Am29116 Application Note
A Microcoded Instruction By Robert E. Anderson
Processor Based On

The Am29116

&
Z
o
o
z
0
-~
)
>
<
0
o

The MIP Board: A Microcoded I-Code Processor Based on the Am29116

A. David Milton, Mitel
Robert E. Anderson, AMD

March, 1985.
Table Of Contents

Introduction 1

Chapter 1. Hardware Description 2

1.0 Overview .. 2

1.1 Detailed Descriptions 3

Arithmetic Processor Unit (AP u) 3

Computer Control Unit (CCU) 4

Microstore Control Section 4

Exception Control Section 8

Cache and Bus Control Section . 8

YBUS Source and Destination Control Section 8

Diagnostic Section 8

Special Control Block 10

Bus Interface Unit (BIU) 17

Memory Section ... 17

/O Unit ... 24

Chapter 2. Software Description 25

2.0 Overview 25

2.1 Microcode Development 26

2.2 Op-code Execution 26

2.3 Microdode Debug Tools 27

2.4 Microcode Detalils 27

Field Definitionsto SMIP .. 27

29116 Instructions 28

Chapter 3. Performance 33

3.0 Preliminary Survey 33

3.1 Compilation Speed 33

3.2 Sieve of Erosthanes ... 33

3.3 FFT .. 33

34 Ana!ysts and Conclustons 34
Appendices

A. Sample Micro-code . A1
B. Am29XXX Family Parts ... -~ B
C. MIP Board Block Diagram . G4

INTRODUCTION

There are many general-purpose MiCroprocessors
available yet none shows significant advantages when
used in high-level language and special purpose appli-
cations. A micro-programmed machine can be design-
ed to take into account the general and specialized
needs of a particular system. The resulting processor
need not be much larger than a standard MOS-based
micro-processor design; however, it will show signifi-
cant improvement in performance.

This application note is the result of the authors’ efforts
in creating a high performance, 16-bit WCS (Writable
Control Store) computer for practical as well as experi-
mental use. Given the modifiable Control Store, along
with considerable parallelism, such a computer is a
perfect vehicle for high level language or protocol
execution, or modifiable controller applications. The
WCS shortens the development time needed to adapt
the micro-programmed machine to different
applications.

This project is not the result of any development
activity at either AMD or MITEL, and neither company
can be held responsible for the accuracy of this text or
the design. The authors have tried to be as accurate
as possible, and will update the text as discrepancies
are noted. The information in this text is public
property.

The Computer Itself

The main computer (sans I/O) resides on a board about
9 by 10 inches. An Am28116 is used as the
processor. The computer has bulk RAM, a cache
memory, a parallel multiplier, a pre-fetch buffer for
instructions with its own program counter, a separate
bus for /0, and various registers and multiplexers to
accommodate pipelined execution. Heavy use of VLSI
and PAL devices allows it to compress all the afore
mentioned, and a 4k x 32 WCS, onto one board. This
compares favorably with standard MOS micro-
processor designs.

Objectives

The name of this board, MIP, stands for Microcoded I-
code Processor; it also alludes to the aim of one million
high-level instructions per second of execution. The
MIP board could be considered a ‘working standard’
microcoded instruction processor when comparing to
novel architectures. The invitation is there to compare
with board level computers done with MOS processors
of conventional design.

Ancther objective is to create the ultimate personal
workstation. UCSD Pascal has been ported so far, and
it works well. Modula 2 for the next version of
microcode is currently under consideration.

The Design

The design traces its ancestry back to similar
processors built in the late seventies and early
eighties, by several large companies. Some of these
processors were used as minicomputers, and some as
dedicated processors inside large machines such as
telephone switches. The main advantage in using
such a processor is that, given the flexible instruction
set, performance can be optimized for a given
application.

The Text

This application note should provide enough
information for a design team to reproduce the MIP
processor. In addition, some guidelines as to what
tools to assemble, and what kind of effort should be
required to complete the project are also included.

This application note is divided into three chapters.
The first chapter covers hardware descriptions. This is
divided into subsections describing the major
functional blocks of the processor in detail. Units in
block diagrams having numbers preceded by the
letters A, B, C refer to IC’s in the detailed schematic
diagram. The first chapter should be used as a
hardware reference manual for the MIP board.

The second chapter covers the software descriptions.
This is divided into subsections describing both the
low-level microcode software and the system-level
software. The Apple Pascal Reference Manual should
be referred to by readers new to this material. This
chapter should be used as a software reference
manual for the MIP board.

The third chapter covers performances. This covers
the means used to measure performance, bench-
marking, and how to tailor the software via intrinsic
functions to enhance performances.

Chapter 3 concludes with a review of the design and a
discussion of promising areas for future work.
Appendix B provides brief descriptions of some of the
AMD 29XXX family parts used in this application note.
Detailed technical questions can be directed fo the
AMD Applications Department at (408) 982-6266.

Chapter 1
HARDWARE DESCRIPTION

1.0 OVERVIEW

To hest describe the processor, the entire design is
divided into a number of functional blocks which more
or less operate autonomously. The functional blocks
are treated separately and their inter-relationships are
shown.

Figure 1.1 shows the major functional units of the MIP
board as they are connected together by two main
internal busses. The processor memory, including the
cache, is accessed via the BIU; I/O access is provided
by the IO unit, which is essentially another BIU. The
major functional units mentioned are the only units with
direct connection to the YBUS.

Abbreviations

The abbreviations used in this application note are as
follows:

APU = Arithmetic Processor Unit
CCU = Computer Control Unit
BIU = BusInterface Unit
MSD = Microstore Data Bus
YBUS = Processor DataBus
DBUS = DataBus
ABUS = AddressBus

The ABUS runs between the BIU and the memory.
There is another bus, named the S/D Bus (for
Source/Destination), which is really just a collection of
all the strobes and signals on board that did not get

mapped otherwise, and which fulfill control functions.

In the remainder of this overview section, these units
and busses are summarized.

The MSD Bus

The MSD Bus (Microstore Data Bus) is output from the
CCU (Computer Control Unit). The MSD Bus controls
the four major functional blocks on board: the APU,
BIU, I/0 UNIT, and the CCU itself. In turn, within the
CCU, the MSD Bus is interpreted and various strobes
and signals are sent out to control registers and
buffers on board.

The YBUS

The YBUS is controlled by the CCU and provides a
high-speed data path between the APU (Arithmetic
Processor Unit), and other parts of the system. Data
on the YBUS is gated to the other busses on board, in
accordance with MSD directives and in synchronization

The CCU

The CCU (Computer Control Unit) is the source of the
MSD Bus which provides instructions to the processor
and the rest of the system. The CCU also handles all of
the timings at the micro-instruction level, and produces
the S/D Bus signals to synchronize and control gating
onto all of the busses inthe system.

The APU

The APU (Arithmetic Processor Unit) provides all of the
arithmetic and logical functions of the processor.
Special data-shift operations and multiply functions are
also handled here.

: MICROSTORE DATA BUS (MSD) >

COMPUTER ARITHMETIC
CONTROL PROCESSOR
UNIT (CCU) UNIT (APU)

BUS o
INTERFACE UNIT
UNIT (BIU)

T 1 1

DATA (YBUS) >

Figure 1.1 MIP Block Diagram

The BIU

The BIU (Bus Interface Unit) contains address and data
registers to interface the MIP to the main memory.
Some of these registers are general purpose, and
some are used only for high-level language execution.

The I/0 Unit

The I/O unit is essentially another BIU. It contains a bi-
directional data register to interface to a high-speed /O
channel.

1.1 DETAILED DESCRIPTIONS
The Arithmetic Processing Unit (APU)

An APU is the part of a computer which performs
arithmetic and logical operations on data. There are
usually a number of general purpose registers within
the APU which may be used for temporary storage of
variables.

When dealing with high-level language concepts, a
number of special purpose functions are often
required; such as data shift and field isolation, bit oper-
ations, prioritize operations, and multiply and divide.
These functions are also contained within the APU.

In the MIP computer, the APU consists of @ Am29116,
a Am29517, a Condition Code PAL device (CCPAL)
and diagnostic registers for the YBUS. The Am29116
provides the bulk of the arithmetic functionality and the
register file. Al data shifting and field isolation

capability are contained within the Am29116
instruction set, except for dynamic shifts, which are
augmented by overlaying a field in the CCU. Certain
bit-oriented and rotate instructions normally receive a
count from the CCU (via the MSD Bus). These
instructions may be modified by the CCU so that the
count is dependent on the data onthe YBUS.

All multiplications are done by the Am29517. Several
formats are available with this device to suit different
numerical algorithms. Divides are done using the
Am29116 in a two-cycle-per-bit divide loop. To do
faster divides, the Newton-Raphson method could be
used.

The MSD Bus supplies instructions for the Am29116
and Condition Code PAL device circuit. The Source/
Destination Control Bus supplies decoded control
signals (i.e. strobes, clocks, etc.) to perform major
sequencing.

The APU circuit is shown in detail in Appendix C. The
instruction code going into the Am29116, Ig to Iy, is
from MSD bits 32-35. B20 creates these bits from
MSD bits 9 to 12, or YBUS bits 0 to 3. This allows the
YBUS to specify the count, or bit number, for certain
operations in the Am29116. This is the family of
dynamic bit-shift, rotate and field isolation instructions.

The Am29818 diagnostic pipeline registers are used
to read or_write to the YBUS when testing. During
testing, if OEY is held High, any value can be placed
on the YBUS to load any register. The Am29818
YBUS registers have also proved useful in some micro-
code sequences.

O S— A
DA BUS PROGESSOR
CONTROL
‘ Am29517 BUS
‘ MULTIPLIER [N\ (S/D BUS)
Am29818 \rA:—
SYSITB'lEJhg DIAGNOSTIC
s REGISTERS

Figure 1.2 APU Block Diagram

The CCPAL accomplishes latching and decoding
functions for the condition code (CC). This is used by
the CCU for conditional branches. Condition codes
from the Am29116 are latched externally to give
pipelined execution and improve the cycle time of the
processor.

MSD bits 12-15 determine the polarity and selection
criteria for the condition code (CC) from the status bits.

T1 thru T4, and CT from the Am29116 are latched
when PLCLK goes from Low to High at the start of
each cycle, if SRE is Low. If SRE is High, the latched
codes are retained (Figure 1.3). T1 thru T4 are the
standard arithmetic flags: Zero, Sign, Carry and
Overilow. CT is generated by a class of instructions in
the Am28116 and is simply a delayed function of T1
thru T4. PLCLK has a 50% duty-cycle, except in the
case of Wait States which extend the Low phase by
integral cycles (62.5 ns each for an 8 MHz PLCLK).

The CCPAL equations show how the latching and
decoding are done (Figure 1.4). The APU, as
constructed, combines the Am29116, the Am29517,
and Enhanced Condition Code handling.

The Computer Control Unit (CCU)

The CCU controls and synchronizes the various units
of the computer. It provides an ordered set of instruc-
tions to the rest of the machine. The flow of these
instructions may depend on the data.

An overview of the CCU is shown in Figure 1.5. |t
consists of 3 main sections. These sections are: the
Microstore Control Section, the Exception (Interrupt)
Control Section, and the Cache and Register Control
~ Section.

The Microstore Control Section is the source of the
microcode instruction for all parts of the machine. The
Cache and Register Control Section ‘cracks’ microcode

fields into timing strobes which form collectively the
S/DBus.

The Exception Control Unit (ECU) handles irregular
control transfers (i.e. interrupts). In some cases the
ECU may be simplified, or absent if the application
does not require it.

Microstore Contre! Section

Instruction execution in the processor is controlled by
a single clock, PLCLK. A micro- instruction cycle is
defined by a period of PLCLK. This clock is a 50%
duty-cycle signal with a nominal period of 125 ns The
Low period of this clock may be extended by 62.5 ns
increments to accommodate timing conflicts in the BIU,
or may be held Low by the external HALT line.

The Microstore Control Section is shown in Figure 1.6.
The Micro-Sequencer (Am2910A) creates a
Microstore Address which accesses the Control Store.
The Control Store data is latched at the beginning of
each pipeline clock cycle and forms the MSD Bus.
Most of the MSD bits go to other paris of the machine,
but 4 bits (28-31) are used to control the Am2910A
sequencer itself.

A portion of the MSD data may be used to form a
branch address by gating the lower 16 bits onto the
YBUS. This machine uses a compressed Micro Store
Word (vertically coded). The micro store branch
address and condition code fields are overlapped with
the Am29116 control field. This means that a given
instruction may cause conditional branching to occur
or may be used foran APU operation.

The WCS Section, shown in Figure 1.7, has eight 4K
x 4 static RAMs (AMD9968 CMOS static RAMs) which
are used for microcode data. Four Am29818
diagnostic pipeline registers are used for single-level
pipelining of the microstore (RAM) data. Two
Am29818 registers (Am29818 address access) can

CT.T4
SIGNALS

(Am29116) ____::
MSD2;
SELECT

MSD23
SRE

L—» CC

CCPAL

PLCLCK

TIMING

PLCLK L————-——,—!—-
SRE ___.____J—
T

CHANGING LATCHED

Figure 1.3 Condition Code PAL Device Circuit

PAL16L8 LTl = /T1*SRE*/PLCLK ; sample if status
: during last part
; Condition Code Pal + LT1*/SRE ; keep if no status
; ccl.pal.text update
: + LT1*PLCLK ; hold while plclk
poOL,C,B,A,CT,T1,T2,T3,/SRE,GND, PLCLK, + LT1*/T1.
/cco, /¢TL, T4, /1LT4, /LT3, /LT2, /LT1, /CCL,VCC H
; ; T2 latch
CeO0 =/C*/B*/A* CTL ; active low H
conditions LT2 = /T2*SRE*/PLCLK ; sample if status
+/C*/B* A* LT1 ; nct,nz,nc,p,novr during last part
+/C* B*/A* LT2 + LT2*/SRE ; keep if no status
+/C* B* A* LT3 update
+ C*/B*/A* LT4 + LT2*PLCLK ; hold while plclk
QPOL. + LT2*/T2.
CCl =/C*/B*/A*/CTL ; active high ; T3 latch
conditions ;
+/C*/B* A*/LT1 : ct,z,c,n,0ovr LT3 = /T3*SRE*/PLCLK ; sample if status
+/C* B*/A*/LT2 during last part
+/C* B* A*/LT3 + LT3*/SRE ; keep if no status
+ C*/B*/A*/LT4 update
+ C* B* A ; unc + LT3*PLCLK ; hold while plclk
@/POL. + LT3*/T3.
; CT latch : T4 latch
CTL = /CT*SRE*/PLCLK ; sample if status LT4 = /T4*SRE*/PLCLK ; sample if status
during last part during last part
+ CTL*/SRE ; keep if no status + LT4*/SRE ; keep if no status
update update
+ CTL*PLCLK ; hold while plclk + LT4*PLCLK : hold while plclk
+ CTL*/CT. + LT4*/T4.
; Tl latch END
Figure 1.4

< D

I

—

MICROSTORE CACHE AND EXCEPTION
CONTROL REGISTER CONTROL
(Am2910A) CONTROL (Am2914)

{\

MSD BUS

N m—

=

VANIVAN

SOURCE/DEST, CONTROL (S/D BUS)

Figure 1.5 CCU Block Diagram

A MICROSTORE

ADDRESS CONTROL

STORE

—
> Am2810A

MSD BUS

YBUS

READ-
BACK

BUFFER
K K 150

\

Figure 1.6 Microstore Control Section

S/D BUS (CONTROL)

Am29818 ADDRESS

ACCESS
B45

N

ﬁ <
4K X 32

> STATIC >
RAM
MICROSTORE ADDRESS

B6-B13

Am29818
PIPELINE

B14-17

> MSD BUS

Figure 1.7 Writable Control Store (WCS)

S/D BUS

i [[
IRQO-
1RQ7 CONTROL CONTROL
2914 20.518
INTERRUPT READABLE
iRQ CONTROLLER LATCH
10-13
Do-D2 Do-D7 @ D8-D11
YBUS >
Figure 1.8 Exception Control Section
ABUS
YBUS
< MSD BUS]] >
YBUS SOURCE/ SPECIAL
gg@‘%%% DESTINATION CONTROL
DECODE BLOCK
CONPUTER YBUS S/D SPECIAL
CONTROLS SIGNALS CONTROLS
S/D BUS >

Figure 1.9 Cache and Bus Control Section

jam the Microstore Address Bus and thus allow the
Microstore Memory to be stored from the pipeline
registers. The address access registers also help,
during diagnostics, by providing a convenient way to
look at the address from the Am2910A.

Exception Control Section

The Exception Control Section (Figure 1.8) latches
and regulates interrupt requests based on instructions
fromthe MSD bus.

The Exception Control Section uses the_Am2914
Interrupt Controller. Interrupts IRQO thru IRQ7 are
prioritized and encoded to a 3-bit value. IRQ is
generated and when the processor reads the
Am2914, the 3 Low bits on the YBUS give the
interrupt number.

The Am29LS18 outputs (lg-l3) are shared between
the Am2914 and the Am29517. The interrupt enable
signal, IEN, is used to separately qualify instructions to
the Am2914 (lg-l3). When the Am29517 is being
used, IEN is held High.

Cache And Bus Control Section

The Cache and Bus Control Section (Figure 1.9)
produces almost all of the signals for the S/D Bus. For
clarity, this section is divided into three parts: the
Diagnostic Connector, the YBUS Source/Destination
Decode Block, and the Special Control Block.

The Diagnostic Connector provides access to the
diagnostic pipeline registers and the timing logic of the
processor. It is used to examine processor status, load
the WCS, or change some data value in the processor
or its bulk memory. With this facility, it is possible to
debug hardware, micro-code or high-level software.
The signals on this interface are not time critical so the
diagnostic device can be kept simple and need not
have super performance to be useful.

The YBUS Source/Destination Decode Block decodes
two fields of the MSD Bus (16-19, 20-22) into the
respective register and buffer control signals for
devices connected to the YBUS.

The Special Control Block integrates a number of
functions which are necessary for the BiU. Due to the
critical timing nature of some of the signals and the
overall control relationship to the processor, they are
included in the CCU. This also leads to a compression
in the amount of circuit real estate devoted to these
functions.

The YBUS is the main data highway of the processor.
All of the functional blocks attach to the YBUS. A set of

fields in the micro-store word control activity on this
bus. One data value can be moved from source to
destination per pipeline cycle. The diagnostic regis-
ters (Am29818's) attached to the YBUS uncondi-
tionally capture the data at the end of each cycle.

YBUS Source and Destination Control
Section

The YBUS Source and Destination Decode Block
produces the Source and Destination control signals
(S/D Bus) which are used to control register access to
or from the YBUS (Figure 1.10). The signals are
defined as follows:

Signal Meaning
OEY Enable output on Am29116
DREN Enable incoming data register (BIU)
YREG Enable output of Am29818 registers on
YBUS
IODEN Enable /O unit incoming data
IREN Enable instruction register (This signal is
further qualified in regctl PAL.)
OEPM Enable high product from Am29517 to
- YBUS
OEPL Enable low product from Am29517 to YBUS
LDIOC Move data into /O control register
LDDR Move data into data output register (BIU)
LDPC Move data into program counter reg. (BIU)
LDAR Move datainto address register (BIU)
DLE Move datato Am29116 (This signal is
changed to DH by STEP PAL device in
Diagnostics Section before feeding into
the Am29116.)
LDPG Move data to high address reg. (BIU)
LDPCPG Move data to high PC-address reg. (BIU)
LDICA Move data to I/O address reg.
CVECT Enable MSD bus to YBUS (Bits 15-0)

enable branching

EN Enable Y register load on Am29517
Enable X register load on Am29517
IEN Enable instruction for Am2914

ABEN Enable readback on address bus (BIU)
PGEN Enable readback on high address bus (BIU)
YSHIFT Cause YBUS 3-0to overlay MSD BUS

35-32, which are normally MSD BUS
12-9

Diagnostic Section

The Diagnostic Section (Figure 1.11) consists of the
Diagnostic Connector and part of ‘STEP’ PAL device
(B24). The Diagnostic Connector pin numbers are as
shown in Figure 1.11. The ‘STEP’ PAL device, as the
name suggests, is used to synchronize the incoming
signals from the Diagnostic Connector and cause the
XWAIT signal to be well-behaved with respect to the
master clock of the pracessor.

MSD BUS;5_25 >

PLCLK ————p

YBUS
DECODE

> S/DBUS

B21-23

Figure 1.10 YBUS Decode Section

DIAGNOSTIC
CONNECTOR 2\
NAME | PIN S/D BUS
RCS 8
DOLK | 8 STEP P
W | 10) A
AST 12
MODE | 14 F——N B24
SDI 16 _—/
SDO 18
HALT 20 <
29100E | 22 XWAIT
STEP 24
Figure 1.11 Diagnostics Section

PAL16R4

H
;

; MIP Processor Cache enables and step

control
; step.pal.text

CP16M, /PLCLK, /DLE, /RESET, /HALT, /STEP, AO, /BYTE,

Al6,GND, /EN, /ClL, /C1H, /XWAIT,/ST2,/ST1, /DH,

/COH, /COL, VCC

;

DH := DLE*PLCLK*/RESET

+ DH*/PLCLK*/RESET.

ST1 := STEP*/RESET.

ST2 := ST1*/RESET.

7

: hold data if
dle

; no change
while plclk high

; detect the
step pulse

; stage 2

Figure 1.12

XWAIT := HALT*/ST1*/ST2
+ HALT*ST1
+ HALT*ST1%ST2.

;

; Cache chip selects

CcOL /A16*BYTE
+ /Al6*A0*/BYTE.

COH

= /Al6*/A0*/BYTE
+ /Al6*BYTE.
ClL = Al6*BYTE
+ Al6*A0*/BYTE.
ClH = Al6*/A0*/BYTE
+ A16*BYTE.
END

Step PAL Equations

; normal halt

; do step when
/stl*st2

The meanings of the mnemonics in the Diagnostic
Connector are given below:

Signal Name Utility
RCS Read Control Store (Normally Asserted)
causes MSD RAMs to assert data
DCLK Data Clock (Normally Low) clocks data
into Am29818 diagnostic register
CSW Control Store Write (Normally High)
strobes data into MSD RAMs
RST General Reset signal (Normally High)
MODE Am29818 control signal.
SDl, SDO Serial Data for Am29818 devices
ALT Processor Halt signal
Am?29100E Outtput enahle for Am2910A (Normally
Asserted)
STEP Single Step control signal.

The Cache and Byte Decode Section is shown in
Figure 1.14. Part of the ‘STEP’ PAL device is used to
demultiplex the address and byte-op information
given. It is necessary to decode to the byte-level for
the cache because the processor can do byte reads
and writes. A16 is part of the Address Bus {(A16 is ‘1’
for C1L and C1H, ‘0’ for COL and COH). The 4 individ-
ual byte-wide cache outputs are controlled from here.

Part of ‘SHIFT’ PAL device is used to control byte
overlay for accesses over the DBUS. During memory
byte operations, the byte being read or written is right
justified in the data register of the BIU.

The Shift PAL equations are shown in Figure 1.17A,
since most of the PAL device is used in the ‘SHIFT’
function.

The Register Conirol PAL device controls the
instruction fetch, and takes care of interrupt vectoring
and cycle stretching for store conflicts. The outputs
have the following interpretations:

The PAL equations for ‘STEP’ PAL device are shown
in Figure 1.12. The cache decode signals share this
PAL device with the Diagnostics Section. Since the
cache has four 2k x 8 RAMs, 4 cache enables are
required to provide for byte access. The signals have
the following functions:

DH Asignalfor the input data latch of the
Am29116, follows DLE sampled by PLCLK
(micro-program uses this to control input

latch)

ST1,ST2 Registers used to detect edge of STEP for
single step of the processor

XWAIT The control signal derived from HALT and

ST1 and ST2 which is used to stop the
processor from an external device

COL,COH Individual chip enables for the cache RAMs

CiL,CiH

Special Control Block

The Special Control Block consists of four
distinguishable sections (Figure 1.13). There is a
Cache Byte Decode Section to aid in decoding cache
accesses, a Register Control Section, a Bus Seg-
uence Control Section, and a MSD muiltiplexer (MUX).

IRLEN, IRHEN Byte wide enables for the instruction
register
PCINC Program counter increment if no interrupt
IRQV Enable interrupt vector to YBUS if
interrupt accepted
COE Enable cacheifread and hit
STREQ Store request for cycle in progress

means BIU about {o be busy. If BIlU is
already busy, there will be a wait

The Bus Sequence Control Section controls accesses
over the data and address bus to the cache and main
memory (Figure 1.16). The BSEQ PAL device
provides PLCLK, detects Data Acknowledge,
requests an external memory cycle if the cache
misses, and latches and hoids the memory operation
(MSD 27-25) until the cycle is completed. The micro-
store instruction will specify that a certain type of bus
cycle be performed. This instruction is loaded into the
Bus Sequencer and the cycle is started. The micro-
program sequencer can continue onto other
instructions while this cycle is in progress. If another
bus cycle instruction (other than NOP) arrives while the
Bus Sequencer is busy, the Wait line will be asserted
until the current bus cycle completes.

There are also other conditions which can cause this
Wait to occur. If the micro-instruction specifies a data
or instruction register, while a bus cycle is in progress
to fill that register, a Wait will occur until the register is
filled.

10

VW

< MSD BUS
ABUS ' ‘
CACHE BUS
AND BYTE i SEQUENCE MeD
CONTROL CONTROL CONTROL

1

S/D BUS

Figure 1.13 Special Control Block

ABUS: 16, 0, PART —_—
BYTEOP :> OF ’ C_OL
sTEp p——» COH

PAL

92

B23

ABUS: 0, PART
BYTEOP OF
SHIFT ROE!

PAL

(=]
O
I

i
;|

DROE

©mBUS) — ¥

B20

Figure 1.14 Cache and Byte Decode Section

11

YBUS: 0,8 —
REGCTL |——— IRHEN
je———p

PAL
MSD: 27-25

S/D BUS

G
i
3¢

B25

Figure 1.15 Register Control Section

PAL16L8

; MIP Processor Register Control Pal
; regctl.pal.text

RO,R1,R2, /IRQ,PCO, /DREN, /HIT, /IREN, /LDPC, GND,

YBUSO, /IRLEN, /IRHEN, /PCINC, /IRQV, /DRLD, /IRLD, /COE, /STREQ, VCC

; Instruction register enables if no vector interrupt
IRLEN = /PCO*IREN*/IRQ. ; low byte if no int

IRHEN = PCO*IREN*/IRQ. ; high byte if no int

; Program counter increment if no vector interrupt

PCINC = IREN*/IRQ i inc pc if no vector interupt
+ LDPC*YBUSO*/PCO ; loadpc & new <> pcO then inc
+ LDPC*/YBUSO*PCO.

; interrupt vector bit generation

IRQV = IREN*IRQ ; decode vector interrupt condition
@IREN*IRQ. ; enable vectoring to ybus

; Cache output enable

COE = IRLD*HIT ; cache enable if read and hit
+ DRLD*HIT.

;

; Store request for processor cycle in progress

STREQ = R2 ; 4 — 7 data store ops and waits
+ /R2 * RO ;1&3
+ /R2* R1*/RO*PCINC*PCO. ;2 auto fetch program store
END

Figure 1.15A REGCTL PAL

12

S/D BUS

MSD 27-25 p, BSEQ
PAL

2X PCLK memse—

B26

BUSCTL

B27

Figure 1.16 Bus Sequence Control Section

The types of bus cycles which may be performed are
Read and Write Word, using AR (address register) and
DR (Data Register), Read and Write Byte, using AR and
the low-order half of DR, Read Word, using PC
(Program Counter) and IR (Instruction Register), and
Conditional Read Word, using PC and IR. This last
cycle is used when fetching op-codes for high-level
language execution. If the PC is odd and the IR is
being accessed, a bus cycle will start to automatically fill
the IR, using the value of the PC after it has been
incremented by one.

A NOP instruction is also available for the Bus
Sequencer. This causes no action to be done to
memory, nor will it cause a Wait. There is a WIO (Waiton
I/0) op-code for the Bus Sequencer control logic. |t
also causes no memory activity but does cause a
Processor Wait if the memory is being used. The Bus
Control Sequencer signals have the following
functions:

The BUSCTL PAL device is controlled by the BSEQ
PAL device. The BUSCTL PAL device creates
BYTEOP and decodes signals DRLD, DROE, PCEN,
AREN, and the Wait State criteria. The four decoded
signals control the data flow on the main memory data
bus,'DBUS’, and determine which address register is
to supply the address for the bus cycle.

This PAL device also does the cache write enable if
one is allowed by the UPDATE signal (UPDT) from the
cache logic. Figure 1.16A gives the equations for the
MIP Processor Bus Control PAL device. For the
BUSCTL PAL device (Figure 1.16B) the signals have
the following functions:

IRLD Loads the Instruction Register {IR) when
data is available from a Program Store Read
cycle

DRLD Loads the Data Register (DR) when data is
available from a Data Store Read

PLCLK Is the master instruction clock for the
processor

BYTEOP Signifies that the current cycle is a byte
operation

DTAK The synchronized acknowledge from a
memory device or cache

XRQ Active during a memory request when there
is no HIT on the cache (always active
during write cycles)

RO, R1, R2 The latched memory store operation in
progress

CWE Is the write enable for the Cache Data and
Tag Memory, it occurs when valid data is
written into the cache.

DROE Is the enable for data register write to
memory

PCEN Is active when the Program Counter
provides the memory address

ACTIVE Indicates a memory cycle in progress

PCO A copy of the LSB of the program counter
used to point to the proper IR byte and to
determine when to do the next program
store fetch.

AREN Is active when the Address Register
provides the memory address

WAIT Causes the processor to wait when a
conflict occurs within the BIU

13

PAL16R8

H

; Mip Processor Bus Control Sequencer Pal
; bseg.pal.text

CP16M,M25,M26,M27, /WAIT, /DACK, /HIT, /PCINC, /RESET, GND,
/EN, /PLCLK, PCO, /DTK, /ACTIV, /XRQ,R2,R1,R0,VCC

main pipe clock for the processor 1 cycle = 1 instruction

N e e

PLCLK := /RESET*/PLCLK ; going low

+ WAIT*/RESET. ; wait request
; data acknowledge from either external memory or the cache
; only generate dtk for state 4 & 7 when not in external wait

DTK := XRQ*DACK*ACTIV*/RESET ; dack detect ncrmal cycles
+ /R2*/R1*RO*ACTIV*HIT*PLCLK*/RESET ; 1 dtk for cache hit
+ /R2*R1* ACTIV*HIT*PLCLK*/RESET ; 2 & 3 dtk for cache hit
+ R2*/R1*RO*ACTIV*HIT*PLCLK*/RESET ; 5 dtk for cache hit

7
; external memory request if data not in cache or a write cycle

XRQ := /R2*/R1* RO*/XRQ*/DTK*/RESET*ACTIV*/HIT*PLCLK ; 1
+ /R2* R1%* /XRQ*/DTK*/RESET*ACTIV*/HIT*PLCLK ; 2 & 3
+ R2*/R1* RO*/XRQ*/DTK*/RESET*ACTIV*/HIT*PLCLK ; 5
+ R2* /RO*/XRQ*/DTK*/RESET*ACTIV*PLCLK ; 4 & 6 write thru cache
+ XRQ*/DTK*/RESET.

; store request codes r0 - r2 are transparent until an active cycle
; then the latch the code for that cycle until it is completed

/RO :=/M25*/ACTIV*/RESET ; transparent while not active
+ /RO*ACTIV*/RESET. ; then latch last state

/R1 :=/M26*/ACTIV*/RESET ; transparent while not active
+ /R1*ACTIV*/RESET. ; then latch last state

/R2 :=/M27*/ACTIV*/RESET ; transparent while not active
+ /R2*ACTIV*/RESET. ; then latch last state

;
; signifies that a an active store request is in progress
; until an acknowledge of some sort is generated

; may not go active until wait goes away

ACTIV := ACTIV*/DTK*/RESET ; staying active
+ M27*/M26 */BCTIV*/DTK*/RESET*PLCLK*/WAIT ; 4 & 5
+ M27*M26*/M25%/ACTIV*/DTK*/RESET*PLCLK*/WAIT ; 6 data write
+/M27 *M25*/ACTIV*/DTK*/RESET*PLCLK*/WAIT ; 1 & 3
+/M27*M26* /M25*PCINC*PCO*/ACTIV*/DTK*/RESET*PLCLK*/WAIT.

; 2 if pcinc

; a copy of the PC LSB for instruction register uses

; allows overlapped AR activity and IR use

/PCO := /PCINC*/PCO*/RESET ; keep what got

+ /PCO*WAIT*/RESET ; hold while waiting

+ PCINC*/PLCLK*/PCO*/RESET ; hold while PLCLK high

+ PLCLK*PCINC*PCO*/WAIT*/RESET. ; active if no waits
END

Figure 1.16A BSEQ PAL Device

14

PAL16L8
; Mip Processor Bus Control Pal
; busctl.pal.text
RO,R1,R2,/STREQ, /IREN, /DREN, PLCLK, /UPDT, /ACTIV,GND,
/DTAK,/IRLD,/BYTEOP,/DRLD,/CWE,/DROE,/PCEN,/AREN,/WAIT,VCC

; Store control loads instruction register
IRLD =/R2*/R1* RO*ACTIV*/DTAK ; 1 RPS
+/R2* R1*/RO*ACTIV*/DTAK. ; 2 CRPS

Store control loads data register

N N e

DRLD = /R2* R1 RO*ACTIV*/DTAK ; 3 RDSB
+ R2*/R1* RO*ACTIV*/DTAK. ; 5 RDS
; Byte wide data op
BYTEOP = /R2* R1 * RO * ACTIV ;> 3 RDSB
+ R2*/R1 */RO * ACTIV. ; 4 WDSB

;

; Cache write control on current store control cycle

CWE =/R2*/R1* RO*ACTIV*UPDT*DTAK ;1 RPS
+/R2* R1*/RO*ACTIV*UPDT*DTAK ; 2 CRPS
+ R2*/R1*/RO*ACTIV*UPDT*DTAK ; 4 WDSB
+ R2*/R1* RO*ACTIV*UPDT*DTAK ; 5 RDS
+ R2* R1*/RO*ACTIV*UPDT*DTAK. ; 6 WDS

;

: Store control enables data out register (also called WE)

DROE = R2 * /R1 * /RO * ACTIV

; 4 WDSB
+ R2* R1*/RO*ACTIV. ; 6 WDS
: Store control using PC to supply address
PCEN =/R2*/R1* RO ; 1 RPS
+/R2* R1*/R0O ; 2 CRPS
+/R2*/R1*/RO. ; 0 to read back PC
: Store control using AR to supply address
AREN = /R2* R1* RO ; 3 RDSB
+ R2. ;4 -7

;
; New store request conflicts with cycle in progress

H

WAIT =ACTIV*STREQ*/PLCLK ; store active and pending request
+/R2*/R1* RO*ACTIV*/PLCLK*IREN ; 1 RPS not done before IREN
+ R2* R1*/RO*ACTIV*/PLCLK*IREN ; 2 CRPS not done before IREN
+/R2* R1* RO*ACTIV*/PLCLK*DREN ; 3 RDSB not done before DREN
+ R2*/R1* RO*ACTIV*/PLCLK*DREN ; 5 RDS not done before DREN
+ DTAK*STREQ*/PLCLK. ; store active and pending request
END

Figure 1.16B BUSCTL PAL Device

15

The MSD MUX (Figure 1.17) provides a method lg.l4g The muttiplexed instruction to the

whereby the rotation, or bit number can be passed from l11.142 Am29116.

the YBUS back into the micro-instruction. When

YSHIFT is asserted, the YBUS data overlays regular DROEH Output enable for the upper byte of the data

MSD data bits. This is caused by a particular YBUS register for word writes to memory

store code in the MSD control word. The equations for — . .

‘SHIFT’ PAL device are shown in Figure 1.17A. BYTEN Enable for the transceiver connecting the
upper and lower bytes of the data bus

The SHIFT PAL signals have the foliowing functions: ;’:;g,:;i‘t’tffg'g":::gfﬁe data being

YSHIFT (FROM S/D BUS)

PART MSD 35_a2
MSD1z2-9 :> OF :‘J> (TO Am29116)
SHIFT

PAL

v B26

Figure 1.17 MSD Mux

PAL16LS8
; MIP Processor Shift Control Pal
; shift.pal.text

MSD9,MSD10,MSD11,MSD12,Y0,Y1,Y2,Y3,/YSHIFT, GND,
/DROE, I9,110,111,1I12,R0,/BYTE,/DROEH, /BYTEN, VCC

/19 = /MSDO*/YSHIFT ; shift value from microcode
+ /YO*YSHIFT. ; shift value from ybus

/110 = /MSD10*/YSHIFT ; shift value from microcode
+ /Y1*YSHIFT. ; shift value from ybus

/I11 = /MSD11*/YSHIFT ; shift value from microcode
+ /Y2*YSHIFT. ; shift value from ybus

/112 = /MSD12*/YSHIFT ; shift value from microcode
+ /Y3*YSHIFT. ; shift value from ybus

DROEH = DROE*/BYTE. ; use upper byte if not byte write

BYTEN = BYTE*/AO. ; enable mux to upper byte

END

Figure 1.17A SHIFT PAL Device

16

The Bus Interface Unit

The Bus Interface Unit, or BIU, consists of the registers
and transceivers necessary to interface to the main
memory and the cache (Figure 1.18). The Data Section
(Figure 1.19) consists of two 16-bit bidirectional data
registers, and a 16-bit instruction register, accessible
one byte at a time (op-codes are one byte each). There
is also a byte MUX to allow reading the high byte, or
writing to the high byte (for data accesses) in a byte
addressed fashion, with the resulting data being right-
justified in the data register.

The Address Section (Figure 1.20) consists of a 24-bit
address register and a 20-bit program counter. The ad-
dress register is used with the data register for memory
data transfers. The program counter is used with the
instruction register to implement a pre-fetched program
store. When data bytes from the instruction register are
read, the Program Counter is auto-incremented.

Both the Address and Program counter may be read
back to the YBUS by the CPU via readback buffers.

The Memory Section

The Memory Section (Figure 1.21) consists of a Cache
Segction (Figure 1.22), which runs at processor speed,
and a Main Memory Section (Figure 1.23), which runs at
about a 350 ns access.

A single set associative cache is used. The size is quite
large: 4K words are available. A 75% hit ratio with this

size cache is estimated.

The Main Memory Section consists of 128k of 18-bit
words, two PAL devices for sequencing, and a
Am2964B DRAM Controller.

The Cache Memory consists of 4k words of 70 ns static
RAM for data, and a 4k x 4 RAM for address tags. The
data RAMs are accessible by byte to support byte
operations. Control circuitry is provided to supply the
HIT/MISS acknowledge and allows for tag and data
updating under control of the CCU. A write-thru-cache
scheme is employed.

The Tag Memory is accessed for every memory
operation. Four address bits (7, 9, 11, 14) form the tag
data and the rest form the address to the tag and data
RAMS. The tag data is compared with address bits (7,
9, 11, 14) and the HIT/MISS status is reported to the
Cache Control Block. The upper address bits are used
to check range validity.

If the memory cycle is a Read and there is a Hit on the
cache (requested data is in the cache), then cache
data is output on the DBUS and no bulk memory cycle
is performed. If a Miss occurs, then a bulk memory
cycle will happen. When data is available from the bulk
memory, it will be written into the cache as well as
being loaded into the proper data register.

A Hit on the cache memory during a Write cycle will
cause the data in the cache, as well as that in the bulk
memory, to be updated. If a Miss occurs, then only
the bulk memory will be updated.

YBUS

-

)

{}

S/D BUS

{}

<

DATA
SECTION

DBUS

ADDRESS
SECTION

ABUS

Figure 1.18 The Bus Interface Unit (BIU)

17

S/D BUS

0

NV

Figure 1.20 Address Section

DATA BYTE PROGRAMCODE
REGISTER MUX REGISTER
c1, C2 c5 c3, c4
< DBUS >
Figure 1.19 Data Section
< S/D BUS
< YBUS >
ADDRESS READBACK PROGRAM
REGISTER BUFFER COUNTER
ce-C8 Cc9-C11 C12-C16
< ABUS >

18

ABUS

VANIVAN

VoV

S/D BUS
CACHE MAIN
MEMORY MEMORY
(4K x 16) (128 x 16)
< DBUS

Figure 1.21 Memory Section

A BUS

S/D BUS (CONTROL)

VA NIAN

—
D

Vi

TAG CACHE CACHE
MEMORY > PAL (4K x 16)
D2 D1 D4,5,8,9

Figure 1.22 Cache Section

19

in

In r to

L)

order to keep cache consistency, a Read byte miss
on the cache will not cause data to be written to the
cache. This is due to the fact that when a byte is read
from the bulk memory, only one byte is read. A byte
write hit on the cache will update the correct byte as
weil as the main memory byte.

There is no special cache initialization logic. After
power up, all that is required is to read the biock of
main memory which is covered by the cache memory.
This makes the cache memory consistent with the
main memory. Subsequent memory operations will
not change this.

PAL16LS8

;

; MIP Processor Cache Memory Control
; Cache.pal.text

Al17,A18,A19,A20,A7,A9,A11,A14, /CWE,GND,
/DROE, /UPDT, OAl1l,0A9,0A7, /HIT1,0A14, /HIT, /LOCAL,VCC

LOCAL = /A20*/A19*/A18%/Al7.
HIT,HIT1 do the 4 bit comparison

H

HIT

+ HIT1*/0Al4*/Al4

+ HIT1* OAl4* Al4
HIT1 =/A7*/0RA7
+ A7* OA7
+/AT*/OR7
+ A7* OA7
+ A7* CA7
+/A7%/0A7
+ A7* OA7

/A9/OR9 *
/A9/OR9
* A9* OA9
* A9* ORA9
/R9/OR9
* A9* OA9
* A9* OA9

All* OAll
All* OAll
All* OAll
All* OAll
/A11*/OR11
/A11*/0A1l

*
*
*
*
*
*

/OAl4 /Al4

QCWE.

/OAll = /All
@CWE .

/OAS = /A9
QCWE.

/OAT

QCHWE.

UPDT = /DRQE*/HIT
+ DROE* HIT
+ CWE
@ /B20%/R19*/A18*/A17.

;

=/A7*/OR7*/A9*/OR9*/A11*/0Al1* OAl4* Al4
+/A7*/OAT*/A9*/OR9*/A11*/OA11*/OA14*/A14

; decode for local space
for tag matches (16 terms)

/A20%/A19 /A18*/Al7
/A20%/A19%/A18/A17
/R20/A19%/A18*/A17
*/A20%/A19%/B18%/A17.

of 8 terms

/A11*/0Al11.

when CWE enable address to output

when CWE enable address to output

when CWE enable address to output

when CWE enable address to output

if read miss

if a write hit

hold if start write

can update only if local access

the following table indicates the cache update algorithm
cache updates only occur on the local ram segment.

; HIT MISS
i Read word __;;;_——__;;;;;;~
; Read byte nc nc
i Write word update nc
i Write byte update nc

Figure 1.22A Cache PAL Device

20

The Cache PAL device signals have the following
functions:

LOCAL Indicates that the on-board 256k of
memory being acessed
HIT Indicates that a tag match has occurred
HIT Creates some of the terms required for HIT
OA14, OA11 Data toffrom the tag memory
OA9, OA7
UPDT Indicates if an update should be done to

the cache memory

The Main Memory uses an Am2964B DRAM controller.
Two PAL devices are required—one for sequencing

(RAMSEQ) and one for decoding signals for the RAM
array.

A synchronous system clock at 16 MHZ is used by the
sequencer. Since this clock is synchronized to the
processor clock, no exotic timing is required to get
good memory response.

The RAMSEQ PAL device generates the necessary
RAS, CAS, and MUX signals for the Am2964B DRAM
controller. The refresh timer (74LS393) generates a
16 psec. clock which is used for refresh control. The
RAMSEQ PAL device does the necessary arbitration
between refresh and regular memory cycles.

The RAMDCD PAL device generates some
miscellaneous signals for the DRAM array and controls
the Am29833 parity transceivers. Byte parity is
checked in the DRAM array. A parity error will appear
as an interrupt o the processor.

< S/D BUS

RAMSEQ
PAL).
D& 2964B RAMCD fe— ABUS:0
DRAM PAL
REFRESH
TIMER CONT.
l¢— YBUS: 13
DBA
D17
ABUS)
DYNAMIC RAM
DBUS @ ARRAY
D10-27, D29-46

Figure 1.23 Main Memory Section

PAL16R6

;

; MIP Processor Ram Seq & Refresh Control
; ramseq.pal.text

CP16M, /XRQ, /REFCK, /RESET, NC,NC, NC,NC,NC, GND,
/EN, /DBK,NC, /REF_DNE, /RFSH, /TC, /MUX, /RAS, /CAS, VCC

RAS := /RAS*/MUX*/TC*/RFSH*/RESET*XRQ ; RAS to memory controller
+ RAS*/TC*/RESET
+ RFSH*/RESET*/REF_DNE.

MUX := RAS*/MUX*/TC*/RFSH*/RESET ; change address mux
+ MUX*/TC*/RESET.

: tc ends RAS cycle and provides precharge delay between rfsh & active cycles

;

TC := /TC*/RFSH*RAS*MUX*/RESET ; complete ras cycle
+ TC*/RFSH*XRQ*/RESET
+ RFSH*RAS*/REF_DNE*/RESET ; start tc for refresh cycle
+ REFSH*RAS*TC*/RESET. ; hold tc until refresh ras done

r

; rfsh active for duration of refresh cycle

RFSH := /RAS*/MUX*/TC*/RFSH*/REF_DNE*/RESET*/XRQ*REFCK ; refresh in progress
+ RFSH*/REF_DNE*/RESET
+ RFSH*REF_DNE*RAS. ; keep rfsh until ras done

; indicates that refresh cycle done for this refck cycle

REF_DNE := /REF_DNE*RFSH*TC*/RESET ; refresh for this refck has been done
+ REF_DNE*REFCK*/RESET ; until refck goes low
+ REF_DNE*RAS*/RESET : remainder of refresh cycle
+ REF_DNE*TC*/RESET
+ REF_DNE*RFSH*/RESET.
CAS = MUX*/RESET ; CAS for memory

+ CAS*XRQ*/RESET.

DAK = XRQ*TC*/RAS*CAS*/RESET ; dtack for memory
@ XRQ*TC*/RAS*CAS*/RESET.

Figure 1.23A RAMSEQ PAL Device

22

For RAMSEQ PAL, the signals have the following

functions: REF DNE indicates that the requested refresh has
been done
RAS Rastiming signal to the Am2964 controller CAS CAS timing signal to the Am2964 controller
MUX Mux timing signal to the Am2964 controller DAK Data acknowledge for the dynamic RAM
TC Indicates that the RAM cycle is complete it
RFSH Indicates a refresh cycle is in progress The equations for ‘RAMDCD’ PAL device are shown in

Figure 1.23B.

PAL16L8
; MIP Processor error
; ramdcd.pal.text for

control & misc decode
29833's

/WE,NC, /XWAIT, /BYTE, /XRQ,NC, A0, /CAS, YBUS13,GND,
/LDIOA, /WEL, /REU, /WEH, /REL,NC, /CLRERR, /WAIT, /SWAIT, VCC

WEL = WE*XRQ*A0*BYTE
WE*XRQ*/BYTE.

4

WEH = WE*XRQ*/AO0*BYTE
+ WE*XRQ*/BYTE.

REU

; WE to lower ram bank

; WE to upper ram bank

= CAS*XRQ*/A0*BYTE*/WE ; for lower byte of mem
+ CAS*XRQ*/BYTE*/WE.
REL = CAS*XRQ*AO0*BYTE*/WE ; upper byte of mem

+ CAS*XRQ*/BYTE*/WE.

CLRERR = LDIOA*YBUS13
SWAIT = WAIT + XWAIT.

END

. ; parity error clear

; allow external waits

Figure 1.23B RAMDCD PAL Device

23

The RAMDCD PAL signals have the following
functions:

WEL, WEH Write enables for the upper and lower RAM
bytes
REH,REL Output enables for the Am29833
transceivers
CLRERR Clears the parity latch on the Am29833
SWAIT Combines a couple of WAIT signals

/0 Unit

The /O unit is shown in Figure 1.24. All registers and
buffers are cumrently 8 bits wide. The /O unit
interfaces with the peripheral processor which does all
of the I/O work. There are buffers in one direction and
registers in the other direction so the transfer path can
be pipeiined (i.e. the MiP processor does niot have o
wait for a message to be read).

There is also an 8-bit register for control signals and an
8-bit buffer for status signals from this interface. These
are used for signalling and synchronization of the
peripheral devices.

YBUS

~

4 spaus

H‘u

Ll ﬂﬂ

pata E12

CoNTRoL E34

SELECT

BUFFER

LATCH
BUFFER

IT T

: 10D (DATA) ::

I0C (CONTROL)
BUS

Figure 1-24 1/O Unit

24

Chapter 2

SOFTWARE DESCRIPTION

2.0 OVERVIEW

The MIP processor is designed to be used in several
different environments requiring high-speed proces-
sing capability. The main advantage of the processor is
that the instruction set can be tailored to the target
system, thus achieving near ideal execution efficiency.

The first implementation given here is an instruction
processor for PASCAL. The Pascal compiler emits
intermediate code called P-code. This code is based
on the concept of a stack processor and is designed to
be compact and is reasonably easy to generate from a
high-level language.

The P-code is executed by an interpreter written in
micro-code. This intermediate code thus becomes the
instruction set of the processor; a significant speed
advantage is obtained over other types of processors.
Intrinsics and other special purpose routines can be
written in micro-code and linked with the intermediate
code. Changes or upgrades in the machine hardware
only mean minor modifications to the micro-code
interpreter, not wholesale changes to a compiler. 1t is
also very easy to port such a system to a number of
different processors.

The task of writing an interpreter for such a machine is
not difficult but does require a good set of tools, such
as assemblers, and trace and debug utilties. The
authors have developed a set of tools which, when
used in conjunction with the diagnostic pipeline
registers, give a unified approach to micro-code
development. These tools will work with various
personal computers which have Pascal capability.

As this processor is also designed to occupy minimum
real estate, a number of trade-offs were employed so as
to fit the processor in a small space yet retain
performance.

The micro-code word is designed to be 32 bits in
length. This is generally regarded as being short, but
good performance is still possible. By using a short
word and eliminating some of the hardware
surrounding micro-programmed machines, it is possible
to make a processor which is competitive with traditional
NMOS/CMOS processors, when compared on the
basis of processing power vs. board real estate. Given
twice the NMOS equivalent of real estate, one can end
up with a machine having 8 to 10 times the
performance of an NMOS machine. Interestingly
enough, the comparison is also relevant when

comparing processing power vs. cost (i.e.,, 10 times
the performance at twice the cost).

The use of overlapped fields for the Am29116 and the
jump address field allow the micro-code to fit in 32 bits.
The cost is about 3—4% in total performance because
not all op-codes use Jump instructions and those that
do are usually limited by the memory bandwidth.

The traditional instruction mapping PROMs were
replaced by a table mapping technique which keeps
the vector table in the same code space as the main
micro-code. Such a techinque costs a bit of execution
time (approx 5-6%) but saves considerable power and
space. It is also useful where the micro-code is
constantly being modified as the instruction mapping
table is now created and loaded with the micro-code.

Although the processor is compact, a number of pipe-
line stages, which can be used by the micro-code,
exist within the processor. These increase the
utilization of each component of the processor and, in
turn, increase performance.

The first major pipe-line stage is the memory interface.
Here, either an instruction fetch or data store operation
can be performed in parallel with Am22116 instruction
execution. As long as there is no conflict (i.e., using a
value from a Read Data operation before the read
completes), the micro-code will not experience any
Wait cycles. If there is a conflict, the processor will
pause automatically until the conflict is resolved. This
is the most frequently used pipe-line stage, as there is
often a number of micro-instructions to be executed
while data is being accessed. The instruction pre-
fetch mechanism is also part of the same pipe-line.
While the processor is using the last data value from
the instruction register, new data is being read using
the program counter.

The next important stage is between the Am29116
and the YBUS. Data may be operated on, inside the
Am29116, while other data is being moved from
source to destination on the YBUS. A temporary
holding register on the YBUS may be used to delay or
duplicate a data transfer without involving the
Am29116.

A third pipe-line stage exists with the Micro-program
Sequencer. |t is possible to be utilizing all of the
previous pipe-line stages while performing certain
types of micro-program loop or subroutine retumns.

All of these stages are used to allow efficient micro-
program execution and help to offset some of the
trade-offs that were made to compact the micro-code
into 32 bits.

A mechanism is included to allow data values, which

25

appear on the YBUS, to be used in the bit-oriented
instructions of the Am29116 as part of the instruction.
This allows dynamic bit-oriented instructions to be
created. Packed field, Set operations and Floating-
point routines use this class of instruction frequently.

Computed Jumps and Calls are also possible by
placing the desired data on the YBUS and doing a
Jump or Call with the Micro-program Sequencer.
These have the effect of reducing the overall code
size and also help to improve performance by
eliminating costly chains of Test and Jump instructions.

2.1 MICRO-CODE DEVELOPMENT

Several micro-code assemblers are available for code
development. These are usually more difficult to use
than the assemblers that are used for standard micro-
processor work. Several “meta” assemblers are avail-
able to do microcode development. These are more
difficult to work with than normal assemblers because
they do not reflect field relationships in the target
machine. Complexity in the assembler syntax due to
architectural parallelism is forgivable. Less forgivable is
the complexity that arises when each field of the
machine language must be independently specified.

As this project required a lot of micro-code
development, some effort was made to streamline the
code creation process. Inspection of the published
Am29116 instruction set shows some redundant
information which is handled by the improved assem-
bler. This makes the resulting source code much
easier to write and debug. Features which are unique
to the machine may be included as optional param-
eters, separated by commas, after the main instruction
code. Examples of this micro-code format are shown in
Appendix A. Streamlining of the micro-instructions
also make it easier to upgrade the machine to larger
word sizes and add new features when required.

The micro-code word for this processor is 32 bits long,
which is relatively short for a micro-coded machine.
There is one overlapped 16-bit instruction field, shared
between the Am29116 instruction and the Jump
address field. This means that there are two instruction
formats. The first is a data type instruction and will
involve some action by the Am29116 and optional
operations by other data elements of the processor.
The second instruction type is a Control instruction.
Here, micro-instruction control will conditionally change
(eg. JUMP, CALL, RTS). Each micro-instruction has 6
other fields which occupy the remaining 16 bits micro-
store width. They are used to specify data path (YBUS)
source and destination, memory control, sequencer
control, and flag register updates. All of the fields must
be defined for each word. To make the task of writing
micro-code easier, the micro-assembler uses a default
micro-instruction word. This instruction is initialized at

the beginning of each source line and then modified
by operands on the source line. If written out, the
default control word would appear as:

NOOP CONT, SRE, IE, NYS, NYD, NSR

This sequence specifies a NOP instruction to the
Am29116, a continue to the Am2910 sequencer,
status flag update, Am29116 instruction enable, no
YBUS destination, no YBUS source, and no store
control operation.

Any name which effects control over the YBUS, store
control, micro-sequencer, or status flag updates, may
be entered in free field form after all the required oper-
ands for the main instruction. These will be denoted
optional parameters in the following descriptions.

Any Am29116 instruction mnemonic which contains
an ‘I’ requires an immediate data operand following the
Am29116 instruction descriptor.

The micro-assembler performs a number of syntax
checks on the generated code to detect invalid
instruction combinations, illegal instruction sequen-
ces, and missing operands.

2.2 OP-CODE EXECUTION

Creation of an interpreter for a micro-coded
intermediate code machine is quite straightforward as
there are several good descriptions of the inter-
mediate object code in print.

The basic concept of a intermediate code processor is
that of a stack machine. A number of registers point to
various constructs of this stack machine such as local
and global data frames, the heap and the stack. The
various op-codes move data values between these
frames and the stack, and operate on stack elements.

All the registers in the hypothetical stack machine are
contained within the register file of the Am2911s6,
leaving 24 work registers for op-codes and intrinsic
procedures to use.

This processor has no dedicated hardware to maintain
the stack. This may appear to be a short-coming of the
processor, but it is not serious. The presence of the
cache memory means that most of the stack elements
are available without a Wait, as they are usually the
most frequently referenced items. To reduce the
number of memory references to the top of stack
element, it is kept within the register file. This also
allows a form of pipe-lining to be done during op-code
execution. A side effect is that stack reads and writes
now get done during a different portion of the
execution of the op-code. This reduces the peak rate
of demand on the memory system.

26

The instruction stream for the intermediate code is
byte-oriented. Within the processor is a two-byte
instruction prefetch queue, filled on demand by the
Bus Sequencer. The micro-code is arranged so that
there is an instruction jump table starting at FOQ (hex).
As there are 256 op-codes, this table occupies the last
256 bytes of memory. During an op-code fetch, the
instruction byte pointed to by the program counter is
enabied onto the iower byte of the YBUS. The high
byte is forced to 1's by pullup resistors. The
microprogram sequencer is told to do an unconditional
jump to the address on the YBUS and so ends up in
the instruction vector table. This table is comprised of
jumps to the individual op-code routines. A high
percentage of instructions only use one or two bytes
of instruction so the pre-fetch queue works quite well.

In the event of an interrupt, the next byte of the
instruction queue is not enabled onto the YBUS.
Instead, bit 8 of the YBUS is forced Low. The resulting
Jump is to FEF (hex) which contains a Jump to the
interrupt sevice routine. (YBUS bit 8 is tied to IVECT in

REGCTL PAL)

Several examples of micro-code op-codes are shown
in Appendix A. The total amount of micro-code for all
op-codes and intrinsics is approximately 2.5 k words.
With a 4 k micro-store, this leaves sufficient room for
new op-codes and intrinsic procedures.

On average each op-codes takes about 8 micro-code
instructions, one of which is the jump to next
instruction. Some subroutines are used to keep the
code compact.

2.3 MICRO-CODE DEBUG TOOLS

Normally, to debug the hardware and micro-code of a
machine such as this would require a special develop-
ment station. The use of diagnostic registers on critical
parts of the MIP processorallows the use of much
simpler hardware. A small personal computer such as
an APPLE |l or a PG, with Pascal language capability
can be programmed to act as a development station or
debug tool. Currently a 68000 based system is being
used.

Access to the MIP processor diagnostic connector
requires a TTL level I/O port with 9 output pins and 1
input pin. The output bits could just be registered,
although faster port operation would occur if 7 were
registered and 2 were pulse outputs (DCLK and
STEP).

A Pascal program executing on the workstation
provides access to all of the processor registers, the
writeable control store, and the main memory. This
same workstation is used to edit and assemble the
micro-code for the processor under development.

The debug tool is menu driven. The display normally
shows all the registers of the processor. When a
command is entered, the action is performed and the
display updated. This is suitable for single-stepping
through micro-code or changing register values.
Branches to new sections of code can also be done.

Loading of the writeable control store is done by
specifying an object file (which is located on the
workstation disk) to be loaded into the writable control
store.

Code and data files may also be loaded into the main
memory in a similar manner. Commands exist to
display a block of 128 main memory bytes at once, as
well as change single bytes or words.

Breakpoints may be specified for the micro-code.
Execution of the code will progress until the
breakpoint is encountered and the display will be
updated. This mode of execution is not done in real
time, however, as the workstation checks the micro-
address after each instruction. This mode is quite
useful for debugging most codes. Other techniques
such as scope loops and computation loops can be
easily implemented to isolate timing problems.

2.4 MICROCODE DETAILS
Microcode field definitions for SMIP

The 32-bit microword is divided up into fields as shown
below:

MSD31-28 Am2910A sequencer control
MSD27-25 memory control

MsD24 Am29116 [EN

MSD23 Am29116 SRE

MSD22-20 YBUS source

MSD19-16 YBUS destination

MSD15-0 Am291186 instruction or

immediate data

27

Am29116 Instructions

single operand format

e v v

MOVE SORA ; ram to acc
COMP SORY ; ram to y
INC SORS ; ram to status
NEG SOAR ; acc to ram
SODR ; d to ram
SOIR ; id to ram
SOZR ; 0 to ram
SOZER ; d{oe) to ram
SOSER ; d(se} to ram
SORR ; ram to ram
SOA ; acc —> ?
SOD ;d > 2
SOI ;1 >
S02Z ;0 > 7
SOZE ; d{oce)
SOSE ; di{se) ;
; two operand instructions
SUBR 1 s-r TORAA
SUBRC ; s -r -cC TORIA
SUBS ; r-s TODRA
SUBSC ; r-s -c TORAY
ADD ; T+ s TORIY
ADDC ; r+s+c TODRY
AND ; rand s TORAR
NAND ; r nand s TORIR
EXOR ; r Xor s TODRR
NOR ; rnor s TODAR
OR ; rors TOAIR
EXNOR ; r xnor s TODIR
TODA
TOAI
TODI
; single bit shifts
SHUPZ ; up O SHRR
SHUP1 :up 1 SHDR
SHUPL ; up glink
SHDNZ ; down O
SHDN1 ; down 1 SHA
SHDNL ; down glink SHD
SHDNC ; down qcC
down gn Xor gqovr

SHDNOV ;

;

; bit oriented instructions

SETNR

; set ram bit n (n*512)
RSTNR ; reset ram bit n
TSTNR ; test ram bit n
LD2NR ; 2**n -> ram (n*512)
LDC2NR ; comp({2**n) -> ram
A2NR ; ram + 2%*n -> ram
S2NR ; ram - 2**n —> ram
TSTNA ; test acc bit n
RSTNA ; reset acc bit n
SETNA ; set acc bit n
A2NA ; acc + 2**n -> acc

Ram Name<,optional parms>

NRY ; ybus
NRA : acc
NRS ; status
NRAS ; acc,status
R S D

; ram acc acc
; ram 1 acc
; d ram acc
; ram acc |y

; ram i y
:d ram |y

; ram acc ram
; ram i ram
; d ram ram
; d acc ram
; acc i ram
: d i ram
;0 d acc ?

; acc i ?

;s d i ?
u d

; ram ram

s d ram

; acc

; d

<,optional parms>

Ram Name<, optiocnal parms>

Ram Name<, optionalparms>

NRY or NRA<,optional parms>

Bit#,Ram Name<,optional parms>

28

S2NA ;
LD2NA ;
LDC2NA
TSIND
RSTND »
SETND ;
A2NDY
S2NDY
LD2NY
LDC2NY ;

~e we e

u
RTRA H
RTRY ;
RTRR :
RTAR
RTDR H
RTDY H
RTDA
RTAY
RTAA

7

; rotate
; u

[

MARI
MRAI

Neose v e

; rotate
; u
CDAI H
CDRI ;
CDRA ;
CRAI

~

CRCF ;
CRCR H

;

acc - 2*%*n -> acc
2*%%n -> acc
comp (2**n) —-> acc

; test d bit n

reset d bit n
set d bit n

d + 2**n => y

;d - 2%n >y

2*%*n => y
comp (2**n} —> y

rotate by n bits

d
ram acc
ram y
ram ram
acc ram
d ram
d y
d acc
acc y
acc acc

and merge

r/d s
d acc i
d acc ram
d ram i
d ram acc
acc ram i
ram acc i

and compare

r s
d acc i
d ram i
d ram acc
ram acc i

crc instruction

crc forward
crc reverse

; status bit instructions

;

SETST
RSTST
SVSTR

SVSTNR

’

; conditional jumps and calls

;

JUMP ;
CALL ;
CRET ;

’

set bit ONCZ
reset bit L

Fl

F2

F3
save status in ram
save status in NRY

Bit#,<optional parms>

Bit#,Ram Name<,optional parms>

Bit#, Immediate Data<,optional parms>
Bit#,Register name<,optional parms>
Bit#,Register name, Immediate Data<,optional parms>
Bit#,Register name,<,optional parms>
Bit#,Register name, Immediate Data<,optional parms>
Bit#,Register name, Immediate Data<,optional parms>

Bit#,Immediate Data<,optional parms>
Bit#,Register name,Immediate Data<,optional parms>
Bit#,Register name<,optiocnal parms>
Bit#,Register name, Immediate Data<,optional parms>

Register Name<,optional parms>
Register Name<,optional parms>

; OVR,N,C,Z<,optional parms>
; link

;s f1

; f2

; £3

Register name<,optional parms>
<optional parms>

cond jump Condition, address<,optional parms>
cond call Condition,address<,optional parms>
cond return Condition<,optional parms>

: condition codes for Jump,Call & CRET

CcT ; latched CT from 29116

Z ; latched Zero flag
Cc ; latched Carry flag
N ; latched Sign

OVR ; latched Overflow
UNC ; unconditional

NCT ; latched /CT

NZ ; latched not Zero
NC ; latched not Carry

P ; latched Positive
NOVR latched not Overflow

;

NOOP ; nop <optional parms>

Test condition instructions

TNOZ ; (N xor OVR) + 2 <optional parms>

TNO ; (N xor OVR)

TZ ; Zero

TOVR ; OVR

TLOW ; low

TC : C

TZC ; 2+ /C

N ; N

TL ; link

TF1 ; f1

TF2 ; £2

TF3 ; £3
prioritize

;
; PRTXYZ <ram name><, Immediate data><,optional parameters>
; where x = source

y = mask

z = destination

R = ram

A = accumulator
; D = d inputs

I

Z

N

= immediate data
= zero
R = no ram destination

PRTARA
PRTARY
PRTARR
PRTRAA
PRTRZA
PRTRIA
PRTRAY
PRTRZY
PRTRIY
PRTRAR
PRTRZR
PRTRIR
PRTAAR
PRTAZR
PRTAIR
PRTDAR
PRTDZR
PRTDIR

PRTNRAA

30

PRTNRAZ

PRTNRAIL

PRTNRDA

PRTNRDZ

PRTNRDI

; 29116 Internal Register names { internal RAM on 29116 }
DO ;0 - DO

D1 ;1 - D1

D2 ;2 - D2

D3 ;3 - D3

D4 ;4 - D4

D5 ;5 - D5

D6 ;6 - D6

D7) - D7

MP ;8 - MP local pointer

BP ;9 - BP base pointer

NP ; 10 - NP heap pointer

sp ; 11 - SP stack pointer
IPC ;12 — IPC temporary program counter
SEGP ;13 - SEGP segment pointer
JTAB ;14 - JTAB proc pointer
TOS ;15 - top of stack element
RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

; The following field names are opticnal in any micro-insruction
and are denoted by <optional parms> in the above list

; Sequencer control sc[0..3]

Jz ; Jump to address 0O

CJs ; conditional jsr via PL

JMAP ; jump to address via MAP

CJp ; jump to address via PL

PUSH ; push stack and cond load counter
JSRP ; jsr via R or PL

CIv ; cond jump to VECT

JRP ; jump to R or PL

RFCT ; repeat loop if CT <> 0

RPCT ; repeat PL if CT <> 0

CRTS ; conditional return

CJPP ; conditional jump to PL and pop stack

LDCT ; load CT
LOOP ; test end of loop
CONT ; continue
TWB ; three way branch

YBUS sources

31

OEY
DRS
YREG
I0D
IR
OEPM
OEPL
NYS

~

29116 output enable Y
data register

YBUS data capture reg
I/0 data bus

instruction reg

29517 msp product enable
28517 1isp product enable
no Ybus source

; YBUS destinations

I0C
DR
BC
AR
DLE
PG
PCPG
FMT
CTEN
ENY
ENX
ICR
ABEN
PGEN
REG
YSHFT
NYD

B

Ne Se S Ne Me Ne Nk e e N %e Se

I/0 control

data register

program counter
address register

29116 data latch
address page

program status word
formats reg

condition code enable
multiplier y input
multiplier x input
interrupt control dest
address reg readback
page reg readback

2910 register/counter
enable dynamic bit operations
no Ybus destination

; Memory Control codes

NSR
RPS
CRPS
WIC
RDS
WDS
RDSB
WDSB

e e e

NSE
NIE
SRE

;

Status

0 - no store request

read program store

cond read program store

wait for memory io to finish
read data store

write data store

read data store byte

write data store byte

& Instruction control
status load disable

29116 instruction disable
status update enable

32

Chapter 3
PERFORMANCE

The primary objective, when building the MIP
Processor, was to achieve an order of magnitude of
increase, in performance, over a standard workstation
(68000 based) in the execution of HLL (High Level
Language) benchmarks; this is all based on the
intermediate code concept of PASCAL.

So far (July/85), a performance advantage of 8.25 in a
linear weighting of op-codes has been observed.
Most op-codes see a ten-fold, or better, advantage,
therefore, with some fine-tuning of certain op-codes,
an advantage of 10 is expected.

A cache hit rate of 75% was estimated and
measurements showed a hit rate of 71% on the linear
weighting test.

3.0 PRELIMINARY SURVEY

A number of benchmarks are available for performance
evaluation.

The most notable one is the BYTE Sieve benchmark.
A large body of data has been collected for this test. it
mainly tests array accessing and logic test capability of
the machine. It is included here because it is easy to
do and every one else doesiit.

A linear weighting of op-codes is quite useful for
comparing the performances of two machines using
the same upper level software. It allows for a
quantitative measure of specific features of the new
machine. When combined with the op-code run time
frequency of occurrence, the specific benefit of a new
feature can be evaluated.

Because the machine is intended to be used in a
workstation environment, compilation speed is also an
important bench mark.

From time to time a workstation processor will perform a
number of operations which are based on numerical
algorithms. Of a large class of signal processing and
statistical routings, the FFT is representative.

Another often quoted benchmark is the Whetstone
benchmark. It uses floating point arithmetic quite
heavily. At this point the floating point micro-code has
yet to be completed, therefore, this benchmark test
has not been performed.

In the following discussions of the benchmarks, all the
timings were measured by using the self timing

capabilities of the machines. The machines aii have
access to a real time clock with a resolution of 16.6 ms.
Sufficient loops of each test were ran to bring the
timing resolution to within 1 ms.

3.1 COMPILATION SPEED

The compilation speed of the 68000 used is in the
range of 900 to 1500 lines per minute. A typical value
for compiling the compiler is 1150 lines per minute;
the MIP processor can do this 6.5 times faster (7500
Ipm).

3.2 SIEVE OF EROSTHANES

The 68000 bench ran at 78 seconds, which reduced
to 64 seconds, at best if Wait States are removed. The
MIP sieve ran at 5.6 seconds. |f Wait States are
removed from the MIP, better performance can be
expected.

Recently, ‘streamlining’ the Sieve bench has been
done to take advantage of certain particular
environments. There was one ‘improved’ version
written in C that takes advantage of register coercion.
The authors have no objection to that, but readers
should consider the following: If the Sieve is rewritten
as a microcode routine in the MIP, then the following
programis the benchmark:

Begin
Sieve
end;

‘ This program runs in approximately .14 seconds.

Based on information in the BYTE article, an 68000
assembly language version had a performance time of
1.12 seconds (which was the fastest time quoted of
any example). A microcoded sieve on the MIP still runs
8 times faster.

This illustrates the power of a microcoded approach. In
practice, program bottlenecks are moved into
microcode as they are encountered. Quite often
significant system performance enhancements can be
made by the addition of a few small intrinsic functions.

3.3 FFT

A micro-coded FFT routine was also created. It shows
a dramatic increase over a similar program written for
the 68000. There is a tendency to compare the micro-
coded machine with special purpose FFT processors.
This machine does not have the dual ALU’s, dual
memory banks, and dedicated address and coefficient
ROMs normally associated with such a machine, so, as
expected, it is about 6 to 8 times slower than an FFT

33

processor. As a general purpose processor, it does do
a 1K complex FFT in 35 ms. This is a factor of 15 better
than the 68000.

3.4 ANALYSIS AND CONCLUSIONS

The MIP processor has proven ic be an effective
vehicle for demonstrating the power and flexibility of a
micro-coded machine. The P-code system has an
overall performance improvement of 6 to 7, over a
68000 based system. While this is not as great as
originally hoped, it remains a significant amourt.

Micro-coded intrinsic functions do experience a
greater performance improvement factor than a 68000
assembly intrinsics. This comparative speed-up is due
to the instruction set of the Am29116 and the pipeline
stages of the processor.

The small single set cache memory used is responsible
for a 23% performance improvement when executing
P-code programs. The hit rate averages 71%. These
data are consistent with other single set cache
memories that have been used on other processors
and reported in the literature.

The processor is executing P-code with an effective
processor utilization of 73%. Memory bus utilization is
approximately 44%. Obviously a good system improve-
ment could be made if these figures were closer to
100%. There are a couple of ways to do this. As each
P-code is 4uned’, the number of processor cycles is
reduced. Careful inspection of a P-code often allows
the memory references 1o be arranged so as not to
cause Wait States to occur; this improves processor
utilization. Reducing the number of processor cycles
per op-code increases memory utilization. This is
because the number of memory references per P-
code is constant.

Minor changes to the definition of the P-codes can
also increase system performance. This was not done
because that part of the system was kept constant to
compare with other machines.

Probably the single largest improvement on the

processor would be a more complex BIU. Such a unit
would have a dedicated stack address and data
register. It was not feasible to include this in the
original design due to a limitation of board real estate.
There are a number of multi-port register files (5 or 6
port) available now which would allow the entire BIU to
be reduced in size with increased functionality. This
could be done without increasing the micro-code
width. Some machines have added a dedicated stack
area. This limits the stack to a fixed size and location
which can cause problems. With a stack address and
data register working into a cache based memory
system, the delays due to a quantity not being
available in the stack register are minimal. The
processor would have access to the top two items of
the stack with no delay at all (TOS inside the
Am29116, TOS-1 in the stack data register).

The 2 byte pre-fetch mechanism appears to work well.
The average P-code is less than 2 bytes. If the bus
utilization were very high (>90%), it may be necessary
to have more than two bytes pre-fetched so as to
minimize op-code waits within a P-code.

As a single board processor, this design is very
effective from a performance point of view. The
standard functionality offered by a 68000, or other
such processor, is available, with the added ability to
have micro-coded intrinsic functions. The effort to
create a micro-coded intrinsic function is the same as
writing assembly level routines for a 68000 (in fact, it is
often easier due to the diverse nature of the Am29116
micro-code instructions).

The 4k size of the micro-store is adequate to allow the
coding of a high-level intermediate code such as P-
code and allows ample room (1.5k} for intrinsic
functions.

The technique of using the 29818 diagnostic registers
for trace and debug of the processor is effective. A
program written in Pascal performs all functions
required to initialize, load, and test the processor. This
diagnostic program can be transported to virtually any
workstation. A simple port gives access to the
processor under test.

34

Appendix A

Sample Micro-Code

0017|
00171
00181}
0019|
001B|
001C|
001D|
001E|
001E{

004F |
004F|
0050
0051]
00511
00521

EE81
EC83
EQ7F
ECOF
EAO3
EO1F

244F

EE81
EC83

E44F
61F8
EQ7F
EQTF
E44F

EQ7F
EQ7F
EAO3
EQL1F

244F

EE81
EC83
GBIG
E44F
61F8
EO7F
EO7F
E44F

EOTF
EQ7F
EOOF
EOOCF

244F

EE81
EC83
E44F
EETF
EO7C
EO07C
61F8
E44F
E44F
EO7F
E44F

D850
C3EB
E481
ECO1
9088
D8DO

Fo21

D850
C3EB

D946
KE A
91E6
FFCé
58C6

8486
ECO1
9089
D8DO

F921

D850
C3EB

D946
* kK k
91E6
FFC6
58C6

8486
ECO1
8089
D890

Fo21

D850
C3EB
D931
7140
7140
E190
* * Kk Kk
7140
D920
91EQ
58C0

SLDLX STACKW

#
#
EO7F FF2E

LDO

H:

H oW e 3 A

#51
EO7F 0005

LAC

E'S

£ R S

#351
EQ7F 0005

LbC

$1

TOS
MOVE SORY, TCS, OEY, DR, NSE, WIO
S2NR 1,SP,0EY, AR, WDS, NSE
ADD TOAI,NRA, <<MSLCL/2>-215>
SHUPZ SHA,NRA,QEY
ADD TORAY,MP, OEY, AR,RDS
MOVE SODR, TOS, DRS
IFETCH
MOVE SOZE,NRA, IR, CRPS, JMAP
STACKW TOS
MOVE SORY, TOS, OEY, DR, NSE, WIO
S2NR 1,SP,0EY,AR,WDS,NSE
GBIG
MOVE SOSER, D6, IR, CRPS
JUMP P,$1
RTRR 8,D6
RSTNR 15,D6
MOVE.B SODR, D6, IR,CRPS

ADDTORIA, D6, <MSLCL/2>

SHUPZ SHA,NRA

ADD TORAY,BP, CEY, AR, RDS
MOVE SODR, TOS, DRS

IFETCH

MOVE SOZE,NRA, IR, CRPS, JMAP
STACKW TOS

MOVE SORY, TOS, OEY, DR, NSE, WIO
S2NR 1,8P,0EY, AR, WDS,NSE
MOVE SOSER, D6, IR, CRPS

JUMP P,s51

RTRR 8,D6

RSTNR 15,D6

MOVE.B SODR,D6,IR,CRPS

ADD TORIA, D6, <MSLCL/2>
SHUPZ SHA,NRA

ADD TORAA, BP, OEY

MOVE SOAR, TOS, OEY

IFETCH

MOVE SOZE,NRA, IR, CRPS, JMAP
STACKW TOS

MOVE SORY, TOS, OEY, DR, NSE, WIO
S2NR 1,SP,0EY, AR, WDS,NSE
MOVE SOZER,R1, IR, CRPS
NOOP WIO

NOOP ABEN

TSTND 0,ABEN

JUMP Z,81

NOOP IR, CRPS

MOVE SOZER, DO, IR, CRPS
RTRR 8,D0

MOVE.B SODR,DO, IR,CRPS
STACKW DO

;

~ v

7

;
;
;

v

;

load ith local word to stack

base value + offset

* 2

add mp and do read

wait for read to complete

load local with offset B

* 2
add bp and do read

load address of B'th local

get length of block

test LSB of PC

; i1f word aligned

dump odd byte
may want flip

; move 1 werd

A1

00A7|
00A8|
00A9|
00AA|
00AB|
00AB|
00AC|
GOAD |
00RAE|
00AE|

00CB|
00CB|
00CC|
00CD|
00CE |
00CF |
00CF |
00DO |
00D1]
00D2 |
00D2 |

00D3|
00D5 |
00D6 |
00D71
00D8 |
00D8 |

00F1}
00F1|
00F2|
00F3|
00F4|
00F5 |
00F6|
00F7|
00F8 |
00F9|
00F9|

018D|
018D|
018E|
018F|
01901
0190|

01F9|
01F9]
OlFA|
O01FB|
01FC|
01FD|
O1FE|
01FF|
02001
02001

044F]
04501
04501
0451|

EE81
EC83
EQ7F
61F8

EA83
EOFF

matT
EULEF

244F

EA83
EQFF
EEO1
EC13

EA83
EOFF
EOLIF

244F

EOOF
EQOF
EA03
EO1F

244F

EA83
EQOFF
11F8
E0OA
E009
EQOOF
EO6F
EOLF

244F

EA83

EQFF
EOLF

D840
C3EB
ClF1
9F5B

D96B
C3CB

~ann
j315191¢]

Fo21

D96B
C3CB
D970
7140

D96B
C3CB
D8DO

F921

E441
ECO1
9090
D8DO

Fo21

D96B
C3CB
7FED
CCo6
D970
7140
F8cl
C290

Fo21

D96B

C3CB
9E90

IFETCH

244F

EA83
EOQFF
EO1F
EQOF
EQ8F
61F8
EOOF

244F

E44F

61F8

ro21

D96€B
C3CB
9ES50
7342
D910

*k kK

C1F0

Foz1

D946

* ok kK

=

MOVE
¥ S2NR
S2NR
JUMP
STACKR
MOVE
A2NR
MOVE
IFETCH
MOVE

Bl

STO STACKR

MOVE

A2NR

MCVE

NOOP

STACKR

MOVE

A2NR
MOVE
IFETCH

MOVE

£

-

ECOF 00F8 SINDXSUBS
SHUPZ
ADD
MOVE
IFETCH
MOVE
IXA STACKR
MOVE
A2NR
CALL
SHUPZ
MOVE
NOCOP
MOVE
ADD
IFETCH
MOVE

e

ADI STACKR
MOVE
AZNR

ADD

B

MOVE
LESI STACKR
MOVE

A2ZNR
SUBS
TNO
MOVE
JUMP
S2NR
IFETCH
MOVE

=+

MOVE

JUMP
READ_PC

SORY,DO,OEY, DR, NSE,WIO
1,sp,OEY, AR, WDS, NSE
0,R1

NZ,$1

SORR, SP,OEY, AR, NSE,RDS
1,S8P,NSE
SODR, TGS, DRS

SOZE,NRA, IR, CRPS, JMAP

; read address

SORR, SP,OEY, AR, NSE,RDS
1,SP,NSE

SORR, TOS,OEY, DR
DRS, DR, AR, WDS

SORR, SP, OEY, AR, NSE, RDS
1,SP,NSE
SODR, TOS, DRS

SOZE,NRA, IR, CRPS, JMAP

TOAI, NRA, 248,0EY
SHA,NRA,OEY
TORAY, TOS, OEY, AR, RDS
SODR, TOS, DRS

SOZE,NRA, IR, CRPS, JMAP

; get base

SORR, SP,OEY, AR, NSE, RDS
1,SP,NSE

UNC, GETBIG
SHRR, D6, OEY, ENX
SORR, TOS, CEY, ENY

OEY

SOD, NRA, OEPL

TODAR, TOS,DRS

SOZE, NRA, IR, CRPS, JMAP

SORR, SP,OEY, AR, NSE, RDS
1,SP,NSE
TODRR, TOS, DRS

SOZE, NRA, IR, CRPS, JMAP

SORR, SP,OEY, AR, NSE, RDS
1,SP,NSE

TODRR, TOS,DRS

OEY

SOZR, TOS,OEY, NSE

NCT, $1

0,TOS,OEY

SOZE,NRA, IR, CRPS, JMAP
SOSER, D6, IR, CRPS

N, JTABJMP

H

;

;

loop for all

data
write it

adjust offset

get the data

get element size
* 2 to mult
* element size

+ base => tos

add TOS-1 and TOS

test for LT

get jump code

if neg use jtab

092A]
092A|
092A|
092A|
092A]
092A|
092A]
092A}
092A|
092A|
092A|
092A|
092A|
092A|
092A]
092A1
0923a]
092Aa|
092A]
092A)
092A]
092A|
092A|
092A|
092A|
092A]
092a|
09231
09231
092a]
092A|
092A|
092A1
092A1
092A|
092A]
092A|
092A]
092B|
092C|
092D|
092E|
092F |
0930]
09311
0932]
0932]
0933]
0934
0935]
0936
0937]
0938|
0939]

093a|
093A|
093B|
093C|
093C|
093D |
093E|
093F !

EA03
EOLF
EA03
EO1F
EAO3
EO1F
EAO3
EOLF

EQ7F
EO1E
EQOF
EQ2F
EOOF
EO2F
11F8
EQTF

EOOF
11F8

EQ7F
EQ7F
EO7F
EO7F

C5CB
D8DB
C3CB
D8D2
C3CB
D8D1
C3CB
D8D7

D918
E1B8
CC18
D8D3
D915
DCD6

*k ok Kk

F904

7356

* Kk K

D914
D816
D887
D81l

FFT ROUTINE

; micro-coded fft routine for mip processor

register assignments

DO - s.r
; D1 - s.i
; D2 - temp
; D3 ~ scale check
; D4 - W.r
; D5 - w.i
: D6 - minor loop
; D7 - major loop
; R1 - original data array pointer
; R2 - sin/cos table
; R3 - offset
;> R4 - bigstep
; RS - scale count
; R6 - big limit
: R7 - pass count
; R8 — number of points
; RO - working data pointer to A component
; R10 — working data pointer to B component
; R11 - shuffle array
; R12 — check pointer
.MACRO RCHEK ; macro to do range check on data
MOVE SODR, D3, YREG
JUMP P,s1
NEG SODR, D3
$1 S2NR 14,D3,0EY
JUMP NC, $2
SETST F3 ; set flag 3 for scaling
$2
.ENDM

FLUTERBY A2NR 2,S8P,0EY, AR,RDS
MOVE SODR,R11,DRS
A2NR 1,SP,0EY,AR,RDS
MOVE SODR, R2,DRS
A2NR 1,SP,OEY, AR,RDS

shuffle pointer

N

sin/cos table

~

MOVE SODR, R1,DRS ; data pointer
A2NR 1,SP,0EY,AR,RDS
MOVE SODR,R7,DRS ; pass count

MOVE SOZR,R8
SETNR 0,R8,DRS, YSHFT

SHUPZ SHRR,R8,0EY ; number of points

MOVE SODR, R3, YREG ; offset = 1/2 byte count
MOVE SOZR,R5,0EY ; zero scale count

INC SODR, R6, YREG ; big limit =1 to start

CALL UNC, RNGCHEK
MOVE S0Z,NRS

FFTL TF3 OEY
CALL CT, SCALE ; scale the data

MOVE SOZR, R4
MOVE SORA, R6
MOVE SOAR, D7 ; outer loop
MOVE SORA, R1

bigstep

A4

0451
0452}
0453]
0454
04551
04561
0456
0457
0457|
0458]
0459
045A]
045B1|
045C|
045C|
045D |
045D
045D|
045D |
045D|
045E|
045F |
04601
0461
0462|
0463 |
0463
04741}
0475|
0476
0477
0478|
04791
04781
047B|
047C|
047D
047E|
047F |
0480 |
0481
0482|
0483}
04841
0485
0486
0487]|
0487]
0488 |
0489]
048A|
048A|

EE7F
EQ7C
EQ7C
EEO2
E206

244F

EOOF
EAO3
EQOLF
EE02
E206

244F

EA83
ECFF
EQ7F
EQ9F
61F8
E44F

244F
EETF
EQ7C
EQ7C
EOOF
61F8
EO7F
EAC3
EO1F
EA83
EOFF
61F8
EO1F
61F8
EQ7F
EOOF
EAO3
EQLF
EE02
E206

EA83
EOFF
EOLF

244F

7140
7140
F8Cl
8086
F900

Fo21

D8OE
8086

E201
F880
F900

Fo21

D96B
C3CB
E1F0
D8DO
1BBO
D926

Fo21
7140
7140
D8CC
E1EC
*hkE
clcc
Dg6C
8610
Cc3cC
c3cc

* Kk k

9650
KA KK
ECO1
C3CC
988C
9E0C
D96C
Fo00

D96B
C3CB
D8DO

Fo21

£

NOOP
NOOP
MOVE
ADD
MOVE
IFETCH
MOVE

;

JTABJMP MOVE
ADD
SUBR
MOVE
MOVE
IFETCH
MOVE

HH He

; PJP S;

FJP STACKR
MOVE
A2NR
TSTNR
MOVE
JUMP
MOVE
IFETCH
¥ MOVE
XJP NOOP
NOOP
MOVE
TSTNR
JUMP
A2NR
$1 MOVE
SUBR
A2NR
A2NR
JUMP
SUBS
JuMp

NOJ

ADD
SUBR
52 MOVE
MOVE
STACKR
MOVE
A2NR
MOVE
IFETCH
MOVE

WIO

ABEN

SOD, NRA, ABEN
TORAA,D6,OEY, PC
SOZ,NRY, OEY, PCPG,RPS

SOZE,NRA, IR, CRPS, JMAP

SORA, JTAB, OEY
TORAA,D6,0EY, AR, RDS
TODA, NRA,DRS
SOA,NRY,OEY, PC
S0Z,NRY, OEY, PCPG,RPS

SOZE,NRA, IR, CRPS, JMAP

JUMP IF TOS IS FALSE.

SORR, SP,OEY, AR, NSE,RDS
1,S8P,NSE

0,TOS

SODR, TOS,DRS,NSE

Z,0JP

SOZER, D6, IR, CRPS

SOZE,NRA, IR, CRPS, JMAP
WIO

ABEN

SODR, IPC, ABEN
0,IPC,OEY

Z,$1

0,IPC

SORR, IPC,OEY, AR, RDS
TODRA, TOS,DRS
1,IPC,OEY, AR, RDS,NSE
1,IPC,NSE

N, $2

TODRY, TOCS, DRS

N, $2

SHA,NRA

1,IPC,OEY

TORAR, IPC,OEY, AR, RDS
TODRR, IPC,DRS

SORR, IPC,QEY,PC

S0z, NRY, OEY, PCPG, RPS

SORR, SP,OEY, AR, NSE, RDS
1,SP,NSE
SODR, TOS,DRS

SOZE, NRA, IR, CRPS, JMAP

~

.

~

Ne v e

~

e e N

re-locad pc & fetch

self-relative
load PC and fetch

refresh TOS

dump Jjump byte

copy of PC
align PC

make it even
lower index
(TOS - lower)
upper index
inc to branch out

=> case index

{upper — TOS)

make byte index

inc to table base

index into case table & read
self-relative

update PC & fetch

new TOS

EQ7F

EQ7F
EQ7F
EO7F
EQ7F
EOT7F
EQ7F
ERO3
EO1F
EAO3
EO1F
EAQ03
EOLF

EAO3
E0OA
E019
EAO3
EOSF
EOCA
EO19
EAQ3
EQSF
E009
EOLF
EQSF
EOCA
E009
EAQ3
EQSF

095D | EO7F
EEO03
ECO1

EO2F
61F8
EQ7F
EOOF
61F8
EO7F

EEQ3
ECO1

EQ2F
61F8
EQ7F
EQOOF
61F8
EQ7F

EO1F
096F| EE03
0970} ECO1
09711

0971] EO02F
0972| 61F8
0973| EQTF
0874| EOOF
0975} 61F8

D89A

D81A
D899
D813
D886
989A
D814
909B
E599
8092
D8C4
E384
D8CS

D81A
D844
D8Cc2
C3DA
F8cl
D845
D8C1
D859
C280

D842
D8C2
F8C1
D844
D841l
C3D9
Cc201

D802
C3FA
9000

D8C3
Xk k%
DEC3
DDE3

* %k k

774A

C3F9
9080

D8C3
Xk kK
DEC3
DDE3

* kX Kk

774A

F8cCl
C3DA
9001

D8C3
* Kk K
DEC3
DDE3

*kok &

BFLY

B e 4 H e A IR
o
-

o

MOVE

MOVE
A2NR
MOVE
MOVE
MCVE
MOVE

MCOVE
MOVE
MOVE
MOVE
MOVE
A2NR
SUBR

S2NR

SUBR
RCHEK

MOVE

NEG
S2NR

SETST

S2NR
ADD
RCHEK

MOVE
JuMpP
NEG

S2NR

SETST

MOVE
A2NR
SUBR
RCHEK
MOVE
JUMP
NEG
S2NR
JUMP

SOAR, R10

SORA,R10

SOAR, RS

SORA,R3

SOAR,D6

TORAR, R10

SORA, R4
TORAY,R11,0EY, AR, RDS
2,DRS
TORAA,R2,0EY, AR, RDS
SODR, D4,DRS
1,0EY,AR,RDS

SODR, D5,DRS

SORA,R10,0EY, AR,RDS
SORY, D4, OEY, ENX
SODR, D2, DRS, ENY
1,R10,0EY, AR,RDS
SOD, NRA, OEPM
SORY, D5, 0EY, ENX
SODR, D1,DRS, ENY
SORY, R9,OEY, AR,RDS
TODAR, DO, OEPM

SORY, D2, OEY, ENY
SODR, D2, DRS
SOD, NRA, OEPM
SORY, D4, OEY, ENX
SORY,D1,0EY,ENY
1,R9,0EY, AR, RDS
TODAR,D1,0EPM

SORA, D2
1,R10,0EY, AR
TORAY, DO, OEY, DR, WDS

SODR, D3, YREG
p,s1

SODR, D3
14,D3,0EY
NC, 52

F3

1,R9,0EY, AR
TORAY, DO, OEY, DR, WDS

SODR, D3, YREG
P,s51

SODR, D3
14,D3,0EY
NC, 52

F3

SOD, NRA, DRS
1,R10,0EY, AR
TORAY,D1,0EY, DR, WDS

SODR, D3, YREG
P,$1

SODR, D3
14,D3,0EY
NC, $2

;

;

;

pre-load with base address

new A pointer

minor loop count
new B pointer
bigstep

index into shuffl
shuffl * 4

W.r

w.i

fetch b.r

W.r => X

b.r =>y

fetch b.i

b.r * w.r

w.il=>x

b.i=>y

fetch a.r

b.r*w.r + b.i*w.i => s.r

b.r =>y

a.r => D2

b.r*w.i

w.r => x

b.i =>y

a.i

b.i*w.r - b.r*w.i => s.i

a.r

a.r — s.r => b.r

a.r + s.r => a.r

a.i-s.i=>b.1i

09761
09771
09771
09781
09781
09791
097A1
097A|
097B|
097C|
097D |
097E|
097F |
0980
0980
0981}
09811
0982}
0983
09831
0984 |
0984|
09851
09861
09861
0987|
0988 |
09881
09891
0982 |
098B|
098C|
098Cj|
098D |
098E|
G98F |
09901
0991]
0993]

09931
0994
0995]
09961
09971
0998 |
09991
099A|
099B|
099C|
099C|
099D |
099E |
099F |
09A0]
09A1]
09Al1]
09A2]
09A3 |
09R4 |
09A5 |
0926
09A7|
09A7|

EQ7F

EQ7F

EEO3
ECO1

EO2F
61F8
EOQ7F
EOOF
61F8
EQ7F

EQ7F

EQ7F
61F8

EQO7F

EQ7F
61F8

EQ7F
EO7F

EQ7F
61F8
EQ7F
AQ7F

EAO3
EQTF
EQ7F
EQTF
EO7F
EQ7F

EOLF
EA83
61F8
EQ7F
EOQOF
61F8
EQ7F
61F8
AlF8

EQ7F
EQ7F
EO7F
EQ7F
EQ7F

EAO3
EO1F
ECOl1
EQ7F
61F8
AlF8

EOCF

774A

C3DA

C3D9
2081

D8C3
*k kK
DEC3
DDE3

* kK Kk

T74A

C3D9

C5E6
96B2

C5D4

C1E7
96BE

CcCi6
CcCc93

C1F7
96C5
D815
D890

D811
D89cC
D818
D886
D887
D8EO

F8C1
C3DC
* %k ok k
FE81
2000
KKk
ClE6
966C
TFFF

7543
C1D5
D811
D89C
C3FC

C3DC
D8COC
CD00
C1E7
965E
TFFF

D811

#52

.
R
=

RNGCHEK

EO7F 3000

;

S1

52

s4

SCALE

SETST

A2NR

A2ZNR
ADD
RCHEK
MOVE

NEG
S2NR
JUMP
SETST

AZNR

S2NR
JUMP

A2NR

S2NR

SHUPZ
SHDNZ

S2NR

MOVE
MOVE

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

MOVE
A2NR
JUMP
NEG

SUBR
JUMP
S2NR
JUMP
CRET

RSTST
A2NR
MOVE
MOVE
S2NR

A2ZNR
MOVE
SHDNOV
S$2NR
JUMP
CRET

MOVE

F3
1,R10

1,R9,0EY, AR
TORAY,D1,OEY,DR, WDS

SODR, D3, YREG
P,S1

SODR, D3
14,D3,0EY
NC, $2

F3

1,R9

2,D6
NZ,BFLY

2,R4

0,D7
NZ,MAJ

SHRR, R6
SHRR, R3

0,R7

NZ,FFTL

SORA, RS

SOAR, TOS, CRTS

SORA,R1,0EY, AR, RDS
SOAR,R12

SORA,R8

SOAR, D6

SOAR, D7
SOIR,DO,3000H

SOD, NRA,DRS
1,R12,0EY,AR,RDS,NSE
P, 52

SOA, NRA
TORAY, DO, OEY

c,$3

0,D6

Nz, $1

UNC

ONCZ
0,R5
SORA,R1
SOAR,R12
1,R12

1,R12,0EY, AR,RDS
SODR,DO,DRS
SHRR, DO, OEY, DR, WDS
0,D7

NZ, $4

UNC

SORA,R1,OEY

H

H

for auto-inc

a.i +s.i=>a.i

for auto-inc

; loop in bfly

for indxng shufl array (bigstep)
major loop
big limit

offset

passes

return scale count in TOS

data pointer

of points
data limit

get data

do the compare

clear status bits
inc scale count

init data pointer

get data

write back shifted data

A8

09A8|
0SA9|
09AA|
09AB|
09AC|
09AD |
09AE|
09AF |
09AF |
09BO|
09B1{
09B2]
09B3|
09B4 |
09BS5 |

EQ7F
EQ7F
EQ7F
EQ7F
EOQ7F
EQ7F
EQ7F

EAO3
EOQLF
ECO1
EQ7F
61F8
AlF8

D89C
C3FC
Dg1ls8
D887
C1D5
F904
7543

C3DC
D8CO
CD00
ClE7
9650
TFFF

$4

MOVE
S2NR
MOVE
MOVE
A2ZNR
MOVE
RSTST

A2NR
MOVE
SHDNOV
S2NR
JUMP
CRET

SOAR,R12
1,R12
SCRA,R8
SOAR, D7
0,R5
SOZ,NRS
ONCZ

1,R12,CEY,AR,RDS
SODR, DO, DRS

SHRR, DO, OEY, DR, WDS
0,D7

Nz, 34

UNC

data pointer

inc scale count

; clear status bits
; get data

; write back shifted data

A7

The Am29XXX Family from Advanced Micro Devices

Am29116 Processor

This circuit is a micro-programmable 16-bit processor.
In addition to its complete arithmetic and logic
functions, it contains functions that are particularly
useful in controller-applications; Bit Set, Bit Reset, Bit
Test, Rotate and Merge, Rotate and Compare, and
Cyclic-Redundancy-Check (CRC) Generation. The
divice consists of the following functional blocks
(Figure B-1):

1) The 32-word by 16-bit RAM is a single-port RAM
with a latch at its output. Withthe use of an
external multiplexer, it is possible to select
separate read and write addresses for the same
instruction.

2) The accumulator is an edge-triggered register.

3) The data latchis able to hold data when DLE is
Low.

4) The barrel shifter rotates data up to 15 positions.

5) The ALU has full carry lookahead across ali 16 bits
inthe arthmetic mode. It has the ability to execute
all conventional one- and two- operand operations.
In addition, it can also execute three-operand
instructions such as Rotate and Merge, and Rotate
and Compare with masks. It provides 3 status
outputs, C (carry), N (negative) and OVR (overflow).

6

=

The priority encoder produces a binary-weighted
code to indicate the location of the highest order
ONE inthe data.

7) The status register holds 8 status-bits.

Flag3 Flag2 Flagl Link OVR N C Z

RESERVED [>—F— 1 e Y015
o> 7 I 1
& [o— war %8 — oe
3 y acc D-LATCH
Vee [Rwono x
Gno 4
681
LATCH
1%
O
.15 I 1
LATCH s sx aux [ux I
— o = =
DECODE l
f—10
' 1 ‘ ? V ¢ vV Y MUX e 1
| 3 e
- | neceren # Q ova ™
ENCODER
‘ TEST
1T LoGKC
O€r MUX
%
4 MUx “wUx yeus l
i Tia
i & Figure B1. Am29116 Block Diagram
I cr
i
BD001960

8) The Condition-Code Generator/Multiplexer con-
tains the logic necessary to develop the 12 condi-
tion-code test signals.

9) The 16-bit instruction latch is normally transparent

to allow decoding of the instruction inputs by the
decoder. Allinstruction, exceptimmediate
instruction, are executed in a single clock cycle.
Immediate instruction requires 2 clock cycles for
execution.

Am29517

Multiplier

This circuit performs the parallel multiplication of two 16-
bit number, Xand Y (see Figure B2). The product P is
generated in the form of two 16-bit words that canbe
read out one after the other, on bus P or both together;
the more significant bits on bus P, the less significant
bits onbus Y. Control signals allow the part:

1) To accept the numbers Xand Y, after an enable bit
(ENX, WNY). The data is then stored in an input
register simultaneously with a flag XM, YM,
specifying whether the numbers are unsigned orin
two’s complement.

2) To define the output format as 32 or 31 bits. The 31-

bit configuration is used if the data are two’s

complement fractions.

3

~

To use atransparent or pipelined output structure
(FT). For a pipeline structure, an enable bit is
necessary (ENPD). This configuration is the fastest,
with a 65 ns maximum cycle time.

4) To switch some buses (OEP, OEL) fo high
impedence.

5) To round the 16 most significant bits when the 16

less significant bits are not used (RND).

Figure B2 shows the internal diagram of this circuit.

X, X RND Yo Y
S B I o
] bl
A ’ ZA

MULTIPLEXER

16
PRODUCT

Figure B2. Am29517 Block Diagram

Diagnostics—WCS

Pipeline Register

This circuit is an 8-bit pipeline register with an on-board
shadow register.

1) The pipeline register can load parallel data to or from
the shadow register; input data from the D-port, and
output data to the Y-port.

2) The shadow register can load parallel data to or from
the pipeline register and can output data through
the D input port (as in WCS loading). ltcanalso
input serial data from the SDIinput and output serial
data through the SDO output.

Figure B4 shows the internal diagram of this circuit.

Qoo
bd I
[oo >
(> > sHADOW 800
LK REGISTER
L A
3%
o Q
MODE
= j] wx I
PCLK
(S D> eeive
REGISTER
g 2
Figure B4 Pipeline Register .v,-v,
Block Diagram
BD001020

B-2

Am2910A Microprogram Sequencer

This is a 12-bit address sequencer intended for
controlling the execution sequence of micro-
instructions stored in the microprogram memory. it con-
sists of the following 5 functional blocks (Figure B3).

1) The fourinput multiplexer selects one of the
following four sources:

uPC Microprogram Counter
D DirectInput
R Register/Counter
F Stack

2) The microprogram counter is composed of an
incrementer followed by a register.

3) The internal loop counter is a pre-setable down-
counter for repeating instructions and continuing
loop itrations.

4) The 9-word deep stack provides return address
linkage when executing micro-subroutines or
loops.

5) The built-in decoder enables one of the following
three direct input sources:

PL Pipeline Register
MAP MAP PROM
VECT Interrupt Vector

RD

R=0

D

- STACK ”‘
|, PoINTER

9 WORD
b xizBIT
STACK

[¥

R F wPC
MULTIPLEXER

MICROPROGRAM
b COUNTER—

REGISTER
wpPC

DECREMENT/
HOLD/ LOAD

‘88!

INSTRUCTION
PLA

CCEN

SELECT/CLEAR

beo 4
PUSH/POP/!
HOLD/CLEAR
o
z AY
12
lv vv
22 |s Yo
= |2

I

ﬂ 12.BIT DATA PATH

——-—— CONTROL PATH

Figure B3 Am2910A Microprogram Sequencet

Am2964 Dynamic Memory Controller

This circuit provides address-multiplexing, refresh
address-generation, and RAS/CAS control for the
dynamic RAM memories. It can address up to 256 K
and provide both 128 and 256 line refresh capability.

1) Two 8-bit address latches and an 8-bit refresh
address generator feed into a multiplexer for
output to the dynamic RAM address lines.

2) TheRASdecoderallows2upperaddressesto
select one-of-four banks of RAMs.

Figure B5 shows the internal diagram of this circuit.

msEL l
o —N] , pow
"'\7—1/ LATCH <]
: ogem [5
o,
h:> coLuMN
H ADDRESS
Ars LATCH L]
Jo
rs
aR ADORESS T
GENERATOR
— —— A%,
foeto seieer o
nsEL, ——] LATCH DECODE =,
L) |— AAS,
wFEH $
o sonn o
BD001230

Figure B5 Am2964 Block Diagram

-0

U

Y BUS

DLE,CP,OEY T1-4,

20116
PROCESSOR

AREA ! 2910A CC| A2 CC
SEQUENCER PAL
81
5 DATA 12
) REGISTER
B4,5
Y
WRITABLE
CONTROL
STORE
D B6-13
0-15 5
—— PIPELINE
;> i e RN ¢ —
82,3 B14-17
[0-8,12-15,23,24

16-22,25-27

DATA 16
REGISTER <ﬁ>
A34
29517 16
MULTIPLIER <*:>
A5

Y0,8-11 U {}

S/D BUS
CONTROL

B19,21-23,25-26

SHIFT
PALS

820,27

MSD BUS

2014 INT 8
CONTROLLER K,

B18

TRQ

AREA

PROCESS

iy

SID BUS
veus |

1

il

1T

1

U

U

ConTROL [N contoL
B24, C6-18 C1-6
< I | N D BUS
{}_a\iw ABUS {; ﬁ
MEglgARY 4K X 16 CACHE 128K X 16 A
D1,2458.9 D3,6,7,10-47

8(Y0-7)

DATA

REG

1 BUF

LT,

(DATA)

/0 AREA

8 (Y8-15)
A4
CONTROL SELECT
) LATCH
REG E3 BUF E4 E5
8 8
\NZ

10C BUS
(CONTROL)

v

weibeiqg yoolg pieog din

0 xipuaddy

ADVANCED MICRO DEVICES

DOMESTIC SALES OFFICES

ALABAMA (205) 882-9122 MASSACHUSETTS (617) 273-3970

ARIZONA, MINNESOTAt (612) 938-0001
TEMPE ..ot (602) 242-4400 NEW JERSEYl (201) 299-0002
TUCSON . oot (602) 792-1200 NEW YORK,

CALIFORNIA, Liverpool (315) 457-5400
ElSegundo (213) 640-3210 Poughkeepsw (914) 471-8180
Newport Beach (714) 752-6262 Woodburyo (516) 364-8020
San Diego (619) 560-7030 NORTH CAROLINA
Sunnyvale (408) 720-8811 Charlotte (704) 525-1875
Woodland Hills (818) 992-4155 Raleigh (919) 847-8471

COLORADOcviiiiiiiiiaiens (303) 691-5100 OREGON, (503) 245-0080

CONNECTICUT, OHIO,

Southbury ... (203) 264-7800 Columbus ... (614) 891-6455
FLORIDA, PENNSYLVANIA,

Altamonte Springs (305) 339-5022 Allentownl (215) 398-8006

Clearwaterocooouenons (813) 530-9971 Willow Grove (215) 657-3101

FtLauderdale (305) 484-8600 TEXAS,

Melbourne ... (305) 254-2915 Austin ... (512) 346-7830
GEORGIA i (404) 449-7920 Dallasoiiiil (214) 934-9099
ILLINOIS (312) 773-4422 Houstonocooviiiiia.t. (713) 785-9001

(317) 244-7207 WASHINGTON (206) 455-3600
(913) 451-3115 WISCONSIN ... (414) 782-7748

(301) 796-9310

INTERNATIONAL SALES OFFICES

BELGIUM, HONG KONG,
Bruxelles TEL: . (02) 771 99 93 Kowloon................. TEL: ..o 3-695377
FAX: 762-3716 FAX: 1234276
TLX: oo 61028 TLX: oo 50426
CANADA, Ontario, ITALY, Milano TEL: (02) 3390541
Kanata TEL: . (613) 592-0090 FAX: ... o 3498000
Willowdale TEL: . (416) 224-5193 TLX: oo 315286
FAX: . (416) 224-0056 JAPAN, Tokyo TEL: (03) 345-8241
FRANCE, FAX: ... 3425196
Paris ... TEL: .. (01) 687.36.66 TLX: ..., J24064 AMDTKOJ
FAX: 6862185 LATIN AMERICA,
TLX: o 20253 Ft. Lauderdale EL: (305) 484-8600
GERMANY, FAX (305) 485-9736
Hannoverarea TEL: .. (05143) 50 55 SWEDEN, Stockholm TEL: (08) 733 03 50
FAX: ... 5553 FAX: ... it 7332285
TLX: ... 925287 TLX: o 11602
Minchen L TEL: .. (089) 41 14-0 UNITED KINGDOM,
FAX: 406490 Manchester area TEL: (0925) 828008
TLX: oo 523883 FAX: ... o 827693
Stuttgart ... TEL:
(0711) 62 33 77 TLX: oo 628524
FAX: 625187 Londonarea TEL: (04862) 22121
TLX: .o 721882 FAX: ... o 2179
TLX: oo 859103
NORTH AMERICAN REPRESENTATIVES
CALIFORNIA NEW JERSEY
PINC ... OEM (408) 988-3400 TAI CORPORATION (609) 933-2600
DISTI (408) 498-6868 NEW MEXICO
CONNECTICUT THORSON DESERT STATES (505) 293-8555
SCIENTIFIC COMPONENTS (203) 272-2963 NEW YORK
IDAHO NYCOM.INC (315) 437-8343
INTERMOUNTAIN TECH MKGT (208) 322-5022 OHIO
INDIANA Dayton
SAI MARKETING CORP (317) 241-9276 DOLFUSS ROOT & CO (513) 433-6776
IOWA Strongsville
LORENZ SALES (319) 377-4666 DOLFUSS ROOT & CO (216) 238-0300
MICHIGAN PENNSYLVANIA
SAI MARKETING CORP {313) 227-1786 DOLFUSS ROOT & CO (412) 221-4420
NEBRASKA UTAH
LORENZSALES (402) 475-4660 RZMARKETING (801) 595-0631

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance
characteristics. The performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and
other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company
assumes no responsibility for the use of any circuits described herein.

ADVANCED MICRO DEVICES 901 Thompson PI., P.O. Box 3453, Sunnyvale. CA 94088. USA
‘ TEL: (408) 732-2400 ® TWX: 910-339-9280 @ TELEX: 34-6306 ® TOLL FREE: (800) 5388450

¢ 1985 Advanced Micro Devices. Inc
Printed in U.S.A. |H-WCP-5M-12/85-0

Order #07339A

	000
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	B-1
	B-2
	B-3
	C-1
	xBack

