpd, Multiplexer Delay 

6.5 

tsu, Am29000 Processor Data Setup Time 

Clock Cycle Time 

100 

3 

6.5 

103 ns -"'------.~ 

8 

10 

6.5 

40 

6.5 

6 

+-- 40 ns-.+-- 40 ns-' 

441------- 77 ns ----~~. 

Interleaved VDRAM 

AMD ~ 

117.5 ns 

6.5 ns 

~ 15 ns ~ 

10623C·089 

10623C·090 

9-31 



~AMD 

Figure 9·19 VDRAM Instruction Burst Timing 
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Figure 9·20 VDRAM Data Read Timing 
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Figure 9·21 VDRAM Data Write Timing 
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PARTS LIST 

The parts list for the Am29000 Processor Interleaved VRAM Interface is provided in 
Table 9-1. 

Interleaved VRAM Interface Parts List 

Item No. 

U1 

U2 

U3 

U4 

U5-U8 

U9 

U10 

U11 

U12 

U13 

U14-U29 

U3D-U37 

U38 

Quantity 

4 

16 

8 

38 packages 

FINAL DISCUSSION 

Device Description 

PALCE16V8-D 

PAL20L8-B 

AmPAL22V10-25 

74F175 

74F157 

PALCE16V8-D 

PAL16R4-D 

PAL20R8-D 

PAL20R4-D 

PAL20L8-D 

MB81461-12 or PD41264 

74F157 

XTTLDM-100 

Looking at the design, there may be concerns about the size of the design, whether it is 
compact or large. For an objective analysis, first look at the design from a theoretical 
standpoint, without considering the type of processor being used. 

To perform single-cycle bursts with DRAM at clock speeds up to 33 MHz, you must use 
two banks of interleaved DRAMs. Because of the 32-bit wide architecture, you need a 
minimum of 16 DRAMs (64K x 4-bit devices), eight DRAMs per bank. 

You also need multiplexers and drivers for interleaving, which adds another 16 parts to 
the design. In this design, only the multiplexers are needed, so only eight parts are 
added. For a burst start on an odd address, you need one incrementer PAL device in 
any case. 

For DRAMs, the address lines must be multiplexed. This implies the addition of four 
multiplexers. 

A refresh counter must be implemented. This implies the addition of one PAL device. 
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In any case, you need either a delay line or a high-speed clocked state machine for fast 
generation of RAS and CAS signals. 

In summary, the raw logic, which does not depend on the type of processor used, 
requires 31 devices. Only seven PAL devices are used for all the rest of the design, 
including the state machines, the generation of the RAS and CAS signals, and the inter­
face to the Am29000 processor. By using higher-integrated PAL devices or higher­
density logic, this number could be reduced further. 

Interleaved VDRAM 



SINGLE-BANK VDRAM 

OVERVIEW 

For an overview of the relative advantages and disadvantages of VDRAM, see the first 
section of the previous chapter. 

Currently available VDRAMs are able to support a 30-ns serial shift rate, so a single 
bank VDRAM system can support an Am29000 processor system running at 20 MHz. 

MEMO~Y FEATURES 

The VDRAM memory design described in this chapter is a reduced version of the 
dual-bank design in the previous chapter. The major difference is only one bank of 
VDRAM is used. You will find many similarities between this design and the one in the 
previous chapter. 

Figure 10-1 is a high-level block diagram of a single-bank VDRAM memory. The bank is 
a minimum of 64K words deep (32 bits per word). 

A non-sequential instruction access requires one cycle for address decoding plus five 
additional cycles for the first word accessed. The burst access timing is similar to that 
used in the previous chapter; each burst access is one cycle long. The end result is a 
memory providing a six-cycle access time for the first word of a non-sequential instruc­
tion access, and single-cycle access for subsequent words in a burst transfer. A 
data-read access requires one cycle for address decoding plus four additional cycles to 
complete the access. 

A data write access requires one cycle for address decode plus two cycles or three 
cycles (depending on the memory used) to take data from the bus. The write operation 
continues internal to the memory for one or two additional cycles, but the data bus is 
released after data is taken from the bus. 

No burst accesses are supported for data. All data read accesses are five cycles long 
and all write accesses are three or four cycles long. That is assuming the memory has 
internally completed· a write operation and/or RAS precharge before the next access 
begins. If write completion time or RAS precharge time has not been satisfied, a 
subsequent data access can require up to eight cycles to complete. This is based on the 
worst case, a data read immediately following a data write operation. 

INTERFACE LOGIC BLOCK DIAGRAM 

A block diagram of the interleaved VDRAM memory is shown in Figure 10-2. The 
various circuit blocks are described below. 
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Figure 1 ()"1 Am29000 Processor with VDRAM Memory 
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The memories are 64Kx4 bit VDRAMs supplied by either Fujitsu (MB81461-12) or NEC 
(PD41264-12). These memories have common data-in and data-out lines. Their access 
speed is 120 ns. Eight devices are required to form the 32-bit wide instruction word for 
the Am29000 processor. These are shown as devices U10 through U17. 

VDRAM is used in this design to illustrate the savings in complexity, component count, 
and cost that the VDRAM architecture can provide. These savings come largely from 
the fact that the instruction and data words can reside in a common memory array still 
allowing concurrent dual-port access. Using one memory array, instead of split instruc­
tion and data memories, eliminates one entire set of memory control logic and data 
buffers. Also, the number of remaining control-logic and data-buffer circuits is reduced, 
since external buffers are no longer needed to support both data and instruction ports 
into the instruction memory. 

The VDRAM structure allows the boundary between instruction and data space to be 
flexible and dynamic, thereby providing for more efficient use of memory than a system 
that splits memory. This, in turn, may lead to reduced memory requirements in general. 

Single-Bank VDRAM 
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Figure 10-2 Single-Bank VDRAM Memory Block Diagram 

A31-A24 
PIN169 

IREO 
IREOT 
OREO 

DREOT1-0 2 
RFROO 
RFACK 

PC1 
101 

001 

SYSCLK 

SYSCLK 
RESET 

I START 
DSTART 

RiW 

IREO 
DREO 

SYSCLK 
RESET 

BINV 
TEXIT 

R01-R03 

IBREO 

U6-U9 
22V10-15 
20L8-10 
20R8-15 
20R4-15 

RAS 10ns 
IRDY 20ns 

PEN 30ns 
U18 40ns 

101-104 XTT 50ns 
D01-D04 LDM 60ns 
PC1-PC2 -100 70ns 

80ns 
DRDY 90ns 

100ns 

TR1 
TRIOE 

RAS1 RAS 
CAS1 

MUX 

TEXIT 

32 

IBREO.D WEO-WE3 
CAS SO 131-100 
WE (4x) 

SAS SAS 
U10-U17 

8 MB81461-12 
U4-U5 (X8) 

AO~A02--------~~-------M 

74F157 A7-AO 32 8 (X2) 
SE 

DQ 031-000 A 17-A 1 0 --------~t--------_M 

- 10623C-095 -

Data Bus Connection 

The memory random access data I/O port is connected directly to the Am29000 
processor data bus lines. Isolating transceivers are not necessary so they are not used. 
This eliminates transceiver delays. 

If higher driver currents were necessary, transceivers could be inserted between the 
data outputs of the VDRAMs and the Am29000 processor data bus lines. 

Instruction Bus Connection 

Because only one bank is used, the memory serial data outputs are also connected 
directly to the instruction bus of the Am29000 processor. This eliminates the buffer 
delays present in the dual-bank design. 

Address Multiplexers 

The upper and lower eight bits of memory address must be multiplexed into the address 
inputs of the memories. Discrete multiplexers are used to perform this function. These 
devices are shown as US through US. 
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Note that in this design, the address is taken directly from the bus and through the 
multiplexers to the memories. No latching or registering of the address is done. This 
approach reduces the component count and complexity of the design, illustrating a 
lower-cost memory design. Doing this requires the memory control logic to force the 
Am29000 processor to hold the address stable on the bus until after the RAS and 
Column Address Strobes (CAS) have gone active. This is done by delaying the asser­
tion of IBACK or PEN during instruction or data accesses, respectively. 

This approach reduces system performance somewhat, at least when compared with a 
split instruction and data memory system, or a system with multiple blocks of VDRAM in 
which one block could be addressed for an instruction fetch while another block is 
addressed for a data access. This is because the processor must, at times, hold an 
address on the bus when it might otherwise have been able to begin another access on 
an alternate memory block, assuming a memory that latches the address. 

But in a system having a single block of VDRAM, there is no benefit to latching the 
address from the bus. This is because the memory cannot be ready to begin another 
access until the access in progress is completed, and the memory has completed the 
precharge cycles that must occur between all non-sequential accesses. 

A word of warning: Do not use inverting buffers or multiplexers on VDRAM address 
lines. Inverted random access I/O (DO) port addressing would conflict with the sequen­
tially incremented addressing required by the design of the serial port. 

VDRAM Shifter 

Since a VDRAM uses a shift mechanism to provide the serial output of instruction code, 
there is no need for an address counter. The initial address for an instruction burst 
request determines the starting location in the memory row to be shifted out. All subse­
quent instruction words are read by providing a shift clock to the VDRAM. Also, because 
the VDRAM shifter row is 256 words, the Am29000 processor always provides a new 
address at the right time when a row boundary is crossed. In addition, no address 
counter is required for data accesses, since no burst data accesses are supported in 
this memory design. 

Registered Control Signals 

As noted earlier, the timing of the IBREO control signal requires it be registered by a 
low-setup-time register; a F175 register is used (U3, shown in Figure 10-2). 

Interface Control Logic 

This logic must generate the memory response signals, manage the loading of 
memory addresses, generate RAS and CAS Signals, and perform memory refresh. 
The logic functions needed for this require six PAL devices: one PAL20L8-B, one 
AmPAL22V10-25, one AmPAL22V10-15, one PAL20L8-D, one PAL20R8-B, and one 
PAL20R4-B. 

Device U1, a PAL20L8-B, performs address decode for instruction and data accesses. 
Its outputs indicate when the memory block has been addressed and an access is to 
begin. 

Device U2, an AmPAL22V1 0-25, acts as a refresh-interval counter and refresh-request 
logic. 

Single-Bank VDRAM 



AMD 

Devices U6-U9, one AmPAL22V1 0-15, one PAL20L8-D, one PAL20R8-B, and one 
PAL20R4-B, form a state machine controlling the RAS, CAS, shift clock, transfer cycle 
enables, and memory-response signals. 

Response Signal Gating 

The memory-response signals from all system bus devices are logically ORed together 
by a PAL device before being returned to the Am29000 processor. The gates in this 
PAL device are not included in the component count of this memory design since they 
are shared by all the bus devices in the system, and as such, are part of the overhead 
needed in any Am29000 processor system. 

Byte Write Capability 

The interface logic supports the byte write capability of the Am29000 processor. It uses 
the signals OPT1 , OPTO, A 1, and AO to generate the write enable signals WEO-WE3. 
This design supports only big endian byte ordering. 

MEMORY INTERFACE LOGIC EQUATIONS 

State Machine 

The control logic for this memory can be thought of as a Mealy-type state machine in 
which the outputs are a function of the inputs and the present state of the machine. This 
structure is required because some of the output signals must be based on inputs which 
are not valid until the same cycle in which the outputs are required to take control of the 
memory. As shown in Figure 10-3, this state machine can be described as having 18 
states. (Note: A timing diagram is provided at the end of this chapter.) 

It is important to note that in this design, the instruction burst is never preempted by the 
slave. The reason for this is that VDRAMs are used; no contention between instruction 
bursts and data accesses can occur. Also, the length of the shifters is a minimum of 256 
words. After 256 words, the Am29000 processor automatically preempts the burst by 
itself so it does not have to be preempted by the slave. 

Therefore, in this design, no logic is needed to preempt an instruction burst. 

IDLE is the default state of the interface state machine. It is characterized by the lack of 
any instruction access, data access, or refresh activity in progress. This state serves as 
a way of identifying when the memory is not being accessed and could be placed into a 
low-power mode. This state also serves as a precharge cycle for the memory when a 
transition is made between instruction, data, and refresh sequences. 

A transition to either the IRAS or DRAS state occurs when an address selecting this 
memory block is placed on the address bus. These transitions are inhibited if the BINV 
signal is active. A transition to the RQ1 state occurs when a refresh request is active. 
Refresh takes priority over any pending instruction or data-access request. 

There are five Virtual States shown in Figure 10-3; they are IQ1 through IQ4 and 
IACCESS. These states are needed because the serial data (SD) port of the VDRAM 
operates independently of the random access 1/0 (DQ) port after a row transfer cycle is 
completed. The states help illustrate what might be called the "split personality" of the 
state machine. Once a transfer cycle begins, there are in effect two active states in 
this state machine. One state tracks the activity of the serial port control signals, and the 
other tracks the activity of signals associated with the random access 1/0 port. 
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Figure 10-3 VDRAM Memory State Diagram 
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The active states can be thought of as two tokens, labeled SO and DO, being moved 
around a game board. The DO token is never allowed to follow the dotted line to the 
virtual states. The SO token is always in one of the virtual states or the IDLE state; it 
never enters any of the other states. When the SO token enters the IDLE state, it cannot 
leave until the DO token is also in IDLE and the ISTART condition is true. 

When both tokens are in IDLE and ISTART is true, the SO token moves to the 101 state 
and the DO token moves to the IRAS state. This would represent the beginnin~ row 
transfer to the serial-shift port. The DO token then tracks the progress of RAS, CAS, and 
address signals applied to the VDRAM. When the transfer sequence is finished, the DO 
token goes through the precharge states and returns to IDLE. The SO token proceeds 
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through the IQ states, counting off the delay needed until the first instruction is ready at 
the output of the SD port. In the IQ2 state, IBACK is made active to release the address 
bus. In IQ3 and IQ4, the shift clock and bank select signals begin operation to allow the 
access of the first instruction word. In IACCESS, IRDY is allowed to go active. During 
subsequent cycles of an instruction burst access, the active state remains IACCESS. 

While the active state for instruction accessing is IACCESS, the DQ token is free to 
move through data access states or refresh states completely independent of the 
instruction access in progress. When an instruction burst ends, the SD token returns to 
IDLE and must wait until the DQ token completes an access or refresh sequence 
followed by precharge before a new transfer cycle may begin. 

The IRAS state occurs during the first cycle of a row transfer to the SD port following a 
new instruction address being presented on the address bus. During this state, the 
instruction output multiplexer is enabled, Ready response lines are held inactive and the 
RAS lines go active. RAS is used as the input to a delay line whose output will switch the 
address mux to the column address after the row address hold time is satisfied. The 
transition to the ICAS state is unconditional. 

During the ICAS state, CAS goes active to start the transfer cycle. Since the RAS 
minimum pulse width is 120 ns, and the minimum CAS pulse width is 60 ns, a WAIT 
state follows the ICAS state before the unconditional transition to the first precharge 
state. 

During the precharge states, RAS goes inactive. The precharge period for the memory 
used is 100 ns, so a second and third precharge cycle is done during the PC2 and IDLE 
states, which unconditionally follow the PC1 cycle. 

During a DQ port read sequence, the DRAS state generates RAS and the address-mux 
select signals. The DCAS state makes CAS active. Since the access time from CAS is 
60 ns, the total of CAS-clock-to-output delay, plus access time, plus processor setup 
time is in excess of 95 ns. This timing will require a WAIT cycle for future upgrades, 
finally followed by the DACCESS cycle. During DACCESS, the DRDY signal is made 
active. 

The DQ port write access is different only in that the DRDY signal may be made active 
during DCAS, since the data from the bus is written into the memory by the falling edge 
of the CAS signal. This is done by using the early write cycle timing of the VDRAM. 
Doing this allows the processor to begin a new address cycle on the address bus during 
the WAIT cycle. This may help improve system performance if the new address is 
directed at a different memory block that can immediately begin a new access. The 
WAIT cycle is used to fulfill the minimum CAS active time requirement. The DACCESS 
Simplifies the design by allowing the logic controlling the state transitions to be the same 
for both read and write operations. 

Finally, there is the refresh sequence. Once the IDLE state is reached and a refresh is 
pending, the refresh sequence starts as the highest priority task of the memory. In fact, 
during the IDLE cycle, CAS will go active to set up a CAS-before-RAS refresh cycle. This 
type of refresh cycle makes use of the VDRAM internal refresh counters to supply the 
refresh address. During RQ1, RAS is made active as in IRAS and DRAS cycles. The 
RQ2 and RQ3 cycles are used to supply two additional wait states to make up the three 
cycles needed to satisfy the minimum RAS active time of 120 ns. 
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Logic Details-Signal By Signal 

The logic equations for the memory interface signals are described below. The signals, 
as implemented in the final PAL device outputs, are often active Low, as required by the 
actual circuit design. The signals are described in active High terms so the design is a 
little easier to follow. The PAL device definition files are shown in Figures 10-4 through 
10-9; the figures are followed by descriptions of how the equations were derived. 

NOTE: All PAL device equations use the following conventions: 

• Where a PAL device equation uses a colon followed by an equals sign (:=), the 
equation signals are registered PAL device outputs . 

• Where a PAL device equation uses only an equals sign (=), the equation signals are 
combinatorial PAL device outputs. 

• The Device Pin list is shown near the top of each figure as two lines of signal names. 
The names occur in pin order, numbered from left to right, 1 through 20. The polarity 
of each name indicates the actual input or output signal polarity. Signals within the 
equations are shown as active High (e.g., where signal names in the pin list are: 
A 8 C; the equation is C = A. 8; the inputs are A = Low, 8 = Low; then the C output 
will be Low). 

Figure 1()"4 AmPAL22V10·25 VRAM Refresh Counter/Request Generator 
Device U2 

10-8 

CLK RFACK RQ1 RQ2 RQ3 NC6 NC7 NC8 NC9 NC10 NC11 GND 
NC13 RFRQO RFQ2 RFQ3 RFQ4 RFQS RFQ6 RFQ7 RFQ8 RFQ10 RFQ9 VCC 

RFQ2 :=RFQ2 

RFQ3 :=RFQ2.RFQ3 
+ RFQ2.RFQ3 

RFQ4 :=RFQ2.RFQ3.RFQ4 
+ RFQ2.RFQ4 
+ RFQ3.RFQ4 

RFQS :=RFQ2.RFQ3.RFQ4.RFQS 
+ RFQ2.RFQS 
+ RFQ3.RFQS 
+ RFQ4.RFQS 

RFQ6 :=RFQ2.RFQ3.RFQ4.RFQS.RFQ6 
+ RFQ2.RFQ6 
+ RFQ3.RFQ6 
+ RFQ4.RFQ6 
+ RFQS.RFQ6 

RFQ7 :=RFQ2.RFQ3.RFQ4.RFQS.RFQ6.RFQ7 
+ RFQ2.RFQ7 
+ RFQ3.RFQ7 
+ RFQ4.RFQ7 
+ RFQS.RFQ7 
+ RFQ6.RFQ7 

Single-Bank VDRAM 
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Figure 1 ()'4 AmPAL22V10·25 VRAM Refresh Counter/Request Generator 

Device U2 (continued) 

RFQa :=RFQ2.RFQ3.RFQ4.RFQ5.RFQ6.RFQ7.RFQa 
+ RFQ2.RFQa 
+ RFQ3.RFQa 
+ RFQ4.RFQa 
+ RFQ5.RFQa 
+ RFQ6.RFQa 
+ RFQ7.RFQa 

RFQ9 :=RFQ2.RFQ3.RFQ4.RFQ5.RFQ6.RFQ7.RFQa.RFQ9 
+ RFQ2.RFQ9 
+ RFQ3.RFQ9 

. + RFQ4. RFQ9 
+ RFQ5.RFQ9 
+ RFQ6.RFQ9 
+ RFQ7.RFQ9 
+ RFQa.RFQ9 

RFQ10:=RFQ2.RFQ3.RFQ4.RFQ5.RFQ6.RFQ7.RFQa.RFQ9.RFQ10 
+ RFQ2. RFQ1 0 
+ RFQ3. RFQ1 0 
+ RFQ4. RFQ1 0 
+ RFQ5. RFQ1 0 
+ RFQ6. RFQ1 0 
+ RFQ7. RFQ1 0 
+ RFQa. RFQ1 0 
+ RFQ9. RFQ1 0 

SYNCHRONOUS PRESET= RFQ2.RFQ3.RFQ4.RFQ5.RFQ6.RFQ7.RFQa 
• RFQ9. RFQ1 0 

RFRQO := RFRQO. (RFACK. RQ1) 

Figure 1 ().5 PAL20L8-B VRAM State Decoder 
Device U1 

IREQ DREQTO IREQT A31 A30 A29 A2a A27 A26 A25 A24 GND 
DREQ DREQT1 ISTART RFRQO RFACK PIN 169 RIT DQ1 PC1 DSTART NC23 VCC 

ISTART = RIT.DQ1.RFACK.PC1.RFRQO.IME 

DSTART = IQ1.DQ1.RFACK.PC1.RFRQO.OME 

NOTE: In the above equations, IME and OME are used only for clarity. The actual input 
terms should be substituted when compiling this device. 

IME = IREQ. iREQT. A31 • A30. A29. A2a. A27. A26. A25. A24. PIN169 

OME = OREQ.OREQTO.OREQT1.A31.A30.A29.A2a.A27.A2S.A25.A24 
• PIN169 

10623C-09B 
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Figure 1 ()'6 AmPAL22V1 0·15 VRAM Instruction State Generator-Single Bank 
Device U6 

CLK IREO ISTART OSTART WE NCG IBREO.D BINV NC9 GND 
DE 001 002 003 004 101 102 103 104 IRDY DRDY VCC 

101 :=BINV-TQT-ISTART 
+ 101 - (103 -104) 

102 :=101- (1013-104) 
103 := 102 - 104 

104 :=103 

IRDY = 103 -104 
+ 101 -IBREO.O 

001 :=BINV-D01-DSTART 
+ 001-004 

002 := 001 - 004 

003 :=002-004 

004 :=003-004 

DRDY = WE - 004 
+ WE- 003- 004 

10623C·099 

Figure 1()'7 PAL20L8-D VRAM Transfer Generator-Single Bank 
Device U7 

10-10 

003 TEXIT NC3 001 002 IREO WE NCe RESET RW 103 GND 
SYSCLK IBREO SAS ffi WE 101 104 NC20 PEN NC22 NC23 VCC 

SAS = RESET - SYSCLK 
+ RESET- 101 -104 
+ RESET - 104 - iQ3 - =SY~S=C=-:-L~K 
+ RESET -101 - SYSCLK -IBREO -IREO 

TR = 001 -IREO 
+ 001-TR-TEXIT 
+ 002-WE 

PEN = 002 - 003 

WE = 101-001-D02-RW 
+ 101-D01-D02-WE 

Single-Bank VDRAM 
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Figure 1 Q.8 PAL20RS·B VRAM HAS·CAS Generator-Single Bank 
Device US 

AMD ~ 

elK ISTART DSTART JQ1 DQ1 la3 D03 RC3 BINV NC10 RFRQO GND 
OE RFACK RASO NC16 RAS PC1 PC2 CAS NC21 NC22 NC23 VCC 

RASO :=BINV.RASO.ISTART 
+ BINV.RASO.OSTART 
+ BINV. RASO. PC1 • RFACK 
+ RASO. IQ1 • IQ3 
+ RASO. OQ1 • OQ3 
+ RASO.RFACK.RQ3 

RAS :=BINV.RAS.ISTART 
+ BINV.RAS.OSTART 
+ BINV.RAS.PC1.RFACK 
+ RAS .IQ1 • IQ3 
+ RAS.OQ1.0Q3 
+ RAS.RFACK.RQ3 

PC1 :=PC1 .IQ3 
+ PC1.0Q3 
+ PC1.RQ3 
+ PC1. PC2 

PC2 :=PC1 

CAS = RAS. IQ1 
+ RAS.OQ1 
+ RAS .IQ1 • OQ1 • RFRQO 

Figure 1 Q.9 PAL20R4-B Byte Write Enable Generator-Single Bank 
Device U9 

ClK PC1 RIT OQ1 OQ2 RAS RFRQO OPT1 OPTO A 1 GNO 
OE AO WEO WE1 RFACK RQ1 RQ2 RQ3 WE2 WE3 NC23 VCC 

WEO = IQ1 • OQ1 • OQ2 • RW. OPT1 • OPTO 
+ IQ1.0Q1.0Q2.RW.OPT1.0PTO.A1 
+ IQ1.0Q1.0Q2.RW.OPT1.0PTO.A1.AO 
+ IQ1 • OQ1 • OQ2 • WEO 

WE1 = IQ1 • OQ1 • OQ2 • RW. OPT1 • OPTO 
+ IQ1.0Q1.0Q2.RW.OPT1.0PTO.A1 
+ IQ1.0Q1.0Q2.RW.OPT1.0PTO.A1.AO 
+ IQ1. OQ1 • OQ2 .WE1 

WE2 = IQ1 • OQ1 • OQ2 • RW. OPT1 • OPTO 
+ RIT. OQ1 • OQ2. RW.OPT1 .OPTO.A1 
+ IQ1.0Q1.0Q2.RW.OPT1.0PTO.A1.AO 
+ IQ1 • OQ1 • OQ2 .WE2 

WE3 = IQ1 • OQ1 • OQ2 • RW. OPT1 • OPTO 
+ IQ1.0Q1.0Q2.RW.OPT1.0PTO.A1 
+ IQ1.0Q1.0Q2.RW.OPT1.0PTO.A1.AO 
+ RIT.OQ1.0Q2.WE3 

Single-Bank VDRAM 

1 0623C-1 01 

1 0623C-1 02 

10-11 



~AMD 

Figure 10.9 PAL20R4·B Byte Write Enable Generator-Single Bank 
Device U9 (continued) 
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RFACK:= IQ1 • DQ1 • RFRQO 
+ RFACK. (RFREQ 0 • RQ3) 

RQ1 :=RQ1. PC1 • RFACK 
+ RQ1.RQ3 

RQ2 :=RQ1.RQ3 

RQ3 :=RQ2.RQ3 

RFQ (Refresh Request) 

Dynamic memories need to be completely refreshed every 4 fls, which translates into at 
least one row refreshed every 15.6 flS on average. To keep track of this time, a counter 
is used. Once a refresh interval has passed, a latch is used to remember that a refresh 
is requested while the counter continues to count the next interval. Once the refresh has 
been performed, the latch is cleared. 

The counter and refresh request latch is implemented in an AmPAL22V10-25. Nine of 
the outputs form the counter, which is incremented by the system clock at 20 MHz. This 
gives up to 512 x 50 ns = 25.6-flS refresh periods. The synchronous preset term for all 
the registers is programmed to go active on a count value of 389, which will produce a 
refresh interval of 390 cycles x 40 ns = 15.6 flS. The one remaining output is used to 
implement the refresh request latch. That latch function (registered output) is also set by 
the synchronous preset term. 

The equations for the counter are shown in Figure 10-4. Below are the preset and 
refresh latch equations: 

SYNCHRONOUS PRESET =RFQ2.RFQ3.RFQ4.RFQ5.RFQ6.RFQ7.RFQ8 
• RFQ9. RFQ10 

RFRQO := RFROO • (RFACK. RQ1) 

Refresh Sequence Equations 

A refresh of the memory requires multiple clocks so the minimum RAS active time of 
120 ns can be satisfied. To manage this, the following equations are used. 

RFACK 

The Refresh Acknowledge (RFACK) signal is used to begin a refresh sequence and to 
clear the pending refresh request. The RFACK signal goes active when the state 
machine (DQ token) re-enters the IDLE state as controlled by 101 and 001. RFACK is 
held active until the refresh request is cleared, indicated by RFRQO. RQ3. 

RFACK := DQ1 • iCff. RFRQO 
+ RFACK. (RFREQ O. R03) 

RQ1, RQ2, RQ3 

The three cycles needed for a refresh are tracked by RQ1 , RQ2, and R03. R01 will not 
go active until the cycle following the IDLE state. This is controlled by 
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RQ1 • PC1 • RFACK, which is only true during IDLE. RQ1 is held active for all three 
refresh cycles to provide a single signal to identify when a refresh is in progress. RQ2 
and RQ3 simply follow RQ1 with RQ3, signaling the last cycle of the refresh sequence. 

IME 

RQ1 := RQ1 • PC1 • RFACK 
+ RQ1.RQ3 

RQ2 := RQ1 • RQ3 

RQ3 := RQ2. RQ3 

The use of the Instruction for ME (IME) signal is based on the assumption that other 
blocks of instruction or data memory may be added later and that there may be valid 
addresses in address spaces other than instruction/data space. 

This means this memory will only respond with IBACK or DRDY active when this block 
has been selected by valid addresses in the instruction/data space. This requires that at 
least some of the more significant address lines above the address range of this 
memory block be monitored to determine when this memory block is addressed. Also, it 
means the Instruction Request Type (IREQT), Data Request Type (DREQTO, DREQT1), 
and Pin 169 lines must be monitored to determine that an address is valid and lies in the 
instruction/data space. 

IME is the indication the address of this memory block is present on the upper 
address lines, an instruction request is active, Pin 169 is inactive (test hardware 
has not taken control), and instruction/data address space is indicated. In other 
words, this memory block is receiving a valid instruction access request. This 
exam~esign will assume the address of this memory block is equal to 
A31 • A30. A29 • A28 • A27 • A26 • A25 • A24. The equation for this signal is: 

IME = IREQ. IREQT. A31 • A30. A29. A28. A27 • A26 • A25. A24. Pin169 

Note that IME is not directly implemented as a PAL device output in this design. The 
terms are used in the generation of the 1ST ART term. 

DME 

The Data for ME (DME) signal is the indication the address of this memory block is 
present on the upper address lines, a data request is active, Pin 169 is inactive, and 
instruction/data address space is indicated. In other words, this memory block is 
receiving a valid data access request. This example design will assume the address of 
this memory block is equal to A31 • A30 • A29 • A28 • A27 • A26 • A25. A24. Note that for 
this design, both the instruction and data blocks reside in the same address space. This 
is possible because of the common memory array of the VDRAM accessible to either 
the instruction serial port or the data I/O port. 

The equation for this signal is: 

DME = DREQ.DREQTO.OREQT1.A31.A30.A29.A28.A27 
• A26 • A25 • A24 • Pin 169 

As with IME, this term is not directly implemented. 
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I START 

The Instruction Start (ISTART) signal causes the transition from IDLE to IRAS and IQ1 
states. It is valid only in the IDLE state with no refresh sequence starting, identified by 
not being in any other state via IQ1 - DQ1 - RFACK - PC1 - RFRQO. So when in the IDLE 
state and IME is active, ISTART is active. 

ISTART = IQ1-DQ1-RFACK-PC1-RFRQO-IME 

DSTART 
The Data Start (DSTART) signal is the same as ISTART except DME is the qualifier. 

DSTART = IQ1-DQ1-RFACK-PC1-RFRQO-DME 

IBACK 

The instruction burst acknowledge (IBACK) signal is applied to the Am29000 processor 
and is, in effect, the indication the interface state machine is in an active or suspended 
instruction access. The equation is: 

IBACK = IQ2 
+ IREQ -IBACK 

The IBACK active state is entered during the IQ2 state. IBACK is delayed until IQ2 in 
order to hold the instruction address active on the bus until the CAS signal has gone 
active, thus eliminating the need for address latches or registers. 

IBACK remains active until a new instruction access begins. The IBACK signal is 
combinatorial so it will go inactive in the same cycle IREQ goes active. This is required 
to hold the address on the bus until a new row transfer sequence can begin. The 
address must be held because there are no address latches or registers in this design to 
take the address from the bus. Address latches or registers would be required if IBACK 
were left active throughout the IREQ cycle. 

This places a timing constraint on the IBACK response signal path that is different from 
earlier memory designs. IREQ is an unstable signal until 16 ns into a cycle. The D-speed 
PAL device logic implementing the IBACK logic has a propagation delay of 10 ns. The 
Am29000 processor has a response signal setup time of 15 ns. These delays total 
41 ns, which means the logic OR gate used to combine all IBACK response signals in 
the system must have a worst-case propagation delay of 9 ns. This is not easy to 
achieve when several IBACK response lines in the system must be logically ORed. 
Therefore, seven PAL devices must be used. 

A solution to this is to move a ~ the VDRAM-block IBACK logic down into the PAL 
device used to implement the IBACK response signal logical OR gate. That will elimi­
nate one level of PAL device delay. The equation for the response OR-gate function 
would then become: 
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IBACK = IBACKO -IBREQ.D 

+ IBACK1 -IBREQ.D 
+ IBACK2 -IBREQ.D 
+ IBACK3 - IBREQ.D 
+ IBACK4 -IBREQ.D 
+ IBACK5 -IBREQ.D 
+ IQ2 -IBREQ.D 
+ IREQ - IBACK 

where the numbered IBACK inputs are the IBACK signals from other bus devices and 
the IQ2 + IREQ - IBACK inputs are from the VDRAM control logic. 

The IBACK logic defined earlier remains to provide a version of IBACK local to the 
VDRAM control logic. That version of the IBACK is not as time critical because it will 
simply be registered. Only IBACK.D is needed by other parts of the VDRAM control 
logic. 

IBACK.D 

The IBACK Delayed (IBACK.D) signal is simply a one-cycle delayed version of IBACK. 
The logic for IBACK is implemented directly in the IBACK.D equation. 

IBACK.D := IQ2 
+ IREQ-BACK 

It is used in the generation of IRDY, IOEO, IOE1, and CNT. 

Instruction Initial Access States 

Signals IQ1, IQ2, IQ3, and IQ4 are used to control the state transitions from IQ1 to 
IACCESS and IRAS through WAIT during the first instruction access. The IQ1 signal 
goes active during the IQ1 and IRAS states, and remains active for four additional 
cycles. IQ1 will go active only when there is a valid ISTART. 

BINV inhibits the transition to IQ1. BINV is used in this equation instead of in the 
ISTART equation because it only needs a 15-ns setup time for the PAL device. If it were 
used in the ISTART PAL device, an additional 15-ns combinatorial delay would be 
created, so the BINV signal could not be used correctly any more. 

The IQ2, IQ3, and IQ4 signals are used to count the five cycles during which IQ1 is 
active. IQ3 is inactive during the fifth cycle after IQ1 goes active. This is used as a way 
of identifying the fifth cycle as the condition of IQ3 - IQ4. This eliminates the need for an 
additional signal to directly indicate the fifth cycle. 

IQ1 := BINV- iQi-ISTART 

+ IQ1 - (IQ3 - IQ4)) 

IQ2 := IQ1 - (IQ3 - IQ4) 
IQ2 := IQ1 - (IQ3 -IQ4) 

IQ3 := IQ2 -IQ4 

IQ4:= IQ3 
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Data Initial Access States 

These equations are similar in function to the IQ4-IQ1 signals. They control state 
transitions during data accesses. DQ1 goes active during the DQ1 state as a result of a 
valid DSTART signal during the IDLE state. DQ2 through DQ4 simply count off the four 
DQ states. The reason for using BINV here is the same as for the instruction side. 

DQ1 := BINV.DQ1.DSTART 
+ DQ1.DQ4 

DQ2 := DQ1 • DQ4 

DQ3 := DQ2. DQ4 

DQ4 := DQ3. DQ4 

Precharge States 

At the end of any DQ port access, the RAS lines must be made inactive to precharge 
internal memory buses before another access with a different row address may begin. 
Three cycles are needed, indicated by the signals PC1 and PC2. The PC1 signal is 
active during the PC1 state and the PC2 state. The PC2 signal is active during the PC2 
state and the first IDLE state that follows the PC2 state. PC1 goes active following the 
third cycle of any instruction, data, or refresh sequence. In other words, once the 
minimum RAS pulse width requirement is satisfied, RAS is made inactive to begin 
precharging for the next access. In the case of a data read where the output data must 
be held valid after RAS goes inactive, the CAS signal is kept active to hold the data. 

PC1 := PC1 .IQ3 
+ PC1.DQ3 
+ PC1.RQ3 
+ PC1.PC2 

PC2 := PC1 

Transfer Cycle Enable and DQ Port Output Enable 

On a VDRAM, there is a dual function signal, called Transfer (TR), which controls 
when a row transfer cycle is performed and also when the random I/O data port is 
output enabled. When TR is active during the active edge of RAS, a transfer cycle is 
performed. 

The timing of TR is critical when performing this function. It must stay active for a 
minimum of 90 ns after RAS goes active when the Fujitsu VDRAM (MB81461-12) is 
used, or 100 ns after RAS goes active when the NEG VDRAM (PD41264-12) is used. 
The signal must also be inactive before the serial shift clock may go from Low to High, 
to clock out the first instruction word: 25 ns before for the Fujitsu VDRAM, or 10 ns 
before for the NEG VDRAM. 

To make the above timing constraint fit within the six-cycle initial access time of this 
memory design, a delay line must be used to precisely set the duration of the TR signal. 
A separate RAS signal, which is not loaded by the capacitance of either memory bank, 
is the input to the delay line. The output for a 1 OO-ns delay is TEXIT1. More details of 
this timing are provided in the intra-cycle timing section of this chapter. 
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TR goes active with IREQ, so TR is set up before RAS goes active. TR latches itself 
active until the appropriate TEXIT signal goes active. The NEC input is strapped to Low 
when the NEC memory is used, or to High when the Fujitsu VDRAM is used. 

Finally, when DQ2 is active during a non-transfer cycle of a read operation, the active 
TR signal enables the DQ port output. 

TR DQ1.IREQ 
+ DQ1. TR. TEXIT 
+ DQ2.WE 

Shift Clock 

;Start Transfer for I-Burst 
;Delay line for Transfer 
;OE for Data read 

The signal clocking each new instruction out of the serial port is referred to as SAS. This 
signal must be Low at the time TR goes inactive and it must remain Low for the 2S-ns or 
10-ns period noted earlier. Once that timing constraint is satisfied, the next rising edge 
of SAS clocks the serial port output. SAS is held Low while IQ1 is active and IQ4 is 
inactive. After that time, SAS is controlled by SYSCLK so a new instruction is clocked 
out every system clock cycle. 

There is a special requirement on SAS immediately following system power-on time. 
The SAS signal must be cycled at least eight times before proper device operation is 
achieved following a power-on sequence. To ensure this is done, the system reset 
signal is used to connect the system clock to SAS. This ensures SAS is cycled during 
the system power-on reset time. 

SAS RESET.SYSCLK 
+ RESET. IQ1 • IQ4 
+ RESET. IQ4. iQ3 • SYSCLK 
+ RESET. IQ1 • SYSCLK. IBREQ 

IRDY 

;Start term 
;Stop term 

The Instruction Ready (IRDY) signal indicates there is valid read data on the instruction 
bus. 

IRDY = IQ4 
+ IQ1 .IBREQ.D 

This memory design is always ready with data in the IACCESS state indicated by IQ4. 

The memory is also ready when IBREQ is active, following the initial instruction word 
access. 

The reason IRDY must be a combinatorial signal is that IBREQ comes very late in the 
previous cycle and must be registered. There is no IBREQ qualifying time available in 
the previous cycle before SYSCLK rises. This means the information that IBREQ was 
active in the last cycle is not available until the cycle in which IRDY should go active for 
a resumption of a suspended burst access. 

DRDY 

The Data Ready (DRDY) signal is the equivalent of IRDY, except for data accesses. The 
difference is that since no burst accesses are supported, DRDY will go active only once 
in each simple access during the DACCESS state in a read, or during DCAS or WAIT in 
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a write operation. Due to different data hold times for the Fujitsu and NEC VDRAMs, 
DRDY must be held until the WAIT state when using the NEe VDRAM. 

DRDY = WE. DQ4 
+ WE.DQ3.DQ4 

Pipeline Enable 

During a read operation, the data address is no longer needed on the address bus 
following the DCAS state. So, to help improve system performance, the Pipeline Enable 
(PEN) signal response is made active during the DCAS state. This active PEN signal 
tells the processor the address is no longer needed and allows the processor to place a 
new address on the bus. In cases where the next address to be issued is for an 
instruction or data access from a different block of memory, the next access can begin 
while the current data access finishes. 

PEN = DQ2. DQ3 

WE 

In this design, the VDRAMs are written with the early write protocol. This means WE 
goes active before or at the same time as the CAS signal. So data is written to the 
VDRAM at the time when CAS goes active. At this point, data is available on the 
data bus. 

The Write Enable (WE) signal is not allowed to be active during the row transfer 
sequence that begins each non-sequential instruction access. This is because no write 
operations are supported for the serial port. During a data access, the read/write line is 
latched by the DQ2 signal at the end of the DCAS state. 

WE shows that a write to the memory section is done, regardless of the half-word or 
byte address. 

WE = iCff.DQ1.DQ2.RW 
+ IQ1.DQ1.DQ2.WE 

To make use of the byte write capability of the Am29000 processor, the following signals 
are used. Please note that this is true for Big endian notation only. 

WEO = Enable byte write for Bits 31-24 

WE 1 = Enable byte write for Bits 23-16 

WE2 = Enable byte write for Bits 15-8 

WE3 = Enable byte write for Bits 7-0 
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The following signals are not real signals and are used only as macros for the 
WE3-WEO equations shown below. 

WEN = OPT1 • OPTO 

HENO = OPT1 • OPTO. A 1 

HEN1 = OPT1.0PTO.A1 

BENO = OPT1 .OPTO.A1.AO 

BEN1 = OPT1 .OPTO.A1.AO 

BEN2 = OPT1.0PTO.A1.AO 

BEN3 = OPT1 .OPTO.A1.AO 

The equations for the WEO-WE3 are as follows: 

WEO = IQ1.0Q1.0Q2.RW.WEN 
+IQ1.0Q1.0Q2.RW.HENO 
+ IQ1 • OQ1 • OQ2. RW. BENO 
+ iQT .OQ1.0Q2.WEO 

WE1 = IQ1.0Q1.0Q2.RW.WEN 
+ IQ1 • OQ1 • OQ2. RW. HENO 
+ IQ1 • OQ1 • OQ2. RW. BEN1 
+ IQ1. OQ1 • OQ2 .WE1 

WE2 = IQ1.0Q1.0Q2.RW.WEN 
+ IQ1.0Q1.0Q2.RW.HEN1 
+ IQ1.0Q1.0Q2.RW.BEN2 
+ IQ1. OQ1 • OQ2 .WE2 

WE3 = IQ1. OQ1. OQ2. RW.WEN 
+ IQ1.0Q1.0Q2.RW.HEN1 
+ IQ1.0Q1.0Q2.RW.BEN3 
+ iQT. OQ1. OQ2.WE3 

Row Address Strobes 

;(32-bit Word Enable) 

;(Half-Word Enable, Bits 31-16) 

;(Half-Word Enable, Bits 15-0) 

;(Byte Enable, Bits 31-24) 

;(Byte Enable, Bits 23-16) 

;(Byte Enable, Bits 15-8) 

;(Byte Enable, Bits 7-0) 

There are three identical Row Address Strobe (RAS) lines. One RAS line drives the 
memories and the other two RAS lines drive the delay line used to switch the address 
mux at the appropriate time and to control the duration of the transfer signal. Multiple 
lines are used to split the capacitive and inductive load of the memory array in order to 
improve signal speed. 

RAS is made active by a valid ISTART, OSTART, or refresh condition. RAS is held 
active for three cycles to satisfy the minimum pulse-width requirement on RAS. 

RAS :=BINV.RAS.ISTART 
+ BINV.RAS.OSTART 
+ RAS. PC1 • RFACK 
+ RAS.IQ1.IQ3 
+ RAS. OQ1. OQ3 
+ RAS. RFACK. RQ3 
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Column Address Strobes 

CAS goes active in the cycle after RAS during instruction or data accesses. Only in the 
case of a refresh sequence will CAS be made active prior to RAS. This will initiate a 
CAS-before-RAS refresh cycle in the memories. In this case, CAS is made active during 
the IDLE state. 

CAS := RAS • 101 
+ RAS. D01 
+ RAS. 101 • D01 • RFROO 

INTRA·CYCLE TIMING 

All of the following description is based on the 20-MHz Am29000 processor system; the 
cycle time is 50 ns. 

This memory architecture has five timing sequences of interest. The first is a cycle used 
to decode the memory address and control signals from the processor. At the end of this 
decode cycle, the RAS registers are loaded to begin the initial access of memory if the 
address selects the memory block. 

Following the decode cycle is the Row Address cycle, in which the row address strobe is 
made active at the beginning of the cycle, and the address multiplexer is later switched 
between the row address and the column address. 

The third timing is a data access, where the CAS signal goes active to begin a read 
operation or perform a write operation. 

The fourth is the critical timing sequence between RAS going active and the first shift 
clock (SAS) active edge which occurs in the row transfer of the initial access of an 
instruction burst. 

The fifth timing is that of a burst access. This is the timing between SAS going High and 
a valid instruction being transferred to the processor. This time is designed to fit within 
two clock cycles. 

The combination of a decode cycle followed by the row-address cycle and by a data­
read access time defines a five-cycle read of data. Subsequent data-read operations 
may be six cycles long if the next data address appears during the PC2 precharge state. 

For a data write, the access time is made up of a decode cycle followed by a data write, 
in which DRDY is active in the second or third cycle after decode. The write operation 
thus takes three to four cycles. Subsequent data-write cycles may take up to six cycles 
to complete if the next address appears during the data WAIT state (Le., during the 
memory-precharge time). A read following a write could take up to eight cycles to 
complete if it started during the pre charge time of the previous access. 

The initial access time of an instruction access is made up of a decode cycle, plus a row 
transfer sequence, plus the first burst access. This totals six cycles. Again, this could be 
extended up to nine cycles if the instruction address were to appear during the 
precharge time following a data write operation, or up to seven cycles if it followed a 
data read. 

After the initial access, all burst instruction accesses use a one-clock-cycle timing. 
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Figure 10·10 VDRAM Interleaved Bank Memory Decode Cycle 
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Decode Timing 

Within the decode cycle the address timing path is made up of: 

• The Am29000 processor clock to address and control valid delay of 16 ns 

• Address decode logic PAL device delay of 15 ns 

• The setup time of the RAS PAL device, 15 ns 

Assuming B-speed PAL devices, those times total 46 ns, as shown in Figure 10-10. 

Also, within the decode cycle time is the control signal to response signal path. In fact, 
this timing path is present in every cycle in the sense that the memory response signals 
must be valid in every clock cycle. This delay path is made up of: 

• Clock-to-output time of registers within the control logic state machine PAL device, 
12 ns 

• Propagation delay of the control logic PAL device, 15 ns 

• Propagation delay of a logical OR gate on the response signals from each memory 
block, 10 ns (D-speed PAL device) 

• Control signal set-up time of the processor, 12 ns 

Again assuming B-speed PAL devices, these delay path times total 49 ns. 

Row Address Timing 

Referring to Figure 10-11, within the row-address cycle, the RAS line goes Low, which 
initiates a time delay signal later causing the address multiplexer to change from the row 
to the column address. 

This delay path is made up of: 

• Clock-to-output time of RAS signal registers within the control-logic state machine 
PAL device (12 ns), plus an added delay due to capacitive and inductive loading by 
the memory array of the PAL device outputs. The estimated delay is 2 ns. This is 
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Figure 10·11 Row Address Timing 
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added to the 12-ns delay of the RAS line (standard 50 pF load) for a worst-case total 
of 14 ns. 

• Mux switch control signal delay path, which runs in parallel with the memory RAS 
delay just described. This mux signal delay is made up of the clock-to-output delay of 
a lightly loaded RAS signal (12 ns) plus the delay line time (20 ns). 

• Minimum and maximum switching time of the address multiplexer, 4 ns to 9.5 ns, plus 
added delay for loading (same as calculated above), 2 ns. 

Thus the memory RAS signals are stable no later than 14 ns into the cycle, and the 
address mux output can change no sooner than 36 ns (assuming RAS outputs from the 
same PAL device will always have similar delays). So, the address hold time after RAS 
is 22 ns. This works out to satisfy the 15 ns of required address hold time after RAS 
goes active. Also, the column address is settled by no later than 43.5 ns into the cycle. 
So the column address is set up prior to the CAS going active in the next cycle. 

CAS·to·Data Ready 

In a data read operation, the Column Address Strobe (CAS) signal-to-end of DRDY cycle 
is made up of: 

• CAS signal clock-to-output time, 12 ns, plus added delay for heavier-than-normal 
output loading, as determined above, 2 ns. 

• Memory access delay from CAS, 60 ns. 

• Processor set-up time, 8 ns. 

This totals 82 ns, which translates into just two cycles. To allow an easy upgrade to 
higher frequencies, only by changing the RAMs, a three cycle access is assumed here. 
Therefore, DRDY is not made active until the second cycle following the DCAS state. 

In a data-write operation, the data is written by the falling edge of CAS. But the data hold 
time relative to RAS going active may also have to be satisfied before DRDY is made 
active to free the address and data buses. 
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For the Fujitsu memory, only the data hold time relative to CAS is required; this is 30 ns 
after CAS is active. The Am29000 processor will provide a minimum of 4-ns data hold 
time. The data transceiver will provide an additional minimum of 4-ns hold time beyond 
the end of the DCAS cycle. As shown in Figure 10-12, these will ensure meeting the 
hold time if DRDY is active in the DCAS cycle. 

For the NEC memory, the hold time relative to RAS is the longer delay path; this is 95 ns 
from RAS going active. This implies the data must be held 9 ns into the WAIT state after 
DCAS. So in this case, DRDY must not go active until the WAIT state after DCAS, as 
shown in Figure 10-13. 

Figure 10·12 CAS-to·Data Ready Timing 
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RAS-to-Shift Clock Timing 

Referring to Figure 10-13, in order to maintain a six-cycle initial instruction access time, 
only three cycles can be used for the timing of signals between RAS and SAS. In that 
time, the TR signal must be active for 90 ns to 100 ns after RAS, and it must be inactive 
25 ns to 10 ns before SAS goes active, depending on the memory used. It is a tight fit. 
The timing is as follows: 

• Clock-to-memory RAS delay, 12 ns, plus the added delay for heavy output loading of 
2 ns, for a total of 14 ns. 

• In parallel with the memory RAS, a separate copy of RAS that is not loaded by the 
memory array is used to drive the delay line determining the end of the TR signal. Its 
clock-to-output delay time is 8 ns. 

• Delay line time of 100 ns. 

• Propagation delay of the PAL device, which generates TR from the output of the 
delay line, is a minimum of 3 ns and a maximum of 10 ns, plus an output loading 
delay of 2 ns. 

• The SAS output is combinatorial and is dependent on registered input signals (IQ1 , 
IQ3, IQ4). Its minimum delay is the minimum clock-to-output delay plus the minimum 
propagation delay of a D-speed PAL device, plus the added delay for memory loading 
(3 ns + 3 ns + 2 ns = 8 ns). Its maximum delay consists of 12 ns of clock-to-output 
delay, 10 ns of propagation delay, and a loading delay of 2 ns for a total delay of 
24 ns. 

Assuming minimum delays in the TR and SAS signals and maximum delays in the RAS 
signals, the hold time for TR will be met for either the NEC or Fujitsu memories. For the 
Fujitsu memory, the TR setup time before SAS will have a 16 ns margin as shown in 
Figure 10-14. For the NEC memory, there is 31 ns of margin as shown in Figure 10-15. 

The maximum and minimum delays described above rely on the fact that all RAS out­
puts are implemented in the same PAL device, and TR and SAS outputs reside in the 
same PAL device. The PAL device outputs for related signals will always track each 
other with respect to minimum or maximum delay times. 

Burst Timing 

Within the burst access cycle, the address to data path timing is determined by: 

• Propagation delay of SAS PAL device, 10 ns, plus added delay for capacitive and 
inductive load as was done for the RAS line. The same derating delay of 2 ns will 
apply. 

• Memory access time for serial port, 30 ns 

• The processor set-up time, 8 ns 

Those delays produce a worst-case total 50 ns as shown in Figure 10-16. 

INTER-CYCLE TIMING 

Inter-cycle timing for instruction, data-read, and data-write cycles are provided in 
Figu~es 10-17 through 10-19. In these timing diagrams, the horizontal time scale is 
25-ns per division. 
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Figure 10·14 Fujitsu Transfer Enable Timing 

Fujitsu Memory 

12 
teo, PAL Device RAS Output 

2 
tid, Memory Load Delay 

tpd, Delay Line 

tpd, Transfer Enable PAL Device Min Delay 

tid, Memory Load Delay 

teo, PAL Device SAS Output Min Delay 

tid, Memory Load Delay 

Transfer Enable Min ~ 

Hold Time After RAS ~ 

Transfer Enable Min 
Setup Time to SAS 

Clock Cycle Time 50ns -t 

Figure 10·15 NEe Transfer Enable Timing 
NEe Memory 

12 
teo, PAL Device RAS Output 

2 
tid, Memory Load Delay 

tpd, Delay Line 

tpd, Transfer Enable PAL Device Min Delay 

tid, Memory Load Delay 

teo, PAL Device SAS Output Min Delay 

tid, Memory Load Delay 

AMD l1 

100 119 ns 

3 

2 

6 ns 

2 ns 

103 ns 

41 

1 0623C-1 07 

100 117.5 ns 

3 

2 

6 ns 

2 ns 

Transfer Enable Min 
Hold Time After RAS 
for NEC Memory 

"'~~--I--- 1 03 ns -1----.... 

Setup Time to SAS 
Transfer Enable Min 

Clock Cycle Time 50ns--+ 

Single-Bank VDRAM 

.. _4_1i-. 

1 0623C-1OB 

10-25 



~AMD 

Figure 10-16 Burst Access Timing 
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Figure 10-17 VDRAM Instftlction Burst Timing 
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Figure 10·18 VDRAM Data Read Timing 
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Figure 10·19 VDRAM Data Write Timing 
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PARTS LIST 

The parts list for the Am29000 Processor Single-Bank VRAM Interface is provided in 
Table 10-1. 

Table 10-1 Single-Bank VRAM Interface Parts List 

Item No. 

U1 

U2 

U3 

U4-U5 

U6 

U7 

U8 

U9 

U10-U17 

U18 

Quantity 

2 

8 

18 packages 

FINAL DISCUSSION 

Device Description 

PAL20L8-B 

AmPAL22V10-25 

74F175 

74F157 

AmPAL22V10-15 

PAL20L8-D 

PAL20R8-B 

PAL20R4-B 

MB81461-12 or PD41264 

XTTLDM-100 

Looking at the design, there may be concerns about the size of the design, whether it is 
compact or large. For an objective analysis, first look at the design from a theoretical 
standpoint, without considering the type of processor being used. 

To perform single-cycle bursts with VDRAM at clock speeds up to 20 MHz, you can use 
one bank of VDRAMs. Because of the 32-bit wide architecture, you need a minimum of 
eight VDRAMs (64K x 4-bit devices). 

For DRAMs, the address lines must be multiplexed. This implies the addition of two 
multiplexers. 

A refresh counter must be implemented. This implies the addition of one PAL device. 

In any case, you need either a delay line or a high-speed clocked state machine for fast 
generation of RAS and CAS signals. 

In summary, the raw logic, which does not depend on the type of processor used, 
requires 12 devices. Only six PAL devices are used for all the rest of the design, 
including the state machines, the generation of the RAS and CAS signals, and the 
interface to the Am29000 processor. By using higher-integrated PAL devices or 
higher-density logic, this number CQuld be reduced further. 
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INTEGRATED MEMORY 
INTERFACE CONTROLLERS 

There are several types of integrated memory control devices useful in applications for 
the 29K Family of microprocessors. These devices often provide a simple, cost-effective 
implementation of the memory system. Several of these devices are introduced in this 
chapter. 

The V29BMC Burst Mode Memory Controller, manufactured by the V3 Corporation, is a 
single-chip memory interface controller that works directly with the Am29000 processor 
and dual interleaved banks of fast page mode DRAMs. 

The SCORE Peripheral Access Controller, manufactured by the Vista Controls Corpora­
tion, is a single-chip interface controller supporting a dual-bank, interleaved instruction 
memory and a non-burst data memory. In addition, it provides I/O ports for interfacing 
with DSP, D/A, AID, and other types of processors, and also provides programmable 
timers. 

The SCORE VME Interface Controller, another product of the Vista Controls Corpora­
tion, serves as a single-chip interface between the Am29000 processor and a VME bus. 
This device makes it easy and economical to build a system integrating the Am29000 
processor with VME-bus peripherals. 

The VY86C129 29K Memory Controller and the VY86C429 Laser Printer Interface 
Controller are two ASIC products of VLSI Technology, Inc., which can be used to imple­
ment an Am29000 processor-based laser printer controller. The VY86C129 serves as 
the memory controller while the VY86C429 serves as a laser beam controller and 
peripheral I/O interface. 

V29BMC BURST MODE MEMORY CONTROLLER 

One simple, cost-effective solution to memory selection and interfacing is to use a 
V29BMC Burst Mode Memory Controller device, together with fast page mode DRAMs 
organized in two interleaved banks. This solution offers a combination of hardware 
design simplicity, low component count, reasonable memory costs, and high 
performance. 

The key feature of a V29BMC-based memory system is its ability to obtain high perform­
ance with relatively low-cost DRAMs. This is accomplished by exploiting the fast page 
mode of DRAMs, an operating mode allowing high-speed sequential access to data 
stored in a single row of the DRAM. The result is that column access times of the DRAM 
(within a single row) are similar to expensive static RAMs; a 100-ns DRAM can behave 
like a 2S-ns SRAM within a given row. To further increase performance, the V29BMC 
handles two interleaved memory banks without the addition of external logic. 

The V29BMC is a single-chip device manufactured by the V3 Corporation. It is designed 
to simplify the implementation of burst mode access in high-performance systems 
using the Am29000 processor and page mode DRAMs. The device contains the state 
machine and all the necessary logic to implement the memory interface, virtually 
eliminating the need for additional logic devices. 
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The V29BMC offers the following features: 

• Interfaces directly to the Am29000 processor 

• Manages page mode dynamic RAM devices ranging from 64 Kbits to 16 Megabits 

• Manages both instruction and data memory, using either separate or combined buses 

• High-drive output buffers drive memory array directly 

• Flexible instruction/data bus buffer management 

• Software programmable configuration of memory size, memory location, and opera-
tional parameters 

• CMOS technology; very low power consumption 

• Available in speeds ranging from 16 MHz to 33 MHz 

• Available in a 124-pin PGA or 132-pin QFP package 

The designer simply connects the V29BMC interface signals directly to those of the 
Am29000 processor and the memory array. No other external logic is required, except 
for instruction/data buffers (depending on the implementation). 

Figure 11-1 is a block diagram showing the three main components of a V29BMC-based 
memory system: the V29BMC device, the dual-bank DRAM array, and the instruction/ 
data bus buffers. 

Figure 11·1 V29BMC·Based Memory System Block Diagram 
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Design Flexibility 

The V29BMC handles both instruction and data accesses, and offers a highly flexible 
bus buffer management strategy. These features allow the system architect to select the 
features most appropriate for a given set of system requirements. 

Here are some examples of memory system options using the V29BMC: 

• Common instruction/data space 

• Split instruction/data spaces 

• Software-split instruction/data spaces 

• Slow memory devices with two-cycle burst write 

• Fast memory devices with single-cycle burst write 

• Socket-compatible memory devices selected by software configuration 

• Selection of buffer devices ranging from the 74F245 to the Am29C983 Bus 
Interchange Buffer 

Interfacing the V29BMC 

The V29BMC connects directly to the Am29000 processor address bus and instruction/ 
data bus control signals. The V29BMC-to-Am29000 processor interface handles simple, 
pipe lined, and burst mode accesses for both data and instructions. Because no external 
logic is required to implement the synchronous channel connection, propagation delays 
and signal skews that could affect performance are avoided. 

A single V29BMC may be used to handle a combined instruction/data memory. To allow 
overlapped instruction and data accesses, two V29BMC devices can be used to handle 
separate instruction and data memories. The V29BMC processor-reply output signals 
are designed so they can simply be wire-ORed together and connected directly to the 
processor interface. 

On the memory side, the V29BMC directly drives an array of DRAM devices supporting 
page mode accesses. (The majority of current DRAMs offer such support.) Each mem­
ory array is organized as two banks of 32 bits each. All the standard memory device 
sizes from 64 Kbits to 16 Megabits are supported. 

Software Configuration 

The V29BMC device is configured by software, using the first 32-bit memory read ac­
cess following de-assertion of the device's reset input. The 32-bit word programs the 
V29BMC operating mode: the memory block address, the number of burst write cycles 
(one or two), the number of RAS access cycles (three or four), the byte order (big or little 
Endian), the bus buffer control mode (four different modes available), and the DRAM 
device size (64K to 32 Meg). Figure 11-2 shows the bit fields programming the 
V29BMC. 

In memory systems containing two or more V29BMC devices, the V29BMCs can be 
daisy-chained together, with the reset-out signal from one V29BMC connected to the 
reset-in signal input to the next one. When one V29BMC is configured, it de-asserts 
its reset-out signal, allowing the next V29BMC to be configured on the next 32-bit 
memory read access. Once configured, a V29BMC only responds to addresses within 
its configured block address range. 
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Figure 11·2 V29BMC Configuration Word 
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For more detailed information on the V29BMC Burst Mode Memory Controller and 
associated development products, contact the manufacturer directly: 

V3 Corporation 
759 Warden Avenue 
Scarborough, Ontario 
Canada M1 L 4B5 
Tel: (416) 285-9188 
Fax: (416) 285-9585 

SCORE PERIPHERAL ACCESS CONTROLLER 

The SCORE Peripheral Access Controller, manufactured by the Vista Controls Corpora­
tion, is a 180-pin PGA CMOS gate array allowing rapid design and implementation of 
instruction memory, data memory, and I/O communication subsystems operating with 
the Am29000 processor. The major features of the device are listed below. 

• Provides logic and counters to support a dual-bank, interleaved instruction memory, 
using three-cycle initial access and single-cycle burst access; each bank may contain 
up to 4 Megabytes EPROM, EEPROM, PROM, or SRAM 

• Provides logic to support data memory using two-cycle (non-burst) access; up to 
1 Megabyte of data memory 

• Provides an I/O communication interface using a 128-by-16 dual port RAM; can be 
used with DSP, DIA, AID, or other type of processor 

• Provides programmable watchdog timer and programmable frame-clock timer 

• Provides 16 digital TTL-level inputs and outputs (eight inputs and eight outputs) 

SCORE VME INTERFACE CONTROLLER 

The SCORE VME Interface Controller, manufactured by the Vista Controls Corporation, 
is a 180-pin PGA CMOS gate array connecting directly to a VME bus, allowing rapid 
design and implementation of an Am29000 processor interface to the bus. The device 
complies with Mil-Std-883C. The major features of the device are listed below. 

• Provides VME bus system control functions: system controller determination, system 
clock generator, system reset generator, and bus arbiter 
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• Provides CPU support functions: RS-232 serial port, local interrupt handler, local 
reset generator, local bus timeout generator, and general-purpose programmable 
timer 

• Provides VME bus data transfer functions: bus requester, local CPU bus requester, 
local CPU bus arbiter, master and slave handshake interfaces (both 16-bit and 24-bit 
address with 16-bit data), VME location monitors, VME bus timeout generator 

• Supports half-word swapping between VME bus and CPU bus 

• Performs address decoding and base address mapping during VME slave accesses 

For More Information 

For detailed information on the SCORE Peripheral Access Controller and/or VME Inter­
face Controller, contact the manufacturer directly: 

Vista Controls Corporation 
27825 Fremont Court 
Valencia, CA 91355 
Tel: (805) 257-4430 
Fax: (805) 257-4782 

VLSI TECHNOLOGY ASIC DEVICES 

The VY86C129 29K Memory Controller and the VY86C429 Laser Printer Interface 
Controller, ASIC products of VLSI Technology, Inc., can be used to implement a 
Am29000 processor-based laser printer controller. The VY86C129 serves as the 
memory controller, while the VY86C429 serves as peripheral I/O interface and laser 
beam controller. These ASICs make it relatively simple to design the complete memory 
controller and I/O interface for a laser printer system. Figure 11-3 is a high-level block 
diagram of a laser printer controller using these devices. 

VY86C129 29K Family Memory Controller Features 

The VY86C129 29K Memory Controller offers the following features: 

• Supports 29K Family three-bus processors (Am29000, Am29050, and Am29005 
processors) and two-bus processors (Am29030 and Am29035 processors) 

• Provides processor bus interface, address mapping, and control logic 

• Provides swap and data isolation buffer control signals (DIR and DE) 

• Supports DRAM from 512 Kbytes to 64 Mbytes in one to four banks, with built-in 
page-mode access logic 

• Supports on-board ROM from 512 Kbytes to 16 Mbytes: one-way with four banks, 
two-way with two banks, or four-way with two banks 

• Supports cartridge ROM (up to two HP-type ROM cartridges) 

• Supports watchdog timer using bidirectional RES signal line 

• Provides 8-bit peripheral expansion bus 
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Figure 11-3 Am29000 Processor-Based Laser Printer Controller Block Diagram 
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The VY86C429 Laser Printer Interface Controller offers the following features: 

• Provides video interface for Canon and TEC printer engines (TEC 1305 and 
TEC 1323) 

• Uses 512-byte bidirectional video FIFO 

• Provides hardware counters for Top, Left Margin, and Line Length 

• Interrupt controller supports two classes of IRQ (Fast and Normal) 

• NVRAM interface supports external non-volatile memory 

• Provides front-panel interface with programmable debouncing options 

• Provides general-purpose 8-bit I/O port for LCD interface 

• Provides internal UART for serial port, up to 115K baud 

• Provides parallel port for printer interface 

• Provides design-ID/Scratch register 

For More Information 

For detailed information on the VY86C129 29K Memory Controller and the VY86C429 
Laser Printer Interface Controller ASICs, contact the manufacturer directly: 

VLSI Technology, Inc. 
11 09 McKay, MS-22 
San Jose, CA 95131 
Tel: (408) 434-7877 
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