Compression Expansion Technical Manual
Processor
Am7970A
S
S
4
(o)
m
O
BIT- z
MAPPED Ami970A COMPRESSE D S
IMAGE CEP DATA (o
DATA >
m
=
0N
m
wn

COMPRESSION —
<—— EXPANS|ON

&

Advanced Micro Devices

Am7970
Compression Expansion
Processor

The International Standard of
Quality guarantees a 005% AQL on all
electrical parameters, AC and DC,

over the entire operati :
mgﬁﬁ d

© 1986 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products without
notice in order to improve design or performance characteristics. The performance
characteristics listed in this data book are guaranteed by specific tests, correlated

testing, guard banding, design and other practices common to the industry.
For specific testing details contact your local AMD sales representative.
The company assumes no responsibility for the use of any circuits described herein.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

ACKNOWLEDGEMENTS:

This technical manual was written by James Williamson, Field Applications Engineer and

Wolfgang Kemmler, Headquarters Applications Engineer. The Senior Technical Writer for
this manual is Erland Kyllonen.

Section 4.2 was contributed by Deyoung Hong, Software Engineer. ’

Peter Alfke, Director of Applications and Joseph Brcich, Manager of Headquarters Applica-
tions contributed to the final revisions of this manual.

TABLE OF CONTENTS

1. INTRODUCTION

[W S S Y
Bona

General Description
Features ...
CCITT Standardscoocviiiiiiiiiiniier e
Document Definition

2. FUNCTIONAL DESCRIPTION

2.1

2.2

Operational Description
P2 T T 111 1741 (1o 4 PPN
Source Buffer Definition
Destination Buffer Definition

Attributes

Control Parameters
2.1.2 Start Processing Proceduresccooviiiiiiiiiiiiiiiin i 2-3
2.1.3 How to Use the Status Registersc.ccooooiiiiiiiiiiii e, 2-3
2.1.4 Interrupt Handlingcoouuiimiiii 2-3

Compressor Error Recovery Procedures

Expander Error Recovery Procedures
2.1.5 Stopping the CEP
Register Descriptionc...ccccoviiiiiiiiiin
2.2.1 Time Fill Register (TFLR)
2.2.2 Left Margin Register (LMGR)
2.2.3 Right Margin Register (RMGR) cccoimiiiiiiiiiii
2.2.4 Top Margin Register (TMGR)c..ccoveirieiiiiiiiiinnnnin.
2.25 Compressor Express Register (CER)
2.2.6 Master Status Register (MSR)

EXT (Extension)

ECD (Extension Code Detected)

EOP (End of Page)

ID (Version |. D.)

EBY (Expander Busy)

CBY (Compressor Busy)
2.2.7 Compressor Status Register (CSR)cccvvniiiiiiiiiniiiii 2-10

NGC—-Negative Compression

COA-Compressor Busy and New Operation Attempted

CIC-Compressor lllegal Command

WPI-Wraparound Incomplete

LPI-Line Processing Incomplete

CDO-Compressor Destination Overflow

CSO-Compressor Source Overflow

CBY-Compressor Busy .
2.2.8 Expander Status Register (ESR)ccciiiiiiiiiiiiiiniiiii 2-14

DER-Data Error

EOA-Expander Busy and New Operation Attempted

EIC~Expander lllegal Command

WPI-Wraparound Incomplete

LPI-Line Processing Incomplete

[EDO-Expander Destination Overflow

ESO-Expander Source Overflow

EBY-Expander Busy

2.2.9 Master Control Registers (CMCR, EMCR) ..o 2-15
GO

OC-Operation Control
RESET (00)
SINGLE-LINE (01)
MULTI-LINE (10)
RESERVED (11)

|E=Interrupt Enable

DC-Destination Control

SC-Source Control

MC-Mode Control
TRANSPARENT (00)
ONE-DIMENSIONAL (01)
TWO-DIMENSIONAL (10)
RESERVED (11)

2.2.10 Compressor/Expander Restart Control Registers (CRCR, ERCR)covvvviiieviinieenin, 2-18

2211

2212

2.213
2214
2.2.15
2.2.16
2.217
2.2.18
2.2.19
2.2.20
2.2.21
2.2.22
2.2.23
2224
2.2.25
2.2.26
2.3 Interface

2.3.1 Signal Description

SCC-Source Count Control

SAC-Source Address Control

DCC-Destination Count Control

DAC-Destination Address Control

RES-Reserved

BBC-Expander Byte Boundary Control

SLS-Source Line Start Address Control

DLS-Destination Line Start Address Control
Compressor Parameter Register (CPR)........ocuueiiiiiiiiiiiiiriiie e 2-20

LT -Line Termination Parameter

DFC-Data Format Control

SA-Source Attribute

EOL-End of Line
Expander Parameter Register (EPR)ccouviviiiiiiiiiiieice e 2-22

Reserved

G-Granularity

SA-Source Attribute

EOL
K Parameter Registers (CKPR, EKPR)
Wraparound Registers (CWR, EWR)cocvviieiiiiiiniiie e
Page Width Registers (CPWR, EPWR)
Frame Width Registers (CFWR, EFWR)
Source Address Holding Registers (CSAHR, ESAHR)
Source Current Address Registers (CSCAR, ESCAR)
Source Count Holding Registers (CSCHR, ESCHR)
Source Working Count Registers (CSWCR, ESWCR)
Source Line Start Address Registers (CSLSR, ESLSR)
Destination Address Holding Registers (CDAHR, EDAHR)
Destination Current Address Registers (CDCAR, EDCAR)
Destination Count Holding Registers (CDCHR, EDCHR)
Destination Working Count Registers (CDWCR, EDWCR)......
Destination Line Start Address Registers (CDLSR,EDLSR) ...
Description

CLK Clock (Input)

RESET (Input)

RD Read (Input/Output, Active Low, Three-state)
WR Write (Input/Output, Active Low, Three-state)
CS Chip Select (Active Low, Input)

ALE Address Latch Enable (Output)

HRQ Hold Request (Output)

HLDA Hold Acknowledge (Input)

READY (Input/Output, Three-state)
INTR Interrupt Request (Output)
Ao—A15 Lower Address, (Input, tri-state outputs)
ADqg-AD23 Address-Data Bus (Input/Output, Three-state)
DRD Document Store Read (Active Low, Output, Three-state)
DWR Document Store Write (Active Low, Output, Three-state)
DALE Document Store ALE (Output, Three-state)
DREADY Ready (Input, Three-state)
DAg-DA15 Document Store Lower Address Bus (Output, Three-state)
DA4~DAs3 Document Store Upper Address-
Data Bus (Input/QOutput, Three-state)
2.3.2 CPU Access Operations (CEP Slave Mode)
Read Access Operation
Write Access Operation
2.3.3 DMA Operation (CEP Master Mode)............cuceieeeiiiriieieeeeiiieeceee e 2-37
Read Access Operation
Write Access Operation
2.3.4 Document Bus Operationcceoieeereereruiuuiriiirieeeeeneeeeeeeieeiireeeereeeeeennns 2-39
Read Access Operation
Write Access Operation

3. CODING

3.1 Coding CONCEPESooiviiiiiiiiiiiiiieieeee et e e e
3.1.1 Encoding Digital Facsimile
3.1.2 Information Theoryccccccoeeiiviiiiiiiniiinnann,
3.1.3 Huffman Coding.....c....coeevviviiiiiiiiiineeerine.
3.1.4 Modified Huffman Coding
3.1.5 The CEP's One-Dimensional Modec..ccoiiiieiiiiiiiiiiiiiiiec e 3-9
3.1.6 Modified READ Codingcccceeeneee
3.1.7 The CEP's Two-Dimensional Mode

Pass Mode
Vertical Mode
Horizontal Mode
3.1.8 EXPresS MOAeiiiiiii i 3-14
Granularity
3.1.9 Transparent MOAecoiveiriiiiiiiiiiiiieee e
3.1.10 Uncompressed Data
3.1.11 Transmission Time Constraintscoceveriiiiieeiiiiiciiceee e, 3-17
4. PROGRAMMING .ottt e et e e et e e e e et e e e e e eaa e e e e e eeseaneeenees 4-1
4.1 Register Setup Routines ..., 441
411 Program LISNGcoeeueiiieiiie e 41

Main Program

Initialize CER, CWR, EWR, CCR, and ECR

Load Time fill Register, TFLR

Load Paper Width Registers, CPWR/EPWR

Load Margin Values into LMGR, RMGR, and TMGR

Set G-Parameter into Register, EPR

Set K-Value into Registers, CPR/EPR

Dump Registers

Load Compressor Source Registers, CSCHR and CSWCR
Load Compressor Destination Registers, CDCHR and CDWCR
Load Expander Destination Registers, EDCHR and EDWCR

Load Expander Source Registers, ESCHR and ESWCR

Register Address Evaluation

Port Number and Value, Both Registers

Port Number and Value, Expansion Register

Port Number and Value, Compression Register

Read a CEP Register
4.1.2 Error RetUrn MESSAQES ...cuuvurreeniririiiiiiieiiiieiiieteeenne st s tereeriesereasenaes

4.2 Image File Analysis Program Description

4.2.1 Header Declaration Sectioncccoovveeiieiiiiniinienns
4.2.2 Main Function
4.2.3 Sub-Functions

4.2.4 Image Analysis Program Execution Report............cooeviviiiiiiiiiiiiiiiiniiiiiiceennnes 4-19
5. APPLICATIONS ot e et e ettt e e e et e e e tas e s e e et ae et eneeennnanes 5-1
5.1 Am7970A CEP Interface to the 68000 CPUccoccoieiiiiiiiiiiiiinnninnnennnnnnn, 5-1

5.1.1 General Discussion
5.1.2 Hardware Description
5.1.3 OPeratioN....c.ceeuiiuiiiniiiiiiii i e
Interrupt Handling
68000 Accesses to the Am7970A CEP Registers
(Slave Mode)
Am7970A CEP System Memory Access (Master Mode)
5.2 Am7970A CEP Interface to the 80188 CPU
5.2.1 General DISCUSSIONccevvnriiiiiiiiieiiiinnieennns
5.2.2 Hardware Description
5.2.3 OPEratioN.....ccuuiiiiiiiiiiiiiii e
80188 CPU Access to the Am7970A CEP
Am7970A CEP Access to the Memory
5.3 Am7970A CEP Evaluation Boardc..ccooeeiiiiiiiiiiii e 5-7
5.3.1 Features
5.3.2 The CEP Evaluation Board in an IBM PC/XTccuviiiiiiiiiiiiiieiiiecieerii e 5-7
5.3.3 The CEP Evaluation Boardin an IBM ATcoiiiiiiiiriieercereere e 5-8
5.3.4 Evaluation Board PAL Device EQUAationS...........coeeuiieiiiiiiiiiiieiie e, 5-12

APPENDICES

. Throughput Performance, 5 MHz ClIockcoooiiiiiiiiiii e,
. Image File Analysis Program Listingcc.oceuiiiiiiiiiiiininnninenns

L GlOSSANY

. 7970A Differences Relative to 7970 Revision A/A'
. Am7970A CEP Design Hintscvuviiniiiieiiiie e

. CCITT Specifications T.4and T.6ocoeiiiiiiiiiiiiiiiiii e
. Standard CCITT Compression Test Documents
. Data Error Recovery Procedure

IOMMOoOOW>»

INDEX

LIST OF FIGURES

1-1 Document Processing Workstation —coouuiiiiiiiiiiin e ee e e 1-3
1-2 Document FOrMAato.oiiniiiiiiie e e e
1-3 Document Margins
1-4 Document Storage

2-1 Am7970A (CEP) BIOCK DIaQramccuuiiuniiieiiieeieie it eie e e et e e eserae et e aneneaneaneeneens 2-7
2-2 Time Fill ReGISter (TFLRY).....oiiiuiiiiiiiit ettt e ee e e et e e e eee s e e ee e e st e e e s e eaennns
2-3 Left Margin Register (LMGR)uuiiiiiiiiiiiieie et e ae et e et e e e e e e eea e eneaeees
2-4 Right Margin Register (RMGR)
2-5 Top Margin Register (TMGR)ccovueviiiiriiiieiiiieeiee e,
2-6 Compressor Express Register (CER)
2-7 Master Status Register (MSR)uiiiniiiiiiiie e
2-8 Compressor Status Register (CSR)

2-9 Expander Status Register (ESR)ccccceeeuents

2-10 Master Control Registers (CMCR, EMCR)
2-11 Restart Control Registers (CRCR, ERCR)
2-12 Compressor Parameter Register (CPR)

2-13 Expander Parameter Register (EPR) ...couniiiieiii i
2-14 K Parameter Registers (CKPR, EKPR)
2-15 Wraparound Registers (CWR, EWR)........uiiiiiiiiiiiiiiiierciiee et ee e e eeve e
2-16 Page Width Registers (CPWR, EPWR)
2-17 Frame Width Registers (CFWR, EFWR)
2-18 Source Address Holding Registers (CSAHR, ESAHR)

2-19 Source Current Address Registers (CSCAR, ESCAR)

2-20 Source Count Holding Registers (CSCHR, ESCHR)......

2-21 Source Working Count Registers (CSWCR, ESWCR)

2-22 Source Line Start Address Registers (CSLSR, ESLSR)

2-23 Destination Address Holding Registers (CDAHR, EDAHR)ccooiiiiiiiiiiiiiiiiiieeeieeeans 2-36
2-24 Destination Current Address Registers (CDCAR, EDCAR)ccceuiviiiiiiiiniiiiiiiieeiiieeeee, 2-31
2-25 Destination Count Holding Registers (CDCHR, EDCHRY)cccoviiiiiiiiiiniiiiiiieeeeii e, 2-31
2-26 Destination Working Count Registers (CDWCR, EDWCR)cccooiiiiiiiiiiiiiiniiiiieeieeeinns 2-32
2-27 Destination Line Start Address Registers (CDLSR, EDLSR)ccovuiieiiiiiiiiiiiiiniinciiinnen, 2-33

2-28 CPU Read Timing (CEP Slave Mode)
2-29 CPU Write Timing (CEP Slave MOde)ccciiieuiiiiiiieiiiiiiie et eee e
2-30 CPU Block I/0 Transaction Timing (CEP Slave Mode)
2-31 System Side DMA Read Operation (CEP data in)

2-32 System Side DMA Write Operation (CEP data out)
2-33 Document Store Bus DMA Read Operationcccceevveeiiiiriiiiivinieeennnnns
2-34 Document Store Bus DMA Write Operationc.ccoeveieiiiiiiiiiiiiiieennines

3-1 Group 3 and Group 4 Data Compression
3-2 Block Diagram of Group 3 EQUIPMENtcouniiiiiiiiiiiiie e
3-3 Simplified Huffman Coding Treeccoovvieiiiiiiiiiiic e
3-4 Relative Probabilities of Various Pixel Run Lengths
3-5 Group 3 Format of Compressed Codecvvriviiriiiiiiniiiiiiiiiniiiiien
3-6 Group 3 Format of Compressed Code with Byte Boundary and Auto EOL
3-7 Group 3 Format of Compressed Code with Byte Boundary, Auto EOL and Fill
3-8 Comparison of Run-length and Relative Encoding
3-9 Group 4 Format of Compressed Code coooiiiiiiiiiiiiiiiii
3-10 Changing Picture EIBMENtS ...cciiiiiiiiiiii e
B-11 PASS MOTE ovvieieiiieiieee et et e ettt e e et e b e et et b he e e e et e e e e
3-12 Vertical Mode ..ooevveiiiiiiiiiiice

3-13 HOMzZoNtal MOGE coeeeieiie et e

3-14 Uncompressed Data Transfer in Transparent Mode
3-15 Uncompressed Data FOrmMat coovveiiiiiiiiiiiiiiiie i rreees e e e e e eee e eearbaens
5-1 Am7970A CEP to 68000 CPU Interface
5-2 Am7970A CEP to 68000 Interface Controller PAL Device
5-3 CEP to 68000 Interface Controller, Part B
5-4 Am7970A CEP to 80188 CPU Imterface
5-5 Wait State Circuitccevviviiiiienniinnnns
5-6 Evaluation Board System Memory Map
5-7 CEP Evaluation Board Interface for IBM PC/XT and AT

G-1 Test Document #1
G-2 Test Document #2
G-3 Test Document #3
G-4 Test Document #4
G-5 Test Document #5

G-6 TeStDOCUMENEHBcooniniiiii ettt et e et e e e e e et e e e e e e aaneeees G-6

G-7 Test DOCUMENEHT ..o et ettt e e v eeas G-7

G-8 TeStDOCUMENEHB ..cieniiiii ittt et e et e e e e abeseaere s eeeaernns G-8

H-1 Error Recovery FIOW Diagramcc.iiieiiiiiiiiiiiiii et ettt e H-1
LIST OF TABLES

2-1 ComPressor REGISIEIS .oiiiiiiiiiiii i ee et e e e e e e e eeas 2-6

2-2 ExXpander REJISIEIS oceuiiiiiiiiiiiei et e e et e e et e et e e e e aaaaaeas 2-6

3-1 Summary of Standardized Parameters for Group 3 and Group 4 Equipmentccceuneee. 3-4

3-2 Typical COMPreSSiON ratiOS ceuuiieinriiiiiiieiiiieiiee e et e et e e ete e et e e eet e et e eeaneennnesanas

3-3 Terminating Codes ceuuvieiiiiiiiiiiiiiiee e

3-4 Make-up Codes vriiiiiiiiii e

3-5 Two-Dimensional Code Table............c.......

3-6 Uncompressed Mode Code Words

vi

Chapter 1
INTRODUCTION

1.1 GENERAL DESCRIPTION

The Am7970A Compression/Expansion Proces-
sor (CEP) is a high-performance peripheral which
compresses and expands two-tone bit image data
in accordance with the International Telegraph and
Telephone Consultative Committee (CCITT) re-
commendations. These image-preserving com-
pression protocols allow highly efficient storage
and transmission of two-tone pictures and
documents without loss of information.

Using advanced one- and two-dimensional
compression algorithms, the Am7970A is able to
represent a one megabyte document in an
average of 64K bytes of storage, a reduction ratio
of 15:1. In many cases, the compression ratio is
30:1 and higher. In addition to the memory space
saved, this compression applies the same saving
to the transmission time. Thus, a document that
requires 15 minutes to transmit at 9.6 kb/s requires
less than one minute with compression. Typical
compression of the eight CCITT test documents is
5x to 50x. The compression ratio varies with the
compression mode and the amount of image detail
on the document. Tables are presented in the
discussion of the coding concepts to show the
compression ratios that can be expected for
various modes of operation.

Paralleling the use of compression/decom-
pression in the facsimile environment, there are
image processing requirements in the commercial
office. Generally speaking, these requirements
have many similarities to those of facsimile. It is
necessary to have the ability to create, capture,
view, edit, print and communicate images. The
communication of these images may take the form
of “hard copy” (facsimile) or “display” via a CRT
terminal. Further requirements of such systems
are the ability to modify images in content, shape,
and size, as well as, to incorporate image data with
other forms of information (for instance text).
Figure 1-1 shows a document processing
workstation. It shows the environment in which the
CEP may be used.

The CEP has a standard Am8088/8086-like
microprocessor bus interface which is easily
adapted to a regular microprocessor interface.
CEP operation is set by programming internal
control registers. CEP status is available through
polled registers; exception conditions may be
signaled using an external interrupt. The 42 on-

chip registers allow a simple and highly flexible
system implementation. After initialization, the
CEP processes data with minimal intervention by
the host processor.

The Am7970A CEP includes a secondary, local
Document Store bus for optional use in
conjunction with the CPU bus. The local storage
buffer is highly desirable within many system
architectures to optimize CPU bus performance.
The CEP can linearly address up to 16Mbytes of
memory on each bus, for a total of 32 Mbytes.
Starting address, buffer length, and current
address for raw and processed data are stored
within internal registers independently for both the
Compressor and the Expander.

The Am7970A performs modified Huffman one-
dimensional coding or modified Relative Element
Address Designate (READ) two-dimensional
coding. This is compatible with CCITT
recommendations T.4 and T.6 for Group 3 and
Group 4 digital facsimile apparatus.

The Compressor and Expander, which operate in
full-duplex, can be independently programmed for
one-dimensional encoding/decoding, two-
dimensional encoding/decoding, or transparent
data transfer. In two-dimensional operation, the
programmable K-Parameter defines the number of
lines to be encoded in each two-dimensional
coding sequence. For error-less systems (Group
4), “K = infinity” allows maximum compression by
coding all lines two-dimensionally. Transparent
Mode is provided to move data from one memory
areato another using the DMA onthe CEP.

Accelerated image processing is supported with a
Compressor Express Mode which skips one line
for every n lines compressed. The Expander
counterpart is a Granularity Mode which duplicates
the last line expanded after each n lines that are
expanded. To expand the document to the same
size as the original, the n value must be the same
for both compression and expansion.

Document format controls include line length and
margins. Line lengths or document widths of up to
16K picture elements may be selected.
Programmable top, left, and right margins specify
“‘white space” around image data, supporting both
normal margin requirements and also “windowing”,
defined as overlaying of multiple image blocks or
image blocks and character blocks.

1-1

1.2 FEATURES

¢ Compression/Expansion of digital two-tone
image data using run-length and relative coding.

¢ Compatible with CCITT recommendations T.4
and T.6 for Group 3 and Group 4 facsimile
apparatus.

¢ One-Dimensional, Modified Huffman Coding
with optional Wraparound Mode.

¢ Two-Dimensional, Modified READ Coding with
programmable K-Parameter.

¢ General-purpose microprocessor interface.

 Optionallocal Document Store bus.

¢ On-chip, dual-bus DMA controller.

» Transparent transfer of unmodified data.

¢ 16-Mbyte physical addressing range on each
bus.

¢ Programmable paper width up to 16K picture
elements.

» Programmable top, left, and right margins.

e Window capability

« Optional Express Mode during compression and
Granularity Mode during expansion.

e Full-duplex capabilty for simultaneous
independent compression and expansion.

» High-performance 2 to 8 Mbps throughput with a
5-MHz clock.

The Am7970A is packaged in a 68-pin LCC or Pin
Grid Array and uses a single +5 V power supply.

1.3 CCITT STANDARDS

Standards for graphical data compression have
been developed and agreed upon by the CCITT.
These standards define the document
representation, the coding alternatives, the
encoding algorithms, and transmission require-
ments for Facsimile operation. Document def-
inition is discussed in the next Section of this
chapter. Chapter 3 is devoted to discussing
coding concepts and encoding. These standards
are also included as Appendix F.

The standards are divided into four groups to
address various categories of equipment. Groups
1 and 2 are for old relatively slow analog equipment
and are not discussed in this manual. Groups 3
and 4 provide for both one-dimensional and two-
dimensional digital coding, and the inclusion of
uncompressed text.

The CEP (Am7970) adheres to the T.4 and T.6
standards recommendations set forth by the
CCITT Group 3 and Group 4 committees,
respectively. The recommendations establish
compatibility among manufacturers of facsimile
equipment.

The CCITT compression and expansion
techniques are based on the modified Huffman
and modified READ codes. In compressing the
data, only the image redundancies are removed so
that the image is preserved without degradation.

Group 3 (T.4) facsimile standards for document
transmission specify the apparatus requirements
to enable an ISO A4 document (similar to an 8 1/2
by 11 inch page) to be transmitted over a
telephone-type circuit in less than one minute.

In Group 3, the total coded scan line is defined as
the sum of the data bits plus any required fill bits
(zeros) plus the EOL code (in one-dimensional
coding). The EOL code is 000000000001. For
two-dimensional coding, the scan line includes all
of the above plus a tag bit to specify whether the
next line is coded one-dimensionally or two-
dimensionally. A scan line is 1728 pixels long.
Alternative optional lengths are provided as
specified in detail under Document Definition.

In Group 4, the total coded scan line is the sum of
the data bits. Fill bits and EOLs are not used
except for the last line which is terminated by a
sequence of two EOLs and a pad of zeros as
needed to end the document on a byte boundary.
Coding formats are defined and explained in detail
in Chapter 3.

The various transmission rates and communication
handshakes for this equipment are specified in the
CCITT recommendation T.30. This rec-
ommendation specifies modem bit rates according
to V.27 for (4800/2400 bps) and/or V.29
(9600/7200 bps). T.30 also specifies V.21 (300
bps) initial interrogation between facsimile
equipment to assure compatibility via a preliminary
interchange of information.

The minimum transmission time of each total
coded scan line is also specified in the CCITT
recommendations (refer to Appendix F).

1.4 DOCUMENT DEFINITION

Image data is rapidly becoming an important part of
computer data storage and communication. The
most common unit of image data is the document,
an eight and a half by eleveninch area. This areais
divided into many small areas called picture
elements (pixels).

Picture elements are of uniform size and are
scanned from left to right and from top to bottom as
seen when viewing the document held in a vertical
plane. The resolution possible is determined by
the size of the picture elements. Each pixel is

C__aNn_

HARD DISK FLOPPY DISK Am7995 — WRITE-ONCE-READ-MOSTLY COMM LINE
KEYBOARD TRANSCEIVER (W.O.RM) DISK
\ 4
Lemmn Am7991
\ l SIA
L A4
CPU Am9580 IMAGE Am790 OPTICAL AmZ8530 SERIAL
80286 MAIN MEMORY HDC/FDC PROCESSING L'L'NCE DISK COMMNCTNS
OR 68000 UNIT #1 CONTROLLER CONTROLLER
4 4 A y y A

A \ 4 A A A X \ 4
< SYSTEM BUS >
4 4 4 4 4

v l A Y
IMAGE - cPU
:mmgg& A'37EQP7° PROCESSING FONT RAM 80286 "m MOUSE
UNIT #2 OR 68000
MAINTENANCE 1 1 1 1
BOARD
4 A Yy A
< DOCUMENT STORE BUS >
3 3 Y
HARD DISK
\ 4 v A A
SCANNER LASER DOCUMENT Ame580
CONTROLLER PRINTER STORE YT >
CONTROLLER MEMORY
A

A $ A 4
/ P

SCANNER]:] / LASER PRINTER GBI'!{T/-\ASI:{IC
\ / CONTROLLER

— 07666A 1-1

Figure 1-1. Document Processing Workstation Am815X

represented as a single binary bit of color
information or data in a document image. There-
fore, colors are limited to two tones (black and
white or other color pairs).

In memory, the bits representing the pixels are
combined into bytes. The first pixel at the top left
edge of the image must be stored as the least
significant bit of the first byte in the memory buffer.
This is also the first bit to be sent on a transmission
line. The bits of each byte are transmitted serially.
The compressed (coded) image follows the same
rule. If this rule is violated, additional color changes
may be created completely upsetting the
compression statistics and reducing the com-
pression ratio. There is no standardization on how
ascanner has to present the data.

A standard scan line in a Group 4 document is 215
mm (8.46") long and contains 1728 pixels (same as
Group 3). All scanning is from left to right and from
top to bottom when viewing the document in a
vertical plane. Optionally, the line may be 255 mm
long and contain 2048 pixels or it may be 303 mm
long and contain 2432 pixels.

CCITT Group 4 standard sizes have been
established for the pixels. There may be 200, 300,
or 400 pixels per inch horizontally and from 100 to
400 pixels per inch vertically. The number of pixels
per inch determines the resolution obtainable.

The Group 4 standard of 200 lines per inch means
that a line containing 1728 pixels is 8.64 inches
long whereas North American letter size paper is

8.5 inches wide.

In the vertical direction, the standard resolution is
100 lines/in (3.85 lines/mm) with an optional
resolution of 200 lines/in (7.7 lines/mm). Reso-
lutions of 300 and 400 lines/in. are also allowed in
the vertical direction. For comparison, a television
picture that is 8 1/2 inches wide and has a 4 MHz
video bandwidth has a resolution of 60 to 90
pixels/in. Referto Figure 1-2.

In addition to specifying the pixel size, one can
also specify the left, right, and top margins. Thus,
an area of information in an all white (or all black)
field can be sent or stored by specifying the
margins to include all of the white field above, to
the left, and to the right of the image. Figure 1-3
shows the white margins that may be specified
within a document.

The memory used to store the document image is
called a frame. It may be the same width as the
document or it may be wider. Figure 1-4 shows the
frame and the document or page within the frame.
It shows some of the registers used to define the
image area location within the frame. These
registers are defined in Chapter 2.

The document is actually a window within the
frame. This window may be moved within the
frame by manipulating the registers defining its
location. Thus, cutting and pasting of information
on the display screen can be implemented
efficiently.

TOTAL LINE LENGTH

TLL2 »
- gl
e NORTH AMERICAN LINE LENGTH »
e A4 LINE LENGTH »
'\ | :
A_ﬂ — (1,1) RASTER pp— le— A
: REFERENCEPOINT :
B —P» - | —> — B
81/2-11 PAGE ——¥ |
A4PAGE —¥ I
RESOLUTION | PELS | 81/2x11 A4 | BLANKED | MARGINS | ADDRESS
(PPI) PER LINE LINE A B (1,1) REF
LINE | (PELS) | (PELS) | (PELS) (PELS) POINT
200 x 200 1728 1700 1654 14 37 (38.1)
300 x 300 2592 2550 2480 21 56 (57.1)
400 x 400 3456 3400 3308 28 74 (75.1)
07666A 1-2 Figure 1-2 Document Format

je PWR »|
j&- LMGR -»] |« RMGR-»]
Yy
1
=
4
PWR = PAGE WIDTH REGISTER
LMGR = LEFT MARGIN REGISTER
RMGR = RIGHT MARGIN REGISTER
\Q\IS:ETE WHITE TMGR = TOP MARGIN REGISTER
AEA e vARMBLE AREA
DATA 1 o
A4

Figure 1-3 Document Margins 07666A 1-3

fe FWR »
FRAME
|¢——PWR—»|
LSR — T
FWR = FRAME WIDTH REGISTER
% CAR = CURRENT ADDRESS REGISTER
CAR — s LSR = LINE START REGISTER
CAR+FWR _| a PWR = PAGE WIDTH REGISTER
(NEXT LINE) WCR = WORKING COUNT REGISTER
DOCUMENT OR PAGE

Figure 1-4 Document Storage 07666A 1-4

1-6

Chapter2
FUNCTIONAL DESCRIPTION

This functional description includes the
operational description, register description, and
the interface description.

2.1 OPERATIONAL DESCRIPTION

CEP operations consist of three phases:
initialization, operation, and termination. In the first
phase, the registers (compressor or expander
processor) are initialized to specify and control the
desired operation. In the second phase, the
processing operation itself is started and
performed. The final phase involves terminating
the selected processor and performing any actions
that are appropriate to that termination. These
phases are described in detail in the following
sections.

The Am7970A contains two separate buses—the
System bus and Document Store bus. One DMA
Controller on the CEP chip serves both buses.
Therefore, DMA data transfers cannot take place
on both buses at the same time. However, slave
transfers can occur on the system bus while a DMA
transfer is taking place on the Document Store
Bus. Data transfers between the Am7970A and
Main Memory take place on the System bus. Data
transfers between the Am7970A and the
Document Store Memory take place on the
Document Store Bus.

The Am7970A processes two types of data;
uncompressed or image data and coded or
compressed data. Image data is stored in that
portion of memory called the Image Buffer.
Compressed data is stored in a portion of memory
called a Code Buffer. In an Am7970A system, the
Code and image Buffers are external to the CEP
and each can be located in either the Main Memory
or the Document Store in any combination.

Consideration should be given to the assignment
of the buffers to memory. All control information
exchanges between the Am7970A and the host
processor take place on the System bus. Because
of the high data rate of image data, it is
recommended that the Image Buffer be placed in
the Document Store so that it can be accessed
without slowing down the CPU by contention for
the DMA. For maximum performance, the Image
buffer should be large enough to store one
uncompressed document. The Code Buffer can
be placed in the Main Memory so that the CPU can
access it rapidly during transmission or reception of
data. Since the compressed code is considerably

smaller than the image data, it does not seriously
slow down the system bus and thus impact the
CPU.

The Am7970A contains registers to specify the
starting address and assigned length of both the
Image Buffer and the Code Buffer. The Am7970A
Compressor is completely independent of the
Expander. The Compressor takes image data from
its Image Buffer and loads the resulting
compressed data into its Code Buffer. The
Am7970A Expander takes compressed data from
its Code Buffer for processing and loads the
resulting image data into its Image Buffer. In an
Am7970A system, the Compressor can be
operating from its Image and Code Buffers while
the Expander is simultaneously using its own
buffers.

For certain images (such as half tone), the
compressed data representing a line may be
longer than the original line of the image. This is
called negative compression. The Am7970A
checks for this condition after compressing a line
and alerts the host processor via an interrupt and a
status bit.

Each compressed line may be delimited by an End
of Line (EOL) code according to the CCITT
recommendation for Group 3 facsimile apparatus.
However, this automatic EOL insertion can be
suppressed by appropriate bit settings of the
Am7970A (EOL=1).

The CCITT recommendation T.4 for Group 3
equipment requires that each coded line be a
certain minimum length. Fill bits are added by the
CEP to a shorter line when necessary to meet this
requirement. The Am7970A contains a Time Fill
Register to specify the minimum line lengths
(including zero).

Data is vulnerable to modification by transmission
errors. When erroneous data is expanded, the
resulting image is very different from the original.
The Am7970A checks the expanded line for the
number of picture elements required by the
specified paper width. If there is a discrepancy, the
CPU is alerted via an interrupt. In Group 4 mode,
error-free transmission is assumed.

2.1.1 Initialization

The Am7970A has the following initialization
requirements:

2-1

¢ Source Buffer definition

¢ Destination Buffer definition
o Attributes

o Control Parameters

These requirements are met by writing appropriate
information into the 42 registers in the CEP.
These registers are discussed in detail in this
chapter. The following discussion is a summary of
the information in these registers as it pertains to
initialization. The system program should specify
certain initial conditions before starting the
operation of the Am7970.

Source Buffer Definition

A Source Buffer is defined by specifying which
memory it is in (Main Memory or Document Store),
the starting address, the width, and the capacity of
the Source Buffer. To specify a source buffer in
the Main Memory, the system program must load
“0” into the CSC/ESC bit in the Compressor
Master Control Register (CMCR)/Expander Master
Control Register (EMCR). If a Source Buffer is
located in the Document Store, the system
program must load a “1” into the CSC/ESC bit.
The width of the source buffer memory is stored in
the Compressor Frame Width Register CFWR.
The EFWR stores the width of the Expander
Destination Buffer. Frame width is not applicable
to data in the compressed form.

The system program must load a starting address
into the Source Address Holding Registers
(CSAHR, ESAHR) and the Source Current
Address Registers (CSCAR, ESCAR). Also, the
system program must load the negative two's
complement of the length (in bytes) of the Source
Buffer into the Source Count Holding Registers
(CSCHR, ESCHR) and the Source Working Count
Registers (CSWCR, ESWCR). Additional
requirements of the Source Buffer are discussed
under the specific source register sections in this
chapter.

Destination Buffer Definition

The residency, the starting address, the width, and
the capacity of the Destination Buffer must be
specified. An “0” in the CDC/EDC bit in the
CMCR/EMCR register specifies that the
Destination Buffer is located in the Main Memory; a
“1" specifies it is in the Document Store. The
starting address is specified in the Destination
Address Holding Registers (CDAHR, EDAHR) and
Destination Current Address Registers (CDCAR,
EDCAR). The width is stored in the Expander
Frame Width Register EFWR. Destination buffer
width is only meaningful for the Expander.

The negative two's complement of the length (in
bytes) of the Destination Buffer must be loaded
into the Destination Count Holding Registers
(CDCHR, EDCHR) and the Destination Working
Count Register (CDWCR, EDWCR). The length of
the Destination Buffer has some conditions that
are are discussed in detail later in this chapter. The
system program should adhere to those
recommendations.

Attributes

The system program must set the Source Attribute
bit, SA, in the Parameter Registers (CPR/EPR)
when the CEP is to process a new page. The Data
Format Control (DFC) bits in the Parameter Regis-
ter specifies the compressed data format (byte
boundaries and the RTC and EOL suffix codes).

If the automatic insertion of an EOL code is
required, the system program must load “0” into
the EOL bit in the Compressor Parameter
Register. [f this bit is “1,” automatic insertion of
EOL is suppressed.

The system program must load “0” into the EOL bit
in the Expander Parameter Register (EPR) when
data with attached EOL is going to be expanded. If
the data that is to be expanded contains no EOL
codes (except at the end of a page), the system
program must load “1” into the EOL bit in the EPR
register.

The system program specifies the Wraparound,
Express, and the Top, Left, and Right Margin
options by loading the corresponding registers.
The horizontal pixel count is specified in the Page
Width Registers (CPWR, EPWR). The width of the
memory buffer used to store the picture image is
loaded into the Frame Width Registers (CFWR,
EFWR). If window processing is used, the width of
the window is stored in the Page Width register.
Otherwise, the Frame Width Register and the
Page Width Register have the same values.

Control Parameters

The operating mode, operation control, interrupt
enable, and start/stop are loaded into the Master
Control Registers (CMCR, EMCR). The operating
modes are: One-dimensional, Two-dimensional,
and Transparent. The K-Parameter is specified in
the K-Parameter Register when Two-Dimensional
processing is required. The granularity option, the
G-Parameter, is specified in the Expander
Parameter Register.

The GO bit combined with the OC field (bits 0, 1,
and 2) in the CMCR or EMCR specify whether

2-2

compression or expansion processing or the reset
operation for the compressor or expander is to be
performed. If 001 is specified in bit positions 2, 1,
and 0, the reset operation is executed. 101
specifies multi-line processing and 011 specifies
that single-line processing is to begin. The
minimum transmission time requirement is loaded
into the Time Fill Register (TFLR).

A “1” in the Compressor Interrupt Enable bit (CIE)
in the CMCR or in the Expander Interrupt Enable
bit (EIE) in the EMCR specifies that an interrupt
request is required upon CEP termination. A “0” in
this location specifies that an interrupt request is
not required.

Compression processing starts as soon as a “1” is
loaded into the GO bit in the CMCR. Expansion
processing starts as soon as a “1” is loaded into
the GO bit in the EMCR.

The Restart Control Registers (CRCR, ERCR)
specify whether to continue with the current val-
ues or to restore the starting values for the Source
and Destination Current Address Registers,
Working Count Registers, and Line Start Registers
when a new processor operation is initiated.

Line Termination (LT) bits in the CPR are used to
specify how many bits of terminating image to add
to the end of each line after the last full byte of
data. The termination bits for each line have the
same value as the last bit of the last byte on that
line.

All of the registers are described in detail in this
chapter. The recommendations made in this
chapter must be followed for initialization.

2.1.2 Start Processing Procedures

The Am7970A has two different operating
configurations. In the full-duplex mode, the
Expander and the Compressor are operated simul-
taneously. In the half-duplex mode, either the
Expander or the Compressor may be operated
separately. A “1” in the GO bit of the CMCR
initiates compression. A “1” in the GO bit of the
EMCR initiates expansion. For full-duplex oper-
ation, load a “1” into the GO bit of each register.

Entire images may be compressed or expanded in
one operation if the code buffer and the image
buffer are both large enough to contain the entire
image. Inthis case, each start is a start to process a
new page and the system program must specify a
RESET operation before each start. The reset
operation flushes the internal pipeline, sets “busy”
to zero, sets up the check for configuration errors,
clears status and interrupt registers, and sets the

GO bit to zero.

If the code buffer is not large enough during
compression to contain the code for an entire
image or page, the CEP will stop when the buffer is
full. Then, after the coded data is saved,
compression can continue without issuing a reset.

If the image buffer is not large enough during
expansion to contain an entire image or page, the
CEP will stop when the buffer is full. Then, after
the image buffer data is saved, CEP processing is
resumed without issuing a reset. Thus,
compression and expansion are possible using
buffers too small to store an entire page.

2.1.3 How To Use The Status Registers

The CEP has three status registers: the Master
Status Register (MSR), the Compressor Status
Register (CSR), and the Expander Status Register
(ESR). Bits 6 and 7 (EBY, CBY) in the MSR
provide general status information to the CPU
about both the Compressor and Expander. These
bits are known as the Expander Busy (EBY) bit and
the Compressor Busy (CBY) bits.

If interrupts have not been enabled, the system
program should periodically poll EBY and CBY in
the MSR register. If the system program is enabled
to respond to an interrupt, it should test the EBY
bit and the CBY bit in the MSR after a CEP interrupt
oceurs.

Bits 0 to 3 (EXT, ECD) in the MSR indicate whether
a non-CCITT uncompressed mode entry code was
detected during expansion. Bit 4 in the MSR
indicates that the Expander detected an End of
Page (EOP) code. If the system program requires
detailed status information, it should test the CSR
or the ESR directly.

2.1.4 Interrupt Handling

The Am7970A will drive its interrupt line (INTR)
High when the CBY bit in the CSR or the EBY bit in
the ESR changes from “1” to “0” while the Com-
pressor Interrupt Enable (CIE) bit in the CMCR or
the Expander Interrupt Enable (EIE) bit in the
EMCR has been set to “1.” The INTR line will
remain High until the MSR has been accessed by
the system program. The system program may test
the MSR register to distinguish Compressor inter-
rupts from Expander interrupts. The system
program should isolate the cause of the interrupt
by reading the appropriate status register (CSR or
ESR). Reading the status register clears the
interrupt. The system program may then execute
its interrupt service routine to respond to the
interrupt.

2-3

Compressor Error Recovery Procedures

The Compressor detects several error conditions:
a premature source overflow, a premature
destination overflow or an illegal command. An
error condition is also detected if a new command
is attempted while the Compressor is busy or if
negative compression occurs. A premature
source or destination overflow is indicated by the
Wraparound Incomplete (WPI) bit or the Line
Processing Incomplete (LPI) bit of the Compressor
Status Register (CSR).

The error recovery procedure for an LPI error must
include the redefinition of the Source Buffer or the
Destination Buffer as follows:

1. Premature Source Overflow

New CSCHR = N * Hr * Apw/8

New CSWCR = 2's complement of new CSCHR
-~ old CSCHR

New CSCAR = CSLSR, new CDCAR = CDLSR

CRCR = All one (X'FF')

New CDWCR = old CDWCR = (CDCAR - CDLSR)

2. Premature Destination Overflow

New CDCHR = N * Hr * Apw/8

New CDWCR = 2's complement of new CDCHR
- old CDCHR

New CDCAR = CDLSR, new CSCAR = CSLSR

CRCR = All one (X'FF')

New CSWCR = old CSWCR - (CSCAR - CSLSR)

where:

N line count

Hr
Apw

Horizontal resolution
Actual page width

onou

The error recovery procedure for a WPI error
without an LPI error may include restarting the
Source Buffer or the Destination Buffer without
specifying Wraparound Restart (WRC) and/or Two-
Dimensional Restart (TDC). If anillegal command is
detected, the system program should load a
Continue Operation into the CEP or issue a new
command to the CEP when the Compressor or
Expander Busy and New Operation Attempted
error (COA or EOA) is detected. If negative
compression is detected, the system program may
load a Continue Operation command into the CEP
to accept the data as is or the system program may
replace the line with uncompressed data using the
transparent mode inthe CEP.

Expander Error Recovery Procedures

The Expander will detect several error conditions:
a premature source overflow, a premature

destination overflow, an illegal command, an
Expander Busy and New Operation Attempted
error, a data error, or an undefined extension
code. A premature source or destination overflow
is indicated by the WPI bit and the LPI bit of the
Expander Status Register (ESR). The error
recovery procedure for a premature overflow
requires that the Source Buffer and the
Destination Buffer be redefined as follows:

1. Premature Source Overflow and LPI without
WPI

New ESCHR = N * Hr * Apw/8

New ESWCR = 2's complement of new ESCHR
- old ESCHR

ERCR = All one (X'FF')

New EDWCR = old EDWCR - (EDCAR - EDLSR)

New ESCAR = ESLSR, new EDCAR = EDLSR

2. Premature Destination Overflow and LPI
without WPI

New EDCHR = N * Hr * Apw/8

New EDWCR = 2's complement of new EDCHR
- old EDCHR

New EDCAR = EDLSR, new ESCAR = ESLSR

ERCR = All one (X'FF'")

New ESWCR = old ESWCR - (ESCAR - ESLSR)

If the system program detects a premature
overflow and the WPI error bit is set without the LPI
error bit being set, the system program should
restart the Source or Destination Buffer without
loading the Wraparound Restart (WRC) and Two-
Dimensional Restart (TDC) bit. If an illegal
command is detected, the system program should
load Continue Operation into the CEP or reissue a
new command to the CEP when the Expander
Busy and New Operation Attempted error EQA is
detected.

If a data error is detected, the system program
should replace the error line with a copy of the
previous line as follows:

New ESCAR = EDLSR N * Hr * Apw/8

N = EWR + 1

New ESWCR = 2's complement N * Hr * Apw/8
New EDCAR = EDLSR

New EDWCR = EDWCR - (EDCAR - EDLSR)

ERCR = All one (X'FF')

EMO and EM1

0 (Transparent Mode)

Appendix H gives additional information about
expander error recovery.

2.1.5 Stopping The Cep

The CEP compressor may be terminated by writing

2-4

to the Compressor Master Control Register while
the CEP is busy (called a soft abort). The
expander may be terminated by writing to the
EMCR while the CEP is busy. The Compressor or
Expander will terminate its operation as soon as
the internal operation allows it. If the system
program is required to stop immediately, the
system program should assert the RESET input of
the Am7970A. This is called a hardware stop. If
the system program executes a hardware stop, the
CEP will not save the current status. If the system
program executes a software stop, the CEP will
terminate its operation (as soon as its internal
operation allows it) and keep the Compressor Busy
and the New Operation Attempted (COA) or
Expander Busy and New Operation Attempted
(EOA) status bits; however, this is not a resumable
operation.

2.2 Register Description

The CPU cannot instantaneously or directly access
the CEP internal registers because that would
interfere with the CEP's internal operations
Instead, a slave access is used to interrupt the
internal microprogram. After that, all data transfers
to and from the registers are performed by a
microprogram. By holding READY Low, the CEP
keeps the CPU waiting during this time. (The only
exception is a read on the Master Status Register
which is directly accessible by the CPU.)

The access time of the registers varies widely for
two reasons:

1. The access time depends on the status of the
operation that the CEP is currently performing.

Access times are optimized with respect to the
probability of their usage.

The first statement means that register access time
is unpredictable when the CEP is busy. This is
important since the access time may be as long as
50 clock cycles. This may have an impact on
system design considerations. Typical access
times are:

Write Operation with CEP in Idle State:

Case 1, Asingle write once in a while:
4 clock cycles for all registers.
This write access is internally latched. The
addressed register is loaded with the data long
afterthe CPU is released.

Case 2, a sequence of consecutive slave write
accesses:

16 clock cycles for paper width, parameter, and
command registers.
14 clock cycles for all other registers.

Read Operation with CEP in Idle State:
All cases:

4 clock cycles = MSR only

10 clock cycles = status, parameter, command,
and paper width registers.

12 clock cycles = all other registers.

All Operations with CEP Busy:

4 clock cycles for MSR read

All other accesses take an unpredictable
number of clock cycles up to 50 depending on
the current operation being performed by the
internal microprogram.

The block diagram for the Am7970A (CEP) is
shown in Figure 2-1. Tables 2-1 and 2-2 list the
Compressor and Expander registers respectively.
The size and port access address of each register
is listed. All CEP registers are located on even
boundary addresses. Ag is completely
disregarded for slave accesses.

Registers that are unique to the Compressor are
discussed first. These are the Time Fill, Left
Margin, Right Margin, Top Margin, and the Express
Mode Registers. Then, the Master Status Register
(MSR) which is common to both the Compressor
and Expander, is discussed. This is followed by a
discussion of pairs of registers one of which is in
the Compressor and the other in the Expander
starting with the Compressor Status Register and
the Expander Status Register. The Compressor
register is described first, and if the Expander
register of the pair is different, the differences are
then described. In most of these pairs of registers,
the registers are identical. The registers are
discussed in the order presented in the
Compressor register table.

After initialization by the RESET input, the state of
the Status Register, Master Status Register, and
GO bits are “0”, the status of other bits is not
specified.

2.2.1 Time Fill Register (TFLR)

The Time Fill Register, an 8-bit Compressor
register, specifies the minimum length of a coded
line expressed in bytes. If the compressed line
has fewer bytes than this number, time fill bits must
be added to meet this requirement. Time fill bits
are simply all “0”s. Referto Figure 2-2.

Table 2-1. Compressor Registers

Abbr. Name Size No. of Port Address(es)
(bits) Bytes

TFLR Time Fill Register 8 1 44

LMGR Left Margin Register 16 2 40 (LSB)/42 (MSB)

RMGR Right Margin Register 16 2 60 (LSB)/62 (MSB)

TMGR Top Margin Register 16 2 30 (LSB)/32 (MSB)

CER Compressor Express Register 8 1 68

CSR Compressor Status Register 8 1 78

CMCR Compressor Master Control Register 8 1 76

CRCR Compressor Restart Control Register 8 1 48

CPR Compressor Parameter Register 8 1 74

CKPR Compressor K Parameter Register 8 1 66

CWR Compressor Wraparound Register 16 2 50 (LSB)/52 (MSB)

CPWR Compressor Page Width Register 16 2 70 (LSB)/72 (MSB)

CFWR Compressor Frame Width Register 16 2 54 (LSB)/56 (MSB)

CSAHR Compressor Source Address Holding Register 24 3 3A (LSB)/3C/3E (MSB)

CSCAR Compressor Source Current Address Register 24 3 0A (LSB)/0C/OE (MSB)

CSCHR Compressor Source Count Holding Register 24 3 14 (LSB)/16/18 (MSB)

CSWCR Compressor Source Working Count Register 24 3 04 (LSB)/06/08 (MSB)

CSLSR Compressor Source Line Start Address Register 24 3 5A (LSB)/5C/5E (MSB)

CDAHR Compressor Destination Address Holding Register 24 3 4A (LSB)/4C/AE (MSB)

CDCAR Compressor Destination Current Address Register 24 3 2A (LSB)/2C/2E (MSB)

CDCHR Compressor Destination Count Holding Register 24 3 34 (LSB)/36/38 (MSB)

CDWCR Compressor Destination Working Count Register 24 3 24 (LSB)/26/28 (MSB)

CDLSR Compressor Destination Line Start Address Register 24 3 6A (LSB)/6C/6E (MSB)

Table 2-2. Expander Registers

Abbr. Name Size No. of Port Address(es)
(bits) Bytes

MSR* Master Status Register 8 1 FE -

ESR Expander Status Register 8 1 F8

EMCR Expander Master Control Register 8 1 F6

ERCR Expander Restart Control Register 8 1 (of:]

EPR Expander Parameter Register 8 1 F4

EKP Expander K Parameter Register 8 1 E6

EWR Expander Wraparound Register 16 2 DO (LSB)/D2 (MSB)

EPWR Expander Page Width Register 16 2 FO (LSB)/F2 (MSB)

EFWR Expander Frame Width Register 16 2 D4 (LSB)/D6 (MSB)

ESAHR Expander Source Address Holding Register 24 3 BA (LSB)/BC/BE(MSB)

ESCAR Expander Source Current Address Register 24 3 8A (LSB)/8C/8E (MSB)

ESCHR Expander Source Count Holding Register 24 3 94 (LSB)/96/98 (MSB)

ESWCR Expander Source Working Count Register 24 3 84 (LSB)/86/88 (MSB)

ESLSR Expander Source Line Start Address Register 24 3 DA (LSB)/DC/DE(MSB)

EDAHR Expander Destination Address Holding Register 24 3 CA (LSB)/CC/CE(MSB)

EDCAR Expander Destination Current Address Register 24 3 AA (LSB)/AC/AE(MSB)

EDCHR Expander Destination Count Holding Register 24 3 B4 (LSB)/B6/B8 (MSB)

EDWCR Expander Destination Working Count Register 24 3 A4 (LSB)/A6/A8 (MSB)

EDLSR Expander Destination Line Address Register 24 3 EA (LSB)/EC/EE(MSB)

NOTE: All register addresses are even, the bytes in a register
are, therefore, not addressed with contiguous addresses.

* Used by both the compressor and the expander.

2-6

Specifying “0” in the Time Fill Register means that
no time fill is desired. The minimum length
requirement is either not applicable or is handled in
some other way.

When the Auto-EOL feature is suppressed, the
Am7970A ignores the time fill requirement; no
time fill is inserted. When both the Auto-EOL and
the byte boundary control are enabled the
Am7970A will add fill bits as necessary between
the compressed data and the EOL code to end
the line on a byte boundary. When the no byte
boundaries control is specified, the Am7970A
Compressor does not add time fill bits to end lines
on abyte boundary.

2.2.2 Left Margin Register (LMGR)

The Left Margin Register, a 16-bit register in the
Compressor, specifies the width, in bytes, of the

left-hand margin. If the value is is “0”, then the
original scan line is used without modification.
Referto Figure 2-3.

When a compression operation is initiated with the
left margin specified, the Compressor obtains data
from the Source Buffer via DMA as usual.
However, the margin specification overrides the
actual image data and forces the pixels to be
‘white”. Such overriding continues until the
programmed margin requirements are satisfied.

if, for example, a “0001” is specified in the Left
Margin Register, it means that the first 8 pixels of
the line data are overridden with white margin.
Compression of the remainder of the scan line
proceeds as usual (see also Right Margin
Register). The left margin is effective in
Wraparound and Express Mode and is included in
One-Dimensional, Two-Dimensional, and Transpar-
ent Modes of operation.

24 BIT ADDRESS BUS (INTERNAL BUS)

16
R =

INCREMENTER

INCREMENTER

8
8 ADR/DAT
ADy5-ADyy =1-F Cvon

RD/WR BUFFER

'WORD COUNT
REGISTER ARRAY

CURRENT ADDRESS
REGISTER ARRAY

ADDRESS | 8
LATCH Ye e

COUNT HOLDING

ADDRESS HOLDING

A REGISTER ARRAY REGISTER ARRAY
8
(8 RD/WR BUFFER RD/WR BUFFER 1 L oA
8
BUFFER
DocumenT |,
‘STORE BUS BRD
MASTER 4 STATUS REG. bs | mesTaRT REG. CONTROL L o &WR
DATA 8 l STATUS REG. I o Lo | ol | Logic D!
LATCH ‘ l }<e———— DREADY
< 8 BIT DATA BUS (INTERNAL BUS) > 1
L L CONTROL.
r 4 I 4
ALE =] Iw\srsn CONTROL neal‘ 8 l PARAMETER l 8 Te 8 FLAGS
AD ~———=0} v]
[—— RD/WR BUFFER RD/WR BUFFER
READY =————] pua MARGIN LINE CONT. -
o pr= p— REGISTER REGISTER WR BUFFER MASTER
HLDA ———= VO 1-D/2-D WORKING WORKING 1-D/2-D LoGIC
CONTRO!
o EXPANDER COUNTER ‘COUNTER COMPRESSOR
RESET ———] LOGIC]
INTR ~— RD BUFFER INCREMENTER INCREMENTER RD BUFFER —
CLK] f ; ‘ status —1
a FLAGS —}
cs MARGIN LINE CONTR. +
s GENERATOR Logic 8

Figure 2-1

Am7970A (CEP) Block Diagram

055578 2-1

A7

Ao

ADDRESS [o|1|o|o|o|1|o|o|TFLR

7 0
. J
Y
| TFLR
Figure 2-2 Time Fill Register (TFLR) 07666A 2-2
A7 Ao
011 0jojojojojo LMGR 4
ADDRESS
ol1joflofofof1]|o]| LMGR,

THIS FIELD MUST CONTAIN ALL ZEROS

-~

15 8 7 0
T T T T T T T T T T
Lofofofofof ¢ + ¢ » ¢ + ¢ + ¢ o]
~ e -~ ~ o —
I—— LMGR
LMGR
Figure 2-3 Left Margin Register (RMGR) 07666A 2-3
A7 Ao
oftjt1jojojojojo RMGRg
ADDRESS
1{1]ofo 1]10| RMGR;
I THIS FIELD MUST CONTAIN ALL ZEROS
A
4 Y
15 8 7]
T o o o o . T T T T T T T l
A J\. J
' Yo
|—— RMGR
RMGR 4

Figure 2-4 Right Margin Register (TMGR)

07666A 2-4

2-8

Hence, if the left margin is specified while using
Transparent Mode in the transfer of data from the
Source Buffer to the Destination Buffer, the data in
the Destination Buffer will differ from the data in the
source because of the margin. The Compressor
does not modify the Left Margin Register during its
operation.

The sum of the left and right margin specifications
must not be greater than the paper width
specified. This would result in an error condition
flagged by (CIC) bit in CSR..

Bits 11 through 15 of the Left Margin Register
mustbe setto “0”.

2.2.3 Right Margin Register (RMGR)

The Right Margin Register, a 16-bit Compressor
register, specifies the width (in bytes) of the right
hand margin. A value of “0” means that the original
scan line is used without modification. Refer to
Figure 2-4.

When a compression operation is initiated with the
right margin specified, the Compressor obtains
data from the Source Buffer via DMA as usual.
However, the margin specification overrides the
actual image data and forces the pixels in the
margin area to be “white”. If, for example, the value
in this register is “0002", the last 16 pixels on the
line will be overridden by the white margin.

Compression of the scan line up to the start of the
right margin proceeds as usual (see also Left
Margin Register). The right margin is effective in
Wraparound and Express Mode and is included in
One-Dimensional, Two-Dimensional, and
Transparent Modes of operation.

Hence, if the right margin is specified while using

Transparent Mode to accomplish a transfer of data
from the Source Buffer to the Destination Buffer,
the data in the destination will differ from the data in
the source because of the margin. The
Compressor does not modify the Right Margin
Register during its operation.

The sum of the left and right margin specifications
must not be greater than the paper width
specified. This would result in an error condition.

Bits 11 through 15 of the Right Margin Register
mustbe setto “0”.

2.2.4 Top Margin Register (TMGR)

The Top Margin Register specifies the top margin
of a document. If the Top Margin Register is
loaded with a “0”, no top margin is specified. Refer
to Figure 2-5.

If the Top Margin Register is non-zero, it specifies
the desired top margin height in increments of one
scan line. When a compression operation is
initiated with the top margin specified, the
Compressor reads data from the Source Buffer via
DMA as usual. However, the top margin
specification overrides the data and forces “white”
into the Compressor until the top margin
requirements are satisfied. From then on, the
usual compression operation takes place (also see
Left and Right Margin Registers).

Since, by definition, the top margin white space
occurs only once per document, the Compressor
logic decrements the Top Margin Register by one
after processing each scan line until it reaches “0”,
at which time normal compression proceeds.

The top margin is effective in both Wraparound
and Express Modes. However, caution must be

A7 Ao
1{1]0 ofo
ADDRESS TMGRo
1{1]o0 1]o| T™GR,
15 7 0
“ PN P
~ ~
l___——— TMGR ¢

07666A 2-5

Figure 2-5 Top Margin Register (TMGR)

29

exercised when specifying Express Mode with a
top margin since the Compressor logic of the
Am7970A skips every “nth” line (“n” being a
function of the Express Register) in Express
Mode. For example, assume that Top Margin
Register specifies “8” and the Express Register
specifies “1”. The Compressor then processes
every other scan line (scan line 1, 3, etc.) in
accordance with the Express Register
specification. The TMGR is decremented by only
those scan lines that are processed. Therefore,
since the Top Margin is assigned to be “8”, and
every other scan line has been skipped, scan line
“17” of the original picture will be the first coded
line with real picture data on it in this example.

The top margin controls are effective in One-
Dimensional, Two-Dimensional, and Transparent
Modes. Hence, consideration must be given to
the effects of Top Margin Register when using
Transparent Mode to transfer data from the Source
Bufferto the Destination Buffer.

2.2.5 Compressor Express Register (CER)

The Compressor Express Register, an 8-bit
register, specifies (in binary) how many scan lines
to compress before skipping one line. For
example, if the CER value is 4, every fifth line will
be skipped resulting in a vertical image reduction
of 20%. If this register is loaded with a “0”, every
scan line is compressed; this is the normal
operating mode. The Compressor logic will not
modify this register during its operation. Refer to
Figure 2-6.

If the Express Mode is defined with Two-
Dimensional Compression, each line that is
compressed is also the reference line for the next
line that is compressed. Skipped lines are not
used as reference lines.

The Am7970A does not allow Wraparound and
Express Modes to be specified simultaneously. If
such a condition is specified, an error status will be
indicated by the CIC bit in CSR. The scan line
length is obtained from the Compressor Page
Width Register.

2.2.6 Master Status Register (MSR)

Figure 2-7 shows the Master Status Register
layout. This 8-bit register provides both Expander
and Compressor global status information to the
CPU. The various bits in this register are assigned
the following meaning:

EXT (Extension).
Extension Code bits.

Bits 0, 1, and 2 are the
When extension code bits

have been detected by the Expander, it sets ECD
(Bit 3) to “1”, and the EXT bits contain (in reverse
order) the three least significant extension bits.
For example, an extension code of “011” appears
in the MSR as “110”. When the ECD bit is set to
“0”, the extension bits are cleared to “0s”. The
EXT bits are also cleared when a new operation is
initiated.

ECD (Extension Code Detected). Bit 3 is
the Extension Code Detected bit. This bit is set by
the Expander to indicate that an extension code,
for which the least significant three bits are not all
“1”s, has been detected. The ECD bit is cleared to
“0” after a new operation is initiated.

EOP (End Of Page). Bit 4 is the End Of Page
detected bit. This bit is set by the Expander to
indicate that either an EOP code (in Group 4
expansion) made up of two contiguous EOL
codes, has been detected or an RTC code (in
Group 3 processing) made up of six EOL codes
has been detected. The Transparent Mode
cannot detect an EOP code.

The EOP code formats are:
000000000001000000000001 2 EOL codes for
Group 4 (EOP)

000000000001 ... 000000000001 6 EOL codes
for 1D (RTC)

0000000000011 0000000000011 6 EOL

codes for 2D in Group 3 (RTC)

The state of the EOP bit is “0” after a new
operation is initiated.

ID (Version 1.D.). Bit 5 (the Version I.D. bit) of
the Master Status Register is used to identify the
CEP as either a 7970 Rev A/A' or as a 7970A as
follows:

ID = 0 identifies 7970 Rev A/A'
ID =1 identifies 7970A

The differences are described in Appendix D.

EBY (Expander Busy). Bit 6 is the Expander
Busy bit. This bit is equivalent to the EBY bit in the
Expander Status Register.

CBY (Compressor Busy). Bt 7 is the
Compressor Busy Bit. This bit is equivalent to the
CBY bitinthe Compressor Status Register.

2.2.7 Compressor Status Register (CSR)

The Compressor Status Register, an 8-bit register,
indicates the outcome of the last operation. The
following paragraphs contain a detailed description
of the CSR bits. Refer to Figure 2-8 for the register
layout.

NGC - Negative Compression

Bit 0 is set to “1” to indicate that compressing the
current line resulted in negative compression.

This means that the compressed line has more
bytes than the original effective line. The
Am7970A checks for negative compression only
after completely processing an effective line.

Prepositional EOL codes and fill bits, in addition to
the actual data, are included in determining the
total number of bytes in a compressed line. The
Am7970A computes the number of bytes
contained in the original effective line based on

A7

Ao

rooress [o[1]1]o]1]olo]o]| cen

07666A 2-6

Figure 2-6 Compressor Express Register (CER)

A7

Ao

aporess (1 [1[1[1[1]1]4 |0—|MSR

7 6 5 4 3 2

ey |EBv|REVEOP[ECD]

1 0
:EXT:j

—————

I'— EXTENSION BITS

EXTENSION CODE DETECTED BIT
0 = Normal
1 = lllegal Extension Code

EOP CODE DETECTED BIT
0 = Normal
1 = EOP Code Detected

RESERVED

EXPANDER BUSY BIT
0 = Expander Not Busy
1 = Expander Busy

07666A 2-7

COMPRESSOR BUSY BIT
0 = Compressor Not Busy
1 = Compressor Busy

Figure 2-7 Master Status Register (MSR)

2-11

the contents of the Page Width Register and the
Wraparound Register (when appropriate).
Negative compression conditions are not checked
during Transparént Mode of operation.

The Am7970A clears the NGC bit to “0” when a
new operation is initiated from the CMCR.

COA - Compressor Busy and New
Operation Attempted

Bit 1 in the CSR is set to “1” to indicate that an
attempt was made to write a new operation into the
CMCR while the Compressor was still busy.

All registers which require user-specification in the
Am7970A can be read as well as written by the
host CPU. However, modifying the registers while
the Compressor is operating is not allowed. The
Am7970A ignores any attempt to write into a
compressor register (other than the CMCR) while
the Compressor is busy. Any attempt to write into
the CMCR at such times sets the COA bit to “1”
and marks the beginning of a Compressor
termination. The actual termination is indicated by
the Compressor Busy (CBY) bit.

The COA bit is cleared to “0” when a new
operation is initiated.

CIC - Compressor lllegal Command

Bit 2 in the CSR is set to “1” when the Compressor
is directed to start operating with any of the
following illegal conditions present:

When the GO bit is set to “1” (that is, “start
Compressor operation”), the Am7970A clears the
CIC bit to “0” and sets the CBY bit to “1” to indicate
busy status. The conditions for CIC status (b, ¢, d,
or e) are checked only when the current GO
command was preceded by a compressor soft
reset.
a) The mode bits (MCO and MC1) or the control
bits (CC0 and CC1) in the Master Control
Register specify the reserved code.

b

The mode bits (MCO and MC1) in the CMCR
specify 2D compression and the Compressor
Wraparound Register specifies wraparound (is
non-zero). Wraparound in 2D is illegal.

¢) The Compressor Express Register and
Compressor Wraparound Register are both
non-zero. Wraparound in Express Mode is
illegal.

d) The sum of the left and right margins

represented by the Left Margin Register and
Right Margin Register is greater than the page
width specified in Compressor Page Width
Register. In other words, specifying
overlapping margins is illegal.

e) The Compressor Page Width Register has
been specified as “0”.

If any illegal condition exists as stated above, the
Am7970A will terminate the operation with the CIC
bit set to “1” and CBY bit set to “0”.

WPI - Wraparound Incomplete

Bit 3 is set to “1” when the Compressor terminates
prior to successfully compressing an effective line.
This status signifies that the Compressor has not
satisfied the Compressor Wraparound Register
requirements. The WPl bit being set in
conjunction with the LPI bit gives a detailed
indication of the status that exists when the
Compressor is terminated. The setting of this bit
starts the Compressor termination. Actual
termination is indicated in the CBY bit of the Status
Register. The WPI bit is cleared to “0” when a new
operation s initiated.

LPI ~ Line Processing Incomplete

Bit 4 is set to “1” to indicate that the Compressor
terminated without successfully processing a
complete line; either a source or destination
overflow occurred prematurely. There are three
situations in which this occurs:

1. When the last byte obtained from the Source
Buffer did not correspond to the last byte of the
page, and the Compressor Source Working
Count Register overflowed.

2. When a Compressor Destination Working
Count Register overflowed before the
Compression operation reached the end of a
scanline.

3. When a Compressor Destination Working
Count overflowed before a fully compressed
line could be stored in the destination. The
term “fully compressed line” includes EOL (if
any), data, time fill (if any), and fill (if any).

The start of Compressor operation termination is
marked by the LPI bit being set. Actual termination
is indicated by the CBY bit.

The LPI bit is cleared to “0” when a new operation
is initiated.

2-12

In Multi-Line operation on a Source Buffer
overflow, or at the end of the terminal line in Single-
Line operation, the Compressor processes the last
full byte of source data but truncates any excess
bits (one to seven) that do not comprise a byte.
The truncated bits are still retained within the
compressor and concatenated with subsequent
code data unless a compressor soft reset is
issued. In this case, the Compressor terminates
and the LPI bitis setinthe CSR.

CDO - Compressor Destination Overflow

Bit 5 is set to indicate that the Compressor
Destination Working Count Register has reached
“0”. This register is initially loaded with a negative
two's complement value and is incremented after
each transaction with the Destination Buffer.
When the Compressor Working Count Register
reaches “0” due to such incrementing, the CDO bit
is set to “1”, starting the Compressor termination
process. The actual termination is indicated by
clearing the CBY bitto “0".

The CDO bit is cleared to “0” when a command is
initiated.

CSO - Compressor Source Overflow

Bit 6 is set to “1” to indicate that the Compressor
Source Working Count Register has reached “0”.
This register is initially loaded with a negative two's
compliment value and is incremented by one after
each Source Buffer transaction. When the
CSWCR reaches “0” due to such incrementing,
source overflow has occurred and the CSO bit is
set to “1”. The Compressor will begin to terminate
its operation after setting the CSO bit. Thus, there
will be some elapsed time between setting the
CSO bit and the actual termination as indicated by
the CBY bit.

The CSO bit is cleared to “0” when a command is
initiated.

CBY - Compressor Busy

Bit 7 is set to “1” by the CEP to indicate that the
Compressor is busy. Whenever a new operation is
initiated (by setting the GO bit), the CBY will
indicate busy status. The CBY bit automatically
becomes “0” when the Compressor terminates its
operation. Modification of any of the Am7970A
registers is allowed only when the CBY is “0”,
indicating “not busy”. Otherwise the Am7970A
might inadvertently modify the registers during
normal operation.

A7

Ao

Aooress [o[1[1[1]1]oo]o]csr

7 6 5 4

3 2 1 [o]

[cBy|cso[cpo] Lpi |wei| cic |coa[nae

COMPRESSOR BUSY BIT:
0 = Not Busy
1 =Busy

COMPRESSOR SOURCE OVERFLOW BIT-
0 = Normal
1 = Source Buffer Overflow

COMPRESSOR DESTINATION OVERFLOW BIT —
0 =Normal
1 = Destination Buffer Overflow

LINE PROCESSING INCOMPLETE BIT
0 =Normal
1 = Line Processing Incomplete

07666A 2-8

—— NEGATIVE COMPRESSION BIT
0 = Normal
1 = Negative Compression

COMPRESSOR BUSY AND NEW
OPERATION ATTEMPTED BIT
0 = Normal
1 = Busy and New Command
Attempted

COMPRESSOR ILLEGAL
COMMAND BIT

0 = Normal

1 = lllegal Command

WRAPAROUND INCOMPLETE BIT
0 = Normal
1 = Wraparound Incomplete

Figure 2-8 Compressor Status Register (CSR)

2-13

If the CIE bit in the Master Control Register is “1”,
an interrupt to the CPU is asserted when the CBY
becomes “not busy”. The CBY bit can be polled
by the host CPU for an indication of the completion
of an operation.

2.2.8 Expander Status Register (ESR)

The Expander Status Register bit assignments
give the status information about the Expander.
Except for bit zero, they are the same as the
Compressor Status Register assignments. Refer
to Figure 2-9 for a register layout.

DER - Data Error

The CEP stops operation and Bit 0, the Data Error
bit (DER) in the ESR, is set to “1” whenever an
error is detected in the current effective line during
expansion. The address of the erroneous
effective line is recorded in the Expander Source
Line Start Register. One type of error exists when
an EOL code is detected and the bit length of an
expanded effective line is not equal to:

L=(EPWR+8)+ (EWR +1)

EWR = The value of the Expander
Wraparound Register.

Another type of error condition occurs when the
CEP detects an illegal code. An error may result
from a hardware failure or the inadvertent
transformation of a valid Modified Huffman
codeword to another bit pattern due to noise or
due to a transmission error. An unrecognizable
codeword causes the DER bit to be set to “1”. If
(EOL=1) in the EPR and an EOL code is detected
by the expander, the DER bit will be set.

In Group 3 coding in 2D (EOL bit = 0, MC field =
10), the expander stops processing after a data
error (DER) but processing is resumable by the
CPU. When processing resumes (with EOL bit = 0
and ESA bit = 1), the expander will process the
next line as either 1D or 2D according to the tag bit.
If the next line is not decodable, the DER bit is set
again. If the next line is one-dimensional and has
no errors, two-dimensional processing may
resume. Since CPU action is required after each
DER data error, the CPU can count the lost lines
between the error and the recovery.

In Group 4 coding (EOL bit = 1, MC field = 10), the
expander processes all lines in 2D. Zero error at

where: EPWR = The value of the Expander Page this level is assumed. Error detection and
Width Register correction is done at a higher level.
A7 Ao
aopRess [1[1[1]1]1][o]o]o] ESR
7 6 5 4 2 1 0
[EsY|Esolepo] Lpi [wpi| EIC IEOAIDER!
L DATAERROR BIT

EXPANDER BUSY BIT 0 = Normal

0= Not Busy 1 =Data Error

1 = Busy

EXPANDER BUSY AND

EXPANDER SOURCE OVERFLOW BIT —— NEW OPERATION ATTEMPTED BIT

0 =Normal ? - go;r;glnd New Command

= = BU {s]

1 = Source Buffer Overflow Attempted Bit
EXPANDER DESTINATION OVERFLOW BIT ——

0 = Normal EXPANDER ILLEGAL COMMAND BIT

1 = Destination Buffer Overflow

LINE PROCESSING INCOMPLETE BIT
0 = Normal
1 = Line Processing Incomplete

Figure 2-9 Expander Status Register (ESR)

0 = Normal
1 = lllegal Command

WRAPAROUND INCOMPLETE BIT
0 =Normal
1 = Wraparound Incomplete

07666A 2-9

2-14

The state of the DER bit, after a new command has
been initiated by the the CPU, is “0”. Refer to
Appendix H for more information regarding
recovery after a data error during expansion.

EOA - Expander Busy and New
Operation Attempted

Bit 1, the EOA bit, is set to “1” when an attempt is
made to write a new command into the EMCR while
the Expander is still busy. When the EOA bit is set
to “17, the Expander prematurely terminates and
the Expander Busy (EBY) bitis cleared to “0”.

After this command has been initiated by the CPU,
the state of the EOAbit is “0”.

EIC — Expander lllegal Command

Bit 2, the EIC bit, is set to “1” to indicate that the
Expander was directed to start operating with any
of the following illegal conditions present:

1. ATwo-Dimensional Expansion Mode and a non-
zero Wraparound Register have both been
specified.

2. A non-zero granularity parameter and a non-
zero Wraparound Register have both been
specified.

3. Both MC bits inthe EMCR are specified as “1”.
4. Both OC bits inthe EMCR are specified as “1”.

5. The page width in the EPWR has been
specified as “0”.

After an Expander Software Reset, if an Expander
command is received when one or more of these
conditions are present, the EIC bit is set to “1” and
the EBY bit is cleared to “0”.

After a new command has been initiated by the
CPU, the state of the EIC bit is “0”.

WPI - Wraparound Incomplete

Bit 3, the WPI bit, is set to “1” to indicate either A
Source Buffer or Destination Buffer overflow after
a complete scan line was expanded but before an
entire effective line could be expanded.

After a new command has been initiated by the
CPU, the state of the WPI bit is “0”.

LPI - Line Processing Incomplete

Bit 4, the LPI bit, is is set to “1” to indicate either a
Source Buffer or Destination Buffer overflow

before an entire scan line could be expanded and
written into the Destination Buffer.

The state of the LPI bit is “0” after a new command
has beeninitiated by the CPU.

EDO - Expander Destination Overflow

Bit 5, the EDO bit, set to “1”, indicates that the
Expander Destination Working Count Register
(EDWCR) has reached “0”. This register is initially
loaded with a negative two's complement value
and is incremented after each transaction with the
Destination Buffer. When the EDWCR reaches
“0”, the EDO bit is set to “1” beginning the
Expander termination process. The actual
termination is indicated by the CEP clearing the
EBY bit to “0”.

The state of the EDO bit is “0” after a new
command has been initiated by the CPU.

ESO - Expander Source Overflow

Bit 6, the ESO bit, set to “1”, indicates that the
Expander Source Working Count Register
(ESWCR) has reached “0”. This register is initially
loaded with a negative two's complement value
and is incremented by one after each Source
Buffer transaction. When the ESWCR reaches
“0”, overflow has occurred and the ESO bit is set
to “1” beginning the Expander termination
operation. Some time elapses between setting
the ESO bit to “1” and the actual Expander
termination as indicated by the EBY bit.

The state of the ESO bit is “0” after a new
command has been initiated by the CPU.

EBY — Expander Busy

Bit 7 is set to “1” to indicate that the Expander is
busy. Whenever a new operation is initiated, the
EBY bit is set to “1”. When the Expander has
completed its operation, the EBY bit is reset to “0”.

2.2.9 Master Control Registers (CMCR,
EMCR)

The 8-bit CMCR specifies the desired mode of
operation (one-dimensional, two-dimensional, or
transparent), the location of the source and
destination buffers (Main Memory or Document
Store), the Interrupt Enable, the operation
controls (Reset, Single-Line or Multi-Line), and the
initiation of processing (start or stop processing).
The function of each of the CMCR bits is
described in the following paragraphs. The EMCR:
register performs the same functions for the

expander and is identical to the CMCR. Refer to
Figure 2-10.

GO

Bit 0, the GO bit, when set to “1” by the system
program, initiates compressor operation specified
in the Operation Control Field. Once set, the
Compressor Status Register (CSR) indicates that
the compressor is busy. If the Operation Control
field in the MCR has been set to (00), the SOftware
Reset Operation is performed. If the OC Field is
set to (01) or (10) after a software reset and the GO
bit is again set to (1), the compressor will check the
configuration of the registers before proceeding
with the compression. Upon completion of the
compressor operation, the GO bit is reset to “0”
automatically. Any attempt to load the CMCR when
the Compressor is busy, terminates the processor
with the appropriate error bits set in the CSR.

OC - Operation Control
Bits 1 and 2, the Operation Control bits, configure

the CEP for the following operations which are
executed when the GO bit is set:

Bit 2 Bit 1
ocC1 ocCo Operation
0 0 RESET
0 1 SINGLE-LINE
1 0 MULTI-LINE
1 1 RESERVED
Reset (00). This operation sets the Compressor

to the same state as a hardware reset except that it
does not reset the DMA bus. It flushes the input
queue and clears the internal working registers,
process control flags, sets up the check for
configuration errors, clears status and interrupt
registers, and sets the GO bit to zero. It does not
clear the user-programmable control registers, the
CMCR, or Compressor Parameter Register (CPR).

The system program must issue a Reset operation
before starting a new sequence of events such as
starting to process a new page. This software
Reset between contexts is necessary so that the
upcoming sequence of operations is interpreted
correctly.

A software reset is performed by writing a reset
command (00) into the Operation Control (OC) bits
of the Master Control Register. The GO bit must
be set to “1” to start the reset operation. The GO
bit will be cleared during the reset operation.

The reset operation is a microprogram that takes
about 4 microseconds to execute. During this
time, the “busy” bit (CBY and EBY) is set active in
the Master Status Register. During the reset
operation, the “busy” bit can be sampled until it
goes inactive to verify that the CEP has completed
the reset operation before attempting any other
operation. Then the GO bit in the Master Control
Register (CMCR or EMCR) is set to 1 to start the
new operation.

The software reset is required before processing a
new page but it is not needed to resume
processing on the same page. If resumable
operation of the current processing activity is
necessary, the system should not issue a Reset
operation since various registers are cleared
invalidating any subsequent Restart operation.

Single-Line (01). When Single-Line operation
is initiated, one effective line of data from the
Source Buffer is processed before the GO bit in
the CMCR is cleared to “0”. Such an event may be
either normal or in error. (See Status Register
description for details of error status.) The next
line or multiple lines of data can be restarted from
where the preceding Single-Line operations
ended if no errors have occurred.

The value of “effective line” is determined by the
contents of the Compressor Wraparound Register
(CWR) (1D or transparent mode only) and the
Compressor Page Width Register (CPWR). |t is
(CWR +1) « (CPWR - 8) bits. If the CWR is “0”, the
effective line is one scan line (equal to the Page
Width Register). The “effective line” value
specifies how much buffer space is needed.

Multi-line (10). The Multi-Line operation
processes data until either the Compressor
Source Working Count Register (CSWCR) or
Compressor Destination Working Count Register
(CDWCR) reaches “0”. At this time the processor
terminates and the GO bit in the (CMCR) is cleared
to “0”. Such an ending may be either normal or in
error. (See Status Register description for details
of error status.)

Reserved (11). If the Reserved operation is
initiated, the CEP terminates with an illegal
operation error in the CSR (see Status Register
section).

IE - Interrupt Enable

Bit 3 is the Interrupt Enable (IE). When the
processor terminates an operation, the CEP will
interrupt the CPU if the IE bit is set to “1”. If the IE

2-16

bit is “0”, interrupts are disabled. Any system
access of the Master Status Register resets the
interrupt.

DC - Destination Control

Bit 4 (Destination Control) assigns the location of
the Destination Buffer. A Zero means Main
Memory and a One means Document Store.

SC - Source Control

Bit 5 (Source Control) specifies the location of the
Source Buffer. A Zero means Main Memory and a
One means Document Store.

MC - Mode Control

The Mode Control field (bits 6 and 7) specifies the
desired mode according to the following table:

Bit7 Bit 6

MC1 MCo Mode
0 0 TRANSPARENT
0 1 ONE-DIMENSIONAL
1 0 TWO-DIMENSIONAL
1 1 RESERVED

Transparent (00). Transparent Mode means

that no data modification occurs in the selected
processor; data merely passes through the
processor via DMA. However, the effects of the
Auto-End-of-Line (EOL) insertion feature, Margin
Registers, Wraparound, Time Fill, and Express
Registers must be fully considered before
attempting such information moves. In
Transparent Mode, the EOL code is always
padded to a byte boundary.

If, for example, the Code Buffer is contained in the
Document Store and all data transmissions take
place from the main memory, facilities are required
to transfer the required information from the Code
Buffer in the Document Store to the main memory.
By initiating Transparent Mode operation, the
processor can transfer the required information in
the same way as a conventional DMA controller
(with the effects mentioned above). On the
Document side, the transparent mode through the
compressor section is faster than through the
expander because the compressor section
provides a 3-byte input FIFO.

One-Dimensional (01). One-Dimensional
Mode specifies the standard Modified Huffman
Code. During this mode of operation, the
processor takes into account the relevant margin
registers, Wraparound Register, Express Register,
Page Width, and and Time Fill Registers. If the
Auto-EOL feature is on, each coded effective line

A7

Ao

ADDRESS

CMCR

EMCR

7 6 5 4

3 2 1 0

| M:C]sc]oclusl o:c |Go|

—

MODE CONTROL ———I

00 — Transparent

01 — One Dimensional
10 — Two Dimensional
11 - Reserved

SOURCE CONTROL
0 — Main Memory
1 — Document Memory

DESTINATION CONTROL
0 — Main Memory
1 —Document Memory

Figure 2-10

—_—

—— GO
0 - Stop
1 - Start

OPERATION CONTROL
00 — Reset
01 - Single Line
10 — Multi-Line
11 - Reserved

INTERRUPT ENABLE
0 — Disable Interrupts
1 - Enable Interrupts

07666A 2-10

Master Control Registers (CMCR, EMCR)

is terminated with an EOL. These registers and
features are discussed individually under their
respective headings.

Two-Dimensional (10). The two-dimensional
mode (2D) in Group 3 (EOL = 0, MC = 10, K > 0)
specifies the standard Modified READ Code
according to CCITT recommendations T.4. During
this mode of operation, the processor takes into
account the Page Width, Margins, Express Mode,
and Time Fill Registers. The Auto-EOL feature is
on. The Wraparound feature is not available with
two-dimensional coding. The K Parameter
determines how many lines of 2D follow each line
of 1D in compression.

In Group 3 expansion (EOL = 0, MC = 10, K > 0),
the expander ignores the K-Parameter and uses
the tag bit following each EOL to determine how to
process the next line. If the tag bit is 1, the next
line is decoded as 1D. If the tag bit is 0, the next
line is decoded as 2D.

Two-Dimensional Mode (2D) in Group 4 (EOL = 1,
MC = 10, K = 0) specifies the standard Modified
READ Code according to CCITT recommendation
T.6. During this mode of operation, the processor
takes into account the Page Width, K-Parameter,
Margins, and Time Fill Registers. The Auto-EOL
feature is off. The Wraparound feature is not
available with two-dimensional coding.

The 2D Mode (MC = 10) in Group 3 utilizes both 1D
and 2D processes in conjunction with the K-
Register and the K-Working-Register (not visible to
the CPU). The first line is encoded in 1D and then
K-1 lines are encoded in 2D. The 1D line does not
need a reference line. The first 2D line uses the

1D line as the reference line. Each succeeding 2D

line uses the preceding line as its reference line.

With 2D compression, the CEP reads the current
line and the previous line (reference line) to
encode the current line. With 2D expansion, the
CEP reads the code from the source buffer and
rereads the previous already expanded line to
decode the current line.

Reserved (11). If the Reserved operation is
specified, the CEP terminates with an illegal
operation error in the CSR (see Status Register
section).

The fields in the Expander Master Control Register
are identical to the CMCR (as described above)
and specify the same options (refer to Figure 2-
10). The GO bit initiates operation of the
Expansion Processor. Issue a software reset by
setting the GO bit to (1) and the OC Field to (00)
before each new page and each new sequence of

events when resumable operation is not required.
Then set the OC Fleld to single line or multi-line
operation and set the GO bit to start processing.

The OC bits specify whether single line or multi-
line operation is required. The IE bit specifies
whether CPU interrupts are desired. The source
and destination buffer locations are specified in
the SC and DC bits. The MC bits specify the Mode
Control.

2.2.10 Compressor/Expander Restart
Control Registers (CRCR/ERCR)

The CRCR and ERCR are 8-bit registers that
specify whether to continue the
compression/expansion with the current buffer
address and count values or to restore the starting
values from the Hold Registers into the Current
Buffer Address registers before a new processor
operation is initiated by setting the GO bit. The
registers affected are: the Source and Destination
Current Address Registers, Source and
Destination Working Count Registers, and Source
and Destination Line Start Registers. The
following is a detailed description of the individual
bits. These two registers are identical except for
bit 5. In the compressor register, bit 5 is reserved
whereas the expander register uses bit 5 for byte
boundary control. Referto Figure 2-11.

SCC - Source Count Control

When Bit 0, the SCC bit, is “0”, the value in the
Source Count Holding Register is loaded into the
Source Working Count Register when a new
operation is initiated. When this bit is “1”, such
loading does not take place and the existing value
of the Source Working Count Register is used
unaltered for the new operation.

SAC - Source Address Control

When Bit 1, the SAC bit, of the CRCR is “0”, the
value of the Source Address Holding Register is
loaded into the Source Current Address Register
when a new operation is initiated. When this bit is
“1”, such loading does not take place and the
existing value of the Source Current Address
Register is used in the new operation.

DCC - Destination Count Control

When Bit 2 of the CRCR is “0”, the contents of the
Destination Count Holding Register are loaded
into the Destination Working Count Register when
a new operation is initiated. When this bit is “17,
such loading does not take place and the existing
contents of the Destination Working Count
Register are used in the new operation.

2-18

DAC - Destination Address Control

When Bit 3 of the Restart Control Register is “0”,
the contents of the Destination Address Holding
Register are loaded into the Destination Current
Address Register when a new operation is
initiated. When this bit is “1”, such loading does
not take place and the existing contents of the
Destination Current Address Register are used in

the new operation.

RES - Reserved

Bits 4 and 5 are reserved in the CRCR.
reserved inthe ERCR.

Bit 4 is

BBC - Expander Byte Boundary Control

Bit 5, the BBC bit, must be set in the Expander to
specify whether or not byte boundary control was
used in the compression. The expander uses this
information to distinguish byte padding “0”s at the
end of a coded line from the starting code of the
next coded line when the compressed data does
not have EOL codes. If the compressed data was
byte-adjusted, this bit must be set to “0”.

In Group 4 expansion, the BBC bit must be set to 1
to specify no byte boundaries.

ADDRESS

Az

110({0| 0| CRCR

110]|0]|0]| ERCR

ERCR |DLS

SLs

BBC

RES

DAC|DCC

SAC

SCC

CRCR |DLS

SLS

RES

RES

DAC|DCC

SAC

SCC|

SOURCE COUNT CONTROL BIT
0 = Restart
1 = Continue

SOURCE ADDRESS CONTROL BIT
0 = Restart
1 = Continue

DESTINATION COUNT CONTROL BIT
0 = Restart
1 = Continue

DESTINATION ADDRESS CONTROL BIT
0 = Restart
1 = Continue

RESERVED

COMPRESSOR — RESERVED
EXPANDER BYTE BOUNDARY CONTROL
0 = Byte Boundaries
1 = No Byte Boundaries

SOURCE LINE START ADDRESS
CONTROL BIT

0 = Restart

1 = Continue

07666A 2-11

Figure 2-11

DESTINATION LINE START ADDRESS
CONTROL BIT

0 = Restart

1 = Continue

Restart Control Registers (CRCR, ERCR)

2-1

9

SLS - Source Line Start Address Control

When Bit 6, the SLS bit, is “0”, the Source Line
Start Address Register is loaded from either the
Source Address Holding Register or the Source
Current Address Register depending on whether
the SAC bit is “0” or “1” when a new operation is
issued. When the Source Line Start Address
Control bit is “1”, the contents of the Source Line
Start Address Register are not modified when a
new command is issued.

DLS - Destination Line Start Address Control

When Bit 7, the DLS bit, is “0”, the Destination
Line Start Address Register is loaded from the
Destination Address Holding Register or the
Destination Current Address Register, depending
on whether the DAC bit is “0” or “1” when a new
operation is issued. When the Destination Line
Start Address Control bit is “1”, the contents of the
Destination Line Start Address Register are not
modified when a new command is issued.

2.2.11 Compressor Parameter Register (CPR)

The Compressor Parameter Register, an 8-bit
register, specifies the Line Termination Parameter,
the data format for the Compressor, the beginning
of the page attributes, and the EOL control. The
function of each of the parameter bits is described
inthe following paragraphs. Referto Figure 2-12.

LT - Line Termination Parameter

During compression, the Line Termination field
(bits 0, 1, and 2) permits the user to define the
width of an image or page on bit boundaries rather
than byte boundaries. It specifies the number
(from 0 to 7) of bits to be appended to the end of
each image line after the last full byte of data as
follows:

LT2 LT1 LTO No. of Terminating Bits

aaaa000O0
e OO0 =200
_, O, O 0O0—=0
NoOoOOpArON—-O

The termination bits for each line have the same
color as the last bit (bit 7) of the last byte of that
line. The termination bits as weli as the data are

encoded. This function is especially useful in
conjunction with the frame width specification to
align image windows on bit boundaries. In
expansion, these added bits are not prefixed to
the next line.

During expansion, the termination bits are clipped
off as follows: When the expanded data length
reaches the line length specified in the Expander
Page Width Register (EPWR), the expander resets
an internal shift register and thus clips off any
image bits comprising an incomplete byte at the
end of an image line. The incomplete bytes of
from 1 to 7 bits of image data at the end of each
line are deleted. Otherwise, the coded color
change in the bits of the last incomplete image
byte would prevent successful expansion. If there
is a color change within these clipped bits, the next
line will not be expanded correctly.

DFC - Data Format Control
Bits 4 and 5 (the Data Format Control field) specify

the desired compressed data format according to
the following table:

Bit 5 Bit 4
CDFt CDF0 Compressed Data Format
0 0 Process on Byte Boundaries
0 1 No byte boundaries with RTC
code at end of document
1 0 No Byte Boundaries without
! RTC or EOP
1 1 No byte boundaries with EOP

code at end of document

The choice of these options depends on the size
of the image buffer. If it is large enough to permit
processing an entire document or page without
stopping, the (01) option is selected for Group-3
and the (11) option is selected for Group 4. The
(01) option compresses on no byte boundaries
and places an RTC code at the end of the
document. The (11) option compresses on no
byte boundaries and places an EOP code at the
end of the document.

The (10) option is used to process a fraction of a
page other than the last fraction. This option
compresses on no byte boundaries without
placing an RTC or EOP at the end of the fraction
being processed. To compress the last fraction
with an RTC code or EOP code, the (01) or (11)
option is used.

The (00) option (Process on byte boundaries) is
only used in processing fractions of a page. When
this option is used, the last fraction of the page

2-20

must be a single line for which the RTC code
option (01) is specified. Group 4 does not allow
processing on byte boundaries.

Process On Byte Boundaries (00). When
this option is specified, the Am7970A (CEP) is
conditioned to end lines on byte boundaries. If a
coded line does not end on a byte boundary, the
Am7970A adds enough fill bits (one to seven
consecutive “0"s) to end a line on a byte
boundary.

If Auto-EOL is enabled, and a coded line including
Time Fill (if any) plus the EOL code does not end
on a byte boundary, fill bits, as needed, are
inserted immediately preceding the EOL. Time Fill
bits are also zeros and are not distinguishable from
other fill bits.

Suffix Return-To-Control (RTC) Code
(01). With this option, the compressor processes
the document on no byte boundaries and adds an
RTC code consisting of six EOLs to the end of the
terminal scan line (last line on a page). This
identifies the end of a page to the expander. The
Compressor is conditioned to end the RTC code
on a byte boundary. The RTC code is used only in
Group 3 compression. In 2d processing, the RTC
consists of six (EOL + 1) codes.

In normal Multi-Line operation, the RTC code is
added to the end of the terminal line in which the
Compressor Source Buffer overflow occurs,
assuming line processing has been successfully
completed. If a coded line, including Time Fill (if
any) and the RTC code, does not end on a byte
boundary, the Compressor adds enough fill bits

between the compressed DATA and the RTC
code to end the line on a byte boundary.

Error conditions during Multi-Line operation are
indicated by the Line Processing Incomplete (LPI)
bit in the CSR. These conditions are resumable
because the remainder of the coded line
(including RTC code, if any) is maintained by the
Compressor internally. For example, the
Compressor terminates its operation promptly and
the RTC code is not added when a Compressor
Source Buffer overflow occurs along with either a
Compressor Destination Buffer overflow or with
the line processing incomplete and wraparound
incomplete (if any). If the GO command is issued
after the Compressor Source Buffer or the
Compressor Destination Buffer has been
prepared, the Compressor resumes its previous
process from where it left off.

In normal Single-Line operation, an RTC code is
added to the end of the line when that line's
processing is completed. If a coded line including
Time Fill (if any) and the RTC code does not end
on a byte boundary, the Compressor adds enough
fill bits between the compressed Data and the RTC
code to end the line on a byte boundary. If a
Compressor Destination Buffer overflow occurs
during processing, the Compressor terminates its
operation promptly and the RTC code is not
suffixed.

No Byte Boundaries (10). When this option
is selected, the compressed data (including the
Time Fill and EOL codes, if any) is not conditioned
to end lines on a byte boundary. No EOL suffix is
included at the end of the page (when the working

Ao

ADDRESS [%[1]1 [1To]1]o]o]cPr

7 6 5 4 3 2 0
[eo[sa] orc | o7 |
—
EOL CONTROL —-———] L LT BITS
0-Auto EOL 000=0
1-NoEOL 001=1
010=2
SOURCE ATTRIBUTION 011=3
0 —No Attribution 100=4
1 — Attribute First Line 101 =5
Of Page 110=6
111=7
RESERVED
DATA FORMAT CONTROL
00 - Byte Boundaries
01 —ﬁufg(RTBC Coge
X 10 —No Byte Boundaries
07666A2:12 11— Suffix EOP Code
Figure 2-12 Compressor Parameter Register (CPR)

2-21

count register is exhausted).

If a Compressor destination overflow occurs, the
Compressor terminates its operation promptly and
the Compressor retains the remaining bits of the
compressed data in an internal register. Under
these circumstances, processing may be resumed
by issuing the Compressor Go operation after
preparing the Compressor Source Buffer or the
Compressor Destination Buffer respectively. At
this point, the Compressor combines the excess
bits from the point of termination with the
remainder of the data to be compressed.

Transparent Mode operation cannot be specified
together with the no byte boundaries option. The
Transparent Mode operation is always conditioned
to end a line on a byte boundary, regardless of the
byte boundary control bit.

Suffix EOP Code (11). The End Of Page
code is used in Group 4 compression to process
lines on no byte boundaries and to terminate each
coded page with an EOP. The EOP code consists
of two consecutive EOL codes as specified in the
CCITT recommendation T.4.

The EOP code is followed by fill bits as needed to
end the page on a byte boundary.

SA - Source Attribute

Bit 6, the Source Attribute (SA) bit set to “1”
specifies processing at the start of a page. In
Group 3 processing (EOL field set to “0”), it means
that the compressor will insert an EOL at the
beginning of a page and the expander will look for
an EOL at the start of processing. The SA bit is
cleared automatically after the first line of
processing is completed. The SA bit is sampled by
the CEP when a GO operation is received
following a RESET. The initialization of the CEP
for a new page includes setting the SA bit by the
system (external to the CEP).

The EOL at the beginning of a page is necessary
in Group 3 transmissions because the transmitter
starts sending “0”s as soon as the connection is
established.

When the SA bit is set to “0” at the start of a page,
the processors operate without the prefixed EOL
code evenif EOL =0.

For Group 4 processing (2D, K = 0, EOP mode,
and EOL = 1), when SA = 1, the reference line for
the beginning of a page is an imaginary all-white
line. If the SA bit is set to 0 after a reset, the CEP
will process the first line one-dimensionally. ~ All
other lines are processed two-dimensionally

according to the Group 4 recommendations.
EOL - End Of Line

For Group 3 processing, bit 7, the EOL bit, is set to
“0”, and the Compressor automatically adds an
EOL code to the end of a compressed line or to
the end of a transparent line. With this option
(Auto-EOL on), a compressed line or transparent
line consists of data followed by Time Fill bits (if
any) and an EOL code. This line is conditioned to
end on a byte boundary only if byte boundary
control is specified.

For Group 4 processing, the EOL bit is set to “1”
and a compressed line consists of data only (no
time fill bits or EOL codes).

When Auto-EOL is enabled (set to 0) with the
Source Attribute (SA) bit in the Compressor
Parameter Register set to “1”, an EOL code is
prefixed to the first compressed line of the page.
This prefixed EOL code always ends on a byte
boundary when the Transparent Mode has been
specified irrespective of the byte boundaries
specification. (The EOL code consists of eleven
zeros followed by a One.)

1D Mode: 0000 0000 0001

2D Mode: 00000000 0001T
T Tag Bit

0if next line is 2D

1if nextlineis 1D

2.2.12 Expander Parameter Register (EPR)
(Refer to Figure 2-13 for the register layout).
Reserved

Bits 0, 1, and 2 are reserved.

G - Granularity

Bits 3, 4, and 5) of the EPR contain the Granularity
factor (G-Parameter). It specifies how many lines to
expand before duplicating the last line expanded.
For instance, if G = 4, every fourth scan line is
duplicated resulting in a 25% vertical expansion.
Every scan line that is duplicated is written into the
Destination Buffer a total of two times. Unless the
Expander Wraparound Register (EWR) is zero
when the G-Parameter is non-zero, an error
condition will exist and will be indicated by the EIC
bit in the Expander Status Register. These
registers are discussed later in this Section. GO,
G1, and G2 in the following table refer to Bits 3, 4,
and 5 respectively of the EPR. This table lists the
G-Parameters and the corresponding code:

2-22

Bit5 Bit4 BIt3

G2 G1 GO G-Parameter

_-a a2 0000
2l 002200
—_- OO0~ 0—=0
NoOahhOWN-—=O

SA - Source Attribute

Same as the SA bit in the Compressor Parameter
Register.

EOL

Bit 7, the EOL bit, is interpreted as follows in the
Expander: When this bit is set to “0”, the Source
Buffer data is assumed to contain EOL codes.
This data will be checked for data errors. If the EOL
bit is not set to “0”, the data will not be checked for
data errors (however, illegal codes and EOL codes
generated by the transmission errors will be

detected and flagged); in Group 4, error free data
is assumed.

When the EOL bit is a “1” during the Transparent
Mode, the 1D, or the 2D Modes, the Source Buffer
datais assumed to contain no EOL codes.

If the Expander GO bit is set to “1” with EOL = 0
and SA = 1, the Expansion Processor starts
processing data when it detects an EOL code from
the previous line or prefixed at the beginning of a
page. It continues its operation until it detects an
EOL code on the current processing line. When
this EOL is detected, the Expansion Processor will
check that the bit-length of the expanded current
line is equalto:

L=(EPWR+8)« (EWR +1)

Where: EPWR = The value of the Expander
Page Width Register.
EWR = The value of the Expander
Wraparound Register.

If the current line is not equal to this value, the
Expansion Processor terminates in an error-state

A7

Ao

aporess [1[1[1[1]o]1]o[o]err

5 4 3 2

0

[EZ)LLS?\[G|

1
_RES

J,

I\
v

I—— RESERVED

G-PARAMETER BITS

SOURCE ATTRIBUTION

0 = No Attribution
1 = Attribute First Line Of Page

07666A 2-13

EOL CONTROL
0= Auto EOL
1=NoEOL

Figure 2-13 Expander Parameter Register (EPR)

2-23

with the DER bit in the Expander Status Register
setto“1”.

2.2.13 K Parameter Registers (CKPR, EKPR)

The K Parameter Register is used in Group 3
coding (EOL bit = 0, MC field = 10) to specify the
number of lines encoded in 2D for each line
encoded in 1D. For example, if K = 5, four
consecutive lines are compressed using two-
dimensional encoding for each line compressed
using one-dimensional encoding. The first line is
always encoded in 1D in Group 3. If K = 0, all the
lines are coded in 2D. This 8-bit register can
specify K values from 1 to 255 in binary. Refer to
Figure 2-14. In Group 4, all the lines are coded in
2D and K is always zero.

If a destination buffer smaller than the page is used
with resumable coding in Group 3, it is necessary
to recognize which lines are 1D and which lines are
2D (to determine if the last line encoded before
overflow is still needed as a reference line when
processing resumes. If the processing stopped so
that the next line is a 1D line, a reference line is not
needed. The simplest way to do this is to choose a
buffer size and K parameter such that the buffer is
an integral multiple of K. Since the first line is
always encoded in 1D and K-1 lines are coded in
2D, the buffer will overflow stopping the
processing after the last line of 2D. Under these
conditions, each buffer overflow indicates that the
next line to be encoded or decoded is a 1D line.
With this arrangement of a buffer, no reference line
is needed when coding or decoding resumes
since the next lineisa 1D line.

If One-Dimensional coding or Transparent Mode is
specified in the Master Control Register, the
processor logic ignores the K-Parameter. For 2D
coding, the 7970A encodes Group 3 using the K
Parameter and setting the tag bit following an
EOL.

For Group 3 expansion, the 7970A processes

each line as either 1D or 2D according to the value
of the tag bit immediately following the EOL code
terminating the previous line. If the tag bit is 1, the
next line is decoded as a 1D line. If the tag bit is 0,
the next line is decoded as a 2D line. The K
Parameter is not used.

2.2.14 Wraparound Registers (CWR,EWR)

The Compressor and the Expander each have a
Wraparound Register. This 16-bit register,
specifies the number of additional scan lines that
are grouped into one effective line during
encoding. If the value is “0”, then the effective line
is identical to a scan line. This is the normal
operating mode. If this register is loaded with a “1”,
two scan lines make up an effective line and so on.
Referto Figure 2-15.

Wraparound Mode cannot be used simultaneously
with either Two-Dimensional Compression or
Express Mode. Either of these combinations will
result in an illegal command error. The
Wraparound Register is not modified by the
selected processor during its operation.

2.2.15 Page Width Registers (CPWR, EPWR)

Both the Compressor and the Expander have a
Page Width Register. This 16-bit register,
specifies the page width or length of a scan line in
increments of 8 pixels. The largest line the
Am7970A can handle is 16K pixels long because
only 11 of these 16 bits are significant. Bits 11
through 15 must be set to “0”. Refer to Figure 2-
16.

CCITT recommendation T.4 covers compression
and expansion of scan lines up to 2560 bits. The
Am7970A accommodates much wider pages (up
to 16K bits) by the use of multiple make-up codes
to efficiently encode long runs.

Before starting a processor operation, the

A7

ADDRESS

(=]
-
-
o

CKPR

EKPR

—

K PARAMETER = |

Figure 2-14 K Parameter Registers (CKPR, EKPR)

07666A 2-14

2-24

Am7970A checks the Page Width Register value
against the Left Margin Register and the Right
Margin Register values to ensure that the page
width is greater than or equal to the sum of left and
right margins. When the margin specifications are
not consistent with the page width, the Am7970A
will terminate operation after setting the lllegal
Command (IC) bit in the appropriate Status
Registerto “1”.

During expansion, the Expander Page Width
Register (EPWR) is used in clipping the
termination bits as follows: When the expanded
data length reaches the line length specified in the
EPWR, the expander resets an internal shift
register and thus clips off any image bits
comprising an incomplete byte at the end of an
image line. The incomplete bytes of from 1 to 7
bits of image data at the end of each line are

deleted. Otherwise, the coded color change in
the bits of the last incomplete image byte would
prevent succesful expansion. The processor logic
does not modify the Page Width Register during
its operation.

2.2.16 Frame Width Registers (CFWR, EFWR)

The 16-bit frame width registers define the width of
the memory buffer used to store the picture image.
These registers are used to calculate the starting
point in memory of the next image line. (Am7970A
Rev. A does not have Frame Width Registers).
The CEP calculates the starting address of line n +
1 as one frame width beyond the starting address
of line n. Referto Figure 2-17.

For “full page” processing, the value in the Frame

A7 Ao
ol1|ol1]olofjojo]| CwWRg
of1loj1]olof1jo]| CwWRy
ADDRESS
1|1]o]1]oJo|ofo| EWRg
1{1{oj1]olof1]0]| EWRy
15 8 7 [}
. J\ J
Y hd
I——— WRg
WR4
07666A 2-15 Figure 2-15 Wraparound Registers (CWR, EWR)
A7 Ao
oJ1{1f{1]ojofojo| cPwRrgy
o|1|1[1]ofo}1]0]| cPwRry
ADDRESS
111]1]1]ojo|ojo]| EPWRg
111|1]1]ojo|1]0]| EPWR4
15 1 10 8 7 0
0o 0o 0 0 o i
N I\~ J
Y ~"
I PWR
RESERVED
07666A 2-16 Figure 2-16 Page Width Registers (CPWR, EPWR)

2-25

Width Register must equal the page width as
specified in the Page Width Register. For full page
processing, all of the data within the frame is
processed. For “window” processing, the CFWR
and EFWR define the width of the total image area
(called a frame) and the CPWR and EPWR define
the width of the window within the image area.
Only the data within the window is processed.
Each consecutive line of image in the window that
is processed is transferred to or from consecutive
lines in the frame in memory.

The first line starting address for “full page” and
“window” addressing is specified by the CPU in
the Source and Destination Address Hold
Registers.

Margin control is effective during window
processing. Therefore, it is possible to have a
window with white margins.

2.2.17 Source Address Holding
Registers (CSAHR, ESAHR)

The Compressor and the Expander each have a
Source Address Holding Register. This 24-bit
register contains the starting address of the
Source Buffer for the selected processor. When a
restart process is initiated, the Source Address
Holding Register provides the initial value to the
working register. The contents of Source Address
Holding Register are loaded automatically into the
Source Current Address Register whenever the
GO bit in the Master Control Register is set, in
conjunction with the SAC bit in the respective
Restart Control Register being “0”. The contents
of the Source Address Holding Register are not
modified by the processor during its operation.
Refer to Figure 2-18.

2.2.18 Source Current Address
Registers (CSCAR, ESCAR)

The 24-bit CSCAR provides the current address
for all Compressor transactions with the
Compressor Source Buffer. Likewise, the ESCAR
provides the current address for Expander
transactions with the Expander Source Buffer.
After each transaction this register is incremented
by one and will wraparound through “0” after
reaching a maximum value of all “1”s. Refer to
Figure 2-19.

If the SAC bit in the selected Restart Control
Register is “0”, the SCAR is loaded from the
Source Address Holding Register whenever a new
Go operation is initiated. On the other hand, if the
SAC bit in the Restart Control Register is “1”, the
SCAR continues from its current value.

Two-Dimensional processing requires not only
data for the current line but also corresponding
data from the previous line. The Am7970A
calculates the initial address of the reference line
using the Source Line Start Address Register.
From there on, the address of the reference line is
incremented appropriately.

Reference Line Starting Address = SLSR-FWR

where SLSR = Source Line Start Address
Register
FWR = Frame Width Register

2.2.19 Source Count Holding Registers
(CSCHR, ESCHR)

The Compressor Source Count Holding Register
specifies the Compressor Source Buffer length in
bytes. The Am7970A requires that this buffer
length be specified as a negative number in two's
complement form. Refer to Figure 2-20.

The contents of the Source Count Holding
Register are loaded automatically into the Source

A7

ADDRESS

- |l=lOo|O
alalala
cojo|o|o
alalala

ojoj|jo|©o

Ao
1]0|0| CFWRp
1}1]0] CFWR4
110|0| EFWRp
11110 EFWR1

Figure 2-17 Frame Width Registers (CFWR, EFWR)

07666A 2-17

2-26

Working Count Register whenever a Go operation
is initiated in conjunction with the Source Count
Control (SCC) bit in the Restart Control Register
being “0”.

The Expander Source Count Holding Register
provides the identical function in the Expander.

2.2.20 Source Working Count Registers
(CSWCR, ESWCR)

The Compressor Source Working Count Register

keeps track of the number of Compressor Source
Buffer transactions, Initially, the CSWCR contains
a 24-bit negative number in two's complement
form specifying the number of bytes in the Source
Buffer. The Am7970A increments the Source
Working Count Register by one after completing
each source transaction. The Source Overflow bit
(SO) in the Status Register is set to “1”
immediately after the Source Working Count
Register count becomes zero.

The CEP controls the contents of the Working

CSAHRg

CSAHR

ADDRESS

CSAHR,

ESAHRg

a|lafj=~lOoOlO|O
olo|lolo|o|o
alalaja]lala
aflalala]a]=
afalala]a]a

ESAHR4

alalolal=]o

alo|la{=lo]~

olo|lo|o|o|o

ESAHR,

23 16 15

I\

AN

07666A 2-18

Figure 2-18 Source Address Holding Registers (CSAHR, ESAHR)

A7

CSCARg

CSCAR4

ADDRESS

CSCARp

ESCARg

ESCAR,

s lal=lo|lOo|O
olo|lojo|o|o
o|lojo|o|o|o
olojojojo}|o
alalalalala

alalol=|=|o

alolal=alol=
oljojlo|jo|o|Oo

ESCAR,

23 16 15

I\

J\.

07666A 2-19

Figure 2-19 Source Current Address Registers (CSCAR, ESCAR)

2-27

Count Register only when it increments it. The
CEP does not observe what value is loaded by the
CPU and thus does not interrupt for “0” contents.
Referto Figure 2-21.

It must be emphasized that a transaction does not
necessarily mean one access. For example, for
Two-Dimensional processing, the Am7970A will
access the Source Buffer both for the current line
and for the reference line. Thus, a transaction in
2D will include twice as many Source Buffer
accesses as an equivalent 1D transaction.

When the last byte of the Source Buffer
corresponds to the end of an effective line, the
Am7970A will process this byte and will attempt to
store it in the Destination Buffer and then
terminate the processor. For normal operation, the
Am7970A terminates after storing a fully
processed line successfully (that is, no premature
destination overflow or error status). Abnormal
termination due to premature destination overflow
orerror status is discussed later.

When the last byte obtained from the Source
Buffer does not correspond to the end of an
effective line, it means that the assigned Source
Buffer length is less than what is needed by the
Page Width Register and the Wraparound Register
(if used). In this condition, the Am7970A will pro-
cess the byte and then terminate abnormally. The
Wraparound Incomplete (WPI) and Line Proces-
sing Incomplete (LPI) bits in the Status Register will
reflect the appropriate error termination.

When an operation is initiated with the SCC bit in
the Restart Control Register set to “0”, the Source
Working Count Register obtains its initial value
from the Source Count Holding Register. When
this control bit is a “1” and a Restart operation is
initiated, the Source Working Count Register uses
the existing value as the initial value. The
Expansion Source Working Count Register is an
equivalent register in the Expander.

2.2.21 Source Line Start Address
Registers (CSLSR, ESLSR)

The 24-bit Compressor Source Line Start Address
Register contains the address of the first byte of
the current effective line in the Source Buffer.
This register is automatically updated when the
Am7970A begins processing a new effective line.
Thus, after a successful completion of Single-Line
operation, the CSLSR contains the starting
address of the line that was just completed until
processing is started on a new effective line. Refer
to Figure 2-22.

During Multi-Line operations, the Am7970A

automatically begins processing the next line after
successfully processing a line. The Compressor
always loads the Source Current Address Register
contents into the Source Line Start Register and
then begins processing of the new line. This
facilitates resetting the source back to the
beginning of the line in case of a premature
termination. The initial contents (not the updating
process) of the Source Line Start Address
Register are determined by the setting of certain
bits in the Restart Control Register. For details of
this operation, see the description under the
Restart Control Register section.

The Expander Source Line Start Address Register
is identical to the Compressor Source Line Start
Address register.

2.2.22 Destination Address Holding
Registers (CDAHR, EDAHR)

The 24-bit Compressor Destination Address
Holding Register specifies the starting address of
the Compressor Destination Buffer during Restart
operations. The contents of the CDAHR are
automatically transferred into the Compressor
Destination Current Address Register whenever
the GO bit in the CMCR is set and the DAC bit in
the Restart Control Register is “0”. The CDAHR
contents are not modified by the Compressor
during its operation. Referto Figure 2-23.

The Expander Destination Address Holding
Register is identical to the CDAHR and performs
the same function in the Expander on comparable
Expander registers.

2.2.23 Destination Current Address
Registers (CDCAR, EDCAR)

The 24-bit Compressor Destination Current
Address Register provides the current address of
the Compressor Destination Buffer. The
Am7970A increments the CDCAR by one after
each transaction and will wraparound through “0”
after reaching a maximum value of all “1”s. Referto
Figure 2-24.

If the DAC bit in the Restart Control Register is “0”
when the GO bit in the Master Control Register is
set to “1”, the CDCAR is loaded from the CDAHR.
If the DAC bit is “1”, the CDCAR continues from
the current value upon receipt of the Go operation.

2.2.24 Destination Count Holding
Registers (CDCHR, EDCHR)

The 24-bit Compressor Destination Count Holding
Register specifies the length (in bytes) of the
Compressor Destination Buffer. The buffer length

2-28

must be specified as a negative number in two's
complement form. The contents of the CDCHR
are loaded automatically into the Compressor
Destination Working Count Register whenever a
Restart operation is initiated with the Destination
Count Control (DCC) bit in the Restart Control
Register set to “0”.

The Compressor logic does not modify this
register during its operation. Referto Figure 2-25.

The Expander Destination Count Holding Register

is an identical register in the Expander.

2.2.25 Destination Working Count
Registers (CDWCR, EDWCR)

The 24-bit Compressor Destination Working Count
Register keeps track of the number of Compressor
Destination Buffer accesses. Initially, the
Destination Working Count Register contains a 24-
bit negative two's complement number specifying
how many bytes long the Destination Buffer is.
Referto Figure 2-26.

CSCHRg

CSCHR{

CSCHR;

ADDRESS

ESCHRg

ESCHR4

a2 |al=]JOojO O
o|lojo|jo|o|o
olo|jojo|o o
afjalala]=a)-
s lojo|=»|Oo|O

oflalalol=|=

o= |Oo|of|-=|©
ojlolojojolo

ESCHR,

23 16 15

AN

07666A 2-21

Figure 2-20 Source Count Holding Registers (CSCHR, ESCHR)

A7

CSWCRg

CSWCR

ADDRESS

CSWCRy

ESWCRg

ESWCR

a)lal=slOjJO O

ojojo|o|jo o
ojo|lo|o|o O
ojo|jlo|o|o|Oo
- lolo|»~|Oo|O

ola|=jo|=]|=

oj=lojOol=aslO
ojojojojo|o

ESWCR,

16 15

I\

07666A 2-21 Figure 2-21

Source Working Count Registers (CSWCR, ESWCR)

2-29

The Am7970A increments the Destination
Working Count Register by one after each
destination transaction. As soon as the
Destination Working Count Register reaches “0”,
the processor operation will terminate with
processor Destination Overflow (DO) bit set in the
appropriate Status Register. It should be noted
that such a termination might be normal (error-free)
orabnormal.

A normal termination occurs when the Am7970A is
able to transfer a fully-processed line into the
Destination Buffer without a premature destination

compression. An abnormal termination due to
premature destination overflow will result in an
appropriate error status. In this condition, the
Am7970A will process the byte and then terminate
abnormally. The Wraparound Incomplete (WPI)
and Line Processing Incomplete (LPI) bits in the
Status Register reflect the appropriate error
termination.

When Restart Operation is initiated with the DCC
bit in the Restart Control Register set to “0”, then
the initial value loaded into the Destination
Working Count Register is obtained from the

overflow and without an error such as negative Destination Count Holding Register. However, if
A7 Ao
ojtjoj1y11joj1io0 CSLSRg
of1{of1]1{1]o|o| csLsry
of1jof1f1}1}1]0 CSLSRp
ADDRESS
1{1j0f1f1jotj1}o ESLSRg
111j0]1}j1jt1]0}0 ESLSR4
1{1fof1]1}1]1]0] EsLsRr,
23 16 15 8 7 0
N N - J
Y Y Y
l————— SLSRg
SLSR
SLSRp
Figure 2-22 Source Line Start Address Registers (CSLSR, ESLSR) 07666A 2-22
A7 Ao
ojt1{ofoft1|ofj1yo0 CDAHRg
ojtjofo|t1ft1joyo0 CDAHR ¢
ofjt1jofjof1{t1{14y0 CDAHR2
ADDRESS
1{1|(0jof1to]l1]0 EDAHRg
1{1{ojof1|1jo}jo EDAHR
1{1{ofjof1]{1]1]0]| EDAHR,
23 16 15 8 7 0
« - I\ J
Y Yo Y
l——-—— DAHR
DAHR 4
DAHR »
Figure 2-23 Destination Address Holding Registers (CDAHR, EDAHR) 07666A 2-23

2-30

the DCC bit is “1", the existing value in the
Destination Working Count Register becomes the
initial value.

The Expander Destination Working Count
Register is an identical register in the Expander.

2.2.26 Destination Line Start Address
Registers (CDLSR, EDLSR)

The 24-bit Compressor Destination Line Start
Address Register contains the address of the first
byte of the current line in the Destination Buffer.
This register is updated automatically when the

processor starts a new line. Thus, after the
successful completion of a Single-Line operation,
the Destination Line Start Address Register
contains the starting address of the line that was
just completed until the processor starts a new
line. Referto Figure 2-27.

During Multi-Line operations, the processor
automatically begins processing the next line after
successful completion of a line. The Am7970A
loads the Destination Line Start Address Register
from the Destination Current Address Register
before processing of the line begins. The Source
Line Start Address Register is also loaded from the

CDCARp

CDCAR4

ADDRESS

CDCAR;

EDCARo

EDCAR;

a|s}|=JO}|O|C

o|lojo|o|o |o
alalajalala
ojlo|jojo|o |O
alajalalal=

alalol=alajo

alola]|alol=

o|lo|o|o|o|o

EDCAR,

16 15

s

J\.

YT

I———— DCARg

DCAR

Figure 2-24 Destination Current Address Registers (CDCAR, EDCAR)

DCAR,

07666A 2-24

CDCHRg

CDCHR

ADDRESS

CDCHRp

EDCHRg

EDCHR4

alalajolo|o

ajajalalals

olo|olo|e|e
2lafalalal~
s lolo|=-|o]|o

ol|lalalol=|=

oj=|ojoj=|C
olo|o|ojo|le

EDCHRp

23 16 15

~

I——— DCHRg

DCHR 4

Figure 2-25 Destination Count Holding Registers (CDCHR, EDCHR)

DCHR

07666A 2-25

2-31

Source Current Address Register. Thus before
any access to the Destination Buffer for the new
line, both the Source Line Start Address Register
and the Destination Line Start Address Register
are updated. This facilitates resetting the
destination back to the beginning of a line in case
of a premature termination.

The initial contents (not the updating process) of
the Destination Line Start Address Register are
determined by values loaded into the Restart
Control Register. See the section on this register
for further details.

The Expander Destination Line Start Address
Register is an identical register in the Expander.

2.3 INTERFACE DESCRIPTION

The interface description includes a description of
the signals on the CEP pins, and the sequences
involved in CPU access operations, DMA
operations, and Document Bus operations.

All inputs to the CEP are directly TTL-compatible.
CEP control signals include CLK and RESET. The
two bus interfaces are the system bus and the
document bus. The system bus control signals
include RD, WR, CS, ALE, HRQ, HLDA, READY,
and INTR. The document bus control signals
include the DRD, DWR, DALE, and DREADY.

One DMA Controller serves both the system bus
and the document bus. Therefore, there is never

bus and the document bus. However, slave
access on the system bus is allowed while a
document bus DMA is in progress. If the CEP is
inactive (“busy” bits inactive), all signals of the
document side are tri-stated. This feature can be
used for an inexpensive software controlled bus
arbitration of the document bus. When a
peripheral wants to access the document bus, it
can notify the system CPU. The CPU can poll the
BUSY bit of the CEP and notify the peripheral
when it becomes inactive.

The CEP operation may be stopped by a write to
the command register when the CEP is busy (a
software abort). However, this abort is not
resumable. In other words, setting the “GO” bit
back to High is not enough to resume an aborted
operation.

The system side interface transfers only one byte
per arbitration cycle (no burst DMA). The
document side interface transfers single bytes for
each bus cycle; contiguous bus cycles can be
initiated by the CEP on the document bus.

2.3.1 Signal Description

The interface signals include the CEP control
signals, the System Bus signals, and the
Document Bus signals.

CLK Clock (Input)

The Clock signal controls most of the CEP's
internal operations and determines the rates of its

a simultaneous DMA access on both the system data transfers. It is usually derived from a master
A7 Ao
0|jo0|1]|0|O]|1{0]|0]| CDWCRqg
olof1]olof1[1]0] cowecry
ofo|1|of1|of{o]|o| cDWCR,
ADDRESS
1jo|1jojo|1|o]|o EDWCRg
1joft1jofjoj1f11]o0 EDWCR1
1{ol1{of1}o|lo|o| EDWCR,
23 16 15 8 7 0
|\ J\. I\ J
Y Y Y
l——-— DWCRg
DWCR
DWCR,
Figure 2-26 Destination Working Count Registers (CDWCR, EDWCR) 07666A 2-26

2-32

system clock or the associated CPU clock. The
Clock input accepts a TTL voltage level. The input
signals CS, HLDA, RD, and WR, can make
transitions independent of the CEP clock
(asynchronous operation).

Transitions on the inputs, READY and DREADY,
must meet set-up and hold requirements relative
to the CEP clock, since these inputs do not
contain internal synchronizers. Failure to meet
these timing requirements may result in incorrect
operation from the internal state machine with
unpredictable consequences. See the timing
diagrams in the data sheet for details.

RESET (Input)

RESET is an asynchronous, active-High input
which initializes the Am7970A to an idle state. This
input must be driven High for at least four clock
cycles.

The hardware reset sets the GO, Status, and
Interrupts to zero. It resets the DMA bus. It sets
BUSY to zero, flushes out the pipeline, and sets
up the checks for configuration errors. The
hardware reset also sets the software reset for
both the compressor and expander.

RD Read (Input/Output, Active low,
Three-state)

RD is a bidirectional, active-Low, three-state signal.
A Low indicates that the AD1g—ADo3 bus is being
used for a Read Data Transfer. When the CEP is
not in control of the system bus and the external

system is transferring information from the CEP,
RD is an asynchronous timing input used by the
CEP to move data between registers and the
AD{g-ADo3 bus. The RD cycle from the system
should be completed only after the CEP's READY
output has returned High. After RD returns to its
Highstate, AD1g—ADo3 will float.

RD is an output when the CEP is Bus Master (HRQ
and HLDA are both High). The CEP asserts RD
Low when data from system memory is required.
The CEP strobes this data into its internal buffers
from the AD1g-ADj>3 lines near the Low-to-High
transition of RD.

WR Write (Input/Output, Active low,
Three-state)

WR is a bidirectional, active-Low, three-state
signal. A Low indicates that the AD1g—ADog3 bus is
being used for a Write Data Transfer. When the
CEP is not in control of the system bus and the
external system is transferring information to the
CEP, WR is an asynchronous timing input used by
the CEP to move data from the AD1g—ADo3 bus
into its internal registers. The data is loaded into
the specified register before the CEP's READY
output is driven High. This WR cycle from the
system should be completed only after the CEP's
READY output has returned High.

WR is an output when the CEP is Bus Master (HRQ
and HLDA are both High). The CEP asserts WR
Low when data is to be written into Main Memory.
The CEP drives this data onto its AD1g~ADo3 lines
near the High-to-Low transition of WR. See timing

ofl1{1{o{1{o0|1|0| cDLSRy
ol1]1]oj1]|1]olo| coLsry
aooress |01t t]ol 1] 1f1]o] cosky
1{1{1]{o]1f{of[1]0]| EDLSRy
1]1]1]o]1]1]o|o| EbLSRy
1]1]1}o]1]1]1]o| EDLSR,
3 16 15 8 7 0
N N U\ J
N ~" ~
l——- DLSR o
DLSR ,
DLSR ,

07666A 2-27

Figure 2-27 Destination Line Start Address Registers (CDLSR, EDLSR)

2-33

diagrams in the data sheet for more details.
CS Chip Select (Active low, Input)

CS is an asynchronous, active-Low input. A CPU
or other external device uses CS to activate the
CEP for reading from or writing to its internal
registers. Once asserted Low, this input can
remain Low until all register accesses have been
completed. Once CS is negated High, it may not
be asserted Low again for at least 100ns. _There
are no timing requirements between the CS input
and the CEP clock; the CS input timing
requirements are_only defined relative to the RD
and WR signals. CS is ignored when the CEP is in
control of the system bus.

Do _not use CS directly to enable the buffer for RD
or WR into the CEP in slave mode. When CS goes
Low, the outputs of the buffer will still be unstable
for a couple of nanoseconds while the CEP is
already expecting true signals. The best solution
is to use HLDA for enabling the driver if the system
requires buffering the RD and WR lines.

Make sure CS is High within 1 clock cycle after RD
or WR return High if block transfer mode is not
desired. Refer to the CPU Block 1/0 Transaction
Timing Diagram in the data sheet for block
transfers.

ALE Address Latch Enable (Output)

This active-High signal is provided by the CEP to
latch the address signals ADqg~ADp3 into an
address latch. This pin is never floated. ALE is
asserted High during address time when the CEP
is Bus Master; otherwise it is Low. Address is
defined as valid prior to the High-to-Low (trailing)
transition of ALE.

HRQ Hold Request (Output)

Hold Request is an active-High signal used by the
CEP to obtain control of the bus from the system
CPU or arbiter. Hold Request lines from multiple
devices may be connected to a priority encoder. If
the HLDA input is High after the HRQ output has
been asserted High, HRQ will remain High until the
CEP has completed one memory transaction. The
HLDA input may be negated Low prior to HRQ
going Low. The HRQ signal remains Low for a
minimum of 2 clocks to allow the bus master to
arbitrate for the bus. This sequence of events is
called a preemption. If HLDA is not asserted, HRQ
can be forcibly lowered only by a hardware reset.

HLDA Hold Acknowledge (Input)

HLDA is an asynchronous, active-High input

indicating that the CPU has relinquished the bus
and that no higher priority device has assumed bus
control. Since HLDA is internally synchronized by
the CEP before being used, transitions on HLDA
do not have to match setup and hold requirements
with respect to the CEP clock. The HLDA input
can be connected to either the HLDA output from
the CPU (8086-type) or to the output of a device
such as a priority decoder. The HLDA input
normally remains High until the CEP drives the
HRQ output Low.

The HLDA input to the CEP can be negated Low
prior to HRQ. This forces the CEP to release the
bus within a maximum time of 5 clock periods
(assuming READY is High and no wait states). The
removal of HRQ indicates to the preempting
device that the CEP has released the bus. In
either case, HRQ remains LOW for a minimum of 2
clocks. Processing is resumed from the point of
preemption in the normal course of events. In any
case, the system bus transfers only one byte per
arbitration cycle.

READY (Input/Output, Three-state)

READY is a synchronous, active-High, three-state,
bidirectional signal. READY is used as an input
signal when the CEP is Bus Master. In Master
Mode, the CEP samples the READY line with the
rising edge of T2 before RD or WR are asserted by
the CEP. See timing diagrams in the data sheet for
more details.

Slow memories may use READY to extend RD or
WR cycles. This is accomplished by negating
READY Low at the appropriate times and thus
inserting Wait states until READY is returned High.
READY must be High before Main Memory data
can be accessed by the CEP. Care must be taken,
however, to assure that this signal is synchronized
to the CEP clock and meets its set-up and hold
requirements as specified in the data sheet.
Failure to do so causes unpredictable operation.

READY is used as an output signal when the CEP
is Bus Slave. After CS has been asserted Low by
the CPU, READY is kept Low by the CEP until it is
able to provide or accept data for the current
transaction. When ready, the CEP asserts READY
High at which time the CPU should_complete the
current read or write cycle by negating RD or WR.

INTR Interrupt Request (Output)

Interrupt Request is an active-High output used to
interrupt the CPU. It is driven High whenever an
exception or terminating condition exists in either
the Compressor (if the Compressor Interrupt
Enable bit is set) or Expander (if the Expander

2-34

Interrupt Enable bit is set). The INTR line is reset to
Low when the CPU reads the CEP Master Status
Register or when the CEP is hardware reset.

Ag—Aq15 Lower Address (Input, tri-state
outputs)

In the Bus Slave mode, the Lower Address Bus is
a non-multiplexed, bidirectional bus of the seven
address lines (A1—A7). It is used in addressing all
system bus /O and memory transactions.

When the CEP is not in control of the system bus
(HRQ and HLDA Low), and the CS input is
asserted Low, Aq—A7 are used as input address
lines to access the CEP's internal registers. (The
CEP's internal registers have been assigned even
addresses.) During this time, the address lines
Ag-Aq5 are ignored by the CEP. The input
addresses _on Ag—-A7 do not have to be valid
before the CS input is driven Low but must remain
valid throughout the register transaction. See
timing diagrams in the data sheet for more details.

In the Bus Master mode (Ag—A4s tri-state outputs),
the CEP is in control of the main bus (HRQ and
HLDA are High) and the lower address bus is an

active-High, three-state bus with A the least -

significant bit position and A5 the most significant
bit position.

DMA transactions with the Main Memory will occur.
The presence of valid address on Ag-Aqs is
defined by the falling edge of ALE. Ag-Aqs5 are
used as non-multiplexed output address lines
during the memory transactions. These lines are
enabled 2 clock cycles after HREQ and HLDA =
High. After the High-to-Low transition of HRQ, the
Ap—Aqs lines will float to a three-state condition.

AD4g—ADy3 Address-Data Bus
(Input/Output, Three-state)

The Address-Data Bus is a time-multiplexed (in
Master Mode only), bidirectional, active-High, three-
state bus used for all system bus I/O and memory
transactions. When referring to the data cycle on
this bus, ADyg is the least significant data bit
position and AD»3 is the most significant.

The presence of a valid address during Bus Master
operations is defined by the falling edge of ALE
and valid data is defined by the WR and RD signals;
otherwise these lines are floating. While the CEP
RD output is Low, AD1g-ADo3 must contain valid
input data from the system while the READY input
is High,

When the CEP WR output is asserted Low,
AD{g-ADo3 has valid CEP output data. The

READY input must then return High to
acknowledge receipt of the valid data and to allow
the completion of the WR cycle.

When the CEP is acting as a Bus Slave (HRQ and
HLDA Low) and the CS input is driven Low,
AD{5-ADg3 are used strictly as data lines Dg—D7.
They behave as input data lines when V&E is
asserted Low and as output data lines when RD is
asserted Low. At all other times they are floated to
three-state.

DRD Document Store Read (Active low,
Output, Three-state)

DRD is an active-Low, three-state signal. A Low on
this signal indicates that the DAD{g-DAD23 bus is
being used for a Read Data Transfer. When the
CEP does not have a source or destination buffer
located on the Document Store bus, this pin is
floated to three-state. Even if the CEP is
programmed to access the Document Bus, these
lines go floating whenever the CEP is performing
internal operations rather than transfering data
through this interface. Therefore, usually a pullup
resister must be connected to DRD.

DRD is an output when the CEP is in control of the
Document Bus. The CEP asserts DRD Low when
data from Document Store is required. The CEP
strobes this data into its_internal buffers near the
Low-to-High transition of DRD.

DWR Document Store Write (Active low,
Output, Three-state)

DWR is an active-Low, three-state signal. A Low
on this pin indicates that the DAD15-DAD23 bus is
being used for a Document Bus write data transfer.
When the CEP does not have a source or
destination buffer located on the Document Store
Bus, this pin is floated to three-state. Even if the
CEP is programmed to access the Document Bus,
these lines go floating whenever the CEP is
performing internal operations rather than
transfering data through this interface. Therefore,
usually a pullup resister is required on DWR.

DWR is an output when the CEP is Bus Master.
The CEP asserts DWR Low when data is to be
written into Document Store. The CEP drives this
data onto its DAD1g—DAD23 lines near the High-to-
Low transition of DWR. See timing diagrams for
details.

DALE Document Store ALE (Output,
Three-state)

This active-High signal is provided by the CEP to
latch the Document Store address signals

2-35

DAD1g-DAD23 into an address latch to separate
addresses from data. When the CEP does not
have a source or destination buffer located on the
Document Bus, this pin is floated to three-state.
Even if the CEP is programmed to access the
Document Bus, these lines go floating whenever
the CEP is performing internal operations rather
than transfering data through this interface.
Therefore, a pullup resistor is required on DALE.
DALE in conjunction with a pullup resister makes a
perfect AS signal for 68000-like systems because
it changes directly from 3-state to High. This may
be a useful low-active memory-enable signal for
the document bus.

DALE is asserted High during address time when
the CEP is Bus Master; during the remainder of the
transaction, it is Low. Address is defined as valid
prior to the transition of DALE.

DREADY Ready (Input, Three-state)

DREADY is a synchronous, active-High, three-
state signal. DREADY is used as an input signal
when the CEP is Bus Master. In Master Mode, the
CEP samples the DREADY line with the rising
edge of T2 before DRD or DWR are asserted by
the CEP. See timing diagrams in the data sheet for
more details.

Slow memories may use DREADY to extend DRD
or DWR cycles. This is accomplished by negating
DREADY Low at the appropriate times and thus
inserting Wait states untii DREADY is returned
High. DREADY must be High before Document
Store data can be accessed by the CEP. Care
must be taken, however, to ensure that this signal
is synchronized to the CEP clock and meets its set-
up and hold requirements as specified in the data
sheet. Failure to do so can result in unpredictable
operation.

If the DREADY signal is suppressed on the
document bus, the CEP will be frozen the moment
that it samples the DREADY line because it is
waiting for access to the document bus. No further
memory transfers can take place on the system
bus either, because each side is waiting for the
other to complete the memory cycle. HREQ is
inactive in this case. This behavior might be useful
for implementing a ring buffer as a destination
buffer or in conjunction with transceivers for
DApy16—DAg73 and buffers for DAg-DA45,DRD,
DWR, and control logic, for a bus arbitration
scheme onthe document bus.

DAg-DA{5 Document Store Lower
Address Bus (Output, Three-state)

The Document Store Lower Address Bus is a non-

multiplexed, active-High, three-state bus used in
addressing all local document memory trans-
actions. DA is the least significant bit position and
DA 5 is the most significant bit position.

When the CEP is in control of the Document Store
Bus, the presence of a valid address on
DAg-DA15 is defined by the falling edge of DALE.
During this Master Mode, DAg—-DA45 are used as
non-multiplexed output address lines whenever
the Compressor or the Expander is using the
Document Store as a source or destination buffer
for the current transaction, otherwise this bus is
floated to three-state.

DA45-DAy3 Document Store Upper
Address-Data Bus (Input/Output,
Three-state)

The Document Store Upper Address-Data Bus is a
time-multiplexed, bidirectional, active-High, three-
state bus used for all local document memory
transactions. When referring to the data cycle on
this bus, DADyg is the least significant data bit
position and DADog is the most significant. The
presence of a valid address during Bus Master
operations is defined by the falling edge of DALE
and the valid data is defined by the DWR and DRD
signals; otherwise these lines are floating.

The DRD and DWR outputs return to their inactive-
High levels only after the DREADY input has been
sampled High. While the CEP DRD output is Low,
DAD45-DAD»3 must be provided with valid input
data from the system while the DREADY input is
High. When the CEP DWR output is asserted
Low, DAD1g-DADo3 is driven by the CEP with
valid output data. The DREADY input must then
return High to acknowledge receipt of the valid
data and to allow the completion of the DWR cycle.

2.3.2 CPU Access Operations (CEP
Slave Mode)

Timing diagrams, Figures 2-28 and 2-29, show
idealized read and write timing relationships
between the signals to provide a quick overview.
Figure 2-30 shows a CPU block I/O transaction
timing with the CEP in the Slave Mode. For more
detailed timing specifications, refer to the data
sheet. The procedure is described as follows:

Read Access Operation

1. The CPU places an address on the CPU
address lines A1-A7 to specify the intended
register and enable the RD and WR lines to
the CEP.

2. The CPU address decoder (external to the
CEP) drives the CS input Low.

2-36

The CEP drives the READY output Low.

The CPUdrives the RD input Low.

The CEP READY output is driven High when
the CEP register data is available.

AD1g to ADog is driven by the CEP with valid
data.

The CPU drives the CEP RD input High.

CEP drives READY Low a maximum of one
clock cycle after RD is High.

If the CS input is driven High, further write
accesses can be initiated by executing from
Step 1.

© ON o s

If the CS input is kept low, further read or write
accesses can be initiated by executing from
Step 1 but skipping Step 2. (Block transfer
mode, Figure 2-30.)

10. READY returns to High after CS High.

Note: If Step 7 precedes Step 5, the read access
will be aborted by the CEP. If the read access is
aborted, READY is driven High and AD4g to ADp3
will float. No data will be presented on the data
lines. Further read accesses can be initiated by
executing Step 1.

The register access can take up to 50 clock cycles
depending on the internal operation of the CEP.
Referto Section 2.2 for more details.

Write Access Operation

1. The CPU places an address on the CPU

address lines A1-A7 to specify the intended

register and enable the RD and WR lines to

the CEP.

The CPU address decoder (external to the

CEP) drives the CS input Low.

The CEP drives the READY output Low.

The CPU drives the WR input Low.

ADqg to ADpg is driven by the CPU with valid

data.

The CEP READY output is driven High after

data has been loaded into the appropriate

register. o ‘

The CPU drives the CEP WR input High.

CEP drives READY Low a maximum of one

clock cycle after RD is High.

9. If the CS input is driven High, further write
accesses can be initiated by executing from
Step 1.

n

o Ao

© N

If the CS input is kept low, further read or write
accesses can be initiated by executing from
Step 1 but skipping Step 2.

10. READY returns High after CS High. (Block
transfer mode, Figure 2-30.)

Note: If Step 7 precedes Step 6, the write access
will be aborted. If the write access is aborted,
READY is driven High. No data will be presented
on the data lines. The contents of the specified
register are not altered. Further write accesses can
be initiated by executing Step 1.

The register access can take up to 50 clock cycles
depending on the internal operation of the CEP.
Referto Section 2.2 for more details.

2.3.3 DMA Operation (CEP Master Mode)

Figures 2-31 and 2-32 are idealized timing
diagrams of the system side DMA read and write
operations. Refer to the data sheet for more
detailed timing information. The procedure by
which the CEP executes a DMA operation in the
CEP Master Mode is described as follows:

Read Access Operation

1. The CEP drives the HRQ output High.

2. The CPUdrives the HLDA input High._ o

3. The CEP enables address/data, RD, and WR
lines two clock cycles after step 2 has been
executed (Tsync).

4. The CEP drives the ALE output High and
places a memory address (24 bits) on the CPU
bus during CEP state T1. The address is valid
during the High to Low transition of the ALE
output (CEP state T2, falling edge).

5. The CEP drives the RD output Low (CEP
state T2, rising edge).

6. The state (High or Low) of the READY input is
sampled by the rising edge of T2.

7. If the READY input is Low, a Wait State is
inserted. The READY input should become
High when the memory location becomes
available (CEP Wait State, rising edge). Any
number of wait states will be inserted as long
as READY is sampled Low during state Tw.

8. If the READY input is High, then AD4g to ADp3
must be driven with valid data (from the
indicated memory location). The rising edge
of T3 samples the dataon AD g to ADog3.

9. The CEP drives the RD output High (CEP
state T3, rising edge). . -

10. The CEP disables address/data, RD, and WR
lines.

11. The CEP drives the HRQ output Low. It
should remain Low for at least two clock cycles
(falling edge after T3).

12. The CPU drives the HLDA input Low.

Note: |If Step 12 precedes Step 11 (preemption),

2-37

the CEP will complete the current bus transaction.
The HRQ output will then be driven LOW for at
least two clock cycles. If additional bus trans-
actions are required by the CEP, the CEP will drive

the HRQ output High after a minimum of two clocks 5.

have elapsed (Step 1).
Write Access Operation
The CEP drives the HRQ output High.

1.
2. The CPU drives the HLDA input High. -
3. The CEP enables address/data, RD, and WR

lines two clock cycles after step 2 has been 8.

executed (Tsync).
4. The CEP drives the ALE output High and

places a memory address (24 bits) on the CPU
bus (state T1, falling edge). The address is
valid during the High to Low transition of the
ALE output.

ADqg to ADpj is driven by the CEP with valid
data (CEP state T2, falling edge).

The CEP drives the WR output Low (CEP
state T2, rising edge).

The state (High or Low) of the READY input is
sampled by the CEP at the state T2 rising
edge.

If the READY input is Low, a Wait State is
inserted. The READY input should be driven
High after data has been loaded into the

—p| |¢&—— ADDRESS SETUP TIME

A1-A7 X

A1-A7 X

= T\

P

<

o\ SN
L~

{ cepoAaTAOUT)
Figure 2-28 CPU Read Timing (CEP Slave Mode) 07666A 2-28
—] |«—— ADDRESS SETUP TIME

U
A1-A7 X

A1-A7 X

—

)

2 ¢ CEP DATA IN >

N~ 7/

Figure 2-29 CPU Write Timing (CEP Slave Mode) 07666A 2-29

2-38

appropriate memory location (CEP Wait State,
rising edge). Any number of wait states will be
inserted as long as READY is sampled Low
during state Tw.

9. The CEP drives the WR output High (CEP
state T3, rising edge).

10. The CEP disables address/data, RD, and WR
lines.

11. The CEP drives the HRQ output Low.

12. The CPU drives the HLDA input Low.

Note: If Step 12 precedes Step 11 (preemption),
the CEP will complete the current bus transaction.
The HRQ output will then be driven Low for two
clock cycles. If additional bus transactions are
required by the CEP, the CEP will drive the HRQ
output High (Step 1).

2.3.4 Document Bus Operation

Figures 2-33 and 2-34 show an idealized timing
diagram of the Document Store bus DMA read and
write operations. The procedure by which the
CEP executes a Document Bus memory operation
is described as follows:

Read Access Operation

1. The CEP enables the address/data, DALE,

DRD, and DWR lines and drives DALE High
during Trioat. TF is indicated by the dotted
lines inthe diagram.

2. The CEP places a Document Store address
(24 bits) on the Document Bus (CEP state
T1). The address is valid during the High to
Low transition of the DALE output (CEP state
T2, falling edge).

3. The CEP drives the DRD output Low (CEP
state T2, rising edge).

4. The state (High or Low) of the READY input is
sampled by T2, rising edge.

5. If the DREADY input is Low, a Wait State is
inserted (Tw). The READY input should
become High when the Document Store
location becomes available (CEP Wait State,
rising edge). Any number of wait states will be
inserted as long as READY is sampled Low
during state Tw.

6. If the DREADY input is High, then DAD4g to
DAD»3 must be driven with valid data (from the
indicated Document Store location) (CEP
state T3, fallingedge). _

7. The CEP drives the DRD output High (CEP
state T3, rising edge).

8. The CEP drives DALE High.

9. The CEP disables the address/data, DALE,
DRD, and DWR lines (TF dotted lines). The
CEP may process any number of consecutive

—

AO-A7 REGISTER REGISTER Y REGISTER Y REGISTER
ADDRESS ADDRESS ADDRESS J\ ADDRESS
OUTOFCEP OUTOFCEP INTOCEP INTO CEP
AD1e-ADZ3 mz)—;gm
] /
WR
4
\ 4 4 4
READY < 4 N 7;7
-» <+ > -
2100ns 2100ns 2100ns
07666A 2-30 Figure 2-30 CPU Block I/O Transaction Timing (CEP Slave Mode)

2-39

ov-¢

CEP
CLOCK

HRQ

HLDA

ALE

AO0-A15

AD16-AD23

READY

[¢— TSYNC —bje—T1 —>le— T2 —ble- TW -ble— T3 —»]

L \w " ™

~
~

S

N
\

\»\/

B

CEP

FLOAT

DATAIN 4

>

DATA SETUP TIME

FLOAT / / \\\\\
. E] READY SETUP TIME
TW * OPTIONAL IZ] READY HOLD TIME

Figure 2-31. System Side DMA Read Operation (CEP data in)

DATA HOLD TIME

07666A 2-31

-2

CEP
CLOCK

HRQ

HLDA

ALE

AO-A15

AD16-AD23

READY

|¢— TsYNC —ble— T1 —dle— T2 —bl¢- TW 2ple—T3—»]

L

™ N B

T

S

&
~

(J

\

Yl

N
- A
AN /

FLOAT

/ADDRESS‘L<' CEP AN
N\ out 4 DATA OUT J/

FLOAT

2

1 =2
e\

N

TW* OPTIONAL

-

READY SETUP TIME
[2] READY HOLD TIME

Figure 2-32. System Side DMA Write Operation (CEP data out)

07666A 2-32

(44

<+—— (TF) —»]
+—— T3—e—— T —e— T2 — P e— TW —d|¢—— T3 —fe—— T1 —»]

CEP
CLOCK

B

DAO-DA{5 = ==-=-=--- X DAO-DA15

DAD16-DAD23 ====-===-=- ADDRESS \|

16-23 OUT/ DATA
T | 2]

AN /77 N\
DRD _--/---"" \)\ e

READY SETUP TIME E] DATA SETUP TIME
READY HOLD TIME DATA HOLD TIME

TF=FLOAT OR IDLE STATE

——— DASHED LINES SHOW TRI-STATE CONDITION
DURING IDLE STATE WHEN Am7970A IS NOT BUS MASTER

Figure 2-33. Document Store Bus DMA Read Operation

07666A 2-33

€v-¢

«——— (TF) —»]
+——T3— e T —e—T2— e TW—fe—— T3 —fe——T1 —>

& [R N
DALE --ceee- 1> f ———

DAO-DA15 - ===-===-- X DAO-DAIS X—

_______ >\ // ADDRESS CEP
DAD16-DAD23 16-23 OUT DA oUT

I 2]
DREADY XX\] /77 NN

DRD -- / ---- \)\

READY SETUP TIME
READY HOLD TIME

TF = FLOAT OR IDLE STATE

——— DASHED LINES SHOW TRI-STATE CONDITION
DURING IDLE STATE WHEN Am7970A IS NOT BUS MASTER

Figure 2-34. Document Store Bus DMA Write Operation 07666A 2-34

accesses without disabling the interface by
skipping step 9 and going to step 2. This case
is indicated by the solid lines in the diagram.

Write Access Operation

1.
2.

The CEP_enables the address/data, DALE,
DRD, and DWR lines and drives DALE High.
The CEP places a Document Store address
(24 bits) on the Document Bus (CEP state T1,
falling edge). The address is valid during the
High to Low transition of the DALE output
(CEP state T2, falling edge).

DAD4g to DADoj is driven by the CEP with
valid data (T2 falling edge).

The CEP drives the DWR output Low (CEP
state T2, rising edge).

The state (High or Low) of the DREADY input

is sampled by the T2 rising edge.

If the DREADY input is Low, a Wait State is
inserted (Tw). The DREADY input should be
driven High after data has been loaded into
the appropriate Document Store location
(CEP Wait State, rising edge). Any number of
wait states will be inserted as long as READY is
sampled Low during state Tw.

The CEP drives the DWR output High (CEP
state T3, rising edge).

The CEP drives DALE High.

The CEP disables the address/data, DALE,
DRD, and DWR lines (TF dotted lines). The
CEP may process any number of consecutive
accesses without disabling the interface by
skipping step 9 and going to step 2. This case
is indicated by the solid lines in the diagram.

2-44

Chapter3
CODING

3.1 CODING CONCEPTS

This chapter presents an overview of the concepts
of coding image data in the form of black-and-white
documents. Details of the application of these
concepts to compressing this data are also given.
This is followed by a comprehensive discussion of
the modified Huffman one-dimensional and
modified READ two-dimensional Coding schemes.

Document image data is defined by the CCITT as
picture elements along a scan line. Scan lines
move from left to right starting at the top of a
document. Successive scan lines are immediately
below the preceding line. A picture element
(Pixel) is a unit area of white or black color.

Encoding is used to compress image data without
the loss of picture detail. The essence of data
compression is the elimination of redundancy
without the loss of information. Both one-
dimensional and two-dimensional coding strate-
gies have been developed. In one-dimensional
coding, the idea is to represent run lengths of
identical elements by codes that are shorter than
the run length. For example, a run length of 55
white pixels is represented by an eight bit code,
01011000. Two-dimensional coding takes
advantage of the similarity of the pixels in one line
to the pixels in the line above it.

The information content of typical image data has
been analyzed by many researchers over many
years and an encoding algorithm has been
designed to provide the shortest codes for the
most frequently occurring sequences of data.

In addition to the CEP's 1-D and 2-D modes, there
is a transparent mode, un-compressed data mode,
granularity mode and an express mode. These
coding methods are also discussed along with a
discussion of minimum transmission times which
apply to all modes.

The communication environment also needs to be
considered. Handshaking is required to let the
receiver know the format used in the data
compression so that the receiver can expand the
data properly. This handshaking consists of a
preamble that is sent preceding the document.
The preamble specifies the parameters to be used
in processing the document. The details of these
communications standards can be found in in the
CCITT documents T.5, T.30, T.72,and T.73.

3.1.1 Encoding Digital Facsimile

The two primary encoding techniques used to
compress and de-compress digital facsimile data
are the Modified Huffman (MH) and Modified READ
(MR) schemes. There is also a derivative of the MR
code standardized for next generation (group 4)
devices sometimes called the Modified Modified
READ Code (MMR). In the course of discussing
these techniques, it is useful to review the basic
elements of facsimile technology.

Facsimile systems are based on the concept of
scanning (typically on a horizontal line basis). This
scanning creates a stream of data representing the
lightness or darkness of the information being
scanned at any giventime. The resulting stream of
data is then transmitted to another facsimile system
where it is used to drive an image-reproducing
device. Generally speaking, the operation of a
facsimile device is identical to the raster scan
technology used in television and CRT displays.

Scanned images are usually classified as either
photographic images, in which the original copy is
reproduced faithfully with all of its grey scale tonal
gradations in tact, or document images, in which
the original copy is reproduced strictly in black and
white (two-tone). The topics covered here refer to
document images only, unless otherwise stated as
a specific example.

For facsimile systems, the clarity of the final image
depends upon the fineness of the original scan.
Normally, 100 to 200 scan lines per inch are
required to legabily reproduce a page of text and
image material. Thus, a typical 8 1/2 x 11 sheet of
paper requires somewhere between 1275 to 1700
scan lines. Each scan line in turn consists of at
least 1728 picture elements (pixels), resulting in a
total of 2 to 3 million bits for an 8 1/2 x 11 sheet of
paper.

To transmit this data at 4800 bits per second (bps)
without compression requires a minimum of 416
seconds or approximately seven minutes.
Compression, however, can reduce this
transmission time to well under 1 minute. In fact,
the Am7970A CEP can process most typical
documents in 1 to 2 seconds using a 5SMHz clock
(not including the other system processing
components).

The Consultative Committee for International
Telegraph and Telephone (CCITT) has classified

3-1

document facsimile machines into four groups,
Group 1, Group 2, Group 3, and Group 4. Group 1
and 2 machines are completely analog and do not
use data compression techniques. Therefore,
they are not discussed here. Where differences
exist between Group 3 and Group 4, they are
mentioned.

In Group 3 and Group 4 equipment, data
compression techniques are utilized to reduce the
amount of redundancy in the image data. As
illustrated in Figure 3-1, an original data stream is
operated upon according to the selected algorithm
to produce a compressed data stream. This
compression of the original data stream is referred
to as the encoding process, and the resulting
compressed data is called the encoded or “coded
data”. When referring to black and white (two-
tone) pixel image data, the original data stream is
often called the “raw” or “picture” data.

Reversing the process, the compressed data
stream is expanded (decompressed) to reproduce
the original data stream. Since this expansion
process results in the decoding of the
compressed data stream back into its original state,
this decoded or expanded data is also referred to
as the “raw” or “picture” data.

The amount of data reduction obtained as a result
of the compression process can be expressed as
the compression ratio. This represents the
quantity of compressed or encoded data with
respect to the quantity of original data. Clearly, the

higher this ratio, the more effective the
compression technique.
where:

Size of the original data
Compression ratio =

Size of the compressed data

Figure 3-2 shows the basic block diagram of a

Group 3 facsimile machine. It utilizes a simple flat-
bed scanning system, in which scanning is
performed as the original document remains
stationary on a flat surface. This scanning is
proformed electronically with a charge-coupled
device (CCD) image sensor. Shown here, is the
widely used thermal recording method for writing
the facsimile copy, although more recently, the
laser beam print technology is becoming
economically feasible for such equipment.

The raw picture data is sent to the data
compression section. Here, signals are temporarily
stored in a line buffer, which holds from one to five
scan lines, after which encoding (compression)
takes place.

Since data compression uses a statistical encoding
technique resulting in variable length codes, a
code buffer for the compressed data is necessary
to average or smooth the encoded byte stream
into a uniform bit stream for uninterrupted
transmission. This buffer is generally the same
size as the line buffer in order to accommodate the
possibility of negative compression which can
occur in the extreme case, when the code
assignments are longer than the pixel streams
being encoded. To prevent overflow or underflow
of this memory, the document feed is controlled in
increments of one scan line by a stepper motor.

Facsimile encoding algorithms are statistical in
nature. These statistical encoding methods take
advantage of the probabilities of occurrence of
events so that short codes can be used to
represent frequently occurring events while longer
codes are used to represent less frequently
encountered events. Events can be run lengths,
relative distances, or control codes to identify the
beginning or end of a document or the end of a
line. A summary of parameters for Group 3 and
Group 4 equipment is included as Table 3-1.

Statistical encoding can be used to obtain an

BIT-MAPPED
IMAGE AREA

Am7970A
CEP

COMPRESSED
DATA

—

COMPRESSION ——»

<4+——— EXPANSION

07666A 3-1

Figure 3-1 Group 3 and Group 4 Data Compression

€€

ORIGINAL
COPY

IMAGE CONVERSION

i
: '
i
: APy FLTER |
1)
i '
. N
DATA COMPRESSION TRANSMISSION
o oo Vo
i 1 ' 1
LINE '
1 BUFFER Am7970A BUFFER v !
(:)e—— STEPPER fe > > < MODEM fe—s] INTERFACE |——(5) LINE
@ " | MEMORY CEP MEMORY - ONIT .
]]]]
1 1 ' '
RECORDING ;
Femmmmm e .
i ! TELEPHONE
i
1
i— AMPLIFIER [e-
1] r""—""'l""‘
i 1
SR SO ; :
| microProCESSOR | !
1
R : :
............. -4
STEPPER CONTROL UNIT
07666A 3-2

Figure 3-2. Block Diagram of Group 3 Equipment

optimization of the average code length of the
encoded data. This is analogous to the manner in
which Samuel Morse selected the dot and dash
representations of characters most frequently
used for telegraphy so that, for example, a single
dot was used to represent the letter E, which is the
most frequently encountered character in the
English language, while longer strings of dots and
dashes were used to represent characters that
appeared less frequently.

Included in the class of statistical compression
techniques is the Huffman coding technique.
Although the Huffman technique is not directly
used in facsimile equipment, its derivative the
Modified Huffman scheme is. However, prior to
discussing these statistical encoding techniques
in detail, a brief discription of some basic
information theory concepts is useful. These
concepts should help to provide an understanding
of how redundancy can be statistically reduced.

Table 3-1. Summary of Standardized Parameters for Group 3 and Group 4 Equipment

Apparatus
Parameter
Group 4***
Group 3 Class | Class 2 Class 3
Apparatus
Recommendation T4 T5 T5 T5
Network PTN PDN PDN PDN
(PTNLISDN)**** (PTNLISDN)**** (PTN.ISDN)**** (PTNLISDN)
Transmission
Time/A4 (min.) Approx. 1
Number of pels 1728 1728, 2074* 1728,2074™* 1728, 2074**
Along a Scan 2592*, 3456™ 2592, 3456™ 2592, 3456
Line
Scanning 3.85,7.7" 200, 240™* 200, 240™* 200, 240™*
Density (1p/mm) 300%, 400* 300, 400* 300, 400"
(1pf) (ipfi) (1 phi)
Modem PM (V.27ter).
AMPM (V.29)*
Data Rate 24,48 24,48 2.4,4.8 24,48
(kbrs) 7.2*,9.6" 9.6,48 9.6, 48 9.6, 48
Coding MH, MR* Modified MR Modified MR Modified MR
Scheme (T.4) (T.6) (T.6) (T:6)
Control T.30 T.62,T.70 T.62, T.70 T.62,T.70
Procedure, T.71,T.73 T.71,T.72 T.71,T.72
Protocol, T.73 T.73
Recommendation
Remarks Reception Transmission
only for and reception
teletex and for teletex
mixed-mode and mixed-mode
*Option

**Required for teletex and mixed-mode reception
Was recommended end of 1984

Hekk,

hkkk

Further study

3-4

3.1.2 Information Theory

For equipment capable of transmitting at n distinct
levels at u second intervals, the number of
different signal combinations in T seconds is nT/u.
Since the quantity of information is directly related
to the length of time of transmission, the logarithm
of nT/V expresses the information transmitted in T
seconds or (T/u)logn. This is the definition of the
information unit, H. For digital systems, i.e. base 2,
Hbecomes:

H =%Iogzn bits.

As an example, for the digital transmission of data
over a 20 second period at 1 second intervals, the
information content becomes:

H =21—0 logo2 bits =20 bits.

From statistics we know that the relative frequency
of occurrence of any one combination or event is
defined as the probability, P, where:

number of times an event occurs

total number of possibilities

If information with n possible signal levels is to be
transmitted, then P = 1/n for signals that are
equally likely to occur. Lets consider the case
where different events or signal levels do not have
equal probabilities of occurrence. Lets assume
the digital case where just two levels are to be
transmitted, 0 or 1, the first with probability P and
the second with probability Q, where P + Q=1.

Then:

number of times 0 occurs
P =
total number of possibilities
number of times 1 occurs
Q =

total number of possibilities

For a long message, consisting of many 0s and 1s,
the information content is related to P * logoP + Q
* logoQ, and generally, we can let the probability

of each possible signal level or signal be
expressed by P;, where Py + Py + ... + P, = 1.
Thus, each interval contains -LogoP; bits of
information. By summing the average information

in bits contributed by each symbol appearing t * P;
times over tintervals, we obta

n
H=-t *Z PjlogoP; bits int periods.
i=1
Forthe interval T, we then obtain:

n
H=—T/tx),PjogsP; bits inT seconds.
i=1

For the most general case, a message with n
possible symbols and a probability of occurrence
P; to P, the average information per symbol
interval of u seconds is:

n
Havg = -2, PilogaP; bits/symbolinterval.

i=1

This is the mathematical definition of entropy used
in information theory to calculate the average
number of bits required to represent each symbol
of a source alphabet.

A simple coin tossing model can be used to
illustrate the concept of entropy. The two sides of
a coin, heads (H) and tails (T), can be used to
define a four symbol alphabet using two coins for
each toss. If we assign codesof T=0andH =1,
the cointoss results are:

Symbol Probability Code
T 0.25 00
TH 0.25 01
HT 0.25 10
HH 0.25 11

The entropy or average number of bits required to
represent each possible outcome or symbol
becomes:

4
Havg = ‘2 PjlogoP; =4 0.25l0950.25 = 2 bits.
I=

if, however, the probability of tails occurring is P(T)
= 0.75, and the probablilty of heads P(H) = 0.25,
then, the outcome of the coin tossing is:

3-5

Symbol Probability Code
T 0.5625 00
TH 0.1875 01
HT 0.1875 10
HH 0.0625 11

Although the symbols and codes have remained
the same, the outcome probabilites have
changed. The entropy of this alphabet is now:

4
Havg = "Zpi logz Pj
i=1

=0.565 10g»0.5625 + 0.1875 log,0.1875
+0.1875l0g»0.1875 + 0.0625 logo0.0625
=1.62 bits/symbol

This says that the average number of bits required
to represent a symbol with this probability
distribution has been reduced to 1.62 bits from 2.
So, by choosing a different coding scheme to
represent the four symbols, about 20 percent of
redundancy can be removed from the two bits per
symbol previously used. This is accomplished by
assigning shorter codes to the most frequently
occurring symbols and longer codes to the the
symbols that do not occur as often. It is the basis
forwhat is called Huffman coding.

3.1.3 Huffman Coding

Huffman coding is a statistical data-compression
technique, and is the most familiar variable-length
coding scheme. Its purpose is to reduce the
average code length required to represent the
symbols of an alphabet. This is accomplished by
assigning the shortest code word to the most
frequently occurring symbol, longer code words to
less frequently occurring code words and so on
until the longest code word is assigned to the
least frequently occurring symbol. This alphabet
can be of any type.

The Huffman code results in the shortest average
code length of all statistical encoding methods.
One of the reasons for this is that, Huffman codes
are designed to be self-delimiting so that no
shorter code group is duplicated as the beginning
of a longer group. Thus, no symbol can be
mistaken for another. This removes the need for
delimitors such as “spaces” between codes such
as found in the Morse Code. It can be considered
one of Huffman's greatest contributions to data
compression.

The Huffman code is developed by using a tree

CODE PROBABILITY

0
0 5625 MASTER
o | NODE
10 1875
o .4375
110 1875
I 25 | 1
111 0625 1
1 07666A 3-3

Figure 3-3 Simplified Huffman Coding Tree

structure as shown in Figure 3-3. The symbols are
first listed in descending order of probability. Then
starting with the two lowest entries (HH and HT),
the probabilites are combined into a node with a
joint probability of 0.25, in this example. This
node is then joined with the next lowest probability
from the list, in this case forming a node with a
probability of 0.4375 and finally with the topmost
entry forming the master node with a probability of
unity. By assigning 0s and 1s to every branch, we
can derive the Huffman code for each symbol.
This is obtained by noting the 1s and O0s
encountered in tracing from the master node to
each symbol.

To calculate the average length of the coded word,
we multiply the Huffman code lengths by their
probability of occurrence:

L PiL;
(1 % 0.5625) + (2 *0.1875)

+(3% 0.1875) + (3 * 0.0625)
1.63 bits/symbol

Notice how closely the Huffman coding
approaches its theoretical entropy. The coding
efficiency, E, can be defined as the ratio of the
entropy to the average word length, L, and in this
example:

E =H/L=1.62/1.63 = .99 bits/symbol or 99%

As with many things, the Huffman Coding process
becomes much more complex when applied to real
alphabets with many substitutions, but the
preceeding example should provide a basic
understanding of the concept involved.

The Huffman code, like other statistical coding
techniques, relies on an apriori knowledge of the
statistical distribution of the message. Therefore,
Huffman coding ceases to be optimal when the
source statistics are fluctuating as is often the case
in real applications.

3-6

3.1.4 Modified Huffman Coding

Although the Huffman coding scheme is excellent
in theory, it has not found widespread usage
because variable-length code words are difficult to
implement. The Huffman scheme requires a lot of
memory to store the code alphabet and is also very
difficult to decode. So, in practice, a number of
modifications have been necessary to adapt
Huffman coding to document image encoding.

When applying Huffman coding to facsimile
transmission or document processing applications,
each scan line of an image can be viewed as
consisting of a series of black or white “runs”, each
run being a succession of similar picture elements
(pixels). If the color of the first run is known, then
the color of all successive runs will be known
because black and white runs must alternate. The
probability of occurrence of each run length of a
given color can be calculated and short code
words can be used to represent run lengths that
have a high frequency of occurrence while longer
code words can be used to represent run lengths
that have a lower probability of occurrence.

For instance, the average white run length can be
expressed as:

n
L(W) = D H(W)P; (W)
i=1

where Pj(W) is the probability of a white run of (W)
pixels, and n is the total number of white runs on
-the document. The entropy or average
information content for a white runis expressed as:

n

H(W) = ~2Pi(W)logP; (W)

The equations for black run lengths L(B) and
entropy H(B) are expressed in a simular fashion.
Since by definition white and black runs alternate,
the number of black runs equals the number of
white runs (N). Therefore, the overall average run
length is L(W)/2 + L(B)/2, and the average entropy
per run is H(W)/2 + H(B)/2. The entropy per pixel
of a run length is expressed as:

H(W) +H(B)
L(W) +L(B)
which imposes a lower bound on the theoretical
number of bits required per pixel and when

inverted expresses the maximum limit of the
compression ratio:

Hpixel

~

CR=1/Hpixel

One of the problems with using Huffman coding
for facsimile is that the statistics for the run-length
probabilities associated with line scans change on
a line-to-line and document-to-document basis.
Thus, an optimum or near optimum code for a
particular line or document may be far from
optimum for a different line or document. A
second major problem is the fact that the creation
of the Huffman code on a real-time basis requires
alot of processing power, normally in excess of the
capabilities of facsimile machines.

To reduce some of the real-time processing
requirements of using the Huffman code, a table
look-up approach is needed. But, since CCITT
standards require a minimum of 1728 pixels per
line, the use of a table look-up technique requires
the storage of 1728 variable length locations, each
containing a binary code word corresponding to a
particular run length, an un-economic approach.

These implementation problems resulted in the
development and standardization of the Modified
Huffman coding scheme which is more suitable to
the hardware cost constraints of the competitive
facsimile marketplace. This is one of the coding
schemes used in the Am7970A CEP.

In the Modified Huffman coding scheme some
changes were made which, while only rarely
permitting the average symbol length to approach
entropy, do permit significant compression while
minimizing hardware and processing
requirements. Here, the probability of occurrence
of different pixel run lengths were calculated
based upon statistics obtained from the analysis of
a group of 8 documents recommended by the
CCITT as being typical (see Figures G-1 through G-
8 in Appendix G). Figure 3-4 shows the relative
probablities of occurrence of pixel run lengths
based on these documents. Table 3-2 shows
typical compression ratios obtained using these
documents.

To reduce table look-up storage requirements, the
Huffman code set was split up into two much
shorter code tables by the creation of a base 64
representation of each run length in one table and
the remainder in the other.

Based upon the run-length probabilities of the 8
CCITT documents, code tables were developed
for run lengths ranging from 1 to 63 pixels. Since
the frequency of occurrence of white runs differs
from the frequency of occurrence of black runs, a
separate table was developed for each. A part of
this dual table set is listed in Table 3-3 for run

ﬂ-IORTER CODES USED

LONGER CODES USER

RELATIVE
PROBABILITY

PIXEL RUN LENGTHS

07666A 3-1

Figure 3-4 Relative Probabilities of Various Pixel Run Lengths

lengths from 0 to 63 pixels. The codes in this table
represent the least significant digit (LSD) of the
code word and are referred to as the Terminating
Code.

In order to permit the encoding of runs in excess of
63 pixels, another pair of code tables must be
employed to handle runs ranging from 64 pixels to
the maximum line scan length. A sample of these

Table 3-2. Typical Compression Ratios
Using Eight Standard CCITT Test Documents

(Compression Ratio = Scanned
Data/Compressed Data)

Pels 200 200 200 400
per X X X X
Inch 100 200 200 400

TestDoc 1D 2D(K=4) 2D(K=INF) 2D(K=INF)
1 15.2 20.1 277 377
2 15.1 242 405 482
3 87 133 186 26.9
4 53 67 77 12.7
5 85 124 165 205
6 10.2 17.7 29.0 39.9
7 48 6.1 71 135
8 79 130 19.9 26.8
Ave. 95 142 228 321

codes are listed in Table 3-4. These represent the
most significant digits of the code word and are
known as the Make-up codes. The complete
Modified Huffman code tables are specified in
CCITT document T.4 in Appendix G.

Table 3-3. Terminating Codes

White Runs Black Runs

Length Code Word Length Code Word

0 00110101 0 0000110111

1 000111 1 010

2 0111 2 1

3 1000 3 10

4 1011 4 011

5 1100 5 0011

6 1110 6 0010

7 111 7 00011

8 10011 8 000101

9 10100 9 000100
10 00111 10 0000100
60 01001011 60 000000101100
61 00110010 61 000001011010
62 00110011 62 000001100110
63 00110100 63 000001100111

3-8

Table 3-4. Make-up Codes

White Runs Black Runs

Length Code Word Length Code Word

64 11011 64 0000001111
128 10010 128 000011001000
192 010111 192 000011001001
256 0110111 256 000001011011

1600 010011010 1600 0000001011011
1664 011000 664 0000001100100
1728 010011011 1728 0000001100101
EOL 000000000001 EOL 000000000001

When a run of 63 pels or less is encountered, the
appropriate type of LSD code set is accessed to
obtain a terminating code word. To encode a run
of 64 pels or more, two code words must be used.
First, the Make-up code word is obtained from the

MSD code table such that N * 64 does not exceed
the run length. Next, the difference between the

run length and N * 64 is obtained and the
Terminating code word is accessed from the
appropriate LSD code table.

To employ the Modified Huffman coding scheme
successfully, some rules have been developed
and must be followed to alleviate a number of
deficiencies inherent in statistical encoding
techniques. In such techniques, code words do
not contain any inherent positional information
which is necessary for synchronization. This can
be compensated for by making sure that all runs
alternate between black and white, and that each
line begins with a white run, even if that run length
is zero. To denote the beginning and end of each
line, a unique end-of-line (EOL) code is used, and
a number of 0s may be added to a line to meet
minimum timing requirements prior to transmitting
the EOL.

The end result of the incorporation of these rules
permits a line format to be defined as shown in
Figures 3-5, 3-6, and 3-7. Figure 3-5 shows Group
3 format of compressed code with no byte
boundary. Group 3 format of compressed code
with byte boundary and Auto EOL is shown in
Figure 3-6. Group 3 one-dimensional coding with
byte boundary, Auto-EOL, and Fill is shown in
Figure 3-7.

3.1.5 The CEP's One-Dimensional Mode

The one-dimensional mode of the CEP applies
only to Group 3 equipment. It employs the

Modified Huffman coding scheme as outlined in
the previous section. It is simply the replacement
of each run of one color (either white or black) with
the code that represents the length of the run.
Each line starts with a white run even if it is of zero
length. White runs and black runs alternate. The
coding used to represent the run lengths is shown
in Table 3-3 and Table 3-4. It is discussed later in
this chapter and in the CCITT document T.4 in
Appendix F.

Group 3 standards of the CCITT specify that the
start of a document is to be identified by an EOL
code (000000000001). The end of each line
must be marked with an EOL and the end of the
document must be marked with an Return-to-
Control Code, RTC (six EOLs). Figure 3-5 shows
the format for Group 3 One-Dimensional coding
with no byte boundary specified. Fill is
automatically added to each line as needed to
meet the minimum transmission time
requirements. Pad bits are also added as needed
to terminate the coded document on a byte
boundary. Each document must begin and end
on abyte boundary.

The format for Group 3 One-Dimensional coding
with Byte Boundary specified in the DFC field in
the Compressor Parameter Register (CPR) is
shown in Figure 3-6. Pads are automatically added
as needed at the end of each data line to terminate
each line at a byte boundary. Auto-EOL is
implemented by setting the EOL field in the CPR
to 0. EOLs are required at the end of each line in
Group 3 coding.

For the last line of a page, the DFC field is set to 01
to specify the RTC code. By specifying the source
buffer as one line less than the full page, a source
buffer overflow interrupt occurs before the last line
so that the RTC can be changed. The Operation
Control (OC) field in the CMCR is set to 01 to
specify a single line operation for the last line. The
Mode Control (MC) field in the CMCR is set to 01 to
specify One-Dimensional Mode. Fill bits are
automatically added when the data fields are too
short.

To maintain color synchronization at the receiver,
each data line begins with a white run length code
word. If the line actually begins with a run of black,
a white run length of zero is specified as the first
code.

3.1.6 Modified Read Coding

In the previous section we discussed the Modified
Huffman coding scheme which reduces
redundancies in the scanning direction by
encoding pixel runs. Thus, it is referred to as a one-

3-9

dimensional encoding scheme.

Many images, particularly text and line drawings,
also exhibit a strong vertical correlation from scan
line to scan line (due to edge continuity). In fact, it
has been found that approximately 50% of all the
transitions from black to white or vise versa are
directly underneath a transition on the line above
it. About 25% differ by only one pixel. Therefore,
approximately 75% of all documents can be
defined by a relationship which is plus or minus
one pixel from the line above it. This is the

underlying basis for the two-dimensional Modified
READ (MR) code illustrated in the lower portion of
Figure 3-8.

By definition then, the MR scheme must store a
history or reference line since it always refers back
to the image of the preceding scan line while
encoding a next scan line.

MR encoding is separated into three basic modes:
Horizontal, Vertical, and Pass. These modes are
defined in detail later in this chapter and in CCITT

B
r— 1STLINE ——»le— 2ND LINE—»|«-LAST LINE-pj¢——— RTC -————d

4

| EOL DATA (FILL) EOL| DATA (FILL) EOL| DATA (FILL)|EOL EOL EOL EOL EOL EOL

le

j— ONE PAGE »

g

B=BYTE BOUNDARY

07666A 3-5
Figure 3-5 Group 3 Format of Compressed Code
B B B
| | |
| EOL DATA 1 PAD EOL| DATA 2 PAD EOL| DATAZ
B B B
| | |
¢ | DpATAN PAD | EOL EOL EOL EOL EOL EOL |
PAD = 1TO70’s
07666A 3-6
Figure 3-6 Group 3 Format of Compressed Code with Byte Boundary and Auto EOL
B B B B B B
I | | | | |
[EoL DATA 1 PAD| FILL | PAD EoL|paTA 2 PAD| FiLL | EOL §
B B B B
| | | |
¢ | DATAN PaD| FILL [EOL EOL EOL EOL EOL EOL |
PAD = 1TO70S
07666A 3-7

Figure 3-7 Group 3 Format of Compressed Code with Byte Boundary, Auto EOL and Fill

3-10

recommendations T.4 and T.6 included as
Appendix F. Basically, MR coding sets up a group
of five delimiters along the current and reference
scan lines starting at the beginning of the line. The
relationship between these delimiters then
determines which of the three basic modes will be
used to encode the pixel information bounded by
these delimiters. 2

If the trailing delimiter for the reference line is to the
left of the leading delimiter of the current line, then
the pixel streams are not adjacent and a Pass code
is inserted followed by a readjustment of the
delimiters to the next pixel stream. If the relative
distance between the leading edges of the
reference line and the current line are within three
pixels in either direction, the code will be selected
from the vertical mode tables. And finally, if the
conditions for either pass mode or vertical mode

are not met, the positions between the current line
delimiters are coded one-dimensionally using the
Modified Huffman code for that run length.

Figure 3-8 shows a comparison of the encoding
operations for a sequence of black and white runs
of various pixel sizes using the Modified Huffman
code and using the Modified Read code. In the
upper portion of this illustration, the relationship
between a series of original video data and its
representation in the Modified Huffman code is
tabulated. In the lower portion, the same video
data is represented in the Modified READ code.

3.1.7 The CEP's Two-Dimensional Mode
The CEP performs the modified Relative Element

Address Designate (READ) method for two-
dimensional coding. Using this method, the

PREVIOUS
SCANLINE

CURRENT —
SCAN LINE

(B I N N N NN NN

B T

CURRENT
SCAN LINE

RUN

LENGTH w7

B7 /W4

MODIFIED 1
HUFFMAN CODE
(ONE-DIMENSIONAL) 0

B T

B8

w4/ B7 W10

PREVIOUS
SCAN LINE

LI 2 B e

B Lo §

CURRENT
SCAN LINE

RELATIVE
POSITONS

MODIFIED
READ CODE
(TWO-DIMENSIONAL)

LI 2 e

Vr(1)

Va(1)

07666A 3-8

Figure 3-8 Comparison of Run-length and Relative Encoding

3-11

position of each changing pixel on the current or
coding line is encoded with respect to the position
of a corresponding reference pixel situated on the
line immediately above it. The line above the
current coding line is called the reference line.
After a line has been coded, it becomes the
reference line for the next coding line.

The first line of the a page is encoded using the
Modified Huffman coding and then the following K-
1 lines are encoded using the Modified READ
techniques, where K is an error immunity factor
which requires that 1D lines be inserted at K
intervals.

A prefix EOL is inserted preceeding the first
element of the first line (source attribute) during
compression operations and is assumed to be
found there during expansion for Group 3
equipment.

Figures 3-5, 3-6, and 3-7 show various formats for
Group 3 two-dimensional compression. To specify
two-dimensional Group 3 coding, set the MC field
of the CMCR/EMCR to 10. Set the SA field in the
CPR to 1 to insert a starting EOL. Also set the K
field in the CPR to specify the number of lines of
two-dimensional code to be coded for each line of
one-dimensional code. Set the DFC field to 00 to
process on byte boundaries and reset it to 01 for
the last line to specify an RTC code.

Figure 3-9 shows a format for Group 4 two-
dimensional compression. Group 4 encoding
differs slightly from Group 3 in that it contains only

2D coded lines (K = infinity). Additionally, the first
line (source attribute) is defined as being an
imaginary all white line above the top of the page,
and there are no EOLs contained on any line. This
coding scheme is sometimes referred to as the
modified modified READ coding or MMR. Set the
MC field in the CMCR/EMCR to 10. Inthe CPR, set
the K field to zero to specify K = infinity and set the
DFC field to 10 to specify no byte boundaries.
Reset it to 11 for the last line to specify the EOP
required in Group 4. Set the SA field to 0 to omit
the EOL at the start of the document. Set the EOL
field to 1 to omit EOLs at the end of each line.

Three different possibilities are defined in 2D
coding: pass mode, vertical mode, and horizontal
mode. To explain these modes, it is helpful to
define five changing pixel delimiters. A changing
pixel is a pixel whose color (black or white) is
different from the previous pixel on the same line.
Refer to Figure 3-10. The five changing pixels are
defined as:

Ag: The reference or starting pixel on the coding
line. At the start of the coding of a line, Ag is
set on an imaginary white pixel situated to the
left of the first actual pixel on the coding line.
During the coding, Ag is moved to the right
as various changing pixels are coded.

Aq4: The next changing pixel to the right of Ag on
the line and the next to be coded. Its color is
opposite to that of Ag.

A2: The next changing pixel to the right of Aj on

B
| 1ST LINE |2ND LINE |3RD LINE |

B
[tasTUNE| EOP | |

[baTa | pata [pata | 3}

DATA | EOL EOL | PAD |

B =BYTE BOUNDARY
07666A 3-9
Figure 3-9 Group 4 Format of Compressed Code
B2
REFERENCE LINE (XXXXXXXXXX XXXXXXXX T
LINEBEING CODED] XXXXXX XXOXXXXXXXXXX)
Ao Aq A2

07666A 3-10

Figure 3-10 Changing Picture Elements

3-12

the same coding line.

B4: The first changing pixel on the reference line
to the right of Ag and having the same color
asAq.

Ba: The next changing pixel to the right of By on
the reference line.

Using this coding method, one of the three
modes is chosen to encode the position of each
changing pixel along the coding line. The coding
modes are defined below and illustrated by
Figures 3-11 through 3-13. The code
assignments are shown in Table 3-5. The
flowchart is shown in the CCITT document T.4 in
Appendix F.

Pass Mode

The pass mode is used when A4 is to the right of
B, as seen in Figure 3-11. This is coded using the
word 0001. Then Ag is moved to the right to the
B, position. B4 moves to the right to the first
changing pixel of opposite color to Ag and to the
right of Ag. The new B; is at the next changing
pixel to the right of B4. A4 and Ay are always the
next two changing pixel to the right of Ag. The
purpose of the pass mode is to identify and
encode pixel runs on the coding line which are not
adjacent to the corresponding runs on the
reference line.

Vertical Mode

If a changing pixel, A4, is within three pixels
horizontally from the corresponding changing
pixel, By, in the line above, the vertical mode of
coding is used. The vertical mode is specified by a
short code which indicates the relative distance (0
to plus or minus 3) between A{ and By. After A4 is
coded, Ag is moved to the Aq position, Aq takes
the place of Ap, and B4 takes the place of Bo. Ao
and B, each move to the next changing element
to the right on the line they are on. Refer to Table
3-5 and Figure 3-12.

If the suggested uncompressed mode is used on
a line designated to be one-dimensionally coded,
the coder must not switch into the uncompressed
mode following any code word ending in the
sequence 000. Any code word ending in 000
followed by a switching code 000000001 will be
mistaken for an end-of line code.

Horizontal Mode

If the changing pixel, A4, is more than three units
horizontally from the changing pixel, B4, in the line
above, the horizontal mode is used. The code
001 is used to specify the horizontal mode
followed by the appropriate Modified Huffman
coding to specify the run length (Ag to A4). This is
followed by another MH code to specify the run
length Aq to Ap. Refer to Figure 3-13. In the

By B2
REFERENCE LINE (XXXXXXXXXX XXXX XXXXXX 1
LINE BEING CODED } XXXXXX XXXXXX)
Ao A1 A2
BEFORE PASS
=] B2
REFERENCE LINE (XXXXXXXXXX XXXX XXXXXX T
LINE BEING CODED) XXXXXX XXXXXX)
Ao A A2
AFTER CODING 0001
07666A 3-8
Figure 3-11 Pass Mode

3-13

horizontal mode, two run lengths are coded and
then Ag is moved to the Ay location.

3.1.8 Express Mode

The Express Mode is a compression concept in
which a specified number of lines are skipped for
each line that is coded during compression. It
should be noted that although this mode is
supported by the CEP, it is not a standard mode as
defined by the CCITT.

The resulting expanded picture may or may not
have a perceivable loss of quality depending on
the level of detail in the picture. However, the scan
lines in a typical document are quite close to each
other (100 or more lines per inch) and many
documents do not require this fine a detail. Line
wraparound may not be specified when in the
Express Mode. If Express Mode is used with 2-D
coding, the current coded line becomes the

is nscan lines below it.
Granularity

Granularity is also a non-standard operating mode.
It is the expansion counterpart of Express Mode,
i.e. the specified number of lines are duplicated
during expansion operations. Thus, this mode
may be useful in conjuction with Express Mode in
certain applications.

3.1.9 Transparent Mode

The transparent mode is provided to permit
moving documents from one memory to another
through the CEP via DMA without compression or
expansion. However, unlike conventional DMA,
the data being transferred is affected by EOL
insertion, margin registers, wraparound, time fill,
and the express register. Figure 3-14 shows the
result of transferring data through the CEP in

reference line for the next line to be coded which transparent mode when Auto-EOLs, byte
Table 3-5. Two-Dimensional Code Table
Elements
Mode to be Coded Notation Code Word
Pass B¢,B2 P 0001
Horizontal ApAq, A1A H 001 + M(AgA4) + M(A4A5) (Note 1)
Vertical A1 under B4
AiB1=0 V(0) 1
A4 to the Right of B4
A1By=1 VR(1) 011
A{B{=2 VR(2) 000011
A{B{=3 VR® 0000011
Aq tothe Left of B4
A4Bq =1 V(1) 010
A{By =2 VL(2) 000010
A4By =3 VL) 0000010
Extension Transfer from 1-D line 000000001111
to uncompressed mode
Transfer from 2-D line 00000001111
to uncompressed mode
Other 2-D extensions 00000001XXX
Other 1-D extensions 000000001 XXX (Note 2)

Note 1: Code M() of the horizontal mode represents the
code words in Tables 3-2 and 3-3.

Note 2: It is suggested that the uncompressed mode be
recognized as an optional extension of the two-

dimensional coding scheme for Group 3 apparatus. The
bit assignment for the xxx bits is 111 for the
uncompressed mode of operation. Further study is
needed to define other unspecified xxx bit assignments.

3-14

Bi1 B2

REFERENCE LINE (XXXXXXXXXX XXXX XXXXXX
LINE BEING CODED) XXXXXX XXXXXX XXXXXX
Ao Ay A2

BEFORE CODING Ao-B1

B1 B2
REFERENCE LINE (XXXXXXXXXX XXXX XXXXXX
LINE BEING CODED } XXXXXX XXXXXX XXXXXX
Ao Ay A2

AFTER CODING Ao-B1

07666A 3-12
Figure 3-12 Vertical Mode
B4 B2
REFERENCE LINE (XXXXXXXXXX XXXXXXXX XXXXXX
LINE BEING CODED) XXXXXX XXXXXX XXXXXX
Ao At A2
BEFORE CODING Ag-A1 AND Ai-A2
B B2
REFERENCELINE (XXXXXXXXXX XXXXXXXX XXXXXX
LINE BEING CODED) XXXXXX XXXXXX XXXXXX
Ag A4 A2
AFTER CODING Ag-A1 AND A1-A2
07666A 3-13

Figure 3-13 Horizontal Mode

3-15

boundaries, and RTC are set in the CPR.
Transparent mode, although supported by the
CEP, is not a standard CCITT mode.

3.1.10 Uncompresed Mode

Uncompressed data may be inserted into a
compressed data stream at any time by entering an
extension code shown in Table 3-6 into the data
stream. It should be noted however that this
operation is up to the system CPU and is not
performed by the CEP (compressor). To return to
compressed data format, an exit code is entered as
shown in Table 3-6. The exit code includes a tag
bit to specify the color of the next run. Figure 3-15

is an example of the coding format.

The purpose of entering the uncompressed mode
is that the scan line is not compressing (negative
compression). This is a phenominon which can
occur when trying to encode highly random data or
encoded data such as grey scale images. The
CEP will interrupt the host processor in the event
that it is unable to compress a line, and it is the
responsability of the host to take whatever action is
appropriate, including entering the uncompressed
mode. However, the expander section of the CEP
will detect and correctly expand the
uncompressed mode.

B B
| |
l l

——w

PAD EOL DATA1

PAD EOL | DATA2 [PAD EOL

B B B
I
I

)

B
|

B B
I
I

§] patan

EOL EOL EOL EOL EOL

EOL |

07666A 3-10

Figure 3-14 Uncompressed Data Transfer in Transparent Mode

B
|

[EOL DATA1 EX1 UNCOMPRESSED DATA1 EX2 DATA1 EOL S

¢ EOL EX1 UNCOMPRESSED DATAn EX2 EOL |

EX1: 1D Extension (entry code) = 000000001111

2D Extension (entry code) = 00000001111

EX2: 1D Extension (exit code) = not 000000001111

2D Extension (exit code) = not 00000001111

07666A 3-10

Figure 3-15 Uncompressed Data Format

Table 3-6. Uncompressed Mode Code Words

Descrip- Uncompres- Code
tion sed Data Word

1 1

01 01
Uncompressed 001 001
Mode 0001 0001

00001 00001

00000 000001

0000001T

Exitfrom 0 00000001T
Uncompressed 00 000000001T
Mode 000 0000000001T

0000 00000000001T

T denotes a tag bit which tells the color of the next run
(black = 1, white = 0).

The Am7970A Expander detects CCITT
recommended extension codes (including exit
codes). The CEP's response to detected
extension codes is as follows:

1. If the three least significant bits of the detected
extension code are not all “1s,” the Extension
Code Detected (ECD) bit in the Master Status
Register is set to “1,” the Extension (EXT) bits in
the Master Status Register are loaded with the
three least significant bits of the detected
extension code and the Expander immediately
terminates.

2. If the three least significant bits of the detected
extension code are all “1s,” all subsequent data is
treated as uncompressed data until a CCITT
recommended exit code is detected. After a
CCITT recommended exit code has been
detected, the CEP resumes its normal 2D
Expander Mode of operations.

“Uncompressed data” is passed from the Source
Buffer to the Destination Buffer without being
expanded. “Uncompressed data” that has been
written into the Destination Buffer differs from the
Source Buffer data in two ways:

1. Extension code and Exit code will have been
removed by the Expander.

2. Each time that the pattern 000001 occurs
within the “uncompressed” data, it will be
replaced by the pattern 000000.

3.1.11 Transmission Time Constraints

To allow an additional level of error checking,
various minimum times are specified for the
transmission of each line. If the compressed data
line is too short to meet these minimum times, fill
bits must be added as needed to increase the
transmission time to the minimum. Fill consists of a
sequence of zeros. The identification of the
minimum time selected is made in the pre-
message (phase B) portion of the transmission.

The total coded scan line is defined as the sum of
data bits plus any required fill or pad bits plus the
EOL bits. Pad bits are zeros added to terminate
the line on a byte boundary. For 2-D coding, the
total coded scan line is defined as all of the above
plus a tag bit following the EOL. The tag bit
identifies the coding of the next line as either one-
dimensional or two-dimensional coding.

Two alternatives for minimum transmission times
are provided. In Type 1 equipment, the minimum
transmission time of the total coded scan line is the
same for both the standard resolution and for the
optional higher resolution.

Additional information regarding minimum
transmission times can be found in the CCITT
documents in Appendix F.

Chapter 4

PROGRAMMING

4.1 REGISTER SETUP ROUTINES pages. The routines are:
Compression/Expansion Processor (CEP) Regis- mm\lAtE%GRAM (E:ggl :I\TDD EE?ETST
ter Assignment Program (Written by Deborah N TIME EXPAND SOURCE
Strickland, November 1984) PAPT':R__SIZE WRlTE_EEP

o MARGIN_SET BOTH_REG
4.1.1 Program Listing GPARAM EXPAND_ONLY

KPARAM COMP_ONLY

A listing of the routines that may be used to setup =~ DUMP_REG READ_CEP
the various registers is given on the following COMP_SOURCE

JRK KKk kK kkkkkkkkkkkkkkkkk*k PROGRAM DESCRIPTION % k% sk sk koo ok k ok ok ok kok ok ok koskokode kok ok kokkokok /[

/* *x/
/* PURPOSE : Provide functions that will enable the user of the Am7970 to */
/* load all the registers (compression only, expansion only, or */
/* both) with the correct set-up configurationn. */
/* */
/* Note - Not all the functions are available at the user's discretion. */
/* Some are called from other functions which utilize the same */
/* information and do not need to be called by the user. */
/* */
/* ** It is suggested that the initialize function be called */
/* before any of the others, as it sets up the operating */
/* mode and document resolution. */
/* */
/* Register Address Definitions - */
/* */
/* Each CEP register has a distinct 8-bit port address. The */
/* address for the compression and expansion register pairs (most */
/* of the registers have corresponding registers in the expansion */
/* side) differ only by the most significant bit of the address. */
/* Since there is a distinct pattern in the register addresses, */
/* this simplifies the transfer of information to and from the */
/* CEP and its driving system. An extra byte is affixed to the */
/* port address to allow the program to distinguish between one, */
/* two, and three byte registers (this is necessary when sending */
/* out the data). Depending on the status of the two most signi- */
/* ficant bits (bit 15 and 16), the program configures the data */
/* and the port address as necessary. For example : */
/* */
/* --Register Name----Compression Address----Expansion Address-- */
/* */
/* C/E DCAR 00101010 10101010 */
/* (low byte) (low byte) */
/* 11000000 11000000 *x/
/* (high byte) (high byte) */
/x */
/* If two msb of the high byte = 11 (three byte register) */
/* If two msb of the high byte = 10 (two byte register) */
/* If two msb of the high byte = 01 (one byte register) */
/* */
/* This added byte is only for testing and is masked off before */
/* data is transferred. */

3636k ok ok ok ok ok ok ok ok ok kK ok ok ok kK KKK K ok ok ok ok ok ok Rk KK K K KK Rk Kk kR ek kK ok ok ok R R kR sk k kok ok ok k ok ko ke k ok /

[Rk ok kkkkkkkkkkkkxkkkx*x REGISTER ADDRESS ASSIGNMENTS % %k ok sk & % sk % %k d sk s sk ok ¢ 5k sk sk ke sk ok & /

#define SWCR 0xCO004
#define SCAR 0xCOOA
#define SCHR 0xCO014
#define DWCR 0xC024
#define DCAR 0xCO2A
#define DCHR 0xC034
#define SAHR OxCO3A
#define DAHR OxCO4A
#define SLSR 0xCOS5A
#define DLSR 0xCO6A

#define TMGR 0x8030
#define LMGR 0x8040
#define RMGR 0x8060
#define WR 0x8050
#define PWR 0x8070

#define TFLR 0x4044
#define RCR 0x4048
#define CER 0x4068
#define PR 0x4074
#define CR 0x4076
#define SR 0x4078

/* Source Working Count Register */

/* Source Current Address Holding Register
/* Source Count Holding Register */

/* Destination Working Count Register */
/* Destination Current Address Register */
/* Destination Count Holding Register */
/* Source Address Holding Register */

/* Destination Address Holding Register */
/* Source Line Start Address Register */
/* Destination Line Start Address Register

/* Top Margin Register */
/* Left Margin Register */
/* Right Margin Register */
/* Wraparound Register */
/* Page Width Register */

/* Time Fill Register */

/* Restart Control Register */
/* Express Register */

/* Parameter Register */

/* Command Register */

/* Status Register */

/* NOTE: Not all registers have corresponding expansion addresses */
/* TMGR, LMGR, RMGR, TFLR, CRCR, and CER are the exceptions */

*/

*/

/***/

/*
/*
/*

MAIN PROGRAM

*/
*/
*/

/***/

#include “stdio.h”

#define COMP 0
#define EXPAND 1
#define BOTH 2

float width;
float len;
unsigned resol;
unsigned bm;
int hr;

int vr;

int milli;

main ()
{

long read_cep();

/* Insert individualized main program here or “include” these func-
tions with your program to utilize the following functions and

/*
/*
/*
/*
/*
/*
/*

document width in millimeters */

document length in millimeters */

original horiz/vert resolution of document */
bottom margin, if any */

horizontal resolution of original document */
vertical resolution of original document */
inches to millimeters (1” = 254 mm) */

to implement other control conditions according to the functional
specifications */

42

KRR KKK KKK KKK KKK KK KKK KKK KKK KKK KRR KA A K I KA K h KRR KA ARk kkkkokkk Kk kR k kK k KRRk kk /

/* */
/* INITIALIZE */
/* */

%Kk ke ok ok ok ok ko ok ok K ok Kk ok ok ok ok ok ok ok ok ok ok K ok K ok ok ok ok ke ok ke ok ok ok ok ok K ok ek ok ok

Purpose. - Set up initial values for CER, CWR, EWR, CCR and ECR registers
needed by the remainder of the program.

Parameters — eXPresSsSeeeeeveesssssceassss.. Dold CER value
command0..0. teseetssnesene «++.. hold command value
WEAP toveernnnssonennsnanans P .. hold wraparound value
NY tiiiiitierierereneeeraenanssassss, horizontal resolution
VE teteeeeesenanasssesneassasssensess vertical resolution

Notes - CWR/EWR (wraparound register) is a 16-bit register used to specify the
additional scan lines to be grouped into one effective line used for
encoding and decoding. If the wrapaparound register is loaded with zero,
the effective line is identical to a scan line (normal operating mode).
The contents of the wraparound register + 1 = effective line.

CCR/ECR (command register) is an 8-bit register used to specify the mode
of operation (one-dimensional, two-dimensional, or transparent), location
of source and destination buffers, interrupt enable, operation controls,
and initiation of processing. This function is only concerned with the
mode of operation.

CER (express register) is an 8-bit register used to specify the number of
lines to skip before compressing the next line after processing the
current line. If loaded with zero, every scan line will be compressed. If
defined in two-dimensional mode, the current compressed line will become
the reference line for the next compressed line (located at “n” scan lines
below it).

Express and wraparound modes can not occur simultaneously. An error
message and error code will be generated if needed.
*/

initialize (express,wrap, command, hr,vr)
unsigned express,wrap,command;
{

milli = 254;

write_cep (CER, express,COMP) ;
write_cep (WR,wrap, BOTH) ;

if ((!command) && (command !=.1) && (command != 2))
return(-1);
else {
command = command << 6;
write_cep(CR, command,BOTH) ;
}
if (vr * hr % 2) /* to ensure even number of bytes for buffer */
resol = vr * hr + 1;
else resol = vr * hr;

4-3

%k ke ek sk ke sk Kk ok ok ke ko k ki k ok ok k ok ko k ok ko ki ke ke k ok ok ok ko k ok ok k ko ko k ok kA kR ARk ok kA kA KKK Kk Kk [/

/* */
/* MIN_XTIME */
/* */

/**********************i***********************k*******************************

Purpose - Load the TFLR (time fill register) with the value of the following
equation :

TFLR = (modem speed * min transmission time) / 8

If the user does not require a non-zero value for TFLR, then zero may be be
loaded.

Parameters - modem _SpPdciveveveeseees... modem speed (bps)
xtime ...iiiiiiinann vessesses.. min transmission time (mS)

Notes - TLFR is an 8-bit register used to specify the minimum length of a coded
line. If the number of bytes in a compressed line is greater than this
number, time fill bits are needed. Time fill bits will be added to the
compressed line such that the sum of the code bits and time fill bits
is equal to or greater than the required line length. Time fill bits
are all 0O's.

*/

min_xtime (modem_spd, xtime)
int modem_spd, xtime;

{

unsigned time_fill;

time_fill = ((long) modem_spd * xtime) / 8000;

write_cep(TFLR,time_fill,0);
}
/**‘k************************/
/* x/
/* PAPER SIZE */
/% */

%% ek ke ek ok ok ok ok ok ok ok ok ok ok ok ke ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok koo ok sk sk ok sk sk ok ok ke ok ke ke ok ok ok ok ok ok ke ke ke ke ke ok ok ok ok ok ke

Purpose - Initialize the Paper Width Register (CPWR/EPWR) as follows
CPWR/EPWR = (Actual paper width * horz resolution) / 8

This function calls margin_set and comp_source functions, passing width,
length, horizontal and vertical resolution to each.

Parameters = flag .eeeeeninennenenenaonannons register fill determinator

Notes - CPWR/EPWR is a 16-bit register which specifies the page width or length
of a scan line in increments of 8 pels (1 = 8 pels, 2 = 16 pels, etc).

4-4

Since only the first 11 bits are significant, the largest line that can be
handled is 16K pels long.

Bits 11 to 15 must be set to zero. */

paper_size(flag)
int flag;
{
unsigned long pwidth;

pwidth = width * hr / 8;
write_cep (PWR,pwidth, flaq);

/***/

/* */
/* MARGIN_SET */
/* */

JERE kKK KKk ok ok kkk ok ok kkk Kk ok kkkkkkkkdkkkkkkdkokdkkkkk ok ke kkkkkkkkkkk ko kkkkkkkkkkkkkkkkk k%

Purpose - Load margin values (left, right, top) into respective registers
according to the following equations :

LMGR = (horiz resolution * left margin) / 8

RMGR = (horiz resolution * right margin) / 8

TMGR vertical resolution * top margin

This function calls expand dest (EDCHR) and comp_source (CSCHR).

Parameters = LOP tiveeeveseessosssesssssssss top margin (lines)
Im,rm ceeuennn. Ceieeeae veee.. left/right margin (mm)

Notes - The LMGR, RMGR, and TMGR are 16-bit registers used to specify the width
(or length in lines as needed for TMGR). If any of these registers
contain zero, then the original document margins will be used. Margin
register specifications override the margins of the original document thus
resulting in an altered transmitted copy.

An error message and code (-2) will be generated if the sum of the left
and right margins are greater than the page width (as specified in the
CPWR/EPWR) .

Bits 11 through 15 must be set to 0.
*/

margin_set (top, lm, rm)
unsigned top;
float 1lm,rm;
{
unsigned long left,right,tm,pwidth;

left = hr * Im / 8;
write cep(LMGR,left,0);

right = hr * rm / 8;
write_cep (RMGR, right, 0);

tm = top * vr;
write_cep (TMGR, tm, 0) ;

4-5

pwidth = width * hr / 8;

if ((left + right) > pwidth)
return(-2);

else {
expand_dest (width, len, hr, vr, bm) ;
comp_source (width, len, hr,vr, bm) ;

/***************‘k**'k***‘k***********’k**/

/* */
/* GPARAM */
/* */

[K ok ok ok ok ok ok e ok ek ok ok ok KR ke ok ok ok ok ok ok ok ok Rk ke ok ok ok ok ke ok ok ke ok ok ok ok ke ko ok ok ok ok ok ok ok 3k ok ok ok ok ok ok ok ok X

Purpose - Set bits 3,4 and 5 (GO, Gl, G2) of the expander parameter register
(EPR) with the granularity control (G-Parameter).

Parameters = PAramoveeveenoenaonsnanons hold G value (0 - 7)

Notes - The G-Parameter is used to specify the number of times that each scan
line (as specified by the EPWR) should be duplicated in the destination
buffer. For instance, when G = 3, each scan line accessed in the
source buffer and expanded will be written into the destination buffer
a total of four times. The EDWCR will be incremented four times, each
time the ESWCR is incremented once. The G-Parameters values are :

[9]
™)
9]
=
Q
=3

G-Parameter

H P PR OO OO
PP OOFRKE OO
HORORORO
~ oy U W N PO

An error will result if the EWR is not zero when the G-parameter is
nonzero. This error will be indicated by the EIC bit in the ESR
(expander status register). */

gparam(param)
unsigned char param;
{
unsigned char gvalue;

gvalue = read_cep(PR,1);
param = gvalue | (param << 3);
write_cep (PR, param,1);

4-6

% e 3k e ek ok ok ok ok ok ok ok Kk Kk K ok ok ok ok ok kKR K Kk kK ok ok K K kK KKK R KR R R K Kk ok ok ok o ok Rk kR Kk ek ok K ke f

/* */
/* KPARAM */
/* */

3 e ok e ok ke e ok ok o ok ke ko K ok ok ok ok ok ok K ok ok ke ok ok ok ok ke ok ok ok o ok K e ok Rk ok ke ok kK ke ok ok K ok ok ok ok sk ok ok ke k ok ok ok

Purpose - Load the K-value in the Parameter Register (CPR/EPR).

Parameters = PArAM ...eeevvesssessanassssanssss. K-parameter value
flag civiiiiriiiiiiiiiie e vee.... register test variable

Notes - The CPR and EPR are 8-bit registers whose contents specifies the
K-parameter, the G-parameter (only for EPR), data format control bits
(only for CPR), source buffer attribution bits, and the auto EOL bit.

The K-parameter is specified in the first three bits of both parameter
registers. The allowed values are :

Bit2 Bitl BitO K-Parameter
0 0 0 infinity
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

The K value is only used during two dimensional compression/expansion.
This value is ignored during transparent, or one dimensional mode. The
K parameter value specifies the number of lines to be included in the
compression/expansion process. *x/

kparam(param, flag)

unsigned char param;

int flag;

{
unsigned char cparam,eparam;

cparam = read_cep(PR,0); /* fetch current CPR value */
eparam = read_cep(PR,1); /* fetch current EPR value */
if ((param < 0) || (param > 7)) /* invalid K value found */

return (-10);
else {
if (flag == 2) { /* £ill CPR and EPR */
param = param | cparam;
write_cep (PR, param,2);

}

if (flag == 1) { /* £ill EPR only */
param = param | eparam;
write_cep (PR,param,1);

}

if (flag == 0) { /* fill CPR only */

param = param | cparam;
write_cep (PR,param,0);

4-7

/***/

/* */
/* DUMP_REG */
/* */

[3k ke ke ke ok ok ok ok ok ke sk sk ok ok ook kK kK ok ok ok ok ok R ok ok ok ok ok

Purpose - Allow user to dump the register contents and verify the status
after the initial set-up procedure is completed.

Parameters - none.

Notes - This function will list the contents of all the CEP registers. It is
suggested that this function be called after the initialization
procedure to ensure that the intended values are installed. */

dump_reg ()

{

printf (“\n\t)
printf (“*\n\tAm7970 Register Status\n”);
printf (*\t \n”);

printf (*"CSWCR = %1x : ESWCR = %1x\n”,read_cep(SWCR,0),read_cep (SWCR,1));
printf ("CSCAR = %1x : ESCAR = %1x\n”,read_cep(SCAR,0),read_cep(SCAR,1));
printf(“CSCHR = %1x : ESCHR = %1x\n”,read_cep (SCHR,0),read_cep(SCHR,1));
printf (Y"CDWCR = %1x : EDWCR = %1x\n”,read_cep (DWCR, 0),read_cep (DWCR, 1)) ;
printf (“CDCAR = %1x : EDCAR = %1x\n”,read_cep(DCAR,0),read_cep(DCAR,1));
printf (“CDCHR = %1x : EDCHR = %1x\n”,read_cep (DCHR, 0),read_cep (DCHR, 1)) ;
printf(“CSAHR = %1x : ESAHR = %$1x\n”,read_cep (SAHR,0),read_cep (SAHR, 1))
printf(“CDAHR = %1x : EDAHR = %1x\n”,read_cep(DAHR,0),read_cep(DAHR,1));
printf (“CSLSR = %1x : ESLSR = %1x\n”,read_cep(SLSR,0),read_cep(SLSR,1));
printf(“CDLSR = %1x : EDLSR = %1x\n”,read_cep(DLSR,0),read_cep(DLSR,1));

printf (“CWR = %1lx : EWR = %1x\n”,read_cep(WR,0),read _cep(WR,1));
printf("CPWR = %1x : EPWR = %1x\n”,read_cep(PWR,0),read_cep(PWR,1));
printf (“CRCR = %1x : ERCR = %1x\n”,read_cep(RCR,0),read_cep(RCR,1));

printf (“CER = %1lx : EPR = %1x\n”, read_cep (PR, 0),read_cep(PR,1));
printf (“CCR = %1x : ECR = %1x\n”, read_cep (CR, 0) ,read_cep(CR, 1))
printf (“CSR = %1lx : ESR = %1x\n”,read_cep(SR,0),read_cep(SR,1));

printf("TMGR = %1x\n”,read_cep(TMGR,0));
printf(“LMGR = %1x\n”,read_cep(LMGR,0));
printf ("RMGR = %1x\n”,read_cep(RMGR,0));
printf (“TFLR = %1x\n”,read_cep(TFLR,0));

printf (“CER = %1x\n”,read_cep(CER,0));

}
/**‘k******************************/
/% */
/* COMP_SOURCE */
/* */

e ke e ek ok ok ok ok ke ok ok ok ok ok 3k ke ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ke ke ok ok ok ok ko Sk kok ok Xk K

4-8

Purpose - Load the compressor source count holding register (CSCHR) and
initialize the compressor source working count register (CSWCR) in
one- and two-dimensional modes as specified by the command register
(CCR/ECR) . This function calls comp_dest (CDCHR) and expand_source
(ESCHR) routines.

Parameters - none.

Notes - This function reads the CCR for 1D, 2D or transparent mode
(bits 6 and 7 of the CCR are called the Mode Control Field and are
set at 01,10,00 respectively). Depending upon the operating mode,
wraparound and/or express mode is also checked (appropriate error
messages are generated) . */

comp_source ()

{
unsigned cwr,ccr,cer;
unsigned long buffer;

cwr = read_cep(WR,0); /* fetch contents of wraparound, */
ccr = read_cep(CR,0); /* command and */
cer = read_cep(CER,0); /* express registers */

/* test for one-dimensional mode */
if ((ccr & 0x40) == 0x40) { /* two most sig bits = 01 */
if ((cwr) && (cer))
return(-3);
else if (l!cwr) { /* in wraparound mode */
buffer = resol * (cwr + 1) * width / 8;
buffer = ~buffer + 1;

write_cep (SCHR,buffer,0);

}

else if (l!cer) { /* in express mode */
buffer resol * (cer + 1) * width / 8;
buffer = ~buffer + 1;

write_cep(SCHR,buffer,0);

else { /* ordinary compression mode */
buffer = resol * width / 8;
buffer = ~buffer + 1;

write_cep (SCHR,buffer, 0);

/* test for two-dimensional mode */
if ((ccr & 0x80) == 0x80) ¢ /* 2D most sig bits = 10 */
if (cwr)
return(-4);
else {
buffer = resol * (cer + 1) * width / 8;
buffer = ~buffer + 1;

write_cep (SCHR,buffer,0);

comp_dest (resol,width);

expand_source(resol,width);

}
else if ((ccr & 0x00) == 0x00) { /* transparent mode */
if ((tcwr) || (!cer))
return (-5);
else {
buffer = resol * width / 8;
write_cep (SCHR,buffer,0);
}
}

[e ek ek e ke ke ok ke ke k ok kK Kk kK Kk K Kk K KKk ok Kk kK ok Kk k kK ko kK k ok kkkkkkokkkkkkkkkkkk /

/* */
/* COMP_DEST */
/* */

%% K ok ke Kk ok ke ok e Kk ok ok ok ok ok ok ke ok ke ok ke ke ok k ok

Purpose - Loads the Compressor Destination Count Holding Register (CDCHR). The
CDWCR is initialized with the same value as CDCHR by the Am7970.

Parameters - none.

Notes - The CDCHR is a 24-bit register used to specify the length (in bytes) of
the destination buffer. The buffer length is specified as a two's
complement number. Contents of the CDCHR is automatically loaded into the
CDWCR whenever a restart operation is initiated. */

comp_dest ()
{

unsigned long buffer;
unsigned cwr;

cwr = read_cep (WR,0);
buffer = resol * (cwr + 1) * width / 8;

buffer = ~buffer + 1;

write_cep (DCHR,buffer,0);

JRE K kK kK kK kKA K A KKK ARK KA KA K AK IR KR I K IR AR KK H KA KNI IR I K I KK IR IR KKK KKK AKXk ke kkk ok kk /

/* */
/* EXPAND_DEST */
/* */

% 3 ke 3k ok ok e 3k ok ek ke ok ok ok ok ok ok ke ke ok ok ok ok ok ok ok ke ok ok Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK kR ke ok ok kR Kk ko

Purpose - Loads the Expander Destination Count Holding Register (EDCHR). The
EDWCR is initialized with the same value as EDCHR by the CEP.

Parameters - none.

Notes - The EDCHR is a 24-bit register used to specify the length (in bytes) of
the destination buffer. The buffer length is specified in two's

4-10

complement form. The initial value is loaded into the destination working
count register (EDWCR) whenever a restart operation is initiated.

A worst case compression ratio of 10:1 is assumed when calculating the
destination buffer (divide by 80 instead of 8). If negative compression

is encountered, the CEP will interrupt the CPU signaling the shortage of
buffer space. */

expand_dest ()
{

unsigned ewr,even;
unsigned long buffer;

ewr = read cep(WR,1);
buffer = resol * (ewr + 1) * width / 80;
buffer = ~buffer + 1;

write_cep (DCHR,buffer,1);

/%% ek ek ek K Kk k kK ok KK KKK K K KK kK Kk Kk Kk KKK KKK K kK KKKk kKKK KKK KKK KKK KKK KKK A KKK XKk [

I */
/* EXPAND_ SOURCE */
/* */

%6 e e ok e e ek e o ok ok ok ok ok ok ok ok kK kK kK K KK K ok ok ok ok Kok R K ok ok Kok ok Kk K Kk R Kk ok ke ok ok ok ok ok ok ok ke ke ok ok ke ok

Purpose - Loads the value of the source count holding register (ESCHR). The
ESWCR is initialized with the same value as ESCHR by the CEP.

Parameters - none.

Notes - The ESCHR is a 24-bit register used to specify the source buffer length
in bytes. This value is specified in two's complement form. The initial
value is loaded into the destination working count register (EDWCR)
whenever a restart operation is initiated. *x/

expand_source()
{

unsigned long buffer;

buffer = resol * width / 8;
buffer = ~buffer + 1;

write_cep (SCHR,buffer,1);

[KKK KKK KKK KKK KKK KKK KKK KKKk KK KKK KKK KKK K K K ok [
/* */
/* WRITE_CEP */
/* */

/3 ek ok ok ok ok ok K kK ko kK K Kok ok KRR KR KKk ke ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok kR R K Rk ok ok ok

Purpose - To evaluate the register address (passed as addr) and determine if
it is a one, two, or three byte register. The value to be loaded is

divided into one, two, or three bytes before sending it out to the CEP.
The base address (addr) is incremented as needed to write to the CEP.

Parameters = addreeireveerssessrenssssessss register address
ValU@ tuivtvererennseneenanaaesssss.. register contents
£lag seeeerenennnnresedenssssenasss. register £ill flag

Notes - A “flag” is passed to determine if the corresponding expansion

register is also to be filled with “value”. If flag = 1 then the msb of
the port address will be toggled and the expansion register will be
loaded; otherwise only one register is filled on each function call. If
the register is one of the five exceptions (neither compression or or
expansion, as mentioned above), then pass flag = 0.

CAUTION -- This function uses a C86 library routine called “outportb”.
This is a hardware dependent routine and may not be applicable toward your
particular system. It may be necessary to furnish an I/O driver that
serves the same purpose. This function expects the following :

unsigned outportb(portno,value)
unsigned int portno;
char value;

Returns the byte output to the port (user supplied). The port number must
be valid for the addressed device. For the CEP, an 8-bit number is
required, but in other cases a 16-bit number may be needed. If this is
the case, it is suggested to place the port number in both upper and lower
bytes of portno. */

write_cep(addr,value, flaqg)
unsigned addr;
long value;
int flag;
{
char bytel,byte2,byte3;

bytel = value;

byte2 value >> 8;

byte3 = value >> 16;

if ((addr & 0xC000) == 0xC000) { /* 3-byte register */

addr &= OxO0O0FF;
if (flag == BOTH)
both_reg(addr,bytel, byte2, byte3, 3);
else if (flag == EXPAND)
expand_only (addr, bytel, byte2,byte3, 3) ;
else if (flag == COMP)
comp_only (addr,bytel,byte2,byte3, 3);
else return(-6);
}
else if ((addr & 0x8000) == 0x8000) { /* 2-byte register */
addr &= OxOOFF;
if (flag == BOTH)
both_reg(addr, bytel,byte2,byte3, 2);
else if (flag == EXPAND)
expand_only(addr, bytel, byte2,byte3, 2);
else if (flag == COMP)
comp_only (addr, bytel, byte2,byte3, 2) ;
else return(-6);
}
else if ((addr & 0x4000) == 0x4000) {
addr &= OxOOFF;

4-12

if

(flag == BOTH)
both_reg(addr, bytel,byte2,byte3,1);

else if (flag == EXPAND)

expand_only (addr,bytel,byte2, byte3,1);

else if (flag == COMP)

comp_only (addr, bytel, byte2,byte3,1);

else return(-6);

}

else return

(S

ek ok e ok ek ok ok ok ok ok ok ok kK ke ek sk ok ok ok ok kR Kok kK ek ks ok ok ok ok ok ok ke ke ok ok sk ok ok ko ok k ok sk ok ke k /)

/*
/*
/*

BOTH_REG

*/
*/
*/

%6k e ok ok ke ke oK ke koK ok ke ok ke ok ko ok ok ok ok ok ok ok ok ok 3k ok ok 3k ok ok gk ke ok ok ok ok ok ok ok Rk ok ok ok

Purpose - To send out the port number and corresponding value to be loaded into

the register.

byte register.

Flag variable from write_cep function is passed as “size”
which determines the size (1,2 or 3 bytes) of the register to be loaded.
This variable signifies that the value to be sent is a one,two, or three

Variables = addrveeesnesecssssereseesssss.. base port address
bytel iiiiiieiiieiieeiiessansaneeess 1sb of loaded value
byte2 «vees.. second 1lsb of loaded value
byte3 «veeo.. msb of loaded value
size ceeresesens Weeesesessaeses.. register size in bytes

Notes - All variables are passed from write_cep function.

A C86 function

called “outportb” is used in this function (as well as expand_only and
comp_only) which is hardware dependent (See note in write_cep
description) .

both_reg(addr,bytel, byte2,byte3, size)

unsigned addr;

char bytel,byte2,byte3;

int size;

{

if (size == 3) {

else if

}

else if

outportb (addr, bytel) ;
outportb (addr + 2,byte2);
outportb(addr + 4,byte3);

outportb (addr | 0x80,bytel);
outportb(addr + 2 | 0x80,byte2);
outportb(addr + 4 | 0x80,byte3);

(size == 2) {
outportb (addr, bytel);
outportb (addr + 2,byte2);

outportb(addr | 0x80,bytel);
outportb(addr + 2 | 0x80,byte2);

(size == 1) {
outportb (addr, bytel) ;
outportb(addr | 0x80,bytel);

*/

413

else return(-8);

JRK KKK KKK KKK KKK KKK KKK RKK KKK KKK KK I KKK KKK KK h KK Hhk KK kX KKk kK k KKk Rk ok ok ki kkkkkk k% /

/* */
/* EXPAND_ONLY */
/* */

% %k ok ke ke ok ke e ok ek ok ok ek ok Kk K ko ok kR ok R R K R K K Kk ok ek k ok ok R KRR Kk ko ok ok kK R R Rk Rk ok ok k ok ok ok ok

Purpose - To send out port number and value for expansion register only.
Use “size” to determine size in bytes of the register to be loaded.

Variables = addr .u.iieeeesvessssesssssnsssssss. base port address
bytel t.vierinnneeenereannns ceeeeen . 1sb of value
byte2 ..viviiieriereerssseasseenss.. second 1lsb of value
byte3 i iiiiiriiernnnnnnns Che e . msb of value
size s.oiiiiinnnn Wetetesecssseasess.. register size in bytes

Notes - All variables are passed from write cep function. A C86 function
called “outportb” is used in this function (as well as expand_only and
comp_only) which is hardware dependent (See note in write_cep
description). */

expand_only (addr,bytel,byte2, byte3, size)
unsigned addr;
char bytel,byte2,byte3;
int size;
{
if (size == 3) {

outportb(addr | 0x80,bytel);
outportb(addr + 2 | 0x80,byte2);
outportb(addr + 4 | 0x80,byte3);
}
else if (size == 2) {

outportb(addr | 0x80,bytel);
outportb(addr + 2 | 0x80,byte2);
}
else if (size == 1)
outportb (addr
else return(-8);

0x80,bytel) ;

/3¢ e ok ke ek e e e ek ok ok ok ok ok ok ok sk ok ok ok ok ko Kk K K Kk kK Kk kK R KRR KKK KKK KR KKK KK KKK KKKk kKKK XK/

/* */
/* COMP_ONLY */
/% *x/

% % ok ek ek ok ek ok ok ok ok e ke e ke ok ke ke ke ok ok ok ok ke ko ok ok ok ok ok ok ok ke sk ok ok ok sk ok ko ok ok ok ok sk ok ke ok sk ok ke ok ok ok ok ok sk kR ke k ok ok

Purpose - To send out port number and value for compression register only. Use
variable “size” to determine the number of bytes of the register to be

loaded.
Variables = addY ..veeeenncencesacsannns w+ee..... base port address
bytel ..uiiiiiieiiiiineennenns cvecones 1lsb of value
byte2 .iiviiiiiiiiiiiiiiiiieiiieaan second lsb of value

414

byte3uitiiiiiiiiirennreresnnass. Mmsb of value
siZe iiiiiiiiiiiiiiiiiiieiieese.... register size in bytes

Notes - All variables are passed from write_cep function. A C86 function
called “outportb” is used in this function (as well as expand only and
comp_only) which is hardware dependent (See note in write_cep
description). */

comp_only (addr, bytel,byte2,byte3, size)

unsigned addr;

char bytel,byte2,byte3;

int size;

{

if (size == 3) {

outportb(addr, bytel) ;
outportb (addr + 2,byte2);
outportb(addr + 4,byte3d);

else if (size == 2) {
outportb (addr, bytel) ;
outportb(addr + 2,byte2);
}
else if (size == 1)
outportb (addr,bytel) ;
else return(-8);

R KRk kK kKKK KK I KKK KKK KKK KKK KKK AR KKK I IR K KR A AR AK KA KKK IR IR I AR IR K XA R IRk KXk *k* [

/* */
/* READ_CEP */
/* */

[ek ok ek ok ek ke ok K ok ok ok ok ok ok ok K ok ok ok ok ke ok ok K ok ok K ok K KK ok Kk ok ok ko ok ok ok ke e ki ke ok ok ok ok ok ko ok ok ok ke ok ok ok ok

Purpose - To read the contents of a CEP register. The register “base” address
is sent out and depending on the size of the register, one, two, or three
bytes are fetched. The fetched bytes are then combined into one 32-bit
value to be returned in each call.

Parameters — addrciveercietiscrassessecases.s “base” address of register
flag Chiessecetetaseesesesnsssss. distinguish between
compression & expansion
register (0 or 1)

Notes - This function returns the register contents in a 32-bit value even
though the registers are only one, two, or three bytes in length. The
user is then responsible for modifying this larger value as needed for
specific purposes. The function returns only one register value at a
time; therefore, it must be called twice in succession (with different
flag values) to obtain the values for both register pairs.

CAUTION - This function uses a C86 library routine called “inportb”.
This is a hardware dependent function and may not be applicable toward
your particular system. It may be necessary to furnish an I/0 driver
that serves the same purpose. This function expects the following:

unsigned char inportb (portno)

4-15

unsigned int portno;
unsigned char byte;

This function returns the byte contained at “portno” but the read cep
function returns a 32-bit value. This is to accommodate the various sizes
of the registers. */

long read_cep(addr,flag)

unsigned addr;

int flag;

{
unsigned char bytel,byte2,byte3;
long value;

if ((addr & 0xC000) == 0xC000) { /* 3-byte register */
addr &= OxOOFF;
if (flag == COMP) {

bytel = inportb (addr) ;
byte2 = inportb(addr + 2);
byte3 = inportb(addr + 4);

value = (byte3 << 16) + (byte2 << 8) + bytel;

return(value);

}

else if (flag == EXPAND) {
bytel = inportb(addr | 0x80);
byte2 inportb(addr + 2 | 0x80);
byte3 = inportb(addr + 4 | 0x80);

value = (byte3 << 16) + (byte2 << 8) + bytel;
return(value);

}
else if ((addr & 0x8000) == 0x8000) {
addr &= OxOOFF;
if (flag == COMP) {
bytel = inportb(addr);
byte2 = inportb(addr + 2);

value = (byte2 << 8) + bytel;
return(value);

else if (flag == EXPAND) ({
bytel = inportb(addr | 0x80);
byte2 = inportb{(addr + 2 | 0x80);

value = (byte2 << 8) + bytel;
return(value);

else if ((addr & 0x4000) == 0x4000) {
addr &= OxOOFF;
if (flag == COMP)
return((long) inportb(addr));
else if (flag == EXPAND)
return((long) inportb(addr | 0x80));
}
else return(-9);
}
/*****************‘k*****i****************************)k************************/

JRE KK KKK KKKk Kk hhkkkkkkk*xk k% END OF PROGRAM * % % sk k sk ok ok k% ok ok ok ok ok ok X X ok ok k ks ook /

4-16

4.1.2 Error Return Messages

Return Message
Code
-1 Invalid operation mode for CMCR/EMCR.

Enter ‘0’ for transparent mode
Enter ‘1’ for one-dimensional mode

Enter 2’ for two-dimensional mode
Error returned from Initialize function.

-2

Sum of left and right margins is greater than
paper width. Check paper_size and
margin_set functions.

Wraparound and express mode can not
occur simultaneously in one-dimensional
mode. Check CWR, EWR, CER registers.
Error returned from source_buffer function.

Wraparound can not occur in one-
dimensional mode. Check CWR, EWR,
CMCR, EMCR registers. Error returned from
source_buffer function.

Wraparound and/or express mode can not
occur in transparent mode. Check
CMCR/EMCR registers. Error returned from
Source_buffer function.

Invalid “flag” variable passed. Enter 0,1, or 2
only to signalboth_reg, expand_only, or
comp_only function calls. Error returned
fromwrite_cep function.

-7

Invalid register address detected. Check if
program register define statements have
been altered. Most significant byte of
register address should start with CO__,
80__,40__only.

Invalid register “size” variable passed. Enter
1,2 or 3 bytes only. Returned from
comp_only, expand_only, or both_reg
functions.

Invalid register address detected. Can not
read data from CEP with this address. Check
register address define statements. Send
only “base” address as it is defined.
Errorreturned from read_cep function.

Invalid K-parameter value entered. Must be 0-
7 (000to 111) where 0 (000) is infinity.

4.2 Image File Analysis Program
Description

(written by Deyoung Hong—12/18/84)

This is a functional description of the Image File
Analysis Program. The program is written in C
language for execution on an IBM PC. Its main task
is to analyze image files for the approximation of
compression ratios, compressor throughputs, and
expander throughputs with either one or two
dimensional computations. The program consists
of a header declaration section, a main function,
and other sub-functions. A listing of this program
is givenin Appendix B.

4.2.1 Header Declaration Section

This section contains some macro statements for
substitutions of constants, and the declaration of
external variables used throughout the program.
The external variables used in this program are for
tables of data, and for files. The tables are declared
as arrays, and are useful for quick reference in
order to minimize the execution time. The name
and characterization of each table is as follows:

ncc= Table containing the number of color
changes in each eight bit binary
sequence from 00000000 to
11111111, The value of the
sequence (byte) is the index value

for access to this table.

wtermc= Table containing the length of the
white terminating codeword for each
run length from 0 to 63. Itis taken
from the Modified Huffman Code
Table. The runlength of code is the

index value for access to this table.

btermc= Table containing the length of the black
terminating codewords for each run
length from 0 to 63. ltis taken fromthe
Modified Huffman Code Table. The run
length of code is the index value for

access to this table.

wmakec = Table containing the length of the
white make-up codewords taken from
the Modified Huffman Code Table. The
run length the make-up code
represents divided by 64 is the index
value for access to this table.

bmakec = Table containing the length of the black

4-17

make-up codewords taken from the
Modified Huffman Code Table. The run
length the make-up code represents
divided by 64 is the index value for
access to this table.

4.2.2 Main Function

This function is the control routine of the program.
It prompts user to enter all necessary data before it
actually performs the analysis. It then calls other
subroutines to do certain tasks of computation.
Finally it prints the result of analysis, and also saves
the result in an output file.

The prompt questions for filenames and para-
meters are:

> Name of image file to be analyzed? (Name of the
image file to be analyzed—drive name and file
extension are considered)

\"

Number of wait cycles introduced by the docu-
ment memory? (This data is used for throughput
calculations)

v

Number of wait cycles introduced by main
memory? (This data is also used for throughput
calculations)

> Maximum number of pixels per line? (This is for
the horizontal resolution of the image file. User
should enter the number of bits that are in each
scanline)

> Maximum number of lines perpage? (This is for
the vertical resolution of the image file. User
should enter the number of lines to be scanned
as apage inthe file).

> Dimension of coding (1 or2)? (Enter 1 forone
dimensional coding or enter 2 for two dimen-
sional coding. If Case 2 is entered, the para-
meterk is then asked:

> Enter parameter k (0 for infinity): k is the number
of lines to be coded in two dimensions. One line
is coded in one dimension for every k lines are
coded in two dimensions. Enter 0 for two
dimensional coding on all lines)

> Name of file to store output results? (Enter
name of file to store the result of analysis.

After reading all these data, the routine will then
call either function scanid() to compute with one
dimensional coding or scan2d() to compute with
two dimensional coding the compression ratio.
These functions also compute the fractional
number of bytes that contain color changes count

in the document. The compressor throughput is
calculated by the function compid(), and the
expander throughput is calculated by the function
expald(). Due to the complexity of analyzing the
case of two dimensional calculations for the
compressor and expander throughputs, the
results are estimated using the formulas for one
dimensional calculations multiplied by 4. The
results are printed on the screen and saved in the
file which user entered earlier.

4.2.3 Sub Functions

The sub-function are huffcode(), codeld(),
code2d(), scanid(), scan2d(), compid(), expatd(),
and presult(). The description of each function is
as follows:

huffcode() — This function takes as input the
white or black runs and returns the corressponding
length of the compressed code after it looks up
the tables in the header declaration section.

code1d() — This function takes as input one line
of the original data and return the length of the
compressed line in one dimension. It scans the
number of white and/or black runs then each time
calls function huffcode() to get and add up the
length of compressed code.

code2d() — This function takes as input two lines
of code, one is the line to be coded in two dimen-
sion, and the other is the previous line as
reference.

scan1d() — This function analyzes the whole
document by scanning one line at a time for the
whole page. It looks up the table ncc to count the
number of bytes that contain the same number of
color changes. It also calls function code1d() to
add up the total length of the compressed data in a
page. It then can calculate the fractional number of
bytes that contain number of color changes count
and the compression ratio for one dimensional
coding.

scan2d() — This function analyzes the whole
document using the parameter k to perform either
one dimensional coding for every first line of K lines
or two dimensional coding for k lines. It thus calls
both functions codeld() and code2d(), but
depends on the value of k. Like scanid() it also
looks up the table ncc to count the number of
bytes that contain the same number of color
changes. It calculates the fractional number of
bytes that contain number of color changes count
and the two dimensional compression ratio.

compid() — This function calculates and returns
the compressor throughput of a document in one

4-18

dimension. analysis program consisting of the input data and

output results in an output file.

expald() — This function calculates and returns
the expander throughput of a document in one
dimension. Here are the two output results of the CCITT

document #5 stored in output files produced by

presult() — This function saves a summary of the the Image File Analysis Program:

4.2.4

Image Analysis Program Execution Report

Image file analysed: b:ccitt5.cp

Number of wait cycles introduced by the document memory: O
Number of wait cycles introduced by the main memory: 0
Horizontal resolution: 1680 pixels/line

Vertical resolution: 1188 lines/page

% ONE DIMENSIONAL CODING -- GROUP III CODING IS ASSUMED %

Fractional number of bytes which contain 0 through 7 color changes:

f0 = 0.889
fl = 0.067
f2 = 0.042
£3 = 0.002
f4 = 0.000

Compression Ratio = 7.303
Compressor Throughput (in MBPs) = 8.160
Expander Throughput (in MBPs) = 9.068

KA KKK AR K KKK KKK AR A KA KR KK KRR K R AR KR AR AR KRR AR KRR A AR KA AR AR A IR kA hkk Ak kA Xk kA Kk kh ok k

Xk xkkkxkxkkkkxxx TMAGE ANALYSIS PROGRAM EXECUTION REPORT ***xxkkkkkkxxkkk

Image file analysed: a:ccitt5.cp

Number of wait cycles introduced by the document memory: O
Number of wait cycles introduced by the main memory: 0
Horizontal resolution: 1680 pixels/line

Vertical resolution: 1188 lines/page

% TWO DIMENSIONAL CODING (K = INFINITY) -~ GROUP IV CODING IS ASSUMED %

Fractional number of bytes which contain 0 through 7 color changes:

f0 = 0.889
f1 = 0.067
£2 = 0.042
£3 = 0.002
£f4 = 0.000

Compression Ratio = 10.125
Compressor Throughput (in MBPs)
Expander Throughput (in MBPs) =

= 2.175
2.436

Refer to Appendix B for a copy of the program used to obtain these results.

4-20

Chapter5
APPLICATIONS

5.1 Am7970A CEP INTERFACE TO THE
68000 CPU

This design presents an example of how to use
the CEP in a 68000 system. Though the
Am7970A was designed for easy interface to the
iAPx family, it can easily be adapted to the 68000.

5.1.1 General Discussion

The example may be a part of a workstation
environment or an image storage application such
as an optical disc storage device. Also note that all
FAX applications (Group 3 and 4) are well served.

Figure 5-1 is the Am7970A CEP interface to the
68000 CPU. This illustration only shows how the
system interface of the CEP is embedded in such
a system. If very high throughput is desired, the
document interface of the CEP should be
connected to a large memory bank to buffer the
image data. The logic for the document buffer
interface is straightforward. Using memory
connected to the document side as a source
buffer (image data) and the system interface as the
destination buffer (coded data), a whole page of
image data with a resolution of 300 pixels per inch
can be compressed in 1-4 seconds.

The document buffer may be loaded through the
CEP system interface in transparent mode. It could
also be designed as a dual port memory which is
loaded directly by the CPU or by a DMA device. A
third approach could load the document buffer
directly by a scanner or a image processing
peripheral device. The last method reduces the
necessary data transfers to an absolute minimum
and is therefore the preferred solution for very
high performance applications.

This design assumes that the 68000 is connected
to a memory bank, either onboard or via a bus
interface. By setting the appropriate mode in the
CEP's command register, the user determines
whether this memory contains either the source or
the destination buffers for the CEP, or both.

5.1.2 Hardware Description

A latch and two drivers are used to demultiplex the
data from address bits A16-A23 of the CEP and to
direct the byte-oriented data stream of the CEP to
the upper and lower bytes of the data bus of the
68000. On even addresses, data is transfered
through the upper half of the bus; on odd

addresses, data passes through the lower half of
the 68000 data bus.

All register accesses into the CEP are performed
through the upper data bus because all CEP
register addresses are even. They are addressed
by the signals A0-A7.

Almost all of the conversion logic for the control
signals was combined into one PAL. This
minimizes the hardware required for customizing
the CEP to any kind of processor. The
AmPAL22V10 was chosen because it provides
more outputs than most other PALs and provides
full freedom in choice of output characteristics
(polarity, latched/unlatched function). The PAL
equations are written for the PLPL PAL assembler.
They can easily be changed for any other available
PAL Assembler. Refer to Figure 5-2 and Figure 5-
3 forthe Pal Device equations.

The PAL converts the RD, WR and A0 signals of
the CEP to UDS, LDS, and R/W signals of the
68000. It provides the control signals for the data
transceivers and transforms the two-wire bus
arbitration signals of the CEP (HRQ, HLDA) to the
three-wire arbitration scheme of the 68000 (BR,BG
and BGACK).

The 68000 CPU uses a memory mapped I/O
address scheme. The 1/O interface logic assigns a
memory area to the CEP internal registers using
standard address comparators. The CS output is
validated by AS LOW. In sophisticated operating
systems the CEP access should be reserved to
supervisor level memory accesses. Here this is
accomplished by an LS138 decoding this access
mode from the signals FCO0-2. The output is used
to enable the comparators.

When designing the memory interface, care
should be taken that the setup time for the READY
input is meet. If the environment does not provide
this demand, the READY signal coming from the
memory must be synchronized with a flip-flop
register.

5.1.3 Operation
Interrupt Handling

The CEP notifies the CPU about an exception
condition (e.g. end of page) by driving the INTR
line HIGH. The CEP does not produce interrupt
vectors by itself. If a specific application demands a
user vector to be asserted by the peripheral, an

TO MEMORY BUS

VANVANDAN

A1-A15 > A1-A15
I ALE
G A0

A16-A23 < 2956 LATCH C:"
EN
EN

DO-D7 < N 2946 ‘

/| TRANSCEIVER
DIR
Veo

DIR

D8-D15 2946 AD16-AD23

< /| TRANSCEIVER < >

IPLO EN Vee

i 13
iPL2 4 INTR
TO
68000 MEWM%RY | Am7970A
CP U A 4 Y 4 r— CEP

T BHEN BLEN
R AW I
UDS |e— uDs [0} RD
oS DS AmPAL WA WR
22V10
CLK CLK ALE
BE BE RESET RESET
BR |e BR HLDA HDLA
AS s HRQ HRQ
[
Ciﬁghé‘N)
BGACK If FROM RESET
BGACK GENERATOR
DTACK ;{J READY
A8-A23 I N]
J L |
ADDRESS G
COMPAR- _
ATOR EOUT cs
Vee
VPR Y4 G2B
Y7 Gl 5 MHZ
. CL CLK
PCO-2 AC ygq G2A OSCILLATOR
31 Dpecoper I
Figure 5-1 Am7970A CEP to 68000 CPU Interface 07666A 5-1

5-2

DEVICE (AMPAL22V10)
“7970A CEP to 68000 Interface Controller

CEP68KPAL VERSION 1.0
AMD Wolfgang Kemmler 9-12-85 ”
PIN

CLK =1 vce = 24
/CSs =2 /BHEN = 23
ALE =3 /BLEN = 22
/BG =4 A0 = 21
HRQ =5 HLDA = 20
RESET = 6 /RD = 21
NC =17 /WR =19
NC =8 /UDS = 18
NC =9 /LDS =17
NC =10 /RW =16
NC =11 NC = 15
GND = 12 NC = 14
BEGIN

IF (RESET) THEN ARESET() ;

IF (HLDA) THEN ENABLE (RW

~
.

; HLDA RW = WR ;

1t

IF (HLDA) THEN ENABLE(UDS) ; UDS = RD * /AO + WR * /AQ ;

IF (HLDA) THEN ENABLE(LDS) ; LDS = RD * A0 + WR * AQO ;
IF (/HLDA) THEN ENABLE(RD) ; RD = /RW * UDS ;

IF (/HLDA) THEN ENABLE(WR) ; WR = RW * UDS ;

IF (/HLDA) THEN ENABLE(A0); AO = UDS ;

BHEN = HLDA * /A0 * RD + HLDA * /A0 * WR + CS * UDS ;
BLEN = HLDA * AO * RD + HLDA * A0 * WR + CS * LDS ;
BR := HRQ * BG * BR * AS + HRQ * /BG * /HLDA ;

/HLDA := /HRQ + /HRQ * /BG + /HRQ * AS + /HRQ * /HLDA

+ BG * /HLDA + AS * /HLDA ;
END

Figure 5-2 Am7970A CEP to 68000 Interface Controller PAL Device

PAL16R4
VERSION 1.0
CEP68KB
AMD

CEP to 68000 Interface Controller Part B

WOLFGANG KEMMLER 9-12-85

CLK /RD /WR HRQ ALE /CS /BG NC NC GND
/OE /DTACK READY /BR HLDA NC NC /AS /BGACK VCC

BR := HRQ * BG * BR * AS + HRQ * /BG * /HLDA

/HLDA

:= /HRQ + /HRQ * /BG + /HRQ * AS + /HRQ * /HLDA

+ BG * /HLDA + AS * /HLDA

IF (CS) DTACK = READY

IF (HLDA) READY = DTACK * RD + DTACK * WR

IF (HLDA) AS

ALE

BGACK = HLDA

Figure 5-3 CEP to 68000 Interface Controller, Part B

07666A 5-3

interrupt controller such as the Am9519A must be
used.

To avoid an additional interrupt controller, this
design follows an easier approach to service the
interrupt request for the CPU, using the 68000
auto vector mode. The status decoder generates
the interrupt acknowledge signal from the status
lines FO-F2. This signal is used to drive the VPA
input of the CPU. If this line instead of DTACK is
asserted during an interrupt acknowledge cycle,
the 68000 will use the internal auto vectors instead
of an externally supplied vector.

The interrupt inputs of the 68000 are directly
connected to the inverted INTR signal of the CEP
without using the usual priority encoder.
Assuming that the auto vector mode of the CPU is
used as described above, 2 more peripherals
could notify an interrupt request to the CPU by this
method. With respect to all possible combinations
of pending interrupt requests, the auto vector
table would have to look like this:

Exception Vector Table

Vector No. Assignment
25 Auto Vector 1
26 Auto Vector 2
27 Auto Vector 2
28 Auto Vector 4
29 Auto Vector 4
30 Auto Vector 4
31 Auto Vector 4

The vectors are selected by the 68000 according
to the the priority of the interrupt inputs IPLO-IPL2.

This schematic shows the CEP connected to IPL2
giving it the highest priority. The CEP removes
INTR with the next access to a command register.

68000 Accesses To The Am7970A CEP
Registers (Slave Mode)

By driving CS LOW, the address decoder notifies
the CEP that the CPU wants to access the CEP
internal registers. The CEP reacts by driving
READY LOW and interrupting its internal
microprogram. The READY signal is an output of
the CEP as long it is in slave mode. Depending on
the internal status of the CEP, READY is released
after 4-50 CEP clock cycles.

The CEP provides a totally asynchronous slave
interface. This keeps the logic very simple. The
data hold time for a “slave write access” is 20 ns
minimum which perfectly matches the 68000 up to
a CPU clock frequency of 10MHz.

Data transfers in slave mode are generally passed
through the upper bus driver (D8-D15) because all
registers are located at even addresses.

Am7970A CEP System Memory Access
(Master Mode)

The CEP drives HRQ HIGH to gain bus control. As
soon as HLDA goes HIGH it enables its system
interface lines and start a memory access.

In this operating mode, READY is an input to the
CEP. READY is connected to the inverted DACK
of the 68000 system. The CEP samples the
READY line before driving the RD or WR signals

5-4

LOW._These signals are used to provide the UDS
and LDS signals which normaly are asserted much
earlier in typical 68000 systems. Therefore, the
DTACK line which signals the completion of the
memory access, cannot be asserted earlier than
RD or WR. This causes an automatic wait state for
each CEP memory transfer.

The full performance of the CEP in a 68000
system can only be reached if the memory design
is optimized not only for the 68000 but also for the

specific CEP timing. If UDS and LDS are only used -

to enable the data driver of the memory banks and
if the memories are fast enough, and if the READY
line is driven HIGH during master access allthe time
(disregarding DTACK), then the CEP can be used
without a wait state.

NOTE:

The CEP needs only 3 clock cycles for a
memory transfer while the 68000 CPU
takes 4. An additional wait cycle would
equal the access times of both devices,
assuming they are running at the same
clock frequency. A CEP running at 5 MHz
without a wait state, on the other hand,
would match the memory access time of a 8
MHz 68000. A 5MHz CEP does not
necessarily reduce the performance of
faster clocked CPUs.

5.2 Am7970A CEP INTERFACE TO THE

80188 CPU

This applicaton note shows how to use the
Am7970A CEP in a low cost environment. The 8
bit data interface of the CEP to the 8 Bit 80188
microprocessor is simple. It reduces the number of
additional drivers, latches and control logic to an
absolute minimum. The 80188 also provides an
interrupt controller and a chip select decoder. No
additional parts are necessary to access and
control the Am7970A CEP.

5.2.1 General Discussion

This example assumes a single board approach
with an onboard memory bank which may vary from
64kBytes to 1MBytes. By adding drivers to the
control signals and to the address lines A8-A15 it
could easily be expanded into a bus controlled
system. One MByte of memory is sufficient for
storing the image data of one page with a
resolution of 300 pixels per inch. This allows the
CEP to compress or expand such a picture without
interruption and with a minimum of software
overhead. A smaller memory bank might be
chosen for cost reasons.

This design does not use the faster document
buffer interface of the CEP. Both the image data
and the compressed data are passed through the
system interface. Therefore, bus arbitration is
incurred for every single transferred byte limiting
the use of this example to low throughput
applications.

It is definitely sufficient for FAX applications and
may even serve very well for image storage
applications where speed is not the most important
factor. In these cases a memory bank of 64 to 128
kBytes is sufficient because the CEP is capable of
processing fractions of a whole page without
producing inconsistencies in the coded image
data.

An additional memory bank connected to the
document buffer interface will improve the overall
throughput of the compression or expansion by a
factor of four. This buffer should be used only to
store the image data because it requires a data rate
approximately 10 times higher than the
compressed data.

5.2.2 Hardware Description

Figure 5-4 is a diagram of the Am7970A CEP to
80188 CPU interface. It shows how the address
and data lines of the CPU and the CEP are
transformed into a common demultiplexed memory
bus. Additional peripheral devices could either be
located on this memory bus or be connected
directly to the CPU interface.

The Am7970A CEP multiplexes the data on the
address lines A16-A23 while the CPU multiplexes
data on the address lines A0-A7. These are the
only differences between the two interfaces. All
control signals can be used without conversion.

The 80188 CPU provides a 50% duty cycle clock
output which can be used to drive the CEP. If the
CPU runs on a higher clock rate, the CEP has to be
driven by either an additional clock generator or a
CPU clock that has been divided down. This may
be very useful because the CEP needs only three
clock cycles for a memory access while the 80188
needs four cycles. Running the CEP with a slower
clockrate than the CPU does not necessarily result
in slower memory access.

The READY signal coming from the memory
interface must meet the set up time of the CEP
READY input. For Revision A of the Am7970, a
wait state must also be inserted for each memory
access from the CEP. Figure 5-5 shows the logic
to be added to the design above.

5-5

= |— CLK TO MEMORY BANK
Xt xe RES . sy
ARDY ey
CLKOUT
RESET
HOLD
HLDA
RD
WR
TO MEMORY BUS
ALE
G
ADDRESS
ADO-AD?7 LATCH AO-A7
EN
AB-A15 AB-A1S
~ !
80188
CPU
G EN
ADDRESS ADDRESS
AD16-A23 LATCR A16-A23 CATCH —
EN G
EN pata DR
TRANSCEIVER
ADO-AD7
PCSO
INTO

READY

A0-A7

A8-A15

Am7970A
CEP

AD16-AD23

ALE

Figure 5-4 Am7970A CEP to 80188 CPU Interface

07666A 5-4

5-6

07666A 5-5

B W
WR
HLDA
cPU CEP
READY Y) > READY
i cs

Figure 5-5 Wait State Circuit

5.2.3 Operation

80188 CPU Access to the Am7970A CEP

The CEP has many registers which provide
programmability of many different options such as
paper size, memory address control, and status
information._Access to these registers is started by
driving the CS signal LOW. This input is driven by
the Peripheral Chip Select Output of the 80188.
This signal also disables the data transceiver to the
memory bus. The different registers are
addressed by the address lines A0-A7 which are
directly connected to the CEP. The CEP drives
READY LOW as long as it needs to move the data
to or from the appropriate register. This operation
is called “slave access”.

Am7970A CEP Access to the Memory

As soon as the CEP is started, it activates its
internal DMA device to gain control of the memory
buffer. It signals this to the CPU by driving HRQ
HIGH. It then waits until HLDA is driven HIGH by
the CPU to acknowledge that the bus is released.
The CEP then starts a memory access. HLDA also
enables the address latch for the CEP and disable
the ones for the CPU. The CEP releases the bus
after each byte transfer. This operation is called
“master access”.

The data transceiver is activated all the time except
during a slave access. It normally drives data onto
the memory bus. Only when RD goes LOW and
CS is not active, the direction of the data
transceiver is switched to the opposite direction.

5.3 Am7970A CEP EVALUATION BOARD

5.3.1 Features

o Interface for IBM PC/XT or IBM AT on the same

board.

Automatic recognition of PC or AT enviroment.

Full master mode capability in IBM AT using AT

memory for system bus access.

1 MByte dynamic memory on board.

Dualport arbitration allows memory access from

CEP system and document side.

¢ PC/XT has full access into the on board memory
adressing it as 16 64KByte blocks in page
mode.

o All operating modes of CEP can be evaluated
with maximum performance.

e CEP hardware reset initiated by 1/0 address
access.

» Clock rate supplied by plug in exchangable clock
generators or from an external input.

o All/O adresses are memory mapped.

o Jumper selectable DRQ/DACK and IRQ lines.

¢ Performs master access to AT memory

5.3.2 The CEP Evaluation Board In An
IBM PC/XT

The IBM PC/XT does not allow another DMA
master beside its own on-board DMA device
working on the extension bus. Any attempt do so
without changing the logic on the mother board will
cause serious bus contention. That requires a
separate memory bank dedicated to the CEP and
accessible by the IBM PC/XT.

5-7

It is also quite useful to have enough memory
dedicated to the document bus to hold a whole
page of image data with a resolution of 300
Pixel/inch in memory. The evaluation board solves
this problem by giving both sides of the CEP full
access to a 1 MByte dynamic memory bank. That
gives the user the freedom to asign as much
memory to any side of the CEP as neccessary.

The on-board “system bus” is shared by the CEP
system interface and the CPU. So that makes it a
three port memory design.

Normally the “system bus” is dedicated to the CEP
system interface. If the CPU wants to access the
evaluation board through this bus from the
extension bus it drives “SBUSRQ” LOW by
accessing an /O address. The CPU is then kept
waiting by the logic with “l{OCHRDY” until the CEP
releases “HRQ". Then “HLDA” is driven LOW by
the interface logic to prevent the CEP from
reaccessing the bus.

As long as “SBUSRQ” is LOW, the CPU has free
access to the system bus. The document bus side
is kept in Wait state while “SBUSRQ" is active.

“‘SBUSRQ” is latched and must be reset by
another /0O access to a different address after
completion of the read and write cycles onto the
evaluation board. The CPU accesses the CEP
registers by driving “CEPRQ”, it accesses the
memory bank by driving “MEMRQ" and accesses
the page latch by driving “PAGE” LOW through
different I/O addresses.

Since the IBM PC/XT 1/O address layout does not
support enough consecutive /O addresses, all
CEP I/O addresses are memory mapped in this
design.

While the CEP is compressing or expanding a
document, the CPU either polls the status register
of the CEP or waits for an interrupt caused by the
completion or an exception of the process.

5.3.3 The CEP Evalution Board In An
IBM AT

The IBM PC/XT extension bus connector is fully
compatible with the new IBM AT connector. The
AT introduces an additional connector to provide
the extra signals needed for the increased memory
size and the 16 Bit data format. The AT also offers
a fully compatible PC/XT mode. Thus all functions
of the evaluation board designed for the IBM
PC/XT will also work on the AT without any change
in software and hardware.

In addition the evaluation board wants to make use
of the master mode capability offered by the AT
extension bus. To do so it uses the signals of the
added connector to perform a proper bus
arbitration on the extension bus. A ground pin on
that connector will tell the board that it is
connectedto the AT.

For slave mode, everything said in the previous
chapter will work the same except that there is now
no need for driving the “SBUSRQ" signal before
accessing the board because the system bus is
automatically released by the CEP due to the bus
arbitration. The access of the AT onto the
evaluation board is still in 8 bit PC/XT compatible
mode.

In master mode the system interface of the CEP
will no longer access the on-board memory but will
place its address and data signals onto the AT
extension bus giving free access to all the memory
that is provided by the IBM AT. The bytes coming
out of and going into the CEP have to be divided
into the upper and lower data bus of the AT
according to the address being even or uneven.

Figure 5-6 is a system memory map of the
Evaluation Board. Figure 5-7 is a block diagram.
The PAL device equations are given in the
following pages.

5-8

07666A 5-6

X'00000"
X'20000*
X'40000°

X'60000"

X'80000"

X'90000"

X'A0000"

X'B0000*

X'C0000*

X'F0000*

X'100000

256 KB RAM ON
IBM PC/AT SYSTEM BOARD

FUTURE EXPANSION
(256 KB)

ADDRESS ASSIGNED TO CEP,
RESET, SBUSRQ, AND PAGE REGISTER

64K RAM OF CEP SYSTEM BOARD
MEMORY (1 PAGE OUT OF 1 MBYTE)

64 KB GRAPHICS DISPLAY BUFFER

SEL =1

SEL=2

» SEL=3

40KB SYSTEM ROM

ADDITIONAL AT
MEMORY EXTENSION

/—_/

Figure 5-6 Evaluation Board System Memory Map

5-9

IBM XT/AT EXTENSION BUS

16-BITSYSTEM
8 N sat7-19 - - ADDRESS BUS
3 oE 7 AO-A15
£ 2959 2x 2049 A
3 A g
2 LA17-19 {
3 SA0-SA15
& < T 8-BIT SYSTEM
g ADDRESS/DATA BUS
21 | | AD16-AD23
2
o N SA16-SA19, LA16-23]
(7]
w
&
2 \} OF 2956 G ‘T
I\
SD8-SD15
2 | K
- |
£
; U T30
3 SD0-SD7 A 8 A
E K B 2047 2947
e D TR TR CD
V . AACK (PAL3)
ENTER
| | PAGLE (PAGE LATCH)
BLEN BHEN
DIR ADRC
SMEMW ALE
— +5V+5V
SMEMR INTERFACE
B
SA0 22v10 HLDA
SBHE RD
REFRESH o, TO MEMORY MEMRQ_SBUSRQ Wa
(DACKO) CONTROLLER CLK CEPRQ DELRDY
o=
IRQ o— 11 INTR
o—e
5 MHZ — -
ATEN HLDA ACKA PAGLE
+5V+8V READY ALE ENTER
4.7K1 SBUSR
GND AT PIN D18 o—e ATND D |— A“‘gg;o‘\
- __o0o—s —
DACKn o—se 1} DACK
o—e —
MASTER MASTER ARBITER WR
— i EVBPAL2B +5V
N ow—e m.
DRQ } bRa Am22V10 ¥
VEMW MEMW HRQ HRQ
MEMR MEMR REVA
CLK CLK
DELRDY PAGE :
TO MEMORY &=
CONTROLLER
RESET
+5V
RESETDRV L EXT ? 5 MHZ
RESETDRV GEPRG_PAGE | *3V*%Y 10 MHz Ls7a | ik
SA13-SA16 > MEMRQ ssusgggw 47K e
EVBPAL1
BALE AADB:‘GELgs SEL1 D 07666A 5-7A
SMEMW DECODER SEL2
1K ———
Figure 5-7a CEP Evaluation Board Interface for IBM PC/XT and AT (Part 1) +5V 5 MHZ

5-10

16-BIT_SYSTEM
ADDRESS BUS
A0-A15 Am2959
> ADDRESS BUFFER
EN
. PAGLE
| PAGE LATCH
2016 A0z wlST SN, < ‘ ’
AD16-23
A Am2956 ‘
K ADDRESS LATCH
A0-A15 EN
16-BIT
DOCUMENT
ADDRESS BUS Am2959
DAO-DA15 > ADDRESS BUFFER
EN
+5V
4.7K
DALE
8BIT
DOCUMENT S
ADDRESS/DATA BUS Amoss
.
0AD16-DAD23 K) IS —
EN
RD
3
PAN
Am7970A
CEP TR
Am2947 DATA
By PR o0 01| G— £
CD g
+5V I %
47K o
DRD 3
| ¥
TR é’
Am2947 DATA
B— [] — z
cD P
| 2 =
2
+5V - u<:
47K —————— MEMRQ T T +5V E
DWR — ENTER T z
— OE MCo LE e
DREADY __DRD__ENB_ENTER &
RD ENA MEMRQ RAS! =
DALE TABO Am2968 E
DWR TAB2 MSEL
ACKA +—————— ACKA TAB3 A0-A7 <
REFRESH ——— = FR TABS
WR WR I—» MCl
AFRG CS___RASn__
REV B ACKB CAS| CASn @n
RI
REVA EVBPAL3 onst 1
RES DUAL-PORT
Q D— MEMORY/REFRESH 1 MBYTE DYNAMIC
CONTOLLER MEMORY
07666A 578 s74 o 330 wE
CLOCK WE AAA WE QDo-7
32x256x1 BIT \}
5 MHZ

Figure 5-7b CEP Evaluation Board Interface for IBM PC/XT and AT (Part 2)

5.3.4 Evaluation Board PAL Device Equations

PARTNO

NAME
DATE
REV

NONE;
EVBPALL;
11-6-85;

DESIGNER
COMPANY

ASSEMBLY
LOCATION

1.1

;

Wolfgang Kemmler;
Advanced Micro Devices;

CEP
U6l

Evaluation Board;

;

/* Pal Assembler: CUPL (Assisted Technology) */
/**/

/*
/*
/*
/*

*/
Address Decoder for */
Am7970 CEP Evaluation Board */
*/

/**/

PAL16L8 */

*/

= !PAGE; /* Latch enable foe Page Latch */

= ICEPRQ; /* CEP Chip Select */

= ISBUSRQ; /* On Board System Bus Request */

= !'ADDR; /* Interm. Signal for Addr. Decoding */

!MEMRQ; /* On Board Memory Request */

*/
/*
/x

/*
/*
/*

Addresses from Extension Bus */
Address range select inputs */

Write Signal from Ext. Bus */
RESET Input from Ext. Bus */
Address latch enable ™ " */

/* Target Device Type :
/* Outputs :

PIN 19

PIN 17

PIN 16

PIN 15

PIN 14 = RSOUT; /* RESET */
PIN 12 =

/* Inputs :

PIN [1..7] = [Al3..19];
PIN [8..9] = [S0..1];
PIN 10 = GND;

PIN 11 = !SMEMW;
PIN 13 = RSIN ;

PIN 18 = BALE;

PIN 20 = VCC;

/* Declarations and Intermediate Variable Definitions : */

FIEL

D

FIELD
FIELD

UADDR = [Al17..19];
LADDR = [Al1l3..15];
SEL = [S0,81];

/* Upper Address Range */
/* Lower Address Range */
/* Address range select field */

/* Address range definitions: */

/* Upper Address range : */

USEL3 = UADDR: [80000..9ffff];

USEL2 = UADDR: [60000..7ffff];

USEL1 = UADDR: [40000..6ffff];

/* Lower Address range: */

ADRO = !A16&ADDR&LADDR: [0000..1fff]; /*CEP register access */
ADR1 = !A16&ADDR&LADDR: {2000..3fff]; /*ask for S-Bus */
ADR2 = !A16&ADDR&LADDR: [4000..5fff]; /*release S-Bus */
ADR3 = !A16&ADDR&LADDR: [6000..7fff]); /*Pageaddr. into Pageregister
ADR4 = !A16&ADDR&LADDR: [8000..9fff]; /*CEP hardware RESET aktiv
ADR5 = !A16&ADDR&LADDR: [a000..bfff]; /*CEP hardware RESET inaktiv

*/
*/
*/

5-12

/*LOGIC EQUATIONS : */

ADDR = SEL:3 & USEL3 & !BALE /*SEL selects 3 allowed */
SEL:2 & USEL2 & !BALE /* "addressranges (blocks of*/
SEL:1 & USELl & !BALE ; /* "128kBytes)*/

MEMRQ = Al6 & ADDR & !BALE ; /*RAccess on board memory access*/

SBUSRQ = ADR1l & SMEMW /*Request the S-Bus */
SBUSRQ & ! (ADR2 & SMEMW) ;

PAGE = ADR3 & SMEMW; /*Load Page address into */
/*Pageregister*/
RSOUT = ADR4 & SMEMW & RSIN /*Software controlled */
RSOUT & ! (ADR5 & SMEMW) ; /* Hard Reset */
CEPRQ = ADRO & !RSOUT ; /*CEP Register Access */

/* (Memory mapped)*/

PARTNO NONE;

NAME EVBPAL2A;

DATE 11-6-85;

REV 1.2;

DESIGNER Wolfgang Kemmler;

COMPANY Advanced Micro Devices;

ASSEMBLY CEP Evaluation Board;

LOCATION U31;

/* Pal Assembler: CUPL (Assisted Technology) */
/**/
/* */
/* IBM XT/AT Extension Bus Interface Controller */
/* for Am7970 CEP Evaluation Board */
/* */

[/ Kk ok ok ek ok ok koK K ok K Kk K K Kk Kk K kR K ok ok Kk ok Kok ok ok ok k ok ke ke ok R ke /

/* Target Device Type : AmPal 22V10 */
/* Outputs: */

PIN 23 = IOCHRDY; /* Open Coll. Extension Bus Signal */
PIN 22 = !RD; /* CEP Signal */

PIN 21 = !WR; /* " */

PIN 20 = !BLEN; /* Data transceiver low enable */

PIN 19 = !BHEN; /* Data transceiver high enable */
PIN 18 = !ADDRC; /* Address receiver enable */
PIN 17 = DIR; /* Direction controll of data transc. */
PIN 16 = SBHE; /* Extension Bus Signal */
PIN 15 = DELRDY; /* Signal helps generating two wait states */
/* for Rev.A CEP - IBM AT interface combination */
PIN 14 = IONRDY; /* Interm. I/O Not Ready Signal */

/* Input: */
PIN 1 = CLK; /* CEP clock (5 MHz) */

PIN 2 = !SBUSRQ; /* On board system bus access request */
PIN 3 = !CEPRQ; /* CEP register access request */

PIN 4 = !MEMRQ; /* On board memory access request */
PIN 5 = !ATEN; /* AT Mode enable */

PIN 6 = HLDA; /* CEP signal */

PIN 7 = READY; /* CEP signal */

PIN 8 = ACKA; /* Acknowledge from on board memory */
PIN 9 = !SMEMW; /* Extension bus signal */

PIN 10 = !SMEMR; /* " */

PIN 11 = SAO; /* " */

PIN 12 = GND;

PIN 13 = !PAGE; /* Page latch access request */

PIN 24 = VCC;

5-13

/* Logic Equations : */

WR.OE = !'HLDA ; WR = SMEMW & (CEPRQ # MEMRQ) ;

RD.OE = !HLDA ; RD SMEMR & (CEPRQ # MEMRQ) ;

BHEN ATEN & SAO & (RD # WR) ;

BLEN

ATEN & !SAO & (RD # WR)
CEPRQ & !HLDA & (SMEMR # SMEMW)
MEMRQ & !'HLDA & (SMEMR # SMEMW)
PAGE & !'HLDA ;
IOCHRDY.OE = IONRDY; IOCHRDY = !IONRDY ;
IONRDY = HLDA & SBUSRQ

!HLDA & (SMEMR # SMEMW)

& (MEMRQ & !ACKA # CEPRQ & !READY) ;

ADDRC = !HLDA & (CEPRQ # MEMRQ) ;
DIR = HLDA & WR # !HLDA & SMEMR ;

SBHE.OE = ATEN ; SBHE = !SAO ;

DELRDY.D = RD # WR ;
DELRDY.AR = 'b'0 ; DELRDY.SP = 'b'0 ;

PARTNO NONE;

NAME EVBPAL2B;

DATE 1-13-85;

REV 1.3;

DESIGNER Wolfgang Kemmler;

COMPANY Advanced Micro Devices;

ASSEMBLY CEP Evaluation Board;

LOCATION U30;

/*Pal Assembler: CUPL (Assisted Technology) */
/**/
/* */
/* IBM XT/AT Extension Bus Arbiter */
/* for the CEP Evaluation Board */
/* */

/*********~k********************i*************************/

/* Target Device Type : AmPal22V10 */
/* Inputs : */

PIN 1 = CLK; /* Extension bus clock */

PIN 2 = !RD; /* CEP signal */

PIN 3 = !WR; /* " */

PIN 4 = HRQ; /* " */

PIN 5 = ACKA; /* On board memory acknowledge */

PIN 6 = !SBUSRQ; /* Onboard system bus request */

PIN 7 = !DACK; /* Extension bus arbitration signal */

PIN 8 = !PAGE; /* Page Latch access request */

PIN 9 = !ATMD; /* AT Mode Indicator */

PIN 10 = REVA; /* CEP Revision A Indicator (adds 1 wait state)*/
PIN 11 = ALE; /* CEP signal */

PIN 13 = DELRDY; /* Delay Ready */

/* Outputs : */

PIN 23 = !MASTER; /* Extension bus arbitration signal */

5-14

PIN 22 = DREQ; /* " */

PIN 21 = !MEMW; /* Extension bus signal */

PIN 20 = !MEMR; /* " */

PIN 19 = READY; /* CEP signal */

PIN 18 = HLDA; /* " */

PIN 17 = !'ATEN; /* Enable master interface to AT ext. bus */
PIN 16 = ENTER; /* Onboard memory access request */

PIN 15 = EARLY; /* Intermediate signal for “ENTER” */

PIN 14 = PAGLE; /* PAGE LATCH ENABLE signal */

/* Logic Equations : *x/

ATEN.D = MASTER & ATMD;
ATEN.AR = 'b'0 ; ATEN.SP

B0 ;
MASTER.OE = HRQ & HLDA & ATMD;
MASTER.D = HRQ & HLDA & ATMD;
MASTER.AR = 'b'0 ; MASTER.SP = 'b'0 ;

DREQ.D = HRQ & ATMD & !DACK
DREQ & HRQ & ATMD ;

DREQ.AR = 'b'0O ; DREQ.SP = 'b'0 ;
MEMW.OE = ATEN ; MEMW = WR ;
MEMR.OE = ATEN ; MEMR = RD ;
HLDA = !ATMD & HRQ & !SBUSRQ

!ATMD & HLDA & HRQ

ATMD & DACK & DREQ

ATMD & HLDA & DREQ ;
EARLY = ALE # EARLY & !RD & !WR ;
ENTER = (EARLY & !ALE # RD # WR) & !ATMD & HLDA ;
PAGLE = ALE & HLDA # PAGE & !HLDA ;
READY.OE = HLDA ;

READY = HLDA & ATMD & (RD # WR) & (DELRDY & REVA # !REVA)
ACKA & !'ATMD & (REVA & (RD # WR) # !REVA) ;

PARTNO NONE;

NAME EVBPAL3;

DATE 11-13-85;

REV 1.4;

DESIGNER Wolfgang Kemmler;

COMPANY Advanced Micro Devices;

ASSEMBLY Am7970 CEP Evaluation Board;

LOCATION u64;

/* Pal Assembler: CUPL (Assisted Technology) */
/**************************‘k*********************************/
/* */
/* Dual Port Dynamic Memory Access/Refresh Controller */
/* for Am7970 CEP Evaluation Board */
/* */
/*********k***i‘****t**/
/* Target Device Type : PAL22V10 */
/* Inputs : */

PIN 1 = clock ; /* 5MHz clock synchr. & inverted */

5-15

/* to CEP clock */

PIN 2 = tab3 ; /* 60% Tab of 150ns delay line */
PIN 3 = tabs ; /* 100% " */
PIN 4 = dale ; /* CEP signal document side *x/
PIN 5 tdrd ; /* " " */
PIN 6 = !dwr ; /* " " */
PIN 7 = tab2 ; /* 40% Tab of delay line */
PIN 8 = lwr ; /* CEP signal system side */
PIN 9 = trd ; /* " " */
PIN 10 = !memrg ; /* On board memory request *x/
PIN 11 = fr ; /* REFRESH from IBM AT; DACKO from IBM XT */
PIN 12 = GND ;
PIN 13 = enter ; /* CEP system interface access request */
/* Outputs : */
PIN 23 = tab0 ; /* Input of delay line */
PIN 22 = !rfrq ; /* Interm. signal for refresh arb. */
PIN 21 = !we ; /* Write enable for on board memory */
PIN 20 = endcyc; /* Intermediate signal for document *x/
/* side arbitration */
PIN 19 = fh; /* Interm. signal for refresh arb. */
PIN 18 = tenb ; /* Enable document side to memory */
PIN 17 = ackb ; /* Acknowlege document side access */
PIN 16 = acka ; /* " system " " */
PIN 15 = !ena ; /* Enable system side to memory */
PIN 14 = casi ; /* CASI for 2968 */
/* Logic Equations : */
ena = enter & !rfrq & !enb & !(!fh & fr) & !tab3

(rd # wr) & !rfrqg & !enb & memrq & !tab3
ena & (enter # rd # wr) & !rfrq ;

enb = (!dale & !endcyc # drd # dwr) & !(!fh & fr)

& !enter & !rfrqg & !ena & !tab3

enb & (!dale & !endcyc # drd # dwr) & !rfrq & l!ena ;
endcyc = drd # dwr # endcyc & !dale ;
tab0 = ena # enb # rfrq & (!tab3 # !tab5) ;

acka.d = ena & !rfrq & !enb ;

ackb.d

enb & !rfrq & l!ena ;
fh = fr & rfrq & tab0 # fh & fr ;

rfrq = fr & !fh & !ena & !enb & !tab3
rfrq & (tab0 # tab2) ;

we = ena & l!enb & !rfrq & wr # enb & !ena & !rfrq & dwr ;
casi = tab2 & (we # ena & rd # enb & drd) ;

acka.ar = 'b'0
acka.sp = 'b'0

ackb.ar = 'b'0
ackb.sp = 'b'0

e ve Se .

5-16

Appendix A

THROUGHPUT PERFORMANCE, 5 MHz CLOCK

The CEP throughput performance for 1-D, Group
3 and Group 4, compression and expansion,

A. 1-D Expansion

under various conditions is given in the following
pages. The performance measurements were
done with one wait state on both main memory and

document store buses. Without the wait state, the
performance can be improved. The figures in the

“no wait” column in the tables are the calculated
performance results without a wait state.

The throughput performance was measured using
the following configurations:

1. Throughput performance of expansion for 200
ppi document. Picture data buffer is in the
document store and coded data buffer in the

Doc. Throughput
No. Performance
(in mbit/sec.)
OneWait No Wait
1 5.89 7.00
2 6.96 8.56
3 5.08 5.93
4 3.24 3.58
5 4.78 5.52
6 6.17 7.50
7 5.12 6.02
8 6.42 7.81

main memory.

B. Group 3 Expansion

2. Throughput performance of compression for
200 ppi document. Picture data buffer is in the
document store and coded data buffer in the
main memory.

3. Throughput performance of compression for
200 ppi document. Both picture data buffer
and coded data buffer are in the document
store.

4. Throughput performance of expansion for 400
ppi document. Picture data buffer is in the
document store and coded data buffer is in the
main memory.

Doc. Throughput
No. Performance
(in mbit/sec.)
One Wait No Wait
1 3.91 488
2 3.44 4.16
3 3.00 3.55
4 1.91 214
5 2.85 3.36
6 3.35 4.06
7 2.02 227
8 2.75 321

5. Throughput performance of compression for

C. Group 4 Expansion

400 ppi document. Picture data buffer is in the
document store and coded data buffer is in
main memory.

TEST #1
Test Conditions

1. Compressed data buffer in main memory

2. Picture data buffer in document store memory

3. One wait state on both main memory and
document store buses.

4. The data in the “no wait” column is the

Doc. Throughput
No. Performance
(in mbit/sec.)
One Wait No Wait
1 3.00 3.54
2 2.94 3.45
3 2.09 2.33
4 1.76 1.93
5 2.02 2.25
6 2.62 3.01
7 1.85 2.04
8 2.22 2.49

estimated throughput without the wait state.

5. Test documents are CCITT standard test
documents

6. Resolutionis 200 pixels perinch

TEST #2

Test Conditions:

wn =

Compressed data buffer in main memory

Picture data buffer in document store memory
One wait state on both main memory and
document store buses.

The data in the “no wait” column is the
estimated throughput without the wait state.
Test documents are CCITT standard test
documents

Resolution is 200 pixels per inch

A. 1-D Compression

Doc. Throughput
No. Performance
(in mbit/sec.)
OneWait No Wait
1 6.22 7.36
2 6.75 8.11
3 5.37 6.21
4 3.89 4.31
5 5.16 5.92
6 5.98 7.04
7 4.07 4.53
8 5.90 6.92

B. Group 3 Compression

Doc. Throughput
No. Performance
(in mbit/sec.)
One Wait No Wait
1 4.08 4.96
2 4.09 4.98
3 2.96 3.40
4 1.96 2.14
5 2.78 3.16
6 3.54 4.19
7 2.03 2.23
8 3.34 3.91

C. Group 4 Compression

Doc. Throughput
No. Performance
(in mbit/sec.)
OneWait No Wait
1 3.74 4.60
2 3.67 4.55
3 2.61 3.00
4 1.69 1.84
5 244 2.77
6 3.17 3.76
7 1.75 1.93
8 2.96 3.48
TEST #3
Test Conditions

1. Compressed data buffer in document store
memory

2. Picture data buffer in document store memory

3. One wait state on document store bus.

4. The data in the “no wait” column is the

estimated throughput without the wait state.

5. Test documents are CCITT standard test

documents

6. Resolutionis 200 pixels perinch

A. 1-D Compression

Doc. Throughput
No. Performance
(in mbit/sec.)
OneWait No Wait
1 6.25 7.40
4 3.91 4.33
7 4.09 4.56

A-2

B. Group 3 Compression

Group 4 Expansion

Doc. Throughput Doc. Throughput
No. Performance No. Performance
(in mbit/sec.) (in mbit/sec.)
OneWait No Wait OneWait No Wait
1 4.08 497 4 2.84 3.31
4 1.97 2.16 7 2.86 3.34
7 2.04 2.23
C. Group 4 Compression TEST #5
Doc. Throughput Test Conditions:
No. Performance

(in mbit/sec.)

OneWait No Wait

1 3.75 4.61
4 1.69 1.84
7 1.76 1.93
TEST #4
Test Conditions:

Compressed data buffer in main memory

Picture data buffer in document store memory
One wait state on both main memory and
document store buses.

The data in the “no wait” column is the
estimated throughput without the wait state.
Test documents are CCITT standard test
documents

Resolution is 400 pixels perinch

> L

> o

I Y

Compressed data buffer in main memory

Picture data buffer in document store memory
One wait state on both main memory and
document store buses.

The data in the “no wait” column is the
estimated throughput without the wait state.
Test documents are CCITT standard test

documents
. Resolution is 400 pixels per inch

Group 4 Compression

Doc. Throughput
No. Performance
(in mbit/sec.)
OneWait No Wait
4 2.73 3.16
7 2.71 3.12

Appendix B
IMAGE FILE ANALYSIS PROGRAM LISTING
(Deyoung Hong—10/17/84)

**/

#include "stdio.h"

#define CLKRATE 5.0e6 /* 5 MHz clock rate */

#define HTIME 5 /* CPU arbitration time */

#define EOL 12+1 /* End Of Line + 1 bit */

#define RTC 5*EOL /* Return To Control */

#define EOFB 2*EOL /* End of Facsimile Block */

#define PASSMODE 4 /* Pass Mode Coding */

#define VRLO 1 /* Vertical 0 Mode Coding */

#define VRL1 3 /* Vertical 1 Mode Coding */

#define VRL2 6 /* Vertical 2 Mode Coding */

#define VRL3 7 /* Vertical 3 Mode Coding */

#define CPMEOF O0Ox1A /* end of file */

/* Table of number of color changes contains in each byte (value 0 to 255) */

char ncc(256] = {0,1,2,1,2,3,2,1,2,3,4,3,2,3,2,1,2,3,4,3,4,5,4,3,2,3,4,3,2,3,
2,1,2,3,4,3,4,5,4,3,4,5,6,5,4,5,4,3,2,3,4,3,4,5,4,3,2,3,4,3,
2,3,2,1,2,3,4,3,4,5,4,3,4,5,6,5,4,5,4,3,4,5,6,5,6,7,6,5,4,5,
6,5,4,5,4,3,2,3,4,3,4,5,4,3,4,5,6,5,4,5,4,3,2,3,4,3,4,5,4,3,
2,3,4,3,2,3,2,1,1,2,3,2,3,4,3,2,3,4,5,4,3,4,3,2,3,4,5,4,5,6,
5,4,3,4,5,4,3,4,3,2,3,4,5,4,5,6,5,4,5,6,7,6,5,6,5,4,3,4,5,4,
5,6,5,4,3,4,5,4,3,4,3,2,1,2,3,2,3,4,3,2,3,4,5,4,3,4,3,2,3,4,
5,4,5,6,5,4,3,4,5,4,3,4,3,2,1,2,3,2,3,4,3,2,3,4,5,4,3,4,3,2,
1,2,3,2,3,4,3,2,1,2,3,2,1,2,1,0};

/* Length of the compressed codewords in the Modified Huffman Code Tables */

char wtermc(64] = {8,6,4,4,4,4,4,4,5,

char wmakec[41]

char btermc([64]

char bmakec([41]

I

5,5,5,6,6,6
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8};
{8,5,5,6,7,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,6,9, 11,
11,11,12,12,12,12,12,12,12,12,12,12};
{8,3,2,2,3,4,4,5,6,6,7,7,7,8,8,9,10,10,10,11,11,11,11,11,11,
11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,
12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12};
{8,10,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,
13,13,13,13,13,13,13,13,11,11,11,12,12,12,12,12,12,12,12,
12,12};

/* files are used as global variables */

char fnamin([20];
char fnamout [20];
int fdin;

FILE *fdout:;

/*
/*
/*
/*

image file name */

output file to store results */
input file descriptor */

ouput file descriptor */

main ()

{

float compld(); /* floating point function compld() */
float expald(); /* floating point function expald() */

int ndwait;
int ncwait;
int linelen;
int pagelen;
float fecc(8]:
float cprld;
float cpthld;
float exthld;
float cpr2d;

/*

/*
/*
/*
/*
/*
/*
/*

of wait cycles introduced by doc memory */
of wait cycles introduced by main mem */
number of pixels in one scan line */

number of lines in a page */

fraction of color-change count */
compression ratio for one dimension */
compression throughput for one dimension */
expander throughput for one dimension */
compression ratio for two dimensions */

float cpth2d; /* compression throughput for two dimensions */

float exth2d; /* expander throughput for two dimensions */
int dim; /* coding dimension */

int kfact; /* k-factor of dimension */

int k;

printf ("\n***kkkkkxkkkkk*k* IMAGE FILE ANALYSIS PROGRAM ***k**kx*kx*kx**x**x\n\n") ;

printf ("> Name of image file to be analyzed? "):
scanf ("%s", fnamin) ; .
if ((fdin = open(fnamin,BREAD)) < 0) /* open file for binary read */
{ printf("\7QERROR STATUS: Can't open file %s\n", fnamin);
exit ()

}

printf ("> Number of wait cycles introduced by the document memory? ");
scanf ("%d", &endwait) ;

printf ("> Number of wait cycles introduced by main memory? "):
scanf ("%d", &ncwait) ;

printf ("> Maximum number of pels per line? ");

scanf ("%d",&linelen);

printf ("> Maximum number of lines per page? "):

scanf ("%d", &pagelen);

printf ("> Dimension of coding (1 or 2)2? ");

scanf ("%d", &dim) ;

kfact = -1;
if (dim == 2)
{ printf ("> Enter parameter k (0 for infinity): "):

scanf ("%d", &kfact) ;
}
printf("> Name of file to store output results? ");
scanf ("%s", fnamout) ;

if ((fdout = fopen (fnamout,"w")) == 0) /* open file for ASCII write */
{ printf ("\7@ERROR STATUS: Can't open file %s\n", fnamout):
exit();

}
if (kfact == 0) printf("\n%% GROUP IV CODING IS ASSUMED %%\n\n"):
else printf("\n%% GROUP III CODING IS ASSUMED %%\n\n"):;
if (kfact < 0) /* case of one dimensional coding */
{ scanld(linelen, pagelen, fcc, &cprld) ;

printf("Fractional number of bytes which contain ");

printf ("0 through 7 color changes:\n");

for (k = 0; k <= 7; k++)

if (fcclk] > 0.000) printf("\tf%0d = %0.3f\n",k, fcc(k]):

printf ("\nl-D Compression Ratio = %0.3f\n",cprld):;

cpthld = compld(fcc,ncwait,ndwait,1.0/cprld) / 1.0e6;

printf("1-D Compressor Throughput (in MBPs) = %0.3f\n",cpthld):

exthld = expald(fcc,ndwait,1.0/cprld) / 1.0e6;

printf("1-D Expander Throughput (in MBPs) = %0.3f\n",exthld):

presult (linelen,pagelen,ndwait, ncwait, kfact, fcc,cprld, cpthld, exthld);
}
else /* case of two dimensional coding */
{ scan2d(linelen,pagelen, kfact, fcc, &cpr2d) ;

printf ("Fractional number of bytes which contain "):

printf("0 through 7 color changes:\n");

for (k = 0; k <= 7; k++)

if (fcclk] > 0.000) printf("\tf%0d = %0.3f\n",k,fcclk]):

printf ("\n2-D Compression Ratio = %0.3f\n",cpr2d):;

cpth2d = compld(fcec,ncwait,ndwait,1.0/cpr2d) / 4.0e6;

printf("2-D Compressor Throughput (in MBPs) = %0.3f\n",cpth2d);

exth2d = expald(fcc,ndwait,1.0/cpr2d) / 4.0e6;

printf ("2-D Expander Throughput (in MBPs) = %0.3f\n",exth2d);

presult (linelen,pagelen, ndwait, ncwait, kfact, fcc, cpr2d, cpth2d, exth2d) ;
}
close(fdin); /* close files */
fputc (CPMEOF, fdout) ;
fclose (fdout) ;

printf ("\n***********************************‘kﬁ************************\n");
/*

Function huffcode takes as input the number of white or black pixels and
returns the number of bits correspond to the Huffman code table.

*/
int huffcode(npixels,bw)
int npixels, bw;
{
switch (bw)
{ case 0: 1f (npixels < 64) return(wtermc[npixels]);
return (wmakec [npixels/64] + wtermc[npixels%64]);
case 1: if (npixels < 64) return(btermc[npixels]):
return (bmakec [npixels/64] + btermc[npixels%64]);
default: return(0);
}
}
/*
Function codeld scans a line of code and return the number of count of the
compression data of one dimensional coding.
*/
int codeld(line)
char *line;
{
unsigned char flag: /* flag signaling change of pels */
int pixel(3]; /* pixel count - 0 white - 1 black */
int compcount; /* compression data count in a line */
int j;
flag = 2;
compcount = 0;
for (j = 0; *(line+j) != '\0'; j++) /* scan through string of pels */
{ if (flag != (*(line+j) - '0')) /* if pels change */
{ compcount = compcount + huffcode (pixel[£flag), flag);
flag = *(line+j) - '0'; /* reset flag */
pixel(flag] = 1; /* count first pixel */
}
else ++(pixel[flag]): /* otherwise upcount pels */

}
compcount = compcount + huffcode(pixel(flag],flag):
return (compcount) ; /* return compress data count */

/*

Function code2d scans a line of code and its reference line, then return the
number of count of the compression data of two dimensional coding.

*/

int code2d(codeln, refln)
char *codeln, *refln;
{

int a0, al, a2, bl, b2; /* reference points of lines */

int compcount; /* compression data count */

int j;
compcount = 0;
for (a0 = 1; *(codeln+al) == *(codeln+al-1); al0++); /* detect first a0 */
do /* repeat loop */
{ if (*(codeln+al) == '\0'") /* if a0 is at end of line then */

B-3

{ al = a2 = a0;
bl = b2 = a0;

}

else

{ for (al = a0+1;
for (bl = a0+1;

if (*(refln+bl)
for (bl = bl+1l;
if (*(refln+bl)

/* set all references at end of line */

/* otherwise detect al, bl, and b2 */
* (codeln+al) == *(codeln+al-1); al++);
*(refln+bl) == *(refln+bl-1); bl++);
== *(codeln+al))
*(reflntbl) == *(refln+bl-1); bl++);
== '"\0") b2 = bl;

else for (b2 = bl+l; *(refln+b2) == *(refln+b2-1); b2++);

}

if (b2 < al) /* if b2 is at left of al then */

{ compcount += PASSMODE; /* do pass mode coding */
a0 = b2;

}

else /* else check for vertical or horizontal mode coding */

{ switch (al-bl)

{ case 0O:
compcount +=
a0 al;
break:

case 1: case -1:
compcount +=
a0 = al;
break;

case 2: case -2:
compcount +=
a0 = al;
break;

case 3: case -3:
compcount +=
a0 = al;
break;

default: /* horizontal mode coding */
if (*(codeln+al) == '\0') a2 = al; /* detect a2 */
else for (a2 = al+l; *(codeln+a2) == *(codeln+a2-1l); a2++);

/* case V(0) - vertical mode */
VRLO;

/* case VR(1l) or VL(1l) */

VRL1;

/* case VR(2) or VL(2) */

VRLZ:;

/* case VR(3) or VL(3) */

VRL3:;

compcount = compcount + 3 + huffcode(al-a0l,* (codeln+al)):
compcount = compcount + huffcode(a2-al, * (codeln+al));

a0 = a2;

break;

}
} while (*{(codeln+a0)
return (compcount) ;

t='\Q0"): /* until end of line */

/* return compresiion data count */

/*
Function scanld reads data from the specified document and computes the
one dimensional compression ratio and the fractional number of bytes which
contain number of k-color changes.

*/

scanld(linelen,pagelen, fcc, cprid)
int linelen, pagelen;
float fec(8]:
float *cprld:
{
extern long ltell():
int nbytes;
int nbread;
unsigned char *buffer;
unsigned char *pxline;
unsigned char flag:
long compdata;

/*
/*
/*
/*
/*
/*

number of bytes in one scan line */
number of bytes read each time */
line containing data from file */
bit representation of data line */
flag containing current bit */
total compression data count */

B-4

long cc(8]; /*
int pixel(3]; /*
int j, k:

compdata = 0;

for (k = 0; k <= 7; k++) cclk]
nbytes = linelen/8:

pxline = alloc(linelen + 1);
buffer = alloc(nbytes + 1);

printf("File reading: "):
for (j = 0; j < pagelen; j++)

color changes count */
black and white pixels count */

/* initialize variables */

]

0;

/* allocate memory space */

/* scan the whole page */

{ if ((nbread = read(fdin,buffer,nbytes)) <= 0) break; /* read a line */

for (k = 0; k < nbread; k++)
{ ++(ccncc(*(buffer+k)]]):

sprintf (pxline+k*8, "%08b", * (buffer+k));

}

/* count color-changed bytes */
/* bytes to pels */

/* 1-D coding with EOL */

compdata = compdata + codeld(pxline) + EOL;
if ((j%75) == 0) putchar('\n'):
putchar('.');

}

compdata = compdata + RTC;

putchar('\n'"):;
putchar('\n");
if (nbread < 0)

/* RTC at end of file */

/* case of error during read */

{ printf("\7@WARNING: Error during read file %s\n"):;

printf ("
}
for (k = 0; k <= 7; k++) fcclk] =
*cprld = 8.0 * ltell(fdin) / compdata:;

free(pxline);
free (buffer);

/*

Data Analysis may be incorrect.\n");

cclk] * 1.0 / ltell(fdin);
/* 1-D compression ratio */
/* return to free space */

Function scan2d reads data from the specified document and computes the
two dimensional compression ratio and the fractional number of bytes which
contain number of k-color changes.

*/

scan2d (linelen, pagelen, kfact, fcc, cpr2d)

int linelen, pagelen, kfact;
float fcc(8]:
float *cpr2d;
{
extern long ltell():;
int nbytes;

int nbread; /*
unsigned char *buffer; /*
unsigned char *codeln; /*
unsigned char *refln; /*
unsigned char flag: /*

long compdata;
long cc[8];
int pixel([3]:
int i, j, k:

k 1;

compdata 0;

for (j =0; j<=7;
nbytes = linelen/8;
codeln alloc(linelen + 1);
refln alloc(linelen + 1);
buffer alloc(nbytes + 1);

j++) cclj]

number of bytes in one scan line */
number of bytes read each time */
line containing data from file */
the coding line of pixels */

the reference line of coding line */
flag containing current bit */

total compression data count */
color changes count */

black and white pixels count */

/* initialize variables */
0;

/* allocate memory space */

/*

printf("File reading: "):

for (j = 0; j < linelen; j++) *(refln+j) = '0°'
'‘\O"';
for (i = 0; i < pagelen; i++)

*(refln+j) =

{ if ((nbread =

for (j = 0;

}
if (kfact ==
compdata

else if ((k %

compdata
else
compdata
++k;
strcpy (refln

,codeln) ;

/* imaginary white line */
/* scan the whole page */

read (fdin,buffer,nbytes)) <= 0) break; /* read a line */

j < nbread; j++)
{ ++(cclncc(*(buffer+j)]]):
sprintf (codeln+j*8,"%08b", * (buffer+j));

/* count color-changed bytes */
/* bytes to pels */

) /* if k is infinity then */
= compdata + code2d(codeln,refln); /* do 2-D coding */
kfact) == 1) /* if first line of k lines then */
= compdata + codeld(codeln) + EOL; /* do 1-D coding */

/* else do 2-D coding with EOL */
= compdata + code2d(codeln,refln) + EOL;

[l

/* assign the reference line */

if ((i%75) == 0) putchar('\n'):

putchar('.');

}

if (kfact == 0)
compdata =

else compdata =

putchar('\n');

putchar('\n'");

if (nbread < 0)

/* if k is infinity then EOFB code */

compdata + EOFB;
compdata + RTC;

/* else RTC at end of file */

/* case of error during read */

{ printf ("\7@WARNING: Error during read file %s\n"):

printf ("
}
for (j = 0; j <=

*cpr2d = 8.0 * ltell(fdin) / compdata;

free(codeln):
free(refln);
free (buffer);

Data Analysis may be incorrect.\n"):;
7; j++) fcelj] = cc(j) * 1.0 / ltell(fdin);
/* 2-D compression ratio */
/* return to free space */

Function compld computes
document.

the one dimensional compressor throughput of a

*/

float compld(fcc,ncwait,ndwait,geol)
float fcc(8]:

int ncwait, ndwait;
float qeol;

(.

/*

float fetchtime;

int decc(8];

int i;

dec (0] = 0;
dec(l] = 6;

for (i = 2; <=

<

P

fetchtime = 0.0;

for (i =0; 1
fetchtime =

/* time spent fetching data from DS */
/* # of cycles required of each color change */

7; i++) dccli] = decli-1] + 3;

T: i++)

fetchtime + (fcc[i] * (3.0 + ndwait + dcc(i])):

return((CLKRATE * 8.0) / (geol * (3.0 + ncwait + HTIME) + fetchtime)):

Function expald computes
document.

the one dimensional expander throughput of a

B-6

*/

float expald(fcc,ndwait,qeol)
float fcc([8];

int ndwait;

float geol;

{

/*

for (i = 0;
fetchtime =
for (i = 0;

float fetchtime; /* time spent fetching data from DS */
int dce(8]: /* # of cycles required of each color change */
int i;

<= 7; i++) deceli]l = 1 * 2;

<= T; i++)
fetchtime = fetchtime + (fcc[i] * (3.0 + ndwait + dce[il)):

return((CLKRATE * 8) / (geol * (3.0 + ndwait + HTIME) + fetchtime)):

Function presult writes the output results of the analysed image file to the
ouput file.

*/

presult (linelen, pagelen,ndwait,ncwait, kfact, fcc,cpr, cpth, exth)
int linelen, pagelen, ndwait, ncwait, kfact:

float fcc(8):

float cpr, cpth, exth;

{

}

int k:

fprintf (fdout, "**x*x**kkkkkkxkkx*x TMAGE ANALYSIS PROGRAM EXECUTION REPORT ");

fprintf(fdout,"****************\n\n“);

fprintf(fdout,"” Image file analysed: %s\n",fnamin);

fprintf(fdout," Number of wait cycles introduced by the document memory:");

fprintf (fdout,” %d\n",ndwait);

fprintf (fdout," Number of wait cycles introduced by the main memory:");:

fprintf (fdout,"” %d\n",ncwait);

fprintf (fdout," Horizontal resolution: %d pels/line\n",linelen);

fprintf(fdout,™ Vertical resolution: %d lines/page\n\n",pagelen):

if (kfact < 0)

{ fprintf (fdout, "%$% ONE DIMENSIONAL CODING -- ");
fprintf (fdout, "GROUP III CODING IS ASSUMED %%\n\n");

}

else if (kfact == 0)

{ fprintf (fdout, "%% TWO DIMENSIONAL CODING (K = INFINITY) -- ");
fprintf (fdout, "GROUP IV CODING IS ASSUMED %%\n\n");

}

else

{ fprintf (fdout, "%$% TWO DIMENSIONAL CODING (K = %d) -- ",kfact):;
fprintf (fdout, "GROUP III CODING IS ASSUMED %%\n\n"):

}
fprintf (fdout,” Fractional number of bytes which contain "):
fprintf (fdout, "0 through 7 color changes:\n");

for (k = 0; k <= 7; k++)

if (fcclk] > 0.000) fprintf(fdout,”\tf%0d = %0.3f\n",k, fcc[k]);
fprintf (fdout,"\n Compression Ratio = %0.3f\n",cpr):
fprintf (fdout,” Compressor Throughput (in MBPs) = %0.3f\n",cpth);
fprintf (fdout,” Expander Throughput (in MBPs) = %0.3f\n\n",exth);
for (k = 0; k < 73; k++) fputc('*',fdout):
fputc('\n"', fdout) ;

/***/

B-7

Appendix C
GLOSSARY

AEOL
ALE

BBC

CBY
CDAHR
CDCAR
CDCHR
CcDC
CDF
CDLSR
CcDO
CDWCR
CED
CER
Changing
element
ciCc

CIE
CKR
CMCR
CNG
COA
Code word
CPR
CPWR
CRCR
CSA
CSAHR
CcSs
CSC
CSCAR
CSCHR
CSDN
CSLSR
CSO
CSR
CSWCR
CWR

DAC
DALE
DC

DCC
DER
DFC
DLC

DO

DRD
DREADY
Document
DWR

EBY

Automatic End-of-Line
Address Latch Enable

Byte Boundaries Control bit

Compressor Busy bit

Compressor Destination Address Holding Register
Compressor Destination Current Address Register
Compressor Destination Count Holding Register
Compressor Destination Control bit

Compressed Data Format Control Field
Compressor Destination Line Start Address Register
Compressor Destination Overflow bit

Compressor Destination Working Count Register
Called station identification (2100 hertz)
Compressor Express Register

An element whose color (black or white) is different from that of the previous
element along the same scan line. ltis the first element of a code word.
Compressor lllegal Command bit

Compressor Interrupt Enable bit

Compressor K-Register

Compressor Master Control Register

Calling tone (1100 hertz on for 0.5 sec. off for 3 sec.)
Compressor Busy and New Operation Attempted bit
A run length of either all white or all black elements
Compressor Parameter Register

Compressor Page Width Register

Compressor Restart Control Register

Compressor Source Attribute bit

Compressor Source Address Holding Register
Chip Select

Compressor Source Control bit

Compressor Source Current Address Register
Compressor Source Count Holding Register
Packet-switched data network

Compressor Source Line Start Address Register
Compressor Source Overflow bit

Compressor Status Register

Compressor Source Working Count Register
Compressor Wraparound Register

Destination Address Control bit
Destination Store Address Latch Enable
Destination Control bit

Destination Count Control bit

Data Error bit

Data Format Control bits

Destination Line Start Address Control bit
Destination Overflow bit

Document Store Read

Document Store Ready

One page full of data (8 1/2 x 11) (ISO A4 document)
Document Store Write

Expander Busy bit

ECD
EDAHR
EDC
EDCAR
EDCHR
EDLSR
EDO
EDWCR
EIC

EIE
EKR
EMCR
EOA
EOL

EOL
EOP
EPR
EPWR
ERCR
ESA
ESAHR
ESC
ESCAR
ESCHR
ESLSR
ESO
ESR
ESWCR
EWR
EXT

Fill

G-Parameter
Group 1

Group 2
Group 3

Group 4

HLDA
HRQ
Horizontal
Mode

IC
IE
INTR
ISDN

Extension Code Detected bit

Expander Destination Address Holding Register
Expander Destination Control bit

Expander Destination Current Address Register
Expander Destination Count Holding Register
Expander Destination Line Start Address Register
Expander Destination Overflow bit

Expander Destination Working Count Register
Expander lllegal Command bit

Expander Interrupt Enable bit

Expander K-Register

Expander Master Control Register

Expander Busy and New Operation Attempted bit
Code word following each line of data in Group 3. In addition it occurs prior to the first data
line of a page. The end of a document transmission is marked by six consecutive EOLs in
Group 3. Group 4 document ends with two EOLs. Format of EOL: 000000000001
End-of-Line

End-of-Page in Group 4 (two EOLs)

Expander Parameter Register

Expander Page Width Register

Expander Restart Control Register

Expander Source Attribute bit

Expander Source Address Holding Register
Expander Source Control bit

Expander Source Current Address Register
Expander Source Count Holding Register
Expander Source Line Start Address Register
Expander Source Overflow bit

Expander Status Register

Expander Source Working Count Register
Expander Wraparound Register

Extension bits

Variable length string of 0's. Fillmay be inserted between a line of data and an EOL but not
within a line of data. Fill is added to ensure that the transmission time of the total coded
scan line is not less than the minimum. The standard minimum s 20 milliseconds with 10, 5,
and 40 millisecond options.

Granularity Parameter

Facsimile transmission specification T.2 of CCITT. Six minutes to Transmit one ISO A4
document over a telephone-type circuit (no bandwidth compression).

Facsimile transmission specification T.3. Three minutes to transmit one ISO A4 document
(uses bandwidth compression).

Facsimile transmission specification based on 200 pels per inch resolution. One minute to
transmit one document (uses data compression and may use bandwidth compression).
Allows Teletex and mixed reception. Recommendation T.4 of CCITT.

Facsimile transmission based on 200 (Class 1), 300 (Class 2 and 3), and 400 pels (optional)
perinch resolution. Allows Teletex and mixed transmission and reception.
Recommendation T.6 of CCITT.

Hold Acknowledge

Hold Request

Coding mode used in two-dimensional coding when the changing element is more than
three elements away from the changing element on the reference line above. The code
consists of: 001 + M(apay) + M(ajap).

Illegal Command bit

Interrupt Enable bit

Interrupt Request

Integrated services digital network

ISO
ISO A4 paper

LMGR
LPI

MC
Mixed
MSR

NGC

ocC
(oF]]

PDN

PIS

PSDN
PSTN
Pass mode

Pixel, Pel

RD
READY
RESET
RMGR
RTC

RTC

Run length

SA

SAC

SC

SCC

SLC

SO
Standard
Resolution
TDC
TFLR
TMGR
Total coded

Two-dimen-
sional
Coding

Vertical
Mode

International Organization for Standardization
215 mmwide.

Left Margin Register
Line Processing Incomplete bit

Master Control bits
Combination of Image data and Text in one document
Master Status Register

Negative Compression bit

Operation Control bits
Open Systems Interconnection

Public Data Network

Procedure interrupt signal

Packet-switched data network

Public-switched telephone network

coding procedure in two-dimensional coding. Pass mode is identified when B, (on
reference line) is to the left of A¢ onthe coding line.

Picture element

Read

Ready

Reset

Right Margin Register

Returnto Control. Six consecutive EOLs sent at the end of a document transmission.
Return-to-Control code (six EOLs)

Number of identical white or black picture elements in sequence

Source Attribute bit

Source Address Control bit

Source Control bit

Source Count Control bit

Source Line Start Address Control Bit

Source Overflow bit

3.85lines/mm + 1%

Optional resolution - 7.7 lines/mm + 1%)

Two-Dimensional Restart

Time Fill Register

Top Margin Register

Sum of data bits plus any required scan line fill bits plus EOL bits. For two-dimensional
coding, same as above plus a tag bit.

Line by line coding method in which sional coding the position of each changing

picture element on the current or coding line is coded with respect to the position of a
corresponding reference element located on either the coding line or the reference line
immediately above it.

Coding procedure in two-dimensional coding. Identified when A4 on the coding line is less
than four elements away from the changing element on the reference line.

Wraparound Incomplete bit
Write

Wraparound Register
Wraparound Restart

Appendix D
7970A DIFFERENCES RELATIVE TO 7970 REVISION A/A’

Am7970 Rev A/A' was manufactured during 1985.
Am7970A is to be introduced in July, 1986. The
following recaps the differences.

Recap:

Defintion changed in: CPR, EPR, CER, and
MSR

New Registers added: CKPR, EKPR,
CFWR, and EFWR

Summary (refer to Chapter 2 for details):

1. The CEP can be identified as either 7970A or
7970 Rev. A/A' by reading the version 1.D. bit (ID),
bit 5 of the Master Status Register (MSR).

ID = 0 specifies 7970 Rev. A/A'
ID = 1 specifies 7970A (7970 Revision B)

2. Group 3 error recovery during expansion in 2D
mode (EOL =0,MC =10)

Both the 7970 and 7970A encode using the K
Parameter and for Group 3 setting the tag bit.

For Group 3 expansion, the 7970A processes
each line as either 1D or 2D according to the value
of the tag bit immediately following the EOL code
terminating the previous line. If the tag bit is 1, the
next line is decoded as a 1D line. If the tag bitis 0,
the next line is decoded as a 2D line. The K
Parameter is not used. However, 7970 Rev. A’
does not use the tag bit for expansion in Group 3.
It expands using the K Parameter.

If DER (Data Error) is set during this mode, the
expander stops but processing is resumable by
the CPU. When processing resumes, the
expander will process the next line as 1D or 2D
depending on the tag bit. If the next line has
unrecognizable code, the DER bit is set again.
Multi-line processing will continue only after a one-
dimensional line with no errors has been found
and decoded. Halting after each DER allows the
CPU to count the number of lines lost when an
error occurs.

3. CPR change — The K Parameter field in 7970
Rev. A' has been removed from the Compressor
Parameter Register in 7970A. Bits 0, 1, and 2 are
the Line Termination field (LT). It specifies the
number of bits (0 to 7) of terminating image to be
appended to each image line following the last full

byte of data. The terminating bits all have the same
value as the last bit (bit 7) of the last full byte on
each line. Each line of encoded data includes the
line termination bits.

4. EPR change — The K Parameter field has
been removed from the Expander Parameter
Register in 7970A. Bits 0, 1, and 2 are now
reserved bits.

5. Group 4 expansion (EOL = 1, MC = 10) of
coded data from lines not terminating with a full
byte in 7970A is transparent to the software driver.

When the expanded data length reaches the line
length specified in the Expander Page Width
Register (EPWR), the expander resets an internal
shift register and thus clips off any image bits which
may comprise an incomplete byte at the end of the
image line. This allows coded data for page
lengths that end with a single color incomplete
byte of image to be expanded into pages that
terminate with the last byte of image a full byte.
The incomplete byte at the end of each line is
deleted. Otherwise, the last incomplete byte
would prevent successful expansion.

In the 7970 Rev. A', when the specified line length
is reached, the expander places any remaining
incomplete byte at the beginning of the next line.

6. New compressor and expander K Parameter
registers, CKPR and EKPR, have been added in
7970A. In 7970 RevA', these registers are not
used. These 8-bit registers define the K
parameter in binary representing K values from 1 to
255. The value 0 specifies a K value of infinity.
These registers are located at the following
addresses:

CKPR: 8 bits, 1 byte @ '66'
EKPR: 8 bits, 1 byte @ 'E6'

7. New compressor and expander Frame Width
Registers, CFWR and EFWR, have been added in
7970A. These 16-bit registers define the width of
the image area in the memory buffer. These
registers are used by the CEP to calculate the
starting point of the next image line in the memory
buffer. The CEP calculates the starting address of
line N + 1 as being one frame width beyond the
starting address of line N.

For “full page” processing, the frame width must
equal the page width (CFWR = CPWR). For

‘window” processing, the Frame Width Register
defines the width of the overall image area or frame
and the Page Width Register defines the width of
the window to be compressed or expanded within
the frame.

Each line of image is transferred by DMA to or from
the frame address space in memory immediately
following the frame address space of the previous
line referenced within the frame by the Page Width
Register.

For “full page” or “window” processing, the first
line starting address is specified by the CPU as
defined in the data sheet for the CEP.

The CFWR may not be written into when the
compressor is busy; the EFWR may not be written
into when the expander is busy.

In the 7970 Rev. A’, the Page Width Register value
is used to calculate the starting address of each
next line. Frame width is implicitly equal to page
width.

These registers are located at the following
addresses:

CFWR: 16 bits, 2 bytes @ '54' (LSB)/'56' (MSB)
EFWR: 16 bits, 2 bytes @ 'D4' (LSB)/D6' (MSB)

8. CER change — In 7970A, the eight bits in the
Compressor Express Register, CER, defines (in
binary) the number of image lines to compress
before skipping one line. For example, if CER
value is 4, every fifth line is skipped resulting in a
4/5 vertical image reduction. If the value is 0, every
line is compressed.

In the 7970 Rev. A', the CER value defines how
many scan lines to skip before compressing the
next line.

9. EPR change — In 7970A, the expander
granularity mode bits (bits 3, 4, and 5) in the
Expander Parameter Register define in binary how
many lines to expand before duplicating the last
line. For example, if the value in this field is 4,
every fourth line is duplicated resulting in a 5/4
vertical image expansion.

In 7970 Rev. A, the EPR bits 3, 4, and 5 G-
parameter value defines the number of times each
expanded line is duplicated.

D-2

Appendix E

Am7970A CEP DESIGN HINTS

The following are common mistakes, oversights, or
points to pay particular attention to when
designing with the Am7970A.

1.

In memory, the bits representing the pixels are
stored as bytes. The first pixel at the top left
edge of the image must be stored as the least
significant bit of the first byte in the memory
buffer. This is also the first bit to be sent on a
transmission line. The compressed coded
image follows the same rule. If this rule is
violated, additional color changes may be
created completely upsetting the
compression coding. There is no
standardization on how a scanner has to
presentthe data.

If the CEP is inactive ("busy” bits inactive), all
signals of the document side are tri-stated.
Because an abort of the CEP assures this, this
feature can be used for a cheap software
controlled bus arbitration of the document
bus.

One DMA Controller serves both the system
bus and the document bus. Therefore, both
buses cannot be simultaneously accessed.

The system side interface transfers only one
byte per arbitration cycle.

A software reset is performed by writing a
reset command (00) into the Operation
Control (OC) bits of the Master Control
Register. The reset operation is a
microprogram that takes about 4
microseconds to execute. During this time,
the “busy” bit (CBY and EBY) is set active in
the Master Status Register. During the reset
operation, the “busy” bit can be sampled until
it goes inactive to verify that the CEP has
completed the reset operation before
attempting any other operation. Then the GO
bit in the Master Control Register (CMCR or
EMCR) is set to 1 to start the operation.

The software reset is required before
processing a new page but it is not needed to
resume processing on the same page.

Do not use CS directly to enable the buffer for
RD or WR into the CEP in slave mode. When
CS goes Low, the outputs of the buffer will still
be unstable for a couple of nanoseconds
while the CEP is already expecting true

10.

11.

12.

13.

14.

signals. The best solution is to use HLDA for
enabling the driver.

Make sure CS is High within 1 clock cycle after
RD or WR return High if block transfer mode is
not desired. Refer to the CPU Block 1/O
Transaction Timing Diagram in the data sheet
for block transfers.

In Master Mode, the CEP samples the READY
and DREADY line with the rising edge of T2
before RD or WR are asserted by the CEP.
See timing diagrams in the data sheet for more
details.

READY and DREADY must be High before
Main Memory data can be accessed by the
CEP. Care must be taken, however, to assure
that this signal is synchronized to the CEP
clock and meets its setup and hold
requirements as specified in the data sheet.
Failure to do so causes unpredictable
operation.

When the CEP does not have a source or
destination buffer located on the Document
Store bus, the DRD, DWR, and DALE pins are
floated to three state. Therefore, pullup
resisters must be connected to these pins.

DALE in conjunction with a pullup resister
makes a perfect AS signal for 68000 systems
because it changes directly to High from
tristate. This may be a useful low-active
memory-enable signal for the document bus.

The CPU cannot instantaneously or directly
access the CEP internal registers because
that would interfere with the CEP internal
operations on its internal bus. Instead, a slave
access is used to interrupt the internal
microprogram. After that, all data transfers to
and from the registers are performed by a
microprogram. The CPU is kept waiting during
this time by holding READY Low. (The only
exception is a read on the Master Status
Register which is directly accessible by the
CPU.

The access times of the registers varies widely
for two reasons:

A. The access time depends on the status of
the operation that the CEP is currently
performing.

15.

16.

B. Access times are optimized with respect to
the probability of their usage.

Presently, register access time s
unpredictable when the CEP is busy. In
Am7970 this is no problem because slave
accesses are forbidden. In Am7970A, this is
important since the access time may be as
long as 50 clock cycles. This may affect
system design considerations severely.
Typical access times are:

Write Operation with CEP in Idle State:
Case 1, Asingle write once in a while:

4 clock cycles for all registers.

This write access is internally latched. The
addressed register is loaded with the data
much later than the CPU is released.

Case 2, a sequence of consecutive slave
accesses:

6 clock cycles for papersize, parameter,
and command registers.
14 clock cycles for all other registers.

Read Operation with CEP in Idle State:
All cases:

4 clock cycles = MSR only

10 clock cycles = status, parameter,
command, and papersize registers.

12 clock cycles = all address and option
registers.

All Operations with CEP Busy:

4 clock cycles for MSR read All other
accesses take an unpredictable number of
clock cycles up to 50 depending on the
current operation being performed by the
internal microprogram.

One DMA Controller serves both the system
bus and the document bus. Therefore, there
is never a simultaneous access on both the
system bus and the document bus. If the
CEP is inactive ("busy” bits inactive), all signals
of the document side are tri-stated. This
feature can be used for a cheap software

17.

18.

19.

20.

21.

controlled bus arbitration of the document
bus. When a peripheral wants to access the
document bus, it can notify the system CPU.
The CPU can poll the BUSY bit of the CEP
and notify the peripheral when it becomes
inactive.

The CEP operation may be stopped by a write
to the command register when the CEP is
busy (a software abort). However, this abort is
not resumable. In other words, setting the
“GO” bit back to high is not enough to resume
an aborted operation.

If the DREADY signal is suppressed on the
document bus, the CEP will be frozen the
moment that it samples the DREADY line
because it is waiting for access to the docu-
ment bus. No further memory transfers can
take place on the system bus either because
each side is waiting for the other to complete
the memory cycle. HREQ is inactive in this
case. This behavior might be useful for
implementing a ring buffer as a destination
buffer.

Bits 0, 1, and 2 are the Extension Code bits.
When ECD (Bit 3) is set to “1", the EXT bits
display (in reverse order) the three least
significant extension code bits which have
been detected by the Expander. For
example, an extension code of “011” appears
in the MSR as “110". When the ECD bit is set
to “0", the extension bits are cleared to “0s".
The EXT bits are also cleared when a new
operation is initiated.

The CEP controls the contents of the Working
Count Register only when it increments it.
The CEP does not observe what value is
loaded by the CPU and thus does not inter-
rupt for “0” contents. Refer to Figure 2-21.

A destination buffer that is smaller than page
size can be used if the buffer size and the K
parameter are chosen such that the buffer is
an integral multiple of K and the first line
encoded is a 1D line. The buffer will overflow
after the last line of 2D. Under these
conditions, each time that the buffer over-
flows, the next line to be encoded or decoded
is a 1D line. When coding or decoding
resumes, no reference line is needed since
the nextlineis a 1D line.

Recommendation T.4

STANDARDIZATION OF GROUP 3 FACSIMILE APPARATUS
FOR DOCUMENT TRANSMISSION

(Geneva, 1980, ded at Malaga-Torr lii 1984)

The CCITT,

considering

(a) that Recommendation T.2 refers to Group 1 type apparatus for ISO A4 document transmission over a
telephone-type circuit in approximately six minutes;

(b) that Recommendation T.3 refers to Group 2 type apparatus for ISO A4 document transmission over a
telephone-type circuit in approximately three minutes;

(c) that there is a demand for Group 3 apparatus which enables an ISO A4 document to be transmitted
over a telephone-type circuit in approximately one minute;

(d) that for a large number of applications black and white reproduction is sufficient;

(e) that such a service may be requested either alternatively with telephone conversation, or when either
or both stations are not attended; in both cases, the facsimile operation will follow Recommendation T.30;

unanimously declares the view

that Group 3 facsimile apparatus for use on the general switched telephone network and international
leased circuits should be designed and operated according to the following standards:

1 Scanning track

The message area should be scanned in the same direction in the transmitter and receiver. Viewing the
message area in a vertical plane, the picture elements should be processed as if the scanning direction were from
left to right with subsequent scans adjacent and below the previous scan.

2 Dimensions of apparatus

Note — The tolerances on the factors of cooperation are subject to further study.

21 The following dimensions should be used:

a) A standard resolution and an optional higher resolution of 3.85line/mm *+ 1% and
7.7 line/mm =+ 1% respectively in vertical direction.

b) 1728 black and white picture elements along the standard scan line length of 215 mm + 1%.
¢) Optionally, 2048 black and white picture elements along a scan line length of 255 mm *+ 1%.
d) Optionally, 2432 black and white picture elements along a scan line length of 303 mm + 1%.

22 Input documents up to a minimum of ISO A4 size should be accepted.

Note — The size of the guaranteed reproducible area is shown in Appendix I.

3 Transmission time per total coded scan line

The total coded scan line is defined as the sum of DATA bits plus any required FILL bits plus the EOL
bits.

For the optional two-di ional coding sch as described in § 4.2, the total coded scan line is defined
as the sum of DATA bits plus any required FILL bits plus the EOL bits plus a tag bit.

To handle various printing methods, several optional minimum total coded scan line times are possible in
addition to the 20 milliseconds standard.

16 Fascicle VII.3 — Rec. T4

F-1

3.1 The minimum transmission times of the total coded scan line should conform to the following:
1) Alternative 1, where the minimum transmission time of the total coded scan line is the same both for
the standard resolution and for the optional higher resolution:
a) 20 milliseconds recommended standard,
b) 10 milliseconds recognized option with a mandatory fall-back to the 20 milliseconds standard,

c) S milliseconds recognized option with a mandatory fall-back to the 10 milliseconds option and
the 20 milliseconds standard,

d) 0 millisecond recognized option with a mandatory fall-back to the 5 milliseconds option, the
10 milliseconds option and the 20 milliseconds standard, and an optional fall-back to the
40 milliseconds option,

e) 40 milliseconds recognized option.
2) Alternative 2, where the minimum transmission time of the total coded scan line for the optional

higher resolution is half of that for the standard resolution (see Note). These figures refer to the
standard resolution:

a) 10 milliseconds recognized option with a mandatory fall-back to the 20 milliseconds standard,
b) 20 milliseconds recommended standard,
¢) 40 milliseconds recognized option.

The identification and choice of this minimum transmission time is to be made in the pre-message
(phase B) portion of Recommendation T.30 control procedure.

Note — Alternative 2 applies to equipment with printing mechanisms which achieve the standard vertical
resolution by printing two consecutive, identical higher resolution lines. In this case, the minimum transmission
time of the total coded scan line for the standard resolution is double the minimum transmission time of the total
coded scan line for the higher resolution.

32 The maximum transmission time of any total coded scan line should be less than 5 seconds. When this
transmission time exceeds 5 seconds, the receiver must proceed to disconnect the line.

4 Coding scheme

4.1 One-dimensional coding scheme

The one-dimensional run length coding scheme recommended for Group 3 apparatus is as follows:

4.1.1 Data

A line of Data is composed of a series of variable length code words. Each code word represents a run
length of either all white or all black. White runs and black runs alternate. A total of 1728 picture elements
represent one horizontal scan line of 215 mm length.

In order to ensure that the receiver maintains colour synchronization, all Data lines will begin with a white
run length code word. If the actual scan line begins with a black run, a white run length of zero will be sent.
Black or white run lengths, up to a maximum length of one scan line (1728 picture elements or pels) are defined
by the code words in Tables 1/T.4 and 2/T.4. The code words are of two types: Terminating code words and
Make-up code words. Each run length is represented by either one Terminating code word or one Make-up code
word followed by a Terminating code word.

Run lengths in the range of 0 to 63 pels are encoded with their appropriate Terminating code word. Note
that there is a different list of code words for black and white run lengths.

Run lengths in the range of 64 to 1728 pels are encoded first by the Make-up code word representing the

run length which is equal to or shorter than that required. This is then followed by the Terminating code word
representing the difference between the required run length and the run length represented by the Make-up code.

Fascicle VIL3 — Rec. T4 17

F-2

TABLE 1/T.4
Terminating codes

White run length Code word Black run length Code word

0 00110101 0 0000110111

| 000111 1 010

2 0111 2 t

3 1000 3 10

4 1011 4 (U]

5 1100 5 0011

6 1110 6 0010

7 i 7 00011

8 10011 8 000101

9 10100 9 000100

10 00111 10 0000100

i 01000 1 0000101

12 001000 12 0000111

13 000011 13 00000100

14 110100 14 00000111

15 110101 15 000011000

16 101010 16 00000101 11

17 101011 17 0000011000
18 0100111 18 0000001000
19 0001100 19 00001100111
20 0001000 20 00001101000
21 0010111 21 00001101100
22 0000011 22 00000110111
23 0000100 23 00000101000
24 0101000 24 00000010111
25 0101011 25 00000011000
26 0010011 26 000011001010
27 0100100 27 000011001011
28 0011000 28 000011001100
29 00000010 29 000011001101
30 0000001 1 30 000001101000
31 00011010 31 000001101001
32 00011011 32 000001101010
33 00010010 33 000001101011
34 00010011 34 000011010010
35 00010100 35 000011010011
36 00010101 36 000011010100
37 00010110 37 000011010101
38 00010111 38 000011010110
39 00101000 39 000011010111
40 00101001 40 000001101100
41 00101010 41 000001101101
42 00101011 42 000011011010
43 00101100 43 000011011011
44 00101101 44 000001010100
45 00000100 45 000001010101
46 00000101 46 000001010110
47 00001010 47 000001010111
48 00001011 48 000001100100
49 01010010 49 000001100101
50 01010011 50 000001010010
51 01010100 51 000001010011
52 01010101 52 000000100100
53 00100100 53 000000110111
54 00100101 54 000000111000
55 01011000 55 000000100111
56 01011001 56 000000101000
57 01011010 57 000001011000
58 01011011 58 000001011001
59 01001010 59 000000101011
60 01001011 60 000000101100
6l 00110010 61 000001011010
62 00110011 62 000001100110
63 00110100 63 000001100111

18 Fascicle VIL.3 — Rec. T4

TABLE 2/T.4

Make-up codes
White run lengths Code word Black run lengths Code word
64 Lot 64 0000001111

128 10010 128 000011001000
192 010111 192 000011001001
256 0110111 256 000001011011
320 00110110 320 000000110011
384 00110111 384 000000110100
448 01100100 448 00000011010t
512 01100101 512 0000001101100
576 01101000 576 0000001101101
640 01100111 640 0000001001010
704 011001100 704 0000001001011
768 011001101 768 0000001001100
832 011010010 832 0000001001101
896 011010011 896 0000001110010
960 011010100 960 0000001110011
1024 011010101 1024 0000001110100
1088 011010110 1088 0000001110101
1152 o1io010111 1152 0000001110110
1216 011011000 1216 0000001110111
1280 011011001 1280 0000001010010
1344 011011010 1344 0000001010011
1408 011011011 1408 0000001010100
1472 010011000 1472 0000001010101
1536 010011001 1536 0000001011010
1600 010011010 1600 0000001011011
1664 011000 1664 0000001100100
1728 010011011 1728 0000001100101
EOL 000000000001 EOL 000000000001

Note — ltis gnized that

.

exist which accc

larger paper widths whilst

the dard horizontal

This option has been provided for by the addition of the Make-up code set defined as follows:

Run length

(black and white) Make-up codes
1792 00000001000
1856 00000001100
1920 00000001101
1984 000000010010
2048 000000010011
2112 000000010100
2176 000000010101
2240 000000010110
2304 000000010111
2368 000000011100
2432 000000011101
2496 000000011110
2560 000000011111

Fascicle VIL.3 — Rec. T.4

19

F-4

4.1.2 End-of-line (EOL)

This code word follows each line of Data. It is a unique code word that can never be found within a valid
line of Data; therefore, resynchronization after an error burst is possible.

In addition, this signal will occur prior to the first Data line of a page.

Format: 000000000001

413 Fill

A pause may be placed in the message flow by transmitting Fill. Fill may be inserted between a line of
Data and an EOL, but never within a line of Data. Fill must be added to ensure that the transmission time of

Data, Fill and EOL is not less than the minimum transmission time of the total coded scan line established in the
pre-message control procedure.

Format: variable length string of 0s.

4.1.4 Return to control (RTC)

The end of a document transmission is indicated by sending six consecutive EOLs. Following the RTC
signal, the transmitter will send the post message commands in the framed format and the data signalling rate of
the control signals defined in Recommendation T.30.

Format: 000000000001 000000000001
(total of 6 times)

Figures 1/T.4 and 2/T.4 clarify the relationship of the signals defined herein. Figure 1/T.4 shows several
scan lines of data starting at the beginning of a transmitted page. Figure 2/T.4 shows the last coded scan line of a
page.

The identification and choice of either the standard code table or the extended code table is to be made in
the pre-message (phase B) portion of Recommendation T.30 control procedures.

— Start of phase C

EoL | DATA [eoo] oara [e Jeo] DATA i
4
" o
fe >
T ceiTT-19240
>

T Minimum transmission time of a total coded scan line

FIGURE /T4
~ End of phase C
y/2 y
2 DATA l sonT DATA EOL lsm. [EOL [EOL | EOL l EOL
"
RTC CCITT-19250
FIGURE 2/T.4

42 Two-dimensional coding scheme

The two-dimensional coding scheme is an optional extension of the one-dimensional coding scheme
specified in § 4.1 and is as follows:

20 Fascicle VIL.3 — Rec. T4

421 Data

4.2.1.1- Parameter K

In order to limit the disturbed area in the event of transmission errors, after each line coded one-dimen-
sionally, at most K-1 successive lines shall be coded two-dimensionally. A one-dimensionally coded line may be
transmitted more frequently than every K lines. After a one-dimensional line is transmitted, the next series of K-1
two-dimensional lines is initiated. The maximum value of K shall be set as follows:

Standard vertical resolution: K = 2
Optional higher vertical resolution: K = 4.

Note 1 — Some Administrations pointed out that for the optional higher vertical resolution K may
optionally be set to a lower value.

Note 2 — Some Administrations reserve the right to approve only such apparatus for use in the facsimile

service in their respective countries which will be able to produce a visible sign on its received facsimile message
indicating that two-dimensional coding has been used in the transmission process.

4.2.1.2 One-dimensional coding

This conforms with the description of Data in § 4.1.1.

4.2.1.3 Two-dimensional coding

This is a line-by-line coding method in which the position of each changing picture el t on the current
or coding line is coded with respect to the position of a corresponding reference element situated on either the
coding line or the reference line which lies immediately above the coding line. After the coding line has been
coded it becomes the reference line for the next coding line.

4.2.1.3.1 Definition of changing picture el ts (see Figure 3/T.4)

A changing element is defined as an element whose “colour” (i.e. black or white) is different from that of
the previous element along the same scan line.

ag The reference or starting changing element on the coding line. At the start of the coding line aq is set
on an imaginary white changing element situated just before the first element on the line. During the
coding of the coding line, the position of a, is defined by the previous coding mode. (See § 4.2.1.3.2.)

a; The next changing element to the right of a, on the coding line.

a, The next changing element to the right of a; on the coding line.

b, The first changing element on the reference line to the right of a, and of opposite colour to a,.
b, The next changing element to the right of b, on the reference line.

Reference line ://%;///Ay/%&
Coding line %//% L
“
FIGURE 3/T 4
Changing picture elements

Fascicle VIL.3- — Rec. T4 21

F-6

42132 Coding modes

One of the three coding modes are chosen according to the coding procedure described in § 4.2.1.3.3 to
code the position of each changing element along the coding line. Examples of the three coding modes are given
in Figures 4/T.4, 5/T.4 and 6/T4.

a) Pass mode

This mode is identified when the position of b, lies to the left of a,. When this mode has been coded,
ag is set on the element of the coding line below b, in preparation for the next coding (i.e. on a’).

b, b,
|
Reference line /Aj/%y//é% v
Coding line %//% 4 T
‘E ay a, COITT - 36370
FIGURE 4/T.4

Pass mode

However, the state where b, occurs just above a;, as shown in Figure 5/T.4 is not considered as a
pass mode.

A | |

Reference line
Coding line

%%
/Al

2 3

| |

CCITY - 26280

FIGURE 5/T.4

An example not corresponding to a Pass mode

b) Vertical mode

When this mode is identified, the position of a, is coded relative to the position of b,. The relative
distance a;b, can take on one of seven values V(0), Vr(1), Vr(2), VrR(3), VL(1), VL(2) and V_(3),
each of which is represented by a separate code word. The subscripts R and L indicate that a, is to
the right or left respectively of b;, and the number in brackets indicates the value of the distance ab;.
After vertical mode coding has occurred, the position of a, is set on a,, (see Figure 6/T.4).

¢) Horizontal mode

When this mode is identified, both the run-lengths aja,; and aj;a, are coded using the code
words H + M(apa;) + M(a;a;). H is the flag code word 001 taken from the two-dimensional code
table (Table 3/T.4). M(aoa,) and M(a,a,) are code words which represent the length and “colour” of
the runs aja, and a,a, respectively and are taken from the appropriate white or black one-dimensional
code tables (Tables 1/T.4 and 2/T.4). After a horizontal mode coding, the position of a, is set on a,
(see Figure 6/T.4).

4.2.13.3 Coding procedure
The coding procedure identifies the coding mode that is to be used to code each changing element along
the coding line. When one of the three coding modes has been identified according to Step 1 or Step 2 mentioned

below, an appropriate code word is selected from the code table given in Table 3/T.4. The coding procedure is as
shown in the flow diagram of Figure 7/T.4.

22 Fascicle VII.3 — Rec. T4

F-7

Vertical mode

13 byl b, by
Reference line %%%%% [
4

Coding line :
ag L) a2
3 3 | 3 3
¥ ™
N

_/ CCITT-363%0

~
Horizontal mode

FIGURE 6/T.4

Vertical mode and Horizontal mode

Note — 1t does not affect compatibility to restrict the use of pass mode in the encoder to a single pass
mode. Variations of the algorithm which do not affect compatibility should be the subject of further study.

Step 1

i) If a pass mode is identified, this is coded using the word 0001 (Table 3/T.4). After this processing,
picture element a’y just under b, is regarded as the new starting picture element a, for the next coding.
(See Figure 4/T.4.)

ii) If a pass mode is not detected then proceed to Step 2.

Step 2

i) Determine the absolute value of the relative distance a;b,.

ii) If |a;b;] < 3, as shown in Table 3/T.4, a;b, is coded by the vertical mode, after which position a, is
regarded as the new starting picture element a, for the next coding.

iii) If |a;by| > 3, as shown in Table 3/T.4, following horizontal mode code 001, asa; and a;a, are
respectively coded by one-dimensional coding. After this processing position a, is regarded as the new
starting picture element a, for the next coding.

4.2.1.3.4 Processing the first and last picture elements in a line

a) Processing the first picture element

The first starting picture element a, on each coding line is imaginarily set at a position just before the
first picture element, and is regarded as a white picture element (see § 4.2.1.3.1).

The first run length on a line aga, is replaced by aga; — 1. Therefore, if the first run is black and is
deemed to be coded by horizontal mode coding, then the first code word M(aga,) corresponds to a
white run of zero length (see Figure 10/T.4, Example 5).

b) Processing the last picture element

The coding of the coding line continues until the position of the imaginary changing element situated
just after the last actual element has been coded. This may be coded as a; or a,. Also, if b, and/or b,
are not detected at any time during the coding of the line, they are positioned on the imaginary
changing element situated just after the last actual picture element on the reference line.

4.2.2 Line synchronization code word

To the end of every coded line is added the end-of-line (EOL) code word 000000000001. The EOL code

word is followed by a single tag bit which indicates whether one- or two-dimensional coding is used for the next
line.

Fascicle VIL3 — Rec. T4 23

F-8

TABLE 3/T.4
Two-dimensional code table

Mode Elements to be coded Notation Code word
Pass b, b, P 0001
Horizontal aya), a)a, H 001 + M(aga)) + M (aja,)
(see Note)
Vertical a; just under b, ab, =0 V(0) |
a, to the right of b, ab, =1 V(1) (UN]
ab, =2 Vr(2) 000011
ab =3 Vr(3) 0000011
a, to the left of b, ab, =1 vu(h 010
ab, =2 Vi) 000010
ab =3 Vi) 0000010
Extension 2-D (extensions) 0000001 xxx
1-D (extensions) 000000001 xxx
(see Note 2)

Note 1 — Code M() of the horizontal mode represents the code words in Tables 1/T.4 and 2/T 4.

Note 2 — 1Tt is suggested the uncompressed mode is recognized as an optional ion of the two-di ional coding scheme for Group 3
apparatus. The bit assignment for the xxx bits is 111 for the uncompressed mode of operation whose code table is given in Table 4/T.4.

Note 3 — Further study is needed to define other unspecified xxx bit assignments and their use for any further extensions.

Note 4 — If the suggested uncompressed mode is used on a line desi; d to be one-di ionally coded, the coder must not switch into
the uncompressed mode following any code word ending in the sequence 000. This is because any code word ending in 000 followed by
a switching code 000000001 will be mistaken for an end-of-line code.

TABLE 4/T.4

Uncompressed mode code words

Entrance code to On one-dimensionally coded line: 000000001111
uncompressed mode On two-dimensionally coded line : 0000001111
Image pattern Code word
1 1
Uncompressed &I)l 8(1)]
mode code 0001 0001
00001 00001
00000 000001
) 0000001 T
Exist from 0 00000001 T
uncompressed 00 000000001 T
mode code 000 0000000001 T
0000 00000000001 T
T denotes a tag bit which tells the colour of the next run (black = 1, white = 0).
24 Fascicle VII.3 — Rec. T.4

F-9

First
line of K
lines?

EOL + 1

b:f:lr: r::’: st One-dimensional

picture element coding

]
to the left
of ay?

Yes

Pass mode coding

No

Detect aj

A

Horizontal Vertical
mode coding mode coding

1]

Put ag on ay J l Put ag on ay J

No

Yes
N CCITY - 20920

End
of page?

Yes

FIGURE 7/T.4
Two-di ional coding flow diagram

Fascicle VII.3 — Rec. T4

25

F-10

In addition, EOL plus the tag bit 1 signal will occur prior to the first Data line of a page.
Format:
EOL + 1: one-dimensional coding of next line

EOL + 0: two-dimensional coding of next line

423 Fill

Fill is inserted between a line of Data and the line synchronization signal, EOL + tag bit, but is not
inserted in Data. Fill must be added to ensure that the transmission time of Data, Fill and EOL plus tag bit is not
less than the minimum transmission time of the total coded scan line.

Format: variable length string of 0 s.

4.2.4 Returr to control (RTC)

The format used is six consecutive line synchronization code words, i.e., 6 x (EOL + 1).

To further clarify the relationship of the signals defined herein, Figures 8/T.4 and 9/T.4 are offered in the
case of K = 2. Figure 8/T.4 shows several scan lines of data starting at the beginning of a transmitted page.
Figure 9/T.4 shows the last several lines of a page.

DATA e DATA
EOL +1 (one-dimensional) EOL + 0 d(I::‘v:n FiLL EOL + 1 (one-dimensional)
sional)
L > T <T _|
~ . CCITT-36400
2T
T Minimum transmit time of a total coded scan line
FIGURE 8/T.4
Message transmission (first part of page)
— End of
phase C
DATA
DATA EOL + 0 d(“w"' FILL EOL + 1 EOL + 1 EOL + 1 EOL + 1 EOL + 1 EOL + 1
imen-
sional)
or RTC
CCITT-36410
DATA
EOL + 1 | (one-dimen- FILL
sional)
FIGURE 9/T.4
Message transmission (last part of page)
26 Fascicle VIL.3 — Rec. T4

F-11

425

Coding examples

Figure 10/T.4 shows coding examples of the first part of scan lines and Figure 11/T.4 coding examples of

the last part, while Figure 12/T.4 shows other coding examples. The notations P, H and V in the figures are, as
shown in Table 3/T.4, the symbols for pass mode, horizontal mode and vertical mode respectively. The picture
elements marked with black spots indicate the changing picture elements to be coded.

L 1
P %, YUY
® Vo ® A3

1
Ul
|| Wi
@ p % @ Vp (2

1 10

° -
@ H(Q3) Ve (1)

FIGURE 10/T.4
Coding examples: first part of scan line

1728 1728
7277
// ’//A / L] L]

O o ve @ vw e QG vo. va.voe

1728 1728 1728

ciaall-Saeis
77/alK . .
® vo. va,vo VO, VR ® r v

1728 1728

DOUBDNDN Y, %ﬁ GUHHYY,
A :

® B nee Vo, HOO

FIGURE 11/T.4
Coding examples: last part of scan line

&\

&

N
N\
§

L]

CCITT-36430

Fascicle VIL3 — Rec. T4

27

F-12

® VR3. V. Vo)

4
3
Mode: H(34) P
Code: 0001 001 1000 011 0001
@ CCITT-36481
FIGURE 12/T4
Coding examples
5 Modulation and demodulation

Group 3 apparatus operating on the general switched telephone network shall utilize the modulation,
scrambler, equalization and timing signals defined in Recommendation V.27 ter, specifically §§ 2, 3, 7, 8, 9, 11
and the Appendix.

5.1 The training signal to be used shall be the long training sequence with protection against talker echo. (See
Recommendation V.27 ter, §2.5.1, Table 3/V.27 ter).

52 The data signalling rates to be used are 4800 bit/s and 2400 bit/s as defined in Recommendation V.27 fer.

Note 1 — Some Administrations pointed out that it would not be possible to guarantee the service at a
data signalling rate higher than 2400 bit/s.

Note 2 — 1t should be noted that there are equipments in service using, inter alia, other modulation
methods.

Note 3 — Where quality of communication service can successfully support higher speed operation, such
as may be possible on leased circuits or high-quality switched circuits, Group 3 apparatus may optionally utilize
the modulation, scrambler, equalization and timing signals defined in Recommendation V.29, specifically §§ 1, 2,

3,4,7,8,9, 10 and 11. Under this option the data should be non-multiplexed and limited to the data signalling
rates of 9600 bit/s and 7200 bit/s.

6 Power at the transmitter output

The average power should be adjustable from —15 dBm to 0 dBm but the equipment should be so
designed that there is no possibility of this adjustment being tampered with by an operator.

Note — The power levels over the international circuits will conform to Recommendation V.2.

7 Power at the receiver input

The receiving apparatus should be capable of functioning correctly when the received signal level is within
the range of 0 dBm to —43 dBm. No control of receiver sensitivity should be provided for operator use.

28 Fascicle VIL.3 — Rec. T4

APPENDIX 1

(to Recommendation T.4)

Guaranteed reproducible area for Group 3 apparatus
conforming to Recommendation T.4

281,46 mm
297 mm

196,6 mm

210 mm ceiTT - 67670

Note 1 — Paper characteristics (i.e. weight) are important parameters. Lightweight paper may cause additional paper handling errors and
may result in a reduced d reproducible area.

Note 2 — Sheet feed mechanisms may reduce the guaranteed reproducible area.

Note 3 — All calculations were done using worst case values. Using nominal values increases the reproducible area.

Note 4 — The exact horizontal position of this area within the ISO A4 paper size as well as sizes larger than the above are subject to
national recommendations and/or definitions.

FIGURE I-1/T.4

Guaranteed reproducible area for Group 3 machines for use on
facsimile services referring to ISO A4 paper size

Fascicle VIL.3 — Rec. T4 29

F-14

210 mm

al b c d
CCITY - 67680
a : Printer/scanner tolerances
b : Loss caused by the enlarging effect due to TLL tolerance
c : Loss caused by skew
d: Record medium positioning errors
FIGURE I-2/T.4
Horizontal loss
TABLE [-1/T.4
Horizontal losses
Printer/scanner a + 0.5 mm
Enlarging b + 2.1 mm
Skew c + 2.6 mm
Positioning errors d + 1.5 mm

30 Fascicle VII.3 — Rec. T.4

h
i
CCITT - 67690
f : Paper insertion loss
g : Loss caused by skew
h : Scanning density tolerance
i : Gripping loss
FIGURE I-3/T.4
TABLE 1-2/T.4
Vertical losses
Paper insertion f 4.0 mm
Skew g + 1.8 mm
Scan line tolerance h + 297 mm
Gripping loss i 2.0 mm

Note — Scanning density tolerance will reduce to 0 mm on roll-fed machines.

Fascicle VII.3 — Rec. T4

31

F-16

Recommendation T.6

FACSIMILE CODING SCHEMES AND CODING CONTROL FUNCTIONS
FOR GROUP 4 FACSIMILE APPARATUS

(Malaga-Torremolinos, 1984)
1 General
1.1 Scope

1.1.1 Recommendation T.6 defines the facsimile coding schemes and their control functions to be used in the
Group 4 facsimile.

1.1.2 This Recommendation should be read in conjunction with the following Recommendations:

T.5 — General aspects of Group 4 facsimile apparatus

T.73 - Document interchange protocol for the Telematic services

T.62 — Control procedures for Teletex and Group 4 facsimile services
T.70 — Network-independent basic transport service for Telematic services

F.161 — International Group 4 facsimile service

In addition, in the case of Group 4 Class II/III (Teletex or mixed mode of operation), the following
Recommendations should also be read:

T.60 — Terminal equipment for use in the Teletex service
T.61 — Character repertoire and coded character sets for the international Teletex service
T.72 — Terminal capabilities for mixed mode of operation

1.2 Fundamental principles

1.2.1 Facsimile coding schemes and coding control functions

Facsimile coding schemes consist of the basic facsimile coding scheme and optional facsimile coding
schemes. They are defined in § 2 and §§ 3 and 4, respectively.

Facsimile coding schemes are specified assuming that transmission errors are corrected by control
procedures at a lower level.

The basic facsimile coding scheme is the two-dimensional coding scheme which is in principle the same as
the two-dimensional coding scheme of Group 3 facsimile specified in Recommendation T.4.

Optional facsimile coding schemes are specified not only for black and white images but also for grey
scale images and colour images.

Facsimile coding control functions are used in facsimile user information in order to change facsimile
parameters or to invoke the end of facsimile block. They are defined in § 2.4.

2 Facsimile coding sch and coding control functions for black and white images
2.1 General

This section specifies the facsimile coding sch and associated control functions for black and white
images.

Facsimile coding schemes consist of the basic facsimile coding sch and optional coding schemes.

The use of the optional facsimile coding schemes is subject to mutual agreement between terminals and
shall be initiated by the appropriate procedural steps.

40 Fascicle VIL3 — Rec. T.6

F-17

22 Basic facsimile coding scheme

2.2.1 Principle of the coding scheme

The coding scheme uses a two-dimensional line-by-line coding method in which the position of each
changing picture element on the current coding line is coded with respect to the position of a corresponding
reference element situated on either the coding line or the reference line which is immediately above the coding
line. After the coding line has been coded, it becomes the reference line for the next coding line. The reference
line for the first coding line in a page is an imaginary white line.

2.2.2 Definition of changing picture el ts (see Figure 1/T.6)

A changing element is definied as an element whose “colour” (i.e. black or white) is different from that of
the previous element along the same scan line.

\

Reference line /%%%%
Coding line ,%% f Aé%//// 21

CCITT - 36360
ag a, a,

a, : The reference or starting changing element on the eodmg line. At the start of the
line a, is set on an y white d just before the first
element on the line. During the oodmg of the coding line, the position of a, is
defined by the previous coding mode (see § 2.2.3).

a, : The next changing element to the right of a, on the coding line.
a, : The next changing element to the right of a, on the coding line.

b, : The first changing element on the reference line to the right of a, and of opposite
colour to a, .

b, : The next changing element to the right of b, on the reference line.

FIGURE 1/T.6
Changing picture elements

223 Coding modes

One of the three coding modes are chosen according to the coding procedure described in § 2.2.4 to code

the position of each changing element along the coding line. Examples of the three coding modes are given in
Figure 2/T.6, 3/T.6 and 4/T.6.

2.2.3.1 Pass mode

This mode is identified when the position of b, lies to the left of a,. (See Figure 2/T.6.)

However, the state where b, occurs just above a;, as shown in Figure 3/T.6 is not considered as a pass
mode.

b, by
|
Reference line %:/%%% v
Coding line //% _Qr ?
ag a4° a, CCITY - 36370
FIGURE 2/T.6
Pass mode
Fascicle VIL.3 — Rec. T.6 41

F-18

by

%7l
Vit

CCITY - 36380

7Y

Reference line //%/
Coding line 7/ //

‘e 3

FIGURE 3/T.6

An example not corresponding to a Pass mode

2.2.3.2 Vertical mode

When this mode is identified, the position of a, is coded relative to the position of b,. The relative distance
a;b; can take on one of seven values V(0), Vr(1), Vr(2), Vr(3), Vi(1), Vi(2) and V. (3), each of which is
represented by a separate code word. The subscripts R and L indicate that a, is to the right or left respectively of
b;, and the number in brackets indicates the value of the distance a;b, (see Figure 4/T.6).

Vertical mode

3 "‘l by by

Reference line %%%%% L
Coding line 4 __

|
a0 L] a2
3 3 | 3 3

A
3

Horizontal mode

FIGURE 4/T.6

Vertical mode and horizontal mode

2.2.3.3 Horizontal mode

When this mode is identified, both the run-lengths aja; and aja, are coded using the code words
H + M(apa;) + M(a1ay). H is the flag code word 001 taken from the two-dimensional code table (Table 1/T.6).
M(a¢a;) and M(a;a,) are code words which represent the length and “colour” of the runs aga; and a,a, respectively
and are taken from the appropriate white or black run-length code tables (Tables 2/T.6 and 3/T.6).

42 Fascicle VIL.3 — Rec. T.6

TABLE 1/T.6

Code table
Mode Elements to be coded Notation Code word
Pass b, b, P 0001
Horizontal agaj, aja, H 001 + M(apa)) + M (a)a,)
(see Note)
Vertical a, just under b, ab, =0 V() 1
a, to the right of b, ab =1 V(1) o1
ab, =2 Vr(2) 000011
ab =3 Vr(3) 0000011
a; to the left of b, ab =1 vu) 010
ab, =2 V() 000010
ab; =3 Vi3 0000010
Extension 0000001 xxx

Note — Code M() of the horizontal mode represents the code words in Tables 2/T.6 and 3/T.6.

Fascicle VIL.3 — Rec. T.6

43

F-20

TABLE 2/T.6

Terminating codes

White run length Code word Black run length Code word

0 00110101 0 0000110111

1 000111 1 010

2 o111 2 11

3 1000 3 10

4 1011 4 011

5 1100 5 0011

[110 6 0010

7 (201 7 00011

8 10011 8 000101

9 10100 9 000100

10 00111 10 0000100

11 01000 11 0000101

12 001000 12 0000111

13 000011 13 00000100

14 110100 14 00000111

15 110101 15 000011000

16 101010 16 0000010111
17 101011 17 0000011000
18 0100111 18 0000001000
19 0001100 19 00001100111
20 0001000 20 00001101000
21 0010111 21 00001101100
22 0000014 22 00000110111
23 0000100 23 00000101000
24 0101000 24 00000010111
25 0101011 25 00000011000
26 0010011 26 000011001010
27 0100100 27 000011001011
28 0011000 28 000011001100
29 00000010 29 000011001101
30 0000001 1 30 000001101000
31 00011010 31 000001101001
32 00011011 32 000001101010
33 00010010 33 000001101011
34 00010011 34 000011010010
35 00010100 35 000011010011
36 00010101 36 000011010100
37 00010110 37 000011010101
38 00010111 38 000011010110
39 00101000 39 000011010111
40 00101001 40 000001101100
41 00101010 41 000001101101
42 00101011 42 000011011010
43 00101100 43 000011011011
44 00101101 44 000001010100
45 00000100 45 000001010101
46 00000101 46 000001010110
47 00001010 47 000001010111
48 00001011 48 000001100100
49 01010010 49 000001100101
50 01010011 50 000001010010
51 01010100 51 000001010011
52 01010101 52 000000100100
53 00100100 53 000000110111
54 00100101 54 000000111000
55 01011000 55 000000100111
56 01011001 56 000000101000
57 01011010 57 000001011000
58 01011011 58 000001011001
59 01001010 59 000000101011
60 01001011 60 000000101100
61 00110010 61 000001011010
62 00110011 62 000001100110
63 00110100 63 000001100111

Fascicle VIL.3 — Rec. T.6

F-21

TABLE 3/T.6

Make-up codes between 64 and 1728

White run lengths Code word Black run lengths Code word
64 11011 64 0000001111

128 10010 128 000011001000
192 010111 192 000011001001
256 ortot11 256 000001011011
320 00110110 320 000000110011
384 00110111 384 000000110100
448 01100100 448 000000110101
512 01100101 512 0000001101100
576 01101000 576 0000001101101
640 01100111 640 0000001001010
704 011001100 704 0000001001011
768 011001101 768 0000001001100
832 011010010 832 0000001001101
896 011010011 896 0000001110010
960 011010100 960 0000001110011
1024 011010101 1024 0000001110100
1088 011010110 1088 0000001110101
1152 011010111 1152 0000001110110
1216 011011000 1216 0000001110111
1280 011011001 1280 0000001010010
1344 011011010 1344 0000001010011
1408 011011011 1408 0000001010100
1472 010011000 1472 0000001010101
1536 010011001 1536 0000001011010
1600 010011010 1600 0000001011011
1664 011000 1664 0000001100100
1728 010011011 1728 0000001100101

Make-up codes between 1792 and 2560

Run length

(black and white) Make-up codes
1792 00000001000
1856 00000001100
1920 00000001101
1984 000000010010
2048 00000001001 1
2112 000000010100
2176 000000010101
2240 000000010110
2304 000000010111
2368 000000011100
2432 000000011101
2496 000000011110
2560 000000011111

Fascicle VIL3 — Rec. T.6

45

F-22

224 Coding procedure

The coding procedure identifies the coding mode that is to be used to code each changing element along
the coding line. When one of the three coding modes has been identified according to Step 1 or Step 2 mentioned
below, an appropriate code word is selected from the code table given in Table 1/T.6. The coding procedure is as
shown in the flow diagram of Figure 5/T.6.

White
reference line

Coding line

Put a, just

before the

1st picture
element

P:
[‘g&-‘::'] [Detect a,]
[2 [2
Put a, just Horizontal Vertical
under b, mode coding mode coding
k7 K 2
‘—_J tut a, ona,] LPut a, on 8,1
No End
of line?
Yes
Reference No End
line for next of facsimile
coding line block ?
Yes
EOF8
Pad bits
End
COITT - 57570
FIGURE 5/T.6
Coding flow diagram
46 Fascicle VII.3 — Rec. T.6

F-23

Step 1

i) If a pass mode is identified, this is coded using the word 0001 (Table 1/T.6). After this processing,
picture element a’y just under b, is regarded as the new starting picture element a, for the next coding
(see Figure 2/T.6).

ii) If a pass mode is not detected, then proceed to Step 2.

Note — 1t does not affect compatibility to restrict the use of pass mode in the encoder to a single pass
mode. Variations of the algorithm which do not affect compatibility should be the subject of further study.

Step 2

i) Determine the absolute value of the relative distance a;b;.

ii) If |a;b;| < 3, as shown in Table 1/T.6, a;b, is coded by the vertical mode, after which position a, is
regarded as the new starting picture element a, for the next coding.

iii) If |a;b;| > 3, as shown in Table 1/T.6, following horizontal mode code 001, aja, and aja, are
respectively coded by one-dimensional run length coding.

Run lengths in the range of 0 to 63 pels are encoded with their appropriate terminating code word of
Table 2/T.6. Note that there is a different list of code words for black and white run lengths. Run
lengths in the range of 64 to 2623 pels are encoded first by the make-up code word representing the
run length which is nearest, not longer, to that required. This is then followed by the terminating code
word representing the difference between the required run length and the run length represented by
the make-up code. Run lengths in the range of lengths longer than or equal to 2624 pels are coded
first by the make-up code of 2560. If the remaining part of the run (after the first make-up code of
2560) is 2560 pels or greater, additional make-up code(s) of 2560 are issued until the remaining part of
the run becomes less than 2560 pels. Then the remaining part of the run is encoded by terminating
code or by make-up code plus Terminating code according to the range as mentioned above.

After this processing, position a, is regarded as the new starting picture element a, for the next
coding.

Note — Coding examples are given in Recommendation T.4, § 4.2.5.

2.2.5 Processing the first and last picture element in a line

2.2.5.1 Processing the first picture element

The first starting picture element a, on each coding line is imaginarily set at a position just before the first
picture element, and is regarded as a white picture element (see § 2.2.2).

The first run length on a line aga, is replaced by asa; — 1. Therefore, if the first actual run is black and is
deemed to be coded by horizontal mode coding, then the first code word M(aea,) corresponds to an imaginary
white run of zero length (see Figure 10/T.4).

2.2.5.2 Processing the last picture element

The coding of the coding line continues until the position of the imaginary changing element situated just
after the last actual element has been coded. This may be coded as a, or a,. Also, if b, and/or b, are not detected
at any time during the coding of the line, they are positioned on the imaginary changing element situated just
after the last actual picture element on the reference line.

23 Optional facsimile coding sch for black and white images

23.1 Uncompressed mode

Uncompressed mode is an optional coding scheme associated to the basic facsimile coding scheme and is
used to transmit the image information without data compression techniques as shown in Table 4/T.6.

The extension code in § 2.2.4 with the xxx bits set to 111 is used as an entrance code from the basic
coding scheme in § 2.2 to the uncompressed mode.

Fascicle VIL.3 — Rec. T.6 47

F-24

TABLE 4/T.6
Uncompressed mode code words

Entrance code to . " .
uncompressed mode Basic coding scheme : 0000001111
Image pattern Code word
1 |
Uncompressed g(l)l &ln
mode code 0001 0001
00001 00001
00000 000001
0000001 T
Exist from 0 00000001 T
uncompressed 00 000000001 T
mode code 000 0000000001 T
0000 00000000001 T
T denotes a tag bit which tells the colour of the next run (black = I, white = 0).
2.4 Facsimile coding control functions

2.4.1 Control functions for basic facsimile coding scheme

2.4.1.1 End-of-facsimile block

The end-of-facsimile block (EDFB) code is added to the end of every coded facsimile block. The format of
EOFB is as follows:

Format: 000000000001000000000001
24 bits

2.4.1.2 Pad bits

Pad bits may be used after the end-of-facsimile block code if it is necessary to align on octet boundaries or
to a fixed block size. The format used is as follows.

Format: Variable length string of 0s.

2.4.1.3 Extension

Extension code is used to indicate the change from the current mode to another mode, e.g., another coding
scheme.

Format: 0000001xxx,
where xxx = 111 indicates uncompressed mode which is specified in § 2.3.1.

Further study is needed to define other unspecified xxx bit assignments and their use for any further
extensions.

3 Optional grey scale facsimile coding sch and their coding control functions

For further study.

4 Optional colour facsimile coding schemes and their coding control functions

For further study.

48 Fascicle VIL.3 — Rec. T.6

F-25

F-26

Appendix G
STANDARD CCITT COMPRESSION TEST DOCUMENTS

The following eight documents are the test achieved for various types of documents. The
documents used to measure the compression results of the tests are givenin Table 3-2.

THE SLEREXE COMPANY LIMITED

SAPORS LANE - BOOLE - DORSET - BH25 8 ER
TELEPHONE BOOLE (94513) 51617 - TELEX 123456

Our Ref. 350/PJC/EAC 18th January, 1972.

Dr. P.N. Cundall,
Mining Surveys Ltd.,
Holroyd Road,
Reading,

Berks.

Dear Pete,

Permit me to introduce you to the facility of facsimile
transmission.

In facsimile a photocell is caused to perform a raster scan over
the subject copy. The variations of print density on the document
cause the photocell to generate an analogous electrical video signal.
This signal is used to modulate a carrier, which is transmitted to a
remote destination over a radio or cable communications link.

At the remote terminal, demodulation reconstructs the video
signal, which is used to modulate the density of print produced by a
printing device. This device is scanning in a raster scan synchronised
with that at the transmitting terminal. As a result, a facsimile
copy of the subject document is produced.

Probably you have uses for this facility in your organisation.

Yours sincerely,

17,
P.J. CROSS
Group Leader - Facsimile Research

Figure G-1 Test Document #1

Registered in England: No. 2038
Registered Office: 60 Vicara Lane, Ilford. Eesex.

22-9-7|

Figure G-2 Test Document #2

G-2

ETABLISSEMENTS ABCDEFG

SOCIETE ANONYME AU CAPITAL DE 300000 F
20, RUE DU XVUTRSTBSL F 00000 NTBCLAG
Tél. : (35) 24.46.32 Adr. Tg. : NRVLJROLM
Télex : 31596 F IN : 718490070257

Transporteur (ou Transitaire)

M. M. DUPONT Frares

8 qual des bicdfsh F 0000 NTBCLAG

Mot directeur

FACTURE Exemplaire
CLASSEMENT OICE 15
DATE NUMERO FEUI
£ 5YHT 7-7-74 0 I (i

Votre commande

Notre offre A7, /B7

du 7l4=2-Bumere 438
du PL4_1-tuméro 12

° °] o
LIVRAISON FACTURATION
5, rue XYZ 12, rue ABCD BP 15
99000 VILLE 99000 VILLE
DOMICILIATION BANCAIRE DU VENDEUR PAYS D'ORIGINE PAYS DE DESTINATION
CODE BANOUE CODE GUICHET COMPTE CLIENT ‘CONDITIONS DE LIVRAISON DATE 74.03-03
TRANSPORTS LICENCE D'EXPORTATION NATURE DU CONTRAT (monnale)
ORIGINE DESTINATION MODE {"AB
CONDITIONS DE PAIEMENT (échéance, %...)
Pays 1 Etat 2 Air
MARQUES ET NUMEROS NOMBRE ET NATURE DES COLIS : NOMEN- | MASSE NETTE | VALEUR
MARKS AND NUMBERS DENOMINATION DE LA MARCHANDISE CLATURE | NET WEIGHT VALUE
NUMBER AND KING OF PACKAGES: STATISTICAL | \\\oSE BRUTE
No. DIMENSIONS
DESCRIPTION OF GOODS GROSS MEASURE.
v 123/4| 5'kg | 1400 X
21,456, 44,2 A 1 Composants g
74.21.456 2 P 2 ks 13%10%6
QUANTITE N° ET REF. DESIGNATION QUANTITE PRIX MONTANT
COMMANDEE | DE L'ARTICLE LIVREE UNITAIRE TOTAL
ET UNITE ET UNITE UNIT PRICE TOTAL
QUANTITY QUANTITY AMOUNT
ORDERED DELIVERED
AND UNIT AND UNIT
2 AF-809 | Circuit intégré 2 104,33 ¥ 208,66 F
10 S8-Th Connecteur 10 83,10 F 831,00 ;
25 2107 Composant indéterminé 20 15,00 FH 300,00
Costs Débours Inclus Non inclus
Packing Emballages 92,14
Freight Transport
Insurance Assurances
Total Invoice amount Montant total de la tacture 11;51 L80
Instaliment Acomptes
NET TO BE PAID NET A REGLER 1431,80

Figure G-3 Test Document #3

G-3

- 34 -

L'ordre de lancement et de réalisation des applications fait 1'objet de décisions au plus haut
niveau de la Direction Générale des Télécommunications. Il n'est certes pas question de
construire ce systéme intégré "en bloc' mais bien au contraire de procéder par étapes, par
paliers successifs, Certaines applications, dont la rentabilité ne pourra étre assurée, e
seront pas entreprises. Actuellement, sur trente applications qui ont pu étre globalement
définies, sixen sont au stade de 1'exploitation, six autres se sont vu donner la priorité pour
leur réalisation.

Chaque application est confiée a un ''chef de projet", responsable successivement de sa
conception, de son analyse-programmation et de sa mise en oeuvre dans une région-pilote.
La généralisation ultérieure de 1'application réalisée dans cette région-pilote dépend des
résultats obtenus et fait 1'objet d'une décision de la Direction Générale, Néanmoins, le
chef de projet doit dés le départ considérer que son activité a une vocation nationale donc
refuser tout particularisme régional, Il est aidé d'une équipe d'analystes-programmeurs
et entouré d'un "groupe de conception' chargé de rédiger le document de "définition des
objectifs globaux' puig le ''cahier des charges'' de l'application, qui sont adressés pour avis
a tous les services utilisateurs potentiels et aux chefs de projet des autres applications.
Le groupe de conception comprend 6 & 10 personnes représentant les services les plus
divers concernés par le projet,et comporte obligatoirement un bon analyste attaché a 1'ap-
plication.

II - L'IMPLANTATION GEOGRAPHIQUE D'UN RESEAU INFORMATIQUE PERFORMANT

L'organisation de 1l'entreprise frangaise des télécommunications repose sur l'existence de
20 régions, Des calculateurs ont été implantés dans le passé au moins dans toutes les plus
importantes. Ontrouve ainsi des machines Bull Gamma 30 & Lyon et Marseille, des GE 425
a Lille, Bordeaux, Toulouse et Montpellier, un GE 437 a Massy, enfin quelques machines
Bull 300 TI A programmes c8blés étaient récemment ou sont encore en service dans les
régions de Nancy, Nantes, Limoges, Poitiers et Rouen ; ce parc est essentiellement utilisé
pour la comptabilité téléphonique.

Al'avenir, sila plupart des fichiers nécessaires aux applications décrites plus haut peuvent
etre gérésentemps différé, un certain nombre d'entre eux devront nécessairement étre ac-
cessibles, voire mis i jour en temps réel : parmi ces dernijers le fichier commercial des
abonnés, le fichier des renseignements, le fichier des circuits, le fichier technique des
abonnés contiendront des quantités considérables d'informations.

Le volume total de caracter'es a gérer en phase finale sur un ordinateur ayant en charge
quelques 500 000 abonnés a été estimé a un milliard de caractéres au moins. Au moins le
tiers des données seront concernées par des traitements en temps réel.

Aucun des calculateurs énumérés plus haut ne permettait d'envisager de tels traitements.
L'intégration progressive de toutes les applications suppose la création d'un support commun
pour toutes les informations, une véritable ''Banque de données', répartie sur des moyens
de traitement nationaux et régionaux, et qui devra rester alimentée, mise a jour en perma-
nence, a partir de la base de l'entreprise, c'est-a-dire les chantiers, les magasins, les
guichets des services d'abonnement, les services de personnel etc.

L'étude des différents fichiers a constituer a donc permis de définir les principales carac-
téristiques du réseau d'ordinateurs nouveaux a mettre en place pour aborder la réalisation
du systéme informatif, L'obligation de faire appel & des ordinateurs de troisi¢me génération,
trés puissants et dotés de volumineuses mémoires de masse, a conduit a en réduire substan-
tiellement le nombre,

L'implantation de sept centres de calcul interrégionaux constituera un compromis entre :
d'une partle désir de réduire le colit économique de 1'ensemble, de faciliter la coordination
des équipes d'informaticiens; et d'autre part le refus de cré¢er des centres trop importants
difficiles a gérer et a diriger,et posant des probleémes délicats de sécurité. Le regroupe-
ment des traitements relatifs a plusieurs régions sur chacun de ces sept centres permettra
de leur donner une taille relativement homogéne. Chaque centre "gérera' environ un mil-
lion d'abonnés a la fin du VIéme Plan,

Lamise en place de ces centres a débuté au début de 1'année 1971 : un ordinateur IRIS 50 de
la Compagnie Internationale pour l'Informatique a été installé a Toulouse en février ; la
meéme machine vient d'étre mise en service au centre de calcul interrégional de Bordeaux,

Figure G-4 Test Document #4

G-4

Cela est d’autant plus valable que T Af est plus
grand. A cet égard la figure 2 représente la vraie courbe
donnant |$(/)| en fonction de f pour les valeurs numé-
riques indiquées page précédente,

|¢u)|

" 18160
(L9

Nyl _

Fis. 2

Dans ce cas, le filtre adapté pourra étre constitué,
conformément a la figure 3, par la cascade :

— d’un filtre passe-bande de transfert unité pour
Jo << fo+Af et de transfert quasi nul pour
f < foetf> fo+Af, filtre ne modifiant pas la phase
des composants le traversant ;

e

FiG. 3

— filtre suivi d’une ligne & retard (LAR) disper-
sive ayant un temps de propagation de groupe Ty
décroissant linéairement avec la fréquence f suivant
I’expression :

T = To+(fo—f) -A-%‘ (avec To > T)

(voir fig. 4).

™

To-T

fo fosat t

FiG. 4

telle ligne a retard est donnéc par :

s
¢=—2NJ‘ Tldf
0

- ST T s
= Zn[To+ Af]f+"Aff

Et cette phase est bien I'opposé de /¢(f),
a un déphasage constant prés (sans importance)

et a un retard T, prés (inévitable).

Un signal utile S(r) traversant un tel filtre adapté
donne 2 la sortie (2 un retard T, prés et 3 un dépha-
sage prés de la porteuse) un signal dont la transformée
de Fourier est réelle, constante entre f, et fo+Af,
et nulle de part et d’autre de f; et de fo+Af, C’est-
a-dire un signal de fréquence porteuse f,+Af/2 et
dont ’enveloppe a la forme indiquée & la figure 5,
ol 'on a représenté simultanément le signal S(1)
et le signal S,(r) correspondant obtenu a la sortie
du filtre adapté, On comprend le nom de récepteur
a compression d’impulsion donné a ce genre de
filtre adapté : la « largeur » (3 3 dB) du signal com-
primé étant égale A 1/Af, le rapport de compression

est de 1= TAf
1/Af

s(t)

Enveloppe de $(t)
7
rd

To = Ups
At =5 MHz
Ta2ps

Fic. §

| P de com-
pression en réalisant que lorsque le signal S(¢) entre
dans la ligne & retard (LAR) la fréquence qui entre
la premiére a I'instant O est la fréquence basse fo,
qui met un temps T, pour traverser. La fréquence f

On saisit physi le phé &

entre & Pinstant ¢ = (f — f,) XTf et elle met un temps

To—(f = fo) 31; pour traverser, ce qui la fait ressortir

a Pinstant 7. éealement. Ainsi donc. le signal S(n

Figure G-5 Test Document #5

G-5

292 QUESTIONS — COMMISSION XII

L]
) G
G,
" []
40
» - - Gy =35
3 -~ . 1
s = \\G. - ,5// 'I M/—‘??.
d / }.,
L (] Y
e /}4‘ .
' :\ /
| Lo oA
Limites de 1/1x
conflance & 95% I/"
» v,?f f G
e -
T -‘;'" 0
1 * s
o _)" .:
®
2 e ®
®e
15
-
10 J.
5
cclm. 5337
15 20 25 30 % d8 Q

G, (essais subjectifs) pour
Courbes adaptées G* _"_" G,"_ 35dB G, = 25dB
o

[10] X o

[7X) [——
Points calculés D (Q, G,) pour
Go=w G,=25 G,=35dB
[] n A ~ dans la partie montante
x @ + ~ dans la partie descendante

— X — - — X ——

Courbes s e wmmmn = wmes D (Q, G,)

FIGURE 3

TOME V — Question 18/XII, Annexe 6

Figure G-6 Test Document #6

G-6

0O - S &K

Seht

QU= EFEEFKBEUSE (~~D) CE(CEMER (HRPIR HEk
BB BRI QO QO=EE) §] QNuovV —HDSEV-2" HEK
S EEEIC EEEM VR L&D & BAIRHSIRA O Vo K S R
Kre® mEN L FEEE W R R dE e ®
QU=EECERS OO~k (EEEHEEEREKY) Voo~ (HEERWER
ERKIK) V0% QU ~oawium—o 7L TEN SRS
BEWEY, REEUL HRR-oNLEC Y ~REEIEHEC v KL’
TEENE R WY, VOV REREMEC ERKEB UL L2EVR0° OO
=t EOvroanl CHEC v QO VENFe-sCuOVREL R

o
<

WOV QO=ER —owolrCNMUKIERHRIERLLLCH QO
= EEECRUKRoEEHRESE0LLCL EOUIVRYECOO~HRV
O HNCLOEER QU=ERVOO=HRER OVER F—ERHVES
O RONERHD ~ooolu it —ho—V FoEEHS ~oowl’
A—NY ReEEHPD ~oo0ol’ N3V NN VESL QL

QUE VOV REEINC R EERKBUCRE VKBS
VERNEEVREEEVVRESURDREBE RSSO V) GV, K
#URsVY PURCVEHERBCSE | @EELU R0V QO=kCHBIEVO
O b= S HHRSIE € doZk 1) +4 0 RHH B EIHF R 0 -2 SEIEVC C R°

QO—EER Y1 m—0 YT ECHEL LU Y m—0 >Y W
. S C RE - M - RHCHMBAPL” oS 2R | v PuRer B
- v O RBIVHE HEOREBEYR m—o MY SHSRMY m—n MY VH
R THCHERRRL® Lund ~ooolrLU~HREICEHV REeY
BEr BTN woo EVAORR NN —0 > Y KERVBEFOL»C
Ve’

DRIOBRL movolrom URH S L KEHEEEIE - N2’ KME
IR C MRS 4 SHIES (SRESERHVIN OO~ CER
WRSHERURD QO—HHCHERSER DIk RONVKEGUED e
O R0) S RAKREPE RO KPRKERMU MOV O RN - NN R
EEICHMNUF O VD CRERCELHRCCHRERS ~HDCHUK
S PRRMLORN) VUSREBOV RKEE EOECKIR& <2V

2 U= CBHKIN ~oool CHRNERWR I 1 —h=—VEEuS
HNAVUSRORLVI0° HERUMP Y QO OO—LE 252U
SRS RERDNVEHRERULSL VRS QO mK-»" 1| 1~k
S—RUCHENMY HCUL BHMP Y WP LRVE Y 50

Hig

D HEERE G IR M AR VoY PO SERM2A0T Wi
SCERCWH VHESFHEWRKEBENKRUERU LW 50° &1 VEZVRED
MR R0A0 N QU CHER Mg ugsustivie®

EHER UM R (OO)8 BRI SEHURE oRE WE
RHOEHCERY O 5 VIERDT NS ERVKER e) U uHR Ve (=
POV W N+ 2 — KRR~ o~1p)

TAFEEE KIS & S HIBCMIDLMA C v R 5 Fw L BRI S K
UROEL ST oREER 4 SEEEREY AL oRKBLCER WML oY
RS C e EEY O 5 VERDT 04 SIS 4 0 4o L B 2t
WRLBERNH.035°, (Eff—~00lp)

TOFEEEE RIS w REFECHKELMD ' v CHERKANGC ER
HOSVERD 20 Bliags e vkbue) (Ef—oom)

Rk oo vik—wootdpt 5 K2 MM, VT NNAKEIS Avis &0
B OU»Q W IV K FE41(Recommendation) At ® ¥ 5 10° QO=EEE
KR oipm s FHEHE U B EHERV2UWL2PEVLO WV NEHR &R @
WRE WHEESHEEVER A 0RN-» O V500 VB’ -2 0 -2 imy
HBIEOV RESREVE RURECH VN HEZERERO Vv E Ll
HEF CEERSV" LS5 OV KEEUCoBRCHBVRLORAUR R
CHOBRRE | vy MBm, UH{sTR HIESEHEBEILNE w8~
VaRVMS SIRERM S) SRR (ML) 1T EEEILE s~ R abE
REEFCERL O 5V KEEBROVKEFe-20 P Lunh’ K#MIEL—N
2 (K MEEE IS O+ V0 BR4n” v © MEnRAR & B o B ENE € IR
RHBFHED N U0 R WEROVEBROVKERRR® SRRV OO
HFEOHEEL O LUETCRREBIEVSEV QO=RHCEEREL" vE
s B € FEE I Q PEIRE VR0 -2 5 e’

DM wi WHEREN-CVERCRECH VY BENHCEE V>
© W R 52 00 MBI 5 e KGO € KM R v VAR B0 v
R MR WO HH-SKIIRY S SV RS Hr UM T 5 FEERITER Y
1 REHE SRR | O CEEESIRE VOV B HE BRI Q0

Figure G-7 Test Document #7

G-7

memorandum

" A0 Speges | ™ GV Smith
.m@ugn\e moonom\ ﬂu\g‘._&u—
™, o 2041 | oar; [~ T- 3l

We kinw Giak, where ?a&mo\&p. e
reluced o 9«1.9\.:39,0 \%5 4\3 Gansmission
&q communicabion a.qqm\m\:u. \N?\!&w.g s can
be @J.S&S\ ,go& abio some cLala. musCremaia
on Qlo»bn 4%..3. For 089\.\«6 ,we oﬁ.km\n\ou‘
%S‘.oﬁ an Qd?na..{u 0&3&.\4 or wealhor map .

) Falk we shoulel realise tret
?uab J&an\\ \T.oat,f&@ Gonsmassions are needed &
ovrcome ous” problems i offceiaal” QJ.So dala.
Oo!).smgmﬂ?. We nedd Enoﬁon. calo %Jo?,a
(o 93?@3..2..

Finyg comneats 4

@%

Figure G-8 Test Document #8

G-8

AppendixH
DATA ERROR RECOVERY PROCEDURE

This error recovery procedure only applies to
Group 3 processing. Group 4 code is assumed to
be error free at the chip level. Group 4 error
correctionis done at a higher level.

The expander checks the expanded data length
for Group 3 (EOL = 0). If the expanded data length
is not equal to the effective line length of L =
(EPWR - 8) « (EWR + 1), then the DER bit in the
ESR is set to one. Unrecognizable codes and
illegal EOLs also cause the DER bit to be set.

This error recovery procedure is based on the
assumption that the expander destination buffer
size is an integral multiple of the effective line
length, i.e. EDWCR =n+ EPWR « (EWR+1). Under
this assumption, no premature destination
overflow occurs unless a transmission error causes
it. Therefore, a premature destination overflow can
be handled in the same way as a data error.

The error recovery procedure must accomplish the
following tasks:

1. Replace the erroneously decoded line in the
destination buffer with a copy of the line
preceding it.

2. Clear the decoding registers in the expander
by doing a software reset (Set the Operation
Control (OC) field in the CMCR to "00").

3. Save the current value of the ESCAR in a
variable (named OSCA in this discussion).

4. Set the ESA bit to 1 so that the expansion
processor will look for a starting EOL before
processing another line.

5. Back up the ESCAR four bytes to place it
ahead of the EOL ending the last line (the line
with the error) so that this EOL can be used as
the starting EOL.

6. Set the GO bit and thereby process another
line. If another error does not occur,
continue processing. If another error stops
processing, proceed with step 7.

7. In case the line with the error is less than four
bytes long, backing up the ESCAR by four
bytes places it at a point in the line preceding
the bad line and the EOL ending this good line
will be used to restart the expansion. The
result is that the bad line is again processed.

The possibility of this happening must be
considered to prevent the program from going into
an infinite loop. This can be detected by
comparing the value in OSCA with the value in
ESCAR after processing another line and
receiving another data error. If ESCAR is not
greater than OSCA, it means that the same bad
line has been processed again. In this case,
reduce ESCAR by a value progressively less than
four and each time process another line to see if
ESCAR becomes larger that OSCA indicating that
anew line was processed.

H-1

IMPOSSIBLE
CONDITION

BYTENO «
BYTENO -1

}

ABORT AND
CHECKSYSTEM

!

REDEFINE
EDCAR,
ESWCR, ERCR,
EPWR

!

ESCAR «
ESCAR-BYTENO

:

BYTEN < 4

}

OSCA < ESCAR

!

ESCAR «
ESCAR-BYTENO

!

REPLACE
ERRONEOUS LINE

}

START PROCESSING

}

SOFTWARE RESET
SETESA=1
EOL=0

!

SETGOBIT

STOP PROCESSING

CEPISRUNNING

CHECK ESR

REDEFINE
EDWCR, EDCAR
&ERCR

!

SETGOBIT

(DER=1)OR(EDO=1,LPi=1)
(EDO=1,LPI 0)

Figure H-1. Error Recovery Flow Diagram

07666A H-1

H-2

INDEX

1D, 2-18,2-24,3-1,3-11,39

2D (Two-dimensional), 2-14, 2-18, 2-24, 3-1, 3-11

68000 CPU, 5-1

68000 Interface, 5-1

80188 CPU, 5-5

80188 interface, 5-5,5-6

A0-A15, 2-35, 2-40

Adline length, 1-5

AD16-AD23 (Address-Data Bus), 2-35, 2-40

Address-Data Bus, 2-35

ALE (Address Latch Enable), 2-34, 2-40

AS, 2-36

Average run length, 3-7

BBC (Byte Boundary Control), 2-19

Bit-mapped image area, 3-2

Black runs, 3-8

Block 1/O, 2-39

Bus Master, 2-36

Bus Master Mode, 2-35

Bus Slave Mode, 2-35

Byte boundary, 2-21, 3-9

CAR, 1-6

CBY (Compressor Busy), 2-11,2-13

CCITT Standards, 1-1, 1-2,3-1, 3-7, 3-8

CDAHR, 2-6, 2-30

CDCAR (Compressor Destination Current Address
Register), 2-6, 2-28, 2-30, 2-31

CDCHR, 2-6, 2-31

CDLSR (Compressor Destination Line Start
Address Register), 2-6, 2-31

CDO (Compressor Destination Overflow), 2-13

CDWCR (Compressor Destination Working Count
Register), 2-6, 2-29

CEPdatain, 2-38

CEPdata out, 2-38

CER, 2-6,2-9,2-10,2-11,D-2

CFWR (Compressor Frame Width Register), 2-6,
2-25,D-2

Changing Picture Elements, 3-12

CIC,2-9,2-13

CIE (Compressor Interrupt Enable), 2-3

CKPR (Compressor K Parameter Register), 2-6,
2-24,D1

CLK, 2-32

CMCR (Compressor Master Control Register), 2-6,
2-15,39

COA (Compressor busy and new Operation
Attempted), 2-12,2-13

Code Buffer, 2-1,3-2

Coded data, 2-1

Codingscheme, 3-4

Codingtree, 3-6

Color sync, 3-9

Compressed code, 3-10

Compressed data, 2-1, 3-2

Compressor, 2-1,2-3

Compressor Busy (see CBY)

Compressor busy (see COA)

Compressor Destination Current Address Register
(see CDCAR)

Compressor Destination Line Start Address
Register (see CDLSR)

Compressor Destination Overflow (see CDO)

Compressor Destination Working Count Register
(see CDWCR)

Compressor Express Register (see CER)

Compressor Frame Width Register (see CFWR)

Compressor Interrupt Enable (see CIE)

Compressor K Parameter Register (see CKPR)

Compressor Master Control Register (see CMCR)

Compressor Page Width Register (CPWR)

Compressor Parameter Register (see CPR)

Compressor Restart Control Register (see CRCR)

Compressor Source Address Holding Register
(see CSAHR)

Compressor Source Count Holding Register (see
CSCHR)

Compressor Source Current Address Register
(CSCAR)

Compressor Source Line Start Address Register
(see CSLSR)

Compressor Source Overflow (see CSO)

Compressor Source Working Count Register (see
CSWCR)

Compressor Wraparound Register (CWR), 2-24

CPR (Compressor Parameter Register), 2-6, 2-20,
3-9,D-1

CPWR, 2-6,2-24,2-26

CRCR (Compressor Restart Control Register), 2-6,
2-18,2-19

CS (Chip Select), 2-34, E-1

CSAHR (Compressor Source Address Holding
Register), 2-6, 2-25, 2-26

CSCAR (Compressor Source Current Address
Register), 2-6, 2-26

CSCHR (Compressor Source Count Holding
Register), 2-6, 2-26, 2-29

CSLSR (Compressor Source Line Start Address
Register), 2-6, 2-28, 2-30

CSO (Compressor Source Overflow), 2-13

CSR, 2-6,2-13

CSWCR (Compressor Source Working Count
Register), 2-6, 2-27, 2-29

Current Address, 2-26

CWR (Compressor Wraparound Register), 2-6,
2-24

DA0-DA15 (Document Store Lower Address Bus),
2-36,2-43

DA16-DA23 (Document Store Upper Address
Bus), 2-36

DAC (Destination Address Control), 2-19, 2-30

DAD16-DAD23, 2-43

DALE (Document Store ALE), 2-35, 2-42, 2-43,
E-1

Data Error (see DER)

Data Format Control (see DFC)

Data hold time, 2-40

Datarate, 3-4

Data setup time, 2-40

Data transmission, 3-5

DC (Destination Control), 2-1, 2-17

DCC (Destination Count Control), 2-18, 2-19, 2-31

DER (Data Error), 2-14, D-1,2-4

Destination Address Control (see DAC)

Destination Buffer, 2-2, 2-24, 2-29, 2-30

Destination Control (see DC)

Destination Count Control (see DCC)

Destination Line Start Address (see DLS)

DFC (Data Format Control), 2-20, 2-21, 3-9

DLS (Destination Line Start Address), 2-19, 2-20

DMA, 2-1,2-32,2-35,E-1, E-2

DMA read, 2-40

DMA write, 2-41

Document, 1-6

Document Bus, 2-32

Document Store ALE (see DALE)

Document Store bus, 2-1

Document Store Bus DMA read, 2-42

Document Store Bus DMA Write, 2-43

Document Store Lower Address Bus (see DAO-
DA15)

Document Store Read (see DRD)

Document Store Upper Address Bus (see DA16-
DA23)

Document Store Write (see DWR)

DRD (Document Store Read), 2-35, 2-42, 2-43,
E-1

DREADY, 2-36, 2-42,2-43

DWR (Document Store Write), 2-35, 2-40, 2-42,
E-1

EBY (Expander Busy), 2-11, 2-15,2-14

ECD (Extension Code Detected), 2-10

EDAHR, 2-6, 2-30

EDCAR (Expander Destination Current Address
Register), 2-6,2-28, 2-31

EDCHR, 2-6, 2-31

EDLCR (Expander Destination Line Start Address
Register), 2-31

EDLSR, 2-6, 2-31

EDO (Expander Destination Overflow), 2-15, 2-14

EDWCR (Expander Destination Working Count
Register), 2-6, 2-29 2-15

Effective line, 2-28

EFWR (Expander Frame Width Register), 2-6, 2-25

EIC (Expander lllegal Command), 2-14, 2-15

EKPR, D-1

EKPR (Expander K Parameter Register), 2-24

EKR, 2-6

EMCR (Expander Master Control Register), 2-6,
2-15

Encoding, 3-1

End of Line (see EOL)

End of Page (see EOP)

Entropy, 3-5

EOA (Expander busy and new Operation
Attempted), 2-15, 2-14

EOL (End of Line), 2-1, 2-11, 2-22, 2-23, 3-9

EOP (End of Page), 2-10, 2-21, 2-22

EPR (Expander Parameter Register), 2-6, 2-22,
D-2

EPWR (Expander Page Width Register), 2-6, 2-14,
2-24,2-26,2-6, D-1

ERCR (Expander Restart Control Register), 2-6,
2-18,2-19

Error recovery, 2-4, H-1

Error return messages, 4-17

ESAHR (Expander Source Address Holding
Register), 2-6, 2-26

ESCAR (Expander Source Current Address
Register), 2-6, 2-26, H-1

ESCHR (Expander Source Count Holding
Register), 2-6, 2-26, 2-28, 2-29

ESLSR (Expander Source Line Start Address
Register), 2-6, 2-28, 2-30

ESO (Expander Source Overflow), 2-15, 2-14

ESR (Expander Status Register), 2-6, 2-14

ESWCR (Expander Source Working Count
Register), 2-6, 2-15, 2-27, 2-29

Evaluation Board, 5-8

Evaluation Board interface, 5-10

Evaluation Board Memory Map, 5-9

EWR (Expander Wraparound Register), 2-6, 2-14,
2-23,2-24

Exception Vectors, 5-4

Exit codes, 3-17

Expander, 2-1, 2-3

Expander Busy (see EBY)

Expander busy (see EOA)

Expander Destination Current Address Register
(see EDCAR)

Expander Destination Line Start Address Register
(see EDLCR)

Expander Destination Overflow (see EDO)

Expander Destination Working Count Register
(see EDWCR)

Expander Frame Width Register (see EFWR)

Expander lllegal Command (see EIC)

Expander K Parameter Register (see EKPR)

Expander Master Control Register (see EMCR)

Expander Page Width Register (see EPWR)

Expander Parameter Register (see EPR)

Expander Software Reset, 2-15

Expander Source Address Holding Register (see
ESAHR)

Expander Source Count Holding Register (see
ESCHR)

Expander Source Current Address Register
(ESCAR)

Expander Source Line Start Address Register
(see ESLSR)

Expander Source Overflow (see ESO)

Expander Source Working Count Register (see
ESWCR)

Expander Status Register (see ESR)

Expander Wraparound Register (see EWR)

Express Mode, 2-10, 3-1, 3-14

Express Register (see CER)

EXT (Extension), 2-10, 3-14

Extension (see EXT)

Extension Code Detected (see ECD)

Fill bits, 3-17

Float, 2-35

Frame, 1-6

Frame Width, 2-25

FWR,1-6

G (Granularity), 2-2, 2-22, 3-1, 3-14

GO, 2-2,2-16,2-17

Group 3, 1-2,2-14,2-18,2-22,3-2,3-5,3-9

Group 3 format, 3-10

Group 4 format, 1-2, 2-18, 2-22, 3-2, 3-12

Header Declaration, 4-17

HLDA (Hold Acknowledge), 2-34, 2-37, 2-40, 2-42

Hold Request (see HRQ)

Horizontal Mode, 3-12, 3-13, 3-14, 3-15

HRQ (Hold Request), 2-34, 2-37, 2-40, 2-42

Huffman, 3-6

ID (Version1.D.), 2-11, D-1

|E (Interrupt Enable), 2-16,2-17

Image Buffer, 2-1

Image data, 2-1

Image file analysis, 4-17

Initialization, 4-1

INTR (Interrupt Request), 2-34

K Parameter, D-1

LDS, 5-5

Left Margin Register (see LMGR)

Line buffer, 3-2

Line length, D-1

Line Processing Incomplete (see LPI)

Line Termination (see LT)

Line Termination Parameter (see LT)

Lines perinch, 3-1

LMGR, 1-6, 2-6,2-7,2-8

Lower Address (A0 - A15), 2-35

LPI (Line Processing Incomplete), 2-4, 2-12, 2-14,
2-15

LSR, 1-6

LT (Line Termination Parameter), 2-20

LT (Line Termination), 2-3, 2-21

Make-up codes, 3-9

Margin, 1-5

Master Control Register (see CMCR, EMCR)

Master Mode, 2-37

Master Status Register (see MSR)

MC (Mode Control), 2-17,3-9

MH (Modified Huffman), 3-1, 3-6, 3-7, 3-11

Minimum time, 3-17

MMR (Modified Modified Read), 3-1

Mode Control (see MC)

Modem, 3-4

Modified Huffman (see MH)

Modified Modified Read (MMR), 3-1
Modified Read (MR), 3-1, 3-9, 3-10

MSR (Master Status Register), 2-6, 2-10, 2-11
Mutti-line, 2-16, 2-29

Negative Compression (see NGC)

NGC (Negative Compression), 2-1,2-11,2-13
Network, 3-4

No byte boundary, 2-21

North American line length, 1-5

OC (Operation Control) field, 2-2, 2-16,2-17, 3-9
One-dimensional, 2-17, 3-9

Operation Control (see OC)

OSCA, H-1

Page, 1-6

Page Width, 2-24, 2-26

Pass Mode, 3-12,3-13, 3-14

Pel (see pixel)

Pels, 3-4

Performance, A-1

Picture data, 3-2

Pixel, 1-2, 1-5, 3-1,3-12,3-12, 3-7, E-1
Premature overflow, 2-4

Probability, 3-5

Process on Byte Boundaries, 2-20

Protocol, 3-4

PWR, 1-6

Raw data, 3-2

RD (read), 2-5, 2-33, 2-42, E-1

Read access (CEP Master Mode), 2-37
Read access (CEP Slave Mode), 2-36

Read access (Document Bus), 2-39

Read timing, 2-38

READY, 2-34, 2-37, 2-40

READY hold time, 2-40

READY setup time, 2-40

Reference line, 2-28, 3-12

Register access, 2-5,3-7

Register address, 2-38, 2-39

RES (Reserved), 2-19

RESET, 2-16,2-33

Resolution, 1-5

Restart Control Register, 2-28

Returnto Control (see RTC)

Right Margin Register (see RMGR)

RMGR (Right Margin Register),1-6, 2-6, 2-8, 2-9
RTC (Returnto Control), 2-20, 2-22, 3-9
Runlength, 3-7,3-8

Runs, 3-8

SA (Source Attribute), 2-2, 2-21, 2-22, 2-23
SAC (Source Address Control), 2-18, 2-19
SC (Source Control), 2-17

Scanline, 1-4

SCC (Source Count Control), 2-18, 2-19, 2-28
Single Line, 2-16

Slave Mode, 2-36, 2-39

SLS (Source Line Start Address), 2-19, 2-20
Source Address Control (see SAC)

Source Attribute (see SA)

Source Buffer, 2-2, 2-28

Source Control (see SC)

Source Count Control (see SCC)
Standardized parameters, 3-4

Start, 2-3

Status registers, 2-3

Stopping the CEP, 2-4

System Bus, 2-1, 2-32

System side, 2-37, 2-40, 2-41
T.30,1-2

T4,1-2

T6,1-2

Tagbit, 3-17

Terminating Codes, 3-8

Test Documents, 3-8

TFLR (Time Fill Register), 2-6, 2-7,2-8
Three-state, 2-35

Throughput, A-1

Time Fill Register (see TFLR)

Timing, 2-5

TMGR (Top Margin Register), 2-6, 2-9
Top Margin Register (see TMGR)
Tansmission, 2-22

Transmission constraints, 3-17
Transparent Mode, 2-17, 2-22, 2-24, 3-1,3-14
Two-dimensional, 2-17,2-18, 3-11, 3-12
Two-dimensional code, 3-14

UDS, 5-5

Un-compressed Data Mode, 3-1

Un-compressed data transfer, 3-16

Un-compressed Mode, 3-14

Un-compressed Mode code words, 3-17

Un-compressed data, 2-1

V.21, 1-2

V.27,1-2

V.29,1-2

Valid data, 2-39

Version1.D. (see ID)

Vertical Mode, 3-12, 3-13, 3-14, 3-15

Wait state, 5-7

WCR, 1-6

White area, 1-6

White runs, 3-8

WPI (wraparound incomplete), 2-4, 2-12, 2-13
2-14,2-15

Wraparound Incomplete (see WPI)

WR (write), 2-33, 2-42, E-1

Write, 2-5, 2-33

Write access (CEP Master Mode), 2-38

Write access (CEP Slave Mode), 2-37

Write access (Document Bus), 2-44

Write timing, 2-38

ALABAMA
ARIZONA,
Tempecoiiiiin
Tueson ...
CALIFORNIA,
ElSegundo
NewportBeach
San D|ego
Sunnyvale
Wo and Hills
COLORADOc.onnn
CONNECTICUT,
Southbury
FLORIDA,
Altamonte Springs
Clearwater
Ft Lauderdale
Melbourne
GEORGIAoo.
ILLINOISt
INDIANA
KANSAS ...l
MARYLAND
BELGIUM,
Bruxelles TEL:
FAX
TLX:
CANADA, Ontario,
Kanata TEL:
Willowdale TEL:
FAX:
FRANCE,
Paris TEL:
FAX:
TLX:
GERMANY,
Hannoverarea TEL:
FAX:
TLX
Minchen TEL:
FAX:
TLX:
Stuttgart TEL
FAX
TLX
CALIFORNIA
INC ...
CONNECTICUT
SCIENTIFIC COMPONENTS ...

IDAHO

INTERMOUNTAIN TECH MKGT
INDIANA

SAI MARKETING CORP
IOWA

LORENZ SALES
MICHIGAN

SAI MARKETING CORP
NEBRASKA
LORENZ SALES

ADVANCED MICRO DEVICES
DOMESTIC SALES OFFICES

00
........ NORTH CAROLINA,

(619) 560-7030

........ 408) 720-8811 Charlotte

........ (818) 992-4155 Raleigh

........ (303) 691-5100 OREGON
OHIO,

........ (203) 264-7800 Columbus
PENNSYLVANIA,

(305) 339-5022

........ (813) 530-9971 Willow Grove

........ (305) 484-8600 TEXAS,

........ (305) 254-2915 Austin
........ (404) 449-7920 Dallas
........ (312) 773-4422 Houston
ceeeo... (317) 244-7207 WASHINGTON

. (913) 451-3115 WISCONSIN

(301) 796-9310
INTERNATIONAL SALES OFFICES

Allentown (AT&T only)

......... (205) 882-9122 MASSACHUSETTS (617)273-3970

MINNESOTAoiian. 612) 938-0001

........ (602) 242-4400 NEWJERSEY (201) 299-0002
........ (602) 792-1200 NEW Y

Liverpool 315) 457-5400

........ (213) 640-3210 Poughkeepsle (BMonly) 914; 471-8180

........ (714) 752-6262 Woodbury (516) 364-8020

(704) 525-1875
(919) 847-8471
(503) 245-0080

(614) 891-6455

(215) 398-8006
(215) 657-3101

(512) 346-7830
214) 934-9099
(713) 785-9001
(206) 455-3600
(414) 782-7748

HONG KONG,
........ (02) 771 99 93 Kowloon................. TEL: 3-695377
.............. 762-3716 FAX: ... 1234276
................ 61028 TLX: o
ITALY, Milano TEL: (02) 3390541
........ (613) 592-0090 FAX: 3498
........ (416) 224-5193 TLX:o.v...... 315286
........ (416) 224-0056 JAPAN, Tokyo TEL: (03) 345-8241
FAX: ...t 3425196
...... (01) 46 87 36 66 TLX: J24064AMDTKOJ
...... (01) 46 86 21 85 LATIN AMERICA,)
............... 202053F Ft. Lauderdale TEL: (305) 484-8600
FAX: (305) 485-9736
......... (05143) 50 55 SWEDEN, Stockholm TEL: (08) 733 03 50
................. 553 FAX: 7332285
................ 925287 TLX: ... 11602
......... (089) 41 14-0 UNITED KINGDOM,
............... 406490 Manchester area TEL: (0925) 828008
............... 523883 FAX: ...
....... (0711) 62 33 77 TLX: oo
............... 6. Londonarea TEL: (04862)22121
P 721882 FAX: .
TLX: oo 859103
NORTH AMERICAN REPRESENTATIVES
NEW JERSEY
... OEM (408) 988-3400 TAI CORPORATIONo0ne (609) 933-2600
DISTI (408) 498-6868 NEW MEXICO
THORSON DESERT STATES (505) 293-8555
........ (203) 272-2963 NEW YORK
NYCOM,INC ...t (315) 437-8343
........ (208) 322-5022 OHIO
Dagton
........ (317) 241-9276 OLFUSS ROOT &CO (513)433-6776
Strongsville
........ (319) 377-4666 DOLFUSS ROOT & CO (216) 238-0300
PENNSYLVANIA
........ (313) 227-1786 U‘I?AgLFUSS ROOT & CO (412) 221-4420
........ (402) 475-4660 RZMARKETING (801)595-0631

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance
characteristics. The performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and
other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company
assumes no responsibility for the use of any circuits described herein.

(%

ADVANCED MICRO DEVICES 901 Thompson PI., PO. Box 3453, Sunnyvale, CA 94088, USA
TEL: (408) 732-2400 ® TWX: 910-339-9280 @ TELEX: 34-6306 ® TOLL FREE: (800) 5388450

© 1986 Advanced Micro Devices, Inc.
Printed in U.S.A.

Order #07666A

ADVANCED
MICRO

DEVICES, INC.
901 Thompson Place
PO. Box 3453
Sunnyvale,
California 94088
(408) 732-2400
TWX: 910-339-9280
TELEX: 34-6306
TOLL FREE

(800) 538-8450

IH-MU-5M-1/86-0

